
37th European Conference on
Object-Oriented Programming

ECOOP 2023, July 17–21, 2023, Seattle, Washington,
United States

Edited by

Karim Ali
Guido Salvaneschi

LIPIcs – Vo l . 263 – ECOOP 2023 www.dagstuh l .de/ l ip i c s

Editors

Karim Ali
University of Alberta, Canada
karim.ali@ualberta.ca

Guido Salvaneschi
University of St. Gallen, Switzerland
guido.salvaneschi@unisg.ch

ACM Classification 2012
Software and its engineering

ISBN 978-3-95977-281-5

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-281-5.

Publication date
July, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ECOOP.2023.0

ISBN 978-3-95977-281-5 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-5516-1376
mailto:karim.ali@ualberta.ca
https://orcid.org/0000-0002-9324-8894
mailto:guido.salvaneschi@unisg.ch
https://www.dagstuhl.de/dagpub/978-3-95977-281-5
https://www.dagstuhl.de/dagpub/978-3-95977-281-5
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ECOOP.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-281-5
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB and Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ECOOP 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Message from the Program Chairs
Karim Ali and Guido Salvaneschi . 0:ix

Message from the Artifact Evaluation Chairs
Stefan Winter and Hernan Luis Ponce de Leon . 0:xi

Foreword by the President of AITO
Eric Jul . 0:xiii

List of Authors
. 0:xv

Regular Papers

Designing Asynchronous Multiparty Protocols with Crash-Stop Failures
Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou 1:1–1:30

Nested Pure Operation-Based CRDTs
Jim Bauwens and Elisa Gonzalez Boix . 2:1–2:26

Multi-Graded Featherweight Java
Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca 3:1–3:27

Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis using
Symbolic Execution

Henrique Botelho Guerra, João F. Ferreira, and João Costa Seco 4:1–4:28

Modular Abstract Definitional Interpreters for WebAssembly
Katharina Brandl, Sebastian Erdweg, Sven Keidel, and Nils Hansen 5:1–5:28

Dynamically Updatable Multiparty Session Protocols: Generating Concurrent
Go Code from Unbounded Protocols

David Castro-Perez and Nobuko Yoshida . 6:1–6:30

Modular Compilation for Higher-Order Functional Choreographies
Luís Cruz-Filipe, Eva Graversen, Lovro Lugović, Fabrizio Montesi, and
Marco Peressotti . 7:1–7:37

Wiring Circuits Is Easy as {0, 1, ω}, or Is It...
Jan de Muijnck-Hughes and Wim Vanderbauwhede . 8:1–8:28

VeriFx: Correct Replicated Data Types for the Masses
Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix . 9:1–9:45

On Leveraging Tests to Infer Nullable Annotations
Jens Dietrich, David J. Pearce, and Mahin Chandramohan . 10:1–10:25

super-Charging Object-Oriented Programming Through Precise Typing of Open
Recursion

Andong Fan and Lionel Parreaux . 11:1–11:28

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

LoRe: A Programming Model for Verifiably Safe Local-First Software
(Extended Abstract)

Julian Haas, Ragnar Mogk, Elena Yanakieva, Annette Bieniusa, and
Mira Mezini . 12:1–12:15

Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises
Feiyang Jin, Lechen Yu, Tiago Cogumbreiro, Jun Shirako, and Vivek Sarkar 13:1–13:30

Algebraic Replicated Data Types: Programming Secure Local-First Software
Christian Kuessner, Ragnar Mogk, Anna-Katharina Wickert, and Mira Mezini . . . 14:1–14:33

Behavioural Types for Local-First Software
Roland Kuhn, Hernán Melgratti, and Emilio Tuosto . 15:1–15:28

Constraint Based Compiler Optimization for Energy Harvesting Applications
Yannan Li and Chao Wang . 16:1–16:29

Restrictable Variants: A Simple and Practical Alternative to Extensible Variants
Magnus Madsen, Jonathan Lindegaard Starup, and Matthew Lutze 17:1–17:27

Programming with Purity Reflection: Peaceful Coexistence of Effects, Laziness,
and Parallelism

Magnus Madsen and Jaco van de Pol . 18:1–18:27

Exact Separation Logic: Towards Bridging the Gap Between Verification and
Bug-Finding

Petar Maksimović, Caroline Cronjäger, Andreas Lööw, Julian Sutherland, and
Philippa Gardner . 19:1–19:27

Morpheus: Automated Safety Verification of Data-Dependent Parser Combinator
Programs

Ashish Mishra and Suresh Jagannathan . 20:1–20:27

Automata Learning with an Incomplete Teacher
Mark Moeller, Thomas Wiener, Alaia Solko-Breslin, Caleb Koch, Nate Foster,
and Alexandra Silva . 21:1–21:30

Modular Verification of State-Based CRDTs in Separation Logic
Abel Nieto, Arnaud Daby-Seesaram, Léon Gondelman, Amin Timany,
and Lars Birkedal . 22:1–22:27

Information Flow Analysis for Detecting Non-Determinism in Blockchain
Luca Olivieri, Luca Negrini, Vincenzo Arceri, Fabio Tagliaferro, Pietro Ferrara,
Agostino Cortesi, and Fausto Spoto . 23:1–23:25

Toward Tool-Independent Summaries for Symbolic Execution
Frederico Ramos, Nuno Sabino, Pedro Adão, David A. Naumann, and
José Fragoso Santos . 24:1–24:29

A Direct-Style Effect Notation for Sequential and Parallel Programs
David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini 25:1–25:22

Sinatra: Stateful Instantaneous Updates for Commercial Browsers Through
Multi-Version eXecution

Ugnius Rumsevicius, Siddhanth Venkateshwaran, Ellen Kidane, and Luís Pina . . . 26:1–26:29

Contents 0:vii

An Efficient Vectorized Hash Table for Batch Computations
Hesam Shahrokhi and Amir Shaikhha . 27:1–27:27

Hinted Dictionaries: Efficient Functional Ordered Sets and Maps
Amir Shaikhha, Mahdi Ghorbani, and Hesam Shahrokhi . 28:1–28:30

Semantics for Noninterference with Interaction Trees
Lucas Silver, Paul He, Ethan Cecchetti, Andrew K. Hirsch, and
Steve Zdancewic . 29:1–29:29

Interaction Tree Specifications: A Framework for Specifying Recursive, Effectful
Computations That Supports Auto-Active Verification

Lucas Silver, Eddy Westbrook, Matthew Yacavone, and Ryan Scott 30:1–30:26

Breaking the Negative Cycle: Exploring the Design Space of Stratification for
First-Class Datalog Constraints

Jonathan Lindegaard Starup, Magnus Madsen, and Ondřej Lhoták 31:1–31:28

Asynchronous Multiparty Session Type Implementability is Decidable – Lessons
Learned from Message Sequence Charts

Felix Stutz . 32:1–32:31

ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs
Felix Suchert, Lisza Zeidler, Jeronimo Castrillon, and Sebastian Ertel 33:1–33:39

Dependent Merges and First-Class Environments
Jinhao Tan and Bruno C. d. S. Oliveira . 34:1–34:32

Synthesis-Aided Crash Consistency for Storage Systems
Jacob Van Geffen, Xi Wang, Emina Torlak, and James Bornholt 35:1–35:26

Synthesizing Conjunctive Queries for Code Search
Chengpeng Wang, Peisen Yao, Wensheng Tang, Gang Fan, and Charles Zhang . . . 36:1–36:30

Do Machine Learning Models Produce TypeScript Types That Type Check?
Ming-Ho Yee and Arjun Guha . 37:1–37:28

Experience Papers

Building Code Transpilers for Domain-Specific Languages Using Program
Synthesis

Sahil Bhatia, Sumer Kohli, Sanjit A. Seshia, and Alvin Cheung 38:1–38:30

Rust for Morello: Always-On Memory Safety, Even in Unsafe Code
Sarah Harris, Simon Cooksey, Michael Vollmer, and Mark Batty 39:1–39:27

On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage
João Mota, Marco Giunti, and António Ravara . 40:1–40:29

Pearls/Brave New Ideas

The Dolorem Pattern: Growing a Language Through Compile-Time Function
Execution

Simon Henniger and Nada Amin . 41:1–41:27

ECOOP 2023

0:viii Contents

Synthetic Behavioural Typing: Sound, Regular Multiparty Sessions via Implicit
Local Types

Sung-Shik Jongmans and Francisco Ferreira . 42:1–42:30

On the Rise of Modern Software Documentation
Marco Raglianti, Csaba Nagy, Roberto Minelli, Bin Lin, and Michele Lanza 43:1–43:24

Python Type Hints Are Turing Complete
Ori Roth . 44:1–44:15

Message from the Program Chairs

Started in 1987, ECOOP is Europe’s oldest programming conference, welcoming papers on all
practical and theoretical investigations of programming languages, systems and environment
providing innovative solutions to real problems as well as evaluations of existing solutions.
Papers were submitted to one of four categories: Research for papers that advance the
state of the art in programming; Reproduction for empirical evaluations that reconstructs a
published experiment in a different context in order to validate the results of that earlier
work; Experience for applications of known techniques in practice; and Pearl for papers that
either explain a known idea in an elegant way or unconventional papers introducing ideas
that may take some time to substantiate. ECOOP is a selective venue, with acceptance,
by tradition, capped at 25% of all submissions and re-submissions. The chairs thank the
Program Committee: B. Hermann, C. Omar, E. Söderberg, G. Agha, R. Baghdadi, S. Chiba,
A. Craik, W. De Meuter, A. F. Donaldson, S. J. Gay, J. Gibbons, T. Hosking, A. Igarashi,
M. Luján, A. Milanova, A. Møller, K. Ostermann, T. Petricek, A. Potanin, T. Schrijvers, M.
Serrano, T. Sotiropoulos, P. Thiemann, E. Tosch, V. T. Vasconcelos, Y. Wang, S. Wehr, T.
Wrigstad, and C. Zhang. This year, we continued a number of innovations that were first
introduced in 2022:

Multiple rounds. ECOOP has two main rounds of submissions per year (Dec 1 and
Mar 1). Each round supports both minor and major revisions. Major revisions are
handled in the next round (either the same year or the next) by the same reviewers.
No format or length restrictions. In order reduce friction for authors, papers can
come in any format and at any length. This applies to submissions. Final versions must
abide by the publisher’s requirements.
Artifacts and Papers together. Every submitted paper can be accompanied with an
artifact, submitted a few days after the paper. Both submissions are evaluated in parallel
by overlapping committees as members of the artifact evaluation committee were invited
to served on the conference review committee.
Journal First/Last. Papers can be submitted either one of three associated journals
and be invited to present at the meeting. Furthermore, some accepted papers can be
forward to journals.

Overall, we found that most of these innovations to have worked well. We hope that
future chairs will continue to experiment with more, and perhaps, different innovations that
will enrich the ECOOP community further.

Karim Ali Guido Salvaneschi
Program Committee Co-chair Program Committee Co-chair
University of Alberta University of St. Gallen

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Message from the Artifact Evaluation Chairs

ECOOP has a long-standing tradition of offering artifact evaluation dating back to 2013.
Following the process introduced in 2022, the artifact evaluation involved every single paper
submission to ECOOP 2023, rather than just accepted papers, and happened in parallel with
the paper review process. Besides providing feedback on the artifacts irrespective of paper
acceptance, evaluation results were made available to the technical PC. Artifact submissions
could, thus, provide more insights on the technical contributions described in the papers and
help to improve the overall review process.

To handle the high review load that such a process entails, we recruited a large artifact
evaluation committee that included a total of 51 artifact reviewers. The submission deadlines
for artifacts were just 10 days after the paper deadlines for both submission rounds. We
received a total of 45 submissions (20 for R1 and 25 for R2). After a kick-the tires review
and author response phase, during which authors had the opportunity to clarify or address
technical issues with their submissions, each submitted artifact was reviewed by three
committee members, leading to an overall review load of around 3 artifact reviews per
committee member.

Following the positive experience with adopting ACM’s artifact badges for ECOOP 2021
and 2022, we adopted the same badging policies for ECOOP 2023. The artifact evaluation
committee positively evaluated 38 submissions (15/23 for R1/R2) as functional or reusable,
out of which 22 belong to papers to appear in the technical program of ECOOP 2023. 4
submitted artifacts that did not pass the bar for the functional and reusable badges in R1
were found eligible for the available badge, 2 of which are associated with papers accepted
for presentation at ECOOP 2023.

In order to streamline the artifact review process and to decouple artifact from paper
review aspects, we asked authors to submit documentation of explicit claims in a pre-specified
format that the artifact evaluation committee checked the artifacts against. At the same
time, the PC could assess the importance of these claims for the submitted papers as a frame
of reference for the strength of support for the paper that an artifact can provide. This
separation greatly facilitated the artifact evaluation committee’s discussions regarding which
badges to award.

The smooth and thorough artifact evaluation process would have not been possible
without the members of the artifact evaluation committee, who handled the artifact review
workload and contributed to the technical PC discussions with great dedication. We would
like to thank them for their valuable work and the inspiring discussions. We would also like
to thank the ECOOP 2023 program committee chairs Karim Ali and Guido Salvaneschi
for the pleasant and productive interactions over the coordination of the paper and artifact
review processes.

Hernán Ponce de León Stefan Winter
Artifact Evaluation Co-chair Artifact Evaluation Co-chair
Huawei Dresden Research Center Ludwig-Maximilians-Universität München

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Foreword by the President of AITO

Welcome to ECOOP 2023, which this time will be held in the “well-known European city of
Seattle”. Why outside Europe? Well, ECOOP traditionally has had many contributors and
participants from other parts of the world and so ECOOP every once in a while has been held
outside Europe. In 1990, ECOOP was co-located with OOPSLA in Ottawa, Canada, and in
2012, ECOOP was co-located with PLDI, LCTES, and ISMM in Beijing, China. This year,
we are co-locating with ISSTA at the University of Washington main campus beautifully
located by Lake Washington and with splendid views of the Cascade Mountains and Mount
Rainier. The ECOOP 2023 team along with the ISSTA team has done a great job of putting
together a great program for the conferences – a huge thanks to them and to all others that
have contributed.

I am looking forward to two excellent conferences with lots of great papers, personal
interaction, excellent keynotes, including talks by the two 2023 Dahl-Nygaard Prize Winners.

Enjoy the conference, and Seattle.

Eric Jul
AITO President

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Authors

Pedro Adão (24)
Instituto Superior Técnico,
University of Lisbon, Portugal;
Institute of Telecommunications,
Campus de Santiago, Aveiro, Portugal

Nada Amin (41)
Harvard University, Cambridge, MA, USA

Vincenzo Arceri (23)
University of Parma, Italy

Adam D. Barwell (1)
University of St. Andrews, UK;
University of Oxford, UK

Mark Batty (39)
University of Kent, Canterbury, UK

Jim Bauwens (2)
Software Languages Lab,
Vrije Universiteit Brussel, Belgium

Sahil Bhatia (38)
University of California, Berkeley, CA, USA

Riccardo Bianchini (3)
DIBRIS, University of Genova, Italy

Annette Bieniusa (12)
University of Kaiserslautern-Landau, Germany

Lars Birkedal (22)
Aarhus University, Denmark

James Bornholt (35)
The University of Texas at Austin, TX, USA;
Amazon Web Services, Seattle, WA, USA

Henrique Botelho Guerra (4)
INESC-ID and IST, University of Lisbon,
Portugal

Katharina Brandl (5)
Johannes Gutenberg-Universität Mainz,
Germany

Timon Böhler (25)
Technische Universität Damstadt, Germany

Jeronimo Castrillon (33)
TU Dresden, Germany

David Castro-Perez (6)
University of Kent, UK

Ethan Cecchetti (29)
University of Maryland, College Park, MD, USA;
University of Wisconsin – Madison, WI, USA

Mahin Chandramohan (10)
Oracle Labs, Brisbane, Australia

Alvin Cheung (38)
University of California, Berkeley, CA, USA

Tiago Cogumbreiro (13)
College of Science and Mathematics, University
of Massachusetts Boston, MA, USA

Simon Cooksey (39)
University of Kent, Canterbury, UK

Agostino Cortesi (23)
Ca’ Foscari University of Venice, Italy

João Costa Seco (4)
NOVA LINCS, NOVA School of Science and
Technology, Caparica, Portugal

Caroline Cronjäger (19)
Ruhr-Universität Bochum, Germany

Luís Cruz-Filipe (7)
Department of Mathematics and Computer
Science, University of Southern Denmark,
Odense, Denmark

Arnaud Daby-Seesaram (22)
ENS Paris-Saclay, France

Francesco Dagnino (3)
DIBRIS, University of Genova, Italy

Jan de Muijnck-Hughes (8)
University of Glasgow, UK

Kevin De Porre (9)
Vrije Universiteit Brussel, Belgium

Jens Dietrich (10)
Victoria University of Wellington, New Zealand

Sebastian Erdweg (5)
Johannes Gutenberg-Universität Mainz,
Germany

Sebastian Ertel (33)
Barkhausen Institut, Dresden, Germany

Andong Fan (11)
The Hong Kong University of Science and
Technology (HKUST), Hong Kong, China

Gang Fan (36)
Ant Group, Shenzhen, China

Pietro Ferrara (23)
Ca’ Foscari University of Venice, Italy

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4049-1954
https://doi.org/10.4230/LIPIcs.ECOOP.2023.24
https://doi.org/10.4230/LIPIcs.ECOOP.2023.41
https://orcid.org/0000-0002-5150-0393
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://orcid.org/0000-0003-1236-7160
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1
https://doi.org/10.4230/LIPIcs.ECOOP.2023.39
https://doi.org/10.4230/LIPIcs.ECOOP.2023.2
https://doi.org/10.4230/LIPIcs.ECOOP.2023.38
https://orcid.org/0000-0003-0491-7652
https://doi.org/10.4230/LIPIcs.ECOOP.2023.3
https://orcid.org/0000-0002-1654-6118
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://orcid.org/0000-0003-1320-0098
https://doi.org/10.4230/LIPIcs.ECOOP.2023.22
https://orcid.org/0000-0002-3258-3226
https://doi.org/10.4230/LIPIcs.ECOOP.2023.35
https://orcid.org/0009-0002-5906-3033
https://doi.org/10.4230/LIPIcs.ECOOP.2023.4
https://doi.org/10.4230/LIPIcs.ECOOP.2023.5
https://orcid.org/0009-0002-9964-7367
https://doi.org/10.4230/LIPIcs.ECOOP.2023.25
https://orcid.org/0000-0002-5007-445X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.33
https://orcid.org/0000-0002-6939-4189
https://doi.org/10.4230/LIPIcs.ECOOP.2023.6
https://orcid.org/0000-0001-7900-8328
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/LIPIcs.ECOOP.2023.10
https://doi.org/10.4230/LIPIcs.ECOOP.2023.38
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://orcid.org/0000-0001-9365-9717
https://doi.org/10.4230/LIPIcs.ECOOP.2023.39
https://orcid.org/0000-0002-0946-5440
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://orcid.org/0000-0002-2840-3966
https://doi.org/10.4230/LIPIcs.ECOOP.2023.4
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://orcid.org/0000-0002-7866-7484
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://orcid.org/0000-0002-0226-4638
https://doi.org/10.4230/LIPIcs.ECOOP.2023.22
https://orcid.org/0000-0003-3599-3535
https://doi.org/10.4230/LIPIcs.ECOOP.2023.3
https://orcid.org/0000-0003-2185-8543
https://doi.org/10.4230/LIPIcs.ECOOP.2023.8
https://orcid.org/0000-0001-5469-1001
https://doi.org/10.4230/LIPIcs.ECOOP.2023.9
https://orcid.org/0000-0001-9019-6550
https://doi.org/10.4230/LIPIcs.ECOOP.2023.10
https://doi.org/10.4230/LIPIcs.ECOOP.2023.5
https://orcid.org/0009-0000-3953-9810
https://doi.org/10.4230/LIPIcs.ECOOP.2023.33
https://orcid.org/0000-0003-2124-9625
https://doi.org/10.4230/LIPIcs.ECOOP.2023.11
https://orcid.org/0000-0002-8633-6036
https://doi.org/10.4230/LIPIcs.ECOOP.2023.36
https://orcid.org/0000-0002-4678-933X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi Authors

Carla Ferreira (9)
NOVA School of Science and Technology,
Caparica, Portugal

Francisco Ferreira (42)
Department of Computer Science, Royal
Holloway, University of London, UK

João F. Ferreira (4)
INESC-ID and IST, University of Lisbon,
Portugal

Nate Foster (21)
Cornell University, Ithaca, NY, USA

José Fragoso Santos (24)
Instituto Superior Técnico,
University of Lisbon, Portugal;
INESC-ID Lisbon, Portugal

Philippa Gardner (19)
Imperial College London, UK

Mahdi Ghorbani (28)
University of Edinburgh, UK

Paola Giannini (3)
DiSSTE, University of Eastern Piedmont,
Vercelli, Italy

Marco Giunti (40)
NOVA LINCS and NOVA School of Science and
Technology, Caparica, Portugal;
School of Computing, Engineering & Digital
Technologies, Teesside University,
Middlesbrough, UK

Léon Gondelman (22)
Aarhus University, Denmark

Elisa Gonzalez Boix (2, 9)
Software Languages Lab,
Vrije Universiteit Brussel, Belgium

Eva Graversen (7)
Department of Mathematics and Computer
Science, University of Southern Denmark,
Odense, Denmark

Arjun Guha (37)
Northeastern University, Boston, MA, USA;
Roblox Research, San Mateo, CA, USA

Julian Haas (12)
Technische Universität Darmstadt, Germany

Nils Hansen (5)
Johannes Gutenberg-Universität Mainz,
Germany

Sarah Harris (39)
University of Kent, Canterbury, UK

Paul He (29)
University of Pennsylvania,
Philadelphia, PA, USA

Simon Henniger (41)
Technische Universität München, Germany

Andrew K. Hirsch (29)
State University of New York at Buffalo,
NY, USA

Ping Hou (1)
University of Oxford, UK

Suresh Jagannathan (20)
Department of Computer Science,
Purdue University, West Lafayette, IN, USA

Feiyang Jin (13)
College of Computing, Georgia Institute of
Technology, Atlanta, GA, USA

Sung-Shik Jongmans (42)
Department of Computer Science, Open
University, Heerlen, The Netherlands;
Centrum Wiskunde & Informatica (CWI),
NWO-I, Amsterdam, The Netherlands

Sven Keidel (5)
TU Darmstadt, Germany

Ellen Kidane (26)
University of Illinois at Chicago, IL, USA

Caleb Koch (21)
Stanford University, CA, USA

Sumer Kohli (38)
University of California, Berkeley, CA, USA

Christian Kuessner (14)
Technische Universität Darmstadt, Germany

Roland Kuhn (15)
Actyx AG, Kassel, Germany

Michele Lanza (43)
REVEAL @ Software Institute – USI, Lugano,
Switzerland

Ondřej Lhoták (31)
David R. Cheriton School of Computer Science,
University of Waterloo, Canada

Yannan Li (16)
University of Southern California, Los Angeles,
CA, USA

Bin Lin (43)
Radboud University, Nijmegen, The Netherlands

https://orcid.org/0000-0003-3680-7634
https://doi.org/10.4230/LIPIcs.ECOOP.2023.9
https://doi.org/10.4230/LIPIcs.ECOOP.2023.42
https://orcid.org/0000-0002-6612-9013
https://doi.org/10.4230/LIPIcs.ECOOP.2023.4
https://orcid.org/0000-0002-6557-684X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.21
https://orcid.org/0000-0001-5077-300X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.24
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://doi.org/10.4230/LIPIcs.ECOOP.2023.28
https://orcid.org/0000-0003-2239-9529
https://doi.org/10.4230/LIPIcs.ECOOP.2023.3
https://orcid.org/0000-0002-7582-0308
https://doi.org/10.4230/LIPIcs.ECOOP.2023.40
https://orcid.org/0000-0001-8262-6397
https://doi.org/10.4230/LIPIcs.ECOOP.2023.22
https://doi.org/10.4230/LIPIcs.ECOOP.2023.2
https://doi.org/10.4230/LIPIcs.ECOOP.2023.9
https://orcid.org/0000-0002-9430-4907
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://orcid.org/0000-0002-7493-3271
https://doi.org/10.4230/LIPIcs.ECOOP.2023.37
https://orcid.org/0000-0001-9959-5099
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://doi.org/10.4230/LIPIcs.ECOOP.2023.5
https://doi.org/10.4230/LIPIcs.ECOOP.2023.39
https://orcid.org/0000-0002-6305-4335
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/LIPIcs.ECOOP.2023.41
https://orcid.org/0000-0003-2518-614X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://orcid.org/0000-0001-6899-9971
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1
https://orcid.org/0000-0001-6871-2424
https://doi.org/10.4230/LIPIcs.ECOOP.2023.20
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.42
https://doi.org/10.4230/LIPIcs.ECOOP.2023.5
https://doi.org/10.4230/LIPIcs.ECOOP.2023.26
https://doi.org/10.4230/LIPIcs.ECOOP.2023.21
https://doi.org/10.4230/LIPIcs.ECOOP.2023.38
https://orcid.org/0009-0004-0317-2649
https://doi.org/10.4230/LIPIcs.ECOOP.2023.14
https://orcid.org/0000-0003-1582-6238
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://orcid.org/0000-0003-4391-0197
https://doi.org/10.4230/LIPIcs.ECOOP.2023.43
https://doi.org/10.4230/LIPIcs.ECOOP.2023.31
https://doi.org/10.4230/LIPIcs.ECOOP.2023.16
https://orcid.org/0000-0001-6307-8460
https://doi.org/10.4230/LIPIcs.ECOOP.2023.43

Authors 0:xvii

Lovro Lugović (7)
Department of Mathematics and Computer
Science, University of Southern Denmark,
Odense, Denmark

Matthew Lutze (17)
Department of Computer Science,
Aarhus University, Denmark

Andreas Lööw (19)
Imperial College London, UK

Magnus Madsen (17, 18, 31)
Department of Computer Science,
Aarhus University, Denmark

Petar Maksimović (19)
Imperial College London, UK;
Runtime Verification Inc., Urbana, IL, USA

Hernán Melgratti (15)
University of Buenos Aires, Argentina;
Conicet, Buenos Aires, Argentina

Mira Mezini (12, 14, 25)
hessian.AI, Darmstadt, Germany;
Technische Universität Darmstadt, Germany

Roberto Minelli (43)
REVEAL @ Software Institute – USI, Lugano,
Switzerland

Ashish Mishra (20)
Department of Computer Science,
Purdue University, West Lafayette, IN, USA

Mark Moeller (21)
Cornell University, Ithaca, NY, USA

Ragnar Mogk (12, 14)
Technische Universität Darmstadt, Germany

Fabrizio Montesi (7)
Department of Mathematics and Computer
Science, University of Southern Denmark,
Odense, Denmark

João Mota (40)
NOVA LINCS and NOVA School of Science and
Technology, Caparica, Portugal

Csaba Nagy (43)
REVEAL @ Software Institute – USI, Lugano,
Switzerland

David A. Naumann (24)
Stevens Institute of Technology,
Hoboken, NJ, USA

Luca Negrini (23)
Corvallis Srl, Padova, Italy

Abel Nieto (22)
Aarhus University, Denmark

Bruno C. d. S. Oliveira (34)
The University of Hong Kong, China

Luca Olivieri (23)
University of Verona, Italy;
Corvallis Srl, Padova, Italy

Lionel Parreaux (11)
The Hong Kong University of Science and
Technology (HKUST), Hong Kong, China

David J. Pearce (10)
ConsenSys, Wellington, New Zealand

Marco Peressotti (7)
Department of Mathematics and Computer
Science, University of Southern Denmark,
Odense, Denmark

Luís Pina (26)
University of Illinois at Chicago, IL, USA

Marco Raglianti (43)
REVEAL @ Software Institute – USI, Lugano,
Switzerland

Frederico Ramos (24)
Instituto Superior Técnico, University of Lisbon,
Portugal; INESC-ID Lisbon, Portugal

António Ravara (40)
NOVA LINCS and NOVA School of Science and
Technology, Caparica, Portugal

David Richter (25)
Technische Universität Damstadt, Germany

Ori Roth (44)
Department of Computer Science,
Technion, Haifa, Israel

Ugnius Rumsevicius (26)
University of Illinois at Chicago, IL, USA

Nuno Sabino (24)
Instituto Superior Técnico,
University of Lisbon, Portugal;
Carnegie Mellon University,
Pittsburgh, PA, USA;
Institute of Telecommunications,
Campus de Santiago, Aveiro, Portugal

Vivek Sarkar (13)
College of Computing, Georgia Institute of
Technology, Atlanta, GA, USA

Ryan Scott (30)
Galois, Inc., Portland, OR, USA

ECOOP 2023

https://orcid.org/0000-0001-9684-9567
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://orcid.org/0000-0002-2904-5099
https://doi.org/10.4230/LIPIcs.ECOOP.2023.17
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://orcid.org/0000-0002-7510-8724
https://doi.org/10.4230/LIPIcs.ECOOP.2023.17
https://doi.org/10.4230/LIPIcs.ECOOP.2023.18
https://doi.org/10.4230/LIPIcs.ECOOP.2023.31
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://orcid.org/0000-0003-0760-0618
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://doi.org/10.4230/LIPIcs.ECOOP.2023.14
https://doi.org/10.4230/LIPIcs.ECOOP.2023.25
https://orcid.org/0000-0002-1549-6489
https://doi.org/10.4230/LIPIcs.ECOOP.2023.43
https://orcid.org/0000-0002-0513-3107
https://doi.org/10.4230/LIPIcs.ECOOP.2023.20
https://orcid.org/0009-0002-9512-565X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.21
https://orcid.org/0000-0003-4583-1791
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://doi.org/10.4230/LIPIcs.ECOOP.2023.14
https://orcid.org/0000-0003-4666-901X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://orcid.org/0000-0003-3182-2245
https://doi.org/10.4230/LIPIcs.ECOOP.2023.40
https://orcid.org/0000-0001-8109-3293
https://doi.org/10.4230/LIPIcs.ECOOP.2023.43
https://orcid.org/0000-0002-7634-6150
https://doi.org/10.4230/LIPIcs.ECOOP.2023.24
https://orcid.org/0000-0001-9930-8854
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://orcid.org/0000-0003-2741-8119
https://doi.org/10.4230/LIPIcs.ECOOP.2023.22
https://doi.org/10.4230/LIPIcs.ECOOP.2023.34
https://orcid.org/0000-0001-8074-8980
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://orcid.org/0000-0002-8805-0728
https://doi.org/10.4230/LIPIcs.ECOOP.2023.11
https://orcid.org/0000-0003-4535-9677
https://doi.org/10.4230/LIPIcs.ECOOP.2023.10
https://orcid.org/0000-0002-0243-0480
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://orcid.org/0000-0003-4585-5259
https://doi.org/10.4230/LIPIcs.ECOOP.2023.26
https://orcid.org/0000-0002-6878-5604
https://doi.org/10.4230/LIPIcs.ECOOP.2023.43
https://orcid.org/0000-0002-1689-9650
https://doi.org/10.4230/LIPIcs.ECOOP.2023.24
https://orcid.org/0000-0001-8074-0380
https://doi.org/10.4230/LIPIcs.ECOOP.2023.40
https://orcid.org/0000-0002-8672-0265
https://doi.org/10.4230/LIPIcs.ECOOP.2023.25
https://orcid.org/0009-0002-1025-6707
https://doi.org/10.4230/LIPIcs.ECOOP.2023.44
https://doi.org/10.4230/LIPIcs.ECOOP.2023.26
https://orcid.org/0000-0001-6302-477X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.24
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30

0:xviii Authors

Sanjit A. Seshia (38)
University of California, Berkeley, CA, USA

Hesam Shahrokhi (27, 28)
University of Edinburgh, UK

Amir Shaikhha (27, 28)
University of Edinburgh, UK

Jun Shirako (13)
College of Computing, Georgia Institute of
Technology, Atlanta, GA, USA

Alexandra Silva (21)
Cornell University, Ithaca, NY, USA

Lucas Silver (29, 30)
University of Pennsylvania,
Philadelphia, PA, USA

Alaia Solko-Breslin (21)
University of Pennsylvania,
Philadelphia, PA, USA

Fausto Spoto (23)
University of Verona, Italy

Jonathan Lindegaard Starup (17, 31)
Department of Computer Science,
Aarhus University, Denmark

Felix Stutz (32)
MPI-SWS, Kaiserslautern, Germany

Felix Suchert (33)
TU Dresden, Germany

Julian Sutherland (19)
Nethermind, London, UK

Fabio Tagliaferro (23)
CYS4 Srl, Florence, Italy

Jinhao Tan (34)
The University of Hong Kong, China

Wensheng Tang (36)
The Hong Kong University of Science and
Technology, China

Amin Timany (22)
Aarhus University, Denmark

Emina Torlak (35)
University of Washington, Seattle, WA, USA;
Amazon Web Services, Seattle, WA, USA

Emilio Tuosto (15)
Gran Sasso Science Institute, L’Aquila, Italy

Jaco van de Pol (18)
Department of Computer Science,
Aarhus University, Denmark

Jacob Van Geffen (35)
University of Washington, Seattle, WA, USA

Wim Vanderbauwhede (8)
University of Glasgow, UK

Siddhanth Venkateshwaran (26)
University of Illinois at Chicago, IL, USA

Michael Vollmer (39)
University of Kent, Canterbury, UK

Chao Wang (16)
University of Southern California,
Los Angeles, CA, USA

Chengpeng Wang (36)
The Hong Kong University of Science and
Technology, China

Xi Wang (35)
University of Washington, Seattle, WA, USA;
Amazon Web Services, Seattle, WA, USA

Pascal Weisenburger (25)
Universität St. Gallen, Switzerland

Eddy Westbrook (30)
Galois, Inc., Portland, OR, USA

Anna-Katharina Wickert (14)
Technische Universität Darmstadt, Germany

Thomas Wiener (21)
Cornell University, Ithaca, NY, USA

Matthew Yacavone (30)
Galois, Inc., Portland, OR, USA

Elena Yanakieva (12)
University of Kaiserslautern-Landau, Germany

Peisen Yao (36)
Zhejiang University, Hangzhou, China

Ming-Ho Yee (37)
Northeastern University, Boston, MA, USA

Nobuko Yoshida (1, 6)
University of Oxford, UK

Lechen Yu (13)
College of Computing, Georgia Institute of
Technology, Atlanta, GA, USA

Steve Zdancewic (29)
University of Pennsylvania,
Philadelphia, PA, USA

Lisza Zeidler (33)
Barkhausen Institut, Dresden, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2023.38
https://orcid.org/0000-0003-1995-6996
https://doi.org/10.4230/LIPIcs.ECOOP.2023.27
https://doi.org/10.4230/LIPIcs.ECOOP.2023.28
https://orcid.org/0000-0002-9062-759X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.27
https://doi.org/10.4230/LIPIcs.ECOOP.2023.28
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://orcid.org/0000-0001-5014-9784
https://doi.org/10.4230/LIPIcs.ECOOP.2023.21
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30
https://orcid.org/0009-0009-3723-5181
https://doi.org/10.4230/LIPIcs.ECOOP.2023.21
https://orcid.org/0000-0003-2973-0384
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://orcid.org/0000-0002-0931-7878
https://doi.org/10.4230/LIPIcs.ECOOP.2023.17
https://doi.org/10.4230/LIPIcs.ECOOP.2023.31
https://orcid.org/0000-0003-3638-4096
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://orcid.org/0000-0001-7011-9945
https://doi.org/10.4230/LIPIcs.ECOOP.2023.33
https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://orcid.org/0000-0002-5904-8768
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://doi.org/10.4230/LIPIcs.ECOOP.2023.34
https://orcid.org/0000-0002-4259-3321
https://doi.org/10.4230/LIPIcs.ECOOP.2023.36
https://orcid.org/0000-0002-2237-851X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.22
https://doi.org/10.4230/LIPIcs.ECOOP.2023.35
https://orcid.org/0000-0002-7032-3281
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://orcid.org/0000-0003-4305-0625
https://doi.org/10.4230/LIPIcs.ECOOP.2023.18
https://orcid.org/0009-0007-7468-4205
https://doi.org/10.4230/LIPIcs.ECOOP.2023.35
https://orcid.org/0000-0001-6768-0037
https://doi.org/10.4230/LIPIcs.ECOOP.2023.8
https://doi.org/10.4230/LIPIcs.ECOOP.2023.26
https://orcid.org/0000-0002-0496-8268
https://doi.org/10.4230/LIPIcs.ECOOP.2023.39
https://doi.org/10.4230/LIPIcs.ECOOP.2023.16
https://orcid.org/0000-0003-0617-5322
https://doi.org/10.4230/LIPIcs.ECOOP.2023.36
https://doi.org/10.4230/LIPIcs.ECOOP.2023.35
https://orcid.org/0000-0003-1288-1485
https://doi.org/10.4230/LIPIcs.ECOOP.2023.25
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30
https://orcid.org/0000-0002-1441-2423
https://doi.org/10.4230/LIPIcs.ECOOP.2023.14
https://doi.org/10.4230/LIPIcs.ECOOP.2023.21
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30
https://orcid.org/0000-0002-2900-7252
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://orcid.org/0000-0003-0342-9518
https://doi.org/10.4230/LIPIcs.ECOOP.2023.36
https://orcid.org/0000-0002-8008-8481
https://doi.org/10.4230/LIPIcs.ECOOP.2023.37
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1
https://doi.org/10.4230/LIPIcs.ECOOP.2023.6
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://orcid.org/0000-0002-3516-1512
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/LIPIcs.ECOOP.2023.33

Authors 0:xix

Charles Zhang (36)
The Hong Kong University of Science and
Technology, China

Fangyi Zhou (1)
Imperial College London, UK;
University of Oxford, UK

Elena Zucca (3)
DIBRIS, University of Genova, Italy

ECOOP 2023

https://orcid.org/0000-0001-6417-1034
https://doi.org/10.4230/LIPIcs.ECOOP.2023.36
https://orcid.org/0000-0002-8973-0821
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1
https://orcid.org/0000-0002-6833-6470
https://doi.org/10.4230/LIPIcs.ECOOP.2023.3

Designing Asynchronous Multiparty Protocols with
Crash-Stop Failures
Adam D. Barwell #

University of St. Andrews, UK
University of Oxford, UK

Ping Hou #

University of Oxford, UK

Nobuko Yoshida #

University of Oxford, UK

Fangyi Zhou #

Imperial College London, UK
University of Oxford, UK

Abstract
Session types provide a typing discipline for message-passing systems. However, most session type
approaches assume an ideal world: one in which everything is reliable and without failures. Yet
this is in stark contrast with distributed systems in the real world. To address this limitation, we
introduce Teatrino, a code generation toolchain that utilises asynchronous multiparty session types
(MPST) with crash-stop semantics to support failure handling protocols.

We augment asynchronous MPST and processes with crash handling branches. Our approach
requires no user-level syntax extensions for global types and features a formalisation of global
semantics, which captures complex behaviours induced by crashed/crash handling processes. The
sound and complete correspondence between global and local type semantics guarantees deadlock-
freedom, protocol conformance, and liveness of typed processes in the presence of crashes.

Our theory is implemented in the toolchain Teatrino, which provides correctness by construction.
Teatrino extends the Scribble multiparty protocol language to generate protocol-conforming
Scala code, using the Effpi concurrent programming library. We extend both Scribble and Effpi
to support crash-stop behaviour. We demonstrate the feasibility of our methodology and evaluate
Teatrino with examples extended from both session type and distributed systems literature.

2012 ACM Subject Classification Software and its engineering → Source code generation; Software
and its engineering → Concurrent programming languages; Theory of computation → Process calculi;
Theory of computation → Distributed computing models

Keywords and phrases Session Types, Concurrency, Failure Handling, Code Generation, Scala

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.1

Related Version Full Version: https://arxiv.org/abs/2305.06238

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.9
Software (ECOOP 2023 Artifact Evaluation approved artifact):
http://doi.org/10.5281/zenodo.7714133
Software (Source Code): https://github.com/adbarwell/ECOOP23-Artefact

archived at swh:1:dir:e680ab478b62aab45610b0ef9f6de9d0fbe20ad2

Funding Work supported by: EPSRC EP/T006544/2, EP/K011715/1, EP/K034413/1,
EP/L00058X/1, EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462/1, EP/X015955/1,
NCSS/EPSRC VeTSS, and Horizon EU TaRDIS 101093006.

Acknowledgements We thank the anonymous reviewers for their useful comments and suggestions.
We thank Jia Qing Lim for his contribution to the Effpi extension. We thank Alceste Scalas for
useful discussions and advice in the development of this paper and for his assistance with Effpi.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 1; pp. 1:1–1:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:adb23@st-andrews.ac.uk
https://orcid.org/0000-0003-1236-7160
mailto:ping.hou@cs.ox.ac.uk
https://orcid.org/0000-0001-6899-9971
mailto:nobuko.yoshida@cs.ox.ac.uk
https://orcid.org/0000-0002-3925-8557
mailto:fangyi.zhou15@imperial.ac.uk
https://orcid.org/0000-0002-8973-0821
https://doi.org/10.4230/LIPIcs.ECOOP.2023.1
https://arxiv.org/abs/2305.06238
https://doi.org/10.4230/DARTS.9.2.9
https://doi.org/10.4230/DARTS.9.2.9
http://doi.org/10.5281/zenodo.7714133
http://doi.org/10.5281/zenodo.7714133
https://github.com/adbarwell/ECOOP23-Artefact
https://archive.softwareheritage.org/swh:1:dir:e680ab478b62aab45610b0ef9f6de9d0fbe20ad2;origin=https://github.com/adbarwell/ECOOP23-Artefact;visit=swh:1:snp:d947481e277f2ca15fb5bb698903c88fd502701e;anchor=swh:1:rev:516957af09341ab4e3080171460eacf8ad03c24c
https://doi.org/10.4230/DARTS.9.2.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

1 Introduction

Background. As distributed programming grows increasingly prevalent, significant research
effort has been devoted to improve the reliability of distributed systems. A key aspect of
this research focuses on studying unreliability (or, more specifically, failures). Modelling
unreliability and failures enables a distributed system to be designed to be more tolerant of
failures, and thus more resilient.

In pursuit of methods to achieve safety in distributed communication systems, session
types [19] provide a lightweight, type system–based approach to message-passing concurrency.
In particular, Multiparty Session Types (MPST) [20] facilitate the specification and verification
of communication between message-passing processes in concurrent and distributed systems.
The typing discipline prevents common communication-based errors, e.g. deadlocks and
communication mismatches [21, 37]. On the practical side, MPST have been implemented in
various mainstream programming languages [7, 10, 11, 22, 24, 25, 28, 30], which facilitates their
applications in real-world programs.

Nevertheless, the challenge to account for unreliability and failures persists for session
types: most session type systems assume that both participants and message transmissions
are reliable without failures. In a real-world setting, however, participants may crash,
communications channels may fail, and messages may be lost. The lack of failure modelling in
session type theories creates a barrier to their applications to large-scale distributed systems.

Recent works [3, 26, 27, 33, 42] close the gap of failure modelling in session types with
various techniques. [42] introduces failure suspicion, where a participant may suspect their
communication partner has failed, and act accordingly. [33] introduces reliability annotations
at type level, and fall back to a given default value in case of failures. [26] proposes a
framework of affine multiparty session types, where a session can terminate prematurely, e.g.
in case of failures. [3] integrates crash-stop failures, where a generalised type system validates
safety and liveness properties with model checking; [27] takes a similar approach, modelling
more kinds of failures in a session type system, e.g. message losses, reordering, and delays.

While steady advancements are made on the theoretical side, the implementations of those
enhanced session type theories seem to lag behind. Barring the approaches in [26,42], the
aforementioned approaches [3,27,33] do not provide session type API support for programming
languages.1 To bring the benefits of the theoretical developments into real-world distributed
programming, a gap remains to be filled on the implementation side.

This Paper. We introduce a top-down methodology for designing asynchronous multiparty
protocols with crash-stop failures:
(1) We use an extended asynchronous MPST theory, which models crash-stop failures, and

show that the usual session type guarantees remain valid, i.e. communication safety,
deadlock-freedom, and liveness;

(2) We present a toolchain for implementing asynchronous multiparty protocols, under our
new asynchronous MPST theory, in Scala, using the Effpi concurrency library [38].

The top-down design methodology comes from the original MPST theory [20], where the
design of multiparty protocols begins with a given global type (top), and implementations rely
on local types (bottom) obtained from the global type. The global and local types reflect the

1 [3] provides a prototype implementation, utilising the mCRL2 model checker [5], for verifying type-level
properties, instead of a library for general use.

A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou 1:3

global and local communication behaviours respectively. Well-typed implementations that
conform to a global type are guaranteed to be correct by construction, enjoying full guarantees
(safety, deadlock-freedom, liveness) from the theory. This remains the predominant approach
for implementing MPST theories, and is also followed by some aforementioned systems [26,42].

We model crash-stop failures [6, §2.2], i.e. a process may fail arbitrarily and cease to
interact with others. This model is simple and expressive, and has been adopted by other
approaches [3, 27]. Using global types in our design for handling failures in multiparty
protocols presents two distinct advantages:
(1) global types provide a simple, high-level means to both specify a protocol abstractly and

automatically derive local types; and,
(2) desirable behavioural properties such as communication safety, deadlock-freedom, and

liveness are guaranteed by construction.
In contrast to the synchronous semantics in [3], we model an asynchronous semantics, where
messages are buffered whilst in transit. We focus on asynchronous systems since most
communication in the real distributed world is asynchronous. In [27], although the authors
develop a generic typing system incorporating asynchronous semantics, their approach results
in the type-level properties becoming undecidable [27, §4.4]. With global types, we restore
the decidability at a minor cost to expressivity.

To address the gap on the practical side, we present a code generator toolchain, Teatrino,
to implement our MPST theory. Our toolchain takes an asynchronous multiparty protocol
as input, using the protocol description language Scribble [43], and generates Scala code
using the Effpi [38] concurrency library as output.

The Scribble Language [43] is designed for describing multiparty communication proto-
cols, and is closely connected to MPST theory (cf. [31]). This language enables a programmatic
approach for expressing global types and designing multiparty protocols. The Effpi con-
currency library [38] offers an embedded Domain Specific Language (DSL) that provides
a simple actor-based API. The library offers both type-level and value-level constructs for
processes and channels. Notably, the type-level constructs reflect the behaviour of programs
(i.e. processes) and can be used as specifications. Our code generation technique, as well as
the Effpi library itself, utilises the type system features introduced in Scala 3, including
match types and dependent function types, to encode local types in Effpi. This approach
enables us to specify and verify program behaviour at the type level, resulting in a more
powerful and flexible method for handling concurrency.

By extending Scribble and Effpi to support crash detection and handling, our toolchain
Teatrino provides a lightweight way for developers to take advantage of our theory, bridging
the gap on the practical side. We evaluate the expressivity and feasibility of Teatrino with
examples incorporating crash handling behaviour, extended from session type literature.

Outline. We begin with an overview of our methodology in § 2. We introduce an asyn-
chronous multiparty session calculus in § 3 with semantics of crashing and crash handling.
We introduce an extended theory of asynchronous multiparty session types with semantic
modelling of crash-stop failures in § 4. We present a typing system for the multiparty session
calculus in § 5. We introduce Teatrino, a code generation toolchain that implements
our theory in § 6, demonstrating how our approach is applied in the Scala programming
language. We evaluate our toolchain with examples from both session type and distributed
systems literature in § 7. We discuss related work in § 8 and conclude in § 9. Full proofs,
auxiliary material, and more details of Teatrino can be found in the full version of the
paper [2]. Additionally, our toolchain and examples used in our evaluation are available on
GitHub.

ECOOP 2023

https://github.com/adbarwell/ECOOP23-Artefact

1:4 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

A Global Type G with crash

projection (↾)

Local Type for L T L Local Type for I with crash T I Local Type for C T C

typing (⊢)

Process for L PL Process for I with crash PI Process for C PC

Figure 1 Top-down View of MPST with Crash.

2 Overview

In this section, we give an overview of our methodology for designing asynchronous multiparty
protocols with crash-stop failures, and demonstrate our code generation toolchain, Teatrino.

Asynchronous Multiparty Protocols with Crash-Stop Failures. We follow a standard top-
down design approach enabling correctness by construction, but enrich asynchronous MPST
with crash-stop semantics. As depicted in Fig. 1, we formalise (asynchronous) multiparty
protocols with crash-stop failures as global types with crash handling branches (crash). These
are projected into local types, which may similarly contain crash handling branches (crash).
The projected local types are then used to type-check processes (also with crash handling
branches (crash)) that are written in a session calculus. As an example, we consider a simple
distributed logging scenario, which is inspired by the logging-management protocol [26], but
extended with a third participant.

The Simpler Logging protocol consists of a logger (L) that controls the logging services,
an interface (I) that provides communications between logger and client, and a client (C)
that requires logging services via interface. Initially, L sends a heartbeat message trigger
to I. Then C sends a command to L to read the logs (read). When a read request is sent, it
is forwarded to L, and L responds with a report, which is then forwarded onto C. Assuming
all participants (logger, interface, and client) are reliable, i.e. without any failures or crashes,
this logging behaviour can be represented by the global type G0:

G0 = L→I:trigger.C→I:read.I→L:read.L→I:report(log).I→C:report(log).end (1)

Here, G0 is a specification of the Simpler Logging protocol between multiple roles from a
global perspective.

In the real distributed world, all participants in the Simpler Logging system may fail.
Ergo, we need to model protocols with failures or crashes and handling behaviour, e.g. should
the client fail after the logging has started, the interface will inform the logger to stop and
exit. We follow [6, §2.2] to model a crash-stop semantics, where we assume that roles can
crash at any time unless assumed reliable (never crash). For simplicity, we assume I and
L to be reliable. The above logging behaviour, incorporating crash-stop failures, can be
represented by extending G0 with a branch handling a crash of C:

G = L→I:trigger.C→I:
{

read.I→L:read.L→I:report(log).I→C:report(log).end
crash.I→L:fatal.end

}
(2)

We model crash detection on receiving roles: when I is waiting to receive a message from
C, the receiving role I is able to detect whether C has crashed. Since crashes are detected
only by the receiving role, we do not require a crash handling branch on the communication
step between I and C – nor do we require them on any interaction between L and I (since we
are assuming that L and I are reliable).

A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou 1:5

Protocol.scr Teatrino Protocol.scala Final.scala· · ·
Programmer

Integration

Figure 2 Workflow of Teatrino.

Following the MPST top-down methodology, a global type is then projected onto local
types, which describe communications from the perspective of a single role. In our unreliable
Simpler Logging example, G is projected onto three local types (one for each role C, L, I):

TC = I⊕read.I&report(log).end TL = I⊕trigger.I&
{

read.I⊕report(log).end
fatal.end

}
TI = L&trigger.C&

{
read.L⊕read.L&report(log).C⊕report(log).end
crash.L⊕fatal.end

}
Here, TI states that I first receives a trigger message from L; then I either expects a read

request from C, or detects the crash of C and handles it (in crash) by sending the fatal
message to notify L. We add additional crash modelling and introduce a stop type for crashed
endpoints. We show the operational correspondence between global and local type semantics,
and demonstrate that a projectable global type always produces a safe, deadlock-free, and
live typing context.

The next step in this top-down methodology is to use local types to type-check processes
Pi executed by role pi in our session calculus. For example, TI can be used to type check I
that executes the process:

L?trigger.
∑ {

C?read.L!read.L?report(x).C!report⟨x⟩.0
C?crash.L!fatal.0

}
In our operational semantics (§ 3), we allow active processes executed by unreliable roles
to crash arbitrarily. Therefore, the role executing the crashed process also crashes, and is
assigned the local type stop. To ensure that a communicating process is type-safe even in
presence of crashes, we require that its typing context satisfies a safety property accounting for
possible crashes (Def. 13), which is preserved by projection. Additional semantics surrounding
crashes adds subtleties even in standard results. We prove subject reduction and session
fidelity results accounting for crashes and sets of reliable roles.

Code Generation Toolchain: Teatrino. To complement the theory, we present a code
generation toolchain, Teatrino, that generates protocol-conforming Scala code from a mul-
tiparty protocol. We show the workflow diagram of our toolchain in Fig. 2. Teatrino takes
a Scribble protocol (Protocol.scr) and generates executable code (Protocol.scala) conforming
to that protocol, which the programmer can integrate with existing code (Final.scala).

Teatrino implements our session type theory to handle global types expressed using
the Scribble protocol description language [43], a programmer-friendly way for describing
multiparty protocols. We extend the syntax of Scribble slightly to include constructs for
crash recovery branches and reliable roles.

The generated Scala code utilises the Effpi concurrency library [38]. Effpi is an
embedded domain specific language in Scala 3 that offers a simple Actor-based API for
concurrency. Our code generation technique, as well the Effpi library itself, leverages the
type system features introduced in Scala 3, e.g. match types and dependent function types,
to encode local types in Effpi. We extend Effpi to support crash detection and handling.

ECOOP 2023

1:6 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

As a brief introduction to Effpi, the concurrency library provides types for processes
and channels. For processes, an output process type Out[A, B] describes a process that
uses a channel of type A to send a value of type B, and an input process type In[A, B, C]
describes a process that uses a channel of type A to receive a value of type B, and pass it
to a continuation type C. Process types can be sequentially composed by the >>: operator.
For channels, Chan[X] describes a channel that can be used communicate values of type X.
More specifically, the usage of a channel can be reflected at the type level, using the types
InChan[X]/OutChan[X] for input/output channels.

1 type I[C0 <: InChan[Trigger], C1 <: OutChan[Fatal],
2 C2 <: InChan[Read], C3 <: InChan[Report], C4 <: OutChan[Report]]
3 = InErr[C0, Trigger,
4 (X <: Read) =>
5 Out[C3,Read] >>: In[C4, Report, (Y <: Log) => Out[C5, Report]],
6 (Err <: Throwable) => Out[C2,Fatal]
7]

Figure 3 Effpi Type for TI.

As a sneak peek of the code we generate, in Fig. 3, we show the generated Effpi
representation for the projected local type TI from the Simpler Logging example. Readers
may be surprised by the difference between TI and the generated Effpi type I. This is
because the process types need their respective channel types, namely the type variables
C0, C1, etc. bounded by InChan[...] and OutChan[...]. We explain the details of code
generation in § 6.2, and describe an interesting challenge posed by the channel generation
procedure in § 6.3.

For crash handling behaviour, we introduce a new type InErr, whose last argument
specifies a continuation type to follow in case of a crash. Line 3 in Fig. 3 shows the crash
handling behaviour: sending a message of type Fatal, which reflects the crash branch in the
local type TI. We give more details of the generated code in § 6.2.

Code generated by Teatrino is executable, protocol-conforming, and can be specialised
by the programmer to integrate with existing code. We evaluate our toolchain on examples
taken from both MPST and distributed programming literature in § 7. Moreover, we extend
each example with crash handling behaviour to define unreliable variants. We demonstrate
that, with Teatrino, code generation takes negligible time, and all potential crashes are
accompanied with crash handlers.

3 Crash-Stop Asynchronous Multiparty Session Calculus

In this section, we formalise the syntax and operational semantics of our asynchronous
multiparty session calculus with process failures and crash detection.

Syntax. Our asynchronous multiparty session calculus models processes that may crash
arbitrarily. Our formalisation is based on [16] – but in addition, follows the fail-stop model
in [6, §2.7], where processes may crash and never recover, and process failures can be detected
by failure detectors [6, §2.6.2] [8] when attempting to receive messages.

We give the syntax of processes in Fig. 4. In our calculus, we assume that there are basic
expressions e (e.g. true , false , 7 + 11) that are assigned basic types B (e.g. int, bool). We
write e ↓ v to denote an expression e evaluates to a value v (e.g. (7 < 11) ↓ true , (1 + 1) ↓ 2).

A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou 1:7

P , Q ::= Processes∑
i∈I

p?mi(xi).P i external choice∣∣ p!m⟨e⟩.P (where m ̸= crash) output∣∣ if e then P else Q conditional∣∣ X variable∣∣ µX.P recursion∣∣ 0 inaction∣∣ crashed

M ::= Sessions
p ◁ P | p ◁ h participant∣∣ M | M parallel

h ::= Queues
ϵ empty∣∣ ⊘ unavailable∣∣ (p, m(v)) message∣∣ h · h concatenation

Figure 4 Syntax of sessions, processes, and queues. Noticeable changes w.r.t. standard session
calculus [16] are highlighted.

A process, ranged over by P , Q, is a communication agent within a session. An output
process p!m⟨e⟩.P sends a message to another role p in the session, where the message is
labelled m, and carries a payload expresion e, then the process continues as P . An external
choice (input) process

∑
i∈I p?mi(xi).P i receives a message from another role p in the session,

among a finite set of indexes I, if the message is labelled mi, then the payload would be
received as xi, and process continues as Pi. Note that our calculus uses crash as a special
message label denoting that a participant (role) has crashed. Such a label cannot be sent
by any process, but a process can implement crash detection and handling by receiving it.
Consequently, an output process cannot send a crash message (side condition m ̸= crash),
whereas an input process may include a crash handling branch of the form crash.P ′ meaning
that P ′ is executed when the sending role has crashed. A conditional process if e then P else Q

continues as either P or Q depending on the evaluation of e. We allow recursion at the
process level using µX.P and X, and we require process recursion variables to be guarded
by an input or an output action; we consider a recursion process structurally congruent to
its unfolding µX.P ≡ P{µX.P/X}. Finally, we write 0 for an inactive process, representing a
successful termination; and for a crashed process, representing a termination due to failure.

An incoming queue2, ranged over by h, h′, is a sequence of messages tagged with their
origin. We write ϵ for an empty queue; ⊘ for an unavailable queue; and (p, m(v)) for a
message sent from p, labelled m, and containing a payload value v. We write h1 · h2 to
denote the concatenation of two queues h1 and h2. When describing incoming queues, we
consider two messages from different origins as swappable: h1 · (q1, m1(v1)) · (q2, m2(v2)) · h2 ≡
h1 · (q2, m2(v2)) · (q1, m1(v1)) · h2 whenever q1 ≠ q2. Moreover, we consider concatenation (·)
as associative, and the empty queue ϵ as the identity element for concatenation.

A session, ranged over by M, M′, consists of processes and their respective incoming
queue, indexed by their roles. A single entry for a role p is denoted p ◁ P | p ◁ h, where P is
the process for p and h is the incoming queue. Entries are composed together in parallel
as M | M′, where the roles in M and M′ are disjoint. We consider parallel composition as
commutative and associative, with p ◁ 0 | p ◁ ϵ as a neutral element of the operator. We write∏

i∈I(pi ◁ Pi | pi ◁ hi) for the parallel composition of multiple entries in a set.

Operational Semantics. Operational Semantics of our session calculus is given in Def. 1,
using a standard structural congruence ≡ defined in [16]. Our semantics parameterises on a
(possibly empty) set of reliable roles R, which are assumed to never crash.

2 In [16], the queues are outgoing instead of incoming. We use incoming queues to model our crashing
semantics more easily.

