
Ortho-Radial Drawing in Near-Linear Time
Yi-Jun Chang # Ñ

National University of Singapore, Singapore

Abstract
An orthogonal drawing is an embedding of a plane graph into a grid. In a seminal work of Tamassia
(SIAM Journal on Computing 1987), a simple combinatorial characterization of angle assignments
that can be realized as bend-free orthogonal drawings was established, thereby allowing an orthogonal
drawing to be described combinatorially by listing the angles of all corners. The characterization
reduces the need to consider certain geometric aspects, such as edge lengths and vertex coordinates,
and simplifies the task of graph drawing algorithm design.

Barth, Niedermann, Rutter, and Wolf (SoCG 2017) established an analogous combinatorial
characterization for ortho-radial drawings, which are a generalization of orthogonal drawings to
cylindrical grids. The proof of the characterization is existential and does not result in an efficient
algorithm. Niedermann, Rutter, and Wolf (SoCG 2019) later addressed this issue by developing
quadratic-time algorithms for both testing the realizability of a given angle assignment as an
ortho-radial drawing without bends and constructing such a drawing.

In this paper, we improve the time complexity of these tasks to near-linear time. We establish a
new characterization for ortho-radial drawings based on the concept of a good sequence. Using the
new characterization, we design a simple greedy algorithm for constructing ortho-radial drawings.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Graph drawing, ortho-radial drawing, topology-shape-metric framework

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.35

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.00425

1 Introduction

A plane graph is a planar graph G = (V, E) with a combinatorial embedding E . The
combinatorial embedding E fixes a circular ordering E(v) of the edges incident to each vertex
v ∈ V , specifying the counter-clockwise ordering of these edges surrounding v in the drawing.
An orthogonal drawing of a plane graph is a drawing of G such that each edge is drawn as a
sequence of horizontal and vertical line segments. For example, see Figure 1 for an orthogonal
drawing of K4 with 4 bends. Alternatively, an orthogonal drawing of G can be seen as an
embedding of G into a grid such that the edges of G correspond to internally disjoint paths in
the grid. Orthogonal drawing is one of the most classical drawing styles studied in the field of
graph drawing, and it has a wide range of applications, including VLSI circuit design [7, 40],
architectural floor plan design [33], and network visualization [5, 22, 26, 30].

The topology-shape-metric framework. One of the most fundamental quality measures of
orthogonal drawings is the number of bends. The bend minimization problem, which asks for
an orthogonal drawing with the smallest number of bends, has been extensively studied over
the past 40 years [14, 16, 17, 38, 39, 25]. In a seminal work, Tamassia [39] introduced the
topology-shape-metric framework to tackle the bend minimization problem. Tamassia showed
that an orthogonal drawing can be described combinatorially by an orthogonal representation,
which consists of an assignment of an angle of degree in {90◦, 180◦, 270◦, 360◦} to each corner
and a designation of the outer face. Specifically, Tamassia [39] showed that an orthogonal
representation can be realized as an orthogonal drawing with zero bends if and only if the
following two conditions are satisfied:

EA
T
C
S

© Yi-Jun Chang;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 35; pp. 35:1–35:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cyijun@nus.edu.sg
https://sites.google.com/a/umich.edu/yi-jun-chang/
https://orcid.org/0000-0002-0109-2432
https://doi.org/10.4230/LIPIcs.ICALP.2023.35
https://arxiv.org/abs/2305.00425
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Ortho-Radial Drawing in Near-Linear Time

Figure 1 A grid, an orthogonal drawing, a cylindrical grid, and an ortho-radial drawing.

(O1) The sum of angles around each vertex is 360◦.
(O2) The sum of angles around each face with k corners is (k + 2) · 180◦ for the outer face

and is (k − 2) · 180◦ for the other faces.
An orthogonal representation is valid if it satisfies the above conditions (O1) and (O2).
Given a valid orthogonal representation, an orthogonal drawing realizing the orthogonal
representation can be computed in linear time [29, 39]. This result (shape → metric) allows us
to reduce the task of finding a bend-minimized orthogonal drawing (topology → metric) to the
conceptually much simpler task of finding a bend-minimized valid orthogonal representation
(topology → shape). By focusing on orthogonal representations, we may neglect certain
geometric aspects of graph drawing such as edge lengths and vertex coordinates, making
the task of algorithm design easier. In particular, given a fixed combinatorial embedding,
the task of finding a bend-minimized orthogonal representation can be easily reduced to the
computation of a min-cost flow [39].

1.1 Ortho-radial drawing
Ortho-radial drawing is a natural generalization of orthogonal drawing to cylindrical grids,
whose grid lines consist of concentric circles and straight lines emanating from the center of
the circles. Formally, an ortho-radial drawing is defined as a planar embedding where each
edge is drawn as a sequence of lines that are either a circular arc of some circle centered on
the origin or a line segment of some straight line passing through the origin. We do not allow
a vertex to be drawn on the origin, and we do not allow an edge to pass through the origin
in the drawing. For example, see Figure 1 for an ortho-radial drawing of K4 with two bends.

The study of ortho-radial drawing is motivated by its applications [4, 23, 42] in network
visualization [41]. For example, ortho-radial drawing is naturally suitable for visualizing
metro systems with radial routes and circle routes.

There are three types of faces in an ortho-radial drawing. The face that contains an
unbounded region is called the outer face. The face that contains the origin is called the
central face. The remaining faces are called regular faces. It is possible that the outer face
and the central face are the same face.

Given a plane graph, an ortho-radial representation is defined as an assignment of an
angle to each corner together with a designation of the central face and the outer face. Barth,
Niedermann, Rutter, and Wolf [2] showed that an ortho-radial representation can be realized
as an ortho-radial drawing with zero bends if the following three conditions are satisfied:
(R1) The sum of angles around each vertex is 360◦.
(R2) The sum s of angles around each face F with k corners satisfies the following.

s = (k − 2) · 180◦ if F is a regular face.
s = k · 180◦ if F is either the central face or the outer face, but not both.
s = (k + 2) · 180◦ if F is both the central face and the outer face.

(R3) There exists a choice of the reference edge e⋆ such that the ortho-radial representation
does not contain a strictly monotone cycle.

Y.-J. Chang 35:3

Intuitively, this shows that the ortho-radial representations that can be realized as ortho-
radial drawings with zero bends can be characterized similarly by examining the angle sum
around each vertex and each face, with the additional requirement that the representation
does not have a strictly monotone cycle.

The definition of a strictly monotone cycle is technical and depends on the choice of the
reference edge e⋆, so we defer its formal definition to a subsequent section. The reference
edge e⋆ is an edge in the contour of the outer face and is required to lie on the outermost
circular arc used in an ortho-radial drawing. Informally, a strictly monotone cycle has a
structure that is like a loop of ascending stairs or a loop of descending stairs, so a strictly
monotone cycle cannot be drawn. The necessity of (R1)–(R3) is intuitive to see. The more
challenging and interesting part of the proof in [2] is to show that these three conditions are
actually sufficient.

1.2 Previous methods
The proof by Barth, Niedermann, Rutter, and Wolf [2] that conditions (R1)–(R3) are
necessary and sufficient is only existential in that it does not yield efficient algorithms to
check the validity of a given ortho-radial representation and to construct an ortho-radial
drawing without bends realizing a given ortho-radial representation.

Checking (R1) and (R2) can be done in linear time in a straightforward manner. The
difficult part is to design an efficient algorithm to check (R3). The most naive approach of
examining all cycles costs exponential time. The subsequent work by Niedermann, Rutter,
and Wolf [35] addressed this gap by showing an O(n2)-time algorithm to decide whether a
strictly monotone cycle exists for a given reference edge e⋆, where n is the number of vertices
in the input graph. They also show an O(n2)-time algorithm to construct an ortho-radial
drawing without bends, for any given ortho-radial representation with a reference edge e⋆

that does not lead to a strictly monotone cycle.

Rectangulation. The idea behind the proof of Barth, Niedermann, Rutter, and Wolf [2] is a
reduction to the easier case where each regular face is rectangular. For this case, they provided
a proof that conditions (R1)–(R3) are necessary and sufficient, and they also provided an
efficient drawing algorithm via a reduction to a flow computation given that (R1)–(R3) are
satisfied. For any given ortho-radial representation with n vertices, it is possible to add
O(n) additional edges to turn it into an ortho-radial representation where each regular face
is rectangular. A major difficulty in the proof of [2] is that they need to ensure that the
addition of the edges preserves not only (R1) and (R2) but also (R3). The lack of an efficient
algorithm to check whether (R3) is satisfied is precisely the reason that the proof of [2] does
not immediately lead to a polynomial-time algorithm.

