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Abstract
For a given (possibly weighted) graph G = (V, E), an additive emulator H is a weighted graph in
V × V that preserves the (all pairs) G-distances up to a small additive stretch. In their breakthrough
result, [Abboud and Bodwin, STOC 2016] ruled out the possibility of obtaining o(n4/3)-size emulator
with no(1) additive stretch. The focus of our paper is in the following question that has been
explicitly stated in many of the prior work on this topic:

What is the minimal additive stretch attainable with linear size emulators?

The only known upper bound for this problem is given by an implicit construction of [Pettie, ICALP
2007] that provides a linear-size emulator with +Õ(n1/4) stretch. No improvement on this problem
has been shown since then.

In this work we improve upon the long standing additive stretch of Õ(n1/4), by presenting
constructions of linear-size emulators with Õ(n0.222) additive stretch. Our constructions improve
the state-of-the-art size vs. stretch tradeoff in the entire regime. For example, for every ϵ > 1/7, we
provide +nf(ϵ) emulators of size Õ(n1+ϵ), for f(ϵ) = 1/5 − 3ϵ/5. This should be compared with the
current bound of f(ϵ) = 1/4 − 3ϵ/4 by [Pettie, ICALP 2007].

The new emulators are based on an extended and optimized toolkit for computing weighted
additive emulators with sublinear distance error. Our key construction provides a weighted modific-
ation of the well-known Thorup and Zwick emulators [SODA 2006]. We believe that this TZ variant
might be of independent interest, especially for providing improved stretch for distant pairs.
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1 Introduction

Emulators are well-studied compression schemes that approximately encode the distance
metric of a (dense) undirected input graph G = (V, E) by a sparse weighted graph H ⊆ V ×V .
This extends the notion of spanners which are required to be subgraphs of G. Along with their
spanner cousin, emulators admit a wide range of algorithmic applications, most notably in
settings related to graph compression, routing schemes, distributed computing, and all pairs
shortest paths approximation. The focus of this paper is in providing improved constructions
for additive emulators which only allow for additive stretch. For a given unweighted n-vertex
graph G = (V, E), a graph H ⊆ V × V is an f(d)-emulator if distG(u, v) ≤ distH(u, v) ≤
f(distG(u, v)) for every u, v ∈ V . An f(d)-emulator for f(d) = d + β for some fixed β is
denoted as additive emulator. There has been a long line of work on additive emulators, both
from an upper bound and lower bound perspectives, see Table 1.
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85:2 New Additive Emulators

The first explicit construction for this setting obtained +4 emulators of size O(n4/3)
by Dor, Halperin and Zwick [11]. The question of whether sparser emulators exist for any
constant additive stretch has been one of the most major open problems in the area. In their
breakthrough result, Abboud and Bodwin [1] refuted this possibility by demonstrating that
any emulator with O(n4/3−ϵ) edges might induce a polynomially large additive stretch of
Ω(nδ(ϵ)), for any ϵ.

On the other side of the size vs. stretch tradeoff, additive emulators of linear size have
in particular attracted a lot of attention over the years [18, 7, 10, 9, 1, 16, 2, 14, 17]. To
this date, the best additive stretch known for linear size emulators is Õ(n1/4), as shown
(implicitly) by an earlier work of Pettie [18]. Bodwin and Vassilevska Williams [10] designed
linear-size spanners and emulators with additive stretch of +Õ(

√
n) (resp., +Õ(n1/3)). In

a follow-up work [9] , they cleverly improved the spanner’s stretch to the state-of-the-art
bound of +Õ(n3/7); Unfortunately, their improved spanner constructions do not seem to
imply improved bounds for emulators, and Pettie’s result [18] remains the state-of-the-art.

In this paper we focus on the following basic graph compression problem which despite
all efforts is still fairly open:

▶ Question 1.1. What is the minimal additive error that can be achieved with linear space?

This question on its various forms (e.g., spanners, emulators) has been raised in many of
the prior work on the topic, see e.g., [10, 3], especially in light of the “4/3 barrier” of [1].
Indeed in their seminal lower bound paper, Abboud and Bodwin [1] explicitly asked:

Our work shows that polynomial additive error must be suffered in order to obtain
near-linear size compression of graphs. Given this, it is natural to wonder how much
polynomial error is necessary to obtain compression in this regime.

While not much progress has been provided on the upper bound side, there has been
more movement on the lower bound aspects of the problem. Abboud and Bodwin showed
that any linear size emulator must suffer Ω(n1/22) additive stretch, in the worst case. Huang
and Pettie [16] improved this bound to +Ω(n1/18). This was further improved by Lu, Wein,
Vassilevska Williams, and Xu [17] to +Ω(n2/29). Very recently, Bodwin and Hoppenworth
[8] provided an +Ω(n1/7) stretch lower bound for linear spanners, by extending the known
obstacle product framework to support also non-layered graphs.

Our new constructions are built upon modifying and extending the existing constructions
for emulators with sublinear additive stretch and weighted additive spanners. While these
notions have been studied before, our primary conceptual contribution is in demonstrating
their usefulness for computing additive emulators of unweighted graphs. We next discuss the
prior work on each of these settings.

Sublinear additive stretch. Elkin and Peleg showed that the “4/3 barrier” could be broken
if one allows a (1 + ϵ) multiplicative stretch, in addition to a small additive stretch [15].
Thorup and Zwick gave an elegant construction of an O(kn1+1/(2k+1−1))-size emulator H

with O(1 + ϵ, O(k/ϵ)k−1)-type stretch1. Their emulator has the remarkable property that its
stretch bound holds for every ϵ > 0 simultaneously, as its size bound is independent in ϵ. For
any distance d, choosing ϵ = k/d1/k leads to an emulator with a sublinear additive stretch
function f(d) = d + O(d1−1/k + 3k). As noted in [2], an interesting open question is whether
one can match this size-stretch tradeoff for spanners.

1 I.e., for every u, v ∈ V , distH(u, v) ≤ (1 + ϵ)distG(u, v) + O(k/ϵ)k−1.
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Table 1 Upper and lower bounds for additive emulators. New bounds are marked in blue.

