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Abstract
In the Min k-Cut problem, the input is a graph G and an integer k. The task is to find a partition
of the vertex set of G into k parts, while minimizing the number of edges that go between different
parts of the partition. The problem is NP-complete, and admits a simple 3n · nO(1) time dynamic
programming algorithm, which can be improved to a 2n · nO(1) time algorithm using the fast subset
convolution framework by Björklund et al. [STOC’07]. In this paper we give an algorithm for Min
k-Cut with running time O((2 − ε)n), for ε > 10−50. This is the first algorithm for Min k-Cut
with running time O(cn) for c < 2.
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1 Introduction

A k-cut of a graph G is a partition of the vertex set V (G) into k non-empty parts. The weight
of a k-cut is the total number of edges with endpoints in different parts of the partition. In
the Min k-Cut problem the input is a graph G on n vertices and m edges, and an integer k.
The task is to find a k-cut of G of minimum weight.

The problem is known to be NP-complete [23] and is extremely well studied from the
perspective of approximation algorithms [42, 47, 48], parameterized algorithms [35, 13, 15],
extremal combinatorics [33, 27, 28], and more recently parameterized approximation [26, 25,
34, 40]. For all of the above perspectives the best known algorithmic results come quite close
to asymtotically matching existing combinatorial or complexity theoretic lower bounds: On
one hand, there are several 2(1 − 1

k )-approximation algorithms that run in time polynomial
in n and k [42, 47, 48]. On the other hand, this approximation ratio cannot be improved
assuming the Small Set Expansion Hypothesis (SSE) [41]. A (1 + ϵ)-approximation algorithm
with running time (k/ϵ)O(k)nO(1) was recently obtained by Lokshtanov et al. [40], the running
time of this algorithm cannot be substantially improved without violating the Exponential
Time Hypothesis (ETH).
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90:2 Breaking the All Subsets Barrier for Min k-Cut

The fastest known algorithm with parameter k by Gupta et al. [25] runs in time
O(f(k)nk+o(1)). At the same time, an algorithm with running time O(f(k)n(1−ϵ) ω

3 +o(1)) for
ϵ > 0, where ω < 2.373 [2] is the matrix multiplication exponent, would imply an improved
algorithm for k-Clique. An O(f(k)n(1−ϵ)k+o(1)) time algorithm for ϵ > 0 for the edge
weighted version of Min k-Cut would imply an improved algorithm for Max-Weight k-
Clique. This has been conjectured not to exist [1, 3]. The algorithm of Gupta et al. [27, 28]
also proves that the number of minimum weight k-cuts in a graph is upper bounded by
O(f(k)nk+o(1)), coming very close to matching the (n/k)k lower bound obtained from the
complete k-partite graph.

While exact algorithms for Min k-Cut for small values of k have received considerable
attention since the early 1990’s [23], exact exponential time algorithms whose running time
is measured in terms of the number n of vertices only remain largely unexplored.

Naive Algorithm. A simple 3nnO(1) time algorithm can be obtained by reduction to finding
a minimum weight path on exactly k edges in the following directed acyclic graph SG: The
graph SG has a vertex for every subset X of V (G). For every pair X, Y of vertex subsets,
SG has an edge from X to Y if X is a subset of Y . The weight of this edge is the number
of edges in G with one endpoint in X and the other in Y \ X. It is easy to see that SG is
a directed acyclic graph, and that there is a one to one correspondence between k-cuts in
G and paths from ∅ to V (G) in SG using exactly k edges. The graph SG has 2n vertices
and 3n edges because every edge XY in SG corresponds to a partition of V (G) into 3 parts,
namely (X, Y \ X, V (G) \ Y ). Finding a minimum weight path using exactly k edges in a
DAG can be done in time O(k(|V (SG)| + |E(SG)|)) = 3nnO(1). Note that this beats O(nk)
time algorithms for instances where k ≥ 2n

log n .
In 2009 Björklund et al. [9] gave a general purpose approach, based on the inclusion-

exclusion principle, to solve partitioning problems in 2nnO(1) time. Their applications (see [9,
Proposition 6]) include a 2nnO(1) time algorithm for Min k-Cut. Prior to this work the
algorithm of Björklund et al. [9] has remained the state of the art.

When the best algorithm for a well-studied problem is stuck at 2n for a long time it is
prudent to ask whether it is possible to do better at all, or whether 2n really is the best possible.
On one hand, better than 2n time algorithms have been found for a number of problems,
including, among many others k-SAT [49, 46] and the satisfiability problem for a number of
circuit classes [10, 39, 38], Hamiltonian Cycle [4], k-Coloring for k ∈ {3, 4, 5, 6} [19, 57],
Bin Packing [45], Max-Cut [51], Chordal Vertex Deletion [11], Treewidth [21] and
Scheduling Partially Ordered Jobs [17]. On the other hand the failure to find better
than 2n time algorithms for the satisfiability of CNF formulas and Set Cover has led to
conjectures [14, 31] that no substantially better algorithms for these problems are possible,
driving the field of fine-grained complexity [53, 54, 52]. For problems such as Directed
Hamiltonicity, Travelling Salesman and Chromatic Number, obtaining better than
2n time algorithms are outstanding open problems [20, 44, 55, 56]. In this paper we give the
first algorithm for Min k-Cut with running time O((2 − ε)n) for ε > 0.

▶ Theorem 1. There exists an algorithm that takes as input an unweighted simple graph G

on n vertices, an integer k > 0 and returns the min k-cut of G in time O(2 − ε)n for some
ε > 0.

Observe that Theorem 1 only considers unweighted simple graphs. For Min k-Cut
on weighted graphs, previous to our work, the best algorithm was the O(2nW O(1)) time
algorithm of Björklund et al. [9]. Our naive O(3n) time algorithm described above can
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easily be made to work for weighted graphs with running time 3n(log W )O(1). As part of the
proof of Theorem 1 we make an alternative algorithm for weighted graphs that runs in time
2n+o(n)(log W )O(1).

▶ Theorem 2. There exists an algorithm that takes as input an edge-weighted graph G on n

vertices having weights on edges from [0, W ], an integer k > 0 and returns the min k-cut of
G in time 2n+o(n)(log W )O(1).