Quadratic-time algorithms. The above issue was addressed in a subsequent work by
Niedermann, Rutter, and Wolf [35]. They provided an O(n2)-time algorithm to find a strictly
monotone cycle if one exists, given a fixed choice of the reference edge e⋆. This immediately
leads to an O(n2)-time algorithm to decide whether a given ortho-radial representation,
with a fixed reference edge e⋆, admits an ortho-radial drawing. Moreover, combining this
O(n2)-time algorithm with the proof of [2] discussed above yields an O(n4)-time drawing
algorithm. The time complexity is due to the fact that O(n) edge additions are needed for
rectangulation, for each edge addition there are O(n) candidate reference edges to consider,
and to test the feasibility of each candidate edge they need to run the O(n2)-time algorithm
to test whether the edge addition creates a strictly monotone cycle.

ICALP 2023

35:4 Ortho-Radial Drawing in Near-Linear Time

The key idea behind the O(n2)-time algorithm for finding a strictly monotone cycle is a
structural theorem that if there is a strictly monotone cycle, then there is a unique outermost
one which can be found by a left-first DFS starting from any edge in the outermost strictly
monotone cycle. The DFS algorithm costs O(n) time. Guessing an edge in the outermost
monotone cycle adds an O(n) factor overhead in the time complexity.

Using further structural insights on the augmentation process of [2], the time complexity
of the above O(n4)-time drawing algorithm can be lowered to O(n2) [35]. The reason for
the quadratic time complexity is that for each of the O(n) edge additions, a left-first DFS
starting from the newly added edge is needed to test whether the addition of this edge creates
a strictly monotone cycle.

1.3 Our new method
For both validity testing (checking whether a given angle assignment induces a strictly
monotone cycle) and drawing (finding a geometric embedding realizing a given ortho-radial
representation), the two algorithms in [35] naturally cost O(n2) time, as they both require
performing left-first DFS O(n) times.

In this paper, we present a new method for ortho-radial drawing that is not based on
rectangulation and left-first DFS. We design a simple O(n log n)-time greedy algorithm
that simultaneously accomplishes both validity testing and drawing, for the case where the
reference edge e⋆ is fixed. If a reference edge e⋆ is not fixed, our algorithm costs O(n log2 n)
time, where the extra O(log n) factor is due to a binary search over the set of candidates
for the reference edge. At a high level, our algorithm tries to construct an ortho-radial
drawing in a piece-by-piece manner. If at some point no progress can be made in that the
current partial drawing cannot be further extended, then the algorithm can identify a strictly
monotone cycle to certify the non-existence of a drawing.

Good sequences. The core of our method is the notion of a good sequence, which we briefly
explain below. An ortho-radial representation satisfying (R1) and (R2), with a fixed reference
edge e⋆, determines whether an edge e is a vertical edge (i.e., e is drawn as a segment of a
straight line passing through the origin) or horizontal (i.e., e is drawn as a circular arc of
some circle centered on the origin). Let Eh denote the set of horizontal edges, oriented in
the clockwise direction, and let Sh denote the set of connected components induced by Eh.
Note that each component S ∈ Sh is either a path or a cycle. The exact definition of a good
sequence is technical, so we defer it to a subsequent section. Intuitively, a good sequence
is an ordering of Sh = (S1, S2, . . . , Sk), where k = |Sh|, that allows us to design a simple
linear-time greedy algorithm constructing an ortho-radial drawing in such a way that S1 is
drawn on the circle r = k, S2 is drawn on the circle r = k − 1, and so on.

In general, a good sequence might not exist, even if the given ortho-radial representation
admits an ortho-radial drawing. In such a case, we show that we may add virtual edges to
transform the ortho-radial representation into one where a good sequence exists. We will
design a greedy algorithm for adding virtual edges and constructing a good sequence. In
each step, we add virtual vertical edges to the current graph and append a new element
S ∈ Sh to the end of our sequence. In case we are unable to find any suitable S ∈ Sh to
extend the sequence, we can extract a strictly monotone cycle to certify the non-existence of
an ortho-radial drawing. A major difference between our method and the approach based on
rectangulation in [2, 35] is that the cost for adding a new virtual edge is only O(log n) in our
algorithm. As we will later see, in our algorithm, in order to identify new virtual edges to be
added, we only need to do some simple local checks such as calculating the sum of angles,
and there is no need to do a full left-first DFS to test whether a newly added edge creates a
strictly monotone cycle.

Y.-J. Chang 35:5

Open questions. While we show a nearly linear-time algorithm for the (shape → metric)-step
(i.e., from ortho-radial representations to ortho-radial drawings), essentially nothing is known
about the (topology → shape)-step (from planar graphs to ortho-radial representations).
While the task of finding a bend-minimized orthogonal representation of a given plane graph
can be easily reduced to the computation of a minimum cost flow [39], such a reduction does
not apply to ortho-radial representations, as network flows do not work well with the notion
of strictly monotone cycles. It remains an open question as to whether a bend-minimized
ortho-radial representation of a plane graph can be computed in polynomial time.

1.4 Related work
The bend minimization problem for orthogonal drawings for planar graphs of maximum
degree 4 without a fixed combinatorial embedding is NP-hard [24, 25]. If the combinatorial
embedding is fixed, the topology-shape-metric framework of Tamassia [39] reduces the bend
minimization problem to a min-cost flow computation. The algorithm of Tamassia [39]
costs O(n2 log n) time. The time complexity was later improved to O

(
n7/4√

log n
)

[25] and
then to O

(
n3/2 log n

)
[14]. A recent O(n poly log n)-time planar min-cost flow algorithm [20]

implies that the bend minimization problem can be solved in O(n poly log n) time if the
combinatorial embedding is fixed.

If the combinatorial embedding is not fixed, the NP-hardness result of [24, 25] can be
bypassed if the first bend on each edge does not incur any cost [9] or if we restrict ourselves
to some special class of planar graphs. In particular, for planar graphs with maximum degree
3, it was shown that the bend-minimization can be solved in polynomial time [16]. After a
series of improvements [13, 17, 19], we now know that a bend-minimized orthogonal drawing
of a planar graph with maximum degree 3 can be computed in O(n) time [17].

The topology-shape-metric framework [39] is not only useful in bend minimization, but
it is also, implicitly or explicitly, behind the graph drawing algorithms for essentially all
computational problems in orthogonal drawing and its variants, such as morphing orthogonal
drawings [8], allowing vertices with degree greater than 4 [15, 31, 36], restricting the direction
of edges [18, 21], drawing cluster graphs [10], and drawing dynamic graphs [11].

The study of ortho-radial drawing by Barth, Niedermann, Rutter, and Wolf [2, 35]
extended the topology-shape-metric framework [39] to accommodate cylindrical grids. Before
these works [2, 35], a combinatorial characterization of drawable ortho-radial representation
is only known for paths, cycles, and theta graphs [28], and for the special case where the
graph is 3-regular and each regular face in the ortho-radial representation is a rectangle [27].

1.5 Organization
In Section 2, we discuss the basic graph terminology used in this paper, review some results
in previous works [2, 35], and state our main theorems. In Section 3, we give a technical
overview of our proof. We conclude in Section 4 with discussions on possible future directions.

2 Preliminaries

Throughout the paper, let G = (V, E) be a planar graph of maximum degree at most 4 with a
fixed combinatorial embedding E in the sense that, for each vertex v ∈ V , a circular ordering
E(v) of its incident edges is given to specify the counter-clockwise ordering of these edges
surrounding v in a planar embedding. As we will discuss in the full version of the paper, we
may assume that the input graph G is simple and biconnected. In this section, we introduce
some basic graph terminology and review some results from the paper [3], which is a merge
of the two papers [2, 35] on ortho-radial drawing.

ICALP 2023

35:6 Ortho-Radial Drawing in Near-Linear Time

𝑣𝑣5

𝐹𝐹1

𝑣𝑣9

𝑣𝑣8

𝑣𝑣10𝑣𝑣2

𝑣𝑣3 𝑣𝑣6

𝑣𝑣7𝑣𝑣4

𝑣𝑣11𝑣𝑣1

𝐹𝐹2𝐹𝐹3

Figure 2 A non-crossing-free path, a crossing-free path, and a facial cycle.

Paths and cycles. Unless otherwise stated, all edges, paths, and cycles are assumed to be
directed. We write e, P , and C to denote the reversal of an edge e, a path P , and a cycle C,
respectively. We allow paths and cycles to have repeated vertices and edges. We say that a
path or a cycle is simple if it does not have repeated vertices. Following [3], we say that a
path or a cycle is crossing-free if it satisfies the following conditions:

The path or the cycle does not contain repeated undirected edges.
For each vertex v that appears multiple times in the path or the cycle, the ordering of
the edges incident to v appearing in the path or the cycle respects the ordering of E(v)
or its reversal.