ECOOP 2023

1:8 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

[r-] p ◁ P | p ◁ hp | M →R p ◁ | p ◁ ⊘ | M (P ̸= 0, p /∈ R)
[r-send] p ◁ q!m⟨e⟩.P | p ◁ hp | q ◁ Q | q ◁ hq | M

→ p ◁ P | p ◁ hp | q ◁ Q | q ◁ hq · (p, m(v)) | M (e ↓ v, hq ̸= ⊘)
[r-send-] p ◁ q!m⟨e⟩.P | p ◁ hp | q ◁ | q ◁ ⊘ | M → p ◁ P | p ◁ hp | q ◁ | q ◁ ⊘ | M
[r-rcv] p ◁

∑
i∈I

q?mi(xi).P i | p ◁ (q, mk(v)) · hp | M → p ◁ P k{v/xk} | p ◁ hp | M (k ∈ I)
[r-rcv-⊙] p ◁

∑
i∈I

q?mi(xi).P i | p ◁ hp | q ◁ | q ◁ ⊘ | M
→ p ◁ P k | p ◁ hp | q ◁ | q ◁ ⊘ | M (k ∈ I, mk = crash, ∄m, v : (q, m(v)) ∈ hp)

[r-cond-T] p ◁ if e then P else Q | p ◁ h | M → p ◁ P | p ◁ h | M (e ↓ true)
[r-cond-F] p ◁ if e then P else Q | p ◁ h | M → p ◁ Q | p ◁ h | M (e ↓ false)
[r-struct] M1 ≡ M′

1 and M′
1 → M′

2 and M′
2 ≡ M2 =⇒ M1 → M2

Figure 5 Reduction relation on sessions with crash-stop failures.

▶ Definition 1 (Session Reductions). Session reduction →R is inductively defined by the rules
in Fig. 5, parameterised by a fixed set R of reliable roles. We write → when R is insignificant.
We write →R

∗ (resp. →∗) for the reflexive and transitive closure of →R (resp. →).

Our operational semantics retains the basic rules in [16], but also includes (highlighted)
rules for crash-stop failures and crash handling, adapted from [3]. Rules [r-send] and [r-rcv]

model ordinary message delivery and reception: an output process located at p sending to q
appends a message to the incoming queue of q; and an input process located at p receiving
from q consumes the first message from the incoming queue. Rules [r-cond-T] and [r-cond-F]

model conditionals; and rule [r-struct] permits reductions up to structural congruence.

With regard to crashes and related behaviour, rule [r-] models process crashes: an active
(P ̸= 0) process located at an unreliable role (p /∈ R) may reduce to a crashed process p ◁ ,
with its incoming queue becoming unavailable p ◁ ⊘. Rule [r-send-] models a message delivery
to a crashed role (and thus an unavailable queue), and the message becomes lost and would
not be added to the queue. Rule [r-rcv-⊙] models crash detection, which activates as a “last
resort”: an input process at p receiving from q would first attempt find a message from q in
the incoming queue, which engages the usual rule [r-recv]; if none exists and q has crashed
(q ◁), then the crash handling branch in the input process at p can activate. We draw
attention to the interesting fact that [r-recv] may engage even if q has crashed, in cases where
a message from q in the incoming queue may be consumed. We now illustrate our operational
semantics of sessions with an example.

▶ Example 2. Consider the session M = p ◁ P | p ◁ ϵ | q ◁ Q | q ◁ ϵ, where P =

q!m⟨“abc”⟩.
∑ {

q?m′(x).0
q?crash.0

}
and Q =

∑ {
p?m(x).p!m′⟨42⟩.0
p?crash.0

}
. In this session, the process

Q for q receives a message sent from p to q; the process P for p sends a message from p to q,
and then receives a message sent from q to p. Let each role be unreliable, i.e. R = ∅, and
P crash before sending. We have M →∅ p ◁ | p ◁ ⊘ | q ◁ Q | q ◁ ϵ → p ◁ | p ◁ ⊘ | q ◁ 0 | q ◁ ϵ

. We observe that when the output process P located at an unreliable role p crashes (by
[r-]), the resulting entry for p is a crashed process (p ◁) with an unavailable queue (p ◁ ⊘).
Subsequently, the input process Q located at q can detect and handle the crash by [r-rcv-⊙]

via its crash handling branch.

A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou 1:9

B ::= int
∣∣ bool

∣∣ real
∣∣ unit

∣∣ . . . Basic types
G ::= p→q†: {mi(Bi).Gi}i∈I Transmission∣∣ p†⇝q:j {mi(Bi).Gi}i∈I (j ∈ I) Transmission en route∣∣ µt.G

∣∣ t
∣∣ end Recursion, Type variable, Termination

† ::= ·
∣∣ Crash annotation

S, T ::= p&{mi(Bi).Ti}i∈I

∣∣ p⊕{mi(Bi).Ti}i∈I External choice, Internal choice∣∣ µt.T
∣∣ t

∣∣ end
∣∣ stop Recursion, Type variable, Termination, Crash

Figure 6 Syntax of global types and local types. Runtime types are shaded.

4 Asynchronous Multiparty Session Types with Crash-Stop Semantics

In this section, we present our asynchronous multiparty session types with crash-stop
semantics. We give an overview of global and local types with crashes in § 4.1, including
syntax, projection, subtyping, etc.; our key additions to the classic theory are crash handling
branches in both global and local types, and a special local type stop to denote crashed
processes. We give a Labelled Transition System (LTS) semantics to both global types (§ 4.2)
and configurations (i.e. a collection of local types and point-to-point communication queues,
§ 4.3). We discuss alternative design options of modelling crash-stop failures in § 4.4. We
relate the two semantics in § 4.5, and show that a configuration obtained via projection is
safe, deadlock-free, and live in § 4.6.

4.1 Global and Local Types with Crash-Stop Failures
The top-down methodology begins with global types to provide an overview of the communic-
ation between a number of roles (p, q, s, t, . . .), belonging to a (fixed) set R. At the other
end, we use local types to describe how a single role communicates with other roles from
a local perspective, and they are obtained via projection from a global type. We give the
syntax of both global and local types in Fig. 6, which are similar to syntax used in [3, 37].

Global Types. Global Types are ranged over G, G′, Gi, . . ., and describe the behaviour for
all roles from a bird’s eye view. The syntax shown in shade are runtime syntax, which are
not used for describing a system at design-time, but for describing the state of a system
during execution. The labels m are taken from a fixed set of all labels M, and basic types B

(types for payloads) from a fixed set of all basic types B.
We explain each construct in the syntax of global types: a transmission, denoted

p→q†: {mi(Bi).Gi}i∈I , represents a message from role p to role q (with possible crash
annotations), with labels mi, payload types Bi, and continuations Gi, where i is taken from
an index set I. We require that the index set be non-empty (I ≠ ∅), labels mi be pair-wise
distinct, and self receptions be excluded (i.e. p ≠ q), as standard in session type works.
Additionally, we require that the special crash label (explained later) not be the only label in
a transmission, i.e. {mi | i ∈ I} ≠ {crash}. A transmission en route p†⇝q:j {mi(Bi).Gi}i∈I is
a runtime construct representing a message mj (index j) sent by p, and yet to be received
by q. Recursive types are represented via µt.G and t, where contractive requirements
apply [34, §21.8]. The type end describes a terminated type (omitted where unambiguous).

To model crashes and crash handling, we use crash annotations and crash handling
branches: a crash annotation , a new addition in this work, marks a crashed role (only
used in the runtime syntax), and we omit annotations for live roles, i.e. p is a live role, p is

ECOOP 2023

1:10 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

a crashed role, and p† represents a possibly crashed role, namely either p or p . We use a
special label crash for handling crashes: this continuation denotes the protocol to follow when
the sender of a message is detected to have crashed by the receiver. The special label acts as a
“pseudo-message”: when a sender role crashes, the receiver can select the pseudo-message to
enter crash handling. We write roles(G) (resp. roles (G)) for the set of active (resp. crashed)
roles in a global type G, excluding (resp. consisting only of) those with a crash annotation .

Local Types. Local Types are ranged over S, T , U, . . ., and describe the behaviour of a
single role. An internal choice (selection) (or an external choice (branching)), denoted
p⊕{mi(Bi).Ti}i∈I (or p&{mi(Bi).Ti}i∈I), indicates that the current role is to send to (or
receive from) the role p. Similarly to global types, we require pairwise-distinct, non-empty
labels. Moreover, we require that the crash label not appear in internal choices, reflecting
that a crash pseudo-message can never be sent; and that singleton crash labels not permitted
in external choices. The type end indicates a successful termination (omitted where unam-
biguous), and recursive types follow a similar fashion to global types. We use a new runtime
type stop to denote crashes.

Subtyping. Subtyping relation ⩽ on local types will be used in § 4.5 to relate global and
local type semantics. Our subtyping relation is mostly standard [37, Def. 2.5], except for an
extra rule for stop and additional requirements to support crash handling branch in external
choices.

Projection. Projection gives the local type of a participating role in a global type, defined
as a partial function that takes a global type G and a role p, and returns a local type, given
by Def. 3.

▶ Definition 3 (Global Type Projection). The projection of a global type G onto a role p,
with respect to a set of reliable roles R, written G ↾R p, is:

(
q→r†: {mi(Bi).Gi}i∈I

)
↾R p =


r⊕{mi(Bi).(Gi ↾R p)}i∈{j∈I | mj ̸=crash} if p = q

q&{mi(Bi).(Gi ↾R p)}i∈I

if p = r, and q /∈ R implies
∃k ∈ I : mk = crashd

i∈I Gi ↾R p if p ̸= q, and p ̸= r

(
q†⇝r:j {mi(Bi).Gi}i∈I

)
↾R p =


Gj ↾R p if p = q

q&{mi(Bi).(Gi ↾R p)}i∈I

if p = r, and q /∈ R implies
∃k ∈ I : mk = crashd

i∈I Gi ↾R p if p ̸= q, and p ̸= r

(µt.G) ↾R p =
{

µt.(G ↾R p) if p ∈ G or fv(µt.G) ̸= ∅
end otherwise

t ↾R p = t
end ↾R p = end

where
d

is the merge operator for local types (full merging):

p&{mi(Bi).S′
i}i∈I ⊓p&

{
mj(Bj).T ′

j

}
j∈J

= p&{mk(Bk).(S′
k ⊓T ′

k)}k∈I∩J & p&{mi(Bi).S′
i}i∈I\J & p&

{
mj(Bj).T ′

j

}
j∈J\I

p⊕{mi(Bi).S′
i}i∈I ⊓ p⊕{mi(Bi).T ′

i }i∈I = p⊕{mi(Bi).(S′
i ⊓ T ′

i)}i∈I

µt.S ⊓ µt.T = µt.(S ⊓ T) t ⊓ t = t end ⊓ end = end

We parameterise our theory on a (fixed) set of reliable roles R, i.e. roles assumed to never
crash: if R = ∅, every role is unreliable and susceptible to crash; if roles(G) ⊆ R, every role
in G is reliable, and we simulate the results from the original MPST theory without crashes.
We base our definition of projection on [37], but include more (highlighted) cases to account
for reliable roles, crash branches, and runtime global types.

A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou 1:11

When projecting a transmission from q to r, we remove the crash label from the internal
choice at q, reflecting our model that a crash pseudo-message cannot be sent. Dually,
we require a crash label to be present in the external choice at r – unless the sender
role q is assumed to be reliable. Our definition of projection enforces that transmissions,
whenever an unreliable role is the sender (q /∈ R), must include a crash handling branch
(∃k ∈ I : mk = crash). This requirement ensures that the receiving role r can always handle
crashes whenever it happens, so that processes are not stuck when crashes occur. We explain
how these requirements help us achieve various properties by projection in § 4.6. The rest of
the rules are taken from the literature [37,40], without much modification.

4.2 Crash-Stop Semantics of Global Types
We now give a Labelled Transition System (LTS) semantics to global types, with crash-stop
semantics. To this end, we first introduce some auxiliary definitions. We define the transition
labels in Def. 4, which are also used in the LTS semantics of configurations (later in § 4.3).

▶ Definition 4 (Transition Labels). Let α be a transition label of the form:

α ::= p&q :m(B) (p receives m(B) from q)
∣∣ p⊕q :m(B) (p sends m(B) to q)∣∣ p (p crashes)
∣∣ p⊙q (p detects the crash of q)

The subject of a transition label, written subj(α), is defined as:

subj(p&q :m(B)) = subj(p⊕q :m(B)) = subj(p) = subj(p⊙q) = p.

The labels p⊕q :m(B) and p&q :m(B) describe sending and receiving actions respectively.
The crash of p is denoted by the label p , and the detection of a crash by label p⊙q: we
model crash detection at reception, the label contains a detecting role p and a crashed role q.

We define an operator to remove a role from a global type in Def. 5: the intuition is
to remove any interaction of a crashed role from the given global type. When a role has
crashed, we attach a crashed annotation, and remove infeasible actions, e.g. when the sender
and receiver of a transmission have both crashed. The removal operator is a partial function
that takes a global type G and a live role r (r ∈ roles(G)) and gives a global type G r.

▶ Definition 5 (Role Removal). The removal of a live role p in a global type G, written G p,
is defined as follows:

(p→q: {mi(Bi).Gi}i∈I) r =

{
p ⇝q:j {mi(Bi).(Gi r)}i∈I if p = r and ∃j ∈ I : mj = crash
p→q : {mi(Bi).(Gi r)}i∈I if q = r
p→q: {mi(Bi).(Gi r)}i∈I if p ̸= r and q ̸= r

(p⇝q:j {mi(Bi).Gi}i∈I) r =

{
p ⇝q:j {mi(Bi).(Gi r)}i∈I if p = r
Gj r if q = r
p⇝q:j {mi(Bi).(Gi r)}i∈I if p ̸= r and q ̸= r

(p→q : {mi(Bi).Gi}i∈I) r =
{

Gj r if p = r and ∃j ∈ I : mj = crash
p→q : {mi(Bi).(Gi r)}i∈I if p ̸= r and q ̸= r

(p ⇝q:j {mi(Bi).Gi}i∈I) r =
{

Gj r if q = r
p ⇝q:j {mi(Bi).(Gi r)}i∈I if p ̸= r and q ̸= r

(µt.G) r =
{

µt.(G r) if fv(µt.G) ̸= ∅ or roles(G r) ̸= ∅
end otherwise

t r = t end r = end

For simple cases, the removal of a role G r attaches crash annotations on all occurrences
of the removed role r throughout global type G inductively.

ECOOP 2023

1:12 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

p /∈ R p ∈ roles(G) G ̸= µt.G′

⟨C; G⟩ p −→R ⟨C ∪ {p}; G p⟩
[GR-] ⟨C; G{µt.G/t}⟩ α−→R ⟨C′; G′⟩

⟨C; µt.G⟩ α−→R ⟨C′; G′⟩
[GR-µ]

j ∈ I mj ̸= crash

⟨C; p→q: {mi(Bi).G′
i}i∈I⟩

p⊕q:mj(Bj)
−−−−−−→R ⟨C; p⇝q:j {mi(Bi).G′

i}i∈I⟩
[GR-⊕]

j ∈ I mj ̸= crash

⟨C; p†⇝q:j {mi(Bi).G′
i}i∈I⟩

q&p:mj(Bj)
−−−−−−→R ⟨C; G′

j⟩
[GR-&]

j ∈ I mj = crash

⟨C; p ⇝q:j {mi(Bi).G′
i}i∈I⟩ q⊙p−−→R ⟨C; G′

j⟩
[GR-⊙]

j ∈ I mj ̸= crash

⟨C; p→q : {mi(Bi).G′
i}i∈I⟩

p⊕q:mj(Bj)
−−−−−−→R ⟨C; G′

j⟩
[GR- m]

∀i ∈ I : ⟨C; G′
i⟩

α−→R ⟨C′; G′′
i ⟩ subj(α) /∈ {p, q}

⟨C; p→q†: {mi(Bi).G′
i}i∈I⟩ α−→R ⟨C′; p→q†: {mi(Bi).G′′

i }i∈I⟩
[GR-Ctx-i]

∀i ∈ I : ⟨C; G′
i⟩

α−→R ⟨C′; G′′
i ⟩ subj(α) ̸= q

⟨C; p†⇝q:j {mi(Bi).G′
i}i∈I⟩ α−→R ⟨C′; p†⇝q:j {mi(Bi).G′′

i }i∈I⟩
[GR-Ctx-ii]

Figure 7 Global Type Reduction Rules.

We draw attention to some interesting cases: when we remove the sender role p from a
transmission prefix p→q, the result is a “pseudo-transmission” en route prefix p ⇝q : j

where mj = crash. This enables the receiver q to “receive” the special crash after the crash
of p, hence triggering the crash handling branch. Recall that our definition of projection
requires that a crash handling branch be present whenever a crash may occur (q /∈ R).

When we remove the sender role p from a transmission en route prefix p⇝q : j, the
result retains the index j that was selected by p, instead of the index associated with crash
handling. This is crucial to our crash modelling: when a role crashes, the messages that the
role has sent to other roles are still available. We discuss alternative models later in § 4.4.

In other cases, where removing the role r would render a transmission (regardless of being
en route or not) meaningless, e.g. both sender and receiver have crashed, we simply remove
the prefix entirely.

We now give an LTS semantics to a global type G, by defining the semantics with a tuple
⟨C; G⟩, where C is a set of crashed roles. The transition system is parameterised by reliability
assumptions, in the form of a fixed set of reliable roles R. When unambiguous, we write G

as an abbreviation of ⟨∅; G⟩. We define the reduction rules of global types in Def. 6.

▶ Definition 6 (Global Type Reductions). The global type (annotated with a set of crashed
roles C) transition relation α−→R is inductively defined by the rules in Fig. 7, parameterised
by a fixed set R of reliable roles. We write ⟨C; G⟩ −→R ⟨C′; G′⟩ if there exists α such
that ⟨C; G⟩ α−→R ⟨C′; G′⟩; we write ⟨C; G⟩ −→R if there exists C′, G′, and α such that
⟨C; G⟩ α−→R ⟨C′; G′⟩, and −→∗

R for the transitive and reflexive closure of −→R.

Rules [GR-⊕] and [GR-&] model sending and receiving messages respectively, as are standard
in existing works [13]. We add an (highlighted) extra condition that the message exchanged
not be a pseudo-message carrying the crash label. [GR-µ] is a standard rule handling recursion.

We introduce (highlighted) rules to account for crash and consequential behaviour. Rule
[GR-] models crashes, where a live (p ∈ roles(G)), but unreliable (p /∈ R) role p may crash.
The crashed role p is added into the set of crashed roles (C ∪ {p}), and removed from the
global type, resulting in a global type G p. Rule [GR-⊙] is for crash detection, where a

A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou 1:13

live role q may detect that p has crashed at reception, and then continues with the crash
handling continuation labelled crash. This rule only applies when the message en route is
a pseudo-message, since otherwise a message rests in the queue of the receiver and can be
received despite the crash of the sender (cf. [GR-&]). Rule [GR- m] models the orphaning of a
message sent from a live role p to a crashed role q. Similar to the requirement in [GR-⊕], we
add the side condition that the message sent is not a pseudo-message.

Finally, rules [GR-Ctx-i] and [GR-Ctx-ii] allow non-interfering reductions of (intermediate)
global types under prefix, provided that all of the continuations can be reduced by that label.
▶ Remark 7 (Necessity of C in Semantics). While we can obtain the set of crashed roles in any
global type G via roles (G), we need a separate C for bookkeeping purposes. To illustrate,
let G = p→q:{m.end, crash.end}; we can have the following reductions:

⟨∅; G⟩ q −→∅ ⟨{q}; p→q :{m.end, crash.end}⟩ p⊕q:m−−−→∅ ⟨{q}; end⟩

While we can deduce q is a crashed role in the interim global type, the same information
cannot be recovered from the final global type end.

4.3 Crash-Stop Semantics of Configurations
After giving semantics to global types, we now give an LTS semantics to configurations, i.e.
a collection of local types and communication queues across roles. We first give a definition
of configurations in Def. 8, followed by their reduction rules in Def. 9.

▶ Definition 8 (Configurations). A configuration is a tuple Γ; ∆, where Γ is a typing context,
denoting a partial mapping from roles to local types, defined as: Γ ::= ∅

∣∣ Γ, p▷T . We write
Γ[p 7→ T] for updates: Γ[p 7→ T](p) = T and Γ[p 7→ T](q) = Γ(q) (where p ̸= q).

A queue, denoted τ , is either a (possibly empty) sequence of messages M1·M2· · · · ·Mn,
or unavailable ⊘. We write ϵ for an empty queue, and M ·τ ′ for a non-empty queue with
message M at the beginning. A queue message M is of form m(B), denoting a message with
label m and payload B. We sometimes omit B when the payload is not of specific interest.

We write ∆ to denote a queue environment, a collection of peer-to-peer queues. A queue
from p to q at ∆ is denoted ∆(p, q). We define updates ∆[p, q 7→ τ] similarly. We write ∆∅
for an empty queue environment, where ∆∅(p, q) = ϵ for any p and q in the domain.

We write τ ′ ·M to append a message M at the end of a queue τ ′: the message is
appended to the sequence when τ ′ is available, or discarded when τ ′ is unavailable (i.e.
⊘·M = ⊘). Additionally, we write ∆[·, q 7→ ⊘] for making all the queues to q unavailable:
i.e. ∆[p1, q 7→ ⊘][p2, q 7→ ⊘] · · · [pn, q 7→ ⊘].

We give an LTS semantics of configurations in Def. 9. Similar to that of global types, we
model the semantics of configurations in an asynchronous (a.k.a. message passing) fashion,
using a queue environment to represent the communication queues among all roles.

▶ Definition 9 (Configuration Semantics). The configuration transition relation α−→ is defined
in Fig. 8. We write Γ; ∆ α−→ iff Γ; ∆ α−→Γ′; ∆′ for some Γ′ and ∆′. We define two reductions
→ and →R (where R is a fixed set of reliable roles) as follows:

We write Γ; ∆ → Γ′; ∆′ for Γ; ∆ α−→ Γ′; ∆′ with α ∈ {p&q :m(B), p⊕q :m(B), p⊙q}. We
write Γ; ∆→ iff Γ; ∆→Γ′; ∆′ for some Γ′; ∆′, and Γ; ∆ ̸→ for its negation, and →∗ for
the reflexive and transitive closure of →;
We write Γ; ∆ →R Γ′; ∆′ for Γ; ∆ α−→ Γ′; ∆′ with α /∈ {r | r∈R}. We write Γ; ∆→R iff
Γ; ∆ →R Γ′; ∆′ for some Γ′; ∆′, and Γ; ∆′ ̸→R for its negation. We define →∗

R as the
reflexive and transitive closure of →R.

ECOOP 2023

1:14 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

Γ(p) = q⊕{mi(Bi).Ti}i∈I k ∈ I

Γ; ∆ p⊕q:mk(Bk)−−−−−−−→ Γ[p 7→ Tk]; ∆[p, q 7→ ∆(p, q)·mk(Bk)]
[Γ-⊕]

Γ(p) = q&{mi(Bi).Ti}i∈I k ∈ I m′ = mk B′ = Bk ∆(q, p) = m′(B′)·τ ′ ̸= ⊘

Γ; ∆ p&q:mk(Bk)−−−−−−−→ Γ[p 7→ Tk]; ∆[q, p 7→ τ ′]
[Γ-&]

Γ(p) = µt.T Γ[p 7→ T {µt.T/t}]; ∆ α−→ Γ′; ∆′

Γ; ∆ α−→ Γ′; ∆′
[Γ-µ]

Γ(p) ̸= end Γ(p) ̸= stop

Γ; ∆ p −→ Γ[p 7→ stop]; ∆[·, p 7→ ⊘]
[Γ-]

Γ(q) = p&{mi(Bi).Ti}i∈I Γ(p) = stop k ∈ I mk = crash ∆(p, q) = ϵ

Γ; ∆ q⊙p−−→ Γ[q 7→ Tk]; ∆
[Γ-⊙]

Figure 8 Configuration Semantics.

We first explain the standard rules: rule [Γ-⊕] (resp. [Γ-&]) says that a role can perform an
output (resp. input) transition by appending (resp. consuming) a message at the corresponding
queue. Recall that whenever a queue is unavailable, the resulting queue remains unavailable
after appending (⊘·M = ⊘). Therefore, the rule [Γ-⊕] covers delivery to both crashed and
live roles, whereas two separate rules are used in modelling global type semantics ([GR-⊕] and
[GR- m]). We also include a standard rule [Γ-µ] for recursive types.

The key innovations are the (highlighted) rules modelling crashes and crash detection:
by rule [Γ-], a role p may crash and become stop at any time (unless it is already ended
or stopped). All of p’s receiving queues become unavailable ⊘, so that future messages to
p would be discarded. Rule [Γ-⊙] models crash detection and handling: if p is crashed and
stopped, another role q attempting to receive from p can then take its crash handling branch.
However, this rule only applies when the corresponding queue is empty: it is still possible to
receive messages sent before crashing via [Γ-&].

4.4 Alternative Modellings for Crash-Stop Failures

Before we dive into the relation between two semantics, let us have a short digression to
discuss our modelling choices and alternatives. In this work, we mostly follow the assumptions
laid out in [3], where a crash is detected at reception. However, they opt to use a synchronous
(rendez-vous) semantics, whereas we give an asynchronous (message passing) semantics,
which entails interesting scenarios that would not arise in a synchronous semantics.

Specifically, consider the case where a role p sends a message to q, and then p crashes after
sending, but before q receives the message. The situation does not arise under a synchronous
semantics, since sending and receiving actions are combined into a single transmission action.

Intuitively, there are two possibilities to handle this scenario. The questions are whether
the message sent immediately before crashing is deliverable to q, and consequentially, at
what time does q detect the crash of p.

In our semantics (Figs. 7 and 8), we opt to answer the first question in positive: we argue
that this model is more consistent with our “passive” crash detection design. For example, if
a role p never receives from another role q, then p does not need to react in the event of q’s
crash. Following a similar line of reasoning, if the message sent by p arrives in the receiving
queue of q, then q should be able to receive the message, without triggering a crash detection
(although it may be triggered later). As a consequence, we require in [Γ-⊙] that the queue
∆(p, q) be empty, to reflect the idea that crash detection should be a “last resort”.

A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou 1:15

For an alternative model, we can opt to detect the crash after crash has occurred. This is
possibly better modelled with using outgoing queues (cf. [12]), instead of incoming queues
in the semantics presented. Practically, this may be the scenario that a TCP connection is
closed (or reset) when a peer has crashed, and the content in the queue is lost. It is worth
noting that this kind of alternative model will not affect our main theoretical results: the
operational correspondence between global and local type semantics, and furthermore, global
type properties guaranteed by projection.

4.5 Relating Global Type and Configuration Semantics
We have given LTS semantics for both global types (Def. 6) and configurations (Def. 9), we
now relate these two semantics with the help of the projection operator ↾ (Def. 3).

We associate configurations Γ; ∆ with global types G (as annotated with a set of crashed
roles C) by projection, written Γ; ∆ ⊑R ⟨C; G⟩. Naturally, there are two components of the
association: (1) the local types in Γ need to correspond to the projections of the global type
G and the set of crashed roles C; and (2) the queues in ∆ corresponds to the transmissions
en route in the global type G and also the set of crashed roles C.

▶ Definition 10 (Association of Global Types and Configurations). A configuration Γ; ∆ is
associated with a (well-annotated w.r.t. R) global type ⟨C; G⟩, written Γ; ∆ ⊑R ⟨C; G⟩, iff
1. Γ can be split into disjoint (possibly empty) sub-contexts Γ = ΓG, Γ , Γend where:

(A1) ΓG contains projections of G: dom(ΓG) = roles(G), and ∀p ∈ dom(ΓG) : Γ(p) ⩽
G ↾R p;

(A2) Γ contains crashed roles: dom(Γ) = C, and ∀p ∈ dom(Γ) : Γ(p) = stop;
(A3) Γend contains only end endpoints: ∀p ∈ Γend : Γ(p) = end.

2. (A4) ∆ is associated with global type ⟨C; G⟩, given as follows:
i. Receiving queues for a role is unavailable if and only if it has crashed: ∀q : q ∈

C ⇐⇒ ∆(·, q) = ⊘;
ii. If G = end or G = µt.G′, then queues between all roles are empty (except

receiving queue for crashed roles): ∀p, q : q /∈ C =⇒ ∆(p, q) = ϵ;
iii. If G = p→q†: {mi(Bi).G′

i}i∈I , or G = p†⇝q:j {mi(Bi).G′
i}i∈I with mj = crash

(i.e. a pseudo-message is en route), then
(i) if q is live, then the queue from p to q is empty: q† ̸= q =⇒ ∆(p, q) = ϵ,

and
(ii) ∀i ∈ I : ∆ is associated with ⟨C; G′

i⟩;
iv. If G = p†⇝q:j {mi(Bi).G′

i}i∈I with mj ̸= crash, then
(i) the queue from p to q begins with the message mj(Bj): ∆(p, q) = mj(Bj)·τ ;
(ii) ∀i ∈ I : removing the message from the head of the queue, ∆[p, q 7→ τ] is

associated with ⟨C; G′
i⟩.

We write Γ ⊑R G as an abbreviation of Γ; ∆∅ ⊑R ⟨∅; G⟩. We sometimes say Γ (resp. ∆) is
associated with ⟨C; G⟩ for stating Item 1 (resp. Item 2) is satisfied.

We demonstrate the relation between the two semantics via association, by showing two
main theorems: all possible reductions of a configuration have a corresponding action in
reductions of the associated global type (Thm. 11); and the reducibility of a global type is
the same as its associated configuration (Thm. 12).

▶ Theorem 11 (Completeness of Association). Given associated global type G and configuration
Γ; ∆: Γ; ∆ ⊑R ⟨C; G⟩. If Γ; ∆ α−→ Γ′; ∆′, where α ̸= p for all p ∈ R, then there exists
⟨C′; G′⟩ such that Γ′; ∆′ ⊑R ⟨C′; G′⟩ and ⟨C; G⟩ α−→R ⟨C′; G′⟩.

ECOOP 2023

1:16 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

▶ Theorem 12 (Soundness of Association). Given associated global type G and configuration
Γ; ∆: Γ; ∆ ⊑R ⟨C; G⟩. If ⟨C; G⟩ −→R, then there exists Γ′; ∆′, α and ⟨C′; G′⟩, such that
⟨C; G⟩ α−→R ⟨C′; G′⟩, Γ′; ∆′ ⊑R ⟨C′; G′⟩, and Γ; ∆ α−→ Γ′; ∆′.

By Thms. 11 and 12, we obtain, as a corollary, that a global type G is in operational corres-
pondence with the typing context Γ = {p▷G ↾R p}p∈roles(G), which contains the projections
of all roles in G.

4.6 Properties Guaranteed by Projection
A key benefit of our top-down approach of multiparty protocol design is that desirable
properties are guaranteed by the methodology. As a consequence, processes following the
local types obtained from projections are correct by construction. In this subsection, we
focus on three properties: communication safety, deadlock-freedom, and liveness, and show
that the three properties are guaranteed from configurations associated with global types.

Communication Safety. We begin by defining communication safety for configurations
(Def. 13). We focus on two safety requirements:

(i) each role must be able to handle any message that may end up in their receiving queue
(so that there are no label mismatches); and

(ii) each receiver must be able to handle the potential crash of the sender, unless the sender
is reliable.

▶ Definition 13 (Configuration Safety). Given a fixed set of reliable roles R, we say that φ is
an R-safety property of configurations iff, whenever φ(Γ; ∆), we have:
[S-⊕&] Γ(q) = p&{mi(Bi).S′

i}i∈I and ∆(p, q) ̸= ⊘ and ∆(p, q) ̸= ϵ implies Γ; ∆ q&p:m′(B′)−−−−−−−→;
[S- &] Γ(p) = stop and Γ(q) = p&{mi(Si).S′

i}i∈I and ∆(p, q) = ϵ implies Γ; ∆ q⊙p−−→;
[S-µ] Γ(p) = µt.S implies φ(Γ[p 7→ S{µt.S/t}]; ∆);

[S-→] Γ; ∆ →R Γ′; ∆′ implies φ(Γ′; ∆′).
We say Γ; ∆ is R-safe, if φ(Γ; ∆) holds for some R-safety property φ.

We use a coinductive view of the safety property [35], where the predicate of R-safe
configurations is the largest R-safety property, by taking the union of all safety properties φ.
For a configuration Γ; ∆ to be R-safe, it has to satisfy all clauses defined in Def. 13.

By clause [S-⊕&], whenever a role q receives from another role p, and a message is present
in the queue, the receiving action must be possible for some label m′. Clause [S- &] states
that if a role q receives from a crashed role p, and there is nothing in the queue, then q must
have a crash branch, and a crash detection action can be fired. (Note that [S-⊕&] applies
when the queue is non-empty, despite the crash of sender p.) Finally, clause [S-µ] extends
the previous clauses by unfolding any recursive entries; and clause [S-→] states that any
configuration Γ′; ∆′ which Γ; ∆ transitions to must also be R-safe. By using transition →R,
we ignore crash transitions p for any reliable role p ∈ R.

▶ Example 14. Recall the local types TC, TL, and TI of the Simpler Logging example in § 2.
The configuration Γ; ∆, where Γ = C▷TC, L▷TL, I▷TI and ∆ = ∆∅, is {L, I}-safe. This can be
verified by checking its reductions. For example, in the case where C crashes immediately, we
have: Γ; ∆ C −→ Γ[C 7→ stop]; ∆[·, C 7→ ⊘] →∗ Γ[C 7→ stop][L 7→ end][I 7→ end]; ∆[·, C 7→ ⊘] and each
reductum satisfies all clauses of Def. 13.

A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou 1:17

Deadlock-Freedom. The property of deadlock-freedom, sometimes also known as progress,
describes whether a configuration can keep reducing unless it is a terminal configuration. We
give its formal definition in Def. 15.

▶ Definition 15 (Configuration Deadlock-Freedom). Given a set of reliable roles R, we say
that a configuration Γ; ∆ is R-deadlock-free iff:
1. Γ; ∆ is R-safe; and,
2. If Γ; ∆ can reduce to a configuration Γ′; ∆′ without further reductions: Γ; ∆→∗

R Γ′; ∆′ ̸→R,
then:
a. Γ′ can be split into two disjoint contexts, one with only end entries, and one with

only stop entries: Γ′ = Γ′
end, Γ′

 , where dom(Γ′
end) = {p | Γ′(p) = end} and dom

(
Γ′

)
=

{p | Γ′(p) = stop}; and,
b. ∆′ is empty for all pairs of roles, except for the receiving queues of crashed roles, which

are unavailable: ∀p, q : ∆′(·, q) = ⊘ if Γ′(q) = stop, and ∆′(p, q) = ϵ, otherwise.

It is worth noting that a (safe) configuration that reduces infinitely satisfies deadlock-
freedom, as Item 2 in the premise does not hold. Otherwise, whenever a terminal configuration
is reached, it must satisfy Item 2a that all local types in the typing context be terminated
(either successfully end, or crashed stop), and Item 2b that all queues be empty (unless
unavailable due to crash). As a consequence, a deadlock-free configuration Γ; ∆ either does
not stop reducing, or terminates in a stable configuration.

Liveness. The property of liveness describes that every pending output/external choice is
eventually triggered by means of a message transmission or crash detection. Our liveness
property is based on fairness, which guarantees that every enabled message transmission,
including crash detection, is performed successfully. We give the definitions of non-crashing,
fair, and live paths of configurations respectively in Def. 16, and use these paths to formalise
the liveness for configurations in Def. 17.

▶ Definition 16 (Non-crashing, Fair, Live Paths). A non-crashing path is a possibly infinite
sequence of configurations (Γn; ∆n)n∈N , where N = {0, 1, 2, . . .} is a set of consecutive
natural numbers, and ∀n ∈ N , Γn; ∆n → Γn+1; ∆n+1. We say that a non-crashing path
(Γn; ∆n)n∈N is fair iff, ∀n ∈ N :
(F1) Γn; ∆n

p⊕q:m(B)−−−−−−→ implies ∃k, m′, B′ such that n ≤ k ∈ N and Γk; ∆k
p⊕q:m′(B′)−−−−−−−→

Γk+1; ∆k+1;
(F2) Γn; ∆n

p&q:m(B)−−−−−−→ implies ∃k such that n ≤ k ∈ N and Γk; ∆k
p&q:m(B)−−−−−−→ Γk+1; ∆k+1;

(F3) Γn; ∆n
p⊙q−−→ implies ∃k such that n ≤ k ∈ N and Γk; ∆k

p⊙q−−→ Γk+1; ∆k+1.

We say that a non-crashing path (Γn; ∆n)n∈N is live iff, ∀n ∈ N :
(L1) ∆n(p, q) = m(B)·τ ̸= ⊘ and m ̸= crash implies ∃k such that n ≤ k ∈ N and

Γk; ∆k
q&p:m(B)−−−−−−→ Γk+1; ∆k+1;

(L2) Γn(p) = q&{mi(Bi).Ti}i∈I implies ∃k, m′, B′ such that n ≤ k ∈ N and

Γk; ∆k
p&q:m′(B′)−−−−−−−→ Γk+1; ∆k+1 or Γk; ∆k

p⊙q−−→ Γk+1; ∆k+1.

A non-crash path is a (possibly infinite) sequence of reductions of a configuration without
crashes. A non-crash path is fair if along the path, every internal choice eventually sends
a message (F1), every external choice eventually receives a message (F2), and every crash
detection is eventually performed (F3). A non-crashing path is live if along the path, every
non-crash message in the queue is eventually consumed (L1), and every hanging external
choice eventually consumes a message or performs a crash detection (L2).

ECOOP 2023

1:18 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

⊢ ϵ : ϵ
[t-ϵ]

⊢ ⊘ : ⊘
[t-⊘]

⊢ h1 : δ1 ⊢ h2 : δ2

⊢ h1 · h2 : δ1 · δ2
[t-·]

⊢ v : B δ(q) = m(B) ∀r ̸= q : δ(r) = ϵ

⊢ (q, m(v)) : δ
[t-msg]

Θ ⊢ : stop
[t-]

Θ ⊢ 0 : end
[t-0] Θ ⊢ e : B Θ ⊢ P : T

Θ ⊢ q!m⟨e⟩.P : q⊕m(B).T
[t-out]

∀i ∈ I Θ, xi : Bi ⊢ P i : T i

Θ ⊢
∑

i∈I
q?mi(xi).P i : q&{mi(Bi).T i}i∈I

[t-ext] Θ ⊢ e : bool Θ ⊢ P i : T (i = 1, 2)

Θ ⊢ if e then P 1 else P 2 : T
[t-cond]

Θ, X : T ⊢ P : T

Θ ⊢ µX.P : T
[t-rec]

Θ, X : T ⊢ X : T
[t-var]

Θ ⊢ P : T T ⩽ T ′

Θ ⊢ P : T ′ [t-sub]

Γ; ∆ ⊑R ⟨C; G⟩ ∀i ∈ I ⊢ P i : Γ(pi) ⊢ hi : ∆(−, pi) dom(Γ) ⊆ {pi | i ∈ I}
⟨C; G⟩ ⊢

∏
i∈I

(pi ◁ Pi | pi ◁ hi)
[t-sess]

Figure 9 Typing rules for queues, processes, and sessions.

▶ Definition 17 (Configuration Liveness). Given a set of reliable roles R, we say that a
configuration Γ; ∆ is R-live iff:
1. Γ; ∆ is R-safe; and,
2. Γ; ∆ →∗

R Γ′; ∆′ implies all non-crashing paths starting with Γ′; ∆′ that are fair are also
live.

A configuration Γ; ∆ is R-live when it is R-safe and any reductum of Γ; ∆ (via transition
→∗

R) consistently leads to a live path if it is fair.

Properties by Projection. We conclude by showing the guarantee of safety, deadlock-
freedom, and liveness in configurations associated with global types in Lem. 18. Furthermore,
as a corollary, Thm. 19 demonstrates that a typing context projected from a global type
(without runtime constructs) is inherently safe, deadlock-free, and live by construction.

▶ Lemma 18. If Γ; ∆ ⊑R ⟨C; G⟩, then Γ; ∆ is R-safe, R-deadlock-free, and R-live.

▶ Theorem 19 (Safety, Deadlock-Freedom, and Liveness by Projection). Let G be a global
type without runtime constructs, and R be a set of reliable roles. If Γ is a typing context
associated with the global type G: Γ ⊑R G, then Γ; ∆∅ is R-safe, R-deadlock-free, and R-live.

5 Typing System with Crash-Stop Semantics

In this section, we present a type system for our asynchronous multiparty session calculus.
Our typing system is extended from the one in [16] with crash-stop failures. We introduce
the typing rules in § 5.1, and show various properties of typed sessions: subject reduction,
session fidelity, deadlock-freedom, and liveness in § 5.2.

5.1 Typing Rules
Our type system uses three kinds of typing judgements: (1) for processes; (2) for queues; and
(3) for sessions, and is defined inductively by the typing rules in Fig. 9. Typing judgments
for processes are of form Θ ⊢ P : T , where Θ is a typing context for variables, defined as
Θ ::= ∅

∣∣ Θ, x : B
∣∣ Θ, X : T .

A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou 1:19

With regard to queues, we use judgments of the form ⊢ h : δ, where we use δ to denote
a partially applied queue lookup function. We write δ = ∆(−, p) to describe the incoming
queue for a role p, as a partially applied function δ = ∆(−, p) such that δ(q) = ∆(q, p). We
write δ1 · δ2 to denote the point-wise application of concatenation. For empty queues (ϵ),
unavailable queues (⊘), and queue concatenations (·), we simply lift the process-level queue
constructs to type-level counterparts. For a singleton message (q, m(v)), the appropriate
partial queue δ would be a singleton of m(B) (where B is the type of v) for q, and an empty
queue (ϵ) for any other role.

Finally, we use judgments of the form ⟨C; G⟩ ⊢ M for sessions. We use a global type-guided
judgment, effectively asserting that all participants in the session respect the prescribed
global type, as is the case in [15]. As highlighted, the global type with crashed roles ⟨C; G⟩
must have some associated configuration Γ; ∆, used to type the processes and the queues
respectively. Moreover, all the entries in the configuration must be present in the session.

Most rules in Fig. 9 assign the corresponding session type according to the behaviour of
the process. For example, (highlighted) rule [t-⊘] assigns the unavailable queue type ⊘ to
a unavailable queue ⊘; rules [t-out] and [t-ext] assign internal and external choice types to
input and output processes; (highlighted) rule [t-] (resp. [t-0]) assigns the crash termination
stop (resp. successful termination end) to a crashed process (resp. inactive process 0).

▶ Example 20. Consider the process that acts as the role C in our Simpler Logging example
(§ 2 and Ex. 14): PC = I!read.I?report(x).0, and a message queue hC = ϵ. Process PC has the
type TC, and queue hC has the type ϵ, which can be verified in the standard way. If we follow
a crash reduction, e.g. by the rule [r-], the session evolves as C ◁ PC | C ◁ hC →R C ◁ | C ◁ ⊘,
where, by [t-], PC is typed by stop, and hC is typed by ⊘.

5.2 Properties of Typed Sessions
We present the main properties of typed sessions: subject reduction (Thm. 21), session fidelity
(Thm. 22), deadlock-freedom (Thm. 24), and liveness (Thm. 26).

Subject reduction states that well-typedness of sessions are preserved by reduction. In
other words, a session governed by a global type continues to be governed by a global type.

▶ Theorem 21 (Subject Reduction). If ⟨C; G⟩ ⊢ M and M →R M′, then either ⟨C; G⟩ ⊢
M′, or there exists ⟨C′; G′⟩ such that ⟨C; G⟩ −→R ⟨C′; G′⟩ and ⟨C′; G′⟩ ⊢ M′.

Session fidelity states the opposite implication with regard to subject reduction: sessions
respect the progress of the governing global type.

▶ Theorem 22 (Session Fidelity). If ⟨C; G⟩ ⊢ M and ⟨C; G⟩ −→R, then there exists M′

and ⟨C′; G′⟩ such that ⟨C; G⟩ −→R ⟨C′; G′⟩, M →R
∗ M′ and ⟨C′; G′⟩ ⊢ M′.

Session deadlock-freedom means that the “successful” termination of a session may include
crashed processes and their respective unavailable incoming queues – but reliable roles (which
cannot crash) can only successfully terminate by reaching inactive processes with empty
incoming queues. We formalise the definition of deadlock-free sessions in Def. 23 and show
that a well-typed session is deadlock-free in Thm. 24.

▶ Definition 23 (Deadlock-Free Sessions). A session M is deadlock-free iff M →R
∗ M′ ↛R

implies either M′ ≡ p ◁ 0 | p ◁ ϵ, or M′ ≡ p ◁ | p ◁ ⊘.

▶ Theorem 24 (Session Deadlock-Freedom). If ⟨C; G⟩ ⊢ M, then M is deadlock-free.

ECOOP 2023

1:20 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

1 global protocol SimpleLogger(role U, reliable role L)
2 { rec t0 { choice at U { write(String) from U to L;
3 continue t0; }
4 or { read from U to L;
5 report(Log) from L to U;
6 continue t0; }
7 or { crash from U to L; } } }

Figure 10 A Simple Logger protocol in Scribble.

Finally, we show that well-typed sessions guarantee the property of liveness: a session is
live when all its input processes will be performed eventually, and all its queued messages will
be consumed eventually. We formalise the definition of live sessions in Def. 25 and conclude
by showing that a well-typed session is live in Thm. 26.

▶ Definition 25 (Live Sessions). A session M is live iff M →R
∗ M′ ≡ p ◁ P | p ◁ hp | M′′

implies:
1. if hp = (q, m(v)) · h′

p, then ∃P ′, M′′′ : M′ →R
∗ p ◁ P ′ | p ◁ h′

p | M′′′; and
2. if P =

∑
i∈I q?mi(xi).P i, then ∃k ∈ I, w, h′

p, M′′′ : M′ →R
∗ p ◁ P k{w/xk} | p ◁ h′

p | M′′′.

▶ Theorem 26 (Session Liveness). If ⟨C; G⟩ ⊢ M, then M is live.

6 Teatrino: Generating Scala Programs from Protocols

In this section, we present our toolchain Teatrino that implements our extended MPST
theory with crash-stop failures. Teatrino processes protocols represented in the Scribble
protocol description language, and generates protocol-conforming Scala code that uses the
Effpi concurrency library. A user specifies a multiparty protocol in Scribble as input,
introduced in §6.1. We show the style of our generated code in §6.2, and how a developer can
use the generated code to implement multiparty protocols. As mentioned in § 2, generating
channels for each process and type poses an interesting challenge, explained in § 6.3.

6.1 Specifying a Multiparty Protocol in Scribble
The Scribble Language [43] is a multiparty protocol description language that relates closely
to MPST theory (cf. [31]), and provides a programmatic way to express global types. As an
example, Fig. 10 describes the following global type of a simple distributed logging protocol:

G = µt0.u→l:
{

write(str).t0, read.l→u:report(Log).t0, crash.end
}

.

The global type is described by a Scribble global protocol, with roles declared on Line 1.
A transmission in the global type (e.g. u→l: {· · ·}) is in the form of an interaction statement
(e.g. ... from U to L;), except that choice (i.e. with an index set |I| > 1) must be marked
explicitly by a choice construct (Line 2). Recursions and type variables in the global types
are in the forms of rec and continue statements, respectively.

In order to express our new theory, we need two extensions to the language:
(1) a reserved label crash to mark crash handling branches (cf. the special label crash in the

theory), e.g. on Line 7; and
(2) a reliable keyword to mark the reliable roles in the protocol (cf. the reliable role set R

in the theory). Roles are assumed unreliable unless declared using the reliable keyword,
e.g. L on Line 1.

A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou 1:21

6.2 Generating Scala Code from Scribble Protocols
The Effpi Concurrency Library. [38] provides an embedded Domain Specific Language (DSL)
offering a simple actor-based API. The library utilises advanced type system features in
Scala 3, and provides both type-level and value-level constructs for processes and channels.
In particular, the type-level constructs reflect the behaviour of programs (i.e. processes), and
thus can be used as specifications. Following this intuition, we generate process types that
reflect local types from our theory, as well as a tentative process implementing that type (by
providing some default values where necessary).

Generated Code. To illustrate our approach, we continue with the Simple Logger example
from § 6.1, and show the generated code in Fig. 11. The generated code can be divided into
five sections:

(i) label and payload declarations,
(ii) recursion variable declarations,
(iii) local type declarations,
(iv) role-implementing functions, and
(v) an entry point.

Sections (i) and (ii) contain boilerplate code, where we generate type declarations for
various constructs needed for expressing local types and processes. We draw attention to the
key sections (iii) and (iv), where we generate a representation of local types for each role, as
well as a tentative process inhabiting that type.

Local Types and Effpi Types. We postpone the discussion about channels in Effpi to
§ 6.3. For now, we compare the generated Effpi type and the projected local type, and also
give a quick primer3 on Effpi constructs. The projected local types of the roles u and l are
shown as follows:

G ↾{l} u = µt0.l⊕
{

write(str).t0, read.l&report(Log).t0
}

G ↾{l} l = µt0.u&
{

write(str).t0, read.u⊕report(Log).t0, crash.end
}

The local types are recursive, and the Effpi type implements recursion with
Rec[RecT0, ...] and Loop[RecT0], using the recursion variable RecT0 declared in sec-
tion (ii).

For role u, The inner local type is a sending type towards role l, and we use an Effpi
process output type Out[A, B], which describes a process that uses a channel of type A to
send a value of type B. For each branch, we use a separate output type, and connect it to
the type of the continuation using a sequential composition operator (>>:). The different
branches are then composed together using a union type (|) from the Scala 3 type system.

Recall that the role l is declared reliable, and thus the reception labelled report from
l at u does not need to contain a crash handler. We use an Effpi process input type
In[A, B, C], which describes a process that uses a channel of type A to receive a value of
type B, and uses the received value in a continuation of type C.

For role l, the reception type is more complex for two reasons:
(1) role u is unreliable, necessitating crash handling; and
(2) the reception contains branching behaviour (cf. the reception u being a singleton), with

labels write and read.

3 A more detailed description of constructs can be found in [39].

ECOOP 2023

1:22 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

1 // (i) label and payload declarations
2 case class Log() // payload type
3 case class Read() // label types
4 case class Report(x : Log)
5 case class Write(x : String)
6 // (ii) recursion variable declarations
7 sealed abstract class RecT0[A]() extends RecVar[A]("RecT0")
8 case object RecT0 extends RecT0[Unit]
9 // (iii) local type declarations

10 type U[C0 <: OutChan[Read | Write], C1 <: InChan[Report]] =
11 Rec[RecT0,
12 ((Out[C0, Read] >>: In[C1, Report, (x0 : Report) => Loop[RecT0]])
13 | (Out[C0, Write] >>: Loop[RecT0]))]
14

15 type L[C0 <: InChan[Read | Write], C1 <: OutChan[Report]] =
16 Rec[RecT0,
17 InErr[C0, Read | Write, (x0 : Read | Write) => L0[x0.type, C1],
18 (err : Throwable) => PNil]]
19

20 type L0[X0 <: Read | Write, C1 <: OutChan[Report]] <: Process =
21 X0 match { case Read => Out[C1, Report] >>: Loop[RecT0]
22 case Write => Loop[RecT0] }
23 // (iv) role-implementing functions
24 def u(c0 : OutChan[Read | Write],
25 c1 : InChan[Report]) : U[c0.type, c1.type] = {
26 rec(RecT0) {
27 val x0 = 0
28 if (x0 == 0) {
29 send(c0, new Read()) >> receive(c1) {(x1 : Report) => loop(RecT0) }
30 } else {
31 send(c0, new Write("")) >> loop(RecT0)
32 } } }
33

34 def l(c0 : InChan[Read | Write],
35 c1 : OutChan[Report]) : L[c0.type, c1.type] =
36 rec(RecT0) {
37 receiveErr(c0)((x0 : Read | Write) => l0(x0, c1),
38 (err : Throwable) => nil) }
39

40 def l0(x : Read | Write, c1 : OutChan[Report]) : L0[x.type, c1.type] =
41 x match { case y : Read => send(c1, new Report(new Log())) >> loop(RecT0)
42 case y : Write => loop(RecT0) }
43 // (v) an entry point (main object)
44 object Main {
45 def main() : Unit = {
46 var c0 = Channel[Read | Write]()
47 var c1 = Channel[Report]()
48 eval(par(u(c0, c1), l(c0, c1)))
49 } }

Figure 11 Generated Scala code for the Simple Logger protocol in Fig. 10.

A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou 1:23

For (1), we extend Effpi with a variant of the input process type InErr[A, B, C, D],
where D is the type of continuation in case of a crash. For (2), the payload type is first
received as an union (Line 17), and then matched to select the correct continuation according
to the type (Line 21).

From Types To Implementations. Since Effpi type-level and value-level constructs are
closely related, we can easily generate the processes from the processes types. Namely, by
matching the type Out[..., ...] with the process send(..., ...); the type In[..., ...]
with the process receive(...) {... => ...}; and similarly for other constructs. Whilst
executable, the generated code represents a skeleton implementation, and the programmer is
expected to alter the code according to their requirements.

We also introduce a new crash handling receive process receiveErr, to match the
new InErr type. Process crashes are modelled by (caught) exceptions and errors in role-
implementing functions, and crash detection is achieved via timeouts. Timeouts are set by
the programmer in an (implicit) argument to each receiveErr call.

Finally, the entry point (main object) in section (v) composes the role-implementing
functions together with par construct in Effpi, and connects the processes with channels.

6.3 Generating Effpi Channels from Scribble Protocols
As previously mentioned, Effpi processes use channels to communicate, and the type of
the channel is reflected in the type of the process. However, our local types do not have any
channels; instead, they contain a partner role with which to communicate. This poses an
interesting challenge, and we explain the channel generation procedure in this section.

We draw attention to the generated code in Fig. 11 again, where we now focus on the
parameters C0 in the generated types U and L. In the type U, the channel type C0 needs to
be a subtype of OutChan[Read | Write] (Line 10), and we see the channel is used in the
output processes types, e.g. Out[C0, Read] (Line 12, note that output channels subtyping
is covariant on the payload type). Dually, in the type L, the channel type C0 needs to be a
subtype of InChan[Read | Write] (Line 15), and we see the channel is used in the input
process type, i.e. InErr[C0, Read | Write, ..., ...] (Line 17).

Similarly, a channel c0 is needed in the role-implementing functions u and l as arguments,
and the channel is used in processes send(c0, ...) and receiveErr(c0) Finally, in
the entry point, we create a bidirectional channel c0 = Channel[Read | Write]() (Line 46),
and pass it as an argument to the role-implementing functions u and l (Line 48), so that the
channel can be used to link two role-implementing processes together for communication.

Generating the channels correctly is crucial to the correctness of our approach, but
non-trivial since channels are implicit in the protocols. In order to do so, a simple approach is
to traverse each interaction in the global protocol, and assign a channel to each accordingly.

This simple approach would work for the example we show in Fig. 10; however, it would
not yield the correct result when merging occurs during projection, which we explain using
an example. For clarity and convenience, we use annotated global and local types, where
we assign an identifier for each interaction to signify the channel to use, and consider the
following global type: G = p 0−→q:

{
left.p 1−→r:left.end, right.p 2−→r:right.end

}
.

The global type describes a simple protocol, where role p selects a label left or right
to q, and q passes on the same label to r. As a result, the projection on r (assuming
all roles reliable) should be a reception from q with branches labelled left or right, i.e.
p&1,2{left.end, right.end}. Here, we notice that the interaction between q and r should
take place on a single channel, instead of two separate channels annotated 1 and 2.

ECOOP 2023

1:24 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

Table 1 Overview of All Variants for Each Example.

Name Var. R Comms. Crash Branches Max Cont. Len.
PingPong
R = {p, q}

(a) R 2 0 4
(b) ∅ 2 2 4

Adder
R = {p, q}

(c) R 5 0 6
(d) ∅ 5 5 6

TwoBuyer
R = {p, q, r}

(e) R 7 0 8
(f) {r} 18 6 12

OAuth
R = {c, a, s}

(g) R 12 0 11
(h) {s, a} 21 8 11
(i) {s} 26 13 11
(j) ∅ 30 28 11

TravelAgency
R = {c, a, s}

(k) R 8 0 6
(l) {a, s} 9 3 6

(m) {a} 9 4 6

DistLogger
R = {l, c, i}

(n) R 10 0 7
(o) {i, c} 15 2 7
(p) {i} 16 4 7

CircBreaker
R = {s, a, r}

(q) R 18 0 10
(r) {a, s} 24 3 10
(s) {a, s} 23 3 11

When merging behaviour occurs during projection, we need to use the same channel
in those interactions to achieve the correct behaviour. After traversing the global type to
annotate each interaction, we merge annotations involved in merges during projection.

7 Evaluation

We evaluate our toolchain Teatrino from two perspectives: expressivity and feasibility. For
expressivity, we use examples from session type literature, and extend them to include crash
handling behaviour using two patterns: failover and graceful failure. For feasibility, we show
that our tool generates Scala code within negligible time.

We note that we do not evaluate the performance of the generated code. The generated
code uses the Effpi concurrency library to implement protocols, and any performance
indication would depend and reflect on the performance of Effpi, instead of Teatrino.

Expressivity. We evaluate our approach with examples in session type literature: PingPong,
Adder, TwoBuyer [21], OAuth [32], TravelAgency [23], DistLogger [26], and CircBreaker [26].
Notably, the last two are inspired by real-world patterns in distributed computing.

We begin with the fully reliable version of the examples, and extend them to include
crash handling behaviour. Recall that our extended theory subsumes the original theory,
when all roles are assumed reliable. Therefore, the fully reliable versions can act both as a
sanity check, to ensure the code generation does not exclude good protocols in the original
theory, and as a baseline to compare against.

To add crash handling behaviour, we employ two patterns: failover and graceful failure.
In the former scenario, a crashed role has its functions taken over by another role, acting as a
substitute to the crashed role [3]. In the latter scenario, the protocol is terminated peacefully,
possibly involving additional messages for notification purposes. Using the example from § 2,
the fully reliable protocol in Eq. (1) is extended to one with graceful failure in Eq. (2).

A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou 1:25

(a) (b) (c) (d) (e) (k) (l) (m) (n) (g) (o) (p) (f) (q) (h) (s) (r) (i) (j)
0

0.5

1

1.5

T
im

e
(m

s)
Parsing EffpiIR CodeGen

Figure 12 Average Generation Times for All Variants in Table 1.

We show a summary of the examples in Table 1. For each example, we give the set of
all roles R and vary the set of reliable roles (R). Each variant is given an identifier (Var.),
and each example always has a fully reliable variant where R = R. We give the number of
communication interactions (Comms.), the number of crash branches added (Crash Branches),
and the length of the longest continuation (Max Cont. Len.) in the given global type.

The largest of our examples in terms of concrete interactions is OAuth, with Variant (i)
having 26 interactions and (j) having 30 interactions. This represents a 2.17× and 2.5×
increase over the size of the original protocol, and is a consequence of the confluence of two
factors: the graceful failure pattern, and low degree of branching in the protocol itself. The
TwoBuyer Variant (f) represents the greatest increase (2.57×) in interactions, a result of
implementing the failover pattern. The CircBreaker variants are also notable in that they are
large in terms of both interactions and branching degree – both affect generation times.