Theorem 2 is the current best algorithm for Min k-Cut for the weighted case. A natural
question that arises here is whether one can improve the running time to (2 − ϵ)n(log W )O(1).
The answer seems to be leaning towards a no, or at the very least towards a “that’s a pretty
difficult question”. From the perspective of (2 − ϵ)n time algorithms it is folklore that (Edge
Weighted) Densest Subgraph is at least as hard as Edge Weighted Clique. In the
latter problem the goal is to find a maximum weight clique in an edge weighted graph having
edge weights that may be positive, negative, or even exponential in n. The best known
algorithms for Edge Weighted Clique are 2n · (log W )O(1) and 2 ω

3 nW O(1), where W is
the maximum edge weight and ω is the matrix multiplication exponent. Edge Weighted
Clique is a basic problem - nk hardness of the problem is a conjecture that is sometimes
used as a basis for hardness in fine grained complexity [1, 3]. From here it is not too big
of a leap to conjecture that it is hard to get (2 − ϵ)n · (log W )O(1) time algorithms as well.
So it makes a lot more sense to focus on a (2 − ϵ)n · (log W )O(1) time algorithm for Edge
Weighted Clique before attempting such an algorithm for (Edge Weighted) Min k-Cut.

At a very high level our algorithm for Min k-Cut is based on a dynamic programming
algorithm operating on a pruned state space having less than 2n states. Based on how
the input instance and optimal solution look, we use different methods to prune the state
space. We show that the cases for which such pruning strategies don’t work are “Densest t-
Subgraph instances in disguise” with the optimal solution having only one non-singleton part.
Here we apply the O(2 ωn

3 nO(1)) time matrix multiplication based algorithm for Densest
t-Subgraph by Chang et.al. [12]. The final running time is just the maximum over the
running time of the algorithms we design for the various cases we consider. Our algorithm
carefully balances various tools and techniques from past work on Min k-Cut, graph theory
and the exact algorithms world. This includes DP table sparsification, Thorup tree packing,
split and list, graph sparsification, as well as the

(
p+q

p

)
combinatorial bound for the number

of connected vertex sets of size p with q neighbors.
Admittedly our algorithm chops the input space into various pieces based on the properties

of the input instance and the optimal solution and thus uses quite a handful of cases. One
might ask to which degree this amount of case work is necessary. At the very least, the same
reduction1 that showed that weighted Min k-Cut is at least as hard as weighted Densest
t-Subgraph shows that unweighted Min k-Cut is at least as hard as unweighted Densest
t-Subgraph. The only known (2 − ϵ)n time algorithm [12] for Densest t-Subgraph is
based on the Split and List method of Williams [51]. Therefore, the set of inputs to Min
k-Cut contains both “Densest t-Subgraph instances in disguise”, as well as instances
that behave very differently. For an example instances with a few large cliques with few
edges between each other behave much more like instances of classic “cut and separation” or
clustering problems, and do not appear to be solvable by Split and List based approaches.
Hence, a (2− ϵ)n algorithm for unweighted Min k-Cut either has to invent a new method for
Densest t-Subgraph (which is a very interesting research goal in and of itself) or somehow

1 To reduce from Densest t-Subgraph to Min k-Cut, add a universal vertex and set k = n + 2 − t.
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90:4 Breaking the All Subsets Barrier for Min k-Cut

separate the instances of Min k-Cut into ones that are “Densest t-Subgraph instances
in disguise” and the ones that can be handled by other means. Of course this only justifies
the split into two cases, as opposed to our rather large case tree. It is a nice open problem
whether it is possible to handle all of the non-Densest t-Subgraph instances in a more
uniform way. This would likely also result in a better running time bound.

We remark that the improvement over 2n obtained in Theorem 1 is small and holds only
for unweighted simple graphs. But importantly it shows that 2n is not the boundary for
Min k-Cut. We hope that this work will initiate a line of research on exact algorithms for
Min k-Cut just as the (2 − ϵ)-approximation by Gupta et.al [26] kick started a series of
work [25, 34, 40] on FPT approximation for Min k-Cut, or the O(kO(k)n( 2ω

3 +o(1))k) time
algorithm of Gupta et al. [25] led to a chain of improvements [37, 27, 29, 30] for nO(k) time
algorithms for the problem.

1.1 Algorithm Overview
The first substantial hurdle in designing an algorithm for Min k-Cut that beats the bound
of 2n, is that even getting an algorithm with running time 2n is non-trivial. The Min k-Cut
problem is a graph partitioning problem, and thus the first approach to design an algorithm
for Min k-Cut is to explore methods developed for such problems. All known general
methods for set partitioning problems, such as those developed by Björklund et al. [9, 5],
rely on enumerating all vertex subsets. Known approaches to speed up such methods rely on
the input graph being sufficiently sparse, such as having bounded degree or bounded average
degree [6, 7, 8, 16, 24]. As we cannot make any such assumptions here we first design an
alternative stand-alone 2n+o(n) time algorithm that does not make use of the methods for
set partitioning problems of Björklund et al. [9].

Our new 2n+o(n) time algorithm is based on the fact that Min k-Cut is solvable in time
nO(k). Note that the running time of the naive algorithm, based on a reduction to finding
a minimum weight path on exactly k edges in the state graph SG, is 3n because SG has
many edges. If we restrict ourselves to only using edges of SG that correspond to parts of
size at most O( n

log n ), then the out-degree of every vertex in the state graph drops to 2o(n),
leading to an algorithm of running time 2n+o(n), that computes for every subset S ⊆ V (G)
and integer k ≤ n the best way of partitioning S into k parts, each of size at most n

log n .
After doing this, in order to find the best partition of V (G) that may or may not use large
parts (i.e parts bigger than n

log n ), we go over all choices of S and find the best partition of
V (G) \ S using the nO(k) time algorithm of Thorup [50]. Since, all the parts in V (G) \ S are
large we only need to invoke the nO(k) time algorithm with k = O(log n). In the remainder
of this outline, when we talk about the state graph SG we will refer to the sparsified state
graph with only 2n+o(n) edges whose paths correspond to cuts with parts of size at most n

log n

To design an algorithm for Min k-Cut with running time O((2 − ε)n), for some fixed
ε > 0, we consider many special cases and design faster algorithms for each individual case.
Some of the cases are handled by standard methods, while some require interesting new
insights. In Figure 1 we provide a case tree depicting the various cases our algorithm branches
into - we suggest the reader to refer to the case tree while reading the overview to get a
complete picture. The first case we consider is when k < 0.24n. Here, k is so small that one
would expect ideas from the nO(k) time algorithm to apply, but too large to use them as
black boxes because this leads to a running time of nO(n). We use the main object behind
the deterministic nO(k) time algorithm, namely Thorup trees [50].

