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Abstract
We study the time complexity of the discrete k-center problem and related (exact) geometric set
cover problems when k or the size of the cover is small. We obtain a plethora of new results:

We give the first subquadratic algorithm for rectilinear discrete 3-center in 2D, running in
Õ(n3/2) time.

We prove a lower bound of Ω(n4/3−δ) for rectilinear discrete 3-center in 4D, for any constant
δ > 0, under a standard hypothesis about triangle detection in sparse graphs.

Given n points and n weighted axis-aligned unit squares in 2D, we give the first subquadratic
algorithm for finding a minimum-weight cover of the points by 3 unit squares, running in
Õ(n8/5) time. We also prove a lower bound of Ω(n3/2−δ) for the same problem in 2D, under the
well-known APSP Hypothesis. For arbitrary axis-aligned rectangles in 2D, our upper bound is
Õ(n7/4).

We prove a lower bound of Ω(n2−δ) for Euclidean discrete 2-center in 13D, under the Hyperclique
Hypothesis. This lower bound nearly matches the straightforward upper bound of Õ(nω), if the
matrix multiplication exponent ω is equal to 2.

We similarly prove an Ω(nk−δ) lower bound for Euclidean discrete k-center in O(k) dimensions
for any constant k ≥ 3, under the Hyperclique Hypothesis. This lower bound again nearly
matches known upper bounds if ω = 2.

We also prove an Ω(n2−δ) lower bound for the problem of finding 2 boxes to cover the largest
number of points, given n points and n boxes in 12D. This matches the straightforward
near-quadratic upper bound.
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1 Introduction

1.1 The discrete k-center problem for small k

The Euclidean k-center problem is well-known in computational geometry and has a long
history: given a set P of n points in Rd and a number k, we want to find k congruent balls
covering S, while minimizing the radius. Euclidean 1-center can be solved in linear time for
any constant dimension d by standard techniques for low-dimensional linear programming or
LP-type problems [21, 24, 27, 41, 50]. In a celebrated paper from SoCG’96, Sharir [44] gave
the first Õ(n)-time1 algorithm for Euclidean 2-center in R2, which represented a significant
improvement over previous near-quadratic algorithms (the hidden logarithmic factors have
since been reduced in a series of subsequent works [29, 16, 49, 23]). The problem is more
difficult in higher dimensions: the best time bound for Euclidean 2-center in Rd is about nd

(see [3, 2] for some results on the R3 case), and Cabello et al. [14] proved a conditional lower
bound, ruling out no(d)-time algorithms, assuming the Exponential Time Hypothesis (ETH).
We are not aware of any work specifically addressing the Euclidean 3-center problem.

The k-center problem has also been studied under different metrics. The most popular
version after Euclidean is L∞ or rectilinear k-center : here, we want to find k congruent
hypercubes covering P , while minimizing the side length of the hypercubes.2 As expected,
the rectilinear version is a little easier than the Euclidean. Sharir and Welzl in SoCG’96 [45]
showed that rectilinear 3-center problem in R2 can be solved in linear time, and that rectilinear
4-center and 5-center in R2 can be solved in Õ(n) time (the logarithmic factors have been
subsequently improved by Nussbaum [42]). Katz and Nielsen’s work in SoCG’96 [35] implied
near-linear-time algorithms for rectilinear 2-center in any constant dimension d, while Cabello
et al. in SODA’08 [14] gave an O(n log n)-time algorithm for rectilinear 3-center in any
constant dimension d. Cabello et al. also proved a conditional lower bound for rectilinear
4-center, ruling out no(

√
d)-time algorithms under ETH.

In this paper, we focus on a natural variant of the problem called discrete k-center, which
has also received considerable attention: here, given a set P of n points in Rd and a number
k, we want to find k congruent balls covering P , while minimizing the radius, with the
extra constraint that the centers of the chosen balls are from P .3 The Euclidean discrete
1-center problem can be solved in O(n log n) time in R2 by a straightforward application of
farthest-point Voronoi diagrams; it can also be solved in O(n log n) (randomized) time in
R3 with more effort [15], and in subquadratic Õ(n2−2/(⌈d/2⌉+1)) time for d ≥ 4 by standard
range searching techniques [4, 40]. Agarwal, Sharir, and Welzl in SoCG’97 [6] gave the first
subquadratic algorithm for Euclidean discrete 2-center in R2, running in Õ(n4/3) time.

One may wonder whether Euclidean discrete 2-center in higher constant dimensions could
also be solved in subquadratic time via range searching techniques. No results have been
reported, but an Õ(nω)-time algorithm is not difficult to obtain, where ω < 2.373 denotes the
matrix multiplication exponent: by binary search, the problem reduces to finding two balls
of a given radius r with centers in S covering S, which is equivalent to finding a pair p, q ∈ S

such that cpq =
∨

z∈S(apz ∧ azq) is false, where apz is true iff p and z has distance more than
r – this computation reduces to a Boolean matrix product. This approach works for arbitrary

1 The Õ notation hides polylogarithmic factors.
2 All squares, rectangles, hypercubes, and boxes are axis-aligned in this paper.
3 Some authors define the problem slightly more generally, where the constraint is that the centers are

from a second input set; in other words, the input consists of two sets of points (“demand points” and
“supply points”). The results of this paper will apply to both versions of the problem.
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Table 1 Summary of results on k-center for small k in R2.

k Euclidean rectilinear Euclidean discrete rectilinear discrete

1 O(n) O(n) O(n log n) O(n)

2 Õ(n) [44] O(n) [45] Õ(n4/3) [6] Õ(n)

3 Õ(n) [45] Õ(n3/2) (new)

(not necessarily geometric) distance functions. The main question is whether geometry could
help in obtaining faster algorithms in the higher-dimensional Euclidean setting, as Agarwal,
Sharir, and Welzl were able to exploit successfully in R2:

▶ Question 1. Is there an algorithm running in faster than nω time for the Euclidean discrete
2-center problem in higher constant dimensions?

We can similarly investigate the rectilinear version of the discrete k-center problem, which
is potentially easier. For example, the rectilinear discrete 2-center problem can be solved in
Õ(n) time in any constant dimension d, by a straightforward application of orthogonal range
searching, as reported in several papers [10, 11, 34]. The approach does not seem to work for
the rectilinear discrete 3-center problem. Naively, rectilinear discrete 3-center can be reduced
to n instances of (some version of) rectilinear discrete 2-center, and solved in Õ(n2) time.
However, no better results have been published, leading to the following questions:

▶ Question 2. Is there a subquadratic-time algorithm for the rectilinear discrete 3-center
problem?

