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Abstract
We present an efficient quantum algorithm for simulating the dynamics of Markovian open quantum
systems. The performance of our algorithm is similar to the previous state-of-the-art quantum
algorithm, i.e., it scales linearly in evolution time and poly-logarithmically in inverse precision.
However, our algorithm is conceptually cleaner, and it only uses simple quantum primitives without
compressed encoding. Our approach is based on a novel mathematical treatment of the evolution
map, which involves a higher-order series expansion based on Duhamel’s principle and approximating
multiple integrals using scaled Gaussian quadrature. Our method easily generalizes to simulating
quantum dynamics with time-dependent Lindbladians. Furthermore, our method of approximating
multiple integrals using scaled Gaussian quadrature could potentially be used to produce a more
efficient approximation of time-ordered integrals, and therefore can simplify existing quantum
algorithms for simulating time-dependent Hamiltonians based on a truncated Dyson series.
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1 Introduction

The last few decades have witnessed the exciting progress in quantum information science to
understand and utilize systems that exhibit quantum properties. In the meantime, quantum
algorithms for simulating quantum dynamics have received extensive attention. This is
because such simulation algorithms are critical tools in many physics applications, and they
have the potential to become the first application (if it is not factoring integers!) once
large-scale fault-tolerant quantum computers are available. In fact, simulating quantum
dynamics was one of the original motivations Feynman proposed quantum computers [13],
who realized the unfavorable scaling for classical algorithms for this task and foresaw the
power of quantum computation back in 1982.
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Up to now, the majority of the research for simulating quantum dynamics is focused
on the “Hamiltonian regime”, where the system is governed by Schrödinger evolution and
it has no interaction with the environment. Such idealized systems are often referred to
as closed systems. However, if one believes that the universe is a closed system, then it is
reasonable to assume that every quantum system, as a subsystem of the whole universe, is an
open system because every realistic system is coupled to an uncontrollable environment in a
non-negligible way. For example, we always model quantum gates as unitary matrices, while
their implementations are always subject to noise induced by the environment no matter
how hard one pushes the technology forward.

A key challenge in simulating the dynamics of open quantum systems is the lack of a
microscopic description of the dynamics influenced by the physical law of the environment.
Even if such a description exists, the degrees of freedom will involve numerous information,
which would exceed the capacity of quantum computers. Fortunately, for a special class of
open quantum systems, their dynamics can be fully described by operators acting on the
system. This special class captures the scenario when the system is weakly coupled to the
environment and the dynamics of the environment occur at a much faster rate than the
system. Intuitively, the environment is fast enough so that the information only flows from
the system to the environment and there is no information flowing back. Precisely due to such
Markovianity, these open systems are called Markovian open quantum systems. Specifically,
such dynamics are described in terms of the density matrix ρ by the differential equation

d
dtρ = L(ρ) := −i[H, ρ] +

m∑
j=1

(
LjρL

†
j − 1

2

{
L†

jLj , ρ
})

(1)

which is referred to as the Lindblad equation [27, 15]. The superoperator L is called the
Lindbladian, and the Lj ’s are often called the jump operators. The solution to the Lindblad
equation is given by

ρt = eLt(ρ0). (2)

Here, the superoperator eLt is a quantum channel for all t ≥ 0.
It turns out that Markovian open quantum systems are general enough to model many

realistic quantum systems in quantum physics [24, 42], quantum chemistry [30, 32], and
quantum biology [12, 16, 31]. Computationally, such systems also arise in the context
of entanglement preparation [23, 18, 36], thermal state preparation [17], quantum state
engineering [41], and modeling the noise of quantum circuits [29, 33, 38].

The first quantum algorithm for simulating Markovian open quantum systems was
presented by Kliesch et al. in [20] in 2011 and the complexity has scaling O(t2/ϵ) for evolution
time t and precision ϵ. In 2017, Childs and Li [7] constructed an improved algorithm with cost
O(t1.5/

√
ϵ). Cleve and Wang [9] pushed the study further by reducing the complexity to nearly

optimal: O(tpolylog(t/ϵ)), which was the first to achieve the complexity that scales linearly
in t and poly-logarithmically in 1/ϵ – that is exponentially better than previous approaches.
Recently, researchers have explored these simulation algorithms in various scenarios such as
simulating heavy-ion collisions [11], simulating the non-equilibrium dynamics in the Hubbard
model [40], simulating the non-equilibrium dynamics in the Schwinger model [10], and
preparing thermal states [35].

The quantum algorithm by Cleve and Wang [9] is based on the first-order approximation of
eLt, which can be further approximated by a completely positive map whose Kraus operators
involve H and Lj ’s. Due to the inefficiency of the first-order approximation, the building
blocks (the implementation of linear combination unitaries) of [9] need to be repeated many
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times to simulate a constant-time evolution, which tends to break the poly-logarithmic
dependence on 1/ϵ. However, it was shown in [9] that the state of the control qubits of the
building blocks concentrates to low-Hamming weight states. Thus a compression scheme had
to be employed in [9] to exponentially reduce the uses of the building blocks.

In the literature of Hamiltonian simulation, there is an elegant quantum algorithm that
uses a truncated Taylor series [3]. This algorithm is conceptually much simpler than its
first-order approximation predecessor [4] while keeping the same efficiency. Thus a natural
question arises: Can we generalize the truncated Taylor series approach to simulating
Lindblad evolution to obtain a much simpler algorithm? It was not known how to achieve
this due to the obstacle that higher powers of the Lindbladian are too intricate to keep
track of its completely positiveness, which is the key to implementing a superoperator. To
demonstrate this challenge, consider the expression of L2. For simplicity, let us assume
H = 0 and m = 1. We have

L2(ρ) = L2ρL†2 − 1
2LL

†LρL† − 1
2LρL

†LL† − 1
2L

†L2ρL† + 1
4L

†LL†Lρ

− 1
2LρL

†2L+ 1
2L

†LρL†L+ 1
4ρL

†LL†L.