Thorup’s algorithm is based on a tree-packing theorem which allows to efficiently find
a tree T that crosses the optimal k-cut at most 2k − 2 times. Using T one can design a(

n
2k

)
32k time algorithm [50]. If k < 0.24n then we can pick a random edge e from the tree and
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declare that it is not part of the cut. We know that we fail (i.e. that we picked an edge from
the optimal solution) with probability at most 2k

n ≤ 0.48. However, if we succeed we can
contract the edge e, leading to an instance with n−1 vertices. Standard running-time/success
probability trade-offs now yield that the running time of our algorithm is upper bounded by
the recurrence T (n) ≤ T (n−1)

0.52 , which solves to O(1.93n). Since we aim for a deterministic
algorithm, instead of picking edges at random we directly use a pseudo-random construction
from [18] instead.

k < 0.24n

Thorup Trees

Is Biased?

S ∪M > 0.51n

L ∪M > 0.51n

or

Bias DP
using state
graph

M ≤ εn

guess and
delete M

Many (> n
log2 n

)
edges between
large components?

- All small are singletons
- Reduce to one
non-singleton case by
subgraph sampling

Guess and delete
edges between large
components.
(Now no such edges)

Is neighbor-biased?
Group X of large components
s.t ||X| − |N(X)|| > αn

Guess S and L

yes

no

yes

no

yes

no

yes

no

Contains Heavy
large component?yes

no

- Guess non-singleton
small components
- Guess L \H
- Reduce to one
non-singleton case

Is Skipping cut?
Group X of large components
|X| > θn, | ∪ comp(N(X))| < 0.49n

yes

Use enhanced
state graph

no

Guess S and L

LS

L

S

S ∪M

X

N(X)

LS

H

LS

Figure 1 Case Tree depicting the various cases our algorithm branches into. Leaf cases are
denoted by dotted brown boxes. Supporting figures are inserted to visualize the cases. The notation
∪comp(N(X)) denotes the set of all vertices in components having vertices from N(X).

From now onwards we assume that k ≥ 0.24n. Let C be a hypothetical solution, that
is, an optimum k-cut. We split the parts of the solution into small, medium, and large, as
follows. A component is said to be small if its size is at most log n, medium if its size is
greater than log n and less than n

log n , and large if its size is at least n
log n . Given a cut C

ICALP 2023



90:6 Breaking the All Subsets Barrier for Min k-Cut

of G, we denote the set of all vertices in small, medium, and large components in C by S,
M and L, respectively. The next case we deal with is that |S| is at most n( 1

2 − ϵ). Here,
our main observation is that we can make the 2n+o(n) time algorithm already run in time
O((2 − ε)n); only build the state graph, SG, for vertex sets of size at most n( 1

2 − ϵ). For
each choice of S use the

(
n
2k

)
32k time algorithm to find the best partition of V (G) \ S into

medium and large size parts. Since, k ≤ n
log n , the

(
n
2k

)
32k time algorithm runs in time

( en
n/ log n )n/ log n3O(n/ log n) = 2o(n).

The next case we handle is when |S ∪ M | ≥ n( 1
2 + ϵ). This is the first interesting case.

We use the fact that k > 0.24n to infer that there are many small parts. Indeed, observe that
at most 0.2n parts of C can have size at least 5. Thus, at least 0.04n parts of C have size at
most 4. To handle this case we extend the idea of Koivisto [36] for speeding up the algorithm
for Set Cover when all sets are small (also see the recent generalization by Nederlof [43]).
This case is similar to the Set Cover case handled by Nederlof in [43] and our algorithm is
based on ideas similar to those used in [36, 43, 45]. Nevertheless we are not able to directly
apply these results (it would not be surprising to us if the methods used in [43] do apply in
this setting).

Specifically, our algorithm proceeds as follows, we pick uniformly at random a set Q,
which has the following properties with probability close to 1.

|Q| = n
2 ± o(n),

|Q ∩ (S ∪ M)| = |S∪M |
2 ± o(n)

At least n
100 − o(n) parts P of C of size at most 10 satisfy that |P \ Q| > |P ∩ Q|.

At least n
100 − o(n) parts P of C of size at most 10 satisfy that |P \ Q| < |P ∩ Q|.

Consider now the ordered partition of parts in C in which: all parts with |P ∩ Q| > |P \ Q|
come first, ordered by size (smaller parts first). Then come all parts P with |P ∩ Q| = |P \ Q|
in any order, followed by all parts with |P ∩ Q| < |P \ Q| ordered by size (this time smaller
parts last). A simple counting argument shows that the path C ′ in the state graph that
corresponds to this ordered partition only visits sets X with the following property:

|X| ≤ n( 1
2 − ϵ

10 ) or,
|X| ≥ n( 1

2 + ϵ
10 ) or,

|X ∩ L| ≥ n
2 ( 1

2 + ϵ
100 )

Thus, to find the path C ′ we only need to build the subgraph of the state graph with vertices
of the three types above. The total number of vertices of this types is upper bounded by
O((2 − ε)n), leading to an improved algorithm.

The instances not handled by any of the previously discussed cases must satisfy: k > 0.24n,
|S| and |L| are both between n( 1

2 − ϵ) and n( 1
2 + ϵ), and |M | is at most 2ϵn. Note that we

(the algorithm designers) have control over ϵ and we can choose it as small as we like. The
price we pay is that as ϵ becomes smaller the running time of our algorithm comes closer
and closer to 2n. This prevents us from choosing ϵ = o(1). We design an algorithm with
running time O((2 − δ)n) for instances where |S| and |L| are both between n( 1

2 − τ) and
n( 1

2 +τ) and M = ∅. This implies a O((2− ϵ)n) time algorithm for the case where |M | ≤ 2ϵn,
whenever ϵ is small enough compared to δ. We can just guess M , run the nO(k) algorithm
on G[M ] and run the O((2 − δ)n) time algorithm on G − M . The total running time is at
most O(

(
n

2ϵn

)
(2o(n) + (2 − δ)n)), which beats 2n whenever ϵ is small enough.