▶ Question 3. Are there lower bounds to show that the rectilinear discrete 3-center problem
does not have near-linear-time algorithm (and is thus strictly harder than rectilinear discrete
2-center, or rectilinear continuous 3-center)?

Similar questions may be asked about rectilinear discrete k-center for k ≥ 4. Here, the
complexity of the problem is upper-bounded by Õ(nω(⌊k/2⌋,1,⌈k/2⌉)), where ω(a, b, c) denotes
the exponent for multiplying an na ×nb and an nb ×nc matrix: by binary search, the problem
reduces to finding k hypercubes of a given edge length r with centers in S covering S, which
is equivalent to finding a dominating set of size k in the graph with vertex set S where an
edge pz exists iff the distance of p and z is more than r – the dominating set problem reduces
to rectangular matrix multiplication with the time bound stated, as observed by Eisenbrand
and Grandoni [28]. Note that the difference ω(⌊k/2⌋, 1, ⌈k/2⌉) − k converges to 0 as k → ∞
by known matrix multiplication bounds [25] (and is exactly 0 if ω = 2).

As k gets larger compared to d, a better upper bound of nO(dk1−1/d) is known for both the
continuous and discrete k-center problem under the Euclidean and rectilinear metric [5, 31, 32].
Recently, in SoCG’22, Chitnis and Saurabh [22] (extending earlier work by Marx [38] in
the R2 case) proved a nearly matching conditional lower bound for discrete k-center in Rd,
ruling out no(k1−1/d)-time algorithms under ETH. However, these bounds do not answer our
questions concerning very small k’s. In contrast, the conditional lower bounds by Cabello et
al. [14] that we have mentioned earlier are about very small k and so are more relevant, but
are only for the continuous version of the k-center problem. (The continuous version behaves
differently from the discrete version; see Tables 1–2.)

ICALP 2023
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Table 2 Summary of results on k-center for small k in Rd for an arbitrary constant d. (CLB
stands for “conditional lower bound”.)

k Euclidean rectilinear Euclidean discrete rectilinear discrete

1 O(n) O(n) Õ(n2−2/(⌈d/2⌉+1)) O(n)

2 nO(d) Õ(n) [35] Õ(nω) Õ(n)

CLB: nΩ(d) [14] CLB: Ω(n2−δ) (new)

3 Õ(n) [14] Õ(nω(1,1,2)) Õ(n2)

CLB: Ω(n3−δ) (new) CLB: Ω(n4/3−δ) (new)

4 nO(d) Õ(nω(2,1,2)) Õ(n3)

CLB: nΩ(
√

d) [14] CLB: Ω(n4−δ) (new)

1.2 The geometric set cover problem with small size k

The decision version of the discrete k-center problem (deciding whether the minimum radius
is at most a given value) reduces to a geometric set cover problem: given a set P of n points
and a set R of n objects, find the smallest subset of objects in R that cover all points of
P . Geometric set cover has been extensively studied in the literature, particularly from the
perspective of approximation algorithms (since for most types of geometric objects, set cover
remains NP-hard); for example, see the references in [18]. Here, we are interested in exact
algorithms for the case when the optimal size k is a small constant.

For the application to Euclidean/rectilinear k-center, the objects are congruent balls/
hypercubes, or by rescaling, unit balls/hypercubes, but other types of objects may be
considered, such as arbitrary rectangles or boxes.

We can also consider the weighted version of the problem: here, given a set P of n points,
a set R of n weighted objects, and a small constant k, we want to find a subset of k objects
in R that cover all points of P , while minimizing the total weight of the chosen objects.

A “dual” problem is geometric hitting set, which in the weighted case is the following:
given a set P of n weighted points, a set R of n objects, and a small constant k, find a subset
of k points in P that hit all objects of R, while minimizing the total weight of the chosen
points. (The continuous unweighted version, where the chosen points may be anywhere,
is often called the piercing problem.) In the case of unit balls/hypercubes, hitting set is
equivalent to set cover due to self-duality.

For rectangles in R2 or boxes in Rd, size-2 geometric set cover (unweighted or weighted)
can be solved in Õ(n) time, like discrete rectilinear 2-center [10, 11, 34], by orthogonal
range searching. Analogs to Questions 2–3 may be asked for size-3 geometric set cover for
rectangles/boxes.

Surprisingly, the complexity of exact geometric set cover of small size k has not received
as much attention, but very recently in SODA’23, Chan [17] initiated the study of similar
questions for geometric independent set with small size k, for example, providing subquadratic
algorithms and conditional lower bounds for size-4 independent set for boxes.

For larger k, hardness results by Marx and Pilipczuk [39] and Bringmann et al. [13]
ruled out no(k)-time algorithms for size-k geometric set cover for rectangles in R2 and unit
hypercubes (or orthants) in R4, and no(

√
k)-time algorithms for unit cubes (or orthants) in

R3 under ETH. But like the other fixed-parameter intractability results mentioned, these
proofs do not appear to imply any nontrivial lower bound for very small k such as k = 3.
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1.3 New results
New algorithms. In this paper, we answer Question 2 in the affirmative for dimension
d = 2, by presenting the first subquadratic algorithms for rectilinear discrete 3-center in R2,
and more generally, for (unweighted and weighted) geometric size-3 set cover for unit squares,
as well as arbitrary rectangles in R2. More precisely, the time bounds of our algorithms are:

Õ(n3/2) for rectilinear discrete 3-center in R2 and unweighted size-3 set cover for unit
squares in R2;
Õ(n8/5) for weighted size-3 set cover for unit squares in R2;
Õ(n5/3) for unweighted size-3 set cover for rectangles in R2;
Õ(n7/4) for weighted size-3 set cover for rectangles in R2.

New conditional lower bounds. We also prove the first nontrivial conditional lower bounds
on the time complexity of rectilinear discrete 3-center and related size-3 geometric set cover
problems. More precisely, our lower bounds are:4

Ω(n3/2−δ) for weighted size-3 set cover (or hitting set) for unit squares in R2, assuming
the APSP Hypothesis;
Ω(n4/3−δ) for rectilinear discrete 3-center in R4 and unweighted size-3 set cover (or hitting
set) for unit hypercubes in R4, assuming the Sparse Triangle Hypothesis;
Ω(n4/3−δ) for unweighted size-3 set cover for boxes in R3, assuming the Sparse Triangle
Hypothesis.

The lower bound in the first bullet is particularly attractive, since it implies that con-
ditionally, our Õ(n8/5)-time algorithm for weighted size-3 set cover for unit squares in R2

is within a small factor (near n0.1) from optimal, and that our Õ(n7/4)-time algorithm for
weighted size-3 set cover for rectangles in R2 is within a factor near n0.25 from optimal. The
second bullet answers Question 3, implying that rectilinear discrete 3-center is strictly harder
than rectilinear discrete 2-center and rectilinear (continuous) 3-center, at least when the
dimension is 4 or higher. (In contrast, rectilinear (continuous) 4-center is strictly harder
than rectilinear discrete 4-center for sufficiently large constant dimensions [14]; see Table 2.)

