37th European Conference on
Object-Oriented Programming

ECOOP 2023, July 17-21, 2023, Seattle, Washington,

United States

Edited by
Karim Ali
Guido Salvaneschi

\\v LIPICS

LIPlcs — Vol. 263 — ECOOP 2023

€CCOP

www.dagstuhl.de/lipics

Editors

Karim Ali
University of Alberta, Canada
karim.ali@ualberta.ca

Guido Salvaneschi
University of St. Gallen, Switzerland
guido.salvaneschi@unisg.ch

ACM Classification 2012
Software and its engineering

ISBN 978-3-95977-281-5

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-281-5.

Publication date
July, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.ECOOP.2023.0

ISBN 978-3-95977-281-5 ISSN 1868-8969 https: / /www.dagstuhl.de/lipics

https://orcid.org/0000-0002-5516-1376
mailto:karim.ali@ualberta.ca
https://orcid.org/0000-0002-9324-8894
mailto:guido.salvaneschi@unisg.ch
https://www.dagstuhl.de/dagpub/978-3-95977-281-5
https://www.dagstuhl.de/dagpub/978-3-95977-281-5
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ECOOP.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-281-5
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, 1T)
Christel Baier (TU Dresden, DE)

Mikolaj Bojanczyk (University of Warsaw, PL)

Roberto Di Cosmo (Inria and Université de Paris, FR)

Faith Ellen (University of Toronto, CA)

Javier Esparza (TU Miinchen, DE)

Daniel Kral' (Masaryk University - Brno, CZ)

Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)

Anca Muscholl (University of Bordeaux, FR)

Chih-Hao Luke Ong (University of Oxford, GB and Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)

Eva Rotenberg (Technical University of Denmark, Lyngby, DK)

Raimund Seidel (Universitat des Saarlandes, Saarbriicken, DE and Schloss Dagstuhl — Leibniz-Zentrum
fur Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ECOOP 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Message from the Program Chairs
Karim Ali and Guido Salvaneschi 0:ix

Message from the Artifact Evaluation Chairs
Stefan Winter and Hernan Luis Ponce de Leoncciiiiiiiiiiaii.. 0:xi

Foreword by the President of AITO

Eric Jul ... 0:xiii

List of Authors
... 0:xv

Regular Papers
Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou 1:1-1:30
Nested Pure Operation-Based CRDTs

Jim Bauwens and Elisa Gonzalez Boix 2:1-2:26
Multi-Graded Featherweight Java

Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca 3:1-3:27
Hooglex: Constants and A-abstractions in Petri-net-based Synthesis using
Symbolic Execution

Henrigue Botelho Guerra, Jogo F. Ferreira, and Jogo Costa Seco 4:1-4:28
Modular Abstract Definitional Interpreters for WebAssembly

Katharina Brandl, Sebastian Erdweg, Sven Keidel, and Nils Hansen 5:1-5:28
Dynamically Updatable Multiparty Session Protocols: Generating Concurrent
Go Code from Unbounded Protocols

David Castro-Perez and Nobuko Yoshida 6:1-6:30
Modular Compilation for Higher-Order Functional Choreographies

Luis Cruz-Filipe, Eva Graversen, Lovro Lugovié, Fabrizio Montesi, and

Marco PereSSOtl 7:1-7:37
Wiring Circuits Is Easy as {0,1,w}, or Is It...

Jan de Muijnck-Hughes and Wim Vanderbauwhedecccciiiiiia.. 8:1-8:28
VeriFx: Correct Replicated Data Types for the Masses

Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix 9:1-9:45
On Leveraging Tests to Infer Nullable Annotations

Jens Dietrich, David J. Pearce, and Mahin Chandramohan 10:1-10:25
super-Charging Object-Oriented Programming Through Precise Typing of Open
Recursion

Andong Fan and Lionel Parreuso 11:1-11:28

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

LoRe: A Programming Model for Verifiably Safe Local-First Software
(Extended Abstract)
Julian Haas, Ragnar Mogk, Elena Yanakieva, Annette Bieniusa, and
Mira Mezini e e e e e e e 12:1-12:15

Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises
Feiyang Jin, Lechen Yu, Tiago Cogumbreiro, Jun Shirako, and Vivek Sarkar 13:1-13:30

Algebraic Replicated Data Types: Programming Secure Local-First Software
Christian Kuessner, Ragnar Mogk, Anna-Katharina Wickert, and Mira Mezini ... 14:1-14:33

Behavioural Types for Local-First Software
Roland Kuhn, Herndan Melgratti, and Emilio Tuosto, 15:1-15:28

Constraint Based Compiler Optimization for Energy Harvesting Applications
Yannan Li and Chao Wang e 16:1-16:29

Restrictable Variants: A Simple and Practical Alternative to Extensible Variants
Magnus Madsen, Jonathan Lindegaard Starup, and Matthew Lutze 17:1-17:27

Programming with Purity Reflection: Peaceful Coexistence of Effects, Laziness,
and Parallelism
Magnus Madsen and Jaco van de Polo .. 18:1-18:27

Exact Separation Logic: Towards Bridging the Gap Between Verification and
Bug-Finding
Petar Maksimovié, Caroline Cronjager, Andreas Léow, Julian Sutherland, and

Philippa Gardner 19:1-19:27
Morpheus: Automated Safety Verification of Data-Dependent Parser Combinator
Programs

Ashish Mishra and Suresh Jagannathan i, 20:1-20:27

Automata Learning with an Incomplete Teacher
Mark Moeller, Thomas Wiener, Alaia Solko-Breslin, Caleb Koch, Nate Foster,
and Alexandra Siluao 21:1-21:30

Modular Verification of State-Based CRDTs in Separation Logic
Abel Nieto, Arnaud Daby-Seesaram, Léon Gondelman, Amin Timany,
and Lars Birkedal 22:1-22:27

Information Flow Analysis for Detecting Non-Determinism in Blockchain
Luca Olivieri, Luca Negrini, Vincenzo Arceri, Fabio Tagliaferro, Pietro Ferrara,
Agostino Cortesi, and Fausto Spotoo oo, 23:1-23:25

Toward Tool-Independent Summaries for Symbolic Execution
Frederico Ramos, Nuno Sabino, Pedro Addo, David A. Naumann, and
JOSE Fragoso Santos 24:1-24:29

A Direct-Style Effect Notation for Sequential and Parallel Programs
David Richter, Timon Bdhler, Pascal Weisenburger, and Mira Mezini 25:1-25:22

SINATRA: Stateful Instantaneous Updates for Commercial Browsers Through
Multi-Version eXecution
Ugnius Rumsevicius, Siddhanth Venkateshwaran, Ellen Kidane, and Luis Pina ... 26:1-26:29

Contents

An Efficient Vectorized Hash Table for Batch Computations

Hesam Shahrokhi and Amir Shatkhha

Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

Amir Shaikhha, Mahdi Ghorbani, and Hesam Shahrokhi

Semantics for Noninterference with Interaction Trees
Lucas Silver, Paul He, Ethan Cecchetti, Andrew K. Hirsch, and

Steve ZAancewic

Interaction Tree Specifications: A Framework for Specifying Recursive, Effectful
Computations That Supports Auto-Active Verification

Lucas Silver, Eddy Westbrook, Matthew Yacavone, and Ryan Scott

Breaking the Negative Cycle: Exploring the Design Space of Stratification for
First-Class Datalog Constraints

Jonathan Lindegaard Starup, Magnus Madsen, and Ondrej Lhotdk

Asynchronous Multiparty Session Type Implementability is Decidable — Lessons
Learned from Message Sequence Charts

Feliz Stutz ...

ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

Feliz Suchert, Lisza Zeidler, Jeronimo Castrillon, and Sebastian Ertel

Dependent Merges and First-Class Environments

Jinhao Tan and Bruno C. d. S. Oliveira i

Synthesis-Aided Crash Consistency for Storage Systems

Jacob Van Geffen, Xi Wang, Emina Torlak, and James Bornholt

Synthesizing Conjunctive Queries for Code Search

Chengpeng Wang, Peisen Yao, Wensheng Tang, Gang Fan, and Charles Zhang ...

Do Machine Learning Models Produce TypeScript Types That Type Check?

Ming-Ho Yee and Arjun GURGoooo i

Experience Papers

Building Code Transpilers for Domain-Specific Languages Using Program
Synthesis

Sahil Bhatia, Sumer Kohli, Sanjit A. Seshia, and Alvin Cheung

Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

Sarah Harris, Simon Cooksey, Michael Vollmer, and Mark Batty

On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

Jodo Mota, Marco Giunti, and Anténio Ravara,

Pearls/Brave New Ideas

The Dolorem Pattern: Growing a Language Through Compile-Time Function
Execution

Simon Henniger and Nada Amin e

0:vii

27:1-27:27

28:1-28:30

29:1-29:29

30:1-30:26

31:1-31:28

32:1-32:31

33:1-33:39

34:1-34:32

35:1-35:26

36:1-36:30

37:1-37:28

38:1-38:30

39:1-39:27

40:1-40:29

41:1-41:27

ECOOP 2023

0:viii Contents

Synthetic Behavioural Typing: Sound, Regular Multiparty Sessions via Implicit
Local Types
Sung-Shik Jongmans and Francisco Ferreiracccciiiiiiiiiiiiiian.. 42:1-42:30

On the Rise of Modern Software Documentation
Marco Raglianti, Csaba Nagy, Roberto Minelli, Bin Lin, and Michele Lanza 43:1-43:24

Python Type Hints Are Turing Complete
OFi ROth o 44:1-44:15

Message from the Program Chairs

Started in 1987, ECOOP is Europe’s oldest programming conference, welcoming papers on all
practical and theoretical investigations of programming languages, systems and environment
providing innovative solutions to real problems as well as evaluations of existing solutions.
Papers were submitted to one of four categories: Research for papers that advance the
state of the art in programming; Reproduction for empirical evaluations that reconstructs a
published experiment in a different context in order to validate the results of that earlier
work; Fzperience for applications of known techniques in practice; and Pearl for papers that
either explain a known idea in an elegant way or unconventional papers introducing ideas
that may take some time to substantiate. ECOOP is a selective venue, with acceptance,
by tradition, capped at 25% of all submissions and re-submissions. The chairs thank the
Program Committee: B. Hermann, C. Omar, E. Séderberg, G. Agha, R. Baghdadi, S. Chiba,
A. Craik, W. De Meuter, A. F. Donaldson, S. J. Gay, J. Gibbons, T. Hosking, A. Igarashi,
M. Lujan, A. Milanova, A. Mgller, K. Ostermann, T. Petricek, A. Potanin, T. Schrijvers, M.
Serrano, T. Sotiropoulos, P. Thiemann, E. Tosch, V. T. Vasconcelos, Y. Wang, S. Wehr, T.
Wrigstad, and C. Zhang. This year, we continued a number of innovations that were first
introduced in 2022:

Multiple rounds. ECOOP has two main rounds of submissions per year (Dec 1 and
Mar 1). Each round supports both minor and major revisions. Major revisions are
handled in the next round (either the same year or the next) by the same reviewers.
No format or length restrictions. In order reduce friction for authors, papers can
come in any format and at any length. This applies to submissions. Final versions must
abide by the publisher’s requirements.

Artifacts and Papers together. Every submitted paper can be accompanied with an
artifact, submitted a few days after the paper. Both submissions are evaluated in parallel
by overlapping committees as members of the artifact evaluation committee were invited
to served on the conference review committee.

Journal First/Last. Papers can be submitted either one of three associated journals
and be invited to present at the meeting. Furthermore, some accepted papers can be
forward to journals.

Overall, we found that most of these innovations to have worked well. We hope that
future chairs will continue to experiment with more, and perhaps, different innovations that
will enrich the ECOOP community further.

Karim Ali Guido Salvaneschi
Program Committee Co-chair Program Committee Co-chair
University of Alberta University of St. Gallen

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Message from the Artifact Evaluation Chairs

ECOOP has a long-standing tradition of offering artifact evaluation dating back to 2013.
Following the process introduced in 2022, the artifact evaluation involved every single paper
submission to ECOOP 2023, rather than just accepted papers, and happened in parallel with
the paper review process. Besides providing feedback on the artifacts irrespective of paper
acceptance, evaluation results were made available to the technical PC. Artifact submissions
could, thus, provide more insights on the technical contributions described in the papers and
help to improve the overall review process.

To handle the high review load that such a process entails, we recruited a large artifact
evaluation committee that included a total of 51 artifact reviewers. The submission deadlines
for artifacts were just 10 days after the paper deadlines for both submission rounds. We
received a total of 45 submissions (20 for R1 and 25 for R2). After a kick-the tires review
and author response phase, during which authors had the opportunity to clarify or address
technical issues with their submissions, each submitted artifact was reviewed by three
committee members, leading to an overall review load of around 3 artifact reviews per
committee member.

Following the positive experience with adopting ACM’s artifact badges for ECOOP 2021
and 2022, we adopted the same badging policies for ECOOP 2023. The artifact evaluation
committee positively evaluated 38 submissions (15/23 for R1/R2) as functional or reusable,
out of which 22 belong to papers to appear in the technical program of ECOOP 2023. 4
submitted artifacts that did not pass the bar for the functional and reusable badges in R1
were found eligible for the available badge, 2 of which are associated with papers accepted
for presentation at ECOOP 2023.

In order to streamline the artifact review process and to decouple artifact from paper
review aspects, we asked authors to submit documentation of explicit claims in a pre-specified
format that the artifact evaluation committee checked the artifacts against. At the same
time, the PC could assess the importance of these claims for the submitted papers as a frame
of reference for the strength of support for the paper that an artifact can provide. This
separation greatly facilitated the artifact evaluation committee’s discussions regarding which
badges to award.

The smooth and thorough artifact evaluation process would have not been possible
without the members of the artifact evaluation committee, who handled the artifact review
workload and contributed to the technical PC discussions with great dedication. We would
like to thank them for their valuable work and the inspiring discussions. We would also like
to thank the ECOOP 2023 program committee chairs Karim Ali and Guido Salvaneschi
for the pleasant and productive interactions over the coordination of the paper and artifact
review processes.

Hernéan Ponce de Le6n Stefan Winter
Artifact Evaluation Co-chair Artifact Evaluation Co-chair

Huawei Dresden Research Center — Ludwig-Mazimilians- Universitdt Minchen

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Foreword by the President of AITO

Welcome to ECOOP 2023, which this time will be held in the “well-known European city of
Seattle”. Why outside Europe? Well, ECOOP traditionally has had many contributors and
participants from other parts of the world and so ECOOP every once in a while has been held
outside Europe. In 1990, ECOOP was co-located with OOPSLA in Ottawa, Canada, and in
2012, ECOOP was co-located with PLDI, LCTES, and ISMM in Beijing, China. This year,
we are co-locating with ISSTA at the University of Washington main campus beautifully
located by Lake Washington and with splendid views of the Cascade Mountains and Mount
Rainier. The ECOOP 2023 team along with the ISSTA team has done a great job of putting
together a great program for the conferences — a huge thanks to them and to all others that
have contributed.

I am looking forward to two excellent conferences with lots of great papers, personal
interaction, excellent keynotes, including talks by the two 2023 Dahl-Nygaard Prize Winners.

Enjoy the conference, and Seattle.

Eric Jul
AITO President

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Authors

Pedro Adao (24)

Instituto Superior Técnico,

University of Lisbon, Portugal;
Institute of Telecommunications,
Campus de Santiago, Aveiro, Portugal

Nada Amin (41)
Harvard University, Cambridge, MA, USA

Vincenzo Arceri (23)
University of Parma, Italy

Adam D. Barwell (1)
University of St. Andrews, UK;
University of Oxford, UK

Mark Batty (39)
University of Kent, Canterbury, UK

Jim Bauwens (2)
Software Languages Lab,
Vrije Universiteit Brussel, Belgium

Sahil Bhatia (38)
University of California, Berkeley, CA, USA

Riccardo Bianchini 3)
DIBRIS, University of Genova, Italy

Annette Bieniusa (12)
University of Kaiserslautern-Landau, Germany

Lars Birkedal (22)

Aarhus University, Denmark

James Bornholt (35)
The University of Texas at Austin, TX, USA;
Amazon Web Services, Seattle, WA, USA

Henrique Botelho Guerra (4)
INESC-ID and IST, University of Lisbon,
Portugal

Katharina Brandl (5)
Johannes Gutenberg-Universitat Mainz,
Germany

Timon Béhler (25)
Technische Universitat Damstadt, Germany

Jeronimo Castrillon (33)

TU Dresden, Germany

David Castro-Perez
University of Kent, UK

Ethan Cecchetti (29)
University of Maryland, College Park, MD, USA;
University of Wisconsin — Madison, WI, USA

(6)

37th European Conference on Object-Oriented Programming (ECOOP 2023).

Mahin Chandramohan (10)

Oracle Labs, Brisbane, Australia

Alvin Cheung (38)
University of California, Berkeley, CA, USA

Tiago Cogumbreiro (13)
College of Science and Mathematics, University
of Massachusetts Boston, MA, USA

Simon Cooksey (39)
University of Kent, Canterbury, UK

Agostino Cortesi (23)
Ca’ Foscari University of Venice, Italy

Jodo Costa Seco (4)
NOVA LINCS, NOVA School of Science and
Technology, Caparica, Portugal

Caroline Cronjiger (19)
Ruhr-Universitdt Bochum, Germany

Luis Cruz-Filipe (7)

Department of Mathematics and Computer
Science, University of Southern Denmark,
Odense, Denmark

Arnaud Daby-Seesaram
ENS Paris-Saclay, France

Francesco Dagnino (3)
DIBRIS, University of Genova, Italy

Jan de Muijnck-Hughes (8)
University of Glasgow, UK

Kevin De Porre (9)
Vrije Universiteit Brussel, Belgium

(22)

Jens Dietrich (10)
Victoria University of Wellington, New Zealand

Sebastian Erdweg (5)
Johannes Gutenberg-Universitdt Mainz,
Germany

Sebastian Ertel (33)
Barkhausen Institut, Dresden, Germany

Andong Fan (11)
The Hong Kong University of Science and
Technology (HKUST), Hong Kong, China

Gang Fan (36)
Ant Group, Shenzhen, China

Pietro Ferrara (23)
Ca’ Foscari University of Venice, Italy

Editors: Karim Ali and Guido Salvaneschi

\\v Leibniz International Proceedings in Informatics
LIPICS

Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4049-1954
https://doi.org/10.4230/LIPIcs.ECOOP.2023.24
https://doi.org/10.4230/LIPIcs.ECOOP.2023.41
https://orcid.org/0000-0002-5150-0393
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://orcid.org/0000-0003-1236-7160
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1
https://doi.org/10.4230/LIPIcs.ECOOP.2023.39
https://doi.org/10.4230/LIPIcs.ECOOP.2023.2
https://doi.org/10.4230/LIPIcs.ECOOP.2023.38
https://orcid.org/0000-0003-0491-7652
https://doi.org/10.4230/LIPIcs.ECOOP.2023.3
https://orcid.org/0000-0002-1654-6118
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://orcid.org/0000-0003-1320-0098
https://doi.org/10.4230/LIPIcs.ECOOP.2023.22
https://orcid.org/0000-0002-3258-3226
https://doi.org/10.4230/LIPIcs.ECOOP.2023.35
https://orcid.org/0009-0002-5906-3033
https://doi.org/10.4230/LIPIcs.ECOOP.2023.4
https://doi.org/10.4230/LIPIcs.ECOOP.2023.5
https://orcid.org/0009-0002-9964-7367
https://doi.org/10.4230/LIPIcs.ECOOP.2023.25
https://orcid.org/0000-0002-5007-445X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.33
https://orcid.org/0000-0002-6939-4189
https://doi.org/10.4230/LIPIcs.ECOOP.2023.6
https://orcid.org/0000-0001-7900-8328
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/LIPIcs.ECOOP.2023.10
https://doi.org/10.4230/LIPIcs.ECOOP.2023.38
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://orcid.org/0000-0001-9365-9717
https://doi.org/10.4230/LIPIcs.ECOOP.2023.39
https://orcid.org/0000-0002-0946-5440
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://orcid.org/0000-0002-2840-3966
https://doi.org/10.4230/LIPIcs.ECOOP.2023.4
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://orcid.org/0000-0002-7866-7484
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://orcid.org/0000-0002-0226-4638
https://doi.org/10.4230/LIPIcs.ECOOP.2023.22
https://orcid.org/0000-0003-3599-3535
https://doi.org/10.4230/LIPIcs.ECOOP.2023.3
https://orcid.org/0000-0003-2185-8543
https://doi.org/10.4230/LIPIcs.ECOOP.2023.8
https://orcid.org/0000-0001-5469-1001
https://doi.org/10.4230/LIPIcs.ECOOP.2023.9
https://orcid.org/0000-0001-9019-6550
https://doi.org/10.4230/LIPIcs.ECOOP.2023.10
https://doi.org/10.4230/LIPIcs.ECOOP.2023.5
https://orcid.org/0009-0000-3953-9810
https://doi.org/10.4230/LIPIcs.ECOOP.2023.33
https://orcid.org/0000-0003-2124-9625
https://doi.org/10.4230/LIPIcs.ECOOP.2023.11
https://orcid.org/0000-0002-8633-6036
https://doi.org/10.4230/LIPIcs.ECOOP.2023.36
https://orcid.org/0000-0002-4678-933X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi

Authors

Carla Ferreira (9)
NOVA School of Science and Technology,
Caparica, Portugal

Francisco Ferreira (42)
Department of Computer Science, Royal
Holloway, University of London, UK

Joao F. Ferreira (4)
INESC-ID and IST, University of Lisbon,
Portugal

Nate Foster (21)
Cornell University, Ithaca, NY, USA

José Fragoso Santos (24)
Instituto Superior Técnico,
University of Lisbon, Portugal;
INESC-ID Lisbon, Portugal

Philippa Gardner (19)
Imperial College London, UK

Mahdi Ghorbani (28)
University of Edinburgh, UK

Paola Giannini (3)
DiSSTE, University of Eastern Piedmont,
Vercelli, Italy

Marco Giunti (40)

NOVA LINCS and NOVA School of Science and
Technology, Caparica, Portugal;

School of Computing, Engineering & Digital
Technologies, Teesside University,
Middlesbrough, UK

Léon Gondelman (22)
Aarhus University, Denmark

Elisa Gonzalez Boix (2, 9)
Software Languages Lab,
Vrije Universiteit Brussel, Belgium

Eva Graversen (7)

Department of Mathematics and Computer
Science, University of Southern Denmark,
Odense, Denmark

Arjun Guha (37)
Northeastern University, Boston, MA, USA;
Roblox Research, San Mateo, CA, USA

Julian Haas (12)
Technische Universitdt Darmstadt, Germany

Nils Hansen (5)
Johannes Gutenberg-Universitdt Mainz,
Germany

Sarah Harris (39)
University of Kent, Canterbury, UK

Paul He (29)
University of Pennsylvania,
Philadelphia, PA, USA

Simon Henniger (41)
Technische Universitdt Miinchen, Germany

Andrew K. Hirsch (29)
State University of New York at Buffalo,
NY, USA

Ping Hou (1)
University of Oxford, UK

Suresh Jagannathan (20)
Department of Computer Science,
Purdue University, West Lafayette, IN, USA

Feiyang Jin (13)
College of Computing, Georgia Institute of
Technology, Atlanta, GA, USA

Sung-Shik Jongmans (42)

Department of Computer Science, Open
University, Heerlen, The Netherlands;
Centrum Wiskunde & Informatica (CWI),
NWO-I, Amsterdam, The Netherlands

Sven Keidel (5)
TU Darmstadt, Germany

Ellen Kidane (26)
University of Illinois at Chicago, 1L, USA

Caleb Koch (21)
Stanford University, CA, USA

Sumer Kohli (38)
University of California, Berkeley, CA, USA

Christian Kuessner (14)
Technische Universitat Darmstadt, Germany

Roland Kuhn (15)
Actyx AG, Kassel, Germany

Michele Lanza (43)
REVEAL @ Software Institute — USI, Lugano,
Switzerland

Ondrej Lhotédk (31)
David R. Cheriton School of Computer Science,
University of Waterloo, Canada

Yannan Li (16)
University of Southern California, Los Angeles,
CA, USA

Bin Lin (43)
Radboud University, Nijmegen, The Netherlands

https://orcid.org/0000-0003-3680-7634
https://doi.org/10.4230/LIPIcs.ECOOP.2023.9
https://doi.org/10.4230/LIPIcs.ECOOP.2023.42
https://orcid.org/0000-0002-6612-9013
https://doi.org/10.4230/LIPIcs.ECOOP.2023.4
https://orcid.org/0000-0002-6557-684X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.21
https://orcid.org/0000-0001-5077-300X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.24
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://doi.org/10.4230/LIPIcs.ECOOP.2023.28
https://orcid.org/0000-0003-2239-9529
https://doi.org/10.4230/LIPIcs.ECOOP.2023.3
https://orcid.org/0000-0002-7582-0308
https://doi.org/10.4230/LIPIcs.ECOOP.2023.40
https://orcid.org/0000-0001-8262-6397
https://doi.org/10.4230/LIPIcs.ECOOP.2023.22
https://doi.org/10.4230/LIPIcs.ECOOP.2023.2
https://doi.org/10.4230/LIPIcs.ECOOP.2023.9
https://orcid.org/0000-0002-9430-4907
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://orcid.org/0000-0002-7493-3271
https://doi.org/10.4230/LIPIcs.ECOOP.2023.37
https://orcid.org/0000-0001-9959-5099
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://doi.org/10.4230/LIPIcs.ECOOP.2023.5
https://doi.org/10.4230/LIPIcs.ECOOP.2023.39
https://orcid.org/0000-0002-6305-4335
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/LIPIcs.ECOOP.2023.41
https://orcid.org/0000-0003-2518-614X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://orcid.org/0000-0001-6899-9971
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1
https://orcid.org/0000-0001-6871-2424
https://doi.org/10.4230/LIPIcs.ECOOP.2023.20
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.42
https://doi.org/10.4230/LIPIcs.ECOOP.2023.5
https://doi.org/10.4230/LIPIcs.ECOOP.2023.26
https://doi.org/10.4230/LIPIcs.ECOOP.2023.21
https://doi.org/10.4230/LIPIcs.ECOOP.2023.38
https://orcid.org/0009-0004-0317-2649
https://doi.org/10.4230/LIPIcs.ECOOP.2023.14
https://orcid.org/0000-0003-1582-6238
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://orcid.org/0000-0003-4391-0197
https://doi.org/10.4230/LIPIcs.ECOOP.2023.43
https://doi.org/10.4230/LIPIcs.ECOOP.2023.31
https://doi.org/10.4230/LIPIcs.ECOOP.2023.16
https://orcid.org/0000-0001-6307-8460
https://doi.org/10.4230/LIPIcs.ECOOP.2023.43

Authors

Lovro Lugovié¢ (7

Department of Mathematics and Computer
Science, University of Southern Denmark,
Odense, Denmark

Matthew Lutze (17)
Department of Computer Science,
Aarhus University, Denmark

Andreas Loow (19)
Imperial College London, UK

Magnus Madsen (17, 18, 31)
Department of Computer Science,
Aarhus University, Denmark

Petar Maksimovi¢ (19)
Imperial College London, UK;
Runtime Verification Inc., Urbana, IL, USA

Hernan Melgratti (15)
University of Buenos Aires, Argentina;
Conicet, Buenos Aires, Argentina

Mira Mezini (12, 14, 25)
hessian.Al, Darmstadt, Germany;
Technische Universitdt Darmstadt, Germany

Roberto Minelli (43)
REVEAL @ Software Institute — USI, Lugano,
Switzerland

Ashish Mishra (20)
Department of Computer Science,
Purdue University, West Lafayette, IN, USA

Mark Moeller (21)
Cornell University, Ithaca, NY, USA

Ragnar Mogk (12, 14)

Technische Universitdt Darmstadt, Germany

Fabrizio Montesi (7)

Department of Mathematics and Computer
Science, University of Southern Denmark,
Odense, Denmark

Joao Mota (40)
NOVA LINCS and NOVA School of Science and
Technology, Caparica, Portugal

Csaba Nagy (43)
REVEAL @ Software Institute — USI, Lugano,
Switzerland

David A. Naumann (24)
Stevens Institute of Technology,
Hoboken, NJ, USA

Luca Negrini (23)
Corvallis Srl, Padova, Italy

0:xvii

Abel Nieto (22)

Aarhus University, Denmark

Bruno C. d. S. Oliveira (34)
The University of Hong Kong, China

Luca Olivieri (23)
University of Verona, Italy;
Corvallis Srl, Padova, Italy

Lionel Parreaux (11)
The Hong Kong University of Science and
Technology (HKUST), Hong Kong, China

David J. Pearce (10)
ConsenSys, Wellington, New Zealand

Marco Peressotti (7)

Department of Mathematics and Computer
Science, University of Southern Denmark,
Odense, Denmark

Luis Pina (26)
University of Illinois at Chicago, IL, USA

Marco Raglianti (43)
REVEAL @ Software Institute — USI, Lugano,
Switzerland

Frederico Ramos (24)
Instituto Superior Técnico, University of Lisbon,
Portugal; INESC-ID Lisbon, Portugal

Antoénio Ravara (40)
NOVA LINCS and NOVA School of Science and
Technology, Caparica, Portugal

David Richter (25)

Technische Universitat Damstadt, Germany

Ori Roth (44)
Department of Computer Science,
Technion, Haifa, Israel

Ugnius Rumsevicius (26)
University of Illinois at Chicago, IL, USA

Nuno Sabino (24)

Instituto Superior Técnico,

University of Lisbon, Portugal;
Carnegie Mellon University,
Pittsburgh, PA, USA;

Institute of Telecommunications,
Campus de Santiago, Aveiro, Portugal

Vivek Sarkar (13)
College of Computing, Georgia Institute of
Technology, Atlanta, GA, USA

Ryan Scott (30)
Galois, Inc., Portland, OR, USA

ECOOP 2023

https://orcid.org/0000-0001-9684-9567
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://orcid.org/0000-0002-2904-5099
https://doi.org/10.4230/LIPIcs.ECOOP.2023.17
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://orcid.org/0000-0002-7510-8724
https://doi.org/10.4230/LIPIcs.ECOOP.2023.17
https://doi.org/10.4230/LIPIcs.ECOOP.2023.18
https://doi.org/10.4230/LIPIcs.ECOOP.2023.31
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://orcid.org/0000-0003-0760-0618
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://doi.org/10.4230/LIPIcs.ECOOP.2023.14
https://doi.org/10.4230/LIPIcs.ECOOP.2023.25
https://orcid.org/0000-0002-1549-6489
https://doi.org/10.4230/LIPIcs.ECOOP.2023.43
https://orcid.org/0000-0002-0513-3107
https://doi.org/10.4230/LIPIcs.ECOOP.2023.20
https://orcid.org/0009-0002-9512-565X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.21
https://orcid.org/0000-0003-4583-1791
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://doi.org/10.4230/LIPIcs.ECOOP.2023.14
https://orcid.org/0000-0003-4666-901X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://orcid.org/0000-0003-3182-2245
https://doi.org/10.4230/LIPIcs.ECOOP.2023.40
https://orcid.org/0000-0001-8109-3293
https://doi.org/10.4230/LIPIcs.ECOOP.2023.43
https://orcid.org/0000-0002-7634-6150
https://doi.org/10.4230/LIPIcs.ECOOP.2023.24
https://orcid.org/0000-0001-9930-8854
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://orcid.org/0000-0003-2741-8119
https://doi.org/10.4230/LIPIcs.ECOOP.2023.22
https://doi.org/10.4230/LIPIcs.ECOOP.2023.34
https://orcid.org/0000-0001-8074-8980
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://orcid.org/0000-0002-8805-0728
https://doi.org/10.4230/LIPIcs.ECOOP.2023.11
https://orcid.org/0000-0003-4535-9677
https://doi.org/10.4230/LIPIcs.ECOOP.2023.10
https://orcid.org/0000-0002-0243-0480
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://orcid.org/0000-0003-4585-5259
https://doi.org/10.4230/LIPIcs.ECOOP.2023.26
https://orcid.org/0000-0002-6878-5604
https://doi.org/10.4230/LIPIcs.ECOOP.2023.43
https://orcid.org/0000-0002-1689-9650
https://doi.org/10.4230/LIPIcs.ECOOP.2023.24
https://orcid.org/0000-0001-8074-0380
https://doi.org/10.4230/LIPIcs.ECOOP.2023.40
https://orcid.org/0000-0002-8672-0265
https://doi.org/10.4230/LIPIcs.ECOOP.2023.25
https://orcid.org/0009-0002-1025-6707
https://doi.org/10.4230/LIPIcs.ECOOP.2023.44
https://doi.org/10.4230/LIPIcs.ECOOP.2023.26
https://orcid.org/0000-0001-6302-477X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.24
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30

0:xviii

Authors

Sanjit A. Seshia (38)
University of California, Berkeley, CA, USA

Hesam Shahrokhi (27, 28)
University of Edinburgh, UK

Amir Shaikhha (27, 28)
University of Edinburgh, UK

Jun Shirako (13)
College of Computing, Georgia Institute of
Technology, Atlanta, GA, USA

Alexandra Silva (21)
Cornell University, Ithaca, NY, USA

Lucas Silver (29, 30)
University of Pennsylvania,
Philadelphia, PA, USA

Alaia Solko-Breslin (21)
University of Pennsylvania,
Philadelphia, PA, USA

Fausto Spoto (23)
University of Verona, Italy

Jonathan Lindegaard Starup
Department of Computer Science,
Aarhus University, Denmark

(17, 31)

Felix Stutz (32)
MPI-SWS, Kaiserslautern, Germany

Felix Suchert (33)
TU Dresden, Germany

Julian Sutherland (19)
Nethermind, London, UK

Fabio Tagliaferro (23)
CYS4 Srl, Florence, Italy

Jinhao Tan (34)
The University of Hong Kong, China

Wensheng Tang (36)
The Hong Kong University of Science and
Technology, China

Amin Timany (22)
Aarhus University, Denmark

Emina Torlak (35)
University of Washington, Seattle, WA, USA;
Amazon Web Services, Seattle, WA, USA

Emilio Tuosto (15)
Gran Sasso Science Institute, L.’Aquila, Italy

Jaco van de Pol (18)
Department of Computer Science,
Aarhus University, Denmark

Jacob Van Geffen (35)
University of Washington, Seattle, WA, USA

Wim Vanderbauwhede (8)
University of Glasgow, UK

Siddhanth Venkateshwaran (26)
University of Illinois at Chicago, 1L, USA

Michael Vollmer (39)
University of Kent, Canterbury, UK

Chao Wang (16)
University of Southern California,
Los Angeles, CA, USA

Chengpeng Wang (36)
The Hong Kong University of Science and
Technology, China

Xi Wang (35)
University of Washington, Seattle, WA, USA;
Amazon Web Services, Seattle, WA, USA

Pascal Weisenburger (25)
Universitat St. Gallen, Switzerland

Eddy Westbrook (30)
Galois, Inc., Portland, OR, USA

Anna-Katharina Wickert (14)
Technische Universitat Darmstadt, Germany

Thomas Wiener (21)
Cornell University, Ithaca, NY, USA

Matthew Yacavone (30)
Galois, Inc., Portland, OR, USA

Elena Yanakieva (12)
University of Kaiserslautern-Landau, Germany

Peisen Yao (36)
Zhejiang University, Hangzhou, China

Ming-Ho Yee (37)
Northeastern University, Boston, MA, USA

Nobuko Yoshida (1, 6)
University of Oxford, UK

Lechen Yu (13)
College of Computing, Georgia Institute of
Technology, Atlanta, GA, USA

Steve Zdancewic (29)
University of Pennsylvania,
Philadelphia, PA, USA

Lisza Zeidler (33)
Barkhausen Institut, Dresden, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2023.38
https://orcid.org/0000-0003-1995-6996
https://doi.org/10.4230/LIPIcs.ECOOP.2023.27
https://doi.org/10.4230/LIPIcs.ECOOP.2023.28
https://orcid.org/0000-0002-9062-759X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.27
https://doi.org/10.4230/LIPIcs.ECOOP.2023.28
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://orcid.org/0000-0001-5014-9784
https://doi.org/10.4230/LIPIcs.ECOOP.2023.21
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30
https://orcid.org/0009-0009-3723-5181
https://doi.org/10.4230/LIPIcs.ECOOP.2023.21
https://orcid.org/0000-0003-2973-0384
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://orcid.org/0000-0002-0931-7878
https://doi.org/10.4230/LIPIcs.ECOOP.2023.17
https://doi.org/10.4230/LIPIcs.ECOOP.2023.31
https://orcid.org/0000-0003-3638-4096
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://orcid.org/0000-0001-7011-9945
https://doi.org/10.4230/LIPIcs.ECOOP.2023.33
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://orcid.org/0000-0002-5904-8768
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://doi.org/10.4230/LIPIcs.ECOOP.2023.34
https://orcid.org/0000-0002-4259-3321
https://doi.org/10.4230/LIPIcs.ECOOP.2023.36
https://orcid.org/0000-0002-2237-851X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.22
https://doi.org/10.4230/LIPIcs.ECOOP.2023.35
https://orcid.org/0000-0002-7032-3281
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://orcid.org/0000-0003-4305-0625
https://doi.org/10.4230/LIPIcs.ECOOP.2023.18
https://orcid.org/0009-0007-7468-4205
https://doi.org/10.4230/LIPIcs.ECOOP.2023.35
https://orcid.org/0000-0001-6768-0037
https://doi.org/10.4230/LIPIcs.ECOOP.2023.8
https://doi.org/10.4230/LIPIcs.ECOOP.2023.26
https://orcid.org/0000-0002-0496-8268
https://doi.org/10.4230/LIPIcs.ECOOP.2023.39
https://doi.org/10.4230/LIPIcs.ECOOP.2023.16
https://orcid.org/0000-0003-0617-5322
https://doi.org/10.4230/LIPIcs.ECOOP.2023.36
https://doi.org/10.4230/LIPIcs.ECOOP.2023.35
https://orcid.org/0000-0003-1288-1485
https://doi.org/10.4230/LIPIcs.ECOOP.2023.25
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30
https://orcid.org/0000-0002-1441-2423
https://doi.org/10.4230/LIPIcs.ECOOP.2023.14
https://doi.org/10.4230/LIPIcs.ECOOP.2023.21
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30
https://orcid.org/0000-0002-2900-7252
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://orcid.org/0000-0003-0342-9518
https://doi.org/10.4230/LIPIcs.ECOOP.2023.36
https://orcid.org/0000-0002-8008-8481
https://doi.org/10.4230/LIPIcs.ECOOP.2023.37
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1
https://doi.org/10.4230/LIPIcs.ECOOP.2023.6
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://orcid.org/0000-0002-3516-1512
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/LIPIcs.ECOOP.2023.33

Authors

Charles Zhang (36)
The Hong Kong University of Science and
Technology, China

Fangyi Zhou (1)
Imperial College London, UK;
University of Oxford, UK

Elena Zucca (3)
DIBRIS, University of Genova, Italy

0:xix

ECOOP 2023

https://orcid.org/0000-0001-6417-1034
https://doi.org/10.4230/LIPIcs.ECOOP.2023.36
https://orcid.org/0000-0002-8973-0821
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1
https://orcid.org/0000-0002-6833-6470
https://doi.org/10.4230/LIPIcs.ECOOP.2023.3

Designing Asynchronous Multiparty Protocols with
Crash-Stop Failures

Adam D. Barwell =
University of St. Andrews, UK
University of Oxford, UK

Ping Hou =
University of Oxford, UK

Nobuko Yoshida &
University of Oxford, UK

Fangyi Zhou &
Imperial College London, UK
University of Oxford, UK

—— Abstract

Session types provide a typing discipline for message-passing systems. However, most session type
approaches assume an ideal world: one in which everything is reliable and without failures. Yet
this is in stark contrast with distributed systems in the real world. To address this limitation, we
introduce TEATRINO, a code generation toolchain that utilises asynchronous multiparty session types
(MPST) with crash-stop semantics to support failure handling protocols.

We augment asynchronous MPST and processes with crash handling branches. Our approach
requires no user-level syntax extensions for global types and features a formalisation of global
semantics, which captures complex behaviours induced by crashed/crash handling processes. The
sound and complete correspondence between global and local type semantics guarantees deadlock-
freedom, protocol conformance, and liveness of typed processes in the presence of crashes.

Our theory is implemented in the toolchain TEATRINO, which provides correctness by construction.
TEATRINO extends the SCRIBBLE multiparty protocol language to generate protocol-conforming
SCALA code, using the EFFPI concurrent programming library. We extend both SCRIBBLE and EFFPI
to support crash-stop behaviour. We demonstrate the feasibility of our methodology and evaluate
TEATRINO with examples extended from both session type and distributed systems literature.

2012 ACM Subject Classification Software and its engineering — Source code generation; Software
and its engineering — Concurrent programming languages; Theory of computation — Process calculi;
Theory of computation — Distributed computing models

Keywords and phrases Session Types, Concurrency, Failure Handling, Code Generation, Scala
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2023.1
Related Version Full Version: https://arxiv.org/abs/2305.06238

Supplementary Material Software (ECOOP 2023 Artifact Fvaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.9
Software (ECOOP 2023 Artifact Fvaluation approved artifact):
http://doi.org/10.5281/zenodo.7714133
Software (Source Code): https://github.com/adbarwell/ECO0P23-Artefact

archived at swh:1:dir:e680ab478b62aab45610b0ef9f6de9d0fbe20ad?2

Funding Work supported by: EPSRC EP/T006544/2, EP/K011715/1, EP/K034413/1,
EP/L00058X/1, EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462/1, EP/X015955/1,
NCSS/EPSRC VeTSS, and Horizon EU TaRDIS 101093006.

Acknowledgements We thank the anonymous reviewers for their useful comments and suggestions.

We thank Jia Qing Lim for his contribution to the EFFPI extension. We thank Alceste Scalas for

useful discussions and advice in the development of this paper and for his assistance with ErrpI.

© Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou;
oY licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).

Editors: Karim Ali and Guido Salvaneschi; Article No. 1; pp. 1:1-1:30

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:adb23@st-andrews.ac.uk
https://orcid.org/0000-0003-1236-7160
mailto:ping.hou@cs.ox.ac.uk
https://orcid.org/0000-0001-6899-9971
mailto:nobuko.yoshida@cs.ox.ac.uk
https://orcid.org/0000-0002-3925-8557
mailto:fangyi.zhou15@imperial.ac.uk
https://orcid.org/0000-0002-8973-0821
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1
https://arxiv.org/abs/2305.06238
https://doi.org/10.4230/DARTS.9.2.9
https://doi.org/10.4230/DARTS.9.2.9
http://doi.org/10.5281/zenodo.7714133
http://doi.org/10.5281/zenodo.7714133
https://github.com/adbarwell/ECOOP23-Artefact
https://archive.softwareheritage.org/swh:1:dir:e680ab478b62aab45610b0ef9f6de9d0fbe20ad2;origin=https://github.com/adbarwell/ECOOP23-Artefact;visit=swh:1:snp:d947481e277f2ca15fb5bb698903c88fd502701e;anchor=swh:1:rev:516957af09341ab4e3080171460eacf8ad03c24c
https://doi.org/10.4230/DARTS.9.2.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2

Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

1 Introduction

Background. As distributed programming grows increasingly prevalent, significant research
effort has been devoted to improve the reliability of distributed systems. A key aspect of
this research focuses on studying wnreliability (or, more specifically, failures). Modelling
unreliability and failures enables a distributed system to be designed to be more tolerant of
failures, and thus more resilient.

In pursuit of methods to achieve safety in distributed communication systems, session
types [19] provide a lightweight, type system—based approach to message-passing concurrency.
In particular, Multiparty Session Types (MPST) [20] facilitate the specification and verification
of communication between message-passing processes in concurrent and distributed systems.
The typing discipline prevents common communication-based errors, e.g. deadlocks and
communication mismatches [21,37]. On the practical side, MPST have been implemented in
various mainstream programming languages [7,10,11,22,24, 25,28, 30], which facilitates their
applications in real-world programs.

Nevertheless, the challenge to account for unreliability and failures persists for session
types: most session type systems assume that both participants and message transmissions
are reliable without failures. In a real-world setting, however, participants may crash,
communications channels may fail, and messages may be lost. The lack of failure modelling in
session type theories creates a barrier to their applications to large-scale distributed systems.

Recent works [3,26,27,33,42] close the gap of failure modelling in session types with
various techniques. [42] introduces failure suspicion, where a participant may suspect their
communication partner has failed, and act accordingly. [33] introduces reliability annotations
at type level, and fall back to a given default value in case of failures. [26] proposes a
framework of affine multiparty session types, where a session can terminate prematurely, e.g.
in case of failures. [3] integrates crash-stop failures, where a generalised type system validates
safety and liveness properties with model checking; [27] takes a similar approach, modelling
more kinds of failures in a session type system, e.g. message losses, reordering, and delays.

While steady advancements are made on the theoretical side, the implementations of those
enhanced session type theories seem to lag behind. Barring the approaches in [26,42], the
aforementioned approaches [3,27,33] do not provide session type API support for programming
languages.! To bring the benefits of the theoretical developments into real-world distributed
programming, a gap remains to be filled on the implementation side.

This Paper. We introduce a top-down methodology for designing asynchronous multiparty

protocols with crash-stop failures:

(1) We use an extended asynchronous MPST theory, which models crash-stop failures, and
show that the usual session type guarantees remain valid, i.e. communication safety,
deadlock-freedom, and liveness;

(2) We present a toolchain for implementing asynchronous multiparty protocols, under our
new asynchronous MPST theory, in SCALA, using the EFFPI concurrency library [38].

The top-down design methodology comes from the original MPST theory [20], where the
design of multiparty protocols begins with a given global type (top), and implementations rely
on local types (bottom) obtained from the global type. The global and local types reflect the

E [3] provides a prototype implementation, utilising the mCRL2 model checker [5], for verifying type-level

properties, instead of a library for general use.

A.D. Barwell, P. Hou, N. Yoshida, and F. Zhou

global and local communication behaviours respectively. Well-typed implementations that
conform to a global type are guaranteed to be correct by construction, enjoying full guarantees
(safety, deadlock-freedom, liveness) from the theory. This remains the predominant approach
for implementing MPST theories, and is also followed by some aforementioned systems [26,42].

We model crash-stop failures [6, §2.2], i.e. a process may fail arbitrarily and cease to
interact with others. This model is simple and expressive, and has been adopted by other
approaches [3,27]. Using global types in our design for handling failures in multiparty
protocols presents two distinct advantages:

(1) global types provide a simple, high-level means to both specify a protocol abstractly and
automatically derive local types; and,

(2) desirable behavioural properties such as communication safety, deadlock-freedom, and
liveness are guaranteed by construction.

In contrast to the synchronous semantics in [3], we model an asynchronous semantics, where

messages are buffered whilst in transit. We focus on asynchronous systems since most

communication in the real distributed world is asynchronous. In [27], although the authors

develop a generic typing system incorporating asynchronous semantics, their approach results

in the type-level properties becoming undecidable [27, §4.4]. With global types, we restore

the decidability at a minor cost to expressivity.

To address the gap on the practical side, we present a code generator toolchain, TEATRINO,
to implement our MPST theory. Our toolchain takes an asynchronous multiparty protocol
as input, using the protocol description language SCRIBBLE [43], and generates SCALA code
using the EFFPI [38] concurrency library as output.

The SCRIBBLE Language [43] is designed for describing multiparty communication proto-
cols, and is closely connected to MPST theory (cf. [31]). This language enables a programmatic
approach for expressing global types and designing multiparty protocols. The EFFPI con-
currency library [38] offers an embedded Domain Specific Language (DSL) that provides
a simple actor-based API. The library offers both type-level and value-level constructs for
processes and channels. Notably, the type-level constructs reflect the behaviour of programs
(i.e. processes) and can be used as specifications. Our code generation technique, as well as
the EFFPI library itself, utilises the type system features introduced in SCALA 3, including
match types and dependent function types, to encode local types in EFFPI. This approach
enables us to specify and verify program behaviour at the type level, resulting in a more
powerful and flexible method for handling concurrency.

By extending SCRIBBLE and EFFPI to support crash detection and handling, our toolchain
TEATRINO provides a lightweight way for developers to take advantage of our theory, bridging
the gap on the practical side. We evaluate the expressivity and feasibility of TEATRINO with
examples incorporating crash handling behaviour, extended from session type literature.

Outline. We begin with an overview of our methodology in §2. We introduce an asyn-
chronous multiparty session calculus in § 3 with semantics of crashing and crash handling.
We introduce an extended theory of asynchronous multiparty session types with semantic
modelling of crash-stop failures in §4. We present a typing system for the multiparty session
calculus in § 5. We introduce TEATRINO, a code generation toolchain that implements
our theory in § 6, demonstrating how our approach is applied in the SCALA programming
language. We evaluate our toolchain with examples from both session type and distributed
systems literature in § 7. We discuss related work in § 8 and conclude in §9. Full proofs,
auxiliary material, and more details of TEATRINO can be found in the full version of the
paper [2]. Additionally, our toolchain and examples used in our evaluation are available on
GitHub.

1:3

ECOOP 2023

https://github.com/adbarwell/ECOOP23-Artefact

1:4

Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

A Global Type G with crash

projection (D/ l \

Local Type for L Local Type for I with crash Local Type for C

typing (F)l l l
Process for L Process for I with crash Process for C

Figure 1 Top-down View of MPST with Crash.

2 Overview

In this section, we give an overview of our methodology for designing asynchronous multiparty
protocols with crash-stop failures, and demonstrate our code generation toolchain, TEATRINO.

Asynchronous Multiparty Protocols with Crash-Stop Failures. We follow a standard top-
down design approach enabling correctness by construction, but enrich asynchronous MPST
with crash-stop semantics. As depicted in Fig. 1, we formalise (asynchronous) multiparty
protocols with crash-stop failures as global types with crash handling branches (crash). These
are projected into local types, which may similarly contain crash handling branches (crash).
The projected local types are then used to type-check processes (also with crash handling
branches (crash)) that are written in a session calculus. As an example, we consider a simple
distributed logging scenario, which is inspired by the logging-management protocol [26], but
extended with a third participant.

The Simpler Logging protocol consists of a logger (L) that controls the logging services,
an interface (I) that provides communications between logger and client, and a client (C)
that requires logging services via interface. Initially, L sends a heartbeat message trigger
to I. Then C sends a command to L to read the logs (read). When a read request is sent, it
is forwarded to L, and L responds with a report, which is then forwarded onto C. Assuming
all participants (logger, interface, and client) are reliable, i.e. without any failures or crashes,
this logging behaviour can be represented by the global type G:

Go = L—I:trigger.C—I:read.I—L:read.L—I:report(log).I—C:report(log).end (1)

Here, GGy is a specification of the Simpler Logging protocol between multiple roles from a
global perspective.

In the real distributed world, all participants in the Simpler Logging system may fail.
Ergo, we need to model protocols with failures or crashes and handling behaviour, e.g. should
the client fail after the logging has started, the interface will inform the logger to stop and
exit. We follow [6, §2.2] to model a crash-stop semantics, where we assume that roles can
crash at any time unless assumed reliable (never crash). For simplicity, we assume I and
L to be reliable. The above logging behaviour, incorporating crash-stop failures, can be
represented by extending GGy with a branch handling a crash of C:

(2)

I—L: L—I: log).I—C: log).
G—L—>I:trigger.C—>I:{read —L:read.L—I:report(log).I—C:report(log) end}

crash.I—L:fatal.end

We model crash detection on receiving roles: when I is waiting to receive a message from
C, the receiving role I is able to detect whether C has crashed. Since crashes are detected
only by the receiving role, we do not require a crash handling branch on the communication
step between I and C — nor do we require them on any interaction between L and I (since we
are assuming that L and I are reliable).

A.D. Barwell, P. Hou, N. Yoshida, and F. Zhou

Programmer
(Protocol.scr)—)(TEATRINO)—»(Protocol.scala)—r--
Integration

Figure 2 Workflow of TEATRINO.

Following the MPST top-down methodology, a global type is then projected onto local
types, which describe communications from the perspective of a single role. In our unreliable
Simpler Logging example, G is projected onto three local types (one for each role C, L, I):

Tt = Idpread.I&report(log).end T = I@trigger.l&{read.IEBreport(log).end}

fatal.end

Ty = L&trigger.C& read.Ldread.L&report(log).Cdhreport(log).end
crash.Ldfatal.end

Here, Tt states that I first receives a trigger message from L; then I either expects a read
request from C, or detects the crash of C and handles it (in crash) by sending the fatal
message to notify L. We add additional crash modelling and introduce a stop type for crashed
endpoints. We show the operational correspondence between global and local type semantics,
and demonstrate that a projectable global type always produces a safe, deadlock-free, and
live typing context.

The next step in this top-down methodology is to use local types to type-check processes

P; executed by role p, in our session calculus. For example, 11 can be used to type check I
that executes the process:

C?read.Llread.L?report(z).Clreport(z).0
L7tri .
rieger Z {C?crash.L!fatal.O

In our operational semantics (§ 3), we allow active processes executed by unreliable roles
to crash arbitrarily. Therefore, the role executing the crashed process also crashes, and is
assigned the local type stop. To ensure that a communicating process is type-safe even in
presence of crashes, we require that its typing context satisfies a safety property accounting for
possible crashes (Def. 13), which is preserved by projection. Additional semantics surrounding
crashes adds subtleties even in standard results. We prove subject reduction and session
fidelity results accounting for crashes and sets of reliable roles.

Code Generation Toolchain: Teatrino. To complement the theory, we present a code
generation toolchain, TEATRINO, that generates protocol-conforming SCALA code from a mul-
tiparty protocol. We show the workflow diagram of our toolchain in Fig. 2. TEATRINO takes
a SCRIBBLE protocol (Protocol.scr) and generates executable code (Protocol.scala) conforming
to that protocol, which the programmer can integrate with existing code (Final.scala).

TEATRINO implements our session type theory to handle global types expressed using
the SCRIBBLE protocol description language [43], a programmer-friendly way for describing
multiparty protocols. We extend the syntax of SCRIBBLE slightly to include constructs for
crash recovery branches and reliable roles.

The generated SCALA code utilises the EFFPI concurrency library [38]. EFFPI is an
embedded domain specific language in SCALA 3 that offers a simple Actor-based API for
concurrency. Our code generation technique, as well the EFrFPI library itself, leverages the
type system features introduced in SCALA 3, e.g. match types and dependent function types,
to encode local types in EFFPI. We extend EFFPI to support crash detection and handling.

1:5

ECOOP 2023

1:6

N o oA W N e

Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

As a brief introduction to EFFPI, the concurrency library provides types for processes
and channels. For processes, an output process type Out[A, B] describes a process that
uses a channel of type A to send a value of type B, and an input process type In[A, B, C]
describes a process that uses a channel of type A to receive a value of type B, and pass it
to a continuation type C. Process types can be sequentially composed by the >>: operator.
For channels, Chan[X] describes a channel that can be used communicate values of type X.
More specifically, the usage of a channel can be reflected at the type level, using the types
InChan [X] /OutChan[X] for input/output channels.

type I[CO <: InChan[Trigger], C1 <: OutChan[Fatall,
C2 <: InChan[Read], C3 <: InChan[Report], C4 <: OutChan[Report]]
= InErr[CO, Trigger,
(X <: Read) =>
Out [C3,Read] >>: In[C4, Report, (Y <: Log) => Out[C5, Reportl],
(Err <: Throwable) => Out[C2,Fatall

Figure 3 Errpr1 Type for T7.

As a sneak peek of the code we generate, in Fig. 3, we show the generated EFFPI
representation for the projected local type 71 from the Simpler Logging example. Readers
may be surprised by the difference between Tt and the generated EFFPI type I. This is
because the process types need their respective channel types, namely the type variables
CO, C1, etc. bounded by InChan[...] and OutChan[...]. We explain the details of code
generation in § 6.2, and describe an interesting challenge posed by the channel generation
procedure in §6.3.

For crash handling behaviour, we introduce a new type InErr, whose last argument
specifies a continuation type to follow in case of a crash. Line 3 in Fig. 3 shows the crash
handling behaviour: sending a message of type Fatal, which reflects the crash branch in the
local type Tt. We give more details of the generated code in §6.2.

Code generated by TEATRINO is executable, protocol-conforming, and can be specialised
by the programmer to integrate with existing code. We evaluate our toolchain on examples
taken from both MPST and distributed programming literature in § 7. Moreover, we extend
each example with crash handling behaviour to define unreliable variants. We demonstrate
that, with TEATRINO, code generation takes negligible time, and all potential crashes are
accompanied with crash handlers.

3 Crash-Stop Asynchronous Multiparty Session Calculus

In this section, we formalise the syntax and operational semantics of our asynchronous
multiparty session calculus with process failures and crash detection.

Syntax. Our asynchronous multiparty session calculus models processes that may crash
arbitrarily. Our formalisation is based on [16] — but in addition, follows the fail-stop model
in [6, §2.7], where processes may crash and never recover, and process failures can be detected
by failure detectors [6, §2.6.2] [8] when attempting to receive messages.

We give the syntax of processes in Fig. 4. In our calculus, we assume that there are basic
expressions e (e.g. true, false, 7+ 11) that are assigned basic types B (e.g. int, bool). We
write e | v to denote an expression e evaluates to a value v (e.g. (7 < 11) | true,(1+1) | 2).

A.D. Barwell, P. Hou, N. Yoshida, and F. Zhou

P,Q == Processes M = Sessions
Zig p?m;(x;).P; external choice p<P|p<h participant
plm(e).P (where m # crash) output ’ M| M parallel
if ethen Pelse Q conditional h = Queues
X variable € empty
uX.P recurston @ unavailable
0 inaction (p,m(v)) message
4 crashed h-h concatenation

Figure 4 Syntax of sessions, processes, and queues. Noticeable changes w.r.t. standard session
calculus [16] are highlighted.

A process, ranged over by P, (@, is a communication agent within a session. An output
process plm(e).P sends a message to another role p in the session, where the message is
labelled m, and carries a payload expresion e, then the process continues as P. An external
choice (input) process) ;. ; pm;(x;).P; receives a message from another role p in the session,
among a finite set of indexes I, if the message is labelled m;, then the payload would be
received as x;, and process continues as P;. Note that our calculus uses crash as a special
message label denoting that a participant (role) has crashed. Such a label cannot be sent
by any process, but a process can implement crash detection and handling by receiving it.
Consequently, an output process cannot send a crash message (side condition m # crash),
whereas an input process may include a crash handling branch of the form crash.P’ meaning
that P’ is executed when the sending role has crashed. A conditional process if e then P else Q
continues as either P or () depending on the evaluation of e. We allow recursion at the
process level using uX.P and X, and we require process recursion variables to be guarded
by an input or an output action; we consider a recursion process structurally congruent to
its unfolding uX.P = P{#X.P/x}. Finally, we write O for an inactive process, representing a
successful termination; and 4 for a crashed process, representing a termination due to failure.

2, ranged over by h, &, is a sequence of messages tagged with their

An incoming queue
origin. We write e for an empty queue; @ for an unavailable queue; and (p,m(v)) for a
message sent from p, labelled m, and containing a payload value v. We write hy - ho to
denote the concatenation of two queues hy and he. When describing incoming queues, we
consider two messages from different origins as swappable: hy - (q1,m1(v1)) - (g2, ma(v2)) - he =
hi - (q2,mz2(v2)) - (q1,m1(v1)) - he whenever q; # q,. Moreover, we consider concatenation (-)
as associative, and the empty queue € as the identity element for concatenation.

A session, ranged over by M, M’ consists of processes and their respective incoming
queue, indexed by their roles. A single entry for a role p is denoted p < P | p < h, where P is
the process for p and h is the incoming queue. Entries are composed together in parallel
as M | M’, where the roles in M and M’ are disjoint. We consider parallel composition as
commutative and associative, with p<0|p<e as a neutral element of the operator. We write
[Lic;(p; < Pi | p; < hy) for the parallel composition of multiple entries in a set.

Operational Semantics. Operational Semantics of our session calculus is given in Def. 1,
using a standard structural congruence = defined in [16]. Our semantics parameterises on a
(possibly empty) set of reliable roles R, which are assumed to never crash.

2 In [16], the queues are outgoing instead of incoming. We use incoming queues to model our crashing
semantics more easily.

1:7

ECOOP 2023

1:8

Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

[r-¢] PIP[pdhy | M = pay|pa0| M (P#0,p¢R)
[R-SEND] p<gmie).P |p<hy|q<aQ|qahy| M

= p4P[pahy [q<9Q[q<hg- (pm(v)) [M (e v,hq # 0)
[-sex-¢] p<qm{e).P |p<hp|q<f|qq@|M — p<aP[pdhp[qas|qua|M
[R-RCV] P o, ammi(zi).Pi | pa(qme(v) - hy | M — paPi{v/ar} |[p<ahy [M (kel)
Rrov-0] P9 . qmi(x;).Pi |p<hy[qaf[quo| M

— p<dPr|p<hy|q<d g | M (k € I,my = crash, fm, v : (q,m(v)) € hy)
[R-conp-T] p<ifethenPelseQ |p<h| M — p<aP|p<h|M (e] true)
[r-conp-F] p<ifethenPelse@Q |p<h| M — p<a@Q|p<h|M (el false)

[r-strucT] Mi=Mi and Mj = M5 and Mh=My = Mi— My

Figure 5 Reduction relation on sessions with crash-stop failures.

» Definition 1 (Session Reductions). Session reduction —x is inductively defined by the rules
in Fig. 5, parameterised by a fived set R of reliable roles. We write — when R is insignificant.
We write —x* (resp. —*) for the reflexive and transitive closure of —x (resp. —).

Our operational semantics retains the basic rules in [16], but also includes (highlighted)
rules for crash-stop failures and crash handling, adapted from [3]. Rules [r-sexo] and [r-rev]
model ordinary message delivery and reception: an output process located at p sending to q
appends a message to the incoming queue of g; and an input process located at p receiving
from q consumes the first message from the incoming queue. Rules [r-conn-T] and [r-conp-F]
model conditionals; and rule [r-struct] permits reductions up to structural congruence.

With regard to crashes and related behaviour, rule [z-4] models process crashes: an active
(P # 0) process located at an unreliable role (p ¢ R) may reduce to a crashed process p< 4,
with its incoming queue becoming unavailable p<@. Rule [r-senp-4] models a message delivery
to a crashed role (and thus an unavailable queue), and the message becomes lost and would
not be added to the queue. Rule [z-rev-©) models crash detection, which activates as a “last
resort”: an input process at p receiving from q would first attempt find a message from q in
the incoming queue, which engages the usual rule [r-recv]; if none exists and q has crashed
(q<4), then the crash handling branch in the input process at p can activate. We draw
attention to the interesting fact that [r-recv] may engage even if q has crashed, in cases where
a message from q in the incoming queue may be consumed. We now illustrate our operational
semantics of sessions with an example.

» Example 2. Consider the session M = p<P|p<e|q<aQ|q<e where P =
qm(“abc”). > {q?m/(m)'o} and Q =) {P?m(m)'p!m/<42>'0 . In this session, the process
q?crash.0 p’crash.0 ’
Q for q receives a message sent from p to q; the process P for p sends a message from p to g,
and then receives a message sent from q to p. Let each role be unreliable, i.e. R = (), and
P crash before sending. We have M —pp</|p<Q@|q<aQ|q<e —>p<s|p<@|q<0]|qge
. We observe that when the output process P located at an unreliable role p crashes (by
[x-4]), the resulting entry for p is a crashed process (p < 4) with an unavailable queue (p < @).
Subsequently, the input process @ located at q can detect and handle the crash by [r-rev-0]
via its crash handling branch.

A.D. Barwell, P. Hou, N. Yoshida, and F. Zhou

B = int ‘ bool | real ’ unit ‘ e Basic types
7= p—>qu {mi(B;).Gi bier Transmission
ptvqj {mi(Bi).Giticr (j €1) Transmission en route
ut.G | t | end Recursion, Type variable, Termination
Tou= 4 Crash annotation
S, T u= p&{mi(B;).Ti},c; p®{mi(Bi).Ti},c; External choice, Internal choice
’ pt. T ‘ t | end stop Recursion, Type variable, Termination, Crash

Figure 6 Syntax of global types and local types. Runtime types are shaded.

4 Asynchronous Multiparty Session Types with Crash-Stop Semantics

In this section, we present our asynchronous multiparty session types with crash-stop
semantics. We give an overview of global and local types with crashes in §4.1, including
syntax, projection, subtyping, etc.; our key additions to the classic theory are crash handling
branches in both global and local types, and a special local type stop to denote crashed
processes. We give a Labelled Transition System (LTS) semantics to both global types (§4.2)
and configurations (i.e. a collection of local types and point-to-point communication queues,
§4.3). We discuss alternative design options of modelling crash-stop failures in §4.4. We
relate the two semantics in §4.5, and show that a configuration obtained via projection is
safe, deadlock-free, and live in §4.6.

4.1 Global and Local Types with Crash-Stop Failures

The top-down methodology begins with global types to provide an overview of the communic-
ation between a number of roles (p,q,s,t,...), belonging to a (fixed) set R. At the other
end, we use local types to describe how a single role communicates with other roles from
a local perspective, and they are obtained via projection from a global type. We give the
syntax of both global and local types in Fig. 6, which are similar to syntax used in [3,37].

Global Types. Global Types are ranged over G,G’, G, ..., and describe the behaviour for
all roles from a bird’s eye view. The syntax shown in shade are runtime syntax, which are
not used for describing a system at design-time, but for describing the state of a system
during execution. The labels m are taken from a fixed set of all labels M, and basic types B
(types for payloads) from a fixed set of all basic types B.

We explain each construct in the syntax of global types: a transmission, denoted
p—ql:{mi(B;).G;}icr, represents a message from role p to role q (with possible crash
annotations), with labels m;, payload types Bj;, and continuations G;, where 7 is taken from
an index set I. We require that the index set be non-empty (I # (), labels m; be pair-wise
distinct, and self receptions be excluded (i.e. p # q), as standard in session type works.
Additionally, we require that the special crash label (explained later) not be the only label in
a transmission, i.e. {m; |4 € I} # {crash}. A transmission en route pf~~q:j {m; (B;).G;}ier is
a runtime construct representing a message m; (index j) sent by p, and yet to be received
by q. Recursive types are represented via ut.G' and t, where contractive requirements
apply [34, §21.8]. The type end describes a terminated type (omitted where unambiguous).

To model crashes and crash handling, we use crash annotations 4 and crash handling
branches: a crash annotation 4, a new addition in this work, marks a crashed role (only
used in the runtime syntar), and we omit annotations for live roles, i.e. p is a live role, p? is

1:9

ECOOP 2023

1:10

Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

a crashed role, and p' represents a possibly crashed role, namely either p or pf. We use a
special label crash for handling crashes: this continuation denotes the protocol to follow when
the sender of a message is detected to have crashed by the receiver. The special label acts as a
“pseudo-message”: when a sender role crashes, the receiver can select the pseudo-message to
enter crash handling. We write roles(G) (resp. roles? (G)) for the set of active (resp. crashed)
roles in a global type G, excluding (resp. consisting only of) those with a crash annotation 4.

Local Types. Local Types are ranged over S,T,U, ..., and describe the behaviour of a
single role. An internal choice (selection) (or an external choice (branching)), denoted
pPAm;i (B;). Ti},ep (or p&e{ms(B;).T;},c;), indicates that the current role is to send to (or
receive from) the role p. Similarly to global types, we require pairwise-distinct, non-empty
labels. Moreover, we require that the crash label not appear in internal choices, reflecting
that a crash pseudo-message can never be sent; and that singleton crash labels not permitted
in external choices. The type end indicates a successful termination (omitted where unam-
biguous), and recursive types follow a similar fashion to global types. We use a new runtime
type stop to denote crashes.

Subtyping. Subtyping relation < on local types will be used in §4.5 to relate global and
local type semantics. Our subtyping relation is mostly standard [37, Def. 2.5], except for an
extra rule for stop and additional requirements to support crash handling branch in external
choices.

Projection. Projection gives the local type of a participating role in a global type, defined
as a partial function that takes a global type G and a role p, and returns a local type, given
by Def. 3.