Although a crossing-free path or a crossing-free cycle might touch a vertex multiple times,
the path or the cycle never crosses itself. For any face F , we define the facial cycle CF to be
the clockwise traversal of its contour. In general, a facial cycle might not be a simple cycle
as it can contain repeated edges. If we assume that G is biconnected, then each facial cycle
of G must be a simple crossing-free cycle. See Figure 2 for an illustration of different types
of paths and cycles. The path (v11, v9, v5, v1, v2, v10, v9, v8) is not crossing-free as the path
crosses itself at v9. The path (v8, v9, v5, v1, v2, v10, v9, v11) is crossing-free since it respects
the ordering E(v) for v = v9. The cycle C = (v1, v5, v6, v3, v4, v7, v6, v5, v9, v10, v2) is the
facial cycle of F2. The cycle C is not a crossing-free cycle as it traverses the undirected edge
{v5, v6} twice, from opposite directions.

Ortho-radial representations and drawings. A corner is an ordered pair of undirected edges
(e1, e2) incident to v such that e2 immediately follows e1 in the counter-clockwise circular
ordering E(v). Given a planar graph G = (V, E) with a fixed combinatorial embedding E , an
ortho-radial representation R = (ϕ, Fc, Fo) of G is defined by the following components:

An assignment ϕ of an angle a ∈ {90◦, 180◦, 270◦} to each corner of G.
A designation of a face of G as the central face Fc.
A designation of a face of G as the outer face Fo.

For the special case where v has only one incident edge e, we view (e, e) as a 360◦ corner.
This case does not occur if we consider biconnected graphs.

Y.-J. Chang 35:7

𝑣𝑣5

𝑣𝑣4

𝑣𝑣3

𝑣𝑣2

𝑣𝑣1

𝑣𝑣6

𝑣𝑣7

𝑣𝑣8

𝑣𝑣9

𝑣𝑣10 𝑣𝑣11

𝑣𝑣14 𝑣𝑣13

𝑣𝑣12

𝑣𝑣10

𝑣𝑣14

𝑣𝑣13

𝑣𝑣11

𝑣𝑣12

𝑣𝑣1𝑣𝑣2
𝑣𝑣3

𝑣𝑣4
𝑣𝑣5

𝑣𝑣6
𝑣𝑣7

𝑣𝑣8
𝑣𝑣9

𝑒𝑒⋆

𝐹𝐹𝑜𝑜

𝐹𝐹𝑐𝑐

𝑒𝑒⋆

𝑒𝑒

𝑃𝑃

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣4

𝑢𝑢1

𝑢𝑢2

𝑢𝑢3
𝑢𝑢4

𝑒𝑒⋆ ∘ 𝑃𝑃 ∘ 𝑒𝑒 𝑒𝑒⋆ ∘ 𝑒𝑒⋆ ∘ 𝑃𝑃 ∘ 𝑒𝑒

𝑣𝑣5

𝑒𝑒⋆

Figure 3 A drawing of an ortho-radial representation with a reference edge, where the small blue
circles in the left figure denote the angles in the representation that are realized in the right figure.

An ortho-radial representation R = (ϕ, Fc, Fo) is drawable if the representation can be
realized as an ortho-radial drawing of G with zero bends such that the angle assignment ϕ is
satisfied, the central face Fc contains the origin, the outer face Fo contains an unbounded
region.

Recall that, by the definition of ortho-radial drawing, in an ortho-radial drawing with
zero bends, each edge is either drawn as a line segment of a straight line passing the origin
or drawn as a circular arc of a circle centered at the origin. We also consider the setting
where the reference edge e⋆ is fixed. In this case, there is an additional requirement that the
reference edge e⋆ has to lie on the outermost circular arc used in the drawing and follows the
clockwise direction. If such a drawing exists, we say that (R, e⋆) is drawable. See Figure 3
for an example of a drawing of an ortho-radial representation R with the reference edge
e⋆ = (v14, v5). In the figure, we use ◦, ◦ ◦, and ◦ ◦ ◦ to indicate a 90◦, a 180◦, and a 270◦
angle assigned to a corner, respectively.

It was shown in [3] that (R, e⋆) is drawable if and only if the ortho-radial representation
R satisfies (R1) and (R2) and the reference edge e⋆ does not lead to a strictly monotone
cycle. Since it is straightforward to test whether (R1) and (R2) are satisfied in linear time,
from now on, unless otherwise stated, we assume that (R1) and (R2) are satisfied for the
ortho-radial representation R under consideration.

Combinatorial rotations. Consider a 2-length path P = (u, v, w) that passes through v

such that u ̸= w. Given the angle assignment ϕ, P is either a 90◦ left turn, a straight line,
or a 90◦ right turn. We define the combinatorial rotation of P as follows.

rotation(P) =


−1, P is a 90◦ left turn,
0, P is a straight line,
1, P is a 90◦ right turn.

More formally, let S = (e1, . . . , ek) be the contiguous subsequence of edges starting
from e1 = {u, v} and ending at ek = {v, w} in the circular ordering E(v) of the undir-
ected edges incident to v. Then

∑k−1
j=1 ϕ(ej , ej+1) − 180◦ equals the degree of the turn

of P at the intermediate vertex v, so the combinatorial rotation of P is rotation(P) =(∑k−1
j=1 ϕ(ej , ej+1) − 180◦

)
/ 90◦.

ICALP 2023

35:8 Ortho-Radial Drawing in Near-Linear Time

For the special case where u = w, the rotation of P = (u, v, u) can be a 180◦ left turn,
in which case rotation(P) = −2, or a 180◦ right turn, in which case rotation(P) = 2. For
example, consider the directed edge e = (u, v) where P first goes from u to v along the right
side of e and then goes from v back to u along the left side of e. Then P is considered a
180◦ left turn, and similarly, P is considered a 180◦ right turn. In particular, if P = (u, v, u)
is a subpath of a facial cycle C, then P is always considered as a 180◦ left turn, and so
rotation(P) = −2.

For a crossing-free path P of length more than 2, we define rotation(P) as the sum of
the combinatorial rotations of all 2-length subpaths of P . Similarly, for a cycle C of length
more than 2, we define rotation(C) as the sum of the combinatorial rotations of all 2-length
subpaths of C. Same as [2, 35], based on this notion, we may restate condition (R2).

(R2′) For each face F , the combinatorial rotation of its facial cycle CF satisfies the following:

rotation(CF) =


4, F is a regular face,
0, F is either the central face or the outer face, but not both,
−4, F is both the central face and the outer face.

For example, consider the ortho-radial representation shown in Figure 3. The path
P = (v10, v11, v12, v13, v14) has rotation(P) = −1 since it makes two 90◦ left turns and one
90◦ right turn. The cycle C = (v10, v11, v12, v13, v14) is the facial cycle of the central face,
and it has rotation(C) = 0.

We briefly explain the equivalence between the new and the old definitions of (R2). If F

is a regular face with k corners, then in the original definition of (R2), it is required that the
sum s of angles around F is s = (k − 2) · 180◦. Since the facial cycle CF traverses the contour
of F in the clockwise direction, the number of 90◦ right turns minus the number of 90◦ left
turns must be exactly 4. Therefore, s = (k − 2) · 180◦ is the same as rotation(CF) = 4, as
each 90◦ right turn contributes 1 and each 90◦ left turn contributes −1 in the calculation of
rotation(CF).

Interior and exterior regions of a cycle. Any cycle C partitions the remaining graph into
two parts. If C is a facial cycle, then one part is empty. The direction of C is clockwise with
respect to one of the two parts. The part with respect to which C is clockwise, together
with C itself, is called the interior of C. Similarly, the part with respect to which C is
counter-clockwise, together with C itself, is called the exterior of C. In particular, if a vertex
v lies in the interior of C, then v must be in the exterior of C.

This above definition is consistent with the notion of facial cycle in that any face F is in
the interior of its facial cycle CF . Depending on the context, the interior or the exterior of a
cycle can be viewed as a subgraph, a set of vertices, a set of edges, or a set of faces. For
example, consider the cycle C = (v1, v2, v10, v9, v5) of the plane graph shown in Figure 2.
The interior of C is the subgraph induced by v8, v11, and all vertices in C. The exterior of
C is the subgraph induced by v3, v4, v6, v7, and all vertices in C. The cycle C partitions the
faces into two parts: The interior of C contains F3, and the exterior of C contains F1 and F2.

Let C be a simple cycle oriented in such a way that the outer face Fo lies in its exterior.
Following [3], we say that C is essential if the central face Fc is in the interior of C. Otherwise
we say that C is non-essential. The following lemma was proved in [3].

Y.-J. Chang 35:9

▶ Lemma 1 ([3]). Let C be a simple cycle oriented in such a way that the outer face Fo lies
in its exterior, then the combinatorial rotation of C satisfies the following:

rotation(C) =
{

4, C is an essential cycle,
0, C is a non-essential cycle.

In the above lemma, we implicitly assume that (R1) and (R2) are satisfied. The intuition
behind the lemma is that an essential cycle behaves like the facial cycle of the outer face or
the central face, and a non-essential cycle behaves like the facial cycle of a regular face.