In addition, we prove the following conditional lower bounds:
Ω(n2−δ) for Euclidean discrete 2-center in R13 and unweighted size-3 set cover (or hitting
set) for unit balls in R13, assuming the Hyperclique Hypothesis;
Ω(nk−δ) for Euclidean discrete k-center in R7k and unweighted size-k set cover for unit
balls in R7k for any constant k ≥ 3, assuming the Hyperclique Hypothesis.

In particular, this answers Question 1 in the negative if ω = 2 (as conjectured by some
researchers): geometry doesn’t help for Euclidean discrete 2-center when the dimension is
a sufficiently large constant. Similarly, the second bullet indicates that the upper bound
Õ(nω(⌊k/2⌋,1,⌈k/2⌉)) for Euclidean discrete k-center is basically tight for any fixed k ≥ 3 in a
sufficiently large constant dimension, if ω = 2. (See Tables 1–3.)

Lastly, we prove a lower bound for a standard variant of set cover known as maximum
coverage: given a set P of n points, a set R of n objects, and a small constant k, find k objects
in R that cover the largest number (rather than all) of points of P . Geometric versions of
the maximum coverage problem have been studied before from the approximation algorithms
perspective (e.g., see [9]). It is also related to “outliers” variants of k-center problems (where
we allow a certain number of points to be uncovered), which have also been studied for small

4 Throughout this paper, δ denotes an arbitrarily small positive constant.

ICALP 2023
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Table 3 Summary of results on size-3 geometric set cover in R2.

objects unweighted weighted

unit squares Õ(n3/2) (new) Õ(n8/5) (new)
CLB: Ω(n3/2−δ) (new)

rectangles Õ(n5/3) (new) Õ(n7/4) (new)
CLB: Ω(n3/2−δ) (new)

k (e.g., see [5]). Recall that the size-2 geometric set cover problem for boxes in Rd can be
solved in Õ(n) time (which was why our attention was redirected to the size-3 case). In
contrast, we show that maximum coverage for boxes cannot be solved in near-linear time
even for size k = 2. More precisely, we obtain the following lower bound:

Ω(n2−δ) for size-2 maximum coverage for unit hypercubes in R12, assuming the Hyper-
clique Hypothesis.

What is notable is that this lower bound is tight (up to no(1) factors), regardless of ω,
since there is an obvious Õ(n2)-time algorithm for boxes in Rd by answering n2 orthogonal
range counting queries – our result implies that this obvious algorithm can’t be improved!

On hypotheses from fine-grained complexity. Let us briefly state the hypotheses used.

The APSP Hypothesis is among the three most popular hypotheses in fine-grained
complexity [46] (the other two being the 3SUM Hypothesis and the Strong Exponential
Time Hypothesis): it asserts that there is no O(n3−δ)-time algorithm for the all-pairs
shortest paths problem for an arbitrary weighted graph with n vertices (and O(log n)-bit
integer weights). This hypothesis has been used extensively in the algorithms literature
(but less often in computational geometry).
The Sparse Triangle Hypothesis asserts that there is no O(m4/3−δ)-time algorithm for
detecting a triangle (i.e., a 3-cycle) in a sparse unweighted graph with m edges. The
current best upper bound for triangle detection, from a 3-decade-old paper by Alon,
Yuster, and Zwick [8], is Õ(m2ω/(ω+1)), which is Õ(m4/3) if ω = 2. (In fact, a stronger
version of the hypothesis asserts that there is no O(m2ω/(ω+1)−δ)-time algorithm.) As
supporting evidence, it is known that certain “listing” or “all-edges” variants of the
triangle detection problem have an O(m4/3−δ) lower bound, under the 3SUM Hypothesis
or the APSP Hypothesis [43, 48, 20]. See [1, 33] for more discussion on the Sparse Triangle
Hypothesis, and [17] for a recent application in computational geometry.
The Hyperclique Hypothesis asserts that there is no O(nk−δ)-time algorithm for detecting
a size-k hyperclique in an ℓ-uniform hypergraph with n vertices, for any fixed k > ℓ ≥ 3.
See [37] for discussion on this hypothesis, and [12, 17, 36] for some recent applications
in computational geometry, including Künnemann’s breakthrough result on conditional
lower bounds for Klee’s measure problem [36].

Techniques. Traditionally, in computational geometry, subquadratic algorithms with “in-
termediate” exponents between 1 and 2 tend to arise from the use of nonorthogonal range
searching [4] (Agarwal, Sharir, and Welzl’s Õ(n4/3)-time algorithm for Euclidean discrete
2-center in R2 [6] being one such example). Our subquadratic algorithms for rectilinear
discrete 3-center in R2 and related set-cover problems, which are about “orthogonal” or
axis-aligned objects, are different. A natural first step is to use a g × g grid to divide into
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cases, for some carefully chosen parameter g. Indeed, a grid-based approach was used in
some recent subquadratic algorithms by Chan [17] for size-4 independent set for boxes in
any constant dimension, and size-5 independent set for rectangles in R2 (with running time
Õ(n3/2) and Õ(n4/3) respectively). However, discrete 3-center or rectangle set cover is much
more challenging than independent set (for one thing, the 3 rectangles in the solution may
intersect each other). To make the grid approach work, we need new original ideas (notably,
a sophisticated argument to assign grid cells to rectangles, which is tailored to the 2D case).
Still, the entire algorithm description fits in under 3 pages.

Our conditional lower bounds for rectilinear discrete 3-center and the corresponding set
cover problem for unit hypercubes are proved by reduction from unweighted or weighted
triangle finding in graphs. It turns out there is a simple reduction in R2 by exploiting weights.
However, lower bounds in the unweighted case (and thus the original rectilinear discrete
3-center problem) are much trickier. We are able to design a clever, simple reduction in R6

by hand, but reducing the dimension down to 4 is far from obvious and we end up employing
a computer-assisted search, interestingly. The final construction is still simple, and so is easy
to verify by hand.