» Definition 3 (Global Type Projection). The projection of a global type G onto a role p,
with respect to a set of reliable roles R, written G [x p, is:

I‘@{ml(Bz)(Gz rR p)}ie{je] |mj;écrash} zf p=q
P d R imli
(a=rt: {ms (Bi)-Gikier) I= » = a&cfm(By).(C: 1% B)}ic Trom et
[MierGi = p if p#q, and p#T
Gjlzp ifp=q
) . _ if p=r, and R implies
(af~rj {m(Bi). Gikier) I p =1 qfefms(B).(Gi 2 P}, T P50 40 Eqﬁ:mk il
[MicrGi = P ifp#q, and p#r
[t (Glwrp) fpeG or tv(ut.G) #£0 tlpp=1t
(1t.G) [z p = {end otherwise end [p — end

where [] is the merge operator for local types (full merging):

plefms(B.). S0} e, Mpe{my(B))- T,

= P&{mk(Bk)'(Sllcl_lTl;)}keImJ &P&{mi(Bi)'Sz{}ie[\J &p&{mj (Bj)'T]{ jea\I

P®{mi(3i)~sz{}i61 M P®{mi(Bi)'Ti/}ieI = P@{mi(Bi)-(Sé mTz‘/)}ieI
pt.S M optT = pt.(SNT) tnt=t end M end = end

We parameterise our theory on a (fixed) set of reliable roles R, i.e. roles assumed to never
crash: if R = (), every role is unreliable and susceptible to crash; if roles(G) C R, every role
in GG is reliable, and we simulate the results from the original MPST theory without crashes.
We base our definition of projection on [37], but include more (highlighted) cases to account
for reliable roles, crash branches, and runtime global types.

A.D. Barwell, P. Hou, N. Yoshida, and F. Zhou

When projecting a transmission from q to r, we remove the crash label from the internal
choice at q, reflecting our model that a crash pseudo-message cannot be sent. Dually,
we require a crash label to be present in the external choice at r — unless the sender
role q is assumed to be reliable. Our definition of projection enforces that transmissions,
whenever an unreliable role is the sender (q ¢ R), must include a crash handling branch
(3k € I : mj, = crash). This requirement ensures that the receiving role r can always handle
crashes whenever it happens, so that processes are not stuck when crashes occur. We explain
how these requirements help us achieve various properties by projection in §4.6. The rest of
the rules are taken from the literature [37,40], without much modification.

4.2 Crash-Stop Semantics of Global Types

We now give a Labelled Transition System (LTS) semantics to global types, with crash-stop
semantics. To this end, we first introduce some auxiliary definitions. We define the transition
labels in Def. 4, which are also used in the LTS semantics of configurations (later in §4.3).

» Definition 4 (Transition Labels). Let a be a transition label of the form:

a = p&q:m(B) (p receives m(B) from q) p®a:m(B) (p sendsm(B) to q)
{ P4 (p crashes) pOq (p detects the crash of q)

The subject of a transition label, written subj(a), is defined as:
subj(p&q:m(B)) = subj(pq:m(B)) = subj(ps) = subj(p©q) = p.

The labels p®q:m(B) and p&q:m(B) describe sending and receiving actions respectively.
The crash of p is denoted by the label p4, and the detection of a crash by label pOq: we
model crash detection at reception, the label contains a detecting role p and a crashed role q.

We define an operator to remove a role from a global type in Def. 5: the intuition is
to remove any interaction of a crashed role from the given global type. When a role has
crashed, we attach a crashed annotation, and remove infeasible actions, e.g. when the sender
and receiver of a transmission have both crashed. The removal operator is a partial function
that takes a global type G and a live role r (r € roles(()) and gives a global type G/r.

» Definition 5 (Role Removal). The removal of a live role p in a global type G, written G4p,
is defined as follows:

pt~qj {mi(B) (Gitx)tier ifp=r and 3j € I : mj = crash
(p—q: {mi(Bs).Gitier)ir = ¢ p—=qt: {m1)-(Gitr)bier ifq=r
p—q: {mi(Bi).(Gidr)}ier ifp#randq#r
_ pf~qj {mi(Bi).(Gifx)tier ifp=r
(praq:j{ms(Bi).Gitier)ér = {G; 4 T ifa=r1
p~q:j {mi(Bi) . (Gitr)}ier ifp#randq#r
Gj4r ifp=r and 3j € I : m; = crash
‘. ;
(Pﬁq ~{m1() G }zel)é {P%qé {ml (Gzér)}zel ifp?él‘ andq;ér !
) Gj4r ifq=r
ts J i Tqfq = ¥ .
(p* ~q:j {ms(Bi). Giier) { fvoqj(ms(Bi).(Gitr)hier ifp#randq#r
ut.(G4r) if tv(ut.G) # 0 orroles(G4r) £ 0
(ut.G)¢r {end otherwise
=t end/r = end

For simple cases, the removal of a role G4 r attaches crash annotations 4 on all occurrences
of the removed role r throughout global type G inductively.

1:11

ECOOP 2023

1:12

Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

p¢R peroles(G) G # ut.G’ _— (€; G{rt-Gle}) S (€, G) i
(€6 2 (CU {p}; G4p) (C; 1t.G) S (€1 GY)
j €1 mj#crash GR-6)]
(€ p—q: {ms(By).Gihier) 22222, 5 (€5 poqej {ma(Bo). G Yier)
j €I mj#crash (GR-&]
] , ± (B;) Lo
(€ pT - {mu(By).Glhier) 22020 (056
j €1 mj=crash GR-]
C;pt~qj {mi(B:).GYier ﬂ)y C; G’
J
j €I mj#crash .
(€5 p—ra: fms(By). Clhier) 2280, 5 (€5))
Viel: (€ G)) Sz (€;G)) subj(e) ¢ {p,q} GR-Cr]
(€ p—qf: {mi(B;).Gl}ier) = (€5p—q": {mi(By). G bier)
. . A Sl .
Viel:(C;G)) —x (€5G) subj(a) #q (GR-CT]

(€pT~q:j {ms(B:).Gllier) —m (€/p1qij {ms(Bi).GY bier)
Figure 7 Global Type Reduction Rules.

We draw attention to some interesting cases: when we remove the sender role p from a
transmission prefix p— g, the result is a “pseudo-transmission” en route prefix p? ~q: j
where m; = crash. This enables the receiver q to “receive” the special crash after the crash
of p, hence triggering the crash handling branch. Recall that our definition of projection
requires that a crash handling branch be present whenever a crash may occur (q ¢ R).

When we remove the sender role p from a transmission en route prefix p~>q: j, the
result retains the index j that was selected by p, instead of the index associated with crash
handling. This is crucial to our crash modelling: when a role crashes, the messages that the
role has sent to other roles are still available. We discuss alternative models later in §4.4.

In other cases, where removing the role r would render a transmission (regardless of being
en route or not) meaningless, e.g. both sender and receiver have crashed, we simply remove
the prefix entirely.

We now give an LTS semantics to a global type GG, by defining the semantics with a tuple
(€; G), where € is a set of crashed roles. The transition system is parameterised by reliability
assumptions, in the form of a fixed set of reliable roles R. When unambiguous, we write GG
as an abbreviation of ((); G). We define the reduction rules of global types in Def. 6.

» Definition 6 (Global Type Reductions). The global type (annotated with a set of crashed
roles C) transition relation S x is inductively defined by the rules in Fig. 7, parameterised
by a fized set R of reliable roles. We write (C;G) —x (C;G') if there exists o such
that (C;G) Sq (C;G"); we write (@;G) —x if there exists @, G', and o such that
(€;G) S (€F;G"Y, and —% for the transitive and reflexive closure of —x.

Rules [¢R-a¢] and [GR-&] model sending and receiving messages respectively, as are standard
in existing works [13]. We add an (highlighted) extra condition that the message exchanged
not be a pseudo-message carrying the crash label. [GR-4] is a standard rule handling recursion.

We introduce (highlighted) rules to account for crash and consequential behaviour. Rule
[GR-4] models crashes, where a live (p € roles(()), but unreliable (p ¢ R) role p may crash.
The crashed role p is added into the set of crashed roles (€ U {p}), and removed from the
global type, resulting in a global type G¢p. Rule [GRrR-0] is for crash detection, where a

A.D. Barwell, P. Hou, N. Yoshida, and F. Zhou

live role q may detect that p has crashed at reception, and then continues with the crash
handling continuation labelled crash. This rule only applies when the message en route is
a pseudo-message, since otherwise a message rests in the queue of the receiver and can be
received despite the crash of the sender (cf. [GR-&]). Rule [GR-4n] models the orphaning of a
message sent from a live role p to a crashed role q. Similar to the requirement in [Gr-@], we
add the side condition that the message sent is not a pseudo-message.

Finally, rules [GR-Crx-] and [GR-Crx-11] allow non-interfering reductions of (intermediate)
global types under prefix, provided that all of the continuations can be reduced by that label.

» Remark 7 (Necessity of € in Semantics). While we can obtain the set of crashed roles in any
global type G via roles’ (G), we need a separate € for bookkeeping purposes. To illustrate,
let G = p—q:{m.end, crash.end}; we can have the following reductions:

;G) £y ({a};p—q’:{m.end, crash.end}) 2% ({q};end)

While we can deduce q is a crashed role in the interim global type, the same information
cannot be recovered from the final global type end.

4.3 Crash-Stop Semantics of Configurations

After giving semantics to global types, we now give an LTS semantics to configurations, i.e.
a collection of local types and communication queues across roles. We first give a definition
of configurations in Def. 8, followed by their reduction rules in Def. 9.

» Definition 8 (Configurations). A configuration is a tuple T; A, where T is a typing context,
denoting a partial mapping from roles to local types, defined as: T' = () | T, peT. We write
Tlp — T for updates: T[p — T)|(p) =T and T'lp — T)|(q) =T'(q) (where p # q).

A queue, denoted T, is either a (possibly empty) sequence of messages My-Ms- - - - - M,
or unavailable ©@. We write € for an empty queue, and M -7’ for a non-empty queue with
message M at the beginning. A queue message M is of form m(B), denoting a message with
label m and payload B. We sometimes omit B when the payload is not of specific interest.

We write A to denote a queue environment, a collection of peer-to-peer queues. A queue
from p to q at A is denoted A(p,q). We define updates Alp,q > 7] similarly. We write Ay
for an empty queue environment, where Ay(p,q) = € for any p and q in the domain.

We write T-M to append a message M at the end of a queue T': the message is
appended to the sequence when 7' is available, or discarded when T’ is unavailable (i.e.
©-M = ©). Additionally, we write A[-,q— @] for making all the queues to q unavailable:
i.e. Alp;,q @l[py,q = @)+ [Py a = @)

We give an LTS semantics of configurations in Def. 9. Similar to that of global types, we
model the semantics of configurations in an asynchronous (a.k.a. message passing) fashion,
using a queue environment to represent the communication queues among all roles.

» Definition 9 (Configuration Semantics). The configuration transition relation < is defined
in Fig. 8. We write T; A= iff T; AT A for some I and A'. We define two reductions
— and —x (where R is a fized set of reliable roles) as follows:
We write T; A = T'; A for T; A 5 T A with o € {p&q:m(B),p®q:n(B),poq}. We
write T; A— iff Ty A—=T7; A’ for some I'; A’ and T'; A4 for its negation, and —* for
the reflexive and transitive closure of —;
We write T; A =g T/; A for T; A 5 T A" with a ¢ {rs |[reR}. We write T'; A—x iff
['A =g T A for some T7; A, and Ty A’ Ag for its negation. We define —5 as the
reflexive and transitive closure of — .

1:13

ECOOP 2023

1:14 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

I'(p) = q®{mi(B:).Ti},e;, kel

: r-e]
;A 229, bl Th); Alp, g — Alp,@)-me(B)]
I'(p) = q&{mi(Bi)'Ti}iGI kel w'=m B =D A(q,p) = m’(B’)'T/ 7o r-&]
;A 2B, plp s T4 Alg,p s 7]
[(p) = ut.T Tlp T{utT/}]; A ST A - I'(p) #end T'(p) # stop rod]
OASTA F;Aﬁr[P'—’StOPkA[HP’_’@}
[(q) = p&{mi(B;).Ti},c; T(p) =stop k&l my=crash A(p,q) =¢ _
-G

I;A RICEN Llq+— Tk]; A

Figure 8 Configuration Semantics.

We first explain the standard rules: rule [r-@] (resp. [I-&]) says that a role can perform an
output (resp. input) transition by appending (resp. consuming) a message at the corresponding
queue. Recall that whenever a queue is unavailable, the resulting queue remains unavailable
after appending (©-M = @). Therefore, the rule [r-¢] covers delivery to both crashed and
live roles, whereas two separate rules are used in modelling global type semantics ([GR-o] and
[GR-4m]). We also include a standard rule [r-4 for recursive types.

The key innovations are the (highlighted) rules modelling crashes and crash detection:
by rule [r-¢], a role p may crash and become stop at any time (unless it is already ended
or stopped). All of p’s receiving queues become unavailable @, so that future messages to
p would be discarded. Rule [r-©] models crash detection and handling: if p is crashed and
stopped, another role q attempting to receive from p can then take its crash handling branch.
However, this rule only applies when the corresponding queue is empty: it is still possible to
receive messages sent before crashing via [T-&].

4.4 Alternative Modellings for Crash-Stop Failures

Before we dive into the relation between two semantics, let us have a short digression to
discuss our modelling choices and alternatives. In this work, we mostly follow the assumptions
laid out in [3], where a crash is detected at reception. However, they opt to use a synchronous
(rendez-vous) semantics, whereas we give an asynchronous (message passing) semantics,
which entails interesting scenarios that would not arise in a synchronous semantics.

Specifically, consider the case where a role p sends a message to g, and then p crashes after
sending, but before q receives the message. The situation does not arise under a synchronous
semantics, since sending and receiving actions are combined into a single transmission action.

Intuitively, there are two possibilities to handle this scenario. The questions are whether
the message sent immediately before crashing is deliverable to q, and consequentially, at
what time does q detect the crash of p.

In our semantics (Figs. 7 and 8), we opt to answer the first question in positive: we argue
that this model is more consistent with our “passive” crash detection design. For example, if
a role p never receives from another role g, then p does not need to react in the event of gq’s
crash. Following a similar line of reasoning, if the message sent by p arrives in the receiving
queue of g, then q should be able to receive the message, without triggering a crash detection
(although it may be triggered later). As a consequence, we require in [r-o] that the queue
A(p,q) be empty, to reflect the idea that crash detection should be a “last resort”.

A.D. Barwell, P. Hou, N. Yoshida, and F. Zhou

For an alternative model, we can opt to detect the crash after crash has occurred. This is
possibly better modelled with using outgoing queues (cf. [12]), instead of incoming queues
in the semantics presented. Practically, this may be the scenario that a TCP connection is
closed (or reset) when a peer has crashed, and the content in the queue is lost. It is worth
noting that this kind of alternative model will not affect our main theoretical results: the
operational correspondence between global and local type semantics, and furthermore, global
type properties guaranteed by projection.

4.5 Relating Global Type and Configuration Semantics

We have given LTS semantics for both global types (Def. 6) and configurations (Def. 9), we
now relate these two semantics with the help of the projection operator | (Def. 3).

We associate configurations I'; A with global types G (as annotated with a set of crashed
roles €) by projection, written I'; A Cx (€C; G). Naturally, there are two components of the
association: (1) the local types in I' need to correspond to the projections of the global type
G and the set of crashed roles €; and (2) the queues in A corresponds to the transmissions
en route in the global type GG and also the set of crashed roles C.

» Definition 10 (Association of Global Types and Configurations). A configuration T'; A is
associated with a (well-annotated w.r.t. R) global type (C; G, written T'; A Cx (C; G), iff
1. T can be split into disjoint (possibly empty) sub-contexts ' =T, T4, Tend where:
(A1) T'¢ contains projections of G: dom(I'¢) = roles(G), and Vp € dom(I'¢) : I'(p) <
G X ps
(A2) T'; contains crashed roles: dom(I'y) = €, and Vp € dom(T';) : I'(p) = stop;
(A3) Teng contains only end endpoints: Vp € Teng : T'(p) = end.
2. (A4) A is associated with global type (C; G), given as follows:
i. Receiving queues for a role is unavailable if and only if it has crashed: ¥q : q €
C <<= A(,q)=0;
ii. If G =end or G = put.’, then queues between all roles are empty (except
receiving queue for crashed roles): Vp,q:q ¢ € = A(p,q) = ¢;
iii. If G =p—q':{mi(Bi).Gl}icr, or G = pT~q:j {mi(B;).Gl}ier with m; = crash
(i.e. a pseudo-message is en route), then
(i) if q is live, then the queue from p to q is empty: qt #q? = A(p,q) = ¢,
and
(ii) Vi e I: A is associated with (C; G.);
iv. If G =plf~qj{mi(B;).G.}ier with mj # crash, then
(i) the queue from p to q begins with the message m;(B;): A(p,q) = m;(B;)-T;
(ii) Vi € I : removing the message from the head of the queue, Alp,q — 7| is
associated with (C; GY).
We write T Cx G as an abbreviation of T'; Ay Cx (0; G). We sometimes say T (resp. A) is
associated with (C; G) for stating Item 1 (resp. Item 2) is satisfied.

We demonstrate the relation between the two semantics via association, by showing two
main theorems: all possible reductions of a configuration have a corresponding action in
reductions of the associated global type (Thm. 11); and the reducibility of a global type is
the same as its associated configuration (Thm. 12).

» Theorem 11 (Completeness of Association). Given associated global type G and configuration
A T;ACk (CG). IFT;A 5 T A, where o # p4 for all p € R, then there exists
(C";G"Y such that T"; A’ Cx (€3 G") and (C;G) Sx (€1, G").

1:15

ECOOP 2023

1:16

Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

» Theorem 12 (Soundness of Association). Given associated global type G and configuration
A T;ACR (CG). If (€;G) —x, then there exists T'; A/, « and (€';G'), such that
(C;G) Bg (€6, T!; A T (€ G, and T; A 5 TV A

By Thms. 11 and 12, we obtain, as a corollary, that a global type G is in operational corres-
pondence with the typing context I' = {p>G [x p}pemlos(c), which contains the projections
of all roles in G.

4.6 Properties Guaranteed by Projection

A key benefit of our top-down approach of multiparty protocol design is that desirable
properties are guaranteed by the methodology. As a consequence, processes following the
local types obtained from projections are correct by construction. In this subsection, we
focus on three properties: communication safety, deadlock-freedom, and liveness, and show
that the three properties are guaranteed from configurations associated with global types.

Communication Safety. We begin by defining communication safety for configurations
(Def. 13). We focus on two safety requirements:
(i) each role must be able to handle any message that may end up in their receiving queue
(so that there are no label mismatches); and
(ii) each receiver must be able to handle the potential crash of the sender, unless the sender
is reliable.

» Definition 13 (Configuration Safety). Given a fized set of reliable roles R, we say that ¢ is

an R-safety property of configurations iff, whenever o(I'; A), we have:

s-o&] I'(q) = p&{mi(B;).S}},c; and Ap,q) # @ and A(p,q) # € implies T; A2 (B), ;

[s-+&] T'(p) = stop and I'(q) = p&{m;(S;).S;},c; and A(p,q) = € implies T'; Aqo;p);
s-u] T(p) = pt.S implies p(U[p = S{rt-S/t}]; A);

(8-—;] T3 A =g TV A implies p(TV; A).

We say T;A is R-safe, if o(I'; A) holds for some R-safety property .

We use a coinductive view of the safety property [35], where the predicate of R-safe
configurations is the largest R-safety property, by taking the union of all safety properties ¢.
For a configuration I'; A to be R-safe, it has to satisfy all clauses defined in Def. 13.

By clause [s-@&], whenever a role q receives from another role p, and a message is present
in the queue, the receiving action must be possible for some label m’. Clause [s-5&] states
that if a role q receives from a crashed role p, and there is nothing in the queue, then q must
have a crash branch, and a crash detection action can be fired. (Note that [s-@&] applies
when the queue is non-empty, despite the crash of sender p.) Finally, clause [s-u] extends
the previous clauses by unfolding any recursive entries; and clause [s-—,] states that any
configuration I'V; A’ which I'; A transitions to must also be R-safe. By using transition —x,
we ignore crash transitions p4 for any reliable role p € R.

» Example 14. Recall the local types T, 11, and T of the Simpler Logging example in § 2.
The configuration I'; A, where I' = CoTe, LbTy, InTr and A = Ay, is {L, I}-safe. This can be
verified by checking its reductions. For example, in the case where C crashes immediately, we
have: T; A 25 T[C s stop]; A[-,C — @] —* T'[C > stop][L — end][I — end]; A[-,C — @] and each
reductum satisfies all clauses of Def. 13.

A.D. Barwell, P. Hou, N. Yoshida, and F. Zhou

Deadlock-Freedom. The property of deadlock-freedom, sometimes also known as progress,
describes whether a configuration can keep reducing unless it is a terminal configuration. We
give its formal definition in Def. 15.

» Definition 15 (Configuration Deadlock-Freedom). Given a set of reliable roles R, we say
that a configuration I'; A is R-deadlock-free iff:
1. T'; A is R-safe; and,
2. IfT; A can reduce to a configuration I''; A" without further reductions: T'; A—{ T A’ o,
then:
a. IV can be split into two disjoint contexts, one with only end entries, and one with

only stop entries: I'" = 1", 4, T, , where dom(I'",4) = {p|I"(p) = end} and dom (P;) =

end’
{p|I"(p) = stop}; and,
b. A’ is empty for all pairs of roles, except for the receiving queues of crashed roles, which
are unavailable: ¥p,q: A'(-,q) = @ if I'(q) = stop, and A’(p,q) = €, otherwise.

Tt is worth noting that a (safe) configuration that reduces infinitely satisfies deadlock-
freedom, as Item 2 in the premise does not hold. Otherwise, whenever a terminal configuration
is reached, it must satisfy Item 2a that all local types in the typing context be terminated
(either successfully end, or crashed stop), and Item 2b that all queues be empty (unless
unavailable due to crash). As a consequence, a deadlock-free configuration I'; A either does
not stop reducing, or terminates in a stable configuration.

Liveness. The property of liveness describes that every pending output/external choice is
eventually triggered by means of a message transmission or crash detection. Our liveness
property is based on fairness, which guarantees that every enabled message transmission,
including crash detection, is performed successfully. We give the definitions of non-crashing,
fair, and live paths of configurations respectively in Def. 16, and use these paths to formalise
the liveness for configurations in Def. 17.

» Definition 16 (Non-crashing, Fair, Live Paths). A non-crashing path is a possibly infinite
sequence of configurations (I'p; Ap)nen, where N = {0,1,2,...} is a set of consecutive
natural numbers, and Yn € N, I'; Ay, — Tyiq;Ang1. We say that a non-crashing path
(T Ap)nen is fair iff, Yn € N:

(F1) Tp; A, 2258, irplies 3k,w', B’ such that n < k € N and Tj; A, 2222,
Fk-+1§A1c-s-1;
pdqm(B) . . plqn(B)
(F2) T'y; A, —— implies Ik such that n <k € N and Uy; Ay —— Tip1; Agr1;

(F3) Iy A, POd, implies 3k such that n < k € N and I'y; Ag POd, Dra1; Aga.

We say that a non-crashing path (Tp; Ay)nen s live iff, Vn € N:
(L1) A,(p,q) = m(B)7 # @ and m # crash implies 3k such that n < k € N and

&p:m(B
Cy; A sbpn(B), Crq1; Dpyr;
(L2) To(p) = q&{mi(B;). T3}, implies Ik, m’, B" such that n <k € N and
&q:m’ (B’
I Ay plam (B), Thit; Akpr or T A 225 T Ay

A non-crash path is a (possibly infinite) sequence of reductions of a configuration without
crashes. A non-crash path is fair if along the path, every internal choice eventually sends
a message (F1), every external choice eventually receives a message (F2), and every crash
detection is eventually performed (F3). A non-crashing path is live if along the path, every
non-crash message in the queue is eventually consumed (L1), and every hanging external
choice eventually consumes a message or performs a crash detection (L2).

1:17

ECOOP 2023

1:18 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

Fhlt(sl Fh2252

Fe:e [r-<] Fo:0o L] Fhi-hg:d1-02 o
Fv:B 6(q)=m(B) Vr#q:0(r)=c¢
[T-MSG]
F(qm(v)): 6
©OFe:B OFP:T)
—_— [1-4] —— [1-0] [T-ouT]
O 4 : stop OFO0:end O+ qlm(e).P : q®n(B).T
viel ©,z;: B;-P;:T; - OFe:bool OFP;:T (i=1,2
[T-EXT] - [T-coND]
OF >, ammi(zi).Pi: q&{mi(B;). Ti}, Ok ifethen Pielse Py : T
0,X:THP:T OFP:T TLT
— = [T-REC] ————————— [T-VAR] S [T-suB]
OFuX.P:T 0,X:THX:T OFP:T

I;ACx (€;G) Viel FP;:T(p,) Fhi:A(—,p,) dom(T)C {p,|i€e I} [
(€;G) F [Lic, (@i < Pi | p; <hi)

T-SESS]

Figure 9 Typing rules for queues, processes, and sessions.

» Definition 17 (Configuration Liveness). Given a set of reliable roles R, we say that a

configuration T'; A is R-live iff:

1. T'; A is R-safe; and,

2. I A =5 T7; A implies all non-crashing paths starting with TV; A’ that are fair are also
live.

A configuration T'; A is R-live when it is R-safe and any reductum of I'; A (via transition
—) consistently leads to a live path if it is fair.

Properties by Projection. We conclude by showing the guarantee of safety, deadlock-
freedom, and liveness in configurations associated with global types in Lem. 18. Furthermore,
as a corollary, Thm. 19 demonstrates that a typing context projected from a global type
(without runtime constructs) is inherently safe, deadlock-free, and live by construction.

» Lemma 18. IfT; A Cx (C; G), then T'; A is R-safe, R-deadlock-free, and R-live.

» Theorem 19 (Safety, Deadlock-Freedom, and Liveness by Projection). Let G be a global
type without runtime constructs, and R be a set of reliable roles. If " is a typing context
associated with the global type G: T' T G, then I'; Ay is R-safe, R-deadlock-free, and R-live.

5 Typing System with Crash-Stop Semantics

In this section, we present a type system for our asynchronous multiparty session calculus.
Our typing system is extended from the one in [16] with crash-stop failures. We introduce
the typing rules in § 5.1, and show various properties of typed sessions: subject reduction,
session fidelity, deadlock-freedom, and liveness in §5.2.

5.1 Typing Rules

Our type system uses three kinds of typing judgements: (1) for processes; (2) for queues; and
(3) for sessions, and is defined inductively by the typing rules in Fig. 9. Typing judgments
for processes are of form © F P : T, where O is a typing context for variables, defined as
©:=0]0,2:B|6,X:T.

A.D. Barwell, P. Hou, N. Yoshida, and F. Zhou

With regard to queues, we use judgments of the form F h : §, where we use J to denote
a partially applied queue lookup function. We write 6 = A(—,p) to describe the incoming
queue for a role p, as a partially applied function § = A(—,p) such that 6(q) = A(q,p). We
write 07 - J2 to denote the point-wise application of concatenation. For empty queues (e),
unavailable queues (@), and queue concatenations (-), we simply lift the process-level queue
constructs to type-level counterparts. For a singleton message (q,m(v)), the appropriate
partial queue § would be a singleton of m(B) (where B is the type of v) for q, and an empty
queue (e) for any other role.

Finally, we use judgments of the form (€; G) F M for sessions. We use a global type-guided
judgment, effectively asserting that all participants in the session respect the prescribed
global type, as is the case in [15]. As highlighted, the global type with crashed roles (€; G)
must have some associated configuration I'; A, used to type the processes and the queues
respectively. Moreover, all the entries in the configuration must be present in the session.

Most rules in Fig. 9 assign the corresponding session type according to the behaviour of
the process. For example, (highlighted) rule [r-0] assigns the unavailable queue type © to
a unavailable queue ©; rules [r-our] and [r-ext] assign internal and external choice types to
input and output processes; (highlighted) rule [r-4] (resp. [1-0]) assigns the crash termination
stop (resp. successful termination end) to a crashed process 4 (resp. inactive process 0).

» Example 20. Consider the process that acts as the role C in our Simpler Logging example
(§2 and Ex. 14): P; = I'read.I?report(x).0, and a message queue he = e. Process P: has the
type Tt¢, and queue h¢ has the type €, which can be verified in the standard way. If we follow
a crash reduction, e.g. by the rule [r-4], the session evolves as C< P |C<ahe —x C<4 |CaQ,
where, by [r-4], P is typed by stop, and h¢ is typed by @.

5.2 Properties of Typed Sessions

We present the main properties of typed sessions: subject reduction (Thm. 21), session fidelity
(Thm. 22), deadlock-freedom (Thm. 24), and liveness (Thm. 26).

Subject reduction states that well-typedness of sessions are preserved by reduction. In
other words, a session governed by a global type continues to be governed by a global type.

» Theorem 21 (Subject Reduction). If (C;G)+ M and M —x M', then either (C;G)
M, or there exists (€';G"Y such that (C;G) —x (€';G"Y and (€';G') F M.

Session fidelity states the opposite implication with regard to subject reduction: sessions
respect the progress of the governing global type.

» Theorem 22 (Session Fidelity). If (C;G) - M and (C;G) —x, then there exists M’
and (€';G") such that (€;G) —x (€;G), M =" M’ and (C;G') - M.

Session deadlock-freedom means that the “successful” termination of a session may include
crashed processes and their respective unavailable incoming queues — but reliable roles (which
cannot crash) can only successfully terminate by reaching inactive processes with empty
incoming queues. We formalise the definition of deadlock-free sessions in Def. 23 and show
that a well-typed session is deadlock-free in Thm. 24.

» Definition 23 (Deadlock-Free Sessions). A session M is deadlock-free iff M —x* M’ A
implies either M' =p<0|p<e, or M ' =p<4|p<.

» Theorem 24 (Session Deadlock-Freedom). If (C;G) F M, then M is deadlock-free.

1:19

ECOOP 2023

1:20 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

1 global protocol SimpleLogger(role U, reliable role L)

2 { rec t0 { choice at U { write(String) from U to L;

3 continue tO; ¥

4 or { read from U to L;

5 report(Log) from L to U;

6 continue t0; }

7 or { crash from U to L; }r}

Figure 10 A Simple Logger protocol in SCRIBBLE.

Finally, we show that well-typed sessions guarantee the property of liveness: a session is
live when all its input processes will be performed eventually, and all its queued messages will
be consumed eventually. We formalise the definition of live sessions in Def. 25 and conclude
by showing that a well-typed session is live in Thm. 26.

» Definition 25 (Live Sessions). A session M is live iff M —g* M'=p<a P |p<ahy | M"
implies:

L. if hy=(q,m(v)) - hy, then IP', M" : M" mx*pa P [p<ah, | M"; and

2. if P =Y, qm(w:).Pi, then Ik € Iw, b\, M : M’ 5" pa P{wfar} | p<hl) | M.

» Theorem 26 (Session Liveness). If (C;G)+ M, then M is live.

6 Teatrino: Generating Scala Programs from Protocols

In this section, we present our toolchain TEATRINO that implements our extended MPST
theory with crash-stop failures. TEATRINO processes protocols represented in the SCRIBBLE
protocol description language, and generates protocol-conforming Scala code that uses the
EFFPI concurrency library. A user specifies a multiparty protocol in SCRIBBLE as input,
introduced in §6.1. We show the style of our generated code in §6.2, and how a developer can
use the generated code to implement multiparty protocols. As mentioned in § 2, generating
channels for each process and type poses an interesting challenge, explained in §6.3.

6.1 Specifying a Multiparty Protocol in Scribble

The ScRIBBLE Language [43] is a multiparty protocol description language that relates closely
to MPST theory (cf. [31]), and provides a programmatic way to express global types. As an
example, Fig. 10 describes the following global type of a simple distributed logging protocol:

G = pto.u—1: {write(str).tg, read.l—ureport(Log).to, crash.end}.

The global type is described by a SCRIBBLE global protocol, with roles declared on Line 1.
A transmission in the global type (e.g. u—1:{---}) is in the form of an interaction statement
(e.g. ... from U to L;), except that choice (i.e. with an index set |I| > 1) must be marked
explicitly by a choice construct (Line 2). Recursions and type variables in the global types
are in the forms of rec and continue statements, respectively.
In order to express our new theory, we need two extensions to the language:
(1) a reserved label crash to mark crash handling branches (cf. the special label crash in the
theory), e.g. on Line 7; and
(2) a reliable keyword to mark the reliable roles in the protocol (cf. the reliable role set R
in the theory). Roles are assumed unreliable unless declared using the reliable keyword,
e.g. L on Line 1.

A.D. Barwell, P. Hou, N. Yoshida, and F. Zhou

6.2 Generating Scala Code from Scribble Protocols

The Effpi Concurrency Library. [38] provides an embedded Domain Specific Language (DSL)
offering a simple actor-based API. The library utilises advanced type system features in
Scala 3, and provides both type-level and value-level constructs for processes and channels.
In particular, the type-level constructs reflect the behaviour of programs (i.e. processes), and
thus can be used as specifications. Following this intuition, we generate process types that
reflect local types from our theory, as well as a tentative process implementing that type (by
providing some default values where necessary).

Generated Code. To illustrate our approach, we continue with the Simple Logger example
from §6.1, and show the generated code in Fig. 11. The generated code can be divided into
five sections:

(i) label and payload declarations,

(ii) recursion variable declarations,

(iii) local type declarations,

(iv) role-implementing functions, and

(v) an entry point.

Sections (i) and (ii) contain boilerplate code, where we generate type declarations for
various constructs needed for expressing local types and processes. We draw attention to the
key sections (iii) and (iv), where we generate a representation of local types for each role, as
well as a tentative process inhabiting that type.

Local Types and Effpi Types. We postpone the discussion about channels in EFrFpI to
§6.3. For now, we compare the generated EFFPI type and the projected local type, and also
give a quick primer3 on EFFPI constructs. The projected local types of the roles u and 1 are
shown as follows:

Glpyu = pto.ld{write(str).to, read.l&report(Log).to}

Glpyl = ptou&{write(str).to, read.udreport(Log).to, crash.end}
The local types are recursive, and the EFFPI type implements recursion with
Rec[RecTO, ...] and Loop[RecT0], using the recursion variable RecTO declared in sec-
tion (ii).

For role u, The inner local type is a sending type towards role 1, and we use an EFFPI
process output type Out [A, BJ], which describes a process that uses a channel of type A to
send a value of type B. For each branch, we use a separate output type, and connect it to
the type of the continuation using a sequential composition operator (>>:). The different
branches are then composed together using a union type (1) from the SCALA 3 type system.

Recall that the role 1 is declared reliable, and thus the reception labelled report from
1 at u does not need to contain a crash handler. We use an EFFPI process input type
In[A, B, C], which describes a process that uses a channel of type A to receive a value of
type B, and uses the received value in a continuation of type C.

For role 1, the reception type is more complex for two reasons:

(1) role u is unreliable, necessitating crash handling; and
(2) the reception contains branching behaviour (cf. the reception u being a singleton), with
labels write and read.

3 A more detailed description of constructs can be found in [39].

1:21

ECOOP 2023

1:22 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

1 // (i) label and payload declarations
2 case class Log() // payload type

3 case class Read() // label types

4 case class Report(x : Log)

5 case class Write(x : String)

6 // (ii) recursion variable declarations
7 sealed abstract class RecTO[A] () extends RecVar[A] ("RecTO")
s case object RecTO extends RecTO[Unit]

o // (iii) local type declarations

10 type U[CO <: OutChan[Read | Write], C1 <: InChan[Report]] =

11 Rec[RecTO,

12 ((Out[CO, Read] >>: In[Cl1l, Report, (x0 : Report) => Loop[RecTO0]])
13 | (Out[CO, Write] >>: Loop[RecT0]))]

15 type L[CO <: InChan[Read | Write], C1 <: OutChan[Report]] =

16 Rec[RecTO,

17 InErr[CO, Read | Write, (xO : Read | Write) => LO[xO.type, Ci],
18 (err : Throwable) => PNill]

20 type LO[XO <: Read | Write, Cl1 <: OutChan[Report]] <: Process =
21 X0 match { case Read => Out[Cl, Report] >>: Loop[RecTO]
22 case Write => Loop[RecTO] }

23 // (iv) role-implementing functions
24 def u(cO : OutChan[Read | Write],

25 cl : InChan[Report]) : U[cO.type, cl.type]l = {
26 rec(RecT0) {

27 val x0 =0

28 if (x0 == 0) {

29 send(cO, new Read()) >> receive(cl) {(x1 : Report) => loop(RecTO) }
30 } else {

31 send(cO, new Write("")) >> loop(RecTO)

32 } 3

33

34 def 1(cO : InChan[Read | Write],

35 cl : OutChan[Report]) : L[cO.type, cl.type] =
36 rec(RecT0) {

37 receiveErr(c0) ((x0 : Read | Write) => 10(x0, c1),
38 (err : Throwable) => nil) }

39

40 def 10(x : Read | Write, cl : OutChan[Report]) : LO[x.type, cl.type] =

41 x match { case y : Read => send(cl, new Report(new Log())) >> loop(RecTO)
42 case y : Write => loop(RecTO) }

a3 // (v) an entry point (main object)
14 object Main {

45 def main() : Unit = {

46 var cO = Channel[Read | Write] ()
a7 var ¢l = Channel [Report] ()

48 eval (par(u(c0O, c1), 1(c0, c1)))
2 }}

Figure 11 Generated SCALA code for the Simple Logger protocol in Fig. 10.

A.D. Barwell, P. Hou, N. Yoshida, and F. Zhou

For (1), we extend EFFPI with a variant of the input process type InErr[A, B, C, DI,
where D is the type of continuation in case of a crash. For (2), the payload type is first
received as an union (Line 17), and then matched to select the correct continuation according
to the type (Line 21).

From Types To Implementations. Since EFFPI type-level and value-level constructs are
closely related, we can easily generate the processes from the processes types. Namely, by
matching the type Out[..., ...] with the process send(..., ...);thetypeIn[..., ...]
with the process receive(...) {... => ...}; and similarly for other constructs. Whilst
executable, the generated code represents a skeleton implementation, and the programmer is
expected to alter the code according to their requirements.

We also introduce a new crash handling receive process receiveErr, to match the
new InErr type. Process crashes are modelled by (caught) exceptions and errors in role-
implementing functions, and crash detection is achieved via timeouts. Timeouts are set by
the programmer in an (implicit) argument to each receiveErr call.

Finally, the entry point (main object) in section (v) composes the role-implementing
functions together with par construct in EFFPI, and connects the processes with channels.

6.3 Generating Effpi Channels from Scribble Protocols

As previously mentioned, EFFPI processes use channels to communicate, and the type of
the channel is reflected in the type of the process. However, our local types do not have any
channels; instead, they contain a partner role with which to communicate. This poses an
interesting challenge, and we explain the channel generation procedure in this section.

We draw attention to the generated code in Fig. 11 again, where we now focus on the
parameters CO in the generated types U and L. In the type U, the channel type CO needs to
be a subtype of OutChan[Read | Write] (Line 10), and we see the channel is used in the
output processes types, e.g. Out [CO, Read] (Line 12, note that output channels subtyping
is covariant on the payload type). Dually, in the type L, the channel type CO needs to be a
subtype of InChan[Read | Write] (Line 15), and we see the channel is used in the input

process type, i.e. InErr[CO, Read | Write, ..., ...] (Line 17).
Similarly, a channel c0 is needed in the role-implementing functions u and 1 as arguments,
and the channel is used in processes send(cO, ...) and receiveErr(c0) Finally, in

the entry point, we create a bidirectional channel cO = Channel[Read | Writel () (Line 46),
and pass it as an argument to the role-implementing functions u and 1 (Line 48), so that the
channel can be used to link two role-implementing processes together for communication.

Generating the channels correctly is crucial to the correctness of our approach, but
non-trivial since channels are implicit in the protocols. In order to do so, a simple approach is
to traverse each interaction in the global protocol, and assign a channel to each accordingly.

This simple approach would work for the example we show in Fig. 10; however, it would
not yield the correct result when merging occurs during projection, which we explain using
an example. For clarity and convenience, we use annotated global and local types, where
we assign an identifier for each interaction to signify the channel to use, and consider the
following global type: G = pi>q: le:ft.plﬁr:left.end7 right.pir:right.end .

The global type describes a simple protocol, where role p selects a label 1eft or right
to g, and q passes on the same label to r. As a result, the projection on r (assuming
all roles reliable) should be a reception from q with branches labelled left or right, i.e.
p&l?{left.end, right.end}. Here, we notice that the interaction between q and r should
take place on a single channel, instead of two separate channels annotated 1 and 2.

1:23

ECOOP 2023

1:24

Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

Table 1 Overview of All Variants for Each Example.

Name Var. R Comms. Crash Branches Max Cont. Len.
PingPong (a) R 2 0 4
R ={p,q} (b) 0 2 2 4
Adder (¢) R 5 0 6
R ={p,q} (d) 0 5 5 6
TwoBuyer (e) R 7 0 8
R = {pv 9, r} (f) {r} 18 6 12
(9) R 12 0 11
OAuth (h) {s,a} 21 8 11
R ={c,a,s} (4) s 26 13 11
() 30 28 11
(k) R 8 0 6
g"”:"eﬁgzncsy}) {a,s} 9 3 6
7 (m) {a} 9 4 6
DistLogge (n) 'R 10 0 7
R': {igct g @ el 15 2 7
» G} 16 1 7
. (q) R 18 0 10
%riBEZa l;e'r} (r) {a,s} 24 3 10
T (s) {a,s} 23 3 11

When merging behaviour occurs during projection, we need to use the same channel
in those interactions to achieve the correct behaviour. After traversing the global type to
annotate each interaction, we merge annotations involved in merges during projection.

7 Evaluation

We evaluate our toolchain TEATRINO from two perspectives: expressivity and feasibility. For
expressivity, we use examples from session type literature, and extend them to include crash
handling behaviour using two patterns: failover and graceful failure. For feasibility, we show
that our tool generates SCALA code within negligible time.

We note that we do not evaluate the performance of the generated code. The generated
code uses the EFFPI concurrency library to implement protocols, and any performance
indication would depend and reflect on the performance of EFFPI, instead of TEATRINO.

Expressivity. We evaluate our approach with examples in session type literature: PingPong,
Adder, TwoBuyer [21], OAuth [32], TravelAgency [23], DistLogger [26], and CircBreaker [26].
Notably, the last two are inspired by real-world patterns in distributed computing.

We begin with the fully reliable version of the examples, and extend them to include
crash handling behaviour. Recall that our extended theory subsumes the original theory,
when all roles are assumed reliable. Therefore, the fully reliable versions can act both as a
sanity check, to ensure the code generation does not exclude good protocols in the original
theory, and as a baseline to compare against.

To add crash handling behaviour, we employ two patterns: failover and graceful failure.
In the former scenario, a crashed role has its functions taken over by another role, acting as a
substitute to the crashed role [3]. In the latter scenario, the protocol is terminated peacefully,
possibly involving additional messages for notification purposes. Using the example from §2,
the fully reliable protocol in Eq. (1) is extended to one with graceful failure in Eq. (2).

A.D. Barwell, P. Hou, N. Yoshida, and F. Zhou

. 1_5: | “[]Pa‘rsin‘g D‘EPfI‘)iIR‘ DC‘)ode‘Ger‘l \ | |
LLELLL ok
0%%@%@@@@@@@ |

(a) (b) (e)) (@) (m) (n) (p) (f) (¢ () (s) (r) (4) ()

Figure 12 Average Generation Times for All Variants in Table 1.

We show a summary of the examples in Table 1. For each example, we give the set of
all roles R and vary the set of reliable roles (R). Each variant is given an identifier (Var.),
and each example always has a fully reliable variant where R = R. We give the number of
communication interactions (Comms.), the number of crash branches added (Crash Branches),
and the length of the longest continuation (Max Cont. Len.) in the given global type.

The largest of our examples in terms of concrete interactions is OAuth, with Variant (4)
having 26 interactions and (j) having 30 interactions. This represents a 2.17x and 2.5x
increase over the size of the original protocol, and is a consequence of the confluence of two
factors: the graceful failure pattern, and low degree of branching in the protocol itself. The
TwoBuyer Variant (f) represents the greatest increase (2.57x) in interactions, a result of
implementing the failover pattern. The CircBreaker variants are also notable in that they are
large in terms of both interactions and branching degree — both affect generation times.

Feasibility. In order to demonstrate the feasibility of our tool TEATRINO, we give generation
times using our prototype for all protocol variants and examples, plotted in Fig. 12. We
show that TEATRINO is able to complete the code generation within milliseconds, which does
not pose any major overhead for a developer.

In addition to total generation times, we report measurements for three main constituent
phases of TEATRINO: parsing, EffpilR generation, and code generation. EffpilR generation
projects and transforms a parsed global type into an intermediate representation, which is
then used to generate concrete SCALA code.

For all variants, the code generation phase is the most expensive phase. This is likely
a consequence of traversing the given EffpilR representation of a protocol twice — once for
local type declarations and once for role-implementing functions.

8 Related Work

We summarise related work on both theory and implementations of session types with failure
handling, as well as other MPST implementations targeting SCALA without failures.

We first discuss closest related work [3,27,33,42], where multiparty session types are
extended to model crashes or failures. Both [33] and [27] are exclusively theoretical.

[33] proposes an MPST framework to model fine-grained unreliability: each transmission
in a global type is parameterised by a reliability annotation, which can be one of unreliable
(sender/receiver can crash, and messages can be lost), weakly reliable (sender/receiver can
crash, messages are not lost), or reliable (no crashes or message losses). [42] utilises MPST as
a guidance for fault-tolerant distributed system with recovery mechanisms. Their framework
includes various features, such as sub-sessions, event-driven programming, dynamic role
assignments, and, most importantly, failure handling. [3] develops a theory of multiparty

1:25

ECOOP 2023

1:26

Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

session types with crash-stop failures: they model crash-stop failures in the semantics of
processes and session types, where the type system uses a model checker to validate type
safety. [27] follow a similar framework to [3]: they model an asynchronous semantics, and
support more patterns of failure, including message losses, delays, reordering, as well as link
failures and network partitioning. However, their typing system suffers from its genericity,
when type-level properties become undecidable [27, §4.4].

Other session type works on modelling failures can be briefly categorised into two: using
affine types or exceptions [14,26,29], and using coordinators or supervision [1,41]. The former
adapts session types to an affine representation, in which endpoints may cease prematurely;
the latter, instead, are usually reliant on one or more reliable processes that coordinate in
the event of failure. The works [1,29,41] are limited to theory.

[29] first proposes the affine approach to failure handling. Their extension is primarily
comprised of a cancel operator, which is semantically similar to our crash construct: it repres-
ents a process that has terminated early. [14] presents a concurrent A-calculus based on [29],
with asynchronous session-typed communication and exception handling, and implements
their approach as parts of the LINKS language. [26] proposes a framework of affine multiparty
session types, and provides an implementation of affine MPST in the RUST programming
language. They utilise the affine type system and Result types of RUST, so that the type
system enforces that failures are handled.

Coordinator model approaches [1,41] often incorporate interrupt blocks (or similar con-
structs) to model crashes and failure handling. [1] extends the standard MPST syntax with
optional blocks, representing regions of a protocol that are susceptible to communication fail-
ures. In their approach, if a process P expects a value from an optional block which fails, then
a default value is provided to P, so P can continue running. This ensures termination and
deadlock-freedom. Although this approach does not feature an explicit reliable coordinator
process, we describe it here due to the inherent coordination required for multiple processes
to start and end an optional block. [41] similarly extends the standard global type syntax
with a try-handle construct, which is facilitated by the presence of a reliable coordinator
process, and via a construct to specify reliable processes. When the coordinator detects a
failure, it broadcasts notifications to all remaining live processes; then, the protocol proceeds
according to the failure handling continuation specified as part of the try-handle construct.

Other related MPST implementations include [9,17,18]. [18] designs a framework for
MPST-guided, safe actor programming. Whilst the MPST protocol does not include any
failure handling, the actors may fail or raise exceptions, which are handled in a similar way to
what we summarise as the affine technique. [9] revisits API generation techniques in SCALA
for MPST. In addition to the traditional local type/automata-based code generation [22,36],
they propose a new technique based on sets of pomsets, utilising SCALA 3 match types [4].
[17] presents CHORAL, a programming language for choreographies (multiparty protocols).
CHORAL supports the handling of local exceptions in choreographies, which can be used to
program reliable channels over unreliable networks, supervision mechanisms, etc. for fallible
communication. They utilise automatic retries to implement channel APIs.

9 Conclusion and Future Work

To overcome the challenge of accounting for failure handling in distributed systems using
session types, we propose TEATRINO, a code generation toolchain. It is built on asynchronous
MPST with crash-stop semantics, enabling the implementation of multiparty protocols that
are resilient to failures. Desirable global type properties such as deadlock-freedom, protocol

A.D. Barwell, P. Hou, N. Yoshida, and F. Zhou

conformance, and liveness are preserved by construction in typed processes, even in the
presence of crashes. Our toolchain TEATRINO, extends SCRIBBLE and EFFPI to support
crash detection and handling, providing developers with a lightweight way to leverage our
theory. The evaluation of TEATRINO demonstrates that it can generate SCALA code with
minimal overhead, which is made possible by the guarantees provided by our theory.

This work is a new step towards modelling and handling real-world failures using session
types, bridging the gap between their theory and applications. As future work, we plan to
studys different crash models (e.g. crash-recover) and failures of other components (e.g. link
failures). These further steps will contribute to our long-term objective of modelling and
type-checking well-known consensus algorithms used in large-scale distributed systems.

—— References

1 Manuel Adameit, Kirstin Peters, and Uwe Nestmann. Session types for link failures. In
Ahmed Bouajjani and Alexandra Silva, editors, Formal Techniques for Distributed Objects,
Components, and Systems - 87th IFIP WG 6.1 International Conference, FORTE 2017, Held
as Part of the 12th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2017, Neuchatel, Switzerland, June 19-22, 2017, Proceedings, volume 10321 of Lecture
Notes in Computer Science, pages 1-16. Springer, 2017. doi:10.1007/978-3-319-60225-7_1.

2 Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou. Designing Asynchronous
Multiparty Protocols with Crash-Stop Failures, 2023. arXiv:2305.06238.

3 Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhou. Generalised Multiparty
Session Types with Crash-Stop Failures. In Bartek Klin, Stawomir Lasota, and Anca Muscholl,
editors, 33rd International Conference on Concurrency Theory (CONCUR 2022), volume
243 of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1-35:25, Dagstuhl,
Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fir Informatik. doi:10.4230/LIPIcs.
CONCUR. 2022. 35.

4 Olivier Blanvillain, Jonathan Immanuel Brachthiduser, Maxime Kjaer, and Martin Odersky.
Type-level programming with match types. Proc. ACM Program. Lang., 6(POPL):1-24, 2022.
doi:10.1145/3498698.

5 Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P.
de Vink, Wieger Wesselink, Anton Wijs, and Tim A. C. Willemse. The mCRL2 Toolset
for Analysing Concurrent Systems. In Tomdas Vojnar and Lijun Zhang, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 21-39, Cham, 2019. Springer
International Publishing.

6 Christian Cachin, Rachid Guerraoui, and Luis E. T. Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.). Springer, 2011. doi:10.1007/978-3-642-15260-3.

7 David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida.
Distributed programming using role-parametric session types in go: statically-typed endpoint
APIs for dynamically-instantiated communication structures. Proc. ACM Program. Lang.,
3(POPL):29:1-29:30, 2019. doi:10.1145/3290342.

8 Tushar Deepak Chandra and Sam Toueg. Unreliable Failure Detectors for Reliable Distributed
Systems. J. ACM, 43(2):225-267, March 1996. doi:10.1145/226643.226647.

9 Guillermina Cledou, Luc Edixhoven, Sung-Shik Jongmans, and José Proenca. API Generation
for Multiparty Session Types, Revisited and Revised Using Scala 3. In Karim Ali and
Jan Vitek, editors, 86th FEuropean Conference on Object-Oriented Programming (ECOOP
2022), volume 222 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1—
27:28, Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. URL:
https://drops.dagstuhl.de/opus/volltexte/2022/16255.

10 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-Free Asynchronous Message
Reordering in Rust with Multiparty Session Types. In 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, volume abs/2112.12693 of PPoPP 22, pages
261-246. ACM, 2022. doi:10.1145/3503221.3508404.

1:27

ECOOP 2023

https://doi.org/10.1007/978-3-319-60225-7_1
https://arxiv.org/abs/2305.06238
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.1145/3498698
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1145/3290342
https://doi.org/10.1145/226643.226647
https://drops.dagstuhl.de/opus/volltexte/2022/16255
https://doi.org/10.1145/3503221.3508404

1:28

Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty ses-
sion types and Python. Formal Methods Syst. Des., 46(3):197-225, 2015. doi:10.1007/
s10703-014-0218-8.

Romain Demangeon and Nobuko Yoshida. On the Expressiveness of Multiparty Sessions. In
Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2015), volume 45 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 560-574, Dagstuhl, Germany, 2015.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.FSTTCS.2015.560.
Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Compatibility in Communicating
Automata: Characterisation and Synthesis of Global Session Types. In 40th International
Colloquium on Automata, Languages and Programming, volume 7966 of LNCS, pages 174-186,
Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-39212-2_18.

Simon Fowler, Sam Lindley, J. Garrett Morris, and Sara Decova. Exceptional Asynchronous
Session Types: Session Types without Tiers. Proc. ACM Program. Lang., 3(POPL):28:1-28:29,
2019. doi:10.1145/3290341.

Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida.
Precise subtyping for synchronous multiparty sessions. J. Log. Algebraic Methods Program.,
104:127-173, 2019. doi:10.1016/j.jlamp.2018.12.002.

Silvia Ghilezan, Jovanka Pantovié¢, Ivan Prokié, Alceste Scalas, and Nobuko Yoshida. Precise
Subtyping for Asynchronous Multiparty Sessions. Proc. ACM Program. Lang., 5(POPL),
January 2021. doi:10.1145/3434297.

Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Choreographies as objects. CoRR,
abs/2005.09520, 2020. arXiv:2005.09520.

Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty Session Types
for Safe Runtime Adaptation in an Actor Language. In Anders Mgller and Manu Sridharan,
editors, 35th European Conference on Object-Oriented Programming (ECOOP 2021), volume
194 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1-10:30, Dagstuhl,
Germany, 2021. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.
ECO0P.2021.10.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type discipline
for structured communication-based programming. In Chris Hankin, editor, Programming
Languages and Systems, pages 122—-138, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.
doi:10.1007/BFb0053567.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
In 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 273-284. ACM, 2008. doi:10.1145/1328897.1328472.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
Journal of the ACM, 63:1-67, 2016. doi:10.1145/2827695.

Raymond Hu and Nobuko Yoshida. Hybrid Session Verification through Endpoint API
Generation. In 19th International Conference on Fundamental Approaches to Software
Engineering, volume 9633 of LNCS, pages 401-418, Berlin, Heidelberg, 2016. Springer.
doi:10.1007/978-3-662-49665-7_24.

Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming
in Java. In Jan Vitek, editor, ECOOP 2008 — Object-Oriented Programming, 22nd Furopean
Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings, volume 5142 of Lecture Notes in
Computer Science, pages 516-541. Springer, 2008. doi:10.1007/978-3-540-70592-5_22.
Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols
with mungo and stmungo. In James Cheney and Germén Vidal, editors, Proceedings of the 18th
International Symposium on Principles and Practice of Declarative Programming, Edinburgh,
United Kingdom, September 5-7, 2016, pages 146-159. ACM, 2016. doi:10.1145/2967973.
2968595.

https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.560
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1145/3290341
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1145/3434297
https://arxiv.org/abs/2005.09520
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2967973.2968595

A.D. Barwell, P. Hou, N. Yoshida, and F. Zhou

25

26

27

28

29

30

31

32

33

34
35

36

37

38

39

40

Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Implementing Multiparty
Session Types in Rust. In Simon Bliudze and Laura Bocchi, editors, Coordination Models and
Languages — 22nd IFIP WG 6.1 International Conference, COORDINATION 2020, Held as
Part of the 15th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2020, Valletta, Malta, June 15-19, 2020, Proceedings, volume 12134 of Lecture Notes
in Computer Science, pages 127-136. Springer, 2020. doi:10.1007/978-3-030-50029-0_8.

Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe Under Panic: Affine
Rust Programming with Multiparty Session Types. In Karim Ali and Jan Vitek, editors,
36th European Conference on Object-Oriented Programming (ECOOP 2022), volume 222 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1-4:29, Dagstuhl, Germany,

2022. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. URL: https://drops.dagstuhl.

de/opus/volltexte/2022/16232.

Matthew Alan Le Brun and Ornela Dardha. MAGm: Types for Failure-Prone Communication.
In Thomas Wies, editor, Programming Languages and Systems, pages 363-391, Cham, 2023.
Springer Nature Switzerland. doi:10.1007/978-3-031-30044-8_14.

Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. Communication-Safe Web
Programming in TypeScript with Routed Multiparty Session Types. In International Confer-
ence on Compiler Construction, CC, pages 94-106, 2021. doi:10.1145/3446804.3446854.
Dimitris Mostrous and Vasco T. Vasconcelos. Affine Sessions. Logical Methods in Computer
Science, Volume 14, Issue 4, November 2018. doi:10.23638/LMCS-14(4:14)2018.

Rumyana Neykova and Nobuko Yoshida. Multiparty Session Actors. Logical Methods in
Computer Science, 13:1-30, 2017. doi:10.23638/LMCS-13(1:17)2017.

Rumyana Neykova and Nobuko Yoshida. Featherweight Scribble, pages 236—259. Springer
International Publishing, Cham, 2019. doi:10.1007/978-3-030-21485-2_14.

Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. SPY: Local Verification of Global
Protocols. In Axel Legay and Saddek Bensalem, editors, Runtime Verification, pages 358363,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:10.1007/978-3-642-40787-1_25.
Kirstin Peters, Uwe Nestmann, and Christoph Wagner. Fault-tolerant multiparty session
types. In Mohammad Reza Mousavi and Anna Philippou, editors, Formal Techniques for Dis-
tributed Objects, Components, and Systems, pages 93-113, Cham, 2022. Springer International
Publishing. doi:10.1007/978-3-031-08679-3_7.

Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.
Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,
2011. doi:10.1017/CB09780511777110.

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A Linear Decomposition
of Multiparty Sessions for Safe Distributed Programming. In Peter Miller, editor, $1st
European Conference on Object-Oriented Programming (ECOOP 2017), volume 74 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 24:1-24:31, Dagstuhl, Germany, 2017.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECO0P.2017.24.
Alceste Scalas and Nobuko Yoshida. Less is More: Multiparty Session Types Revisited. Proc.
ACM Program. Lang., 3(POPL):30:1-30:29, January 2019. doi:10.1145/3290343.

Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Verifying Message-Passing Programs with
Dependent Behavioural Types. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2019, pages 502-516, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3314221.3322484.
Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Effpi: verified message-passing programs in
Dotty. In Jonathan Immanuel Brachthduser, Sukyoung Ryu, and Nathaniel Nystrom, editors,
Proceedings of the Tenth ACM SIGPLAN Symposium on Scala, Scala@ECOOP 2019, London,
UK, July 17, 2019, pages 27-31. ACM, 2019. doi:10.1145/3337932.3338812.

Rob van Glabbeek, Peter Hofner, and Ross Horne. Assuming Just Enough Fairness to make
Session Types Complete for Lock-freedom. In 36th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2021, Rome, Italy, June 29 — July 2, 2021, pages 1-13. IEEE,
2021. doi:10.1109/LICS52264.2021.9470531.

1:29

ECOOP 2023

https://doi.org/10.1007/978-3-030-50029-0_8
https://drops.dagstuhl.de/opus/volltexte/2022/16232
https://drops.dagstuhl.de/opus/volltexte/2022/16232
https://doi.org/10.1007/978-3-031-30044-8_14
https://doi.org/10.1145/3446804.3446854
https://doi.org/10.23638/LMCS-14(4:14)2018
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.1007/978-3-030-21485-2_14
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1007/978-3-031-08679-3_7
https://doi.org/10.1017/CBO9780511777110
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3337932.3338812
https://doi.org/10.1109/LICS52264.2021.9470531

1:30

Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

41

42

43

Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu, and Lukasz Ziarek. A Typing
Discipline for Statically Verified Crash Failure Handling in Distributed Systems. In Amal
Ahmed, editor, Programming Languages and Systems, pages 799-826, Cham, 2018. Springer
International Publishing. doi:10.1007/978-3-319-89884-1_28.

Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. A Multiparty Session
Typing Discipline for Fault-Tolerant Event-Driven Distributed Programming. Proc. ACM
Program. Lang., 5(O0PSLA), October 2021. doi:10.1145/3485501.

Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In 8th International Symposium on Trustworthy Global Computing — Volume
8358, TGC 2013, pages 22-41, Berlin, Heidelberg, 2014. Springer-Verlag. doi:10.1007/
978-3-319-05119-2_3.

https://doi.org/10.1007/978-3-319-89884-1_28
https://doi.org/10.1145/3485501
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1007/978-3-319-05119-2_3

Nested Pure Operation-Based CRDTs

Jim Bauwens &
Software Languages Lab, Vrije Universiteit Brussel, Belgium

Elisa Gonzalez Boix &
Software Languages Lab, Vrije Universiteit Brussel, Belgium

—— Abstract

Modern distributed applications increasingly replicate data to guarantee high availability and optimal
user experience. Conflict-free Replicated Data Types (CRD'TS) are a family of data types specially
designed for highly available systems that guarantee some form of eventual consistency. Designing
CRDTs is very difficult because it requires devising designs that guarantee convergence in the
presence of conflicting operations. Even though design patterns and structured frameworks have
emerged to aid developers with this problem, they mostly focus on statically structured data; nesting
and dynamically changing the structure of a CRDT remains to be an open issue.

This paper explores support for nested CRDTs in a structured and systematic way. To this end,
we define an approach for building nested CRDTs based on the work of pure operation-based CRDTs,
resulting in nested pure operation-based CRDTs. We add constructs to control the nesting of CRDTs
into a pure operation-based CRDT framework and show how several well-known CRDT designs can
be defined in our framework. We provide an implementation of nested pure operation-based CRDTs
as an extension to the Flec, an existing TypeScript-based framework for pure operation-based
CRDTs. We validate our approach, 1) by implementing a portfolio of nested data structures, 2)
by implementing and verifying our approach in the VeriFx language, and 3) by implementing a
real-world application scenario and comparing its network usage against an implementation in the
closest related work, Automerge. We show that the framework is general enough to nest well-known
CRDT designs like maps and lists, and its performance in terms of network traffic is comparable to
the state of the art.

2012 ACM Subject Classification Software and its engineering — Consistency; Computer systems
organization — Distributed architectures; Software and its engineering — Synchronization; Software
and its engineering — Middleware; Software and its engineering — Reflective middleware

Keywords and phrases CRDTs, replication, pure operation-based CRDTSs, composition, nesting
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2023.2

Supplementary Material Software (Source Code): https://gitlab.soft.vub.ac.be/jimbauwens/
flec

Funding Jim Bauwens: Fonds Wetenschappelijk Onderzoek - Vlaanderen: FWOSB90

1 Introduction

To ease the development of geo-distributed applications, much research has studied the
concept of replicated data types (RDTs). An RDT exposes to programmers an interface akin
to that of a sequential data type while incorporating mechanisms to keep data consistent
across replicas [9, 22, 14]. Conflict-Free Replicated Data Types [22, 21, 19] (CRDTs) are
the most well-known family of replicated data types. CRDTs guarantee strong eventual
consistency (SEC) [22] that adds to eventual consistency the guarantee of state convergence,
i.e. if two replicas of the data type have received the same updates, they will be in the same
state. This implies that replicas converge without synchronisation or conflicts because they
reach the same state as soon as they have observed the same operations.

© Jim Bauwens and Elisa Gonzalez Boix;

37 licensed under Creative Commons License CC-BY 4.0
37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 2; pp. 2:1-2:26

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jim.bauwens@vub.be
mailto:egonzale@vub.be
https://doi.org/10.4230/LIPIcs.ECOOP.2023.2
https://gitlab.soft.vub.ac.be/jimbauwens/flec
https://gitlab.soft.vub.ac.be/jimbauwens/flec
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2

Nested Pure Operation-Based CRDTs

Designing new RDTs that guarantee convergence is a complex task. Only for data types
for which all operations commute (e.g., counters), one can easily construct a CRDT (since
regardless of the ordering in which operations are applied, the resulting state will be equival-
ent). A common approach to designing CRDTS is to use causal ordering for non-concurrent
operations and handle conflicts between non-commutative concurrent operations [19, 13, 3].
Many current designs handle those conflicts in an ad-hoc way crafted for each data type,
often relying on specific meta-data to track causality and relations. For example, some
CRDT designs (e.g., OR-Set) use tombstones to ensure that removal operations commute [22].
However, for many CRDT types, this meta-data grows unboundedly. Moreover, it is very
difficult to modify existing designs (e.g., add operations to the data type, or modify the
design to work with different networking assumptions). Pure operation-based CRDTs [3] aim
to solve those issues and propose an approach for building operation-based CRDTs based on
a Partial Ordered Log (PO-Log) of operations. The approach exposes causal information
from the underlying communication middleware which can be used to enable the removal of
redundant meta-data. While pure operation-based CRDTs provide a structured framework
to build CRDT5, it is designed to build CRDTs for flat data structures.

In this work, we focus on the issues raised by composing CRDTs, e.g., when CRDTs
are nested or more than one CRDT is combined into a new one. Composing CRDTs is
non-trivial, as the convergence property of a CRDT design is made to hold for a single CRDT
but does not necessarily hold when several CRDTs are composed into a new one. Recent
work has explored what concurrency semantics can be utilised for composing designs [19]
and several specific implementations exist [15, 16, 18]. Existing approaches, however, mainly
follow a state-based design, in which any information on applied operations is lost during the
merging process. This may result in non-sensible designs for nested CRDTs and hampers
the development of CRDTs where the operation history needs to be used to improve the
merging algorithm. For example, recent work [25] explores the design of a distributed file
system CRDT that uses nested structures for storing filesystem metadata. They argue
that to properly support authentication primitives, all semantically related authentication
information needs to be combined and considered in the merging semantics.

Operation-based techniques, on the other hand, are better suited for replicating nested
data structures as information on applied operations can be used to determine the optimal
ordering for concurrent operations. In the context of nested structures, this means that
it is less complex to relate different operations or even separate them when deciding what
nested semantics for non-commutative concurrent operations are needed. To the best of
our knowledge, no uniform (structured) approach exists for designing and implementing
nested CRDTs, where CRDT designers can easily coordinate the interaction between nested
structures, as part of the concurrency semantics of the replicated structure. In this paper,
we introduce a general approach to nesting and composing pure operation-based CRDTs
and propose a framework for implementing pure operation-based nested CRDTs. For this,
we extend the pure operation-based CRDT framework [3] with support for nested CRDT
structures. We implement our approach by extending an existing pure operation-based
CRDT framework written in TypeScript called Flec [5], where we develop a portfolio of
nested data structures. We demonstrate the correctness of our approach using a VeriFx
implementation where we verify that the structures always remain strong eventually consistent.
Finally, we implement a distributed file system based on Vanakieva et al. [25] to assess the
performance of our approach in comparison to a state-of-the-art JSON CRDT implementation,
Automerge [15].

J. Bauwens and E. Gonzalez Boix

To summarise, we introduce the following contributions:

A general approach for the design and implementation of nested CRDTs, building on the
work of pure operation-based CRDTs.

A full-fledged TypeScript implementation of our approach which includes a portfolio of
existing and novel pure operation-based CRDTs.

A validation of the correctness of our nested pure operation-based framework and a
portfolio of CRDTs built on this framework.

A performance evaluation showing that our approach has reduced network usage when
compared to Automerge [15].

2 Background

In this section, we provide the necessary background to understand the contributions of
this work. Baquero et al. [2] introduced the pure operation-based framework for designing
CRDTs in a structured way while avoiding performance issues related to the unbound
growth of meta-data. They build on the idea of relying on Reliable Causal Broadcast [8]
(RCB) middleware to ensure causal ordering for non-concurrent operations (along with
reliable delivery) [22, 2]. Instead of manually encoding causality information as meta-data to
operations, the framework exposes causality information stored within the RCB middleware
to CRDT implementors. More concretely, the framework employs a partially ordered log
of operations (PO-Log) constructed with the causality information of the underlying RCB
middleware. The state of the data structure can be computed by observing this log, and the
log can be compacted to ensure that memory does not grow unboundedly. Figure 1 shows

an example of a PO-Log of an Add-Wins (AW-Set) set replica (in a system of three replicas).

It contains four add operations, which form the state {A,B,C}, depicted in grey. Three of
these operations include causality information from the underlying RCB middleware, i.e.
they carry a vector clock.