Subgraphs. When we take a subgraph H of G, the combinatorial embedding, the angle
assignment, the central face, and the outer face of H are inherited from G naturally.
For example, suppose that E(v) = (e1, e2, e3) with ϕ(e1, e2) = 90◦, ϕ(e2, e3) = 90◦, and
ϕ(e3, e1) = 180◦ in G. Suppose that v is incident only to two edges e1 and e2 in H, then the
angle assignment ϕH for the two corners surrounding v in H will be ϕH(e1, e2) = 90◦ and
ϕH(e2, e1) = 270◦.

Each face of G is contained in exactly one face of H, A face in H can contain multiples
faces of G. A face of H is said to be the central face if it contains the central face of G.
Similarly, A face of H is said to be the outer face if it contains the outer face of G.

For example, consider the subgraph H induced by {v2, v3, . . . , v9} in the ortho-radial
representation in Figure 3. In H, v9 is incident to only two edges e1 = {v8, v9} and
e2 = {v2, v9}, and the angle assignment ϕH for the two corners surrounding v9 in H are
ϕH(e1, e2) = 90◦ and ϕH(e2, e1) = 270◦. The outer face and the central face of H are the
same.

Defining direction via reference paths. Following [3], for any two edges e = (u, v) and
e′ = (x, y), we say that a crossing-free path P is a reference path for e and e′ if P starts at u

or v and ends at x or y such that P does not contain any of the edges in {e, e, e′, e′}. Given
a reference path P for e = (u, v) and e′ = (x, y), we define the combinatorial direction of e′

with respect to e and P as follows.

direction(e, P, e′) =


rotation(e ◦ P ◦ e′), P starts at v and ends at x,
rotation(e ◦ P ◦ e′) + 2, P starts at u and ends at x,
rotation(e ◦ P ◦ e′) − 2, P starts at v and ends at y,
rotation(e ◦ P ◦ e′), P starts at u and ends at y.

Here P ◦ Q denotes the concatenation of the paths P and Q. An edge e is interpreted as a
1-length path. In the definition of direction(e, P, e′), we allow the possibility that a reference
path P consists of a single vertex. If v = x and u ̸= w, then we may choose P to be the
0-length path consisting of a single vertex v = x, in which case direction(e, P, e′) is simply
the combinatorial rotation of the 2-length path (u, v, y). We do not consider the cases where
e = e′ or e = e′.

Consider the reference edge e = (v14, v1) in the ortho-radial representation of Figure 3.
We measure the direction of e′ = (v8, v9) from e with different choices of the reference
path P . If P = (v1, v2, v9), then direction(e, P, e′) = rotation(e ◦ P ◦ e′) − 2 = −1. If
P = (v14, v10, v9), then we also have direction(e, P, e′) = rotation(e ◦ P ◦ e′) = −1. If we
select P = (v1, v2, v3, v4, v5, v6, v7, v8), then we get a different value of direction(e, P, e′) =
rotation(e ◦ P ◦ e′) = 3. As we will later discuss, direction(e, P, e′) mod 4 is invariant under
the choice of P .

ICALP 2023

35:10 Ortho-Radial Drawing in Near-Linear Time

In the definition of direction(e, P, e′), the additive +2 in rotation(e ◦ P ◦ e′) + 2 is due to
the fact that the actual path that we intend to consider is e ◦ e ◦ P ◦ e′, where we make a
180◦ right turn in e ◦ e, which contributes +2 in the calculation of the combinatorial rotation.
Similarly, the additive −2 in rotation(e ◦ P ◦ e′) − 2 is due to the fact that the actual path
that we intend to consider is e ◦ P ◦ e′ ◦ e′, where we make a 180◦ left turn in e′ ◦ e′. There
is no additive term in rotation(e ◦ P ◦ e′) because of the cancellation of the 180◦ right turn
e ◦ e and the 180◦ left turn e′ ◦ e′. The reason why e ◦ e has to be a right turn and e′ ◦ e′ has
to be a left turn will be explained later.

See Figure 4 for an example of the calculation of an edge direction. The direction of
e = (u1, u2) with respect to e⋆ = (v1, v2) and the reference path P = (v1, v5, v4, u1) can be
calculated by rotation(e⋆ ◦ P ◦ e′) + 2 = 1 according to the formula above, where the additive
+2 is due to the 180◦ right turn at e⋆ ◦ e⋆.

Edge directions. Imagining that the origin is the south pole, in an ortho-radial drawing
with zero bends, each edge e is either drawn in one of the following four directions:

e points towards the north direction if e is drawn as a line segment of a straight line
passing the origin, where e is directed away from the origin.
e points towards the south direction if e is drawn as a line segment of a straight line
passing the origin, where e is directed towards the origin.
e points towards the east direction if e is drawn as a circular arc of a circle centered at
the origin in the clockwise direction.
e points towards the west direction if e is drawn as a circular arc of a circle centered at
the origin in the counter-clockwise direction.

We say that e is a vertical edge if e points towards north or south. Otherwise, we say that
e is a horizontal edge. We argue that as long as (R1) and (R2) are satisfied, the direction of
any edge e is uniquely determined by the ortho-radial representation.

For the reference edge e⋆, it is required that e⋆ points east, and so e⋆ points west. Consider
any edge e that is neither e⋆ nor e⋆. It is clear that the value of direction(e⋆, P, e) determines
the direction of e in that the direction of e is forced to be east, south, west, or north if
direction(e⋆, P, e) mod 4 equals 0, 1, 2, or 3, respectively. For example, in the ortho-radial
representation of Figure 3, the edge e′ = (v8, v9) is a vertical edge in the north direction, as
we have calculated that direction(e⋆, P, e′) mod 4 = 3.

▶ Lemma 2 ([3]). For any two edges e and e′, the value of direction(e, P, e′) mod 4 is invariant
under the choice of the reference path P .

The above lemma shows that direction(e⋆, P, e) mod 4 is invariant under the choice of
the reference path P , so the direction of each edge in an ortho-radial representation is well
defined, even for the case that (R, e⋆) might not be drawable. Given the reference edge e⋆,
we let Eh denote the set of all horizontal edges in the east direction, and let Ev denote the
set of all vertical edges in the north direction.

Horizontal segments. We require that in a drawing of (R, e⋆), the reference edge e⋆ lies on
the outermost circular arc used in the drawing, so not every edge in CFo is eligible to be a
reference edge. To determine whether an edge e ∈ CFo is eligible to be a reference edge, we
need to introduce some terminology.

Given the reference edge e⋆, the set Ev of vertical edges in the north direction and the
set Eh of horizontal edges in the east direction are fixed. Let Sh denote the set of connected
components induced by Eh. Each component S ∈ Sh is either a path or a cycle, and so in
any drawing of R, there is a circle C centered at the origin such that S must be drawn as C

or a circular arc of C. We call each component S ∈ Sh a horizontal segment.

Y.-J. Chang 35:11

𝑣𝑣5

𝑣𝑣4

𝑣𝑣3

𝑣𝑣2

𝑣𝑣1

𝑣𝑣6

𝑣𝑣7

𝑣𝑣8

𝑣𝑣9

𝑣𝑣10 𝑣𝑣11

𝑣𝑣14 𝑣𝑣13

𝑣𝑣12

𝑣𝑣10

𝑣𝑣14

𝑣𝑣13

𝑣𝑣11

𝑣𝑣12

𝑣𝑣1𝑣𝑣2
𝑣𝑣3

𝑣𝑣4
𝑣𝑣5

𝑣𝑣6
𝑣𝑣7

𝑣𝑣8
𝑣𝑣9

𝑒𝑒⋆

𝐹𝐹𝑜𝑜

𝐹𝐹𝑐𝑐

𝑒𝑒⋆

𝑒𝑒

𝑃𝑃

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣4

𝑢𝑢1

𝑢𝑢2
𝑢𝑢3

𝑢𝑢4

𝑒𝑒⋆ ∘ 𝑃𝑃 ∘ 𝑒𝑒 𝑒𝑒⋆ ∘ 𝑒𝑒⋆ ∘ 𝑃𝑃 ∘ 𝑒𝑒

𝑣𝑣5

𝑒𝑒⋆

Figure 4 The calculation of direction(e⋆, P, e).

Each horizontal segment S ∈ Sh is written as a sequence of vertices S = (v1, v2, . . . , vs),
where s is the number of vertices in S, such that (vi, vi+1) ∈ Eh for each 1 ≤ i < s. If S is
a cycle, then we additionally have (vs, v1) ∈ Eh, so S = (v1, v2, . . . , vs) is a circular order.
When S is a cycle, we use modular arithmetic on the indices so that vs+1 = v1. We write
Nnorth(S) to denote the set of vertical edges e = (x, y) ∈ Ev such that x ∈ S. Similarly,
Nsouth(S) is the set of vertical edges e = (x, y) ∈ Ev such that y ∈ S. We assume that the
edges in Nnorth(S) and Nsouth(S) are ordered according to the indices of their endpoints in S.
The ordering is sequential if S is a path and is circular if S is a cycle. Consider the ortho-radial
representation R given in Figure 3 as an example. The horizontal segment S = (v10, v9, v2)
has Nsouth(S) = ((v11, v10), (v8, v9), (v3, v2)) and Nnorth(S) = ((v10, v14), (v2, v1)).