Feasibility. In order to demonstrate the feasibility of our tool Teatrino, we give generation
times using our prototype for all protocol variants and examples, plotted in Fig. 12. We
show that Teatrino is able to complete the code generation within milliseconds, which does
not pose any major overhead for a developer.

In addition to total generation times, we report measurements for three main constituent
phases of Teatrino: parsing, EffpiIR generation, and code generation. EffpiIR generation
projects and transforms a parsed global type into an intermediate representation, which is
then used to generate concrete Scala code.

For all variants, the code generation phase is the most expensive phase. This is likely
a consequence of traversing the given EffpiIR representation of a protocol twice – once for
local type declarations and once for role-implementing functions.

8 Related Work

We summarise related work on both theory and implementations of session types with failure
handling, as well as other MPST implementations targeting Scala without failures.

We first discuss closest related work [3, 27, 33, 42], where multiparty session types are
extended to model crashes or failures. Both [33] and [27] are exclusively theoretical.

[33] proposes an MPST framework to model fine-grained unreliability: each transmission
in a global type is parameterised by a reliability annotation, which can be one of unreliable
(sender/receiver can crash, and messages can be lost), weakly reliable (sender/receiver can
crash, messages are not lost), or reliable (no crashes or message losses). [42] utilises MPST as
a guidance for fault-tolerant distributed system with recovery mechanisms. Their framework
includes various features, such as sub-sessions, event-driven programming, dynamic role
assignments, and, most importantly, failure handling. [3] develops a theory of multiparty

ECOOP 2023

1:26 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

session types with crash-stop failures: they model crash-stop failures in the semantics of
processes and session types, where the type system uses a model checker to validate type
safety. [27] follow a similar framework to [3]: they model an asynchronous semantics, and
support more patterns of failure, including message losses, delays, reordering, as well as link
failures and network partitioning. However, their typing system suffers from its genericity,
when type-level properties become undecidable [27, §4.4].

Other session type works on modelling failures can be briefly categorised into two: using
affine types or exceptions [14,26,29], and using coordinators or supervision [1,41]. The former
adapts session types to an affine representation, in which endpoints may cease prematurely;
the latter, instead, are usually reliant on one or more reliable processes that coordinate in
the event of failure. The works [1, 29,41] are limited to theory.

[29] first proposes the affine approach to failure handling. Their extension is primarily
comprised of a cancel operator, which is semantically similar to our crash construct: it repres-
ents a process that has terminated early. [14] presents a concurrent λ-calculus based on [29],
with asynchronous session-typed communication and exception handling, and implements
their approach as parts of the Links language. [26] proposes a framework of affine multiparty
session types, and provides an implementation of affine MPST in the Rust programming
language. They utilise the affine type system and Result types of Rust, so that the type
system enforces that failures are handled.

Coordinator model approaches [1, 41] often incorporate interrupt blocks (or similar con-
structs) to model crashes and failure handling. [1] extends the standard MPST syntax with
optional blocks, representing regions of a protocol that are susceptible to communication fail-
ures. In their approach, if a process P expects a value from an optional block which fails, then
a default value is provided to P , so P can continue running. This ensures termination and
deadlock-freedom. Although this approach does not feature an explicit reliable coordinator
process, we describe it here due to the inherent coordination required for multiple processes
to start and end an optional block. [41] similarly extends the standard global type syntax
with a try-handle construct, which is facilitated by the presence of a reliable coordinator
process, and via a construct to specify reliable processes. When the coordinator detects a
failure, it broadcasts notifications to all remaining live processes; then, the protocol proceeds
according to the failure handling continuation specified as part of the try-handle construct.

Other related MPST implementations include [9, 17, 18]. [18] designs a framework for
MPST-guided, safe actor programming. Whilst the MPST protocol does not include any
failure handling, the actors may fail or raise exceptions, which are handled in a similar way to
what we summarise as the affine technique. [9] revisits API generation techniques in Scala
for MPST. In addition to the traditional local type/automata-based code generation [22, 36],
they propose a new technique based on sets of pomsets, utilising Scala 3 match types [4].
[17] presents Choral, a programming language for choreographies (multiparty protocols).
Choral supports the handling of local exceptions in choreographies, which can be used to
program reliable channels over unreliable networks, supervision mechanisms, etc. for fallible
communication. They utilise automatic retries to implement channel APIs.

9 Conclusion and Future Work

To overcome the challenge of accounting for failure handling in distributed systems using
session types, we propose Teatrino, a code generation toolchain. It is built on asynchronous
MPST with crash-stop semantics, enabling the implementation of multiparty protocols that
are resilient to failures. Desirable global type properties such as deadlock-freedom, protocol

A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou 1:27

conformance, and liveness are preserved by construction in typed processes, even in the
presence of crashes. Our toolchain Teatrino, extends Scribble and Effpi to support
crash detection and handling, providing developers with a lightweight way to leverage our
theory. The evaluation of Teatrino demonstrates that it can generate Scala code with
minimal overhead, which is made possible by the guarantees provided by our theory.

This work is a new step towards modelling and handling real-world failures using session
types, bridging the gap between their theory and applications. As future work, we plan to
studys different crash models (e.g. crash-recover) and failures of other components (e.g. link
failures). These further steps will contribute to our long-term objective of modelling and
type-checking well-known consensus algorithms used in large-scale distributed systems.

References
1 Manuel Adameit, Kirstin Peters, and Uwe Nestmann. Session types for link failures. In

Ahmed Bouajjani and Alexandra Silva, editors, Formal Techniques for Distributed Objects,
Components, and Systems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Held
as Part of the 12th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2017, Neuchâtel, Switzerland, June 19-22, 2017, Proceedings, volume 10321 of Lecture
Notes in Computer Science, pages 1–16. Springer, 2017. doi:10.1007/978-3-319-60225-7_1.

2 Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou. Designing Asynchronous
Multiparty Protocols with Crash-Stop Failures, 2023. arXiv:2305.06238.

3 Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhou. Generalised Multiparty
Session Types with Crash-Stop Failures. In Bartek Klin, Sławomir Lasota, and Anca Muscholl,
editors, 33rd International Conference on Concurrency Theory (CONCUR 2022), volume
243 of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1–35:25, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
CONCUR.2022.35.

4 Olivier Blanvillain, Jonathan Immanuel Brachthäuser, Maxime Kjaer, and Martin Odersky.
Type-level programming with match types. Proc. ACM Program. Lang., 6(POPL):1–24, 2022.
doi:10.1145/3498698.

5 Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P.
de Vink, Wieger Wesselink, Anton Wijs, and Tim A. C. Willemse. The mCRL2 Toolset
for Analysing Concurrent Systems. In Tomáš Vojnar and Lijun Zhang, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 21–39, Cham, 2019. Springer
International Publishing.

6 Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.). Springer, 2011. doi:10.1007/978-3-642-15260-3.

7 David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida.
Distributed programming using role-parametric session types in go: statically-typed endpoint
APIs for dynamically-instantiated communication structures. Proc. ACM Program. Lang.,
3(POPL):29:1–29:30, 2019. doi:10.1145/3290342.

8 Tushar Deepak Chandra and Sam Toueg. Unreliable Failure Detectors for Reliable Distributed
Systems. J. ACM, 43(2):225–267, March 1996. doi:10.1145/226643.226647.

9 Guillermina Cledou, Luc Edixhoven, Sung-Shik Jongmans, and José Proença. API Generation
for Multiparty Session Types, Revisited and Revised Using Scala 3. In Karim Ali and
Jan Vitek, editors, 36th European Conference on Object-Oriented Programming (ECOOP
2022), volume 222 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1–
27:28, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL:
https://drops.dagstuhl.de/opus/volltexte/2022/16255.

10 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-Free Asynchronous Message
Reordering in Rust with Multiparty Session Types. In 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, volume abs/2112.12693 of PPoPP ’22, pages
261–246. ACM, 2022. doi:10.1145/3503221.3508404.

ECOOP 2023

https://doi.org/10.1007/978-3-319-60225-7_1
https://arxiv.org/abs/2305.06238
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.1145/3498698
https://doi.org/10.1007/978-3-642-15260-3
https://doi.org/10.1145/3290342
https://doi.org/10.1145/226643.226647
https://drops.dagstuhl.de/opus/volltexte/2022/16255
https://doi.org/10.1145/3503221.3508404

1:28 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

11 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty ses-
sion types and Python. Formal Methods Syst. Des., 46(3):197–225, 2015. doi:10.1007/
s10703-014-0218-8.

12 Romain Demangeon and Nobuko Yoshida. On the Expressiveness of Multiparty Sessions. In
Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2015), volume 45 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 560–574, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.FSTTCS.2015.560.

13 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Compatibility in Communicating
Automata: Characterisation and Synthesis of Global Session Types. In 40th International
Colloquium on Automata, Languages and Programming, volume 7966 of LNCS, pages 174–186,
Berlin, Heidelberg, 2013. Springer. doi:10.1007/978-3-642-39212-2_18.

14 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional Asynchronous
Session Types: Session Types without Tiers. Proc. ACM Program. Lang., 3(POPL):28:1–28:29,
2019. doi:10.1145/3290341.

15 Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida.
Precise subtyping for synchronous multiparty sessions. J. Log. Algebraic Methods Program.,
104:127–173, 2019. doi:10.1016/j.jlamp.2018.12.002.

16 Silvia Ghilezan, Jovanka Pantović, Ivan Prokić, Alceste Scalas, and Nobuko Yoshida. Precise
Subtyping for Asynchronous Multiparty Sessions. Proc. ACM Program. Lang., 5(POPL),
January 2021. doi:10.1145/3434297.

17 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Choreographies as objects. CoRR,
abs/2005.09520, 2020. arXiv:2005.09520.

18 Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty Session Types
for Safe Runtime Adaptation in an Actor Language. In Anders Møller and Manu Sridharan,
editors, 35th European Conference on Object-Oriented Programming (ECOOP 2021), volume
194 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:30, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
ECOOP.2021.10.

19 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type discipline
for structured communication-based programming. In Chris Hankin, editor, Programming
Languages and Systems, pages 122–138, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.
doi:10.1007/BFb0053567.

20 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
In 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 273–284. ACM, 2008. doi:10.1145/1328897.1328472.

21 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
Journal of the ACM, 63:1–67, 2016. doi:10.1145/2827695.

22 Raymond Hu and Nobuko Yoshida. Hybrid Session Verification through Endpoint API
Generation. In 19th International Conference on Fundamental Approaches to Software
Engineering, volume 9633 of LNCS, pages 401–418, Berlin, Heidelberg, 2016. Springer.
doi:10.1007/978-3-662-49665-7_24.

23 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming
in Java. In Jan Vitek, editor, ECOOP 2008 – Object-Oriented Programming, 22nd European
Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings, volume 5142 of Lecture Notes in
Computer Science, pages 516–541. Springer, 2008. doi:10.1007/978-3-540-70592-5_22.

24 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols
with mungo and stmungo. In James Cheney and Germán Vidal, editors, Proceedings of the 18th
International Symposium on Principles and Practice of Declarative Programming, Edinburgh,
United Kingdom, September 5-7, 2016, pages 146–159. ACM, 2016. doi:10.1145/2967973.
2968595.

https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.560
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1145/3290341
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1145/3434297
https://arxiv.org/abs/2005.09520
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2967973.2968595

A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou 1:29

25 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Implementing Multiparty
Session Types in Rust. In Simon Bliudze and Laura Bocchi, editors, Coordination Models and
Languages – 22nd IFIP WG 6.1 International Conference, COORDINATION 2020, Held as
Part of the 15th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2020, Valletta, Malta, June 15-19, 2020, Proceedings, volume 12134 of Lecture Notes
in Computer Science, pages 127–136. Springer, 2020. doi:10.1007/978-3-030-50029-0_8.

26 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe Under Panic: Affine
Rust Programming with Multiparty Session Types. In Karim Ali and Jan Vitek, editors,
36th European Conference on Object-Oriented Programming (ECOOP 2022), volume 222 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:29, Dagstuhl, Germany,
2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.
de/opus/volltexte/2022/16232.

27 Matthew Alan Le Brun and Ornela Dardha. MAGπ: Types for Failure-Prone Communication.
In Thomas Wies, editor, Programming Languages and Systems, pages 363–391, Cham, 2023.
Springer Nature Switzerland. doi:10.1007/978-3-031-30044-8_14.

28 Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. Communication-Safe Web
Programming in TypeScript with Routed Multiparty Session Types. In International Confer-
ence on Compiler Construction, CC, pages 94–106, 2021. doi:10.1145/3446804.3446854.

29 Dimitris Mostrous and Vasco T. Vasconcelos. Affine Sessions. Logical Methods in Computer
Science, Volume 14, Issue 4, November 2018. doi:10.23638/LMCS-14(4:14)2018.

30 Rumyana Neykova and Nobuko Yoshida. Multiparty Session Actors. Logical Methods in
Computer Science, 13:1–30, 2017. doi:10.23638/LMCS-13(1:17)2017.

31 Rumyana Neykova and Nobuko Yoshida. Featherweight Scribble, pages 236–259. Springer
International Publishing, Cham, 2019. doi:10.1007/978-3-030-21485-2_14.

32 Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. SPY: Local Verification of Global
Protocols. In Axel Legay and Saddek Bensalem, editors, Runtime Verification, pages 358–363,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:10.1007/978-3-642-40787-1_25.

33 Kirstin Peters, Uwe Nestmann, and Christoph Wagner. Fault-tolerant multiparty session
types. In Mohammad Reza Mousavi and Anna Philippou, editors, Formal Techniques for Dis-
tributed Objects, Components, and Systems, pages 93–113, Cham, 2022. Springer International
Publishing. doi:10.1007/978-3-031-08679-3_7.

34 Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.
35 Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,

2011. doi:10.1017/CBO9780511777110.
36 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A Linear Decomposition

of Multiparty Sessions for Safe Distributed Programming. In Peter Müller, editor, 31st
European Conference on Object-Oriented Programming (ECOOP 2017), volume 74 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 24:1–24:31, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECOOP.2017.24.

37 Alceste Scalas and Nobuko Yoshida. Less is More: Multiparty Session Types Revisited. Proc.
ACM Program. Lang., 3(POPL):30:1–30:29, January 2019. doi:10.1145/3290343.

38 Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Verifying Message-Passing Programs with
Dependent Behavioural Types. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2019, pages 502–516, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3314221.3322484.

39 Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Effpi: verified message-passing programs in
Dotty. In Jonathan Immanuel Brachthäuser, Sukyoung Ryu, and Nathaniel Nystrom, editors,
Proceedings of the Tenth ACM SIGPLAN Symposium on Scala, Scala@ECOOP 2019, London,
UK, July 17, 2019, pages 27–31. ACM, 2019. doi:10.1145/3337932.3338812.

40 Rob van Glabbeek, Peter Höfner, and Ross Horne. Assuming Just Enough Fairness to make
Session Types Complete for Lock-freedom. In 36th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2021, Rome, Italy, June 29 – July 2, 2021, pages 1–13. IEEE,
2021. doi:10.1109/LICS52264.2021.9470531.

ECOOP 2023

https://doi.org/10.1007/978-3-030-50029-0_8
https://drops.dagstuhl.de/opus/volltexte/2022/16232
https://drops.dagstuhl.de/opus/volltexte/2022/16232
https://doi.org/10.1007/978-3-031-30044-8_14
https://doi.org/10.1145/3446804.3446854
https://doi.org/10.23638/LMCS-14(4:14)2018
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.1007/978-3-030-21485-2_14
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1007/978-3-031-08679-3_7
https://doi.org/10.1017/CBO9780511777110
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3337932.3338812
https://doi.org/10.1109/LICS52264.2021.9470531

1:30 Designing Asynchronous Multiparty Protocols with Crash-Stop Failures

41 Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu, and Lukasz Ziarek. A Typing
Discipline for Statically Verified Crash Failure Handling in Distributed Systems. In Amal
Ahmed, editor, Programming Languages and Systems, pages 799–826, Cham, 2018. Springer
International Publishing. doi:10.1007/978-3-319-89884-1_28.

42 Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. A Multiparty Session
Typing Discipline for Fault-Tolerant Event-Driven Distributed Programming. Proc. ACM
Program. Lang., 5(OOPSLA), October 2021. doi:10.1145/3485501.

43 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In 8th International Symposium on Trustworthy Global Computing – Volume
8358, TGC 2013, pages 22–41, Berlin, Heidelberg, 2014. Springer-Verlag. doi:10.1007/
978-3-319-05119-2_3.

https://doi.org/10.1007/978-3-319-89884-1_28
https://doi.org/10.1145/3485501
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1007/978-3-319-05119-2_3

Nested Pure Operation-Based CRDTs
Jim Bauwens #

Software Languages Lab, Vrije Universiteit Brussel, Belgium

Elisa Gonzalez Boix #

Software Languages Lab, Vrije Universiteit Brussel, Belgium

Abstract
Modern distributed applications increasingly replicate data to guarantee high availability and optimal
user experience. Conflict-free Replicated Data Types (CRDTs) are a family of data types specially
designed for highly available systems that guarantee some form of eventual consistency. Designing
CRDTs is very difficult because it requires devising designs that guarantee convergence in the
presence of conflicting operations. Even though design patterns and structured frameworks have
emerged to aid developers with this problem, they mostly focus on statically structured data; nesting
and dynamically changing the structure of a CRDT remains to be an open issue.

This paper explores support for nested CRDTs in a structured and systematic way. To this end,
we define an approach for building nested CRDTs based on the work of pure operation-based CRDTs,
resulting in nested pure operation-based CRDTs. We add constructs to control the nesting of CRDTs
into a pure operation-based CRDT framework and show how several well-known CRDT designs can
be defined in our framework. We provide an implementation of nested pure operation-based CRDTs
as an extension to the Flec, an existing TypeScript-based framework for pure operation-based
CRDTs. We validate our approach, 1) by implementing a portfolio of nested data structures, 2)
by implementing and verifying our approach in the VeriFx language, and 3) by implementing a
real-world application scenario and comparing its network usage against an implementation in the
closest related work, Automerge. We show that the framework is general enough to nest well-known
CRDT designs like maps and lists, and its performance in terms of network traffic is comparable to
the state of the art.

2012 ACM Subject Classification Software and its engineering → Consistency; Computer systems
organization → Distributed architectures; Software and its engineering → Synchronization; Software
and its engineering → Middleware; Software and its engineering → Reflective middleware

Keywords and phrases CRDTs, replication, pure operation-based CRDTs, composition, nesting

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.2

Supplementary Material Software (Source Code): https://gitlab.soft.vub.ac.be/jimbauwens/
flec

Funding Jim Bauwens: Fonds Wetenschappelijk Onderzoek - Vlaanderen: FWOSB90

1 Introduction

To ease the development of geo-distributed applications, much research has studied the
concept of replicated data types (RDTs). An RDT exposes to programmers an interface akin
to that of a sequential data type while incorporating mechanisms to keep data consistent
across replicas [9, 22, 14]. Conflict-Free Replicated Data Types [22, 21, 19] (CRDTs) are
the most well-known family of replicated data types. CRDTs guarantee strong eventual
consistency (SEC) [22] that adds to eventual consistency the guarantee of state convergence,
i.e. if two replicas of the data type have received the same updates, they will be in the same
state. This implies that replicas converge without synchronisation or conflicts because they
reach the same state as soon as they have observed the same operations.

© Jim Bauwens and Elisa Gonzalez Boix;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 2; pp. 2:1–2:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jim.bauwens@vub.be
mailto:egonzale@vub.be
https://doi.org/10.4230/LIPIcs.ECOOP.2023.2
https://gitlab.soft.vub.ac.be/jimbauwens/flec
https://gitlab.soft.vub.ac.be/jimbauwens/flec
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Nested Pure Operation-Based CRDTs

Designing new RDTs that guarantee convergence is a complex task. Only for data types
for which all operations commute (e.g., counters), one can easily construct a CRDT (since
regardless of the ordering in which operations are applied, the resulting state will be equival-
ent). A common approach to designing CRDTs is to use causal ordering for non-concurrent
operations and handle conflicts between non-commutative concurrent operations [19, 13, 3].
Many current designs handle those conflicts in an ad-hoc way crafted for each data type,
often relying on specific meta-data to track causality and relations. For example, some
CRDT designs (e.g., OR-Set) use tombstones to ensure that removal operations commute [22].
However, for many CRDT types, this meta-data grows unboundedly. Moreover, it is very
difficult to modify existing designs (e.g., add operations to the data type, or modify the
design to work with different networking assumptions). Pure operation-based CRDTs [3] aim
to solve those issues and propose an approach for building operation-based CRDTs based on
a Partial Ordered Log (PO-Log) of operations. The approach exposes causal information
from the underlying communication middleware which can be used to enable the removal of
redundant meta-data. While pure operation-based CRDTs provide a structured framework
to build CRDTs, it is designed to build CRDTs for flat data structures.

In this work, we focus on the issues raised by composing CRDTs, e.g., when CRDTs
are nested or more than one CRDT is combined into a new one. Composing CRDTs is
non-trivial, as the convergence property of a CRDT design is made to hold for a single CRDT
but does not necessarily hold when several CRDTs are composed into a new one. Recent
work has explored what concurrency semantics can be utilised for composing designs [19]
and several specific implementations exist [15, 16, 18]. Existing approaches, however, mainly
follow a state-based design, in which any information on applied operations is lost during the
merging process. This may result in non-sensible designs for nested CRDTs and hampers
the development of CRDTs where the operation history needs to be used to improve the
merging algorithm. For example, recent work [25] explores the design of a distributed file
system CRDT that uses nested structures for storing filesystem metadata. They argue
that to properly support authentication primitives, all semantically related authentication
information needs to be combined and considered in the merging semantics.

Operation-based techniques, on the other hand, are better suited for replicating nested
data structures as information on applied operations can be used to determine the optimal
ordering for concurrent operations. In the context of nested structures, this means that
it is less complex to relate different operations or even separate them when deciding what
nested semantics for non-commutative concurrent operations are needed. To the best of
our knowledge, no uniform (structured) approach exists for designing and implementing
nested CRDTs, where CRDT designers can easily coordinate the interaction between nested
structures, as part of the concurrency semantics of the replicated structure. In this paper,
we introduce a general approach to nesting and composing pure operation-based CRDTs
and propose a framework for implementing pure operation-based nested CRDTs. For this,
we extend the pure operation-based CRDT framework [3] with support for nested CRDT
structures. We implement our approach by extending an existing pure operation-based
CRDT framework written in TypeScript called Flec [5], where we develop a portfolio of
nested data structures. We demonstrate the correctness of our approach using a VeriFx
implementation where we verify that the structures always remain strong eventually consistent.
Finally, we implement a distributed file system based on Vanakieva et al. [25] to assess the
performance of our approach in comparison to a state-of-the-art JSON CRDT implementation,
Automerge [15].

J. Bauwens and E. Gonzalez Boix 2:3

To summarise, we introduce the following contributions:
A general approach for the design and implementation of nested CRDTs, building on the
work of pure operation-based CRDTs.
A full-fledged TypeScript implementation of our approach which includes a portfolio of
existing and novel pure operation-based CRDTs.
A validation of the correctness of our nested pure operation-based framework and a
portfolio of CRDTs built on this framework.
A performance evaluation showing that our approach has reduced network usage when
compared to Automerge [15].

2 Background

In this section, we provide the necessary background to understand the contributions of
this work. Baquero et al. [2] introduced the pure operation-based framework for designing
CRDTs in a structured way while avoiding performance issues related to the unbound
growth of meta-data. They build on the idea of relying on Reliable Causal Broadcast [8]
(RCB) middleware to ensure causal ordering for non-concurrent operations (along with
reliable delivery) [22, 2]. Instead of manually encoding causality information as meta-data to
operations, the framework exposes causality information stored within the RCB middleware
to CRDT implementors. More concretely, the framework employs a partially ordered log
of operations (PO-Log) constructed with the causality information of the underlying RCB
middleware. The state of the data structure can be computed by observing this log, and the
log can be compacted to ensure that memory does not grow unboundedly. Figure 1 shows
an example of a PO-Log of an Add-Wins (AW-Set) set replica (in a system of three replicas).
It contains four add operations, which form the state {A,B,C}, depicted in grey. Three of
these operations include causality information from the underlying RCB middleware, i.e.
they carry a vector clock.

Algorithm 1 shows the distributed algorithm describing the interaction between the RCB
middleware and the pure operation-based CRDT framework. Each replica contains has a
particular state (si for replica i), representing its PO-Log. The operation(o) method is called
by client applications (e.g. by a CRDT implementation using the pure operation-based
framework) when an operation o should be applied. It ensures that operations are broadcasted
to other replicas and annotated with a logical timestamp on delivery (t in the algorithm
description). It does this by invoking the broadcast method from the RCB layer, which
broadcasts the operation with the associated timestamp meta-data to all other replicas. On
delivery of these operations (and after all causal dependencies are met), the RCB layer will
invoke the deliver(t, o) method from the pure operation-based framework, where the log (si)
will be modified if needed.

add(A)

<0,1,1> add(B)

<1,0,1> add(B)

<1,2,1> add(C)

{ A, B, C }

Figure 1 The internal state of an AW-Set. One operation is causally stable, and as such does not
contain a timestamp. Together, the operations form the state {A,B,C}.

ECOOP 2023

2:4 Nested Pure Operation-Based CRDTs

The framework introduces the concept of causal redundancy to keep the log compact.
The idea is that a particular operation may make existing operations in the log redundant, or
that the arriving operation may be redundant itself. Rules for this can be defined by using
two binary redundancy relations, R and R_. R_ defines whether an arriving operation
makes existing entries in the log redundant, and R defines if a newly arriving operation
should be stored in the log. The definitions for these relations need to be provided by the
concrete CRDT implementation. The framework can also determine when operations are
causally stable, i.e., they have been observed on all replicas, and trim causal information
for their log entries. Since new operations can never be concurrent with causally stable
operations, their causal meta-data (such as timestamps) is thus no longer needed. The RCB
layer can determine causal stability by comparing the vector clocks of incoming messages
and decide whether a particular timestamp must have been observed by all nodes. Whenever
a particular timestamp is causally stable, the stable function will be invoked by the RCB
layer, and the framework will compact stable operations that are returned by the stabilize
function. It does this by replacing (removing) the associated timestamp with the bottom
(null) element. This can also be seen in Figure 1, where the add(A) operation has been
stripped from causality information. Similarly to the redundancy relations, the stabilize
function has to be provided by any CRDT implementation built on the framework.

Algorithm 1 (Simplified) distributed algorithm for a replica i showing the interaction
between the RCB middleware and the pure op-based CRDT framework.

state: si := ∅
on operationi(o) :

broadcasti(o)
on deliveri(t, o) :

si := (si \ {(t′, o′) | (t′, o′) ∈ si · (t′, o′) R_ (t, o)}) ∪ {(t, o) | (t, o)��R si}
on stablei(t) :

stabilizei(t, si)[(⊥, o)/(t, o)]

Table 1 shows the implementation for an AW-Set CRDT in the pure operation-based
framework. The table is grouped as follows: (1) functions that are used by the framework
and that dictate the interaction between new operations and entries in the log, and (2)
procedures that can be invoked by the user for state serialisation or mutations.

The R relation for the add-wins set defines that the clear and remove operations will
never be stored in the log. R_, on the other hand, defines that an arriving operation o

will make any stored operations (in the log) redundant if and only if the stored operation
o′ causally happened before the arriving operation (i.e t′ < t) and the arriving operation is
acting on the same set element, or the arriving operation is a clear (i.e., which removes
all happened-before elements). For example, a remove(X) will make a previous add(X)
redundant; and a clear operation will remove all previous log entries. The combination of
both rules ensures that add operations will always ’win’ from concurrent operations. The
implementation of stabilize defines that all causally stable operations will be stripped
from their timestamps (to preserve memory consumption). Additionally, the log will only
contain distinct add operations at any point in time. To query the state, a map function can
extract each element from these operations (as shown in the toList function) and serialise
it into an actual set data structure.

Figure 2 illustrates the internal state and the PO-Log of the AW-Set depicted in Figure 1
after receiving a remove(B) operation (depicted in the a. box) and after the operation has
been applied (depicted in the b. box). Initially, the log consists of an operation which is

J. Bauwens and E. Gonzalez Boix 2:5

Table 1 Semantics for the add-wins pure-op set, based on the approach in [3].

(t, o) R s = op(o) = (clear ∨ remove)
(t′, o′) R_ (t, o) = t′ < t ∧ (op(o) = clear ∨ arg(o) = arg(o′))Pu

re

stabilize(t, s) = s

toList(s) = {v | (_, [op=add,arg=v]) ∈ s}
add(e) = operation([op=add, arg=e])

U
se

r

remove(e) = operation([op=remove, arg=e])

add(A)

<0,1,1> add(B)

<1,0,1> add(B)

<1,2,1> add(C)

R_
R_

<2,2,1> rem(B) R

add(A)

<1,2,1> add(C)

{ A, C }=> rem(B)

a. b.

Figure 2 The internal states of an AW-Set, after receiving a remove (rem) operation, and after
the operation has been applied.

causally stable (the add(a)), and three other operations which are not yet stable. Looking at
the vector clocks, we can observe that the log has two concurrent operations, both of which
add element B. When the arriving remove(B) is checked against these stored operations, both
previous add(B) operations will be marked as redundant by the R_ relation (as the operations
have the same key, and are causal predecessors). Additionally, the arriving operation itself is
immediately marked as redundant by the R relation of the AW-Set semantics (all remove
and clear operations are immediately redundant) and as such, it will not be added to the
log. The box denoted by b. shows the final result of applying remove(B): no entries for
adding element B remain, and the removal operation itself was not added to the log. Thus,
the replica state becomes {A, C}.

3 Nesting Pure Operation-Based CRDTs

Currently, it is not possible to reason about nested structures within the pure operation-based
CRDT framework. Redundancy relations only work on a flat level, and any logic to traverse
hierarchical/nested structures would have to be manually bolted on top of the framework in
an ad-hoc way.

As there is no native support for this functionality, nested designs built with the current
framework require developers to store nested operations in a flattened form in the main log.
To evaluate and apply the contents of the log, developers would need to either fully combine
the logic of the nested and main top-level CRDT or encode the nested CRDT semantics
in the query functions. In the former case, the redundancy relations and query functions
would have to manage all concurrency rules for all needed nested strategies. This greatly
complicates the design of such structures and makes them more prone to errors. In the latter
case, only the query functions would need to be touched, but they would have to implement
all redundancy logic from scratch. A programmer could delegate operations to separate
components for the nested CRDTs, but in the end, this implies a reimplementation of the
delivery of operations in the query function logic while this should be kept in the framework.

ECOOP 2023

2:6 Nested Pure Operation-Based CRDTs

In this work, we propose a novel nested pure operation-based CRDT framework that
enables the systematic construction of nested data structures building on the ideas of Baquero
et al [2]. We explore a framework that allows developers to combine and nest existing pure
operation-based CRDTs and provides constructs for the development of novel CRDTs. In
particular, we focus on designs where nested structures can dynamically change at runtime,
i.e., data structures that grow and shrink during the lifetime of an application, such as maps
and lists, where values can be CRDTs. Our approach offers developers novel framework
constructs to define the relationship between parent and child CRDT. The framework then
handles all replication aspects regarding the delivery of operations in the data-structure
hierarchy, ensuring that causal ordering is respected and that nested children are recursively
reset when needed. In the following section, we will focus on the CRDT framework level and
detail our extensions to pure operation-based CRDTs to support nesting.

3.1 Extending the Pure Operation-Based Framework
In this work, we model a nested data structure as a nested hierarchy where children can be
identified by a particular key and deeply nested children by an absolute path (list of keys)
relative to the topmost data structure (the root CRDT). To support nested data structures,
we introduce three extensions to the pure operation-based framework:

An internal data structure to keep track of nested CRDTs (i.e., the children of a CRDT).
An update propagation mechanism for nested CRDTs that delivers the applied operations
ensuring that the concurrency semantics of parent data structures are upheld.
A reset mechanism for nested CRDT operations that ensures that the concurrency
semantics of children’s data structures are upheld.

Each of these extensions is essential to ensure the correctness of replicated data types. In
the following sections, we elaborate on them and motivate why they are needed.

3.1.1 Keeping Track of Nested Data Structures
Objects or data structures that have nested children typically refer to children by some key.
Our approach assumes that children have a unique identifier by which they can be accessed
(i.e., queried and updated). As nested children can also contain other nested elements, an
absolute path can be constructed to identify a particular nested data structure, starting from
the root (top-most) data structure.

At the implementation level, a CRDT developer can decide in what manner key lookup
works by providing an implementation of a particular handler function (getChild) that is
used for lookup. The framework then provides a mechanism that allows absolute paths on a
replicated structure to identify nested data structures that need to be queried or updated.

3.1.2 Updating Individual Nested CRDTs
When an operation needs to be applied to a nested child, the concurrency semantics of
parent data structures must be upheld. Operations cannot just be immediately applied to
the nested structure alone, as concurrent operations can be applied to the parent node which
affects the key which points to the nested structure. For example, with a hash map, an entry
could be concurrently updated, while it is being removed.

In our approach, when an update is applied to a particular child element, we will first issue
special update operations to every parent node. These update operations signal the parent
CRDTs that a nested operation is going to be applied and that it should be compared to

J. Bauwens and E. Gonzalez Boix 2:7

existing log entries using redundancy relations. For example, when building an update-wins
replicated hash map, it is important to ensure that update operations win over remove
operations (on the same key). At times, the update operation itself may be immediately
redundant, and as such, there is no need to propagate the operation further to a nested child.

upd(A,)

<0,1,1> upd(B,)

<1,0,1> upd(B,)

<2,0,1> upd(C,)

[A: , B: , C:]

<1,0,1> set(Hello)

<0,1,1> set(Hi!)

{ Hello, Hi! }

upd(A,)

<0,1,1> upd(B,)

<1,0,1> upd(B,)

<2,0,1> upd(C,)

[A: , B: , C:]

<1,0,1> set(Hello)

<0,1,1> set(Hi!)

{ Hello, Hi! }

<0,2,1> upd(B,) <0,2,1> set(Hey)

=> upd(B, set(Hey))

R_
R_

upd(A,)

<1,0,1> upd(B,)

<2,0,1> upd(C,)

[A: , B: , C:]

<1,0,1> set(Hello)

{ Hello, Hey }

<0,2,1> upd(B,)

<0,2,1> set(Hey)

Update-Wins Map Multi-Value Register
1. 2.

3.

Figure 3 Three stages of the internal state of a hash-map with update-wins semantics containing
nested Multi-Value registers: 1) initial state, 2) arrival of an update (upd) operation, and 3) final
state after applying the operation.

To illustrate how an update is applied in our approach, consider Figure 3 showing a hash
map with update-wins semantics containing nested Multi-Value registers in three different
stages. A Multi-Value register (MV-Register) [22] is a replicated register that, when faced
with concurrent updates, will store all concurrent values. Updates that (causally) follow
will replace previous values. This is in contrast to other replicated registers, for example,
the Last-Writer-Wins (LWW) CRDT register [22] that always keeps a single value. When
faced with concurrent updates, an LWW-Register will use an arbitrary method for picking
a single update (such as picking the update from the replica with the highest network id).
The first box (denoted by 1) shows the internal state and the PO-Log for the hash map and
the register associated with the key ’B’. As explained, every update applied to the nested
register has an associated update in the parent log. In this case, two concurrent updates
were applied to the nested register, resulting in the state {Hello, Hi!}.

The second box shows the state when an update(B, set(Hey)) is applied to the hash
map. This update has a timestamp (<0,2,1>) which is concurrent with some operations
(<2,0,1>, <1, 0, 1>), but causally follows others (<0, 1, 1>, ..). The update itself is applied
to the hash map, making one of the existing update entries redundant, i.e., the one with
vector clock <0,1,1>, as it concerns the same key and has a non-concurrent timestamp.
As the update operation itself is not redundant, its nested operation can be applied to the
nested register. The set(Hey) is then applied to the nested register, making also one set
operation redundant in the register, i.e., the one with vector clock <0,1,1>. Note that there
is another pair of concurrent operations in both the map and register that will not be made
redundant, and thus are kept in the log. The third box shows the state and the log after
applying update(B, set(Hey)) resulting in the updated state {Hello, Hey}.

ECOOP 2023

2:8 Nested Pure Operation-Based CRDTs

3.1.3 Maintaining Consistency of Children by Targeted Causal Resets

Applying redundancy checks on update operations ensures that the concurrency semantics of
parents are upheld. However, they do not ensure that the concurrency semantics of children
are upheld. In fact, the update mechanism ensures that redundancy relations are respected
at each level of the CRDT, but these redundancy checks never cross hierarchical boundaries.
This is problematic if a particular key is removed, but the remove operation is concurrent
with one or more, but not all, previously applied operations (for example, remove operation
c is concurrent with b, operation b is concurrent with a, but operation c causally follows
operation a). This means that a key and associated child cannot be removed completely, as
the child received some redundant operations (by the removal, e.g., operation a) and others
that are not redundant (e.g., operation b).

To solve this issue, we introduce a novel nested redundancy relation Rn that allows nested
children to be reset to a particular logical timestamp (inclusive or exclusive of concurrent
operations). Using this relation, redundancy rules can be implemented that define hierarchical
relations between log entries.

upd(A,)

<0,1,1> upd(B,)

<1,0,1> upd(B,)

<2,0,1> upd(C,)

[A: , B: , C:]

<1,0,1> set(Hello)

<0,1,1> set(World)

{ Hello, World }

<0,2,1> del(B) reset <0,2,1>; conc=0

=> del(B)

R_

1.
R Rn

upd(A,)

<1,0,1> upd(B,)

<2,0,1> upd(C,)

[A: , B: , C:]

<1,0,1> set(Hello)

{ Hello }

2.

Figure 4 Example of a nested redundancy relation that selectively resets nested children, triggered
by the deletion of a key. As the arriving delete (del) operation is concurrent with an update (upd)
that arrived earlier, the nested child needs to be partially reset.

Figure 4 illustrates the use of the Rn relation in an update-wins hash map containing
nested Multi-Value registers. The first box (denoted by 1) shows the internal state and the
PO-Log for the hash map, and the register associated with the key ’B’ when a delete(B)
operation arrives. As this operation is concurrent with one of the earlier updates in the map,
and the map follows update-wins semantics, the key itself cannot be removed. The entry
with a preceding vector clock <0,1,1>, however, will be marked redundant by the existing
R_ relation. At this point, the register associated with key B has partially redundant data,
and as such needs to be updated to respect the remove operation. To this end, the Rn

relation can be used to reset all operations in the nested register that are previous to the
delete operation. In the case of the example, the set of the value ’Hi!’ (denoted in red in the
figure) will be made redundant and removed from the register log. The second box shows the
state and the log after applying the delete(B) operation in which all redundant operations
are removed from the entire hierarchy, and the state of the register is updated to {Hello}.

In the following section, we provide a more formal specification of our approach and
extensions to the pure operation-based framework and describe example implementations for
update-wins and delete-wins hash maps.

J. Bauwens and E. Gonzalez Boix 2:9

3.2 Formalised Semantics for Extended Functionality
We now describe our approach as an extension of the formal model of a pure operation-based
CRDTs framework (cf. Section 2). Algorithm 2 describes the distributed algorithm for our
novel nested pure operation-based framework specifying the interaction between the RCB
middleware and the framework. The original Algorithm 1 used the i variable to denote a
particular replica. In our extended model, Algorithm 2 compounds this with a list variable p,
which denotes the path to the CRDT, relative to its parent. The top-most data structure is
denoted as root. For example, {root, bob, favourite_colours} could be a path that refers to
a favourite_colours object associated with the key ’bob’ in a map.

Compared to the original pure operation-based design, Algorithm 2 features new primitives
for broadcasting and delivering nested operations:

broadcast_nestedi,p(o): broadcasts nested operations ensuring that the operation will
be delivered to all replicas (reliably and in causal order). In our design, a broadcast can
only be triggered from the top-most data structure, as such p will always be root.
deliver_nestedi,p(t, o): called when an operation o is delivered (e.g. after it was
previously broadcasted) on a replica i at path p with causal clock t.
nested_operationi(p, o): called when a nested operation o needs to be applied at
path p.

Recall from Section 3.1.2 that when an operation is applied to a nested child, at each
level of the parent hierarchy an update operation needs to be applied so that all redundancy
rules can be activated. In the algorithm, the implementation of nested_operation ensures
that an operation is packaged in an update operation and broadcasted using broadcast_-
nested. These broadcasted operations are received by the top-level data structure (root)
using deliver_nested. deliver_nested will then try to deliver the operation to the child
data structure specified by the path. At each level of the path, it will apply the update
operation, check if the operation is not redundant, and if not, recursively descend into
the hierarchy until the path only consists of one final child. It will then apply the actual
operation to the last nested data structure using the non-nested deliver callback. Our
approach extends the original deliver function with our novel nested redundancy relation:
an implementation can use Rn to select what timestamps should become redundant for which
nested children. Children are then (recursively) reset using the reset function, which takes
a timestamp t and a variable conc that denotes whether the reset is exclusive (only entries
that happened-before) or exclusive (including all concurrent entries).

In the following section, we explore how an actual nested CRDT can be built using our
proposed extensions.

3.3 Nested Pure Operation-Based Maps
In this section, we illustrate our framework by describing the design of two novel nested map
CRDTs: an update-wins map (UW-Map) and a remove-wins map (RW-Map).

Table 2 shows the semantics for the update-wins map (UW-Map) in our pure operation-
based framework which were informally described in the examples in Section 3.1. The design
of the UW-Map CRDT is inspired by the add-wins Set CRDT [3, 4], with some modifications
to take care of its nested nature [19]. The R relation for the UW-Map defines that delete
operations will never be stored in the log (i.e., they are immediately redundant). They
will, however, make any existing operation in the log redundant if they happened before
(R_). This ensures that keys can be deleted. Note that the R_ relation also makes update
operations with the same key that happened before be redundant. This makes the data

ECOOP 2023

2:10 Nested Pure Operation-Based CRDTs

Algorithm 2 Distributed algorithm (for a replica i) showing the interaction between the
RCB middleware and the pure operation-based CRDT framework.

state: si,p := ∅
state: childreni,p

on operationi(o) :
broadcasti,root(o)

on nested_operationi(p, o) :
broadcast_nestedi,root(update(p, o))

on deliver_nestedi,p(t,update((child, ∅), o) :
deliveri,p(t, update(child))
delivern,child(t, o) if (t, update(child))��R si,p

on deliver_nestedi,p(t,update((child, p), o)) if p ̸= ∅ :
deliveri,p(t, update(child))
deliver_nestedn,child(t, update(p, o)) if

(t, update(child))��R si,p

on deliveri(t, o) :
si,p := (si,p \ {(t′, o′) | ∀(t′, o′) ∈ si,p · (t′, o′) R_ (t, o)}) ∪ {(t, o) | (t, o)��R si,p}
reseti,child(t, 0) | ∀child ∈ childreni,p · (child, 0) Rn (t, o)
reseti,child(t, 1) | ∀child ∈ childreni,p · (child, 1) Rn (t, o)

on stablei,p(t) :
si,p := stabilizei,p(t, si,p)[(⊥, o)/(t, o)]
stablei,child(t) | ∀child ∈ childreni,p

on reseti,p(t, conc) :
si,p := si,p \ {(t′, o′) | ∀(t′, o′) ∈ si,p · ((t′ ≺ t) ∨ (conc ̸= 0 ∧ t′ ∥c t))}
reseti,child(t, conc) | ∀child ∈ childreni,p

structure a bit more efficient. Finally, the Rn relation for UW-Map defines that all nested
operations that happened before any delete need to be recursively reset (i.e. removed). As
this remove should be exclusive, i.e., no concurrent entries should be removed, we additionally
encode that conc should be zero.

Table 2 Update-wins pure operation-based map, with support for nested CRDTs.

(t, o) R s = op(o) = delete
(t′, o′) R_ (t, o) = t′ ≺ t ∧ arg(o) = arg(o′)

(child, conc) Rn (t, o) = conc = 0 ∧ op(o) = delete ∧ arg(o) = child

Fr
am

ew
or

k

stabilize(t, s) = s

update(p, o) = nested_operation ([op=update, arg=[p, o])

U
se

r

delete(c) = operation([op=delete, arg=e])

An alternative to update-wins is ensuring that delete operations are ordered after concur-
rent updates, leading to a map with remove-wins semantics. Note that there are different
ways to implement a CRDT from a sequential data type as there is no one solution for
dealing with concurrent updates. Nevertheless, it is important to offer different variants
to the end-user, as some concurrent semantics may be preferred over others in particular
applications.

Table 3 shows the implementation of such a remove-wins map (RW-Map) in our framework.
It is structured similarly to the AW-Map but has some additional complexity as the log
needs to retain all delete operations until they are causally stable. The Rn relation encodes
that all previous or concurrent nested updates need to be removed (to ensure remove-wins
semantics).

J. Bauwens and E. Gonzalez Boix 2:11

Table 3 Remove-wins pure operation-based map, with support for nested CRDTs.

(t, o) R s = op(o) = update
∧ (∃ (t′, o′) ∈ s·arg(o) = arg(′o)∧op(o′) = delete∧t ∥c t′)

(t′, o′) R_ (t, o) = t′ ≺ t ∧ arg(o) = arg(o′) ∧ op(o) = delete
(child, conc) Rn (t, o) = op(o) = delete ∧ arg(o) = childF r

am
ew

or
k

stabilize(t, s) = s

update(p, o) = nested_operation ([op=update, arg=[p, o])

U
se

r

delete(c) = operation([op=delete, arg=e])

In this design of an RW-Map, in theory, update operations do not need to be stored in
the log as these updates are stored in the nested children. However, only the last update
operation for a particular child is kept (since previous update operations are removed from
the log as they are redundant) As such, storing the update operations in the log can be
useful to check if a particular child has a value, without having to query the nested children.
When storing these entries poses a problem memory-wise, they can trivially be removed with
no impact on the behaviour of the data type.

The implementation of these map CRDTs demonstrates that supporting nested structures
can be tackled in a structured and easy way. Our framework handles all logic related to
nesting and update propagation, aiming to provide an easy-to-use interface. Additionally,
hierarchical redundancy rules can be encoded using the Rn relation, ensuring that concurrency
semantics are upheld at any level.

3.4 Discussion
We believe that our approach simplifies the design of replicated nested CRDTs, and with it,
we aim to reduce their implementation complexity. With the presented methodology, one
can think of every CRDT with nesting support as a flat CRDT, which needs to support
one additional operation, namely update. For example, a map is similar to a set of keys
with an associated value. In a set, we can add and remove keys. Using some rules we can
make the set add-wins or remove-wins, and with a bit of extra work, we can define how an
update operation could be ordered against concurrent add and remove. This could be the
core design of a Map. Our framework will make sure that every nested operation, e.g. a
nested operation to a child of the map, is first represented as an update operation for the
parent CRDT. The parent CRDT (e.g. the map) does not need to know anything about
the nested content of this update, it is simply trying to make sure that this update will be
properly ordered between the additions and removals of keys. This alone, however, is not
enough to ensure convergence, i.e. that the algorithm is functional and correct. Depending
on the arrival order of an update in combination with other concurrent operations, the
associated nested operation may have been applied to some replicas and not to others. To
ensure that the nested state converges, the algorithm sometimes might need to apply some
cleanup procedures, which is precisely where the nested redundancy relation comes into play.
In Section 5.1 we formally prove that this is the case for our approach and our implemented
designs.

4 Implementation

We implemented our novel nested pure operation-based approach in Flec [5, 6], an extensible
programming framework and middleware for CRDTs written in TypeScript. Flec incorporates
the concepts of ambient-oriented programming [10, 12], to discover and communicate with

ECOOP 2023

2:12 Nested Pure Operation-Based CRDTs

replicas in a distributed dynamic network. Since it has support for pure operation-based
CRDTs and RCB for causal delivery, Flec is the ideal platform for implementing our approach.
In this section, we describe the extensions and modifications to Flec that are required to
support nested pure operation-based CRDTs.

4.1 Nesting in Flec
To support the implementation of pure operation-based CRDTs, Flec provides an open
framework with the following operations:

isPrecedingOperationRedundant and isConcurrentOperationRedundant: en-
code the R_ (or R0, R1) binary relation(s) defining if existing log entries become
redundant by a new operation. Alternatively, isRedundantByOperation unifies both
methods.
isArrivingOperationRedundant: Encodes the R binary relation (i.e., is a new
operation redundant by an already existing log entry).
onLogEntryStable: performs an action when an operation becomes stable.
onRemoveLogEntry: performs an action when a particular item is removed from the
log (for example if it was marked redundant by isRedundantByOperation).
onAddLogEntry: performs an action when a new operation arrives in the log.

To build an actual CRDT data type, developers have to implement these methods,
following the semantics of the datatype. While onLogEntryStable, onRemoveLogEntry, and
onAddLogEntry are not required to implement the CRDT semantics, they can help optimise
a pure operation-based CRDT to use a native data structure for causally stable entries. The
log, entries, and optional native data compacted structures can be queried using the following
methods:

getLog: gets all current log entries.
getState: gets all current log entries, the compact native state, and the current logical
timestamp for the replica.
getConcurrentEntries: gets all concurrent log entries for an operation.

In this work, we extend the framework with the following new hooks and operations to
implement nested pure operation-based designs:

setChildInitialiser: is a method that will be used to initialise new children, using
child-specific constructs (e.g. if you want children to be AW-Sets, the initialiser will
return a new AW-Set).
doesChildNeedReset: encodes the Rn binary relation (i.e., from what timestamps do
children need a partial reset).
performNestedOp: performs a nested operation and broadcasts it to other replicas.
addChild: register a CRDT as a child to a parent, for a particular key.
resolveChild: override the default internal child bookkeeping and instruct the framework
on how to resolve a particular child CRDT based on a name (this will disable addChild).

4.2 Implementing Nested CRDTs in Flec
We now illustrate the extended Flec by means of the RW-Map CRDT described in Table 3.
Listing 1 and Listing 2 show the core of the implementation of RW-Map CRDT in Flec.
Lines 4 to 8 in Listing 1 define the CRDT constructor, which is used to initialise the values
property that contains all nested children. Additionally, an initialiser can be specified that
sets the initial (start) value for children. For example, if a map with a nested AW-Set is
needed, the initializer will initialize a new AW-Set CRDT. Lines 14–16 in Listing 1 show the

J. Bauwens and E. Gonzalez Boix 2:13

update function which can be used to apply nested operations on children (by CRDT client
code). Any operation on a child is indicated by specifying a particular path, and the update
to be applied. Using performNestedOp this operation will be propagated to the child and
all replicas. The actual semantics can be seen in Listing 2 which shows the implementation
of the redundancy relations and children referencing.

Listing 1 The implementation of an RW-Map in Flec, using the described extensions (A).
1 export class RRWMap extends PureOpCRDT <MapOps > {
2 values : Map <string , NestedCRDT >;
3
4 constructor (initializer : () => NestedCRDT) {
5 super ();
6 this. values = new Map ();
7
8 this. setChildInitialiser (initializer);
9 }

10 ...
11 // User functions
12 ...
13
14 public update (path , ... args) {
15 this. performNestedOp (" update ", path , args);
16 }
17 }

Lines 20 to 22 in Listing 2 show the implementation of the resolveChild method which
allows the underlying Flec framework to reference children, stored in the values property.
The rest of the listing shows how the RW-Map implements redundancy relations to achieve
remove-wins semantics: the RW-Map provides an implementation for isPrecedingOper-
ationRedundant to implement the R_ relation: any operation in the log is redundant if
it has happened before a newly arriving operation, and if they are acting upon the same
child. It also implements isArrivingOperationRedundant to define the R relation: any
arriving update is not applied if a concurrent delete is stored in the log. Finally, by providing
an implementation for doesChildNeedReset we specify that when a delete arrives for a
particular child, the child will be reset. The reset_concurrent flag is set to true to indicate
that even concurrent updates to the child should become redundant.

Listing 2 The implementation of an RW-Map in Flec, using the described extensions (B).
1 protected isPrecedingOperationRedundant (existing : MapEntry , arriving

: MapEntry , isRedundant : boolean) {
2 return arriving . isDelete () && existing . hasSameArgAs (arriving);
3 }
4
5 protected isArrivingOperationRedundant (arriving : MapEntry) {
6 const concurrentDeletes = this. getConcurrentEntries (arriving).
7 filter (e => e.entry . isDelete () && e. entry. hasSameArgAs (

arriving));
8
9 return concurrentDeletes . length > 1;

10 }
11
12 protected doesChildNeedReset (child , arriving : MapEntry) {
13 return {
14 condition : arriving . isDelete () && arriving .args [0] ==

child ,
15 reset_concurrent : true
16 };
17 }
18
19 // Resolve child CRDTs
20 protected resolveChild (name: string) {
21 return this. values .get(name);
22 }

ECOOP 2023

2:14 Nested Pure Operation-Based CRDTs

5 Validation

To validate our work, we conduct three experiments. First, verify the correctness of our
proposed framework and nested pure op-based maps. Secondly, we implement the concepts
in a real programming framework and finally, we compare it to another framework featuring
similar concepts.

5.1 Verification with VeriFx
In order to verify our approach, we have re-implemented the core of our nested pure operation-
based CRDTs in VeriFx [11]. VeriFx is a programming language for replicated data types
with automated proof capabilities that allow users to implement replicated data types in a
high-level language and express correctness properties that are verified automatically. VeriFx
internally uses an SMT theorem prover to search for counterexamples for each property
that needs to be upheld. It also enables the transpilation of the data types to mainstream
languages (e.g. Scala and JavaScript).

Correctness means that strong eventually consistent data types can be built with the
framework and that they exhibit the strong convergence property which requires that replicas
need to have received the same operations to be in the same state (regardless of the order in
which the operations have been received). Shapiro et al. showed in [22] that operation-based
CRDTs guarantee strong convergence if all concurrent operations commute. In our case, this
implies checking the effects of all redundancy relations. Proving the correctness is, however,
slightly trickier in our case, as we are dealing with a recursive design. SMT solvers, such
as Z3 used by VeriFx, do not deal well with recursive and nested data structures, as they
might not be able to find a solution in a finite time. To verify our approach, we thus combine
VeriFx proofs with structural induction, which limits the recursion depth needed to verify
our design:

Base case: we implemented a ’perfect’ resettable pure operation-based CRDT in VeriFX
that can model both a flat CRDT or a CRDT containing children. The CRDT logs all
operations in a single flattened log (e.g., one log for all potentially nested structures).
Items in the log can be reset by a parent when requested. No redundancy rules are
applied. This design ensures that we can represent a ’correct’ nested structure (in terms
of SMT assumptions) without needing a recursive model. We use a VeriFx proof to ensure
convergence of this ’perfect’ CRDT.
Induction step: a particular nested CRDT can be implemented on top of our VeriFx
implementation and set to use perfect nestable CRDTs as children. With this approach,
VeriFx can then be used to prove that our approach is correct for one level of nesting, for
all pairs of operations.

By combining the base case and induction step, we prove using structural induction that
our framework remains correct for any nestable structure.

Listing 3 Convergence update-update.
1 proof FUWMap_update_update_converges {
2 forall (map: FUWMap , k1:String , k2: String , t1: VersionVector , t2

: VersionVector , o1: SimpleOp , o2: SimpleOp) {
3 (t1. concurrent (t2) && map. children . contains (k1) && map.

children . contains (k2) &&
4 map. polog . forall ((e: TaggedOp [FMapOp])=>

((e.t. before (t1) || e.t. concurrent (t1
))

5 && (e.t. before (t2) || e.t. concurrent (t2)
)))) =>: (

J. Bauwens and E. Gonzalez Boix 2:15

6
7 map. update (t1 , k1 , o1). update (t2 , k2 , o2)
8 ==
9 map. update (t2 , k2 , o2). update (t1 , k1 , o1)

10)
11 }
12 }

Listing 4 Convergence update-delete.
1 proof FUWMap_update_delete_converges {
2 forall (map: FUWMap , k1:String , k2: String , t1: VersionVector , t2

: VersionVector , o1: SimpleOp) {
3 (t1. concurrent (t2) && map. children . contains (k1) &&
4 map. polog . forall ((e: TaggedOp [FMapOp])=>((e.t. before (t1) || e.

t. concurrent (t1)) && (e.t. before (t2) || e.t. concurrent (t2)
)))) =>: (

5 map. update (t1 , k1 , o1). delete (t2 , k2)
6 ==
7 map. delete (t2 , k2). update (t1 , k1 , o1)
8)
9 }

10 }

Listing 5 Convergence delete-delete.
1 proof FUWMap_delete_delete_converges {
2 forall (map: FUWMap , k1:String , k2: String , t1: VersionVector , t2

: VersionVector , o1: SimpleOp , o2: SimpleOp) {
3 (t1. concurrent (t2) && map. children . contains (k1) && map. children .

contains (k2) && map.polog. forall ((e: TaggedOp [FMapOp])=>((e.t.
before (t1) || e.t. concurrent (t1))

4 && (e.t. before (t2) || e.t. concurrent (t2))
))) =>: {

5
6 map. delete (t1 , k1). delete (t2 , k2) == map. delete (t2 , k2). delete

(t1 , k1)
7 }
8 }
9 }

As an example, Listings 3, 4, and 5 show the VeriFx proof logic that was used to check the
behaviour of concurrent operations on an update-wins map implemented with our framework.
We define that any pair of correct operations that are concurrent and applied to a correct
state should commute. The operations and state are correct if the operations (causally)
follow or are concurrent with all other operations that were applied previously to the state
(e.g. everything in the log). For this definition, we assume the usage of RCB (which is the
case with the pure operation-based CRDT framework), so that we know that everything
in the log must be concurrent or happened-before. In other words, the logic encodes the
correctness properties that should always hold in our framework, i.e. that if all operations
on the map commute and the nested operations are applied to correct CRDTs (in our case,
all nested operations are applied to a ’perfect’ CRDT), that the map is correct.

We use the automatic VeriFx prover to verify these properties hold given the implemented
designs. Internally, the VeriFx SMT engine will look for valid solutions that satisfy the
negation of our definitions, it will search for any case where the correctness properties are
violated. Since no counterexamples (valid solutions for the negation of properties) were found
after exhausting all search options, we can then constitute that our framework model is valid
according to the correctness properties.

ECOOP 2023

2:16 Nested Pure Operation-Based CRDTs

Table 4 Implemented nested CRDT types.

CRDT Semantics
UW-Map Update-wins map where values can be CRDTs. Update win from

concurrent deletes.
RW-Map Remove-wins map where values can be CRDTs. Deletes win from

concurrent updates.
RW-Map (mod) Modular version of the remove-wins map that allows more efficient

memory usage.
AW-Map A variant of the update-wins Map where keys are managed by an

add-wins set.
AW-Set An add-wins set where values can be CRDTs.
DW-List A delete-wins linked list where elements can be CRDTs.
ImmutableCRDT A map with immutable keys, which behaves similarly to structs in C.