Algorithm 1 shows the distributed algorithm describing the interaction between the RCB
middleware and the pure operation-based CRDT framework. Each replica contains has a
particular state (s; for replica i), representing its PO-Log. The operation(o) method is called
by client applications (e.g. by a CRDT implementation using the pure operation-based
framework) when an operation o should be applied. It ensures that operations are broadcasted
to other replicas and annotated with a logical timestamp on delivery (¢ in the algorithm
description). It does this by invoking the broadcast method from the RCB layer, which
broadcasts the operation with the associated timestamp meta-data to all other replicas. On
delivery of these operations (and after all causal dependencies are met), the RCB layer will
invoke the deliver(t, o) method from the pure operation-based framework, where the log (s;)
will be modified if needed.

<1,2,1> add(C)

<1,0,1> add(B)

<0,1,1> add(B)

add(A)

Figure 1 The internal state of an AW-Set. One operation is causally stable, and as such does not
contain a timestamp. Together, the operations form the state {A,B,C}.

2:3

ECOOP 2023

2:4

Nested Pure Operation-Based CRDTs

The framework introduces the concept of causal redundancy to keep the log compact.
The idea is that a particular operation may make existing operations in the log redundant, or
that the arriving operation may be redundant itself. Rules for this can be defined by using
two binary redundancy relations, R and R_ . R defines whether an arriving operation
makes existing entries in the log redundant, and R defines if a newly arriving operation
should be stored in the log. The definitions for these relations need to be provided by the
concrete CRDT implementation. The framework can also determine when operations are
causally stable, i.e., they have been observed on all replicas, and trim causal information
for their log entries. Since new operations can never be concurrent with causally stable
operations, their causal meta-data (such as timestamps) is thus no longer needed. The RCB
layer can determine causal stability by comparing the vector clocks of incoming messages
and decide whether a particular timestamp must have been observed by all nodes. Whenever
a particular timestamp is causally stable, the stable function will be invoked by the RCB
layer, and the framework will compact stable operations that are returned by the stabilize
function. It does this by replacing (removing) the associated timestamp with the bottom
(null) element. This can also be seen in Figure 1, where the add(A) operation has been
stripped from causality information. Similarly to the redundancy relations, the stabilize
function has to be provided by any CRDT implementation built on the framework.

Algorithm 1 (Simplified) distributed algorithm for a replica ¢ showing the interaction
between the RCB middleware and the pure op-based CRDT framework.

state: s;:=10

on operation;(0) :

| broadcast;(o)

on deliver;(t,o0) :

s (s \ {(#50) | (#,0) €51+ (#,0) R (,0)}) U {(t.0) | (t,0) K 5.}
on stable;(t) :

| stabilize; (¢, s;)[(L, 0)/ (%, 0)]

Table 1 shows the implementation for an AW-Set CRDT in the pure operation-based
framework. The table is grouped as follows: (1) functions that are used by the framework
and that dictate the interaction between new operations and entries in the log, and (2)
procedures that can be invoked by the user for state serialisation or mutations.

The R relation for the add-wins set defines that the clear and remove operations will
never be stored in the log. R, on the other hand, defines that an arriving operation o
will make any stored operations (in the log) redundant if and only if the stored operation
o’ causally happened before the arriving operation (i.e t' < t) and the arriving operation is
acting on the same set element, or the arriving operation is a clear (i.e., which removes
all happened-before elements). For example, a remove(X) will make a previous add(X)
redundant; and a clear operation will remove all previous log entries. The combination of
both rules ensures that add operations will always 'win’ from concurrent operations. The
implementation of stabilize defines that all causally stable operations will be stripped
from their timestamps (to preserve memory consumption). Additionally, the log will only
contain distinct add operations at any point in time. To query the state, a map function can
extract each element from these operations (as shown in the toList function) and serialise
it into an actual set data structure.

Figure 2 illustrates the internal state and the PO-Log of the AW-Set depicted in Figure 1
after receiving a remove (B) operation (depicted in the a. box) and after the operation has
been applied (depicted in the b. box). Initially, the log consists of an operation which is

J. Bauwens and E. Gonzalez Boix

Table 1 Semantics for the add-wins pure-op set, based on the approach in [3].

® (t,o0) R s = op(o) = (clear V remove)
£ (o) R_ (t,0) = t' <tA (op(o) = clear V arg(o) = arg(0'))
stabilize(t,s) = s
toList(s) = {v|(_,[op=add,arg=v]) € s}
g add(e) = operation(Jop=add, arg=e])
= remove(e) operation([op=remove, arg=ce|)

\L <2,2,1> rem(B) I 1

<1,2,1> add(C)

<1,0,1> add(B)

<0,1,1> add(B) R <1,2,1> add(C)

add (A) add (A)

=>rem(B)

Figure 2 The internal states of an AW-Set, after receiving a remove (rem) operation, and after
the operation has been applied.

causally stable (the add(a)), and three other operations which are not yet stable. Looking at
the vector clocks, we can observe that the log has two concurrent operations, both of which
add element B. When the arriving remove (B) is checked against these stored operations, both
previous add (B) operations will be marked as redundant by the R__ relation (as the operations
have the same key, and are causal predecessors). Additionally, the arriving operation itself is
immediately marked as redundant by the R relation of the AW-Set semantics (all remove
and clear operations are immediately redundant) and as such, it will not be added to the
log. The box denoted by b. shows the final result of applying remove(B): no entries for
adding element B remain, and the removal operation itself was not added to the log. Thus,
the replica state becomes {A, C}.

3 Nesting Pure Operation-Based CRDTs

Currently, it is not possible to reason about nested structures within the pure operation-based
CRDT framework. Redundancy relations only work on a flat level, and any logic to traverse
hierarchical /nested structures would have to be manually bolted on top of the framework in
an ad-hoc way.

As there is no native support for this functionality, nested designs built with the current

framework require developers to store nested operations in a flattened form in the main log.

To evaluate and apply the contents of the log, developers would need to either fully combine
the logic of the nested and main top-level CRDT or encode the nested CRDT semantics
in the query functions. In the former case, the redundancy relations and query functions
would have to manage all concurrency rules for all needed nested strategies. This greatly
complicates the design of such structures and makes them more prone to errors. In the latter
case, only the query functions would need to be touched, but they would have to implement
all redundancy logic from scratch. A programmer could delegate operations to separate
components for the nested CRDTs, but in the end, this implies a reimplementation of the

delivery of operations in the query function logic while this should be kept in the framework.

2:5

ECOOP 2023

2:6

Nested Pure Operation-Based CRDTs

In this work, we propose a novel nested pure operation-based CRDT framework that
enables the systematic construction of nested data structures building on the ideas of Baquero
et al [2]. We explore a framework that allows developers to combine and nest existing pure
operation-based CRDTs and provides constructs for the development of novel CRDTs. In
particular, we focus on designs where nested structures can dynamically change at runtime,
i.e., data structures that grow and shrink during the lifetime of an application, such as maps
and lists, where values can be CRDTs. Our approach offers developers novel framework
constructs to define the relationship between parent and child CRDT. The framework then
handles all replication aspects regarding the delivery of operations in the data-structure
hierarchy, ensuring that causal ordering is respected and that nested children are recursively
reset when needed. In the following section, we will focus on the CRDT framework level and
detail our extensions to pure operation-based CRDTs to support nesting.

3.1 Extending the Pure Operation-Based Framework

In this work, we model a nested data structure as a nested hierarchy where children can be
identified by a particular key and deeply nested children by an absolute path (list of keys)
relative to the topmost data structure (the root CRDT). To support nested data structures,
we introduce three extensions to the pure operation-based framework:
An internal data structure to keep track of nested CRDTSs (i.e., the children of a CRDT).
An update propagation mechanism for nested CRDTs that delivers the applied operations
ensuring that the concurrency semantics of parent data structures are upheld.
A reset mechanism for nested CRDT operations that ensures that the concurrency
semantics of children’s data structures are upheld.

Each of these extensions is essential to ensure the correctness of replicated data types. In
the following sections, we elaborate on them and motivate why they are needed.

3.1.1 Keeping Track of Nested Data Structures

Objects or data structures that have nested children typically refer to children by some key.
Our approach assumes that children have a unique identifier by which they can be accessed
(i.e., queried and updated). As nested children can also contain other nested elements, an
absolute path can be constructed to identify a particular nested data structure, starting from
the root (top-most) data structure.

At the implementation level, a CRDT developer can decide in what manner key lookup
works by providing an implementation of a particular handler function (getChild) that is
used for lookup. The framework then provides a mechanism that allows absolute paths on a
replicated structure to identify nested data structures that need to be queried or updated.

3.1.2 Updating Individual Nested CRDTs

When an operation needs to be applied to a nested child, the concurrency semantics of
parent data structures must be upheld. Operations cannot just be immediately applied to
the nested structure alone, as concurrent operations can be applied to the parent node which
affects the key which points to the nested structure. For example, with a hash map, an entry
could be concurrently updated, while it is being removed.

In our approach, when an update is applied to a particular child element, we will first issue
special update operations to every parent node. These update operations signal the parent
CRDTs that a nested operation is going to be applied and that it should be compared to

J. Bauwens and E. Gonzalez Boix

existing log entries using redundancy relations. For example, when building an update-wins
replicated hash map, it is important to ensure that update operations win over remove
operations (on the same key). At times, the update operation itself may be immediately

redundant, and as such, there is no need to propagate the operation further to a nested child.

Update-Wins Map : Multi-Value Register | | ~-——"7"7777—-———-—-—-——2 o~ o—-——-—-——————————1

<2,0,1> upd(C,) <2,0,1> upd(C,)

<1,0,1> upd(B, ®)— — N <1,0,1> upd(B, ®)—

—> T Ty
<0,1,1> upd(B, &)—| <1,0,1> set(Hello) <0,1,1> upd(B, ®)— R | <1,0,1> set(Hello)
E— E—
upd(A,) <0,1,1> set(Hi!) upd(A,) <0,1,1> set(Hi!) |R_
[A:e,B:®,C:®] { Hello, Hi'} [A:e,B:®,C:®] { Hello, Hi'}
f f

=> upd(B, set(Hey))

<0,2,1> upd(B, ®)__|
<2,0,1> upd(C, .)

—a

<1,0,1> upd(B,) 1.<0,2,1> set(Hey)

upd(A,) <1,0,1> set(Hello)
5

Figure 3 Three stages of the internal state of a hash-map with update-wins semantics containing
nested Multi-Value registers: 1) initial state, 2) arrival of an update (upd) operation, and 3) final
state after applying the operation.

To illustrate how an update is applied in our approach, consider Figure 3 showing a hash
map with update-wins semantics containing nested Multi-Value registers in three different
stages. A Multi-Value register (MV-Register) [22] is a replicated register that, when faced
with concurrent updates, will store all concurrent values. Updates that (causally) follow
will replace previous values. This is in contrast to other replicated registers, for example,
the Last-Writer-Wins (LWW) CRDT register [22] that always keeps a single value. When
faced with concurrent updates, an LWW-Register will use an arbitrary method for picking

a single update (such as picking the update from the replica with the highest network id).

The first box (denoted by 1) shows the internal state and the PO-Log for the hash map and
the register associated with the key 'B’. As explained, every update applied to the nested
register has an associated update in the parent log. In this case, two concurrent updates
were applied to the nested register, resulting in the state {Hello, Hi!}.

The second box shows the state when an update(B, set(Hey)) is applied to the hash
map. This update has a timestamp (<0,2,1>) which is concurrent with some operations
(<2,0,1>, <1, 0, 1>), but causally follows others (<0, 1, 1>, ..). The update itself is applied
to the hash map, making one of the existing update entries redundant, i.e., the one with

vector clock <0,1,1>, as it concerns the same key and has a non-concurrent timestamp.

As the update operation itself is not redundant, its nested operation can be applied to the
nested register. The set (Hey) is then applied to the nested register, making also one set
operation redundant in the register, i.e., the one with vector clock <0,1,1>. Note that there
is another pair of concurrent operations in both the map and register that will not be made
redundant, and thus are kept in the log. The third box shows the state and the log after
applying update (B, set(Hey)) resulting in the updated state {Hello, Hey}.

2:7

ECOOP 2023

2:8

Nested Pure Operation-Based CRDTs

3.1.3 Maintaining Consistency of Children by Targeted Causal Resets

Applying redundancy checks on update operations ensures that the concurrency semantics of
parents are upheld. However, they do not ensure that the concurrency semantics of children
are upheld. In fact, the update mechanism ensures that redundancy relations are respected
at each level of the CRDT, but these redundancy checks never cross hierarchical boundaries.
This is problematic if a particular key is removed, but the remove operation is concurrent
with one or more, but not all, previously applied operations (for example, remove operation
¢ is concurrent with b, operation b is concurrent with a, but operation ¢ causally follows
operation a). This means that a key and associated child cannot be removed completely, as
the child received some redundant operations (by the removal, e.g., operation a) and others
that are not redundant (e.g., operation b).

To solve this issue, we introduce a novel nested redundancy relation R,, that allows nested
children to be reset to a particular logical timestamp (inclusive or exclusive of concurrent
operations). Using this relation, redundancy rules can be implemented that define hierarchical
relations between log entries.

1. 2.

———————————————— —= Y
I <0,2,1> del(B) }—Hreset <0,2,1>; conczej

<2,0,1> upd(C,)
<1,0,1> upd(B, &) <2,0,1> upd(C,)

—
<0,1,1> upd(B, &) L <1,0,1> set(Hello) <1,0,1> upd(B, ®)—|

] B
upd(A,) <0,1,1> set(World) upd(A,)
[Ae, By, Co] [Ae, B8, Ci0] {Hello}
_ 4 $

=>del(B)

Figure 4 Example of a nested redundancy relation that selectively resets nested children, triggered
by the deletion of a key. As the arriving delete (del) operation is concurrent with an update (upd)
that arrived earlier, the nested child needs to be partially reset.

Figure 4 illustrates the use of the R, relation in an update-wins hash map containing
nested Multi-Value registers. The first box (denoted by 1) shows the internal state and the
PO-Log for the hash map, and the register associated with the key 'B’ when a delete(B)
operation arrives. As this operation is concurrent with one of the earlier updates in the map,
and the map follows update-wins semantics, the key itself cannot be removed. The entry
with a preceding vector clock <0,1,1>, however, will be marked redundant by the existing
R__ relation. At this point, the register associated with key B has partially redundant data,
and as such needs to be updated to respect the remove operation. To this end, the R,
relation can be used to reset all operations in the nested register that are previous to the
delete operation. In the case of the example, the set of the value "Hi!" (denoted in red in the
figure) will be made redundant and removed from the register log. The second box shows the
state and the log after applying the delete(B) operation in which all redundant operations
are removed from the entire hierarchy, and the state of the register is updated to {Hello}.

In the following section, we provide a more formal specification of our approach and
extensions to the pure operation-based framework and describe example implementations for
update-wins and delete-wins hash maps.

J. Bauwens and E. Gonzalez Boix

3.2 Formalised Semantics for Extended Functionality

We now describe our approach as an extension of the formal model of a pure operation-based
CRDTs framework (cf. Section 2). Algorithm 2 describes the distributed algorithm for our
novel nested pure operation-based framework specifying the interaction between the RCB
middleware and the framework. The original Algorithm 1 used the ¢ variable to denote a
particular replica. In our extended model, Algorithm 2 compounds this with a list variable p,
which denotes the path to the CRDT, relative to its parent. The top-most data structure is
denoted as root. For example, {root, bob, favourite__colours} could be a path that refers to
a favourite_colours object associated with the key 'bob’ in a map.
Compared to the original pure operation-based design, Algorithm 2 features new primitives
for broadcasting and delivering nested operations:
broadcast_ nested; ,(0): broadcasts nested operations ensuring that the operation will
be delivered to all replicas (reliably and in causal order). In our design, a broadcast can
only be triggered from the top-most data structure, as such p will always be root.
deliver_nested; ,(t,0): called when an operation o is delivered (e.g. after it was
previously broadcasted) on a replica ¢ at path p with causal clock .
nested__operation;(p, 0): called when a nested operation o needs to be applied at
path p.

Recall from Section 3.1.2 that when an operation is applied to a nested child, at each
level of the parent hierarchy an update operation needs to be applied so that all redundancy
rules can be activated. In the algorithm, the implementation of nested_operation ensures
that an operation is packaged in an update operation and broadcasted using broadcast_-
nested. These broadcasted operations are received by the top-level data structure (root)
using deliver_nested. deliver_nested will then try to deliver the operation to the child
data structure specified by the path. At each level of the path, it will apply the update
operation, check if the operation is not redundant, and if not, recursively descend into
the hierarchy until the path only consists of one final child. It will then apply the actual
operation to the last nested data structure using the non-nested deliver callback. Our
approach extends the original deliver function with our novel nested redundancy relation:
an implementation can use R, to select what timestamps should become redundant for which
nested children. Children are then (recursively) reset using the reset function, which takes
a timestamp ¢ and a variable conc that denotes whether the reset is exclusive (only entries
that happened-before) or exclusive (including all concurrent entries).

In the following section, we explore how an actual nested CRDT can be built using our
proposed extensions.

3.3 Nested Pure Operation-Based Maps

In this section, we illustrate our framework by describing the design of two novel nested map
CRDTs: an update-wins map (UW-Map) and a remove-wins map (RW-Map).

Table 2 shows the semantics for the update-wins map (UW-Map) in our pure operation-
based framework which were informally described in the examples in Section 3.1. The design
of the UW-Map CRDT is inspired by the add-wins Set CRDT [3, 4], with some modifications
to take care of its nested nature [19]. The R relation for the UW-Map defines that delete
operations will never be stored in the log (i.e., they are immediately redundant). They
will, however, make any existing operation in the log redundant if they happened before
(R__). This ensures that keys can be deleted. Note that the R__ relation also makes update
operations with the same key that happened before be redundant. This makes the data

2:9

ECOOP 2023

2:10 Nested Pure Operation-Based CRDTs

Algorithm 2 Distributed algorithm (for a replica 7) showing the interaction between the
RCB middleware and the pure operation-based CRDT framework.

state: s;,:=10
state: children;,
on operation;(0) :
| broadcast; root(0)
on nested__operation;(p, o) :
| broadcast_nested; root(update(p, o))
on deliver_nested; p(t,update((child, D), o) :
deliver; ,(t, update(child))
delivery, chid(t, o) if (t, update(child)) Rsi,p
on deliver_nested; p(t,update((child, p),0)) ifp # 0 :
deliver; ,(t, update(child))
deliver__nested, chia(t, update(p, o)) if
(t, update(child)) Rsi,p
on deliver;(t,0) :
Sip = (510 \ (1)) | Y(E,0) € 51+ (£,0)V R__(£,0)}) U {(£,0) | (£,0) K 510}
reset; chia(t,0) | Vehild € children;, - (child, 0) R, (t,0)
reset; chia(t, 1) | Vchild € children; p - (child, 1) R, (t,0)
on stable; p(t) :
Si,p = stabilize; p(t, sip)[(L,0)/(t,0)]
stable; chia(t) | Vehild € children; p
on reset; p(t, conc) :
Sip = 8ip \ {(t',0) |V(t',0") €sip- ((t' <t)V (conc£ONE ||ct))}
reset; chia(t, conc) | Vehild € children; p

t
t

structure a bit more efficient. Finally, the R,, relation for UW-Map defines that all nested
operations that happened before any delete need to be recursively reset (i.e. removed). As
this remove should be exclusive, i.e., no concurrent entries should be removed, we additionally
encode that conc should be zero.

Table 2 Update-wins pure operation-based map, with support for nested CRDTs.

“g (t,o0)0 R’ s = op(o) = delete

g ', 0)R_ (t,o) = ' <tAarg(o)=arg(o)

E:s (child, conc) Ry, (t, 0) = conc =0 A op(o) = delete A arg(o) = child
= stabilize(t,s) = s

§ update(p, 0) = nested_operation ([op=update, arg=[p, o)
= delete(c) operation(Jop=delete, arg=e])

An alternative to update-wins is ensuring that delete operations are ordered after concur-
rent updates, leading to a map with remove-wins semantics. Note that there are different
ways to implement a CRDT from a sequential data type as there is no one solution for
dealing with concurrent updates. Nevertheless, it is important to offer different variants
to the end-user, as some concurrent semantics may be preferred over others in particular
applications.

Table 3 shows the implementation of such a remove-wins map (RW-Map) in our framework.
It is structured similarly to the AW-Map but has some additional complexity as the log
needs to retain all delete operations until they are causally stable. The R, relation encodes
that all previous or concurrent nested updates need to be removed (to ensure remove-wins
semantics).

J. Bauwens and E. Gonzalez Boix

Table 3 Remove-wins pure operation-based map, with support for nested CRDTs.

M (t,0) R s = op(o) = update
é A3 (', 0) € scarg(o) = arg('o)Aop(0") = deletent || t')
£ t',o)R__ (t, 0) = ¢ <t Aarg(o) = arg(o’) A op(o) = delete
E (child, conc) Ry, (t, 0) = op(o) = delete A arg(o) = child
stabilize(t,s) = s
g} update(p, o) nested__operation ([op=update, arg=[p, 0])
= delete(c) = operation([op=delete, arg=e])

In this design of an RW-Map, in theory, update operations do not need to be stored in
the log as these updates are stored in the nested children. However, only the last update
operation for a particular child is kept (since previous update operations are removed from
the log as they are redundant) As such, storing the update operations in the log can be

useful to check if a particular child has a value, without having to query the nested children.

When storing these entries poses a problem memory-wise, they can trivially be removed with
no impact on the behaviour of the data type.

The implementation of these map CRDTs demonstrates that supporting nested structures
can be tackled in a structured and easy way. Our framework handles all logic related to
nesting and update propagation, aiming to provide an easy-to-use interface. Additionally,
hierarchical redundancy rules can be encoded using the R,, relation, ensuring that concurrency
semantics are upheld at any level.

3.4 Discussion

We believe that our approach simplifies the design of replicated nested CRDTs, and with it,
we aim to reduce their implementation complexity. With the presented methodology, one
can think of every CRDT with nesting support as a flat CRDT, which needs to support
one additional operation, namely update. For example, a map is similar to a set of keys
with an associated value. In a set, we can add and remove keys. Using some rules we can
make the set add-wins or remove-wins, and with a bit of extra work, we can define how an
update operation could be ordered against concurrent add and remove. This could be the
core design of a Map. Our framework will make sure that every nested operation, e.g. a
nested operation to a child of the map, is first represented as an update operation for the
parent CRDT. The parent CRDT (e.g. the map) does not need to know anything about
the nested content of this update, it is simply trying to make sure that this update will be
properly ordered between the additions and removals of keys. This alone, however, is not
enough to ensure convergence, i.e. that the algorithm is functional and correct. Depending
on the arrival order of an update in combination with other concurrent operations, the
associated nested operation may have been applied to some replicas and not to others. To
ensure that the nested state converges, the algorithm sometimes might need to apply some
cleanup procedures, which is precisely where the nested redundancy relation comes into play.
In Section 5.1 we formally prove that this is the case for our approach and our implemented
designs.

4 Implementation

We implemented our novel nested pure operation-based approach in Flec [5, 6], an extensible
programming framework and middleware for CRDTs written in TypeScript. Flec incorporates
the concepts of ambient-oriented programming [10, 12], to discover and communicate with

2:11

ECOOP 2023

2:12

Nested Pure Operation-Based CRDTs

replicas in a distributed dynamic network. Since it has support for pure operation-based
CRDTs and RCB for causal delivery, Flec is the ideal platform for implementing our approach.
In this section, we describe the extensions and modifications to Flec that are required to
support nested pure operation-based CRDTs.

4.1 Nesting in Flec

To support the implementation of pure operation-based CRDTs, Flec provides an open
framework with the following operations:
isPrecedingOperationRedundant and isConcurrentOperationRedundant: en-
code the R__ (or Rg, Ry) binary relation(s) defining if existing log entries become
redundant by a new operation. Alternatively, isRedundantByOperation unifies both
methods.
isArrivingOperationRedundant: Encodes the R binary relation (i.e., is a new
operation redundant by an already existing log entry).
onLogEntryStable: performs an action when an operation becomes stable.
onRemoveLogEntry: performs an action when a particular item is removed from the
log (for example if it was marked redundant by isRedundantByOperation).
onAddLogEntry: performs an action when a new operation arrives in the log.

To build an actual CRDT data type, developers have to implement these methods,
following the semantics of the datatype. While onLogEntryStable, onRemoveLogEntry, and
onAddLogEntry are not required to implement the CRDT semantics, they can help optimise
a pure operation-based CRDT to use a native data structure for causally stable entries. The
log, entries, and optional native data compacted structures can be queried using the following
methods:

getLog: gets all current log entries.

getState: gets all current log entries, the compact native state, and the current logical

timestamp for the replica.

getConcurrentEntries: gets all concurrent log entries for an operation.

In this work, we extend the framework with the following new hooks and operations to
implement nested pure operation-based designs:

setChildInitialiser: is a method that will be used to initialise new children, using

child-specific constructs (e.g. if you want children to be AW-Sets, the initialiser will

return a new AW-Set).

doesChildNeedReset: encodes the R,, binary relation (i.e., from what timestamps do

children need a partial reset).

performNestedOp: performs a nested operation and broadcasts it to other replicas.

addChild: register a CRDT as a child to a parent, for a particular key.

resolveChild: override the default internal child bookkeeping and instruct the framework

on how to resolve a particular child CRDT based on a name (this will disable addChild).

4.2 Implementing Nested CRDTs in Flec

We now illustrate the extended Flec by means of the RW-Map CRDT described in Table 3.
Listing 1 and Listing 2 show the core of the implementation of RW-Map CRDT in Flec.
Lines 4 to 8 in Listing 1 define the CRDT constructor, which is used to initialise the values
property that contains all nested children. Additionally, an initialiser can be specified that
sets the initial (start) value for children. For example, if a map with a nested AW-Set is
needed, the initializer will initialize a new AW-Set CRDT. Lines 14-16 in Listing 1 show the

J. Bauwens and E. Gonzalez Boix

update function which can be used to apply nested operations on children (by CRDT client
code). Any operation on a child is indicated by specifying a particular path, and the update
to be applied. Using performNestedOp this operation will be propagated to the child and
all replicas. The actual semantics can be seen in Listing 2 which shows the implementation
of the redundancy relations and children referencing.

Listing 1 The implementation of an RW-Map in Flec, using the described extensions (A).

export class RRWMap extends PureOpCRDT<MapOps> {
values: Map<string, NestedCRDT>;

constructor (initializer: () => NestedCRDT) {
super () ;
this.values = new Map();

this.setChildInitialiser (initializer);

}

public update(path, ...args) {
this.performNestedOp ("update", path, args);
}

1

2

3

4

5

6

7

8

9
10 Ce
11 // User functions
12 Ce
13
14
15
16
17

Lines 20 to 22 in Listing 2 show the implementation of the resolveChild method which

allows the underlying Flec framework to reference children, stored in the values property.
The rest of the listing shows how the RW-Map implements redundancy relations to achieve
remove-wins semantics: the RW-Map provides an implementation for isPrecedingOper-
ationRedundant to implement the R relation: any operation in the log is redundant if
it has happened before a newly arriving operation, and if they are acting upon the same
child. It also implements isArrivingOperationRedundant to define the R relation: any
arriving update is not applied if a concurrent delete is stored in the log. Finally, by providing
an implementation for doesChildNeedReset we specify that when a delete arrives for a
particular child, the child will be reset. The reset_concurrent flag is set to true to indicate
that even concurrent updates to the child should become redundant.

Listing 2 The implementation of an RW-Map in Flec, using the described extensions (B).

1 protected isPrecedingOperationRedundant (existing: MapEntry, arriving
MapEntry, isRedundant: boolean) {

2 return arriving.isDelete() && existing.hasSameArgAs(arriving);

3}

4

5 protected isArrivingOperationRedundant (arriving: MapEntry) {

6 const concurrentDeletes = this.getConcurrentEntries(arriving).

7 filter (e => e.entry.isDelete() && e.entry.hasSameArgAs(

arriving));

8

9 return concurrentDeletes.length > 1;

10}

11

12 protected doesChildNeedReset (child, arriving: MapEntry) {
13 return {

14 condition : arriving.isDelete() && arriving.args[0] ==
child,

15 reset_concurrent: true

16 ¥y

17 '}

18

19 // Resolve child CRDTs
20 protected resolveChild(name: string) {

21 return this.values.get (name);
22}

2:13

ECOOP 2023

2:14

Nested Pure Operation-Based CRDTs

5 Validation

To validate our work, we conduct three experiments. First, verify the correctness of our
proposed framework and nested pure op-based maps. Secondly, we implement the concepts
in a real programming framework and finally, we compare it to another framework featuring
similar concepts.

5.1 Verification with VeriFx

In order to verify our approach, we have re-implemented the core of our nested pure operation-
based CRDTs in VeriFx [11]. VeriFx is a programming language for replicated data types
with automated proof capabilities that allow users to implement replicated data types in a
high-level language and express correctness properties that are verified automatically. VeriFx
internally uses an SMT theorem prover to search for counterexamples for each property
that needs to be upheld. It also enables the transpilation of the data types to mainstream
languages (e.g. Scala and JavaScript).

Correctness means that strong eventually consistent data types can be built with the
framework and that they exhibit the strong convergence property which requires that replicas
need to have received the same operations to be in the same state (regardless of the order in
which the operations have been received). Shapiro et al. showed in [22] that operation-based
CRDTs guarantee strong convergence if all concurrent operations commute. In our case, this
implies checking the effects of all redundancy relations. Proving the correctness is, however,
slightly trickier in our case, as we are dealing with a recursive design. SMT solvers, such
as 73 used by VeriFx, do not deal well with recursive and nested data structures, as they
might not be able to find a solution in a finite time. To verify our approach, we thus combine
VeriFx proofs with structural induction, which limits the recursion depth needed to verify
our design:

Base case: we implemented a 'perfect’ resettable pure operation-based CRDT in VeriFX

that can model both a flat CRDT or a CRDT containing children. The CRDT logs all

operations in a single flattened log (e.g., one log for all potentially nested structures).

Items in the log can be reset by a parent when requested. No redundancy rules are

applied. This design ensures that we can represent a ’correct’ nested structure (in terms

of SMT assumptions) without needing a recursive model. We use a VeriFx proof to ensure
convergence of this 'perfect’ CRDT.

Induction step: a particular nested CRDT can be implemented on top of our VeriFx

implementation and set to use perfect nestable CRDTs as children. With this approach,

VeriFx can then be used to prove that our approach is correct for one level of nesting, for

all pairs of operations.

By combining the base case and induction step, we prove using structural induction that
our framework remains correct for any nestable structure.

Listing 3 Convergence update-update.
1 proof FUWMap_update_update_converges {

2 forall (map: FUWMap, kl:String, k2: String, tl: VersionVector, t2
VersionVector, ol: SimpleOp, o02: SimpleOp) {
3 (tl.concurrent(t2) && map.children.contains(kl) && map.
children.contains (k2) &&
4 map .polog.forall ((e:TaggedOp [FMapOp]l)=>
((e.t.before(tl) || e.t.concurrent(tl
))
5 &% (e.t.before(t2) || e.t.concurrent(t2)

D)) =>: (

J. Bauwens and E. Gonzalez Boix

6

7 map .update(tl, k1, ol).update(t2, k2, 02)
8 ==

9 map .update (t2, k2, o02).update(tl, k1, ol)
10)
11 }
12 }

Listing 4 Convergence update-delete.
1 proof FUWMap_update_delete_converges {

2 forall (map: FUWMap, ki1:String, k2: String, tl: VersionVector, t2
VersionVector, ol: SimpleOp) {

3 (tl.concurrent (t2) && map.children.contains (kl) &&

4 map.polog.forall ((e:TaggedOp [FMapOp]l)=>((e.t.before(tl) || e.
t.concurrent (t1)) && (e.t.before(t2) || e.t.concurrent (t2)
)))) =>: (

5 map .update (tl, ki1, ol).delete(t2, k2)

6 ==

7 map.delete(t2, k2).update(tl, ki1, ol)

8)

9 }

10 }

Listing 5 Convergence delete-delete.

1 proof FUWMap_delete_delete_converges {
2 forall (map: FUWMap, ki1:String, k2: String, tl: VersionVector, t2
VersionVector, ol: SimpleOp, o02: SimpleOp) {

3 (tl.concurrent (t2) && map.children.contains(kl) && map.children.
contains (k2) && map.polog.forall ((e:TaggedOp [FMapOpl)=>((e.t.
before(tl) || e.t.concurrent(tl))

4 && (e.t.before(t2) || e.t.concurrent(t2))

))) =>: {
5
6 map.delete(tl, k1).delete(t2, k2) == map.delete(t2, k2).delete
(t1, k1)

7 }

8 }

9 }

As an example, Listings 3, 4, and 5 show the VeriFx proof logic that was used to check the
behaviour of concurrent operations on an update-wins map implemented with our framework.
We define that any pair of correct operations that are concurrent and applied to a correct
state should commute. The operations and state are correct if the operations (causally)
follow or are concurrent with all other operations that were applied previously to the state
(e.g. everything in the log). For this definition, we assume the usage of RCB (which is the
case with the pure operation-based CRDT framework), so that we know that everything
in the log must be concurrent or happened-before. In other words, the logic encodes the
correctness properties that should always hold in our framework, i.e. that if all operations
on the map commute and the nested operations are applied to correct CRDTs (in our case,
all nested operations are applied to a 'perfect’ CRDT), that the map is correct.

We use the automatic VeriFx prover to verify these properties hold given the implemented
designs. Internally, the VeriFx SMT engine will look for valid solutions that satisfy the
negation of our definitions, it will search for any case where the correctness properties are
violated. Since no counterexamples (valid solutions for the negation of properties) were found
after exhausting all search options, we can then constitute that our framework model is valid
according to the correctness properties.

2:15

ECOOP 2023

2:16

Nested Pure Operation-Based CRDTs

Table 4 Implemented nested CRDT types.

CRDT Semantics

UW-Map Update-wins map where values can be CRDTs. Update win from
concurrent deletes.

RW-Map Remove-wins map where values can be CRDTs. Deletes win from
concurrent updates.

RW-Map (mod) Modular version of the remove-wins map that allows more efficient
memory usage.

AW-Map A variant of the update-wins Map where keys are managed by an
add-wins set.

AW-Set An add-wins set where values can be CRDTs.

DW-List A delete-wins linked list where elements can be CRDTs.

ImmutableCRDT | A map with immutable keys, which behaves similarly to structs in C.

Using this approach, we have verified our map designs, validating both the concurrency
semantics of our proposed CRDTs and proving that our novel framework functions correctly.
The benefit of our verification approach is that to validate the correctness of any nestable
CRDT (built on our framework), one only needs to encode proofs for the operations on a flat
level. All needed nesting aspects of the proof will automatically be inherited from our VeriFx
implementation. The full source code for our VeriFx implementation, including proofs and
implemented models, is included as an artifact.

5.2 Portfolio of Nested CRDTs in Flec

To show the flexibility and applicability of our approach, we have implemented several com-
monly used data structures as novel nested pure operation-based CRDTs in Flec, summarised
in Table 4. As shown in the previous section, we have map implementations with update-wins
and remove-wins semantics. Maps form the basis for many other data structures and thus
are essential to any replication framework. They have been verified using their VeriFx-based
implementations and have been used in more complex data structures since.

We have implemented two other maps: one modified map (based on the remove-wins
map) that optimises some structures to have better memory resource usage, and another
map where keys are managed by an add-wins set. Finally, we have a delete-wins list that can
be used to store values in sequential order. Similarly to other sequential replicated structures
such as RGAs [13], a linked list is used internally.

The source code for the update-wins map, remove-wins map and delete-wins list imple-
mentations can be found as part of the included artifact.

5.3 Use-Case: A Mixed CRDT-Based Distributed Filesystem

To validate our approach in a real-world application scenario, we implemented a distributed
file system based on the work of [25] in our Flec implementation. This application is also
used later in Section 5.4 to compare our approach to state-of-art.

Flec does not only support pure operation-based CRDTs, it has many general-purpose
constructs for building any replicated data type. As such, it comes with a portfolio of (non-
pure-op) general CRDTs. While our extensions to Flec were focused on pure operation-based
CRDTs, part of the nesting support we added can also be used in conjunction with general
non-pure operation-based CRDTs to develop real-world applications.

J. Bauwens and E. Gonzalez Boix

When composing (traditional) CRDTs, operations on a (parent) root node typically trigger
several operations that will be applied to internal (nested) CRDTs. For a single operation,
these sub-operations need to be applied atomically, they cannot be viewed as independent
and should not automatically replicate to nested children of replicated CRDTs. This is in
contrast with our main approach where an update is applied via a particular sub-path. To
ensure compatibility with this approach in the framework, nested children can detect the
context in which operations are applied. If a nested CRDT has a parent, and an operation is
applied directly from that parent (and not via a nested update), the operation will not be
broadcasted to other replicas. Instead, it is assumed that the (top-)parent operation will be
broadcasted, resulting in the same nested update path on other replicas.

We now discuss the overall data structures and operations of the distributed file system.
Listings 6-8 in the appendix show the core of the implementation. It has been modified to
hide some minor boilerplate code, type definitions, and a lot of operation handling code,
but it contains the essentials. Listing 6 shows the main body of the DistributedFs class,
which implements the core functionality of the CRDT. By extending the SimpleCRDT class it
automatically inherits all the distribution and CRDT functionality from Flec (along with
our extensions). Lines 5-21 define the required data structures for the distributed file system
that keep track of metadata for files, groups and users. To this end, we define three maps,
and each map on its own contains records (in the form of ImmutableCRDT) containing
other CRDTs for storing the metadata of particular files, groups and users. For example,
the files data structure is defined using an RW-Map and contains filesystem meta-data
related to access rights, ownership, and data content. The data types we use for the registers
(AccessRightF, UserID, ...) are basic types constructed from primitive types such as numbers
or strings and can be stored directly in the registers. AccessRightF is a numerical value
that we index as a bit-vector to store our permission flags (similar to POSIX systems). We
provide an additional TypeScript class, AccessRight, that provides a high-level abstraction
to this bit-vector, but concretely we store numerical values in the CRDT register. Lines
24-28 define the onLoaded method which associates the aforementioned three maps with
their parent CRDT. In line 30, the setHandler method defines all operation handlers which
implement the semantics of the CRDT.

Listing 7 shows the implementation of the CreateFile operation in more detail. Listing 8
shows code that exposes some of the CRDT API to the local user, for performing some basic
actions which are used by the test method in Listing 9 to show local usage of the file system
functionality. Flec will ensure that all operations are properly replicated and distributed. In
general, most of the code is similar to that of sequential data structures, and the API is not
much more complex. This is in line with the goal of our framework: an easy-to-use interface
for building CRDTs where developers can immediately benefit from a middleware that does
all the heavy lifting.

5.4 Evaluation of Network Traffic in Comparison With Automerge

To compare our approach with state of the art, we implemented the same distributed
filesystem in Automerge v1.0.1 [15] and evaluated the differences in network traffic between
our Flec implementation and the Automerge implementation.

It is not possible to select the individual concurrency semantics for nested objects with
Automerge, as is possible with our extension to Flec. As such, the implementation has a
slight difference in concurrency semantics when compared to the original design [25] and our
implementation. For example, while the distributed filesystem (DFS) specification describes
update-wins concurrency semantics for the user list, the Automerge implementation uses
remove-wins concurrency semantics. Functionality-wise, it has the same features. In fact, in
our implementations, both the Automerge and Flec versions have the same API.

2:17

ECOOP 2023

2:18

Nested Pure Operation-Based CRDTs

Automerge itself does not provide a network layer but instead provides an API that allows
you to query (Automerge) documents for changes, and if any changes exist, you can propagate
these over any networking channel that your application depends on. On the receiving end,
you can insert these changes back into Automerge, which can merge the received information
in the local state. Automerge itself uses a state-based approach, where only the required
changes (deltas) are propagated instead of the full state, to conserve network bandwidth.

Automerge traffic from source node
Flec traffic from source node
12000
10000
8000
6000

foeo MMMMWMWWWMWWMWMW

2000 |

Traffic (bytes)

1 101 201 301 401 501 601 701 801 901 1001
Number of operations

Flec

—— Automerge

Figure 5 Network traffic (in bytes/op) originating from the source node for both Automerge and
Flec. In every operation, a file is created and written.

Total cumulative Automerge network traffic

16000000
. 14000000
$ 12000000
10000000
8000000
6000000
4000000
2000000
0
1 101 201 301 401 501 601 701 801 901
Number of operations

Traffic (byte:

m Other nodes m Source node

Figure 6 Total cumulative networking traffic (in bytes/op) from all nodes for Automerge. In
every operation, a file is created and written.

For the experiments, we used a virtual network for both Automerge and Flec, which
allows us to reproduce benchmarks and results with little non-determinism. We set up a
system with 5 nodes (ad-hoc, peer-to-peer), and issue a thousand operations per experiment.

5.4.1 Experiment A: File Creation and Writing

For the first benchmark, each operation exists out of file creation and file modification. We
applied these operations a thousand times to a deployed distributed file system, once using
the Flec implementation and once with the Automerge implementation.

Figure 5 shows the network traffic originating from the source node (the node where the
operations are applied), for both implementations. As both our approach and Automerge
share the essential updates, the results are fairly stable and linear. Automerge will always
send small updates containing the state delta (which means the newly modified file) and our
extension to Flec sends the operations itself. While Automerge uses a binary representation
for the update payload, the payload itself is still heavier than the non-optimized JSON
payload used in Flec.

J. Bauwens and E. Gonzalez Boix

The visualisation hides some essential information, however. Automerge uses an additional
protocol that allows replicas to propagate updates among each other. This means that not
only the source node will share information, but also other nodes that received the new
updates if they believe that other replicas may be missing information. Figure 6 highlights
the additional traffic, showing that it makes up a significant portion of the total network
traffic. In Flec updates are only sent directly from a source node to a destination node, and
as such, there is no additional network usage.

5.4.2 Experiment B: User, Group, and File Creation, and Configuration

Automerge traffic from source node
Flec traffic from source node

14000
12000
10000
8000
6000
4000
2000

Traffic (bytes)

—_

101 201 301 401 501 601 701 801 901 1001
Number of operations

——Automerge ——Flec

Figure 7 Network traffic (in bytes/op) originating from the source node for both Automerge and
Flec. Every operation creates a new user, a new group, and a new file. The user is added to the
group, and the file is created with the new user as the owner. Finally, the file is written.

Total network traffic
120000

100000
80000

60000

Traffic (bytes)

40000

20000

0
1 11 21 31 41 51 61

Number of operations

Automerge ——Flec

Figure 8 Total network traffic (in bytes/op) for both Automerge and Flec. Every operation
creates a new user, a new group, and a new file. The user is added to the group, and the file is
created with the new user as the owner. Finally, the file is written.

For the second experiment, in each operation, we create a new user, and a new user group,
add the user to the new group, create a new file (with the new user as owner), and write to
this file. This extra complexity leads to some interesting results. As seen in Figure 7 the

2:19

ECOOP 2023

2:20

Nested Pure Operation-Based CRDTs

Automerge traffic

3000000
2500000
g 2000000
1500000

1000000

Traffic (byt

500000

0

1 1 21 31 41 51 61 71 81 91
Number of operations

Traffic from source node Trafic from other nodes

Figure 9 Total network traffic for Automerge for the previous experiment, highlighting an issue
with exponential growth after a certain number of operations.

Automerge measurements stop at around ~100 operations. This is because the additional
gossip traffic starts growing exponentially (see Figure 9) and causes the entire system to halt.
We are not exactly certain what causes this problem, but we did not observe this issue with
the previous experiment, only when we applied more complex operations. We believe that
this is not correct behaviour from Automerge but have not been able to identify the root
cause of the bug yet. The behaviour is consistent and reappears with each run. To be able
to evaluate this example anyway, we will only focus on the initial measurements before the
exponential explosion. Based on Figure 7 we can see that Automerge has a lower network
overhead on the source node when compared to Flec. When looking at the total traffic,
however (Figure 8), we can see that Automerge still utilizes more bandwidth. The reason for
this is that as we are sending many operations, other replicas start propagating updates as
well, resulting in the source node itself sending fewer updates (as it is relieved from work).

5.4.3 Experimental Evaluation: Conclusion

With this experimental evaluation, we showed that our approach is comparable to state-of-the-
art CRDT frameworks, even though Flec and our extensions have not yet been optimised for
non-experimental use. While additional optimisations can be applied to the pure operation-
based CRDT framework and our nested framework extension, these results are promising
and show that our approach is viable in real-world scenarios.

We now discuss some of the potential threats to the validity of our experimental evaluation
and why our benchmark methodology and conclusions are not invalidated by these threats.

T: The number of replicas used in our benchmarks (5) is potentially too low.

The results of the experiments show that this number is fair, as it allows us to observe
interesting differences between both benchmarked platforms. For example, in Figure 6.,
we can see that the total traffic generated by Automerge in experiment A quickly exceeds
the traffic of our approach, but we can still compare results in a reasonable way.

T: The chosen experiments are not realistic.

The operations are tailored to induce complicated internal behaviour of the replicated
data type, which we expect to also occur doing normal and realistic tasks. Of course,
in a realistic setting such operations may not be applied repeatedly, but in the context

J. Bauwens and E. Gonzalez Boix

of our evaluation we wanted to evaluate behaviour under repeated, continual usage
while testing many different parts of the CRDT framework as well. However, the total
amount of operations used in the benchmarks could be achieved over a small period in a
real deployment, and therefore it is important that a distributed filesystem system can
handle such load. The operations used aim to use nesting to its full extent, in a realistic
application case (a distributed file system). We, therefore, believe that the benchmarks
are suitable for evaluating our approach.

T: The benchmarks only compare results with one other related work.

While comparing with extra platforms could improve the evaluation, we do not believe
that this invalidates or diminishes our results. Automerge is a state-of-the-art framework
for replicated data structures, with a lot of usages, and therefore a proper framework to
compare against and evaluate whether our proposed approach has viability.

6 Related Work

The bulk of research in replicated data types has focused on devising a portfolio of conflict-free
data structures such as counters, sets, and linked lists [22, 24, 20, 7, 21, 19]. However, the
composition and nesting of CRDT have drawn little attention so far. The composition of
replicated structures is possible in a few frameworks like Automerge [15] and Lasp [17]. While
Automerge allows programmers to arbitrarily nest linked lists and maps in a document, it
doesn’t allow for much flexibility regarding the actual merging semantics. Lasp supports
functional transformations over existing CRDTs provided in the language, which allows a
composition to some extent. However, when the current portfolio of CRDTs falls short in
those frameworks, developers need to design the desired nested data structure from scratch.
This requires rethinking the data structure completely such that all operations commute and
manually implement conflict resolution for concurrent non-commutative operations, which is
hard and error-prone [22, 15, 1].

Weidner et al. [23] explore ways to compose and de-compose pure operation-based CRDTs.
They introduce techniques for creating novel CRDTs based on existing (de-composed) CRDTs
with a static structure. They do not aim to provide a solution for creating general nested
data structures, but instead, propose constructs to define the semi-direct product of op-based
CRDTs. This means that instead of nesting and maintaining individual semantics, novel
semantics are introduced to create a combination of several CRDTs, leading to an entirely
new, non-nested CRDT. In our approach, nested data structures can change dynamically
during runtime, using maps, lists, and sets.

Preguica in [19] explains several possible nesting semantics for operation-based CRDTs.
To support a wide variety of CRDTs as nested values in different settings, it will be necessary
for the CRDTs to be able to partially reset themselves to an initial state before a particular
timestamp. Typically, this means that this reset has to be recursive and that nested sub-
CRDTs will need to be reset as well. Without a disciplined approach, combining ad-hoc
CRDTs will be hard. The benefit of using a log-based approach, which we are proposing, is
that such recursive resets can be supported at the framework level, in a unified way, without
needing to modify the semantics of CRDTs.

Operation-based and state-based CRDTs are two approaches to guarantee SEC that share
an equivalence to some extent. While both approaches can be emulated as each other [22], it
depends on the application or system in use which approach might be more suitable. It is
typically a tradeoff choice, between waiting for the right moment to make a state merge, or
rather propagating operations continuously. It should be possible to emulate our approach

2:21

ECOOP 2023

2:22

Nested Pure Operation-Based CRDTs

(and pure operation-based CRDTs in general) as a state-based design, but making it efficient
might be problematic as one would need to keep track of extra meta-data related to the
applied operations (in order to maintain individual semantics between nested components).
This information comes for free in an operation-based CRDT approach; as the operations
themselves are directly propagated.

7 Conclusion

Conflict-Free Replicated Data Types (CRDTs) are useful programming tools to replicate data
in a distributed system as they guarantee that eventually, all replicas end up in the same
state. In this paper, we explore a structured approach for designing nested CRDTs based
on the ideas of pure operation-based CRDTs. We propose a novel framework for building
nested pure operation-based CRDTs and show how several common nested data structures
can be designed and modelled in the framework. We validate our approach by extending an
existing pure operation-based framework written in TypeScript, Flec, to include support for
nested pure operation-based CRDTs and implement a portfolio of commonly nested data
structures. This portfolio includes novel add-wins and remove-wins pure operation-based
CRDTs, implemented following our framework. Additionally, we demonstrate the flexibility
of the framework by implementing a distributed filesystem model using these techniques. We
used an SMT-based implementation to verify the correctness of our approach. Finally, showed
that our approach produces competitive results compared to Automerge, a state-of-the-art
framework.

—— References

1 P. S. Almeida, A. Shoker, and C. Baquero. Efficient state-based crdts by delta-mutation.
CoRR, abs/1410.2803, 2014. arXiv:1410.2803.

2 C. Baquero, P. S. Almeida, and A. Shoker. Making operation-based crdts operation-based.
In Kostas Magoutis and Peter Pietzuch, editors, Distributed Applications and Interoperable
Systems, pages 126-140, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

3 C. Baquero, P. S. Almeida, and A. Shoker. Pure operation-based replicated data types. CoRR,
abs/1710.04469, 2017. arXiv:1710.04469.

4 J. Bauwens and E. Gonzalez Boix. Improving the reactivity of pure operation-based crdts. In
Proceedings of the 8th Workshop on Principles and Practice of Consistency for Distributed
Data, PaPoC 21, New York, NY, USA, 2021. Association for Computing Machinery. doi:
10.1145/3447865.3457968.

5 J. Bauwens and E. Gonzalez Boix. Flec: A versatile programming framework for eventually
consistent systems. In Proceedings of the 7th Workshop on Principles and Practice of Consist-
ency for Distributed Data, PaPoC ’20, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3380787.3393685.

6 J. Bauwens and E. Gonzalez Boix. From causality to stability: Understanding and redu-
cing meta-data in crdts. In Proceedings of the 17th International Conference on Managed
Programming Languages and Runtimes, MPLR ’20, pages 3-14, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3426182.3426183.

7 Annette Bieniusa, Marek Zawirski, Nuno Preguiga, Marc Shapiro, Carlos Baquero, Valter
Balegas, and Sérgio Duarte. An optimized conflict-free replicated set. arXiv preprint, 2012.
arXiv:1210.3368.

8 K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures. ACM
Trans. Comput. Syst., 5(1):47-76, January 1987. doi:10.1145/7351.7478.

https://arxiv.org/abs/1410.2803
https://arxiv.org/abs/1710.04469
https://doi.org/10.1145/3447865.3457968
https://doi.org/10.1145/3447865.3457968
https://doi.org/10.1145/3380787.3393685
https://doi.org/10.1145/3426182.3426183
https://arxiv.org/abs/1210.3368
https://doi.org/10.1145/7351.7478

J. Bauwens and E. Gonzalez Boix

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

S. Burckhardt, M. Fahndrich, D. Leijen, and B. P. Wood. Cloud types for eventual consistency.
In Proceedings of the 26th European Conference on Object-Oriented Programming, ECOOP’12,
pages 283-307, Berlin, Heidelberg, 2012. Springer-Verlag. doi:10.1007/978-3-642-31057-7_
14.

T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix., J. Dedecker, and W. De Meuter. Ambienttalk:
Object-oriented event-driven programming in mobile ad hoc networks. In XX VI International
Conference of the Chilean Society of Computer Science (SCCC’07), pages 3-12, Iquique, Chile,
2007. doi:10.1109/SCCC.2007.12.

Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix. Verifx: Correct replicated data
types for the masses, 2022. doi:10.48550/ARXIV.2207.02502.

J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De Meuter. Ambient-oriented
programming in ambienttalk. In Dave Thomas, editor, ECOOP 2006 — Object-Oriented
Programming, pages 230-254, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

R. Hyun-Gul, J. Myeongjae, K. Jin-Soo, and L. Joonwon. Replicated abstract data types:
Building blocks for collaborative applications. Journal of Parallel and Distributed Computing,
71(3):354-368, 2011.

G. Kaki, S. Priya, KC Sivaramakrishnan, and S. Jagannathan. Mergeable replicated data
types. Proc. ACM Program. Lang., 3(OOPSLA), October 2019. doi:10.1145/3360580.

M. Kleppmann and A. R. Beresford. A conflict-free replicated json datatype. IEEE Transactions

on Parallel & Distributed Systems, 28(10):2733-2746, October 2017. doi:10.1109/TPDS.2017.

2697382.

R. Klophaus. Riak core: Building distributed applications without shared state. In ACM
SIGPLAN Commercial Users of Functional Programming, CUFP ’10, pages 14:1-14:1, New
York, NY, USA, 2010. ACM. doi:10.1145/1900160.1900176.

Christopher Meiklejohn and Peter Van Roy. Lasp: A Language for Distributed, Coordination-
free Programming. In 17th Int. Symp. on Principles and Practice of Declarative Programming,
PPDP 15, pages 184-195, 2015.

Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. Near real-time peer-to-
peer shared editing on extensible data types. In Proceedings of the 2016 ACM International
Conference on Supporting Group Work, GROUP ’16, pages 39-49, New York, NY, USA, 2016.
Association for Computing Machinery. doi:10.1145/2957276.2957310.

N. Preguiga. Conflict-free replicated data types: An overview, 2018. arXiv:1806.10254.

Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. Replicated Abstract Data
Types: Building Blocks for Collaborative Applications. Journal of Parallel and Distributed
Computing, 71(3):354-368, 2011.

M. Shapiro. Replicated Data Types. In Ling Liu and M. Tamer Ozsu, editors, Encyclopedia
Of Database Systems, volume Replicated Data Types, pages 1-5. Springer-Verlag, July 2017.
do0i:10.1007/978-1-4899-7993-3_80813-1.

M. Shapiro, N Preguica, C. Baquero, and M. Zawirski. A comprehensive study of Convergent
and Commutative Replicated Data Types. Technical Report 7506, INRIA, 2011.

Matthew Weidner, Heather Miller, and Christopher Meiklejohn. Composing and decomposing
op-based crdts with semidirect products. Proc. ACM Program. Lang., 4(ICFP), August 2020.
doi:10.1145/3408976.

Stephane Weiss, Pascal Urso, and Pascal Molli. Logoot-Undo: Distributed Collaborative
Editing System on P2P Networks. IEEE Trans. on Parallel and Distributed Systems, 21(8):1162—
1174, August 2010.

Elena Yanakieva, Michael Youssef, Ahmad Hussein Rezae, and Annette Bieniusa. Access
control conflict resolution in distributed file systems using crdts. In Proceedings of the 8th
Workshop on Principles and Practice of Consistency for Distributed Data, PaPoC ’21, New
York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3447865.3457970.

2:23

ECOOP 2023

https://doi.org/10.1007/978-3-642-31057-7_14
https://doi.org/10.1007/978-3-642-31057-7_14
https://doi.org/10.1109/SCCC.2007.12
https://doi.org/10.48550/ARXIV.2207.02502
https://doi.org/10.1145/3360580
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1145/1900160.1900176
https://doi.org/10.1145/2957276.2957310
https://arxiv.org/abs/1806.10254
https://doi.org/10.1007/978-1-4899-7993-3_80813-1
https://doi.org/10.1145/3408976
https://doi.org/10.1145/3447865.3457970

2:24 Nested Pure Operation-Based CRDTs

A DFS Code Listings

This appendix contains code listings with portions from our distributed filesystem test
implementation. A legend for the used types can be found in Table 5.

Table 5 Legend for the TypeScript classes and types used in the DFS implementation.

Class / Type Description

RWWDMap Nested Remove-Wins Map CRDT.

RUWMap Nested Update-Wins Map CRDT.

ImmutableCRDT ImmutableCRDT map. Nested CRDT map that works as
a C struct.

Register<T> LLW-Register CRDT, containing a primitive value of type
T.

AccessRightF Alias of the 'Number’ type, represents a bit vector with
access flags.

AccessRight Abstraction over AccessRightF, never stores in a CRDT,
just used for easy modification of the access right bit vec-
tors.

SimpleCRDT Abstract CRDT class in Flec, for creating operation-based
CRDTs.

GroupID / UserID / FileID | Aliases for strings that represent UUIDs.

Listing 6 The general structure of the DFS nested CRDT, highlighting the main nested children
that contain the filesystem meta-data.

1 export class DistributedFS extends SimpleCRDT<FSOperation> {
handler: FSOperation;

access_right_owner: new Register<AccessRightF>(),
access_right_group: new Register<AccessRightF>(),

2

3

4

5 files = new RRWMap(t => new ImmutableCRDT ({

6

7

8 access_right_other: new Register<AccessRightF>(),

9 file_owner: new Register<UserID>(),

10 file_group: new Register <GroupID>(),

11 file_data: new Register<string>()

12)

13

14 groups = new RRWMap(t => new ImmutableCRDT ({
15 group_users: new AWSet(), // must be RW
16 created: new Register<flag>()

17)

18

19 users = new RUWMap(t => new ImmutableCRDT ({
20 is_admin: new Register<flag>()

21)

22 Ce

23

24 onLoaded () {

25 this.addChild("files", this.files);

26 this.addChild ("users", this.users);

27 this.addChild ("groups", this.groups);

28 }

29

30 setHandler () {

31 const me = this;

32 this.handler = {

33

34 ChangeOwner (userId: UserID, newOwnerId: UserID, fileId: NodeID

) L oooo T

J. Bauwens and E. Gonzalez Boix

2:25

35 ChangeGroup (userId: UserID, newGroupId: GroupID, filelId:
NodeID) { },

36 ChangeOwnerPermission(userId: UserID, newPerm: AR, fileld:
NodeID) { },

37 ChangeGroupPermission (userId: UserID, newPerm: AR, fileId:
NodeID) { },

38 ChangeOtherPermission (userId: UserID, newPerm: AR, fileId:
NodeID) { },

39 200

40 CreateUser (with_admin_rights: boolean, id: string) { /* */

})

41 CreateGroup () { /* x/ },

42 AssignUserToGroup (authorId: UserID, groupld: GroupID, userId:
UserID) A{ Fa

43 CreateFile (userId: UserID, groupId: GroupID, fileId: NodeID) {

see listing below },

44 WriteFile (userId: UserID, fileId: NodeID) { },

45 200

46 update (key: string) { }

47 }

48 }

49 '}

Listing 7 Structure of the operation handling code for the DFS. Included is the code for the

CreateFile callback, which can either be invoked locally or as a result of a replicated operation.

1
2
3
4
)
6
7
8

26
27

28
29

30
31
32
33

35

setHandler () {
const me = this;

this.handler = {
CreateFile (userlId:

const user =
const group =

UserID, groupld:

GroupID, fileId: NodeID) {

me.users.lookup (userId) as any;
me . groups .lookup (groupId) as any;

if (group && user && group.group_users.contains(userId)) {

console.log("adding file");

me.files.update ([{ key: fileId, op: "update" },
{ key: "file_owner", op: "write" }], userId);
me.files.update ([{ key: fileId, op: "update" },
{ key: "file_group", op: "write" }], groupld);
const isAdmin = user.is_admin.is(FLAG_TRUE) ;
const access_owner = new AccessRight (isAdmin, true, true);
const access_group = new AccessRight (isAdmin, true, false);
const access_other = new AccessRight (isAdmin, true, false);
this.files.update ([{ key: fileId, op: "update" },
{ key: "access_right_owner", op: "write" }], access_owner.
toEnum ()) ;
this.files.update ([{ key: fileId, op: "update" },
{ key: "access_right_group", op: "write" }], access_group.
toEnum ()) ;
this.files.update ([{ key: fileId, op: "update" 2,
{ key: "access_right_other", op: "write" }], access_other.
toEnum ()) ;
}
}’
¥s

ECOOP 2023

2:26 Nested Pure Operation-Based CRDTs

Listing 8 User API for local mutations to DFS CRDT, allowing simple modification of the DFS

meta-data.

1 CreateUser (with_admin_rights: boolean) {

2 const id = this.getUID();

3 this.performOp("CreateUser", [with_admin_rights, id]);
4 return id;

5 ¥

6

7 CreateGroup () {

8 const id = this.getUID();

9 this.performNestedOp ("update", [{ key: "groups", op: "update" I},
10 { key: id, op: "update" 1},

11 { key: "created", op: "write" }], [FLAG_TRUE]);

12 return id;

13 T

14

15 CreateFile (userId: UserID, groupId: GroupID) {

16 const id = this.getUID();

17 this.performOp("CreateFile", [userId, groupId, id]);
18 return id;

19 ¥

20

Listing 9 Example test code for the DFS CRDT, which creates a new admin user, a new group,
adds the user to a group, and then creates and writes a file with this new user.

1 test () {

2 const userId = this.CreateUser (true);

3 const groupId = this.CreateGroup () ;

4

5 this.performOp("AssignUserToGroup", [userId, groupId, userId]);
6

7 const fileId = this.CreateFile(userId, groupld);

8 this.performOp("WriteFile", [userId, fileId]);

9

10 }

Multi-Graded Featherweight Java

Riccardo Bianchini &
DIBRIS, University of Genova, Italy

Francesco Dagnino &
DIBRIS, University of Genova, Italy

Paola Giannini &
DiSSTE, University of Eastern Piedmont, Vercelli, Italy

Elena Zucca =
DIBRIS, University of Genova, Italy

—— Abstract

Resource-aware type systems statically approximate not only the expected result type of a program,
but also the way external resources are used, e.g., how many times the value of a variable is needed.
We extend the type system of Featherweight Java to be resource-aware, parametrically on an
arbitrary grade algebra modeling a specific usage of resources. We prove that this type system is
sound with respect to a resource-aware version of reduction, that is, a well-typed program has a
reduction sequence which does not get stuck due to resource consumption. Moreover, we show that
the available grades can be heterogeneous, that is, obtained by combining grades of different kinds,
via a minimal collection of homomorphisms from one kind to another. Finally, we show how grade
algebras and homomorphisms can be specified as Java classes, so that grade annotations in types
can be written in the language itself.

2012 ACM Subject Classification Theory of computation — Type structures
Keywords and phrases Graded modal types, Java
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2023.3

Funding This work was partially funded by the MUR project “T-LADIES” (PRIN 2020TL3X8X)
and has the financial support of the University of Eastern Piedmont.

Acknowledgements We thank the anonymous referees for their useful suggestions.

1 Introduction

Recently, a considerable amount of research [25, 7, 2, 14, 15, 23, 8, 11] has been devoted to
type systems allowing reasoning about resource usage. In (type-and-)coeffect systems, the
typing judgment takes the shape z; :r, T1,...,2n v, Tn b e: T, where the coeffect (grade) r;
models how variable z; is used in e. For instance, coeffects of shape r ::= 0| 1 | w trace when
a variable is either not used, or used at most once, or used in an unrestricted way, respectively.
In this way, functions, e.g., Az:int.5, Az:int.z, and Az:int.z 4+ z, which have the same type
in the simply-typed lambda calculus, can be distinguished by adding coeffect annotations:
Az:int[0].5, Az:int[1].z, and Az:intjw].z + z. Other examples are exact usage (coeffects are
natural numbers), and privacy levels. Graded modal types go further, by decorating types
themselves with grades, in order to specify how the result of an expression should be used.
In the different proposals in literature, grades have a similar algebraic structure, basically a
semiring specifying sum +, multiplication -, and 0 and 1 constants, and some kind of order
relation. Here, we will assume a variant of this notion called grade algebra.

Resource-aware typing has been exploited in a fully-fledged programming language in
Granule [23], a functional language equipped with graded modal types, hence allowing the
programmer to write function declarations similar to those above. In Granule, different

© Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca;
37 licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).

Editors: Karim Ali and Guido Salvaneschi; Article No. 3; pp. 3:1-3:27

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:riccardo.bianchini@edu.unige.it
https://orcid.org/0000-0003-0491-7652
mailto:francesco.dagnino@dibris.unige.it
https://orcid.org/0000-0003-3599-3535
mailto:paola.giannini@uniupo.it
https://orcid.org/0000-0003-2239-9529
mailto:elena.zucca@unige.it
https://orcid.org/0000-0002-6833-6470
https://doi.org/10.4230/LIPIcs.ECOOP.2023.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2

Multi-Graded Featherweight Java

kinds of coeffects can be used at the same time, including naturals for exact usage, privacy
levels, intervals, infinity, and products of coeffects; however, available grades are fixed in the
language. The initial objective of the work presented here was to study a similar support
for Java-like languages, by introducing, in a variant of Featherweight Java (FJ) [19], types
decorated with grades. Moreover, we wanted these grades to be taken, parametrically, in
an arbitrary grade algebra; even more, we did not want this grade algebra to be fixed as in
Granule, but to be extendable by the programmer with user-defined grades, by relying on the
inheritance mechanism of OO languages. In the quest for such goals, we came up with several
ideas which are novel, to our knowledge, with respect to the literature on resource-aware
type systems, as detailed in the outline of contributions given below.

Resource-aware parametric FJ reduction. Given a resource-aware type system, we would
like to prove that typing overapproximates the use of resources. However, resource usage is
not modeled in standard operational semantics; for this reason, [8] proposed an instrumented
operational semantics' and proved a soundness theorem showing correct accounting of resource
usage. Inspired by this work, we define a resource-aware semantics for FJ, parametric on an
arbitrary grade algebra, which tracks how much each available resource is consumed at each
step, and is stuck when the needed amount of a resource is not available. Differently from
[8], the semantics is given independently from the type system, as is the standard approach
in calculi. That is, the aim is also to provide a simple purely semantic model which takes
into account usage of resources. The resource-aware reduction is sound with respect to the
standard reduction, but clearly not complete, since a reduction step allowed in the standard
semantics could be impossible due to resource consumption.

Graded FJ. After defining the resource-aware calculus, we define the resource-aware type
system. That is, types are decorated with grades, allowing the programmer to specify how
a variable, a field or the result of a method should be used, e.g., how many times. Our
approach is novel with respect to that generally used in the literature on graded modal
types. Notably, in such works the production of types is T ::= ... | T", that is, grade
decorations can be arbitrarily nested. Correspondingly, the syntax includes an explicit boz
construct, which transforms a term of type 7T into a term of type T, through a promotion
rule which multiplies the context with r, and a corresponding unboxing mechanism. Here,
we prefer a much lighter approach, likely more convenient for Java-like languages, where
the syntax of terms is not affected. The production for types is T ::= C", that is, all types
(here only class names) are (once) graded; in contexts, types are non-graded, and grades
are used as coeffects, leading to a judgment of shape z; :, Ci,..., 2%y o, Co e C".
Finally, since there is no boxing/unboxing, there is no explicit promotion rule, but different
grades can be assigned to an expression, assuming different coeffect contexts. We prove a
soundness theorem, stating that the graded type system overapproximates resource usage,
hence guaranteeing soundness, and, as a consequence, completeness with respect to standard
reduction for well-typed programs.

Combining grades. The next matter is how to make the language multi-graded, in the sense
that the programmer can use grades of different kinds, e.g., both natural numbers and privacy
levels. This poses the problem of defining the result when grades of different kinds should

L Subsequently the model of [8] was used, in [21], to trace reference counting for uniqueness.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca

be combined by the type system. This issue has been considered in the Granule language
[23], where, however, the available kinds of grades are fixed, hence can be combined in an
ad-hoc way. We would like to have much more flexibility, that is, to allow the programmer
to define grades to be added to those already available, very much in the same way a Java
programmer can define her /his own class of exceptions. To this end, we define a construction
which, given a family of grade algebras and a family of homomorphisms, leads to a unique
grade algebra of heterogeneous grades. This allows a modular approach, in the sense that the
developed meta-theory, including the proof of results, applies to this case as well.