Emulator Size Additive Stretch Remark Citation
O(n3/2) 2 [5]
Õ(n4/3) 4 [11]
Ω(n1+1/k) 2k − 1 [20]
O(n4/3−ϵ) Ω(nδ(ϵ)) [1]
Õ(n1+ϵ) O(n1/2−3ϵ/2) implicit [7]
Õ(n1+ϵ) O(n1/3−2ϵ/3) [10]
Õ(n1+ϵ+o(1)) O(n3/11−9ϵ/11) [9]
Õ(n1+ϵ) O(n1/4−3ϵ/4) implicit [18]
Õ(n1+ϵ) O(n1/5−3ϵ/5) ϵ ≥ 1/7 new
Õ(n1+ϵ) O(n(25−87ϵ)/112) 0 ≤ ϵ ≤ 1/5 new
Õ(n) O(n2/9−1/1600−o(1)) new
Õ(n) Ω(n1/22) [1]
Õ(n) Ω(n1/18) [16]
Õ(n) Ω(n2/29) [17]

Weighted (near) additive stretch. Elkin, Gitlitz and Neiman [13] provided the first
constructions of near-additive spanners for weighted graphs. Their algorithm extends the
unweighted construction of near-additive spanners (e.g., by [15]) to provide stretch guarantees
of f(d) = (1 + ϵ)d + βW where W is the maximum edge weight. Ahmed et al. [3]
extended the constructions of spanners with purely additive stretch to weighted graphs
by an ingenious amortized argument (which plays a role in our constructions, as well).
Consequently, they provide +2W, +4W, +8W weighted spanners with Õ(n3/2), Õ(n7/5) and
Õ(n4/3) edges, respectively. Elkin, Gitlitz and Neiman [12] improve the latter stretch bound
to (6 + o(1))W , nearly matching the unweighted result for W = 1. Note that the above
mentioned constructions also provide a local stretch guarantee of +β ·Ws,t for every s, t pair,
where Ws,t is the largest edge weight on an s-t shortest path.

1.1 New Results
We provide a positive progress for Question 1.1 by improving upon the long-standing bound
of +Õ(n1/4) by Pettie [18] to an additive stretch of +O(n0.222−o(1)). Our end result is:

▶ Theorem 1.2. Any unweighted n-vertex graph G = (V, E) admit a linear-size
emulator with additive stretch Õ(n2/9−1/1600−o(1)).

The main novel aspect of this result is in our approach, which draws an interesting
connection between weighted additive emulators and unweighted emulators with polynomial
additive stretch. The final additive bound O(n0.222−o(1)) is obtained by taking a gradual
approach, containing two major steps of optimizations.

To illustrate our new algorithmic approach, we start by presenting a very simple con-
struction for recovering the state-of-the-art additive stretch of +Õ(n1/4). This construction
is obtained by using in a black-box manner the recent constructions of weighted additive
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spanners by Ahmed et al. [4] and Elkin, Gitlitz and Neiman [12] which provides an additive
stretch +βW . While such an additive term might be undesirable in many settings, these
constructions play a key role in providing additive emulators for unweighted graphs2.

Improved Stretch vs. Size Bounds via Weighted Additive Emulators. A careful inspection
of our +Õ(n1/4) additive construction reveals that our reduction yields in fact, a specialized
weighted graph instance with several convenient properties. In particular, we enjoy the fact
that our generated weighted graphs are in fact obtained from unweighted graphs, in the
sense that the edge weights corresponds to distances, rather than being arbitrary. We then
provide a designated construction of weighted additive emulators that takes advantage of
these specialized weighted graph instances. This leads to a quite general construction which
improves over the known bounds in the entire regime of sparsity, i.e., n to n4/3:

▶ Theorem 1.3. For any n-vertex graph G = (V, E, ω) where ω : E → {1, . . . , W} and
0 ≤ ϵ ≤ 1

3 , there exists a +Õ(W · nf(ϵ)) emulator H of size at most Õ(n1+ϵ) where:

f(ϵ) =


(1− 3ϵ)/5 if 1/7 ≤ ϵ ≤ 1/3;
(9− 31ϵ)/40 if 3/37 ≤ ϵ ≤ 1/7;
(3− 9ϵ)/14 if 1/15 ≤ ϵ ≤ 3/37;
(25− 87ϵ)/112 if 0 ≤ ϵ ≤ 1/15.

Setting ϵ = 0, provides a linear-size emulator with additive stretch n25/112 ∼ n0.223.

Discretization of the Thorup-Zwick (TZ) Emulator Construction. Our final emulator
result of Theorem 1.2 is based on a rather involved discretization of the TZ emulator
construction adapted for weighted graphs. The following (quite technically to state) result
serves as the core component of the final linear-size emulator:

▶ Theorem 1.4. For every n-vertex unweighted G = (V, E) a constant integer k ≥ 3 and
integer D ≥ 1, one can compute an emulator H with additive stretch O(D1−1/(k−1) log n) for
any distance d = O(D · log n). The size of H is bounded by

Õ(n1+1/(2k+1−1) + n1+1/(2k−1)/(D(2k−2k)/((2k−1)k(k−1))).

This should be compared with the original TZ construction that provides an additive
stretch of d1−1/k using n1+1/(2k+1−1) edges. Theorem 1.4 can also be shown to imply that
the stretch function of the TZ emulator is optimal only for a restricted regime of distances.
In particular, with a size bound of Õ(n1+1/(2k+1−1)), one can provide pairs at distances
d ≥ nk2/2k an additive stretch of O(d1−1/(k−1)), rather than O(d1−1/k) as provided by the
TZ bounds, which might be of independent interest.

1.2 Technical Overview
Our +Õ(n0.222)-additive linear-size emulator is obtained in a sequence of two intermediate
results, that gradually take advantage of several interesting degrees of freedom in the current
constructions of weighted (near) additive emulators. Our technique exhibits several directions

2 While our constructions utilizes the +βW stretch guarantees, it is unclear if the local +βWs,t stretch
guarantees can be useful in our context, as well.
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of optimizations in the emulator framework of Thorup and Zwick [19], which become useful in
the context of designing additive emulators with a small polynomial stretch. Note that while
all our constructions are implemented in polynomial time, in this paper we put emphasis on
the stretch vs. size tradeoff.

Beginner: +Õ(n1/4) Additive Stretch. As a warmup to our approach, we provide in Sec.
2 a new proof technique to obtain +Õ(n1/4) emulators of linear size, which simplifies the
(implicit) state-of-the-art construction of Pettie [18]. Interestingly, our argument follows
immediately by the weighted +O(W ) additive spanners of Ahmed et al. [4] and Gitlitz,
Elkin, Neiman [12] with Õ(n4/3) edges, where W is the maximum edge weight of the graph.
This provides the starting indication for the potential connection between weighted additive
emulators and purely additive emulators for unweighted graphs.