Using this approach, we have verified our map designs, validating both the concurrency
semantics of our proposed CRDTs and proving that our novel framework functions correctly.
The benefit of our verification approach is that to validate the correctness of any nestable
CRDT (built on our framework), one only needs to encode proofs for the operations on a flat
level. All needed nesting aspects of the proof will automatically be inherited from our VeriFx
implementation. The full source code for our VeriFx implementation, including proofs and
implemented models, is included as an artifact.

5.2 Portfolio of Nested CRDTs in Flec
To show the flexibility and applicability of our approach, we have implemented several com-
monly used data structures as novel nested pure operation-based CRDTs in Flec, summarised
in Table 4. As shown in the previous section, we have map implementations with update-wins
and remove-wins semantics. Maps form the basis for many other data structures and thus
are essential to any replication framework. They have been verified using their VeriFx-based
implementations and have been used in more complex data structures since.

We have implemented two other maps: one modified map (based on the remove-wins
map) that optimises some structures to have better memory resource usage, and another
map where keys are managed by an add-wins set. Finally, we have a delete-wins list that can
be used to store values in sequential order. Similarly to other sequential replicated structures
such as RGAs [13], a linked list is used internally.

The source code for the update-wins map, remove-wins map and delete-wins list imple-
mentations can be found as part of the included artifact.

5.3 Use-Case: A Mixed CRDT-Based Distributed Filesystem
To validate our approach in a real-world application scenario, we implemented a distributed
file system based on the work of [25] in our Flec implementation. This application is also
used later in Section 5.4 to compare our approach to state-of-art.

Flec does not only support pure operation-based CRDTs, it has many general-purpose
constructs for building any replicated data type. As such, it comes with a portfolio of (non-
pure-op) general CRDTs. While our extensions to Flec were focused on pure operation-based
CRDTs, part of the nesting support we added can also be used in conjunction with general
non-pure operation-based CRDTs to develop real-world applications.

J. Bauwens and E. Gonzalez Boix 2:17

When composing (traditional) CRDTs, operations on a (parent) root node typically trigger
several operations that will be applied to internal (nested) CRDTs. For a single operation,
these sub-operations need to be applied atomically, they cannot be viewed as independent
and should not automatically replicate to nested children of replicated CRDTs. This is in
contrast with our main approach where an update is applied via a particular sub-path. To
ensure compatibility with this approach in the framework, nested children can detect the
context in which operations are applied. If a nested CRDT has a parent, and an operation is
applied directly from that parent (and not via a nested update), the operation will not be
broadcasted to other replicas. Instead, it is assumed that the (top-)parent operation will be
broadcasted, resulting in the same nested update path on other replicas.

We now discuss the overall data structures and operations of the distributed file system.
Listings 6–8 in the appendix show the core of the implementation. It has been modified to
hide some minor boilerplate code, type definitions, and a lot of operation handling code,
but it contains the essentials. Listing 6 shows the main body of the DistributedFS class,
which implements the core functionality of the CRDT. By extending the SimpleCRDT class it
automatically inherits all the distribution and CRDT functionality from Flec (along with
our extensions). Lines 5-21 define the required data structures for the distributed file system
that keep track of metadata for files, groups and users. To this end, we define three maps,
and each map on its own contains records (in the form of ImmutableCRDT) containing
other CRDTs for storing the metadata of particular files, groups and users. For example,
the files data structure is defined using an RW-Map and contains filesystem meta-data
related to access rights, ownership, and data content. The data types we use for the registers
(AccessRightF, UserID, ...) are basic types constructed from primitive types such as numbers
or strings and can be stored directly in the registers. AccessRightF is a numerical value
that we index as a bit-vector to store our permission flags (similar to POSIX systems). We
provide an additional TypeScript class, AccessRight, that provides a high-level abstraction
to this bit-vector, but concretely we store numerical values in the CRDT register. Lines
24-28 define the onLoaded method which associates the aforementioned three maps with
their parent CRDT. In line 30, the setHandler method defines all operation handlers which
implement the semantics of the CRDT.

Listing 7 shows the implementation of the CreateFile operation in more detail. Listing 8
shows code that exposes some of the CRDT API to the local user, for performing some basic
actions which are used by the test method in Listing 9 to show local usage of the file system
functionality. Flec will ensure that all operations are properly replicated and distributed. In
general, most of the code is similar to that of sequential data structures, and the API is not
much more complex. This is in line with the goal of our framework: an easy-to-use interface
for building CRDTs where developers can immediately benefit from a middleware that does
all the heavy lifting.

5.4 Evaluation of Network Traffic in Comparison With Automerge
To compare our approach with state of the art, we implemented the same distributed
filesystem in Automerge v1.0.1 [15] and evaluated the differences in network traffic between
our Flec implementation and the Automerge implementation.

It is not possible to select the individual concurrency semantics for nested objects with
Automerge, as is possible with our extension to Flec. As such, the implementation has a
slight difference in concurrency semantics when compared to the original design [25] and our
implementation. For example, while the distributed filesystem (DFS) specification describes
update-wins concurrency semantics for the user list, the Automerge implementation uses
remove-wins concurrency semantics. Functionality-wise, it has the same features. In fact, in
our implementations, both the Automerge and Flec versions have the same API.

ECOOP 2023

2:18 Nested Pure Operation-Based CRDTs

Automerge itself does not provide a network layer but instead provides an API that allows
you to query (Automerge) documents for changes, and if any changes exist, you can propagate
these over any networking channel that your application depends on. On the receiving end,
you can insert these changes back into Automerge, which can merge the received information
in the local state. Automerge itself uses a state-based approach, where only the required
changes (deltas) are propagated instead of the full state, to conserve network bandwidth.

0

2000

4000

6000

8000

10000

12000

1 101 201 301 401 501 601 701 801 901 1001

T
ra
ff
ic

 (
b
y
te
s
)

Number of operations

Automerge traffic from source node
Flec traffic from source node

Automerge Flec

Figure 5 Network traffic (in bytes/op) originating from the source node for both Automerge and
Flec. In every operation, a file is created and written.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1 101 201 301 401 501 601 701 801 901

T
ra
ff
ic

 (
b
y
te
s
)

Number of operations

Total cumulative Automerge network traffic

Other nodes Source node

Figure 6 Total cumulative networking traffic (in bytes/op) from all nodes for Automerge. In
every operation, a file is created and written.

For the experiments, we used a virtual network for both Automerge and Flec, which
allows us to reproduce benchmarks and results with little non-determinism. We set up a
system with 5 nodes (ad-hoc, peer-to-peer), and issue a thousand operations per experiment.

5.4.1 Experiment A: File Creation and Writing
For the first benchmark, each operation exists out of file creation and file modification. We
applied these operations a thousand times to a deployed distributed file system, once using
the Flec implementation and once with the Automerge implementation.

Figure 5 shows the network traffic originating from the source node (the node where the
operations are applied), for both implementations. As both our approach and Automerge
share the essential updates, the results are fairly stable and linear. Automerge will always
send small updates containing the state delta (which means the newly modified file) and our
extension to Flec sends the operations itself. While Automerge uses a binary representation
for the update payload, the payload itself is still heavier than the non-optimized JSON
payload used in Flec.

J. Bauwens and E. Gonzalez Boix 2:19

The visualisation hides some essential information, however. Automerge uses an additional
protocol that allows replicas to propagate updates among each other. This means that not
only the source node will share information, but also other nodes that received the new
updates if they believe that other replicas may be missing information. Figure 6 highlights
the additional traffic, showing that it makes up a significant portion of the total network
traffic. In Flec updates are only sent directly from a source node to a destination node, and
as such, there is no additional network usage.

5.4.2 Experiment B: User, Group, and File Creation, and Configuration

0

2000

4000

6000

8000

10000

12000

14000

1 101 201 301 401 501 601 701 801 901 1001

T
ra
ff
ic

 (
b
y
te
s
)

Number of operations

Automerge traffic from source node
Flec traffic from source node

Automerge Flec

Figure 7 Network traffic (in bytes/op) originating from the source node for both Automerge and
Flec. Every operation creates a new user, a new group, and a new file. The user is added to the
group, and the file is created with the new user as the owner. Finally, the file is written.

0

20000

40000

60000

80000

100000

120000

1 11 21 31 41 51 61

T
ra
ff
ic

 (
b
y
te
s
)

Number of operations

Total network traffic

Automerge Flec

Figure 8 Total network traffic (in bytes/op) for both Automerge and Flec. Every operation
creates a new user, a new group, and a new file. The user is added to the group, and the file is
created with the new user as the owner. Finally, the file is written.

For the second experiment, in each operation, we create a new user, and a new user group,
add the user to the new group, create a new file (with the new user as owner), and write to
this file. This extra complexity leads to some interesting results. As seen in Figure 7 the

ECOOP 2023

2:20 Nested Pure Operation-Based CRDTs

0

500000

1000000

1500000

2000000

2500000

3000000

1 11 21 31 41 51 61 71 81 91

T
ra
ff
ic

 (
b
y
te
s
)

Number of operations

Automerge traffic

Traffic from source node Trafic from other nodes

Figure 9 Total network traffic for Automerge for the previous experiment, highlighting an issue
with exponential growth after a certain number of operations.

Automerge measurements stop at around ∼100 operations. This is because the additional
gossip traffic starts growing exponentially (see Figure 9) and causes the entire system to halt.
We are not exactly certain what causes this problem, but we did not observe this issue with
the previous experiment, only when we applied more complex operations. We believe that
this is not correct behaviour from Automerge but have not been able to identify the root
cause of the bug yet. The behaviour is consistent and reappears with each run. To be able
to evaluate this example anyway, we will only focus on the initial measurements before the
exponential explosion. Based on Figure 7 we can see that Automerge has a lower network
overhead on the source node when compared to Flec. When looking at the total traffic,
however (Figure 8), we can see that Automerge still utilizes more bandwidth. The reason for
this is that as we are sending many operations, other replicas start propagating updates as
well, resulting in the source node itself sending fewer updates (as it is relieved from work).

5.4.3 Experimental Evaluation: Conclusion
With this experimental evaluation, we showed that our approach is comparable to state-of-the-
art CRDT frameworks, even though Flec and our extensions have not yet been optimised for
non-experimental use. While additional optimisations can be applied to the pure operation-
based CRDT framework and our nested framework extension, these results are promising
and show that our approach is viable in real-world scenarios.

We now discuss some of the potential threats to the validity of our experimental evaluation
and why our benchmark methodology and conclusions are not invalidated by these threats.

T: The number of replicas used in our benchmarks (5) is potentially too low.
The results of the experiments show that this number is fair, as it allows us to observe
interesting differences between both benchmarked platforms. For example, in Figure 6.,
we can see that the total traffic generated by Automerge in experiment A quickly exceeds
the traffic of our approach, but we can still compare results in a reasonable way.
T: The chosen experiments are not realistic.
The operations are tailored to induce complicated internal behaviour of the replicated
data type, which we expect to also occur doing normal and realistic tasks. Of course,
in a realistic setting such operations may not be applied repeatedly, but in the context

J. Bauwens and E. Gonzalez Boix 2:21

of our evaluation we wanted to evaluate behaviour under repeated, continual usage
while testing many different parts of the CRDT framework as well. However, the total
amount of operations used in the benchmarks could be achieved over a small period in a
real deployment, and therefore it is important that a distributed filesystem system can
handle such load. The operations used aim to use nesting to its full extent, in a realistic
application case (a distributed file system). We, therefore, believe that the benchmarks
are suitable for evaluating our approach.
T: The benchmarks only compare results with one other related work.
While comparing with extra platforms could improve the evaluation, we do not believe
that this invalidates or diminishes our results. Automerge is a state-of-the-art framework
for replicated data structures, with a lot of usages, and therefore a proper framework to
compare against and evaluate whether our proposed approach has viability.

6 Related Work

The bulk of research in replicated data types has focused on devising a portfolio of conflict-free
data structures such as counters, sets, and linked lists [22, 24, 20, 7, 21, 19]. However, the
composition and nesting of CRDT have drawn little attention so far. The composition of
replicated structures is possible in a few frameworks like Automerge [15] and Lasp [17]. While
Automerge allows programmers to arbitrarily nest linked lists and maps in a document, it
doesn’t allow for much flexibility regarding the actual merging semantics. Lasp supports
functional transformations over existing CRDTs provided in the language, which allows a
composition to some extent. However, when the current portfolio of CRDTs falls short in
those frameworks, developers need to design the desired nested data structure from scratch.
This requires rethinking the data structure completely such that all operations commute and
manually implement conflict resolution for concurrent non-commutative operations, which is
hard and error-prone [22, 15, 1].

Weidner et al. [23] explore ways to compose and de-compose pure operation-based CRDTs.
They introduce techniques for creating novel CRDTs based on existing (de-composed) CRDTs
with a static structure. They do not aim to provide a solution for creating general nested
data structures, but instead, propose constructs to define the semi-direct product of op-based
CRDTs. This means that instead of nesting and maintaining individual semantics, novel
semantics are introduced to create a combination of several CRDTs, leading to an entirely
new, non-nested CRDT. In our approach, nested data structures can change dynamically
during runtime, using maps, lists, and sets.

Preguiça in [19] explains several possible nesting semantics for operation-based CRDTs.
To support a wide variety of CRDTs as nested values in different settings, it will be necessary
for the CRDTs to be able to partially reset themselves to an initial state before a particular
timestamp. Typically, this means that this reset has to be recursive and that nested sub-
CRDTs will need to be reset as well. Without a disciplined approach, combining ad-hoc
CRDTs will be hard. The benefit of using a log-based approach, which we are proposing, is
that such recursive resets can be supported at the framework level, in a unified way, without
needing to modify the semantics of CRDTs.

Operation-based and state-based CRDTs are two approaches to guarantee SEC that share
an equivalence to some extent. While both approaches can be emulated as each other [22], it
depends on the application or system in use which approach might be more suitable. It is
typically a tradeoff choice, between waiting for the right moment to make a state merge, or
rather propagating operations continuously. It should be possible to emulate our approach

ECOOP 2023

2:22 Nested Pure Operation-Based CRDTs

(and pure operation-based CRDTs in general) as a state-based design, but making it efficient
might be problematic as one would need to keep track of extra meta-data related to the
applied operations (in order to maintain individual semantics between nested components).
This information comes for free in an operation-based CRDT approach; as the operations
themselves are directly propagated.

7 Conclusion

Conflict-Free Replicated Data Types (CRDTs) are useful programming tools to replicate data
in a distributed system as they guarantee that eventually, all replicas end up in the same
state. In this paper, we explore a structured approach for designing nested CRDTs based
on the ideas of pure operation-based CRDTs. We propose a novel framework for building
nested pure operation-based CRDTs and show how several common nested data structures
can be designed and modelled in the framework. We validate our approach by extending an
existing pure operation-based framework written in TypeScript, Flec, to include support for
nested pure operation-based CRDTs and implement a portfolio of commonly nested data
structures. This portfolio includes novel add-wins and remove-wins pure operation-based
CRDTs, implemented following our framework. Additionally, we demonstrate the flexibility
of the framework by implementing a distributed filesystem model using these techniques. We
used an SMT-based implementation to verify the correctness of our approach. Finally, showed
that our approach produces competitive results compared to Automerge, a state-of-the-art
framework.

References
1 P. S. Almeida, A. Shoker, and C. Baquero. Efficient state-based crdts by delta-mutation.

CoRR, abs/1410.2803, 2014. arXiv:1410.2803.
2 C. Baquero, P. S. Almeida, and A. Shoker. Making operation-based crdts operation-based.

In Kostas Magoutis and Peter Pietzuch, editors, Distributed Applications and Interoperable
Systems, pages 126–140, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

3 C. Baquero, P. S. Almeida, and A. Shoker. Pure operation-based replicated data types. CoRR,
abs/1710.04469, 2017. arXiv:1710.04469.

4 J. Bauwens and E. Gonzalez Boix. Improving the reactivity of pure operation-based crdts. In
Proceedings of the 8th Workshop on Principles and Practice of Consistency for Distributed
Data, PaPoC ’21, New York, NY, USA, 2021. Association for Computing Machinery. doi:
10.1145/3447865.3457968.

5 J. Bauwens and E. Gonzalez Boix. Flec: A versatile programming framework for eventually
consistent systems. In Proceedings of the 7th Workshop on Principles and Practice of Consist-
ency for Distributed Data, PaPoC ’20, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3380787.3393685.

6 J. Bauwens and E. Gonzalez Boix. From causality to stability: Understanding and redu-
cing meta-data in crdts. In Proceedings of the 17th International Conference on Managed
Programming Languages and Runtimes, MPLR ’20, pages 3–14, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3426182.3426183.

7 Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos Baquero, Valter
Balegas, and Sérgio Duarte. An optimized conflict-free replicated set. arXiv preprint, 2012.
arXiv:1210.3368.

8 K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures. ACM
Trans. Comput. Syst., 5(1):47–76, January 1987. doi:10.1145/7351.7478.

https://arxiv.org/abs/1410.2803
https://arxiv.org/abs/1710.04469
https://doi.org/10.1145/3447865.3457968
https://doi.org/10.1145/3447865.3457968
https://doi.org/10.1145/3380787.3393685
https://doi.org/10.1145/3426182.3426183
https://arxiv.org/abs/1210.3368
https://doi.org/10.1145/7351.7478

J. Bauwens and E. Gonzalez Boix 2:23

9 S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood. Cloud types for eventual consistency.
In Proceedings of the 26th European Conference on Object-Oriented Programming, ECOOP’12,
pages 283–307, Berlin, Heidelberg, 2012. Springer-Verlag. doi:10.1007/978-3-642-31057-7_
14.

10 T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix., J. Dedecker, and W. De Meuter. Ambienttalk:
Object-oriented event-driven programming in mobile ad hoc networks. In XXVI International
Conference of the Chilean Society of Computer Science (SCCC’07), pages 3–12, Iquique, Chile,
2007. doi:10.1109/SCCC.2007.12.

11 Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix. Verifx: Correct replicated data
types for the masses, 2022. doi:10.48550/ARXIV.2207.02502.

12 J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De Meuter. Ambient-oriented
programming in ambienttalk. In Dave Thomas, editor, ECOOP 2006 – Object-Oriented
Programming, pages 230–254, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

13 R. Hyun-Gul, J. Myeongjae, K. Jin-Soo, and L. Joonwon. Replicated abstract data types:
Building blocks for collaborative applications. Journal of Parallel and Distributed Computing,
71(3):354–368, 2011.

14 G. Kaki, S. Priya, KC Sivaramakrishnan, and S. Jagannathan. Mergeable replicated data
types. Proc. ACM Program. Lang., 3(OOPSLA), October 2019. doi:10.1145/3360580.

15 M. Kleppmann and A. R. Beresford. A conflict-free replicated json datatype. IEEE Transactions
on Parallel & Distributed Systems, 28(10):2733–2746, October 2017. doi:10.1109/TPDS.2017.
2697382.

16 R. Klophaus. Riak core: Building distributed applications without shared state. In ACM
SIGPLAN Commercial Users of Functional Programming, CUFP ’10, pages 14:1–14:1, New
York, NY, USA, 2010. ACM. doi:10.1145/1900160.1900176.

17 Christopher Meiklejohn and Peter Van Roy. Lasp: A Language for Distributed, Coordination-
free Programming. In 17th Int. Symp. on Principles and Practice of Declarative Programming,
PPDP ’15, pages 184–195, 2015.

18 Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. Near real-time peer-to-
peer shared editing on extensible data types. In Proceedings of the 2016 ACM International
Conference on Supporting Group Work, GROUP ’16, pages 39–49, New York, NY, USA, 2016.
Association for Computing Machinery. doi:10.1145/2957276.2957310.

19 N. Preguiça. Conflict-free replicated data types: An overview, 2018. arXiv:1806.10254.
20 Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. Replicated Abstract Data

Types: Building Blocks for Collaborative Applications. Journal of Parallel and Distributed
Computing, 71(3):354–368, 2011.

21 M. Shapiro. Replicated Data Types. In Ling Liu and M. Tamer Özsu, editors, Encyclopedia
Of Database Systems, volume Replicated Data Types, pages 1–5. Springer-Verlag, July 2017.
doi:10.1007/978-1-4899-7993-3_80813-1.

22 M. Shapiro, N Preguiça, C. Baquero, and M. Zawirski. A comprehensive study of Convergent
and Commutative Replicated Data Types. Technical Report 7506, INRIA, 2011.

23 Matthew Weidner, Heather Miller, and Christopher Meiklejohn. Composing and decomposing
op-based crdts with semidirect products. Proc. ACM Program. Lang., 4(ICFP), August 2020.
doi:10.1145/3408976.

24 Stephane Weiss, Pascal Urso, and Pascal Molli. Logoot-Undo: Distributed Collaborative
Editing System on P2P Networks. IEEE Trans. on Parallel and Distributed Systems, 21(8):1162–
1174, August 2010.

25 Elena Yanakieva, Michael Youssef, Ahmad Hussein Rezae, and Annette Bieniusa. Access
control conflict resolution in distributed file systems using crdts. In Proceedings of the 8th
Workshop on Principles and Practice of Consistency for Distributed Data, PaPoC ’21, New
York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3447865.3457970.

ECOOP 2023

https://doi.org/10.1007/978-3-642-31057-7_14
https://doi.org/10.1007/978-3-642-31057-7_14
https://doi.org/10.1109/SCCC.2007.12
https://doi.org/10.48550/ARXIV.2207.02502
https://doi.org/10.1145/3360580
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1109/TPDS.2017.2697382
https://doi.org/10.1145/1900160.1900176
https://doi.org/10.1145/2957276.2957310
https://arxiv.org/abs/1806.10254
https://doi.org/10.1007/978-1-4899-7993-3_80813-1
https://doi.org/10.1145/3408976
https://doi.org/10.1145/3447865.3457970

2:24 Nested Pure Operation-Based CRDTs

A DFS Code Listings

This appendix contains code listings with portions from our distributed filesystem test
implementation. A legend for the used types can be found in Table 5.

Table 5 Legend for the TypeScript classes and types used in the DFS implementation.

Class / Type Description
RWWMap Nested Remove-Wins Map CRDT.
RUWMap Nested Update-Wins Map CRDT.
ImmutableCRDT ImmutableCRDT map. Nested CRDT map that works as

a C struct.
Register<T> LLW-Register CRDT, containing a primitive value of type

T.
AccessRightF Alias of the ’Number’ type, represents a bit vector with

access flags.
AccessRight Abstraction over AccessRightF, never stores in a CRDT,

just used for easy modification of the access right bit vec-
tors.

SimpleCRDT Abstract CRDT class in Flec, for creating operation-based
CRDTs.

GroupID / UserID / FileID Aliases for strings that represent UUIDs.

Listing 6 The general structure of the DFS nested CRDT, highlighting the main nested children
that contain the filesystem meta-data.
1 export class DistributedFS extends SimpleCRDT < FSOperation > {
2 handler : FSOperation ;
3 ...
4
5 files = new RRWMap (t => new ImmutableCRDT ({
6 access_right_owner : new Register < AccessRightF >() ,
7 access_right_group : new Register < AccessRightF >() ,
8 access_right_other : new Register < AccessRightF >() ,
9 file_owner : new Register <UserID >() ,

10 file_group : new Register <GroupID >() ,
11 file_data : new Register <string >()
12 }));
13
14 groups = new RRWMap (t => new ImmutableCRDT ({
15 group_users : new AWSet () , // must be RW
16 created : new Register <flag >()
17 }));
18
19 users = new RUWMap (t => new ImmutableCRDT ({
20 is_admin : new Register <flag >()
21 }));
22 ...
23
24 onLoaded () {
25 this. addChild ("files ", this. files);
26 this. addChild ("users ", this. users);
27 this. addChild (" groups ", this. groups);
28 }
29
30 setHandler () {
31 const me = this;
32 this. handler = {
33
34 ChangeOwner (userId : UserID , newOwnerId : UserID , fileId : NodeID

) { ... },

J. Bauwens and E. Gonzalez Boix 2:25

35 ChangeGroup (userId : UserID , newGroupId : GroupID , fileId :
NodeID) { ... },

36 ChangeOwnerPermission (userId : UserID , newPerm : AR , fileId :
NodeID) { ... },

37 ChangeGroupPermission (userId : UserID , newPerm : AR , fileId :
NodeID) { ... },

38 ChangeOtherPermission (userId : UserID , newPerm : AR , fileId :
NodeID) { ... },

39 ...
40 CreateUser (with_admin_rights : boolean , id: string) { /* ... */

},
41 CreateGroup () { /* ... */ },
42 AssignUserToGroup (authorId : UserID , groupId : GroupID , userId :

UserID) { ... },
43 CreateFile (userId : UserID , groupId : GroupID , fileId : NodeID) {

... see listing below ... },
44 WriteFile (userId : UserID , fileId : NodeID) { ... },
45 ...
46 update (key: string) { }
47 }
48 }
49 }

Listing 7 Structure of the operation handling code for the DFS. Included is the code for the
CreateFile callback, which can either be invoked locally or as a result of a replicated operation.
1 setHandler () {
2 const me = this;
3
4 this. handler = {
5 ...
6
7 CreateFile (userId : UserID , groupId : GroupID , fileId : NodeID) {
8 const user = me.users. lookup (userId) as any;
9 const group = me. groups . lookup (groupId) as any;

10
11 if (group && user && group. group_users . contains (userId)) {
12 console .log(" adding file");
13
14 me.files . update ([{ key: fileId , op: " update " },
15 { key: " file_owner ", op: " write " }], userId);
16 me.files . update ([{ key: fileId , op: " update " },
17 { key: " file_group ", op: " write " }], groupId);
18
19 const isAdmin = user. is_admin .is(FLAG_TRUE);
20 const access_owner = new AccessRight (isAdmin , true , true);
21 const access_group = new AccessRight (isAdmin , true , false);
22 const access_other = new AccessRight (isAdmin , true , false);
23
24 this. files . update ([{ key: fileId , op: " update " },
25 { key: " access_right_owner ", op: "write " }], access_owner .

toEnum ());
26 this. files . update ([{ key: fileId , op: " update " },
27 { key: " access_right_group ", op: "write " }], access_group .

toEnum ());
28 this. files . update ([{ key: fileId , op: " update " },
29 { key: " access_right_other ", op: "write " }], access_other .

toEnum ());
30 }
31 },
32 ...
33 };
34 }
35 ...

ECOOP 2023

2:26 Nested Pure Operation-Based CRDTs

Listing 8 User API for local mutations to DFS CRDT, allowing simple modification of the DFS
meta-data.
1 CreateUser (with_admin_rights : boolean) {
2 const id = this. getUID ();
3 this. performOp (" CreateUser ", [with_admin_rights , id]);
4 return id;
5 };
6
7 CreateGroup () {
8 const id = this. getUID ();
9 this. performNestedOp (" update ", [{ key: " groups ", op: " update " },

10 { key: id , op: " update " },
11 { key: " created ", op: " write " }], [FLAG_TRUE]);
12 return id;
13 };
14
15 CreateFile (userId : UserID , groupId : GroupID) {
16 const id = this. getUID ();
17 this. performOp (" CreateFile ", [userId , groupId , id]);
18 return id;
19 }
20 ...

Listing 9 Example test code for the DFS CRDT, which creates a new admin user, a new group,
adds the user to a group, and then creates and writes a file with this new user.
1 test () {
2 const userId = this. CreateUser (true);
3 const groupId = this. CreateGroup ();
4
5 this. performOp (" AssignUserToGroup ", [userId , groupId , userId]);
6
7 const fileId = this. CreateFile (userId , groupId);
8 this. performOp (" WriteFile ", [userId , fileId]);
9

10 }

Multi-Graded Featherweight Java
Riccardo Bianchini #

DIBRIS, University of Genova, Italy

Francesco Dagnino #

DIBRIS, University of Genova, Italy

Paola Giannini #

DiSSTE, University of Eastern Piedmont, Vercelli, Italy

Elena Zucca #

DIBRIS, University of Genova, Italy

Abstract
Resource-aware type systems statically approximate not only the expected result type of a program,
but also the way external resources are used, e.g., how many times the value of a variable is needed.
We extend the type system of Featherweight Java to be resource-aware, parametrically on an
arbitrary grade algebra modeling a specific usage of resources. We prove that this type system is
sound with respect to a resource-aware version of reduction, that is, a well-typed program has a
reduction sequence which does not get stuck due to resource consumption. Moreover, we show that
the available grades can be heterogeneous, that is, obtained by combining grades of different kinds,
via a minimal collection of homomorphisms from one kind to another. Finally, we show how grade
algebras and homomorphisms can be specified as Java classes, so that grade annotations in types
can be written in the language itself.

2012 ACM Subject Classification Theory of computation → Type structures

Keywords and phrases Graded modal types, Java

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.3

Funding This work was partially funded by the MUR project “T-LADIES” (PRIN 2020TL3X8X)
and has the financial support of the University of Eastern Piedmont.

Acknowledgements We thank the anonymous referees for their useful suggestions.

1 Introduction

Recently, a considerable amount of research [25, 7, 2, 14, 15, 23, 8, 11] has been devoted to
type systems allowing reasoning about resource usage. In (type-and-)coeffect systems, the
typing judgment takes the shape x1 :r1 T1, . . . , xn :rn

Tn ⊢ e : T , where the coeffect (grade) ri

models how variable xi is used in e. For instance, coeffects of shape r ::= 0 | 1 | ω trace when
a variable is either not used, or used at most once, or used in an unrestricted way, respectively.
In this way, functions, e.g., λx :int.5, λx :int.x, and λx :int.x + x, which have the same type
in the simply-typed lambda calculus, can be distinguished by adding coeffect annotations:
λx :int[0].5, λx :int[1].x, and λx :int[ω].x + x. Other examples are exact usage (coeffects are
natural numbers), and privacy levels. Graded modal types go further, by decorating types
themselves with grades, in order to specify how the result of an expression should be used.
In the different proposals in literature, grades have a similar algebraic structure, basically a
semiring specifying sum +, multiplication ·, and 0 and 1 constants, and some kind of order
relation. Here, we will assume a variant of this notion called grade algebra.

Resource-aware typing has been exploited in a fully-fledged programming language in
Granule [23], a functional language equipped with graded modal types, hence allowing the
programmer to write function declarations similar to those above. In Granule, different

© Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 3; pp. 3:1–3:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:riccardo.bianchini@edu.unige.it
https://orcid.org/0000-0003-0491-7652
mailto:francesco.dagnino@dibris.unige.it
https://orcid.org/0000-0003-3599-3535
mailto:paola.giannini@uniupo.it
https://orcid.org/0000-0003-2239-9529
mailto:elena.zucca@unige.it
https://orcid.org/0000-0002-6833-6470
https://doi.org/10.4230/LIPIcs.ECOOP.2023.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Multi-Graded Featherweight Java

kinds of coeffects can be used at the same time, including naturals for exact usage, privacy
levels, intervals, infinity, and products of coeffects; however, available grades are fixed in the
language. The initial objective of the work presented here was to study a similar support
for Java-like languages, by introducing, in a variant of Featherweight Java (FJ) [19], types
decorated with grades. Moreover, we wanted these grades to be taken, parametrically, in
an arbitrary grade algebra; even more, we did not want this grade algebra to be fixed as in
Granule, but to be extendable by the programmer with user-defined grades, by relying on the
inheritance mechanism of OO languages. In the quest for such goals, we came up with several
ideas which are novel, to our knowledge, with respect to the literature on resource-aware
type systems, as detailed in the outline of contributions given below.

Resource-aware parametric FJ reduction. Given a resource-aware type system, we would
like to prove that typing overapproximates the use of resources. However, resource usage is
not modeled in standard operational semantics; for this reason, [8] proposed an instrumented
operational semantics1 and proved a soundness theorem showing correct accounting of resource
usage. Inspired by this work, we define a resource-aware semantics for FJ, parametric on an
arbitrary grade algebra, which tracks how much each available resource is consumed at each
step, and is stuck when the needed amount of a resource is not available. Differently from
[8], the semantics is given independently from the type system, as is the standard approach
in calculi. That is, the aim is also to provide a simple purely semantic model which takes
into account usage of resources. The resource-aware reduction is sound with respect to the
standard reduction, but clearly not complete, since a reduction step allowed in the standard
semantics could be impossible due to resource consumption.

Graded FJ. After defining the resource-aware calculus, we define the resource-aware type
system. That is, types are decorated with grades, allowing the programmer to specify how
a variable, a field or the result of a method should be used, e.g., how many times. Our
approach is novel with respect to that generally used in the literature on graded modal
types. Notably, in such works the production of types is T ::= . . . | T r , that is, grade
decorations can be arbitrarily nested. Correspondingly, the syntax includes an explicit box
construct, which transforms a term of type T into a term of type T r , through a promotion
rule which multiplies the context with r , and a corresponding unboxing mechanism. Here,
we prefer a much lighter approach, likely more convenient for Java-like languages, where
the syntax of terms is not affected. The production for types is T ::= C r , that is, all types
(here only class names) are (once) graded; in contexts, types are non-graded, and grades
are used as coeffects, leading to a judgment of shape x1 :r1 C1, . . . , xn :rn

Cn ⊢ e : C r .
Finally, since there is no boxing/unboxing, there is no explicit promotion rule, but different
grades can be assigned to an expression, assuming different coeffect contexts. We prove a
soundness theorem, stating that the graded type system overapproximates resource usage,
hence guaranteeing soundness, and, as a consequence, completeness with respect to standard
reduction for well-typed programs.

Combining grades. The next matter is how to make the language multi-graded, in the sense
that the programmer can use grades of different kinds, e.g., both natural numbers and privacy
levels. This poses the problem of defining the result when grades of different kinds should

1 Subsequently the model of [8] was used, in [21], to trace reference counting for uniqueness.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:3

be combined by the type system. This issue has been considered in the Granule language
[23], where, however, the available kinds of grades are fixed, hence can be combined in an
ad-hoc way. We would like to have much more flexibility, that is, to allow the programmer
to define grades to be added to those already available, very much in the same way a Java
programmer can define her/his own class of exceptions. To this end, we define a construction
which, given a family of grade algebras and a family of homomorphisms, leads to a unique
grade algebra of heterogeneous grades. This allows a modular approach, in the sense that the
developed meta-theory, including the proof of results, applies to this case as well.

Grades as Java expressions. Finally, we consider the issue of providing linguistic support
to specify the desired grade algebras and homomorphisms. Of course this could be done
by using an ad-hoc configuration language. However, we believe an interesting solution is
that the grade annotations could be written themselves in Java, again analogously to what
happens with exceptions. We describe how Java classes corresponding to grade algebras and
homomorphisms could be written, providing some examples.

A preliminary step towards the results described in the current paper is [3], which
proposes a first version of the type system with only coeffects (types are not graded), and
a rudimentary version of the construction described above where combining coeffects of
different kinds leads to the trivial coeffect.

In Section 2 we formally define grade algebras and related notions. In Section 3 we
define the parametric resource-aware reduction for FJ, and in Section 4 the parametric
resource-aware type system, proving its soundness. Section 5 defines the construction of
the grade algebra of heterogeneous grades, and Section 6 illustrates how to express grade
algebras and homomorphisms in Java. Finally, Section 7 surveys related work and Section 8
summarizes the contributions, and outlines future work. Omitted proofs can be found in [4].

2 Algebraic preliminaries

In this section we introduce the algebraic structures we will use throughout the paper. The
core of our work is grades, namely, annotations in the code expressing how or how much
resources are used by the program. As we will see, we need some operations to properly
combine grades in the resource-aware semantics and in the typing rules, hence we will assume
grades to form an algebraic structure called grade algebra defined below.

▶ Definition 1 (Grade algebra). A grade algebra is a tuple R = ⟨|R|, ⪯, +, ·, 0, 1⟩ such that:
⟨|R|, ⪯⟩ is a partially ordered set;
⟨|R|, +, 0⟩ is a commutative monoid;
⟨|R|, ·, 1⟩ is a monoid;

and the following axioms are satisfied:
r · (s + t) = r · s + r · t and (s + t) · r = s · r + t · r, for all r, s, t ∈ |R|;
r · 0 = 0 and 0 · r = 0, for all r ∈ |R|;
if r ⪯ r′ and s ⪯ s′ then r + s ⪯ r′ + s′ and r · s ⪯ r′ · s′, for all r, r′s, s′ ∈ |R|;
0 ⪯ r, for all r ∈ |R|.

Essentially, a grade algebra is an ordered semiring, that is, a semiring together with
a partial order relation on its carrier which makes addition and multiplication monotonic
with respect to it. We further require the zero of the semiring to be the least element
of the partial order. Our definition is a slight variant of others proposed in literature
[7, 15, 22, 2, 14, 1, 23, 8, 27]. In particular, the partial order models overapproximation in

ECOOP 2023

3:4 Multi-Graded Featherweight Java

the usage of resources, and allows flexibility, for instance we can have different usage in the
branches of an if-then-else construct. The fact that the zero is the least element means that,
in particular, overapproximation can add unused variables, making the calculus affine.

▶ Example 2.
1. The semiring Nat = ⟨N, ≤, +, ·, 0, 1⟩ of natural numbers with the natural order and usual

arithmetic operations is a grade algebra.
2. The affinity grade algebra ⟨{0, 1, ∞}, ≤, +, ·, 0, 1⟩} is obtained from the previous one by

identifying all natural numbers greater than 1.
3. The trivial semiring Triv, whose carrier is a singleton set |Triv| = {∞}, the partial

order is the equality, addition and multiplication are defined in the trivial way and
0Triv = 1Triv = ∞, is a grade algebra.

4. The semiring R∞
≥0 = ⟨[0, ∞], ≤, +, ·, 0, 1⟩ of extended non-negative real numbers with

usual order and operations, extended to ∞ in the expected way, is a grade algebra.
5. A distributive lattice L = ⟨|L|, ≤, ∨, ∧, ⊥, ⊤⟩, where ∨ and ∧ denote join and meet

operations and ⊥ and ⊤ the bottom and the top element, respectively, is a grade algebra.
6. Given grade algebras R = ⟨|R|, ⪯R, +R, ·R, 0R, 1R⟩ and S = ⟨|S |, ⪯S , +S , ·S , 0S , 1S⟩, the

product R ×S = ⟨{⟨r, s⟩ | r ∈ |R| ∧ s ∈ |S |}, ⪯, +, ·, ⟨0R, 0S⟩, ⟨1R, 1S⟩⟩, where operations
are the pairwise application of the operations for R and S , is a grade algebra.

7. Given a grade algebra R = ⟨|R|, ⪯R, +R, ·R, 0R, 1R⟩, as in [23] we define Ext R = ⟨|R| +
{∞}, ⪯, +, ·, 0R, 1R⟩ where ⪯ extends ⪯R by adding r ⪯ ∞ for all r ∈ |Ext R| and + and
· extend +R and ·R by r + ∞ = ∞ + r = ∞, for all r ∈ |Ext R|, and r ·∞ = ∞· r = ∞, for
all r ∈ |Ext R| with r ̸= 0R, and 0R · ∞ = ∞ · 0R = 0R. Then, Ext R is a grade algebra.

A homomorphism of grade algebras f : R → S is a monotone function f : ⟨|R|, ⪯R⟩ →
⟨|S |, ⪯S⟩ between the underlying partial orders, which preserves the semiring structure, that
is, satisfies the following equations:

f(0R) = 0S and f(r +R s) = f(r) +S f(s), for all r, s ∈ |R|;
f(1R) = 1S and f(r ·R s) = f(r) ·S f(s), for all r, s ∈ |R|.

Grade algebras and their homomorphisms form a category denoted by GrAlg .
Consider a grade algebra R. Then, we can define functions ζR : |R| → |Triv| and

ιR : |Nat| → |R| as follows:

ζR(r) = ∞ ιR(m) =
{

0R if m = 0
ιR(n) +R 1R if m = n + 1

Roughly, ζR maps every element of R to ∞, while ιR maps a natural number n to the
sum in R of n copies of 1R. We can easily check that both these functions give rise to
homomorphisms ζR : R → Triv and ιR : Nat → R. This is straightforward for ζR, while for ιR
follows by arithmetic induction. Then, we can prove the following result.

▶ Proposition 3. The following facts hold:
1. Nat is the initial object in GrAlg ;
2. Triv is the terminal object in GrAlg .

Another kind of objects we will work with are maps assigning grades to variables. These
inherit a nice algebraic structure from the one of the underlying grade algebra.

Assume a grade algebra R = ⟨|R|, ⪯, +, ·, 0, 1⟩ and a set X. The set of functions from
X to |R| carries a partially ordered commutative monoid structure given by the pointwise
extension of the additive structure of R. That is, given γ, γ′ : X → |R|, we define γ ⪯ γ′

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:5

iff, for all x ∈ X, γ(x) ⪯ γ′(x), and (γ + γ′)(x) = γ(x) + γ′(x) and 0̂(x) = 0, for all x ∈ X.
Moreover, we can define a scalar multiplication, combining elements of |R| and a function
γ : X → |R|; indeed, we set (r · γ)(x) = r · γ(x), for all r ∈ |R| and x ∈ X. It is easy to see
that this operation turns the partially ordered commutative monoid of functions from X to
|R| into a partially ordered R-module.

The support of a function γ : X → |R| is the set S(γ) = {x ∈ X | γ(x) ̸= 0}. Denote by
RX the set of functions γ : X → |R| with finite support. The partial order and operations
defined above can be safely restricted to RX , noting that S(0̂) = ∅, S(γ + γ′) ⊆ S(γ) ∪ S(γ′)
and S(r · γ) ⊆ S(γ). Therefore, RX carries a partially ordered R-module structure as well.

As we will see in Section 4, coeffect contexts are (representations of) functions in RX ,
with X set of variables. The fact that coeffect contexts form a module has been firstly noted
in [22, 27], and fully formalized in [5], which also shows a non-structural example. That is,
a module different from RX described above, used in the present paper and mostly in the
literature, is needed, where operations on coeffect contexts are not pointwise.

3 Resource-aware semantics

Standard operational models do not say anything about resources used by the computation.
To address this problem, we follow an approach similar to that in [8], that is, we define
an instrumented semantics which keeps track of resource usage, hence, in particular, it
gets stuck if some needed resource is insufficient. However, unlike [8], the definition of our
resource-aware semantics, though parameterized on a grade algebra, is given independently
of the graded type system, as is the standard approach in calculi; in the next section, we
will show how the graded type system actually overapproximates resource usage, hence
guarantees soundness. As will be detailed in the following, the resource-aware semantics
is non-deterministic, in the sense that, when a resource is needed, it can be consumed in
different ways; hence, soundness is soundness-may, meaning that there is a reduction which
does not get stuck because of standard typing errors or resource consumption.

Reference calculus. The calculus is a variant of FJ [19]. The syntax is reported in the top
section of Figure 1. We write es as a metavariable for e1, . . . , en, n ≥ 0, and analogously
for other sequences. We assume variables x , y, z , . . ., class names C , D, field names f , and
method names m. Types are distinct from class names to mean that they could be extended
to include other types, e.g., primitive types. In addition to the standard FJ constructs, we
have a block expression, consisting of a local variable declaration, and a body.

The semantics is defined differently from the original one; that is, reduction is defined on
configurations e|ρ, where ρ is an environment, a finite map from variables into values. In this
way, variable occurrences are replaced one at a time by their value in the environment, rather
than once and for all. This definition can be easily shown to be equivalent to the original
one, and is convenient for our aims since, in this presentation, free variables in an expression
can be naturally seen as resources which are consumed each time a variable occurrence is
used (replaced by its value) during execution. In other words, this semantics can be naturally
instrumented by adding grades expressing the “cost” of resource consumption, as we will do
in Figure 2. Apart from that, the rules are straightforward; only note that, in rules (invk)
and (block), parameters (including this) and local variable are renamed to fresh variables,
to avoid clashes. Single contextual rules are given, rather than defining evaluation contexts,
to be uniform with the instrumented version, where this presentation is more convenient.

ECOOP 2023

3:6 Multi-Graded Featherweight Java

e ::= x | e.f | new C(es) | e.m(es) | {T x = e; e′} expression
T ::= C type (class name)
v ::= new C(vs) value

(var) x|ρ → v|ρ ρ(x) = v

(field-access)
new C(v1, . . . , vn).fi|ρ → vi|ρ

fields(C) = T1 f1; . . . Tn fn;
i ∈ 1..n

(invk) v0.m(v1, . . . , vn)|ρ → e[y0/this][y1/x1 . . . yn/xn]|ρ′

v0 = new C(_)
mbody(C , m) = ⟨x1 . . . xn, e⟩
y0, . . . , yn ̸∈ dom(ρ)
ρ′ = ρ, y0 7→ v0, . . . , yn 7→ vn

(block) {C x = v; e}|ρ → e[y/x]|ρ, y 7→ v y ̸∈ dom(ρ)

(field-access-ctx)
e|ρ → e′|ρ′

e.f |ρ → e′.f |ρ′

(new-ctx)
ei|ρ → e′

i|ρ′

new C(v1, . . . , vi−1, ei, . . . , en)|ρ → new C(v1, . . . , vi−1, e′
i, . . . , en)|ρ′

(invk-rcv-ctx)
e0|ρ → e′

0|ρ′

e0.m(e1, . . . , en)|ρ → e′
0.m(e1, . . . , en)|ρ′

(invk-arg-ctx)
ei|ρ → e′

i|ρ′

v0.m(v1, . . . , vi−1, ei, . . . , en)|ρ → v0.m(v1, . . . , vi−1, e′
i, . . . , en)|ρ′

(block-ctx)
e1|ρ → e′

1|ρ′

{C x = e1; e2}|ρ → {C x = e′
1; e2}|ρ′

Figure 1 Syntax and standard reduction.

To be concise, the class table is abstractly modeled as follows, omitting its (standard)
syntax:

fields(C) gives, for each class C , the sequence T1 f1; . . . Tn fn; of its fields, assumed to
have distinct names, with their types;
mbody(C , m) gives, for each method m of class C , its parameters and body.

Instrumented reduction. This reduction uses grades, ranged over by r , s, t, assumed to
form a grade algebra, specifying a partial order ⪯, a sum +, a multiplication ·, and constants
0 and 1, satisfying some axioms, as detailed in Definition 1 of Section 2.

In order to keep track of usage of resources, parametrically on a given grade algebra, we
instrument reduction as follows.

The environment associates, to each resource (variable), besides its value, a grade modeling
its allowed usage.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:7

Moroever, the reduction relation is graded, that is, indexed by a grade r , meaning
that it aims at producing a value to be used (at most) r times, or, in more general
(non-quantitative) terms, to be used (at most) with grade r .
The grade of a variable in the environment decreases, each time the variable is used, of
the amount specified in the reduction grade2.
Of course, this can only happen if the current grade of the variable can be reduced of
such an amount; otherwise the reduction is stuck.

Before giving the formal definition, we show some simple examples of reductions, considering
the grade algebra of naturals of Example 2(1), tracking how many times a resource is used.

▶ Example 4. Assume the following classes:
class A {}
class Pair {A first; A second }

We write vPair as an abbreviation for new Pair(new A(), new A()).

{A a = [new A()]4; {Pair p = [new Pair(a, a)]2; new Pair(p.first, p.second)}}|∅ →1

{Pair p = [new Pair(a, a)]2; new Pair(p.first, p.second)}|a 7→ ⟨new A(), 4⟩ →1

{Pair p = [new Pair(new A(), a)]2; new Pair(p.first, p.second)}|a 7→ ⟨new A(), 2⟩ →1

{Pair p = [new Pair(new A(), new A())]2; new Pair(p.first, p.second)}|a 7→ ⟨new A(), 0⟩ →1

new Pair(p.first, p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 2⟩ →1

new Pair(vPair.first, p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 1⟩ →1

new Pair(new A(), p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 1⟩ →1

new Pair(new A(), vPair.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 0⟩ →1

vPair|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 0⟩

In the example, the top-level reduction is graded 1, meaning that a single value is
produced. Subterms are annotated with the grade of their reduction. For instance, the outer
initialization expression is annotated 4, meaning that its result can be used (at most) 4 times.
To lighten the notation, in this example we omit the index 1. A local variable introduced
in a block is added3 as another available resource in the environment, with the value and
the grade of its initialization expression; for instance, the outer local variable is added with
grade 4. When evaluating the inner initialization expression, which is reduced with grade 2,
each time the variable a is used its grade in the environment is decremented by 2.

It is important to notice that the annotations in subterms are not type annotations. Except
those in arguments of constructor invocation, explained below, annotations are only needed
to ensure that reduction of a subterm happens at each step with the same grade, see the
formal definition below. We plan to investigate in future work a big-step formulation which
would not need such an artifice. In the example above, we have chosen for the reduction of
subterms the minimum grade allowing to perform the top-level reduction. We could have
chosen any greater grade; instead, with a strictly lower grade, the reduction would be stuck.

As anticipated, in a constructor invocation new C([e1]r1
, . . . , [en]rn

), the annotation ri

plays a special role: intuitively, it specifies that the object to be constructed should contain
ri copies of that field. Formally, this is reflected by the reduction grade of the subterm ei,
which must be exactly r · ri, if r is the reduction grade of the object, specifying how many
copies of it the reduction is constructing. Correspondingly, an access to the field can be used
(at most) r · ri times. This is illustrated by the following variant of the previous example.

2 More precisely, the reduction grade acts as a lower bound for this amount, see comment to rule (var).
3 Modulo renaming to avoid clashes, omitted in the example for simplicity.

ECOOP 2023

3:8 Multi-Graded Featherweight Java

▶ Example 5. Consider the term

{A a = [new A()]4; {Pair p = [new Pair(a, a)]2; new Pair([p.first]2 , p.second)}}

As highlighted in grey, the first argument of the constructor invocation which is the body of
the inner block is now annotated with 2, meaning that the resulting object should have “two
copies” of the field. As a consequence, the expression p.first should be reduced with grade
2, as shown below, where vPair = new Pair(new A(), new A()), the first four reduction steps
are as in Example 4 and we explicitly write some annotations 1 for clarity

{A a = [new A()]4; {Pair p = [new Pair([a]1, a)]2; new Pair([[p]1.first]2 , p.second)}}|∅ →∗
1

new Pair([[p]1.first]2 , p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 2⟩ →1

new Pair([[vPair]1.first]2 , p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 1⟩ STUCK

Reduction of the subterm in grey, aiming at constructing a value (new A()) which can be
used twice, is stuck, since we cannot obtain two copies of new A() from the field first of
the object vPair. If we choose, instead, to reduce the occurrence of p to be used twice, then
we get the following reduction, where again we omit steps which are as before:

{A a = [new A()]4; {Pair p = [new Pair([a]1, a)]2; new Pair([[p]2.first]2 , p.second)}}|∅ →⋆
1

new Pair([[p]2.first]2 , p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 2⟩ →1

new Pair([[vPair]2.first]2 , p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 0⟩ →1

new Pair([new A()]2, p.second)|a 7→ ⟨new A(), 0⟩, p 7→ ⟨vPair, 0⟩ STUCK

In this case, the reduction is stuck since we consumed all the available copies of p to produce
two copies of the field first, so now we cannot reduce p.second. To obtain a non-stuck
reduction, we should choose to reduce the initialization expression of p with index 3, hence
that of a with index 6. To complete the construction of the Pair, that is, to get a non-stuck
reduction, we should have 3 copies of p and therefore 6 copies of a.

The formal definition of the instrumented semantics is given in Figure 2. To make the
notation lighter, we use the same metavariables of the standard semantics in Figure 1. As
explained above, reduction is defined on annotated terms. Notably, in each construct, the
subterms which are reduced in contextual rules are annotated, so that their reduction always
happens with a fixed grade.

In rule (var), which is the key rule where resources are consumed, a variable occurrence is
replaced by the associated value in the environment, and its grade s decreases to s′, burning
a non-zero amount r ′ of resources which has to be at least the reduction grade. The side
condition r ′ + s′ ⪯ s ensures that the initial grade of the variable suffices to cover both the
consumed grade and the residual grade. To show why the amount of resource consumption
should be non-zero, consider, e.g., the following variant of Example 4:

{A a = [new A()]4; {Pair p = [new Pair(a, a)]0; new Pair(a, a)}}|∅

The local variable p is never used in the body of the block, so it makes sense for its initialization
expression to be reduced with grade 0, since execution needs no copies of the result. Yet, the
expression needs to be reduced, and to produce its useless result two copies of a are consumed;
in a sense, they are wasted. However, such resource usage is tracked, whereas it would be
lost if decrementing by 0. Removing the non-zero requirement would lead to a variant of
resource-aware reduction where usage of resource which are useless to construct the final
result is not tracked.

In rule (field-access), the reduction grade should be (overapproximated by) the multi-
plication of the grade of the receiver with that of the field (constructor argument). Indeed,
the former specifies how many copies of the object we have and the latter how many copies

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:9

e ::= x | [e]r.f | new C([e1]r1
, . . . , [en]rn

) | (annotated) expression
[e0]r0

.m([e1]r1
, . . . , [en]rn

)es | {T x = [e]r; e′}

v ::= new C([v1]r1
, . . . , [vn]rn

) (annotated) value

(var) x|ρ, x 7→ ⟨v, s⟩ →r v|ρ, x 7→ ⟨v, s′⟩
r ⪯ r ′ ̸= 0
s′ + r ′ ⪯ s

(field-access) [new C([v1]r1
, . . . , [vn]rn

)]r .fi|ρ →s vi|ρ

fields(C) = T1 f1; . . . Tn fn;
i ∈ 1..n
s ⪯ r · ri

(invk) [v0]r0
.m([v1]r1

, . . . , [vn]rn
)|ρ →r e[y0/this][y1/x1 . . . yn/xn]|ρ′

v0 = new C(_)
mbody(C , m) = ⟨x1 . . . xn, e⟩
y0, . . . , yn ̸∈ dom(ρ)
ρ′ = ρ, y0 7→ ⟨v0, r0⟩, . . . , yn 7→ ⟨vn, rn⟩

(block) {C x = [v]r ; e}|ρ →s e[y/x]|ρ, y 7→ ⟨v, r⟩
y ̸∈ dom(ρ)

(field-access-ctx)
e|ρ →r e′|ρ′

[e]r .f |ρ →s [e′]r .f |ρ′

(new-ctx)
ei|ρ →r·ri e′

i|ρ′

new C([v1]r1
, . . . , [vi−1]ri−1

, [ei]ri
, . . . , [en]rn

)|ρ →r
new C([v1]r1

, . . . , [vi−1]ri−1
, [e′

i]ri
, . . . , [en]rn

)|ρ′

(invk-rcv-ctx)
e0|ρ →r0 e′

0|ρ′

[e0]r0
.m([e1]r1

, . . . , [en]rn
)|ρ →r [e′

0]r0
.m([e1]r1

, . . . , [en]rn
)|ρ′

(invk-arg-ctx)
ei|ρ →ri e′

i|ρ′

[e0]r0
.m([v1]r1

, . . . , [vi−1]ri−1
, [ei]ri

, . . . , [en]rn
)|ρ →r

[e0]r0
.m([v1]r1

, . . . , [vi−1]ri−1
, [e′

i]ri
, . . . , [en]rn

)|ρ′

(block-ctx)
e1|ρ →s e′

1|ρ′

{C x = [e1]s; e2}|ρ →r {C x = [e′
1]s; e2}|ρ′

Figure 2 Instrumented reduction.

of the field each of such objects has; thus, their product provides an upper bound to the
grade of the resulting value. Note that, in this way, some reductions could be forbidden. For
instance, taking the grade algebra of naturals, an access to a field whose value can be used 3
times, of an object reduced with grade 2, can be reduced with grade (at most) 6. Another
more significant example is given in the following, taking the grade algebra of privacy levels.

Rule (invk) adds each method parameter, including this, as available resource in the
environment, modulo renaming with a fresh variable to avoid clashes. The associated value
and grade are that of the corresponding argument. Rule (block) is exactly analogous, apart
that only one variable is added.

Coming to contextual rules, the reduction grade of the subterm is that of the corresponding
annotation, so that all steps happen with a fixed grade. The only exception is rule (new-ctx),
where, symmetrically to rule (field-access), the reduction grade for subterms should be
the multiplication of the reduction grade of the object with the annotation of the field
(constructor argument), capturing the intuition that the latter specifies the grade of the field
for a single copy of the object. For instance, taking the grade algebra of naturals, to obtain
an object which can be used twice, with a field which can be used 3 times, the value of such
field should be an object which can be used 6 times.

ECOOP 2023

3:10 Multi-Graded Featherweight Java

Note that, besides the standard typing errors such as looking for a missing method or
field, reduction graded r can get stuck since either rule (var) cannot be applied since the
side conditions do not hold, or rule (field-access) cannot be applied since the side condition
s ⪯ r · ri does not hold. Informally, either some resource (variable) is exhausted, that is, can
no longer be replaced by its value, or some field of some object cannot be extracted. It is also
important to note that the instrumented reduction is non-deterministic, due to rule (var).

In the grade algebra used in the previous example, grades model how many times resources
are used. However, grades can also model a non-quantitative4 knowledge, that is, track
possible modes in which a resource can be used, or, in other words, possible constraints on
how it could be used. A typical example of this situation are privacy levels, which can be
formalized similarly to what is done in [1], as described below.

▶ Example 6. Starting from any distributive semilattice lattice L, like in Example 2(5),
define L0 = ⟨|L0|, ≤0, ∨0, ∧0, 0, ⊤⟩, where |L0| = |L| + {0} with 0 ≤0 x, x ∨0 0 = 0 ∨0 x = x

and x ∧0 0 = 0 ∧0 x = 0, for all x ∈ |L|; on elements of |L| the order and the operations are
those of L. That is, we assume that the privacy levels form a distributive semilattice with
order representing “decreasing privacy”, and we add a grade 0 modeling “non-used”. The
simplest instance consists of just two privacy levels, that is, 0 ⪯ private ⪯ public. Sum is the
join, meaning that we obtain a privacy level which is less restrictive than both: for instance,
a variable which is used as public in a subterm, and as private in another, is overall used as
public. Multiplication is the meet, meaning that we obtain a privacy level which is more
restrictive than both: for instance, an access to a field whose value has been obtained in
public mode, of an object reduced in private mode, is reduced in private mode5. Note that
exactly the same structure could be used to model, e.g., rather than privacy levels, modifiers
readonly and mutable in an imperative setting, corresponding to forbid field assignment and
no restrictions, respectively. The following examples illustrates the use of such grade algebra.
We write priv and pub for short, and classes A and Pair are as in the previous examples.
1. Let e1 = {A y = [new A()]pub; {A x = [y]priv; x}} and p_ be either pub or priv, e1 starting

with the empty environment reduces with grade private as follows:

e1|∅ →priv {A x = [y]priv; x}|y 7→ ⟨new A(), pub⟩ with (block)
→priv {A x = [new A()]priv; x}|y 7→ ⟨new A(), p_⟩ with (block-ctx) and

y|y 7→ ⟨new A(), pub⟩ →priv new A()|y 7→ ⟨new A(), p_⟩
→priv x|y 7→ ⟨new A(), p_⟩, x 7→ ⟨new A(), priv⟩ with (block)
→priv new A()|y 7→ ⟨new A(), p_⟩, x 7→ ⟨new A(), priv⟩ with (var)

Instead reduction with grade public would be stuck since pub ̸⪯ priv and so

x|y 7→ ⟨new A(), p_⟩, x 7→ ⟨new A(), priv⟩ ̸→pub

Also the reduction of e2 = {A y = [new A()]priv; {A x = [y]pub; x}} with grade private

e2|∅ →priv {A x = [y]pub; x}|y 7→ ⟨new A(), priv⟩ with (Block)
̸→priv

would be stuck since y|y 7→ ⟨new A(), priv⟩ ̸→pub. Note that both e1 and e2 reduce to
new A() with the semantics of Figure 1.