Grades as Java expressions. Finally, we consider the issue of providing linguistic support
to specify the desired grade algebras and homomorphisms. Of course this could be done
by using an ad-hoc configuration language. However, we believe an interesting solution is
that the grade annotations could be written themselves in Java, again analogously to what
happens with exceptions. We describe how Java classes corresponding to grade algebras and
homomorphisms could be written, providing some examples.

A preliminary step towards the results described in the current paper is [3], which
proposes a first version of the type system with only coeffects (types are not graded), and
a rudimentary version of the construction described above where combining coeffects of
different kinds leads to the trivial coeffect.

In Section 2 we formally define grade algebras and related notions. In Section 3 we
define the parametric resource-aware reduction for FJ, and in Section 4 the parametric
resource-aware type system, proving its soundness. Section 5 defines the construction of
the grade algebra of heterogeneous grades, and Section 6 illustrates how to express grade
algebras and homomorphisms in Java. Finally, Section 7 surveys related work and Section 8
summarizes the contributions, and outlines future work. Omitted proofs can be found in [4].

2 Algebraic preliminaries

In this section we introduce the algebraic structures we will use throughout the paper. The
core of our work is grades, namely, annotations in the code expressing how or how much
resources are used by the program. As we will see, we need some operations to properly
combine grades in the resource-aware semantics and in the typing rules, hence we will assume
grades to form an algebraic structure called grade algebra defined below.

» Definition 1 (Grade algebra). A grade algebra is a tuple R = (|R|, <, +,+,0,1) such that:

(|R|, =) is a partially ordered set;
(|R|,+,0) is a commutative monoid;
(|R|,-, 1) is a monoid;
and the following axioms are satisfied:
re(s+t)y=r-s+r-tand (s+t)-r=s-r+t-r, forallr st €|R|;
r-0=0and0-r=0, for allr € |R|;
ifr <1 and s 2§ thenr+s=<r"+s andr-sr'-¢, forallr,r's, s’ €|R|;
0 =<r, for allrT € |R|.

Essentially, a grade algebra is an ordered semiring, that is, a semiring together with
a partial order relation on its carrier which makes addition and multiplication monotonic
with respect to it. We further require the zero of the semiring to be the least element
of the partial order. Our definition is a slight variant of others proposed in literature
[7, 15, 22, 2, 14, 1, 23, 8, 27]. In particular, the partial order models overapproximation in

3:3

ECOOP 2023

3:4

Multi-Graded Featherweight Java

the usage of resources, and allows flexibility, for instance we can have different usage in the
branches of an if-then-else construct. The fact that the zero is the least element means that,
in particular, overapproximation can add unused variables, making the calculus affine.

» Example 2.

1. The semiring Nat = (N, <, +,-,0, 1) of natural numbers with the natural order and usual
arithmetic operations is a grade algebra.

2. The affinity grade algebra ({0,1,00}, <,+,-,0,1)} is obtained from the previous one by
identifying all natural numbers greater than 1.

3. The trivial semiring Triv, whose carrier is a singleton set |Triv] = {oco}, the partial
order is the equality, addition and multiplication are defined in the trivial way and
O1iv = 1Tviv = 00, is a grade algebra.

4. The semiring RS, = ([0, 0], <,+,+,0,1) of extended non-negative real numbers with
usual order and ?Jperations, extended to oo in the expected way, is a grade algebra.

5. A distributive lattice L = {(|L|,<,V,A, L, T), where V and A denote join and meet
operations and | and T the bottom and the top element, respectively, is a grade algebra.

6. Given grade algebras R = (|R|, <g,+r, r,0r,1g) and S = (|S|,<s,+s,s,0s, 1s), the
product Rx S = ({{r,s) | r € |R| N s€|S|},=,+,-,(0r,0s),(1r,1s)), where operations
are the pairwise application of the operations for R and S, is a grade algebra.

7. Given a grade algebra R = (|R|,=<Rr,+nr, r,0r, 1r), as in [23] we define Ext R = (|R| +
{0}, =X, +,,0r, 1) where < extends <y by adding r < oo for all € |Ext R| and + and
-extend +x and -g by r+00 = 00+7r = 00, for all r € |[Ext R|, and r- 00 = 00 -r = o0, for
all r € |Ext R| with r #£ Og, and Og - c0 = 00 - Og = Og. Then, Ext R is a grade algebra.

A homomorphism of grade algebras f: R — S is a monotone function f: (|R|, <g) —
(|S], =) between the underlying partial orders, which preserves the semiring structure, that
is, satisfies the following equations:

f(Or) =0g and f(r+gs) = f(r) +s f(s), for all 7, s € |R|;

f(Ar) =1gand f(r-rs) = f(r) -s f(s), for all r, s € |R|.

Grade algebras and their homomorphisms form a category denoted by grﬂ[g .

Consider a grade algebra R. Then, we can define functions (g: |R| — |Triv| and
tr: |Nat] — |R] as follows:
Calr) =00 ta(m) = {OR el
tr(n)+rl1lr fm=n+1

Roughly, (g maps every element of R to co, while tgr maps a natural number n to the
sum in R of n copies of 1z. We can easily check that both these functions give rise to
homomorphisms (r: R — Triv and tz: Nat — R. This is straightforward for (g, while for ¢g
follows by arithmetic induction. Then, we can prove the following result.

» Proposition 3. The following facts hold:
1. Nat ds the initial object in Graly;
2. Triv is the terminal object in Graly.

Another kind of objects we will work with are maps assigning grades to variables. These
inherit a nice algebraic structure from the one of the underlying grade algebra.

Assume a grade algebra R = (|R|, <,+,-,0,1) and a set X. The set of functions from
X to |R)| carries a partially ordered commutative monoid structure given by the pointwise
extension of the additive structure of R. That is, given v,~": X — |R|, we define v < ~/

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca

iff, for all z € X, v(x) < 7/(x), and (v + ") (z) = v(x) + /() and 0(z) = 0, for all z € X.
Moreover, we can define a scalar multiplication, combining elements of |R| and a function
~v: X — |R|; indeed, we set (r-~v)(z) =7 -+y(x), for all r € |[R| and = € X. It is easy to see
that this operation turns the partially ordered commutative monoid of functions from X to
|R| into a partially ordered R-module.

The support of a function v: X — |R| is the set S(y) = { € X | v(x) # 0}. Denote by
R¥X the set of functions v: X — |R| with finite support. The partial order and operations
defined above can be safely restricted to R¥, noting that S(0) = @, S(y+ ') € S(y) US(v)
and S(r-y) C S(v). Therefore, RX carries a partially ordered R-module structure as well.

As we will see in Section 4, coeffect contexts are (representations of) functions in R,
with X set of variables. The fact that coeffect contexts form a module has been firstly noted
in [22, 27], and fully formalized in [5], which also shows a non-structural example. That is,
a module different from R¥ described above, used in the present paper and mostly in the
literature, is needed, where operations on coeffect contexts are not pointwise.

3 Resource-aware semantics

Standard operational models do not say anything about resources used by the computation.
To address this problem, we follow an approach similar to that in [8], that is, we define
an instrumented semantics which keeps track of resource usage, hence, in particular, it
gets stuck if some needed resource is insufficient. However, unlike [8], the definition of our
resource-aware semantics, though parameterized on a grade algebra, is given independently
of the graded type system, as is the standard approach in calculi; in the next section, we
will show how the graded type system actually overapproximates resource usage, hence
guarantees soundness. As will be detailed in the following, the resource-aware semantics
is non-deterministic, in the sense that, when a resource is needed, it can be consumed in
different ways; hence, soundness is soundness-may, meaning that there is a reduction which
does not get stuck because of standard typing errors or resource consumption.

Reference calculus. The calculus is a variant of FJ [19]. The syntax is reported in the top
section of Figure 1. We write es as a metavariable for ey, ..., e,, n > 0, and analogously
for other sequences. We assume variables z,y, z, . . ., class names C, D, field names f, and
method names m. Types are distinct from class names to mean that they could be extended
to include other types, e.g., primitive types. In addition to the standard FJ constructs, we
have a block expression, consisting of a local variable declaration, and a body.

The semantics is defined differently from the original one; that is, reduction is defined on
configurations e|p, where p is an environment, a finite map from variables into values. In this
way, variable occurrences are replaced one at a time by their value in the environment, rather
than once and for all. This definition can be easily shown to be equivalent to the original
one, and is convenient for our aims since, in this presentation, free variables in an expression
can be naturally seen as resources which are consumed each time a variable occurrence is
used (replaced by its value) during execution. In other words, this semantics can be naturally
instrumented by adding grades expressing the “cost” of resource consumption, as we will do
in Figure 2. Apart from that, the rules are straightforward; only note that, in rules (INVK)
and (BLOCK), parameters (including this) and local variable are renamed to fresh variables,
to avoid clashes. Single contextual rules are given, rather than defining evaluation contexts,
to be uniform with the instrumented version, where this presentation is more convenient.

3:5

ECOOP 2023

3:6

Multi-Graded Featherweight Java

e == z|e.f|new C(es) | e.m(es) |{Tz=r¢e;e} expression

T == C type (class name)
v u= new C(vs) value

(VAR (:zj) =

) T P
zlp — vlp

fields(C) = T1 f1; oo Tn fn;
new C(uv,...,u) . .filp > wlp i€ l.n

(FIELD-ACCESS)

vo =new C(_)
mbody(C,m) = (z1... 2, €)

(INVK) -

vo.m(v1,...,v)|p — e[yo/this][y1/T1 ... yn/Tn]lP’ Yo,--.,Yn & dom(p)

P =P, Yo V0, s Yn P Un

(BLOCK) Yy Q dom 14

[Co=v; ellp = ely/allory = o (°)
(, _ep— e'lp’
FIELD-ACCESS-CTX -

e-flp—¢€.flo'
, eilp — eilp’
(NEW- o) new C'(v1,...,%—1,€;,...,en)|p —>mnew C(uv,...,vi—1,€,...,en)|p
(INVK-RCV-CTX) €0|P - 66|p,
eo.m(er,...,ex)|p— €. m(er,... en)|p
, ‘ eilp — eilp’

(INVE-ARG-CTX) vo.m(uL,. .., Vi—1,€,...,e)|p = vo.m(vL,...,vi_1,€,...,€e)|p

eilp = eilp’
{Caz=e; ellp = {Ca=ep; el

(BLOCK-CTX)

Figure 1 Syntax and standard reduction.

To be concise, the class table is abstractly modeled as follows, omitting its (standard)
syntax:

fields(C') gives, for each class C, the sequence Ty fi; ... Ty fn; of its fields, assumed to

have distinct names, with their types;

mbody(C, m) gives, for each method m of class C, its parameters and body.

Instrumented reduction. This reduction uses grades, ranged over by 7, s, t, assumed to
form a grade algebra, specifying a partial order =<, a sum +, a multiplication -, and constants
0 and 1, satisfying some axioms, as detailed in Definition 1 of Section 2.

In order to keep track of usage of resources, parametrically on a given grade algebra, we
instrument reduction as follows.

The environment associates, to each resource (variable), besides its value, a grade modeling

its allowed usage.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca

Moroever, the reduction relation is graded, that is, indexed by a grade r, meaning
that it aims at producing a value to be used (at most) r times, or, in more general
(non-quantitative) terms, to be used (at most) with grade r.
The grade of a variable in the environment decreases, each time the variable is used, of
the amount specified in the reduction grade?.
Of course, this can only happen if the current grade of the variable can be reduced of
such an amount; otherwise the reduction is stuck.
Before giving the formal definition, we show some simple examples of reductions, considering
the grade algebra of naturals of Example 2(1), tracking how many times a resource is used.

» Example 4. Assume the following classes:

class A {}
class Pair {A first; A second}

We write tpair as an abbreviation for new Pair (new A(),new A()).

{Aa = [new AQ)],; {Pairp = [new Pair(a,a)],; new Pair(p.first,p.second) }}|§ —:

{Pairp = [new Pair(a,a)],; new Pair(p.first,p.second) }|a — (new A(),4) —

{Pairp = [new Pair(new A(),a)],; new Pair(p.first,p.second) }|a — (new A(),2) —
{Pairp = [new Pair(new A(),new A())],; new Pair(p.first,p.second) }|a — (new A(),0) —1
new Pair(p.first,p.second)|a — (new A(),0),p — (pair, 2) —1

new Pair (vpair . first, p.second) |a — (new A(),0),p — (Wpair, 1) —1

new Pair(new A(),p.second) |a — (new A(),0),p — (Vpair, 1) —1

new Pair (new A(), tpair . second) |a — (new A(),0),p — (pair, 0) —1

Vpair|a — (new AQ),0),p — (pair, 0)

In the example, the top-level reduction is graded 1, meaning that a single value is
produced. Subterms are annotated with the grade of their reduction. For instance, the outer
initialization expression is annotated 4, meaning that its result can be used (at most) 4 times.
To lighten the notation, in this example we omit the index 1. A local variable introduced
in a block is added® as another available resource in the environment, with the value and
the grade of its initialization expression; for instance, the outer local variable is added with
grade 4. When evaluating the inner initialization expression, which is reduced with grade 2,
each time the variable a is used its grade in the environment is decremented by 2.

It is important to notice that the annotations in subterms are not type annotations. Except
those in arguments of constructor invocation, explained below, annotations are only needed
to ensure that reduction of a subterm happens at each step with the same grade, see the
formal definition below. We plan to investigate in future work a big-step formulation which
would not need such an artifice. In the example above, we have chosen for the reduction of
subterms the minimum grade allowing to perform the top-level reduction. We could have
chosen any greater grade; instead, with a strictly lower grade, the reduction would be stuck.

As anticipated, in a constructor invocation new C'([e1], ,...,[en],), the annotation r;

oo
plays a special role: intuitively, it specifies that the object tlo be constructed should contain
r; copies of that field. Formally, this is reflected by the reduction grade of the subterm e;,
which must be exactly r - r;, if r is the reduction grade of the object, specifying how many
copies of it the reduction is constructing. Correspondingly, an access to the field can be used

(at most) r - r; times. This is illustrated by the following variant of the previous example.

2 More precisely, the reduction grade acts as a lower bound for this amount, see comment to rule (VAR).
3 Modulo renaming to avoid clashes, omitted in the example for simplicity.

3:7

ECOOP 2023

3:8

Multi-Graded Featherweight Java

» Example 5. Consider the term
{Aa = [new AQ)],; {Pairp = [new Pair(a,a)|,; new Pair([p.first], ,p.second) }}

As highlighted in grey, the first argument of the constructor invocation which is the body of
the inner block is now annotated with 2, meaning that the resulting object should have “two
copies” of the field. As a consequence, the expression p.first should be reduced with grade
2, as shown below, where vp,;r = new Pair(new A(),new A()), the first four reduction steps
are as in Example 4 and we explicitly write some annotations 1 for clarity

{Aa = [new AQ)],; {Pairp = [new Pair([a],, a)}Z; new Pair ([[p]; .first]2 ,p-second) } }|0 —7
new Pair([[p], . first], ,p.second)|a — (new AQ),0),p — (pair, 2) —1

new Pair (| [[tpair], - first], ,p.second)|a — (new A(),0),p — (thair,1) STUCK

Reduction of the subterm in grey, aiming at constructing a value (new A()) which can be
used twice, is stuck, since we cannot obtain two copies of new A() from the field first of
the object vpair. If we choose, instead, to reduce the occurrence of p to be used twice, then
we get the following reduction, where again we omit steps which are as before:

{Aa = [new AQ)],; {Pairp = [new Pair([a],, a)}2 ; new Pair ([[p], .firs'c]2 ,p-second) } }|0 —7
new Pair(/[[p],.first], ,p.second)|a — (new AQ),0),p — (Tair, 2) —1

new Pair ([[vpair], .first]2 ,p-second) |a — (new A(),0),p — (Vpair, 0) —1
new Pair([new AQ)],,p.second) |a +— (new A(),0),p — (pair,0) STUCK

In this case, the reduction is stuck since we consumed all the available copies of p to produce
two copies of the field first, so now we cannot reduce p.second. To obtain a non-stuck
reduction, we should choose to reduce the initialization expression of p with index 3, hence
that of a with index 6. To complete the construction of the Pair, that is, to get a non-stuck
reduction, we should have 3 copies of p and therefore 6 copies of a.

The formal definition of the instrumented semantics is given in Figure 2. To make the
notation lighter, we use the same metavariables of the standard semantics in Figure 1. As
explained above, reduction is defined on annotated terms. Notably, in each construct, the
subterms which are reduced in contextual rules are annotated, so that their reduction always
happens with a fixed grade.

In rule (var), which is the key rule where resources are consumed, a variable occurrence is
replaced by the associated value in the environment, and its grade s decreases to s, burning
a non-zero amount 7’ of resources which has to be at least the reduction grade. The side
condition 7’ + s’ < s ensures that the initial grade of the variable suffices to cover both the
consumed grade and the residual grade. To show why the amount of resource consumption
should be non-zero, consider, e.g., the following variant of Example 4:

{Aa = [new AQ)],; {Pairp = [new Pair(a,a)],; new Pair(a,a) } }|(

The local variable p is never used in the body of the block, so it makes sense for its initialization
expression to be reduced with grade 0, since execution needs no copies of the result. Yet, the
expression needs to be reduced, and to produce its useless result two copies of a are consumed;
in a sense, they are wasted. However, such resource usage is tracked, whereas it would be
lost if decrementing by 0. Removing the non-zero requirement would lead to a variant of
resource-aware reduction where usage of resource which are useless to construct the final
result is not tracked.

In rule (FiELD-ACCESS), the reduction grade should be (overapproximated by) the multi-
plication of the grade of the receiver with that of the field (constructor argument). Indeed,
the former specifies how many copies of the object we have and the latter how many copies

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca

e u= z|le]..f[new Clel], ,...,[en],)| (annotated) expression
[eo]ro ° m([el]'rl’ ttt [en}rn)es | {Tx = [e]r; 6/}
v u= new C([vi], .., [v],) (annotated) value
) r=r #0
(v zlp,z = (v, 8) = vlp,x— (v,8) & +1 s

fields(C) = T1 fi; ... Tn fn;

(FIELD-ACCESS) i1€l.n
[ew C([vil,, -, [on],] filp =s wilp g <00
vo =new C'(_)
(Vi) mbody(C, m) = (21 ... Zn, €)
[vol,,, -m([va],, ;- [on], Vo —r elyo/this][ys /@1 .. yn/2n]lp’ Y0s- - Yn ¢ dom(p)
P =p,90 = (v0,70), s Yn = (Vn, Tn)
(BLOCK) y & dom(p)
{Cax=1[u,; ellp =5 ely/z]lp, y = (v,)
() elp —=r ¢lp’
FIELD-ACCESS-CTX
[el, - flp —s (€], -0’
. "
(ew-crs) €ilp —rr €ilp
new C([Ul]'rﬂ T [’Uifl]'r?,l) [ei]v-, Y [Cn].,.n)|l) —r
new C(['Uﬂﬁ,) ['Ui—l}rhla [eﬂ»n:) [e"}rn)lp/
A
(INVK-RCV-CTX) eo\p AL e(j‘p ;
oy -mCleily o (end, o v [egl,, -mClenl, oo lea], Dl
(INVK-ARG-CTX) ei‘p Al 6£|p,
[GOL‘O . m([Ul]rl, ERRE) [v’i—l]rHN [ei]riz KR [en]r”) ‘p —r
[80]7«0 . m([vl]'rl? e ['Uz‘—l],,.171) [67.(]7-17] [en].,.n)“),

e1lp = el
[Ca=Tlal,: ex}lp = (Co = [ef]; 2}

(BLOCK-CTX)

Figure 2 Instrumented reduction.

of the field each of such objects has; thus, their product provides an upper bound to the
grade of the resulting value. Note that, in this way, some reductions could be forbidden. For
instance, taking the grade algebra of naturals, an access to a field whose value can be used 3
times, of an object reduced with grade 2, can be reduced with grade (at most) 6. Another
more significant example is given in the following, taking the grade algebra of privacy levels.

Rule (InvK) adds each method parameter, including this, as available resource in the
environment, modulo renaming with a fresh variable to avoid clashes. The associated value
and grade are that of the corresponding argument. Rule (BLoCK) is exactly analogous, apart
that only one variable is added.

Coming to contextual rules, the reduction grade of the subterm is that of the corresponding
annotation, so that all steps happen with a fixed grade. The only exception is rule (NEW-CTX),
where, symmetrically to rule (FIELD-AccEss), the reduction grade for subterms should be
the multiplication of the reduction grade of the object with the annotation of the field
(constructor argument), capturing the intuition that the latter specifies the grade of the field
for a single copy of the object. For instance, taking the grade algebra of naturals, to obtain
an object which can be used twice, with a field which can be used 3 times, the value of such
field should be an object which can be used 6 times.

39

ECOOP 2023

3:10

Multi-Graded Featherweight Java

Note that, besides the standard typing errors such as looking for a missing method or
field, reduction graded r can get stuck since either rule (var) cannot be applied since the
side conditions do not hold, or rule (FIELD-ACCESS) cannot be applied since the side condition
s 2 r - 1; does not hold. Informally, either some resource (variable) is exhausted, that is, can
no longer be replaced by its value, or some field of some object cannot be extracted. It is also
important to note that the instrumented reduction is non-deterministic, due to rule (var).

In the grade algebra used in the previous example, grades model how many times resources
are used. However, grades can also model a non-quantitative* knowledge, that is, track
possible modes in which a resource can be used, or, in other words, possible constraints on
how it could be used. A typical example of this situation are privacy levels, which can be
formalized similarly to what is done in [1], as described below.

» Example 6. Starting from any distributive semilattice lattice L, like in Example 2(5),
define Lo = {|Lo|, <o, Vo, No, 0, T), where |Lo| = |L| + {0} with 0 <oz, 2 Vo0 =0Voz =2z
and £ A\g 0 =0 Agz =0, for all x € |L|; on elements of |L| the order and the operations are
those of L. That is, we assume that the privacy levels form a distributive semilattice with
order representing “decreasing privacy”, and we add a grade 0 modeling “non-used”. The
simplest instance consists of just two privacy levels, that is, 0 < private < public. Sum is the
join, meaning that we obtain a privacy level which is less restrictive than both: for instance,
a variable which is used as public in a subterm, and as private in another, is overall used as
public. Multiplication is the meet, meaning that we obtain a privacy level which is more
restrictive than both: for instance, an access to a field whose value has been obtained in
public mode, of an object reduced in private mode, is reduced in private mode®. Note that
exactly the same structure could be used to model, e.g., rather than privacy levels, modifiers
readonly and mutable in an imperative setting, corresponding to forbid field assignment and
no restrictions, respectively. The following examples illustrates the use of such grade algebra.
We write priv and pub for short, and classes A and Pair are as in the previous examples.

1. Let e; = {Ay = [new AQ],p; {Ax = [y] s x}} and p_ be either pub or priv, e; starting

with the empty environment reduces with grade private as follows:

erld —piv {Ax = [y, x}Hy = (new AQ), pub) with (BLoCK)
—priv {Ax = [new AQ)],;,; x}|y — (new AQ,p_) with (BLock-cTX) and
yly — (new AQ), pub) — oy new AQ |y — (new AQ,p_)
—oriv X|y > (new AQ,p_),x — (new AQ), priv) with (BLOCK)
—poriv new AQly — (new AQ),p_),x — (new AQ), priv) with (VaRr)

Instead reduction with grade public would be stuck since pub # priv and so
x|y — (new AQ),p_),x — (new AQ), priv) % pub
Also the reduction of e; = {Ay = [new AQ];,; {Ax = [y] 5 x}} with grade private

el —piv {Ax = [y],ps x}Hy = (new AQ), priv) with (BLock)

7L>priv

would be stuck since y|y — (new AQ), priv) A pu. Note that both e; and ey reduce to
new A() with the semantics of Figure 1.

4 Suck kind of applications are called informational in [1].
5 As in viewpoint adaptation [13], where permission to a field access can be restricted based on the
permission to the base object.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca

2. Let e3 = {Ax = [newAQ)],,,; new Pair([x] . [x],;,)}, es starting with the empty

environment reduces with grade public as follows:

priv

es]0 —pu mew Pair([x],, [x],,)[x — (new AQ), pub) with (BLOCK)
—pub mew Pair([new AQ] ., [x] ;) [x — (new AO,p_) with (NEw-CT1x) and
x|x — (new A(Q), pub) —pup new AQ |x — (new AQ),p_)
—rpub new Pair([new AQJ,,,, [new AO] ;) [x — (new AQ),p_) with (NEw-CTX) and
x|x — (new AQ),p_) —privnew AQ |x — (new AQ),p_)

*
priv

It is easy to see that also es|@ — new Pair([newAQ)] ,,[newdA(Q] .Jlx —

(new AQ),p_). So we have

pub? priv

[es],-£[0 =7 [newPair([new AO],,,, [new AO],;)] -£[x+— (new AO,p_)

where £ can be either first or second and r and s can be either pub or priv. Now, the
reductions of grade priv accessing either first or second produce the value of the fields

[new Pair([new AQ)|_ ., [new AQ)] | —pivnew AQ|

pub’ priv)]r'

However, looking at the reductions of grade pub, only

[new Pair ([new AQ)],, [new AQ)])]pub.first|i —pub new AQ)|

priv
is not stuck. That is, we produce a value that can be used as public only if we get a public
field of a public object, whereas any value can be used as private.

We now state some simple properties of the semantics we will use to prove type soundness.
The former establishes that reduction does not remove variables from the environment, the
latter states that we can always decrease the grade of a reduction step.

» Proposition 7. If e|p —, €/|p’ then dom(p) C dom(p’) and for all z € dom(p), p(z) = (v, r)
implies p'(z) = (v, s) with s < r.

» Proposition 8. If e|p —, €'|p' and s < r then e|p — €'|p.

We expect the instrumented reduction to be sound with respect to the standard reduction,
in the sense that by erasing annotations from an instrumented reduction sequence we get a
standard reduction sequence. This is formally stated below.

For any e expression, let us denote by [e] the expression obtained by erasing annotations,
defined in the obvious way, and analogously for environments, where grades associated to
variables are removed as well.

» Proposition 9 (Soundness of instrumented semantics).
If elp =+ €, then [el|[p] — [€/1I[p"]-

The converse does not hold, since a configuration could be annotated in a way that makes it
stuck; notably, some resource (variable) could be exhausted or some field of an object could
not be extracted. The graded type system in the next section will generate annotations
which ensure soundness, hence also completeness with respect to the standard reduction.

4 Graded Featherweight Java

Types (class names) are annotated with grades, as shown in Figure 3.

As anticipated at the end of Section 2, a coeffect context, of shape v = x1 : r1,..., 2, : Ty,
where order is immaterial and z; # x; for i # j, represents a map from variables to grades
(called coeffects when used in this position) where only a finite number of variables have

3:11

ECOOP 2023

3:12

Multi-Graded Featherweight Java

e == z|e.f|new C(es) | e.m(es) |{Tz=r¢e;e} expression
T == C" (graded) type
v u= new C(vs) value

Figure 3 Syntax with grades.

non-zero coeffect. A (type-and-coeffect) context, of shape I' =y 3, C1,... 2, 1, Cp, with
analogous conventions, represents the pair of the standard type context z; : Cy ..., z, : Cp,
and the coeffect context a1 : r1,...,z, : 7. We write dom(T") for {z1,...,z,}.

As customary in type-and-coeffect systems, in typing rules contexts are combined by
means of some operations, which are, in turn, defined in terms of the corresponding operations
on coeffects (grades). More precisely, we define:

a partial order <

D=0
z:s C.I' <z: C,A ifs<randI' <A
r<z: C,A if t ¢dom(T) and T' < A
a sum -+
P+T =T
(z:s C\T) 4+ (x:p C,A) =2 154, C,(T+ A)
(z:s C)+ A=z C,(T+A) if x ¢ dom(A)

a scalar multiplication -
s-0=90 s (z: C,T) =15, C,(sT)

As the reader may notice, these operations on type-and-coeffect contexts can be equivalently
defined by lifting the corresponding operations on coeffect contexts, which are the pointwise
extension of those on coeffects, to handle types as well. In this step, the addition becomes
partial since a variable in the domain of both contexts is required to have the same type.
The type system relies on the type information extracted from the class table, which,
again to be concise, is abstractly modeled as follows:
the subtyping relation < on class names is the reflexive and transitive closure of the
extends relation
mtype(C, m) gives, for each method m of class C, its enriched method type, where the
types of the parameters and of this have coeffect annotations.
Moreover, fields(C') gives now a sequence Cy* fi; ... CI™ f,;, meaning that, to construct an
object of type C, we need to provide, for each i € 1..n, a value with a grade at least ;.
The subtyping relation on graded types is defined as follows:

Cr<Dsiff C<Dands=<r

That is, a graded type is a subtype of another if the class is a heir class and the grade is more
constraining. For instance, taking the affinity grade algebra of Example 2(2), an invocation
of a method with return type C* can be used in a context where a type C* is required, e.g.,
to initialize a C' variable.

The typing judgment has shape T'F e: T ~ €', where T is a type-and-coeffect context,
and ¢’ is an annotated expression, as defined in Figure 2. That is, typechecking generates
annotations in code such that evaluation cannot get stuck, as will be formally expressed and
proved in the following.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca

F'Fe:T~¢ T<IV

I'ke: T ~e TLST (r-var) z:, Chz:C0"~z r70

(T-suB)

F'ke:C"~ ¢
I'ke.fi: CI" (€], . fi

(T-FIELD-ACCESS) fields(C) = 01” f1; “ee C,S" fn;
Tibe:Cl " ~e Vielun
Ti+...+TpFnew Cler,...,en) : C7 ~
new C([ei]T1 e [eﬁl]m)

fields(C) = C7* fis ... Gy fus

(T-NEW)

Tobe:C™ ey Tite:Cli~e VIELm
To+...4TpFe.mler,...;en) : T~
[e(l)}m'm([el]nw i [en]rn)

mtype(C,m) = ro, C{* ... Cpy" — T

(T-INVK)

TikFe :C"~e) To,x:p Chey: T~ el
i +Tek{Crz=e;e}: T~ {Cx=]ef],; e}

(T-BLOCK)

}—vl-:Ci” ~ Vi€l.n D=1y Cryeyn i, On

(T-ENV) T n p=iE1i—>(v1,T1>,...,$nH<Un,Tn>
p“")p p/:le<Ui,’f‘1>,...7$n'—)<’l),/1,7'n>
. / ’
(r-conm) AFe:T~e T'kEp~p A<T

Thelp: T~ ¢€lp

Figure 4 Graded type system.

In a well-typed class table, method bodies are expected to conform to method types.
That is, mtype(C, m) and mbody(C, m) should be either both undefined or both defined with
the same number of parameters. In the latter case, the method body should be well-typed
with respect to the method type, notably by typechecking the method body we should get
coeffects which are (overapproximated by) those specified in the annotations. Formally, if
mbody(C,m) = (21 ...z, e), and mtype(C,m) = ry, C{* ... C'» — T, then the following
condition must hold:

(T-METH) this @, Ci21 i1y Chyevyn i, Cpnb e T s €

Moreover, we assume the standard coherence conditions on the class table with respect to
inheritance. That is, if C < D, then fields(D) is a prefix of fields(C) and, if mtype(C, m) =
19, C{* ... CI» — T, then mtype(D, m) = ro, C{* ... C/» — T" with T" < T.

In Figure 4, we describe the typing rules, which are parameterized on the underlying
grade algebra.

In rule (T-suB), both the coeffect context and the (graded) type can be made more general.
This means that, on one hand, variables can get less constraining coeffects. For instance,
assuming again affinity coeffects, an expression which can be typechecked assuming to use
a given variable at most once (coeffect 1) can be typechecked as well with no constraints
(coeffect w). On the other hand, recalling that grades are contravariant in types, an expression
can get a more constraining grade. For instance, an expression of grade w can be used where
a grade 1 is required.

If we take r = 1, then rule (T-vaAR) is analogous to the standard rule for variable in
coeffect systems, where the coeffect context is the map where the given variable is used
once, and no other is used. Here, more generally, the variable can get an arbitrary grade r,
provided that it gets the same grade in the context. However, the use of the variable cannot
be just discarded, as expressed by the side condition r # 0.

In rule (T-FIELD-ACCESS), the grade of the field is multiplied by the grade of the receiver.
As already mentioned, this is a form of viewpoint adaptation [13]. For instance, using affinity
grades, a field graded w of an object graded 1 can be used at most once.

3:13

ECOOP 2023

3:14

Multi-Graded Featherweight Java

In rule (T-NEw), analogously to rule (T-vaR), the constructor invocation can get an
arbitrary grade r, provided that the grades of the fields are multiplied by the same grade.
Coeffects of the subterms are summed, as customary in type-and-coeffect systems.

In rule (T-1nvK), the coeffects of the arguments are summed as well. The rule uses the
function mtype on the class table, which, given a class name and a method name, returns
its parameter and return (graded) types. For the implicit parameter this only the grade is
specified. Note that the grades of the parameters are used in two different ways: as (part of)
types, when typechecking the arguments; as coeffects, when typechecking the method body.

In rule (T-BLOCK), the coeffects of the initialization expression are summed with those of
the body, excluding the local variable. Analogously to method parameters, the grade of the
local variable is both used as (part of) type, when typechecking the initialization expression,
and as coeffect, when typechecking the body.

Finally, we have straightforward rules for typing environments and configurations. Values
in the environment are assumed to be closed, since we are in a call-by-value calculus. Also
note that, in the judgment for environments and configurations, since no subsumption rule is
available, variables in the context are exactly those in the domain of the environment, which
are a superset of those used in the expression.

» Example 10. We show a simple example illustrating the use of graded types, assuming
affinity grades. We write in square brackets the grade of the implicit this parameter. The
class Pair declares three versions of the getter for the first field, which differ for the grade
of the result: either 0, meaning that the result of the method cannot be used, or 1, meaning
it can be used at most once, or w, meaning it can be used with no constraints. Note that the
first version, clearly useless in a functional calculus, could make sense adding effects, e.g. in
an imperative calculus, playing a role similar to that of void.

class Pair { A! first; Al second ;
A% getFirstZero() [1]{this.first}
A' getFirstAffine() [1]{this.first}
A® getFirst () [1]1{this.first}

}

The coeffect of this is 1 in all versions, and it is actually used once in the bodies. The
occurrence of this in the bodies can get any non-zero grade thanks to rule (T-var), and
fields are graded 1, meaning that a field access does not affect the grade of the receiver, hence
the three bodies can get any non-zero grade as well, so they are well-typed with respect to
the grade in the method return type.

In the client code below, a call of the getter is assigned to a local variable of the same
grade, which is then used consistently with such grade.

1

Pair® p =

{A° a = p.getFirstZero(); new Pair(new A(),new A())}
{A' a = p.getFirstAffine(); new Pair(a,new A())}

{A” a = p.getFirst(); new Pair(a,a)}

The following blocks are, instead, ill-typed, for two different reasons.

{A' a = p.getFirst(); new Pair(a,a)}
{A® a = p.getFirstAffine(); new Pair(a,a)}

In the first one, the initialization is correct, by subsumption, since we use an expression of
a less constrained grade. However, the variable is then used in a way which is not compatible
with its grade. In the second one, instead, the variable is used consistently with its grade,
but the initialization is ill-typed, since we use an expression of a more constrained grade.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:15

Finally, note that the coeffect of this could be safely changed to be w in the three methods,
providing an overapproximated information; in this case, however, the three invocations in
the client code would be wrong, since the receiver p is required to be used at most once.

» Example 11. Consider the following source (that is, non-annotated) version of the
expression in Example 5.

{Apublic y = new A(); {Aprivate X = y; X}}

The private variable x is initialized with the public expression/variable y. The block expression
has type APVt a5 the following type derivation shows.

(T-NEW)

F new A() : APub
F{APPy =new AQ; {APVx =y; x}} : APV

(T-BLOCK)

where D is the following derivation

(T-VAR)

Vipub Ay Apub
Vi Ay APFiV Y pub A, X tpriv A X APTiV
Y pub AF {APV x = y; x} APV

(T-suB) (T-VAR)

(T-BLOCK)

On the other hand, initializing a public variable with a private expression as in

{Aprivate y = new A(), {Apublic X = y; X}}

is not possible, as expected, since y :piy A/ y : APUP
Consider now the class Pair with a private field and a public one.

class B { APlic f1; pPivete 5. 3

The expression e

{Apublic X = new A()’ new B(X’X)}

can be given type PairP'?'c as follows:

(r-var) X ipup A x i APUP

X ipub A x : APUD (r-suE) X ipub A x ¢ APV
F new A() : APub X ipub A F new Pair(x,x) : PairPu

F {AP® x = new A() ; new Pair(x,x) } : PairP®

(T-VAR)

(T-NEW) (T-NEW)

(T-BLOCK)

By (T-suB) we can also derive I~ e : PairP™ and so we get

F e:PairP™ (: F e:PairPb
—_— T-FIELD i
F e.first : APV F e.second : APV

(T-FIELD)

that is, accessing a public field of a private expression we get a private result as well as
accessing a private field of a public expression.
Also note that the following expression e’

{Aprivate x = new A(); mnew B(x,x)}

can be given only type PairP™at by

(T-VAR) (T-VAR)

X tpriv A F x : APV X tpriv A x o AP
F new A() : APV X ipriv A F new Pair(x,x) : PairP™
F {AP"x = new A() ; new Pair(x,x) } : PairP™

(T-NEW) (T-NEW)

(T-BLOCK)

We cannot derive - ¢’ : PairP'®, since the grade of first is public and (T-NEW) would
require x :piy A x: APUB-PUb wwhich does not hold.

ECOOP 2023

3:16 Multi-Graded Featherweight Java

Thoe:T T<T

o e r<r ™™ snoraeior 70
T'hee: C7
-FIELD-ACCES = — fields(C) = C* fi; ... Co™ fu;
(T-FIELD-ACCESS) T, [e}r.fi : Cir L () 1 f1 n f
Tiba e CZ-T‘T"' Viel.n . .
field =C" fi;...C™ f.;
O T Fanew Clled],, s [ea],) : CF (C) =G fis - G
N :C™ Tikae:CH Vel .
(1K) 0Ma €0 iTa € i el.n mtype(C, m) = ro, Cln O T

To+...4+T, o [eo]m.m([el]n,...,[en}) : T

Tn

Tibaer:C" To,z: Chaea: T
F1 +F2 I—a{Cx:[el]T; 62}2 T

(T-BLOCK)

Favi:Cl" Yielin T'=m2 14y Ciy...y Ty iy, Cn
Thap p=121 > (V1,T1)s .y Tn = (Un, Tn)

(T-ENV)

Abge: T T'H

a P
A=T
Phaelp: T -

(T-CONF)

Figure 5 Graded type system for annotated syntax.

Resource-aware soundness. We state that the graded type system is sound with respect
to the resource-aware semantics. In other words, the graded type system prevents both
standard typing errors, such as invoking a missing field or method, and resource-usage errors,
such as requiring a resource which is exhausted (cannot be used in the needed way).

In order to state and prove a soundness theorem, we need to introduce a (straightforward)
typing judgment +, for annotated expressions, environments and configurations. The typing
rules are reported in Figure 5.

Recall that [__] denotes erasing annotations. It is easy to see that an annotated expression
is well-typed if and only if it is produced by the type system:

» Proposition 12. T'e: T~ ¢ if and only if [¢] = e and Tk, ¢ : T.

A similar property holds for environments and configurations.
The main result is the following resource-aware progress theorem.

» Theorem 13 (Resource-aware progress). If ' b, e|lp : C" then either e is a value or
elp = €p and T+, €|p' : C™ with dom(T') C dom(I") and T" X T, A.

When reduction is non-deterministic, we can distinguish two flavours of soundness,
soundness-must meaning that no computation can be stuck, and soundness-may, meaning
that at least one computation is not stuck. The terminology of may and must properties is
very general and comes originally from [12]; the specific names soundness-may and soundness-
must were introduced in [10, 9] in the context of big-step semantics. In our case, graded
reduction is non-deterministic since, as discussed before, the rule (var) could be instantiated
in different ways, possibly consuming the resource more than necessary. However, we expect
that, for a well-typed configuration, there is at least one computation which is not stuck,
hence a soundness-may result. Soundness-may can be proved by a theorem like the one
above, which can be seen as a subject-reduction-may result, including standard progress.
In our case, if the configuration is well-typed, that is, annotations have been generated by
the type system, there is a step which leads, in turn, to a well-typed configuration. More in
detail, the type is preserved, resources initially available may have reduced grades, and other
available resources may be added.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca

Theorem 13 is proved as a special case of the following more general result, which makes
explicit the invariant needed to carry out the induction. Indeed, by looking at the reduction
rules, we can see that computational ones either add new variables to the environment or
reduce the grade of a variable of some amount that depends on the grade of the reduction. In
the latter case, the amount can be arbitrarily chosen with the only restrictions that it is non
zero and at least the grade of the reduction. However, to prove progress, we not only have to
prove that a reduction can be done, but, if the reduction is done in a context, say evaluating
the argument of a constructor, then after such reduction we still have enough resources to go
on with the reduction, that is, to evaluate the rest of the context (the other arguments of the
constructor). This means that the resulting environment has enough resources to type the
whole context (the constructor call). For this reason, in the statement of the theorem that
follows, we add to the assumption of Theorem 13 a typing context © that would contain
the information on the amount of resources that we want to preserve during the reduction
(see Item 4 of the theorem). This allows us to choose the appropriate grade to be kept when
reducing a variable and to reconstruct a typing derivation when using contextual reduction
rules. For the expression at the top level, as we see from the proof of Theorem 13, © is
simply O for all variables in the typing context in which the expression is typed.

» Theorem 14. [fAt,e: C" and 'k, p and A+ © <X T and dom(A) C dom(©) and e is
not a value, then there are ¢, p', A', TV and ©' such that

1. elp =, ¢|p' and

2. Ak, e C" with A' < A, 0 and

3. Ty p withT! XT,0" and

4. N +0 <T".

Finally, the following corollary states both subject-reduction for the standard semantics,
that is, type and coeffects are preserved, and completeness of the instrumented semantics,
that is, for well-typed configurations, every reduction step in the usual semantics can be
simulated by an appropriate step in the instrumented semantics.

» Corollary 15 (Subject reduction). If T’y - ei|p1 : C" ~ €i|p] and e1|p1 — ea|p2, then
Ta b eg|p2: C7 ~ eh|ph with dom(T'y) C dom(T'z) and Ty < T'1, A, and €}|py —+ €b]ph.

Proof. By Proposition 12 we get I'1 F, €f|p] : C" and, by Theorem 13, e||p} —, €5]p}
and 'y F, e5|ph + C™ with dom(T';) C dom(I'z) and I'y < I'1, A. By Proposition 12, we
get Iy F [e5]|[ph] : C" ~~ €h]ph and by Proposition 9, we get e1|p1 — [e5]|[p5]. By the
determinism of the standard semantics we have [e5] = ez and [p)] = p2, hence the thesis. <«

5 Combining grades

As we have seen, each grade algebra encodes a specific notion of resource usage. However, a
program may need different notions of usage for different resources or different pieces of code
(e.g., different classes). Hence, one needs to use several grade algebras at the same time, that
is, a family (H})rex of grade algebras® indexed over a set K of grade kinds. We assume grade
kinds to always include N and T, with Hy and Ht the grade algebras of natural numbers
and trivial, respectively, as in Example 2, since they play a special role, as will be shown.

6 H stands for “heterogeneous”.

3:17

ECOOP 2023

3:18

Multi-Graded Featherweight Java

» Example 16. Assume to use, in a program, grade kinds N, A, P, PP, AP, and T, where:

Hp is the affinity grade algebra, as in Example 2(3).

Hp and Hpp are two different instantiations of the grade algebra of privacy levels, as in

Example 6; namely, in Hp there are only two privacy levels public and private, whereas in

Hpp we have privacy levels a, b, ¢, d, with a <b <dand a <c <d.

Finally, Hap is Ha x Hp, as in Example 2(7), tracking simultaneously affinity and privacy.
We want to make grades of all such kinds simultaneously available to the programmer. In
order to achieve this, we should specify how to combine grades of different kinds through
their distinctive operators; for instance, an object with grade of kind % could have a field
with grade of kind u, hence a field access should be graded by their multiplication.

In other words, we need to construct, starting from the family (Hy)reck, a single grade
algebra of heterogeneous grades. In this way, the meta-theory developed in previous sections
for an arbitrary grade algebra applies also to the case when several grade algebras are used
at the same time. Note that this construction is necessary since we do not want available
grades to be fixed, as in [23]; rather, the programmer should be allowed to define grades for
a specific application, using some linguistic support which could be the language itself, as
will be described in Section 6.

Direct refinement. The obvious approach is to define heterogeneous grades as pairs (k, r)
where k € IC, and r € Hy. Concerning operators, in previous work, handling coeffects rather
than grades, [3] we took the simplest choice, that is, combining (by either sum or product)
grades of different kinds always returns (oo, T), meaning, in a sense, that we “do not know”
how the combination should be done. The only exception are grades of kind N; indeed, since
the corresponding grade algebra is initial, we know that, for any kind &, there is a unique
grade homomorphism ¢j from Nat to Hy, hence, to combine (n,N) with (r, k), we can map
n into a grade of kind k& through such homomorphism, and then use the operator of kind
k. In this paper, we generalize this idea, by allowing the programmer to specify, for each
pair of kinds k and u, a uniquely determined kind £ @ p and two uniquely determined grade
homomorphisms IhHHM: H,, — H,gu, and rhguz H,, — H,g,. In this way, to combine (x, r)
and (u, s), we can map both in grades of kind k @ u, and then use the operator of kind k & p.

The operator @ and the family of unique homomorphisms, one for each pair of kinds,
can be specified by the programmer, in a minimal and easy to check way, by defining a
(direct) refinement relation C', as defined below, and a family of grade homomorphisms
Hy,: H,— H,, indexed over pairs » ! .

Given a relation = on kinds, a path from ky to k, is a sequence kg ...k, such as k; = k;11,
for all i € 1..n — 1. We say that u is an ancestor of k if there is a path from x to u.

Then, a (direct) refinement relation is a relation C! on K\ {N, T} such as the following
conditions hold:
1. for each k, u, there exists at most one path from x to p
2. for each k, u with a common ancestor, there is a least common ancestor, denoted k @ y;

that is, such that, for any common ancestor v, v is an ancestor of k & p.
Note that, thanks to requirement (1), requirement (2) means that the unique path, e.g., from
K to v, consists of a unique path from k to k£ ® u, and then a unique path from k£ &® p to v.

Given a direct refinement relation !, we can derive the following structure on K:

C! can be extended to a partial order C on K, by taking the reflexive and transitive

closure of C! and adding N C x C T for all x € K.

@ can be extended to all pairs, by defining k &y = T if kK and p have no common ancestor.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca

Figure 6 Direct refinement diagram.

Altogether, we obtain an instance of a structure called grade signature, as will be detailed in
Definition 18. Moreover, given a C'-family of homomorphisms:

they can be extended, by composition”, to all pairs of grades (x,u) € K\ {N, T} such

that there is a path from k to u; since this path is unique, the resulting homomorphism

is uniquely defined

for each kind k, we add the unique homomorphisms from Nat and to Triv.

Altogether, besides a grade algebra for each kind, we get a grade homomophism for each pair
(k, u) such that x C p. That is, we obtain an instance of a structure called heterogeneous
grade algebra, as will be detailed in Definition 19.

Thus, as desired, combining grades of kinds (k,) and (i, s) can be defined by mapping
both r and s into grades of kind k @ p, and then the operator of kind « & p is applied.

The fact that in this way we actually obtain a grade algebra, that is, all required axioms
are satisfied, is proved in the next subsection on the more general case of an arbitrary grade
signature and heterogeneous grade algebra.

Note the special role played by the grade kinds N and T, with their corresponding
grade algebras. The former turns out to be the minimal kind required in a grade signature
(Definition 18); this is important since the zero and one of the resulting grade algebra (hence
the zero and one used in the type system) will be those of this kind. The latter, as shown
above, is used as default common ancestor for pairs of kinds which do not have one.

» Example 17. Coming back to our example, a programmer could define the direct refinement
relation and the corresponding homomorphisms as follows:
PP C! P, and the homomorphism maps, e.g., a, b, and ¢ into private and d into public
AP C! A, and AP C! P, and the homomorphisms are the projections.
Thus, for instance, the grade (AP, (w, private)), meaning that we can use the resource an
arbitrary number of times in private mode, and (PP, d), meaning that we can use the resource
in d mode, gives private. Indeed, both grades are mapped into the grade algebra of privacy
levels 0 =< private < public; for the former, the information about the affinity is lost, whereas

for the second the privacy level d is mapped into public; finally, we get private = private - public.

The direct refinement relation is pictorially shown in Figure 6. Dotted arrows denote
(some of) the order relations added for N and T.

Note that specifying the grade signature and the heterogeneous grade algebra indirectly,
by means of the direct refinement relation and the corresponding homomorphisms, has a
fundamental advantage: the semantic check that, for each x, i, we can map grades of grade
k into grades of kind p in a unique way (that is, there is at most one homomorphism), which
would require checking the equivalence of function definitions, is replaced by the checks (1)

7 Note that in this way we obtain, in particular, all the identities.

3:19

ECOOP 2023

3:20

Multi-Graded Featherweight Java

and (2) in the definition of direct refinement, which are purely syntactic and can be easily
implemented in a type system (a simple stronger condition is to impose that each kind has a
unique parent in the direct refinement relation, as it is for single inheritance).

In Section 6, we will see how to express both grade algebras and homomorphisms in Java;
roughly, both will be represented by classes implementing a suitable generic interface.

A general construction. We provide a construction that, starting from a family of grade
algebras with a suitable structure, yields a unique grade algebra summarising the whole
family. As a consequence, the meta-theory developed in previous sections for a single grade
algebra applies also to the case when several grade algebras are used at the same time.

To develop this construction, we use simple and standard categorical tools, referring
to [20, 26] for more details. Given a category C, we denote by (y the collection of objects
in C and we say that C is small when (is a set. Recall that any partially ordered set
P = {Py,C) can be seen as a small category where objects are the elements of %y and, for
all 2,y € Py, there is an arrow x — y iff x C y; hence, for every pair of objects in Py, there
is at most one arrow between them, and the only isomorphisms are the identities.

» Definition 18. A grade signature S is a partially ordered set with finite suprema, that is,
it consists of the following data:
a partially ordered set (S, C);
a function ®: So x So — So monotone in both arguments and such that for all k, p,v € So,
KOpuCviffkCvand pC vy
a distinguished object I € So such that I C k, for all k € So.
Intuitively, objects in S represent the kinds of grades one wants to work with, while the
arrows, namely, the order relation, model a refinement between such kinds: x C p means
that the kind « is more specific than the kind u. The operation & combines two kinds to
produce the most specific kind generalising both. Finally, the kind I is the most specific one.
It is easy to check that the following properties hold for all &, u, v € So:

(kdu)er=r®(paov) KODK=kK
KOu=pudk kbl =k

namely, (S, ®, I) is a commutative idempotent monoid.

» Definition 19. A heterogeneous grade algebra over the grade signature S is just a functor
H:S — Graly. That is, it consists of a grade algebra H(k), written also H,, for every
kind k € So, and a grade algebra homomorphism H, ,: H, — H, for every arrow k C p,
respecting composition and identities® , that is, k C p C v implies Hy,, = H,,, o H, ,, and
Hy . =idg,.

Essentially, the homomorphisms H,, , realise the refinement x C p, transforming grades of
kind x into grades of kind u, preserving the grade algebra structure.

Observe that the arrows I C k and k C k@ p and p E k@ p in S give rise to the following
grade algebra homomorphisms:

- H H H
n, :}117,.i1}11—>}1,,/v lhm,M:Hﬁ,K®u:Hﬁ_>Hﬁ@M rhK,H:HNNVV@N:HM_)H”@H

8 The notation H.,, makes sense, since between x and y there is at most one arrow.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca

which provide us with a way to map grades of kind I into grades of any other kind, and
grades of kind x and p into grades of their composition x @ p. By functoriality of H and
using the commutative idempotent monoid structure of .S, we get the following equalities
hold in the category grﬂléq , ensuring consistency of such transformations:

Iy, ol = o (1)
thi, o hl, =l o oI, (2)
e, =rhf, 3)
Y, =idp, (4)
Ih, =idp, (5)
rhKH’I = inKH (6)

In the following, we will show how to turn a heterogeneous grade algebra into a single
grade algebra. The procedure we will describe is based on a general construction due to
Grothendieck [17] defined on indexed categories.

Let us assume a grade signature .S and a heterogeneous grade algebra H: S — Graly.

We consider the following set:
|GH)| ={(k,7) | K € S0, 7 € |Hyl}

That is, elements of G(H) will be kinded grades, namely, pairs of a kind k and a grade of
that kind. Note that this is indeed a set because S is small, that is, Sy is a set. Then, we
define a binary relation < on |G(H)| as follows:

(kyr) =g (p,s) iff KT pand Heu(r) 2y s

that is, the kind x must be more specific than the kind p and, transforming r by H,, ., we
obtain a grade of kind g which is smaller than s. These data define a partially ordered set as
the following proposition shows.

» Proposition 20. (|G(H)|,<u) is a partially ordered set.

The additive structure is given by a binary operation +p: |G(H)| x |G(H)| — |G(H)|
and an element Oy in |G(H)| defined as follows:

<K;7 ’I"> +H <:U/? S> = <"'i D u, lhan,(T) +K@M rhnH,p,(S» OH = <I7 OI>

That is, the addition of (k,r) and (u, s) is performed by first mapping = and s in the most
specific kind generalising both x and u, namely k & u, and then by summing them in the
grade algebra over that kind. The zero element is just the zero of the most specific kind.

» Proposition 21. (|G(H)|, <m,+m,0n) is an ordered commutative monoid.
» Proposition 22. 0y <y (k,7) for every (k,r) € |G(H)|.

Similarly, the multiplicative structure is given by a binary operation -g: |G(H)| X
|G(H)| — |G(H)| and an element 1 in |G(H)| defined as follows:

<’€ D, IhKH,M(T) ‘RO rhmH,u(s» <’L€7 T) 75 O and <H7 s> 7é On

1y={,1
Op otherwise # = (1)

<I£,T> ‘H <M75> = {

Notice that the definitions above follow almost the same pattern as additive operations, but

we force that multiplying by 0y we get again Op, which is a key property of grade algebras.

3:21

ECOOP 2023

3:22

Multi-Graded Featherweight Java

» Proposition 23. (|G(H)|, 2#, u,1H) is an ordered monoid.
Altogether, we finally get the following result.

» Theorem 24. G(H) = (|G(H)|, 2w, +H, 7,08, 1H) is a grade algebra.

6 Grades as Java expressions

In Section 4 we described how a Java-like language could be equipped with grades decorating
types, taken in an arbitrary grade algebra. Moreover, in Section 5, we have shown that such
grade algebra could have been obtained by composing, in a specific way determined by provid-
ing a minimal collection of grade homomorphisms, different grade algebras corresponding to
different ways to track usage of resources. In this section, we consider the issue of providing a
linguistic support to this aim. This could be done by using an ad-hoc configuration language,
however, we believe an interesting solution is that the grade annotations in types could be
written themselves in Java.

The key idea is that grade annotations are Java expressions of (classes implementing) a
predefined interface Grade, analogously to Java exceptions which are expressions of (subclasses
of) Exception. Moreover, grade homomorphisms are user-defined as well. Namely, a user
program can include:

pairs of grade classes and grade factory classes, each one modeling a grade algebra desired

for the specific application, with the factory class providing its constants

grade homomorphism classes, each one modeling a homomorphism from a grade algebra

(class) to another.

When typechecking code with grade annotations, the grades internally used by the type
system are those obtained by combining all the declared grade algebras (classes) by means
of the declared grade homomorphism classes, with the construction described in Section 5.
Operations on grades in the same grade algebra (class) are derived from user-defined methods,
as discussed more in detail below, whereas operations on heterogeneous grades are derived
as in the construction in Section 5.

Grade and grade factory classes. They are classes implementing the following generic
interfaces, respectively:

interface Grade<T extends Grade<T>> {
boolean 1leq(T x);
T sum(T x);
T mult (T x);

}

interface GradeFactory<T extends Grade<T>>{
T zero();
T one();

}

Grade homomorphism classes. They are classes implementing the following generic inter-
face:

interface GradeHom<T extends Grade<T>, R extends Grade<R>> {
R apply (T x);
}

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca

Examples of grade classes and grade homomorphism classes can be found in [4].
Typechecking could then be performed in two steps:

1. Code defining grades, which is assumed to be standard (that is, non-graded) Java code,
is typechecked by the standard compiler.

2. Graded code (containing grade annotations written in Java) is typechecked accordingly
to the graded type system in Figure 4, where the underlying grade algebra is obtained by
composing, by the construction described in Section 5, the user-defined grade algebras
through the user-defined grade homomorphisms. Each user-defined algebra has as carrier
(set of grades) the Java values which are instances of the corresponding class, and the
operations are computed by executing user-defined methods in such class. For instance,
to compute the sum v; + vy of two grades which are values of a grade class, we evaluate
v1 .sum(vy). Analogously to compute the result of a grade homomorphism.

For the whole process to work correctly, the following are responsabilities of the programmer:
Grade classes, grade factory classes, and grade homomorphism classes should satisfy
the axioms required for the structures they model, e.g., that the sum derived from sum
methods is commutative and associative. The same happens, for instance, in Haskell,
when one defines instances of Functor or Monad.

Code defining grades should be terminating, since, as described above, the second
typechecking step requires to execute code typechecked in the first step.

Finally, the relation among grade classes implicitly defined by declaring grade homo-
morphism classes should actually be a direct refinement relation, that is, should satisfy
the two requirements: (1) there exists at most one path between two grade classes, and
(2) each two grade classes with a common ancestor have a least common ancestor. These
are requirements easy to check, similarly to the check that inheritance is acyclic, or that
there are no diamonds in multiple inheritance.

An interesting point is that implementations could use in a parametric way auxiliary tools, not-

ably a termination checker to prevent divergence in methods implementing grade operations,

and/or a verifer to ensure that they provide the required properties.

7 Related work

The two contributions which have been more inspiring for the work in this paper are the
instrumented semantics proposed in [8] and the Granule language [23]. In [8], the authors
develop GRAD, a graded dependent type system that includes functions, tensor products,
additive sums, and a unit type. Moreover, they define an instrumented operational semantics
which tracks usage of resources, and prove that the graded type system is sound with respect
to such instrumented semantics. In this paper, we take the same approach to define a
resource-aware semantics, parametric on an arbitrary grade algebra. However, differently
from [8], where such semantics is defined on typed terms, with the only aim to show the
role of the type system, the definition of our semantics is given independently from the type
system, as is the standard approach in calculi. That is, the aim is also to provide a simple
purely semantic model which takes into account usage of resources.

Granule [23] is a functional language equipped with graded modal types, where different
kinds of grades can be used at the same time, including naturals for exact usage, security
levels, intervals, infinity, and products of coeffects. We owe to Granule the idea of allowing
different kinds of grades to coexist, and the overall objective to exploit graded modal types in
a programming language. Concerning heterogeneous grades, in this paper we push forward
the Granule approach, since we do not want this grade algebra to be fixed, but extendable

3:23

ECOOP 2023

3:24

Multi-Graded Featherweight Java

by the programmer with user-defined grades. To this aim we define the construction in
Section 5. Concerning the design of a graded programming language, here we investigate the
object-oriented rather than functional paradigm, taking some solutions which seem more
adequate in that context, e.g., to have once-graded types and no boxing/unboxing. The
design and implementation of a real Java-like language are not objectives of the current paper;
however, we outline in Section 6 a possible interesting solution, where grade annotations are
written in the language itself.

Coming more in general to resource-aware type systems, coeffects were first introduced
by [24] and further analyzed by [25]. In particular, [25] develops a generic coeffect system
which augments the simply-typed A-calculus with context annotations indexed by coeffect
shapes. The proposed framework is very abstract, and the authors focus only on two opposite
instances: structural (per-variable) and flat (whole context) coeffects, identified by specific
choices of context shapes.

Most of the subsequent literature on coeffects focuses on structural ones, for which there
is a clear algebraic description in terms of semirings. This was first noticed by [7], who
developed a framework for structural coeffects for a functional language. This approach is
inspired by a generalization of the exponential modality of linear logic, see, e.g., [6]. That
is, the distinction between linear and unrestricted variables of linear systems is generalized
to have variables decorated by coeffects, or grades, that determine how much they can
be used. In this setting, many advances have been made to combine coeffects with other
programming features, such as computational effects [14, 23, 11], dependent types [2, 8, 22],
and polymorphism [1]. Other graded type systems are explored in [2, 15, 1], also combining
effects and coeffects [14, 23]. In all these papers, the process of tracking usage through
grades is a powerful method of instrumenting type systems with analyses of irrelevance and
linearity that have practical benefits like erasure of irrelevant terms (resulting in speed-up)
and compiler optimizations (such as in-place update).

As already mentioned, [22] and [27] observed that contexts in a structural coeffect system
form a module over the semiring of grades, event though they do not use this structure in its
full generality, restricting themselves to free modules, that is, to structural coeffect systems.
Recently, [5] shows a significant non-structural instance, namely, a coeffect system to track
sharing in the imperative paradigm.

8 Conclusion

The contributions of the paper can be summarized as follows:
Resource-aware extension of FJ reduction, parametric on an arbitrary grade algebra.
Resource-aware extension of the type system, proved to ensure soundness-may of the
resource-aware semantics.
Formal construction which, given grades of different kinds and grade transformations
corresponding to a refinement relation among kinds (formally, a functor over a grade
signature), provides a grade algebra of heterogeneous grades.
Notion of direct refinement allowing a minimal and easy to check way to specify the
above functor.
Outline of a Java extension where grades are user-defined, and grade annotations are
written in the language itself.
As already noted, the key novel ideas in the contributions above are mostly independent from
the language. So, a first natural direction for future work is to explore their incarnation in
another paradigm, e.g., the functional one. That would include the definition of a parametric

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca

resource-aware reduction independent from types, the design of a type system with once-
graded types, and possibly the design of user-defined grades in a functional language, e.g., in
Haskell by relying on the typeclass feature. Though the overall approach should still apply,
we expect the investigation to be significant due to the specific features of the paradigm.

The resource-aware operational semantics defined in this paper requires annotations in
subterms, with the only aim to fix their reduction grade in the reduction of the enclosing
term. As mentioned in Section 3, adopting a big-step style would clearly remove the need
of such technical artifice; only annotations in constructor subterms should be kept, since
they express a true constraint on the semantics. Thus, a very interesting alternative to be
studied is a big-step version of resource-aware semantics, allowing a more abstract and clean
presentation. With this choice, we should employ, to prove soundness-may, the techniques
recently introduced in [10, 9].

Coming back to Java-like languages, the FJ language considered in the paper does not
include imperative features. Adding mutable memory leads to many significant research
directions. First, besides the model presented in this paper, and in general in literature, where
“using a resource” means “replacing a variable with its value”, another view is possible where
the resource is the memory and “using” means “interacting with the memory”. Moreover, we
would like to investigate more in detail how to express by grade algebras forms of usages
which are typical of the imperative paradigm, such as the readonly modifier, and, more in
general, capabilities [18, 16].

—— References

1 Andreas Abel and Jean-Philippe Bernardy. A unified view of modalities in type systems.
Proceedings of ACM on Programming Languages, 4(ICFP):90:1-90:28, 2020. doi:10.1145/
3408972.

2 Robert Atkey. Syntax and semantics of quantitative type theory. In Anuj Dawar and Erich
Grédel, editors, IEEE Symposium on Logic in Computer Science, LICS 2018, pages 56—65.
ACM Press, 2018. doi:10.1145/3209108.3209189.

3 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca. A Java-like calculus
with user-defined coeffects. In Ugo Dal Lago and Daniele Gorla, editors, ICTCS’22 — Italian
Conference on Theoretical Computer Science, volume 3284 of CEUR Workshop Proceedings,
pages 66—78. CEUR-WS.org, 2022.

4 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca. Multi-graded
Featherweight Java. CoRR, 2023. URL: http://arxiv.org/abs/2302.07782.

5 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena Zucca, and Marco Servetto.
Coeffects for sharing and mutation. Proceedings of ACM on Programming Languages,
6(OOPSLA):870-898, 2022. doi:10.1145/3563319.

6 Flavien Breuvart and Michele Pagani. Modelling coeffects in the relational semantics of linear
logic. In Stephan Kreutzer, editor, 24th FACSL Annual Conference on Computer Science
Logic, CSL 2015, volume 41 of LIPIcs, pages 567—581. Schloss Dagstuhl — Leibniz-Zentrum
fuer Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.567.

7 Alois Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. A core quantitative
coeffect calculus. In Zhong Shao, editor, Furopean Symposium on Programming, ESOP
2013, volume 8410 of Lecture Notes in Computer Science, pages 351-370. Springer, 2014.
d0i:10.1007/978-3-642-54833-8_19.

8 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie Weirich. A graded
dependent type system with a usage-aware semantics. Proceedings of ACM on Programming
Languages, 5(POPL):1-32, 2021. doi:10.1145/3434331.

9 Francesco Dagnino. A meta-theory for big-step semantics. ACM Transactions on Computational
Logic, 23(3):20:1-20:50, 2022. doi:10.1145/3522729.

3:25

ECOOP 2023

https://doi.org/10.1145/3408972
https://doi.org/10.1145/3408972
https://doi.org/10.1145/3209108.3209189
http://arxiv.org/abs/2302.07782
https://doi.org/10.1145/3563319
https://doi.org/10.4230/LIPIcs.CSL.2015.567
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1145/3434331
https://doi.org/10.1145/3522729

3:26

Multi-Graded Featherweight Java

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Francesco Dagnino, Viviana Bono, Elena Zucca, and Mariangiola Dezani-Ciancaglini. Sound-
ness conditions for big-step semantics. In Peter Miiller, editor, Furopean Symposium on
Programming, ESOP 2020, volume 12075 of Lecture Notes in Computer Science, pages 169—
196. Springer, 2020. doi:10.1007/978-3-030-44914-8_7.

Ugo Dal Lago and Francesco Gavazzo. A relational theory of effects and coeffects. Proceedings
of ACM on Programming Languages, 6(POPL):1-28, 2022. doi:10.1145/3498692.

Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34(1):83-133, 1984. doi:10.1016/0304-3975(84)90113-0.

Werner Dietl, Sophia Drossopoulou, and Peter Miiller. Generic universe types. In Erik Ernst,
editor, European Conference on Object-Oriented Programming, ECOOP 2007, volume 4609 of
Lecture Notes in Computer Science, pages 28—-53. Springer, 2007.

Marco Gaboardi, Shin-ya Katsumata, Dominic A. Orchard, Flavien Breuvart, and Tarmo
Uustalu. Combining effects and coeffects via grading. In Jacques Garrigue, Gabriele Keller,
and Eijiro Sumii, editors, ACM International Conference on Functional Programming, ICFP
2016, pages 476-489. ACM Press, 2016. doi:10.1145/2951913.2951939.

Dan R. Ghica and Alex I. Smith. Bounded linear types in a resource semiring. In Zhong Shao,
editor, Furopean Symposium on Programming, ESOP 2013, volume 8410 of Lecture Notes in
Computer Science, pages 331-350. Springer, 2014. doi:10.1007/978-3-642-54833-8_18.
Colin S. Gordon. Designing with static capabilities and effects: Use, mention, and invariants
(pearl). In Robert Hirschfeld and Tobias Pape, editors, European Conference on Object-
Oriented Programming, ECOOP 2020, volume 166 of LIPIcs, pages 10:1-10:25. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2020. doi:10.4230/LIPIcs.EC00P.2020.10.
Alexander Grothendieck. Catégories fibrées et descente. In Revétements étales et groupe
fondamental, pages 145-194. Springer, 1971.

Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrowing. In Theo
D’Hondt, editor, European Conference on Object-Oriented Programming, ECOOP 2010, volume
6183 of Lecture Notes in Computer Science, pages 354-378. Springer, 2010.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. In ACM Symp. on Object-Oriented Programming: Systems, Languages
and Applications 1999, pages 132-146. ACM Press, 1999. doi:10.1145/320384.320395.
Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science &
Business Media, 2013.

Daniel Marshall, Michael Vollmer, and Dominic Orchard. Linearity and uniqueness: An
entente cordiale. In Ilya Sergey, editor, European Symposium on Programming, ESOP 2022,
volume 13240 of Lecture Notes in Computer Science, pages 346—375. Springer, 2022. doi:
10.1007/978-3-030-99336-8_13.