(3)

As the above shows, it is highly nontrivial to maintain the completely positive structure in
the Taylor series eL ≈

∑K
ℓ=0

Lℓ

ℓ! even for this overly simplified case where H = 0 and m = 1.
In this paper, we present a quantum algorithm that takes advantage of a higher-order

series expansion based on Duhamel’s principle (this principle is briefly discussed in Section 2.1
for readers not familiar with this subject). Our quantum algorithm is conceptually simple
and it only contains straightforward applications of simple quantum primitives such as
oblivious amplitude amplification for isometries and linear combinations of unitaries (LCU)
for channels (presented in the language of block-encodings) [7]. Our approach is inspired by a
classical algorithm by Cao and Lu [6] based on the Duhamel’s principle. The basic idea is to
separate the Lindblad generator into two groups, the first group of which can be expressed as
a matrix exponential that immediately induces a completely positive map. By applying the
Duhamel’s principle repeatedly, a series expansion with arbitrary order of accuracy can be
obtained. We prove a rigorous error bound for this truncation. This procedure exhibits some
level of resemblance to the time-dependent Hamiltonian simulation method using Dyson
series [19]. However, an important focus in the simulation of Lindblad dynamics, due to the
presence of jump operators, is to maintain the completely positive property. In addition, we
apply Gaussian quadrature, which for any fixed number of quadrature points, has the optimal
order of accuracy, to treat the multiple integrals in the series expansion. This approach,
compared with the rectangle rule used in [19] and the mid-point rule used in [6], compressed
drastically the number of terms in the Kraus form of the completely positive maps. The
other added advantage is that it completely eliminates the need for time clocking, which
requires either a compression scheme or a quantum sorting network to implement.

We consider a very general model of input, namely, the operators are given by their
block-encodings. Informally, a unitary UA is the block-encoding of A with normalizing factor
α if the top-left block of UA is A/α. This input model abstract but general enough to
assume for most realistic physical models. In fact, traditional input models such as local
Hamiltonians, sparse Hamiltonians, and a linear combination of tensor product of Paulis
can all be efficiently converted to block-encodings. Suppose the operators H, and Lj ’s are
given as block-encodings with corresponding normalizing factors α0, αj ’s, respectively. We
define the following norm for the purpose of normalizing the magnitude of the Lindbladian
in Equation (1).

ICALP 2023
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∥L∥be := α0 +
m∑

j=1
α2

j . (4)

Note that a similar norm ∥L∥pauli was defined in [7], which is a special case of ∥L∥be in the
context of linear combination of unitaries input model. Our main result is stated as follows.

▶ Theorem 1 (Informal version of Theorem 11). For a Lindbladian L with m jump operators.
Suppose we are given a block-encoding UH of H, and a block-encoding ULj

for each Lj. For
all t, ϵ > 0, there exists a quantum algorithm that approximates eLt in terms of the diamond
norm using O(τ polylog(t/ϵ)) queries to UH and ULj

and O(mτ polylog(t/ϵ)) additional 1-
and 2-qubit gates, where τ := t∥L∥be.

Our approach trades off mathematical simplicity for technical conciseness. In fact, the
majority of the analysis is devoted to proving the bound of the truncated series, and the
accuracy for using a scaled Gaussian quadrature to approximate each layer of a multiple
integral. Once the mathematical treatment is established, we obtain an approximate map
for eLt that is completely positive, represented in terms of Kraus operators. Then, it is
straightforward to use simple quantum primitives including LCU for channels and oblivious
amplitude amplification for isometries to implement this completely positive map. Moreover,
it is more direct to obtain the gate complexity that scales linearly in m, for which the
dependence was O(m2) as presented in [9] 1.

In this paper, we focus on time-independent Lindbladians. It is worth noting that our
approach easily generalizes to time-dependent Lindbladians. We sketch this generalization in
Appendix A.

The rest of the paper is structured as follows. We introduce the preliminaries, including
an introduction to Duhamel’s principle and the algorithmic tools in Section 2. In Section 3,
we present the series expansion based on Duhamel’s principle and prove the error bound.
In Section 4, we show how to use scaled Gaussian quadrature to approximate multiple
integrals. The main theorem is proved in Section 5 and our simulation algorithm is presented
in the proof. Finally, we sketch how to generalize our method to simulating time-dependent
Lindbladians in Appendix A.

2 Preliminaries

In this paper, we use ∥A∥ to denote the spectral norm of a square matrix A, and we use ∥A∥1
to denote its trace norm. We use I to denote the identity matrix and we leave its dimension
implicitly when it is clear from the context. We use calligraphic font, such as L, J to denote
superoperators. In particular, we use I to denote the identity map. We use K[A] to denote
the completely positive map induced by the Kraus operator A, i.e.,

K[A](ρ) := AρA† (5)

for all ρ. The induced trace norm of a superoperator M, denoted by ∥M∥1, is defined as
∥M∥1 := max{∥M(A)∥1 : ∥A∥ ≤ 1}. The diamond norm of a superoperator M, denoted by
∥M∥⋄, is defined as ∥M∥⋄ := ∥M ⊗ I∥1, where the identity map I acts on a Hilbert space
with the same dimension as the space M is acting on.

1 We realized that it is possible to improve the dependence to O(m) in [9] by a more careful construction
of the encoding gate in their compression scheme.
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We use block-encodings as the efficient description of the operators. Intuitively, we say a
unitary UA block-encodes a matrix A if A appears in the upper-left block of A, i.e.,

UA =
(
A/α ·

· ·

)
, (6)

where α is the normalizing factor. More formally, an (n+ b)-qubit unitary UA is an (α, b, ϵ)-
block-encoding of an n-qubit operator A if∥∥A− α( ⟨0⊗b| ⊗ I)UA( |0⊗b⟩ ⊗ I)

∥∥ ≤ ϵ, (7)

where the identity operator is acting on n qubits.