Our conditional lower bound proofs for Euclidean discrete 2-center, and more generally
discrete k-center, are inspired by a recent conditional hardness proof by Bringmann et al. [12]
from SoCG’22 on a different problem. Specifically, they proved that deciding whether the
intersection graph of n unit hypercubes in R12 has diameter 2 requires near-quadratic time
under the Hyperclique Hypothesis. A priori, this diameter problem doesn’t seem related to
discrete k-center; moreover, it was a rectilinear problem, not Euclidean (and we know that
in contrast, rectilinear discrete 2-center has a near-linear upper bound!). Our contribution is
in realizing that Bringmann et al.’s approach is useful for Euclidean discrete 2-center and
k-center, surprisingly. To make the proof work though, we need some new technical ideas (in
particular, an extra dimension for the k = 2 case, and multiple extra dimensions for larger k,
with carefully designed coordinate values). Still, the final proof is not complicated to follow.

Our conditional lower bound for size-2 maximum coverage for boxes is also proved using a
similar technique, but again the adaptation is nontrivial, and we introduce some interesting
counting arguments that proceed a bit differently from Bringmann et al.’s original proof for
diameter (a problem that does not involve counting).

2 Subquadratic Algorithms for Size-3 Set Cover for Rectangles in R2

In this section, we describe the most basic version of our subquadratic algorithm to solve
the size-3 geometric set cover problem for weighted rectangles in R2. The running time is
Õ(n16/9). Refinements of the algorithm will be described in the full version of the paper,
where we will improve the time bound further to Õ(n7/4), or even better for the unweighted
case and unit square case. The rectilinear discrete 3-center problem in R2 reduces to the
unweighted unit square case by standard techniques [15, 30].

We begin with a lemma giving a useful geometric data structure:

▶ Lemma 1. For a set P of n points and a set R of n weighted rectangles in R2, we can
build a data structure in Õ(n) time and space, to support the following kind of queries: given
a pair of rectangles r1, r2 ∈ R, we can find a minimum-weight rectangle r3 ∈ R (if it exists)
such that P is covered by r1 ∪ r2 ∪ r3, in Õ(1) time.

Proof. By orthogonal range searching [4, 26] on P , we can find the minimum/maximum x-
and y-values among the points of P in the complement of r1 ∪ r2 in Õ(1) time (since the
complement can be expressed as a union of O(1) orthogonal ranges). As a result, we obtain

ICALP 2023
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the minimum bounding box b enclosing P \ (r1 ∪ r2). To finish, we find a minimum-weight
rectangle in R enclosing b; this is a “rectangle enclosure” query on R and can be solved in Õ(1)
time, since it also reduces to orthogonal range searching (the rectangle [x−, x+] × [y−, y+]
encloses the rectangle [ξ−, ξ+] × [η−, η+] in R2 iff the point (x−, x+, y−, y+) lies in the box
(−∞, ξ−] × [ξ+, ∞) × (−∞, η−] × [η+, ∞) in R4). ◀

▶ Theorem 2. Given a set P of n points and a set R of n weighted rectangles in R2, we
can find 3 rectangles r∗

1 , r∗
2 , r∗

3 ∈ R of minimum total weight (if they exist), such that P is
covered by r∗

1 ∪ r∗
2 ∪ r∗

3, in Õ(n16/9) time.

Proof. Let B0 be the minimum bounding box enclosing P (which touches 4 points). If
a rectangle of R has an edge outside of B0, we can eliminate that edge by extending the
rectangle, making it unbounded.

Let g be a parameter to be determined later. Form a g × g (non-uniform) grid, where
each column/row contains O(n/g) rectangle vertices.

Step 1. For each pair of rectangles r1, r2 ∈ R that have vertical edges in a common column
or horizontal edges in a common row, we query the data structure in Lemma 1 to find
a minimum-weight rectangle r3 ∈ R (if exists) such that P ⊂ r1 ∪ r2 ∪ r3, and add the
triple r1r2r3 to a list L. The number of queried pairs r1r2 is O(g · (n/g)2) = O(n2/g),
and so this step takes Õ(n2/g) total time.

Step 2. For each rectangle r1 ∈ R and each of its horizontal (resp. vertical) edges e1, define
γ−(e1) and γ+(e1) to be the leftmost and rightmost (resp. bottommost and topmost) grid
cell that intersects e1 and contains a point of P not covered by r1. We can naively find
γ−(e1) and γ+(e1) by enumerating the O(g) grid cells intersecting e1 and performing O(g)
orthogonal range queries; this takes Õ(gn) total time. For each rectangle r2 ∈ R that has
an edge intersecting γ−(e1) or γ+(e1), we query the data structure in Lemma 1 to find a
minimum-weight rectangle r3 ∈ R (if exists) such that P ⊂ r1 ∪ r2 ∪ r3, and add the triple
r1r2r3 to the list L. The total number of queried pairs r1r2 is O(n · n/g) = O(n2/g), and
so this step again takes Õ(n2/g) total time. (This entire Step 2, and the definition of
γ−(·) and γ+(·), might appear mysterious at first, but their significance will be revealed
later in Step 3.)

Step 3. We guess the column containing each of the vertical edges of r∗
1 , r∗

2 , r∗
3 and the row

containing each of the horizontal edges of r∗
1 , r∗

2 , r∗
3 ; there are at most 12 edges and so

O(g12) choices. Actually, 4 of the 12 edges are eliminated after extension, and so the
number of choices can be lowered to O(g8).
After guessing, we know which grid cells are completely inside r∗

1 , r∗
2 , r∗

3 and which grid
cells intersect which edges of r∗

1 , r∗
2 , r∗

3 . We may assume that the vertical edges from
different rectangles in {r∗

1 , r∗
2 , r∗

3} are in different columns, and the horizontal edges from
different rectangles in {r∗

1 , r∗
2 , r∗

3} are in different rows: if not, r∗
1r∗

2r∗
3 would have already

been found in Step 1. In particular, we know combinatorially what the arrangement of
r∗

1 , r∗
2 , r∗

3 looks like, even though we do not know the precise coordinates and identities of
r∗

1 , r∗
2 , r∗

3 .
We classify each grid cell γ into the following types (see Figure 1):

Type A: γ is completely contained in some r∗
j (j ∈ {1, 2, 3}). Here, we assign γ to

each such r∗
j .

Type B: γ is not of type A, and intersects an edge of exactly one rectangle r∗
j . We

assign γ to this r∗
j . Observe that points in P ∩ γ can only be covered by r∗

j .
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A1

A1/2A1/2 A2

C1/2

A2/3

C3

B2

B3C2/3

A1 A1 A1

A1 A1 A1 A1

A1 A1 A1 A1

A1 A1 A2 A2

A3 A3 A3

B1

B1

C1

B1 A2 A2 A2 A2 A2

A3 A3

A2/3 A3 A3

A2/3 A3 A3

A2/3 A3 A3

A2 A2 A2 A2 A2

A2 A2 A2 A2 A2

A2 A2 A2 A2 A2

A2 A2 A2 A2 A2

A2 A2 A2 A2 A2

A2

A2

A2 B2

B2

B2

B2

B2

B2

B2

B3

r∗2

r∗3

r∗1

B3 B3 B3

Figure 1 Proof of Theorem 2: grid cells in Step 3. The letter in a cell indicates its type (A, B,
or C), and the number (or numbers) in a cell indicates the index (or indices) j ∈ {1, 2, 3} of the
rectangle r∗

j that the cell is assigned to.