On a high level, the construction works by computing a weighted net graph G′ for
the given (unweighted) graph G, obtained by sampling each G-vertex independently with
probability of Θ(1/n1/4). The edges of G′ connect every pair of sampled vertices u, v provided
that their G-distance is at most Θ(n1/4 log n). The net edges are weighted by the G-distance
between their endpoints. The output emulator is union of two spanners: (i) a O(log n)
multiplicative spanner for G (see Lemma 1.7), and (ii) a +O(W ) additive spanner for G′

where W = Θ(n1/4 log n). It is easy to see that the size bound is (near) linear3. The stretch
argument for nearby pairs u, v at G-distance O(n1/4 log n) follows by the addition of the
O(log n) multiplicative spanner. The argument for distant pairs Ω(n1/4 log n) follows by
using the +O(W ) additive spanner for G′.

Intermediate : +Õ(n0.223) Additive Stretch. The essence of the above mentioned con-
struction is to employ on a weighted additive algorithm on the computed (weighted) net
graph G′, in a black box manner. Our starting observation, to break the current +Θ(n1/4)
barrier, is the following: while G′ is indeed a weighted graph, it is obtained from a given
unweighted base graph G. Therefore it might be possible to treat G′ better than any arbitrary
input weighted graph. More specifically, by including the TZ emulator for G, one can provide
a sublinear stretch guarantee for any neighboring pairs in G′. This, in principle, is impossible,
for general weighted graphs. Since the sublinear stretch guarantees of the TZ emulators
require a superlinear size bound, we cannot employ them directly on G, but rather on a
subsampled net of G. This sub-sampling immediately converts the unweighted input instance
into a weighted instance. We therefore conclude that the key task should be concerned
with providing sparse constructions of weighted additive emulators. Our core construction
computes a superlinear-size emulator for any weighted graph whose weighted stretch and
size guarantees depend on the input integer parameters D, k, as follows:

▶ Theorem 1.5. Any n-vertex graph G = (V, E, ω) with max weight W and integers k ≥
2, D ≥ 1 admits a +O(WD) emulator of size Õ(n1+1/(2k+1−1) + n4/3/(D4/3 + 2/(3k))).

Theorem 1.5 serves as the key technical step in providing the improved additive stretch
vs. size bounds in almost the entire regime of parameters (see Theorem 1.3). In particular,
by using a suitable pre-sampling of a net graph G′ and applying Thm. 1.5 on G′, we obtain
linear-size emulator with +Õ(n25/112) stretch. Moreover, for any ϵ > 1/7, Thm. 1.5 allows
us to provide an +nf(ϵ) emulator with n1+ϵ edges, where f(ϵ) = 1/5− 3ϵ/5. This improves
the state-of-the-art bounds of 1/4− 3ϵ/4 due to [18].

3 One can make it linear by reducing the sampling probability an O(log n) factor.
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We prove 1.5 by presenting a three-step algorithm. The first step (which takes care of the
short distances) include a weighted variant of the TZ emulators which for integer stretch k

provides f(d)-emulator with Õ(n1+1/(2k+1−1)) edges and f(d) = d + d1−1/kW 1/k for d ≥W

and f(d) = O(W ), otherwise. This variant can be obtained by a straightforward adaptation
of the TZ construction to the weighted setting. In particular, setting W = 1 recovers the TZ
bounds (see Thm. 1.8).

The second step is based on the useful tool of light-initialization introduced by Ahemd
et al. [3] in the context of translating the existing constructions of additive spanners for
unweighted graphs into suitable constructions for weighted graphs. For a given weighted
graph G and integer parameter t, the t light-initialization is a subgraph H ′ of G containing
the t-lightest (based on edge weight) edges4 incident to each vertex in G. Ahemd et al. [3]
provided a very elegant argument that in essence achieves the same net effect as obtained in
the unweighted setting (where one simply adds t arbitrary edges per vertex): Specifically,
the key property is that any u-v shortest path P that has misses ℓ edges in H ′ must contains
Ω(tℓ) vertices that are incident to the vertices of P via the edges of H ′. Our algorithm
employs the light-initialization tool on sampled net G′ of G, for a carefully chosen parameter
t. Each G-vertx is sampled into the net G′ with probability Θ(log n/D). The third and last
step further sub-samples the vertices of G′ and adds the complete weighted graph on this
sample to the output spanner.

The stretch analysis of this scheme has the following structure. First, using the TZ
emulators allows us to satisfy the stretch for pairs at distance O(WD log n) in G. The focus
is then on bounding the stretch for a pair of sampled vertices u, v ∈ V (G′). The argument
considers a u-v shortest path P in G′ and distinguishes between two cases: |P \H| ≤ q for
some chosen parameter q, and the complementarity case where |P \H| > q. For the first
case, we use the weighted-TZ spanner of G to obtain a sublinear stretch guarantee for every
edge on P \H, taking advantage of the fact that each such edge corresponds to a path in
the original graph G. The benefit that we get from the sublinear stretch bounds allows us to
accumulate it for each of the t missing edges.

To handle the complementary case where |P \H| > q, we use H ′ to claim that the final
sampled set V ′′ contains a pair u′′, v′′ that are sufficiently close to u and v. The stretch
bound is provided by the addition of the edge (u′′, v′′) to the final emulator.

Advanced: +Õ(n0.222) Additive Stretch. Our last and most involved improvement
performs a root treatment to the TZ emulator construction. Instead of using the weighted-TZ
variant in a black-box manner on our weighted sampled graph, we provide a discretization
variant for this algorithm in which we replace the continuous TZ stretch function by a step
function. The latter provides worse bounds for nearby pairs, with the benefit of using fewer
edges. More specifically, the construction is parameterized by integers D, k, p and show:

▶ Theorem 1.6. For every n-vertex G = (V, E, ω) with maximum weight W , a constant
integer k ≥ 3, integer D ≥ 1 and p ∈ (0, 1), one can compute an emulator H with additive
stretch O(D1−1/(k−1) ·W log n/p) for any distance d = O(D ·W log n/p). The size of H is
bounded by

|H| = Õ

(
n

1+ 1
2k+1−1 + (n · p)1+ 1

2k−1 /

(
(1/p)

2k−2
(2k−1)k ·D

2k−2k

(2k−1)k(k−1)

))
.

4 Each vertex sorts its incident edges in increasing edge weight, and the t first edges in this ordering are
taken.
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Our optimized variant of the weighted TZ emulators is fitted to the setting where the
given weighted graph provided as input to Theorem 1.6 is in fact a net graph G′ that
corresponds to some unweighted base graph5 G. We then aim at exploiting the fact that the
edges of G′ corresponds to G-paths already in the construction of the weighted TZ emulators.
To present our key ideas, we briefly describe the TZ algorithm. For a subset of vertices V ′

and probability q, let V ′[q] be the set of vertices obtained by sampling each vertex v ∈ V ′

independently with probability of q.
For a given parameter k, the algorithm computes a hierarchy V = V0 ⊃ V1 ⊃ V2 ⊃ . . . ⊃

Vk−1 of levels, where Vi = Vi−1[qi−1] for qi−1 = |Vi−1|/n1+1/(2k−1). For every vertex v ∈ Vi,
its (i + 1)th pivot pi+1(v) is the closest vertex to v in Vi+1. The bunch Bi(v) contains all
vertices in Vi that are closer to v than its pivot pi+1(v). The algorithm adds to the emulator
the edges between each v ∈ Vi to all vertices in its bunch Bi(v). The weights of the edges
are the G-distance of their endpoints. This is done for every i ∈ {1, . . . , k − 2}. Finally, all
edges in Vk−1 × Vk−1 are added to the emulator.