Observe that Nnorth(S) = ∅ for the horizontal segment S ∈ Sh that contains e⋆ is a
necessary condition that a drawing of R where e⋆ lies on the outermost circular arc exists.
This condition can easily be checked in linear time.

Spirality. Intuitively, direction(e, P, e′) quantifies the degree of spirality of e′ with respect to
e and P . Unfortunately, Lemma 2 does not hold if we replace direction(e, P, e′) mod 4 with
direction(e, P, e′). A crucial observation made in [3] is that such a replacement is possible if
we add some restrictions about the positions of e, e′, and P . See the following lemma.

▶ Lemma 3 ([3]). Let C and C ′ be essential cycles such that C ′ lies in the interior of C.
Let e be an edge on C. Let e′ be an edge on C ′. The value of direction(e, P, e′) is invariant
under the choice of the reference path P , over all paths P in the interior of C and in the
exterior of C ′.

Recall that we require a reference path to be crossing-free. This requirement is crucial in
the above lemma. If we allow P to be a general path that is not crossing-free, then we may
choose P in such a way that P repeatedly traverses a non-essential cycle many times, so
that direction(e, P, e′) can be made arbitrarily large and arbitrarily small.

Setting e = e⋆ and C = CFo in the above lemma, we infer that direction(e⋆, P, e′) is
determined once we fix an essential cycle C ′ that contains e′ and only consider reference
paths P that lie in the exterior of C ′. The condition for the lemma is satisfied because CFo

is the outermost essential cycle in that all other essential cycles are in the interior of CFo .
The reason why we set C = CFo and not C = CFo is that Fo has to be in the exterior of C.
Note that the assumption that G is biconnected ensures that each facial cycle is simple.

Let C be an essential cycle and let e be an edge in C. In view of the above, following [3],
we define the edge label ℓC(e) of e with respect to C as the value of direction(e⋆, P, e), for any
choice of reference path P in the exterior of C ′. For the special case that e = e⋆ and C = CFo ,

ICALP 2023

35:12 Ortho-Radial Drawing in Near-Linear Time

𝑒𝑒⋆

𝑒𝑒

𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣10

𝑣𝑣7

𝑣𝑣8 𝑣𝑣9

𝑣𝑣5

𝑒𝑒⋆

𝑣𝑣1 𝑣𝑣2
𝑣𝑣3

𝑣𝑣4

𝑣𝑣5
𝑣𝑣6 𝑣𝑣7 𝑣𝑣8

𝑣𝑣9

𝑣𝑣10
𝑣𝑣6

𝑣𝑣1

1

1

1

1

0

0

0

2
22

0

Figure 5 Changing the reference edge to e leads to a strictly monotone cycle.

we let ℓC(e) = 0. Intuitively, the value ℓC(e) quantifies the degree of spirality of e from e⋆

if we restrict ourselves to the exterior of C. Consider the edge e = (u1, u2) in the essential
cycle C = (u1, u2, u3, u4) in Figure 4 as an example. We have ℓC(e) = direction(e⋆, P, e) = 1,
since the reference path P = (v1, v5, v4, u1) lies in exterior of C.

We briefly explain the formula of direction(e, P, e′): As discussed earlier, in the definition
of direction(e, P, e′), the additive +2 in rotation(e ◦ P ◦ e′) + 2 is due to the fact that the
actual path that we want to consider is e ◦ e ◦ P ◦ e′, where we make a 180◦ right turn in e ◦ e.
The reason why e ◦ e has to be a right turn is because of the scenario considered in Lemma 3,
where e is an edge in C. To ensure that we stay in the interior of C in the traversal from e

to e′ via the path e ◦ e ◦ P ◦ e′, the 180◦ turn of e ◦ e has to be a right turn. The remaining
part of the formula of direction(e, P, e′) can be explained similarly.

Monotone cycles. We are now ready to define the notion of strictly monotone cycles used in
(R3). We say that an essential cycle C is monotone if all its edge labels ℓC(e) are non-negative
or all its edge labels ℓC(e) are non-positive. Let C be an essential cycle that is monotone. If
C contains at least one positive edge label, then we say that C is increasing. If C contains
at least one negative edge label, then we say that C is decreasing. We say that C is strictly
monotone if C is either decreasing or increasing but not both.

Intuitively, an increasing cycle is like a loop of descending stairs, and a decreasing cycle
is like a loop of ascending stairs, so they are not drawable. It was proved in [3] that
(R, e⋆) is drawable if and only if it does not contain a strictly monotone cycle. Recall again
that, throughout the paper, unless otherwise stated, we assume that the given ortho-radial
representation already satisfies (R1) and (R2).

▶ Lemma 4 ([3]). An ortho-radial representation R, with a fixed reference edge e⋆ such that
Nnorth(S) = ∅ for the horizontal segment S ∈ Sh that contains e⋆, is drawable if and only if
it does not contain a strictly monotone cycle.

Consider Figure 5 as an example. The ortho-radial representation R is drawable with
the reference edge e⋆. If we change the reference edge to e, then (R, e) become undrawable,
as the essential cycle C = (v1, v2, . . . , v10) is increasing. With respect to the reference edge e,
all the edge labels on the cycle C are non-negative, with some of them being positive. We
are ready to state our main results.

▶ Theorem 5. There is an O(n log n)-time algorithm A that outputs either a drawing of
(R, e⋆) or a strictly monotone cycle of (R, e⋆), for any given ortho-radial representation R of
an n-vertex biconnected simple graph, with a fixed reference edge e⋆ such that Nnorth(S) = ∅
for the horizontal segment S ∈ Sh that contains e⋆.

Y.-J. Chang 35:13

𝑣𝑣1,1

𝑣𝑣1,3

𝑣𝑣1,2𝑣𝑣1,4

𝑣𝑣2,1

𝑣𝑣2,2
𝑣𝑣2,3

𝑣𝑣3,1

𝑣𝑣3,2

𝑣𝑣3,3𝑣𝑣3,4

𝑣𝑣3,5

𝑣𝑣4,1

𝑣𝑣4,2

𝑣𝑣4,3

𝑣𝑣5,1
𝑣𝑣5,2

𝑣𝑣5,3
𝑣𝑣5,4

𝑣𝑣6,1𝑣𝑣6,2

𝐺𝐺1 𝐺𝐺1+

𝐺𝐺2

𝐺𝐺3

𝐺𝐺2+

𝐺𝐺3+

𝐺𝐺4 𝐺𝐺4+

𝐺𝐺5

𝐺𝐺6

𝐺𝐺5+

𝐺𝐺6+

Figure 6 Constructing a good drawing for a good sequence.

The above theorem improves the previous algorithm of [35] which costs O(n2) time. If
the output of A is a strictly monotone cycle, then the cycle certifies the non-existence of a
drawing, by Lemma 4. We also extend the above theorem to the case where the reference
edge is not fixed.

▶ Theorem 6. There is an O(n log2 n)-time algorithm A that decides whether an ortho-radial
representation R of an n-vertex biconnected simple graph is drawable. If R is drawable, then
A also computes a drawing of R.

The proofs of Theorems 5 and 6 are left to the full version of the paper.

3 Technical overview

Let A = (S1, S2, . . . , Sk) be any sequence of k horizontal segments. We consider the following
terminology for each 1 ≤ i ≤ k, where k is the length of the sequence A.

Let Gi be the subgraph of G induced by the horizontal edges in S1, S2, . . . , Si and the
set of all vertical edges whose both endpoints are in S1, S2, . . . , Si. Let Fi be the central
face of Gi, and let Ci be the facial cycle of Fi.
We extend the notion Nsouth(S) to a sequence of horizontal segments: Nsouth(S1, S2, . . . , Si)
is defined as the set of all vertical edges e = (x, y) ∈ Ev such that y ∈ Ci and x /∈ Ci.
Let G+

i be the subgraph of G induced by all the edges in Gi together with the edge set
Nsouth(S1, S2, . . . , Si). Let F +

i be the central face of G+
i , and let C+

i be the facial cycle
of F +

i .