Type C: γ is not of type A, and intersects edges from two different rectangles in
{r∗

1 , r∗
2 , r∗

3}. W.l.o.g., suppose that γ intersects a horizontal edge e∗
1 of r∗

1 and a vertical
edge e∗

2 of r∗
2 ; note that the intersection point v∗ = e∗

1 ∩ e∗
2 lies on the boundary of

the union r∗
1 ∪ r∗

2 ∪ r∗
3 . By examining the arrangement of {r∗

1 , r∗
2 , r∗

3}, we know that at
least one of the following is true: (i) we can walk horizontally from v∗ to an endpoint
of e∗

1 (or a point at infinity) while staying on the boundary of r∗
1 ∪ r∗

2 ∪ r∗
3 , or (ii) we

can walk vertically from v∗ to an endpoint of e∗
2 (or a point at infinity) while staying

on the boundary of r∗
1 ∪ r∗

2 ∪ r∗
3 .

If (i) is true, we assign γ to r∗
1 . Observe that if there is a point in P ∩ γ not covered

by r∗
1 (and if the guesses are correct), then γ must be equal to γ−(e∗

1) or γ+(e∗
1) (as

defined in Step 2), and so r∗
1r∗

2r∗
3 would have already been found in Step 2. This is

because except for γ, the grid cells encountered while walking from v∗ to that endpoint
of e∗

1 can intersect only r∗
1 and so points in those cells can only be covered by r∗

1 .
If (ii) is true, we assign γ to r∗

2 for a similar reason.

Note that there are at most O(1) grid cells γ of type C; and the grid cells γ of type B
form O(1) contiguous blocks. Let ρj be the union of all grid cells assigned to r∗

j . Then ρj

is a rectilinear polygon of O(1) complexity. We compute the minimum/maximum x- and
y-values of the points in P ∩ ρj , by orthogonal range searching in Õ(1) time. As a result,
we obtain the minimum bounding box bj enclosing P ∩ ρj . We find a minimum-weight
rectangle rj ∈ R enclosing bj , by a rectangle enclosure query (reducible to orthogonal
range searching, as before). If P \ (r1 ∪ r2 ∪ r3) = ∅ (testable by orthogonal range
searching), we add the triple r1r2r3 (which should coincide with r∗

1r∗
2r∗

3 , if it has not been
found earlier and if the guesses are correct) to L. The total time over all guesses is Õ(g8).

At the end, we return a minimum-weight triple in L. The overall running time is
Õ(g8 + n2/g + gn). Setting g = n2/9 yields the theorem. ◀
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R
(3)
x3x

′
1 R

(2)
x2x

′
3

R
(1)
x1x

′
2

Figure 2 Reduction from the minimum-weight triangle problem to weighted size-3 set cover for
orthants in R2.

3 Conditional Lower Bounds for Size-3 Set Cover for Boxes

In this section, we prove conditional lower bounds for size-3 set cover for boxes in certain
dimensions (rectilinear discrete 3-center is related to size-3 set cover for unit hypercubes).
We begin with the weighted version, which is more straightforward and has a simple proof,
and serves as a good warm-up to the more challenging, unweighted version later.

3.1 Weighted size-3 set cover for unit squares in R2

An orthant (also called a dominance range) refers to a d-sided box in Rd which is unbounded
along each of the d dimensions. (Note that orthants may be oriented in 2d ways.) To obtain a
lower bound for the unit square or unit hypercube case, it suffices to obtain a lower bound for
the orthant case, since we can just replace each orthant with a hypercube with a sufficiently
large side length M , and then rescale by a 1/M factor.

▶ Theorem 3. Given a set P of n points and a set R of n weighted orthants in R2, finding 3
orthants in R of minimum total weight that cover P requires Ω(n3/2−δ) time for any constant
δ > 0, assuming the APSP Hypothesis.

Proof. The APSP Hypothesis is known to be equivalent [47] to the hypothesis that finding
a minimum-weight triangle in a weighted graph with n vertices requires Ω(n3−δ) time for
any constant δ > 0. We will reduce the minimum-weight triangle problem on a graph
with n vertices and m edges (m ∈ [n, n2]) to the weighted size-3 set cover problem for
O(m) points and orthants in R2. Thus, if there is an O(m3/2−δ)-time algorithm for the
latter problem, there would be an algorithm for the former problem with running time
O(m3/2−δ) ≤ O(n3−2δ), refuting the hypothesis.

Let G = (V, E) be the given weighted graph with n vertices and m edges. Without loss
of generality, assume that all edge weights are in [0, 0.1], and that V ⊂ [0, 0.1], i.e., vertices
are labelled by numbers that are rescaled to lie in [0, 0.1]. Assume that 0 ∈ V and 0.1 ∈ V .

The reduction. For each vertex t ∈ V , we create three points (t, 1 + t), (2, t), and (1 + t, −1)
(call them of type 1, 2, and 3, respectively).

Create the following orthants in R2:

∀x1x′
2 ∈ E : R

(1)
x1x′

2
= (−∞, 1 + x′

2) × (−∞, 1 + x1] (type 1)
∀x2x′

3 ∈ E : R
(2)
x2x′

3
= [1 + x2, ∞) × (−∞, x′

3) (type 2)
∀x3x′

1 ∈ E : R
(3)
x3x′

1
= (x′

1, ∞) × [x3, ∞) (type 3)
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The weight of each orthant is set to be the number of points it covers plus the weight of the
edge it represents. The total number of points and orthants is O(n) and O(m) respectively.
The reduction is illustrated in Figure 2.

Correctness. We prove that the minimum-weight triangle in G has weight w (where
w ∈ [0, 0.3]) iff the optimal weighted size-3 set cover has weight 3n + w.