Conor McBride. I got plenty o’ nuttin’. In Sam Lindley, Conor McBride, Philip W. Trinder,
and Donald Sannella, editors, A List of Successes That Can Change the World — Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes
in Computer Science, pages 207-233. Springer, 2016. doi:10.1007/978-3-319-30936-1_12.
Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades IT1. Quantitative program reason-
ing with graded modal types. Proceedings of ACM on Programming Languages, 3(ICFP):110:1—
110:30, 2019. doi:10.1145/3341714.

Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: Unified static analysis of
context-dependence. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David
Peleg, editors, Automata, Languages and Programming, ICALP 2013, volume 7966 of Lecture
Notes in Computer Science, pages 385—-397. Springer, 2013. doi:10.1007/978-3-642-39212-2_
35.

Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: a calculus of context-
dependent computation. In Johan Jeuring and Manuel M. T. Chakravarty, editors, ACM
International Conference on Functional Programming, ICFP 2014, pages 123-135. ACM Press,
2014. doi:10.1145/2628136.2628160.

https://doi.org/10.1007/978-3-030-44914-8_7
https://doi.org/10.1145/3498692
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1145/2951913.2951939
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.4230/LIPIcs.ECOOP.2020.10
https://doi.org/10.1145/320384.320395
https://doi.org/10.1007/978-3-030-99336-8_13
https://doi.org/10.1007/978-3-030-99336-8_13
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/3341714
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1145/2628136.2628160

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:27

26 Emily Riehl. Category theory in context. Courier Dover Publications, 2017.

27 James Wood and Robert Atkey. A framework for substructural type systems. In Ilya Sergey,
editor, Furopean Symposium on Programming, ESOP 2022, volume 13240 of Lecture Notes in
Computer Science, pages 376-402. Springer, 2022. doi:10.1007/978-3-030-99336-8_14.

ECOOP 2023

https://doi.org/10.1007/978-3-030-99336-8_14

Hooglex: Constants and A-abstractions in

Petri-net-based Synthesis using Symbolic Execution
Henrique Botelho Guerra &
INESC-ID and IST, University of Lisbon, Portugal

Joao F. Ferreira 94
INESC-ID and IST, University of Lisbon, Portugal

Joao Costa Seco D&
NOVA LINCS, NOVA School of Science and Technology, Caparica, Portugal

—— Abstract

Type-directed component-based program synthesis is the task of automatically building a function
with applications of available components and whose type matches a given goal type. Existing
approaches to component-based synthesis, based on classical proof search, cannot deal with large
sets of components. Recently, HOOGLE+, a component-based synthesizer for Haskell, overcomes
this issue by reducing the search problem to a Petri-net reachability problem. However, HOOGLE+
cannot synthesize constants nor A-abstractions, which limits the problems that it can solve.

We present HOOGLEx, an extension to HOOGLE+ that brings constants and A-abstractions to
the search space, in two independent steps. First, we introduce the notion of wildcard component, a
component that matches all types. This enables the algorithm to produce incomplete functions, i.e.,
functions containing occurrences of the wildcard component. Second, we complete those functions,
by replacing each occurrence with constants or custom-defined A-abstractions. We have chosen
to find constants by means of an inference algorithm: we present a new unification algorithm
based on symbolic execution that uses the input-output examples supplied by the user to compute
substitutions for the occurrences of the wildcard.

When compared to HOOGLE+4, HOOGLE* can solve more kinds of problems, especially problems
that require the generation of constants and A-abstractions, without performance degradation.

2012 ACM Subject Classification Software and its engineering — Automatic programming; Theory
of computation — Automated reasoning

Keywords and phrases Type-directed, component-based, program synthesis, symbolic execution,
unification, Haskell

Digital Object Identifier 10.4230/LIPIcs. ECOOP.2023.4

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.20

Funding FCT UIDB/04516,/2020, FCT UIDB/50021/2020, and ANI Lisboa-01-0247-Feder-045917.

Acknowledgements We want to thank to the anonymous reviewers, for the constructive feedback.

1 Introduction

Program synthesis is the task of automatically building a program that fulfills a specification
supplied by the user [12]. Specifications can vary from examples [31], sketches [36], to
ontologies [4] and types [13]. In type-guided component-based program synthesis, users
provide the type of the function to synthesize (the query type), and optionally, input-
output examples. Each solution is composed of applications of functions from a given
component set. A recent example is HOOGLE+ [14, 20], a state-of-the-art synthesizer for
the Haskell programming language that successfully solves several real-world problems with

large component sets. For example, given the query type (a -> b) -> [a] -> b, it can
))
© Henrique Botelho Guerra, Jodo F. Ferreira, and Jodo Costa Seco;
37 licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 4; pp. 4:1-4:28

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:henrique.b.guerra@tecnico.ulisboa.pt
https://orcid.org/0009-0002-5906-3033
mailto:joao@joaoff.com
https://joaoff.com
https://orcid.org/0000-0002-6612-9013
mailto:joao.seco@fct.unl.pt
http://ctp.di.fct.unl.pt/~jcs
https://orcid.org/0000-0002-2840-3966
https://doi.org/10.4230/LIPIcs.ECOOP.2023.4
https://doi.org/10.4230/DARTS.9.2.20
https://doi.org/10.4230/DARTS.9.2.20
https://doi.org/10.4230/DARTS.9.2.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Hooglex: Constants and A-abstractions in Petri-net-based Synthesis

synthesize the function \x1 x2 -> x1 (GHC.List.head x2). Multiple solutions are filtered
using input-output examples. Unlike most approaches to component-based synthesis, which
are based on classical proof search, HOOGLE+ can deal with large sets of components, because
it reduces synthesis to a Petri-net reachability problem, following the approach of SYPET [7],
a component-based synthesizer for Java.

Challenges for constants and \-abstractions. Despite the benefits of Petri-net-based
approaches, they exclude constants and custom A-abstractions from the search space, because
Petri nets only synthesize solutions whose terms belong to the component set, and it is
impossible to insert all constants and custom A-abstractions in a finite set. We found
several problems in StackOverflow that HOOGLE+ cannot solve because the solutions require
constants or A-abstractions to be synthesized. So, bringing both classes of terms to the
search space will allow HOOGLE+ to solve more problems, making life easier for Haskell
programmers.

Motivating example. As an example, suppose that we want to append the constant 0 to a
list. We provide to HOOGLE+ the query type [Int] -> [Int] together with the example that
maps the input [17! to the output [1, 0J. A solution is as simple as \x1 -> x1 ++ [0],
however, HOOGLE~+ is not able to synthesize it, because it requires the constant [0] to
be synthesized. The same happens with custom M-abstractions. Suppose that we want
to map each element of a list of integers to its square. For example, given [1, 2, 37,
the output should be [1, 4, 97. The query type is [Int] -> [Int], and a solution
is \1ist -> map (\x -> x * x) list. However, this solution cannot be synthesized by
HOOGLE+ as A-abstractions do not belong to the search space.

Our approach. In this work we propose and evaluate a solution to bring constants and
A-abstractions to the search space of HOOGLE4, following two independent steps. First,
we add to the component set the wildcard component, a component that matches all types.
The Petri net is then allowed to synthesize incomplete functions: functions that use that
component, such as \1ist -> map wildcard list. In this example, the wildcard compon-
ent appears where a function is expected; however, in general, it could appear in place of
an integer, string, or any other type. The second step is to replace the occurrences of the
wildcard component with constants or A-abstractions. When the wildcard occurs in place
of a constant, we use a unification algorithm based on symbolic execution, that uses the
input-output examples provided by the user to infer the constant. When the wildcard occurs
in place of a function, we synthesize a A-abstraction, using a faster, bespoke synthesizer.

Contributions. In summary, our contributions are:

1. We develop a new unification algorithm for a subset of Haskell, that we use to replace the
occurrences of the wildcard component with constants. The algorithm is generic enough
for other uses, as explained in Section 8.

2. We present HOOGLE*, an extension of HOOGLE4, that synthesizes functions with
constants and A-abstractions. As shown in Section 5, it solves several problems that
cannot be solved by the original HOOGLE+.

! Haskell list notation is represented in italic font, to avoid confusion with citations.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco

Ty
- 1 i I\ P,
o\ 1 1 y T D\
e /»—b I T {)

Figure 2 The Petri net of Figure 1 after T1 has fired. In Feng et al. [7].

Document structure. Section 2 presents the background: Petri nets and HOOGLE+;

Section 3 presents the unification algorithm; Section 4 describes the extension made to
HOOGLE+; Section 5 evaluates HOOGLE*, by comparing it to HOOGLE+; Section 6 discusses
the related work; Section 7 discusses the limitations of this work; and Section 8 summarizes
the lessons learned and the future work.

2 Background

In this section, we describe Petri nets, HOOGLE+, and SYPET.

2.1 Petri nets

Petri nets are used by HOOGLE+ to represent the search space. In this section, we define
relevant concepts of Petri nets and present examples.

» Definition 1. A Petri net is a tuple (P,T,E,W), where P is the set of places, T is the
set of transitions, E C (P x T)U (T x P) is the set of edges between places and transitions
and between transitions and places, and W : E — Ny is a function that maps each edge to its
weight. Each place in a Petri net can have zero or more tokens. A marking (also known
as configuration) M of a Petri net N = (P,T,E,W) is a function P — Ny that maps each
place to its number of tokens.

We represent places by drawing circles and transitions by drawing narrow rectangles.

Edges are represented by arrows, and each natural number we write near each edge is its
weight. For example, consider the Petri net in Figure 1. The places are Py, P, and Ps, and
the transitions are T, T» and T3. The edge (P, T») has weight 2, and all the other edges
have weight 1. The place P; has 2 tokens, whereas the remaining places have no tokens.

We explain next how transitions can change the marking of a Petri net, defining the
concepts of enabled transition and firing a transition.

» Definition 2. We say that the transition t is enabled if and only if for each place p with an
edge to t, the number of tokens is at least the weight of the edge (p,t). We say that firing an
enabled transition is changing the marking of the Petri net, consuming a certain number
of tokens from each place that has an edge to the transition, and producing a certain number
of tokens in each place with an edge from the transition, according to the weight of each edge.

4:3

ECOOP 2023

4:4

Hooglex: Constants and A-abstractions in Petri-net-based Synthesis

B
(\

—

.
/éi 1 I 1 rg\ 1 Ig 1 KP\ 1 I 1 /E\

Figure 3 A Petri net for the component set f:A->C, g:B->C->D, h:D->E. The initial marking
for the query type A->B->E.

In the example of Figure 1, T} is the only enabled transition. Firing 77 produces the
marking of Figure 2: one token was consumed in P; (W (P;,T1) = 1), and one token was
produced Py (W(T1, Py) =1).

The last concept about Petri nets that we introduce is a decision problem called reachability.

» Definition 3. Given a Petri net N = (P,T,E, W), with marking M, and new marking
M', the reachability problem for Petri nets consists of assessing whether it is possible
to reach M' starting at M and by firing a certain sequence of transitions. We say that M
is the initial marking, M’ is the target marking, and the trace is the sequence of fired
transitions.

For example, consider the Petri net and marking M shown in Figure 1. A marking
{P; — 0, P, — 0, P; — 1} is reachable from M. A trace is (T, Ty, T5).

2.2 SyPet, Hoogle+ and Synthesis via Petri-net reachability

SYPET [7] is a scalable component-based synthesizer for Java and deals with large component
sets by reducing the problem to a Petri-net reachability problem. HOOGLE+ [14] adapts this
idea to the Haskell programming language, extending the approach to deal with parametric
polymorphism, high-order functions, and typeclasses. In its latest version, it support input-
output examples [20]. In this section, we explain how Petri nets can be used for synthesis, as
well as an overview of SYPET, and the changes introduced by HOOGLE+.

Petri net construction. Generally speaking, SYPET starts with building a Petri net that

models the component set, and then solves the reachability problem, using the resulting trace

to synthesize functions. Given a component set C' and a query type ¢, SYPET constructs the

Petri net N = (P, T, E', W), and the initial marking as follows.

1. The places in P are the parameter types and return types of the components in C.

2. The transitions in T are the components of C, i.e., T'=C.

3. For each type ¢/, and component ¢, we have (¢,¢) € E with W((¢',¢)) = m if and only if
t' is the type of m > 0 parameters of c.

4. For each type t', and component ¢, we have edge (c,t’) if and only if ¢’ is the return type
of c.

5. For each place p that is the type of a parameter of the query type, we add a clone
transition k where W(p, k) =1 and W(k,p) = 0.

6. For each parameter type of the query type we put as many tokens as the number of
arguments of the given type.

Figure 3 shows an example of a Petri net that models a synthesis problem.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco

Synthesizing a function from a trace. Once the Petri net is built, we solve a reachability
problem, where the target marking has a single token in the place that represents the return
type of the query type. Then, the resulting trace is used to synthesize the desired function.
For instance, in Figure 3, the target marking would have a token in place E, and a trace
is { £,g,h), from which the function \argl arg2 -> h (g (f argl) arg2) is synthesized.
However, synthesizing a function from a trace is not trivial, because a trace cannot distinguish
between different tokens in the same place, and no notion of order of incoming edges is
maintained. So, multiple functions may arise from a single trace. We do not explain how
SYPET performs the reachability analysis and synthesis from traces, as it is not necessary to
follow the rest of this paper; for more details, see Feng et al. [7].

Hoogle+. So far we have discussed the algorithm of SYPET, which only supports mono-
morphic types. However, most functions from the Haskell libraries have polymorphic types.
Thus, HOOGLE+ [14] has to deal with polymorphic types, which introduce the following chal-
lenges, if we represent all the monomorphic types in the Petri net: there is no limit to the set
of types that may arise (for example [Char], [[Char]], [[[Char]l]], etc.), and some compon-
ents, such as id :: a -> a, create a transition for each place. Representing monomorphic
types, even if we bound the set of types, leads to an intractable Petri net, so HOOGLE+
uses abstract types, representing sets of concrete, monomorphic types. For example, the
abstract type 7 is the set of all existing types, whereas Maybe 7 = {Maybe ¢ : t € Type}. The
algorithm starts with the most abstract Petri net, containing only the place 7, which leads
to ill-typed programs. Then, the type errors are used to refine the Petri net, introducing
more concrete types. For more details, see Guo et al. [14].

3 Unification via Symbolic Execution

Petri nets allow the generation of functions with occurrences of the wildcard component.
Our goal is to use HOOGLE4 to generate functions that may contain wildcards and then
replace each wildcard occurrence with a constant or a custom A-abstraction, matching
the set of given input-output examples. For this purpose, we use a unification algorithm
that, given a source expression with symbolic variables, and a target grounded expression,
computes a substitution for the symbolic variables so that the first expression evaluates to
the second expression. When a solution is found by HOOGLE4-, we replace the occurrences
of the wildcard with symbolic variables in the synthesized function, the parameters with
the input of the input-output example, and unify the resulting expression with the output
of the input-output example. Consider the example from Section 1, where constant [0]
is appended to the input list. The query type is [Int] -> [Int], and an example maps
the input [17] to the output [1, 0J. The Petri net will generate \x1 -> x1 ++ wildcard.
We then replace the occurrences of wildcard with fresh symbols and unify [1] ++ sl with
[1, 0], where the algorithm substitutes the symbolic variable s1 with the constant [0], by
inspecting the definition of (++).

Requirements. The unification algorithm has the following requirements:

The input of the unification algorithm is the function synthesized by the Petri net, as well
as the input-output examples. As the algorithm inspects the definitions of the synthesized
function, and of the applied components, it has to support enough language constructs
to encode the component set of HOOGLE4, such as the case construct, algebraic data
types, integers, or, at least naturals, ad-hoc polymorphism, function application, and
A-abstractions. Additionally, it has to support symbols both in place of constants and in
place of functions.

4:5

ECOOP 2023

4:6

Hooglex: Constants and A-abstractions in Petri-net-based Synthesis

e = =z (variable)
| s (symbolic variable)
| AZ.e (A-abstraction)
| u{e} (polymorphic A-abstraction)
| Ke (data constructor)
| case e of {a} (case)
| ee (application)
a = KZzZ—e (case alternative)

Figure 4 Grammar of the supported language, Ay .

The unification algorithm does not need to support the occurrence of symbols, nor the
application of functions or case constructs in the target expression, because this expression
is always the output of an input-output example, simplifying the algorithm.

3.1 Syntax

Figure 4 presents the grammar of the language supported by the unification algorithm, which
we call \yy. Now, we discuss each construct, and present Example 4 and Example 5.

Variables play the same role as in A-calculus, and are represented by z, x;.

Symbolic variables denote unknown expressions and are represented by s, s;. Symbolic
variables can occur in place of functions or constants.

Abstractions have a sequence of variables (the parameters) and an expression that defines
the abstraction. For example, the identity function can be encoded as A x . x.

Polymorphic abstractions allow us to encode ad-hoc polymorphism, present in Haskell
through typeclasses: each type provides an implementation for a given operation, which
are chosen depending on the types of the arguments [33]. In Ay, a polymorphic abstraction
consists of a set of A-abstractions, each one being a monomorphic variant.

Data constructors have a name and a sequence of arguments. As we do not have literals,
this is the only way to represent data (natural numbers are represented using Peano
numbers?, such as S (S Z), lists are represented using constructors Cons and Nil).

Case expressions have an expression (the scrutinee) and a sequence of alternatives. Each
alternative has the name of a data constructor, a sequence of variables (one vari-
able per constructor argument), and an expression. A case expression is of the form:
case x of {Cons 1 xo — Just x1; Nil — Nothing}. There are two differences with rela-
tion to case expressions in Haskell: we do not support guards and our alternatives only
support variables after the data constructor (Haskell allows patterns such as Just True).

Applications have an expression and a sequence of expressions (the arguments). For example,
e ey ey denotes the application of e to the arguments e; and e;. Currying is not supported
natively, and requires a specific encoding, as explained in Section 7.

» Example 4. Function map, applying a function f to a list [, can be encoded in Ay as:

map =\ f1.casel of {Nil — Nil; Cons ht— Cons (f h) (map f t)}

2 To be concise, we may write Arabic numbers as an abbreviation of the Peano representation.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco

» Example 5. We define the polymorphic abstraction eq, similar to the function
Data.Eq. (==) from the Haskell standard library, which has two arguments, and returns
True if and only if the arguments are equal. We define two versions: one for naturals and
another for booleans: eq = u {eqN, eqB}.

eqN = A x1 x5 . case x1 of {Z — case xy of {Z — True; S x3 — False};
S x3 — case xg of {Z — False; S x4 — eqx3 x4}}
eqB = X x1 x5 . case x1 of {False — case x2 of {False — True; True — False};

True — case x of {False — False; True — True}}

3.2 Inference rules

Now, we explain how the algorithm works by providing inference rules. First, we define the
concept of map of substitutions, in Definition 6, and then, in Definition 7, we introduce a
judgement that establishes the result of unifying two expressions. The inference rules can be
used to derive judgements, and we provide different rules for different combinations of source
and target expressions.

» Definition 6. A map of substitutions ¥ is a mapping from symbolic variables to
expressions (or applications of symbolic variables, when they occur in place of functions, as
explained in Section 3.2.5). 3(s) denotes the value of s in map X, while X[s — €] denotes
the map ¥ updated with the substitution of s with e. We write [] to denote the empty map,
and dom(X) to denote the set of symbolic variables that are substituted in X.

» Definition 7. The judgement ¥ + ey = e1ye > X/, defined by the rules in Figure 5,
denotes the relation where ¥ is the map of substitutions that results from unifying e and
eigt, given the initial map .

The rules shown in Figure 5 guarantee that for all resulting substitutions ¥/, we have
eval(Y, egre) = eval(X', e4q), with ¥ C /. We validated this experimentally (a formal proof
is left for future work). The evaluation function is defined in Algorithm 1. We need to use
two maps X and X’ because the first map represents the substitutions computed so far, and
the second map represents the first one, eventually updated with new substitutions so that a
substitution computed before is not discarded. So, we have ¥ C ¥/. We will return to this
topic when we address the rule for unifying data constructors, in Section 3.2.2. In the rest of
this section, we present the syntax-directed rule system, which is summarized in Figure 5.

3.2.1 Unifying symbolic variables with expressions

We start with the simplest case: ¥ F s=¢ > X/, in which the source expression is a
symbolic variable s, and the target expression is any expression e. In this case, adding the
substitution of s for e to the input map solves the problem, if s is not already assigned in the
substitutions map computed so far, which is ¥ (rule SNAL). When the symbolic variable s
is already substituted in X, we try to unify e with X(s) and add the new substitutions to the
initial map (rule SAL).

» Example 8. We derive [s; — s2] F s1 = False > [s1 — s2, so — False].
s9 & dom([s; — s3])
s1 € [s1> s3] [s1+> s2] b [s1 > s2](s1) = False > [s1 — $a, So — False]
[s1 > s2] F s1 = False > [s1 +— S2, S2 +— Fualse]

SNAL
SAL

s1 cannot be assigned to False because it is already assigned to s3. So, we unified X(s1)
with False.

4:7

ECOOP 2023

4:8 Hooglex: Constants and A-abstractions in Petri-net-based Synthesis

Algorithm 1 Function eval.

eval(Z, AT . b)) =AT . b eval(Z, pu {opts}) = u {opts}

s if s ¢ dom(X)

eval(2s) = {eval(E,e) if ¥(s) =e

eval(X, K) = K
eval(X, K ey ... ep) = K eval(X, e1) ... eval(X, ex)

’ / if eval(Z,f)=Az1 ...z . b
eval(Z, b{el/xl 3ty ek/xk}) where e;=eval(Z,e;), for i€{1, ..., k}

if eval(S,f)=p {opls},

/ / Axy ...z . b€ opts, and
eval(Z, b{€1/$1 [€k/.13k}) eval(Z,b{e} /z1 ,..., €}, /T })Ferror

where e;=eval(Z,e;), for i€{1, ..., k}

eval(X, f ey ...ex) =
if eval(3, f)=s
eval(X,X(s €] ... €})) s e} ... e}, €dom(Z)
where e}=eval(Z,e;), for i€{1, ..., k}

if eval(%, f)=s
sel...e sé) ... el gdom(X)
where e}=eval(Z,e;), for i€{1, ..., k}
— if eval(X,scr)=K e ...
eval(X, case scr of {alts}) = eval(X, bler /a1, ..., ex/zy}) L CVHEser)=Ker . e

and K z1 ... x;—b € alts

eval(X,e) = error otherwise

We have said that the target expression should not contain symbols. However, internally,
we need support for symbols in the target expression, due to the rule for case constructors,
which is presented in Section 3.2.3. So, there are two more rules: SNAR and SAR, similar
to the SNAL and SAL, with the difference that the symbolic variable is now the target
expression.

3.2.2 Unifying data constructors

The rule DC is applied when both expressions are data constructors, with the same data
constructor and the same number of arguments, and unifies each argument of the source
data constructor with the corresponding argument in the target data constructor.

» Example 9. We derive [| b Pair sy so = Pair True Nil > [s1 — True, s — Nil].

s1 ¢ dom([]) so & dom([s1 — True])
[] F s1= True > [sy+— True] [s1+— True] b so = Nil > [s1 — True, s — Nil]
[] & Pair sy so = Pair True Nil > [s1 — True, s — Nil]

where the two top rules are SINAL, and the bottom rule is DC. Both expressions are data
constructors with two arguments, and the constructor is the same, Pair. So, we unify s;
with True, and the result is passed to the unification of sy with Nil. An important aspect is

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco

e, =eval(X,e;), i= 1,2, .., k

s € dom(X) SN AL se€) ...e, & dom(X) SN A
YFs=epr Xs— e Yt ser...ep=dst > L[se] ... e} — dst]

e =eval(,e;), i= 1,2, .., k

Y(se)..ep)=¢

s € dom(X) Y Edst=e > Y
Yhke=sp> X[se SNAR Yk ose..ep=dst > X As54
sedom(X) X F X(s)=en> X SAL sedom(X) X F e=X(s) > ¥ SAR

Yk s=en» Y YkFe=sp> Y

EO = e = f1 > 21
Axy...x.bE opts
ko1 = er = fk > X ¥ F ()\ Xy ... T - b) €1 ... e = e Y

AP
So b Key..e, =K f1 ... fr > Xp DC Y F (u{opts}) e ...ep =€ > ¥’

Y F b{s1/z1, ... sk/ar} =€ > X

81, ... S fresh
Yo Feir=s1 > 2 Kz—>be€ea
Y F ser=K350> Y, 5fresh
Y1 Foep=sp > g Y F b5/t =e > X
Sk Axy .oz b)eg e =€ > g AL Y + case scrof {a} =e > ¥/ ¢

Figure 5 Syntax-directed rule system that defines the judgement ¥ F esrc = erg¢ > .

that the map that results from unifying e; with f; is passed as input to unify e; with fs,
and so on, to preserve all substitutions and to avoid contradictions, which is illustrated in
Example 10.

» Example 10. We want to unify Pair s s with Pair True False. Both expressions have the
same data constructor and the same number of arguments, so let us apply the DC rule. First,
we have to derive [| F s = True > [s — True], by using the rule SNAL. Second, we have to
derive [s — True] F s = False > ¥, for a certain 3’. However, this is impossible because
we are trying to unify s with False, and the unification of the first argument substituted s
with True.

3.2.3 Unifying case expressions with expressions

When the source expression is a case construct, the rule C' chooses a case alternative such
that the scrutinee (scr) unifies with the selected data constructor. For example, if the case
expression is case expr of {Nothing — False, Just x — x}, and supposing that we have
chosen the first alternative, we have to ensure that exrpr unifies with Nothing. When the

4:9

ECOOP 2023

4:10

Hooglex: Constants and A-abstractions in Petri-net-based Synthesis

data constructor has arguments (for instance, Just has one argument), we generate fresh
symbols (which introduces the need to support symbolic variables in the target expression).
This would be the case if we selected the second alternative: we would unify expr with
Just s, where s is a fresh symbol. Finally, we unify the body of the alternative, b, with
the target expression, substituting the variables of the alternative with the fresh symbols
(b{5/Z}). In rule C of Figure 5, s denotes the sequence of fresh symbols, Z denotes the
sequence of arguments of the data constructor, and b{s/Z} denotes the expression b in which
each occurrence of x; € T is replaced with the corresponding symbol s; € 5.

» Example 11. We derive
[] F case s of {Nothing — False, Just x — x} = True > [s +— Just s1, s1 — True]

where s; is a fresh symbol, and A and B are derivation subtrees. The derivation applies C:

A B (Justx — x) € {Nothing — False, Just x — x}
[] F case s of {Nothing — False, Just x — x} = True > [s +— Just s1, s1 — True]

where A abbreviates

s ¢ dom([])

[] F s=Justsy > [s+— Just s1], s1 fresh

SNAL

and B abbreviates

s1 ¢ dom([s — Just $1])
[s = Just s1] F x{s1/x} = True > [s — Just s1, s1 — True]

SNAL

We choose the alternative Just @ — x, unify s with Just instantiated with a fresh symbolic
variable s; and then unify the body with the target expression. Note that the symbolic
variable s is substituted with Just s; and sy is substituted with True, so we have to evaluate s.
We have eval([s — Just s1, s1 — Truel, s) = Just True, and substituting s with Just True
solves the unification problem.

3.2.4 Unifying A-abstraction applications with expressions

When the source expression is an application of a Ad-abstraction, and the number of arguments
is the same as the number of parameters, we apply AL, replacing the arguments of the
application with fresh symbols in b and unifying this result, b{s1/xz1, ... sx/xx}, with the
target expression. The idea is to propagate the target expression to the arguments of the
application: the unification will compute substitutions for the fresh symbols, and then we
unify each argument with the corresponding fresh symbol.

» Example 12. We derive [| F (Azy.2)s F=T > [s1 = T, s— s1, $2 — F], where s;
and so are fresh symbols, and A, B and C are derivation subtrees.

A B C AL
[lF QAzy.2)s F=T > [s1 =T, s+ s1, sg+— F]
where A, B, and C abbreviate respectively
51 ¢ dom
1 # dom([) .

[1 F z{s1/z, s2/y} =T > [s1 — T), s1, $2 fresh

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco

s & dom([s1 — T)
[s1—=T] F s=s1 > [s1=T, s+ s]

SNAL

so & dom([sy — T, s+ s1])
[s1—=T,s—~s1] b F=syb> [s1—=T, s 51, 83— F]

SNAR

The A-abstraction has two parameters, and so we generate two symbols: s; and so. The body
of the A-abstraction is z, and x{s1/x, s2/y} = s1, which is unified with the target expression.
Finally, we unify the arguments s and F’ with s; and ss.

3.2.5 Unifying applications of symbols with expressions

As stated in Section 3.1, a symbolic variable can occur in place of a function, however, instead
of assigning it directly to expressions, which is out of the scope of this work, we assign
applications of symbolic variables to expressions. This allows the generation of input-output
examples for unknown functions and the detection of contradictions, which is relevant for
HOOGLE*, as described in Section 4. For instance, unifying map s (Cons 1 (Cons 2 Nil))
with Cons 2 (Cons 3 Nil) generates examples for the unknown function s: assigns s 1 to 2
and s 2 to 3. On the other hand, it will be impossible to unify map s (Cons 1 (Cons 1 Nil))
with (Cons 1 (Cons 2 Nil)), because s 1 will be assigned to 1, and then to 2, which generates
a contradiction.

We have two rules ASNA and ASA, very similar to the rules for symbols, shown in
Section 3.2.1. We need to store the arguments € =ej es ... e, in a form as reduced as
possible (using eval) because we need to compare each argument for equality®, to check if an
application is already assigned as in the following example.

» Example 13. We derive [s0—~ 2, s1—=3] F s(Az.0)1)=2> [s0—2, s1+ 3.

0=-eval(X,s (Axz.0)1)) 2(515))22 YEF2=2>3% ASA

YFs((Axz.001)=2p> %

where ¥ =[s0+ 2, s 1+ 3]. We omit the derivation of ¥ + 2 =2 > 3. This example
shows the importance of evaluating the arguments before updates and lookups to the map of
substitutions. Indeed, the application s ((A z . 0) 1) is not substituted in 3, but (A z.0) 1
evaluates to 0, and s 0 is already substituted in X.

3.2.6 Unifying applications of polymorphic abstractions with expressions

When the source expression is an application of a polymorphic abstraction, we apply AP,
which chooses a A-abstraction from opts and then unifies the application of this A-abstraction
to the provided arguments with the target expression. However, we cannot just choose any
A-abstraction. For instance, if the arguments are lists, we cannot choose a function that
expects booleans, as the unification will fail.

» Example 14. We derive that [] F eq s False = True > [s — s1, s1 — False, sy — False]
where polymorphic abstraction eq was defined in Example 5.

eqB € opts [| b eqB s False = True > [s — s1, s1 — False, sy — False]

[] F eqs False = True > [s— s1, s1 — False, sy — False]

3 Rule ASA can be applied only if the arguments are comparable for equality, which require the arguments
not to be abstractions.

4:11

ECOOP 2023

4:12

Hooglex: Constants and A-abstractions in Petri-net-based Synthesis

where rule AP is applied, opts = {eqN, eqB} and the derivation of the second hypothesis
is omitted. When applying rule AP, we cannot choose the A-abstraction eq/N, because the
derivation of [| F egN s False = True > [s — s1, s1 — False, sy — False] gets stuck, as
the case expressions of eqN do not contain alternatives matching True and Fulse.

3.3 Lazyness

The inference rules are lazy. For instance, consider the application (A = y . z) e1 es
being unified with target. We first unify the body with arguments replaced with symbols
x{s1/x,s2/y} with target, and then unify e; with s; and ey with so. As y is not used in the
abstraction, sy will not be assigned, so the unification of es with s, will simply assign the
symbol to the expression, and es is not reduced. Thus, in principle, the algorithm supports
computations with conceptually infinite structures [18]. For instance, it can unify take sym1
(repeat sym2) with [3, 3], replacing syml with 2 and sym2 with 3.

3.4 Implementation

The unification algorithm was implemented in Haskell and performs a depth-first search:
it tries to apply the rules and backtracks if it fails. The heart of symbolic execution and
backtracking in the algorithm is the rule for the case construct: it attempts each alternative
until it succeeds. To prevent the algorithm from running forever, we limit the depth of the
DFS. The algorithm returns a substitution if found; Mismatch, if no substitution was found
after trying all the possible rules (never reaching the limit for rules); or DepthReached if
the maximum number of rules was reached in at least one path and no solution was found.
Although the algorithm implements a search, it is very fast in practice. We conjecture that
this is because the branching factor is reduced. Functions that work with lists typically have
case expressions with no more than two cases (Nil and Cons), and the Nil case tends to be
a base case (a leaf, in the search tree).

4 Extension to Hoogle+: Hooglex

In this section, we describe the implementation of HOOGLEx*, by explaining the two in-
dependent steps presented in Section 1. We start with the modifications to introduce the
wildcard component in Section 4.1, and, in Section 4.2, we address how the occurrences of
the wildcard component are replaced.

4.1 The wildcard component

The first step is to add a component that matches all types so that it can occur where an
integer, a list, a function, etc., is expected. HOOGLE+ requires the name and the type of each
component, so we provided the name wildcard associated with the type a, which matches all
types. With this extension, HOOGLE+ can synthesize functions containing the wildcard such
as \argl -> map wildcard argl, in which the wildcard occurs in place of a function (the
first parameter of GHC.List.map is a function) or \argl -> argl ++ wildcard, in which
the wildcard occurs in place of a list (both parameters of GHC.List.++ are lists).

4 The HOOGLEx repository is available at https://github.com/sr-1lab/hoogle_plus.

https://github.com/sr-lab/hoogle_plus

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco

The component set of HOOGLE+ contains four constants ([1, True, False, and Nothing),
which are not required in HOOGLEx because the unification algorithm is able to generate
them. So, these constants are not present in the default component set of HOOGLEx.

4.2 Replacing occurrences of the wildcard component

Algorithm 2 Overview of HOOGLEx.

1: procedure HOOGLEX(components, query, N, ezamples)

2 parsedExamples < parse examples to Ay

3 petri < build the Petri Net with components U {("wildcard", "a")}

4 fori=1,...,N do

5: synth < synthesize a function for query using petri

6 if synth has wildcards then

7 completions « COMPLETE(synth, parsed Examples, components, query)
8 PRINT(comp) for comp € completions

9: else if synth respects examples then

10: PRINT(synth)

Algorithm 2 shows an overview of HOOGLEx. It takes four parameters: components,
the component set; query, the query type; N, the number of functions the Petri net should
synthesize; and examples, the input-output examples. HOOGLEx starts by parsing each
input-output example to a pair (z;1 ... Tk, ¥;), containing a sequence of k inputs and output
in Ay, and the Petri net is built, considering the wildcard component. Then the Petri
net synthesizes N functions. The function COMPLETE then tries to replace the wildcards
(Algorithm 3).

4.2.1 The Complete function

COMPLETE takes four parameters: f, the function generated by the Petri net, expressed in the
Hoogle+ grammar; examples, the examples expressed in Ay, components, the component
set; and type, the query type. It has three main steps, presented afterward.

Step 1: Convert to A\yy. COMPLETE starts by converting the function generated by the
Petri net to Ay, where each wildcard is replaced with a fresh symbolic variable. The variable
f denotes the function in Ay, and symbols denotes the array of generated symbols.

Step 2: Unify. The next step is to call the unification algorithm with the examples. For
each example, the application of f’ to the inputs is unified with the output, which requires
as many calls to the unification algorithm as the number of examples. The result of all
unifications, 3, contains symbolic variables assigned to constants for the wildcards occurring
in place of constants, and input-output examples for the wildcards occurring in place of a
function®.

Note that X respects all the examples because the unification of each example uses the
result of the unification of the previous example.

5 Tt is not guaranteed that each symbol is assigned in 3, which can happen if its value does not impact
the result of the unification. For instance, unifying head (Cons s1 s2) with target assigns s1 to target,
but does not assign s2. In this case, the incomplete function is rejected.

4:13

ECOOP 2023

4:14

Hooglex: Constants and A-abstractions in Petri-net-based Synthesis

Algorithm 3 Function COMPLETE.

1: procedure COMPLETE(f, examples, components, type)
2 f!, symbols < convert f to Ay, replace wildcards with fresh symbols, and return it
3 Y] > unify pairs of applications to outputs of examples
4 for ((z1,...,2x),y) € examples do
5: Y+ UNirY(Z, f' 21 ... Tk, ¥)
6 if ¥ = ERROR then
7 return Error
8 p < the length of symbols > i.e., the number of wildcards to replace
9: for:=1, ..., pdo
10: if Je : symbols[i] € € dom(X) then > if symbols[i] denotes a function
11: wildcardType < get the type of the wildcard ¢ in function f
12: A < SYNTH-LAMBDA (wildcardType, f’, examples, components, symbolsli])
13: fallli] <= A
14: else if symbols[i] € dom(X) then > if symbols[i] denotes a constant
15: val + eval(X, symbolsli])
16: fill[i] + convert val to Haskell notation
17: res < {}
18: for (e1,...,ep) € fill[l] x ... x filllp] do > all combinations of expressions
19: res < resU f'{e1/symbols[1], ..., e,/ symbols[p]} > replace wildcards
20: return res in the grammar of HOOGLE+

Step 3: Replacing wildcards. After the unification, each symbolic variable is replaced with
a constant or a A-abstraction. Each iteration of the loop starting at line 9 replaces a symbol,
assigning the replacement (or replacements, if there is more than one alternative) to the
corresponding entry in the array fill. It starts with a lookup in ¥ to determine the type of
the expected term:
If there is an application of the symbol, symbols[i], in X, the corresponding wildcard must
be replaced with a function. In this case, SYNTH-LAMBDA (Algorithm 4, Section 4.2.2),
is called to synthesize A-abstractions, with the data type of the function, wildcardType.
Note that this function returns a set of A-abstractions, because it may find more than
one function that has the specified type and respects the examples.
If the symbol s is itself assigned in ¥, the corresponding wildcard should be replaced with
a constant. In this case, X(s) is the expression that replaces the wildcard. However, this
expression must be evaluated, because it may contain occurrences of other symbols, as
explained in Section 3.2.3. Additionally, we replace Peano numbers with Arabic numbers
and Cons/Nil lists with Haskel-syntax lists.
At the end of the loop that starts in line 9, fill has one entry for each wildcard, each one
containing a set of alternative replacements. Then, in the loop starting at line 18 we compute
all the combinations of replacements for each wildcard, through a cartesian product, and, for
each combination, we replace the wildcards in f’, and add the resulting expression to res.

» Example 15. Recall the first example of Section 1. The Petri net is able to synthesize
\x1 -> x1 ++ wildcard. We start by converting both the generated function and the
input-output examples to Ay. The function corresponds to A 1 . (++) z1 s1, the input of
the example becomes Cons 1 Nil, and the output becomes Cons 1 (Cons 0 Nil). The next
step is to unify (A z1 . (++) 1 s1)(Cons 1 Nil) with Cons 1 (Cons 0 Nil), to compute X.
As a result, s; is assigned itself in X to an expression, so the expected term is a constant.
We have eval(X, s1) = Cons 0 Nil, that corresponds to [0] in Haskell notation. Finally, the
wildcard is replaced with [0], which produces the function \x1 -> x1 ++ [0].

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco

Note the importance of having the unification algorithm supporting symbols in place of
functions, described in detail in Section 3.2.5. On the one hand, it allows replacing multiple
function wildcards, because they are replaced one at a time. For instance, suppose that
there are two function wildcards to replace. When replacing the first wildcard, we pick a
A-abstraction and then apply the unification algorithm to the original function, with the
new A-abstraction replaced. In this case, the second symbol remains, but the unification
algorithm is able to validate if the first wildcard is replaced correctly. If the algorithm could
not support symbolic functions, we would have to pick all the A-abstractions at once and
try each possible combination, which would lead to a combinatorial explosion. On the other
hand, supporting symbolic functions allows for saving time, because the algorithm can detect
if no A-abstraction can fill a specific wildcard. In those cases, HOOGLE* does not waste time
calling SYNTH-LAMBDA. Section 4.2.2 discusses in detail SYNTH-LAMBDA.

4.2.2 The synthesizer for A-abstractions

Algorithm 4 Function SYNTH-LAMBDA.

1: procedure SYNTH-LAMBDA (type, original Fun, examples, comps, symbol)

2 lamComps < remove Data.ByteString and high-order components from comps
3 y; < the i-th parameter of originalFun for i =1,...,n

4 x; < the i-th parameter of the A-abstraction, for i =1,....k

5: leafs < {y1y ..oy Yn, 1y .-y Tk, S}, S fresh

6 erprs < SYNTH-EXPR(type, leafs, lamComps, 0)

7 res < {}
8 for e € exprs do
9 lambda <+ N x1 ... x) . €

10: lambda’ < REPLACE-SYMBOLS(original Fun, lambda, examples, symbol)

11: if lambda’ # ERROR and the type of lambda’ matches type then

12: res < res U {lambda’}

13: return res > a list of many A-abstractions with the specified type

The function SYNTH-LAMBDA computes a A-abstraction that respects the input-output
examples and has the specified type. We could call HOOGLEx recursively, but we conjecture
that it would lead to performance degradations, and a simpler, faster synthesizer is enough to
synthesize A-abstractions. On the one hand, it may be needed to synthesize A-abstractions
several times during a single HOOGLE+ query, but the paper that presented HOOGLE+ [14]
has shown that for many problems, HOOGLE+ may take several seconds. Note that each query
may require an unbounded number of synthesis of A-abstractions because each one of the N
incomplete functions may have an arbitrary number of wildcards in place of functions. On
the other hand, from our experience with the Haskell programming language, A-abstractions
are simpler than other portions of code and use fewer components. So, we decided to build a
faster, bespoke synthesizer that corresponds to the function SYNTH-LAMBDA.

Search space. The search space of SYNTH-LAMBDA is composed of applications of compon-
ents from HOOGLE*. To guarantee a faster synthesis, we exclude high-order functions, as well
as the module Data.ByteString (that seems less common in A-abstractions, from our exper-
ience as Haskell programmers), which leaves 54 popular components. The arguments of the
applications can be the parameters of the A-abstraction, parameters of the original function,
symbols (to replace using the unification algorithm), and applications of components, with at

4:15

ECOOP 2023

4:16

Hooglex: Constants and A-abstractions in Petri-net-based Synthesis

Algorithm 5 Function SYNTH-EXPR.

1: procedure SYNTH-EXPR(type, leafs, components, level)

2 exprs < {}

3: for [€ leafs s.t. the type of [matches type do

4: exprs < exprs U {l}

5 if level < 2 then

6 for comp € components s.t. the return type of comp matches type do

7 sign < the signature of comp, with type variables replaced s.t. the return

type matches type

8: prms < extract the types of the parameters from sign

9 p < the number of parameters of comp

10: args[i] <— SYNTH-EXPR(prmsli], leafs, components, level + 1) for i =1,...,p
11: for (e1,...,ep) € args[l] x ... x args[p] do > all combinations of expressions
12: exprs < exprsU{comp ey ... e}

13: return exprs > a list of many expressions with the specified type

Algorithm 6 Function REPLACE-SYMBOLS.

1: procedure REPLACE-SYMBOLS(original Fun, lambda, examples, symbol)
2 original Fun < original Fun{lambda/symbol }
3 Y]

4 for ((z1,...,2x),y) € examples do

5: Y + UNIFY(Z, original Fun xy ... Tk, y)

6 if ¥ = ERROR then

7 return ERROR

8 for each symbolic variable s in lambda do

9 val < eval(X, s)

10: converted < convert val to Haskell notation
11: lambda < lambda{converted/s}

12: return lambda

most two levels, for performance reasons (e.g., in \x => £ (g x) (h x), the arguments of
g and h cannot be applications, only variables, and constants). For example, if the Petri net
synthesizes \argl -> map wildcard argl, for the query type [Int]-> [Int], the wildcard
may be replaced with \x1 -> x1 + 2, \x1 -> x1 * (length argl), etc., depending on
the input-output examples provided by the user.

Implementation. SYNTH-LAMBDA (Algorithm 4), takes five parameters: type, the signature
of the function to synthesize; original Fun, the original function generated by the Petri net,
but with wildcards replaced with fresh symbols; exzamples, the input-output examples of
the original function; comps, the component set; and symbol, the symbolic variable that the
new A-abstraction should replace in original Fun. It follows a generate-and-test approach:
SYNTH-EXPR does a type-guided enumeration of A-abstractions, and then REPLACE-SYMBOLS
tests the original function with each new A-abstraction in place of the corresponding symbol,
and replace symbols if any. Finally, we check that the A-abstraction has the specified type,
because SYNTH-EXPR does not perform a full type-checking, and only uses types to prune
the search, thus can return ill-typed expressions. At this stage, type classes are ignored, and
we leave for future work the analysis of their impact on the algorithm and its performance.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco

SYNTH-EXPR (Algorithm 5) takes four parameters: type, the type of the expression to
synthesize; leafs, the set that contains the parameters of the new A-abstraction (z1, ...,
Zp), the parameters of the original function (y1, ..., yx), and a fresh symbol; components,
the component set of HOOGLE* excluding high-order functions and the Data.ByteString
module; and the depth of applications, level. If level is equal or greater than 2, SYNTH-EXPR
only returns the leafs whose type matches type, to ensure that the maximum level is not
exceeded. Otherwise, it returns also the application of components whose return type matches
type, and the arguments are synthesized by calling SYNTH-EXPR recursively. Note that we
may have to replace type variables, which we do in line 7. For instance, if the component
has type a -> a and type is Int, we replace a with Int.

REPLACE-SYMBOLS (Algorithm 6) takes four parameters: the original Hoogle+ function,
original Fun; the new A-abstraction, lambda; the input-output examples, examples; and
the symbolic variable that lambda replaces. It starts by replacing symbol with lambda in
the original function. Then, the unification algorithm is used as in the COMPLETE function:
for each example, we unify the application of original Fun to the inputs of the example with
the expected output. Finally, each symbol that belongs to A is replaced with a lookup in X,
as COMPLETE does. Note that every symbol in the new A-abstraction must be a constant
because the component set excludes high-order functions.

Example 16 illustrates the synthesis of wildcards in place of functions.

» Example 16. Recall the second example of Section 1. The Petri net is able to synthes-
ize \x1 -> map wildcard x1, which corresponds to A x; . map s z; in Ay. The example
is converted to Ay, and the unification is performed, assigning applications of s (for in-
stance, s 1 to 1), which informs that the expected term is a A-abstraction. Then, we call
SYNTH-LAMBDA, where type is Int -> Int, original Fun is A x1 . map s x1, examples is
{(([1, 2, 3]), [1, 4, 9])} and symbol is s. The leafs are the parameter of the original
function (z), the parameter of the new A-abstraction (y;), and a fresh symbol. One of
the generated A-abstractions can be \y1 -> (GHC.Num.*) y1 yi. Then REPLACE-SYMBOLS
unifies (\x1 -> map (\yl -> y1 * y1) x1) [1, 2, 3] with [1, 4, 97, which succeeds.
Finally, we check that the function has type Int -> Int.

5 Evaluation

In this chapter we empirically evaluate HOOGLEx, answering the following research questions:

RQ1 Can HOOGLEx solve all the problems that HOOGLE+ solves, without performance
degradation?

RQ2 Can HOOGLE* solve more problems than HOOGLE+?

5.1 Evaluation Design

Benchmarks. We use two different sets of benchmarks. To answer RQ1, we use the first
set of 44 benchmarks (Table 1) from the original paper of HOOGLE+ [14], which consists of
only query types. To answer RQ2, we use the second set of 26 benchmarks (Table 2), which
consists of a query types and input-output examples and requires the generation of constants
or \-abstractions®.

6 Most of those benchmarks were adapted from questions in StackOverflow because we could not use
them directly (e.g., if a question used floats, we changed, when possible, to integers). We systematically
searched StackOverflow for Haskell problems, excluding the ones that did not require the generation of

4:17

ECOOP 2023

4:18

Hooglex: Constants and A-abstractions in Petri-net-based Synthesis

Table 1 First set of 44 benchmarks (from HOOGLE+ [14]).

Problem Query
1 firstRight [Either a b] -> Either a b
2 firstKey [(a, b)] ->a
3 flatten [[[a]]] -> [a]
4 repl-funcs (a->b)-> Int -> [a-> D]
5 containsEdge Int -> (Int, Int) -> Bool
6 multiApp (a->b->c¢c)->(a->b)->a->c¢
7 appendN Int -> [a] -> [a]
8 pipe [a->a] -> (a-> a)
9 intToBS Int64 -> ByteString
10 cartProduct [a] -> [b] -> [[(a, b)]]
11 applyNtimes (a->a)->a->Int->a
12 firstMatch [a] -> (a -> Bool) -> a
13 mbElem Eq a => a-> [a] -> Maybe a
14 mapkEither (a -> Either b ¢) -> [a] -> ([b], [c])
15 hoogle01 (a->b)->[a]->Db
16 zipWithResult (a->Db)-> [a] -> [(a, b)]
17 splitStr String -> Char -> String
18 lookup [(a,b)] ->a->b
19 fromFirstMaybes a -> [Maybe a] -> a
20 map (a->b) -> [a] -> [b]
21 maybe Maybe a -> a -> Maybe a
22 rights [Either a b] -> Either a [b]
23 mbAppFirst b->(a->b)->[a]->Db
24 mergeEither Either a (Either a b) -> Either a b
25 test Bool -> a -> Maybe a
26 multiAppPair (a->b,a->c)->a->(b,c)
27 splitAtFirst a-> [a] -> ([a], [a]
28 2partApp (a->b)->(b->c)->[a]->[c]
29 areEq Eqa=>a->a-> Maybea
30 eitherTriple Either a b -> Either a b -> Either a b
31 mapMaybes (a -> Maybe b) -> [a] -> Maybe b
32 head-rest [a] -> (a, [a])
33 appBoth (a->Db)->(a->c)->a-> (b, c)
34 applyPair (a->Db,a)->Db
35 resolveEither Either a b -> (a->b) -> b
36 head-tail [a] -> (a,a)
37 indexesOf ([(a,Int)] -> [(a,Int)]) -> [a] -> [Int] -> [Int]
38 app3 (a->b->c->d)->a->c->b->d
39 both (a->b)-> (a, a) -> (b, b)
40 takeNdropM Int -> Int -> [a] -> ([a], [a])
41 firstMaybe [Maybe a] -> a
42 mbToEither Maybe a -> b -> Either a b
43 pred-match [a] -> (a -> Bool) -> Int
44 singleList Int -> [Int]

Experiments. We compare HOOGLE* to the original HOOGLE+ as described below, giving

each benchmark a timeout of 60 seconds, in the first set of benchmarks, and 90 seconds in

the second set.

1. We run both HOOGLE+ (twice, with and without the constants True, False, Nothing and
[]) and HOOGLEx on the 44 original benchmarks measuring the number of synthesized
solutions, and the time taken to synthesize the first solution. For each benchmark, we

constants and A-abstractions, and problems exercising the same capabilities. We also excluded problems
that could not be solved by Hoogle+, for other reasons than the absence of constants and A-abstractions.
To diversify the components used we searched for questions using specific components. No problem that
we have excluded would be solved by Hoogle+.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco

Table 2 Second set of 26 benchmarks.

4:19

Problem Query Examples
1 mapAdd Int] -> [Int] (I, 2, 3]1, [2, 3, 4])]
2 mapSquare Int] -> [Int] (I, 211, [1, 4]
3 appendConst Int] -> [Int] (1, 2, 3]], 1, 2, 3, 1000])]
4 filterDiff Int] -> [Int] (UL, 2, 3]), [1, 3))]
5 getFirstOnes Int] -> [Int] (I[t, 1,0, 1, 2]], [1, 1])]
6 removeFirstOnes Int] -> [Int) (l[1, 1,0,0, 1, 2]], [0, 0, 1, 2])]
7 listIntersect Int] -> [Int] -> [Int] (llo, 2, 4], [2, 4, 6]], [2, 4])]
8 indexConst al ->a (I, 2, 0, 3, 0, 1]], 3)]
(12,3, 4, True),
9 allGreaterThan Int] -> Bool ([[2, 1, 4]], False)]
10 dropConst Int| -> [Int] ([0, 0, 4, 4, 3]], [4, 3])]
11 filterGreaterThan Int| -> [Int] ([[2, 0, 1, 3]], [2, 3])]
12 filterPairs (Int, Int)] -> [(Int, Int)] ({11, 2), (2, 2), (3, 0)]], [(2, 2)])]
13 filterEq Int] -> [Int] (I, 2, 1, 3, 4, 4]], 1, 1])]
14 replicateConst [nt -> [Int] (11, [1, 1]
15 addElemsTwoLists [Int] -> [Int] -> [Int] (I, 2, 3], [3, 4, 5]], [4, 6, 8])]
16 sumSquares Int] -> Int (I, 3, 1]], 11)]
17 removeMax Int] -> [Int] (11, 3, 2]], [1, 2])]
([(True, True)], False),
([(False, False)], True),
([(True, False)], True),
18 nandPair (Bool, Bool) -> Bool ([(False, True)], True)
[([[False, False]],True),
([[True, False]], False),
19 allEqBool [Bool] -> Bool ([[True]],True)]
20 mapReverse [[a]] -> [[a]] [({[[L, 3], [[3, 1]
[([[Nothing, Just 1]], False),
([[Just 0, Just 0]], True),
21 allJust [Maybe a] -> Bool ([[Just 0, Nothing]], False)]
[([[(True, True), (False, False)]],
False), ([[(True, True), (False,
False), (True, True)]], False),
([[(True, True), (True, True)]],
22 andListPairs [(Bool,Bool)] -> Bool True), ([[(False, False)]], False)]
23 sumPairEntries (Int, Int) -> Int [([(1, 2)], 3)]
24 filterPairsTyClass (Eq a) => [(a, a)] -> [(a, a)] [([[(1 2), (2,), 3, 011, [(2, 2)])]
25 mapAddFloat [Float] -> [Float] [(1[1, 2, 3]], [1 2.5, 3.5])]
26 mapAddLarge [Int] -> [Int] [([[10 200 30]], [120, 220, 320])]

ask both synthesizers to synthesize at most 10 solutions (parameter N in Algorithm 2).

The goal is to understand the impact of the addition of the wildcard component, and the
removal of the constant components.
2. We run both HOOGLE* and the version of HOOGLE+ that supports examples[20], on
the 26 benchmarks, measuring also the time consumed replacing the occurrences of the

wildcard, and we ask both synthesizers to synthesize at most 35 solutions”.

Experimental setup. We run the experiments on a laptop with an AMD 5600G, running at
3.9 GHz, with 6 cores and 16 GB of RAM. All the versions of HOOGLE+ and HOOGLEx use
only two cores. The operating system is Ubuntu 22.04.2 LTS, the version of stack is 2.9.1, and

7 This is a higher value than in the previous step, because many of the N functions synthesized by the
Petri net may be rejected due to the test of input-output examples, and with a lower value of N, both
synthesizers ended the search before the timeout, without finding any solution.

ECOOP 2023

4:20

Hooglex: Constants and A-abstractions in Petri-net-based Synthesis

the version of GHC is 8.4.4. The component set used by both HOOGLE+ versions contains
the following modules: Data.Bool, Data.ByteString.Builder, Data.ByteString.Lazy,
Data.Either, Data.Eq, Data.Function, Data.Int, Data.Maybe, Data.0Ord, Data.Tuple,
GHC.Char, GHC.List, and Text.Show. The total number of components is 297. The compon-
ent set used by HOOGLE« is the same, except that we removed the constants Data.Bool.True,
Data.Bool.False, Data.Maybe.Nothing and [], and we added the wildcard component.
Those constants can be synthesized by the unification algorithm, so the component set does
not need to contain them.

5.2 Results

In this section, we discuss the results of the experiments performed to answer the research
questions stated at the beginning of the Section 5.

Results of the first set of benchmarks. The results of the first set of benchmarks are
presented in Table 3, which shows that HOOGLEx solves two problems that HOOGLE+ could
not solve (benchmarks 6 and 9), and HOOGLE+ one problem that HOOGLEx could not solve
(benchmark 35). We have not found significant differences in the synthesized solutions, and
in most benchmarks, there are solutions in common.

HOOGLEx tends to be faster at synthesizing the first solution and synthesizes more
solutions. On average, HOOGLEx synthesizes 2.95 solutions per benchmark and takes 3.92
seconds to synthesize the first solution. HOOGLE+ synthesizes 2.41 solutions and takes 5.58
seconds. This can be explained by the removal of the four constants: on average, HOOGLE+
without constants takes 3.37 seconds to synthesize the first solution, so, in average, it is faster
than HOOGLE+ with constants and HOOGLEx. Indeed, the removal of the constants leads to
a smaller component set, however, the reason for that is not the number of components that
were removed, but the kind of components. Note that in the Petri net encoding, constants
correspond to nullary transitions, i.e., transitions that do not need tokens to fire, so they can
fire at any moment, leading to a higher branching factor. Thus, the removal of a constant
should have more impact than the removal of a function.

Results of the second set of benchmarks. The results of the second set of benchmarks are
shown in Table 4. HOOGLEx solves 22 out of 26 benchmarks, whereas HOOGLE+ solves only
3 (benchmarks 50, 52, and 62), which are all solved by HOOGLE*. This happens because
most benchmarks require constants and A-abstractions to be synthesized, which HOOGLE+
is not able to do. The authors of HOOGLE+ [14] argue that the absence of A-abstractions
does not impact the completeness of the method, because terms with A-abstractions can be
replaced with a term in point-free style, using the combinators S, K and I. However, this
requires adding a nullary version of each component to the component set, which the authors
consider infeasible, and in practice, only a small subset is added. The component sets of each
version of HOOGLE+ used in our evaluation contain the combinators S, K, and I (module
Data.Function), but it was not enough to solve the problems that require A-abstractions.
In the benchmarks that require the synthesis of constants, the time spent com-
pleting the functions is always lower than 20% of the total time. However, in the
benchmarks that require the synthesis of A-abstractions, the time spent completing
the wildcards can reach more than 50% of the total time, as happens in bench-
marks 53, 59, and 60. HOOGLEx cannot solve benchmark 51, whose solution is
\argl arg2 -> filter (\x1 -> x1 ‘elem‘ arg2) argl, because it requires the Petri net
to synthesize the incomplete function \argl arg2 -> filter wildcard argl, which does
not use arg2, and the Petri net always synthesizes functions that use all the parameters.
It also fails to solve benchmark 68, which is very similar to 56, with the difference that

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco

Table 3 Results of the first set of benchmarks. For both synthesizers, we show the number
of solutions and the total time to synthesize the first solution, in seconds, or - if no solution was
produced within the timeout of 60 seconds.

Hoogle+ Hoogle+, no consts. Hooglex

Benchmark Time (s) Sols. Time (s) Sols. Time (s) Sols.
1 firstRight 0.56 5 0.53 5 0.47 6

2 firstKey 2.32 4 1.41 2 1.21 2

3 flatten 1.09 9 6.10 9 0.93 9

4 repl-funcs 0.81 2 0.57 2 0.5 5

5 containsEdge 0.92 2 0.82 1 0.66 1

6 multiApp - 0 - 0 1.73 2

7 appendN 0.6 10 0.54 10 0.48 10

8 pipe 6.99 4 7.48 2 7.41 2

9 intToBS - 0 - 0 0.66 6

10 cartProduct 20.08 1 3.97 1 1.43 1
11 applyNtimes 4.88 2 5.06 3 5.15 6
12 firstMatch 0.97 5 1.03 5 1.23 6
13 mbElem - 0 - 0 - 0
14 mapEither 2.28 1 7.42 1 3.07 1
15 hoogle01 0.68 4 0.66 4 0.61 9
16 zipWithResult - 0 - 0 - 0
17 splitStr 0.58 5 0.54 4 0.5 9
18 lookup - 0 - 0 - 0
19 fromFirstMaybes 2.17 3 2.03 5 1.37 2
20 map 0.78 5 0.81 5 0.54 7
21 maybe 0.68 1 0.69 1 0.51 1
22 rights 30.41 1 16.18 1 6.64 1
23 mbAppFirst 1.31 1 0.98 1 0.85 1
24 mergeEither - 0 - 0 - 0
25 test 10.68 2 9.23 1 12.98 1
26 multiAppPair - 0 - 0 - 0
27 splitAtFirst 1.01 5 0.79 1 0.72 3
28 2partApp 2.08 5 4.08 3 2.64 3
29 areEq - 0 - 0 - 0
30 eitherTriple - 0 - 0 - 0
31 mapMaybes 0.72 5 0.70 6 0.57 9
32 head-rest 3.79 3 8.67 3 2.36 3
33 appBoth 1.82 1 4.56 1 1.6 1
34 applyPair 1.68 1 1.98 1 3.8 1
35 resolveEither 42.49 1 - 0 - 0
36 head-tail 9.69 2 10.37 3 11.03 2
37 indexesOf 22.38 1 - 0 54.35 1
38 app3 0.59 1 0.86 1 0.52 7
39 Dboth - 0 - 0 - 0
40 takeNdropM - 0 - 0 - 0
41 firstMaybe 1.71 6 1.41 8 1.31 4
42 mbToEither - 0 - 0 - 0
43 pred-match 1.02 4 0.97 4 0.9 4
44 singleList 0.66 4 0.61 3 0.51 4
average 5.58 241 3.37 2.20 3.92 2.95

the query type has a typeclass constraint, instead of a monomorphic type. The solution is
\argl -> filter (\p -> fst p == snd p) argl, however, the Petri net does not synthes-
ize the incomplete function \argl -> filter wildcard argl within the timeout (whereas
it synthesizes when the type is monomorphic). Benchmark 69 uses real numbers, that
are not supported by the unification algorithm, and benchmark 70 contains input-output
examples with large constants, leading the unification to reach the maximum depth before
finding valid assignments. Comparing the solutions synthesized for the benchmarks that
HOOGLE+ solves, the solutions of HOOGLEx are simpler, using fewer components. For
instance, in benchmark 52, HOOGLE+ synthesizes \argO -> last (init (init arg0)),
whereas HOOGLEx synthesizes \argl -> (!!) argl 3.

4:21

ECOOP 2023

4:22

Hooglex: Constants and A-abstractions in Petri-net-based Synthesis

Table 4 Results of the second set of benchmarks. This table shows, for both synthesizers, the
time elapsed to synthesize the first solution, in seconds, as well as the number of solutions, and the
time spent replacing symbols until the first solution is completed. The timeout is 90 seconds.

Hoogle+ with examples Hooglex

Benchmark Time (s) Sols. Time (s) Unify (s) Sols.
45 mapAdd - 0 8.07 0.66 11
46 mapSquare - 0 7.99 0.61 11
47 appendConst - 0 4.14 0.49 1
48 filterDiff - 0 14.26 6.04 10
49 getFirstOnes - 0 1.89 0.16 21
50 removeFirstOnes 2.55 1 1.49 0.18 22
51 listIntersect - 0 - - 0
52 indexConst 3.94 1 1.16 0.18 1
53 allGreaterThan - 0 21.45 15.42 25
54 dropConst - 0 1.81 0.18 9
55 filterGreaterThan - 0 15.14 6.48 10
56 filterPairs - 0 2.26 0.19 6
57 filterEq - 0 24.77 11.5 12
58 replications - 0 1.18 0.19 14
59 addElemsTwoLists - 0 74.56 66.52 10
60 sumSquares - 0 25.58 20.22 10
61 removeMax - 0 14.27 5.96 10
62 nandPair 30.95 4 8.91 3.84 10
63 allEqBool - 0 7.33 1.63 20
64 mapReverse - 0 6.0 0.73 10
65 allJust - 0 17.32 1.14 8
66 andListPairs - 0 7.9 1.05 20
67 sumPairEntries - 0 8.01 0.67 27
68 filterPairsTyClass - 0 - - 0
69 mapAddFloat - 0 - - 0
70 mapAddLarge - 0 - - 0

average 12.48 0.23 12.52 6.55 10.70

5.3 Answers to Research Questions

Given the results discussed in Section 5.2, we answer the two research questions as follows:

RQ1 The addition of the wildcard component did not lead to performance degradations.
Instead, the removal of constants resulted in performance improvements. From the
original HOOGLE+ benchmarks, there is a single benchmark that HOOGLE+ solves and
HOOGLEx cannot solve within the timeout, but it solves two that HOOGLE+ does not
solve.

RQ2 HOOGLEX can solve many more new problems than HOOGLE4, especially when con-
stants or A-abstractions are required, which makes it able to solve new classes of problems.
We also found that in the cases that both synthesizers produce solutions, the solutions of
HoOOGLE* are simpler, since they use fewer components.

6 Related Work

In this section, we compare our work to other research in program synthesis, unification, and
symbolic execution. Most of the related work has been already presented in the HOOGLE+
original paper, so our focus is the work apart from this one.

6.1 Program Synthesis

Hoogle+ related work summary. The subjects most directly related to HOOGLE+ are
type inhabitation and graph reachability. However, most of the related work on type
inhabitation is based on classical proof search, such as AGDA [30], or produce solutions

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco

that do not use all the arguments, such as DJINN [1]. In turn, the related work on graph
reachability only supports functions with a single parameter, such as PROSPECTOR [25],
or does not support polymorphism, such as SYPET [7]. When compared to other API
search tools, such as HOOGLE [26], HOOGLE+ is able to synthesize applications of multiple
components. Using statistical methods to improve the search, such as SLANG [34], the authors
of HOOGLE+ conjecture that it is not effective in functional languages, due to the “high
degree of compositionality”. There are also approaches to scalable proof search; however,
the search space is restricted to names of parameters, functions, or fields [32], or does not
support polymorphism, such as INSYNTH [15].

Synthesis from sketches. The idea of completing programs with holes, also known as
sketches, has already been used in SKETCH [36] and ROSETTE [37], in which SAT/SMT
solvers infer integer constants. However, in our work, a hole can be replaced with an
expression of any algebraic type, or A-abstractions. More recently, SMYTH [24], an evaluator-
based program synthesizer, replaces holes with any expression, including case expressions, by
performing a search guided by input-output examples. However, it inherits scalability issues
from MYTH [31], the base of SMYTH, and the authors consider that HOOGLE+ “might also be
incorporated into our approach in future work”. SCRYBE [27] extends the approach of SMYTH,
with example propagation, and can solve more problems than SMYTH. However, we conjecture
that the scalability issues remain, as the evaluation uses specific component sets for each test
of at most 10 components [28], whereas the component set of HOOGLE+ has 291 components.
GHC, a Haskell compiler, supports programs with missing expressions, suggesting valid
fits [9]. However, constants are excluded (apart from already defined constants, such as True)
and A-abstractions. PROPR, [10] uses this GHC feature to replace faulty sub-expressions on
Haskell programs, and suggest constants, that, however, are limited to the ones contained in
the program to repair.

Component-based synthesis. Apart from the related work of HOOGLE+, PETSY [38]
performs a top-down enumerative search, instead of using a Petri net encoding. Its evaluation
shows that, at least with 130 components, its performance is comparable to HOOGLE+.
However, it does not synthesize constants. HECTARE [23], a new synthesizer for Haskell that
uses a new graph data structure to represent the search space, has shown to be faster than
HOOGLE+, but it does not support constants nor A-abstractions.

6.2 Unification and Symbolic Execution

E-Unification. Unification is a process that, given two expressions, tries to replace the
symbols in both expressions, such that the resulting expressions are syntactically equal [2].
In our case, the goal is to make two expressions equal after evaluation. This leads us to
E-Unification, in which the equality of terms is established by a set of equations E: two
terms s, t are equal if and only if s ~ ¢ € E [35]. There are several approaches to solving
E-Unification [8, 6], but we have not found any formulation that could be directly applied to
our context. The same can be stated about Huet’s algorithm [19], which solves the unification
problem for typed A-calculus, from which Haskell’s Core language is an extension [21].

Symbolic execution. Symbolic execution tools explore multiple paths of a program to find
counterexamples for a given property [3] and the unification problem discussed in this article
can be reduced to finding a counterexample for eg.c # ergr. G2 [16] and G2Q [17] are two
symbolic execution tools for Haskell, but they do not support symbolic variables in place of

4:23

ECOOP 2023

4:24

Hooglex: Constants and A-abstractions in Petri-net-based Synthesis

functions, which is required for HOOGLEx. NEBULA [22], built on top of G2, supports symbols
in place of functions, and treats applications of symbolic variables in a way similar to our
approach: it replaces the application with a fresh symbol denoting the return value. However,
it does not fully evaluate the arguments, so it may treat two equivalent calls as different calls.
NEBULA can prove the equivalence of Haskell programs, by combining symbolic execution and
coinduction, whereas our algorithm only finds assignments to symbolic variables. However, it
is one order of magnitude faster, which makes the difference in the performance of HOOGLEx.
SCV [29] uses symbolic execution to validate software contracts in Racket programs and
supports symbols in place of functions, but instead of assigning applications of functions to
expressions, it generates candidate functions. However, while our algorithm supports infinite
structures, SCV does not, since Racket is a strict language.