Our adaptation to weighted net graphs G′ (whose edges correspond to paths in a base
graph G) computes a hierarchy of 2(k−1) levels: V = V1/2 ⊇ V1 ⊇ V3/2 ⊇ V2 ⊇ . . . ⊇ Vk−1/2,
where V(j+1)/2 ← Vj/2[qj ] for every j ∈ {1, . . . , 2(k−1)}. Hence, we have k−1 integral levels
V1, . . . , Vk−1 and k “half”-levels V1/2, V3/2, . . . , Vk−1/2. Intuitively, the “half” levels represent
an intermediate step that re-scales the “aggregate” benefit obtained by the existence of the
precomputed emulator H0 that takes care of the short distances in G′. The selection of the
sampling probabilities are made in a careful manner that depend on the properties of H0.
Once the hierarchy is computed, we have k − 1 steps which mimic the TZ algorithm with
one main distinction, we add to the emulator edges from the half -level Vi+1/2 to the next
integral-level Vi+1.

That is, for every i ∈ {0, . . . , k− 2} and every u ∈ Vi+0.5, the algorithm computes a pivot
pi+1(v) (closest vertex in Vi+1) and a bunch Bi+0.5(u), which consists of all Vi+0.5 vertices
that are closer to u than its pivot pi+1(u). The edges in {u} ×Bi+0.5(u) are added to the
emulator. Finally, in the last half level k − 0.5, we add all edges in Vk−0.5 × Vk−0.5.

Remark. We note that our approach for computing improved linear emulators of Thm.
1.2 can also be used to improve the general tradeoff provided in Thm. 1.3. The total
improvement, however, is limited to a small o(1) additive term, and therefore we make this
extra effort only for linear size emulators. We also note that our approach for the latter
could be further optimized by considering a large number of recursive sampling steps, but
again the net effect on the stretch is negligible (in particular, an additional sampling step
might reduce the stretch by an 0.0001 additive term).

Notations. For a possibly weighted graph G, let distG(u, v) be the length of a shortest path
from u to v. The length of a shortest-path Q is measured by the sum of its weighted edges.
Let |Q| be the number of edges on this path. We use Õ(·) notation to hide polylogarithmic
factors in n. For a set of elements X and p ∈ [0, 1], let X[p] be the set obtained by sampling
each X-element independently with probability p.

For a given (possibly) weighted graph G and integer t, a subgraph H ⊆ G is a t-spanner if
distH(u, v) ≤ t · distG(u, v) for every u, v ∈ V . Our constructions use the following algorithm
as a subroutine, mainly for t = O(log n).

5 I.e., in our constructions, the graph G provided as input to Theorem 1.6 is in fact a net graph G′ of
some base graph G.
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▶ Lemma 1.7 ([6]). For every n-vertex (possibly weighted) graph G and a given integer
k ≥ 1, one can compute a (2k − 1)-spanner H ⊆ G with |H| ≤ n1+1/k edges.

▶ Theorem 1.8 ([19]). For every n-vertex unweighted graph G and a given integer k ≥ 1,
one can compute an emulator H with Õ(n1+1/(2k+1−1)) edges, such that for every u, v ∈ V ,
it holds that distG(u, v) ≤ distH(u, v) ≤ distG(u, v) + (distG(u, v))1−1/k .

Roadmap. In Sec. 2, we present a simple approach to recover the state-of-the-art bound
of +Õ(n1/4) additive emulator. Sec. 3 provides an improved emulator construction for the
entire regime, proving Theorem 1.5 and consequently also Thm. 1.3. Finally, in Sec. 4 we
provide the proof of the key result, Thm. 1.2.

2 Warmup: +Õ(n1/4) Linear Emulators

We start by presenting a simple construction of linear size +Õ(n1/4)-emulators, which uses
the following theorem for weighted additive spanners by [4] (recently improved by [12]).

▶ Theorem 2.1 (Theorem 3 in [4]). Any n-vertex weighted graph G = (V, E, ω) with max
edge weight W admits a +8W additive spanner H ⊆ G with O(n4/3) edges.

Algorithm. The algorithm for computing +Õ(n1/4)-emulator has two steps. The first step
computes a O(log n)-multiplicative spanner H1 ⊆ G, which as we show later handles the
short distances in G. The second step computes a net graph G′ = (V ′, E′, ω′) defined over a
sampled subset V ′ = V [p] for p = log n/n1/4. The edge set E′ consists of all pairs in V ′ × V ′

whose distance in G is at most n1/4. The weights of the E′ are taken to be the G-distances.
Formally, E′ = {(x, y) ∈ V ′×V ′ | distG(x, y) ≤ n1/4} , ω((x, y)) = distG(x, y),∀(x, y) ∈ E′ .

Note that, by definition, the maximum weight W ′ of G′ is O(n1/4). The algorithm then
applies Theorem 2.1 to compute +8W ′ emulator H2 for G′. The output emulator is given by
H = H1 ∪H2. This completes the description of the algorithm.

The size analysis is immediate as w.h.p. |V ′| = O(n3/4 log n) and thus by Theorem 2.1
|H2| = Õ(n). We now consider the stretch argument. Fix u, v ∈ V . Assume first that
distG(u, v) ≤ c · n1/4 for some constant c. Then, by including the O(log n)-multiplicative
spanner H1, we have that distH(u, v) = O(n1/4 log n), as desired.

Consider the complementary case where distG(u, v) > c · n1/4, and let P be a u-v
shortest path in G. Let P ′, P ′′ be the n1/4-length prefix (resp., suffix) of P . By the
Chernoff bound, w.h.p., we have that there exists a sampled vertex u′ ∈ P ′ ∩ V ′ and
v′ ∈ P ′′ ∩ V ′. By the previous argument (for short distances), it remains to show that
distH(u′, v′) ≤ distG(u′, v′) + O(n1/4 · log n).