4 Suck kind of applications are called informational in [1].
5 As in viewpoint adaptation [13], where permission to a field access can be restricted based on the

permission to the base object.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:11

2. Let e3 = {A x = [new A()]pub; new Pair([x]pub, [x]priv)}, e3 starting with the empty
environment reduces with grade public as follows:

e3|∅ →pub new Pair([x]pub, [x]priv)|x 7→ ⟨new A(), pub⟩ with (Block)
→pub new Pair([new A()]pub, [x]priv)|x 7→ ⟨new A(), p_⟩ with (New-Ctx) and

x|x 7→ ⟨new A(), pub⟩ →pub new A()|x 7→ ⟨new A(), p_⟩
→pub new Pair([new A()]pub, [new A()]priv)|x 7→ ⟨new A(), p_⟩ with (New-Ctx) and

x|x 7→ ⟨new A(), p_⟩ →priv new A()|x 7→ ⟨new A(), p_⟩

It is easy to see that also e3|∅ →∗
priv new Pair([new A()]pub, [new A()]priv)|x 7→

⟨new A(), p_⟩. So we have

[e3]r.f|∅ →∗
s [new Pair([new A()]pub, [new A()]priv)]r.f|x 7→ ⟨new A(), p_⟩

where f can be either first or second and r and s can be either pub or priv. Now, the
reductions of grade priv accessing either first or second produce the value of the fields

[new Pair([new A()]pub, [new A()]priv)]r.f|_ →priv new A()|_

However, looking at the reductions of grade pub, only

[new Pair([new A()]pub, [new A()]priv)]
pub

.first|_ →pub new A()|_

is not stuck. That is, we produce a value that can be used as public only if we get a public
field of a public object, whereas any value can be used as private.

We now state some simple properties of the semantics we will use to prove type soundness.
The former establishes that reduction does not remove variables from the environment, the
latter states that we can always decrease the grade of a reduction step.

▶ Proposition 7. If e|ρ →r e′|ρ′ then dom(ρ) ⊆ dom(ρ′) and for all x ∈ dom(ρ), ρ(x) = ⟨v, r⟩
implies ρ′(x) = ⟨v, s⟩ with s ⪯ r .

▶ Proposition 8. If e|ρ →r e′|ρ′ and s ⪯ r then e|ρ →s e′|ρ′.

We expect the instrumented reduction to be sound with respect to the standard reduction,
in the sense that by erasing annotations from an instrumented reduction sequence we get a
standard reduction sequence. This is formally stated below.

For any e expression, let us denote by ⌈e⌉ the expression obtained by erasing annotations,
defined in the obvious way, and analogously for environments, where grades associated to
variables are removed as well.

▶ Proposition 9 (Soundness of instrumented semantics).
If e|ρ →r e′|ρ′, then ⌈e⌉|⌈ρ⌉ → ⌈e′⌉|⌈ρ′⌉.

The converse does not hold, since a configuration could be annotated in a way that makes it
stuck; notably, some resource (variable) could be exhausted or some field of an object could
not be extracted. The graded type system in the next section will generate annotations
which ensure soundness, hence also completeness with respect to the standard reduction.

4 Graded Featherweight Java

Types (class names) are annotated with grades, as shown in Figure 3.
As anticipated at the end of Section 2, a coeffect context, of shape γ = x1 : r1, . . . , xn : rn,

where order is immaterial and xi ̸= xj for i ̸= j, represents a map from variables to grades
(called coeffects when used in this position) where only a finite number of variables have

ECOOP 2023

3:12 Multi-Graded Featherweight Java

e ::= x | e.f | new C(es) | e.m(es) | {T x = e; e′} expression
T ::= C r (graded) type
v ::= new C(vs) value

Figure 3 Syntax with grades.

non-zero coeffect. A (type-and-coeffect) context, of shape Γ = x1 :r1 C1, . . . , xn :rn Cn, with
analogous conventions, represents the pair of the standard type context x1 : C1 . . . , xn : Cn,
and the coeffect context x1 : r1, . . . , xn : rn. We write dom(Γ) for {x1, . . . , xn}.

As customary in type-and-coeffect systems, in typing rules contexts are combined by
means of some operations, which are, in turn, defined in terms of the corresponding operations
on coeffects (grades). More precisely, we define:

a partial order ⪯

∅ ⪯ ∅
x :s C , Γ ⪯ x :r C , ∆ if s ⪯ r and Γ ⪯ ∆

Γ ⪯ x :r C , ∆ if x ̸∈ dom(Γ) and Γ ⪯ ∆

a sum +

∅ + Γ = Γ
(x :s C , Γ) + (x :r C , ∆) = x :s+r C , (Γ + ∆)

(x :s C , Γ) + ∆ = x :s C , (Γ + ∆) if x /∈ dom(∆)

a scalar multiplication ·

s · ∅ = ∅ s · (x :r C , Γ) = x :s·r C , (s·Γ)

As the reader may notice, these operations on type-and-coeffect contexts can be equivalently
defined by lifting the corresponding operations on coeffect contexts, which are the pointwise
extension of those on coeffects, to handle types as well. In this step, the addition becomes
partial since a variable in the domain of both contexts is required to have the same type.

The type system relies on the type information extracted from the class table, which,
again to be concise, is abstractly modeled as follows:

the subtyping relation ≤ on class names is the reflexive and transitive closure of the
extends relation
mtype(C , m) gives, for each method m of class C , its enriched method type, where the
types of the parameters and of this have coeffect annotations.

Moreover, fields(C) gives now a sequence C r1
1 f1; . . . C rn

n fn;, meaning that, to construct an
object of type C , we need to provide, for each i ∈ 1..n, a value with a grade at least ri.

The subtyping relation on graded types is defined as follows:

C r ≤ Ds iff C ≤ D and s ⪯ r

That is, a graded type is a subtype of another if the class is a heir class and the grade is more
constraining. For instance, taking the affinity grade algebra of Example 2(2), an invocation
of a method with return type C ω can be used in a context where a type C 1 is required, e.g.,
to initialize a C 1 variable.

The typing judgment has shape Γ ⊢ e : T ⇝ e′, where Γ is a type-and-coeffect context,
and e′ is an annotated expression, as defined in Figure 2. That is, typechecking generates
annotations in code such that evaluation cannot get stuck, as will be formally expressed and
proved in the following.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:13

(t-sub)
Γ ⊢ e : T ⇝ e′

Γ′ ⊢ e : T ′ ⇝ e′
Γ ⪯ Γ′

T ≤ T ′ (t-var) x :r C ⊢ x : C r ⇝ x
r ̸= 0

(t-field-access)
Γ ⊢ e : C r ⇝ e′

Γ ⊢ e.fi : C r·ri

i ⇝ [e′]r .fi
fields(C) = C r1

1 f1; . . . C rn
n fn;

(t-new)
Γi ⊢ ei : C r·ri

i ⇝ e′
i ∀i ∈ 1..n

Γ1 + . . . + Γn ⊢ new C(e1, . . . , en) : C r ⇝
new C([e′

1]r1
, . . . , [e′

n]rn
)

fields(C) = C r1
1 f1; . . . C rn

n fn;

(t-invk)
Γ0 ⊢ e0 : C r0 ⇝ e′

0 Γi ⊢ ei : C ri

i ⇝ e′
i ∀1 ∈ 1..n

Γ0 + . . . + Γn ⊢ e0.m(e1, . . . , en) : T ⇝
[e′

0]r0
.m([e1]r1

, . . . , [en]rn
)

mtype(C , m) = r0, C r1
1 . . . C rn

n → T

(t-block)
Γ1 ⊢ e1 : C r ⇝ e′

1 Γ2, x :r C ⊢ e2 : T ⇝ e′
2

Γ1 + Γ2 ⊢ {C r x = e1; e2} : T ⇝ {C x = [e′
1]r ; e′

2}

(t-env)
⊢ vi : C ri

i ⇝ v′
i ∀i ∈ 1..n

Γ ⊢ ρ⇝ ρ′

Γ = x1 :r1 C1, . . . , xn :rn Cn

ρ = x1 7→ ⟨v1, r1⟩, . . . , xn 7→ ⟨vn, rn⟩
ρ′ = x1 7→ ⟨v′

1, r1⟩, . . . , xn 7→ ⟨v′
n, rn⟩

(t-conf)
∆ ⊢ e : T ⇝ e′ Γ ⊢ ρ⇝ ρ′

Γ ⊢ e|ρ : T ⇝ e′|ρ′ ∆ ⪯ Γ

Figure 4 Graded type system.

In a well-typed class table, method bodies are expected to conform to method types.
That is, mtype(C , m) and mbody(C , m) should be either both undefined or both defined with
the same number of parameters. In the latter case, the method body should be well-typed
with respect to the method type, notably by typechecking the method body we should get
coeffects which are (overapproximated by) those specified in the annotations. Formally, if
mbody(C , m) = ⟨x1 . . . xn, e⟩, and mtype(C , m) = r0, C r1

1 . . . C rn
n → T , then the following

condition must hold:

(t-meth) this :r0 C , x1 :r1 C1, . . . , xn :rn
Cn ⊢ e : T ⇝ e′

Moreover, we assume the standard coherence conditions on the class table with respect to
inheritance. That is, if C ≤ D, then fields(D) is a prefix of fields(C) and, if mtype(C , m) =
r0, C r1

1 . . . C rn
n → T , then mtype(D, m) = r0, C r1

1 . . . C rn
n → T ′ with T ′ ≤ T .

In Figure 4, we describe the typing rules, which are parameterized on the underlying
grade algebra.

In rule (t-sub), both the coeffect context and the (graded) type can be made more general.
This means that, on one hand, variables can get less constraining coeffects. For instance,
assuming again affinity coeffects, an expression which can be typechecked assuming to use
a given variable at most once (coeffect 1) can be typechecked as well with no constraints
(coeffect ω). On the other hand, recalling that grades are contravariant in types, an expression
can get a more constraining grade. For instance, an expression of grade ω can be used where
a grade 1 is required.

If we take r = 1, then rule (t-var) is analogous to the standard rule for variable in
coeffect systems, where the coeffect context is the map where the given variable is used
once, and no other is used. Here, more generally, the variable can get an arbitrary grade r ,
provided that it gets the same grade in the context. However, the use of the variable cannot
be just discarded, as expressed by the side condition r ̸= 0.

In rule (t-field-access), the grade of the field is multiplied by the grade of the receiver.
As already mentioned, this is a form of viewpoint adaptation [13]. For instance, using affinity
grades, a field graded ω of an object graded 1 can be used at most once.

ECOOP 2023

3:14 Multi-Graded Featherweight Java

In rule (t-new), analogously to rule (t-var), the constructor invocation can get an
arbitrary grade r , provided that the grades of the fields are multiplied by the same grade.
Coeffects of the subterms are summed, as customary in type-and-coeffect systems.

In rule (t-invk), the coeffects of the arguments are summed as well. The rule uses the
function mtype on the class table, which, given a class name and a method name, returns
its parameter and return (graded) types. For the implicit parameter this only the grade is
specified. Note that the grades of the parameters are used in two different ways: as (part of)
types, when typechecking the arguments; as coeffects, when typechecking the method body.

In rule (t-block), the coeffects of the initialization expression are summed with those of
the body, excluding the local variable. Analogously to method parameters, the grade of the
local variable is both used as (part of) type, when typechecking the initialization expression,
and as coeffect, when typechecking the body.

Finally, we have straightforward rules for typing environments and configurations. Values
in the environment are assumed to be closed, since we are in a call-by-value calculus. Also
note that, in the judgment for environments and configurations, since no subsumption rule is
available, variables in the context are exactly those in the domain of the environment, which
are a superset of those used in the expression.

▶ Example 10. We show a simple example illustrating the use of graded types, assuming
affinity grades. We write in square brackets the grade of the implicit this parameter. The
class Pair declares three versions of the getter for the first field, which differ for the grade
of the result: either 0, meaning that the result of the method cannot be used, or 1, meaning
it can be used at most once, or ω, meaning it can be used with no constraints. Note that the
first version, clearly useless in a functional calculus, could make sense adding effects, e.g. in
an imperative calculus, playing a role similar to that of void.
class Pair { A1 first; A1 second ;

A0 getFirstZero () [1]{ this.first}
A1 getFirstAffine () [1]{ this.first}
Aω getFirst () [1]{ this. first}

}

The coeffect of this is 1 in all versions, and it is actually used once in the bodies. The
occurrence of this in the bodies can get any non-zero grade thanks to rule (t-var), and
fields are graded 1, meaning that a field access does not affect the grade of the receiver, hence
the three bodies can get any non-zero grade as well, so they are well-typed with respect to
the grade in the method return type.

In the client code below, a call of the getter is assigned to a local variable of the same
grade, which is then used consistently with such grade.
Pair1 p = ...

{A0 a = p. getFirstZero (); new Pair(new A(), new A())}
{A1 a = p. getFirstAffine (); new Pair(a,new A())}
{Aω a = p. getFirst (); new Pair(a,a)}

The following blocks are, instead, ill-typed, for two different reasons.
{A1 a = p. getFirst (); new Pair(a,a)}
{Aω a = p. getFirstAffine (); new Pair(a,a)}

In the first one, the initialization is correct, by subsumption, since we use an expression of
a less constrained grade. However, the variable is then used in a way which is not compatible
with its grade. In the second one, instead, the variable is used consistently with its grade,
but the initialization is ill-typed, since we use an expression of a more constrained grade.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:15

Finally, note that the coeffect of this could be safely changed to be ω in the three methods,
providing an overapproximated information; in this case, however, the three invocations in
the client code would be wrong, since the receiver p is required to be used at most once.

▶ Example 11. Consider the following source (that is, non-annotated) version of the
expression in Example 5.
{Apublic y = new A(); {Aprivate x = y; x}}

The private variable x is initialized with the public expression/variable y. The block expression
has type Aprivate as the following type derivation shows.

(t-block)

(t-new)
⊢ new A() : Apub D

⊢ {Apub y = new A(); {Apriv x = y; x}} : Apriv

where D is the following derivation

(t-block)

(t-sub)

(t-var)
y :pub A ⊢ y : Apub

y :pub A ⊢ y : Apriv (t-var)
y :pub A, x :priv A ⊢ x : Apriv

y :pub A ⊢ {Apriv x = y; x} : Apriv

On the other hand, initializing a public variable with a private expression as in
{Aprivate y = new A(); {Apublic x = y; x}}

is not possible, as expected, since y :priv A ̸⊢ y : Apub .
Consider now the class Pair with a private field and a public one.

class B { Apublic f1; Aprivate f2; }

The expression e
{Apublic x = new A(); new B(x,x)}

can be given type Pairpublic as follows:

(t-block)

(t-new)
⊢ new A() : Apub (t-new)

(t-var)
x :pub A ⊢ x : Apub (t-sub)

(t-var)
x :pub A ⊢ x : Apub

x :pub A ⊢ x : Apriv

x :pub A ⊢ new Pair(x, x) : Pairpub

⊢ {Apub x = new A(); new Pair(x, x)} : Pairpub

By (t-sub) we can also derive ⊢ e : Pairpriv and so we get

(t-field)
⊢ e : Pairpriv

⊢ e.first : Apriv (t-field)
⊢ e : Pairpub

⊢ e.second : Apriv

that is, accessing a public field of a private expression we get a private result as well as
accessing a private field of a public expression.
Also note that the following expression e′

{Aprivate x = new A(); new B(x,x)}

can be given only type Pairprivate by

(t-block)

(t-new) ⊢ new A() : Apriv (t-new)

(t-var)
x :priv A ⊢ x : Apriv (t-var)

x :priv A ⊢ x : Apriv

x :priv A ⊢ new Pair(x, x) : Pairpriv

⊢ {Apriv x = new A(); new Pair(x, x)} : Pairpriv

We cannot derive ⊢ e′ : Pairpub, since the grade of first is public and (t-new) would
require x :priv A ⊢ x : Apub·pub, which does not hold.

ECOOP 2023

3:16 Multi-Graded Featherweight Java

(t-sub)
Γ ⊢a e : T

Γ′ ⊢a e : T ′
Γ ⪯ Γ′

T ≤ T ′ (t-var) x :r C ⊢a x : C r r ̸= 0

(t-field-access)
Γ ⊢a e : C r

Γ ⊢a [e]r.fi : C r·ri
i

fields(C) = C r1
1 f1; . . . C rn

n fn;

(t-new)
Γi ⊢a ei : C r·ri

i ∀i ∈ 1..n

Γ1 + . . . + Γn ⊢a new C([e1]r1
, . . . , [en]rn

) : C r fields(C) = C r1
1 f1; . . . C rn

n fn;

(t-invk)
Γ0 ⊢a e0 : C r0 Γi ⊢a ei : C ri

i ∀1 ∈ 1..n

Γ0 + . . . + Γn ⊢a [e0]r0
.m([e1]r1

, . . . , [en]rn
) : T mtype(C , m) = r0, C r1

1 . . . C rn
n → T

(t-block)
Γ1 ⊢a e1 : C r Γ2, x :r C ⊢a e2 : T
Γ1 + Γ2 ⊢a {C x = [e1]r; e2} : T

(t-env)
⊢a vi : C ri

i ∀i ∈ 1..n

Γ ⊢a ρ

Γ = x1 :r1 C1, . . . , xn :rn Cn

ρ = x1 7→ ⟨v1, r1⟩, . . . , xn 7→ ⟨vn, rn⟩

(t-conf)
∆ ⊢a e : T Γ ⊢a ρ

Γ ⊢a e|ρ : T ∆ ⪯ Γ

Figure 5 Graded type system for annotated syntax.

Resource-aware soundness. We state that the graded type system is sound with respect
to the resource-aware semantics. In other words, the graded type system prevents both
standard typing errors, such as invoking a missing field or method, and resource-usage errors,
such as requiring a resource which is exhausted (cannot be used in the needed way).

In order to state and prove a soundness theorem, we need to introduce a (straightforward)
typing judgment ⊢a for annotated expressions, environments and configurations. The typing
rules are reported in Figure 5.

Recall that ⌈_⌉ denotes erasing annotations. It is easy to see that an annotated expression
is well-typed if and only if it is produced by the type system:

▶ Proposition 12. Γ ⊢ e : T ⇝ e′ if and only if ⌈e′⌉ = e and Γ ⊢a e′ : T .

A similar property holds for environments and configurations.
The main result is the following resource-aware progress theorem.

▶ Theorem 13 (Resource-aware progress). If Γ ⊢a e|ρ : C r then either e is a value or
e|ρ →r e′|ρ′ and Γ′ ⊢a e′|ρ′ : C r with dom(Γ) ⊆ dom(Γ′) and Γ′ ⪯ Γ, ∆.

When reduction is non-deterministic, we can distinguish two flavours of soundness,
soundness-must meaning that no computation can be stuck, and soundness-may, meaning
that at least one computation is not stuck. The terminology of may and must properties is
very general and comes originally from [12]; the specific names soundness-may and soundness-
must were introduced in [10, 9] in the context of big-step semantics. In our case, graded
reduction is non-deterministic since, as discussed before, the rule (var) could be instantiated
in different ways, possibly consuming the resource more than necessary. However, we expect
that, for a well-typed configuration, there is at least one computation which is not stuck,
hence a soundness-may result. Soundness-may can be proved by a theorem like the one
above, which can be seen as a subject-reduction-may result, including standard progress.
In our case, if the configuration is well-typed, that is, annotations have been generated by
the type system, there is a step which leads, in turn, to a well-typed configuration. More in
detail, the type is preserved, resources initially available may have reduced grades, and other
available resources may be added.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:17

Theorem 13 is proved as a special case of the following more general result, which makes
explicit the invariant needed to carry out the induction. Indeed, by looking at the reduction
rules, we can see that computational ones either add new variables to the environment or
reduce the grade of a variable of some amount that depends on the grade of the reduction. In
the latter case, the amount can be arbitrarily chosen with the only restrictions that it is non
zero and at least the grade of the reduction. However, to prove progress, we not only have to
prove that a reduction can be done, but, if the reduction is done in a context, say evaluating
the argument of a constructor, then after such reduction we still have enough resources to go
on with the reduction, that is, to evaluate the rest of the context (the other arguments of the
constructor). This means that the resulting environment has enough resources to type the
whole context (the constructor call). For this reason, in the statement of the theorem that
follows, we add to the assumption of Theorem 13 a typing context Θ that would contain
the information on the amount of resources that we want to preserve during the reduction
(see Item 4 of the theorem). This allows us to choose the appropriate grade to be kept when
reducing a variable and to reconstruct a typing derivation when using contextual reduction
rules. For the expression at the top level, as we see from the proof of Theorem 13, Θ is
simply 0 for all variables in the typing context in which the expression is typed.

▶ Theorem 14. If ∆ ⊢a e : C r and Γ ⊢a ρ and ∆ + Θ ⪯ Γ and dom(∆) ⊆ dom(Θ) and e is
not a value, then there are e′, ρ′, ∆′, Γ′ and Θ′ such that
1. e|ρ →r e′|ρ′ and
2. ∆′ ⊢a e′ : C r with ∆′ ⪯ ∆, Θ′ and
3. Γ′ ⊢a ρ′ with Γ′ ⪯ Γ, Θ′ and
4. ∆′ + Θ ⪯ Γ′.

Finally, the following corollary states both subject-reduction for the standard semantics,
that is, type and coeffects are preserved, and completeness of the instrumented semantics,
that is, for well-typed configurations, every reduction step in the usual semantics can be
simulated by an appropriate step in the instrumented semantics.

▶ Corollary 15 (Subject reduction). If Γ1 ⊢ e1|ρ1 : C r ⇝ e′
1|ρ′

1 and e1|ρ1 → e2|ρ2, then
Γ2 ⊢ e2|ρ2 : C r ⇝ e′

2|ρ′
2 with dom(Γ1) ⊆ dom(Γ2) and Γ2 ⪯ Γ1, ∆, and e′

1|ρ′
1 →r e′

2|ρ′
2.

Proof. By Proposition 12 we get Γ1 ⊢a e′
1|ρ′

1 : C r and, by Theorem 13, e′
1|ρ′

1 →r e′
2|ρ′

2
and Γ2 ⊢a e′

2|ρ′
2 : C r with dom(Γ1) ⊆ dom(Γ2) and Γ2 ⪯ Γ1, ∆. By Proposition 12, we

get Γ2 ⊢ ⌈e′
2⌉|⌈ρ′

2⌉ : C r ⇝ e′
2|ρ′

2 and by Proposition 9, we get e1|ρ1 → ⌈e′
2⌉|⌈ρ′

2⌉. By the
determinism of the standard semantics we have ⌈e′

2⌉ = e2 and ⌈ρ′
2⌉ = ρ2, hence the thesis. ◀

5 Combining grades

As we have seen, each grade algebra encodes a specific notion of resource usage. However, a
program may need different notions of usage for different resources or different pieces of code
(e.g., different classes). Hence, one needs to use several grade algebras at the same time, that
is, a family (Hk)k∈K of grade algebras6 indexed over a set K of grade kinds. We assume grade
kinds to always include N and T, with HN and HT the grade algebras of natural numbers
and trivial, respectively, as in Example 2, since they play a special role, as will be shown.

6 H stands for “heterogeneous”.

ECOOP 2023

3:18 Multi-Graded Featherweight Java

▶ Example 16. Assume to use, in a program, grade kinds N, A, P, PP, AP, and T, where:
HA is the affinity grade algebra, as in Example 2(3).
HP and HPP are two different instantiations of the grade algebra of privacy levels, as in
Example 6; namely, in HP there are only two privacy levels public and private, whereas in
HPP we have privacy levels a, b, c, d, with a ⪯ b ⪯ d and a ⪯ c ⪯ d.
Finally, HAP is HA × HP, as in Example 2(7), tracking simultaneously affinity and privacy.

We want to make grades of all such kinds simultaneously available to the programmer. In
order to achieve this, we should specify how to combine grades of different kinds through
their distinctive operators; for instance, an object with grade of kind k could have a field
with grade of kind µ, hence a field access should be graded by their multiplication.

In other words, we need to construct, starting from the family (Hk)k∈K , a single grade
algebra of heterogeneous grades. In this way, the meta-theory developed in previous sections
for an arbitrary grade algebra applies also to the case when several grade algebras are used
at the same time. Note that this construction is necessary since we do not want available
grades to be fixed, as in [23]; rather, the programmer should be allowed to define grades for
a specific application, using some linguistic support which could be the language itself, as
will be described in Section 6.

Direct refinement. The obvious approach is to define heterogeneous grades as pairs ⟨k, r⟩
where k ∈ K, and r ∈ Hk . Concerning operators, in previous work, handling coeffects rather
than grades, [3] we took the simplest choice, that is, combining (by either sum or product)
grades of different kinds always returns ⟨∞, T⟩, meaning, in a sense, that we “do not know”
how the combination should be done. The only exception are grades of kind N; indeed, since
the corresponding grade algebra is initial, we know that, for any kind k, there is a unique
grade homomorphism ιk from Nat to Hk , hence, to combine ⟨n, N⟩ with ⟨r , k⟩, we can map
n into a grade of kind k through such homomorphism, and then use the operator of kind
k. In this paper, we generalize this idea, by allowing the programmer to specify, for each
pair of kinds k and µ, a uniquely determined kind k ⊕ µ and two uniquely determined grade
homomorphisms lhH

κ,µ : Hκ → Hκ⊕µ, and rhH
κ,µ : Hµ → Hκ⊕µ. In this way, to combine ⟨κ, r⟩

and ⟨µ, s⟩, we can map both in grades of kind k ⊕ µ, and then use the operator of kind k ⊕ µ.
The operator ⊕ and the family of unique homomorphisms, one for each pair of kinds,

can be specified by the programmer, in a minimal and easy to check way, by defining a
(direct) refinement relation ⊏1, as defined below, and a family of grade homomorphisms
Hκ,µ : Hκ → Hµ, indexed over pairs κ ⊏1 µ.

Given a relation ⇒ on kinds, a path from k0 to kn is a sequence k0 . . . kn such as ki ⇒ ki+1,
for all i ∈ 1..n − 1. We say that µ is an ancestor of κ if there is a path from κ to µ.

Then, a (direct) refinement relation is a relation ⊏1 on K \ {N, T} such as the following
conditions hold:
1. for each κ, µ, there exists at most one path from κ to µ

2. for each κ, µ with a common ancestor, there is a least common ancestor, denoted κ ⊕ µ;
that is, such that, for any common ancestor ν, ν is an ancestor of k ⊕ µ.

Note that, thanks to requirement (1), requirement (2) means that the unique path, e.g., from
κ to ν, consists of a unique path from κ to k ⊕ µ, and then a unique path from k ⊕ µ to ν.

Given a direct refinement relation ⊏1, we can derive the following structure on K:
⊏1 can be extended to a partial order ⊑ on K, by taking the reflexive and transitive
closure of ⊏1 and adding N ⊑ κ ⊑ T for all κ ∈ K.
⊕ can be extended to all pairs, by defining κ⊕µ = T if κ and µ have no common ancestor.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:19

T

A P

AP PP

N

Figure 6 Direct refinement diagram.

Altogether, we obtain an instance of a structure called grade signature, as will be detailed in
Definition 18. Moreover, given a ⊏1-family of homomorphisms:

they can be extended, by composition7, to all pairs of grades ⟨κ, µ⟩ ∈ K \ {N, T} such
that there is a path from κ to µ; since this path is unique, the resulting homomorphism
is uniquely defined
for each kind κ, we add the unique homomorphisms from Nat and to Triv.

Altogether, besides a grade algebra for each kind, we get a grade homomophism for each pair
⟨κ, µ⟩ such that κ ⊑ µ. That is, we obtain an instance of a structure called heterogeneous
grade algebra, as will be detailed in Definition 19.

Thus, as desired, combining grades of kinds ⟨κ, r⟩ and ⟨µ, s⟩ can be defined by mapping
both r and s into grades of kind κ ⊕ µ, and then the operator of kind κ ⊕ µ is applied.

The fact that in this way we actually obtain a grade algebra, that is, all required axioms
are satisfied, is proved in the next subsection on the more general case of an arbitrary grade
signature and heterogeneous grade algebra.

Note the special role played by the grade kinds N and T, with their corresponding
grade algebras. The former turns out to be the minimal kind required in a grade signature
(Definition 18); this is important since the zero and one of the resulting grade algebra (hence
the zero and one used in the type system) will be those of this kind. The latter, as shown
above, is used as default common ancestor for pairs of kinds which do not have one.

▶ Example 17. Coming back to our example, a programmer could define the direct refinement
relation and the corresponding homomorphisms as follows:

PP ⊏1 P, and the homomorphism maps, e.g., a, b, and c into private and d into public
AP ⊏1 A, and AP ⊏1 P, and the homomorphisms are the projections.

Thus, for instance, the grade ⟨AP, ⟨ω, private⟩⟩, meaning that we can use the resource an
arbitrary number of times in private mode, and ⟨PP, d⟩, meaning that we can use the resource
in d mode, gives private. Indeed, both grades are mapped into the grade algebra of privacy
levels 0 ⪯ private ⪯ public; for the former, the information about the affinity is lost, whereas
for the second the privacy level d is mapped into public; finally, we get private = private ·public.

The direct refinement relation is pictorially shown in Figure 6. Dotted arrows denote
(some of) the order relations added for N and T.

Note that specifying the grade signature and the heterogeneous grade algebra indirectly,
by means of the direct refinement relation and the corresponding homomorphisms, has a
fundamental advantage: the semantic check that, for each κ, µ, we can map grades of grade
κ into grades of kind µ in a unique way (that is, there is at most one homomorphism), which
would require checking the equivalence of function definitions, is replaced by the checks (1)

7 Note that in this way we obtain, in particular, all the identities.

ECOOP 2023

3:20 Multi-Graded Featherweight Java

and (2) in the definition of direct refinement, which are purely syntactic and can be easily
implemented in a type system (a simple stronger condition is to impose that each kind has a
unique parent in the direct refinement relation, as it is for single inheritance).

In Section 6, we will see how to express both grade algebras and homomorphisms in Java;
roughly, both will be represented by classes implementing a suitable generic interface.

A general construction. We provide a construction that, starting from a family of grade
algebras with a suitable structure, yields a unique grade algebra summarising the whole
family. As a consequence, the meta-theory developed in previous sections for a single grade
algebra applies also to the case when several grade algebras are used at the same time.

To develop this construction, we use simple and standard categorical tools, referring
to [20, 26] for more details. Given a category C , we denote by C0 the collection of objects
in C and we say that C is small when C0 is a set. Recall that any partially ordered set
P = ⟨P0, ⊑⟩ can be seen as a small category where objects are the elements of P0 and, for
all x, y ∈ P0, there is an arrow x → y iff x ⊑ y; hence, for every pair of objects in P0, there
is at most one arrow between them, and the only isomorphisms are the identities.

▶ Definition 18. A grade signature S is a partially ordered set with finite suprema, that is,
it consists of the following data:

a partially ordered set ⟨S0, ⊑⟩;
a function ⊕ : S0 ×S0 → S0 monotone in both arguments and such that for all κ, µ, ν ∈ S0,
κ ⊕ µ ⊑ ν iff κ ⊑ ν and µ ⊑ ν;
a distinguished object I ∈ S0 such that I ⊑ κ, for all κ ∈ S0.

Intuitively, objects in S represent the kinds of grades one wants to work with, while the
arrows, namely, the order relation, model a refinement between such kinds: κ ⊑ µ means
that the kind κ is more specific than the kind µ. The operation ⊕ combines two kinds to
produce the most specific kind generalising both. Finally, the kind I is the most specific one.

It is easy to check that the following properties hold for all κ, µ, ν ∈ S0:

(κ ⊕ µ) ⊕ ν = κ ⊕ (µ ⊕ ν) κ ⊕ κ = κ

κ ⊕ µ = µ ⊕ κ κ ⊕ I = κ

namely, ⟨S0, ⊕, I⟩ is a commutative idempotent monoid.

▶ Definition 19. A heterogeneous grade algebra over the grade signature S is just a functor
H : S → GrAlg . That is, it consists of a grade algebra H(κ), written also Hκ, for every
kind κ ∈ S0, and a grade algebra homomorphism Hκ,µ : Hκ → Hµ for every arrow κ ⊑ µ,
respecting composition and identities8 , that is, κ ⊑ µ ⊑ ν implies Hκ,ν = Hµ,ν ◦ Hκ,µ and
Hκ,κ = idHκ

.

Essentially, the homomorphisms Hκ,µ realise the refinement κ ⊑ µ, transforming grades of
kind κ into grades of kind µ, preserving the grade algebra structure.

Observe that the arrows I ⊑ κ and κ ⊑ κ⊕µ and µ ⊑ κ⊕µ in S give rise to the following
grade algebra homomorphisms:

inH
κ = HI,κ : HI → Hκ lhH

κ,µ = Hκ,κ⊕µ : Hκ → Hκ⊕µ rhH
κ,µ = Hµ,κ⊕µ : Hµ → Hκ⊕µ

8 The notation Hκ,µ makes sense, since between κ and µ there is at most one arrow.

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:21

which provide us with a way to map grades of kind I into grades of any other kind, and
grades of kind κ and µ into grades of their composition κ ⊕ µ. By functoriality of H and
using the commutative idempotent monoid structure of S , we get the following equalities
hold in the category GrAlg , ensuring consistency of such transformations:

lhH
κ⊕µ,ν ◦ lhH

κ,µ = lhH
κ,µ⊕ν (1)

rhH
κ⊕µ,ν ◦ lhH

κ,µ = rhH
κ,µ⊕ν ◦ lhH

µ,ν (2)
lhH

κ,µ = rhH
µ,κ (3)

lhH
κ,κ = idHκ

(4)
lhH

κ,I = idHκ
(5)

rhH
κ,I = inH

κ (6)

In the following, we will show how to turn a heterogeneous grade algebra into a single
grade algebra. The procedure we will describe is based on a general construction due to
Grothendieck [17] defined on indexed categories.

Let us assume a grade signature S and a heterogeneous grade algebra H : S → GrAlg .
We consider the following set:

|G(H)| = {⟨κ, r⟩ | κ ∈ S0, r ∈ |Hκ|}

That is, elements of G(H) will be kinded grades, namely, pairs of a kind κ and a grade of
that kind. Note that this is indeed a set because S is small, that is, S0 is a set. Then, we
define a binary relation ⪯H on |G(H)| as follows:

⟨κ, r⟩ ⪯H ⟨µ, s⟩ iff κ ⊑ µ and Hκ,µ(r) ⪯µ s

that is, the kind κ must be more specific than the kind µ and, transforming r by Hκ,µ, we
obtain a grade of kind µ which is smaller than s. These data define a partially ordered set as
the following proposition shows.

▶ Proposition 20. ⟨|G(H)|, ⪯H⟩ is a partially ordered set.

The additive structure is given by a binary operation +H : |G(H)| × |G(H)| → |G(H)|
and an element 0H in |G(H)| defined as follows:

⟨κ, r⟩ +H ⟨µ, s⟩ = ⟨κ ⊕ µ, lhH
κ,µ(r) +κ⊕µ rhH

κ,µ(s)⟩ 0H = ⟨I, 0I⟩

That is, the addition of ⟨κ, r⟩ and ⟨µ, s⟩ is performed by first mapping r and s in the most
specific kind generalising both κ and µ, namely κ ⊕ µ, and then by summing them in the
grade algebra over that kind. The zero element is just the zero of the most specific kind.

▶ Proposition 21. ⟨|G(H)|, ⪯H , +H , 0H⟩ is an ordered commutative monoid.

▶ Proposition 22. 0H ⪯H ⟨κ, r⟩ for every ⟨κ, r⟩ ∈ |G(H)|.

Similarly, the multiplicative structure is given by a binary operation ·H : |G(H)| ×
|G(H)| → |G(H)| and an element 1H in |G(H)| defined as follows:

⟨κ, r⟩ ·H ⟨µ, s⟩ =

{
⟨κ ⊕ µ, lhH

κ,µ(r) ·κ⊕µ rhH
κ,µ(s)⟩ ⟨κ, r⟩ ̸= 0H and ⟨µ, s⟩ ̸= 0H

0H otherwise
1H = ⟨I, 1I⟩

Notice that the definitions above follow almost the same pattern as additive operations, but
we force that multiplying by 0H we get again 0H , which is a key property of grade algebras.

ECOOP 2023

3:22 Multi-Graded Featherweight Java

▶ Proposition 23. ⟨|G(H)|, ⪯H , ·H , 1H⟩ is an ordered monoid.

Altogether, we finally get the following result.

▶ Theorem 24. G(H) = ⟨|G(H)|, ⪯H , +H , ·H , 0H , 1H⟩ is a grade algebra.

6 Grades as Java expressions

In Section 4 we described how a Java-like language could be equipped with grades decorating
types, taken in an arbitrary grade algebra. Moreover, in Section 5, we have shown that such
grade algebra could have been obtained by composing, in a specific way determined by provid-
ing a minimal collection of grade homomorphisms, different grade algebras corresponding to
different ways to track usage of resources. In this section, we consider the issue of providing a
linguistic support to this aim. This could be done by using an ad-hoc configuration language,
however, we believe an interesting solution is that the grade annotations in types could be
written themselves in Java.

The key idea is that grade annotations are Java expressions of (classes implementing) a
predefined interface Grade, analogously to Java exceptions which are expressions of (subclasses
of) Exception. Moreover, grade homomorphisms are user-defined as well. Namely, a user
program can include:

pairs of grade classes and grade factory classes, each one modeling a grade algebra desired
for the specific application, with the factory class providing its constants
grade homomorphism classes, each one modeling a homomorphism from a grade algebra
(class) to another.

When typechecking code with grade annotations, the grades internally used by the type
system are those obtained by combining all the declared grade algebras (classes) by means
of the declared grade homomorphism classes, with the construction described in Section 5.
Operations on grades in the same grade algebra (class) are derived from user-defined methods,
as discussed more in detail below, whereas operations on heterogeneous grades are derived
as in the construction in Section 5.

Grade and grade factory classes. They are classes implementing the following generic
interfaces, respectively:

interface Grade <T extends Grade <T>> {
boolean leq(T x);
T sum(T x);
T mult(T x);

}
interface GradeFactory <T extends Grade <T>>{

T zero ();
T one ();

}

Grade homomorphism classes. They are classes implementing the following generic inter-
face:

interface GradeHom <T extends Grade <T>, R extends Grade <R>> {
R apply(T x);

}

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:23

Examples of grade classes and grade homomorphism classes can be found in [4].
Typechecking could then be performed in two steps:

1. Code defining grades, which is assumed to be standard (that is, non-graded) Java code,
is typechecked by the standard compiler.

2. Graded code (containing grade annotations written in Java) is typechecked accordingly
to the graded type system in Figure 4, where the underlying grade algebra is obtained by
composing, by the construction described in Section 5, the user-defined grade algebras
through the user-defined grade homomorphisms. Each user-defined algebra has as carrier
(set of grades) the Java values which are instances of the corresponding class, and the
operations are computed by executing user-defined methods in such class. For instance,
to compute the sum v1 + v2 of two grades which are values of a grade class, we evaluate
v1.sum(v2). Analogously to compute the result of a grade homomorphism.

For the whole process to work correctly, the following are responsabilities of the programmer:
Grade classes, grade factory classes, and grade homomorphism classes should satisfy
the axioms required for the structures they model, e.g., that the sum derived from sum
methods is commutative and associative. The same happens, for instance, in Haskell,
when one defines instances of Functor or Monad.
Code defining grades should be terminating, since, as described above, the second
typechecking step requires to execute code typechecked in the first step.
Finally, the relation among grade classes implicitly defined by declaring grade homo-
morphism classes should actually be a direct refinement relation, that is, should satisfy
the two requirements: (1) there exists at most one path between two grade classes, and
(2) each two grade classes with a common ancestor have a least common ancestor. These
are requirements easy to check, similarly to the check that inheritance is acyclic, or that
there are no diamonds in multiple inheritance.

An interesting point is that implementations could use in a parametric way auxiliary tools, not-
ably a termination checker to prevent divergence in methods implementing grade operations,
and/or a verifer to ensure that they provide the required properties.

7 Related work

The two contributions which have been more inspiring for the work in this paper are the
instrumented semantics proposed in [8] and the Granule language [23]. In [8], the authors
develop GraD, a graded dependent type system that includes functions, tensor products,
additive sums, and a unit type. Moreover, they define an instrumented operational semantics
which tracks usage of resources, and prove that the graded type system is sound with respect
to such instrumented semantics. In this paper, we take the same approach to define a
resource-aware semantics, parametric on an arbitrary grade algebra. However, differently
from [8], where such semantics is defined on typed terms, with the only aim to show the
role of the type system, the definition of our semantics is given independently from the type
system, as is the standard approach in calculi. That is, the aim is also to provide a simple
purely semantic model which takes into account usage of resources.

Granule [23] is a functional language equipped with graded modal types, where different
kinds of grades can be used at the same time, including naturals for exact usage, security
levels, intervals, infinity, and products of coeffects. We owe to Granule the idea of allowing
different kinds of grades to coexist, and the overall objective to exploit graded modal types in
a programming language. Concerning heterogeneous grades, in this paper we push forward
the Granule approach, since we do not want this grade algebra to be fixed, but extendable

ECOOP 2023

3:24 Multi-Graded Featherweight Java

by the programmer with user-defined grades. To this aim we define the construction in
Section 5. Concerning the design of a graded programming language, here we investigate the
object-oriented rather than functional paradigm, taking some solutions which seem more
adequate in that context, e.g., to have once-graded types and no boxing/unboxing. The
design and implementation of a real Java-like language are not objectives of the current paper;
however, we outline in Section 6 a possible interesting solution, where grade annotations are
written in the language itself.

Coming more in general to resource-aware type systems, coeffects were first introduced
by [24] and further analyzed by [25]. In particular, [25] develops a generic coeffect system
which augments the simply-typed λ-calculus with context annotations indexed by coeffect
shapes. The proposed framework is very abstract, and the authors focus only on two opposite
instances: structural (per-variable) and flat (whole context) coeffects, identified by specific
choices of context shapes.

Most of the subsequent literature on coeffects focuses on structural ones, for which there
is a clear algebraic description in terms of semirings. This was first noticed by [7], who
developed a framework for structural coeffects for a functional language. This approach is
inspired by a generalization of the exponential modality of linear logic, see, e.g., [6]. That
is, the distinction between linear and unrestricted variables of linear systems is generalized
to have variables decorated by coeffects, or grades, that determine how much they can
be used. In this setting, many advances have been made to combine coeffects with other
programming features, such as computational effects [14, 23, 11], dependent types [2, 8, 22],
and polymorphism [1]. Other graded type systems are explored in [2, 15, 1], also combining
effects and coeffects [14, 23]. In all these papers, the process of tracking usage through
grades is a powerful method of instrumenting type systems with analyses of irrelevance and
linearity that have practical benefits like erasure of irrelevant terms (resulting in speed-up)
and compiler optimizations (such as in-place update).

As already mentioned, [22] and [27] observed that contexts in a structural coeffect system
form a module over the semiring of grades, event though they do not use this structure in its
full generality, restricting themselves to free modules, that is, to structural coeffect systems.
Recently, [5] shows a significant non-structural instance, namely, a coeffect system to track
sharing in the imperative paradigm.

8 Conclusion

The contributions of the paper can be summarized as follows:
Resource-aware extension of FJ reduction, parametric on an arbitrary grade algebra.
Resource-aware extension of the type system, proved to ensure soundness-may of the
resource-aware semantics.
Formal construction which, given grades of different kinds and grade transformations
corresponding to a refinement relation among kinds (formally, a functor over a grade
signature), provides a grade algebra of heterogeneous grades.
Notion of direct refinement allowing a minimal and easy to check way to specify the
above functor.
Outline of a Java extension where grades are user-defined, and grade annotations are
written in the language itself.

As already noted, the key novel ideas in the contributions above are mostly independent from
the language. So, a first natural direction for future work is to explore their incarnation in
another paradigm, e.g., the functional one. That would include the definition of a parametric

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:25

resource-aware reduction independent from types, the design of a type system with once-
graded types, and possibly the design of user-defined grades in a functional language, e.g., in
Haskell by relying on the typeclass feature. Though the overall approach should still apply,
we expect the investigation to be significant due to the specific features of the paradigm.

The resource-aware operational semantics defined in this paper requires annotations in
subterms, with the only aim to fix their reduction grade in the reduction of the enclosing
term. As mentioned in Section 3, adopting a big-step style would clearly remove the need
of such technical artifice; only annotations in constructor subterms should be kept, since
they express a true constraint on the semantics. Thus, a very interesting alternative to be
studied is a big-step version of resource-aware semantics, allowing a more abstract and clean
presentation. With this choice, we should employ, to prove soundness-may, the techniques
recently introduced in [10, 9].

Coming back to Java-like languages, the FJ language considered in the paper does not
include imperative features. Adding mutable memory leads to many significant research
directions. First, besides the model presented in this paper, and in general in literature, where
“using a resource” means “replacing a variable with its value”, another view is possible where
the resource is the memory and “using” means “interacting with the memory”. Moreover, we
would like to investigate more in detail how to express by grade algebras forms of usages
which are typical of the imperative paradigm, such as the readonly modifier, and, more in
general, capabilities [18, 16].

References
1 Andreas Abel and Jean-Philippe Bernardy. A unified view of modalities in type systems.

Proceedings of ACM on Programming Languages, 4(ICFP):90:1–90:28, 2020. doi:10.1145/
3408972.

2 Robert Atkey. Syntax and semantics of quantitative type theory. In Anuj Dawar and Erich
Grädel, editors, IEEE Symposium on Logic in Computer Science, LICS 2018, pages 56–65.
ACM Press, 2018. doi:10.1145/3209108.3209189.

3 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca. A Java-like calculus
with user-defined coeffects. In Ugo Dal Lago and Daniele Gorla, editors, ICTCS’22 – Italian
Conference on Theoretical Computer Science, volume 3284 of CEUR Workshop Proceedings,
pages 66–78. CEUR-WS.org, 2022.

4 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca. Multi-graded
Featherweight Java. CoRR, 2023. URL: http://arxiv.org/abs/2302.07782.

5 Riccardo Bianchini, Francesco Dagnino, Paola Giannini, Elena Zucca, and Marco Servetto.
Coeffects for sharing and mutation. Proceedings of ACM on Programming Languages,
6(OOPSLA):870–898, 2022. doi:10.1145/3563319.

6 Flavien Breuvart and Michele Pagani. Modelling coeffects in the relational semantics of linear
logic. In Stephan Kreutzer, editor, 24th EACSL Annual Conference on Computer Science
Logic, CSL 2015, volume 41 of LIPIcs, pages 567–581. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.567.

7 Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. A core quantitative
coeffect calculus. In Zhong Shao, editor, European Symposium on Programming, ESOP
2013, volume 8410 of Lecture Notes in Computer Science, pages 351–370. Springer, 2014.
doi:10.1007/978-3-642-54833-8_19.

8 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie Weirich. A graded
dependent type system with a usage-aware semantics. Proceedings of ACM on Programming
Languages, 5(POPL):1–32, 2021. doi:10.1145/3434331.

9 Francesco Dagnino. A meta-theory for big-step semantics. ACM Transactions on Computational
Logic, 23(3):20:1–20:50, 2022. doi:10.1145/3522729.

ECOOP 2023

https://doi.org/10.1145/3408972
https://doi.org/10.1145/3408972
https://doi.org/10.1145/3209108.3209189
http://arxiv.org/abs/2302.07782
https://doi.org/10.1145/3563319
https://doi.org/10.4230/LIPIcs.CSL.2015.567
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1145/3434331
https://doi.org/10.1145/3522729

3:26 Multi-Graded Featherweight Java

10 Francesco Dagnino, Viviana Bono, Elena Zucca, and Mariangiola Dezani-Ciancaglini. Sound-
ness conditions for big-step semantics. In Peter Müller, editor, European Symposium on
Programming, ESOP 2020, volume 12075 of Lecture Notes in Computer Science, pages 169–
196. Springer, 2020. doi:10.1007/978-3-030-44914-8_7.

11 Ugo Dal Lago and Francesco Gavazzo. A relational theory of effects and coeffects. Proceedings
of ACM on Programming Languages, 6(POPL):1–28, 2022. doi:10.1145/3498692.

12 Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34(1):83–133, 1984. doi:10.1016/0304-3975(84)90113-0.

13 Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic universe types. In Erik Ernst,
editor, European Conference on Object-Oriented Programming, ECOOP 2007, volume 4609 of
Lecture Notes in Computer Science, pages 28–53. Springer, 2007.

14 Marco Gaboardi, Shin-ya Katsumata, Dominic A. Orchard, Flavien Breuvart, and Tarmo
Uustalu. Combining effects and coeffects via grading. In Jacques Garrigue, Gabriele Keller,
and Eijiro Sumii, editors, ACM International Conference on Functional Programming, ICFP
2016, pages 476–489. ACM Press, 2016. doi:10.1145/2951913.2951939.

15 Dan R. Ghica and Alex I. Smith. Bounded linear types in a resource semiring. In Zhong Shao,
editor, European Symposium on Programming, ESOP 2013, volume 8410 of Lecture Notes in
Computer Science, pages 331–350. Springer, 2014. doi:10.1007/978-3-642-54833-8_18.

16 Colin S. Gordon. Designing with static capabilities and effects: Use, mention, and invariants
(pearl). In Robert Hirschfeld and Tobias Pape, editors, European Conference on Object-
Oriented Programming, ECOOP 2020, volume 166 of LIPIcs, pages 10:1–10:25. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ECOOP.2020.10.

17 Alexander Grothendieck. Catégories fibrées et descente. In Revêtements étales et groupe
fondamental, pages 145–194. Springer, 1971.

18 Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrowing. In Theo
D’Hondt, editor, European Conference on Object-Oriented Programming, ECOOP 2010, volume
6183 of Lecture Notes in Computer Science, pages 354–378. Springer, 2010.

19 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. In ACM Symp. on Object-Oriented Programming: Systems, Languages
and Applications 1999, pages 132–146. ACM Press, 1999. doi:10.1145/320384.320395.

20 Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science &
Business Media, 2013.

21 Daniel Marshall, Michael Vollmer, and Dominic Orchard. Linearity and uniqueness: An
entente cordiale. In Ilya Sergey, editor, European Symposium on Programming, ESOP 2022,
volume 13240 of Lecture Notes in Computer Science, pages 346–375. Springer, 2022. doi:
10.1007/978-3-030-99336-8_13.

22 Conor McBride. I got plenty o’ nuttin’. In Sam Lindley, Conor McBride, Philip W. Trinder,
and Donald Sannella, editors, A List of Successes That Can Change the World – Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes
in Computer Science, pages 207–233. Springer, 2016. doi:10.1007/978-3-319-30936-1_12.

23 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. Quantitative program reason-
ing with graded modal types. Proceedings of ACM on Programming Languages, 3(ICFP):110:1–
110:30, 2019. doi:10.1145/3341714.

24 Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: Unified static analysis of
context-dependence. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David
Peleg, editors, Automata, Languages and Programming, ICALP 2013, volume 7966 of Lecture
Notes in Computer Science, pages 385–397. Springer, 2013. doi:10.1007/978-3-642-39212-2_
35.

25 Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: a calculus of context-
dependent computation. In Johan Jeuring and Manuel M. T. Chakravarty, editors, ACM
International Conference on Functional Programming, ICFP 2014, pages 123–135. ACM Press,
2014. doi:10.1145/2628136.2628160.

https://doi.org/10.1007/978-3-030-44914-8_7
https://doi.org/10.1145/3498692
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1145/2951913.2951939
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.4230/LIPIcs.ECOOP.2020.10
https://doi.org/10.1145/320384.320395
https://doi.org/10.1007/978-3-030-99336-8_13
https://doi.org/10.1007/978-3-030-99336-8_13
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/3341714
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1145/2628136.2628160

R. Bianchini, F. Dagnino, P. Giannini, and E. Zucca 3:27

26 Emily Riehl. Category theory in context. Courier Dover Publications, 2017.
27 James Wood and Robert Atkey. A framework for substructural type systems. In Ilya Sergey,

editor, European Symposium on Programming, ESOP 2022, volume 13240 of Lecture Notes in
Computer Science, pages 376–402. Springer, 2022. doi:10.1007/978-3-030-99336-8_14.

ECOOP 2023

https://doi.org/10.1007/978-3-030-99336-8_14

Hoogle⋆: Constants and λ-abstractions in
Petri-net-based Synthesis using Symbolic Execution
Henrique Botelho Guerra #

INESC-ID and IST, University of Lisbon, Portugal

João F. Ferreira # Ñ

INESC-ID and IST, University of Lisbon, Portugal

João Costa Seco # Ñ

NOVA LINCS, NOVA School of Science and Technology, Caparica, Portugal

Abstract
Type-directed component-based program synthesis is the task of automatically building a function
with applications of available components and whose type matches a given goal type. Existing
approaches to component-based synthesis, based on classical proof search, cannot deal with large
sets of components. Recently, Hoogle+, a component-based synthesizer for Haskell, overcomes
this issue by reducing the search problem to a Petri-net reachability problem. However, Hoogle+
cannot synthesize constants nor λ-abstractions, which limits the problems that it can solve.

We present Hoogle⋆, an extension to Hoogle+ that brings constants and λ-abstractions to
the search space, in two independent steps. First, we introduce the notion of wildcard component, a
component that matches all types. This enables the algorithm to produce incomplete functions, i.e.,
functions containing occurrences of the wildcard component. Second, we complete those functions,
by replacing each occurrence with constants or custom-defined λ-abstractions. We have chosen
to find constants by means of an inference algorithm: we present a new unification algorithm
based on symbolic execution that uses the input-output examples supplied by the user to compute
substitutions for the occurrences of the wildcard.

When compared to Hoogle+, Hoogle⋆ can solve more kinds of problems, especially problems
that require the generation of constants and λ-abstractions, without performance degradation.

2012 ACM Subject Classification Software and its engineering → Automatic programming; Theory
of computation → Automated reasoning

Keywords and phrases Type-directed, component-based, program synthesis, symbolic execution,
unification, Haskell

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.4

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.20

Funding FCT UIDB/04516/2020, FCT UIDB/50021/2020, and ANI Lisboa-01-0247-Feder-045917.

Acknowledgements We want to thank to the anonymous reviewers, for the constructive feedback.

1 Introduction

Program synthesis is the task of automatically building a program that fulfills a specification
supplied by the user [12]. Specifications can vary from examples [31], sketches [36], to
ontologies [4] and types [13]. In type-guided component-based program synthesis, users
provide the type of the function to synthesize (the query type), and optionally, input-
output examples. Each solution is composed of applications of functions from a given
component set. A recent example is Hoogle+ [14, 20], a state-of-the-art synthesizer for
the Haskell programming language that successfully solves several real-world problems with
large component sets. For example, given the query type (a -> b) -> [a] -> b, it can

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Henrique Botelho Guerra, João F. Ferreira, and João Costa Seco;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 4; pp. 4:1–4:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:henrique.b.guerra@tecnico.ulisboa.pt
https://orcid.org/0009-0002-5906-3033
mailto:joao@joaoff.com
https://joaoff.com
https://orcid.org/0000-0002-6612-9013
mailto:joao.seco@fct.unl.pt
http://ctp.di.fct.unl.pt/~jcs
https://orcid.org/0000-0002-2840-3966
https://doi.org/10.4230/LIPIcs.ECOOP.2023.4
https://doi.org/10.4230/DARTS.9.2.20
https://doi.org/10.4230/DARTS.9.2.20
https://doi.org/10.4230/DARTS.9.2.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

synthesize the function \x1 x2 -> x1 (GHC.List.head x2). Multiple solutions are filtered
using input-output examples. Unlike most approaches to component-based synthesis, which
are based on classical proof search, Hoogle+ can deal with large sets of components, because
it reduces synthesis to a Petri-net reachability problem, following the approach of SyPet [7],
a component-based synthesizer for Java.

Challenges for constants and λ-abstractions. Despite the benefits of Petri-net-based
approaches, they exclude constants and custom λ-abstractions from the search space, because
Petri nets only synthesize solutions whose terms belong to the component set, and it is
impossible to insert all constants and custom λ-abstractions in a finite set. We found
several problems in StackOverflow that Hoogle+ cannot solve because the solutions require
constants or λ-abstractions to be synthesized. So, bringing both classes of terms to the
search space will allow Hoogle+ to solve more problems, making life easier for Haskell
programmers.

Motivating example. As an example, suppose that we want to append the constant 0 to a
list. We provide to Hoogle+ the query type [Int] -> [Int] together with the example that
maps the input [1] 1 to the output [1, 0] . A solution is as simple as \x1 -> x1 ++ [0] ,
however, Hoogle+ is not able to synthesize it, because it requires the constant [0] to
be synthesized. The same happens with custom λ-abstractions. Suppose that we want
to map each element of a list of integers to its square. For example, given [1, 2, 3] ,
the output should be [1, 4, 9] . The query type is [Int] -> [Int], and a solution
is \list -> map (\x -> x * x) list. However, this solution cannot be synthesized by
Hoogle+ as λ-abstractions do not belong to the search space.

Our approach. In this work we propose and evaluate a solution to bring constants and
λ-abstractions to the search space of Hoogle+, following two independent steps. First,
we add to the component set the wildcard component, a component that matches all types.
The Petri net is then allowed to synthesize incomplete functions: functions that use that
component, such as \list -> map wildcard list. In this example, the wildcard compon-
ent appears where a function is expected; however, in general, it could appear in place of
an integer, string, or any other type. The second step is to replace the occurrences of the
wildcard component with constants or λ-abstractions. When the wildcard occurs in place
of a constant, we use a unification algorithm based on symbolic execution, that uses the
input-output examples provided by the user to infer the constant. When the wildcard occurs
in place of a function, we synthesize a λ-abstraction, using a faster, bespoke synthesizer.

Contributions. In summary, our contributions are:
1. We develop a new unification algorithm for a subset of Haskell, that we use to replace the

occurrences of the wildcard component with constants. The algorithm is generic enough
for other uses, as explained in Section 8.

2. We present Hoogle⋆, an extension of Hoogle+, that synthesizes functions with
constants and λ-abstractions. As shown in Section 5, it solves several problems that
cannot be solved by the original Hoogle+.

1 Haskell list notation is represented in italic font, to avoid confusion with citations.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:3

P1 P2 P3
T1

T3

T2

1 1
1

2 1

1

Figure 1 A Petri net with 3 places, 3 transitions, and 6 edges. In Feng et al. [7].

P1 P2 P3
T1

T3

T2

1 1
1

2 1

1

Figure 2 The Petri net of Figure 1 after T1 has fired. In Feng et al. [7].