7 Limitations

Using polymorphic abstractions, instead of the standard way of implementing typeclasses,
dictionary passing [33], simplifies the algorithm, especially when the term that determines
the version of the polymorphic function is a symbol. But, as a drawback, this approach
requires that each time a new monomorphic variant of a polymorphic operation is
provided, the existing code must be edited (the new implementation must be added
to each occurrence of the corresponding polymorphic abstraction). However, since the
component set is not expected to change, this does not impact the usage of HOOGLEx.

Currying is not supported for practical reasons. Whenever a curried application is trans-
lated to Ay, we need to replace it with a A-abstraction: supposing that f takes n
arguments, we rewrite f eq ... €y 88 A Typg1 o Ty - f €1 oo € Tt . Ty (With m < n).
Also, for practical reasons, data constructors are not treated as the left side of abstractions,
which means that a data constructor cannot be used as a function directly.

Data is represented by data constructors, which simplifies the algorithm, because all op-
erations can be written in Ay and each value can be built incrementally, by choosing a
branch of each case expression. For instance, if we had to use the constant representation
of integers, the implementation of operators such as integer comparison could not be
expressed in Ay, and expressions such as nl < n2 would have to be processed by an
SMT solver. A drawback of this representation is that real numbers are not supported
(benchmark 69), and, in some specific cases, large integers may lead to an intractable
search (if it is required to iterate the whole structure). Unifying a symbol with a large
number, which is the case of benchmark 47, simply requires the application of SNAL or
SAL; however, unifying s+ 1 with N (similar to what happens in benchmark 70) requires
a depth greater than N, which, in the context of complex problems with large branching
factors, may become intractable.

Allow unused parameters. The Petri net does not synthesize functions that do not use all
parameters, but the wildcards could be replaced with expressions using the remaining para-
meters. For instance, HOOGLEXx cannot synthesize \xs n -> filter (\x -> x < n) xs,
because \xs n -> filter wildcard xs does not use the parameter n.

Queries with typeclass constraints are not solved, as in benchmark 68, because the Petri
net becomes significantly slower when there are typeclass constraints (typeclass constraints
are treated as extra arguments of the type query).

Completeness, normal form, and soundness. We do not have a definition of normal form
for the terms of Ay, nor proofs of completeness and of the guarantees of the inference
rules, stated in Section 3.2.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco

8 Conclusion

In this work we developed a unification algorithm for a subset of the Haskell programming
language and extended HOOGLE+, which can now synthesize constants and A-abstractions.

Unification algorithm. To evaluate HOOGLE*, we have encoded 92 functions from the
Haskell standard library® in Ay, and our algorithm successfully replaced the occurrences of
the wildcard component for constants. But it has other applications; for instance, it can be
used to compute inverses (by unifying f s ... sx with the output, s1 ... s will be assigned to
the values of the arguments), or for software testing and verification, finding counterexamples
(for instance, if a function f is expected to always return a positive number, we can unify
the application of f to symbolic variables with 0, to search for inputs that eventually make
the function return 0).

Hooglex. HOOGLE* can solve more problems than the original HOOGLE+ as it successfully
synthesizes constants and A-abstractions, without performance degradation. As explained in
Section 6, existing synthesizers do not synthesize constants and A-abstractions, or do not
have the scalability that Petri nets give to HOOGLE4. HOOGLEx can generate constants
and A-abstractions while maintaining the scalability of Petri nets. Although we extended
HOOGLE+, the contributions are not exclusive to this synthesizer, as they can be applied
to other Petri-net synthesizers, such as SYPET. As a program synthesizer, it can impact
science and industry in different ways: discovering new algorithms, allowing end users to
build programs, improving teaching or assisting programmers [11, 5].

Future work. The main lines of future work are: supporting the representation of real
numbers, as well as large integers; allowing the Petri net to synthesize functions that do
not use all parameters; improving the synthesis of queries involving typeclass constraints;
providing notions of completeness, normal forms, and a proof of the guarantees claimed in
Section 3.2; and incorporating typeclasses in the type-checker of SYNTH-EXPR.

—— References

1 Lenart Augusstson. Djinn. URL: https://github.com/augustss/djinn.

Franz Baader. Unification theory. In Klaus U. Schulz, editor, Word Equations and Related
Topics, First International Workshop, IWWERT ’90, Ttbingen, Germany, October 1-3, 1990,
Proceedings, volume 572 of Lecture Notes in Computer Science, pages 151-170. Springer, 1990.
d0i:10.1007/3-540-55124-7_5.

3 Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi.
A survey of symbolic execution techniques. ACM Comput. Surv., 51(3):50:1-50:39, 2018.
doi:10.1145/3182657.

4 Joao Costa Seco, Jonathan Aldrich, Luis Carvalho, Bernardo Toninho, and Carla Ferreira.
Derivations with holes for concept-based program synthesis. In Proceedings of the 2022
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward! 2022, pages 63-79, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3563835.3567658.

8 From the modules Data.Maybe, Data.Either, Data.Bool, GHC.List, Data.0Ord and GHC.Num.

4:25

ECOOP 2023

https://github.com/augustss/djinn
https://doi.org/10.1007/3-540-55124-7_5
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3563835.3567658

4:26

Hooglex: Constants and A-abstractions in Petri-net-based Synthesis

10

11

12

13

14

15

16

17

18

Cristina David and Daniel Kroening. Program synthesis: challenges and opportunities.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 375(2104):20150403, 2017. doi:10.1098/rsta.2015.0403.

Daniel J. Dougherty and Patricia Johann. An improved general e-unification method. J. Symb.
Comput., 14(4):303-320, 1992. doi:10.1016/0747-7171(92)90010-2.

Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. Component-based
synthesis for complex apis. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pages 599-612. ACM, 2017. doi:10.1145/3009837.
3009851.

Jean H. Gallier and Wayne Snyder. A general complete E-unification procedure. In Pierre
Lescanne, editor, Rewriting Techniques and Applications, 2nd International Conference, RTA-
87, Bordeauz, France, May 25-27, 1987, Proceedings, volume 256 of Lecture Notes in Computer
Science, pages 216—227. Springer, 1987. doi:10.1007/3-540-17220-3_19.

Matthias Pall Gissurarson. Suggesting valid hole fits for typed-holes (experience report). In
Nicolas Wu, editor, Proceedings of the 11th ACM SIGPLAN International Symposium on
Haskell, Haskell QICFP 2018, St. Louis, MO, USA, September 27-17, 2018, pages 179-185.
ACM, 2018. doi:10.1145/3242744.3242760.

Matthias Pall Gissurarson, Leonhard Applis, Annibale Panichella, Arie van Deursen, and
David Sands. PROPR: property-based automatic program repair. In 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May
25-27, 2022, pages 1768-1780. ACM, 2022. doi:10.1145/3510003.3510620.

Sumit Gulwani. Dimensions in program synthesis. In Temur Kutsia, Wolfgang Schreiner, and
Maribel Fernandez, editors, Proceedings of the 12th International ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming, July 26-28, 2010, Hagenberg, Austria,
pages 13—24. ACM, 2010. doi:10.1145/1836089.1836091.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Found. Trends
Program. Lang., 4(1-2):1-119, 2017. doi:10.1561/2500000010.

Zheng Guo, David Cao, Davin Tjong, Jean Yang, Cole Schlesinger, and Nadia Polikarpova.
Type-directed program synthesis for restful apis. In Ranjit Jhala and Isil Dillig, editors,
PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, San Diego, CA, USA, June 18 - 17, 2022, pages 122-136. ACM, 2022.
doi:10.1145/3519939.3523450.

Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and Nadia
Polikarpova. Program synthesis by type-guided abstraction refinement. Proc. ACM Program.
Lang., 4(POPL):12:1-12:28, 2020. doi:10.1145/3371080.

Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion using
types and weights. In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’18, Seattle, WA,
USA, June 16-19, 2013, pages 27-38. ACM, 2013. doi:10.1145/2491956.2462192.

William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica Piskac. Lazy
counterfactual symbolic execution. In Kathryn S. McKinley and Kathleen Fisher, editors,
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoeniz, AZ, USA, June 22-26, 2019, pages 411-424. ACM,
2019. doi:10.1145/3314221.3314618.

William T. Hallahan, Anton Xue, and Ruzica Piskac. G2Q: haskell constraint solving. In
Richard A. Eisenberg, editor, Proceedings of the 12th ACM SIGPLAN International Symposium
on Haskell, HaskellQICFP 2019, Berlin, Germany, August 18-23, 2019, pages 44-57. ACM,
2019. doi:10.1145/3331545.3342590.

Paul Hudak and Joseph H. Fasel. A gentle introduction to haskell. ACM SIGPLAN Notices,
27(5):1, 1992. doi:10.1145/130697.130698.

https://doi.org/10.1098/rsta.2015.0403
https://doi.org/10.1016/0747-7171(92)90010-2
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1007/3-540-17220-3_19
https://doi.org/10.1145/3242744.3242760
https://doi.org/10.1145/3510003.3510620
https://doi.org/10.1145/1836089.1836091
https://doi.org/10.1561/2500000010
https://doi.org/10.1145/3519939.3523450
https://doi.org/10.1145/3371080
https://doi.org/10.1145/2491956.2462192
https://doi.org/10.1145/3314221.3314618
https://doi.org/10.1145/3331545.3342590
https://doi.org/10.1145/130697.130698

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco

19

20

21

22

23

24

25

26
27

28

29

30

31

32

33

34

35

Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor. Comput. Sci.,
1(1):27-57, 1975. doi:10.1016/0304-3975(75)90011-0.

Michael B. James, Zheng Guo, Ziteng Wang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and
Nadia Polikarpova. Digging for fold: synthesis-aided API discovery for haskell. Proc. ACM
Program. Lang., 4(OOPSLA):205:1-205:27, 2020. doi:10.1145/3428273.

SL Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Philip Wadler. The
glasgow haskell compiler: a technical overview. In Proc. UK Joint Framework for Information
Technology (JFIT) Technical Conference, volume 93, 1993.

John C. Kolesar, Ruzica Piskac, and William T. Hallahan. Checking equivalence in a non-strict

language. Proc. ACM Program. Lang., 6(OOPSLA2):1469-1496, 2022. doi:10.1145/3563340.

James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-Lezama, and Nadia Polikarpova.
Searching entangled program spaces. Proc. ACM Program. Lang., 6(ICFP):23-51, 2022.
doi:10.1145/3547622.

Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. Program sketching with live
bidirectional evaluation. Proc. ACM Program. Lang., 4(ICFP):109:1-109:29, 2020. doi:
10.1145/3408991.

David Mandelin, Lin Xu, Rastislav Bodik, and Doug Kimelman. Jungloid mining: helping to
navigate the API jungle. In Vivek Sarkar and Mary W. Hall, editors, Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and Implementation, Chicago,
IL, USA, June 12-15, 2005, pages 48-61. ACM, 2005. doi:10.1145/1065010.1065018.

Neil Mitchel. Hoogle. URL: https://hoogle.haskell.org/.

Niek Mulleners, Johan Jeuring, and Bastiaan Heeren. Program synthesis using example
propagation. CoRR, abs/2210.13873, 2022. doi:10.48550/arXiv.2210.13873.

Niek Mulleners, Johan Jeuring, and Bastiaan Heeren. Scrybe. https://github.com/NiekM/
scrybe, 2022.

Phuc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. Higher order symbolic execution
for contract verification and refutation. J. Funct. Program., 27:e3, 2017. doi:10.1017/
S0956796816000216.

Ulf Norell. Dependently typed programming in agda. In Pieter W. M. Koopman,
Rinus Plasmeijer, and S. Doaitse Swierstra, editors, Advanced Functional Programming,
6th International School, AFP 2008, Heijen, The Netherlands, May 2008, Revised Lec-
tures, volume 5832 of Lecture Notes in Computer Science, pages 230-266. Springer, 2008.
doi:10.1007/978-3-642-04652-0_5.

Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis. In
David Grove and Stephen M. Blackburn, editors, Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland, OR, USA, June
15-17, 2015, pages 619-630. ACM, 2015. doi:10.1145/2737924.2738007.

Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. Type-directed completion
of partial expressions. In Jan Vitek, Haibo Lin, and Frank Tip, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 12, Beijing, China
- June 11 - 16, 2012, pages 275-286. ACM, 2012. doi:10.1145/2254064.2254098.

John Peterson and Mark P. Jones. Implementing type classes. In Robert Cartwright, editor,
Proceedings of the ACM SIGPLAN’93 Conference on Programming Language Design and
Implementation (PLDI), Albuquerque, New Mezico, USA, June 23-25, 1993, pages 227-236.
ACM, 1993. doi:10.1145/155090.155112.

Veselin Raychev, Martin T. Vechev, and Eran Yahav. Code completion with statistical language
models. In Michael F. P. O’Boyle and Keshav Pingali, editors, ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014, pages 419-428. ACM, 2014. doi:10.1145/2594291.2594321.

Jorg H. Siekmann. Unification theory. J. Symb. Comput., 7(3/4):207-274, 1989. doi:
10.1016/80747-7171(89)80012-4.

4:27

ECOOP 2023

https://doi.org/10.1016/0304-3975(75)90011-0
https://doi.org/10.1145/3428273
https://doi.org/10.1145/3563340
https://doi.org/10.1145/3547622
https://doi.org/10.1145/3408991
https://doi.org/10.1145/3408991
https://doi.org/10.1145/1065010.1065018
https://hoogle.haskell.org/
https://doi.org/10.48550/arXiv.2210.13873
https://github.com/NiekM/scrybe
https://github.com/NiekM/scrybe
https://doi.org/10.1017/S0956796816000216
https://doi.org/10.1017/S0956796816000216
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2254064.2254098
https://doi.org/10.1145/155090.155112
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1016/S0747-7171(89)80012-4
https://doi.org/10.1016/S0747-7171(89)80012-4

4:28

Hooglex: Constants and A-abstractions in Petri-net-based Synthesis

36

37

38

Armando Solar-Lezama. Program sketching. Int. J. Softw. Tools Technol. Transf., 15(5-6):475—
495, 2013. d0i:10.1007/s10009-012-0249-7.

Emina Torlak and Rastislav Bodik. Growing solver-aided languages with rosette. In Antony L.
Hosking, Patrick Th. Eugster, and Robert Hirschfeld, editors, ACM Symposium on New Ideas
in Programming and Reflections on Software, Onward! 2013, part of SPLASH ’13, Indianapolis,
IN, USA, October 26-31, 2013, pages 135—-152. ACM, 2013. doi:10.1145/2509578.2509586.
Darya Verzhbinsky and Daniel Wang. Petsy: Polymorphic enumerative type-guided synthesis.
POPL 2021 Student Research Competition, 2021.

https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/2509578.2509586

Modular Abstract Definitional
Interpreters for WebAssembly

Katharina Brandl &
Johannes Gutenberg-Universitat Mainz, Germany

Sebastian Erdweg &
Johannes Gutenberg-Universitdt Mainz, Germany

Sven Keidel &
TU Darmstadt, Germany

Nils Hansen
Johannes Gutenberg-Universitdt Mainz, Germany

—— Abstract

Even though static analyses can improve performance and secure programs against vulnerabilities,
no static whole-program analyses exist for WebAssembly (Wasm) to date. Part of the reason is that
Wasm has many complex language concerns, and it is not obvious how to adopt existing analysis
frameworks for these features. This paper explores how abstract definitional interpretation can be used
to develop sophisticated analyses for Wasm and other complex languages efficiently. In particular, we
show that the semantics of Wasm can be decomposed into 19 language-independent components that
abstract different aspects of Wasm. We have written a highly configurable definitional interpreter
for full Wasm 1.0 in 1628 LOC against these components. Analysis developers can instantiate this
interpreter with different value and effect abstractions to obtain abstract definitional interpreters
that compute inter-procedural control and data-flow information. This way, we develop the first
whole-program dead code, constant propagation, and taint analyses for Wasm, each in less than
210 LOC. We evaluate our analyses on 1458 Wasm binaries collected by others in the wild. Our
implementation is based on a novel framework for definitional abstract interpretation in Scala that
eliminates scalability issues of prior work.

2012 ACM Subject Classification Software and its engineering — Automated static analysis
Keywords and phrases Static Analysis, WebAssembly
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2023.5

Supplementary Material Software (Source Code): https://gitlab.rlp.net/plmz/sturdy.scala
archived at swh:1:dir:8ccfa27cd16980470eb319533bc03a164d93bf8a

Funding The German Research Foundation (DFG)-451545561, and ATHENE: National Research
Center for Applied Cybersecurity, SeDiTraH

Acknowledgements We thank the anonymous reviewers for their effort and helpful suggestions.

1 Introduction

WebAssembly (Wasm) is a low-level programming language targeted at efficient and portable
computation on the web [10]. Wasm modules are often used as a drop-in replacement for
computation-intensive JavaScript libraries such as game engines [23, 10]. Wasm has also been
designed with security in mind, but many security vulnerabilities reemerge in Wasm because
OS-level routines must be provided as user code, which makes them susceptible to attacks [20],
and because current compilers targeting Wasm lack protection mechanisms such as stack
canaries [29]. While it is well-known that static program analyses can drive performance
optimization, reduce binary size, and discover vulnerabilities, no static whole-program
analyses exist for Wasm to date.

© Katharina Brandl, Sebastian Erdweg, Sven Keidel, and Nils Hansen;
37 licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).

Editors: Karim Ali and Guido Salvaneschi; Article No. 5; pp. 5:1-5:28

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.pl.informatik.uni-mainz.de/
https://www.pl.informatik.uni-mainz.de/
https://svenkeidel.de/
https://doi.org/10.4230/LIPIcs.ECOOP.2023.5
https://gitlab.rlp.net/plmz/sturdy.scala
https://archive.softwareheritage.org/swh:1:dir:8ccfa27cd16980470eb319533bc03a164d93bf8a;origin=https://gitlab.rlp.net/plmz/sturdy.scala;visit=swh:1:snp:418469dcfffe9b67b6891eef50a06a21ae76b59e;anchor=swh:1:rev:d1fc3f1ce4f52cf15231318f34fc54d98ca1c281
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2

Modular Abstract Definitional Interpreters for WebAssembly

Wasm involves many complex and interacting language features that analyses have to
model: operand stacks, call frames, jumps to scoped labels, function and global-variable
tables, dynamically loaded modules, and module-owned linear memory to name a few. It is
not obvious how to adopt existing analysis frameworks for these features, nor is it obvious
how to develop a new analysis framework for these features. In this paper, we demonstrate
that abstract definitional interpretation is capable of developing analyses for Wasm.

Abstract definitional interpretation was first proposed by Darais et al. [7] as an alternative
to abstracting abstract machines [12]. The key idea is to define a generic definitional
interpreter that is parametric in value and effect operations, such that it can be instantiated
to form concrete as well as abstract interpreters. Keidel et. al. [14] refined this approach to
isolate and permit modular reasoning about value and effect components [13]. However, it is
unclear if abstract definitional interpretation scales to languages as complex as Wasm and
if the resulting analyzers scale to real-world programs of considerable size. In this paper,
we answer both of these questions affirmatively and explain how we developed three Wasm
analyses in less than 210 LOC each.

The foundation of all our Wasm analyses is a generic definitional interpreter for Wasm,
which we designed and implemented. An important contribution of this paper is to decompose
the semantics of Wasm and map it to 12 value components and 7 effect components. Each
component consists of an interface with a canonical concrete semantics and any number
of abstract semantics. Since these components are language-independent, we only have to
develop them once and can reuse them across languages and analyses. This way, we managed
to develop a fully-fledged definitional interpreter for Wasm 1.0 and its module system in only
1628 lines of language-dependent code.

The generic interpreter is implemented against the interfaces of value and effect com-
ponents, making the mapping from language concerns to components explicit. Analysis
developers can derive abstract definitional Wasm interpreters by selecting an implementa-
tion for each component used by the generic interpreter. This makes analysis development
modular: We can reuse components between analyses and refine individual components
while reusing others unchanged. We demonstrate this modularity by deriving three abstract
definitional interpreters from the generic Wasm interpreter: a context-insensitive dead code
analysis based on an inter-procedural control-flow graph that we compute, a callsite-sensitive
constant propagation analysis, and a callsite-sensitive taint analysis. Each of the three
analyses is novel for Wasm, and each of them required less than 210 lines of Wasm-specific
code:

Generic interpreter Dead code analysis Constant analysis Taint analysis

LoC 1628 130 156 209

Technically, our implementation is based on a new framework for definitional abstract
interpretation in Scala. Our framework improves over the original DAI by Darais et al. [7] and
Sturdy by Keidel et al. [13] to make definitional abstract interpreters scalable. Specifically,
our framework exploits a simpler component design and eliminates the monadic transformer
stack required by DAI and Sturdy. We show that our analyses scale to real-world programs
by analyzing 1458 Wasm binaries collected by others in the wild. Since these binaries are not
full applications, we also developed a most general client for Wasm that allows us to apply
our whole-program analyses to individual modules soundly. On average, each of our analyses
takes 5s per binary, and we find 14% of all instructions are dead code, 10% of all instructions
could be replaced by constants, and 56% of all memory accesses are safe against tampering.

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen

Concrete Concrete Type Abs. Const. Abs.

(func (param i64) param=1 param=4 param=i64 param=i64
(result i64) result=1 result=24 result=i64 result=i64
local(i64)
i64.const 1 [1] [1] [i64] [1]
local.set 1 1 (1 1 |
(loop 1 1 1 1
local.get O [1] [4] [i64] [i64]
i64.const 1 [1,1] [1,4] [i64,i64] [1,i64]
i64.le_u [1] [o] [i32] [i32]
(if 1 1 1 1
(then [1 (1 (1
local.get 1 [1] [i64] [i64]
return) 1 (1 [1
(else 1 1 [1
local.get 1 [1] [i64] [i64]
local.get O [4,1] [i64,164] [i64,164]
i64.mul [4] [i64] [i64]
local.set 1 [1 1 (1
local.get O [4] [i64] [i64]
i64.const 1 [1,4] [i64,164] [1,i64]
i64.sub [3] [i64] [i64]
local.set 0 1 N 1
br 1))))

Figure 1 Factorial in Wasm: Two concrete runs and an abstract run using a type-based domain.

In summary, we make the following contributions:

We present the design of a modular analysis platform for Wasm (section 3).

We decompose Wasm into 12 value components and 7 effect components and implement
a generic interpreter against their interfaces (section 4).

We modularly define 3 whole-program analyses that are novel for Wasm and provide a
most general client for Wasm modules (section 5).

We designed and implemented a new, scalable framework for abstract definitional inter-
preters in Scala and explain how it improves over prior work. We realized our modular
analysis platform for Wasm on top of this framework (section 6).

We validate the soundness, performance, and applicability of the Wasm analyses (sec-
tion 7).

2 Introduction to WebAssembly and Problem Statement

Wasm is a low-level stack-based programming language with structured control flow. We
illustrate the textual syntax and some of the core features of Wasm using an iterative factorial
function in Figure 1 as an example. The leftmost column shows the code of the factorial
function, whereas the other columns display the stack of the concrete and abstract executions
of that code. Note that the local variable at index o refers to the function parameter and is
used as an iteration counter, whereas the local variable at index 1 is an accumulator for the
result of the factorial function.

We illustrate the concrete interpretation of the factorial function for arguments 1 and 4.

Most Wasm operations interact with the operand stack whose contents we show in Figure 1
for each instruction. For example, i64.const and local.get push values to the stack, whereas
local.set and i64.1e_u pop values from the stack. For param=1, the if finds that the argument
is less-equal than 1 and thus terminates. For param=4, the if goes to the else-branch, where we
accumulate the factorial result, decrement the iteration counter, and jump to the beginning

5:3

ECOOP 2023

5:4

Modular Abstract Definitional Interpreters for WebAssembly

of the loop. Jumps in Wasm are structured, which means they can only target enclosing
blocks, indexed by distance. In our example, br 1 jumps over the if-block and targets the loop.
After a few more iterations, we will again reach the then-branch where the loop terminates.

To illustrate the abstract interpretation of Wasm, the two rightmost columns in Figure 1
show an abstract evaluation of the factorial function where values are approximated by their
types and by concrete values if they are constant. The factorial function is called with type
i64 as argument, denoting any 64-bit integer. Each abstract evaluation must overapproximate
both concrete evaluations. Hence the abstract interpreter analyzes both branches of the
if-instruction and loop until reaching a fixed point. This type analysis can be used to derive
a control-flow graph, but the value representation is configurable in our system. Later in
this paper, we present Wasm analyses that use more precise value abstractions.

Wasm provides many other interesting features not shown in our illustrating example.
For instance, in addition to normal function calls, there are also indirect function calls whose
call target can be found in a function table. Functions can also be imported from other
modules and Wasm code can invoke external functions provided by the runtime system.
When Wasm runs in the browser, these external functions are JavaScript programs. Finally,
each Wasm module can declare module-global variables and request a linear memory (i.e., a
byte array) to store data.

Problem Statement

We want to develop abstract interpreters for Wasm that track data-flow and information-flow.
This is a difficult challenge since the abstract interpreter has to deal with all of Wasm’s
concerns: the operand stack, call frames, global variables, linear memory, function tables, and
structured jumps. Without modularity, all concerns have to be handled at once, complicating
the initial development and hindering evolution.

For example, consider the semantics of indirect function calls which combines 5 Wasm
concerns highlighted with italic font: The interpreter first pops the numeric index of the
function from operand stack and uses it to search through the function table to find the
function definition. If the table has a function definition of the correct type at the index, the
interpreter invokes the function. In particular, the interpreter binds the function arguments
on the operand stack to the function parameters on a newly created call frame. Finally, the
interpreter processes the body of the function and afterwards pushes the return argument on
the stack. There are also multiple edge cases which cause the function invocation to fail.

A naive monolithic analysis implementation may closely couple the semantics of indirect
calls to specific abstractions for the function index, the operand stack, call frame, and
failures. This coupling not only complicates the analysis implementation, it also makes it
difficult to change the abstractions without also requiring changes to the abstract semantics
of indirect calls. To solve this problem, we divide and conquer by modularizing the analysis
implementation, which we discuss in the following section.

3 Modular Wasm Analyses in a Nutshell

In this section, we present the design of our modular analysis platform for Wasm. At the
core of our platform is a generic definitional interpreter for Wasm. The generic interpreter
describes the semantics of Wasm instructions and serves as a template to derive different
Wasm analyses, as well as a concrete interpreter. The generic interpreter is parametric in its
representation for values such as integers and floating point values. Furthermore, the generic
interpreter is parametric in its representation of effects such as the linear memory or the

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen

Generic Interpreter

defines semantics of Wasm instructions,
relative to value and effect components:

Q instantiates
[I]

Concrete Interpreter Constant Analysis Taint Analysis

| Concrete Stack || | | Concrete Stack |_ Concrete Stack _

Figure 2 We propose a modular Wasm analysis platform with a generic interpreter at its root.

trait GenericInterpreter[V, ExcV]:
// Independent value components for abstract value type V
val i32ops: IntegerOps[Int, V]
val f64ops: FloatOps[Double, V]
// Independent effect components
val stack: OperandStack[V]
type WasmExc[V] = (JumpTarget, List[V])
val except: Except[WasmExc[V], ExcV]
// Interpreter written against value and effect components
def evallnst(inst: Inst): Unit = inst match
case i32.Sub =>
val v2 = stack.popOrFail(); val vl = stack.popOrFail()
stack.push(i32ops.sub(vl,v2))
case f64.Abs =>
val v = stack.popOrFail()
stack.push(f64ops.abs(v))
case Return =>
val operands = stack.popNOrFail(currentReturnArity)
except.throws ((JumpTarget.Return, operands))

Figure 3 Simplified generic interpreter that handles subtraction, absolutes, and function returns.

operand stack. Analyses instantiate the generic interpreter with different abstractions for
values such as constants, taint flags, or types and with different abstraction for effects such
as a constant memory abstraction. Similarly, the concrete interpreter instantiates the generic
interpreter with concrete values and effects.

Our platform is modular along two dimensions. First, the generic interpreter defines
the semantics for Wasm instructions once and for all; analyses simply reuse that semantics.
Second, the values and effects required by the generic interpreter are decomposed into
language-independent components, which can be defined language-independently and reused
flexibly. Figure 2 illustrates the modularity of our platform. The generic interpreter sits on
top and is instantiated to obtain concrete and abstract interpreters. It depends on various
value and effect components that must be provided during instantiation. In Figure 2, the
colors illustrate component reuse. While each interpreter uses a different value representation,
the two abstract interpreters use the same component for linear memory and the operand
stack. Since the shape of the operand stack is decidable in Wasm [10], this component is
also shared with the concrete interpreter. In the remainder of this section, we illustrate how
our analysis platform realizes the generic interpreter, its instances, and the components.

5:5

ECOOP 2023

5:6

Modular Abstract Definitional Interpreters for WebAssembly

Generic interpreter

Figure 3 shows a simplified generic interpreter for Wasm. The generic interpreter does not
refer to any specific concrete or abstract value representations. Instead, the interpreter
abstracts over them with the value components IntegerOps for 32-bit integers and FloatOps
for 64-bit floats. Value components are interfaces with any number of implementations, for
example:

trait IntegerOps([B, VI]: // a type class for integer operations
def integerLit(i: B): V // - embeds base literals of type B into the value type V
def sub(vi: V, v2: V): V // - subtraction of two values
object ConcretelntegerOps extends IntegerOps[Int, Int] {...} // concrete semantics
object ConstantIntegerOps extends IntegerOps[Int, Topped[Int]] {...} // constant abstraction
object SignLongIntegerOps extends IntegerOps[Long, Sign] {...} // sign abstraction

In addition to the value components, the simplified generic interpreter requests two com-
ponents for effects: one for the mutable operand stack and one for exception handling.
Like value components, effect components define an interface that can be implemented in
various ways. The OperandStack[V] effect component provides push, pop, and peek operation
for values of type v. The Except component provides operations for throwing and catching
exceptions of type wasmExc[V], consisting of a jump target and a list of operand values. In
contrast to prior frameworks for abstract definitional interpretation, we distinguish value from
effect components to improve the run-time performance of our analyses. Specifically, value
components capture pure operations and do not contribute to the analysis state, whereas
effect components maintain internal state that is part of the overall analysis state. This
becomes relevant when joining computations or computing the fixpoint of an analysis.

The generic interpreter only relies on the interfaces of value and effect components.
Based on these, the generic interpreter defines the semantics of Wasm instructions with the
interpretation function evaiinst. We only show a few selected cases. For integer subtraction,
function evalInst pops two values from the stack, subtracts them, and pushes the result back
on the stack. Note that most Wasm instructions are not overloaded, so it is easy to select
the appropriate value component. For example, function evalinst delegates the instruction
£64.Abs to the component f64ops, which handles 64-bit floating-point numbers. The operand
stack is ubiquitous in the generic interpreter, but other effects are needed too. For example,
function evalInst implements return instructions using exceptions that are caught at the
function head. Exception handling is a standard way for implementing non-local control flow
on the JVM, where our analyzers run. Exception handling also closely aligns with jumps
and returns in Wasm: Due to the structured control flow of Wasm, all jumps (including
returns) target a surrounding block. Similarly, exceptions interrupt execution and return to
the closest surrounding exception handler.

Concrete interpreter

We can instantiate the generic interpreter for different value and effect components. In
particular, we can derive a concrete Wasm interpreter by choosing the canonical concrete
semantics for all components and lifting them to Wasm values. Specifically, we represent
Wasm values using the corresponding number types of the JVM, because the definitional
Wasm interpreter is implemented in Scala.

enum Value:
case I32(i: Int); case I64(1l: Long); case F32(f: Float); case F64(d: Double)

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen

With this, we can instantiate the generic interpreter:

class Concretelnterpreter extends GenericInterpreter[Value, WasmExc[Valuel]:
val i32ops = ... // lifts IntegerOps[Int, Int] to Value.I32
val f64ops = ... // lifts FloatOps[Double, Double] to Value.F64
val stack = new ConcreteOperandStack[Value]
val except = new ConcreteExcept[WasmExc[Value]]

For values we lift the canonical concrete semantics to the value type, for effects we select all
required effect components directly from our library.

Abstract interpreter

We can derive abstract interpreters in the same manner. For example, let us build a type
analysis that only distinguishes the type of each value:

enum Type:
case I32; case I64; case F32; case F64; case Top

Wasm does not need Top, but we include it so Type forms a semi-lattice. We instantiate the
generic interpreter using Type for values and join exceptions that jump to the same target:
type ExcByTarget = Map[JumpTarget,List[Typel]
class AbstractInterpreter extends GenericInterpreter[Type, ExcByTarget]:

val i32ops = // lifts IntegerOps[Int, IntType] to Type.I32

val f64ops = // lifts FloatOps[Double, DoubleType] to Type.F64

val stack = new JoinableConcreteOperandStack[Typel
val except = new JoinedExcept[WasmExc[Typel, ExcByTarget]

Our platform provides language-independent type abstractions for various components. For
the value components in Wasm, we lift these abstractions to the Wasm-specific abstraction
Type. For the operand stack, we exploit that its shape is decidable for Wasm, which allows us
to reuse the concrete operand stack (through subclassing). The abstract interpreter must

join the contents of stacks at control-flow join points, but these stacks will have equal size.

For exceptions, we select an abstract semantics that collects all possibly active exceptions in
a set. Although not shown here, analyses can select a context-sensitivity and configure other
aspects of the fixpoint algorithm, such as the iteration strategy or loop unrolling depth.

This example illustrates how our platform supports the modular development of Wasm
analyses: by plugging together value and effect components and instantiating the generic
interpreter. Moreover, individual components can be refined and replaced easily. But how
can we decompose Wasm into value and effect components and define a generic interpreter
for the full language?

4 Decomposing Language Concerns of WebAssembly

In this section, we propose a decomposition of Wasm that separates individual language
concerns into components. We will then define a Wasm generic interpreter on top of these
components. The generic interpreter only uses the interfaces of the components, while concrete
and abstract interpreters instantiate the generic interpreter with selected implementations of
the components. This way, the decomposition of Wasm into components enables analysis
developers to compose full-fledged Wasm analyses modularly.

In the remainder of this section, we present our decomposition of Wasm and its mapping
to value and effect components. For each component, we have implemented the canonical
concrete semantics compatible with the Wasm specification. We show possible abstract
semantics in section 5, where we construct data and information-flow analyses for Wasm.

5:7

ECOOP 2023

5:8

Modular Abstract Definitional Interpreters for WebAssembly

4.1 Values

Wasm defines four different value types, namely integers and floats with 32 and 64 bits: i32,
i64, £32, £64. In section 3, we already showed how some of the value components can be used
to implement value operations generically, such as IntergerOps for implementing operations
on integers. However, we omitted many details for illustration purpose. The goal of this
subsection is to fill the gap and to introduce other value components we used for Wasm.
Throughout this section, the type variable v stands for the abstract value type used by the
generic interpreter.

Numeric operations

We decompose the numeric operations of Wasm into 6 value components. Besides components
for the various arithmetic operations of the four value types, we use one component for
equality testing, and one component for ordering comparisons of Wasm values:

val i32ops: IntegerOps[Int, V] val f£32ops: FloatOps[Float, V]
val i64ops: IntegerOps[Long, V] val f64ops: FloatOps[Double, V]
val eqOps: EqOps[V, V] val orderingOps: OrderingOps([V, V]

The mapping from Wasm instructions to the respective components is straightforward, but it
is not a one-to-one mapping; some instructions combine multiple operations from components:
def evallntegerUnaryOperation(op: IUnop, v: V): V = op match

case i64.Extend32S =>

val shift = i64ops.integerLit(32)
i64ops.shiftRight (i64ops.shiftLeft(v, shift), shift)

Also note that the validation of Wasm rejects comparisons on values of different type. Thus,
when providing instances for Eqops and OrderingOps, it is sufficient to consider those cases
where the operands have the same type.

Conversions

Wasm features many operations that convert between value types. For example, there
are three operations converting from i32 values to £32 values, namely signed and unsigned
conversions and byte reinterpretation. We use a single convert interface for all conversions,
but require 12 different instances of that component:

trait Convert[From, To, VFrom, VTo, Config]:
def apply(from: VFrom, conf: Config): VTo

val convert_i32_i64: Convert[Int, Long, V, V, ..]
val convert_i32_f32: Convert[Int, Float, V, V, ..]
val convert_i32_f64: Convert[Int, Double, V, V, ..]

Note that the first two type parameters From and To of Convert are tags or phantom types:
They are only used to describe the component. The actual values to be converted are of
type VFrom and VTo, both of which we instantiate with v in the generic interpreter. Actual
instances consider specific value representations for vFrom and vTo, and we lift these instances
to operate on values v as described below. The config parameter guides the conversion. For
example, the following code handles the three different conversions of i32 to £32 values:
def evalConvertop(op: Convertop, v: V): V = op match

case £32.ConvertSI32 => convert_i32_f32(v, Signed)

case £32.ConvertUI32 => convert_i32_£32(v, Unsigned)
case f32.ReinterpretI32 => convert_i32_£32(v, Raw)

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen 5:9

The convert interface can not only be used for numeric conversion operations. We use the
same interface for operations that serialize and deserialize values into bytes. This is required
to write values into Wasm’s linear byte memory:

val encode: Convert[V, Seq[Byte]l, V, Bytes, ...]
val decode: Convert[Seq[Bytel, V, Bytes, V, ...]

def evallnst(inst: Inst): Unit = inst match
case i: Storelnst =>
val v = stack.popOrFail()
val bytes = encode(v, ...)
. // store bytes in memory

Branching

Concrete and abstract interpreters differ significantly when it comes to branching control
flow, as required for conditional constructs. While the concrete interpreter will select exactly
one branch to execute, abstract interpreters must analyze both branches unless they can
statically decide if the branching condition is true or false. We capture branching with a
value component that receives two continuations:

trait BoolBranching[B, R]:
def boolBranch(v: B, thn: => R, els: => R): R

Implementations of this interface can select the type B, for which they can decide the
branching. For example, we show the canonical concrete semantics that instantiates B with
Boolean and a type semantics that uses BooleanType:

class ConcreteBranch[R] extends BoolBranching[Boolean, R]:
def boolBranch(v: Boolean, thn: => R, els: => R): R = if (v) thn else els

class BoolTypeBranch[R] (eff: EffectStack, j: Join[R]) extends BoolBranching[BooleanType,R]:
def boolBranch(v: BooleanType, thn: => R, els: => R): R = eff.joinComputations(thn,els,j)

The concrete semantics simply uses the boolean condition to decide which branch to execute.
In contrast, the type semantics must execute both branches and join their results and effects.
Our platform provides a helper function joinComputations to achieve that, given the stack of
effects (Effectstack) used by the abstract interpreter and an instance of type class Join[R].
In our implementation, these arguments are modeled as implicit parameters and resolved
automatically. We explain how our framework joins effectful computations in section 6.

We use boolBranch for all conditional instructions: select, brif, and if. For example:
val branchOps: BooleanBranching[V, Unit]
def evallnst(inst: Inst): Unit = inst match

case If(bt, thnInsts, elsInsts) =>

val isZero = evalNumeric(i32.Eqz)
branchOps.boolBranch(isZero, label(elsInsts), label(thnInsts))

We will explain the 1abel function later in the context of jumps. For now it is sufficient to
know that it executes a labeled block of code.
Lifting Value Components

Our platform provides language-independent concrete and abstract instances for all value com-
ponents, such as the concrete IntergerOps[Int, Int] and the abstract IntegerOps[Int, IntTypel.
However, as shown above, generic interpreters usually require operations on some compound

ECOOP 2023

5:10

Modular Abstract Definitional Interpreters for WebAssembly

type for values. To reuse the language-independent component instances, we must lift them
to the Wasm-specific value type. To facilitate this, our platform provides lifting instances
for all value components, which can be easily instantiated. For example, the following two
definitions lift the concrete and type-based integer operations to Wasm values and types,
respectively:
val i32opsValue: IntegerOps[Int, Value] =

new LiftIntegerOps({case Value.I32(i) => i}, i => Value.I32(i))

val i32opsType: IntegerOps[Int, Typel =
new LiftIntegerOps({case Type.I32 => IntType}, _ => Type.I32)

For an underlying value type U, LiftIntegerOps takes an extract function v => U and an inject
function v => v. With these, it wraps the operations of the underlying language-independent
component instance, for example:

def sub(vi: V, v2: V): V = inject(underlying.sub(extract(vl), extract(v2)))

In our Wasm analyses, all value components are based on language-independent component
instances that we lift.

4.2 Effects

Computations generally yield values and trigger effects. Wasm features many language
concerns that are effectful. We capture these concerns in effect components. While value
components are stateless, effect components contain internal state. This distinction is
important when joining computations (as in the type-based boolBranch), because effect
components must participate in the join (see section 6 for details). In this subsection, we
present a decomposition of Wasm'’s effectful language concerns into effect components.

Operand Stack

Wasm programs interact with an operand stack. We capture this effect in a dedicated effect
component:
trait OperandStack[V, MayJoin[_1]:

def push(v: V): Unit

def pop(): JOption[MayJoin, V]
def popOrFail(): V = ...

Except for the MayJoin type parameter, this component provides a standard stack interface.
The MayJoin parameter determines whether the component can yield an uncertain result for
pop. For example, if an abstract stack semantics lost track of the stack’s height, pop would
yield an uncertain result that comprises alternative values or even a stack underflow. In
contrast, a concrete stack semantics yields certain results only: either the stack’s topmost
value or no value if the stack is empty. Instances of OperandStack can declare which behavior
they provide by choosing NoJoin or WwithJoin for MayJoin:

enum MayJoin[A]:

case NoJoin()
case WithJoin(j: Join[A], eff: EffectStack)

Indeed, a concrete stack uses NoJoin whereas an abstract stack uses withJoin. Given a
WithJoin[A]l, we can invoke joinComputations as shown above in the abstract branching semantics
of subsection 4.1. Furthermore, Join[A] is used to join values of type A. OperandStack forwards
the MayJoin parameter to Joption, a data type for joinable option values that we use to
represent uncertain data. Since JOption[NoJoin, A] is isomorphic to the standard option[Al,
concrete operand stacks provide a standard stack interface.

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen

Many of our effect components use a similar design to declare that operations may yield
uncertain results in the abstract semantics. Indeed, the generic interpreter itself has a MayJoin
parameter that it forwards to the required effect components. However, sometimes the generic
interpreter can formulate more precise requirements. For Wasm, the language specification
guarantees that the height of the stack is decidable at all times and that stack lookups must
yield certain results. To this end, the generic Wasm interpreter requires a decidable operand
stack, which internally selects NoJoin for MayJoin.

Indirect Calls and Function Tables

Wasm features indirect function calls via function indices, which really are plain i32 values
computed by the program. To evaluate an indirect function call, Wasm reads a function
index from the stack, looks up the index in a function table, and invokes the found function:
def evallnst(inst: Inst): Unit = inst match
case CallIndirect(typelx) =>
val funcIx = stack.popOrFail()

val funV = funTable.getOrElse(funcIx, fail(UnboundFunctionIndex, ...))
funOps.invokeFun(funV, invoke)

This code uses two additional components: an effect component funTable and a value
component funOps. We model the function table as a generic symbolTable component that
maps symbols to entries:

trait SymbolTable[Symbol, V, MayJoin[_]]:

def get(symbol: Symbol): JOption[MayJoin, V]
def put(symbol: Symbol, newEntry: V): JOption[MayJoin, Unit]

val funTable: SymbolTable[FuncIx, FunV, MayJoin]

Note how the symbol table uses the same MayJoin pattern as the operand stack. However,
lookups in the function table are not decidable in Wasm, so that abstract interpreters
sometimes obtain an uncertain function. For example, our type analysis does not track the
values of function indices and thus must consider all reachable functions as potential targets
for indirect calls. This also is the reason why the function table contains Funv values rather
than functions directly: We must be able to join function values. To abstract from the
specific Funv representation, we use a generic value component FunctionOps:

trait FunctionOps[Fun, A, R, FunV]:

def funValue(fun: Fun): FunV
def invokeFun(v: FunV, a: A)(invoke: (Fun, A) => R): R

val funOps: FunctionOps[Function, FuncType, Unit, FunV]

Operation funvalue lifts a function into a function value Funv. Operation invokeFun does the
inverse: It extracts functions from a function value and applies the continuation invoke on
each of them. Similar to boolBranch, abstract instances of FunctionOps join the result r of all
functions.

Global Variables

Wasm features numerically indexed global variables that can be used to store values. We

model global variables using the same symbolTable component that we used for function tables.

However, the resolution of global variables is decidable in Wasm and always yields a certain
result. We incorporate this fact in the generic interpreter by requiring a decidable symbol
table for global variables:

val globals: DecidableSymbolTable[Int,V]

5:11

ECOOP 2023

5:12

Modular Abstract Definitional Interpreters for WebAssembly

Please note that in Wasm, each module has its own globals, function table, and memory,
which can also be shared between modules. Our implementation takes this into account, but
we decided to simplify the presentation of the code for the paper.

Local Variables

Each Wasm function can declare local variables, which we understand to include the function
parameters. A function can read and write its local variables freely. We model local variables
through a generic callFrame component. Each call frame has a fixed size determined at
construction by operation inNewFrame. In addition, a call frame can track auxiliary pata for
each frame. For Wasm, we use the call frame to track the module instance of the currently
executing function as well as its return arity:

trait CallFrame[Data, Var, V, MayJoin[_]]:
def inNewFrame[A](d: Data, vs: Seq[(Var, V)])(f: => A): A
def getFrameData: Data
def getLocal(x: Int): JOption[MayJoin, V]
def setLocal(x: Int, v: V): JOption[MayJoin, Unit]

val callFrame: DecidableCallFrame[(ModuleInst, Int), Int, V]

Note how both call frames and symbol tables map indices to values. However, call frames
are scoped by function call and the previous call frame is restored when exiting a function.
Operation inNewFrame takes care of this behavior, executing £ in the new frame and restoring
the previous frame after f finishes. This way, the generic interpreter can implement function
invocations:

def invoke(fun: Function): Unit =
val args = stack.popNOrFail (fun.params.size)
val locals = args ++ fun.locals.map(num.defaultValue)
val data = (module, fun.returnArity)
callFrame. inNewFrame(data, locals) (enterFunction(fun))

Linear Memory

Wasm programs can load and store data from a growable linear memory. Technically, the
linear memory is a byte array that is accessed using 32-bit integers as index. Wasm provides
various instructions to load and store values of different types. In our generic interpreter,
the following code handles load instructions using the memory effect component:

trait Memory[Addr, Bytes, Size, MayJoin[_]]:
def read(addr: Addr, length: Int): JOption[MayJoin, Bytes]
def write(addr:Addr, bytes:Bytes): JOption[MayJoin, Unit]

val memory: Memory[Addr, Bytes, Size, MayJoin]
def load(inst: LoadInst): Unit =
val addr = effectiveAddr(inst.offset)
val length = getBytesToRead(inst)
val bytes = memory.read(addr, length).orElse(fail(MemoryAccessOutOfBounds, ...))
stack.push(decode(bytes, inst))

We first compute the effective address to be loaded by adding a static offset to the base
address, which is on the operand stack. We then determine the number of bytes to be loaded.
We invoke the read operation of the memory effect component to obtain a byte sequence.
Finally, we decode those bytes using the decode component discussed in subsection 4.1.

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen

Jumps

Wasm features a limited form of jumps that abides by structured control flow, which means
that jumps can only target enclosing blocks. Instead of using named labels, Wasm jumps
declare the number of blocks to skip, that is, the block-distance between the jump and the
target block. We model jumps through an effect component for exception handling:

trait Except[Exc, ExcV, MayJoin[_1]:
def throws(ex: Exc): Nothing
def tries[A](f: => A): JEither[MayJoin, A, ExcV]

The Except component is parametric in the underlying exception type Exc and the repres-
entation of exception values Excv. Similar to Joption from above, operation tries yields a
value of a joinable either data type, JEither for short. That is, tries either yields an A when
f triggers no exception, or it yields an Excv. Since abstract instances of Except may not be
able to determine the exact behavior of £, the result of tries can be uncertain, which JEither
encapsulates.

The generic interpreter uses exception handling to support jumps and returns:

type WasmExc[V] = (JumpTarget, List[V])
enum JumpTarget:

case Jump(labelIndex: Labelldx)

case Return

val except: Except[WasmExc[V], ExcV, MayJoin]

def jump(labellndex: Labelldx): Unit =
val returnArity: Int = labelStack.arityOf (labelIndex)
val operands = stack.popNOrFail(returnArity)
except.throws ((JumpTarget . Jump (labelIndex), operands))

def label(returnArity: Int, insts: Seq[Inst]): Unit =

labelStack.pushLabel (returnArity)

val tried = except.tries(insts.foreach(evallnst))

labelStack.popLabel()

tried.either(identity) {
case (JumpTarget.Jump(0), ops) => stack.pushN(ops)
case (JumpTarget.Jump(ix), ops) => except.throws(WasmExc.Jump(ix - 1, ops))
case (JumpTarget.Return, ops) => except.throws(WasmExc.Return(ops))

}

Function jump takes the index of a label, looks up the return arity required by that label in an
auxiliary data structure called 1abelstack, and triggers a Jump exception with the corresponding
number of operands. Jump exceptions are handled by function 1abel, which we use when
entering a new block. This function first pushes the return arity of the label to the 1abelstack
and then tries to run all instructions of the block. We use either to react to the result of

that execution. If the block succeeds without exception, nothing has to be done (identity).

However, if an exception was (possibly) thrown, we react accordingly. If the jump target
has index o, it targets the current label and we push the operands on the stack. Otherwise,
we decrement the jump target index and escalate the exception. Return exceptions always
escalate; they are handled by enterFunction.

Traps

Wasm programs can trigger unrecoverable errors, called traps. We model traps using the
Failure effect.

5:13

ECOOP 2023

5:14

Modular Abstract Definitional Interpreters for WebAssembly

trait Failure:
def fail(kind: FailureKind, msg: String): Nothing

val failure: Failure

In contrast to exceptions, failures are unrecoverable and cannot be caught. While the
canonical concrete semantics of Failure aborts the execution of a Wasm program, abstract
interpreters must continue to explore execution paths that do not fail. That is, the abstract
fail produces a set of potential Failurekind and throws a specific Scala failure exception.
Furthermore, the failure join operation catches failure exceptions at branching points and
continues to explore other branches. After all branches have been explored, the failure join
operation rethrows the failure exception if one of the branches failed.

4.3 Summary

We have decomposed the analysis of Wasm into various language concerns. We implemented
each of these concerns with 12 separate value components for numeric operations, conversions,
and branching, and with 7 effect components for the operand stack, function and symbol tables,
global and local variables, linear memory, jumps, and traps. Based on this decomposition,
we have developed a generic interpreter for Wasm that is parametric in how the value and
effect components are instantiated. The generic interpreter implements evaluation of Wasm
code. The generic interpreter also implements the module system, manages exports, resolves
imports, and performs module instantiation, which is used to initialize variables, function
tables, and memories. In particular, we have implemented the canonical concrete semantics
for all value and effect components and used those to derive a concrete Wasm interpreter.
This concrete Wasm interpreter is a feature-complete and correct implementation of the
Wasm 1.0 specification, as we detail in section 7.

The generic interpreter is not only parametric in the value and effect components, but
also in the fixpoint algorithm. While the concrete interpreter can simply run a program until
it terminates, abstract interpreters must widen analysis results to ensure termination. To
this end, our generic interpreter is written in an open recursive style, giving control to the
fixpoint algorithm in each recursive invocation. When instantiating the generic interpreter,
we configure a generic fixpoint algorithm provided by our platform to select context-sensitivity
and other aspects. We illustrate such configuration in the next section, where be build three
whole-program Wasm analyses as instances of the generic interpreter.

5 Modularly Defined Analyses for Wasm

In the previous section, we have presented the key ingredients of our modular static analysis
platform for Wasm: a Wasm semantics decomposed into value and effect components and
a generic Wasm interpreter. In the present section, we demonstrate how our platform can
be used to implement Wasm analyses modularly. To this end, we implement three Wasm
analyses: a dead code analysis, a constant propagation analysis, and a taint analysis. We
compose each analysis modularly from value and effect components that we use to instantiate
the generic interpreter.

5.1 Type Analysis

As a baseline, we first describe an analysis with a type abstraction, which additionally
identifies dead code. To this end, we must construct an inter-procedural control-flow graph
(CFQG) that allows us to identify unreachable instructions. Note that the construction of a
precise interprocedural CFG is undecidable in general and approximation is required. In this
subsection, we use a type analysis to approximate the behavior of the program.

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen

Our platform provides a reusable singleton type BaseType[T] to represent type T, which we
use to model our type analysis:

enum Type:
case I32(i: BaseTypelInt]l); case I64(1: BaseTypel[Longl);
case F32(f: BaseTypel[Float]); case F64(d: BaseType[Double]); case Top

type Addr = BaseTypel[Int] type FuncIx = BaseTypel[Int]
type Bytes = BaseType[Seq[Bytell type FunV = Powerset[FunctionInstance]
type Size = BaseTypel[Int] type ExcV = Map[JumpTarget,List[Typel]

The type analysis does not track memory access precisely: all reads yield a top value.
Specifically, we represent addresses Addr, byte sequences Bytes, and memory size Size using
their type. We also don’t track function indices: Indirect function calls resolve to the set of
all functions currently in the function table. For exceptions, we collect all active exceptions
in a set. Based on these definitions, we select the following effect components:

val stack = new JoinableConcreteOperandStack[Type]

val memory = new TopMemory[MemoryAddr, Addr, Bytes, Sizel

val globals = new JoinableConcreteSymbolTable[GlobalAddr, Typel

val funTable = new UpperBoundSymbolTable[TableAddr, FuncIx, FunV]
val callFrame = new JoinableConcreteCallFrame[FrameData, Int, Typel
val except = new JoinedExcept[WasmException[Value], ExcV]

val failure = new AFailureCollect

Note how we use decidable instances for the operand stack, call frames, and global variables,
since all three concerns are statically decidable in Wasm. The memory yields top on every
read, the function table yields all stored entries when queried. We use the AFailureCollect
instance for abstract failures, which collects all possible failures of the analyzed program.

Finally, every analysis must configure the fixpoint algorithm used by our platform. Most
importantly, we must select a context-sensitivity and iteration strategy. Our platform
provides a combinator library for describing these aspects:

val phi = fix.log(controlFlowGraphLogger,
fix.contextSensitive(fix.context.none,
fix.filter (isFunOrLoop, fix.iter.innermost))

Combinator fix.contextSensitive determines the context-sensitivity of the type analysis.
Specifically, the type analysis is context-insensitive, which means that all calls of the same
function are joined. Combinator fix.filter applies the inner combinator only to instructions
for which predicate holds. In this case, the filter combinator applies a specific iteration
strategy to functions and loops, because these are the only Wasm constructs which can diverge
and need to be iterated on. Combinator fix.iter.innermost iterates on the innermost strongly-
connected components of the dependency graph of the abstract interpreter. Specifically, it
iterates on the innermost of nested loops and the innermost of nested recursive function calls.
Lastly, combinator fix.log calls a logger before and after every instruction. The logger in
this case records an interprocedural control-flow graph, which we explain in the following
paragraph.

CFG construction

Our platform uses big-step abstract interpretation, in which the control flow of analyzed
programs is implicit. However, we can make the control flow explicit by observing the order
in which instructions are executed by the abstract interpreter. To this end, we call function
fix.control of our platform with mappings from Wasm instructions to CFG nodes:

5:15

ECOOP 2023

5:16

Modular Abstract Definitional Interpreters for WebAssembly

val controlFlowGraphLogger = fix.control(config) {
// called before interpreting an instruction // localget 0
case Enter(fun) => CfgEnter(fun) ! ?*”
case Eval(c: Call, loc) => CfgCall(c, loc)
case Eval(inst, loc) => CfgInstruction(inst, loc)

A

// called after interpreting an instruction
case (Enter(fun), Exit(_)) => CfgExit(fun)
case (Eval(c: Call,loc), _) => CfgCallReturn(c, loc)

local.get 0
local.get 0
i64.const 1
i64.sub
call 0

v
call-return 0
i64.mul

! | i64.const 1

- ‘-C\a‘\l—retum 0
Function fix.control returns a logger, that is called before and after each Wasm instruction.
The logger adds instructions to basic blocks, adds control-flow edges between basic blocks,
and adds call edges between call-site, entry, and exit points of functions.

For example, this code constructs the CFG shown on the right for a recursive factorial
function, where dashed lines represent call-return edges. Of course, the CFG construction
also scales to larger examples. The last line in the code above activates CFG logging for a
given analysis. While our type analysis is context-insensitive, other analyses may exploit
context-sensitive CFGs. But, as we show in section 7, even the simple type analysis already
produces useful results and finds dead code in Wasm programs. Furthermore, the CFG can
be used as a starting point for other analysis approaches.

5.2 Constant Propagation Analysis

We define a constant propagation analysis by refining the type analysis from above. In a
constant propagation analysis, values are either a concrete value or Top:
enum Value:

case I32(i: Topped[Int]); case I64(1: Topped[Longl);
case F32(f: Topped[Float]); case F64(d: Topped[Doublel); case Top

type Addr = Topped[Int] type FuncIx = Topped[Int]
type Bytes = Seq[Topped[Bytel] type FunV = Powerset[FunctionInstance]
type Size = Topped[Int] type ExcV = Map[JumpTarget,List [Typell

Notably, the constant propagation analysis tracks constant memory addresses and bytes.

That is, when writing a concrete value to a known address, we store the concrete byte

encoding of the value. Conversely, when reading from a known address, if we find a concrete

byte sequence, we decode it into a concrete value. This memory abstraction is certainly only

a first step in developing sophisticated Wasm analyses, but our modular analysis platform

allows us to refine it in future work. For function indices, we track their precise index if

possible. Ideally, dereferencing a function index yields a single function that we can execute,

but if the function index is Top, we obtain a set of all functions in the function table.
Compared to the type analysis, we only have to adapt two effect components, namely

those that handle memory and function indices. We highlight the differences in blue font:

val stack = new JoinableConcreteOperandStack [Typel

val memory = new ConstantAddressMemory[MemoryAddr, Addr, Bytes, Sizel

val globals = new JoinableConcreteSymbolTable[GlobalAddr, Typel

val funTable = new ConstantSymbolTable[TableAddr, FuncIx, FunV]

val callFrame = new JoinableConcreteCallFrame[FrameData, Int, Typel

val except = new JoinedExcept[WasmException[Value], ExcV]
val failure = new AFailureCollect

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen

To increase the precision of the constant propagation analysis, we can choose a 1-callsite
sensitive fixpoint algorithm. To this end, we log each function call with a call-site logger and
use the most recent call site as a context:

val callSites = fix.context.callSites {

case Eval(c: (Call | Calllndirect), _) => Some(c)

case _ => None
}
val phi = fix.log(callSites,

fix.log(controlFlowGraphLogger,
fix.contextSensitive(callSites.callString(1),
fix.filter (isFunOrLoop, fix.iter.innermost))))

Finally, we need to determine whether an instruction is constant in all execution paths. We
can achieve this by observing the results of the abstract interpreter for each instruction. To
this end, we implemented a logger that reads the relevant data from the operand stack before
and after executing an instruction. In case an instruction is visited more than once (e.g.,
in a loop) the recorded values are joined. If the final result is constant, the instruction is
constant across all execution paths. Our analysis platform allows us to add this functionality
modularly:
val constants = new InstructionLogger { inst =>

// log before execution of inst

if (readsSingleValueFromStack(inst))

Some (stack.peekOrFail())

else if ...
} { inst =>

// log after execution of inst

if (writesSingleValueToStack(inst))

Some (stack.peekOrFail())
else if ...

5.3 Taint Analysis

As a last example, we define a taint analysis by refining the constant propagation analysis
The goal of the analysis is to detect tainted memory accesses, i.e., if a tainted value is used
as memory address. As source for tainted values, we consider user input which results from
calling host functions. To track taint, we tag a taint property to each value:

enum Value:

case I32(i: Taint[Topped[Int]l]); case I64(1l: Taint[Topped[Longll);
case F32(f: Taint[Topped[Float]]); case F64(d: Taint[Topped[Doublel]); case Top

type Addr = Topped[Int] type FuncIx = Topped[Int]
type Bytes = Seq[Taint[Topped[Bytelll type FunV = Topped[Powerset [FunctionInstance]]
type Size = Topped[Int] type ExcV = Map[JumpTarget,List [Typell

We omit the effect and fixpoint configuration of the taint analysis since it is identical to the
constant propagation analysis.

To detect illegal memory access through tainted values, we add a new observer to the
analysis. Note that we observe the values on the stack before they are cast to an address,
which is why type Addr does not need a taint flag.

val tainting = new InstructionLogger { inst =>
if (isLoadInst(inst)) {
val addrV = stack.peekOrFail()
if (addrV.isTainted) Some(Powerset(addrV)) else None

}
}

5:17

ECOOP 2023

5:18

Modular Abstract Definitional Interpreters for WebAssembly

We collect tainted addresses for each memory instruction. A memory instruction is safe if its
set of tainted addresses is empty. Of course, we could track other sinks or sources for tainted
values and expect to do so in future work.

5.4 Most General Client for Wasm Modules

Abstract definitional interpreters are whole-program analyses: Interpretation starts in the
main function and subsequently explores all code reachable from there. However, Wasm
programs are usually used as libraries within JavaScript applications. To apply our whole-
program analyses to individual Wasm modules, we develop a most general client for Wasm.
Most general clients can be used to apply whole-program static analyses to library
code [19]. A most general client approximates all valid usages of a given library, and it can
be used as a single entry point for the analysis. We have developed a most general client for
Wasm modules that exercises all interleavings of all exported functions in a loop:
def runMostGeneralClientLoop(modInst: ModuleInstance)): Unit =
effectStack.mapJoin(modInst.exportedFunctions) { case (funName, funIx) =>
val fun = modInst.functions.getOrElse(funIx, fail(UnboundFunctionIndex, funIx.toString))
val args = fun.funcType.params.map(typedTop).toList
invokeExported (modInst, funName, args)

}

fixpoint (runMostGeneralClientLoop (modInst))

In each loop iteration, we run all exported functions in isolation and join their effects to
update the analysis state. Our fixpoint algorithm iterates this loop until the analysis state
is stable. The final analysis state soundly approximates all possible sequences of exported
functions.

Note that a Wasm client can also write to exported tables and memory. Our most general
client does not capture this behavior, which may cause the analysis result to be unsound
for such clients. If the exported tables and memory are not edited externally, our approach
obtains a sound analysis result for the library code.

6 A Scalable Framework for Abstract Definitional Interpretation

We designed and implemented a new framework for abstract definitional interpretation in
Scala as open source.! In this section, we describe how our new framework improves over
prior work and why that was necessary for scaling the approach to complex languages and
real-world programs. There are two prior frameworks for abstract definitional interpretation:
the original DAT in Racket by Darais et al. [7] and Sturdy in Haskell by Keidel et al. [13].
While we compare to both, we also implemented a complete generic definitional interpreter
for Wasm in Sturdy and report on the lessons learned.

Component design

Abstract definitional interpretation has supported modularly defined components from the
start. Already in DAI, the generic PCF interpreter used components for environments,
stores, and allocation [7]. However, these components followed an ad-hoc design and did
not share an interface between concrete and abstract semantics. Not only did this preclude
modular reasoning about components, it also implies that we must use the non-determinism

! nttps://gitlab.rlp.net/plnz/sturdy.scala

https://gitlab.rlp.net/plmz/sturdy.scala

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen

monad to collect alternative analysis (sub-)results. For example, DAI features a function
isZero(v: V): Boolean in the concrete semantics and isZero(v: V): List[Boolean] in the abstract
semantics. Consequently, when the abstract semantics cannot decide if a value is zero it
yields List(true, false) and all of the remaining analysis is run twice: once for true and
once for faise. Nested conditionals with uncertain conditions like this trigger an exponential
blow-up that is unacceptable when scaling up.

Sturdy was designed to support the development of sound static analyses with compos-
itional soundness proofs. For this reason, Sturdy introduced a design principle based on
parametricity that ensures no details about the concrete or abstract semantics is leaked
into the generic interpreter [14]. This design principle prohibits an operation iszero as in
DAL Instead, Sturdy provides a operation ifZero(v: V, ifTrue: => R, ifFalse: => R): R, where
ifTrue and ifFalse are continuations. If both continuations must be run, Sturdy joins their
results before moving on with the rest of the analysis. Sturdy uses a similar design for all
operations that introduce uncertainty. For example, reading from a store is done by operation
read(a: Addr, ifFound: V => R, ifNotFound: => R): R. We found the use of continuations in
Sturdy excessive, making it harder to write and maintain the generic interpreter for Wasm.
But can this be avoided?

In our framework, we have retained Sturdy’s design principles to permit modular reasoning
about components. While our framework does not attempt to support formal proofs, modular
reasoning reemerges in the form of modular soundness propositions that can be used during
testing. However, we significantly reduce the amount of continuations needed by encapsulating
uncertain results in dedicated auxiliary data types: Joption and JEither. These data types
provide standard operations such as getOrElse, map, and flatMap. For the concrete semantics,
these data types behave identical to the standard option and Either types, but their abstract
semantics can encode uncertainty such as LeftOrRight (1, r). Besides reducing the number of
continuations needed, these types significantly improve the readability of component interfaces.
For example, reading from a store has the simple signature read(a: Addr): JOption[MayJoin, V].

Eliminating the monadic transformer stack

Both DAI and Sturdy encode the generic interpreter in monadic style: The side effects
triggered by the analyzed program are threaded through the monadic computation. And
both frameworks use transformers to decompose effect handling into components. For
example, in Figure 4 we show the transformer stacks used by DAI and Sturdy for a k-CFA
analysis of PCF, as well as the transformer stack for our prototypical constant propagation
analysis of Wasm implemented in Sturdy. This shows how the transformer stack grows
considerably when analyzing complex languages.

Large transformer stacks are problematic because they impair the performance of the
interpreter. Every monadic operation in the interpreter must traverse the entire transformer
stack, slowing down interpretation considerably. Keidel et al. [13] measured this effect
and showed that an interpreter on a transformer stack was 7756x slower than the same
computation after exhaustive inlining of the entire stack. Thus, they argued that inlining
allows us to enjoy modularity without regrets. While we concur in principle, this approach
does not scale to complex languages unfortunately. For transformers stacks like the one
for Wasm shown in Figure 4, the compiler exceeded 16 GB of memory while inlining and
ultimately failed to compile the program. Since a 7756x slower analysis is not feasible, we
must find an alternative design to support modularly defined components.

In our framework, we follow an object-oriented design in representing independent
components. Rather than stacking all components and threading their effect through the
computation, we let each component manage and manipulate its own internal state. As

5:19

ECOOP 2023

5:20

Modular Abstract Definitional Interpreters for WebAssembly

// DAI: k-CFA analysis of PCF, 6 components
ReaderT (FailT (StateT (NondetT (CacheT (FinMapO Power0) ID))))

// Sturdy: k-CFA analysis of PCF, 8 components
ValueT (ErrorT (EnvT (FixT (ComponentT (StackT (CacheT (CallSiteT (->))))))))

// Sturdy: constant propagation of Wasm, 15 components
ValueT (JumpTypesT (OperandStackT (ExceptT (StaticGlobalStateT
(MemoryT (SerializeT (TableT (FrameT (LogErrorT
(FixT (ComponentT (StackT (CacheT (ControlFlowT (->)))))))))))))))

Figure 4 Deep transformer stacks as required by DAI and Sturdy impair the performance of the
analyzers.

usual in OO, the internal state is encapsulated in the component and hidden behind a public
interface. For example, setting a global variable globals.set(x, stack.popOrFail()) changes
the internal state of stack and globals, which is observable through operations of the public
interface, such as globals.get. Since components are not stacked, invoking a component’s
operation is a simple method call that does not involve any other components.

Only when joining effectful computations, all effect components must participate, each
taking care of their own internal state. The generic interpreter defines an effect stack that
determines the order in which effects are joined. For Wasm, we use the following effect stack:

val effectStack = EffectStack(List(
stack, memory, globals, funTable, callFrame, except, failure))

Each abstract semantics of an effect component must implement joinComputations(£) (g), which
executes £ and g on the current internal state and merges the two resulting states. We apply
a common strategy to implement these joins:

1. Take a snapshot of the internal state.

Execute £, store the resulting state.