ICALP 2023

35:14 Ortho-Radial Drawing in Near-Linear Time

For each vertical edge e = (x, y) ∈ Nsouth(S1, S2, . . . , Si), the south endpoint x appears exactly
once in C+

i . We circularly order the edges e = (x, y) ∈ Nsouth(S1, S2, . . . , Si) according to the
position of the south endpoint x in the circular ordering of C+

i . Take the graph G = G6 in
Figure 6 as an example. In this graph, there are 6 horizontal segments, shaded in Figure 6:

S1 = (v1,1, v1,2, v1,3, v1,4), S2 = (v2,1, v2,2, v2,3), S3 = (v3,1, v3,2, v3,3, v3,4, v3,5),
S4 = (v4,1, v4,2, v4,3), S5 = (v5,1, v5,2, v5,3, v5,4, v5,5), S6 = (v6,1, v6,2).

With respect to the sequence A = (S1, S2, . . . , S6), Figure 6 shows the graphs Gi and G+
i ,

for all 1 ≤ i ≤ 6. For example, for i = 2, we have:

Nsouth(S1, S2) = ((v3,1, v1,1)(v3,2, v2,1), (v3,4, v2,3), (v3,5, v1,4)),
Nnorth(S2) = ((v2,1, v1,2), (v2,2, v1,3))
C2 = (v1,1, v1,2, v2,1, v2,2, v2,3, v2,2, v1,3, v1,4),
C+

2 = (v1,1, v3,1, v1,1, v1,2, v2,1, v3,2, v2,1, v2,2, v2,3, v3,4, v2,3, v2,2, v1,3, v1,4, v3,5, v1,4).

Here Nsouth(S1, S2), C2, and C+
2 are circular orderings, and Nnorth(S2) is a sequential ordering,

as S2 is a path.

Good sequences. We say that a sequence of horizontal segments A = (S1, S2, . . . , Sk) is
good if A satisfies the following conditions.
(S1) S1 is the reversal of the facial cycle of the outer face Fo, i.e., S1 = CFo .
(S2) For each 1 < i ≤ k, Nnorth(Si) satisfies the following requirements.

Nnorth(Si) ̸= ∅.
If Si is a path, then Nnorth(Si) is a contiguous subsequence of Nsouth(S1, S2, . . . , Si−1).
If Si is a cycle, then Nnorth(Si) = Nsouth(S1, S2, . . . , Si−1).

Clearly, if A = (S1, S2, . . . , Sk) is good, then (S1, S2, . . . , Si) is also good for each 1 ≤ i < k.
In general, a good sequence that covers the set of all horizontal segments might not exist for
a given (R, e⋆). In particular, in order to satisfy (S1), it is necessary that the cycle CFo is a
horizontal segment. The sequence A = (S1, S2, . . . , S6) shown in Figure 6 is a good sequence.

If A = (S1, S2, . . . , Sk) is good, then we can find a drawing of Gk in linear time by fixing
the drawing of S1, S2, . . . , Sk sequentially, as the definition of a good sequence allows us to
safely place Si below S1, S2, . . . , Si−1 and above Si+1, Si+2, . . . , Sk. The following lemma is
proved formally in the full version of the paper.

▶ Lemma 7. For a given good sequence A = (S1, S2, . . . , Sk), an ortho-radial drawing of Gk

without bends can be constructed in time O
(∑k

i=1 |Si|
)

.

See Figure 6 for an example of a drawing of Gk produced by the algorithm of Lemma 7.

Constructing a good sequence. In order to use Lemma 7 to compute an ortho-radial
drawing of (R, e⋆), we need to find a good sequence A = (S1, S2, . . . , Sk) with Gk = G.
However, such a good sequence might not exist even if (R, e⋆) is drawable. We will show that
as long as (R, e⋆) is drawable, we can always add some virtual edges to the graph so that
such a good sequence exists and can be computed efficiently. The first step of the algorithm
is a simple preprocessing step to ensure the following two properties:

The facial cycle of the outer face is a horizontal segment.
Each vertex is incident to a horizontal segment.

Y.-J. Chang 35:15

𝑒𝑒𝑓𝑓

𝑒𝑒⋆

Figure 7 The preprocessing steps.

𝑢𝑢 𝑣𝑣𝑤𝑤

𝑧𝑧𝑥𝑥 𝑦𝑦
𝐹𝐹1 𝐹𝐹2

𝑒𝑒′

𝑆𝑆𝑖𝑖𝐹𝐹
𝑆𝑆

Figure 8 Adding a virtual vertical edge in a regular face.

See Figure 7 for the algorithm of the preprocessing step. The addition of the edge ef

ensures that CFo is a horizontal segment. To ensure that each vertex is on a horizontal
segment, some degree-2 vertices are removed by smoothing.

The above two properties alone are not sufficient to guarantee the existence of a good
sequence A = (S1, S2, . . . , Sk) with Gk = G, as there could be horizontal segment S such
that Nnorth(S) = ∅ and S ≠ CFo . Such a horizontal segment S can never be added to a good
sequence, as the definition of a good sequence requires all horizontal segments in the sequence
to be non-empty. To deal with this issue, we consider the following eligibility criterion for
adding a virtual vertical edge incident to such a horizontal segment S:

Let A = (S1, S2, . . . , Sk) be the current good sequence. Let S /∈ A be a horizontal
segment such that Nnorth(S) = ∅ and S ̸= CFo . Let F be the face such that S is a
subpath of CF . We say that S is eligible for adding a virtual edge if there exists an edge
e′ ∈ CF with e′ ∈ Si for some 1 ≤ i ≤ k such that either rotation(e′ ◦ · · · ◦ S) = 2 or
rotation(S ◦ · · · ◦ e′) = 2 along the cycle CF .

See Figure 8 for an illustration of adding a virtual edge. In the figure, there are two
horizontal segments along the contour of F that are eligible for adding a virtual edge due
to e′ ∈ Si. The rotation criterion for eligibility is to ensure that the new faces created due
to the virtual edge still satisfy (R2). The condition Nnorth(S) = ∅ ensures that immediately
after adding the virtual edge, we may append S to the end of the sequence A.

Our algorithm to construct a good sequence is a simple greedy algorithm: We repeatedly
find horizontal segments that can be appended to the current good sequence and repeatedly
add virtual edges, until no further such operations can be done. A straightforward imple-
mentation of the greedy algorithm, which checks all remaining horizontal segments in each
step, takes O(n2) time. In the full version of the paper, we will present a more efficient
implementation that costs only O(n log n) time.

Extracting a strictly monotone cycle. In the full version of the paper, we prove that if the
above greedy algorithm stops with a good sequence A = (S1, S2, . . . , Sk) that does not cover
all horizontal segments, then a strictly monotone cycle of the original graph G, without any

ICALP 2023

35:16 Ortho-Radial Drawing in Near-Linear Time

𝑆𝑆𝑖𝑖

𝑒𝑒′

𝐹𝐹

𝑆𝑆𝑖𝑖

𝑒𝑒′

𝐹𝐹

𝑢𝑢 𝑣𝑣𝑤𝑤

𝑧𝑧𝑥𝑥 𝑦𝑦
𝐹𝐹1 𝐹𝐹2

𝑒𝑒′

𝑆𝑆𝑖𝑖𝐹𝐹
𝑆𝑆

𝐹𝐹𝑖𝑖,𝑖𝑖+1
𝑒𝑒𝑖𝑖

𝑒𝑒𝑖𝑖+1
𝑃𝑃𝑖𝑖←𝑖𝑖+1

𝐹𝐹𝑖𝑖,𝑖𝑖+1

𝑒𝑒𝑖𝑖
𝑒𝑒𝑖𝑖+1

𝑃𝑃𝑖𝑖→𝑖𝑖+1

𝑒𝑒𝑖𝑖 𝑒𝑒𝑖𝑖+1

𝑒𝑒⋆

𝐶𝐶

𝑃𝑃 ∘ 𝑒𝑒

𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖+1

01
𝑒𝑒𝑖𝑖 𝑒𝑒𝑗𝑗

𝑃𝑃𝑖𝑖→𝑗𝑗out

𝑒𝑒𝑒

+2

+2

𝑒𝑒𝑖𝑖 𝑒𝑒𝑗𝑗

𝑃𝑃𝑖𝑖→𝑗𝑗out

𝑃𝑃

+2

𝐶𝐶

Figure 9 Face types (∗, ⊔) and (⊔, ∗).

virtual edges, can be found to certify the non-existence of a drawing. Let (e1, e2, . . . , es) be
the circular ordering of Nsouth(A). Note that {e1, e2, . . . , es} is the set of all edges connecting
a vertex in Gk and a vertex not in Gk. The proof is achieved by a careful analysis of the
structure of the faces involving {e1, e2, . . . , es}. We show that the fact that no more progress
can be made in the greedy algorithm forces the parts of the contours of these faces that are
not in Gk to form ascending or descending patterns in a consistent manner, so we are able
to extract a strictly monotone cycle in G by considering the edges in these facial cycles.