Document structure. Section 2 presents the background: Petri nets and Hoogle+;
Section 3 presents the unification algorithm; Section 4 describes the extension made to
Hoogle+; Section 5 evaluates Hoogle⋆, by comparing it to Hoogle+; Section 6 discusses
the related work; Section 7 discusses the limitations of this work; and Section 8 summarizes
the lessons learned and the future work.

2 Background

In this section, we describe Petri nets, Hoogle+, and SyPet.

2.1 Petri nets
Petri nets are used by Hoogle+ to represent the search space. In this section, we define
relevant concepts of Petri nets and present examples.

▶ Definition 1. A Petri net is a tuple (P, T, E, W), where P is the set of places, T is the
set of transitions, E ⊆ (P × T) ∪ (T × P) is the set of edges between places and transitions
and between transitions and places, and W : E → N0 is a function that maps each edge to its
weight. Each place in a Petri net can have zero or more tokens. A marking (also known
as configuration) M of a Petri net N = (P, T, E, W) is a function P → N0 that maps each
place to its number of tokens.

We represent places by drawing circles and transitions by drawing narrow rectangles.
Edges are represented by arrows, and each natural number we write near each edge is its
weight. For example, consider the Petri net in Figure 1. The places are P1, P2 and P3, and
the transitions are T1, T2 and T3. The edge (P2, T2) has weight 2, and all the other edges
have weight 1. The place P1 has 2 tokens, whereas the remaining places have no tokens.

We explain next how transitions can change the marking of a Petri net, defining the
concepts of enabled transition and firing a transition.

▶ Definition 2. We say that the transition t is enabled if and only if for each place p with an
edge to t, the number of tokens is at least the weight of the edge (p, t). We say that firing an
enabled transition is changing the marking of the Petri net, consuming a certain number
of tokens from each place that has an edge to the transition, and producing a certain number
of tokens in each place with an edge from the transition, according to the weight of each edge.

ECOOP 2023

4:4 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

A C

B

D E
f g h

1 1 1 1 1 11

1

Figure 3 A Petri net for the component set f:A->C, g:B->C->D, h:D->E. The initial marking
for the query type A->B->E.

In the example of Figure 1, T1 is the only enabled transition. Firing T1 produces the
marking of Figure 2: one token was consumed in P1 (W (P1, T1) = 1), and one token was
produced P2 (W (T1, P2) = 1).

The last concept about Petri nets that we introduce is a decision problem called reachability.

▶ Definition 3. Given a Petri net N = (P, T, E, W), with marking M , and new marking
M ′, the reachability problem for Petri nets consists of assessing whether it is possible
to reach M ′ starting at M and by firing a certain sequence of transitions. We say that M

is the initial marking, M ′ is the target marking, and the trace is the sequence of fired
transitions.

For example, consider the Petri net and marking M shown in Figure 1. A marking
{P1 7→ 0, P2 7→ 0, P3 7→ 1} is reachable from M . A trace is ⟨T1, T1, T2⟩.

2.2 SyPet, Hoogle+ and Synthesis via Petri-net reachability
SyPet [7] is a scalable component-based synthesizer for Java and deals with large component
sets by reducing the problem to a Petri-net reachability problem. Hoogle+ [14] adapts this
idea to the Haskell programming language, extending the approach to deal with parametric
polymorphism, high-order functions, and typeclasses. In its latest version, it support input-
output examples [20]. In this section, we explain how Petri nets can be used for synthesis, as
well as an overview of SyPet, and the changes introduced by Hoogle+.

Petri net construction. Generally speaking, SyPet starts with building a Petri net that
models the component set, and then solves the reachability problem, using the resulting trace
to synthesize functions. Given a component set C and a query type t, SyPet constructs the
Petri net N = (P, T, E′, W), and the initial marking as follows.
1. The places in P are the parameter types and return types of the components in C.
2. The transitions in T are the components of C, i.e., T = C.
3. For each type t′, and component c, we have (t′, c) ∈ E with W ((t′, c)) = m if and only if

t′ is the type of m > 0 parameters of c.
4. For each type t′, and component c, we have edge (c, t′) if and only if t′ is the return type

of c.
5. For each place p that is the type of a parameter of the query type, we add a clone

transition k where W (p, k) = 1 and W (k, p) = 0.
6. For each parameter type of the query type we put as many tokens as the number of

arguments of the given type.

Figure 3 shows an example of a Petri net that models a synthesis problem.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:5

Synthesizing a function from a trace. Once the Petri net is built, we solve a reachability
problem, where the target marking has a single token in the place that represents the return
type of the query type. Then, the resulting trace is used to synthesize the desired function.
For instance, in Figure 3, the target marking would have a token in place E, and a trace
is ⟨ f,g,h ⟩, from which the function \arg1 arg2 -> h (g (f arg1) arg2) is synthesized.
However, synthesizing a function from a trace is not trivial, because a trace cannot distinguish
between different tokens in the same place, and no notion of order of incoming edges is
maintained. So, multiple functions may arise from a single trace. We do not explain how
SyPet performs the reachability analysis and synthesis from traces, as it is not necessary to
follow the rest of this paper; for more details, see Feng et al. [7].

Hoogle+. So far we have discussed the algorithm of SyPet, which only supports mono-
morphic types. However, most functions from the Haskell libraries have polymorphic types.
Thus, Hoogle+ [14] has to deal with polymorphic types, which introduce the following chal-
lenges, if we represent all the monomorphic types in the Petri net: there is no limit to the set
of types that may arise (for example [Char], [[Char]], [[[Char]]], etc.), and some compon-
ents, such as id :: a -> a, create a transition for each place. Representing monomorphic
types, even if we bound the set of types, leads to an intractable Petri net, so Hoogle+
uses abstract types, representing sets of concrete, monomorphic types. For example, the
abstract type τ is the set of all existing types, whereas Maybe τ = {Maybe t : t ∈ Type}. The
algorithm starts with the most abstract Petri net, containing only the place τ , which leads
to ill-typed programs. Then, the type errors are used to refine the Petri net, introducing
more concrete types. For more details, see Guo et al. [14].

3 Unification via Symbolic Execution

Petri nets allow the generation of functions with occurrences of the wildcard component.
Our goal is to use Hoogle+ to generate functions that may contain wildcards and then
replace each wildcard occurrence with a constant or a custom λ-abstraction, matching
the set of given input-output examples. For this purpose, we use a unification algorithm
that, given a source expression with symbolic variables, and a target grounded expression,
computes a substitution for the symbolic variables so that the first expression evaluates to
the second expression. When a solution is found by Hoogle+, we replace the occurrences
of the wildcard with symbolic variables in the synthesized function, the parameters with
the input of the input-output example, and unify the resulting expression with the output
of the input-output example. Consider the example from Section 1, where constant [0]
is appended to the input list. The query type is [Int] -> [Int], and an example maps
the input [1] to the output [1, 0] . The Petri net will generate \x1 -> x1 ++ wildcard .
We then replace the occurrences of wildcard with fresh symbols and unify [1] ++ s1 with
[1, 0] , where the algorithm substitutes the symbolic variable s1 with the constant [0] , by
inspecting the definition of (++).

Requirements. The unification algorithm has the following requirements:
The input of the unification algorithm is the function synthesized by the Petri net, as well
as the input-output examples. As the algorithm inspects the definitions of the synthesized
function, and of the applied components, it has to support enough language constructs
to encode the component set of Hoogle+, such as the case construct, algebraic data
types, integers, or, at least naturals, ad-hoc polymorphism, function application, and
λ-abstractions. Additionally, it has to support symbols both in place of constants and in
place of functions.

ECOOP 2023

4:6 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

e ::= x (variable)
| s (symbolic variable)
| λx.e (λ-abstraction)
| µ {e} (polymorphic λ-abstraction)
| K e (data constructor)
| case e of {a} (case)
| e e (application)

a ::= K x → e (case alternative)

Figure 4 Grammar of the supported language, λU .

The unification algorithm does not need to support the occurrence of symbols, nor the
application of functions or case constructs in the target expression, because this expression
is always the output of an input-output example, simplifying the algorithm.

3.1 Syntax

Figure 4 presents the grammar of the language supported by the unification algorithm, which
we call λU . Now, we discuss each construct, and present Example 4 and Example 5.

Variables play the same role as in λ-calculus, and are represented by x, xi.
Symbolic variables denote unknown expressions and are represented by s, si. Symbolic

variables can occur in place of functions or constants.
Abstractions have a sequence of variables (the parameters) and an expression that defines

the abstraction. For example, the identity function can be encoded as λ x . x.
Polymorphic abstractions allow us to encode ad-hoc polymorphism, present in Haskell

through typeclasses: each type provides an implementation for a given operation, which
are chosen depending on the types of the arguments [33]. In λU , a polymorphic abstraction
consists of a set of λ-abstractions, each one being a monomorphic variant.

Data constructors have a name and a sequence of arguments. As we do not have literals,
this is the only way to represent data (natural numbers are represented using Peano
numbers2, such as S (S Z), lists are represented using constructors Cons and Nil).

Case expressions have an expression (the scrutinee) and a sequence of alternatives. Each
alternative has the name of a data constructor, a sequence of variables (one vari-
able per constructor argument), and an expression. A case expression is of the form:
case x of {Cons x1 x2 → Just x1; Nil → Nothing}. There are two differences with rela-
tion to case expressions in Haskell: we do not support guards and our alternatives only
support variables after the data constructor (Haskell allows patterns such as Just True).

Applications have an expression and a sequence of expressions (the arguments). For example,
e e1 e2 denotes the application of e to the arguments e1 and e2. Currying is not supported
natively, and requires a specific encoding, as explained in Section 7.

▶ Example 4. Function map, applying a function f to a list l, can be encoded in λU as:

map = λ f l . case l of {Nil → Nil; Cons h t→ Cons (f h) (map f t)}

2 To be concise, we may write Arabic numbers as an abbreviation of the Peano representation.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:7

▶ Example 5. We define the polymorphic abstraction eq, similar to the function
Data.Eq.(==) from the Haskell standard library, which has two arguments, and returns
True if and only if the arguments are equal. We define two versions: one for naturals and
another for booleans: eq = µ {eqN, eqB}.

eqN = λ x1 x2 . case x1 of {Z → case x2 of {Z → True; S x3 → False};
S x3 → case x2 of {Z → False; S x4 → eq x3 x4}}

eqB = λ x1 x2 . case x1 of {False → case x2 of {False → True; True → False};
True → case x2 of {False → False; True → True}}

3.2 Inference rules
Now, we explain how the algorithm works by providing inference rules. First, we define the
concept of map of substitutions, in Definition 6, and then, in Definition 7, we introduce a
judgement that establishes the result of unifying two expressions. The inference rules can be
used to derive judgements, and we provide different rules for different combinations of source
and target expressions.

▶ Definition 6. A map of substitutions Σ is a mapping from symbolic variables to
expressions (or applications of symbolic variables, when they occur in place of functions, as
explained in Section 3.2.5). Σ(s) denotes the value of s in map Σ, while Σ[s 7→ e] denotes
the map Σ updated with the substitution of s with e. We write [] to denote the empty map,
and dom(Σ) to denote the set of symbolic variables that are substituted in Σ.

▶ Definition 7. The judgement Σ ⊢ esrc ≡ etgt ▷ Σ′, defined by the rules in Figure 5,
denotes the relation where Σ′ is the map of substitutions that results from unifying esrc and
etgt, given the initial map Σ.

The rules shown in Figure 5 guarantee that for all resulting substitutions Σ′, we have
eval(Σ′, esrc) = eval(Σ′, etgt), with Σ ⊆ Σ′. We validated this experimentally (a formal proof
is left for future work). The evaluation function is defined in Algorithm 1. We need to use
two maps Σ and Σ′ because the first map represents the substitutions computed so far, and
the second map represents the first one, eventually updated with new substitutions so that a
substitution computed before is not discarded. So, we have Σ ⊆ Σ′. We will return to this
topic when we address the rule for unifying data constructors, in Section 3.2.2. In the rest of
this section, we present the syntax-directed rule system, which is summarized in Figure 5.

3.2.1 Unifying symbolic variables with expressions
We start with the simplest case: Σ ⊢ s ≡ e ▷ Σ′, in which the source expression is a
symbolic variable s, and the target expression is any expression e. In this case, adding the
substitution of s for e to the input map solves the problem, if s is not already assigned in the
substitutions map computed so far, which is Σ (rule SNAL). When the symbolic variable s

is already substituted in Σ, we try to unify e with Σ(s) and add the new substitutions to the
initial map (rule SAL).

▶ Example 8. We derive [s1 7→ s2] ⊢ s1 ≡ False ▷ [s1 7→ s2, s2 7→ False].

s1 ∈ [s1 7→ s2]
s2 ̸∈ dom([s1 7→ s2])

[s1 7→ s2] ⊢ [s1 7→ s2](s1) ≡ False ▷ [s1 7→ s2, s2 7→ False] SNAL

[s1 7→ s2] ⊢ s1 ≡ False ▷ [s1 7→ s2, s2 7→ False] SAL

s1 cannot be assigned to False because it is already assigned to s2. So, we unified Σ(s1)
with False.

ECOOP 2023

4:8 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

Algorithm 1 Function eval.

eval(Σ, λ x . b) = λ x . b eval(Σ, µ {opts}) = µ {opts}

eval(Σ,s) =
{

s if s ̸∈ dom(Σ)
eval(Σ, e) if Σ(s) = e

eval(Σ, K) = K

eval(Σ, K e1 ... ek) = K eval(Σ, e1) ... eval(Σ, ek)

eval(Σ, f e1 ... ek) =



eval(Σ, b{e′
1/x1 , ..., e′

k/xk}) if eval(Σ,f)=λ x1 ... xk . b
where e′

i=eval(Σ,ei), for i∈{1, ..., k}

eval(Σ, b{e′
1/x1 , ..., e′

k/xk})
if eval(Σ,f)=µ {opts},

λ x1 ... xk . b ∈ opts, and
eval(Σ,b{e′

1/x1 ,..., e′
k/xk})̸=error

where e′
i=eval(Σ,ei), for i∈{1, ..., k}

eval(Σ, Σ(s e′
1 ... e′

k))
if eval(Σ,f)=s

s e′
1 ... e′

k∈dom(Σ)
where e′

i=eval(Σ,ei), for i∈{1, ..., k}

s e′
1 ... e′

k

if eval(Σ,f)=s
s e′

1 ... e′
k ̸∈dom(Σ)

where e′
i=eval(Σ,ei), for i∈{1, ..., k}

eval(Σ, case scr of {alts}) = eval(Σ, b{e1/x1, ..., ek/xk}) if eval(Σ,scr)=K e1 ... ek

and K x1 ... xk→b ∈ alts

eval(Σ, e) = error otherwise

We have said that the target expression should not contain symbols. However, internally,
we need support for symbols in the target expression, due to the rule for case constructors,
which is presented in Section 3.2.3. So, there are two more rules: SNAR and SAR, similar
to the SNAL and SAL, with the difference that the symbolic variable is now the target
expression.

3.2.2 Unifying data constructors
The rule DC is applied when both expressions are data constructors, with the same data
constructor and the same number of arguments, and unifies each argument of the source
data constructor with the corresponding argument in the target data constructor.

▶ Example 9. We derive [] ⊢ Pair s1 s2 ≡ Pair True Nil ▷ [s1 7→ True, s2 7→ Nil].

s1 ̸∈ dom([])
[] ⊢ s1 ≡ True ▷ [s1 7→ True]

s2 ̸∈ dom([s1 7→ True])
[s1 7→ True] ⊢ s2 ≡ Nil ▷ [s1 7→ True, s2 7→ Nil]

[] ⊢ Pair s1 s2 ≡ Pair True Nil ▷ [s1 7→ True, s2 7→ Nil]

where the two top rules are SNAL, and the bottom rule is DC. Both expressions are data
constructors with two arguments, and the constructor is the same, Pair . So, we unify s1
with True, and the result is passed to the unification of s2 with Nil. An important aspect is

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:9

s ̸∈ dom(Σ)
Σ ⊢ s ≡ e ▷ Σ[s 7→ e] SNAL

e′
i = eval(Σ, ei), i = 1, 2, ..., k

s e′
1 ... e′

k ̸∈ dom(Σ)
Σ ⊢ s e1 ... ek ≡ dst ▷ Σ[s e′

1 ... e′
k 7→ dst] ASNA

s ̸∈ dom(Σ)
Σ ⊢ e ≡ s ▷ Σ[s 7→ e] SNAR

e′
i = eval(Σ, ei), i = 1, 2, ..., k

Σ(s e′
1 ... e′

k) = e′

Σ ⊢ dst ≡ e′ ▷ Σ′

Σ ⊢ s e1 ... ek ≡ dst ▷ Σ′ ASA

s ∈ dom(Σ) Σ ⊢ Σ(s) ≡ e ▷ Σ′

Σ ⊢ s ≡ e ▷ Σ′ SAL
s ∈ dom(Σ) Σ ⊢ e ≡ Σ(s) ▷ Σ′

Σ ⊢ e ≡ s ▷ Σ′ SAR

Σ0 ⊢ e1 ≡ f1 ▷ Σ1

...

Σk−1 ⊢ ek ≡ fk ▷ Σk

Σ0 ⊢ K e1 ... ek ≡ K f1 ... fk ▷ Σk
DC

λ x1 ... xk . b ∈ opts

Σ ⊢ (λ x1 ... xk . b) e1 ... ek ≡ e′ ▷ Σ′

Σ ⊢ (µ {opts}) e1 ... ek ≡ e′ ▷ Σ′ AP

Σ ⊢ b{s1/x1, ... sk/xk} ≡ e′ ▷ Σ0

s1, ... sk fresh
Σ0 ⊢ e1 ≡ s1 ▷ Σ1

...

Σk−1 ⊢ ek ≡ sk ▷ Σk

Σ ⊢ (λ x1 ... xk . b) e1 ... ek ≡ e′ ▷ Σk
AL

K x→ b ∈ a

Σ ⊢ scr ≡ K s ▷ Σ′, s fresh
Σ′ ⊢ b{s/x} ≡ e ▷ Σ′′

Σ ⊢ case scr of {a} ≡ e ▷ Σ′′ C

Figure 5 Syntax-directed rule system that defines the judgement Σ ⊢ esrc ≡ etgt ▷ Σ′.

that the map that results from unifying e1 with f1 is passed as input to unify e2 with f2,
and so on, to preserve all substitutions and to avoid contradictions, which is illustrated in
Example 10.

▶ Example 10. We want to unify Pair s s with Pair True False. Both expressions have the
same data constructor and the same number of arguments, so let us apply the DC rule. First,
we have to derive [] ⊢ s ≡ True ▷ [s 7→ True], by using the rule SNAL. Second, we have to
derive [s 7→ True] ⊢ s ≡ False ▷ Σ′, for a certain Σ′. However, this is impossible because
we are trying to unify s with False, and the unification of the first argument substituted s

with True.

3.2.3 Unifying case expressions with expressions
When the source expression is a case construct, the rule C chooses a case alternative such
that the scrutinee (scr) unifies with the selected data constructor. For example, if the case
expression is case expr of {Nothing → False, Just x→ x}, and supposing that we have
chosen the first alternative, we have to ensure that expr unifies with Nothing. When the

ECOOP 2023

4:10 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

data constructor has arguments (for instance, Just has one argument), we generate fresh
symbols (which introduces the need to support symbolic variables in the target expression).
This would be the case if we selected the second alternative: we would unify expr with
Just s, where s is a fresh symbol. Finally, we unify the body of the alternative, b, with
the target expression, substituting the variables of the alternative with the fresh symbols
(b{s/x}). In rule C of Figure 5, s denotes the sequence of fresh symbols, x denotes the
sequence of arguments of the data constructor, and b{s/x} denotes the expression b in which
each occurrence of xi ∈ x is replaced with the corresponding symbol si ∈ s.

▶ Example 11. We derive

[] ⊢ case s of {Nothing → False, Just x→ x} ≡ True ▷ [s 7→ Just s1, s1 7→ True]

where s1 is a fresh symbol, and A and B are derivation subtrees. The derivation applies C:

A B (Just x→ x) ∈ {Nothing → False, Just x→ x}
[] ⊢ case s of {Nothing → False, Just x→ x} ≡ True ▷ [s 7→ Just s1, s1 7→ True]

where A abbreviates

s ̸∈ dom([])
[] ⊢ s ≡ Just s1 ▷ [s 7→ Just s1], s1 fresh SNAL

and B abbreviates

s1 ̸∈ dom([s 7→ Just s1])
[s 7→ Just s1] ⊢ x{s1/x} ≡ True ▷ [s 7→ Just s1, s1 7→ True] SNAL

We choose the alternative Just x→ x, unify s with Just instantiated with a fresh symbolic
variable s1 and then unify the body with the target expression. Note that the symbolic
variable s is substituted with Just s1 and s1 is substituted with True, so we have to evaluate s.
We have eval([s 7→ Just s1, s1 7→ True], s) = Just True, and substituting s with Just True

solves the unification problem.

3.2.4 Unifying λ-abstraction applications with expressions
When the source expression is an application of a λ-abstraction, and the number of arguments
is the same as the number of parameters, we apply AL, replacing the arguments of the
application with fresh symbols in b and unifying this result, b{s1/x1, ... sk/xk}, with the
target expression. The idea is to propagate the target expression to the arguments of the
application: the unification will compute substitutions for the fresh symbols, and then we
unify each argument with the corresponding fresh symbol.

▶ Example 12. We derive [] ⊢ (λ x y . x) s F ≡ T ▷ [s1 7→ T, s 7→ s1, s2 7→ F], where s1
and s2 are fresh symbols, and A, B and C are derivation subtrees.

A B C
[] ⊢ (λ x y . x) s F ≡ T ▷ [s1 7→ T, s 7→ s1, s2 7→ F] AL

where A, B, and C abbreviate respectively

s1 ̸∈ dom([])
[] ⊢ x{s1/x, s2/y} ≡ T ▷ [s1 7→ T], s1, s2 fresh SNAL

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:11

s ̸∈ dom([s1 7→ T])
[s1 7→ T] ⊢ s ≡ s1 ▷ [s1 7→ T, s 7→ s1] SNAL

s2 ̸∈ dom([s1 7→ T, s 7→ s1])
[s1 7→ T, s 7→ s1] ⊢ F ≡ s2 ▷ [s1 7→ T, s 7→ s1, s2 7→ F] SNAR

The λ-abstraction has two parameters, and so we generate two symbols: s1 and s2. The body
of the λ-abstraction is x, and x{s1/x, s2/y} = s1, which is unified with the target expression.
Finally, we unify the arguments s and F with s1 and s2.

3.2.5 Unifying applications of symbols with expressions
As stated in Section 3.1, a symbolic variable can occur in place of a function, however, instead
of assigning it directly to expressions, which is out of the scope of this work, we assign
applications of symbolic variables to expressions. This allows the generation of input-output
examples for unknown functions and the detection of contradictions, which is relevant for
Hoogle⋆, as described in Section 4. For instance, unifying map s (Cons 1 (Cons 2 Nil))
with Cons 2 (Cons 3 Nil) generates examples for the unknown function s: assigns s 1 to 2
and s 2 to 3. On the other hand, it will be impossible to unify map s (Cons 1 (Cons 1 Nil))
with (Cons 1 (Cons 2 Nil)), because s 1 will be assigned to 1, and then to 2, which generates
a contradiction.

We have two rules ASNA and ASA, very similar to the rules for symbols, shown in
Section 3.2.1. We need to store the arguments e = e1 e2 ... ek in a form as reduced as
possible (using eval) because we need to compare each argument for equality3, to check if an
application is already assigned as in the following example.

▶ Example 13. We derive [s 0 7→ 2, s 1 7→ 3] ⊢ s ((λ x . 0) 1) ≡ 2 ▷ [s 0 7→ 2, s 1 7→ 3].

0 = eval(Σ, s ((λ x . 0) 1)) Σ(s 0) = 2 Σ ⊢ 2 ≡ 2 ▷ Σ
Σ ⊢ s ((λ x . 0) 1) ≡ 2 ▷ Σ ASA

where Σ = [s 0 7→ 2, s 1 7→ 3]. We omit the derivation of Σ ⊢ 2 ≡ 2 ▷ Σ. This example
shows the importance of evaluating the arguments before updates and lookups to the map of
substitutions. Indeed, the application s ((λ x . 0) 1) is not substituted in Σ, but (λ x . 0) 1
evaluates to 0, and s 0 is already substituted in Σ.

3.2.6 Unifying applications of polymorphic abstractions with expressions
When the source expression is an application of a polymorphic abstraction, we apply AP ,
which chooses a λ-abstraction from opts and then unifies the application of this λ-abstraction
to the provided arguments with the target expression. However, we cannot just choose any
λ-abstraction. For instance, if the arguments are lists, we cannot choose a function that
expects booleans, as the unification will fail.

▶ Example 14. We derive that [] ⊢ eq s False ≡ True ▷ [s 7→ s1, s1 7→ False, s2 7→ False]
where polymorphic abstraction eq was defined in Example 5.

eqB ∈ opts [] ⊢ eqB s False ≡ True ▷ [s 7→ s1, s1 7→ False, s2 7→ False]
[] ⊢ eq s False ≡ True ▷ [s 7→ s1, s1 7→ False, s2 7→ False]

3 Rule ASA can be applied only if the arguments are comparable for equality, which require the arguments
not to be abstractions.

ECOOP 2023

4:12 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

where rule AP is applied, opts = {eqN, eqB} and the derivation of the second hypothesis
is omitted. When applying rule AP , we cannot choose the λ-abstraction eqN , because the
derivation of [] ⊢ eqN s False ≡ True ▷ [s 7→ s1, s1 7→ False, s2 7→ False] gets stuck, as
the case expressions of eqN do not contain alternatives matching True and False.

3.3 Lazyness

The inference rules are lazy. For instance, consider the application (λ x y . x) e1 e2
being unified with target. We first unify the body with arguments replaced with symbols
x{s1/x, s2/y} with target, and then unify e1 with s1 and e2 with s2. As y is not used in the
abstraction, s2 will not be assigned, so the unification of e2 with s2 will simply assign the
symbol to the expression, and e2 is not reduced. Thus, in principle, the algorithm supports
computations with conceptually infinite structures [18]. For instance, it can unify take sym1
(repeat sym2) with [3, 3], replacing sym1 with 2 and sym2 with 3.

3.4 Implementation

The unification algorithm was implemented in Haskell and performs a depth-first search:
it tries to apply the rules and backtracks if it fails. The heart of symbolic execution and
backtracking in the algorithm is the rule for the case construct: it attempts each alternative
until it succeeds. To prevent the algorithm from running forever, we limit the depth of the
DFS. The algorithm returns a substitution if found; Mismatch, if no substitution was found
after trying all the possible rules (never reaching the limit for rules); or DepthReached if
the maximum number of rules was reached in at least one path and no solution was found.
Although the algorithm implements a search, it is very fast in practice. We conjecture that
this is because the branching factor is reduced. Functions that work with lists typically have
case expressions with no more than two cases (Nil and Cons), and the Nil case tends to be
a base case (a leaf, in the search tree).

4 Extension to Hoogle+: Hoogle⋆

In this section, we describe the implementation of Hoogle⋆4, by explaining the two in-
dependent steps presented in Section 1. We start with the modifications to introduce the
wildcard component in Section 4.1, and, in Section 4.2, we address how the occurrences of
the wildcard component are replaced.

4.1 The wildcard component

The first step is to add a component that matches all types so that it can occur where an
integer, a list, a function, etc., is expected. Hoogle+ requires the name and the type of each
component, so we provided the name wildcard associated with the type a, which matches all
types. With this extension, Hoogle+ can synthesize functions containing the wildcard such
as \arg1 -> map wildcard arg1, in which the wildcard occurs in place of a function (the
first parameter of GHC.List.map is a function) or \arg1 -> arg1 ++ wildcard , in which
the wildcard occurs in place of a list (both parameters of GHC.List.++ are lists).

4 The Hoogle⋆ repository is available at https://github.com/sr-lab/hoogle_plus.

https://github.com/sr-lab/hoogle_plus

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:13

The component set of Hoogle+ contains four constants ([], True, False, and Nothing),
which are not required in Hoogle⋆ because the unification algorithm is able to generate
them. So, these constants are not present in the default component set of Hoogle⋆.

4.2 Replacing occurrences of the wildcard component

Algorithm 2 Overview of Hoogle⋆.
1: procedure Hoogle⋆(components, query, N , examples)
2: parsedExamples← parse examples to λU

3: petri← build the Petri Net with components ∪ {("wildcard", "a")}
4: for i = 1, ..., N do
5: synth← synthesize a function for query using petri

6: if synth has wildcards then
7: completions← complete(synth, parsedExamples, components, query)
8: print(comp) for comp ∈ completions

9: else if synth respects examples then
10: print(synth)

Algorithm 2 shows an overview of Hoogle⋆. It takes four parameters: components,
the component set; query, the query type; N , the number of functions the Petri net should
synthesize; and examples, the input-output examples. Hoogle⋆ starts by parsing each
input-output example to a pair (xi1 ... xik, yi), containing a sequence of k inputs and output
in λU , and the Petri net is built, considering the wildcard component. Then the Petri
net synthesizes N functions. The function complete then tries to replace the wildcards
(Algorithm 3).

4.2.1 The Complete function
complete takes four parameters: f , the function generated by the Petri net, expressed in the
Hoogle+ grammar; examples, the examples expressed in λU , components, the component
set; and type, the query type. It has three main steps, presented afterward.

Step 1: Convert to λU . complete starts by converting the function generated by the
Petri net to λU , where each wildcard is replaced with a fresh symbolic variable. The variable
f ′ denotes the function in λU , and symbols denotes the array of generated symbols.

Step 2: Unify. The next step is to call the unification algorithm with the examples. For
each example, the application of f ′ to the inputs is unified with the output, which requires
as many calls to the unification algorithm as the number of examples. The result of all
unifications, Σ, contains symbolic variables assigned to constants for the wildcards occurring
in place of constants, and input-output examples for the wildcards occurring in place of a
function5.

Note that Σ respects all the examples because the unification of each example uses the
result of the unification of the previous example.

5 It is not guaranteed that each symbol is assigned in Σ, which can happen if its value does not impact
the result of the unification. For instance, unifying head (Cons s1 s2) with target assigns s1 to target,
but does not assign s2. In this case, the incomplete function is rejected.

ECOOP 2023

4:14 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

Algorithm 3 Function complete.
1: procedure complete(f , examples, components, type)
2: f ′, symbols← convert f to λU , replace wildcards with fresh symbols, and return it
3: Σ← [] ▷ unify pairs of applications to outputs of examples
4: for ((x1, ..., xk), y) ∈ examples do
5: Σ← Unify(Σ, f ′ x1 ... xk, y)
6: if Σ = Error then
7: return Error
8: p← the length of symbols ▷ i.e., the number of wildcards to replace
9: for i = 1, ..., p do

10: if ∃e : symbols[i] e ∈ dom(Σ) then ▷ if symbols[i] denotes a function
11: wildcardType← get the type of the wildcard i in function f

12: λ← synth-lambda(wildcardType, f ′, examples, components, symbols[i])
13: fill[i]← λ

14: else if symbols[i] ∈ dom(Σ) then ▷ if symbols[i] denotes a constant
15: val← eval(Σ, symbols[i])
16: fill[i]← convert val to Haskell notation
17: res← {}
18: for (e1, ..., ep) ∈ fill[1]× ...× fill[p] do ▷ all combinations of expressions
19: res← res ∪ f ′{e1/symbols[1], ..., ep/symbols[p]} ▷ replace wildcards
20: return res in the grammar of Hoogle+

Step 3: Replacing wildcards. After the unification, each symbolic variable is replaced with
a constant or a λ-abstraction. Each iteration of the loop starting at line 9 replaces a symbol,
assigning the replacement (or replacements, if there is more than one alternative) to the
corresponding entry in the array fill. It starts with a lookup in Σ to determine the type of
the expected term:

If there is an application of the symbol, symbols[i], in Σ, the corresponding wildcard must
be replaced with a function. In this case, synth-lambda (Algorithm 4, Section 4.2.2),
is called to synthesize λ-abstractions, with the data type of the function, wildcardType.
Note that this function returns a set of λ-abstractions, because it may find more than
one function that has the specified type and respects the examples.
If the symbol s is itself assigned in Σ, the corresponding wildcard should be replaced with
a constant. In this case, Σ(s) is the expression that replaces the wildcard. However, this
expression must be evaluated, because it may contain occurrences of other symbols, as
explained in Section 3.2.3. Additionally, we replace Peano numbers with Arabic numbers
and Cons/Nil lists with Haskel-syntax lists.

At the end of the loop that starts in line 9, fill has one entry for each wildcard, each one
containing a set of alternative replacements. Then, in the loop starting at line 18 we compute
all the combinations of replacements for each wildcard, through a cartesian product, and, for
each combination, we replace the wildcards in f ′, and add the resulting expression to res.

▶ Example 15. Recall the first example of Section 1. The Petri net is able to synthesize
\x1 -> x1 ++ wildcard . We start by converting both the generated function and the
input-output examples to λU . The function corresponds to λ x1 . (++) x1 s1, the input of
the example becomes Cons 1 Nil, and the output becomes Cons 1 (Cons 0 Nil). The next
step is to unify (λ x1 . (++) x1 s1)(Cons 1 Nil) with Cons 1 (Cons 0 Nil), to compute Σ.
As a result, s1 is assigned itself in Σ to an expression, so the expected term is a constant.
We have eval(Σ, s1) = Cons 0 Nil, that corresponds to [0] in Haskell notation. Finally, the
wildcard is replaced with [0] , which produces the function \x1 -> x1 ++ [0] .

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:15

Note the importance of having the unification algorithm supporting symbols in place of
functions, described in detail in Section 3.2.5. On the one hand, it allows replacing multiple
function wildcards, because they are replaced one at a time. For instance, suppose that
there are two function wildcards to replace. When replacing the first wildcard, we pick a
λ-abstraction and then apply the unification algorithm to the original function, with the
new λ-abstraction replaced. In this case, the second symbol remains, but the unification
algorithm is able to validate if the first wildcard is replaced correctly. If the algorithm could
not support symbolic functions, we would have to pick all the λ-abstractions at once and
try each possible combination, which would lead to a combinatorial explosion. On the other
hand, supporting symbolic functions allows for saving time, because the algorithm can detect
if no λ-abstraction can fill a specific wildcard. In those cases, Hoogle⋆ does not waste time
calling synth-lambda. Section 4.2.2 discusses in detail synth-lambda.

4.2.2 The synthesizer for λ-abstractions

Algorithm 4 Function synth-lambda.
1: procedure synth-lambda(type, originalFun, examples, comps, symbol)
2: lamComps← remove Data.ByteString and high-order components from comps

3: yi ← the i-th parameter of originalFun for i = 1, ..., n

4: xi ← the i-th parameter of the λ-abstraction, for i = 1, ..., k

5: leafs← {y1, ..., yn, x1, ..., xk, s}, s fresh
6: exprs← synth-expr(type, leafs, lamComps, 0)
7: res← {}
8: for e ∈ exprs do
9: lambda← λ x1 ... xk . e

10: lambda′ ← replace-symbols(originalFun, lambda, examples, symbol)
11: if lambda′ ̸= Error and the type of lambda′ matches type then
12: res← res ∪ {lambda′}
13: return res ▷ a list of many λ-abstractions with the specified type

The function synth-lambda computes a λ-abstraction that respects the input-output
examples and has the specified type. We could call Hoogle⋆ recursively, but we conjecture
that it would lead to performance degradations, and a simpler, faster synthesizer is enough to
synthesize λ-abstractions. On the one hand, it may be needed to synthesize λ-abstractions
several times during a single Hoogle+ query, but the paper that presented Hoogle+ [14]
has shown that for many problems, Hoogle+ may take several seconds. Note that each query
may require an unbounded number of synthesis of λ-abstractions because each one of the N

incomplete functions may have an arbitrary number of wildcards in place of functions. On
the other hand, from our experience with the Haskell programming language, λ-abstractions
are simpler than other portions of code and use fewer components. So, we decided to build a
faster, bespoke synthesizer that corresponds to the function synth-lambda.

Search space. The search space of synth-lambda is composed of applications of compon-
ents from Hoogle⋆. To guarantee a faster synthesis, we exclude high-order functions, as well
as the module Data.ByteString (that seems less common in λ-abstractions, from our exper-
ience as Haskell programmers), which leaves 54 popular components. The arguments of the
applications can be the parameters of the λ-abstraction, parameters of the original function,
symbols (to replace using the unification algorithm), and applications of components, with at

ECOOP 2023

4:16 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

Algorithm 5 Function synth-expr.
1: procedure synth-expr(type, leafs, components, level)
2: exprs← {}
3: for l ∈ leafs s.t. the type of l matches type do
4: exprs← exprs ∪ {l}
5: if level < 2 then
6: for comp ∈ components s.t. the return type of comp matches type do
7: sign ← the signature of comp, with type variables replaced s.t. the return

type matches type

8: prms← extract the types of the parameters from sign

9: p← the number of parameters of comp

10: args[i]← synth-expr(prms[i], leafs, components, level + 1) for i = 1, ..., p

11: for (e1, ..., ep) ∈ args[1]× ...× args[p] do ▷ all combinations of expressions
12: exprs← exprs ∪ {comp e1 ... ep}
13: return exprs ▷ a list of many expressions with the specified type

Algorithm 6 Function replace-symbols.
1: procedure replace-symbols(originalFun, lambda, examples, symbol)
2: originalFun← originalFun{lambda/symbol}
3: Σ← []
4: for ((x1, ..., xk), y) ∈ examples do
5: Σ← Unify(Σ, originalFun x1 ... xk, y)
6: if Σ = error then
7: return Error
8: for each symbolic variable s in lambda do
9: val← eval(Σ, s)

10: converted← convert val to Haskell notation
11: lambda← lambda{converted/s}
12: return lambda

most two levels, for performance reasons (e.g., in \x -> f (g x) (h x), the arguments of
g and h cannot be applications, only variables, and constants). For example, if the Petri net
synthesizes \arg1 -> map wildcard arg1, for the query type [Int]-> [Int], the wildcard
may be replaced with \x1 -> x1 + 2, \x1 -> x1 * (length arg1), etc., depending on
the input-output examples provided by the user.

Implementation. synth-lambda (Algorithm 4), takes five parameters: type, the signature
of the function to synthesize; originalFun, the original function generated by the Petri net,
but with wildcards replaced with fresh symbols; examples, the input-output examples of
the original function; comps, the component set; and symbol, the symbolic variable that the
new λ-abstraction should replace in originalFun. It follows a generate-and-test approach:
synth-expr does a type-guided enumeration of λ-abstractions, and then replace-symbols
tests the original function with each new λ-abstraction in place of the corresponding symbol,
and replace symbols if any. Finally, we check that the λ-abstraction has the specified type,
because synth-expr does not perform a full type-checking, and only uses types to prune
the search, thus can return ill-typed expressions. At this stage, type classes are ignored, and
we leave for future work the analysis of their impact on the algorithm and its performance.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:17

synth-expr (Algorithm 5) takes four parameters: type, the type of the expression to
synthesize; leafs, the set that contains the parameters of the new λ-abstraction (x1, ...,
xn), the parameters of the original function (y1, ..., yk), and a fresh symbol; components,
the component set of Hoogle⋆ excluding high-order functions and the Data.ByteString
module; and the depth of applications, level. If level is equal or greater than 2, synth-expr
only returns the leafs whose type matches type, to ensure that the maximum level is not
exceeded. Otherwise, it returns also the application of components whose return type matches
type, and the arguments are synthesized by calling synth-expr recursively. Note that we
may have to replace type variables, which we do in line 7. For instance, if the component
has type a -> a and type is Int, we replace a with Int.

replace-symbols (Algorithm 6) takes four parameters: the original Hoogle+ function,
originalFun; the new λ-abstraction, lambda; the input-output examples, examples; and
the symbolic variable that lambda replaces. It starts by replacing symbol with lambda in
the original function. Then, the unification algorithm is used as in the complete function:
for each example, we unify the application of originalFun to the inputs of the example with
the expected output. Finally, each symbol that belongs to λ is replaced with a lookup in Σ,
as complete does. Note that every symbol in the new λ-abstraction must be a constant
because the component set excludes high-order functions.

Example 16 illustrates the synthesis of wildcards in place of functions.

▶ Example 16. Recall the second example of Section 1. The Petri net is able to synthes-
ize \x1 -> map wildcard x1, which corresponds to λ x1 . map s x1 in λU . The example
is converted to λU , and the unification is performed, assigning applications of s (for in-
stance, s 1 to 1), which informs that the expected term is a λ-abstraction. Then, we call
synth-lambda, where type is Int -> Int, originalFun is λ x1 . map s x1, examples is
{(([1, 2, 3]), [1, 4, 9])} and symbol is s. The leafs are the parameter of the original
function (x1), the parameter of the new λ-abstraction (y1), and a fresh symbol. One of
the generated λ-abstractions can be \y1 -> (GHC.Num.*) y1 y1. Then replace-symbols
unifies (\x1 -> map (\y1 -> y1 * y1) x1) [1, 2, 3] with [1, 4, 9] , which succeeds.
Finally, we check that the function has type Int -> Int.

5 Evaluation

In this chapter we empirically evaluate Hoogle⋆, answering the following research questions:
RQ1 Can Hoogle⋆ solve all the problems that Hoogle+ solves, without performance

degradation?
RQ2 Can Hoogle⋆ solve more problems than Hoogle+?

5.1 Evaluation Design
Benchmarks. We use two different sets of benchmarks. To answer RQ1, we use the first
set of 44 benchmarks (Table 1) from the original paper of Hoogle+ [14], which consists of
only query types. To answer RQ2, we use the second set of 26 benchmarks (Table 2), which
consists of a query types and input-output examples and requires the generation of constants
or λ-abstractions6.

6 Most of those benchmarks were adapted from questions in StackOverflow because we could not use
them directly (e.g., if a question used floats, we changed, when possible, to integers). We systematically
searched StackOverflow for Haskell problems, excluding the ones that did not require the generation of

ECOOP 2023

4:18 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

Table 1 First set of 44 benchmarks (from Hoogle+ [14]).

Problem Query
1 firstRight [Either a b] -> Either a b
2 firstKey [(a, b)] -> a
3 flatten [[[a]]] -> [a]
4 repl-funcs (a -> b) -> Int -> [a -> b]
5 containsEdge Int -> (Int, Int) -> Bool
6 multiApp (a -> b -> c) -> (a -> b) -> a -> c
7 appendN Int -> [a] -> [a]
8 pipe [a -> a] -> (a -> a)
9 intToBS Int64 -> ByteString

10 cartProduct [a] -> [b] -> [[(a, b)]]
11 applyNtimes (a -> a) -> a -> Int -> a
12 firstMatch [a] -> (a -> Bool) -> a
13 mbElem Eq a => a -> [a] -> Maybe a
14 mapEither (a -> Either b c) -> [a] -> ([b], [c])
15 hoogle01 (a -> b) -> [a] -> b
16 zipWithResult (a -> b) -> [a] -> [(a, b)]
17 splitStr String -> Char -> String
18 lookup [(a, b)] -> a -> b
19 fromFirstMaybes a -> [Maybe a] -> a
20 map (a -> b) -> [a] -> [b]
21 maybe Maybe a -> a -> Maybe a
22 rights [Either a b] -> Either a [b]
23 mbAppFirst b -> (a -> b) -> [a] -> b
24 mergeEither Either a (Either a b) -> Either a b
25 test Bool -> a -> Maybe a
26 multiAppPair (a -> b, a -> c) -> a -> (b, c)
27 splitAtFirst a -> [a] -> ([a], [a])
28 2partApp (a->b)->(b->c)->[a]->[c]
29 areEq Eq a => a -> a -> Maybe a
30 eitherTriple Either a b -> Either a b -> Either a b
31 mapMaybes (a -> Maybe b) -> [a] -> Maybe b
32 head-rest [a] -> (a, [a])
33 appBoth (a -> b) -> (a -> c) -> a -> (b, c)
34 applyPair (a -> b, a) -> b
35 resolveEither Either a b -> (a->b) -> b
36 head-tail [a] -> (a,a)
37 indexesOf ([(a,Int)] -> [(a,Int)]) -> [a] -> [Int] -> [Int]
38 app3 (a -> b -> c -> d) -> a -> c -> b -> d
39 both (a -> b) -> (a, a) -> (b, b)
40 takeNdropM Int -> Int -> [a] -> ([a], [a])
41 firstMaybe [Maybe a] -> a
42 mbToEither Maybe a -> b -> Either a b
43 pred-match [a] -> (a -> Bool) -> Int
44 singleList Int -> [Int]

Experiments. We compare Hoogle⋆ to the original Hoogle+ as described below, giving
each benchmark a timeout of 60 seconds, in the first set of benchmarks, and 90 seconds in
the second set.
1. We run both Hoogle+ (twice, with and without the constants True, False, Nothing and

[]) and Hoogle⋆ on the 44 original benchmarks measuring the number of synthesized
solutions, and the time taken to synthesize the first solution. For each benchmark, we

constants and λ-abstractions, and problems exercising the same capabilities. We also excluded problems
that could not be solved by Hoogle+, for other reasons than the absence of constants and λ-abstractions.
To diversify the components used we searched for questions using specific components. No problem that
we have excluded would be solved by Hoogle+.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:19

Table 2 Second set of 26 benchmarks.

Problem Query Examples
1 mapAdd [Int] -> [Int] [([[1, 2, 3]], [2, 3, 4])]
2 mapSquare [Int] -> [Int] [([[1, 2]], [1, 4])]
3 appendConst [Int] -> [Int] [([[1, 2, 3]], [1, 2, 3, 1000])]
4 filterDiff [Int] -> [Int] [([[1, 2, 3]], [1, 3])]
5 getFirstOnes [Int] -> [Int] [([[1, 1, 0, 1, 2]], [1, 1])]
6 removeFirstOnes [Int] -> [Int] [([[1, 1, 0, 0, 1, 2]], [0, 0, 1, 2])]
7 listIntersect [Int] -> [Int] -> [Int] [([[0, 2, 4], [2, 4, 6]], [2, 4])]
8 indexConst [a] -> a [([[1, 2, 0, 3, 0, 1]], 3)]

9 allGreaterThan [Int] -> Bool
([[2, 3, 4]], True),
([[2, 1, 4]], False)]

10 dropConst [Int] -> [Int] [([[0, 0, 4, 4, 3]], [4, 3])]
11 filterGreaterThan [Int] -> [Int] [([[2, 0, 1, 3]], [2, 3])]
12 filterPairs [(Int, Int)] -> [(Int, Int)] [([[(1, 2), (2, 2), (3, 0)]], [(2, 2)])]
13 filterEq [Int] -> [Int] [([[1, 2, 1, 3, 4, 4]], [1, 1])]
14 replicateConst Int -> [Int] [([1], [1, 1])]
15 addElemsTwoLists [Int] -> [Int] -> [Int] [([[1, 2, 3], [3, 4, 5]], [4, 6, 8])]
16 sumSquares [Int] -> Int [([[1, 3, 1]], 11)]
17 removeMax [Int] -> [Int] [([[1, 3, 2]], [1, 2])]

18 nandPair (Bool, Bool) -> Bool

[([(True, True)], False),
([(False, False)], True),
([(True, False)], True),
([(False, True)], True)]

19 allEqBool [Bool] -> Bool

[([[False, False]],True),
([[True, False]], False),
([[True]],True)]

20 mapReverse [[a]] -> [[a]] [([[[1, 3]]], [[3, 1]])]

21 allJust [Maybe a] -> Bool

[([[Nothing, Just 1]], False),
([[Just 0, Just 0]], True),
([[Just 0, Nothing]], False)]

22 andListPairs [(Bool,Bool)] -> Bool

[([[(True, True), (False, False)]],
False), ([[(True, True), (False,
False), (True, True)]], False),
([[(True, True), (True, True)]],
True), ([[(False, False)]], False)]

23 sumPairEntries (Int, Int) -> Int [([(1, 2)], 3)]
24 filterPairsTyClass (Eq a) => [(a, a)] -> [(a, a)] [([[(1, 2), (2, 2), (3, 0)]], [(2, 2)])]
25 mapAddFloat [Float] -> [Float] [([[1, 2, 3]], [1.5, 2.5, 3.5])]
26 mapAddLarge [Int] -> [Int] [([[100, 200, 300]], [120, 220, 320])]

ask both synthesizers to synthesize at most 10 solutions (parameter N in Algorithm 2).
The goal is to understand the impact of the addition of the wildcard component, and the
removal of the constant components.

2. We run both Hoogle⋆ and the version of Hoogle+ that supports examples[20], on
the 26 benchmarks, measuring also the time consumed replacing the occurrences of the
wildcard, and we ask both synthesizers to synthesize at most 35 solutions7.

Experimental setup. We run the experiments on a laptop with an AMD 5600G, running at
3.9 GHz, with 6 cores and 16 GB of RAM. All the versions of Hoogle+ and Hoogle⋆ use
only two cores. The operating system is Ubuntu 22.04.2 LTS, the version of stack is 2.9.1, and

7 This is a higher value than in the previous step, because many of the N functions synthesized by the
Petri net may be rejected due to the test of input-output examples, and with a lower value of N , both
synthesizers ended the search before the timeout, without finding any solution.

ECOOP 2023

4:20 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

the version of GHC is 8.4.4. The component set used by both Hoogle+ versions contains
the following modules: Data.Bool, Data.ByteString.Builder, Data.ByteString.Lazy,
Data.Either, Data.Eq, Data.Function, Data.Int, Data.Maybe, Data.Ord, Data.Tuple,
GHC.Char, GHC.List, and Text.Show. The total number of components is 297. The compon-
ent set used by Hoogle⋆ is the same, except that we removed the constants Data.Bool.True,
Data.Bool.False, Data.Maybe.Nothing and [], and we added the wildcard component.
Those constants can be synthesized by the unification algorithm, so the component set does
not need to contain them.

5.2 Results
In this section, we discuss the results of the experiments performed to answer the research
questions stated at the beginning of the Section 5.

Results of the first set of benchmarks. The results of the first set of benchmarks are
presented in Table 3, which shows that Hoogle⋆ solves two problems that Hoogle+ could
not solve (benchmarks 6 and 9), and Hoogle+ one problem that Hoogle⋆ could not solve
(benchmark 35). We have not found significant differences in the synthesized solutions, and
in most benchmarks, there are solutions in common.

Hoogle⋆ tends to be faster at synthesizing the first solution and synthesizes more
solutions. On average, Hoogle⋆ synthesizes 2.95 solutions per benchmark and takes 3.92
seconds to synthesize the first solution. Hoogle+ synthesizes 2.41 solutions and takes 5.58
seconds. This can be explained by the removal of the four constants: on average, Hoogle+
without constants takes 3.37 seconds to synthesize the first solution, so, in average, it is faster
than Hoogle+ with constants and Hoogle⋆. Indeed, the removal of the constants leads to
a smaller component set, however, the reason for that is not the number of components that
were removed, but the kind of components. Note that in the Petri net encoding, constants
correspond to nullary transitions, i.e., transitions that do not need tokens to fire, so they can
fire at any moment, leading to a higher branching factor. Thus, the removal of a constant
should have more impact than the removal of a function.

Results of the second set of benchmarks. The results of the second set of benchmarks are
shown in Table 4. Hoogle⋆ solves 22 out of 26 benchmarks, whereas Hoogle+ solves only
3 (benchmarks 50, 52, and 62), which are all solved by Hoogle⋆. This happens because
most benchmarks require constants and λ-abstractions to be synthesized, which Hoogle+
is not able to do. The authors of Hoogle+ [14] argue that the absence of λ-abstractions
does not impact the completeness of the method, because terms with λ-abstractions can be
replaced with a term in point-free style, using the combinators S, K and I. However, this
requires adding a nullary version of each component to the component set, which the authors
consider infeasible, and in practice, only a small subset is added. The component sets of each
version of Hoogle+ used in our evaluation contain the combinators S, K, and I (module
Data.Function), but it was not enough to solve the problems that require λ-abstractions.

In the benchmarks that require the synthesis of constants, the time spent com-
pleting the functions is always lower than 20% of the total time. However, in the
benchmarks that require the synthesis of λ-abstractions, the time spent completing
the wildcards can reach more than 50% of the total time, as happens in bench-
marks 53, 59, and 60. Hoogle⋆ cannot solve benchmark 51, whose solution is
\arg1 arg2 -> filter (\x1 -> x1 ‘elem‘ arg2) arg1, because it requires the Petri net
to synthesize the incomplete function \arg1 arg2 -> filter wildcard arg1, which does
not use arg2, and the Petri net always synthesizes functions that use all the parameters.
It also fails to solve benchmark 68, which is very similar to 56, with the difference that

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:21

Table 3 Results of the first set of benchmarks. For both synthesizers, we show the number
of solutions and the total time to synthesize the first solution, in seconds, or - if no solution was
produced within the timeout of 60 seconds.

Hoogle+ Hoogle+, no consts. Hoogle⋆
Benchmark Time (s) Sols. Time (s) Sols. Time (s) Sols.
1 firstRight 0.56 5 0.53 5 0.47 6
2 firstKey 2.32 4 1.41 2 1.21 2
3 flatten 1.09 9 6.10 9 0.93 9
4 repl-funcs 0.81 2 0.57 2 0.5 5
5 containsEdge 0.92 2 0.82 1 0.66 1
6 multiApp - 0 - 0 1.73 2
7 appendN 0.6 10 0.54 10 0.48 10
8 pipe 6.99 4 7.48 2 7.41 2
9 intToBS - 0 - 0 0.66 6

10 cartProduct 20.08 1 3.97 1 1.43 1
11 applyNtimes 4.88 2 5.06 3 5.15 6
12 firstMatch 0.97 5 1.03 5 1.23 6
13 mbElem - 0 - 0 - 0
14 mapEither 2.28 1 7.42 1 3.07 1
15 hoogle01 0.68 4 0.66 4 0.61 9
16 zipWithResult - 0 - 0 - 0
17 splitStr 0.58 5 0.54 4 0.5 9
18 lookup - 0 - 0 - 0
19 fromFirstMaybes 2.17 3 2.03 5 1.37 2
20 map 0.78 5 0.81 5 0.54 7
21 maybe 0.68 1 0.69 1 0.51 1
22 rights 30.41 1 16.18 1 6.64 1
23 mbAppFirst 1.31 1 0.98 1 0.85 1
24 mergeEither - 0 - 0 - 0
25 test 10.68 2 9.23 1 12.98 1
26 multiAppPair - 0 - 0 - 0
27 splitAtFirst 1.01 5 0.79 1 0.72 3
28 2partApp 2.08 5 4.08 3 2.64 3
29 areEq - 0 - 0 - 0
30 eitherTriple - 0 - 0 - 0
31 mapMaybes 0.72 5 0.70 6 0.57 9
32 head-rest 3.79 3 8.67 3 2.36 3
33 appBoth 1.82 1 4.56 1 1.6 1
34 applyPair 1.68 1 1.98 1 3.82 1
35 resolveEither 42.49 1 - 0 - 0
36 head-tail 9.69 2 10.37 3 11.03 2
37 indexesOf 22.38 1 - 0 54.35 1
38 app3 0.59 1 0.86 1 0.52 7
39 both - 0 - 0 - 0
40 takeNdropM - 0 - 0 - 0
41 firstMaybe 1.71 6 1.41 8 1.31 4
42 mbToEither - 0 - 0 - 0
43 pred-match 1.02 4 0.97 4 0.9 4
44 singleList 0.66 4 0.61 3 0.51 4

average 5.58 2.41 3.37 2.20 3.92 2.95

the query type has a typeclass constraint, instead of a monomorphic type. The solution is
\arg1 -> filter (\p -> fst p == snd p) arg1, however, the Petri net does not synthes-
ize the incomplete function \arg1 -> filter wildcard arg1 within the timeout (whereas
it synthesizes when the type is monomorphic). Benchmark 69 uses real numbers, that
are not supported by the unification algorithm, and benchmark 70 contains input-output
examples with large constants, leading the unification to reach the maximum depth before
finding valid assignments. Comparing the solutions synthesized for the benchmarks that
Hoogle+ solves, the solutions of Hoogle⋆ are simpler, using fewer components. For
instance, in benchmark 52, Hoogle+ synthesizes \arg0 -> last (init (init arg0)),
whereas Hoogle⋆ synthesizes \arg1 -> (!!) arg1 3.

ECOOP 2023

4:22 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

Table 4 Results of the second set of benchmarks. This table shows, for both synthesizers, the
time elapsed to synthesize the first solution, in seconds, as well as the number of solutions, and the
time spent replacing symbols until the first solution is completed. The timeout is 90 seconds.

Hoogle+ with examples Hoogle⋆
Benchmark Time (s) Sols. Time (s) Unify (s) Sols.
45 mapAdd - 0 8.07 0.66 11
46 mapSquare - 0 7.99 0.61 11
47 appendConst - 0 4.14 0.49 1
48 filterDiff - 0 14.26 6.04 10
49 getFirstOnes - 0 1.89 0.16 21
50 removeFirstOnes 2.55 1 1.49 0.18 22
51 listIntersect - 0 - - 0
52 indexConst 3.94 1 1.16 0.18 1
53 allGreaterThan - 0 21.45 15.42 25
54 dropConst - 0 1.81 0.18 9
55 filterGreaterThan - 0 15.14 6.48 10
56 filterPairs - 0 2.26 0.19 6
57 filterEq - 0 24.77 11.5 12
58 replications - 0 1.18 0.19 14
59 addElemsTwoLists - 0 74.56 66.52 10
60 sumSquares - 0 25.58 20.22 10
61 removeMax - 0 14.27 5.96 10
62 nandPair 30.95 4 8.91 3.84 10
63 allEqBool - 0 7.33 1.63 20
64 mapReverse - 0 6.0 0.73 10
65 allJust - 0 17.32 1.14 8
66 andListPairs - 0 7.9 1.05 20
67 sumPairEntries - 0 8.01 0.67 27
68 filterPairsTyClass - 0 - - 0
69 mapAddFloat - 0 - - 0
70 mapAddLarge - 0 - - 0

average 12.48 0.23 12.52 6.55 10.70

5.3 Answers to Research Questions
Given the results discussed in Section 5.2, we answer the two research questions as follows:
RQ1 The addition of the wildcard component did not lead to performance degradations.

Instead, the removal of constants resulted in performance improvements. From the
original Hoogle+ benchmarks, there is a single benchmark that Hoogle+ solves and
Hoogle⋆ cannot solve within the timeout, but it solves two that Hoogle+ does not
solve.

RQ2 Hoogle⋆ can solve many more new problems than Hoogle+, especially when con-
stants or λ-abstractions are required, which makes it able to solve new classes of problems.
We also found that in the cases that both synthesizers produce solutions, the solutions of
Hoogle⋆ are simpler, since they use fewer components.

6 Related Work

In this section, we compare our work to other research in program synthesis, unification, and
symbolic execution. Most of the related work has been already presented in the Hoogle+
original paper, so our focus is the work apart from this one.