Observe that since every n1/4-length consecutive segment on P contains, w.h.p., a sampled
vertex in V ′, we have that distG′(u′, v′) = distG(u′, v′). By the properties of H2, we then
have that distH2(u′, v′) ≤ distG′(u′, v′) + 8W ′ = distG(u′, v′) + 8n1/4. Overall, we have

distH(u, v) ≤ distH1(u, u′) + distH2(u′, v′) + distH1(v′, v)
≤ O(log n)(distG(u, u′) + distG(v′, v)) + distG(u′, v′) + 8n1/4

= distG(u, v) + O(n1/4 · log n) .
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3 New Weighted Additive Emulators

3.1 The Core Construction
We start by presenting the key construction which for n-vertex weighted graphs provides
emulators with +O(WD) stretch and with O(n4/3/f(D)) edges, for some monotone increasing
function f(·). These emulators serve the basis for improved emulator constructions in wide
range of parameters, and in particular computing linear emulators with improved additive
stretch +n0.222. We show:

▶ Theorem 3.1. There is an algorithm SuperLinEmulator that given any n-vertex graph
G = (V, E, ω) with maximum weight W , and integers k ≥ 2, D ≥ 1 computes a +O(WD)
emulator H of size Õ

(
n1+1/(2k+1−1) + n4/3

D4/3+2/(3k)

)
.

We start by presenting the two main tools used by Algorithm SuperLinEmulator.

Tool I: Weighted Near-Additive Emulator. We used the following adaptation of the Thorup
and Zwick emulators to the weighted setting. An adaptation for universal emulators has
been recently provided by Elkin, Gitlitz and Neiman [13]. In the full version, we show:

▶ Lemma 3.2. There is an algorithm WeightedTZEmulator that for any n-vertex graph
G = (V, E, ω) with maximum weight W , and any fixed integer k ≥ 2 computes an +f(d)
emulator H of size O(n1+1/(2k+1−1)), where f(d) = d + O(d1−1/k ·W 1/k) for any distance
d > W , and f(d) = d + O(W ) for d ≤W .

Tool II: Light Initialization. A t-light initialization of a weighted graph G = (V, E, ω),
introduced by Ahmed et al. [4], is a subgraph H ⊆ G obtained by including the t lightest
edges incident to each vertex v (or all its edges when deg(v) ≤ t). Edge weight ties can be
broken arbitrarily; Let Initialization be the algorithm that given the graph G and a parameter
t, outputs the t-light initialization subgraph H. We say that v is a t-light neighbor of u if
the edge (u, v) is among the t-lightest edges incident on u.

▶ Theorem 3.3 (Theorem 5 in [4]). Let G = (V, E, ω) be an undirected weighted graph and
let H = Initialization(G, t) for some input integer t. Then, for every shortest path Pu,v that
is missing ℓ edges in H (i.e., |Pu,v \H| = ℓ), there is a set of vertices S ⊆ V such that (i)
|S| = Ω(t · ℓ) and (ii) for every a ∈ S, there is a vertex b ∈ Pu,v satisfying that a is a t-light
neighbor of b.

Tool III: Algorithm Net. Given an n-vertex weighted graph G = (V, E, ω) with maximum
edge weight W and a probability p ∈ (0, 1), the algorithm Net(G, p) outputs a graph
G′ = (V ′, E′, ω′), denoted as a net, defined as follows. Let V ′ = V [p] be a random
sample of V , obtained by sampling each v ∈ V independently with probability of p. Let
E′ = {(u, v) ∈ V ′×V ′ | distG(u, v) ≤ Θ(log n/p) ·W} and ω′((u, v)) = distG(u, v) for every
(u, v) ∈ E′. We use the following observation in our constructions:

▶ Observation 3.4. Let G′ = (V ′, E′, ω′) be the output net graph of Alg. Net(G, p) where
G = (V, E, ω) is an n-vertex graph with maximum edge weight W . Then w.h.p., the following
holds: (i) |V ′| = O(np log n), (ii) for every u, v ∈ V ′, distG′(u, v) = distG(u, v), and (iii) the
maximum edge weight of G′ is bounded by W ′ = Θ(W log n/p).
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Description of Alg. SuperLinEmulator. The algorithm has three main steps, each computes
an emulator graph H1, H2, H3 whose union provides the desired emulator. The first emulator
H1 is obtained by computing the weighted-variant of the Thorup-Zwick emulator using
Lemma 3.2. As we will see in the analysis, this would provide the desired stretch for short
distances. The second emulator H2 is obtained by computing the t-initialization of some net
graph G2 for t = n1/3/D(1+2/k)/3. The net G2 is defined by sampling a subset of vertices
V2 = V [p1] for p1 = 10 log n/D. The edges E2 of the net G2 are defined by connecting each
pair (u, v) ∈ V2×V2 provided that distG(u, v) ≤WD, every edge (u, v) in G2 is then weighted
by the G-distance between its endpoints. Finally, the last emulator graph H3 is obtained by
adding all the weighted edges between a sampled set V3 = V2[p2] for p2 = 10 log n/(t ·D1/k).
The weights are taken to be the G-distances between the endpoints. This completes the
algorithmic description.

Algorithm 1 SuperLinEmulator(G, k, D).

Input: Graph G = (V, E, ω) with maximum edge weight W , integers k, D.
Output: A +O(W ·D) emulator H of size Õ

(
n1+1/(2k+1−1) + n4/3

D4/3+2/(3k)

)
.

1. H1 ←WeightedTZEmulator(G, k) (using Lemma 3.2).
2. Let G2 = (V2, E2, ω2)← Net(G, p1) for p1 = 10 log n/D.
3. H2 ← Initialization(G2, t) for t = n1/3/D(1+2/k)/3 (using Thm. 3.3).
4. Let V3 ← V2[p2] for p2 = 10 log n/(t ·D1/k);
5. Set H3 ← (V3, V3 × V3, ω3) where ω3((u, v)) = distG(u, v) for every (u, v) ∈ H3.
6. Output H ← H1 ∪H2 ∪H3.

Size analysis. By Lemma 3.2, |H1| = O(n1+1/(2k+1−1)). By the Chernoff bound, w.h.p
|V2| = n · p1 and |H2| = t · |V2| = Õ

(
n4/3

D4/3+2/(3k)

)
. Finally, by the Chernoff bound, w.h.p,

|V3| = |V2| · p2, and as |H3| = |V3|2, we also get that |H3| = Õ
(

n4/3

D4/3+2/(3k)

)
.

Stretch analysis. We prove the following somewhat stronger lemma.

▶ Lemma 3.5. Let H ′ be an emulator for G with maximum edge weight W such that for any
u, v pair at G-distance at most WD, it holds that distH′(u, v) ≤ distG(u, v) + O(WD1−1/k).
Then, for every u, v ∈ V , it holds that distH′∪H2∪H3(u, v) ≤ distG(u, v) + O(WD).