2.1 Duhamel’s principle
For a differential equation written in the form of,

u′(t) = Lu+ f
(
t, u(t)

)
, u(0) = u0, (8)

where L is a linear operator, but f can in principle be a nonlinear function of u.
The Duhamel’s principle allows to separate the contribution to the solution from the

initial condition and the contribution from the non-homogeneous term. Specifically, we can
write the solution as

u = v + w, (9)

where v satisfies the equation without f ,

v′(t) = Lv, v(0) = u0, (10)

while w follows the equation

w′(t) = Lw + f
(
t, u(t)

)
, w(0) = 0, (11)

The solution v, due to the fact that Equation (10) is linear and homogeneous, can be
simply written as v(t) = etLu0. On the other hand, the equation for w can be rewritten as
(w(t)e−tL)′ = e−tLf

(
t, u(t)

)
, from which a direct integration yields,

w(t) =
∫ t

0
g(t, s)ds, g(t, s) := e(t−s)Lf

(
s, u(s)

)
. (12)

Notice that when s is held fixed, the function g(t, s) also follows a homogeneous equation
similar to Equation (10),

d

dt
g(t, s) = Lg(t, s), lim

t→s
g(t, s) = f

(
s, u(s)

)
, (13)

which is typically how the Duhamel’s principle is expressed.
The derivation of our algorithm will heavily involve the Duhamel’s principle, which can

be summarized into the following formula,

u(t) = etLu0 +
∫ t

0
e(t−s)Lf

(
s, u(s)

)
ds. (14)

ICALP 2023
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2.2 Algorithmic tools
Given a completely positive map whose Kraus operators are given as block-encodings, we use
the following lemma to probabilistically implement this complete positive map. Note that
this lemma is a reformulation of the LCU for channels [7] in the language of block-encodings.

▶ Lemma 2 (Implementing completely positive maps via block-encodings of Kraus operators [26]).
Let A1, . . . , Am ∈ C2n be the Kraus operators of a completely positive map. Let U1, . . . , Um ∈
C2n+n′

be their corresponding (sj , n
′, ϵ)-block-encodings, i.e.,

∥Aj − sj(⟨0| ⊗ I)Uj |0⟩ ⊗ I)∥ ≤ ϵ, for all 1 ≤ j ≤ m. (15)

Let |µ⟩ := 1√∑m

j=1
s2

j

∑m
j=1 sj |j⟩. Then (

∑m
j=1 |j⟩⟨j| ⊗ Uj) |µ⟩ |0⟩ ⊗ I implements this com-

pletely positive map in the sense that∥∥∥∥∥∥I ⊗ ⟨0| ⊗ I

 m∑
j=1

|j⟩⟨j| ⊗ Uj

 |µ⟩ |0⟩ |ψ⟩ − 1√∑m
j=1 s

2
j

m∑
j=1

|j⟩Aj |ψ⟩

∥∥∥∥∥∥ ≤ mϵ√∑m
j=1 s

2
j

(16)

for all |ψ⟩.

The following lemma shows how to construct the block-encoding as a linear combination
of block-encodings.

▶ Lemma 3 (Block-encoding of a sum of block-encodings [26]). Suppose A :=
∑m

j=1 yjAj ∈
C2n×2n , where Aj ∈ C2n×2n and yj > 0 for all j ∈ {1, . . .m}. Let Uj be an (αj , a, ϵ)-
block-encoding of Aj, and B be a unitary acting on b qubits (with m ≤ 2b − 1) such that
B |0⟩ =

∑2b−1
j=0

√
αjyj/s |j⟩, where s =

∑m
j=1 yjαj . Then a (

∑
j yjαj , a+ b,

∑
j yjαjϵ)-block-

encoding of
∑m

j=1 yjAj can be implemented with a single use of
∑m−1

j=0 |j⟩⟨j| ⊗ Uj + ((I −∑m−1
j=0 |j⟩⟨j|) ⊗ IC2a ⊗ IC2n ) plus twice the cost for implementing B.

Finally, we need the oblivious amplitude amplification for isometries.

▶ Lemma 4 (Oblivious amplitude amplification for isometries [9]). For all a, b ∈ N+, let |0̂⟩ :=
|0⟩⊗a and |µ⟩ be arbitrary b-qubit state. For any n-qubit state |ψ⟩, let |ψ̂⟩ := |0̂⟩ |µ⟩ |ψ⟩.
Also define |ϕ̂⟩ := |0̂⟩ |ϕ⟩, where |ϕ⟩ is a (b+n)-qubit state. Let P0 :=

∣∣0̂〉〈0̂∣∣⊗ I2b ⊗ I2n and
P1 :=

∣∣0̂〉〈0̂∣∣⊗ |µ̂⟩⟨µ̂| ⊗ I2n be two projectors. Suppose there exists an operator W satisfying

W |ϕ̂⟩ = 1
2 |ϕ̂⟩ +

√
3
4 |ϕ̂⊥⟩ , (17)

where |ϕ̂⟩ satisfies P0 |ϕ̂⊥⟩ = 0. Then it holds that

−W (I − 2P1)W †(I − 2P0)W |ψ̂⟩ = |ϕ̂⟩ . (18)

3 Higher order series expansion based on Duhamel’s principle

The goal of our quantum algorithm is to simulate the Lindblad equation defined in Equa-
tion (1). In the context of quantum trajectory theory [34], we view the commutator and
the anti-commutator terms as the drifting part, and the LjρL

†
j terms are regarded as jump

part. Accordingly, motivated by the numerical method in [6]. We decompose L into two
superoperators, the drifting part LD and the jump part LJ. Namely,
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L = LD + LJ, and (19)

LD(ρ) := Jρ+ ρJ†, LJ(ρ) :=
m∑

j=1
LjρL

†
j . (20)

Here we define J as

J := −iHeff . (21)

where an effective Hamiltonian Heff is given by,

Heff := H + 1
2i

m∑
j=1

L†
jLj . (22)

Thus LD can be viewed as a generalized anti-commutator.
By treating the term with LD as a non-homogeneous term, the Duhamel’s principle in

Equation (14) can be applied, and we get,

ρt = eLt(ρ0) = eLDt(ρ0) +
∫ t

0
eLD(t−s)(LJρs)ds. (23)

Note that the solution ρs is still involved in the integral on the right hand side. Therefore,
this equation does not provide an explicit formula for the solution; Rather, it offers an
integral representation of the Lindblad equation. Nevertheless, one can apply Equation (14)
again to ρs in the integral. After K such iterations, we arrive at

ρt = eLDt(ρ0)

+
K∑

k=1

∫
0≤s1≤···≤sk≤t

eLD(t−sk)LJe
LD(sk−sk−1)LJ · · · eLD(s2−s1)LJe

LD(s1)(ρ0)ds1 · · · dsk

+
∫

0≤s1≤···≤sK+1≤t

eLD(t−sK+1)LJe
LD(sK+1−sK )LJ · · · eLD(s2−s1)LJ(ρs1)ds1 · · · dsK+1.