6.1 Program Synthesis
Hoogle+ related work summary. The subjects most directly related to Hoogle+ are
type inhabitation and graph reachability. However, most of the related work on type
inhabitation is based on classical proof search, such as Agda [30], or produce solutions

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:23

that do not use all the arguments, such as Djinn [1]. In turn, the related work on graph
reachability only supports functions with a single parameter, such as Prospector [25],
or does not support polymorphism, such as SyPet [7]. When compared to other API
search tools, such as Hoogle [26], Hoogle+ is able to synthesize applications of multiple
components. Using statistical methods to improve the search, such as Slang [34], the authors
of Hoogle+ conjecture that it is not effective in functional languages, due to the “high
degree of compositionality”. There are also approaches to scalable proof search; however,
the search space is restricted to names of parameters, functions, or fields [32], or does not
support polymorphism, such as InSynth [15].

Synthesis from sketches. The idea of completing programs with holes, also known as
sketches, has already been used in Sketch [36] and Rosette [37], in which SAT/SMT
solvers infer integer constants. However, in our work, a hole can be replaced with an
expression of any algebraic type, or λ-abstractions. More recently, Smyth [24], an evaluator-
based program synthesizer, replaces holes with any expression, including case expressions, by
performing a search guided by input-output examples. However, it inherits scalability issues
from Myth [31], the base of Smyth, and the authors consider that Hoogle+ “might also be
incorporated into our approach in future work”. Scrybe [27] extends the approach of Smyth,
with example propagation, and can solve more problems than Smyth. However, we conjecture
that the scalability issues remain, as the evaluation uses specific component sets for each test
of at most 10 components [28], whereas the component set of Hoogle+ has 291 components.
GHC, a Haskell compiler, supports programs with missing expressions, suggesting valid
fits [9]. However, constants are excluded (apart from already defined constants, such as True)
and λ-abstractions. PropR [10] uses this GHC feature to replace faulty sub-expressions on
Haskell programs, and suggest constants, that, however, are limited to the ones contained in
the program to repair.

Component-based synthesis. Apart from the related work of Hoogle+, PetSy [38]
performs a top-down enumerative search, instead of using a Petri net encoding. Its evaluation
shows that, at least with 130 components, its performance is comparable to Hoogle+.
However, it does not synthesize constants. Hectare [23], a new synthesizer for Haskell that
uses a new graph data structure to represent the search space, has shown to be faster than
Hoogle+, but it does not support constants nor λ-abstractions.

6.2 Unification and Symbolic Execution
E-Unification. Unification is a process that, given two expressions, tries to replace the
symbols in both expressions, such that the resulting expressions are syntactically equal [2].
In our case, the goal is to make two expressions equal after evaluation. This leads us to
E-Unification, in which the equality of terms is established by a set of equations E: two
terms s, t are equal if and only if s ≈ t ∈ E [35]. There are several approaches to solving
E-Unification [8, 6], but we have not found any formulation that could be directly applied to
our context. The same can be stated about Huet’s algorithm [19], which solves the unification
problem for typed λ-calculus, from which Haskell’s Core language is an extension [21].

Symbolic execution. Symbolic execution tools explore multiple paths of a program to find
counterexamples for a given property [3] and the unification problem discussed in this article
can be reduced to finding a counterexample for esrc ̸= etgt. G2 [16] and G2Q [17] are two
symbolic execution tools for Haskell, but they do not support symbolic variables in place of

ECOOP 2023

4:24 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

functions, which is required for Hoogle⋆. Nebula [22], built on top of G2, supports symbols
in place of functions, and treats applications of symbolic variables in a way similar to our
approach: it replaces the application with a fresh symbol denoting the return value. However,
it does not fully evaluate the arguments, so it may treat two equivalent calls as different calls.
Nebula can prove the equivalence of Haskell programs, by combining symbolic execution and
coinduction, whereas our algorithm only finds assignments to symbolic variables. However, it
is one order of magnitude faster, which makes the difference in the performance of Hoogle⋆.
SCV [29] uses symbolic execution to validate software contracts in Racket programs and
supports symbols in place of functions, but instead of assigning applications of functions to
expressions, it generates candidate functions. However, while our algorithm supports infinite
structures, SCV does not, since Racket is a strict language.

7 Limitations

Using polymorphic abstractions, instead of the standard way of implementing typeclasses,
dictionary passing [33], simplifies the algorithm, especially when the term that determines
the version of the polymorphic function is a symbol. But, as a drawback, this approach
requires that each time a new monomorphic variant of a polymorphic operation is
provided, the existing code must be edited (the new implementation must be added
to each occurrence of the corresponding polymorphic abstraction). However, since the
component set is not expected to change, this does not impact the usage of Hoogle⋆.

Currying is not supported for practical reasons. Whenever a curried application is trans-
lated to λU , we need to replace it with a λ-abstraction: supposing that f takes n

arguments, we rewrite f e1 ... em as λ xm+1 ... xn . f e1 ... em xm+1 ... xn (with m < n).
Also, for practical reasons, data constructors are not treated as the left side of abstractions,
which means that a data constructor cannot be used as a function directly.

Data is represented by data constructors, which simplifies the algorithm, because all op-
erations can be written in λU and each value can be built incrementally, by choosing a
branch of each case expression. For instance, if we had to use the constant representation
of integers, the implementation of operators such as integer comparison could not be
expressed in λU , and expressions such as n1 ≤ n2 would have to be processed by an
SMT solver. A drawback of this representation is that real numbers are not supported
(benchmark 69), and, in some specific cases, large integers may lead to an intractable
search (if it is required to iterate the whole structure). Unifying a symbol with a large
number, which is the case of benchmark 47, simply requires the application of SNAL or
SAL; however, unifying s + 1 with N (similar to what happens in benchmark 70) requires
a depth greater than N , which, in the context of complex problems with large branching
factors, may become intractable.

Allow unused parameters. The Petri net does not synthesize functions that do not use all
parameters, but the wildcards could be replaced with expressions using the remaining para-
meters. For instance, Hoogle⋆ cannot synthesize \xs n -> filter (\x -> x < n) xs,
because \xs n -> filter wildcard xs does not use the parameter n.

Queries with typeclass constraints are not solved, as in benchmark 68, because the Petri
net becomes significantly slower when there are typeclass constraints (typeclass constraints
are treated as extra arguments of the type query).

Completeness, normal form, and soundness. We do not have a definition of normal form
for the terms of λU , nor proofs of completeness and of the guarantees of the inference
rules, stated in Section 3.2.

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:25

8 Conclusion

In this work we developed a unification algorithm for a subset of the Haskell programming
language and extended Hoogle+, which can now synthesize constants and λ-abstractions.

Unification algorithm. To evaluate Hoogle⋆, we have encoded 92 functions from the
Haskell standard library8 in λU , and our algorithm successfully replaced the occurrences of
the wildcard component for constants. But it has other applications; for instance, it can be
used to compute inverses (by unifying f s1 ... sk with the output, s1 ... sk will be assigned to
the values of the arguments), or for software testing and verification, finding counterexamples
(for instance, if a function f is expected to always return a positive number, we can unify
the application of f to symbolic variables with 0, to search for inputs that eventually make
the function return 0).

Hoogle⋆. Hoogle⋆ can solve more problems than the original Hoogle+ as it successfully
synthesizes constants and λ-abstractions, without performance degradation. As explained in
Section 6, existing synthesizers do not synthesize constants and λ-abstractions, or do not
have the scalability that Petri nets give to Hoogle+. Hoogle⋆ can generate constants
and λ-abstractions while maintaining the scalability of Petri nets. Although we extended
Hoogle+, the contributions are not exclusive to this synthesizer, as they can be applied
to other Petri-net synthesizers, such as SyPet. As a program synthesizer, it can impact
science and industry in different ways: discovering new algorithms, allowing end users to
build programs, improving teaching or assisting programmers [11, 5].

Future work. The main lines of future work are: supporting the representation of real
numbers, as well as large integers; allowing the Petri net to synthesize functions that do
not use all parameters; improving the synthesis of queries involving typeclass constraints;
providing notions of completeness, normal forms, and a proof of the guarantees claimed in
Section 3.2; and incorporating typeclasses in the type-checker of synth-expr.

References

1 Lenart Augusstson. Djinn. URL: https://github.com/augustss/djinn.
2 Franz Baader. Unification theory. In Klaus U. Schulz, editor, Word Equations and Related

Topics, First International Workshop, IWWERT ’90, Tübingen, Germany, October 1-3, 1990,
Proceedings, volume 572 of Lecture Notes in Computer Science, pages 151–170. Springer, 1990.
doi:10.1007/3-540-55124-7_5.

3 Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi.
A survey of symbolic execution techniques. ACM Comput. Surv., 51(3):50:1–50:39, 2018.
doi:10.1145/3182657.

4 João Costa Seco, Jonathan Aldrich, Luís Carvalho, Bernardo Toninho, and Carla Ferreira.
Derivations with holes for concept-based program synthesis. In Proceedings of the 2022
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward! 2022, pages 63–79, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3563835.3567658.

8 From the modules Data.Maybe, Data.Either, Data.Bool, GHC.List, Data.Ord and GHC.Num.

ECOOP 2023

https://github.com/augustss/djinn
https://doi.org/10.1007/3-540-55124-7_5
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3563835.3567658

4:26 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

5 Cristina David and Daniel Kroening. Program synthesis: challenges and opportunities.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 375(2104):20150403, 2017. doi:10.1098/rsta.2015.0403.

6 Daniel J. Dougherty and Patricia Johann. An improved general e-unification method. J. Symb.
Comput., 14(4):303–320, 1992. doi:10.1016/0747-7171(92)90010-2.

7 Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. Component-based
synthesis for complex apis. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pages 599–612. ACM, 2017. doi:10.1145/3009837.
3009851.

8 Jean H. Gallier and Wayne Snyder. A general complete E-unification procedure. In Pierre
Lescanne, editor, Rewriting Techniques and Applications, 2nd International Conference, RTA-
87, Bordeaux, France, May 25-27, 1987, Proceedings, volume 256 of Lecture Notes in Computer
Science, pages 216–227. Springer, 1987. doi:10.1007/3-540-17220-3_19.

9 Matthías Páll Gissurarson. Suggesting valid hole fits for typed-holes (experience report). In
Nicolas Wu, editor, Proceedings of the 11th ACM SIGPLAN International Symposium on
Haskell, Haskell@ICFP 2018, St. Louis, MO, USA, September 27-17, 2018, pages 179–185.
ACM, 2018. doi:10.1145/3242744.3242760.

10 Matthías Páll Gissurarson, Leonhard Applis, Annibale Panichella, Arie van Deursen, and
David Sands. PROPR: property-based automatic program repair. In 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May
25-27, 2022, pages 1768–1780. ACM, 2022. doi:10.1145/3510003.3510620.

11 Sumit Gulwani. Dimensions in program synthesis. In Temur Kutsia, Wolfgang Schreiner, and
Maribel Fernández, editors, Proceedings of the 12th International ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming, July 26-28, 2010, Hagenberg, Austria,
pages 13–24. ACM, 2010. doi:10.1145/1836089.1836091.

12 Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. Found. Trends
Program. Lang., 4(1-2):1–119, 2017. doi:10.1561/2500000010.

13 Zheng Guo, David Cao, Davin Tjong, Jean Yang, Cole Schlesinger, and Nadia Polikarpova.
Type-directed program synthesis for restful apis. In Ranjit Jhala and Isil Dillig, editors,
PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, San Diego, CA, USA, June 13 - 17, 2022, pages 122–136. ACM, 2022.
doi:10.1145/3519939.3523450.

14 Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and Nadia
Polikarpova. Program synthesis by type-guided abstraction refinement. Proc. ACM Program.
Lang., 4(POPL):12:1–12:28, 2020. doi:10.1145/3371080.

15 Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion using
types and weights. In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA,
USA, June 16-19, 2013, pages 27–38. ACM, 2013. doi:10.1145/2491956.2462192.

16 William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica Piskac. Lazy
counterfactual symbolic execution. In Kathryn S. McKinley and Kathleen Fisher, editors,
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 411–424. ACM,
2019. doi:10.1145/3314221.3314618.

17 William T. Hallahan, Anton Xue, and Ruzica Piskac. G2Q: haskell constraint solving. In
Richard A. Eisenberg, editor, Proceedings of the 12th ACM SIGPLAN International Symposium
on Haskell, Haskell@ICFP 2019, Berlin, Germany, August 18-23, 2019, pages 44–57. ACM,
2019. doi:10.1145/3331545.3342590.

18 Paul Hudak and Joseph H. Fasel. A gentle introduction to haskell. ACM SIGPLAN Notices,
27(5):1, 1992. doi:10.1145/130697.130698.

https://doi.org/10.1098/rsta.2015.0403
https://doi.org/10.1016/0747-7171(92)90010-2
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1007/3-540-17220-3_19
https://doi.org/10.1145/3242744.3242760
https://doi.org/10.1145/3510003.3510620
https://doi.org/10.1145/1836089.1836091
https://doi.org/10.1561/2500000010
https://doi.org/10.1145/3519939.3523450
https://doi.org/10.1145/3371080
https://doi.org/10.1145/2491956.2462192
https://doi.org/10.1145/3314221.3314618
https://doi.org/10.1145/3331545.3342590
https://doi.org/10.1145/130697.130698

H. Botelho Guerra, J. F. Ferreira, and J. Costa Seco 4:27

19 Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor. Comput. Sci.,
1(1):27–57, 1975. doi:10.1016/0304-3975(75)90011-0.

20 Michael B. James, Zheng Guo, Ziteng Wang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and
Nadia Polikarpova. Digging for fold: synthesis-aided API discovery for haskell. Proc. ACM
Program. Lang., 4(OOPSLA):205:1–205:27, 2020. doi:10.1145/3428273.

21 SL Peyton Jones, Cordy Hall, Kevin Hammond, Will Partain, and Philip Wadler. The
glasgow haskell compiler: a technical overview. In Proc. UK Joint Framework for Information
Technology (JFIT) Technical Conference, volume 93, 1993.

22 John C. Kolesar, Ruzica Piskac, and William T. Hallahan. Checking equivalence in a non-strict
language. Proc. ACM Program. Lang., 6(OOPSLA2):1469–1496, 2022. doi:10.1145/3563340.

23 James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-Lezama, and Nadia Polikarpova.
Searching entangled program spaces. Proc. ACM Program. Lang., 6(ICFP):23–51, 2022.
doi:10.1145/3547622.

24 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. Program sketching with live
bidirectional evaluation. Proc. ACM Program. Lang., 4(ICFP):109:1–109:29, 2020. doi:
10.1145/3408991.

25 David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. Jungloid mining: helping to
navigate the API jungle. In Vivek Sarkar and Mary W. Hall, editors, Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design and Implementation, Chicago,
IL, USA, June 12-15, 2005, pages 48–61. ACM, 2005. doi:10.1145/1065010.1065018.

26 Neil Mitchel. Hoogle. URL: https://hoogle.haskell.org/.
27 Niek Mulleners, Johan Jeuring, and Bastiaan Heeren. Program synthesis using example

propagation. CoRR, abs/2210.13873, 2022. doi:10.48550/arXiv.2210.13873.
28 Niek Mulleners, Johan Jeuring, and Bastiaan Heeren. Scrybe. https://github.com/NiekM/

scrybe, 2022.
29 Phuc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. Higher order symbolic execution

for contract verification and refutation. J. Funct. Program., 27:e3, 2017. doi:10.1017/
S0956796816000216.

30 Ulf Norell. Dependently typed programming in agda. In Pieter W. M. Koopman,
Rinus Plasmeijer, and S. Doaitse Swierstra, editors, Advanced Functional Programming,
6th International School, AFP 2008, Heijen, The Netherlands, May 2008, Revised Lec-
tures, volume 5832 of Lecture Notes in Computer Science, pages 230–266. Springer, 2008.
doi:10.1007/978-3-642-04652-0_5.

31 Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis. In
David Grove and Stephen M. Blackburn, editors, Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland, OR, USA, June
15-17, 2015, pages 619–630. ACM, 2015. doi:10.1145/2737924.2738007.

32 Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. Type-directed completion
of partial expressions. In Jan Vitek, Haibo Lin, and Frank Tip, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’12, Beijing, China
- June 11 - 16, 2012, pages 275–286. ACM, 2012. doi:10.1145/2254064.2254098.

33 John Peterson and Mark P. Jones. Implementing type classes. In Robert Cartwright, editor,
Proceedings of the ACM SIGPLAN’93 Conference on Programming Language Design and
Implementation (PLDI), Albuquerque, New Mexico, USA, June 23-25, 1993, pages 227–236.
ACM, 1993. doi:10.1145/155090.155112.

34 Veselin Raychev, Martin T. Vechev, and Eran Yahav. Code completion with statistical language
models. In Michael F. P. O’Boyle and Keshav Pingali, editors, ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014, pages 419–428. ACM, 2014. doi:10.1145/2594291.2594321.

35 Jörg H. Siekmann. Unification theory. J. Symb. Comput., 7(3/4):207–274, 1989. doi:
10.1016/S0747-7171(89)80012-4.

ECOOP 2023

https://doi.org/10.1016/0304-3975(75)90011-0
https://doi.org/10.1145/3428273
https://doi.org/10.1145/3563340
https://doi.org/10.1145/3547622
https://doi.org/10.1145/3408991
https://doi.org/10.1145/3408991
https://doi.org/10.1145/1065010.1065018
https://hoogle.haskell.org/
https://doi.org/10.48550/arXiv.2210.13873
https://github.com/NiekM/scrybe
https://github.com/NiekM/scrybe
https://doi.org/10.1017/S0956796816000216
https://doi.org/10.1017/S0956796816000216
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2254064.2254098
https://doi.org/10.1145/155090.155112
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1016/S0747-7171(89)80012-4
https://doi.org/10.1016/S0747-7171(89)80012-4

4:28 Hoogle⋆: Constants and λ-abstractions in Petri-net-based Synthesis

36 Armando Solar-Lezama. Program sketching. Int. J. Softw. Tools Technol. Transf., 15(5-6):475–
495, 2013. doi:10.1007/s10009-012-0249-7.

37 Emina Torlak and Rastislav Bodík. Growing solver-aided languages with rosette. In Antony L.
Hosking, Patrick Th. Eugster, and Robert Hirschfeld, editors, ACM Symposium on New Ideas
in Programming and Reflections on Software, Onward! 2013, part of SPLASH ’13, Indianapolis,
IN, USA, October 26-31, 2013, pages 135–152. ACM, 2013. doi:10.1145/2509578.2509586.

38 Darya Verzhbinsky and Daniel Wang. Petsy: Polymorphic enumerative type-guided synthesis.
POPL 2021 Student Research Competition, 2021.

https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/2509578.2509586

Modular Abstract Definitional
Interpreters for WebAssembly
Katharina Brandl Ñ

Johannes Gutenberg-Universität Mainz, Germany

Sebastian Erdweg Ñ

Johannes Gutenberg-Universität Mainz, Germany

Sven Keidel Ñ

TU Darmstadt, Germany

Nils Hansen
Johannes Gutenberg-Universität Mainz, Germany

Abstract
Even though static analyses can improve performance and secure programs against vulnerabilities,
no static whole-program analyses exist for WebAssembly (Wasm) to date. Part of the reason is that
Wasm has many complex language concerns, and it is not obvious how to adopt existing analysis
frameworks for these features. This paper explores how abstract definitional interpretation can be used
to develop sophisticated analyses for Wasm and other complex languages efficiently. In particular, we
show that the semantics of Wasm can be decomposed into 19 language-independent components that
abstract different aspects of Wasm. We have written a highly configurable definitional interpreter
for full Wasm 1.0 in 1628 LOC against these components. Analysis developers can instantiate this
interpreter with different value and effect abstractions to obtain abstract definitional interpreters
that compute inter-procedural control and data-flow information. This way, we develop the first
whole-program dead code, constant propagation, and taint analyses for Wasm, each in less than
210 LOC. We evaluate our analyses on 1458 Wasm binaries collected by others in the wild. Our
implementation is based on a novel framework for definitional abstract interpretation in Scala that
eliminates scalability issues of prior work.

2012 ACM Subject Classification Software and its engineering → Automated static analysis

Keywords and phrases Static Analysis, WebAssembly

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.5

Supplementary Material Software (Source Code): https://gitlab.rlp.net/plmz/sturdy.scala
archived at swh:1:dir:8ccfa27cd16980470eb319533bc03a164d93bf8a

Funding The German Research Foundation (DFG)–451545561, and ATHENE: National Research
Center for Applied Cybersecurity, SeDiTraH

Acknowledgements We thank the anonymous reviewers for their effort and helpful suggestions.

1 Introduction

WebAssembly (Wasm) is a low-level programming language targeted at efficient and portable
computation on the web [10]. Wasm modules are often used as a drop-in replacement for
computation-intensive JavaScript libraries such as game engines [23, 10]. Wasm has also been
designed with security in mind, but many security vulnerabilities reemerge in Wasm because
OS-level routines must be provided as user code, which makes them susceptible to attacks [20],
and because current compilers targeting Wasm lack protection mechanisms such as stack
canaries [29]. While it is well-known that static program analyses can drive performance
optimization, reduce binary size, and discover vulnerabilities, no static whole-program
analyses exist for Wasm to date.

© Katharina Brandl, Sebastian Erdweg, Sven Keidel, and Nils Hansen;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 5; pp. 5:1–5:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.pl.informatik.uni-mainz.de/
https://www.pl.informatik.uni-mainz.de/
https://svenkeidel.de/
https://doi.org/10.4230/LIPIcs.ECOOP.2023.5
https://gitlab.rlp.net/plmz/sturdy.scala
https://archive.softwareheritage.org/swh:1:dir:8ccfa27cd16980470eb319533bc03a164d93bf8a;origin=https://gitlab.rlp.net/plmz/sturdy.scala;visit=swh:1:snp:418469dcfffe9b67b6891eef50a06a21ae76b59e;anchor=swh:1:rev:d1fc3f1ce4f52cf15231318f34fc54d98ca1c281
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Modular Abstract Definitional Interpreters for WebAssembly

Wasm involves many complex and interacting language features that analyses have to
model: operand stacks, call frames, jumps to scoped labels, function and global-variable
tables, dynamically loaded modules, and module-owned linear memory to name a few. It is
not obvious how to adopt existing analysis frameworks for these features, nor is it obvious
how to develop a new analysis framework for these features. In this paper, we demonstrate
that abstract definitional interpretation is capable of developing analyses for Wasm.

Abstract definitional interpretation was first proposed by Darais et al. [7] as an alternative
to abstracting abstract machines [12]. The key idea is to define a generic definitional
interpreter that is parametric in value and effect operations, such that it can be instantiated
to form concrete as well as abstract interpreters. Keidel et. al. [14] refined this approach to
isolate and permit modular reasoning about value and effect components [13]. However, it is
unclear if abstract definitional interpretation scales to languages as complex as Wasm and
if the resulting analyzers scale to real-world programs of considerable size. In this paper,
we answer both of these questions affirmatively and explain how we developed three Wasm
analyses in less than 210 LOC each.

The foundation of all our Wasm analyses is a generic definitional interpreter for Wasm,
which we designed and implemented. An important contribution of this paper is to decompose
the semantics of Wasm and map it to 12 value components and 7 effect components. Each
component consists of an interface with a canonical concrete semantics and any number
of abstract semantics. Since these components are language-independent, we only have to
develop them once and can reuse them across languages and analyses. This way, we managed
to develop a fully-fledged definitional interpreter for Wasm 1.0 and its module system in only
1628 lines of language-dependent code.

The generic interpreter is implemented against the interfaces of value and effect com-
ponents, making the mapping from language concerns to components explicit. Analysis
developers can derive abstract definitional Wasm interpreters by selecting an implementa-
tion for each component used by the generic interpreter. This makes analysis development
modular: We can reuse components between analyses and refine individual components
while reusing others unchanged. We demonstrate this modularity by deriving three abstract
definitional interpreters from the generic Wasm interpreter: a context-insensitive dead code
analysis based on an inter-procedural control-flow graph that we compute, a callsite-sensitive
constant propagation analysis, and a callsite-sensitive taint analysis. Each of the three
analyses is novel for Wasm, and each of them required less than 210 lines of Wasm-specific
code:

Generic interpreter Dead code analysis Constant analysis Taint analysis

LoC 1628 130 156 209

Technically, our implementation is based on a new framework for definitional abstract
interpretation in Scala. Our framework improves over the original DAI by Darais et al. [7] and
Sturdy by Keidel et al. [13] to make definitional abstract interpreters scalable. Specifically,
our framework exploits a simpler component design and eliminates the monadic transformer
stack required by DAI and Sturdy. We show that our analyses scale to real-world programs
by analyzing 1458 Wasm binaries collected by others in the wild. Since these binaries are not
full applications, we also developed a most general client for Wasm that allows us to apply
our whole-program analyses to individual modules soundly. On average, each of our analyses
takes 5s per binary, and we find 14% of all instructions are dead code, 10% of all instructions
could be replaced by constants, and 56% of all memory accesses are safe against tampering.

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen 5:3

Concrete Concrete Type Abs. Const. Abs.
(func (param i64) param=1 param=4 param=i64 param=i64

(result i64) result=1 result=24 result=i64 result=i64
local(i64)
i64.const 1 [1] [1] [i64] [1]
local.set 1 [] [] [] []
(loop [] [] [] []

local.get 0 [1] [4] [i64] [i64]
i64.const 1 [1,1] [1,4] [i64,i64] [1,i64]
i64.le_u [1] [0] [i32] [i32]
(if [] [] [] []

(then [] [] []
local.get 1 [1] [i64] [i64]
return) [] [] []

(else [] [] []
local.get 1 [1] [i64] [i64]
local.get 0 [4,1] [i64,i64] [i64,i64]
i64.mul [4] [i64] [i64]
local.set 1 [] [] []
local.get 0 [4] [i64] [i64]
i64.const 1 [1,4] [i64,i64] [1,i64]
i64.sub [3] [i64] [i64]
local.set 0 [] [] []
br 1))))

Figure 1 Factorial in Wasm: Two concrete runs and an abstract run using a type-based domain.

In summary, we make the following contributions:
We present the design of a modular analysis platform for Wasm (section 3).
We decompose Wasm into 12 value components and 7 effect components and implement
a generic interpreter against their interfaces (section 4).
We modularly define 3 whole-program analyses that are novel for Wasm and provide a
most general client for Wasm modules (section 5).
We designed and implemented a new, scalable framework for abstract definitional inter-
preters in Scala and explain how it improves over prior work. We realized our modular
analysis platform for Wasm on top of this framework (section 6).
We validate the soundness, performance, and applicability of the Wasm analyses (sec-
tion 7).

2 Introduction to WebAssembly and Problem Statement

Wasm is a low-level stack-based programming language with structured control flow. We
illustrate the textual syntax and some of the core features of Wasm using an iterative factorial
function in Figure 1 as an example. The leftmost column shows the code of the factorial
function, whereas the other columns display the stack of the concrete and abstract executions
of that code. Note that the local variable at index 0 refers to the function parameter and is
used as an iteration counter, whereas the local variable at index 1 is an accumulator for the
result of the factorial function.

We illustrate the concrete interpretation of the factorial function for arguments 1 and 4.
Most Wasm operations interact with the operand stack whose contents we show in Figure 1
for each instruction. For example, i64.const and local.get push values to the stack, whereas
local.set and i64.le_u pop values from the stack. For param=1, the if finds that the argument
is less-equal than 1 and thus terminates. For param=4, the if goes to the else-branch, where we
accumulate the factorial result, decrement the iteration counter, and jump to the beginning

ECOOP 2023

5:4 Modular Abstract Definitional Interpreters for WebAssembly

of the loop. Jumps in Wasm are structured, which means they can only target enclosing
blocks, indexed by distance. In our example, br 1 jumps over the if-block and targets the loop.
After a few more iterations, we will again reach the then-branch where the loop terminates.

To illustrate the abstract interpretation of Wasm, the two rightmost columns in Figure 1
show an abstract evaluation of the factorial function where values are approximated by their
types and by concrete values if they are constant. The factorial function is called with type
i64 as argument, denoting any 64-bit integer. Each abstract evaluation must overapproximate
both concrete evaluations. Hence the abstract interpreter analyzes both branches of the
if-instruction and loop until reaching a fixed point. This type analysis can be used to derive
a control-flow graph, but the value representation is configurable in our system. Later in
this paper, we present Wasm analyses that use more precise value abstractions.

Wasm provides many other interesting features not shown in our illustrating example.
For instance, in addition to normal function calls, there are also indirect function calls whose
call target can be found in a function table. Functions can also be imported from other
modules and Wasm code can invoke external functions provided by the runtime system.
When Wasm runs in the browser, these external functions are JavaScript programs. Finally,
each Wasm module can declare module-global variables and request a linear memory (i.e., a
byte array) to store data.

Problem Statement

We want to develop abstract interpreters for Wasm that track data-flow and information-flow.
This is a difficult challenge since the abstract interpreter has to deal with all of Wasm’s
concerns: the operand stack, call frames, global variables, linear memory, function tables, and
structured jumps. Without modularity, all concerns have to be handled at once, complicating
the initial development and hindering evolution.

For example, consider the semantics of indirect function calls which combines 5 Wasm
concerns highlighted with italic font: The interpreter first pops the numeric index of the
function from operand stack and uses it to search through the function table to find the
function definition. If the table has a function definition of the correct type at the index, the
interpreter invokes the function. In particular, the interpreter binds the function arguments
on the operand stack to the function parameters on a newly created call frame. Finally, the
interpreter processes the body of the function and afterwards pushes the return argument on
the stack. There are also multiple edge cases which cause the function invocation to fail.

A naive monolithic analysis implementation may closely couple the semantics of indirect
calls to specific abstractions for the function index, the operand stack, call frame, and
failures. This coupling not only complicates the analysis implementation, it also makes it
difficult to change the abstractions without also requiring changes to the abstract semantics
of indirect calls. To solve this problem, we divide and conquer by modularizing the analysis
implementation, which we discuss in the following section.

3 Modular Wasm Analyses in a Nutshell

In this section, we present the design of our modular analysis platform for Wasm. At the
core of our platform is a generic definitional interpreter for Wasm. The generic interpreter
describes the semantics of Wasm instructions and serves as a template to derive different
Wasm analyses, as well as a concrete interpreter. The generic interpreter is parametric in its
representation for values such as integers and floating point values. Furthermore, the generic
interpreter is parametric in its representation of effects such as the linear memory or the

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen 5:5

Generic Interpreter

Values Linear Memory

Operand Stack ...

Concrete Interpreter
Concrete Values Concrete Memory

Concrete Stack ...

Constant Analysis
Constant Values Constant Memory

Concrete Stack

Taint Analysis
Taint Values

Concrete Stack... ...

Constant Memory

defines semantics of Wasm instructions,
relative to value and effect components:

instantiates

Figure 2 We propose a modular Wasm analysis platform with a generic interpreter at its root.

trait GenericInterpreter[V, ExcV]:
// Independent value components for abstract value type V
val i32ops: IntegerOps[Int, V]
val f64ops: FloatOps[Double, V]
// Independent effect components
val stack: OperandStack[V]
type WasmExc[V] = (JumpTarget, List[V])
val except: Except[WasmExc[V], ExcV]
// Interpreter written against value and effect components
def evalInst(inst: Inst): Unit = inst match

case i32.Sub =>
val v2 = stack.popOrFail(); val v1 = stack.popOrFail()
stack.push(i32ops.sub(v1,v2))

case f64.Abs =>
val v = stack.popOrFail()
stack.push(f64ops.abs(v))

case Return =>
val operands = stack.popNOrFail(currentReturnArity)
except.throws((JumpTarget.Return, operands))

Figure 3 Simplified generic interpreter that handles subtraction, absolutes, and function returns.

operand stack. Analyses instantiate the generic interpreter with different abstractions for
values such as constants, taint flags, or types and with different abstraction for effects such
as a constant memory abstraction. Similarly, the concrete interpreter instantiates the generic
interpreter with concrete values and effects.

Our platform is modular along two dimensions. First, the generic interpreter defines
the semantics for Wasm instructions once and for all; analyses simply reuse that semantics.
Second, the values and effects required by the generic interpreter are decomposed into
language-independent components, which can be defined language-independently and reused
flexibly. Figure 2 illustrates the modularity of our platform. The generic interpreter sits on
top and is instantiated to obtain concrete and abstract interpreters. It depends on various
value and effect components that must be provided during instantiation. In Figure 2, the
colors illustrate component reuse. While each interpreter uses a different value representation,
the two abstract interpreters use the same component for linear memory and the operand
stack. Since the shape of the operand stack is decidable in Wasm [10], this component is
also shared with the concrete interpreter. In the remainder of this section, we illustrate how
our analysis platform realizes the generic interpreter, its instances, and the components.

ECOOP 2023

5:6 Modular Abstract Definitional Interpreters for WebAssembly

Generic interpreter

Figure 3 shows a simplified generic interpreter for Wasm. The generic interpreter does not
refer to any specific concrete or abstract value representations. Instead, the interpreter
abstracts over them with the value components IntegerOps for 32-bit integers and FloatOps

for 64-bit floats. Value components are interfaces with any number of implementations, for
example:

trait IntegerOps[B, V]: // a type class for integer operations
def integerLit(i: B): V // - embeds base literals of type B into the value type V
def sub(v1: V, v2: V): V // - subtraction of two values

object ConcreteIntegerOps extends IntegerOps[Int, Int] {...} // concrete semantics
object ConstantIntegerOps extends IntegerOps[Int, Topped[Int]] {...} // constant abstraction
object SignLongIntegerOps extends IntegerOps[Long, Sign] {...} // sign abstraction

In addition to the value components, the simplified generic interpreter requests two com-
ponents for effects: one for the mutable operand stack and one for exception handling.
Like value components, effect components define an interface that can be implemented in
various ways. The OperandStack[V] effect component provides push, pop, and peek operation
for values of type V. The Except component provides operations for throwing and catching
exceptions of type WasmExc[V], consisting of a jump target and a list of operand values. In
contrast to prior frameworks for abstract definitional interpretation, we distinguish value from
effect components to improve the run-time performance of our analyses. Specifically, value
components capture pure operations and do not contribute to the analysis state, whereas
effect components maintain internal state that is part of the overall analysis state. This
becomes relevant when joining computations or computing the fixpoint of an analysis.

The generic interpreter only relies on the interfaces of value and effect components.
Based on these, the generic interpreter defines the semantics of Wasm instructions with the
interpretation function evalInst. We only show a few selected cases. For integer subtraction,
function evalInst pops two values from the stack, subtracts them, and pushes the result back
on the stack. Note that most Wasm instructions are not overloaded, so it is easy to select
the appropriate value component. For example, function evalInst delegates the instruction
f64.Abs to the component f64ops, which handles 64-bit floating-point numbers. The operand
stack is ubiquitous in the generic interpreter, but other effects are needed too. For example,
function evalInst implements return instructions using exceptions that are caught at the
function head. Exception handling is a standard way for implementing non-local control flow
on the JVM, where our analyzers run. Exception handling also closely aligns with jumps
and returns in Wasm: Due to the structured control flow of Wasm, all jumps (including
returns) target a surrounding block. Similarly, exceptions interrupt execution and return to
the closest surrounding exception handler.

Concrete interpreter

We can instantiate the generic interpreter for different value and effect components. In
particular, we can derive a concrete Wasm interpreter by choosing the canonical concrete
semantics for all components and lifting them to Wasm values. Specifically, we represent
Wasm values using the corresponding number types of the JVM, because the definitional
Wasm interpreter is implemented in Scala.

enum Value:
case I32(i: Int); case I64(l: Long); case F32(f: Float); case F64(d: Double)

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen 5:7

With this, we can instantiate the generic interpreter:
class ConcreteInterpreter extends GenericInterpreter[Value, WasmExc[Value]]:

val i32ops = ... // lifts IntegerOps[Int, Int] to Value.I32
val f64ops = ... // lifts FloatOps[Double, Double] to Value.F64
val stack = new ConcreteOperandStack[Value]
val except = new ConcreteExcept[WasmExc[Value]]

For values we lift the canonical concrete semantics to the Value type, for effects we select all
required effect components directly from our library.

Abstract interpreter

We can derive abstract interpreters in the same manner. For example, let us build a type
analysis that only distinguishes the type of each value:
enum Type:

case I32; case I64; case F32; case F64; case Top

Wasm does not need Top, but we include it so Type forms a semi-lattice. We instantiate the
generic interpreter using Type for values and join exceptions that jump to the same target:
type ExcByTarget = Map[JumpTarget,List[Type]]
class AbstractInterpreter extends GenericInterpreter[Type, ExcByTarget]:

val i32ops = // lifts IntegerOps[Int, IntType] to Type.I32
val f64ops = // lifts FloatOps[Double, DoubleType] to Type.F64
val stack = new JoinableConcreteOperandStack[Type]
val except = new JoinedExcept[WasmExc[Type], ExcByTarget]

Our platform provides language-independent type abstractions for various components. For
the value components in Wasm, we lift these abstractions to the Wasm-specific abstraction
Type. For the operand stack, we exploit that its shape is decidable for Wasm, which allows us
to reuse the concrete operand stack (through subclassing). The abstract interpreter must
join the contents of stacks at control-flow join points, but these stacks will have equal size.
For exceptions, we select an abstract semantics that collects all possibly active exceptions in
a set. Although not shown here, analyses can select a context-sensitivity and configure other
aspects of the fixpoint algorithm, such as the iteration strategy or loop unrolling depth.

This example illustrates how our platform supports the modular development of Wasm
analyses: by plugging together value and effect components and instantiating the generic
interpreter. Moreover, individual components can be refined and replaced easily. But how
can we decompose Wasm into value and effect components and define a generic interpreter
for the full language?

4 Decomposing Language Concerns of WebAssembly

In this section, we propose a decomposition of Wasm that separates individual language
concerns into components. We will then define a Wasm generic interpreter on top of these
components. The generic interpreter only uses the interfaces of the components, while concrete
and abstract interpreters instantiate the generic interpreter with selected implementations of
the components. This way, the decomposition of Wasm into components enables analysis
developers to compose full-fledged Wasm analyses modularly.

In the remainder of this section, we present our decomposition of Wasm and its mapping
to value and effect components. For each component, we have implemented the canonical
concrete semantics compatible with the Wasm specification. We show possible abstract
semantics in section 5, where we construct data and information-flow analyses for Wasm.

ECOOP 2023

5:8 Modular Abstract Definitional Interpreters for WebAssembly

4.1 Values
Wasm defines four different value types, namely integers and floats with 32 and 64 bits: i32,
i64, f32, f64. In section 3, we already showed how some of the value components can be used
to implement value operations generically, such as IntergerOps for implementing operations
on integers. However, we omitted many details for illustration purpose. The goal of this
subsection is to fill the gap and to introduce other value components we used for Wasm.
Throughout this section, the type variable V stands for the abstract value type used by the
generic interpreter.

Numeric operations

We decompose the numeric operations of Wasm into 6 value components. Besides components
for the various arithmetic operations of the four value types, we use one component for
equality testing, and one component for ordering comparisons of Wasm values:
val i32ops: IntegerOps[Int, V] val f32ops: FloatOps[Float, V]
val i64ops: IntegerOps[Long, V] val f64ops: FloatOps[Double, V]
val eqOps: EqOps[V, V] val orderingOps: OrderingOps[V, V]

The mapping from Wasm instructions to the respective components is straightforward, but it
is not a one-to-one mapping; some instructions combine multiple operations from components:
def evalIntegerUnaryOperation(op: IUnop, v: V): V = op match

case i64.Extend32S =>
val shift = i64ops.integerLit(32)
i64ops.shiftRight(i64ops.shiftLeft(v, shift), shift)

Also note that the validation of Wasm rejects comparisons on values of different type. Thus,
when providing instances for EqOps and OrderingOps, it is sufficient to consider those cases
where the operands have the same type.

Conversions

Wasm features many operations that convert between value types. For example, there
are three operations converting from i32 values to f32 values, namely signed and unsigned
conversions and byte reinterpretation. We use a single Convert interface for all conversions,
but require 12 different instances of that component:
trait Convert[From, To, VFrom, VTo, Config]:

def apply(from: VFrom, conf: Config): VTo

val convert_i32_i64: Convert[Int, Long, V, V, ..]
val convert_i32_f32: Convert[Int, Float, V, V, ..]
val convert_i32_f64: Convert[Int, Double, V, V, ..]
...

Note that the first two type parameters From and To of Convert are tags or phantom types:
They are only used to describe the component. The actual values to be converted are of
type VFrom and VTo, both of which we instantiate with V in the generic interpreter. Actual
instances consider specific value representations for VFrom and VTo, and we lift these instances
to operate on values V as described below. The Config parameter guides the conversion. For
example, the following code handles the three different conversions of i32 to f32 values:
def evalConvertop(op: Convertop, v: V): V = op match

case f32.ConvertSI32 => convert_i32_f32(v, Signed)
case f32.ConvertUI32 => convert_i32_f32(v, Unsigned)
case f32.ReinterpretI32 => convert_i32_f32(v, Raw)

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen 5:9

The Convert interface can not only be used for numeric conversion operations. We use the
same interface for operations that serialize and deserialize values into bytes. This is required
to write values into Wasm’s linear byte memory:

val encode: Convert[V, Seq[Byte], V, Bytes, ...]
val decode: Convert[Seq[Byte], V, Bytes, V, ...]

def evalInst(inst: Inst): Unit = inst match
case i: StoreInst =>

val v = stack.popOrFail()
val bytes = encode(v, ...)
... // store bytes in memory

Branching

Concrete and abstract interpreters differ significantly when it comes to branching control
flow, as required for conditional constructs. While the concrete interpreter will select exactly
one branch to execute, abstract interpreters must analyze both branches unless they can
statically decide if the branching condition is true or false. We capture branching with a
value component that receives two continuations:

trait BoolBranching[B, R]:
def boolBranch(v: B, thn: => R, els: => R): R

Implementations of this interface can select the type B, for which they can decide the
branching. For example, we show the canonical concrete semantics that instantiates B with
Boolean and a type semantics that uses BooleanType:

class ConcreteBranch[R] extends BoolBranching[Boolean, R]:
def boolBranch(v: Boolean, thn: => R, els: => R): R = if (v) thn else els

class BoolTypeBranch[R](eff: EffectStack, j: Join[R]) extends BoolBranching[BooleanType,R]:
def boolBranch(v: BooleanType, thn: => R, els: => R): R = eff.joinComputations(thn,els,j)

The concrete semantics simply uses the boolean condition to decide which branch to execute.
In contrast, the type semantics must execute both branches and join their results and effects.
Our platform provides a helper function joinComputations to achieve that, given the stack of
effects (EffectStack) used by the abstract interpreter and an instance of type class Join[R].
In our implementation, these arguments are modeled as implicit parameters and resolved
automatically. We explain how our framework joins effectful computations in section 6.

We use boolBranch for all conditional instructions: select, brif, and if. For example:

val branchOps: BooleanBranching[V, Unit]
def evalInst(inst: Inst): Unit = inst match

case If(bt, thnInsts, elsInsts) =>
val isZero = evalNumeric(i32.Eqz)
branchOps.boolBranch(isZero, label(elsInsts), label(thnInsts))

We will explain the label function later in the context of jumps. For now it is sufficient to
know that it executes a labeled block of code.

Lifting Value Components

Our platform provides language-independent concrete and abstract instances for all value com-
ponents, such as the concrete IntergerOps[Int, Int] and the abstract IntegerOps[Int, IntType].
However, as shown above, generic interpreters usually require operations on some compound

ECOOP 2023

5:10 Modular Abstract Definitional Interpreters for WebAssembly

type for values. To reuse the language-independent component instances, we must lift them
to the Wasm-specific value type. To facilitate this, our platform provides lifting instances
for all value components, which can be easily instantiated. For example, the following two
definitions lift the concrete and type-based integer operations to Wasm values and types,
respectively:
val i32opsValue: IntegerOps[Int, Value] =

new LiftIntegerOps({case Value.I32(i) => i}, i => Value.I32(i))
val i32opsType: IntegerOps[Int, Type] =

new LiftIntegerOps({case Type.I32 => IntType}, _ => Type.I32)

For an underlying value type U, LiftIntegerOps takes an extract function V => U and an inject
function U => V. With these, it wraps the operations of the underlying language-independent
component instance, for example:
def sub(v1: V, v2: V): V = inject(underlying.sub(extract(v1), extract(v2)))

In our Wasm analyses, all value components are based on language-independent component
instances that we lift.

4.2 Effects
Computations generally yield values and trigger effects. Wasm features many language
concerns that are effectful. We capture these concerns in effect components. While value
components are stateless, effect components contain internal state. This distinction is
important when joining computations (as in the type-based boolBranch), because effect
components must participate in the join (see section 6 for details). In this subsection, we
present a decomposition of Wasm’s effectful language concerns into effect components.

Operand Stack

Wasm programs interact with an operand stack. We capture this effect in a dedicated effect
component:
trait OperandStack[V, MayJoin[_]]:

def push(v: V): Unit
def pop(): JOption[MayJoin, V]
def popOrFail(): V = ...
...

Except for the MayJoin type parameter, this component provides a standard stack interface.
The MayJoin parameter determines whether the component can yield an uncertain result for
pop. For example, if an abstract stack semantics lost track of the stack’s height, pop would
yield an uncertain result that comprises alternative values or even a stack underflow. In
contrast, a concrete stack semantics yields certain results only: either the stack’s topmost
value or no value if the stack is empty. Instances of OperandStack can declare which behavior
they provide by choosing NoJoin or WithJoin for MayJoin:
enum MayJoin[A]:

case NoJoin()
case WithJoin(j: Join[A], eff: EffectStack)

Indeed, a concrete stack uses NoJoin whereas an abstract stack uses WithJoin. Given a
WithJoin[A], we can invoke joinComputations as shown above in the abstract branching semantics
of subsection 4.1. Furthermore, Join[A] is used to join values of type A. OperandStack forwards
the MayJoin parameter to JOption, a data type for joinable option values that we use to
represent uncertain data. Since JOption[NoJoin, A] is isomorphic to the standard Option[A],
concrete operand stacks provide a standard stack interface.

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen 5:11

Many of our effect components use a similar design to declare that operations may yield
uncertain results in the abstract semantics. Indeed, the generic interpreter itself has a MayJoin

parameter that it forwards to the required effect components. However, sometimes the generic
interpreter can formulate more precise requirements. For Wasm, the language specification
guarantees that the height of the stack is decidable at all times and that stack lookups must
yield certain results. To this end, the generic Wasm interpreter requires a decidable operand
stack, which internally selects NoJoin for MayJoin.

Indirect Calls and Function Tables

Wasm features indirect function calls via function indices, which really are plain i32 values
computed by the program. To evaluate an indirect function call, Wasm reads a function
index from the stack, looks up the index in a function table, and invokes the found function:
def evalInst(inst: Inst): Unit = inst match

case CallIndirect(typeIx) =>
val funcIx = stack.popOrFail()
val funV = funTable.getOrElse(funcIx, fail(UnboundFunctionIndex, ...))
funOps.invokeFun(funV, invoke)

This code uses two additional components: an effect component funTable and a value
component funOps. We model the function table as a generic SymbolTable component that
maps symbols to entries:
trait SymbolTable[Symbol, V, MayJoin[_]]:

def get(symbol: Symbol): JOption[MayJoin, V]
def put(symbol: Symbol, newEntry: V): JOption[MayJoin, Unit]

val funTable: SymbolTable[FuncIx, FunV, MayJoin]

Note how the symbol table uses the same MayJoin pattern as the operand stack. However,
lookups in the function table are not decidable in Wasm, so that abstract interpreters
sometimes obtain an uncertain function. For example, our type analysis does not track the
values of function indices and thus must consider all reachable functions as potential targets
for indirect calls. This also is the reason why the function table contains FunV values rather
than functions directly: We must be able to join function values. To abstract from the
specific FunV representation, we use a generic value component FunctionOps:
trait FunctionOps[Fun, A, R, FunV]:

def funValue(fun: Fun): FunV
def invokeFun(v: FunV, a: A)(invoke: (Fun, A) => R): R

val funOps: FunctionOps[Function, FuncType, Unit, FunV]

Operation funValue lifts a function into a function value FunV. Operation invokeFun does the
inverse: It extracts functions from a function value and applies the continuation invoke on
each of them. Similar to boolBranch, abstract instances of FunctionOps join the result R of all
functions.

Global Variables

Wasm features numerically indexed global variables that can be used to store values. We
model global variables using the same SymbolTable component that we used for function tables.
However, the resolution of global variables is decidable in Wasm and always yields a certain
result. We incorporate this fact in the generic interpreter by requiring a decidable symbol
table for global variables:
val globals: DecidableSymbolTable[Int,V]

ECOOP 2023

5:12 Modular Abstract Definitional Interpreters for WebAssembly

Please note that in Wasm, each module has its own globals, function table, and memory,
which can also be shared between modules. Our implementation takes this into account, but
we decided to simplify the presentation of the code for the paper.

Local Variables

Each Wasm function can declare local variables, which we understand to include the function
parameters. A function can read and write its local variables freely. We model local variables
through a generic CallFrame component. Each call frame has a fixed size determined at
construction by operation inNewFrame. In addition, a call frame can track auxiliary Data for
each frame. For Wasm, we use the call frame to track the module instance of the currently
executing function as well as its return arity:

trait CallFrame[Data, Var, V, MayJoin[_]]:
def inNewFrame[A](d: Data, vs: Seq[(Var, V)])(f: => A): A
def getFrameData: Data
def getLocal(x: Int): JOption[MayJoin, V]
def setLocal(x: Int, v: V): JOption[MayJoin, Unit]

val callFrame: DecidableCallFrame[(ModuleInst, Int), Int, V]

Note how both call frames and symbol tables map indices to values. However, call frames
are scoped by function call and the previous call frame is restored when exiting a function.
Operation inNewFrame takes care of this behavior, executing f in the new frame and restoring
the previous frame after f finishes. This way, the generic interpreter can implement function
invocations:

def invoke(fun: Function): Unit =
val args = stack.popNOrFail(fun.params.size)
val locals = args ++ fun.locals.map(num.defaultValue)
val data = (module, fun.returnArity)
callFrame.inNewFrame(data, locals)(enterFunction(fun))

Linear Memory

Wasm programs can load and store data from a growable linear memory. Technically, the
linear memory is a byte array that is accessed using 32-bit integers as index. Wasm provides
various instructions to load and store values of different types. In our generic interpreter,
the following code handles load instructions using the memory effect component:

trait Memory[Addr, Bytes, Size, MayJoin[_]]:
def read(addr: Addr, length: Int): JOption[MayJoin, Bytes]
def write(addr:Addr, bytes:Bytes): JOption[MayJoin, Unit]

val memory: Memory[Addr, Bytes, Size, MayJoin]
def load(inst: LoadInst): Unit =

val addr = effectiveAddr(inst.offset)
val length = getBytesToRead(inst)
val bytes = memory.read(addr, length).orElse(fail(MemoryAccessOutOfBounds, ...))
stack.push(decode(bytes, inst))

We first compute the effective address to be loaded by adding a static offset to the base
address, which is on the operand stack. We then determine the number of bytes to be loaded.
We invoke the read operation of the memory effect component to obtain a byte sequence.
Finally, we decode those bytes using the decode component discussed in subsection 4.1.

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen 5:13

Jumps

Wasm features a limited form of jumps that abides by structured control flow, which means
that jumps can only target enclosing blocks. Instead of using named labels, Wasm jumps
declare the number of blocks to skip, that is, the block-distance between the jump and the
target block. We model jumps through an effect component for exception handling:

trait Except[Exc, ExcV, MayJoin[_]]:
def throws(ex: Exc): Nothing
def tries[A](f: => A): JEither[MayJoin, A, ExcV]

The Except component is parametric in the underlying exception type Exc and the repres-
entation of exception values ExcV. Similar to JOption from above, operation tries yields a
value of a joinable either data type, JEither for short. That is, tries either yields an A when
f triggers no exception, or it yields an ExcV. Since abstract instances of Except may not be
able to determine the exact behavior of f, the result of tries can be uncertain, which JEither

encapsulates.
The generic interpreter uses exception handling to support jumps and returns:

type WasmExc[V] = (JumpTarget, List[V])
enum JumpTarget:

case Jump(labelIndex: LabelIdx)
case Return

val except: Except[WasmExc[V], ExcV, MayJoin]

def jump(labelIndex: LabelIdx): Unit =
val returnArity: Int = labelStack.arityOf(labelIndex)
val operands = stack.popNOrFail(returnArity)
except.throws((JumpTarget.Jump(labelIndex), operands))

def label(returnArity: Int, insts: Seq[Inst]): Unit =
labelStack.pushLabel(returnArity)
val tried = except.tries(insts.foreach(evalInst))
labelStack.popLabel()
tried.either(identity) {

case (JumpTarget.Jump(0), ops) => stack.pushN(ops)
case (JumpTarget.Jump(ix), ops) => except.throws(WasmExc.Jump(ix - 1, ops))
case (JumpTarget.Return, ops) => except.throws(WasmExc.Return(ops))

}

Function jump takes the index of a label, looks up the return arity required by that label in an
auxiliary data structure called labelStack, and triggers a Jump exception with the corresponding
number of operands. Jump exceptions are handled by function label, which we use when
entering a new block. This function first pushes the return arity of the label to the labelStack

and then tries to run all instructions of the block. We use either to react to the result of
that execution. If the block succeeds without exception, nothing has to be done (identity).
However, if an exception was (possibly) thrown, we react accordingly. If the jump target
has index 0, it targets the current label and we push the operands on the stack. Otherwise,
we decrement the jump target index and escalate the exception. Return exceptions always
escalate; they are handled by enterFunction.

Traps

Wasm programs can trigger unrecoverable errors, called traps. We model traps using the
Failure effect.

ECOOP 2023

5:14 Modular Abstract Definitional Interpreters for WebAssembly

trait Failure:
def fail(kind: FailureKind, msg: String): Nothing

val failure: Failure

In contrast to exceptions, failures are unrecoverable and cannot be caught. While the
canonical concrete semantics of Failure aborts the execution of a Wasm program, abstract
interpreters must continue to explore execution paths that do not fail. That is, the abstract
fail produces a set of potential FailureKind and throws a specific Scala failure exception.
Furthermore, the failure join operation catches failure exceptions at branching points and
continues to explore other branches. After all branches have been explored, the failure join
operation rethrows the failure exception if one of the branches failed.

4.3 Summary
We have decomposed the analysis of Wasm into various language concerns. We implemented
each of these concerns with 12 separate value components for numeric operations, conversions,
and branching, and with 7 effect components for the operand stack, function and symbol tables,
global and local variables, linear memory, jumps, and traps. Based on this decomposition,
we have developed a generic interpreter for Wasm that is parametric in how the value and
effect components are instantiated. The generic interpreter implements evaluation of Wasm
code. The generic interpreter also implements the module system, manages exports, resolves
imports, and performs module instantiation, which is used to initialize variables, function
tables, and memories. In particular, we have implemented the canonical concrete semantics
for all value and effect components and used those to derive a concrete Wasm interpreter.
This concrete Wasm interpreter is a feature-complete and correct implementation of the
Wasm 1.0 specification, as we detail in section 7.

The generic interpreter is not only parametric in the value and effect components, but
also in the fixpoint algorithm. While the concrete interpreter can simply run a program until
it terminates, abstract interpreters must widen analysis results to ensure termination. To
this end, our generic interpreter is written in an open recursive style, giving control to the
fixpoint algorithm in each recursive invocation. When instantiating the generic interpreter,
we configure a generic fixpoint algorithm provided by our platform to select context-sensitivity
and other aspects. We illustrate such configuration in the next section, where be build three
whole-program Wasm analyses as instances of the generic interpreter.

5 Modularly Defined Analyses for Wasm

In the previous section, we have presented the key ingredients of our modular static analysis
platform for Wasm: a Wasm semantics decomposed into value and effect components and
a generic Wasm interpreter. In the present section, we demonstrate how our platform can
be used to implement Wasm analyses modularly. To this end, we implement three Wasm
analyses: a dead code analysis, a constant propagation analysis, and a taint analysis. We
compose each analysis modularly from value and effect components that we use to instantiate
the generic interpreter.

5.1 Type Analysis
As a baseline, we first describe an analysis with a type abstraction, which additionally
identifies dead code. To this end, we must construct an inter-procedural control-flow graph
(CFG) that allows us to identify unreachable instructions. Note that the construction of a
precise interprocedural CFG is undecidable in general and approximation is required. In this
subsection, we use a type analysis to approximate the behavior of the program.

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen 5:15

Our platform provides a reusable singleton type BaseType[T] to represent type T, which we
use to model our type analysis:

enum Type:
case I32(i: BaseType[Int]); case I64(l: BaseType[Long]);
case F32(f: BaseType[Float]); case F64(d: BaseType[Double]); case Top

type Addr = BaseType[Int] type FuncIx = BaseType[Int]
type Bytes = BaseType[Seq[Byte]] type FunV = Powerset[FunctionInstance]
type Size = BaseType[Int] type ExcV = Map[JumpTarget,List[Type]]

The type analysis does not track memory access precisely: all reads yield a top value.
Specifically, we represent addresses Addr, byte sequences Bytes, and memory size Size using
their type. We also don’t track function indices: Indirect function calls resolve to the set of
all functions currently in the function table. For exceptions, we collect all active exceptions
in a set. Based on these definitions, we select the following effect components:

val stack = new JoinableConcreteOperandStack[Type]
val memory = new TopMemory[MemoryAddr, Addr, Bytes, Size]
val globals = new JoinableConcreteSymbolTable[GlobalAddr, Type]
val funTable = new UpperBoundSymbolTable[TableAddr, FuncIx, FunV]
val callFrame = new JoinableConcreteCallFrame[FrameData, Int, Type]
val except = new JoinedExcept[WasmException[Value], ExcV]
val failure = new AFailureCollect

Note how we use decidable instances for the operand stack, call frames, and global variables,
since all three concerns are statically decidable in Wasm. The memory yields top on every
read, the function table yields all stored entries when queried. We use the AFailureCollect

instance for abstract failures, which collects all possible failures of the analyzed program.
Finally, every analysis must configure the fixpoint algorithm used by our platform. Most

importantly, we must select a context-sensitivity and iteration strategy. Our platform
provides a combinator library for describing these aspects:

val phi = fix.log(controlFlowGraphLogger,
fix.contextSensitive(fix.context.none,

fix.filter(isFunOrLoop, fix.iter.innermost))

Combinator fix.contextSensitive determines the context-sensitivity of the type analysis.
Specifically, the type analysis is context-insensitive, which means that all calls of the same
function are joined. Combinator fix.filter applies the inner combinator only to instructions
for which predicate holds. In this case, the filter combinator applies a specific iteration
strategy to functions and loops, because these are the only Wasm constructs which can diverge
and need to be iterated on. Combinator fix.iter.innermost iterates on the innermost strongly-
connected components of the dependency graph of the abstract interpreter. Specifically, it
iterates on the innermost of nested loops and the innermost of nested recursive function calls.
Lastly, combinator fix.log calls a logger before and after every instruction. The logger in
this case records an interprocedural control-flow graph, which we explain in the following
paragraph.