We now turn our attention to the case when k > 0.24n, |S| and |L| are both between
n( 1

2 − ϵ) and n( 1
2 + ϵ), and M = ∅. Our initial intuition was that it should not be too hard to

extend the biasing argument from the case that |S ∪ M | ≥ n( 1
2 + ϵ) to also handle these cases,

however we were unable to do this. In fact, for a long time we were only able to handle a very
special subcase: when all small parts of the optimal solution have size precisely 1, and there
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is one large part that covers all of L. We call this special case the at most one non-singleton
case. Observe that solving this case is equivalent to solving the Densest (n − k + 1)-subgraph
problem. Thus we can solve this case in O(2 ωn

3 nO(1)) time using a known algorithm for
Densest ℓ-subgraph by Chang et al. [12]. Their algorithm is an adaptation of the celebrated
split and list algorithm of Williams [51] for the Max-Cut problem. At a glance it would
appear that this very restricted special case is not useful at all for handling the general case.
However, this special case turns out to be pivotal! Indeed, the (rather long and technical)
remainder of our argument is to reduce most of the remaining instances of the problem to
precisely this special case.

Hard Case. We now provide a high level overview of the tools and techniques used to
handle the hard case where k > 0.24n, |S| and |L| are both between n( 1

2 − ϵ) and n( 1
2 + ϵ),

and M = ∅.
First we divide further into two cases based on whether the number of cut edges between

the large components in C is greater than n
log2 n

or not. The idea behind such a split is

that there are only
(

n2

n/ log2 n

)
≤ n2n/ log2 n = 2log n· 2n

log2 n = 2o(n) subsets of edges of size at
most n

log2 n
. So if there are only a few(≤ n

log2 n
) cut edges between the large components, we

guess and remove them with a 2o(n) overhead. This reduces the few cut edges between large
components case to one that has no such cut edges. But the no cut edges between large
components case turns out to be harder than the many(> n

log2 n
) cut edges between large

components case. We next show how to handle the latter case followed by the harder one.

1.) Many cut edges between large components. To handle this case, we first observe that
all small components are singletons. Indeed, there are at most log n large parts but there
are at least n

log2 n
cut edges between them. So there exists two large parts P1 and P2 having

more than log n cut edges between them. If there exists a non-singleton small part, then
combining P1 and P2 into a single part and removing a vertex from a non-singleton small
part, which by definition has size at most log n, as a singleton gives a strictly better cut.

We use this property to reduce to disjoint instances of the at most one non-singleton case.
Here, (a) except for at most log n many vertices in L, all vertices in L have at least n

log4 n

neighbors within their large component in C – Suppose a set X of log n vertices in L have at
most n

log4n neighbors within their large component. Then, making L − X one big component
and all other vertices in X a singleton yields a better cut than C. Also, (b) the number of
cut edges between large parts can be upper bounded by n log n – If not, we can remove log n

vertices in L as singletons and merge all other vertices in L into one big component to obtain
a strictly better cut. This is because there are at most log n large parts.

Next we sample a subgraph G′ of G having V (G′) = V (G). We keep every edge in G in
G′ with probability 1

log3 n
. We use (a) and (b) to show that G′ with high probability satisfies:

(A) contains only few (≤ n
log2 n

) cut edges between large components in C and (B) except
for (log n)O(1) many vertices in L, all vertices in L still have at least n

log8 n
neighbors in G′

within their large component in C.
In G′, because of (A), with just 2o(n) overhead we guess and remove all remaining cut

edges between large components in C. Next, using (B) we show that for each large component
X in C we have a set of (log n)O(1) vertices VX ⊂ X such that X ⊆ NG′(VX). For every large
component X, we guess VX – There are at most log n large components and for each, this
guessing incurs a n(log n)O(1) overhead. Recall that all small components in C are singletons.
Next because we removed all cut edges between large components in C in G′, VX has no
neighbors in any large component apart from X in G′. Thus for every distinct pair X1, X2

ICALP 2023



90:8 Breaking the All Subsets Barrier for Min k-Cut

of large components in C, every vertex in NG′(VX1) ∩ NG′(VX2) is a singleton in C and can
be removed. Finally, in the resulting graph each VX ∪ N(VX) is a disjoint instance of the at
most one non-singleton case.

2.) No cut edges between large components. We handle this case by either reducing to
the at most one non-singleton case or by identifying S and L. In the latter case, we use S and
L to obtain a cut as good as C. We now show how to efficiently compute a cut as good as C

given S and L. To find the part of the cut induced by L, we just use the nk exact algorithm
on G[L] as there are at most log n large parts. So we shift our focus to finding the part of
the cut induced by S. For this, we use the state graph with some guessing. Recall that the
vertices of the state graph SG correspond to subsets of vertices and the edges correspond
to components. A path from ∅ to any subset S in SG can be mapped to the cut containing
all parts corresponding to the edges in P and vice versa. Thus using less than 2n time, we
precompute and store for each state X having |X| ≤ n( 1

2 − δ) the best ℓ-cut of X containing
only small components - small(X, ℓ). For this we only build SG for vertex sets of size at most
n( 1

2 − ϵ) and edges corresponding to small parts. For bounding our run times, we use that
for τ ∈ [0, 1],

(
n

τn

)
≤ 2h(τ)n, where h is the binary entropy function [32]. So precomputing

small takes time at most O(2h( 1
2 −δ)n+o(n)). Given S, we guess a union X of small parts in

C such that |S \ S′| ≤ n( 1
2 − δ). Then we do a lookup of small(S′, ℓ) ∪ small(S \ S′, k − ℓ)

to obtain the part of the cut induced by S. Thus given S and L, we can compute C in time( n
2 +ϵn

(ϵ+δ)n

)
≤ 2h(ϵ+δ)n since |S − n

2 | ≤ ϵn.
Next, to explain the subcases we divide into, we introduce some properties of the cut.