Restore the snapshot state.

Execute g, store the resulting state.

LAl ol o\

Join the two states in an effect-dependent manner.
Consider the following example program:
// locals before: 0 := 0; 1 := 10

(if (then (i32.const 25) (local.set 0)) (else (local.get 0) (local.set 1))
// locals after: O := (25 L1 0); 1 := (10 U 0)

The then branch produces a call frame that still maps 0 := 25 and 1 := 10 unchanged. The
else branch must operate on a copy of the original call frame and produce o0 := 0 unchanged
and 1 := 0, ignoring the manipulations done in the then branch. Finally, we join the resulting
call frames, obtaining the result shown above. In the next section, we show that analyses
defined in our framework scale to real-world programs.

7 Evaluation

section 5 has already demonstrated how our approach enables the modular construction
of Wasm analyses. In this section, we present empirical results that attest (i) the concrete
interpreter is correct, (ii) the static analyses are sound with respect to the concrete interpreter,
and (iii) the type, constant, and taint analyses yield relevant results.

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen

Correctness of concrete interpreter

Establishing the correctness of the concrete interpreter is important, because the concrete
interpreter provides ground truth for reasoning about the soundness of our analyses. Thus,
any soundness result we may provide is only meaningful as long as the concrete interpreter
itself is a true implementation of the Wasm specification. In particular, our analyses and the
concrete interpreter share the generic interpreter, which must be correct. In fact, if there was
a bug in the generic interpreter, this bug would not trigger a soundness violation, because
the concrete interpreter would exhibit the same incorrect behavior. Therefore, establishing
the correctness of the concrete interpreter is paramount.

To this end, we ran our concrete Wasm interpreter against the official test suite from the
Wasm specification.? The test suite consists of 16481 assertions, testing the correct behaviour
of the Wasm interpreter. This testing revealed several bugs in our implementation, all of
which we fixed. For example, we found indexing errors in the linear memory and several
subtle bugs concerning floating-point operations. Our concrete Wasm interpreter now passes
the complete test suite.

Soundness of static analyses

Only sound analyses can be used to inform program optimizations without jeopardizing the
program’s semantics. Since we want to conduct performance optimizations and reduce the size
of Wasm binaries, we must ensure our analyses are sound. To this end, we tested soundness of
our analyses against the concrete interpreter. Our platform allows us to implement soundness
propositions for each value and effect component modularly. Value components implement an
abstraction function that lifts the canonical concrete value representation into the abstract

domain, using a partial order on the abstract domain to determine sound approximation.

Effect components implement a soundness proposition that relates the internal state of the
canonical effect implementation to their own internal state. That is, we not only check
the final value computed by an analysis, but also the final state of the linear memory and
other effect components. An analysis then simply composes the soundness propositions of its
components.

We tested the soundness of our analyses against the concrete interpreter on the test suite
from the Wasm specification. Specifically, we ran the analyses and the concrete interpreter
simultaneously and tested analysis soundness after every single assertion. This uncovered
several bugs. For example, we initially defined integer division Top / Top = Top, which neglects
division-by-zero errors and should yield Top LI fail(...) instead. We were able to fix all
soundness bugs, so that we are confident the abstract interpreters are sound with respect to
the concrete interpreter.

Large-scale evaluation

To assess the applicability and performance of our analyses, we applied them to the programs
collected by others in the WasmBench benchmark suite. WasmBench [11] contains 8461 unique
Wasm binaries collected from various sources, including github, NPM, and by crawling
websites. Out of these, we had to ignore 7003 binaries that failed to validate, 6354 of
which due to unresolvable imports of modules not collected by the benchmark suite. Since
WasmBench collects individual binaries rather than applications, we have no principled

2 https://github.com/WebAssembly/spec/

5:21

ECOOP 2023

https://github.com/WebAssembly/spec/

5:22

Modular Abstract Definitional Interpreters for WebAssembly

40
o o
80 100
1
coanan

@ o

30
1

20
1

40
1

Running times in seconds
Percentage (%) of instructions

=D OCO O@E @O CO@ ® O

10

8
8
g
: j
Cx . 14%
3 L 0%

——x 23
ﬁ %l A
o o - —o—

T T T dead'code dead'code constant safe memory
type analysis constant analysis taint analysis (type values) (constant values) instructions instructions

MFWM .
20
1

>
IS
»

Fc 00 O@ O o oo

Figure 5 Running times in seconds (left) and analysis results in % of instructions (right) for
analyzing each of the 1458 WasmBench binaries. The red cross indicates the mean time or percentage.

means of finding the right module. Another 607 binaries out of the 7003 were rejected due
to invalid memory page size information. For each binary of the remaining 1458 binaries,
we run our analyses using the most general client described in subsection 5.4, so that the
analysis results soundly approximate any potential usage of the module.

We measured the running times after a warm-up phase. We cancelled analysis runs after
60 seconds, which yielded between 196 and 200 timeouts per analysis. This timeout was
chosen for pragmatic reasons: To limit the overall time required to run the experiment, which
finishes in a little over 7 hours. Figure 5 shows the running times of the successful analysis
runs. On average, the type analysis finishes in 4s, the constant analysis in 5s, and the taint
analysis in 2s. The taint analysis is faster because it does not construct a call graph. We
note that 81% of all type and constant analysis runs finish in 10s or less (including those
runs that timed out), as do 85% of all taint analysis runs.

Figure 5 shows the percentage of instructions our type-based dead code, constant-based
dead code, constant propagation analysis, and taint analysis identified. We count an
instruction as dead if it is unreachable or, in case of blocks and loops, if they are never
targeted by a jump. Such dead instructions can be safely eliminated from a Wasm binary.
This reduces the binary size and saves bandwidth if the binary is sent over the network.
Unsurprisingly, our baseline type analysis cannot find much dead code. However, even a
simple constant propagation analysis can already reduce binaries by 14% on average. Note
that the dead code this analysis identified was missed by other compilers, as many of the
binaries stem from deployed packages and websites. The constant analysis also identifies
10% of instructions as computing constant results. This excludes instructions like i32.const
of course. Constant instructions can be replaced by such const instructions. Due to our
modular architecture, analysis developers can focus on improving one aspect of the analysis
at a time to increase the optimization potential further.

Finally, the goal of the taint analysis is to track the data flow of tainted values and detect
if tainted values can reach critical program points. Our taint analysis defines user input
and results of calling host functions as tainted and detects potential security risks if tainted
values are used as memory addresses. Protecting the memory is important because many
compilation schemes targeting Wasm use the memory to embed critical infrastructure of the
source language’s runtime system [20]. For example, some runtime systems manage their
own call stack in the memory, which thus is not protected from the user. If we can show that

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen

80 100
1

60
1

%mwoocﬂmmo ©0 0 o

Percentage (%) of instructions

20

o o -

&Fonm 0 @omw® 0 0w WO 0

Q
T T

eliminated by us eliminated by binaryen

Figure 6 Comparing our approach to Binaryen, the industry standard for Wasm optimizations.

the user cannot access or and manipulate the memory shape, this means that the runtime
system cannot be tampered with this way. Consequently, we consider a memory access to be
safe if the analysis can guarantee that a tainted (user-influenced) value cannot be used as
an address. On average, our analysis finds 56% of all memory accesses to be safe. Out of
the 1458 Wasm binaries, our analysis shows 28% to be completely safe, meaning they only
contain safe memory accesses. This analysis is fairly simple still and, for example, does not

support any sanitization of tainted values, which should further improve the analysis results.

Comparison with the industry standard

While we compare to related work in the subsequent section, we thought it is important
to validate our approach empirically in comparison to the industry standard. The de-facto
industry standard for Wasm code optimization is Binaryen®, a C4+ library that provides its
own Wasm IR and implements about 100 optimization passes in its wasm-opt tool. This includes
whole-program constant propagation and dead code optimizations, although the details and
limits of the underlying analyses are not clearly documented. This begs the question: Can
our approach compete with Binaryen, an industry standard for Wasm optimization developed
by more than 140 contributors.

We answer this question quantitatively by running the optimizer of Binaryen on all
WasmBench binaries that we successfully optimized. Binaryen transforms the Wasm code
into its own IR, optimizes that IR, and translates it back into the Wasm binary format.
We configured Binaryen using the -0z flag, which aggressively optimizes for code size. We
compute the number of eliminated instructions by loading the original and the optimized
module and subtracting their instruction counts. We then compare this number to our
constant analysis, where each dead or constant instruction counts toward the eliminated
instructions. Figure 6 shows the results of our experiment.

Our experiment clearly shows that our approach outperforms Binaryen in terms of
precision, eliminating twice as many instructions on average. While further investigation is
necessary to understand where exactly our approach wins compared to Binaryen, note that

3 https://github.com/WebAssembly/binaryen

5:23

ECOOP 2023

https://github.com/WebAssembly/binaryen

5:24

Modular Abstract Definitional Interpreters for WebAssembly

we have built a generic framework for Wasm analyses. In particular, constant propagation
is a simple abstract domain and we may expect far better precision by using intervals or
even relational abstract domains. Our framework is designed to accommodate those future
improvements. In terms of performance, Binaryen only takes 0.1s on average, where our
callsite-sensitive constant propagation analysis takes 4.8s on average. This is to be expected,
given that our analysis lies in a different complexity class.

One important threat to validity of this experiment is that our analyses do not actually
rewrite Wasm binaries. Instead, we count the number of instructions that were detected as
dead or constant. We believe this is fair, since dead instructions can be dropped for sure
and the constant instructions can be removed by propagating the constant value. Actually,
we penalizes our own approach because in i32.const 1; i32.const 2; i32.add, we only count
the last instruction as eliminable, while Binaryen removes all three of them. We hope to
integrate our analysis into a framework like Binaryen in future work to realize optimizations
based on our analysis results.

8 Related Work

Our work investigates how to develop modular static analyses for Wasm using abstract defin-
itional interpreters. We have already compared to prior approaches of abstract definitional
interpreters in section 6 in detail. In this section, we discuss how our work relates to prior
work on Wasm, x86 assembly, and JVM bytecode.

Stiévenart and Roover [28] designed the first static taint analysis Wassail for Wasm using
a compositional approach. In particular, they analyze each function in isolation and compute
a summary of the taint information of the following form:

function 8: stack: [10,11], globals: [g0;11], mem: g7

This example summary means that the Wasm function with id 8 may store the variables 10,
11 on stack, may store the variables go, 11 as globals, and variable g7 in the linear memory. In
a second step, they combine the summaries of multiple functions in bottom-up order of the
call graph to compute the complete analysis result. While compositional analyses are known
to scale better, they are also less precise than whole-program analyses. There are two places
where our whole-program taint analysis is more precise than Wassail’s compositional taint
analysis. First, Wassail does not resolve indirect calls precisely. In particular, an indirect
call reads the function index from the stack, which is not approximated by Wassail. Instead,
Wassail resolves an indirect call to all functions which have a matching type [2]. This may
be especially imprecise for common function signatures such as F64 -> Fe4. In contrast, our
constant taint analysis approximates the stack and is able to resolve indirect calls precisely
in case the function index is a constant. Second, Wassail does not approximate the layout of
Wasm’s linear memory precisely. In particular, Wassail returns all taint variables stored in
memory on every load instruction. In contrast, our constant taint analysis approximates the
layout of Wasm’s linear memory more precisely. Specifically, we have distinct read behavior
for constant addresses and top addresses. Reading from a top address yields the memories
upper bound, which is the default behavior for all reads in wassail, but constant addresses
result in actual lookups. This increases the precision of load instructions with a constant
address.

Wasp? is a C++ library for performing simple static analyses on Wasm code. It offers
methods to dump specific parts of a module (e.g., all functions) and to compute a function’s
call graph, control-flow graph, and data-flow graph. In contrast to our work, Wasp is not

4 https://github.com/WebAssembly/wasp

https://github.com/WebAssembly/wasp

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen

designed to implement more sophisticated analyses for Wasm but rather as a tool making it
easy to work with Wasm modules. In particular, Wasp does not consider abstract domains
to approximate values and thus, by and large, yields results equivalent to our type analysis.
But, as our evaluation showed, even simple value domains such as constant propagation
improve the precision of analyses significantly: The type analysis only found 1% of dead
instructions on average, whereas we were able to prove 14% of instructions are dead using an
abstract domain for constant propagation. This is out of reach for Wasp.

Wasabi [21] is a general purpose framework for implementing dynamic analyses for Wasm,
which can be implemented using a high-level JavaScript API. The framework then instruments
the Wasm binary to call these JavaScript analysis functions. Dynamic analyses are used in
different contexts than static analyses. While analyses for security (e.g., a taint analyses)
may be performed both statically and dynamically, compiler optimizations entail the use of a
static analysis. Hence, the focus of their work is orthogonal to ours and explores a different
part of the design space.

Watt et al. [34] developed two formal semantics for Wasm in the Isabelle and Coq proof
assistants. These formal semantics can be used to prove properties about Wasm programs.
However, these proofs require a high amount of manual effort and expertise in contrast to
static analyses, which are automized.

Static analysis of x86 assembly code [3, 6, 16] faces several challenges summarized in
the PhD thesis of Kinder [15]. For example, unstructured control-flow with goto’s and long

jumps with dynamic jump target complicate the construction of a control-flow graph [17, 24].

Furthermore, x86 programs store their code alongside the data during the execution, which
makes it harder for static analyses to differentiate between them [33]. This also allows x86
programs to modify their own code during execution, which poses a severe challenge for
static analyses [30]. In contrast, Wasm prevents these problems with a stricter language
design. In particular, Wasm is statically-typed, features only structured control-flow and
clearly separates between code and data, which makes it impossible for Wasm programs
to modify their own code [10]. The stricter language design of Wasm lowers the bar for
implementing static analyses and improves their precision compared to x86 analyses.

Many static analysis frameworks for Java target JVM bytecode [8, 4, 27], the assembly
code that underlies the Java Virtual Machine [22]. However, JVM bytecode poses a challenge
to static analyses, because of its implicit dataflow and due to the use of a stack. Vallee-rai
and Hendren [32] solved this problem by compiling JVM byte code to Jimple, a simpler
three-address code. Jimple is easier to analyze than JVM bytecode, because the addresses
relieve from having to extract dataflow information from the stack. Since its inception,
Jimple has become the defacto standard for analyzing JVM bytecode and is used by popular
Java analysis frameworks such as Doop [25, 9] and Soot [31, 5, 1, 26]. In contrast, we show
that abstract definitional interpretation can be used to analyze Wasm code directly, without
requiring another intermediate representation, such as Jimple. This is a key advantage of
abstract definitional interpretation.

Koren [18] presented an integrated development environment for Wasm that can be used
to develop high-performance and latency-sensitive Wasm applications for the internet of
things. Such an IDE would benefit from static analyses built with our modular platform, as
static analyses can provide valuable feedback to the developer about low-level and hard to
understand Wasm programs.

Lehmann et al. [20] and Stiévenart et al. [29] investigated the security risk of compiled
Wasm programs. In particular, C applications compiled to Wasm reexperience security
problems that are well known and fixed in the native C compiler. More specifically, the
compiled C programs are vulnerable to stack and heap-based buffer overflow attacks. These
vulnerabilities can be detected by static analyses for Wasm code.

5:25

ECOOP 2023

5:26

Modular Abstract Definitional Interpreters for WebAssembly

9 Conclusion

In this work, we developed the first whole-program control and data-flow analyses for Wasm
based on abstract interpretation. It is important that we understand how to analyze Wasm
programs for enabling optimizations and to find bugs and vulnerabilities. Our analyses lay
the foundation for that as they scale to real-world programs, where we find 14% of all Wasm
instructions are dead code, 10% of all instructions can be replaced by constants, and 56% of
all memory accesses are safe against tampering.

Our analyzers are based on two core contributions this paper makes. First, we present
a decomposition of the Wasm semantics into 19 language-independent components that
abstract different aspects of Wasm. This decomposition allowed us to develop static analyses
modularly, which was essential for limiting the complexity of the implementation and the
development effort. Second, we show how abstract definitional interpretation can be used to
implement modularly defined static analyses for complex languages at scale. We explained
how our new framework for abstract definitional interpretation eliminates the inefficiencies of
prior frameworks, and why that was crucial for scaling to complex languages and real-world
programs. The lessons learned for building abstract definitional Wasm interpreters can
certainly be transferred.

—— References

1 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In Michael F. P.
O’Boyle and Keshav Pingali, editors, ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom — June 09 — 11, 2014,
pages 259-269. ACM, 2014. doi:10.1145/2594291.2594299.

2 Darren C. Atkinson. Accurate call graph extraction of programs with function pointers using
type signatures. In 11th Asia-Pacific Software Engineering Conference (APSEC 2004), 30
November — 8 December 2004, Busan, Korea, pages 326-335. IEEE Computer Society, 2004.
doi:10.1109/APSEC.2004.16.

3 Gogul Balakrishnan and Thomas W. Reps. Analyzing memory accesses in x86 executables. In
Evelyn Duesterwald, editor, Compiler Construction, 13th International Conference, CC 2004,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2004, Barcelona, Spain, March 29 — April 2, 2004, Proceedings, volume 2985 of Lecture Notes
in Computer Science, pages 5-23. Springer, 2004. doi:10.1007/978-3-540-24723-4_2.

4 Roberto Barbuti, Nicoletta De Francesco, and Luca Tesei. An abstract interpretation approach
for enhancing the java bytecode verifier. Comput. J., 53(6):679-700, 2010. doi:10.1093/
comjnl/bxp031.

5 Eric Bodden. Inter-procedural data-flow analysis with IFDS/IDE and soot. In Eric Bodden,
Laurie J. Hendren, Patrick Lam, and Elena Sherman, editors, Proceedings of the ACM
SIGPLAN International Workshop on State of the Art in Java Program analysis, SOAP 2012,
Beijing, China, June 14, 2012, pages 3-8. ACM, 2012. doi:10.1145/2259051.2259052.

6 Marco Cova, Viktoria Felmetsger, Greg Banks, and Giovanni Vigna. Static detection of
vulnerabilities in x86 executables. In 2006 22nd Annual Computer Security Applications
Conference (ACSAC’06), pages 269-278. IEEE, 2006.

7 David Darais, Nicholas Labich, Phuc C. Nguyen, and David Van Horn. Abstracting definitional
interpreters (functional pearl). PACMPL, 1(ICFP):12:1-12:25, 2017.

8 Julian Dolby, Stephen J Fink, and Manu Sridharan. Watson libraries for analysis (wala). URL:
http://wala.sf.net/.

9 Neville Grech and Yannis Smaragdakis. P/taint: unified points-to and taint analysis. Proc.
ACM Program. Lang., 1(OOPSLA):102:1-102:28, 2017. doi:10.1145/3133926.

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1109/APSEC.2004.16
https://doi.org/10.1007/978-3-540-24723-4_2
https://doi.org/10.1093/comjnl/bxp031
https://doi.org/10.1093/comjnl/bxp031
https://doi.org/10.1145/2259051.2259052
http://wala.sf.net/
https://doi.org/10.1145/3133926

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and J. F. Bastien. Bringing the web up to speed with
webassembly. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,

Barcelona, Spain, June 18-23, 2017, pages 185-200. ACM, 2017. doi:10.1145/3062341.

3062363.

Aaron Hilbig, Daniel Lehmann, and Michael Pradel. An empirical study of real-world
webassembly binaries: Security, languages, use cases. In WWW: The Web Conference, pages
2696-2708. ACM / IW3C2, 2021.

David Van Horn and Matthew Might. Abstracting abstract machines. In Proceeding of the 15th
ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore,
Maryland, USA, September 27-29, 2010, pages 51-62. ACM, 2010.

Sven Keidel and Sebastian Erdweg. Sound and reusable components for abstract interpretation.
Proc. ACM Program. Lang., 3(OOPSLA), October 2019. doi:10.1145/3360602.

Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg. Compositional soundness proofs
of abstract interpreters. Proceedings of the ACM on Programming Languages, 2(ICFP):1-26,
2018.

Johannes Kinder. Static analysis of ©86 executables (Statische Analyse von Programmen
in x86-Maschinensprache). PhD thesis, Darmstadt University of Technology, 2010. URL:
http://tuprints.ulb.tu-darmstadt.de/2338/.

Johannes Kinder and Helmut Veith. Jakstab: A static analysis platform for binaries. In Aarti
Gupta and Sharad Malik, editors, Computer Aided Verification, 20th International Conference,
CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings, volume 5123 of Lecture Notes
in Computer Science, pages 423—-427. Springer, 2008. doi:10.1007/978-3-540-70545-1_40.
Johannes Kinder, Florian Zuleger, and Helmut Veith. An abstract interpretation-based
framework for control flow reconstruction from binaries. In Neil D. Jones and Markus Miiller-
Olm, editors, Verification, Model Checking, and Abstract Interpretation, 10th International
Conference, VMCAI 2009, Savannah, GA, USA, January 18-20, 2009. Proceedings, volume
5403 of Lecture Notes in Computer Science, pages 214—-228. Springer, 2009. doi:10.1007/
978-3-540-93900-9_19.

Istvan Koren. A standalone webassembly development environment for the internet of things.
In Marco Brambilla, Richard Chbeir, Flavius Frasincar, and Ioana Manolescu, editors, Web
Engineering, pages 353—-360, Cham, 2021. Springer International Publishing.

Erik Krogh Kristensen and Anders Mgller. Reasonably-most-general clients for javascript
library analysis. In Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-81, 2019, pages 83-93. IEEE / ACM, 2019.
Daniel Lehmann, Johannes Kinder, and Michael Pradel. Everything old is new again: Binary
security of webassembly. In 29th USENIX Security Symposium (USENIX Security 20), pages
217-234. USENIX Association, August 2020. URL: https://www.usenix.org/conference/
usenixsecurity20/presentation/lehmann.

Daniel Lehmann and Michael Pradel. Wasabi: A framework for dynamically analyzing
webassembly. In Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck, editors,
Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April
13-17, 2019, pages 1045-1058. ACM, 2019. doi:10.1145/3297858.3304068.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley,
1997.

Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. New kid on the
web: A study on the prevalence of webassembly in the wild. In Roberto Perdisci, Clémentine
Maurice, Giorgio Giacinto, and Magnus Almgren, editors, Detection of Intrusions and Malware,
and Vulnerability Assessment — 16th International Conference, DIMVA 2019, Gothenburg,
Sweden, June 19-20, 2019, Proceedings, volume 11543 of Lecture Notes in Computer Science,
pages 23-42. Springer, 2019. doi:10.1007/978-3-030-22038-9_2.

5:27

ECOOP 2023

https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3360602
http://tuprints.ulb.tu-darmstadt.de/2338/
https://doi.org/10.1007/978-3-540-70545-1_40
https://doi.org/10.1007/978-3-540-93900-9_19
https://doi.org/10.1007/978-3-540-93900-9_19
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://doi.org/10.1145/3297858.3304068
https://doi.org/10.1007/978-3-030-22038-9_2

5:28

Modular Abstract Definitional Interpreters for WebAssembly

24

25

26

27

28

29

30

31

32

33

34

Minh Hai Nguyen, Thien Binh Nguyen, Thanh Tho Quan, and Mizuhito Ogawa. A hybrid
approach for control flow graph construction from binary code. In Pornsiri Muenchaisri
and Gregg Rothermel, editors, 20th Asia-Pacific Software Engineering Conference, APSEC
2013, Ratchathewsi, Bangkok, Thailand, December 2-5, 2013 — Volume 2, pages 159-164. IEEE
Computer Society, 2013. doi:10.1109/APSEC.2013.132.

Yannis Smaragdakis and George Balatsouras. Pointer analysis. Found. Trends Program. Lang.,
2(1):1-69, 2015. doi:10.1561/2500000014.

Johannes Spath, Karim Ali, and Eric Bodden. Ide®: efficient and precise alias-aware dataflow
analysis. Proc. ACM Program. Lang., 1(OOPSLA):99:1-99:27, 2017. doi:10.1145/3133923.
Fausto Spoto. The julia static analyzer for java. In Xavier Rival, editor, Static Analysis —
23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings,
volume 9837 of Lecture Notes in Computer Science, pages 39-57. Springer, 2016. doi:
10.1007/978-3-662-53413-7_3.

Quentin Stiévenart and Coen De Roover. Compositional information flow analysis for
webassembly programs. In 20th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2020, Adelaide, Australia, September 28 — October 2, 2020,
pages 13-24. IEEE, 2020. doi:10.1109/SCAM51674.2020.00007.

Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari. The security risk of lacking
compiler protection in webassembly, 2021. arXiv:2111.01421.

Tayssir Touili and Xin Ye. Reachability analysis of self modifying code. In 22nd International
Conference on Engineering of Compler Computer Systems, ICECCS 2017, Fukuoka, Japan,
November 5-8, 2017, pages 120-127. IEEE Computer Society, 2017. doi:10.1109/ICECCS.
2017.19.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and Vijay
Sundaresan. Soot — a java bytecode optimization framework. In Stephen A. MacKay and
J. Howard Johnson, editors, Proceedings of the 1999 conference of the Centre for Advanced
Studies on Collaborative Research, November 8-11, 1999, Mississauga, Ontario, Canada,
page 13. IBM, 1999. URL: https://dl.acm.org/citation.cfm?id=782008.

Raja Vallee-rai and Laurie Hendren. Jimple: Simplifying java bytecode for analyses and
transformations, 1998.

Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu, and Bhavani M. Thurais-
ingham. Differentiating code from data in x86 binaries. In Dimitrios Gunopulos, Thomas
Hofmann, Donato Malerba, and Michalis Vazirgiannis, editors, Machine Learning and Know-
ledge Discovery in Databases — European Conference, ECML PKDD 2011, Athens, Greece,
September 5-9, 2011, Proceedings, Part III, volume 6913 of Lecture Notes in Computer Science,
pages 522-536. Springer, 2011. doi:10.1007/978-3-642-23808-6_34.

Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, and Philippa Gardner. Two
Mechanisations of WebAssembly 1.0. In FM 2021 - Formal Methods, pages 1-19, Beijing,
China, November 2021. URL: https://hal.archives-ouvertes.fr/hal-03353748.

https://doi.org/10.1109/APSEC.2013.132
https://doi.org/10.1561/2500000014
https://doi.org/10.1145/3133923
https://doi.org/10.1007/978-3-662-53413-7_3
https://doi.org/10.1007/978-3-662-53413-7_3
https://doi.org/10.1109/SCAM51674.2020.00007
https://arxiv.org/abs/2111.01421
https://doi.org/10.1109/ICECCS.2017.19
https://doi.org/10.1109/ICECCS.2017.19
https://dl.acm.org/citation.cfm?id=782008
https://doi.org/10.1007/978-3-642-23808-6_34
https://hal.archives-ouvertes.fr/hal-03353748

Dynamically Updatable Multiparty Session
Protocols
Generating Concurrent Go Code from Unbounded Protocols

David Castro-Perez &
University of Kent, UK

Nobuko Yoshida &
University of Oxford, UK

—— Abstract

Multiparty Session Types (MPST) are a typing disciplines that guarantee the absence of deadlocks and
communication errors in concurrent and distributed systems. However, existing MPST frameworks
do not support protocols with dynamic unbounded participants, and cannot express many common
programming patterns that require the introduction of new participants into a protocol. This
poses a barrier for the adoption of MPST in languages that favour the creation of new participants
(processes, lightweight threads, etc) that communicate via message passing, such as Go or Erlang.

This paper proposes Dynamically Updatable Multiparty Session Protocols, a new MPST theory
(DMst) that supports protocols with an unbounded number of fresh participants, whose communication
topologies are dynamically updatable. We prove that DMst guarantees deadlock-freedom and liveness.
We implement a toolchain, GoScr (Go-Scribble), which generates Go implementations from DMst,
ensuring by construction, that the different participants will only perform I/O actions that comply
with a given protocol specification. We evaluate our toolchain by (1) implementing representative
parallel and concurrent algorithms from existing benchmarks, textbooks and literature; (2) showing
that GoScr does not introduce significant overheads compared to a naive implementation, for
computationally expensive benchmarks; and (3) building three realistic protocols (dynamic task
delegation, recursive Domain Name System, and a parallel Min-Max strategy) in GoScr that could
not be represented with previous theories of session types.

2012 ACM Subject Classification Theory of computation — Program specifications; Computing
methodologies — Concurrent programming languages

Keywords and phrases Multiparty Session Types, Correctness-by-construction, Concurrency, Golang
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2023.6

Supplementary Material Software (ECOOP 2023 Artifact Fvaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.10

Funding This work is supported by EPSRC EP/T006544/2, EP/K011715/1, EP/K034413/1,
EP/L00058X /1, EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462/1, EP/X015955/1,
NCSS/EPSRC VeTSS, EP/T014512/1, and Horizon EU TaRDIS 101093006.

Acknowledgements We deeply thank Benito Echarren Serrano for his initial collaboration on a

preliminary version of this work.

1 Introduction

Multiparty Session Types. Multiparty Session Types (MPST) are typing disciplines that can
guarantee the absence of deadlocks and communication errors in concurrent and distributed
systems [21, 22]. MPST allow the specification of global communication protocols (global
types) among a number of participants. The projection operation extracts the local
communication protocols (local types), from the point of view of each participant in the

© David Castro-Perez and Nobuko Yoshida;

37 licensed under Creative Commons License CC-BY 4.0
37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 6; pp. 6:1-6:30

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:d.castro-perez@kent.ac.uk
https://orcid.org/0000-0002-6939-4189
mailto:nobuko.yoshida@cs.ox.ac.uk
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/LIPIcs.ECOOP.2023.6
https://doi.org/10.4230/DARTS.9.2.10
https://doi.org/10.4230/DARTS.9.2.10
https://doi.org/10.4230/DARTS.9.2.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2

Dynamically Updatable Multiparty Session Protocols

system. Projection only succeeds when the protocol is absent of deadlocks and communication
errors. These local types can then be used to typecheck processes [21], generate correct by
construction code [25, 3], or monitor to detect communication errors at runtime [8].

However, MPST have a severe limitation: they cannot model protocols in which new
participants join the system. Many important protocols rely on this. For example, Chord [54]
is a popular protocol for distributed hash tables where participants join a ring, and relies on
a stabilisation protocol to guarantee that each participant keeps up-to-date channels to their
successors and predecessors. To model such scenarios using MPST, it would be necessary
to interleave different sessions. But arbitrary session interleavings can lead to deadlocks,
so it must be restricted [2, 5]. This not only rules out the use of MPST for many realistic
scenarios, but also limits the applicability of MPST for languages that favour process creation
and message passing, such as Go, which is the main motivation of our work.

Dynamic (Unbounded) Participants in Go. Go is a concurrent programming language
designed in 2009 by Google, and it is increasingly popular among professional developers.
According to a 2020 Stack Overflow survey, Go is used by 9.4% of developers, and it is the
“third most wanted language” [52]. Go was also the 4th most active language in GitHub in
2020 [16], and it has been adopted in many large software systems such as Kubernetes [32],
gRPC [18] and Docker [13]. Its main features are explicit communication primitives, namely
channels and goroutines (lightweight threads), whose design comes from concurrent process
calculi [20, 40, 41]. Unfortunately, a recent empirical study reveals that over 50% of Go
concurrent bugs are caused by communication [56, 39, 61] (i.e., more than shared memory
bugs). While Go includes a global runtime deadlock detector, it is neither adequate to verify
applications with complex communication structures, nor can it detect deadlocks involving
only a strict subset of a program’s goroutines (partial deadlocks) [37].

Figure 1 illustrates Go’s core concurrency constructs. It shows a server (Master) that
processes client requests (Line 4), and sends responses back to the Client (Line 20). The
Master breaks down the request into different subtasks and delegates them to different Worker
goroutines (Lines 7-10). The Master then aggregates the Worker results (Lines 11-19). If
the Master receives an error message, it will forward it to the Client and stop processing any
new messages (Lines 16-19). This program uses a common Go computation pattern!, the
master-worker pattern, and the number of workers depends on a runtime value.

Unfortunately, there is a bug in the implementation in Figure 1. The implementation
uses synchronous channels. Since the Master goroutine stops processing Worker responses
after receiving the first error message, all other goroutines which have not sent their result or
error messages will be deadlocked, as they will be stuck waiting for the Master to process
their message. One might think that this error could be fixed by replacing the synchronous
channels in the implementation with asynchronous (buffered) channels. Unfortunately, this
approach leaves orphan messages which could introduce other concurrency bugs, e.g. the
Master may need to clean up resources after receiving a response from the Workers.

This example demonstrates how even in simple programs, message passing can introduce
concurrency bugs and channel leakage, violating deadlock-freedom and liveness. While,
in simple programs, these concurrency bugs can be fixed with relative ease, identifying and
fixing them is usually done during testing phase, which becomes increasingly harder as the
complexity of the program and the number of goroutines increases. Unfortunately, standard
MPST cannot model protocols such as Figure 1, since the number of participants is not fixed
at the start, and depends on a run-time value.

! E.g. https://github.com/tmrts/go-patterns/blob/master/messaging/fan_out.md

https://github.com/tmrts/go-patterns/blob/master/messaging/fan_out.md

[F RS BN S U R

11
12
13
14
15
16
17
18
19
20

D. Castro-Perez and N. Yoshida

func Worker(n int, resp chan int, err chan error) { ... } // Worker returns either result or error
func Master(reqCh chan int, respCh chan []int, cErrCh chan error) {
for {
ubound := <-reqCh // Receive request from Client
workerChs := make([Jchan int, ubound) // Array to store worker result channels
errCh := make(chan error)
for i := 0; i < ubound; i++ { // n_workers depends on runtime value
workerChs[i] = make(chan int) // Create worker channel

go Worker(i+1, workerChs[i], errCh)

var res []int

for i := 0; i < ubound; i++ { // Aggregate worker results
select {
case sql := <-workerChsi]: // Aggregate successful result
res = append(res, sql)
case err := <-errCh: // Some worker failed
cErrCh <- err // Propagate error and
return // stop processing any further messages
respCh <- res}} // Send final result to client

Figure 1 Dynamic task delegation implementation in Go (unsafe).

Adding dynamic participants to MPST. This paper introduces Dynamically Updatable
Multiparty Session Types (DMst), a new theory of MPST whose novel feature is to model
protocols in which participants can join an already existing session (dynamic participants).
DMst can guarantee deadlock-freedom and liveness (partial-deadlock-freedom) by construc-
tion in such protocols. We implement DMst as a tool, GoScr, which generates correct by
construction Go code, and we evaluate it on a number of representative algorithms in
Go, including a safe version of Figure 1 (see § 5.2(a)). While our target language is Go,
DMst is not Go specific and a part of GoScr (GoScr protocols, projection and local protocols
in Figure 2) is reusable for any language, as long as it supports (1) the creation of new
participants (threads or processes) and (2) communication between participants.

Contributions. DMst overcomes several bottlenecks of existing theories on session types
(A); and the two main lines of work (B,C) for static deadlock detection in Go:

(A) Dynamic Participants and Session Types. There are two main existing theoretical
lines of work related to dynamic MPST. Dynamic Multirole Session Types (MRST) [9] enable
a set of participants which belong to the same group (i.e. role) to join a multiparty session
type. The roles are fixed at the start, and can only join at specific points in the protocol,
e.g at the beginning of each protocol iteration. Nested MPST [7] model protocols with
unbounded new participants. Neither MRST nor Nested MPST can represent DMst protocols
(A-1) where participants join dynamically to recursive protocols, except at fixed points and
with fixed roles (see Example 6). In addition, (A-2) our theory provides stronger guarantees
than [7], while their global types are more complex, as they must be checked by a complex
typing system. Hence a safe version of Figure 1 cannot be represented by [7, 9]. Both of
[9, 7] are only theoretical, and lack any implementation or practical results. DMst’s global
types are not only more expressive than those in [9, 7], but also simpler, thus DMst is more
suitable for real language implementations. Other lines of work add session types to calculi
that allow dynamic participants, or extend MPST to specify where can participants join in a
protocol, e.g. [19, 57, 58, 30]. While these lines of work can add or replace participants to a
system, these participants must act according to known, fixed roles. Therefore, these lines of
work do not allow the specification of cyclic recursive topologies that change dynamically
with the introduction of new participants.

6:3

ECOOP 2023

6:4

Dynamically Updatable Multiparty Session Protocols

GoScr Protocol Local Protocols Generated Go Packages
C T T T T T T G T T T !
|
global protocol Fork Proiecti : local protocol MGFork ! . : fork/ I
(role M; new role W) { rojection (role M; new role W) {...3 | Generation channels/ |
: S — [———
task(n:int) from M to W; A local protocol W@Fork callbacks/ |
via GoScr ! . | |
) | (role M; new role W) {...} | | protocol/ :
I | l
L o o e m o m) Lo e e !
func ForkM (c CtxM,...) {...} type CtxM interface {...} type MsgFork interface {...}
func ForkW (c CtxW,...) {...} type CtxW interface {...} type ForkChan = chan MsgFork
Protocol implementation Callbacks Channels

Figure 2 Overview of GoScr toolchain.

(B) Inference Approach. This approach verifies safety and liveness properties of Go
programs, by using model-checking on their inferred concurrent behavioural types [47, 36,
37, 14]. The major limitations of this approach are: (B-1) there is a gap between properties
of types and programs, i.e., there are cases where types satisfy liveness but programs do not,
leading to unsound verification, and (B-2) it cannot verify infinitely spawning goroutines
because either the theory is limited to bounded approximation [36] or a decidable set of
types are limited to finite-control (i.e. no parallel processes inside loops) [37, 14].

(C) Go Code Generation. Another approach is the generation of Go code from parameterised
multiparty session protocols [3]. However, the major limitation of [3] is that participants in
a protocol still need to be fixed at the start of a session, so it cannot express and generate
code for typical Go-style programs with goroutines — e.g. a safe version of Figure 1. There is
a subtle, but important distinction between dynamic participants and parameterised roles:
parameterised roles cannot depend on a run-time value that is exchanged in a message that
is part of the protocol, because in parameterised MPST approaches, all of the participants
must join the session at session initialisation, and are therefore fixed.

Our challenges are to overcome all these limitations with a scalable (implementable)
MPST theory. In summary, this work solves bottlenecks of the existing MPST work by
proposing a new theory, DMst, that allows the dynamic generation of an unbounded number
of participants in recursive protocols, overcoming expressiveness issues in [9, 7] (A) and (C);
unsoundness (B-1), but is not limited to a bounded analysis nor finite-control (B-2).

Outline. § 2 presents an overview of the GoScr toolchain; § 3 presents DMst, multiparty
session types extended with the ability to add unbounded participants dynamically during a
protocol execution, and proves its deadlock-freedom (Theorem 23), orphan message freedom,
and liveness (Theorem 29); § 4 describes the code generation process of GoScr, and how to
use it to implement DMst protocols; § 5 first measures the runtime overhead of the GoScr
backend, then demonstrate the expressiveness of DMst, comparing the expressiveness of
GoScr to (A) [47, 36, 37, 14] and (B) [3] with a number of case studies. We also implement
three use cases — dynamic task delegation, a recursive Domain Name System, a noughts and
crosses game with Min-Max strategy — to demonstrate the applicability of GoScr; § 6 gives
related work, and § 7 concludes with future work.

D. Castro-Perez and N. Yoshida

2 Overview of GoScr

GoScr follows a typical Multiparty Session Types workflow (see diagram on the right). In this
workflow, the starting point is the definition of a global protocol (global type in MPST), which
describes a structured sequence of interactions between a number of participants. From this
global type, we extract automatically a number of local protocols (local types) that describe
the interactions (i.e. send or receive actions) from the point of view of every participant
in the protocol. This is done using the projection operation. If some participant is not
projectable, then we raise an error, since the protocol is not well-formed and can lead to
deadlocks or other communication errors. If the programmer provides a set of processes that
behaves as prescribed by each of the local types, then the whole system is safe. We take a
code generation approach, where we generate process code from their respective local types,
providing safety guarantees by construction.

G
projection N
Ly Lo ; o L,
code l l | J
generation y
P P . P,

Adding Participants Dynamically. GoScr is a code generation tool which extends nuScr [48]
with the theory of DMst, targeting the Go language. nuScr is a new implementation of
Scribble [51], aimed at experimenting with extensions to core MPST. Figure 2 presents an

() Development starts by specifying a global protocol in GoScr [51, 23], a

programmer-friendly protocol description language based on MPST [22, 44]. GoScr validates
the well-formedness of the protocol, and produces a local type for each participant via
projection. GoScr generates protocol implementations from these sets of local types. We
provide an overview of the GoScr workflow using the dynamic recursive pipeline of Figure 3.
Intuitively, this pipeline introduces a new participant after each iteration.

Global Protocol Specification. The first key novel feature of GoScr is the ability to define
and call protocols (e.g. Line 1 in Figure 3) that may bring new participants to the protocol
dynamically, specified by the new keyword in the signature. These calls can be recursive,
allowing for an unbounded number of participants. Lines 1-14 declare UPipe, which requires
only participant M, and introduces a new participant w dynamically. Protocol calls create
any necessary new participants, as well as any necessary channels, before performing the
interactions described by the called protocol. The second key novel feature of GoScr is the
ability to modify a recursive protocol by combining (i.e. interleaving) its interactions with
those of a protocol call. In our syntax, this is specified by annotating recursion variables
with protocol calls. We call this updatable recursion, and an example of this can be found
in Line 5. The meaning of such calls is as follows. Suppose that processes ry and r; are
behaving as M and W (resp.) in UPipe. Just before the protocol jumps back to Line 2, process
ry calls protocol UPipe(ry). This means that r; will create a new participant ro, and ry will
delegate to ro a session to act as W in UPipe, with ry acting as M. But at this point, r; should
act as both M and w. To address this, r; will combine its interactions acting as M and w. The
fact that r; needs to change its behaviour to act as two distinct roles in UPipe will be reflected
in its local protocol specification (participant w in Figure 3).

6:5

ECOOP 2023

6:6

S

© ®w N o v

10
11
12
13
14

© 0 N o U A W N e

= e
N o= O

Dynamically Updatable Multiparty Session Protocols

global protocol UPipe(role M;new role W){ | local protocol WQUPipe(role M;new role W){ 1
rec X { choice at M { 2
choice at M { (Put:int) from M; 3
(Put:int) from M to W; invite UPipe(self; new W2); 4
continue X with W calls UPipe(W); rec X { 5

}or { choice at M { 6
(Quit:int) from M to W; }}} (Put:int) from M; 7

local protocol M@UPipe(role M;new role W){ (Put:int) to W2; 8
rec X { continue X; 9
choice at M { } or { 10
(Put:int) to W; (Quit:int) from M; 11
continue X; (Quit:int) to W2; 12

}or { 2 13
(Quit:int) to W; }}} } or { (Quit:int) from M; }} 14

Figure 3 Global and Local protocols for a dynamic recursive pipeline.

type Put int 14 switch v_2 := x_1.(type) {

type Quit int 15 case Put:
type Ctx_UPipe_W interface { 16 ctx.Recv_M_Put(v_2)
yg M_P tI() ‘2 Put) 17 ch_W_W_1 := make(chan MsgUPipe, 1)
IZ;Z_W_U;ip‘eIE) o Upipe_W 18 ctx_1 := ctx.Init_W_UPipe_Ctx()
- - - 19 wg.Add (1)
l.%(.eév_M_Quit (v_2 Quit) 20 go UPipeW(ctx_1,wg, ch_W_W_1)
. 21 MuX:
QuitO } 22 for {
func UPipeW(ctx Ctx_UPipe_W, s }

wg *sync.WaitGroup, chMW chan MsgUPipe){
defer wg.Done()
x_1 := <= chMW

24 case Quit:
25 ctx.Recv_M_Quit(v_2)
26 ctx.End() 1}}

Figure 4 Implementation and context of role W in UPipe in Figure 3.

Local Protocol Specification. GoScr extracts local protocol specifications from global
protocols using an operation called projection. Local protocols describe the structured
sequence of interactions, from the point of view of a single participant. Figure 3 lists local
protocols for m and w. Consider the point of view of the new participant w in protocol
UPipe from Figure 3. w first receives an integer, either with label Put or Quit from M. If w
receives Quit, then the protocol finishes. Otherwise, W performs a protocol call, bringing in a
new participant W2 to act as W in UPipe. In the subsequent interactions, from Line 5, w acts
as both M (with respect to w2) and w (with respect to M). These lines (5 — 13) appear as a
result of projecting Line 5 onto w. Notice that, if we have two participants, one acting as
M and another one acting as W, this will generate a pipeline with an unbounded number of
stages, until the first participant acting as M sends Quit. These kinds of protocols could not
be represented in previous MPST theories and frameworks.

Program Logic. From local protocol specifications, GoScr generates the implementation
of each role as a self-contained function. GoScr interleaves communication actions and
the program logic. Communication actions in Go are a direct translation of those in local
protocols: a send is a regular Go send, a receive is a regular Go receive, a choice is a type
switch on a label, etc. Programmer inputs at this stage are, therefore, protocol specifications
and program logic. We follow a callback approach similar to [42, 62] that guarantees
correctness of communication by construction, unlike other approaches that required runtime
linearity checks [3]. We discuss this approach in detail in §4. Figure 4 presents the code that

[V VS

D. Castro-Perez and N. Yoshida

GoScr generates for w in UPipe. The generated implementation requires that the programmer
implements the context interface ctx_UPipe_w (Lines 3 — 8, Figure 4). This interface defines
all the necessary callbacks to implement the program logic. Programmers can use any type
definition to store a local state for each participant in the protocol, e.g.

type CtxW int // This type implements Ctx_UPipe_W, and stores the accumulated sum
func (c *CtxW) Recv_M_Put(v upipe.Put) { // upipe.Put is also an ’int’
*c += CtxW(v) }

By using ctxw for implementing Ctx_UPipe_W, workers will store the sum of all the numbers
that they receive, and forward their accumulated sum to the next participant. The generated
code for w will signal when it has terminated (Line 11), and starts by receiving from M (Line
12). Depending on whether w receives Put or Quit, W continues with the corresponding branch
(Line 14). If M sends Put, then w creates a new participant that also acts as w (with respect to
the previous w). To create this participant, first a channel is created (Line 17), then a new
context is created (Line 18), the participant count is increased to guarantee that execution
does not end before all participants have ended (Line 19), and finally a new goroutine is
created (Line 20). Otherwise, if M sends Quit, the callback for ending is called, a last callback
to perform any necessary cleanup is called, and the participant ends (Lines 25 and 26).

As we show in Figure 2, from a global protocol specification GoScr produces an imple-
mentation of all of its participants. To run this generated implementation, programmers
must provide the necessary types to represent protocol contexts and their required callbacks.
Our code generation scheme statically ensures that implementations never lead to the errors
described in § 1, i.e. there will be no deadlocks and orphan messages.

3 Dynamically Updatable Unbounded Multiparty Session Protocols

This section introduces the theory of Dynamically Updatable Multiparty Session Types (DMst)
with examples, and proves that DMst satisfies deadlock-freedom and liveness. DMst is the
formalism that underlies GoScr. To illustrate our theory, consider the dynamic pipeline
of Figure 3. In this protocol, new participants are introduced into the protocol after each
iteration. In DMst, we write this dynamic pipeline as follows:

Pipe = Xp; vq).ut.(p — q:put[nat]. (t g — Pipe(q))) + (p — q:quit. end)

This protocol definition requires two participants p and q. Participant q is annotated with v
to specify that it is introduced dynamically (a dynamic participant). Participant p is called
a parameter participant. The body of the protocol specifies that it is a recursive protocol
(ut....), with recursion variable t, where p sends to q either put or quit. This is a choice (+),
where each branch starts with p — q:put[nat] and p — q:quit respectively. If p sends put,
then both participants enter a new iteration, but q ezxtends the protocol by performing call
to Pipe (q < Pipe(q)) before entering the new iteration. Note that although the signature
mentions two participants p and q, the call in the global type only needs to list the parameter
participants. This protocol call effectively brings in a new participant to the protocol (e.g.
r), creates and distributes the necessary additional channels, and extends the interactions of
the protocol with those of Pipe(q;r).

Introducing new interactions into an existing protocol requires to interleave them with
the actions of this existing protocol. For example, the interactions of Pipe(q;r) need to be
interleaved with the remaining interactions of Pipe(p;q). Our protocol specification allows
two forms of interleavings: (a) sequencing all the interactions of a protocol call with the
remaining interactions; and (b) alternating the actions of each iteration of two recursive
protocols. We introduce a protocol construct 4 to specify the latter.

6:7

ECOOP 2023

6:8

Dynamically Updatable Multiparty Session Protocols

3.1 Global Types of DMst

The syntax of DMst global types (given in Definition 1) is an extension of the simplest version
of MPST [60]. The novel added features are highlighted.

» Definition 1 (DMst Global Types).
vu=p—=qm[U] | p <= z(q) Gu=end|[7.G|Y ;G| pt.Gt|G &7

Prefixes (v, 7/, ...) represent individual interactions between participants, also called
roles?, (p,q,r,...). There are two prefixes: messages and protocol calls. A message between
p and q with label m and payload type U (e.g. int, bool, ...) is written p — q:m[U], or
p — q:m whenever the payload is not relevant, e.g. when U is unit. We write p — z(q) to
denote a call to protocol x by p, with participants § (= q1 ...q,) (see protocol definitions
below). A protocol call prefix will introduce the new interactions described by .

Global types (G,G’,...) denote global protocols among participants. The syntax of
global types is mostly standard: end is termination and it is often omitted. t denotes
a recursive variable. Choice), ; G; chooses any G, depending on the first action of
each G; (see Definition 3). Recursive protocol ut.G behaves as GG, binding recursive
variable t to ut.G. Sequencing .G denotes the execution of a prefix v, and a continuation
G. The new construct G 4 7 denotes an updatable protocol, where G is extended with
the interactions and participants introduced by ¥ (if any). When G is a recursive variable
t (t #7), we often call these updatable recursion, or updatable recursion variable. We use
updatable protocols to represent recursive protocols where subsequent iterations are extended
with new message exchanges and/or participants. We will show in Example 6 how to use
updatable recursion to represent the dynamic recursive pipeline of Figure 3.

Choice well-formedness. Standard MPST syntax only allows choices where a participant p
sends to another participant q a distinct label in each branch. This means that p and q can
use the label to distinguish each branch of the choice [21, 60]. DMst’s syntax is more flexible,
since branches can also be distinguished by distinct protocol calls. However, we still require
that a single participant either sends a distinct label, or performs a distinct protocol call as
the first interaction of each branch. We say that the choices that satisfy this condition are
directed. Checking that choices are directed is necessary for well-formedness, but it is not
sufficient. Protocol well-formedness is defined in a standard way later in Definition 15. To
refer to the interaction that occurs in a branch, we use the extended labels.

» Definition 2 (Extended Labels). We define extended labels, ¢ == m | i@x(p;
i0x(p; q) identifies a protocol call as the i-th participant of x with participants p;
participant index instead of name, since x may give different names to p and q.

q), where
q. We use
» Definition 3 (Directed Choices). Then, we define dc (directed choice):

dC(p, {gi}iej, Ziel ’YLGL) = (VZ S I.inter(p,fi,'\/i)) with all /; 7é fj for ¢ 7é]
The predicate inter(p,¢;, ;) states that v; is an interaction initiated by p with extended

label ¢;: inter(p,i@z(p; q),p — x(q)), if i < size(pq), and inter(p,m,p — q:m[U]).

2 A participant plays a role in the protocol, and this role is determined by the structured sequence of
interactions that are allowed by the global type.

D. Castro-Perez and N. Yoshida

Protocol definitions (z = \(q;vr).G) associate a protocol name z with a global type G,
given a sequence of parameter participants ¢, and a sequence of new participants r (where “v”
means “new” [41]) that join the protocol dynamically (we call these dynamic participants).
Any participant occurring in G must be bound by ¢ or ¥. Protocol call prefixes (z(q)) only
specify the parameter participants, not the dynamic ones. To refer to the global type of a
definition, we write z(q;r), with parameter participants g, and dynamic participants r.

» Example 4 (Fibonacci). The following protocol represents the interactions of an unbounded
series of participants, that together compute the Fibonacci sequence:

Fib = \(s, f1, f2; vf3).f1 — f3:F[int].fo — f3:F[int].f3 — s:NF[int].f3 < Fib(s, fy, f3).end

Fib defines a protocol that recursively creates new participants (f3 in the global type) to
compute the next element of the Fibonacci sequence after receiving the results from the
previous two participants (f; and fp). Participant s receives all the results. Intuitively, the
implementation of f3 starts by receiving from f; and f3, sends the new Fibonacci number to
s, and then creates a new participant and continues with f, acting as f1, and f3 as f;. The
code generated by a similar protocol is shown later in Figure 5.

Protocol calls can also be used to represent recursive protocols that are augmented
dynamically with new interactions and/or participants. To represent such protocols we use
updatable recursion variables. Intuitively, subsequent iterations of a recursive protocol ut.G
that contains an updatable recursion variable t4p — x(q) will proceed as ut.G' combined with
the global type defined by z. Global types are combined by interleaving their interactions.

» Definition 5 (Combining Recursive Global Types). Let cont be a function that computes
the set of final continuations, i.e. recursion vartables or end, after executing all possible
prefizes: cont(y. G) = cont(G), cont(ut.G) = cont(G) \ {t}, cont(D_,.; Gi) = Usercont(G,),
cont(t) = {t}, cont(G & v) = cont(G), cont(end) = {end}. We define

(1632561 G O (8. 251 Gi) = pt-3e1 (GG 01 Gi)

where G' Oy G = [G/t]G" if cont(G") = cont(G) = {t}, G' Oy G = [G/end]G’" if cont(G’) =
cont(G) = {end}, and is undefined otherwise.

The composition operator takes two recursive protocols with the same branching structure,
and combines each of the branches using G’ Oy G. This operator simply appends the
interactions of G after the interactions of G’ by substituting either end or t by G. Both G
and G’ must finish with the same last continuation, either t or end. For example:

((71-end) + (72. t)) Ot ((v3- end) + (y4. t)) = (1. v3. end) + (2. 74. t),
but the following case is undefined: ((7y1. end) + (72. t)) Ot ((v3. end) + (y4. t')) (if t #¢t)

» Example 6 (Dynamic Recursive Pipeline). Consider again the dynamic pipeline of Figure 3:
Pipe = \(p;vq).ut.(p — q:put[nat]. (t ¢ q — Pipe(q))) + (p — q:quit. end)

A set of processes that runs according to this specification would proceed as follows. The

first iteration is the same as the first iteration of Pipe, but without updatable recursion. This

is equivalent to the following global type:

Go = pt.(p — q:put[nat]. t) + (p — q:quit. end)

Le. participant p would start by sending put or quit to ¢, and q would receive this message.
Subsequent iterations will combine Gg, with the result of the protocol call (Pipe(q)). Given
a fresh participant r, this is as follows:

6:9

ECOOP 2023

6:10

Dynamically Updatable Multiparty Session Protocols

G1 = Go O Pipe(q;r) = Go O (ut.(q — r:put[nat]. (t ¢ r — Pipe(r))) + (q — r:quit. end))
= pt.(p — q:put[nat]. ¢ — r:put[nat]. (t # r — Pipe(r))) + (p — q:quit. @ — r:quit. end)

Note that ¢ plugs in the interactions of the first (second) branch of Pipe(q;r) after the first
(resp. second) branch of Gy. This has the effect that, after each iteration of the protocol, a
new participant will join the pipeline, until the first participant sends message quit. Such
protocols could not be represented in previous MPST extensions. See §6 for a discussion.

» Example 7 (Dynamic Ring). DMst can also be used to model protocols, such a dynamic
ring, in which participants join a recursive ring protocol. Such dynamic rings are at the core
of some well-known protocols, such as Chord and its extensions. The protocol in DMst is as
follows, omitting choices and payload types for simplicity:

Ring = A(i,p;vq).ut.p — q:N. t ¢ (q — i:N. i = Ring(i,q))

The entrypoint is Ring(p, p;q). Subsequent iterations would be combined with new protocol
calls (e.g. Ring(p,q;r)), producing the following sequences of interactions:

Go=put.p—>qN.q—p:N. t Gy =pt.p—>qN.qg—q:N.q" — p:N. t Gy=...

3.2 Asynchronous Semantics of DMst Global Types

We guarantee the processes implementing all roles in a global type G indeed behave as G.
To characterise the set of behaviours that are allowed by G, we define the semantics of global
types as a Labelled State Transition System. The labels are the observable actions:

—

a==pqll|pq?l | pq v iGx(r;s)

Observable pq!/ is a send action from p to q with an extended label (either a label or
a protocol call, see Definition 2). Action pq?¢ is receive and action pq v i@x(r;s) is
participant creation which brings in q as a new participant acting as the i-th role in the
protocol specified by z(r;s). For simplicity, we sometimes write pq v ¢ to refer to participant
creation, assuming that ¢ is of the form i@x(r;s), for some i, z, ¥ and S.

Extended Global Types. We extend the global types (Definition 1) with constructs that
capture intermediate states of the execution of a protocol. Note that these intermediate
states only appear as a result of applying the rules of the operational semantics, and these
will not need to be written by users specifying full protocols. Since extended global types
are a superset of Definition 1, we will use the same meta-variable G for both and, unless we
specify otherwise, all global types from now on are considered to be extended.

yi= o p—= QU] | p~ QU] | pu(F: [i, jlex(B; @) | o[C)]

Sending protocol call labels (e.g. p — q:i@z(p; q)) is a form of delegation that is used to
perform protocol calls (see Notations below). p ~ q:/[U] means p has sent a message to q,
yet q has not received it. pv(r': [i, j]0x(p; ¢)) represents that p creates new participants r,
acting as the ith to jth participants in z, and >[G] is the nested protocol with global type G.
Intuitively, a nested protocol prefix >[Gg]. Gy is equivalent to sequencing Gy and Gj.

D. Castro-Perez and N. Yoshida 6:11

Notations. We use notations to break down protocol calls into the individual interactions.
Suppose that § = (q1,...,q) and ¥ = (r1,...,ry). We define idx(p; §) as {i}, if p = q; with
1 <4 < n, or the empty set {} otherwise. We define the following shortcuts:

p — G:0z(G;F) =p — qr:i102(G;F). ... p — Qn:inQ@z(q;¥)
pcall z(q;¥) = pv(r:[n+1,n+mlez(q;r)). p— q\ {p}:([1,n] \ idx(p; 4))ez(q; F)

Notation p — G:i@z(q; ¥) represents a sequence of messages from p to each of the q € §
with the respective extended label. These are sometimes called invitations to z. Notation
p call z(q;¥) is a sequence of actions, where p first creates r, and then sends invitations to g,
excluding itself to avoid self-communication.

Global Type Equivalence and LTS. We define the erasure of updatable recursive variables
as [t @)y =t if t =t'; and |t # 7| = t ¢ v otherwise (other cases are homomorphic).
The LTS is defined up to the equivalence: (1) pv();G = G; (2) plend]. G = G; (3) ut.G =
[ut.|G|¢/t]G, and, assuming ¥ fresh, (4) p — z(q). G = p call z(q;¥). >[z(q;)]. G, and (5)
G&(*.p—z(q) =7. pcall z(q; 7). (G O z(q;r)). Rules (1) and (2) capture that finished
prefixes (creating an empty list of participants, or a nested ended global type) can be skipped.
Rule (3) is recursion unrolling. Similarly to Example 6, subsequent iterations of the protocol
will combine the body of the recursion without updatable recursion variables, with the result
of the protocol calls. By this rule, recursion will be updated by protocol calls, and after the
first iteration, the protocol can continue as ut.|G|y (possibly combined with the result of a
protocol call). Rule (4) expands the sequence of a protocol call and a global type, and rule
(5) updates a global type by first executing the specified prefixes and then continuing with
G combined with the result of the protocol call. We guarantee that new roles are globally
fresh by adopting a Barendregt convention on all binders, i.e. each time we access a protocol
definition z, we alpha-rename the participants bound by vr to avoid participant name clashes.
Without it, consecutive protocol calls could incorrectly introduce repeated participant names.

» Definition 8 (Active Participants). The active participants of a global type (prefix), pt(G)
(pt(7)), is the set of participants that can perform an action in the protocol (or prefiz).

pt(p — q:[U]) = {p,a} pt(p— =(a@)) ={p}Ud ptp~ ql[U]) ={a} ~.G=pt(y)Upt(G)
pt(p — =(a)) = {p}uUd pt(pv(¥: [i,jlex(p;q))) = {p} UF pt(>[G]) = pt(G)

pt(end) = pt(t) = {} pt(ut.G) =pt(G) pt(>_, , Gi) = U, Pt(Gi) pt(G #7) = pt(G) Upt(y)

» Definition 9 (LTS for Global Types). Let the subject of an action denote the role that
performs it: p = subj(pq!¢) = subj(pq?¢) = subj(pq v ¢). The LTS for G:

[BR-A] [BR-B}W [NEST|
VieLG, G G LG de(p {6}, Y0, Gi) G125 Gy
Y Gi = 2, G Y, G >[G1]. G =5 p[Ga). G

pr v i@w(ﬁ;?’)
_—

p(F: [i+1,5]0z(G;7)). G

[SEND] [RECV] S80] G = G subj(e) € pt(v)
p%q:([U}.Gﬂpwq:é[U}.G pwq:é[U}.Gﬂ)G 7.G = .G

[Br-A] specifies that if an action can be taken in all branches of a choice, it can be taken
before the choice is decided. The reason is that if an action can be taken in all branches,
then it must be independent of the choice. [Br-B] states that if the sender of a choice does
an action that selects branch j, then the choice transitions to this branch. [SEQ] states that

ECOOP 2023

6:12

Dynamically Updatable Multiparty Session Protocols

an action can take place in a continuation, if the action does not involve the participants of
the prefix. In the prefix transitions, [SEND] (resp. [RECV]) represents a send (resp. receive)
action. [NEw] specifies that a new participant r of the nested protocol is created, and [NEsT]
represents the execution of an action in the nested global type.

» Example 10 (DMst Semantics). Consider the following protocol, cf. Example 6:

Pipe = Xp; vq).ut.Go with Go = (p — q:put[nat]. (t 49 < Pipe(q)))+ (p — q:quit. end)
First, assuming two initial participants (p and q), we unfold recursion using =:

wt.Go = [pt.|Gole /t]Go = (p — q:put[nat]. (ut.|Gols ¢ @ — Pipe(q))) + (p — q:quit. end)
There are two allowed actions: sending put and sending quit. By [Br-B] and [SEND],

'put .
[10t.]Gole/t]Go 2225 p ~» q:put[nat]. (ut.|Gole # q = Pipe(q))
There are now two actions accepted. First, we can use [REcv]:

?pu .
p ~ q:put[nat]. (ut.|Golc # g = Pipe(q)) 2255 1t.|Gole 4 q < Pipe(q)

To enable the second action, we use equivalences to unfold the updatable global type:

G1 = p ~ q:put[nat]. (ut.|Golc 4 q — Pipe(q))
= p ~ q:put[nat]. qu(r : 2@Pipe(q;r)). (ut.|Gols O Pipe(q;r))

Note that p is not in the set of active participants of the prefix, so p can take a step, using
repeated applications of [SEQ], in (ut.|Gol¢ ¢ Pipe(q;r)).

pt.Go = (ut.|Gole O Pipe(q;r))

= ut.(p — q:put[nat]. g — r:put[nat]. (t & r — Pipe(r))) + (p — q:quit. g — r:quit. end)

= (p — q:put[nat]. g — r:put[nat]. (ut.|G2|; ¢ r — Pipe(r))) + (p — q:quit. @ — r:quit. end)
Suppose that G5 proceeds by p sending quit: ut.Go Patauit, (p ~ q:quit. @ — r:quit. end).
Then, G, transitions to the following global type:

ut.Gq Patquit, p ~ q:put[nat]. qu(r : 2@Pipe(q;r)). p ~ q:quit. ¢ — r:quit. end
After [Sq-aA] and [REcv], the global type transitions to:
G3 = qu(r: 20Pipe(q;r)). p ~ q:quit. @ — r:quit. end

With [Sq-a] and [NEw], the protocol transitions as follows:

qr v 2@ Pipe(q;r)
_—

G p ~ q:quit. @ — r:quit. end

At this stage, r is a new active participant of the protocol. The remaining global type can
run to completion via a sequence of [REcv], [SEND], and finally [RECV].

3.3 Local Types

Local types describe the interactions of a protocol from the point of view of a single participant.

» Definition 11 (DMst Local Types). Let M ::=1[U] | L. The syntaz of local types is:

Tu=p!M|p?M |v(p: L) |>[L] Lu=end|7m L|Y c;Li|pt.L|t|L&7

D. Castro-Perez and N. Yoshida

Local type syntax differs from that of global types in the prefixes (7 instead of 7). Local
type prefixes are as follows: send p! M, receive p?M, new participant creation v(p; :
Ly) -+ (pn : Lyn), and the nested local type >[L]. We lift the definitions of directed choices,
updatable recursion erasure, and the composition operator from global types to local types.
Endpoint projection takes a global type G and a participant r, and produces the local
type (the local interactions) of r in G.

Similarly to global types, we introduce the notations for protocol calls. Assuming

d=4q1,...,q9, and F=rq,...,r,,, we define these notations as follows:
Gliex(q;r) = qili1@x(q;r). qn!i,Qz(q;?)
peall a(@) = v(F: [n+1n+mles(@n). a\ p!([1,n]\ idx(p; §))ex(d;)

» Definition 12 (Prefix Projection). Global type projection is defined in terms of prefix
projection. Prefix projection is a partial function that takes a global prefix, and produces a
possibly empty (g) sequence of local prefizes. We give the two main rules:

ol I pald) v (7 fresh))
QU] p=r+q p call T((i r). >[i0x(q;)] p:rei(l
o] pir—q pc.allq;(;) 3 p:rgcl
- o.1.q distinct p’i@x(q;¥). piex(q;F)] pF#re q

o € pP#ré¢ q

The projection of p — q:I[U] onto r is a send if r is p, and a receive if r is q, an empty
prefix if all roles are distinct, or undefined if r = p = q. The projection of p — z(q) follows a
similar pattern. If r is p, then the projected sequence of prefixes is the one that corresponds
to making the protocol call, i.e. delegating channels and creating new participants. If r is
the ith participant in ¢, then r also takes part in the protocol, so the prefixes correspond to
the reception of the channel for acting as the ith participant in z, followed by the execution
of the nested local type for this ith participant in z, i@z(q;r). If r is both the protocol
caller p, and also takes part in it, then the prefix sequence is the sequence of prefixes for
making the protocol call, followed by the nested local type for :@Qz. Note that a participant
may call a protocol, and not take part in it. When this happens, the protocol caller simply
distributes the necessary channels for executing the nested protocol, and then proceeds to
the continuation, without entering the nested protocol.

» Definition 13 (Projection and Merging). Projection is defined as follows:

_ tlr=t LG (ifr & 7)

G lr=olrGlr end [r=end Geylr= { Glre(FIr) (freqd)
ut.G Tr rept(G) or S (Giln) [Z Gr=p
t.Gr= fv(ut.G) # 0 _Gilr= i€ AT 2 T
8 " end o\t,;g;rwjie;é ZZEI ' {I—IzEI(Gz“’) éz)7 #p

Projection is a partial function from global to local types. We lift the definition of directed
choices (Definition 3, dc) to local types. We define [|;crL; as the merging operator:

(1) L M L=1L (2) Ht-Ll M Mt.LQ = [I,t.(Ll Il LQ)
(3) 2, PPG[U] LMY, P2G(US) L =
Zke[ﬁj 2 [Uk]. L 1 Ly,) + Z eI\J p?4i[Ui]. Li) + Z_]‘EJ\[CHAE L;)

The projection rules are standard [60], except the choice. A choice is only defined if it is
directed. The projection of the participant that makes the choice is a local type choice of the
projection of the branches. The projection for all other participants is the merging of the

6:13

ECOOP 2023

6:14

Dynamically Updatable Multiparty Session Protocols

projection of the branches. Local types can be merged in three cases: (1) they are the same,
(2) they are recursive local types whose bodies can be merged, or (3) they become aware of
which branch of the choice was taken (if necessary), by receive actions with distinct labels.
Case (3) implies that both local types are choices with a receive prefix as the first action,
where the continuations for the branches with the same labels can be merged.

It is standard in MPST to define well-formedness in terms of projectability [21]. This
means that if a global type is projectable onto all of its roles, then it is well-formed and
therefore live and deadlock-free. Unfortunately, the use of ¢ means that this is not possible
with DMst. E.g., the following global type is projectable, but it will get stuck:

Protol = Xp;vr).ut.(r — p:my. end) + (r — pima. t)
LllIFormed = \p; vq).ut.(p — q:m1. end) + (p — q:mo. t ¢ (p — Protol(p)))

Specifically, r in Protol will not become aware of the branch taken by p in IllFormed, so
after unfolding Il/Formed once, we will obtain the following global type:

ut.(p — q:my. r — p:my. end) + (p — q:ma. r — pima. t)

But this protocol would not be projectable. To avoid such cases, we define a necessary
condition for well-formedness, the safe protocol update condition.