Any feasible solution (if exists) must use an orthant of each type, since the point (0, 1)
of type 1 (resp. the point (2, 0.1) of type 2, and the point (1.1, −1) of type 3) can only be
covered by an orthant of type 1 (resp. 3 and 2). So, the three orthants in the optimal solution
must be of the form R

(1)
x1x′

2
, R

(2)
x2x′

3
and R

(3)
x3x′

1
for some x1x′

2, x2x′
3, x3x′

1 ∈ E.
If x1 < x′

1, some point (of type 1) would be uncovered; on the other hand, if x1 > x′
1,

some point (of type 1) would be covered twice, and the total weight would then be at least
3n + 1. Thus, x1 = x′

1. Similarly, x2 = x′
2 and x3 = x′

3. So, x1x2x3 forms a triangle in G.
We conclude that the minimum-weight solution R

(1)
x1x2 , R

(2)
x2x3 and R

(3)
x3x1 correspond to the

minimum-weight triangle x1x2x3 in G. ◀

3.2 Unweighted size-3 set cover for boxes in R3

Our preceding reduction uses weights to ensure equalities of two variables representing
vertices. For the unweighted case, this does not work. We propose a different way to force
equalities, by using an extra dimension and extra sides (i.e., using boxes instead of orthants),
with some carefully chosen coordinate values.

▶ Theorem 4. Given a set P of n points and a set R of n unweighted axis-aligned boxes in
R3, deciding whether there exist 3 boxes in R that cover P requires Ω(n4/3−δ) time for any
constant δ > 0, assuming the Sparse Triangle Hypothesis.

Proof. We will reduce the triangle detection problem on a graph with m edges to the
unweighted size-3 set cover problem for O(m) points and boxes in R3. Thus, if there is an
O(m4/3−δ)-time algorithm for the latter problem, there would be an algorithm for the former
problem with running time O(m4/3−δ), refuting the hypothesis.

Let G = (V, E) be the given unweighted sparse graph with n vertices and m edges
(n ≤ m). Without loss of generality, assume that V ⊂ [0, 0.1], and 0 ∈ V and 0.1 ∈ V .

The reduction. For each vertex t ∈ V , create six points

(−1 + t, 0, 2 + t) (type 1)
(1 + t, 0, −2 + t) (type 2)
(2 + t, −1 + t, 0) (type 3)

(−2 + t, 1 + t, 0) (type 4)
(0, 2 + t, −1 + t) (type 5)
(0, −2 + t, 1 + t) (type 6)

Create the following boxes in R3:

∀x1x′
2 ∈ E : R

(1)
x1x′

2
= (−1 + x1, 1 + x1) × [−2 + x′

2, 2 + x′
2] × R

∀x2x′
3 ∈ E : R

(2)
x2x′

3
= [−2 + x′

3, 2 + x′
3] × R × (−1 + x2, 1 + x2)

∀x3x′
1 ∈ E : R

(3)
x3x′

1
= R × (−1 + x3, 1 + x3) × [−2 + x′

1, 2 + x′
1]

(call them of type 1, 2, and 3, respectively).
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Correctness. We prove that a size-3 set cover exists iff a triangle exists in G.
Any feasible solution (if exists) must use a box of each type, since the point (−1, 0, 2) of

type 1 (resp. the point (2, −1, 0) of type 3, and the point (0, 2, −1) of type 5) can only be
covered by a box of type 3 (resp. 2 and 1). So, the three boxes in a feasible solution must be
of the form R

(1)
x1x′

2
, R

(2)
x2x′

3
and R

(3)
x3x′

1
for some x1x′

2, x2x′
3, x3x′

1 ∈ E.
Consider points of type 1 with the form (−1 + t, 0, 2 + t). The box R

(2)
x2x′

3
cannot cover

any of them due to the third dimension. The box R
(1)
x1x′

2
covers all such points corresponding

to t > x1, and the box R
(3)
x3x′

1
covers all such points corresponding to t ≤ x′

1. So, all points of
type 1 are covered iff x1 ≤ x′

1. Similarly, all points of type 2 are covered iff x′
1 ≤ x1. Thus,

all points of type 1–2 are covered iff x1 = x′
1. By a symmetric argument, all points of type

3–4 are covered iff x3 = x′
3; and all points of type 5–6 are covered iff x2 = x′

2. We conclude
that a feasible solution exists iff a triangle x1x2x3 exists in G. ◀

We remark that the boxes above can be made fat, with side lengths between 1 and a
constant (by replacing R with an interval of a sufficiently large constant length).

3.3 Unweighted size-3 set cover for unit hypercubes in R4

Our preceding lower bound for unweighted size-3 set cover for boxes in R3 immediately
implies a lower bound for orthants (and thus unit hypercubes) in R6, since the point (x, y, z)
is covered by the box [a−, a+]× [b−, b+]× [c−, c+] in R3 iff the point (x, x, y, y, z, z) is covered
by the orthant [a−, ∞) × (−∞, a+] × [b−, ∞) × (−∞, b+] × [c−, ∞) × (−∞, c+] in R6.

A question remains: can the dimension 6 be lowered? Intuitively, there seems to be some
wastage in the above construction: there are several 0’s in the coordinates of the points, and
several R’s in the definition of the boxes, and these get doubled after the transformation to 6
dimensions. However, it isn’t clear how to rearrange coordinates to eliminate this wastage:
we would have to give up this nice symmetry of our construction, and there are too many
combinations to try. We ended up writing a computer program to exhaustively try all these
different combinations, and eventually find a construction that lowers the dimension to 4!
Once it is found, correctness is straightforward to check, as one can see in the proof below.

▶ Theorem 5. Given a set P of n points and a set R of n unweighted orthants in R4,
deciding whether there exists a size-3 set cover requires Ω(n4/3−δ) time for any constant
δ > 0, assuming the Sparse Triangle Hypothesis.

Proof. We will reduce the triangle detection problem on a graph with m edges to the
unweighted size-3 set cover problem for O(m) points and orthants in R4.

Let G = (V, E) be the given unweighted graph with n vertices and m edges (n ≤ m).
Without loss of generality, assume that V ⊂ [0, 0.1], and 0 ∈ V and 0.1 ∈ V .

The reduction. For each vertex t ∈ V , create six points

(0 + t, 2 + t, −0.5, −0.5) (type 1)
(2 − t, 0 − t, −0.5, −0.5) (type 2)
(1 − t, 0.5, 1 + t, 1.5) (type 3)

(0.5, 1 + t, 0.5, 2 − t) (type 4)
(−0.5, −0.5, 2 − t, 0 − t) (type 5)
(−0.5, −0.5, 0 + t, 1 + t) (type 6)

Create the following orthants in R4:
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∀x1x′
2 ∈ E : R

(1)
x1x′

2
= [0 + x1, +∞) × [0 − x1, +∞) × (−∞, 1 + x′

2) × (−∞, 2 − x′
2)

∀x2x′
3 ∈ E : R

(2)
x2x′

3
= (−∞, 1 − x2] × (−∞, 1 + x2] × (0 + x′

3, +∞) × (0 − x′
3, +∞)

∀x3x′
1 ∈ E : R

(3)
x3x′

1
= (−∞, 2 − x′

1) × (−∞, 2 + x′
1) × (−∞, 2 − x3] × (−∞, 1 + x3]

(call them of type 1, 2, and 3, respectively).