Why we need these properties will become clear when we use them to solve the subcases. We
say that C is α-neighbor-biased if there is a union X of large components whose neighborhood
size substantially differs from its size. More precisely if ||X| − |N(X)|| > αn. If there is no
such union of large components, we say C is neighbor-balanced. We call a large component
θ-heavy if it contains all vertices of L except at most θn of them. Look at the order: ϵ, δ, α, θ,
in which we defined our parameters. We set these parameters such that for each parameter,
the ones before it in the order are small enough for our ideas to work. So we start by setting
θ which is the highest, followed by α, then δ and finally ϵ. Another nice tool that we use to
recover some sets and their neighborhoods is: all p-sized subsets of vertices having a q-sized
neighborhood in a graph can be enumerated in time O(n

(
p+q

q

)
) [22, Lemma 3.2].

With that, we divide into three subcases - (i) neighbor-biased (ii) neighbor-balanced with
a heavy large component and (iii) neighbor-balanced with no heavy large component.

2.1) α-Neighbor-biased. The core idea in this case is to use the bias in size between X

and N(X) to efficiently guess L. We guess X in time
(|X|+|N(X)|

|X|
)

and recover N(X). Next
we guess L \ X in time 2n−|X|−|N(X)|. This lets us recover L and S in time

(|X|+|N(X)|
|X|

)
·

2n−|X|−|N(X)|. Given S and L we do some guessing and lookup of small to compute C in time
2h(ϵ+δ)n as discussed above. Our final runtime ends up being

(|X|+|N(X)|
|X|

)
· 2n−|X|−|N(X)| ·

2h(ϵ+δ)n. A simple calculation simplifying
(|X|+|N(X)|

|X|
)

in terms of h shows that the final
runtime is substantially less than 2n as long as α is sufficiently large as compared to ϵ and δ.

2.2) α-Neighbor-balanced with a θ-heavy large component. Set θ = 10−5. Here we
reduce to the at most one non-singleton case. Recall that the case we reduce to can be solved
in O(2 ω

3 n) time. Thus we can afford an overhead of 2(0.999− ω
3 )n to get to that case.

First we guess the set L \ H of vertices in L not in the heavy component H. This incurs a
cost of

(
n

θn

)
≤ 2h(θ)n. Then we guess the set X of vertices in non-singleton small components.

We show that |X| is actually very small and that the
(

n
|X|

)
overhead to guess X is acceptable.
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Observe that we can compute the cut induced by L \ H in 2o(n) time using the nk algorithm
and the cut induced by X in O(1) time by a lookup of small. Thus after guessing L \ H and
X we reduce to the one non-singleton case. All that remains to do now is to prove |X| is small
enough to be able to guess X. We bound |X| by 0.01n. Then

(
n

|X|
)

≤
(

n
0.01n

)
≤ 2h(0.01)n,

which is an easily affordable overhead.
Suppose |X| > 0.01n, we show that C can be improved. We call a non-singleton

component good if the heavy component is adjacent to 99% of the vertices in it. Since C

is neighbor-balanced and 0.01 >> (θ = 10−5), we can show that the heavy component is
adjacent to almost all vertices in many non-singleton components; that there are at least
n/(log n)O(1) good components. Because there are n/(log n)O(1) good components and good
components are all small, we can find an i(≤ log n) such that there are i good components of
size i. Merging i − 1 good components of size i with the heavy component and breaking one
good component of size i into singletons improves C; the extra cost to break is only 0.05

(
i
2
)

while the savings from merging is 0.99(i − 1)i.

2.3) Neighbor-balanced with no heavy large component. As a first step, we make our
state graph more robust to handle special cases. Recall that the edges of the state graph
correspond to components. We build the state graph for vertex sets of size either at most
n( 1

2 − ϵ) or at least n( 1
2 + ϵ) and edges corresponding to small parts. We then add a few

additional edges that correspond to groups of components. For each pair X, X ∪ Y of vertex
sets in the new state graph, we draw an edge from X to X ∪ Y if Y is a union of a set of
at most log n connected components in G[V \ X]. We call the constructed state graph the
enhanced state graph. Observe that the enhanced state graph has size O((2 − ε)n). Now we
demonstrate how the new edges help.
Skipping Cut. Suppose C has a union of small components S′ and union of large components
L′ such that (i) |S′| ≤ n( 1

2 − θ) (ii) |S′ ∪ L′| ≥ n( 1
2 + θ) and (iii) N(L′) ⊆ S′. Also recall

that C does not contain edges between large components. In this case, there is a path P in
the new state graph from ∅ to V corresponding to C. We decompose P into 4 portions: (1) a
path from ∅ to S′ using the edges corresponding to parts in S′, (2) a edge from S′ to S′ ∪ L′

corresponding to parts in L′, (3) a path from S′ ∪ L′ to S ∪ L′ using the edges corresponding
to parts in S \ S′ and (4) an edge from S ∪ L′ to V corresponding to parts in L \ L′. We say
C is a skipping cut if it satisfies (i), (ii) and (iii) as we can find C in the modified state graph
by skipping between states of size at most n( 1

2 − θ) and states of size at least n( 1
2 + θ) but

by avoiding states of size n
2 . In conclusion, if C is neighbor balanced with no heavy large

component but C is a skipping cut then we can find C using the enhanced state graph in
time O(2 − ϵ)n.

We now turn our attention to the final case: neighbor-balanced with no heavy large
component and not skipping. To solve this case we reduce to a special case in which S and
L can be identified efficiently using 2 n

2 time. Thus we can afford an overhead of 20.499n to
get to that case; but we incur a much smaller overhead. First we highlight the properties of
C required for the special case and show how to use them to obtain S and L. Then we show
how to guess a few vertices in S to reduce to the case we want.

Let C satisfy the following properties: (i) All large components in C can be grouped
into two parts L1 and L2 each having size nearly n

4 (ii) N(L1) ∩ N(L2) = ∅ (iii) All small
components in C are of size two and contain one vertex from N(L1) and the other from
N(L2). To find L and S, we first guess L1 in time 2|L1|+|N(L1)| and recover N(L1). We
then recover N(L2) as N(N(L1)) \ L1. Then the set of remaining vertices is L2, yielding
L = L1 ∪ L2. This in total only takes about 2|L1|+|N(L1)| ≤ 2 n

2 time since |L1| ∼ n
4 .