Face types. For each 1 ≤ i ≤ s, we write Fi,i+1 to denote the unique face F such that CF

contains both ei and ei+1. Note that vs+1 = v1 because (e1, e2, . . . , es) is a circular ordering.
Consider the face Fi,i+1, for some 1 ≤ i ≤ s. We define Pi←i+1 as the subpath of CFi,i+1

starting at ei+1 and ending at ei. We write Pi→i+1 = Pi←i+1. We write Zi←i+1 = (z1, z2, . . .)
to denote the string of numbers such that zl is the rotation of the subpath of Pi←i+1 consisting
of the first l edges. Similarly, we let Zi→i+1 = (z1, z2, . . .) be the string of numbers such that
zl is the rotation of the subpath of Pi→i+1 consisting of the first l edges. We define the types
(∗, ⊔), (⊔, ∗), (⊔, ⊔), and (−), as follows.

Fi,i+1 is of type (∗, ⊔) if 0 ◦ 1c ◦ 2, for some c ≥ 1, is a prefix of Zi←i+1.
Fi,i+1 is of type (⊔, ∗) if 0 ◦ (−1)c ◦ (−2), for some c ≥ 1, is a prefix of Zi→i+1.
Fi,i+1 is of type (⊔, ⊔) if Fi,i+1 is both of type (⊔, ∗) and of type (∗, ⊔).
Fi,i+1 is of type (−) if Zi←i+1 = 0 ◦ 1c ◦ 2 for some c ≥ 1.

In other words, Fi,i+1 is of type (−) if the subpath of the facial cycle of Fi,i+1 that connects
the south endpoints of ei+1 and ei is a horizontal straight line in the west direction. By
considering Pi→i+1 = Pi←i+1, equivalently, Fi,i+1 is of type (−) if Zi→i+1 = 0 ◦ (−1)c ◦ (−2)
for some c ≥ 1.

Consider the good sequence A = (S1, S2) of Figure 6 as an example, where we let
Nsouth(S1, S2) = (e1, e2, e3, e4), where e1 = (v3,1, v1,1), e2 = (v3,2, v2,1), e3 = (v3,4, v2,3),
and e4 = (v3,5, v1,4). The facial cycle of the face F1,2 is (v3,1, v1,1, v2,1, v3,2). We have
P1→2 = (v1,1, v3,1, v3,2, v2,1) and Z1→2 = (0, −1, −2), so F1,2 is of type (−).

Intuitively, the face Fi,i+1 is of type (⊔, ∗) if Pi→i+1 makes two 90◦ left turns before
making any right turns, and the first 90◦ left turn is made at xi. These two 90◦ left turns
form a ⊔-shape. Similarly, the face Fi,i+1 is of type (∗, ⊔) if Pi←i+1 makes two 90◦ right turns
before making any left turns, and the first 90◦ right turn is made at xi+1. These two 90◦
right turns form a ⊔-shape. See Figure 9 for illustrations of faces of types (∗, ⊔) and (⊔, ∗).
In the left part of the figure, we have Zi←i+1 = (0, 1, 1, 1, 2, 1, 2, 1, 2), so Fi,i+1 is of type
(∗, ⊔). In the right part of the figure, we have Zi→i+1 = (0, −1, −1, −2, −3, −3, −2, −1, −2),
so Fi,i+1 is of type (⊔, ∗). We show that one of the following holds, which intuitively implies
the existence of a strictly monotone cycle.

All faces Fi,i+1 are of type (−) and (⊔, ∗), and at least one face Fi,i+1 is of type (⊔, ∗).
All faces Fi,i+1 are of type (−) and (∗, ⊔), and at least one face Fi,i+1 is of type (∗, ⊔).

Y.-J. Chang 35:17

1𝑒𝑒𝑖𝑖 𝑒𝑒𝑖𝑖+1

𝑒𝑒 +1

𝐶𝐶

+1 𝑒𝑒𝑖𝑖 𝑒𝑒𝑖𝑖+1

𝑒𝑒 +1

+1 2
11

0

𝑆𝑆

𝑃𝑃𝑖𝑖←𝑖𝑖+1

𝑆𝑆

𝑒𝑒𝑖𝑖 = 𝑒𝑒𝑐𝑐1 𝑒𝑒𝑗𝑗 = 𝑒𝑒𝑐𝑐4+1

𝑒𝑒𝑐𝑐2

𝑒𝑒𝑐𝑐3

𝑒𝑒𝑐𝑐4
𝑒𝑒𝑐𝑐1+1

𝑒𝑒𝑐𝑐2+1

𝑒𝑒𝑐𝑐3+1
𝑒𝑒𝑎𝑎2−1

𝑒𝑒𝑎𝑎3−1

𝑒𝑒𝑎𝑎1−1
𝑒𝑒𝑎𝑎1

𝑒𝑒𝑎𝑎2

𝑒𝑒𝑎𝑎3
𝐵𝐵1

𝐵𝐵2

𝐵𝐵3

𝑒𝑒⋆

+1

0

−1

0
1

2

3 4
45

4
3

2

1

0

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3

𝑒𝑒4𝑒𝑒5

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3

𝑣𝑣4𝑣𝑣5

Figure 10 Extracting a strictly monotone cycle C = (v1, v2, . . . , v5).

Consider Figure 10 for an example of extracting a strictly monotone cycle. In the figure,
the shaded part corresponds to the part of the graph that is not in Gk. In this example,
Nsouth(A) = (e1, e2, . . . , e5). The faces F5,1, F1,2, and F2,3 are of type (∗, ⊔). The faces
F3,4 and F4,5 are of type (−). The cycle C = (v1, v2, . . . , v5) is strictly monotone, as it
is increasing. We can calculate that ℓC((v1, v2)) = 1 by first going from e⋆ to e2 via a
crossing-free path P and then going from e2 to (v1, v2) along the path P2→3, as (v1, v2) is an
intermediate edge of P2→3. The first part has rotation 1 and the second part has rotation 0,
so the overall rotation is 1. Similarly, we can calculate that ℓC(e) = 0 for each remaining
edge e in C.

4 Conclusions

In this paper, we presented a near-linear time algorithm to decide whether a given ortho-radial
representation is drawable, improving upon the previous quadratic-time algorithm [35]. If
the representation is drawable, then our algorithm outputs an ortho-radial drawing realizing
the representation. Otherwise, our algorithm outputs a strictly monotone cycle to certify the
non-existence of such a drawing. Given the broad applications of the topology-shape-metric
framework in orthogonal drawing, we anticipate that our new ortho-radial drawing algorithm
will be relevant and useful in future research in this field.

ICALP 2023

35:18 Ortho-Radial Drawing in Near-Linear Time

While there has been extensive research in orthogonal drawing, much remains unknown
about the computational complexity of basic optimization problems in ortho-radial drawing.
In particular, the problem of finding an ortho-radial representation that minimizes the number
of bends has only been addressed by a practical algorithm [34] that has no provable guarantees.
It remains an intriguing open question to determine to what extent bend minimization is
polynomial-time solvable for ortho-radial drawing. To the best of our knowledge, even
deciding whether a given plane graph admits an ortho-radial drawing without bends is not
known to be polynomial-time solvable.

Given an ortho-radial representation, can we find an ortho-radial drawing with the smallest
number of layers (i.e., the number of concentric circles) in polynomial time? As discussed in
the full version of the paper, if a good sequence is given, then our algorithm can output a
layer-minimized drawing. For the general case where a good sequence might not exist, our
algorithm does not have the layer-minimization guarantee, as there is some flexibility in the
choice of virtual edges to add, and selecting different virtual edges results in different good
sequences. There was a series of work in finding compact orthogonal drawings according to
various complexity measures [1, 6, 12, 32, 37]. To what extent the ideas developed in these
works can be applied to ortho-radial drawings?

References

1 Michael J. Bannister, David Eppstein, and Joseph A. Simons. Inapproximability of orthogonal
compaction. Journal of Graph Algorithms and Applications, 16(3):651–673, 2012. doi:
10.7155/jgaa.00263.

2 Lukas Barth, Benjamin Niedermann, Ignaz Rutter, and Matthias Wolf. Towards a Topology-
Shape-Metrics Framework for Ortho-Radial Drawings. In Boris Aronov and Matthew J.
Katz, editors, 33rd International Symposium on Computational Geometry (SoCG), volume 77
of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1–14:16, Dagstuhl,
Germany, 2017. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
SoCG.2017.14.

3 Lukas Barth, Benjamin Niedermann, Ignaz Rutter, and Matthias Wolf. A topology-shape-
metrics framework for ortho-radial graph drawing. arXiv preprint, 2021. arXiv:2106.05734v1.

4 Hannah Bast, Patrick Brosi, and Sabine Storandt. Metro maps on flexible base grids. In 17th
International Symposium on Spatial and Temporal Databases, pages 12–22, 2021.

5 Carlo Batini, Enrico Nardelli, and Roberto Tamassia. A layout algorithm for data flow
diagrams. IEEE Transactions on Software Engineering, SE-12(4):538–546, 1986.