(24)

Now notice that the first two terms on the right hand side only depend on the initial density
matrix, and thus they are amenable to numerical approximations. Meanwhile, the last term
will be regarded as a truncation error, which will be bounded later.

We first derive the Kraus representation of eLDt, which is the first term in the expansion,
but also appears in each integral. The Kraus form can be obtained from a Taylor series. To
see this, let us consider the case where LD is acting on a pure state |ψ⟩:

d
dt |ψ⟩ = J |ψ⟩ . (25)

Using the chain rule, we have

d
dt |ψ⟩⟨ψ| = J |ψ⟩⟨ψ| + |ψ⟩⟨ψ| J† = LD(|ψ⟩⟨ψ|). (26)

The above two equations also hold for general states ρ by linearity. Hence, solving Equa-
tion (25) and Equation (26) yields

eLDt = K
[
etJ
]
. (27)

ICALP 2023
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Now, we adopt the notation from [6],

Fk(sk, . . . , s1) := K[eJ(t−sk)]LJK[eJ(sk−sk−1)]LJ · · · K[eJ(s2−s1)]LJK[eJ(s1−0)]. (28)

We further define

GK(t) := K[eJt] +
K∑

k=1

∫
0≤s1≤···≤sk≤t

Fk(sk, . . . , s1) ds1 · · · dsk. (29)

At this point, the problem is reduced to approximating eLt by GM (t). We first prove an error
bound.

▶ Lemma 5. It holds that∥∥eLt − GK(t)
∥∥

⋄ ≤
(2∥L∥bet)K+1

(K + 1)! . (30)

The proof of Lemma 5 is shown in the full version of this paper [43].
Eventually, we need to approximate the Kraus operator eJt in our quantum algorithm.

This can be done by a truncated Taylor series. For notational simplicity, we define

JK′ = K

 K′∑
ℓ=0

Jℓtℓ

ℓ!

 . (31)

We quantify the error of this approximation in the following lemma.

▶ Lemma 6. Suppose that k ∈ N such that (k + 1)! ≥ 2∥J∥k+1
tk+1. Let Jk be defined in

Equation (31). It holds that

∥∥K[eJt] − Jk(t)
∥∥

⋄ ≤
8e∥L∥bet∥L∥k+1

be tk+1

(k + 1)! . (32)

The proof of Lemma 6 is shown in the full version of this paper [43].
We also provide the following useful lemma, which will be used in the final analysis of

our algorithm

▶ Lemma 7. Suppose that k,K ′ ∈ N such that (K ′ + 1)! ≥ 8e∥L∥bet∥L∥K′+1
be tK

′+1. Let JK′

be defined in Equation (31), and Fk be defined in Equation (28). It holds that

∥JK′(t− sm)LJJK′(sm − sm−1)LJ · · · JK′(s2 − s1)LJJK′(s1) − Fk(sk, . . . , s1)∥⋄

≤
8e∥L∥bet∥L∥K′+1

be
(K ′ + 1)! (2∥L∥be)k2ktK

′+1.
(33)

The proof of Lemma 7 is shown in the full version of this paper [43].

4 Approximating multiple integrals using scaled Gaussian quadrature

To obtain an algorithm that can be directly implemented, we apply Gaussian quadrature
formulas to approximate the multiple integrals in Equation (29). Due to their optimal
accuracy, the number of terms in the approximation is significantly compressed. Typically,
quadrature error depends on the smoothness of the function. For this purpose, we first bound
the derivatives of Fk.
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▶ Lemma 8. For all k′ ∈ [k], it holds that∥∥∥∥∥ dk′

dsk′
j

Fk

∥∥∥∥∥
⋄

≤ 22k′+k∥L∥k
be∥J∥k′

. (34)

The proof of Lemma 8 is shown in the full version of this paper [43].
We now discuss the quadrature approximation for the integral in Equation (29):∫

0≤s1≤···≤sk≤t

LJK[eJ(sm−sm−1)]LJ · · · K[eJ(s2−s1)]LJK[eJ(s1−0)] ds1 · · · dsk. (35)

For optimal accuracy, we use Gaussian quadrature. In the Gaussian quadrature rule, the
interpolation nodes 0 ≤ ŝ1 ≤ · · · ≤ ŝq ≤ t and the weights w1, . . . , wq are independent of the
function and can be pre-computed. More specifically, let {Pi(x)}i be the standard Legendre
polynomials. They are an orthonormal family of polynomials in the sense that∫ 1

−1
Pr(x)Ps(x) dx =

{
0 r ̸= s,

1 r = s.
(36)

By a simple scaling,

P̂(x) := P

(
2x
t

− 1
)
. (37)

we obtain the functions P̂ that are orthogonal for the interval [0, t]. Let {ŝi}n
i=1 be the roots

of the n-th degree polynomial P̂q. We also define

πq(x) := (x− ŝ1)(x− ŝ2) · · · (x− ŝq). (38)

Then the i-th Lagrange polynomial for points ŝ1, . . . , ŝq is

Lq−1,i(x) = πq(x)
(x− ŝi)π′

q(ŝi)
. (39)

Once the quadrature points are selected, the weight of the Gaussian quadrature can be
expressed as

wi =
∫ t

0
Lq−1,i(x) dx, (40)

which can be direct deduced from a polynomial interpolation.
We refer to ŝ1, . . . , ŝq as the canonical quadrature points and w1, . . . , wq as the canonical

weights. In approximating
∫ t

0 f(x) dx using
∑q

j=1 f(ŝj)wj , the error follows the standard
bound,

Eq[f ] =
∫ t

0
f(x) dx−

q∑
j=1

f(ŝj)wj = f (2q)(ξ)
(2q)!