ICALP 2023



90:10 Breaking the All Subsets Barrier for Min k-Cut

Suppose property (i) is not satisfied, let L′ be a group of large components having size
at least θn but less than n

4 ; such a group exists because there is no heavy large component.
Then C is a skipping cut with witness L′ and S′ for some S′ ⊇ N(L′) which exists because C

is neighbor balanced. All that remains to be done is to show that we can guess some vertices
in S to satisfy properties (ii) and (iii). Let S′ be the set of vertices in small components of
size two that contain one vertex from N(L1) \ N(L2) and the other from N(L2) \ N(L1).
Also let F ′ be the family containing all such components. We guess S \ S′. One can easily
verify that removing S \ S′ guarantees properties (ii) and (iii). To conclude that such a
guess is feasible, we need to bound the size of S \ S′. We prove |S \ S′| ≤ 30(ϵ + θ + α)n.

Let F to be the family of all small components X in C that satisfy: (a) X has no vertex
from S \ N(L), (b) X has a vertex from N(L1) and a vertex from N(L2), and (c) X has no
vertex from N(L1) ∩ N(L2).
Observe that the subfamily of all components of size two in F is F ′. We use this to obtain
a bound on |S \ S′|. By definition, every component in F has at least two vertices, one in
N(L1)\N(L2) and one in N(L2)\N(L2). Thus |S|−2|F| will account for all but two vertices
in components of size three or more in F and for all vertices in S not in any component
in F . This in turn implies 3 · (|S| − 2|F|) is an upper bound for the number of vertices in
S not contained in any component of size two in F , i.e bound for |S \ S′|. We will show
|S| − 2|F| ≤ 10(ϵ + α + θ)n from which we can infer |S \ S′| ≤ 3(|S| − 2|F|) ≤ 30(ϵ + α + θ)n.

Next, for each of the properties (a) − (c), we bound the number of small components
that do not satisfy that property. Since |S| and |L| are both between n( 1

2 − ϵ) and n( 1
2 + ϵ)

and C is α-neighbor-balanced, there are at most (2ϵ + α)n vertices in S that are not
in N(L). Thus |S \ N(L)| ≤ (2ϵ + α)n. So at most (2ϵ + α)n small components do
not satisfy (a). At most (ϵ + θ/2)n small components do not have a neighbor in L1. If
not, since |S| ≤ n( 1

2 + ϵ), we can show that C is a skipping cut with witness L′ = L1
and some S′ ⊃ N(L1). The same argument holds with respect to L2. Thus, at most
(2ϵ + θ)n small components do not satisfy (b). Next, since C is α-neighbor-balanced,
|N(L)| = |N(L1)| + |N(L2)| − |N(L1) ∩ N(L2)| ≤ |L1| + αn + |L2| + αn − |N(L1) ∩ N(L2)|.
So |N(L1) ∩ N(L2)| ≤ |L| − |N(L)| + 2αn ≤ 3αn. This bounds the number of small
components not satisfying (c) by 3αn.

For an easy read, until this point we mentioned k > 0.24n. But in our algorithm, we set
k > n

4 − ϵn and need it for this case to work. Since k > n
4 − ϵn, using all the three bounds

obtained, |F| ≥ 0.25n − ϵn − (2ϵ + α)n − (2ϵ + θ)n − 3αn ≥ 0.25n − (5ϵ + 4α + θ)n. Thus,
|S| − 2|F| ≤ (0.5 + ϵ)n − 2(0.25n − (5ϵ + 4α + θ)n) ≤ (10ϵ + 8α + 2θ)n ≤ 10(ϵ + α + θ)n.
Note that the main proof is structured differently for tighter bounds with these being the
core ideas.

2 Preliminaries

Given a graph G, we use V (G) and E(G) to denote the vertex sets and edge sets, respectively.
For any subset X ⊆ V (G), let G[X] denote the induced subgraph of G on X. A subset
X ⊆ V (G) is said to be connected if G[X] is a connected graph. We denote the number
of connected components in G by cc(G). Given a path P in G, let E(P ) denote the edges
in the path. Given a subset E′ ⊆ E(G), we denote the subgraph G′ having V (G′) = V (G)
and E(G′) = E(G) \ E′ by G \ E′. For any subset X ⊆ V (G), let NG(X) denote the set of
vertices in G adjacent to some vertex in X and let NG[X] = NG(X) ∪ X. We will omit the
subscript when the graph is clear from context.
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A k-cut of a graph G is a partition of the vertex set V (G) into k non-empty parts. We
will refer to the parts of a cut as components of the cut. The weight of a k-cut is the total
number of edges with endpoints in different parts of the partition. We refer to the edges of
G having end points in different components in C as cut edges of C. We use best(X, l) to
denote a least weight l-cut of G[X]. For any two disjoint subsets A, B of V (G), we denote
the number of edges having one end point in A and the other in B by w(A, B). For every
E′ ⊆ E(G), we let w(E′) = |E′|. For every X ⊆ V (G), we let δ(X) denote the set of edges
having exactly one end point in X in G.

If G is an edge-weighted graph, then the weight of a k-cut is the sum of weights of edges
with endpoints in different parts of the partition. For any two disjoint subsets A, B of V (G),
we denote the sum of weights of edges having one end point in A and the other in B by
w(A, B). For every E′ ⊆ E(G), we denote the sum of weights of all edges in E′ by w(E′).
We consider G to be a simple unweighted graph throughout the paper except in Section
where we provide the 2n+o(n)(log W )O(1) time algorithm for edge-weighted graphs.

We also need the following lemma to enumerate connected sets of size b + 1 with at most
f neighbors in our algorithms.

▶ Lemma 3 ([22, Lemma 3.2]). All vertex sets of size b + 1 with f neighbors in a graph G

can be enumerated in time O(n
(

b+f
b

)
) by making use of polynomial space.

There exists an algorithm for Min k-Cut using Thorup trees that runs in time O(
(

n
2k

)
32k).

We express this runtime in this way because it enables us to obtain a 2o(n) algorithm for
k-cut whenever k ≤ n

log n . Given a polynomial in n, m, and log n sized family of spanning
trees that contains a Thorup tree, the algorithm for each tree guesses all possible sets of
edges of size at most 2k − 2, removes them and contracts the remaining forests into vertices
and solves k-cut on this contracted graph in time 32k.

▶ Lemma 4 (Exact Algorithm [50]). Given a graph G, positive integer k, the min k-cut of G

can be found in time O(
(

n
2k

)
32k).