By Lemma 3.2, we then have that distH1(u, v) ≤ distG(u, v) + O(WD1−1/k) for every u, v

pair at G-distance at most WD, hence by taking H ′ = H1, the stretch argument holds.

Proof of Lemma 3.5. Fix a pair u, v ∈ V and first consider the simpler case where
distG(u, v) ≤ WD. By the properties of H ′, distH′(u, v) ≤ O(WD). From now on, we
assume that distG(u, v) > WD. Let Pu,v be the u-v shortest path in G, and let u′, v′ be a
sampled vertex in V2 in the D/4-hop prefix (resp., suffix) of the path. By the above, we
have that distG(u, u′) ≤WD and distG(v′, v) ≤WD, and therefore H ′ provides an additive
+O(WD) term for each of these distances.

Our next goal is to bound the u′-v′ distance in H where u′, v′ ∈ V2. It is easy to see that
w.h.p., distG2(u′, v′) = distG(u′, v′), since each D-hop segment on the Pu,v path contains a
sampled vertex in V2. Let P ′ be a u′-v′ shortest path in G2. We distinguish between two
cases depending on the number of edges in P2 \H2.
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Case 1: |P ′\H2| ≤ D1/k. Each edge (x, y) in P ′ ⊆ G2 corresponds to an x-y shortest path
where distG(x, y) ≤WD. Using the H ′ emulator, we have that for each such edge (x, y) ∈ G2,
distH′(x, y) ≤ distG(u, v) + O(D1−1/k ·W ). Since there are at most D1/k, the total additive
stretch introduced due to these edges is bounded by O(D1/k ·D1−1/k ·W ) = O(WD), as
required. This is the critical point where we exploit the fact that the weighted edges of G2
correspond to short paths in G.

Case 2: |P ′ \ H2| > D1/k. We next turn to consider the case where H2 misses many
edges from P ′. Here we will exploit the expansion property guaranteed by the addition of the
t-light initialization. Let P1 (resp., P2) be a prefix (resp., suffix) of P ′ for which H2 misses
exactly D1/k/2. I.e., |Pi \H2| = D1/k/2 for i ∈ {1, 2}. By Theorem 3.3 the following claims
holds for every i ∈ {1, 2}: There exists a subset Si ⊆ V2 such that (i) |Si| = Ω(t ·D1/k) and
(ii) for every a ∈ Si, there is a vertex bi ∈ Pi such that a is t-light neighbor of bi. By the
value of p2, we get that w.h.p., there exists si ∈ Si ∩ V3 for every i ∈ {1, 2}. Therefore, the
emulator H3 contains the edge (s1, s2) with weight distG(s1, s2).

Since the maximum edge weight in G2 is at most W2 = WD, and (bi, si) ∈ H2, we have
that distH(b1, s1) + distH(s2, b2) = O(WD). By the triangle inequality,

distG(s1, s2) ≤ distG(b1, b2) + O(WD) . (3.1)

Since the segments P ′[u, b1] and P ′[b2, v], each has at most D1/k missing edges in H.
Therefore, by applying the argument for Case 1, we have:

distH(u, bi) ≤ distG(u, bi) + O(WD), for i ∈ {1, 2} . (3.2)

We are now ready to complete the stretch argument by showing:

distH(u′, v′) ≤ distH(u′, b1) + distH(b1, s1) + distH(s1, s2) + distH(s2, b2) + distH(b2, v′)
≤ distG(u′, b1) + distG(b1, b2) + distG(b2, v′) + O(WD) ,

where the inequalities follow by plugging Eq. (3.1,3.2), and using the fact that as (s1, s2) ∈ H3,
by the triangle inequality distH(s1, s2) = distG(s1, s2) ≤ distG(b1, b2) + O(WD). ◀

𝑣′𝑢′

𝑠2

𝑏1

𝑠1

𝑏2

𝑃1 𝑃2

Figure 1 An illustration for the stretch argument of Alg. SuperLinEmulator. Shown is a u′-v′ shortest
path P ′ ⊆ G2, the segments P1, P2 each containing D1/k/2 missing edges w.r.t H2. By the properties
of the t-initialization procedure, each these segments contains a vertex b1, b2 with at least one sampled
t-light neighbor, s1, s2. The added weighted edge (s1, s2) establishes the stretch guarantees.
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3.2 Improved Additive Emulators
Our improved additive stretch bounds are provided by using Theorem 3.1 with two sparsity
bounds determined by k = 2, 3. We have:

▶ Corollary 3.6. For any n-vertex graph G = (V, E) with max weight W , there exists a:
1. +O(W · n4/35) emulator of size Õ(n8/7), and
2. +O(W · n6/35) emulator of size Õ(n16/15).

Proof. (1) follows by setting k = 2 and D = n4/35 in Theorem 3.1, and (2) follows by setting
k = 3 and D = n6/35 in Theorem 3.1. ◀

Using these two emulator constructions, we show an improved stretch vs. size tradeoff in
almost the entire regime of interest.

Proof of Thm. 1.3 for 0 ≤ ϵ ≤ 1/15 and 3/37 ≤ ϵ ≤ 1/7. We describe Algorithm
ImprovedEmulator which given G = (V, E, ω) and ϵ ∈ [0, 1/15] ∪ (3/37, 1/7], computes the
desired emulator. The algorithm starts by computing a O(log n) multiplicative spanner H0,
which as always, takes care of the short distances in G. Next, the algorithm computes a net
graph G′ whose bounds depends on the value of ϵ, as follows. Define:

kϵ =
{

3, for ϵ ∈ [0, 1/15],
2, for ϵ ∈ (3/37, 1/7] .

(3.3)

Let nϵ = n(1−1/2kϵ+1)(1+ϵ) and q = n/nϵ. Then, the net graph G′ is obtained by applying
Alg. Net(G, p) for p = 10 log n/q. Finally, it applies Alg. SuperLinEmulator with the input
G′, kϵ and D = (nϵ)2kϵ/35. This results in the emulator H1. The output emulator is given by
H = H0 ∪H1.

Algorithm 2 ImprovedEmulator(G, ϵ).

Input: Graph G = (V, E, ω) with maximum weight W , ϵ ∈ [0, 1/15] ∪ (3/37, 1/7].
Output: +Õ(W · nf(ϵ)) emulator H of size Õ(n1+ϵ).
1. H0 ← MultSpanner(G, O(log n)).
2. Let nϵ = n(1−1/2kϵ+1)(1+ϵ) and q = n/nϵ (see Eq. (3.3)).
3. (G′ = (V ′, E′, ω′))← Net(G, p) for p = 10 log n/q.
4. H1 ← SuperLinEmulator(G′, kϵ, D) for D = (nϵ)2kϵ/35.
5. Output H0 ∪H1.