Correctness. We prove that a size-3 set cover exists iff a triangle exists in G.
Any feasible solution (if exists) must use an orthant of each type, as one can easily check

(like before). So, the three orthants in a feasible solution must be of the form R
(1)
x1x′

2
, R

(2)
x2x′

3

and R
(3)
x3x′

1
for some x1x′

2, x2x′
3, x3x′

1 ∈ E.

Consider points of type 1 with the form (0 + t, 2 + t, −0.5, −0.5). The orthant R
(2)
x2x′

3

cannot cover any of them due to the third dimension. The orthant R
(1)
x1x′

2
covers all such

points corresponding to t ≥ x1, and the orthant R
(3)
x3x′

1
covers all such points corresponding

to t < x′
1. So, all points of type 1 are covered iff x1 ≤ x′

1. By similar arguments, it can be
checked that all points of type 2 are covered iff x1 ≥ x′

1; all points of type 3 are covered
iff x2 ≤ x′

2; all points of type 4 are covered iff x2 ≥ x′
2; all points of type 5 are covered iff

x3 ≤ x′
3; all points of type 6 are covered iff x3 ≥ x′

3. We conclude that a feasible solution
exists iff a triangle x1x2x3 exists in G. ◀

In the computer search, we basically tried different choices of points with coordinate
values of the form c ± t or c for some constant c, and orthants defined by intervals of the form
[c ± xj , +∞) or (−∞, c ± xj ] (closed or open) for some variable xj (or x′

j). The constraints
are not exactly easy to write down, but are self-evident as we simulate the correctness proof
above. Naively, the number of cases is in the order of 1014, but can be drastically reduced to
about 107 with some optimization and careful pruning of the search space. The C++ code is
not long (under 150 lines) and, after incorporating pruning, runs in under a second.

It is now straightforward to modify the above lower bound proof for unweighted orthants
(or unit hypercubes) in R4 to the rectilinear discrete 3-center problem in R4. In the full
version of the paper, we also prove a higher conditional lower bound for weighted size-6 set
cover for rectangles in R2.

4 Conditional Lower Bound for Euclidean Discrete 2-Center

In this section, we prove our conditional lower bound for the Euclidean discrete 2-center
problem in a sufficiently large constant dimension. The general structure of our proof is
inspired by Bringmann et al.’s recent conditional hardness proof [12] for the problem of
computing diameter of box intersection graphs in R12, specifically, testing whether the
diameter is more than 2. (Despite the apparent dissimilarities of the two problems, what
led us to initially suspect that the ideas there might be useful is that both problems are
concerned with paths of length 2 in certain geometrically defined graphs, and both problems
have a similar “quantifier structure”, after unpacking the problem definitions.) Extra ideas
are needed, as we are dealing with the Euclidean metric instead of boxes; we end up needing
an extra dimension, with carefully tuned coordinate values, to make the proof work.

▶ Theorem 6. For any constant δ > 0, there is no O(n2−δ)-time algorithm for Euclidean
discrete 2-center in R13, assuming the Hyperclique Hypothesis.
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Proof. We will reduce the problem of detecting a 6-hyperclique in a 3-uniform hypergraph
with n vertices, to the Euclidean discrete 2-center problem on N = O(n3) points in R13. Thus,
if there is an O(N2−δ)-time algorithm for the latter problem, there would be O(n6−3δ)-time
algorithm for the former problem, refuting the Hyperclique Hypothesis.

Let G = (V, E) be the given 3-uniform hypergraph. By a standard color-coding tech-
nique [7], we may assume that G is 6-partite, i.e., V is partitioned into 6 parts V1, . . . , V6,
and each edge in E consists of 3 vertices from 3 different parts. The goal is to decide the
existence of a 6-hyperclique, i.e., (x1, . . . , x6) ∈ V1 × · · · × V6 such that {xi, xj , xk} ∈ E for
all distinct i, j, k ∈ {1, . . . , 6}.

Without loss of generality, assume that V ⊂ [0, 1], i.e., vertices are labelled by numbers
that are rescaled to lie in [0, 1]. Let f, g : [0, 1] → [0, 1] be some injective functions satisfying
f(x)2 + g(x)2 = 1. For example, we can take f(x) = cos x and g(x) = sin x; or alternatively,
avoiding trigonometric functions, f(x) = x and g(x) =

√
1 − x2; or avoiding irrational

functions altogether, f(x) = 2x/(x2 + 1) and g(x) = (x2 − 1)/(x2 + 1). (With the last two
options, by rounding to O(log n) bits of precision, it is straightforward to make our reduction
work in the standard integer word RAM model.)

The reduction. We construct the following set S of O(n3) points in R13:

1. For each (x1, x2, x3) ∈ V1 × V2 × V3 with {x1, x2, x3} ∈ E, create the point

px1x2x3 = (f(x1), g(x1), f(x2), g(x2), f(x3), g(x3), 0, 0, 0, 0, 0, 0, 1) .

2. Similarly, for each (x4, x5, x6) ∈ V4 × V5 × V6 such that {x4, x5, x6} ∈ E, create the point

qx4x5x6 = (0, 0, 0, 0, 0, 0, f(x4), g(x4), f(x5), g(x5), f(x6), g(x6), −1) .

3. For each (vi, vj , vk) ∈ Vi ×Vj ×Vk with distinct i, j, k such that {vi, vj , vk} ̸∈ E, {i, j, k} ≠
{1, 2, 3}, and {i, j, k} ≠ {4, 5, 6}, create a point zvivjvk

: the coordinates in dimensions
2i−1, 2i are −f(vi), −g(vi), and similarly the coordinates in dimensions 2j−1, 2j, 2k−1, 2k

are −f(vj), −g(vj), −f(vk), −g(vk), respectively; the 13-th coordinate is

ϕijk = |{1, 2, 3} ∩ {i, j, k}| − 1.5 ∈ {−0.5, 0.5} ;

and all other coordinates are 0. For example, if i = 1, j = 2, k = 4,

zv1v2v4 = (−f(v1), −g(v1), −f(v2), −g(v2), 0, 0, −f(v4), −g(v4), 0, 0, 0, 0, 0.5) .

4. Finally, add two auxiliary points s± = (0, . . . , 0, ±3.5).

We solve the discrete 2-center problem on the above point set S, and return true iff the
minimum radius is strictly less than

√
10.25.