» Definition 14 (Safe Protocol Update). Suppose that C[] and C'[] are 1-hole global type
contexts. A global type ut.Clt ¢ (. p = 2(q))] contains a safe update if its 1-unfolding
is some C'[G # (7. p — x(q))], such that given a sequence of fresh roles ¥, G x(q;¥) is
projectable.

» Definition 15 (Projection and Well-Formed Global Types). A global type G is projectable
if its projection G [r is defined on all roles v € G. A global type is well formed iff it is
projectable, and contains only safe protocol updates.

» Definition 16 (Projections of Protocol Definitions). Assume a definition © = \(p;vp’).G,
with participants p = (p1, ..., Pn) and with participants p’ = (Pnt1,---,Pm). The projections
of = are the local protocol definitions that correspond to each of the participants in the protocol:

lox=\Np;vp).Gp1 ... mex= \p;vp).G|pm
» Example 17 (Directed Choices and Merging). BFib computes the n-th Fibonacci number:

BFib = Xr, f1, fa; vf3).f1 — f3:F[int].
fa — f3:F[int].((f3 — r:NF[int].f3 — fa:quit.end)+(f3 < BFib(r,f, f3). end))

This protocol is similar to that of Example 4, but instead of calling BFib indefinitely, the
protocol offers a choice: f3 will either reply to r with its Fibonacci number, or call BFib
recursively to compute the next number. Participant f3 selects the branch of the protocol
that is taken, and r offers the two branches. The choice has a single sender, and both
branches can be distinguished by the labels or protocol calls, so the choice is directed by f3,
with extended labels ¢ = NF, i@ BF'ib(r, f, f3;f4). In a directed choice, one participant decides
the branch. But how do the remaining participants know which branch was taken? Consider
f1 in BFib. Its part in both branches of the protocol is the same, end, so we can project
f1 in the choice as end. This is one of the cases of Definition 13: two local types can be
merged if they are the same.But fy’s behaviour is different in each branch: f37quit. end and
f3720BFib(r, f2, f3;f4). end respectively. However, fa is aware of the branch that was taken
by receiving either label quit or protocol call label 20 BFib(r, 2, f3;f4). This is case (3), as
explained after Definition 13:

D. Castro-Perez and N. Yoshida

(f37quit. end) M (f372@BFib(r, fa, f3; fa). end) = (f37quit. end) + (f372@BFib(r, f2, f3;f4). end)

» Example 18 (Projecting Pipeline). Consider again Example 6. We are projecting the first
and second participants of z. The result of the syntactic projection is as follows:

z(p;q) = pt.(p — q:putnat]. (t 4 q = z(q))) + (P — q:quit. end)
1ez(p;q) = wpt.(q!put[nat]. t) + (q!put[nat]. end)
20z(p;q) = pt.(p?put[nat]. (t ¢ (call z(q;r). q7qlez(q;r). >[10z(q;r)]))) + (p?quit. end)

3.4 Semantics of DMst Local Types and Correctness

The semantics for local types is defined for local type configurations. A configuration
is a pair of channel and participant environments, (A ; ©). The channel environment A
contains the shared channels used for the asynchronous communication between each pair of
participants, and the participant environment O is a set of the local types of all participants:

A = pigj :: W1, ..., Pk i Wp w = ([U] O={p1:Li, - ,qm: L}

w denotes a payload of a message. We consider the channel and participant environments
up to commutativity and associativity, since all entries must be disjoint. Channels pq are
channels of messages to p from q. We use A(pq) as notation for retrieving channel pq, and
Alpq :: W] for updating channel pq with w. © does not impose the ordering between the
entries (like a set). We update the entry by writing ©[p :: L] =p :: L, (O \ p).

The semantics of configurations is defined by the LTS of local types and given in
Definition 19, and it is defined up to local type equivalences, analogous to those of global
types: (1) ut.L=7.endif L =t &7; (2) [ut.|L|¢/t]LIELAt@7, (3) L&(T. 7)=7. 7w L, if
m#>[L'],and (4) L& (7. 7) = 7. (LOL'), if 7 = [L’]. The semantics of choices requires that
they are directed. At the local type, all branches start with a send/receive prefix to/from the
same participant p. We use the predicate dc(p, {/i}i, > ,c; mi- Li), and define it analogously
to the predicate for global types.

» Definition 19 (LTS for Local Types). The LTS for local types is defined as follows:
<A;p:rL>:><A;@> (L-NgsT] (A;p:¢L>?<A;p::L,(—>>
(Asp=L,0) S (A ;0,0) (Aspup[l]. LY S (A spus[l].L,0)

[L-cong]

€T (AspuLy) 5 (A30) de(a iy, Li)
(Aspuy L) =(A50)

[L-CHOICE] !

[L-sEND] (A,qp=w;p:qll[U]. L) LN (A,gp=w-L[U];p:: L)
[L-RECV] (A,pq:: U] -w 5 p::q[U]. L) part, (A,pq:wW;ip: L)
i v Ly
[L_NEW] <A 5P l/(qi : Lz) (q]- X L]')) pq_} < A 5qQi i Li,p o Z/(qi+1 X Li+1) <. ‘(qj' : Lj))

[L-cong] specifies a step by a participant in the configuration. [L-rREcUR| unfolds recursion,
and [L-cHoICE] selects one branch of a choice by performing a step into one of the continuations.
In [L-cuoicg], only one action can take place in one branch, because the labels of all branches
must be distinct for the choice to be directed. [L-sEND] executes a send prefix by enqueuing
the label and the payload type into the channel of the receiver, [L-RECV] executes a receive
prefix by dequeuing the label and payload type from the corresponding channel, [L-NEW]
creates a new participant by composing its associated local type in parallel with the remainder

6:15

ECOOP 2023

6:16

Dynamically Updatable Multiparty Session Protocols

of the local type environment, [L-NEST] performs a step into a nested local type. We allow
the renaming of participants introduced by [L-NEw] to avoid participant name clashes. For
simplicity, we assume that A always contains a (possibly empty) sequence of payloads for
every pair of roles. For example, if pq is not in A, we allow to match A with A, pq :: ¢

We prove the correctness of DMst: (1) the global type semantics coincides with behaviours
of local endpoints, a well-formed global type is (2) deadlock-free and (3) live. (1) together with
(2) and (3) imply that the programs generated from local types projected from well-formed
global types are deadlock-free and live.

We define the projection of G as [G] =([];p:G|p,...,q::G[q), forallp,...,q€
pt(G). A configuration is a subtype of another if it contains the same participants and their
local types are related under the standard subtyping relation [60], i.e., (A0)< (A;0")
implies that ©(p) < ©’(p) for all p.

» Theorem 20 (Trace Equivalence). If (A 0) < [G], thenT + G 25 G’ if and only if
there exists (A’ 50") such that (A30) 25 (A5 0") and (A’ ;0") < [G'].

Proof. The full proof uses the extended projection, that produces both local types and the
queue contents implicit in the intermediate forms. The core part of the proof is completed by
induction on the derivations for the global and local type LTS, using the fact that if G = G’,
then G [r=G'|r. <

A configuration { A ;5 ©) is final if for all pq € dom(A), A(pq) = ¢, and for all
p € dom(0O), ©(pq) = end. The configuration is in a deadlock if it cannot make progress
and it is not final, i.e. the protocol has not ended, and all participants are stuck.

» Definition 21 (Deadlock). (A ; @) is a deadlock configuration if there exists a sequence
of actions a* such that (A0) 25 (A’ 5 0"), with (A’ 3 ©) not final and for all action

a, (A5 0) .

» Example 22 (Deadlock Configuration). A deadlock configuration is one in which the whole
system can get stuck and cannot progress. A usual example of this is a configuration where
all participants need to receive, but their messages have not been sent. We show below such
configuration, where after one action, it reaches a receive cycle:

([15p:qli[U]. qU]. Ly, q = ¢20[U]. Lo,r = p‘?l[U] >i”>
([ap == I[U]] 5 p = q?l[U]. Ly ,q : r?2[U). Lo, v p2l[U]. Lz) 9

» Theorem 23 (Deadlock-Freedom). If (A5 ©) < [G], then (A 5 ©) is deadlock-free.

Proof. We show that either G is ended, or there is a step available for G, and use trace
equivalence to conclude this for (A ;0) < [G]. <

Theorem 23 refers exclusively to the absence of global deadlocks, i.e. the whole system
will never get stuck. But DMst also guarantees the absence of local deadlocks, i.e. that
no participant in the system gets stuck. An example of such partial deadlocks is the usual
receive-cycle, where a subset of participants are waiting forever, and can never make progress.
DMst guarantees that this situation cannot happen. To prove this, we first show that DMst
guarantees orphan message freedom [10], which means that all messages are eventually
consumed without a type mismatch.

» Definition 24 (Orphan Message). (A ; ©) has an orphan message if there exists
wE A(pq) but there exists no transition such that consumes it, i.e. there is no transition
(A;0)25(A;0") with pg?|w| € ax.

D. Castro-Perez and N. Yoshida

» Example 25 (Orphan Message). Orphan messages can occur whenever a send prefix is not
coupled with the corresponding receive, thus leaving a message hanging in the corresponding
buffer. For example, the following situation contains an orphan message:

' J5p = alU[U]- a?I[U]. end,q - pl[U]. end) 225
([ap = [[U]] 5 p = @?U[U]. end, q == p![U]. end) Y% ([qp = {[U]) 5 p : end,q == end)

At the end of the execution, the configuration contains a non-empty buffer: gp :: [[U].
Another example of orphan messages is one in which the reduction gets stuck because of
receiving a message of the wrong type or label, i.e. there is a reception error.

(l |5 p = qllfint]. end,q :: p?l[bool]. end) 2%

([ap :: I[int] 5 p :: end, q :: p?i[bool]. end) &

In this case, reduction cannot continue, and the message qp :: [[int] cannot be consumed,
because q is expecting payload type bool.

Proving that DMst guarantees the absence of orphan messages relies on the absence of blocked
local types. A blocked local type is a local type that contains a nested session that cannot ter-
minate, followed by a non-empty continuation. For example, if L = >[ut.q2!l'[U’]. t]. p?l[U],
then L is blocked, because it will enter the nested protocol (with local type pt.q2!l'[U]. t),
but it will never be able to continue executing p?l[U].

» Definition 26 (Blocked Participant). A blocked local type is one that contains a continuation
of the form >[Ly]. Lo, where: (a) L; is blocked, or (b) Ly # end and end is not reachable
from L;.

» Definition 27 (Liveness). We say that (A 5 ©) is live, if no participant is stuck. A
participant p is stuck in a configuration whenever it cannot progress, i.e. if ©(p) = L with
L # end, but there is no trace (A ;0) 25 (A’; ") with p = subj(a) and « € ax.

» Example 28 (Stuck Participant). The following configuration is not live, because even if p
and g can continue interacting, r and s are stuck in a local receive cycle:

([5p = put.qli[U]. t,q == pt.p?l[U]. t,r = s2[U]. La,s = ¢?20[U]. Ly) 2%
([sp:pt.qli[U]. t,q: pt.p?l[U]. t,r::s?U[U]. La,s = r20[U]. Ly) =5 ...

No possible trace can contain rs?l or sr?l. Participants r and s are stuck. Note that, from
Definition 19, only receive prefixes can get stuck, since send prefixes will always succeed.

» Theorem 29 (Orphan Message Freedom and Liveness).
Suppose { A 3 ©) < [G], such that © contains no blocked participants. Then (A ; O) is
free of orphan messages and live.

Proof. Liveness is a straightforward consequence of orphan message freedom. The prefix
of a local type can have two kinds of actions: outputs (sending data or invitations), or
inputs (receiving data, or accepting invitations). Every input is coupled with an output by
another participant (see Definition 13). Hence outputs can always be performed, in any
state. To prove that inputs can always be consumed, we use trace equivalence. We show
that any pending message can be received, since a step can only happen in a continuation
if its subject is not in any of the previous prefixes, and it is always possible to end nested
protocols, because they cannot be blocked. |

» Proposition 30. As a consequence of Theorems 23, 29 and 20, the global types of Example 10
are live and deadlock-free.

6:17

ECOOP 2023

6:18

Dynamically Updatable Multiparty Session Protocols

4 GoScr Code Generation

This section describes the GoScr toolchain. GoScr is an extension of nuScr [48], which is a new
implementation of Scribble in OCaml. nuScr is designed with modularity and extensibility in
mind, so that extensions of the core MPST theory [60] can be easily integrated.

GoScr Global Protocols. The syntax of GoScr global protocols is given in Definition 31.

» Definition 31 (GoScr syntax).

P = global protocol .’L‘(role P1,...,role Py;new role 1,...,role qm) {P* G}

g ==m[U] fromp toq | p calls z(p1,...,Pn)
G = choice at p {G1} or...or{G,} | g; G | rec t {G} | continue t | end
| continuet with{g1; ...gn; P calls x(p1,...,Pn)} | doz(pP1,...,pn); G

A GoScr module is a sequence of one or more global protocols. The last protocol definition is
the entry point. The constructs of GoScr were chosen to mirror those defined in Definition 1:
global protocol are protocol definitions (z = A(p; vq).G. . .; global protocol can be used for
protocol declarations with no new participants; choice at p defines directed choices from p
to the receiver of the first interaction in the G;; do is a protocol call to a global protocol; and
the rest of the constructs correspond to those of DMst. Protocol definitions in GoScr can
start by defining other nested protocols, but this is simply a syntactic convenience, since we
require every role in a nested protocol to be bound by the protocol signature.

Steps for Code Generation. The steps of code generation in GoScr are: (1) lifting all nested
protocol definitions to the top-level; (2) obtaining the projections of all roles in all protocol
definitions; (3) preprocessing local types to deal with instances of 4 (or continue...with...
in GoScr); and, (4) translating the local types to Go functions, where communication is
implemented using Go channels, interleaved with callbacks that will be used to implement
the program logic.

Step (1) is straightforward. Step (2) is an implementation of Definition 13. Step (3)
requires applying local type equivalences to unfold any updatable recursion. Step (4) traverses
the local types, and generates on demand the necessary channels and callback interfaces.
The type of the Go channels is an interface that represents the allowed payload types. Then,
for each labelled message exchange: (1) we add a new type declaration for the label and
payload type that implements the interface of allowed messages; (2) we search for a channel
for the required endpoints, creating it if necessary; (3) we create the necessary callbacks
before or after the interaction. The channels can be created either synchronous, or buffered
with a user-specified size. Choosing synchronous channels is safe, since the traces accepted
by using synchronous semantics is a subset of those accepted by our asynchronous semantics,
which implies that the same safety properties will hold.

Go Code Generation. The Go code for each role and protocol is generated in protocol/.
Communication is implemented using regular Go send/receive statements. There is no need to
explicitly send message labels, since labels are encoded as type declarations. Protocol choices
are encoded as type switches, either on the value returned from a previous callback (internal
choices), or on the received value (external choices). We only generate implementations for
branching choices that start with an explicit interaction.

W N e

D. Castro-Perez and N. Yoshida

func BFib_F2(ctx Ctx_BFib_F2, wg *sync.WaitGroup, ch_F2_F3, ch_F3_F2 chan MsgBFib) {

X := ctx.Send_F3_BFib_Fib2() // Callback to generate payload

ch_F3_F2 <- x // Send payload to F3

x_1 := <- ch_F2_F3 // External choice by from F3

switch v := x_1.(type) {

case End: // F3 chooses to finish the protocol
ctx.Recv_F3_BFib_End(v) // Callback for processing label End
ctx.End()
return

case Call_F1_BFib: // F3 sends the channel for acting as F1 in BFib
ctx_1 := ctx.Init_F1_BFib_Ctx() // Initialise context for F1 in BFib
BFib_F1(ctx_1,wg,v) // Run code for F1 in BFib with channel [v]
ctx.End_F1_BFib_Ctx(ctx_1) // Close context for F1 in BFib
ctx.End()
return

} 3

Figure 5 Implementation of role F2 in protocol BFib.

Calling a nested protocol is implemented as regular Go function calls. rec constructs
are generated as labelled for loops, where the body of the recursion is used to generate
the body of the for loop, and recursive variables are translated as continue to the label of
the corresponding variable. It is also possible to represent recursion using protocol calls.
However, protocol calls would need to create the necessary channels and send them to any
participant in the protocol, thus being less efficient than using rec and for.

4.1 Linearity and CFSM Code Generation

Program logic is defined through callbacks, similar to [42, 62], to avoid the linearity problem
of previous Communicating Finite State Machine approaches (e.g. [3]). In a CFSM approach,
code generation from a local protocol produces a series of interfaces that encode the protocol
states. Each protocol state exposes only the permitted actions (e.g. send/receive), and
returns the next state in the protocol. Programmers must use such states to implement their
program logic. The linearity problem arises from the fact that nothing prevents programmers
from mistakenly using the same protocol state again. For example, suppose that sto, st1, ...,
are protocol states that expose different send/recv actions. A programmer might (mistakenly)
save state st1 and perform its action twice in the implementation. In the Go code snippet
below, st1 is used both in Line 2 and Line 4, violating linearity:

stl := stO.send_Msg_to_p(x)
= stl.recv_Lbl_from_p(&z)

stn := stl.recv_Lbl_from_p(&buffer) /* linearity error at stil */

If participant p does not send any other message, then this implementation will deadlock. If
p does send another message, this might cause a run-time error. A callback-based approach
solves this problem by construction, since channels are not exposed to programmers [42, 62].

4.2 Example of Generated Go Code

Consider the following GoScr global type:

global protocol BFib(role Res, role F1, role F2; new role F3) {
Fibl(v:int) from F1 to F3; Fib2(v:int) from F2 to F3;
choice at F3 {
F3 calls BFib(Res, F2, F3);
}or {
Result(fib:int) from F3 to Res; End() from F3 to F2; }}

6:19

ECOOP 2023

6:20

Dynamically Updatable Multiparty Session Protocols

This is a bounded version of Example 4, that computes the Fibonacci sequence up to an
upper bound. F1 and F2 send their respective n — 2 and n — 1 Fibonacci numbers to F3. Then,
F3 computes the n-th number, and makes a choice: compute the n 4+ 1 number, or end the
protocol. If F3 decides to continue, then a recursive call to BFib happens. Otherwise, it sends
the result to Res, and notifies F2 that the protocol is ending. F3 needs to notify F2, because
depending on F3’s decision, F2 may needs to forward its n — 1 number.

Figure 5 shows the code for F2 in BFib. The parameters of BFib_F2 are: ctx is the local
state for F2; wg is used to ensure that the main thread does not resume execution until all
participants have finished executing; ch_A_B is the channel for communicating from B to A.
The first interaction of F2 is a message to F3. The payload for this message is generated
in Line 2, it is sent in Line 3. Then, F3 makes a choice: either it sends the result back to
Res and sends End to F2 to communicate the end of the protocol, or it calls BFib recursively.
F2 performs a type switch to check which branch it needs to take (Line 4). If the label it
receives is End (Line 6), then F2 processes this label and ends the protocol. Otherwise, F2
receives an invitation as F1 in BFib (Line 10); then F2 initialises a new context for F1 using
the callback on Line 11; it calls sriv_r1 with this new context, the waitgroup, and the received
channel (Line 12); F2 performs cleanup on the context for Fi, gathering any necessary results
from the call (Line 13); and, finally F2 finishes.

Finally, GoScr generates the main protocol entrypoint, which creates the goroutines for
F1, F2 and F3, all the needed channels, and waits for the completion of the protocol.

Usability and GoScr Front-end. The tool requires the user to instantiate a large number
of callbacks and interfaces to allow running a protocol. Since the GoScr methodology is
top-down, the user must start by specifying a protocol. Therefore we expect an end-user to
be aware of the callbacks and contexts that need to be instantiated. However, many of such
instantiations are tedious, but straightforward, and can be automated in future work. We
discuss this improvement in Section 7.

Deadlock Freedom and Liveness. Since the generated code follows the behaviour of the
local types, it will satisfy both deadlock freedom and liveness (Theorems 23 and 29).
Although the generated code satisfies these properties, whether the final code that is run
also satisfies them depends on three requirements on the callbacks. These requirements are
not checked by GoScr, and must be guaranteed by GoScr users. The three requirements
that the callbacks must satisfy are: (1) callbacks must not have side-effects that interfere
with other participants (e.g. using channels to add communication that is not accounted
for in the protocol) (2) callbacks must be terminating, otherwise a participant may block
before a necessary interaction, in a non-terminating callback; and, (3) callbacks must ensure
that nested protocol calls that are not in tail position are terminating. Requirement (1) is
to guarantee that programmers do not use local synchronisation mechanisms that are not
accounted for in the protocol, and can cause blocking. Requirement (3) is to guarantee
that any interaction after a nested protocol call is eventually performed. GoScr checks that
local types are not blocked (Definition 26), so the code for nested calls that are not in tail
position will always contain a path that ends the protocol. However, whether the actual
code is terminating depends on the callback implementation that the users need to provide
satisfying Requirement (3). Provided that these requirements are met, and assuming a
fair scheduler, GoScr implementations will be deadlock free and live by construction. These
requirements are not unique to our implementation. Similar requirements must be satisfied
in other MPST code generation approaches.

D. Castro-Perez and N. Yoshida 6:21

14 fannkuch L4 regex-redux
1.2 1.2
1.0 1.09 ¢
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
4 5 6 7 8 9 10 11 12 0.0 05 1.0 15 20 25 quicksort
Permutation size Sequence length 1e7 1.15
1.10
14 spectral-norm La k-nucleotide 1.05 L”\/\
1.2 1.2 1.00 —
1.0 L0 0.95
08 08 0.90
0.6 0.6 0.85
0.4 0.4 0.80
0.2 0.2 o1 2 3 4 5 6
0 1000 2000 3000 4000 5000 0 1 2 3 4 5 Array size le7
Num Iterations Sequence length 1le6
. .) — T=1500 —— T=6500
14 bounded prime sieve La bounded fib T=3500 T=8500
1.2 1.2 T=5500 -—-- baseline
1.0 1.0
0.8 0.8
0.6 0.6
0.4 04y
0.2 0.2
0 2000 4000 6000 8000 5.0 7.510.012.515.017.520.022.525.0
Upper bound Nth term

Figure 6 Execution time comparison (tpese / tGoser), CLBG and Quicksort.

5 Evaluation

We evaluate three aspects of GoScr: (1) the runtime overhead of the GoScr backend (§ 5.1);
(2) the increased expressiveness with respect to related approaches (§ 5.3); and (3) the
applicability of GoScr for building realistic protocols, by implementing dynamic task del-
egation, a Domain Name System, and a parallel Min-Max strategy. We show that for
computation-intensive protocols, the runtime overhead of GoScr is negligible.

5.1 Runtime Overhead of GoScr

We use an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz processor with 4 physical cores, 16GB
RAM, running Ubuntu 16.04.7 and Go version go1.15.11. We use Golang’s time package to
measure execution times. There are two main sources of run-time overheads: (1) callbacks;
and (2) type switches and assertions. Our approach is to compare GoScr implementations
against baseline Go code. Baselines are taken from benchmarking repositories, and follow
similar communication patterns to the GoScr implementations. The measured time includes
session initialisation. We execute each benchmark for a minimum of 20 iterations and a
minimum of 20 seconds. The standard deviation for computationally expensive benchmarks
is less than 5%. Only the standard deviation of fibonacci and prime sieve with small inputs
(< 10th term, bound < 2000) remain high, at 70%. This is because these benchmarks with
very short execution times (in the order of nanoseconds) are highly dependent on the system
(e.g. channel creation, goroutine scheduling, etc). Our benchmarks are mainly taken from
the Computer Language Benchmarks Game [17], and we include a parallel Quicksort that
showcases the handling unbalanced workloads. Figure 6 shows the execution time of the Go
baseline relative to GoScr: tpase / tcoser (below y = 1 is a slowdown, above is a speedup).

ECOOP 2023

https://golang.org/pkg/time/

6:22

Dynamically Updatable Multiparty Session Protocols

global protocol DynTaskGen(role S; 11 global protocol ClientServer(role C,
new role W) { 12 role S) {
choice at S { 13 rec REPEAT {
Req(req: string) from S to W; 14 Req(req: string) from C to S;
S calls DynTaskGen(S); 15 S calls DynTaskGen(S);
choice at W { 16 choice at S {
Resp(resp: string) from W to S; 17 Resp(resp: string) from S to C;
} or { 18 continue REPEAT;
Error(err: string) from W to S; } 190 }or {
} or { 20 Error(err: string) from S to C;
LastReq(req: string) from S to W; 21 continue REPEAT;
choice at W { 22 3}
Resp(resp: string) from W to S;
}or {
Error(err: string) from W to S;
31}

Figure 7 GoScr protocol for Dynamic Task Generation.

Computer Language Benchmarks Game (CLBG). CLBG [17] is a repository of programs
used to compare the performance of different languages. We use four concurrent Go programs:
(1)fannkuch counts the maximum number of flips for a permutation of length n; (2)regex
matches regex patterns in a DNA string; (3)spect (spectral-norm) calculates the greatest
eigenvalue of a matrix; and (4)k-nuc (k-nucleotide) counts the occurrences of a molecule
sequence in a DNA string. We selected these benchmarks out of [17] because they parallelise
the work using goroutines and channels, following a similar scatter/gather approach that
depends on runtime values, and they could not be accurately captured by previous MPST
approaches. We use the CLBG implementations [17] as the Go baseline implementations,
and we extracted the communication structure of the baseline implementations as GoScr
protocols. A single execution for each of these protocols takes between 1 millisecond—10
seconds depending on the input size. Smaller input sizes imply smaller local computation
times, and therefore, the overhead introduced by GoScr will be more significant. We can
observe a slowdown of up to 50%, in fannkuch, for executions in the order of magnitude
of milliseconds. However, as the workload increases, the difference in the execution time
shrinks to the point of becoming negligible, as we can observe in Figure 6. The regex
baseline has a high standard deviation, which explains the small peak for the first result
of regex, since when the execution time is in the order of hundreds of microseconds, the
non-deterministic scheduling of the goroutines can significantly affect the results. spect
seems to show that for large enough values, the GoScr implementation performs better than
its naively implemented counterpart. However, the real difference in the execution time is
negligible, and it is explained by differences in the program structure, e.g. the baseline uses
a single shared channel, whereas GoScr generates different channels for every new goroutine.

Microbenchmarks. Bounded fibonacci (fibonacci) shows, as expected, that the overhead
of performing type switches and callbacks is relatively high when compared with a simple
addition. The baseline runs in in 40% of the execution time of GoScr. Bounded prime sieve
(prime) shows that, when the computation complexity increases slightly (modulus operation
on a stream of values), then the GoScr version performs in about 80% the execution time of
the baseline. In both cases, when we add more participants and interactions to the protocol
(larger values on the x-axis) the overhead remains constant, and does not increase.

D. Castro-Perez and N. Yoshida

Unbalanced Workload. In Parallel QuickSort (gsort), workers either partition the array
and spawn two new workers, or apply a sequential Quicksort, depending on a threshold size
(T). The execution times are similar to the CLBG benchmarks (50 microseconds—2 seconds).
We observe a negligible difference in the execution time for different threshold sizes, and a
spike for small arrays due to the high standard deviation for array sizes under the threshold.
GoScr execution times are in the range of 1.05 and 0.95 times the baseline.

5.2 Use Cases

We demonstrate the expressiveness of GoScr using three applications, all of which require

dynamic participants, and could not be expressed by previous work [3, 37].

(a) Dynamic Task Generation: We present a correct implementation of the program in
Figure 1 using GoScr. It is a master-worker pattern with dynamic participants.

(b) Domain Name System (DNS) protocol: We demonstrate how GoScr can be used to
specify one of the core Internet protocols, modelling as dynamic participants the different
DNS servers which may need to be contacted in order to resolve a host’s IP address.

(c) Noughts and Crosses with Min-Max [49]: We implement a Min-Max strategy for
the well-known two-player game of Noughts and Crosses to demonstrate the suitability
of DMst to model a parallel Divide and Conquer paradigm.

Dynamic Task Generation. The aim of this program is to generate the first n square

numbers by delegating the calculation of each square number to a different worker goroutine.

The program uses a common computation in Go, the master-worker pattern, where goroutines
dynamically divide and delegate part of their tasks to other goroutines, aggregating their
partial results to produce the complete result. We highlighted in § 1 (Figure 1) how even in
such a simple example, incorrect management of channels can lead to orphan messages and
deadlocks. Figure 7 shows a GoScr protocol specification whose behaviour is a safe version
of the program in Figure 1. Notice how the behaviour of the seiect statement in Figure 1
is represented as a choice. In Figure 7, the ClientServer protocol models the behaviour of
the main loop of the program, where two roles, a client and a server, repeatedly exchange
requests (Line 14) and responses (Line 17). The server may also communicate an error in the
computation of the request to the client (Line 20). We model the master-worker pattern as
a call to protocol DynTaskGen (Line 15). Every call to the protocol introduces a new worker
(w), and the master (s) will delegate a task to each new worker (Lines 4,11). If there are
are more tasks to assign, it will assign those tasks to new workers through recursive calls to
DynTaskGen (Line 5). Once it has assigned the final task (Line 11), it will traverse the protocol
stack, aggregating the results from the different workers in reverse order (Lines 7,13). While
computing their subtask, the workers may encounter an error which they will communicate
back to the server (Lines 9, 15). As opposed to the original program in Figure 1, the server
will continue aggregating all the results from the workers even after encountering an error in
order to ensure that there are no orphan messages.

5.3 Expressiveness

We compare the expressiveness of GoScr against the parameterised Scribble [3] and the
static analysis framework of Go [37]. For a reference purpose, we also list comparisons with
theory-only work in [7, 9] (i.e., they are not implemented). See § 6 for more detailed
comparison with [7, 9]. In Table 1, we present the protocols that we implemented and
whether or how closely other approaches [37, 3] can represent them. All our DMst-based
implementations introduce dynamic, possibly unbounded participants. All representable

6:23

ECOOP 2023

6:24

Dynamically Updatable Multiparty Session Protocols

Table 1 Comparison of Expressiveness.

Protocol Dyn Unb Inv [DMst [3] [37[]] [7][9]
1. Dynamic Ring [[4 X X v X
2. Dynamic Pipeline [J [] v X x| v x
3. Dynamic Recursive Pipeline)) v X X X X
4. Dynamic Recursive Tree ® ® v X X X X
5. Dynamic Recursive Task Gen. () [) v X X X X
6. Dynamic Fork-Join () v X X X
7. Recursive Fork-Join () v X X X
8. Bounded Fibonacci [3] O O A NN |
9. Unbounded Fibonacci () (] v X X X
10. Fannkuch-Redux [17] O O oA A VT
11. Spectral-Norm [17] O oA A VT
12. Regex-Redux [17] O o o/ S| V7
13. K-Nucleotide [17] O A A A |
14. Bounded Prime Sieve o v X X v X
15. Dynamic Task Generation [) o v X X v X
16. Domain Name System [28]] ® X Xl /X
17. Noughts and Crosses [42, 49] ® ® X XV

Dyn: Dynamic participants; Unb: Unbounded participants; Inv: Choice through invitations

protocols (v') by DMst in Table 1 are deadlock-free and live. For protocols which can be
modified and re-implemented with [37] or [3], we use O. Protocol 3 cannot be captured by
any of the previous work, since it requires the dynamic introduction of participants to a
recursive protocol. [3, 37] could only precisely model Protocols 12 and 13, as they create
all the participants at the start. In Protocols 8, 10 and 11, the goroutines are spawned
and assigned tasks dynamically, but [3, 37] can model them by initialising all goroutines
at the start. We write A to represent such changes to protocol structure. Three use cases
(Protocols 13-15) discussed in § 5.2, could not be expressed by [3, 37]. In summary, DMst is
more expressive than [3, 37], and capture more closely the typical Go programming style.

6 Related Work

There are a vast amount of studies of session types [27, 15, 1]. Due to the space limitations,
we only compare with the most closely related work on multiparty session types (MPST).

Binary Session Types. While Scalas et al. [50] prove that the MPST processes can be
mimicked by linearly typed processes with a continuation-passing style translation, in general,
it is not possible to guarantee deadlock-freedom for more than two interleaved binary session
processes unless one uses additional sophisticated means such as a global causal analysis on
channels (e.g. [12, 4, 5]), graph-connectivity analysis with extensions on fork primitives [29],
and event-driven constructs [57, 24, 34]. GV, a linear functional language with binary session
types, can guarantee deadlock freedom by relying on linear typing [58]. However, linear typing
prevents cyclic topologies that change dynamically, since this would require a participant
to drop their communication channels when new participants join, as in Example 7. There
are further substantial differences with our approach. First, GV is an end-point calculus,
whereas DMst’s global types are global specifications, from which we can extract endpoint Go
code (GoScr). Secondly, while both GV and DMst support similar programming patterns (e.g.
pipeline and tree-like topologies, and channel passing), there are two major differences. Both
GV and GoScr support sending effectful functions over channels (e.g. using chan func() type in
Go, and passing a generated protocol implementation), GV’s type system would guarantee
deadlock-freedom, but in Go, it would depend on how the function is used (requirements 1-3
in Section 4).

D. Castro-Perez and N. Yoshida

Code Generation and Multiparty Session Types. We follow the standard MPST top-
down specification-guided methodology to guarantee safety and liveness properties
by construction using code generation, extending an extensible toolchain, nuScr [48].
Safety by construction via code generation is a common approach in MPST. Scribble is a
language/tool [51, 48] used for generating APIs for safely implementing distributed systems
written in the end-point programming language that are guaranteed to conform to a protocol,
and are therefore deadlock-free [25]. This approach has been applied to several languages,
e.g. Scala [50, 57], Java [33], F# [43], Go [3], TypeScript [42], Fx [62] and Rust [35, 6]. A
later extension of [25] proposed explicit connection actions as part of the Scribble protocol
[26], which is also recently applied to domain-specific language in [19]. This construction
specifies the point in the protocol where the different participants join, but the role of these
participants must be statically known. Hence it does not allow the unbounded participants
to change the protocol topology, as DMst does. Parameterised multiparty session types
extend MPST with a parametric number of participants [11]. One example is the work by
Castro-Perez et al. [3], discussed it in § 1. Pabble [46, 45] is another parameterised extension
of Scribble used for generating safe by construction C+MPI code. Zhou et al. [62] formalised
and implemented an extension of MPST with refinement types, which can specify constraints
in the messages. Their backend targets Fx, and follows a similar callback approach to the one
in this paper. Miu et al. [42] define an extension of MPST for web programming in TypeScript
that uses the callback approach. Unlike DMst, the participants in all these approaches are
fixed from the start of the protocol. Viering et al. [57] present a theory and implementation
of MPST aimed at programming correct fault-tolerant distributed systems that supports
the dynamic replacement of participants in a protocol. In their work, the replacement of
participants must happen within some known roles, and their global types do not allow to
extend the current protocol interactions with those of new participants. Viering et al. [57]
use event handlers in their code generation, which allows safe session interleaving. Instead,
we use an operator to combine global types in a way that does not introduce deadlocks.
All previous work, unlike DMst, does not support dynamically growing protocols with an
unbounded number of participants such as Example 6. Jacobs et al. [30] extend GV, a binary
session typed calculus with multiparty session types. The calculus allows the introduction of
new participants, but the protocols themselves are restricted to a fixed set of participants.
Their use of linearity prevents the definition of recursive dynamic topologies, unlike DMst.

Dynamic Multiparty Session Types. Dynamic multirole session types (MRST) enable a
set of participants which belong to the same group (i.e. role) to join a multiparty session
type [9]. The major limitations are: (a) all the roles are fixed at the start (b) participants
can only join at specific points in the protocol: (1) at the beginning of each iteration of a
recursive protocol; or (2) at particular points marked with explicit barriers and locks. We
list a number of protocols that cannot be represented using MRST in Table 1. In contrast,
DMst allows any arbitrary role to join at any nested session call. A nested session call is
a form of delegation, which is not supported by MRST. Therefore, a protocol such as a
dynamically growing pipeline (e.g. Fibonacci in Example 4) cannot be represented by [9]
either, since it would require participants to evolve their behaviour through channel passing.
Nested multiparty session types [7] allow multiparty protocols with unbounded, dynamic
participants. However, [7] cannot represent recursive protocols that are updated with new
dynamic participants. Hence the main example of this paper, Example 6, is not representable
in [7]. Moreover, nested multiparty session types cannot prove liveness (our Theorem 29),
except for non-recursive protocols. Arbitrary session interleaving in [7] can introduce orphan

6:25

ECOOP 2023

6:26

Dynamically Updatable Multiparty Session Protocols

messages. DMst has proven deadlock-freedom and liveness clearly identifying the conditions
(Definition 26). This limitation is stated in [7, Proposition 3], i.e. a protocol that violates
liveness will be accepted in [7], but not in DMst. Additionally, the theory of DMst has a
number of differences that make it better suited for implementing than nested MPST: (a)
DMst’s choices are more flexible than those in nested MPST, since DMst can also depend on
protocol calls; (b) the semantics of nested MPST is synchronous, while DMst is asynchronous;
(c¢) nested MPST does not prove trace equivalence between global types and local type
configurations; (d) The syntax of DMst’s global types are simpler than those in nested MPST,
but more expressive — this is because in nested MPST, protocol definitions are part of the
global type syntax, which requires the use of a kinding relation for checking well-formedness.
Nested MPST protocols do not allow the occurrence of free roles, and are therefore equivalent
to DMst’s global types with just top-level protocol definitions, which avoids the kinding
relation for checking well-formedness. Due to our simpler but more expressive treatment,
DMst is more suitable for real language implementations.

Verification of Go Programs. Our work aims at providing correctness by construction. The
comparison with the previous code generation approach in Go [3] can be found in (C) in § 1
and Expressiveness in § 5.3. All of the previous work is limited to bounded participants.
The following are several recent lines of work on a posteriori verification of message passing
in existing Go programs. All of them use whole-program techniques, and support only the
built-in Go channel primitives (i.e., intra-process messaging); none of them, however, support
a dynamic, unbounded number of participants. Gobra is an automated tool for the modular
verification of Go programs, based on separation logic [59]. Gobra is aimed at the functional
verification of Go programs, whereas our approach focuses on communication safety. GoScr
is fully automated, and aimed at building live and deadlock-free communicating systems by
construction. In contrast, Gobra is aimed at the verification of annotated Go code, and it
requires a high amount of invariant annotations.

Ng and Yoshida [47] extract graph-based protocol specifications [38] from Go programs
that are checked for deadlock-freedom; Stadtmiiller et al. [53] extract regex-based protocol
specifications [55], checked for deadlock-freedom. Both approaches work only for programs
restricted to synchronous Go channels; the former also requires all goroutines to be spawned
before any communication among them occurs, and the latter has limited support for branch-
ing behaviours. Lange et al. [36, 37] (already compared in (B) in § 1 and Expressiveness
in § 5.3) statically infer channel communication patterns from Go programs as behavioural
types, that are checked for liveness properties. This was recently extended to analyse shared
memory concurrency [14]. Like previous work, their tool is also limited to verify finite
controlled programs, it is best-effort only due to the imprecision of the inference, and the
verification times (and timeouts) preclude practical checking on the fly during programming.
Liu et al. [39] present a tool that detects blocking misuse-of-channel bugs in Go and produces
bug fixes for Go programs. Unlike DMst, Liu et al. [39] focuses only on practice, and does
not formalise nor guarantee communication safety, deadlock-freedom nor liveness. Moreover
their tool produces both false positive and false negative errors.

7 Conclusion and Future Work

GoScr is the first implementation of multiparty session types with dynamic, unbounded
participants, from which we generate Go code with unbounded participants that is, by
construction, deadlock-free and live. GoScr focuses on correctness (Theorems 20, 23 and

D. Castro-Perez and N. Yoshida

29), and it is strictly more expressive than previous Go verification frameworks (see § 1,
Table 1, § 6). Furthermore, we observe that whenever the computation time is large with
respect to the communication time, the performance overhead becomes negligible. GoScr
is therefore suitable for implementing systems where correctness is prioritised, or systems
where the computation times dominate over communication. Currently, DMst does not allow
a participant to communicate with an unbounded number of participants during protocol
execution. This is a limitation of the Go code generation, which we plan to address in future
work. We are also considering extending our back-end to use event-handlers in the style
of Viering et al. [57], and allow the arbitrary parallel composition of global types instead
of our combination operator. We are also planning to extend the back-end to disparate
transports (e.g. using TCP instead of Go channels), thus allowing the implementation of
distributed systems. The main challenge of this is integrating delegation, as it is required
by protocol invitations, in these disparate transports. Finally, to simplify usability, we plan
to extend the protocol specification with annotations to guide code generation, so we can
automatically generate trivial callback/context instantiation. We plan to draw inspiration
for such annotations from choreographies, e.g [31].

—— References

1 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-
Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas
Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral types in program-
ming languages. Foundations and Trends in Programming Languages, 3(2-3):95-230, 2016.
doi:10.1561/2500000031.

2 Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-
Ciancaglini, and Nobuko Yoshida. Global progress in dynamically interleaved multiparty
sessions. In CONCUR 2008 - Concurrency Theory, pages 418-433. Springer, 2008.

3 David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida.
Distributed programming using role-parametric session types in go. In POPL’19. ACM, 2019.
doi:10.1145/3290342.

4 Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. Inference
of Global Progress Properties for Dynamically Interleaved Multiparty Sessions. In 15th
International Conference on Coordination Models and Languages, volume 7890 of LNCS, pages
45-59. Springer, 2013.

5 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global
Progress for Dynamically Interleaved Multiparty Sessions. MSCS, 26:238-302, 2015.

6 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-Free Asynchronous Message
Reordering in Rust with Multiparty Session Types. In 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, volume abs/2112.12693. ACM, 2022.

7 Romain Demangeon and Kohei Honda. Nested protocols in session types. In CONCUR 2012 -
Concurrency Theory, pages 272—-286. Springer, 2012.

8 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty session
types and python. Formal Methods in System Design, 46(3):197-225, 2015. doi:10.1007/
s10703-014-0218-8.

9 Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In POPL’11,
pages 435-446. ACM, 2011.

10 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating
automata: Characterisation and synthesis of global session types. In ICALP 2013, volume
7966 of LNCS, pages 174-186. Springer, 2013. doi:10.1007/978-3-642-39212-2_18.

6:27

ECOOP 2023

https://doi.org/10.1561/2500000031
https://doi.org/10.1145/3290342
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/978-3-642-39212-2_18

6:28

Dynamically Updatable Multiparty Session Protocols

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. Logical Methods in Computer Science, 8(4), 2012. doi:10.2168/
LMCS-8(4:6)2012.

Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Nobuko Yoshida. On progress for
structured communications. In TGC 2007, volume 4912 of LNCS, pages 257-275. Springer,
2007. doi:10.1007/978-3-540-78663-4_18.

Docker: Empowering app development for developers. https://www.docker.com/, November
2020.

Julia Gabet and Nobuko Yoshida. Static Race Detection and Mutex Safety and Liveness for
Go Programs. In ECOOP’20, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2020.

Simon Gay and Antonio Ravara, editors. Behavioural Types: from Theory to Tools. River
Publishers series in automation, control and robotics. River Publishers, June 2017.

Githut 2.0: A small place to discover languages in github. https://madnight.github.io/
githut/#/pull_requests/2020/3, 2020.

Issac Gouy. Computer language benchmark game. http://benchmarksgame.alioth.debian.
org, 2017.

gRPC - a high-performance, open source universal rpc framework. https://grpc.io/, Novem-
ber 2020.

Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty Session Types
for Safe Runtime Adaptation in an Actor Language. In ECOOP 2021, volume 194 of LIPIcs,
pages 10:1-10:30. Schloss Dagstuhl, 2021. doi:10.4230/LIPIcs.ECO0P.2021.10.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., 1985.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In Proc. of 85th Symp. on Princ. of Prog. Lang., POPL ’08, pages 273-284. ACM, 2008.
doi:10.1145/1328438.1328472.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1-9:67, 2016. doi:10.1145/2827695.

Raymond Hu. Distributed programming using Java APIs generated from Session Types.
Behavioural Types: from Theory to Tools, pages 287-308, 2017.

Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda. Type-
Safe Eventful Sessions in Java. In ECOOP 2010, volume 6183 of LNCS, pages 329-353.
Springer, 2010.

Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API
generation. In FASE 2016, volume 9633 of LNCS, pages 401-418. Springer, 2016. doi:
10.1007/978-3-662-49665-7_24.

Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session
types. In FASE 2017, volume 10202 of LNCS, pages 116-133. Springer, 2017. doi:
10.1007/978-3-662-54494-5_7.

Hans Hiittel, Ivan Lanese, Vasco T. Vasconcelos, Luis Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, Anténio Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1-3:36, 2016. doi:10.1145/2873052.

Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. Multiparty session pro-
gramming with global protocol combinators. In ECOOP 2020, volume 166 of LIPIcs, pages
9:1-9:30. Schloss Dagstuhl, 2020. doi:10.4230/LIPIcs.ECO0P.2020.9.

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. Connectivity graphs: a method for
proving deadlock freedom based on separation logic. Proc. ACM Program. Lang., 6(POPL):1-
33, 2022. doi:10.1145/3498662.

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. Multiparty GV: Functional Multiparty
Session Types with Certified Deadlock Freedom. Proc. ACM Program. Lang., 6(ICFP), August
2022. doi:10.1145/3547638.

https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.1007/978-3-540-78663-4_18
https://www.docker.com/
https://madnight.github.io/githut/#/pull_requests/2020/3
https://madnight.github.io/githut/#/pull_requests/2020/3
http://benchmarksgame.alioth.debian.org
http://benchmarksgame.alioth.debian.org
https://grpc.io/
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1145/2873052
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.1145/3498662
https://doi.org/10.1145/3547638

D. Castro-Perez and N. Yoshida

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48
49

50

51

52

Sung-Shik Jongmans and Petra van den Bos. A Predicate Transformer for Choreographies -
Computing Preconditions in Choreographic Programming. In ESOP 2022, volume 13240 of
LNCS, pages 520-547. Springer, 2022. doi:10.1007/978-3-030-99336-8_19.

Kubernetes: Production-grade container orchestration. https://kubernetes.io/, June 2017.
Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols
with Mungo and StMungo. In PPDP, pages 146-159, 2016. doi:10.1145/2967973.2968595.
Dimitrios Kouzapas, Nobuko Yoshida, Raymond Hu, and Kohei Honda. On Asynchronous
Eventful Session Semantics. MSCS, 29:1-62, 2015.

Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Implementing Multiparty
Session Types in Rust. In Coordination Models and Languages, volume 12134, pages 127—-136.
Springer, 2020. doi:10.1007/978-3-030-50029-08.

Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. Fencing off Go: Liveness
and safety for channel-based programming. In Giuseppe Castagna and Andrew D. Gordon,
editors, POPL 2017, pages 748-761. ACM, 2017.

Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. A Static Verification
Framework for Message Passing in Go using Behavioural Types. In 40th International
Conference on Software Engineering, pages 1137-1148. ACM, 2018.

Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical
choreographies. In POPL 2015, pages 221-232. ACM, 2015. doi:10.1145/2676726.2676964.
Ziheng Liu, Shuofei Zhu, Boqgin Qin, Hao Chen, and Linhai Song. Automatically detecting
and fixing concurrency bugs in Go software systems. In ASPLOS 21, April 2021.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, i. Informa-
tion and Computation, 100(1):1-40, 1992. doi:10.1016/0890-5401(92)90008-4.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, ii. Inform-
ation and Computation, 100(1):41-77, 1992. doi:10.1016/0890-5401(92)90009-5.

Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. Communication-safe web
programming in TypeScript with Routed Multiparty Session Types. In CC 2021, 2021.
Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: Compile-time APT generation of distributed protocols with refinements in F#. In
CC 2018, pages 128-138. ACM, 2018. doi:10.1145/3178372.3179495.

Rumyana Neykova and Nobuko Yoshida. Featherweight Scribble. Models, Languages, and
Tools for Concurrent and Distributed Programming, 11665:236-259, 2019. doi:10.1007/
978-3-030-21485-214.

Nicholas Ng, José Gabriel de Figueiredo Coutinho, and Nobuko Yoshida. Protocols by default
- safe MPI code generation based on session types. In C'C 2015, volume 9031 of LNCS, pages
212-232. Springer, 2015. doi:10.1007/978-3-662-46663-6_11.

Nicholas Ng and Nobuko Yoshida. Pabble: parameterised scribble. Service Oriented Computing
and Applications, 9(3-4):269-284, 2015. doi:10.1007/s11761-014-0172-8.

Nicholas Ng and Nobuko Yoshida. Static deadlock detection for concurrent Go by global session
graph synthesis. In CC 2016, pages 174-184. ACM, 2016. doi:10.1145/2892208.2892232.
The nuScr authors. nuscr homepage. https://nuscr.github.io/nuscr/, 2019.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall
series in artificial intelligence. Pearson Education, 2016.

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition of
multiparty sessions for safe distributed programming. In ECOOP 2017, volume 74 of LIPIcs,
pages 24:1-24:31. Schloss Dagstuhl, 2017. doi:10.4230/LIPIcs.ECO0P.2017.24.

Scribble Authors. Scribble: Describing multiparty protocols. http://www.scribble.org/,
2015. Accessed in Nov. 2020.

Stack overflow developer survey 2020. https://insights.stackoverflow.com/survey/2020,
2020.

6:29

ECOOP 2023

https://doi.org/10.1007/978-3-030-99336-8_19
https://kubernetes.io/
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1007/978-3-030-50029-08
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1007/978-3-030-21485-2 14
https://doi.org/10.1007/978-3-030-21485-2 14
https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1007/s11761-014-0172-8
https://doi.org/10.1145/2892208.2892232
https://nuscr.github.io/nuscr/
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
http://www.scribble.org/
https://insights.stackoverflow.com/survey/2020

6:30

Dynamically Updatable Multiparty Session Protocols

53

54

55

56

57

58
59

60

61

62

Kai Stadtmiiller, Martin Sulzmann, and Peter Thiemann. Static trace-based deadlock analysis
for synchronous mini-go. In APLAS 2016, volume 10017 of LNCS, pages 116-136, 2016.
do0i:10.1007/978-3-319-47958-3_7.

I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F. Dabek, and H. Balakrish-
nan. Chord: a Scalable Peer-to-peer Lookup Protocol for Internet Applications. IEEE/ACM
Transactions on Networking, 11(1):17-32, 2003. doi:10.1109/TNET.2002.808407.

Martin Sulzmann and Peter Thiemann. Forkable regular expressions. In LATA 2016, volume
9618 of LNCS, pages 194-206. Springer, 2016. doi:10.1007/978-3-319-30000-9_15.
Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. Understanding real-world concurrency
bugs in go. In ASPLOS 2019, pages 865-878. ACM, 2019. doi:10.1145/3297858.3304069.
Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. A multiparty session typing
discipline for fault-tolerant event-driven distributed programming. PACMPL, 5(OOPSLA):1-
30, 2021. doi:10.1145/3485501.

Philip Wadler. Propositions as Sessions. In ICFP’12, pages 273-286. ACM, 2012.

Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, Jodo C. Pereira, and Peter
Miiller. Gobra: Modular specification and verification of Go programs. In CAV, pages 367-379.
Springer, 2021.

Nobuko Yoshida and Lorenzo Gheri. A very gentle introduction to Multiparty Session Types.
In 16th International Conference on Distributed Computing and Internet Technology, volume
11969 of LNCS, pages 73-93. Springer, 2020.

T. Yuan, G. Li, J. Lu, C. Liu, L. Li, and J. Xue. GoBench: A benchmark suite of real-world
Go concurrency bugs. In CGO 2021. ACM/IEEE, 2021.

Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Statically Verified Refinements for Multiparty Protocols. PACMPL, 4(OOPSLA), 2020.

https://doi.org/10.1007/978-3-319-47958-3_7
https://doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1007/978-3-319-30000-9_15
https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1145/3485501

Modular Compilation for Higher-Order Functional
Choreographies

Luis Cruz-Filipe =
Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Eva Graversen &
Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Lovro Lugovi¢ &
Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Fabrizio Montesi &
Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Marco Peressotti &
Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

——— Abstract

Choreographic programming is a paradigm for concurrent and distributed software, whereby descrip-
tions of the intended communications (choreographies) are automatically compiled into distributed
code with strong safety and liveness properties (e.g., deadlock-freedom).

Recent efforts tried to combine the theories of choreographic programming and higher-order
functional programming, in order to integrate the benefits of the former with the modularity of the
latter. However, they do not offer a satisfactory theory of compilation compared to the literature,
because of important syntactic and semantic shortcomings: compilation is not modular (editing a
part might require recompiling everything) and the generated code can perform unexpected global
synchronisations.

In this paper, we find that these shortcomings are not mere coincidences. Rather, they stem
from genuine new challenges posed by the integration of choreographies and functions: knowing
which participants are involved in a choreography becomes nontrivial, and divergence in applications
requires rethinking how to prove the semantic correctness of compilation.

We present a novel theory of compilation for functional choreographies that overcomes these
challenges, based on types and a careful design of the semantics of choreographies and distributed
code. The result: a modular notion of compilation, which produces code that is deadlock-free and
correct (it operationally corresponds to its source choreography).

2012 ACM Subject Classification Theory of computation — Lambda calculus; Theory of computation
— Distributed computing models; Computing methodologies — Distributed programming languages

Keywords and phrases Choreographies, Concurrency, A-calculus, Type Systems
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2023.7
Related Version Full Version: https://arxiv.org/abs/2111.03701

Funding This work was partially supported by Villum Fonden, grants no. 29518 and 50079, and the
Independent Research Fund Denmark, grant no. 0135-00219.

© Lufs Cruz-Filipe, Eva Graversen, Lovro Lugovié, Fabrizio Montesi, and Marco Peressotti;
37 licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).

Editors: Karim Ali and Guido Salvaneschi; Article No. 7; pp. 7:1-7:37

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:lcfilipe@gmail.com
https://orcid.org/0000-0002-7866-7484
mailto:efgraversen@imada.sdu.dk
https://orcid.org/0000-0002-9430-4907
mailto:lugovic@imada.sdu.dk
https://orcid.org/0000-0001-9684-9567
mailto:fmontesi@imada.sdu.dk
https://orcid.org/0000-0003-4666-901X
mailto:peressotti@imada.sdu.dk
https://orcid.org/0000-0002-0243-0480
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://arxiv.org/abs/2111.03701
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Modular Compilation for Higher-Order Functional Choreographies

Choreography with n participants
A->B:ux;
A->C vy
C' computes z;
C->B:z

[Projection]

/ T

send z to B; J
A

send y to C projected behaviour

Code for participant Code for participant n

Figure 1 Choreographic programming: the communication and computation behaviour of a
system is defined in a choreography, which is then projected (compiled) to deadlock-free distributed
code (adapted from [17]).

1 Introduction

Functional and choreographic programming

Higher-order functional programming is a popular paradigm, which allows programmers
to write modular code with strong guarantees through types. However, when dealing with
concurrent and distributed programs, functional programming still requires developers to
manually write a separate program for each participant, using send and receive actions to
communicate data. This makes it easy to write programs that deadlock, or perform in other
unexpected ways [22].

Choreographic programming (Figure 1) is a simple and powerful method to produce
distributed code that does what it is supposed to do [23, 21, 18]. In this paradigm, programs
are choreographies: structured compositions of the intended communications and computa-
tions that participants should perform, given from a joint perspective. A communication
is expressed in some variation of the communication term from security protocol notation,
Alice -> Bob: M, which reads “Alice communicates the message M to Bob” [26]. Given a cho-
reography, a compiler produces executable distributed code. In the theory of choreographies,
this compilation is called Endpoint Projection (EPP) [1]. A correct EPP has the powerful
consequence of guaranteeing deadlock-freedom “for free”: it is syntactically impossible to
specify mismatched communication actions in choreographies, so the resulting distributed
code cannot get stuck (deadlock-freedom by design) [2].

Recently, there have been two attempts at developing theories that combine the paradigms
of choreographic and functional programming, in the hope of reaping the benefits of both [18,
6]. Finding an adequate notion of EPP in this setting has been an issue. In [6] the A-
calculus is extended with choreographic primitives for communications, yielding a simple
yet expressive model called ChorA, but no EPP is presented. In [18] an EPP is given for a
choreographic language that extends a standard imperative choreographic language with
primitives for abstraction and application (for higher-order composition). However, this theory
comes at two important costs when compared to the expected properties of choreographic
programming [24]. First, EPP is not modular: changing a part of a choreography that involves
only some participants can change also the code projected for other participants. This means

L. Cruz-Filipe, E. Graversen, L. Lugovi¢, F. Montesi, and M. Peressotti

that updating a choreography requires reprojecting and redeploying the entire system, which
is not necessary in previous work. Second, participants perform more synchronisations than
those written in the choreography. This breaks the design principle that all communications
are made syntactically manifest in choreographies.

These issues are not consequences of careless work. Rather, we find that they are both
caused by a novel challenge that arises precisely from the combination of functional and
choreographic programming — explained in the next paragraph. The aim of this work is to
develop a new theory that overcomes this challenge.

The problem

When projecting a choreography to a participant, say Alice, the parts of the choreography
not involving Alice should be ignored [1, 24]. Doing this is simple with traditional imperative
choreographies, which are essentially sequences of commands (c;; ¢z;...). For each command:
if the participant that we are projecting for is involved, we return some (appropriate) code;
otherwise, we just skip the command and go to the next. For example, given the choreography
Carol => Bob: M; Alice -> Bob: M’, a standard EPP would produce for Alice only the code
to execute the second command (a send action towards Bob).

In a higher-order functional setting, checking if a participant is “involved” in a cho-
reographic term is not an easy syntactic check anymore. Consider a choreography C' that
takes another choreography = as parameter, runs it, and communicates the result from
Alice to Bob. Since x can be an arbitrary choreography, the participants involved in C' are
known only after x is instantiated. This is the technical issue that makes defining EPP for
functional choreographies nontrivial. In [18], the proposed solution sacrifices modularity:
every function application is projected to all participants, who then have to perform a global
system synchronisation for every function call.

This work

We define a notion of EPP for Chor), capitalising on the design of its type system and
semantics.

We start our development by focusing on the finite fragment Chor), i.e., without recursion.
First, we introduce a target language for representing distributed code: a distributed -
calculus, which consists of well-known terms extended with primitives for sending and
receiving messages. Then, we use this language to define a modular EPP for (finite) Chor.
The key insight for achieving modularity is the inclusion of a no-op term in the target
language, which is the projection of any choreographic term in which a participant is not
involved. In this way, if some choreographic subterm does not involve a participant p, it is
projected as no-op. And if this term is later edited without involving p, then the projection
for p remains no-op and does not need to be recompiled. This is explained in detail in
Example 6.

The rule for generating no-ops benefits from the careful design of the rule for typing
abstractions in ChorA. This is not an accident: in [6] this particular rule was claimed
to be designed with the future development of a suitable EPP in mind, but this was not
substantiated. In this paper we show that our EPP satisfies the expected operational
correspondence between choreographies and their projections (Theorems 25 and 26). As a
consequence, projections of choreographies cannot deadlock.

Furthermore, we define a type system for the target language based on standard techniques,
and show that well-typed choreographies are projected onto well-typed target terms whose
types are projections of the source choreographic types (Proposition 10). This result is

7:3

ECOOP 2023

7:4

Modular Compilation for Higher-Order Functional Choreographies

relevant for applicability: knowing the type of projected functions lets programmers compose
them in larger projects through APIs under the control of the programmer, as is commonly
done with projected code [15, 17].

A unique feature of Chor is that conditionals can use whole choreographies as conditions,
and in particular ones that return distributed data structures — data structures that compose
data residing at different participants. For the first time, our EPP leverages this feature
to offer a new method for capturing knowledge of choice — distributed agreement regarding
choices between alternative choreographic behaviours [4]. Specifically, we can statically
guarantee that two (or more) participants will agree on the instantiation of a sum type
(representing alternative choices) solely by performing independent local checks. When this is
used in a conditional, it means that all participants are guaranteed to make the same choice
at runtime. This gives a simpler alternative to existing verification methods for distributed
choices [21]. We call types used in this way distributed choice types.

Lastly, we extend our development to the full language of Chor), including recursion.
Recursion allows for divergent behaviour, which gives an interesting problem: a divergent term
does not necessarily involve all participants, so generalising the operational correspondence
between choreographies and their projections requires allowing choreographies to perform
actions involving participants that are not blocked by divergent computations. The semantics
of Chor) include rules for performing reductions out of order, which again were designed
with the future development of EPP in mind. We show that these rules are adequate to
generalise our results.

Contribution

We define the first notion of EPP for a functional choreographic programming language that
is modular and does not add extra communications. This necessitates using not only the
information contained in the syntactic structure of a choreography, but also the one contained
in the typing derivation that accompanies it. These sources of information give a number of
cases for projection that need to be designed carefully, in order to distinguish correctly when
a process is potentially involved in the realisation of part of a choreography. We show that
EPP satisfies the usual operational correspondence property between choreographies and
their projections. Our development also proves two unsubstantiated claims from [6]: that
the typing system of ChorA is expressive enough to support a modular notion of EPP, and
that the semantics of Chor\ capture how distributed participants behave in the presence
of divergence. Furthermore, we check the practical applicability of our theory by using
it to project the model of the Extensible Authentication Protocol (EAP) [28] given in [6],
a nontrivial choreography that makes use of higher-order composition, distributed data
structures, and distributed choice types.

We anticipate that our developments on the theory of higher-order choreographies will
allow higher-order functions to be added to implementations of existing choreographic and
similar languages. We discuss this in Section 7.

Structure

We provide a review of the main features of recursion-free ChorA in Section 2. In Section 3 we
describe the local endpoint language Chor\ is projected to and how to project a choreography.
We reintroduce recursion into Chor\ and introduce it to our endpoint language in Section 4.
An example of a realistic use case (the Extensible Authentication Protocol) projected using
our method can be seen in Section 5. Related work is given in Section 6. Conclusions are
presented in Section 7. Full definitions and proofs of results for the full language of Chor\
can be found in Appendix A.

L. Cruz-Filipe, E. Graversen, L. Lugovi¢, F. Montesi, and M. Peressotti

2 Background

In this section, we recap the theory of the choreographic A-calculus (Chor)) without recursion,
from [6]. Chor) extends the simply typed A-calculus [5] with primitives that make distribution
and communication syntactically manifest.

System model

Chor) is used to model systems of independent processes, which can interact by synchronous
communication. Each process has a name, and knows the names of the other processes in
the network. There are two kinds of messages that can be exchanged: wvalues are results of
computations; and selection labels are special constants used to implement agreement on
choices about alternative distributed behaviour.

Syntax

The syntax of ChorA is given by the following grammar

M=V |M M| case M of Inl z = M; Inr z = M | select, , | M
Ve=z|Ax:T.M |InlV |Inr V |fst|snd | Pair V V| ()@p | com, ,
T:=T—,T|T+T|TxT|()@p

where M is a choreography, V is a value, T is a type, x is a variable, [is a label, p is a
process name, and p is a set of process names.

Terms are located at processes, to reflect distribution. For example, the value ()@A reads
“the unit value at A”. Types are annotated with process names, as well. In the typing rules
of ChorA (shown later), term ()@A has the type (J@QA, read “the unit type at A”. In our
examples, for simplicity, we assume the presence of primitives for integer values and an
integer type Int@p (“an integer at p”) — the formal treatment of these are straightforward
and similar to that of units.

Abstraction Az : T.M, variable x and application MM are as in the standard (simply
typed) A-calculus. Sums and products are constructed, respectively, by using Inl/Inr and
Pair. They are deconstructed in the usual way, respectively with case and fst/snd. The
constructors can take only values as arguments, but this does not restrict expressivity (cf.
).

The primitives com, 4 and select,q [M (where p and q are process names) model
communications of, respectively, values and selection labels. A communication term comg q
acts as a function that takes a value at the process named p and returns the same value at the
process named q. In a selection term selecty, 4 I M, instead, p informs q that it has selected
the label [before continuing as M. Selections choreographically represent the communication
of an internal choice made by p to q. As we shall see in our definition of EPP, they play a
key role in establishing agreement among processes regarding what behaviour they should
enact together.

Selections are standard in choreographic languages and should not to be confused with
the distributed choice types that we anticipated in the introduction (these will be illustrated
later, in the next section). The former used to implement agreement on choices, whereas the
latter are used to codify the information that an agreement has been reached and can thus
be used without requiring communication. We will touch on this topic later, in Example 15
and Section 5.

7:5

ECOOP 2023

7:6

Modular Compilation for Higher-Order Functional Choreographies

A key feature of Chor) is distributed data structures. For example, Pair ()@p ()Qq is
a distributed pair where the first element resides at p and the second at q. Types record
the distribution of values across processes: if p occurs in the type given to V' then part of V'
will be located at p. A function may involve more processes than those listed in the types
of its input and output, so the type of abstractions T' —, 7" has the extra ingredient p,
which denotes the processes that may participate in the computation of the function besides
those occurring in T or T'. We simply write T'— T” in place of T' — T". For example,
if Alice wants to communicate an integer to Bob directly (without intermediaries), she can
use a choreography of type Int@Alice — Int@Bob; however, if the communication might go
through a proxy, then she can use a choreography of type Int@QAlice —poyy) Int@Bob. The
information given by p gives control on what processes may participate in choreographies
taken as arguments. As we show in Section 3, this information is essential to achieve a
modular EPP.

We write fv(M) for the set of free variables in a term M, and pn(7T') and pn(M) for the set
of process names mentioned in respectively a type 7" and a choreography M. A choreography
is closed if it has no free variables. Our key results apply to closed choreographies.

» Example 1 (Remote Function [6]). The following choreography models a distributed
computation in which a client, C sends an integer val to a server S and a local function
fun located at S is applied to wval before the result gets returned to C. The choreography is
parametrised on both fun and wal.

Afun : Int@QS — g Int@S. Aval : Int@QC. coms ¢ (fun (comc s val))

Typing

Choreographies are typed with judgements of the form ©;I' - M : T', where © is the set of
process names that can be used for typing M and I' is a function assigning types to variables.
We recall a few key typing rules from [6]. Our rules use the notation pn(7") for the process
names that appear in the type T.

pn(T) = {p} {p.a}c©
O;T - comyq: T —g T[p:=q]
O I'-N:T—-, T ;,I'-M:T
O, T-NM:T
O T,x:T-M:T' pupn(T)upn(T’)=60"c O
O+ Xe:T.M:T—,T

[TCowm]

[TAPP]

[TABs]

A communication is typed as a function from any type T located entirely at the sender p to
the same type moved to the receiver, as long as both process names are in ©. Application and
abstraction are typed similarly to simply-typed A-calculus, extended with p and © (whose
consistency is checked in rule TABS). Note that p and © in rule TABS are not necessarily
minimal, and it is possible to type, e.g., {p,q}; J = Az : Int@p.z : Int@p — (g Int@p. A
minimal p would consist of those processes that appear either in M or in the types of the
free variables of M according to I'.

» Example 2. Let h be the function Az : Int@Alice.compyoyy Bob (COMAjice, Proxy &), Which
communicates an integer from Alice to Bob by passing through an intermediary Proxy. Then,
{Alice, Bob, Proxy}; & i= h : Int@Alice — (poxyy INt@Bob. For any term M, the composition

L. Cruz-Filipe, E. Graversen, L. Lugovi¢, F. Montesi, and M. Peressotti

h M is well-typed if M has type Int@Alice, denoting that the evaluation of M will yield
an integer at Alice. By contrast, h 5@Bob is ill-typed because of wrong data locality (the
argument is not at the process expected by h).

a

Semantics

Chor)\ comes with an operational semantics given in terms of labelled reductions. Reduction
labels are used to keep track of which processes interact in a reduction, which is going to be
important for our development. We illustrate this with the two key rules below.

tviV) =
[APPABS] (:) ; [CoM]
Ao T.MVEs Mz :=V] comg, V L Vg - p]

Rule APPABS is the standard application rule of call-by-value A-calculus — annotated with
an empty set, which indicates that no synchronisation is taking place. Rule CoM, instead,
implements a communication by “moving” the communicated value from the sender to the

receiver (through a substitution). Thus, for example, comajice Bob3@Alice M 3@Bob.

Since it makes no sense to communicate a variable whose value is