∫ t

0
πq(x)2dx, (41)

for some ξ ∈ [0, t].
To estimate the integral term in the error, we notice that,

πq(x) = tqq!
2q(2q − 1)!!Pq

(
2x
t

− 1
)
, (42)

ICALP 2023
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The coefficient on the right hand side is determined by observing that πq(x) is a monic
polynomial, and the leading coefficient of the standard Legendre polynomial is (2q − 1)!!/q!.
The notation !! indicates a double factorial, i.e., (2q − 1)!! = (2q − 1)(2q − 3) · · · 1 and we use
the convention that (−1)!! = 1.

Combining these formulas, we arrive at an explicit bound

|Eq[f ]| =
∣∣f (2q)

∣∣(ξ)t2q+1(q!)2

(2q)!22q(2q − 1)!!(2q + 1)!! ≤
∣∣f (2q)

∣∣(ξ)t2q+1q

(2q)!24q−1 (43)

for some ξ ∈ [0, t], where the inequality follows from the fact that q!! = 2q/2(q/2)! for even q.
Here we also used the identity,∫ 1

−1
P2

q (x) dx = 2
2q + 1 .

We hold t fixed. For an interval [0, sk] with sk ≤ t, we use a scaled canonical quadrature
points and weights: skŝ1/t, . . . , skŝq/t, and skw1/t, . . . , skwq/t. Then,

∫ sk

0 f(x) dx can be
approximated by the scaled quadrature points and weights with the same error bound:∫ sk

0
f(x) dx =

n∑
j

f

(
skŝj

t

)
skwj

t
+ O

(∥∥f (2n)
∥∥

∞s
2n+1
k n

(2n)!24n−1

)
. (44)

For each j ∈ [n], define the functions uk and vk as

uj(x) := xŝj/t (45)
vj(x) := xwj/t. (46)

Note that for any sℓ, {uj(sℓ)}q
j=1 are the scaled canonical quadrature point and {vj(sℓ)}q

j=1
are the scaled weights.

To simplify the notation, we extend Equation (45) and define

x̂(jk) := ŝjk
, and x̂(jk,...,jk−ℓ) := ujk−ℓ

◦ · · · ◦ ujk−1(ŝjk
) for all 1 ≤ ℓ ≤ k − 1, (47)

ŵ(jk) := wjk
, and ŵ(jk,...,jk−ℓ) := vjk−ℓ

(x̂(jk,...,jk−ℓ+1)) for all 1 ≤ ℓ ≤ k − 1. (48)

With these notations, the approximation of the integral in Equation (35) becomes,

q∑
j1=1

· · ·
q∑

jk=1
Fk

(
x̂(jk), , . . . , x̂(jk,...,j1)

)
ŵ(jk) · · · ŵ(jk,...,j1). (49)

We first show some useful properties of the quadrature weights.

▶ Lemma 9. for all ℓ ∈ {0, . . . , q}, it holds that

q∑
j=1

wj ŝj
ℓ = tℓ+1

ℓ+ 1 . (50)

In particular, when ℓ = 0

q∑
j=1

wj = t. (51)
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For all positive integers k, ℓ with ℓ < k, it also holds that
q∑

jk=1
· · ·

q∑
jk−ℓ=1

ŵ(jk) · · · ŵ(jk,...,jk−ℓ) = tℓ+1

(ℓ+ 1)! . (52)

In particular, when ℓ = k − 1, it holds that
q∑

jk=1
· · ·

q∑
j1=1

ŵ(jk) · · · ŵ(jk,...,j1) = tk

(k + 1)! . (53)

The proof of Lemma 9 is shown in the full version of this paper [43].
With the bound on the derivatives of the integrand in Lemma 8 and the Gaussian

quadrature error Equation (43), we can estimate the overall quadrature error, as stated in
the following lemma,

▶ Lemma 10. It holds that∥∥∥∥∫
0≤s1≤···≤sk≤t

Fk(sk, . . . , s1) ds1 · · · dsk

−
q∑

j1=1
· · ·

q∑
jk=1

Fk

(
x̂(jk), , . . . , x̂(jk,...,j1)

)
ŵ(jk) · · · ŵ(jk,...,j1)

∥∥∥∥∥∥
⋄

= O

(
(2t)k−12k+1∥L∥k

be∥J∥(2q)
t2q+1q

(k − 1)!(2q)!

)
.

(54)

The proof of Lemma 10 is shown in the full version of this paper [43].

5 Quantum algorithm and the proof of the main theorem

In this section, we prove the main theorem and describe the algorithm in the proof. Our
algorithm constructs a segment for constant evolution time, i.e., t∥L∥be = Θ(1). For arbitrary
evolution time, we just repeat the simulation segment O(t∥L∥be) times with a scaled precision
parameter.

We first present the higher order approximation of eL as a completely positive map with
explicit Kraus operators. Then we use Lemma 2 to implement this completely positive map
with success probability 1/4, which can be calculated by analyzing the normalizing constants
of the block-encodings of the Kraus operators. Then we show that the special state |µ⟩
required by Lemma 2 can be efficiently prepared. Finally, we analyze the error introduced
by using a truncated Taylor series to approximate eJt, which is part of the Kraus operators.

▶ Theorem 11. Suppose we are given an (α0, a, ϵ
′)-block-encoding UH of H, and an (αj , a, ϵ

′)-
block-encoding ULj

for each Lj . For all t, ϵ ≥ 0 with ϵ′ ≤ ϵ/(t(∥L∥be), there exists a quantum
algorithm for simulating eLt using

O

(
t∥L∥be

log(t∥L∥be/ϵ)
log log(t∥L∥be/ϵ)

)
(55)

queries to UH and ULj and

O

(
mt∥L∥be

(
log(t∥L∥be/ϵ)

log log(t∥L∥be/ϵ)

)2
)

(56)

additional 1- and 2-qubit gates.
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Proof. We describe our simulation algorithm and prove the theorem as follows.