The cut induced by a cut C of X on a subset Y of X is the cut obtained by taking the
intersection of each component in C with Y . We define the union of two disjoint cuts C1 of
vertex set X1 and C2 of vertex set X2 as the cut C of X1 ∪ X2 that induces cut C1 on X1
and cut C2 on X2. We define the union of a subfamily {Y0, · · · , Yz} of components of a cut
to be ∪i≤zYi, the set of all vertices in any component in the subfamily. Given a family F of
subsets of V (G), let U(F) = ∪X∈F X denote the set of all vertices in some set in F . We will
refer to a cut having a single component as just a set of vertices for convenience.

We also need the following classical single source shortest path algorithm to traverse the
state graph, SG (formally defined in later)2.

▶ Lemma 5 (Dijkstra’s Algorithm). Given an edge weighted directed graph D on n vertices
and m edges, with two special vertices s and t, we can find a minimum weight shortest path
from s to t in time O((n + m) log n).

We also need the following upper bounds on binomial coefficients for our purposes.

▶ Lemma 6 ([32]). Let n be a positive integer and α ∈ [0, 1], then
(

n
αn

)
≤ 2h(α)n, where h(α)

represents the entropy of a Bernoulli random variable with probability of success α, satisfying
h(α) = −α log α − (1 − α) log(1 − α). Further, for a positive integer k ≤ n,

(
n
k

)
≤

(
en
k

)k,
where e is the base of natural logarithms.

2 SG will be a DAG, so one can also resort to other means to find single source shortest paths.
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By truncating the Taylor series for h, given by

h(p) = 1 − 1
2 ln 2

∞∑
n=1

(1 − 2p)2n

n(2n − 1) ,

we get the following useful upper bound for h, when η is close to 1
2 .

▶ Lemma 7. For η ≤ 1/10, we have that h( 1
2 − η) ≤ 1 − η2

ln 2 .

We also need the following definition of “contraction and uncontraction of edges”.

▶ Definition 8 ((Un)Contraction of Cuts and Graphs). Given a graph G and an edge e = uv,
the graph G/uv obtained by contracting the edge uv, is the one where we delete the vertices
{u, v}, and introduce a new vertex ve and add edges from ve to every vertex in N(u) and
N(v). If w ∈ N(u) ∩ N(v), then the process will make multi-edges.

Given a cut C and an edge uv such that, u, v belongs to the same part in C, then by
contraction of cut, denoted by C/uv, we mean the cut constructed from C, where we replace
the part P in C, that contains u and v with (P \ {u, v}) ∪ {ve}. Similarly, given a vertex set
X, we define uncontraction of a cut C, denoted by C/−1X, as a cut where we replace each
vertex x ∈ X, with the set of vertices that has been contracted into x.

3 Proof of Main Theorem and Case Breakdown

In this section we provide an overview of our algorithm with a case breakdown showing how
we organize our cases throughout the paper. We first introduce some basic terminology used
in the algorithm. Then we provide a guide to the different cases with pointers to various
subroutines called in the algorithm. Finally we define a data structure that is used by most
of our subroutines and state a known result for the at most one non-singleton case.

3.1 Properties of Cuts and Special Cases
In this section we define multiple properties of cuts that will be helpful for designing our
algorithm. Let G be a graph on n vertices. We will design algorithms to find a cut with
different combinations of these properties in G and then combine them to obtain our final
algorithm. We divide the components of any cut of G into three types depending on their
size.

▶ Definition 9 (Component Types). A component is said to be small if its size is at most
log n. A component is said to be medium if its size is greater than log n and less than n

log n .
A component is said to be large if its size is at least n

log n . Given a cut C of G, we denote
the set of all vertices in small, medium and large components in C by SC , MC and LC

respectively.

This notion is useful because the number of subsets of V (G) that can be small or medium
components is at most n

(
n
n

log n

)
≤ n( en

n/ log n )n/ log n = 2o(n). Also, for any subset L of V (G)
and ℓ ≤ log n, we can find a ℓ-cut of G[L] having weight no more than a minimum weight
an ℓ-cut of G[L] containing only large components in time 2o(n) using Lemma 4. This is
because there can be at most log n large components in any cut. We will use both these
facts crucially while designing our algorithms. The above discussion leads us to define the
following definitions.



D. Lokshtanov, S. Saurabh, and V. Surianarayanan 90:13

LC

LC

H

SC LC

L1

SC LC

SC SC

SC ∪MC

N(L1)

(a) Balanced (b) Biased

(c) Heavy large component (d) Neighbour-biased

Figure 2 Visualizing cut properties (a) Balanced cut has |SC | nearly equal to |LC | and no medium
components. (b) Biased cut has one of |SC ∪ MC | or |LC ∪ MC | substantially higher. (c) Heavy
large component H contains nearly all vertices in LC . (d) Neighbor-biased cut has a union of heavy
components L1 such that ||L1| − |N(L1)|| is high.

▶ Definition 10. For a subset X ⊆ V (G) and ℓ ≤ n, small(X, ℓ) represents an ℓ-cut of G[X]
having weight no more than the weight of a least weight ℓ-cut of G[X] containing only small
and medium components.

▶ Definition 11 (Biased and Balanced Cuts). For any 0 < δ < 1
2 , a cut C is said to be δ-biased

if either |MC ∪ SC | ≥ n( 1
2 + δ) or |MC ∪ LC | ≥ n( 1

2 + δ) and it is said to be δ-balanced if it
contains no medium components, |SC | ≤ n( 1

2 + δ) and |LC | ≤ n( 1
2 + δ).

▶ Definition 12 (Properties of Large Components). We say that a cut C of G has many edges
between large components if the number of cut edges of C having both end points in LC

is greater than n
log2 n

. We say that the cut has few edges between large components if the
number of such edges is at most n

log2 n
.

Observe that we can reduce the case of few edges between large components to no edges
by guessing the set of edges between the large components with just 2o(n) guesses. This
again will prove helpful for us to get more structure.

▶ Definition 13. For any 0 ≤ α < 1, we say that a large component X in a cut C of G is
α-heavy if it has all vertices in LC except for at most αn vertices, i.e |LC \ X| ≤ αn.