6 Michael A. Bekos, Carla Binucci, Giuseppe Di Battista, Walter Didimo, Martin Grone-
mann, Karsten Klein, Maurizio Patrignani, and Ignaz Rutter. On turn-regular ortho-
gonal representations. Journal of Graph Algorithms and Applications, 26(3):285–306, 2022.
doi:10.7155/jgaa.00595.

7 Sandeep N Bhatt and Frank Thomson Leighton. A framework for solving VLSI graph layout
problems. Journal of Computer and System Sciences, 28(2):300–343, 1984.

8 Therese Biedl, Anna Lubiw, Mark Petrick, and Michael Spriggs. Morphing orthogonal planar
graph drawings. ACM Transactions on Algorithms (TALG), 9(4):1–24, 2013.

9 Thomas Bläsius, Ignaz Rutter, and Dorothea Wagner. Optimal orthogonal graph drawing
with convex bend costs. ACM Trans. Algorithms, 12(3):33:1–33:32, 2016.

10 Ulrik Brandes, Sabine Cornelsen, Christian Fieß, and Dorothea Wagner. How to draw the
minimum cuts of a planar graph. Computational Geometry, 29(2):117–133, 2004.

11 Ulrik Brandes and Dorothea Wagner. Dynamic grid embedding with few bends and changes.
In International Symposium on Algorithms and Computation, pages 90–99. Springer, 1998.

https://doi.org/10.7155/jgaa.00263
https://doi.org/10.7155/jgaa.00263
https://doi.org/10.4230/LIPIcs.SoCG.2017.14
https://doi.org/10.4230/LIPIcs.SoCG.2017.14
https://arxiv.org/abs/2106.05734v1
https://doi.org/10.7155/jgaa.00595

Y.-J. Chang 35:19

12 Stina S Bridgeman, Giuseppe Di Battista, Walter Didimo, Giuseppe Liotta, Roberto Tamassia,
and Luca Vismara. Turn-regularity and optimal area drawings of orthogonal representations.
Computational Geometry, 16(1):53–93, 2000.

13 Yi-Jun Chang and Hsu-Chun Yen. On bend-minimized orthogonal drawings of planar 3-graphs.
In 33rd International Symposium on Computational Geometry (SoCG 2017). Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2017.

14 Sabine Cornelsen and Andreas Karrenbauer. Accelerated bend minimization. JGAA, 16(3):635–
650, 2012.

15 Giuseppe Di Battista, Walter Didimo, Maurizio Patrignani, and Maurizio Pizzonia. Ortho-
gonal and quasi-upward drawings with vertices of prescribed size. In Proceedings of the 7th
International Symposium on Graph Drawing (GD), pages 297–310. Springer Berlin Heidelberg,
1999.

16 Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and optimal orthogonal
drawings. SIAM Journal on Computing, 27(6):1764–1811, 1998.

17 Walter Didimo, Giuseppe Liotta, Giacomo Ortali, and Maurizio Patrignani. Optimal orthogonal
drawings of planar 3-graphs in linear time. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 806–825. SIAM, 2020.

18 Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani. On the complexity of HV-rectilinear
planarity testing. In International Symposium on Graph Drawing (GD), pages 343–354.
Springer, 2014.

19 Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani. Bend-minimum orthogonal drawings
in quadratic time. In International Symposium on Graph Drawing and Network Visualization
(GD), pages 481–494. Springer, 2018.

20 Sally Dong, Yu Gao, Gramoz Goranci, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and
Guanghao Ye. Nested dissection meets ipms: Planar min-cost flow in nearly-linear time. In
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 124–153. SIAM, 2022.

21 Stephane Durocher, Stefan Felsner, Saeed Mehrabi, and Debajyoti Mondal. Drawing HV-
restricted planar graphs. In Latin American Symposium on Theoretical Informatics (LATIN),
pages 156–167. Springer, 2014.

22 Markus Eiglsperger, Carsten Gutwenger, Michael Kaufmann, Joachim Kupke, Michael Jünger,
Sebastian Leipert, Karsten Klein, Petra Mutzel, and Martin Siebenhaller. Automatic layout
of UML class diagrams in orthogonal style. Information Visualization, 3(3):189–208, 2004.

23 Martin Fink, Magnus Lechner, and Alexander Wolff. Concentric metro maps. In Proceedings
of the Schematic Mapping Workshop (SMW), 2014.

24 Michael Formann, Torben Hagerup, James Haralambides, Michael Kaufmann, Frank Thomson
Leighton, Antonios Symvonis, Emo Welzl, and G Woeginger. Drawing graphs in the plane
with high resolution. SIAM Journal on Computing, 22(5):1035–1052, 1993.

25 Ashim Garg and Roberto Tamassia. A new minimum cost flow algorithm with applications to
graph drawing. In Proceedings of the Symposium on Graph Drawing (GD), pages 201–216.
Springer Berlin Heidelberg, 1997.

26 Carsten Gutwenger, Michael Jünger, Karsten Klein, Joachim Kupke, Sebastian Leipert, and
Petra Mutzel. A new approach for visualizing UML class diagrams. In Proceedings of the 2003
ACM symposium on Software visualization, pages 179–188, 2003.

27 Mahdieh Hasheminezhad, S Mehdi Hashemi, Brendan D McKay, and Maryam Tahmasbi.
Rectangular-radial drawings of cubic plane graphs. Computational Geometry, 43(9):767–780,
2010.

28 Mahdieh Hasheminezhad, S Mehdi Hashemi, and Maryam Tahmasbi. Ortho-radial drawings
of graphs. Australasian Journal of Combinatorics, 44:171–182, 2009.

29 Min-Yu Hsueh. Symbolic layout and compaction of integrated circuits. PhD thesis, University
of California, Berkeley, 1980.

ICALP 2023

35:20 Ortho-Radial Drawing in Near-Linear Time

30 Steve Kieffer, Tim Dwyer, Kim Marriott, and Michael Wybrow. Hola: Human-like orthogonal
network layout. IEEE transactions on visualization and computer graphics, 22(1):349–358,
2015.

31 Gunnar W. Klau and Petra Mutzel. Quasi-orthogonal drawing of planar graphs. Technical
Report MPI-I-98-1-013, Max-Planck-Institut für Informatik, Saarbrücken, 1998.

32 Gunnar W Klau and Petra Mutzel. Optimal compaction of orthogonal grid drawings. In
Proceedings of the 7th Conference on Integer Programming and Combinatorial Optimization
(IPCO), pages 304–319. Springer, 1999.

33 Robin S. Liggett and William J. Mitchell. Optimal space planning in practice. Computer-Aided
Design, 13(5):277–288, 1981. Special Issue Design optimization. doi:10.1016/0010-4485(81)
90317-1.

34 Benjamin Niedermann and Ignaz Rutter. An integer-linear program for bend-minimization in
ortho-radial drawings. In International Symposium on Graph Drawing and Network Visualiza-
tion, pages 235–249. Springer, 2020.

35 Benjamin Niedermann, Ignaz Rutter, and Matthias Wolf. Efficient Algorithms for Ortho-Radial
Graph Drawing. In Gill Barequet and Yusu Wang, editors, 35th International Symposium
on Computational Geometry (SoCG), volume 129 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 53:1–53:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.SoCG.2019.53.

36 Achilleas Papakostas and Ioannis G Tollis. Efficient orthogonal drawings of high degree graphs.
Algorithmica, 26(1):100–125, 2000.

37 Maurizio Patrignani. On the complexity of orthogonal compaction. Computational Geometry,
19(1):47–67, 2001.

38 James A Storer. The node cost measure for embedding graphs on the planar grid. In Proceedings
of the twelfth annual ACM symposium on Theory of computing, pages 201–210, 1980.

39 Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends.
SIAM Journal on Computing, 16(3):421–444, 1987.

40 Leslie G Valiant. Universality considerations in VLSI circuits. IEEE Transactions on Computers,
100(2):135–140, 1981.

41 Hsiang-Yun Wu, Benjamin Niedermann, Shigeo Takahashi, Maxwell J. Roberts, and Martin
Nöllenburg. A survey on transit map layout – from design, machine, and human perspectives.
Computer Graphics Forum, 39(3):619–646, 2020. doi:10.1111/cgf.14030.

42 Yingying Xu, Ho-Yin Chan, and Anthony Chen. Automated generation of concentric circles
metro maps using mixed-integer optimization. International Journal of Geographical Informa-
tion Science, pages 1–26, 2022.

https://doi.org/10.1016/0010-4485(81)90317-1
https://doi.org/10.1016/0010-4485(81)90317-1
https://doi.org/10.4230/LIPIcs.SoCG.2019.53
https://doi.org/10.1111/cgf.14030

	1 Introduction
	1.1 Ortho-radial drawing
	1.2 Previous methods
	1.3 Our new method
	1.4 Related work
	1.5 Organization

	2 Preliminaries
	3 Technical overview
	4 Conclusions