Completely-positive approximation. The final approximation to eLt is

K[eJt] +
K∑

k=1

q∑
j1=1

· · ·
q∑

jk=1
FK

(
x̂(jk), , . . . , x̂(jk,...,j1)

)
ŵ(jk) · · · ŵ(jk,...,j1), (57)

which is a completely positive map and the block-encodings of its Kraus operators can be
easily obtained by a product of the block-encoding UH of H, and the block-encodings ULj

of
Lj as well as positive factors determined by Taylor’s expansion and the Gaussian quadrature
weights. More specifically, define the index sets I as

I := {k, ℓ1, . . . , ℓk, j1, . . . , jk : k ∈ [K], ℓ1, . . . , ℓk ∈ [m], j1 . . . , jk ∈ [q]} . (58)

The completely positive map in Equation (57) can be written as

A0ρA
†
0 +

∑
j∈I

AjρA
†
j , (59)

with A0 := eJt, and

Aj =
√
ŵ(jk) · · · ŵ(jk,...,j1)e

J(t−x̂(jk))Lℓk
· · · eJ(x̂(jk,...,j2)−x̂(jk,...,j1))Lℓ1e

J(x̂(jk,...,j1)), (60)

for j = (k, ℓ1, . . . , ℓk−1, j1, . . . , jk) ∈ I .

Setting parameters for 1/4 success probability. We use Lemma 2 to implement the above
map, and the success probability is determined by the sum-of-squares of the normalizing
constants of the Kraus operators.

We first consider the Kraus operators of

Fk(sk, . . . , s1) = K[eJ(t−sk)LJK[eJ(sk−sk−1)]LJ · · · K[eJ(s2−s1)]LJK[eJ(s1−0)], (61)

for any s1 ≤ · · · ≤ sk. For each K[eJs], we use Lemma 3 to approximate its block-encoding as
a truncated Taylor series. For the convenience of analysis, let us for now assume an infinite
Taylor series is implemented. The normalizing constant of the block-encoding for eJs is then

∞∑
ℓ=0

sℓ(α0 + 1
2
∑m

j=1 α
2
j )

ℓ! = es∥L∥be . (62)

As a result, the sum-of-squares of the normalizing constants of the Kraus operators of
Fk(sk, . . . , s1) is

m∑
j1,...,jk=0

e2∥L∥be(t−sk)e2∥L∥be(sk−sk−1) · · · e2∥L∥be(s1−0)α2
j1

· · ·α2
jk

= e2∥L∥bet

 m∑
j=1

α2
j

k

(63)

For the approximation of the integral,

q∑
j1=1

· · ·
q∑

jk=1
Fk

(
x̂(jk), , . . . , x̂(jk,...,j1)

)
ŵ(jk) · · · ŵ(jk,...,j1), (64)
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the sum-of-squares of the normalizing constants of its Kraus operators is

e2∥L∥bet

 m∑
j=1

α2
j

k
q∑

j1=1
· · ·

q∑
jk=1

ŵ(jk) · · · ŵ(jk,...,j1) = tk

(k − 1)!e
2∥L∥bet

 m∑
j=1

α2
j

k

. (65)

Finally, for the approximation

K[et] +
K∑

k=1

q∑
j1=1

· · ·
q∑

jk=1
Fk

(
x̂(jk), , . . . , x̂(jk,...,j1)

)
ŵ(jk) · · · ŵ(jk,...,j1), (66)

the sum-of-squares of the normalizing constants of its Kraus operators is

e2∥L∥bet +
K∑

k=1

tk

(k − 1)!e
2∥L∥bet

 m∑
j=1

α2
j

k

(67)

= e2∥L∥bet + te2∥L∥bet
∑

j

α2
j

K∑
k=1

tk−1(
∑

j α
2
j )k−1

(k − 1)! (68)

≤ e2∥L∥bet + t
∑

j

α2
je

2∥L∥bete
t
∑

j
α2

j . (69)

Note that the inequality above provides an upper bound for the sum-of-squares of the
normalizing constants. There is a closed-form expression for this quantity. By setting the
right hand side to 2, and solve the equation, the above upper bound implies that t must
satisfy

t∥L∥be = Θ(1). (70)

Then we use Lemma 4 to boost the success probability to 1 with only three application of
the circuit.
Determining truncation orders. Now, we analyze the error by setting t∥L∥be = Θ(1). By
Lemma 5 and Lemma 10, the total approximation error can be bounded by the following.∥∥∥∥∥∥eLt − K[eJt] −

K∑
k=1

q∑
j1=1

· · ·
q∑

jk=1
Fk

(
x̂(jk), , . . . , x̂(jk,...,j1)

)
ŵ(jk) · · · ŵ(jk,...,j1)

∥∥∥∥∥∥
⋄

(71)

≤
(2∥L∥be)K+1

(K + 1)! +O

(
K∑

k=1

(2t)k−12k+1∥L∥k
be∥J∥(2q)

t2q+1q

(k − 1)!(2q)!

)
(72)

=
(2∥L∥be)K+1

(K + 1)! + ∥J∥2q
t2q+1q

(2q)! O

(
K∑

k=1

(2t)k−12k+1∥L∥k
be

(k − 1)!

)
(73)

=
(2∥L∥be)K+1

(K + 1)! + ∥J∥2q
t2q+1q

(2q)! O
(
e4t∥L∥be

)
(74)

≤
(2∥L∥be)K+1

(K + 1)! +
∥L∥2q

bet
2q+1q

(2q)! O
(
e4t∥L∥be

)
, (75)

where the last inequality follows from

∥J∥ ≤ ∥H∥ + 1
2
∑

j

∥Lj∥2 ≤ α0 + 1
2
∑

j

α2
j = ∥L∥be. (76)
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With t∥L∥be = Θ(1), it suffices to set

K, q = O

(
log(1/ϵ)

log log(1/ϵ)

)
(77)

to make the approximation error at most ϵ/2.
Applying the main algorithmic tool (Lemma 2). In Lemma 2, we need to prepare the
special state |µ⟩ which encodes a superposition of normalizing constants of all Kraus operators.
Now we show how to efficiently prepare this state. First observe that the normalizing constant
for Aj in Equation (60) is√

ŵ(jk) · · · ŵ(jk,...,j1)e
∥L∥be(t−x̂(jk))αℓk

· · · e∥L∥be(x̂(jk,...,j2)−x̂(jk,...,j1))αℓ1e
∥L∥be(x̂(jk,...,j1))