▶ Definition 14. For any 0 ≤ α < 1
2 and 0 < ρ < 1

2 , we say that a α-balanced cut C is
ρ-neighbor-biased if there is a union X of large components in C having p vertices such that
N(X) ⊆ SC , |N(X)| = q and |p−q| > ρn. Otherwise the cut is said to be ρ-neighbor-balanced.
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We note that we will use the last two properties only on balanced cuts having no edges
between large components. Figure 2 captures all the properties defined above.

3.2 Steps of Our Algorithm
Armed with all the technical definitions, we now provide a guide to the different cases our
algorithm for Min k-Cut handles. First, we summarize the different parameters that we use
in our algorithm and the final value we set them to obtain our main result.

α1 = 10−20: k < n
4 − α1n and k ≥ n

4 − α1n
α2 = 10−20: α2-balanced or α2

2 -biased cut
α3 = 10−5: α3-heavy large component
α4 = 10−2: number of non singletons
α5 = 10−5: α5-neighbor biased or balanced
δ = 10−20: δ-small cut data structure

Note that our results will work for a range of these parameters but for convenience we fix
these parameters to a particular value and obtain our final result. Given an input graph G

on n vertices and integer k, let C be a hypothetical min k-cut of G. Our goal is to compute
C. We divide into cases based on the value of k and the properties of C. We use Lemmas 6
and 7 to upper bound the running time for each case by (2 − ε)n for some ε > 10−50. In
the summary, for each case we mention which one of the two Lemmas is used to bound the
running time in parenthesis.
(Case 1: k < n

4 − α1n.) In this case we apply Lemma 15 and directly solve the problem
in time 2n+o(n)

(1+4α1)α1n (Lemma 6).
▶ Lemma 15 (*). There exists an algorithm that takes as input a graph G on n vertices,
an integer k < n

4 − α1n and returns the min k-cut of G in time 2n+o(n)

(1+4α1)α1n .
(Case 2: k ≥ n

4 − α1n) Since k is large, we have the property that the number of compon-
ents of size at most 4 is at least 0.04n. We then break this case based on how efficiently
we can use this property. We use it in the case when C is α2

2 -biased and handle the
balanced case separately, leading to the subsequent subcases. This case is handled in
Lemma 16 in time 2n 1

2 (1+h( 1
2 + α2

20 ))+o(n) + 2(h(α2)+h( 1
2 −α2))n+o(n) (Lemma 6).

▶ Lemma 16 (*). There exists an algorithm that takes as input a graph G on n vertices,
an integer k ≥ n

4 − α1n and returns the min k-cut of G in time 2n 1
2 (1+h( 1

2 + α2
20 ))+o(n) +

2h(α2)+h( 1
2 −α2)n+o(n), when α1 = α2 = 10−20.

Case 2a: ( α2
2 -biased case) We completely handle this case in Lemma*3 5.3 in time

2 n
2 (1+h( 1

2 + α2
20 ))+o(n) (Lemma 7).

Case 2b: (α2-balanced case) We further divide this case based on whether the number
of edges between large components in C is large (> n

log2 n
) or not. We handle this in

Lemma* 5.4 in time 2h( 1
2 −α2)n+o(n) (Lemma 7).

Case 2b (i): (Many edges between large components) We solve this case by redu-
cing to the case of finding a cut having at most one non-singleton component. We
handle this case in Lemma* 7.1 using Lemma* 3.2 as a subroutine in time 2 ωn

3 +o(n)

(Lemma 6).

3 We use Lemma* to refer to the Lemmas stated and proved in the full version; Lemma* 5.3 is Lemma
5.3 in the full version.
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Case 2b (ii): (Few edges between large components) This is our final case and we
deal with this by designing algorithms for the following cases. This case can be
found in Lemma* 7.2 and the algorithm runs in time 2h( 1

2 −α2)n+o(n) (Lemma 7).
(a) (α5-neighbor biased) This case is handled in Lemma* 7.3. Here we use the fact

that C is neighbor-biased to find a family of partitions of V (G) containing the
partition SC∪̇LC of V (G) and use Lemma* 3.1 to find a cut having weight no
more than a α2-balanced cut C ′ with SC = S′

C and LC = L′
C . We handle this

case in time 2h( 1
2 −α2)n+o(n) (Lemma 7).

(b) (α5-neighbor balanced and α3-heavy component) In this case we argue that
there are not too many non-singleton components and solve the case by reducing
to the case of finding a cut having at most one non-singleton component. We
handle this case in Lemma* 7.4 using Lemma* 3.2 as a subroutine in time
2(h(α3)+h(α4)+ ω

3 )n+o(n) (Lemma 6).
(c) (α5-neighbor balanced and no α3-heavy component) We handle this case

completely in Lemma* 7.5. Here we first run Lemma* 4.2 that involves using
the state graph. Then similar to Case A, here we find a family of partitions of
V (G) containing the partition SC∪̇LC of V (G) and use Lemma* 3.1 on it. This
case runs in time 2h( 1

2 −α2)n+o(n) (Lemma 7).

A case tree depicting the various cases can be found in Figure 1. We now provide the
proof of our main Theorem assuming Lemma 15(k < n

4 − α1n) and Lemma 16(k ≥ n
4 − α1n).

Proof of Theorem 1. If k < n
4 −α1n we run Lemma 15 with G and k else we run Lemma 16

with G and k and return the obtained k-cut. The correctness follows from the corresponding
Lemmas. To bound the running time of the algorithm, we show that the running time
of each subroutine mentioned above in the summary is bounded by O(2 − ε)n, for some
ε > 10−50. To do this, we set the values of the parameters as summarized in the beginning
of this subsection and use Lemma 7 and 6 as mentioned in the summary. ◀

4 Conclusion

In this paper we designed the first algorithm for Min k-Cut running in time better than 2n.
In particular, we designed an algorithm with running time O((2 − ε)n), for ε > 10−50. We
hope that our methods will be useful to design O(cn) time algorithms for c < 2 for other
graph partitioning problems for which progress has stopped at 2n, including Cutwidth,
Edge Multiway Cut, and more generally Edge Multicut on undirected graphs. Finally,
it remains an interesting open problem to obtain a O(cn) time algorithm for Min k-Cut for
a constant c < 2 which is bounded away from 2 by more than a rounding error.
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