Analysis. We start with a stretch argument for a fixed pair u, v ∈ V . First, assume the
more interesting case where u′, v′ ∈ V ′. By the properties of H1, the additive stretch is:

Õ(D · q ·W ) = Õ(nϵ)2kϵ/35 · n1/2kϵ+1
· nϵ(1/2kϵ+1−1) ·W ) = Õ(W · nf(ϵ)) . (3.4)

Next assume that distG(u, v) ≤ W · q. By adding the multiplicative spanner H0,
we have distH0(u, v) ≤ O(Wq log n). Finally, assume that distG(u, v) ≥ Wq and let
u′, v′ ∈ V ′ be the closest sampled vertex to u (resp., v) on the u-v shortest path. W.h.p.,
distG(u, u′), distG(v, v′) ≤ Wq and therefore, distH0(u, u′), distH0(v, v′) ≤ O(Wq log n).
Since w.h.p. distG(u′, v′) = distG′(u′, v′), the stretch argument is completed by Eq. (3.4).
The size bound follows by plugging |H0| = Õ(n), and moreover, |H1| = Õ(n1+ϵ) by Corollary
3.6. We are now ready to complete the proof for the missing regimes.
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Complete proof of Thm. 1.3. For the range 1/7 ≤ ϵ ≤ 1/3, the proof follows by letting
H = SuperLinEmulator(G, k = 2, D) for D = n(1−3ϵ)/5. For the range 1/15 ≤ ϵ ≤ 3/37, the
proof follows by letting H = SuperLinEmulator(G, k = 3, D) for D = n(3−9ϵ)/14. ◀

4 +n0.222 Emulator of Linear Size

4.1 An Optimized Weighted Thorup-Zwick Emulator
In this section, we present an optimized variant of Thorup-Zwick that plays a key role in
the construction of our linear additive emulator. We prove the following theorem which in
particular implies Thm. 1.4.

▶ Theorem 4.1. For every n-vertex G = (V, E, ω) with maximum weight W , a constant
integer k ≥ 3, integer D ≥ 1 and p ∈ (0, 1), there is an Algorithm ImprovedTZEmulator for
computing an emulator H with additive stretch O(D1−1/(k−1) ·W log n/p) for any distance
d = O(D ·W log n/p). The size of H is bounded by

|H| = Õ

(
n

1+ 1
2k+1−1 + (n · p)1+ 1

2k−1 /

(
(1/p)

2k−2
(2k−1)k ·D

2k−2k

(2k−1)k(k−1)

))
.

We can also show interesting corollaries of Thm. 4.1 which demonstrate the sub-optimality
of the TZ construction for a wide-range of distances. For example, the following holds:

▶ Corollary 4.2. Every n-vertex unweighted graph G and given integer k ≥ 1 admits an
emulator H of size Õ(n1+1/(2k+1−1)) such that pairs at distances d ≥ nk2/2k have additive
stretch of O(d1−1/(k−1)).

This should be compared with the additive stretch of O(d1−1/k) provided by the TZ emulator
(which also marks the state-of-the-art bounds). Thus, while the original TZ emulator is
optimal for small distances as proven in [2], this optimality holds in a restricted range of
distances, especially for non-constant values of k, e.g., k = O(log log n). We now turn to
prove Thm. 4.1 which constitutes the key technical contribution in the linear emulator
construction.

Algorithm ImprovedTZEmulator. The algorithm starts by applying our weighted-variant
of the Thorup-Zwick emulator to obtain H1 ←WeightedTZEmulator(G, k), see Lemma 3.2.
Next, it computes a net G′ = Net(G, p) obtained by sampling each vertex in V into the net
G′ independently with probability p. By Obs. 3.4, we have that the maximum edge weight
G′ is bounded by W ′ = Θ(log n ·W/p). In addition, w.h.p. it also holds that the G′-distances
equal to the G-distances. The key technically involved step is in the computation of an
additional emulator that we denoted by H2 for G′. This emulator is computed by applying a
new variant of the TZ emulator which takes advantageous of the fact that each weighted
edge in G′ corresponds to some path in a prior graph G, and more specifically, that there is
a precomputed emulator (namely, H1) that handles short distances in G′.

The construction builds a hierarchy V = V1/2 ⊇ V1 ⊇ V3/2 ⊇ V2 ⊇ . . . ⊇ Vk−1/2, where
V(j+1)/2 ← Vj/2[qj ] for every j ∈ {1, . . . , 2(k − 1)}. Note that in contrast to the classic TZ
emulator construction, our hierarchy has 2k − 1 levels: k − 1 integral levels V1, . . . , Vk−1 and
k “half”-levels V1/2, V3/2, . . . , Vk−1/2. Intuitively, the “half” levels represent an intermediate
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step that re-scales the extra-benefit obtained by the existence of the emulator H1 (that takes
care of short distances in G′). The definition of the sampling probabilities qj is somewhat
more involved compared to that of the classic construction. To define these probabilities, we
need the following function definitions, for every integer 0 ≤ i ≤ k:

h(i) = 1− 2i − 1
2k − 1 , f(i) = 2(2k − 1)i− 2k(2i − 1)− 2k + 2i

(2k − 1)k and g(i) = 2k − 2i

(2k − 1)k .

(4.1)

The probabilities qj for j ∈ {2i, 2i + 1} are chosen in order to satisfy the following, w.h.p.,
for every i ∈ {1, . . . , k − 1}:

|Vi| = Õ

(
nh(i) ·∆f(i) ·

(
W ′

W

)g(i)
)

and |Vi+1/2| = Õ

(
|Vi|/

(
∆(i−1)/k ·

(
W ′

W

)1/k
))

.

(4.2)

The sampling probabilities qj=2i for every i ∈ {1, . . . , k−1} have a simple to state expression:

q2i = Θ
(

log n

∆(i−1)/k ·
(

W ′

W

)1/k

)
. (4.3)

Let us give a concrete example for k = 4: For ease of notation, let Ŵ = W ′/W .
1. |V0.5| = n.

2. |V1| = Õ

(
n14/15 ·∆2/15 ·

(
Ŵ
)7/30

)
.

3. |V1.5| = Õ

(
|V1|/(Ŵ )1/4) = Õ(n14/15 ·∆2/15 ·

(
Ŵ
)7/30−1/4

)
.

4. |V2| = Õ

(
n12/15 ·∆6/15 ·

(
Ŵ
)1/5

)
.

5. |V2.5| = Õ
(
|V2|/(∆ · Ŵ )1/4

)
= Õ

(
n12/15 ·∆6/15−1/4 ·

(
Ŵ
)1/5−1/4

)
.