(78)

=
√
ŵ(jk) · · · ŵ(jk,...,j1)e

∥L∥betαℓk
· · ·αℓ1 (79)

= 1√
tk(k−1)/2

√
wjk

ŝk−1
jk

wjk−1 ŝ
k−2
jk−1

· · ·wj2 ŝj2wj1e
∥L∥betαℓk

· · ·αℓ1 , (80)

and the normalizing constant for A0 is e∥L∥bet. Note that e∥L∥bet appears in every amplitude
of |µ⟩ and therefore can be ignored. We use three registers in |µ⟩. The first register contains
K qubits and it encodes k in unary representation, i.e., we use

∣∣1k0K−1〉 to represent k.
The second register contains k subregisters of logm qubits to represent ℓ1, . . . , ℓk. The third
register contains k subregisters of log q qubits to represent j1, . . . , jk. We first prepare the
normalized version of the state

∑K
k=0

1√
tk(k−1)/2

∣∣1k0K−1〉, which can be done using O(K)
gates: we apply a rotation on the first qubit, and then apply a rotation on each subsequent
qubit controlled by the previous qubit. For the second register, in each subregister we
prepare the normalized version of

∑m
j=1 αj |j⟩. The total gate cost for the second register is

O(Km). For the ℓ-th subregister of the third register, we prepare the normalized version of∑q
j=1

√
wjs

ℓ−1
j |j⟩. The total gate cost for the third register is O(Kq). Note that each gate

acting on the ℓ-th subregister of the second and the third register is further controlled on the
ℓ-th qubit of the first register, which effects the truncation. Therefore, the total gate cost for
preparing |µ⟩ is O(K(m+ q)).

Now, we show how to use Lemma 3 to approximate the block-encoding Us of eJs for any
0 < s ≤ t, where s is provided in a time register containing |s⟩. Here we use K ′ to denote the
Taylor series truncation error. So we need to use Lemma 3 to implement a block-encoding of∑K′

k=0 s
kJk/k!. Recall that J = −iH − 1

2
∑m

j=1 L
†
jLj . In Lemma 3, we need to implement

the B gate for preparing a superposition of coefficients. We use K ′ + 1 control registers: the
first register contains K qubits which encode k in unary; each subsequent register contains
O(log(m)) qubits. The B gate is implemented as follows. Controlled by the time register
|s⟩, we implement the normalized version of the state

∑K′

k=0
√
sk/k!

∣∣∣1k0K′−k
〉

on the first
control register, which can be done with O(K) controlled-rotations. For each subsequent
control resister, we implement the normalized version of the state |0⟩ +

∑m
j=1

√
α2

j/2 |j⟩,
which costs O(m) gates. The controlled operation

∑
j |j⟩⟨j| ⊗ Aj can be implemented by

the controlled-UH and controlled-ULj controlled by the K + 1 control registers. Therefore,
the total gate cost for implementing B is O(K ′m). The controlled rotations on the first
control register controlled by the time register costs O(poly(b)) gates where b is the bits
used to represent s. It suffices to set b = O(log(1/ϵ)) for a precise representation of s within
ϵ. As a result, the cost O(poly(b)) is not dominating. As a result, the total gate cost for
implementing

∑
s |s⟩⟨s| ⊗ Us is O(Km).
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Additional approximation. It is important to note that by a direct application of Lemma 3,
the error of the block-encoding we implement is O(ϵ′es∥L∥be). However, a more careful
analysis shows a much better error bound: first assume we had implemented the infinity
Taylor series. Then the error ϵ′ of each block-encoding will cause error for the implementation
that is bounded by2 ∥eJs − eJ̃s∥ ≤

∥∥J − J̃
∥∥s ≤ ϵ′s∥L∥be. Further, Lemma 6 implies that

the error caused by the truncation is (2es∥L∥be )K′+1

(K′+1)′ . By assuming ϵ′ ≤ ϵ/(t(∥L∥be), the
truncation error will dominate by our choice of K ′.

In Lemma 2, we need |j⟩⟨j| ⊗ Aj , where Aj is defined in Equation (60). This can be
implemented by a sequence of at most K controlled-Us and at most K controlled-ULj . Note
that the time register required for implementing Us can be extracted from the index j, and
then uncomputed. Therefore, the gate cost for this is O(KK ′m). Therefore, the additional
1- and 2-qubits for this implementation is dominated by O(KK ′m).

Next, we analyze how the truncation of eJs at order K ′ affects the total error. By
Lemma 7, we have

∥JK′(t− sm)LJJK′(sm − sm−1)LJ · · · JK′(s2 − s1)LJJK′(s1) − Fk(sk, . . . , s1)∥⋄

≤
8e∥L∥bet∥L∥K′+1

be
(K ′ + 1)! (2∥L∥be)k2ktK

′+1.
(81)

Taking the weighted sum for quadrature points, the error is at most

8e∥L∥bet∥L∥K′+1
be

(K ′ + 1)! (2∥L∥be)k2ktK
′+1

q∑
j1=1

· · ·
q∑

jk=1
ŵ(jk) · · · ŵ(jk,...,j1)

=
8tke∥L∥bet∥L∥K′+1

be
(k − 1)!(K ′ + 1)! (2∥L∥be)k2ktK

′+1.