Correctness. Suppose there exists a 6-hyperclique (x1, . . . , x6) ∈ V1×· · ·×V6 in G. We claim
that every point of S has distance strictly less than

√
10.25 from px1x2x3 or qx4x5x6 . Thus,

S can be covered by 2 balls centered at px1x2x3 and qx4x5x6 with radius less than
√

10.25.
To verify the claim, consider a point zv1v2v4 ∈ S for a triple (v1, v2, v4) ∈ V1 × V2 × V4
with {v1, v2, v4} ̸∈ E. Observe that the distance between the points (f(vℓ), g(vℓ)) and
(−f(xℓ), −g(xℓ)) in R2 is at most 2, with equality iff vℓ = xℓ. On the other hand, the distance
between (f(vℓ), g(vℓ)) and (0, 0) is 1, and the distance between (0, 0) and (−f(xℓ), −g(xℓ))
is 1. Thus,

∥zv1v2v4 − px1x2x3∥2 ≤ 22 + 22 + 1 + 1 + 0 + 0 + (0.5 − 1)2 ≤ 10.25,
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with equality iff v1 = x1 and v2 = x2. Furthermore,

∥zv1v2v4 − qx4x5x6∥2 ≤ 1 + 1 + 0 + 22 + 1 + 1 + (0.5 + 1)2 ≤ 10.25,

with equality iff v4 = x4. Since {x1, x2, x4} ∈ E, we cannot have simultaneously v1 = x1,
v2 = x2, and v4 = x4. So, zv1v2v4 has distance strictly less than

√
10.25 from px1x2x3 or qx4x5x6 .

Similarly, the same holds for zvivjvk
∈ S for all other choices of i, j, k. Points px′

1x′
2x′

3
∈ S have

distance at most
√

2 + 2 + 2 + 0 + 0 + 0 + 0 <
√

10.25 from px1x2x3 , and similarly, points
qx′

4x′
5x′

6
∈ S have distance less than

√
10.25 from qx4x5x6 . Finally, the auxiliary point s+ has

distance at most
√

1 + 1 + 1 + 0 + 0 + 0 + 2.52 <
√

10.25 from px1x2x3 , and similarly the
point s− has distance less than

√
10.25 from qx4x5x6 .

On the reverse direction, suppose that the minimum radius for the discrete 2-center
problem on S is strictly less than

√
10.25. Note that the distance between s+ and zvivjvk

is at least
√

1 + 1 + 1 + 0 + 0 + 0 + 32 >
√

10.25, and the distance between s+ and qx4x5x6

is at least
√

0 + 0 + 0 + 1 + 1 + 1 + 4.52 >
√

10.25. Thus, in order to cover s+, one of the
two centers must be equal to px1x2x3 for some {x1, x2, x3} ∈ E. Similarly, in order to cover
s−, the other center must be equal to qx4x5x6 for some {x4, x5, x6} ∈ E. Then for every
(v1, v2, v4) ∈ V1 × V2 × V4 with {v1, v2, v4} ̸∈ E, the point zv1v2v4 has distance strictly less
than

√
10.25 from px1x2x3 or qx4x5x6 . By the above argument, we cannot have v1 = x1 and

v2 = x2 and v4 = x4. It follows that {x1, x2, x4} ∈ E. Similarly, {xi, xj , xk} ∈ E for all
other choices of i, j, k. We conclude that {x1, . . . , x6} is a 6-hyperclique. ◀

From the same proof (after rescaling), we immediately get a near-quadratic conditional
lower bound for unweighted size-2 geometric set cover for unit balls in R13. In the full version
of the paper, we extend the proof to Euclidean discrete k-center for larger constant k, with
more technical effort and more delicate handling of the extra dimensions. This is interesting:
discrete k-center seems even farther away from graph diameter, but in a way, our proof shows
that discrete k-center is a better problem to illustrate the full power of Bringmann et al.’s
technique [12].

In the full version of the paper, we also adapt the approach to prove a conditional lower
bound for size-2 maximum coverage for boxes. The proof uses a different way to enforce
conditions like {x1, x2, x4} ∈ E, via an interesting counting argument – we encourage the
readers to take a look at the full version.

5 Conclusions

In this paper, we have obtained a plethora of nontrivial new results on a fundamental class
of problems in computational geometry related to discrete k-center and size-k geometric set
cover for small values of k. (See Tables 1–3.) In particular, we have a few results where the
upper bounds and conditional lower bounds are close:

For weighted size-3 set cover for rectangles in R2, we have given the first subquadratic
Õ(n7/4)-time algorithm, and an Ω(n3/2−δ) lower bound under the APSP Hypothesis.
For Euclidean discrete k-center (or unweighted size-k set cover for unit balls) in RO(k),
we have proved an Ω(nk−δ) lower bound under the Hyperclique Hypothesis, which is near
optimal if ω = 2.
For size-2 maximum coverage for boxes in a sufficiently large constant dimension, we
have proved an Ω(n2−δ) lower bound under the Hyperclique Hypothesis, which is near
optimal.
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For all of our results, we have managed to find simple proofs (each with 1–3 pages).
We view the simplicity and accessibility of our proofs as an asset – they would make
good examples illustrating fine-grained complexity techniques in computational geometry.
Generally speaking, there has been considerable development on fine-grained complexity
in the broader algorithms community over the last decade [46], but to a lesser extent in
computational geometry. A broader goal of this paper is to encourage more work at the
intersection of these two areas. We should emphasize that while our conditional lower bound
proofs may appear simple in hindsight, they are not necessarily easy to come up with; for
example, see one of our proofs that require computer-assisted search (Theorem 5).

As many versions of the problems studied here still do not have matching upper and
lower bounds, our work raises many interesting open questions. For example:

Is it possible to make our subquadratic algorithm for rectilinear discrete 3-center in R2

work in dimension 3 or higher?
Is it possible to make our conditional lower bound proof for rectilinear discrete 3-center
in R4 work in dimension 2 or 3?
Is it possible to make our conditional lower bound for Euclidean discrete 2-center in R13

work in dimension 3?
Is it possible to make our conditional lower bound for size-2 maximum coverage for boxes
in R12 work in dimension 2 or 3?
Although we have ruled out subquadratic algorithms for Euclidean discrete 2-center in
R13, could geometry still help in beating nω time if ω > 2?

We should remark that some of these questions could be quite difficult. In fine-grained
complexity, there are many examples of basic problems that still do not have tight conditional
lower bounds (to mention one well-known geometric example, Künnemann’s recent FOCS’22
paper [36] has finally obtained a near-optimal conditional lower bound for Klee’s measure
problem in R3, but tight lower bounds in dimension 4 and higher are still not known for
non-combinatorial algorithms). Still, we hope that our work would inspire more progress in
both upper and lower bounds for this rich class of problems.
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