6. |V3| = Õ

(
n8/15 ·∆13/30 ·

(
Ŵ
)2/15

)
.

7. |V3.5| = Õ
(
|V3|/(∆2 · Ŵ )1/4

)
= Õ

(
n8/15 ·∆13/30−1/2 ·

(
Ŵ
)2/15−1/4

)
.

Given the qj ’s probabilities, the algorithm proceeds in a very similar manner to the TZ
emulator algorithm, with one main emphasis: There are k − 1 phases in which we add to
the emulator edges from the half -level Vi+1/2 to the next integral-level Vi+1. That is, no
edges are added between Vi+1 to Vi+1.5. For every i ∈ {0, . . . , k − 2} and every u ∈ Vi+0.5,
the algorithm computes a pivot pi+1(u) and a bunch Bi+0.5(u), as follows. The pivot pi+1(u)
is the closest6 vertex to u in the next integral-level, Vi+1. The bunch Bi+0.5(u) consists
of all vertices in Vi+0.5 that are strictly closer to u than its pivot pi+1(u). The edges in
{u}×Bi+0.5[u] are added to the emulator H2, weighted by their G′-distances (which by Obs.
3.4(ii) also equal to the G-distances). Finally, all edges between the vertices in the last-half
level Vk−0.5 are also added to H2. The output emulator is given by H1 ∪H2.

The analysis is deferred to the full version.

6 As usual, we can assume that the shortest-paths are unique.
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Algorithm 3 ImprovedTZEmulator(G, k, p, D).

Input: Graph G = (V, E, ω) with maximum weight W and parameters k ≥ 3, D ≥ 1,
p ∈ (0, 1).
Output: +O(D1−1/(k−1) ·W log n/p) emulator H for pairs at distance
d = O(D ·W log n/p)

1. H1 ←WeightedTZEmulator(G, k) (using Lemma 3.2), H2 ← ∅.
2. (G′ = (V ′, E′, ω′))← Net(G, p).
3. Set ∆ = D1/(k−1) and V0.5 = V .
4. For j ∈ {1, . . . , 2(k − 1)} do: V(j+1)/2 ← Vj/2[qj ], where qj is defined based on Eq. (4.2).
5. For i = 0 to k − 2 do:

For every u ∈ Vi+0.5 do:
a. pi+1(u) = CLOSEST (Vi+1, u).
b. Bi+0.5(u)← {v ∈ Vi+0.5 | distG′(u, v) < dist(u, pi+1(u))}.
c. Bi+0.5[u]← Bi+0.5(u) ∪ {pi+1(u)}.
d. H2 ← H2 ∪ ({u} ×Bi+0.5[u]).

6. H2 ← H2 ∪ (Vk−0.5 × Vk−0.5) .
7. H = H1 ∪H2.

4.2 Improved Linear Emulators

This section is devoted to the proof of Theorem 1.2. Let ModifiedSuperLinEmulator be the
same algorithm as SuperLinEmulator only that we omit the computation of H1 in Step (1).
We next present Algorithm ImprovedLinearEmulator that computes the desired emulators, as
follows:

Algorithm 4 ImprovedLinearEmulator.

Input: An unweighted graph G = (V, E) on n vertices.
Output: +Õ(n2/9−1/1600) emulator H of size Õ(n).
1. H0 ← MultSpanner(G, k = O(log n)).
2. Set p1 = 10 log n/n1/32, p2 = 10 log n/n21/1060 and D = n723/4240.
3. (G1 = (V1, E1, ω1))← Net(G, p1).
4. H ′

1 ← ImprovedTZEmulator(G1, k = 4, p2, D = n723/4240) .
5. (G2 = (V2, E2, ω2))← Net(G1, p2).
6. H2 ← ModifiedSuperLinEmulator(G2, k = 3, D).
7. Output H0 ∪H ′

1 ∪H2.

Algorithm 5 ModifiedSuperLinEmulator(G, k, D).

1. Let G2 = (V2, E2, ω2)← Net(G, p1) for p1 = 10 log n/D.
2. H2 ← Initialization(G2, t) for t = n1/3/D(1+2/k)/3 (using Thm. 3.3).
3. Let V3 ← V2[p2] for p2 = 10 log n/(t ·D1/k);
4. Set H3 ← (V3, V3 × V3, ω3) where ω3((u, v)) = distG(u, v) for every (u, v) ∈ H3.
5. Output H ← H2 ∪H3.
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Size analysis. Clearly, |H0| = Õ(n). By Theorem 4.1, we have that:

|H ′
1| = Õ

(
(n · p1)1+ 1

24+1−1 + (n · p1 · p2)1+ 1
24−1 /

(
(1/p2)

24−2
(24−1)4 ·D

24−2·4
(24−1)4(4−1)

))
.

Therefore, |H ′
1| = Õ(n(1−1/32−21/1060)(16/15)−(21/1060)·(14/60)−(723/4240)·(8/(15·4·3))) = Õ(n1).

Finally, by the proof of Thm. 3.1, it holds that |H2| = O((|V2|)4/3/D4/3+2/(3k)). Therefore,

|H2| = (n · p1 · p2)4/3/D4/3+2/9 = Õ(n(1−1/32−21/1060)·(4/3)−(4/3+2/9)·(723/4240)) = Õ(n) .

Stretch analysis. Let W1 (resp. W2) be the maximum edge weight of G1 (reps., G2). By
Obs. 3.4, we have that W1 = Õ(1/p1) , W2 = Õ(W1 · (1/p2)). We show that the additive
stretch is O(W2 · D) = O(n2/9−1/1600). By Obs. 3.4, the G1-distances and G2-distances,
w.h.p., equal to the G-distances.
Case 1: Consider first a vertex pair u′, v′ ∈ V2, we shall compute the stretch argument for

the pair u′, v′. By Lemma 3.5 with H ′ = H ′
1 and W = W2 we have that the additive

stretch of the pair u′, v′ is given by:

Õ(D ·W2) = O(n2/9−1/1600) . (4.4)

Case 2: distG(u, v) ≤ W2. By adding the multiplicative spanner H0, distH0(u, v) ≤
O(W2 log n).

Case 3: distG(u, v) > W2. Let u′, v′ ∈ V2 be the closest sampled vertex to u (resp., v) on
the u-v shortest path in G. By the Chernoff bound, w.h.p., distG(u, u′), distG(v, v′) ≤W2
and therefore, by Case 2, distH0(u, u′), distH0(v, v′) ≤ O(W2 log n). By Obs. 3.4, w.h.p.,
distG(u′, v′) = distG2(u′, v′), and the stretch argument is completed by Eq. (4.4) of
Case 1.
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