(82)

Therefore, the total error is

K∑
k=1

8tke∥L∥bet∥L∥K′+1
be

(k − 1)!(K ′ + 1)! (2∥L∥be)k2ktK
′+1 ≤

32e5∥L∥bet∥L∥K′+2
be tK

′+2

(K ′ + 1)! . (83)

With t∥L∥be = Θ(1), it suffices to set

K ′ = O

(
log(1/ϵ)

log log(1/ϵ)

)
(84)

to make this error ≤ ϵ/2. Therefore, the total error is bounded by ϵ.
Multiple simulation blocks. For arbitrary evolution time t, we divide it into O(t∥L∥be)
segments and set

K,K ′, q = O

(
log(t∥L∥be/ϵ)

log log(t∥L∥be/ϵ)

)
(85)

so that the total error of the O(t∥L∥be) segments is within ϵ. For the remaining smaller
segment of this division, the normalizing constant is smaller which yields a larger success
probability. However, the amplitude amplification will overshoot. We use standard technique
by adding an ancillary qubit and use a rotation to dilute the success probability to 1/4. ◀

2 The inequality ∥eJs − eJ̃s∥ ≤
∥∥J − J̃

∥∥s does not hold for general matrices J . However, in our case it
holds because J is dissipative and hence ∥eJs∥ ≤ 1 for all s ≥ 0.
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6 Conclusion and open questions

In this paper, we presented a quantum algorithm for simulating Lindblad evolution, which
captures the dynamics of Markovian open quantum systems. The algorithm can be used to
forecast the dynamics of a quantum system interacting with an environment. Informally,
the complexity of our algorithm scales as O(tpolylog(t/ϵ)), which matches the previous
state-of-the-art algorithm. Our algorithm is based on a conceptually novel mathematical
treatment of evolution channel to preserve its complete positivity: we use a higher-order
series expansion based on Duhamel’s principle, and we approximate the integrals by scaled
Gaussian quadrature, which exponentially reduces the number of terms in the summation.
Our mathematical treatment trades off mathematical simplicity for technical conciseness,
and it yields a much simpler algorithm based on linear combination of unitaries. We also
outlined how our algorithm can be generalized to simulate time-dependent Lindbladians.
Moreover, our approximation of multiple integrals using scaled Gaussian quadrature can be
potentially used to produce a more efficient approximation of time-ordered integrals, which
will simplify existing quantum algorithms for simulating time-dependent Hamiltonians based
on a truncated Dyson series, e.g., [18].

The open questions of this work are summarized as follows.
Can we achieve the additive complexity, i.e., O(t+polylog(1/ϵ))? This additive complexity
has been achieved for simulating Hamiltonian evolution by quantum signal processing [28]
and quantum singular transformation [14], and it is proved to be optimal [5]. As
Hamiltonian evolution is a special case of Lindblad evolution, the complexity for simulating
the latter is at least Ω(t + polylog(1/ϵ)). It is yet unknown how to generalize the
techniques of quantum signal processing and quantum singular value transformation to
superoperators.
What are the practical performances of our algorithm? For Hamiltonian simulation,
although LCU-based algorithms have a better asymptotic scaling, it was reported in [8]
that Trotter-based algorithms surprisingly perform just as well in practice. Regarding
simulating Lindblad evolution, do LCU-based algorithms, i.e., the algorithms presented
in this paper and [9], have a practical advantage compared with Trotter-based simulation
algorithms, e.g., [20, 7]? An empirical study on the performances of quantum algorithms
for simulating open quantum systems would be beneficial.
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A Simulating time-dependent Lindbladians

There exist natural generalizations to Lindblad equations. One such generalization is time-
dependent Markovian open quantum systems, which arises in the context of quantum heat
engine [1, 22, 2, 37] and controlling open quantum systems [21, 25, 39]. In this section,
we sketch how our simulation techniques can be generalized to the case of time-dependent
Lindbladians. More specifically, consider a time-dependent version of Equation (1):
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d
dtρ = L(t)(ρ) := −i[H(t), ρ] +

m∑
j=1

(
Lj(t)ρL†(t)

j − 1
2
{
Lj(t)†Lj(t), ρ

})
. (86)

Now, H(t) and Lj(t) are time-dependent. We decompose this time-dependent Lindbladian
into drift terms and jump terms as:

L(t) = LD(t) + LJ(t), and (87)

LD(t)(ρ) := J(t)ρ+ ρJ(t)†, LJ(t)(ρ) =
m∑

j=1
Lj(t)ρLj(t)†. (88)

We express the evolution driven by LD as,

ρt = V(0, t) := V (0, t)ρ0V (0, t)†, (89)

where V (s, t) satisfies the equation,

d

dt
V (s, t) = J(t)V (s, t), and V (s, s) = I. (90)

One can express the unitary V (0, t) using time-ordered evolution operators,

V (s, t) = T e
∫ t

s
J(τ)dτ

. (91)

Further, for Equation (1), the Duhamel’s principle implies a generalization of Equa-
tion (23),

ρt = V(0, t)(ρ0) +
∫ t

0
V(s, t)(LJ(s)(ρs))ds. (92)

In the Hamiltonian simulation [19], Such an operator is approximated by Dyson series,

V (0, t) =
K∑

k=0

tk

Mkk!

M−1∑
j1,j2,...,jk=0

T J(tk) · · · J(t1) + O
(

(∥J∥maxt)K+1

(K + 1)! +
t2∥J̇∥ max

M

)
, (93)

where T indicates a strict time-ordering t1 ≤ t2 ≤ · · · ≤ tk in the product. The formula here
approximates the evolution from 0 to t. This can be easily extended to another interval, due
to the observation that,

V (s, t) = T e
∫ t

s
J(τ)dτ = T e

∫ t−s

0
J(s+τ)dτ

, (94)

which leads to

V (s, t) =
K∑

k=0

tk

Mkk!

M−1∑
j1,j2,...,jk=s

T J(tk) · · · J(t1) + O
(

(∥J∥maxt)K+1

(K + 1)! +
t2∥J̇∥ max

M

)
. (95)

This suggests that, by repeatedly applying Equation (23), we can adapt our series
expansion in Equation (29) to

GK(t) := K[V (0, t)] +
K∑

k=1

∫
0≤s1≤···≤sk≤t

Fk(sk, . . . , s1) ds1 · · · dsk, (96)
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where

Fk(sk, . . . , s1)
:= K[V (sk, t)]LJ(sk)K[V (sk−1, sk)]LJ(sk−1) · · · K[V (s1, s2)]LJ(s1)K[V (0, s1)].

(97)

Then, we can approximate the integral using scaled Gaussian quadrature as in Section 4,
and implement the completely positive map using the techniques presented in Section 5.
Further note that we use a truncated Dyson series

JK = K

 K∑
k=0

tk

Mkk!

M−1∑
j1,j2,··· ,jk=s

J(tk) · · · J(t1)

 . (98)

to approximate V (s, t).
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