CFG construction

Our platform uses big-step abstract interpretation, in which the control flow of analyzed
programs is implicit. However, we can make the control flow explicit by observing the order
in which instructions are executed by the abstract interpreter. To this end, we call function
fix.control of our platform with mappings from Wasm instructions to CFG nodes:

ECOOP 2023

5:16 Modular Abstract Definitional Interpreters for WebAssembly

val controlFlowGraphLogger = fix.control(config) {
// called before interpreting an instruction
case Enter(fun) => CfgEnter(fun)
case Eval(c: Call, loc) => CfgCall(c, loc)
case Eval(inst, loc) => CfgInstruction(inst, loc)

} {
// called after interpreting an instruction
case (Enter(fun), Exit(_)) => CfgExit(fun)
case (Eval(c: Call,loc), _) => CfgCallReturn(c, loc)

}

local.get 0
i64.const 0
i64.eq
if

enter 0

local.get 0
local.get 0
i64.const 1
i64.sub
call 0

call 0

call-return 0
i64.mul

i64.const 1

end-if

exit 0

call-return 0

Function fix.control returns a logger, that is called before and after each Wasm instruction.
The logger adds instructions to basic blocks, adds control-flow edges between basic blocks,
and adds call edges between call-site, entry, and exit points of functions.

For example, this code constructs the CFG shown on the right for a recursive factorial
function, where dashed lines represent call-return edges. Of course, the CFG construction
also scales to larger examples. The last line in the code above activates CFG logging for a
given analysis. While our type analysis is context-insensitive, other analyses may exploit
context-sensitive CFGs. But, as we show in section 7, even the simple type analysis already
produces useful results and finds dead code in Wasm programs. Furthermore, the CFG can
be used as a starting point for other analysis approaches.

5.2 Constant Propagation Analysis
We define a constant propagation analysis by refining the type analysis from above. In a
constant propagation analysis, values are either a concrete value or Top:

enum Value:
case I32(i: Topped[Int]); case I64(l: Topped[Long]);
case F32(f: Topped[Float]); case F64(d: Topped[Double]); case Top

type Addr = Topped[Int] type FuncIx = Topped[Int]
type Bytes = Seq[Topped[Byte]] type FunV = Powerset[FunctionInstance]
type Size = Topped[Int] type ExcV = Map[JumpTarget,List[Type]]

Notably, the constant propagation analysis tracks constant memory addresses and bytes.
That is, when writing a concrete value to a known address, we store the concrete byte
encoding of the value. Conversely, when reading from a known address, if we find a concrete
byte sequence, we decode it into a concrete value. This memory abstraction is certainly only
a first step in developing sophisticated Wasm analyses, but our modular analysis platform
allows us to refine it in future work. For function indices, we track their precise index if
possible. Ideally, dereferencing a function index yields a single function that we can execute,
but if the function index is Top, we obtain a set of all functions in the function table.

Compared to the type analysis, we only have to adapt two effect components, namely
those that handle memory and function indices. We highlight the differences in blue font:

val stack = new JoinableConcreteOperandStack[Type]
val memory = new ConstantAddressMemory[MemoryAddr, Addr, Bytes, Size]
val globals = new JoinableConcreteSymbolTable[GlobalAddr, Type]
val funTable = new ConstantSymbolTable[TableAddr, FuncIx, FunV]
val callFrame = new JoinableConcreteCallFrame[FrameData, Int, Type]
val except = new JoinedExcept[WasmException[Value], ExcV]
val failure = new AFailureCollect

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen 5:17

To increase the precision of the constant propagation analysis, we can choose a 1-callsite
sensitive fixpoint algorithm. To this end, we log each function call with a call-site logger and
use the most recent call site as a context:
val callSites = fix.context.callSites {

case Eval(c: (Call | CallIndirect), _) => Some(c)
case _ => None

}
val phi = fix.log(callSites,

fix.log(controlFlowGraphLogger,
fix.contextSensitive(callSites.callString(1),

fix.filter(isFunOrLoop, fix.iter.innermost))))

Finally, we need to determine whether an instruction is constant in all execution paths. We
can achieve this by observing the results of the abstract interpreter for each instruction. To
this end, we implemented a logger that reads the relevant data from the operand stack before
and after executing an instruction. In case an instruction is visited more than once (e.g.,
in a loop) the recorded values are joined. If the final result is constant, the instruction is
constant across all execution paths. Our analysis platform allows us to add this functionality
modularly:
val constants = new InstructionLogger { inst =>

// log before execution of inst
if (readsSingleValueFromStack(inst))

Some(stack.peekOrFail())
else if ...

} { inst =>
// log after execution of inst
if (writesSingleValueToStack(inst))

Some(stack.peekOrFail())
else if ...

}

5.3 Taint Analysis
As a last example, we define a taint analysis by refining the constant propagation analysis
The goal of the analysis is to detect tainted memory accesses, i.e., if a tainted value is used
as memory address. As source for tainted values, we consider user input which results from
calling host functions. To track taint, we tag a taint property to each value:
enum Value:

case I32(i: Taint[Topped[Int]]); case I64(l: Taint[Topped[Long]]);
case F32(f: Taint[Topped[Float]]); case F64(d: Taint[Topped[Double]]); case Top

type Addr = Topped[Int] type FuncIx = Topped[Int]
type Bytes = Seq[Taint[Topped[Byte]]] type FunV = Topped[Powerset[FunctionInstance]]
type Size = Topped[Int] type ExcV = Map[JumpTarget,List[Type]]

We omit the effect and fixpoint configuration of the taint analysis since it is identical to the
constant propagation analysis.

To detect illegal memory access through tainted values, we add a new observer to the
analysis. Note that we observe the values on the stack before they are cast to an address,
which is why type Addr does not need a taint flag.
val tainting = new InstructionLogger { inst =>

if (isLoadInst(inst)) {
val addrV = stack.peekOrFail()
if (addrV.isTainted) Some(Powerset(addrV)) else None

}
}

ECOOP 2023

5:18 Modular Abstract Definitional Interpreters for WebAssembly

We collect tainted addresses for each memory instruction. A memory instruction is safe if its
set of tainted addresses is empty. Of course, we could track other sinks or sources for tainted
values and expect to do so in future work.

5.4 Most General Client for Wasm Modules
Abstract definitional interpreters are whole-program analyses: Interpretation starts in the
main function and subsequently explores all code reachable from there. However, Wasm
programs are usually used as libraries within JavaScript applications. To apply our whole-
program analyses to individual Wasm modules, we develop a most general client for Wasm.

Most general clients can be used to apply whole-program static analyses to library
code [19]. A most general client approximates all valid usages of a given library, and it can
be used as a single entry point for the analysis. We have developed a most general client for
Wasm modules that exercises all interleavings of all exported functions in a loop:

def runMostGeneralClientLoop(modInst: ModuleInstance)): Unit =
effectStack.mapJoin(modInst.exportedFunctions) { case (funName, funIx) =>

val fun = modInst.functions.getOrElse(funIx, fail(UnboundFunctionIndex, funIx.toString))
val args = fun.funcType.params.map(typedTop).toList
invokeExported(modInst, funName, args)

}
fixpoint(runMostGeneralClientLoop(modInst))

In each loop iteration, we run all exported functions in isolation and join their effects to
update the analysis state. Our fixpoint algorithm iterates this loop until the analysis state
is stable. The final analysis state soundly approximates all possible sequences of exported
functions.

Note that a Wasm client can also write to exported tables and memory. Our most general
client does not capture this behavior, which may cause the analysis result to be unsound
for such clients. If the exported tables and memory are not edited externally, our approach
obtains a sound analysis result for the library code.

6 A Scalable Framework for Abstract Definitional Interpretation

We designed and implemented a new framework for abstract definitional interpretation in
Scala as open source.1 In this section, we describe how our new framework improves over
prior work and why that was necessary for scaling the approach to complex languages and
real-world programs. There are two prior frameworks for abstract definitional interpretation:
the original DAI in Racket by Darais et al. [7] and Sturdy in Haskell by Keidel et al. [13].
While we compare to both, we also implemented a complete generic definitional interpreter
for Wasm in Sturdy and report on the lessons learned.

Component design

Abstract definitional interpretation has supported modularly defined components from the
start. Already in DAI, the generic PCF interpreter used components for environments,
stores, and allocation [7]. However, these components followed an ad-hoc design and did
not share an interface between concrete and abstract semantics. Not only did this preclude
modular reasoning about components, it also implies that we must use the non-determinism

1 https://gitlab.rlp.net/plmz/sturdy.scala

https://gitlab.rlp.net/plmz/sturdy.scala

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen 5:19

monad to collect alternative analysis (sub-)results. For example, DAI features a function
isZero(v: V): Boolean in the concrete semantics and isZero(v: V): List[Boolean] in the abstract
semantics. Consequently, when the abstract semantics cannot decide if a value is zero it
yields List(true, false) and all of the remaining analysis is run twice: once for true and
once for false. Nested conditionals with uncertain conditions like this trigger an exponential
blow-up that is unacceptable when scaling up.

Sturdy was designed to support the development of sound static analyses with compos-
itional soundness proofs. For this reason, Sturdy introduced a design principle based on
parametricity that ensures no details about the concrete or abstract semantics is leaked
into the generic interpreter [14]. This design principle prohibits an operation isZero as in
DAI. Instead, Sturdy provides a operation ifZero(v: V, ifTrue: => R, ifFalse: => R): R, where
ifTrue and ifFalse are continuations. If both continuations must be run, Sturdy joins their
results before moving on with the rest of the analysis. Sturdy uses a similar design for all
operations that introduce uncertainty. For example, reading from a store is done by operation
read(a: Addr, ifFound: V => R, ifNotFound: => R): R. We found the use of continuations in
Sturdy excessive, making it harder to write and maintain the generic interpreter for Wasm.
But can this be avoided?

In our framework, we have retained Sturdy’s design principles to permit modular reasoning
about components. While our framework does not attempt to support formal proofs, modular
reasoning reemerges in the form of modular soundness propositions that can be used during
testing. However, we significantly reduce the amount of continuations needed by encapsulating
uncertain results in dedicated auxiliary data types: JOption and JEither. These data types
provide standard operations such as getOrElse, map, and flatMap. For the concrete semantics,
these data types behave identical to the standard Option and Either types, but their abstract
semantics can encode uncertainty such as LeftOrRight(l, r). Besides reducing the number of
continuations needed, these types significantly improve the readability of component interfaces.
For example, reading from a store has the simple signature read(a: Addr): JOption[MayJoin, V].

Eliminating the monadic transformer stack

Both DAI and Sturdy encode the generic interpreter in monadic style: The side effects
triggered by the analyzed program are threaded through the monadic computation. And
both frameworks use transformers to decompose effect handling into components. For
example, in Figure 4 we show the transformer stacks used by DAI and Sturdy for a k-CFA
analysis of PCF, as well as the transformer stack for our prototypical constant propagation
analysis of Wasm implemented in Sturdy. This shows how the transformer stack grows
considerably when analyzing complex languages.

Large transformer stacks are problematic because they impair the performance of the
interpreter. Every monadic operation in the interpreter must traverse the entire transformer
stack, slowing down interpretation considerably. Keidel et al. [13] measured this effect
and showed that an interpreter on a transformer stack was 7756x slower than the same
computation after exhaustive inlining of the entire stack. Thus, they argued that inlining
allows us to enjoy modularity without regrets. While we concur in principle, this approach
does not scale to complex languages unfortunately. For transformers stacks like the one
for Wasm shown in Figure 4, the compiler exceeded 16 GB of memory while inlining and
ultimately failed to compile the program. Since a 7756x slower analysis is not feasible, we
must find an alternative design to support modularly defined components.

In our framework, we follow an object-oriented design in representing independent
components. Rather than stacking all components and threading their effect through the
computation, we let each component manage and manipulate its own internal state. As

ECOOP 2023

5:20 Modular Abstract Definitional Interpreters for WebAssembly

// DAI: k-CFA analysis of PCF, 6 components
ReaderT (FailT (StateT (NondetT (CacheT (FinMapO PowerO) ID))))

// Sturdy: k-CFA analysis of PCF, 8 components
ValueT (ErrorT (EnvT (FixT (ComponentT (StackT (CacheT (CallSiteT (->))))))))

// Sturdy: constant propagation of Wasm, 15 components
ValueT (JumpTypesT (OperandStackT (ExceptT (StaticGlobalStateT

(MemoryT (SerializeT (TableT (FrameT (LogErrorT
(FixT (ComponentT (StackT (CacheT (ControlFlowT (->)))))))))))))))

Figure 4 Deep transformer stacks as required by DAI and Sturdy impair the performance of the
analyzers.

usual in OO, the internal state is encapsulated in the component and hidden behind a public
interface. For example, setting a global variable globals.set(x, stack.popOrFail()) changes
the internal state of stack and globals, which is observable through operations of the public
interface, such as globals.get. Since components are not stacked, invoking a component’s
operation is a simple method call that does not involve any other components.

Only when joining effectful computations, all effect components must participate, each
taking care of their own internal state. The generic interpreter defines an effect stack that
determines the order in which effects are joined. For Wasm, we use the following effect stack:

val effectStack = EffectStack(List(
stack, memory, globals, funTable, callFrame, except, failure))

Each abstract semantics of an effect component must implement joinComputations(f)(g), which
executes f and g on the current internal state and merges the two resulting states. We apply
a common strategy to implement these joins:
1. Take a snapshot of the internal state.
2. Execute f, store the resulting state.
3. Restore the snapshot state.
4. Execute g, store the resulting state.
5. Join the two states in an effect-dependent manner.
Consider the following example program:

// locals before: 0 := 0; 1 := 10
(if (then (i32.const 25) (local.set 0)) (else (local.get 0) (local.set 1))
// locals after: 0 := (25 ⊔ 0); 1 := (10 ⊔ 0)

The then branch produces a call frame that still maps 0 := 25 and 1 := 10 unchanged. The
else branch must operate on a copy of the original call frame and produce 0 := 0 unchanged
and 1 := 0, ignoring the manipulations done in the then branch. Finally, we join the resulting
call frames, obtaining the result shown above. In the next section, we show that analyses
defined in our framework scale to real-world programs.

7 Evaluation

section 5 has already demonstrated how our approach enables the modular construction
of Wasm analyses. In this section, we present empirical results that attest (i) the concrete
interpreter is correct, (ii) the static analyses are sound with respect to the concrete interpreter,
and (iii) the type, constant, and taint analyses yield relevant results.

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen 5:21

Correctness of concrete interpreter

Establishing the correctness of the concrete interpreter is important, because the concrete
interpreter provides ground truth for reasoning about the soundness of our analyses. Thus,
any soundness result we may provide is only meaningful as long as the concrete interpreter
itself is a true implementation of the Wasm specification. In particular, our analyses and the
concrete interpreter share the generic interpreter, which must be correct. In fact, if there was
a bug in the generic interpreter, this bug would not trigger a soundness violation, because
the concrete interpreter would exhibit the same incorrect behavior. Therefore, establishing
the correctness of the concrete interpreter is paramount.

To this end, we ran our concrete Wasm interpreter against the official test suite from the
Wasm specification.2 The test suite consists of 16481 assertions, testing the correct behaviour
of the Wasm interpreter. This testing revealed several bugs in our implementation, all of
which we fixed. For example, we found indexing errors in the linear memory and several
subtle bugs concerning floating-point operations. Our concrete Wasm interpreter now passes
the complete test suite.

Soundness of static analyses

Only sound analyses can be used to inform program optimizations without jeopardizing the
program’s semantics. Since we want to conduct performance optimizations and reduce the size
of Wasm binaries, we must ensure our analyses are sound. To this end, we tested soundness of
our analyses against the concrete interpreter. Our platform allows us to implement soundness
propositions for each value and effect component modularly. Value components implement an
abstraction function that lifts the canonical concrete value representation into the abstract
domain, using a partial order on the abstract domain to determine sound approximation.
Effect components implement a soundness proposition that relates the internal state of the
canonical effect implementation to their own internal state. That is, we not only check
the final value computed by an analysis, but also the final state of the linear memory and
other effect components. An analysis then simply composes the soundness propositions of its
components.

We tested the soundness of our analyses against the concrete interpreter on the test suite
from the Wasm specification. Specifically, we ran the analyses and the concrete interpreter
simultaneously and tested analysis soundness after every single assertion. This uncovered
several bugs. For example, we initially defined integer division Top / Top = Top, which neglects
division-by-zero errors and should yield Top ⊔ fail(...) instead. We were able to fix all
soundness bugs, so that we are confident the abstract interpreters are sound with respect to
the concrete interpreter.

Large-scale evaluation

To assess the applicability and performance of our analyses, we applied them to the programs
collected by others in the WasmBench benchmark suite. WasmBench [11] contains 8461 unique
Wasm binaries collected from various sources, including github, NPM, and by crawling
websites. Out of these, we had to ignore 7003 binaries that failed to validate, 6354 of
which due to unresolvable imports of modules not collected by the benchmark suite. Since
WasmBench collects individual binaries rather than applications, we have no principled

2 https://github.com/WebAssembly/spec/

ECOOP 2023

https://github.com/WebAssembly/spec/

5:22 Modular Abstract Definitional Interpreters for WebAssembly

type analysis constant analysis taint analysis

0
10

20
30

40

R
un

ni
ng

 ti
m

es
 in

 s
ec

on
ds

x
x

x
4 s

5 s

2 s

dead code
(type values)

dead code
(constant values)

constant
instructions

safe memory
instructions

0
20

40
60

80
10

0

Pe
rc

en
ta

ge
 (%

) o
f i

ns
tru

ct
io

ns

x

x
x

x

1 %

14 %
10 %

56 %

Figure 5 Running times in seconds (left) and analysis results in % of instructions (right) for
analyzing each of the 1458 WasmBench binaries. The red cross indicates the mean time or percentage.

means of finding the right module. Another 607 binaries out of the 7003 were rejected due
to invalid memory page size information. For each binary of the remaining 1458 binaries,
we run our analyses using the most general client described in subsection 5.4, so that the
analysis results soundly approximate any potential usage of the module.

We measured the running times after a warm-up phase. We cancelled analysis runs after
60 seconds, which yielded between 196 and 200 timeouts per analysis. This timeout was
chosen for pragmatic reasons: To limit the overall time required to run the experiment, which
finishes in a little over 7 hours. Figure 5 shows the running times of the successful analysis
runs. On average, the type analysis finishes in 4s, the constant analysis in 5s, and the taint
analysis in 2s. The taint analysis is faster because it does not construct a call graph. We
note that 81% of all type and constant analysis runs finish in 10s or less (including those
runs that timed out), as do 85% of all taint analysis runs.

Figure 5 shows the percentage of instructions our type-based dead code, constant-based
dead code, constant propagation analysis, and taint analysis identified. We count an
instruction as dead if it is unreachable or, in case of blocks and loops, if they are never
targeted by a jump. Such dead instructions can be safely eliminated from a Wasm binary.
This reduces the binary size and saves bandwidth if the binary is sent over the network.
Unsurprisingly, our baseline type analysis cannot find much dead code. However, even a
simple constant propagation analysis can already reduce binaries by 14% on average. Note
that the dead code this analysis identified was missed by other compilers, as many of the
binaries stem from deployed packages and websites. The constant analysis also identifies
10% of instructions as computing constant results. This excludes instructions like i32.const

of course. Constant instructions can be replaced by such const instructions. Due to our
modular architecture, analysis developers can focus on improving one aspect of the analysis
at a time to increase the optimization potential further.

Finally, the goal of the taint analysis is to track the data flow of tainted values and detect
if tainted values can reach critical program points. Our taint analysis defines user input
and results of calling host functions as tainted and detects potential security risks if tainted
values are used as memory addresses. Protecting the memory is important because many
compilation schemes targeting Wasm use the memory to embed critical infrastructure of the
source language’s runtime system [20]. For example, some runtime systems manage their
own call stack in the memory, which thus is not protected from the user. If we can show that

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen 5:23

eliminated by us eliminated by binaryen

0
20

40
60

80
10

0

Pe
rc

en
ta

ge
 (%

) o
f i

ns
tru

ct
io

ns

x

x

20 %

9 %

Figure 6 Comparing our approach to Binaryen, the industry standard for Wasm optimizations.

the user cannot access or and manipulate the memory shape, this means that the runtime
system cannot be tampered with this way. Consequently, we consider a memory access to be
safe if the analysis can guarantee that a tainted (user-influenced) value cannot be used as
an address. On average, our analysis finds 56% of all memory accesses to be safe. Out of
the 1458 Wasm binaries, our analysis shows 28% to be completely safe, meaning they only
contain safe memory accesses. This analysis is fairly simple still and, for example, does not
support any sanitization of tainted values, which should further improve the analysis results.

Comparison with the industry standard

While we compare to related work in the subsequent section, we thought it is important
to validate our approach empirically in comparison to the industry standard. The de-facto
industry standard for Wasm code optimization is Binaryen3, a C++ library that provides its
own Wasm IR and implements about 100 optimization passes in its wasm-opt tool. This includes
whole-program constant propagation and dead code optimizations, although the details and
limits of the underlying analyses are not clearly documented. This begs the question: Can
our approach compete with Binaryen, an industry standard for Wasm optimization developed
by more than 140 contributors.

We answer this question quantitatively by running the optimizer of Binaryen on all
WasmBench binaries that we successfully optimized. Binaryen transforms the Wasm code
into its own IR, optimizes that IR, and translates it back into the Wasm binary format.
We configured Binaryen using the -Oz flag, which aggressively optimizes for code size. We
compute the number of eliminated instructions by loading the original and the optimized
module and subtracting their instruction counts. We then compare this number to our
constant analysis, where each dead or constant instruction counts toward the eliminated
instructions. Figure 6 shows the results of our experiment.

Our experiment clearly shows that our approach outperforms Binaryen in terms of
precision, eliminating twice as many instructions on average. While further investigation is
necessary to understand where exactly our approach wins compared to Binaryen, note that

3 https://github.com/WebAssembly/binaryen

ECOOP 2023

https://github.com/WebAssembly/binaryen

5:24 Modular Abstract Definitional Interpreters for WebAssembly

we have built a generic framework for Wasm analyses. In particular, constant propagation
is a simple abstract domain and we may expect far better precision by using intervals or
even relational abstract domains. Our framework is designed to accommodate those future
improvements. In terms of performance, Binaryen only takes 0.1s on average, where our
callsite-sensitive constant propagation analysis takes 4.8s on average. This is to be expected,
given that our analysis lies in a different complexity class.

One important threat to validity of this experiment is that our analyses do not actually
rewrite Wasm binaries. Instead, we count the number of instructions that were detected as
dead or constant. We believe this is fair, since dead instructions can be dropped for sure
and the constant instructions can be removed by propagating the constant value. Actually,
we penalizes our own approach because in i32.const 1; i32.const 2; i32.add, we only count
the last instruction as eliminable, while Binaryen removes all three of them. We hope to
integrate our analysis into a framework like Binaryen in future work to realize optimizations
based on our analysis results.

8 Related Work

Our work investigates how to develop modular static analyses for Wasm using abstract defin-
itional interpreters. We have already compared to prior approaches of abstract definitional
interpreters in section 6 in detail. In this section, we discuss how our work relates to prior
work on Wasm, x86 assembly, and JVM bytecode.

Stiévenart and Roover [28] designed the first static taint analysis Wassail for Wasm using
a compositional approach. In particular, they analyze each function in isolation and compute
a summary of the taint information of the following form:
function 8: stack: [l0,l1], globals: [g0;l1], mem: g7

This example summary means that the Wasm function with id 8 may store the variables l0,
l1 on stack, may store the variables g0, l1 as globals, and variable g7 in the linear memory. In
a second step, they combine the summaries of multiple functions in bottom-up order of the
call graph to compute the complete analysis result. While compositional analyses are known
to scale better, they are also less precise than whole-program analyses. There are two places
where our whole-program taint analysis is more precise than Wassail’s compositional taint
analysis. First, Wassail does not resolve indirect calls precisely. In particular, an indirect
call reads the function index from the stack, which is not approximated by Wassail. Instead,
Wassail resolves an indirect call to all functions which have a matching type [2]. This may
be especially imprecise for common function signatures such as F64 -> F64. In contrast, our
constant taint analysis approximates the stack and is able to resolve indirect calls precisely
in case the function index is a constant. Second, Wassail does not approximate the layout of
Wasm’s linear memory precisely. In particular, Wassail returns all taint variables stored in
memory on every load instruction. In contrast, our constant taint analysis approximates the
layout of Wasm’s linear memory more precisely. Specifically, we have distinct read behavior
for constant addresses and top addresses. Reading from a top address yields the memories
upper bound, which is the default behavior for all reads in wassail, but constant addresses
result in actual lookups. This increases the precision of load instructions with a constant
address.

Wasp4 is a C++ library for performing simple static analyses on Wasm code. It offers
methods to dump specific parts of a module (e.g., all functions) and to compute a function’s
call graph, control-flow graph, and data-flow graph. In contrast to our work, Wasp is not

4 https://github.com/WebAssembly/wasp

https://github.com/WebAssembly/wasp

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen 5:25

designed to implement more sophisticated analyses for Wasm but rather as a tool making it
easy to work with Wasm modules. In particular, Wasp does not consider abstract domains
to approximate values and thus, by and large, yields results equivalent to our type analysis.
But, as our evaluation showed, even simple value domains such as constant propagation
improve the precision of analyses significantly: The type analysis only found 1% of dead
instructions on average, whereas we were able to prove 14% of instructions are dead using an
abstract domain for constant propagation. This is out of reach for Wasp.

Wasabi [21] is a general purpose framework for implementing dynamic analyses for Wasm,
which can be implemented using a high-level JavaScript API. The framework then instruments
the Wasm binary to call these JavaScript analysis functions. Dynamic analyses are used in
different contexts than static analyses. While analyses for security (e.g., a taint analyses)
may be performed both statically and dynamically, compiler optimizations entail the use of a
static analysis. Hence, the focus of their work is orthogonal to ours and explores a different
part of the design space.

Watt et al. [34] developed two formal semantics for Wasm in the Isabelle and Coq proof
assistants. These formal semantics can be used to prove properties about Wasm programs.
However, these proofs require a high amount of manual effort and expertise in contrast to
static analyses, which are automized.

Static analysis of x86 assembly code [3, 6, 16] faces several challenges summarized in
the PhD thesis of Kinder [15]. For example, unstructured control-flow with goto’s and long
jumps with dynamic jump target complicate the construction of a control-flow graph [17, 24].
Furthermore, x86 programs store their code alongside the data during the execution, which
makes it harder for static analyses to differentiate between them [33]. This also allows x86
programs to modify their own code during execution, which poses a severe challenge for
static analyses [30]. In contrast, Wasm prevents these problems with a stricter language
design. In particular, Wasm is statically-typed, features only structured control-flow and
clearly separates between code and data, which makes it impossible for Wasm programs
to modify their own code [10]. The stricter language design of Wasm lowers the bar for
implementing static analyses and improves their precision compared to x86 analyses.

Many static analysis frameworks for Java target JVM bytecode [8, 4, 27], the assembly
code that underlies the Java Virtual Machine [22]. However, JVM bytecode poses a challenge
to static analyses, because of its implicit dataflow and due to the use of a stack. Vallee-rai
and Hendren [32] solved this problem by compiling JVM byte code to Jimple, a simpler
three-address code. Jimple is easier to analyze than JVM bytecode, because the addresses
relieve from having to extract dataflow information from the stack. Since its inception,
Jimple has become the defacto standard for analyzing JVM bytecode and is used by popular
Java analysis frameworks such as Doop [25, 9] and Soot [31, 5, 1, 26]. In contrast, we show
that abstract definitional interpretation can be used to analyze Wasm code directly, without
requiring another intermediate representation, such as Jimple. This is a key advantage of
abstract definitional interpretation.

Koren [18] presented an integrated development environment for Wasm that can be used
to develop high-performance and latency-sensitive Wasm applications for the internet of
things. Such an IDE would benefit from static analyses built with our modular platform, as
static analyses can provide valuable feedback to the developer about low-level and hard to
understand Wasm programs.

Lehmann et al. [20] and Stiévenart et al. [29] investigated the security risk of compiled
Wasm programs. In particular, C applications compiled to Wasm reexperience security
problems that are well known and fixed in the native C compiler. More specifically, the
compiled C programs are vulnerable to stack and heap-based buffer overflow attacks. These
vulnerabilities can be detected by static analyses for Wasm code.

ECOOP 2023

5:26 Modular Abstract Definitional Interpreters for WebAssembly

9 Conclusion

In this work, we developed the first whole-program control and data-flow analyses for Wasm
based on abstract interpretation. It is important that we understand how to analyze Wasm
programs for enabling optimizations and to find bugs and vulnerabilities. Our analyses lay
the foundation for that as they scale to real-world programs, where we find 14% of all Wasm
instructions are dead code, 10% of all instructions can be replaced by constants, and 56% of
all memory accesses are safe against tampering.

Our analyzers are based on two core contributions this paper makes. First, we present
a decomposition of the Wasm semantics into 19 language-independent components that
abstract different aspects of Wasm. This decomposition allowed us to develop static analyses
modularly, which was essential for limiting the complexity of the implementation and the
development effort. Second, we show how abstract definitional interpretation can be used to
implement modularly defined static analyses for complex languages at scale. We explained
how our new framework for abstract definitional interpretation eliminates the inefficiencies of
prior frameworks, and why that was crucial for scaling to complex languages and real-world
programs. The lessons learned for building abstract definitional Wasm interpreters can
certainly be transferred.

References
1 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques

Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In Michael F. P.
O’Boyle and Keshav Pingali, editors, ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom – June 09 – 11, 2014,
pages 259–269. ACM, 2014. doi:10.1145/2594291.2594299.

2 Darren C. Atkinson. Accurate call graph extraction of programs with function pointers using
type signatures. In 11th Asia-Pacific Software Engineering Conference (APSEC 2004), 30
November – 3 December 2004, Busan, Korea, pages 326–335. IEEE Computer Society, 2004.
doi:10.1109/APSEC.2004.16.

3 Gogul Balakrishnan and Thomas W. Reps. Analyzing memory accesses in x86 executables. In
Evelyn Duesterwald, editor, Compiler Construction, 13th International Conference, CC 2004,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2004, Barcelona, Spain, March 29 – April 2, 2004, Proceedings, volume 2985 of Lecture Notes
in Computer Science, pages 5–23. Springer, 2004. doi:10.1007/978-3-540-24723-4_2.

4 Roberto Barbuti, Nicoletta De Francesco, and Luca Tesei. An abstract interpretation approach
for enhancing the java bytecode verifier. Comput. J., 53(6):679–700, 2010. doi:10.1093/
comjnl/bxp031.

5 Eric Bodden. Inter-procedural data-flow analysis with IFDS/IDE and soot. In Eric Bodden,
Laurie J. Hendren, Patrick Lam, and Elena Sherman, editors, Proceedings of the ACM
SIGPLAN International Workshop on State of the Art in Java Program analysis, SOAP 2012,
Beijing, China, June 14, 2012, pages 3–8. ACM, 2012. doi:10.1145/2259051.2259052.

6 Marco Cova, Viktoria Felmetsger, Greg Banks, and Giovanni Vigna. Static detection of
vulnerabilities in x86 executables. In 2006 22nd Annual Computer Security Applications
Conference (ACSAC’06), pages 269–278. IEEE, 2006.

7 David Darais, Nicholas Labich, Phuc C. Nguyen, and David Van Horn. Abstracting definitional
interpreters (functional pearl). PACMPL, 1(ICFP):12:1–12:25, 2017.

8 Julian Dolby, Stephen J Fink, and Manu Sridharan. Watson libraries for analysis (wala). URL:
http://wala.sf.net/.

9 Neville Grech and Yannis Smaragdakis. P/taint: unified points-to and taint analysis. Proc.
ACM Program. Lang., 1(OOPSLA):102:1–102:28, 2017. doi:10.1145/3133926.

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1109/APSEC.2004.16
https://doi.org/10.1007/978-3-540-24723-4_2
https://doi.org/10.1093/comjnl/bxp031
https://doi.org/10.1093/comjnl/bxp031
https://doi.org/10.1145/2259051.2259052
http://wala.sf.net/
https://doi.org/10.1145/3133926

K. Brandl, S. Erdweg, S. Keidel, and N. Hansen 5:27

10 Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and J. F. Bastien. Bringing the web up to speed with
webassembly. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017, pages 185–200. ACM, 2017. doi:10.1145/3062341.
3062363.

11 Aaron Hilbig, Daniel Lehmann, and Michael Pradel. An empirical study of real-world
webassembly binaries: Security, languages, use cases. In WWW: The Web Conference, pages
2696–2708. ACM / IW3C2, 2021.

12 David Van Horn and Matthew Might. Abstracting abstract machines. In Proceeding of the 15th
ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore,
Maryland, USA, September 27-29, 2010, pages 51–62. ACM, 2010.

13 Sven Keidel and Sebastian Erdweg. Sound and reusable components for abstract interpretation.
Proc. ACM Program. Lang., 3(OOPSLA), October 2019. doi:10.1145/3360602.

14 Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg. Compositional soundness proofs
of abstract interpreters. Proceedings of the ACM on Programming Languages, 2(ICFP):1–26,
2018.

15 Johannes Kinder. Static analysis of x86 executables (Statische Analyse von Programmen
in x86-Maschinensprache). PhD thesis, Darmstadt University of Technology, 2010. URL:
http://tuprints.ulb.tu-darmstadt.de/2338/.

16 Johannes Kinder and Helmut Veith. Jakstab: A static analysis platform for binaries. In Aarti
Gupta and Sharad Malik, editors, Computer Aided Verification, 20th International Conference,
CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings, volume 5123 of Lecture Notes
in Computer Science, pages 423–427. Springer, 2008. doi:10.1007/978-3-540-70545-1_40.

17 Johannes Kinder, Florian Zuleger, and Helmut Veith. An abstract interpretation-based
framework for control flow reconstruction from binaries. In Neil D. Jones and Markus Müller-
Olm, editors, Verification, Model Checking, and Abstract Interpretation, 10th International
Conference, VMCAI 2009, Savannah, GA, USA, January 18-20, 2009. Proceedings, volume
5403 of Lecture Notes in Computer Science, pages 214–228. Springer, 2009. doi:10.1007/
978-3-540-93900-9_19.

18 István Koren. A standalone webassembly development environment for the internet of things.
In Marco Brambilla, Richard Chbeir, Flavius Frasincar, and Ioana Manolescu, editors, Web
Engineering, pages 353–360, Cham, 2021. Springer International Publishing.

19 Erik Krogh Kristensen and Anders Møller. Reasonably-most-general clients for javascript
library analysis. In Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 83–93. IEEE / ACM, 2019.

20 Daniel Lehmann, Johannes Kinder, and Michael Pradel. Everything old is new again: Binary
security of webassembly. In 29th USENIX Security Symposium (USENIX Security 20), pages
217–234. USENIX Association, August 2020. URL: https://www.usenix.org/conference/
usenixsecurity20/presentation/lehmann.

21 Daniel Lehmann and Michael Pradel. Wasabi: A framework for dynamically analyzing
webassembly. In Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck, editors,
Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2019, Providence, RI, USA, April
13-17, 2019, pages 1045–1058. ACM, 2019. doi:10.1145/3297858.3304068.

22 Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley,
1997.

23 Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. New kid on the
web: A study on the prevalence of webassembly in the wild. In Roberto Perdisci, Clémentine
Maurice, Giorgio Giacinto, and Magnus Almgren, editors, Detection of Intrusions and Malware,
and Vulnerability Assessment – 16th International Conference, DIMVA 2019, Gothenburg,
Sweden, June 19-20, 2019, Proceedings, volume 11543 of Lecture Notes in Computer Science,
pages 23–42. Springer, 2019. doi:10.1007/978-3-030-22038-9_2.

ECOOP 2023

https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3360602
http://tuprints.ulb.tu-darmstadt.de/2338/
https://doi.org/10.1007/978-3-540-70545-1_40
https://doi.org/10.1007/978-3-540-93900-9_19
https://doi.org/10.1007/978-3-540-93900-9_19
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://doi.org/10.1145/3297858.3304068
https://doi.org/10.1007/978-3-030-22038-9_2

5:28 Modular Abstract Definitional Interpreters for WebAssembly

24 Minh Hai Nguyen, Thien Binh Nguyen, Thanh Tho Quan, and Mizuhito Ogawa. A hybrid
approach for control flow graph construction from binary code. In Pornsiri Muenchaisri
and Gregg Rothermel, editors, 20th Asia-Pacific Software Engineering Conference, APSEC
2013, Ratchathewi, Bangkok, Thailand, December 2-5, 2013 – Volume 2, pages 159–164. IEEE
Computer Society, 2013. doi:10.1109/APSEC.2013.132.

25 Yannis Smaragdakis and George Balatsouras. Pointer analysis. Found. Trends Program. Lang.,
2(1):1–69, 2015. doi:10.1561/2500000014.

26 Johannes Späth, Karim Ali, and Eric Bodden. Ideal : efficient and precise alias-aware dataflow
analysis. Proc. ACM Program. Lang., 1(OOPSLA):99:1–99:27, 2017. doi:10.1145/3133923.

27 Fausto Spoto. The julia static analyzer for java. In Xavier Rival, editor, Static Analysis –
23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings,
volume 9837 of Lecture Notes in Computer Science, pages 39–57. Springer, 2016. doi:
10.1007/978-3-662-53413-7_3.

28 Quentin Stiévenart and Coen De Roover. Compositional information flow analysis for
webassembly programs. In 20th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2020, Adelaide, Australia, September 28 – October 2, 2020,
pages 13–24. IEEE, 2020. doi:10.1109/SCAM51674.2020.00007.

29 Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari. The security risk of lacking
compiler protection in webassembly, 2021. arXiv:2111.01421.

30 Tayssir Touili and Xin Ye. Reachability analysis of self modifying code. In 22nd International
Conference on Engineering of Complex Computer Systems, ICECCS 2017, Fukuoka, Japan,
November 5-8, 2017, pages 120–127. IEEE Computer Society, 2017. doi:10.1109/ICECCS.
2017.19.

31 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and Vijay
Sundaresan. Soot – a java bytecode optimization framework. In Stephen A. MacKay and
J. Howard Johnson, editors, Proceedings of the 1999 conference of the Centre for Advanced
Studies on Collaborative Research, November 8-11, 1999, Mississauga, Ontario, Canada,
page 13. IBM, 1999. URL: https://dl.acm.org/citation.cfm?id=782008.

32 Raja Vallee-rai and Laurie Hendren. Jimple: Simplifying java bytecode for analyses and
transformations, 1998.

33 Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu, and Bhavani M. Thurais-
ingham. Differentiating code from data in x86 binaries. In Dimitrios Gunopulos, Thomas
Hofmann, Donato Malerba, and Michalis Vazirgiannis, editors, Machine Learning and Know-
ledge Discovery in Databases – European Conference, ECML PKDD 2011, Athens, Greece,
September 5-9, 2011, Proceedings, Part III, volume 6913 of Lecture Notes in Computer Science,
pages 522–536. Springer, 2011. doi:10.1007/978-3-642-23808-6_34.

34 Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, and Philippa Gardner. Two
Mechanisations of WebAssembly 1.0. In FM 2021 – Formal Methods, pages 1–19, Beijing,
China, November 2021. URL: https://hal.archives-ouvertes.fr/hal-03353748.

https://doi.org/10.1109/APSEC.2013.132
https://doi.org/10.1561/2500000014
https://doi.org/10.1145/3133923
https://doi.org/10.1007/978-3-662-53413-7_3
https://doi.org/10.1007/978-3-662-53413-7_3
https://doi.org/10.1109/SCAM51674.2020.00007
https://arxiv.org/abs/2111.01421
https://doi.org/10.1109/ICECCS.2017.19
https://doi.org/10.1109/ICECCS.2017.19
https://dl.acm.org/citation.cfm?id=782008
https://doi.org/10.1007/978-3-642-23808-6_34
https://hal.archives-ouvertes.fr/hal-03353748

Dynamically Updatable Multiparty Session
Protocols
Generating Concurrent Go Code from Unbounded Protocols

David Castro-Perez #

University of Kent, UK

Nobuko Yoshida #

University of Oxford, UK

Abstract
Multiparty Session Types (MPST) are a typing disciplines that guarantee the absence of deadlocks and
communication errors in concurrent and distributed systems. However, existing MPST frameworks
do not support protocols with dynamic unbounded participants, and cannot express many common
programming patterns that require the introduction of new participants into a protocol. This
poses a barrier for the adoption of MPST in languages that favour the creation of new participants
(processes, lightweight threads, etc) that communicate via message passing, such as Go or Erlang.

This paper proposes Dynamically Updatable Multiparty Session Protocols, a new MPST theory
(DMst) that supports protocols with an unbounded number of fresh participants, whose communication
topologies are dynamically updatable. We prove that DMst guarantees deadlock-freedom and liveness.
We implement a toolchain, GoScr (Go-Scribble), which generates Go implementations from DMst,
ensuring by construction, that the different participants will only perform I/O actions that comply
with a given protocol specification. We evaluate our toolchain by (1) implementing representative
parallel and concurrent algorithms from existing benchmarks, textbooks and literature; (2) showing
that GoScr does not introduce significant overheads compared to a naive implementation, for
computationally expensive benchmarks; and (3) building three realistic protocols (dynamic task
delegation, recursive Domain Name System, and a parallel Min-Max strategy) in GoScr that could
not be represented with previous theories of session types.

2012 ACM Subject Classification Theory of computation → Program specifications; Computing
methodologies → Concurrent programming languages

Keywords and phrases Multiparty Session Types, Correctness-by-construction, Concurrency, Golang

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.6

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.10

Funding This work is supported by EPSRC EP/T006544/2, EP/K011715/1, EP/K034413/1,
EP/L00058X/1, EP/N027833/2, EP/N028201/1, EP/T014709/2, EP/V000462/1, EP/X015955/1,
NCSS/EPSRC VeTSS, EP/T014512/1, and Horizon EU TaRDIS 101093006.

Acknowledgements We deeply thank Benito Echarren Serrano for his initial collaboration on a
preliminary version of this work.

1 Introduction

Multiparty Session Types. Multiparty Session Types (MPST) are typing disciplines that can
guarantee the absence of deadlocks and communication errors in concurrent and distributed
systems [21, 22]. MPST allow the specification of global communication protocols (global
types) among a number of participants. The projection operation extracts the local
communication protocols (local types), from the point of view of each participant in the

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© David Castro-Perez and Nobuko Yoshida;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 6; pp. 6:1–6:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.castro-perez@kent.ac.uk
https://orcid.org/0000-0002-6939-4189
mailto:nobuko.yoshida@cs.ox.ac.uk
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/LIPIcs.ECOOP.2023.6
https://doi.org/10.4230/DARTS.9.2.10
https://doi.org/10.4230/DARTS.9.2.10
https://doi.org/10.4230/DARTS.9.2.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Dynamically Updatable Multiparty Session Protocols

system. Projection only succeeds when the protocol is absent of deadlocks and communication
errors. These local types can then be used to typecheck processes [21], generate correct by
construction code [25, 3], or monitor to detect communication errors at runtime [8].

However, MPST have a severe limitation: they cannot model protocols in which new
participants join the system. Many important protocols rely on this. For example, Chord [54]
is a popular protocol for distributed hash tables where participants join a ring, and relies on
a stabilisation protocol to guarantee that each participant keeps up-to-date channels to their
successors and predecessors. To model such scenarios using MPST, it would be necessary
to interleave different sessions. But arbitrary session interleavings can lead to deadlocks,
so it must be restricted [2, 5]. This not only rules out the use of MPST for many realistic
scenarios, but also limits the applicability of MPST for languages that favour process creation
and message passing, such as Go, which is the main motivation of our work.

Dynamic (Unbounded) Participants in Go. Go is a concurrent programming language
designed in 2009 by Google, and it is increasingly popular among professional developers.
According to a 2020 Stack Overflow survey, Go is used by 9.4% of developers, and it is the
“third most wanted language” [52]. Go was also the 4th most active language in GitHub in
2020 [16], and it has been adopted in many large software systems such as Kubernetes [32],
gRPC [18] and Docker [13]. Its main features are explicit communication primitives, namely
channels and goroutines (lightweight threads), whose design comes from concurrent process
calculi [20, 40, 41]. Unfortunately, a recent empirical study reveals that over 50% of Go
concurrent bugs are caused by communication [56, 39, 61] (i.e., more than shared memory
bugs). While Go includes a global runtime deadlock detector, it is neither adequate to verify
applications with complex communication structures, nor can it detect deadlocks involving
only a strict subset of a program’s goroutines (partial deadlocks) [37].

Figure 1 illustrates Go’s core concurrency constructs. It shows a server (Master) that
processes client requests (Line 4), and sends responses back to the Client (Line 20). The
Master breaks down the request into different subtasks and delegates them to different Worker
goroutines (Lines 7–10). The Master then aggregates the Worker results (Lines 11–19). If
the Master receives an error message, it will forward it to the Client and stop processing any
new messages (Lines 16–19). This program uses a common Go computation pattern1, the
master-worker pattern, and the number of workers depends on a runtime value.

Unfortunately, there is a bug in the implementation in Figure 1. The implementation
uses synchronous channels. Since the Master goroutine stops processing Worker responses
after receiving the first error message, all other goroutines which have not sent their result or
error messages will be deadlocked, as they will be stuck waiting for the Master to process
their message. One might think that this error could be fixed by replacing the synchronous
channels in the implementation with asynchronous (buffered) channels. Unfortunately, this
approach leaves orphan messages which could introduce other concurrency bugs, e.g. the
Master may need to clean up resources after receiving a response from the Workers.

This example demonstrates how even in simple programs, message passing can introduce
concurrency bugs and channel leakage, violating deadlock-freedom and liveness. While,
in simple programs, these concurrency bugs can be fixed with relative ease, identifying and
fixing them is usually done during testing phase, which becomes increasingly harder as the
complexity of the program and the number of goroutines increases. Unfortunately, standard
MPST cannot model protocols such as Figure 1, since the number of participants is not fixed
at the start, and depends on a run-time value.

1 E.g. https://github.com/tmrts/go-patterns/blob/master/messaging/fan_out.md

https://github.com/tmrts/go-patterns/blob/master/messaging/fan_out.md

D. Castro-Perez and N. Yoshida 6:3

keywordstylekeywordstyle keywordstyle1 func Worker(n int, resp chan int, err chan error) { ... } // Worker returns either result or error
keywordstylekeywordstyle keywordstyle2 func Master(reqCh chan int, respCh chan []int, cErrCh chan error) {
keywordstylekeywordstyle keywordstyle3 for {
keywordstylekeywordstyle keywordstyle4 ubound := <-reqCh // Receive request from Client
keywordstylekeywordstyle keywordstyle5 workerChs := make([]chan int, ubound) // Array to store worker result channels
keywordstylekeywordstyle keywordstyle6 errCh := make(chan error)
keywordstylekeywordstyle keywordstyle7 for i := 0; i < ubound; i++ { // n_workers depends on runtime value
keywordstylekeywordstyle keywordstyle8 workerChs[i] = make(chan int) // Create worker channel
keywordstylekeywordstyle keywordstyle9 go Worker(i+1, workerChs[i], errCh)
keywordstylekeywordstyle keywordstyle10 }
keywordstylekeywordstyle keywordstyle11 var res [] int
keywordstylekeywordstyle keywordstyle12 for i := 0; i < ubound; i++ { // Aggregate worker results
keywordstylekeywordstyle keywordstyle13 select {
keywordstylekeywordstyle keywordstyle14 case sqI := <-workerChs[i]: // Aggregate successful result
keywordstylekeywordstyle keywordstyle15 res = append(res, sqI)
keywordstylekeywordstyle keywordstyle16 case err := <-errCh: // Some worker failed
keywordstylekeywordstyle keywordstyle17 cErrCh <- err // Propagate error and
keywordstylekeywordstyle keywordstyle18 return // stop processing any further messages
keywordstylekeywordstyle keywordstyle19 }}
keywordstylekeywordstyle keywordstyle20 respCh <- res}} // Send final result to client

Figure 1 Dynamic task delegation implementation in Go (unsafe).

Adding dynamic participants to MPST. This paper introduces Dynamically Updatable
Multiparty Session Types (DMst), a new theory of MPST whose novel feature is to model
protocols in which participants can join an already existing session (dynamic participants).
DMst can guarantee deadlock-freedom and liveness (partial-deadlock-freedom) by construc-
tion in such protocols. We implement DMst as a tool, GoScr, which generates correct by
construction Go code, and we evaluate it on a number of representative algorithms in
Go, including a safe version of Figure 1 (see § 5.2(a)). While our target language is Go,
DMst is not Go specific and a part of GoScr (GoScr protocols, projection and local protocols
in Figure 2) is reusable for any language, as long as it supports (1) the creation of new
participants (threads or processes) and (2) communication between participants.

Contributions. DMst overcomes several bottlenecks of existing theories on session types
(A); and the two main lines of work (B,C) for static deadlock detection in Go:

(A) Dynamic Participants and Session Types. There are two main existing theoretical
lines of work related to dynamic MPST. Dynamic Multirole Session Types (MRST) [9] enable
a set of participants which belong to the same group (i.e. role) to join a multiparty session
type. The roles are fixed at the start, and can only join at specific points in the protocol,
e.g at the beginning of each protocol iteration. Nested MPST [7] model protocols with
unbounded new participants. Neither MRST nor Nested MPST can represent DMst protocols
(A-1) where participants join dynamically to recursive protocols, except at fixed points and
with fixed roles (see Example 6). In addition, (A-2) our theory provides stronger guarantees
than [7], while their global types are more complex, as they must be checked by a complex
typing system. Hence a safe version of Figure 1 cannot be represented by [7, 9]. Both of
[9, 7] are only theoretical, and lack any implementation or practical results. DMst’s global
types are not only more expressive than those in [9, 7], but also simpler, thus DMst is more
suitable for real language implementations. Other lines of work add session types to calculi
that allow dynamic participants, or extend MPST to specify where can participants join in a
protocol, e.g. [19, 57, 58, 30]. While these lines of work can add or replace participants to a
system, these participants must act according to known, fixed roles. Therefore, these lines of
work do not allow the specification of cyclic recursive topologies that change dynamically
with the introduction of new participants.

ECOOP 2023

6:4 Dynamically Updatable Multiparty Session Protocols

global protocol Fork
(role M; new role W) {
task(n:int) from M to W;
...}

local protocol M@Fork
(role M; new role W) {...}

local protocol W@Fork
(role M; new role W) {...}

fork/
channels/
callbacks/
protocol/

type MsgFork interface {...}

type ForkChan = chan MsgFork

type CtxM interface {...}

type CtxW interface {...}

func ForkM (c CtxM,...) {...}

func ForkW (c CtxW,...) {...}

GoScr Protocol Local Protocols Generated Go Packages

ChannelsCallbacksProtocol implementation

Projection

via GoScr
Generation

Figure 2 Overview of GoScr toolchain.

(B) Inference Approach. This approach verifies safety and liveness properties of Go
programs, by using model-checking on their inferred concurrent behavioural types [47, 36,
37, 14]. The major limitations of this approach are: (B-1) there is a gap between properties
of types and programs, i.e., there are cases where types satisfy liveness but programs do not,
leading to unsound verification, and (B-2) it cannot verify infinitely spawning goroutines
because either the theory is limited to bounded approximation [36] or a decidable set of
types are limited to finite-control (i.e. no parallel processes inside loops) [37, 14].

(C) Go Code Generation. Another approach is the generation of Go code from parameterised
multiparty session protocols [3]. However, the major limitation of [3] is that participants in
a protocol still need to be fixed at the start of a session, so it cannot express and generate
code for typical Go-style programs with goroutines – e.g. a safe version of Figure 1. There is
a subtle, but important distinction between dynamic participants and parameterised roles:
parameterised roles cannot depend on a run-time value that is exchanged in a message that
is part of the protocol, because in parameterised MPST approaches, all of the participants
must join the session at session initialisation, and are therefore fixed.

Our challenges are to overcome all these limitations with a scalable (implementable)
MPST theory. In summary, this work solves bottlenecks of the existing MPST work by
proposing a new theory, DMst, that allows the dynamic generation of an unbounded number
of participants in recursive protocols, overcoming expressiveness issues in [9, 7] (A) and (C);
unsoundness (B-1), but is not limited to a bounded analysis nor finite-control (B-2).

Outline. § 2 presents an overview of the GoScr toolchain; § 3 presents DMst, multiparty
session types extended with the ability to add unbounded participants dynamically during a
protocol execution, and proves its deadlock-freedom (Theorem 23), orphan message freedom,
and liveness (Theorem 29); § 4 describes the code generation process of GoScr, and how to
use it to implement DMst protocols; § 5 first measures the runtime overhead of the GoScr
backend, then demonstrate the expressiveness of DMst, comparing the expressiveness of
GoScr to (A) [47, 36, 37, 14] and (B) [3] with a number of case studies. We also implement
three use cases – dynamic task delegation, a recursive Domain Name System, a noughts and
crosses game with Min-Max strategy – to demonstrate the applicability of GoScr; § 6 gives
related work, and § 7 concludes with future work.

D. Castro-Perez and N. Yoshida 6:5

2 Overview of GoScr

GoScr follows a typical Multiparty Session Types workflow (see diagram on the right). In this
workflow, the starting point is the definition of a global protocol (global type in MPST), which
describes a structured sequence of interactions between a number of participants. From this
global type, we extract automatically a number of local protocols (local types) that describe
the interactions (i.e. send or receive actions) from the point of view of every participant
in the protocol. This is done using the projection operation. If some participant is not
projectable, then we raise an error, since the protocol is not well-formed and can lead to
deadlocks or other communication errors. If the programmer provides a set of processes that
behaves as prescribed by each of the local types, then the whole system is safe. We take a
code generation approach, where we generate process code from their respective local types,
providing safety guarantees by construction.

G

L1 L2 . . . Ln

P1 P2 . . . Pn

projection

code
generation

Adding Participants Dynamically. GoScr is a code generation tool which extends nuScr [48]
with the theory of DMst, targeting the Go language. nuScr is a new implementation of
Scribble [51], aimed at experimenting with extensions to core MPST. Figure 2 presents an
overview of GoScr. We distinguish toolchain internals (dashed boxes) from tool inputs
(solid boxes). Development starts by specifying a global protocol in GoScr [51, 23], a
programmer-friendly protocol description language based on MPST [22, 44]. GoScr validates
the well-formedness of the protocol, and produces a local type for each participant via
projection. GoScr generates protocol implementations from these sets of local types. We
provide an overview of the GoScr workflow using the dynamic recursive pipeline of Figure 3.
Intuitively, this pipeline introduces a new participant after each iteration.

Global Protocol Specification. The first key novel feature of GoScr is the ability to define
and call protocols (e.g. Line 1 in Figure 3) that may bring new participants to the protocol
dynamically, specified by the new keyword in the signature. These calls can be recursive,
allowing for an unbounded number of participants. Lines 1–14 declare UPipe, which requires
only participant M, and introduces a new participant W dynamically. Protocol calls create
any necessary new participants, as well as any necessary channels, before performing the
interactions described by the called protocol. The second key novel feature of GoScr is the
ability to modify a recursive protocol by combining (i.e. interleaving) its interactions with
those of a protocol call. In our syntax, this is specified by annotating recursion variables
with protocol calls. We call this updatable recursion, and an example of this can be found
in Line 5. The meaning of such calls is as follows. Suppose that processes r0 and r1 are
behaving as M and W (resp.) in UPipe. Just before the protocol jumps back to Line 2, process
r1 calls protocol UPipe(r1). This means that r1 will create a new participant r2, and r1 will
delegate to r2 a session to act as W in UPipe, with r1 acting as M. But at this point, r1 should
act as both M and W. To address this, r1 will combine its interactions acting as M and W. The
fact that r1 needs to change its behaviour to act as two distinct roles in UPipe will be reflected
in its local protocol specification (participant W in Figure 3).

ECOOP 2023

6:6 Dynamically Updatable Multiparty Session Protocols

keywordstylekeywordstyle keywordstyle1 global protocol UPipe(role M;new role W){
keywordstylekeywordstyle keywordstyle2 rec X {
keywordstylekeywordstyle keywordstyle3 choice at M {
keywordstylekeywordstyle keywordstyle4 (Put:int) from M to W;
keywordstylekeywordstyle keywordstyle5 continue X with W calls UPipe(W);
keywordstylekeywordstyle keywordstyle6 } or {
keywordstylekeywordstyle keywordstyle7 (Quit:int) from M to W; }}}
keywordstylekeywordstyle keywordstyle8 local protocol M@UPipe(role M;new role W){
keywordstylekeywordstyle keywordstyle9 rec X {
keywordstylekeywordstyle keywordstyle10 choice at M {
keywordstylekeywordstyle keywordstyle11 (Put:int) to W;
keywordstylekeywordstyle keywordstyle12 continue X;
keywordstylekeywordstyle keywordstyle13 } or {
keywordstylekeywordstyle keywordstyle14 (Quit:int) to W; }}}

keywordstylekeywordstyle keywordstyle1local protocol W@UPipe(role M;new role W){
keywordstylekeywordstyle keywordstyle2choice at M {
keywordstylekeywordstyle keywordstyle3(Put:int) from M;
keywordstylekeywordstyle keywordstyle4invite UPipe(self; new W2);
keywordstylekeywordstyle keywordstyle5rec X {
keywordstylekeywordstyle keywordstyle6choice at M {
keywordstylekeywordstyle keywordstyle7(Put:int) from M;
keywordstylekeywordstyle keywordstyle8(Put:int) to W2;
keywordstylekeywordstyle keywordstyle9continue X;
keywordstylekeywordstyle keywordstyle10} or {
keywordstylekeywordstyle keywordstyle11(Quit:int) from M;
keywordstylekeywordstyle keywordstyle12(Quit:int) to W2;
keywordstylekeywordstyle keywordstyle13}}
keywordstylekeywordstyle keywordstyle14} or { (Quit:int) from M; }}

Figure 3 Global and Local protocols for a dynamic recursive pipeline.

keywordstylekeywordstyle keywordstyle1 type Put int
keywordstylekeywordstyle keywordstyle2 type Quit int
keywordstylekeywordstyle keywordstyle3 type Ctx_UPipe_W interface {
keywordstylekeywordstyle keywordstyle4 Recv_M_Put(v_2 Put)
keywordstylekeywordstyle keywordstyle5 Init_W_UPipe() Ctx_UPipe_W
keywordstylekeywordstyle keywordstyle6 ...
keywordstylekeywordstyle keywordstyle7 Recv_M_Quit(v_2 Quit)
keywordstylekeywordstyle keywordstyle8 Quit() }
keywordstylekeywordstyle keywordstyle9 func UPipeW(ctx Ctx_UPipe_W,
keywordstylekeywordstyle keywordstyle10 wg *sync.WaitGroup, chMW chan MsgUPipe){
keywordstylekeywordstyle keywordstyle11 defer wg.Done()
keywordstylekeywordstyle keywordstyle12 x_1 := <- chMW

keywordstylekeywordstyle keywordstyle14 switch v_2 := x_1.(type) {
keywordstylekeywordstyle keywordstyle15 case Put:
keywordstylekeywordstyle keywordstyle16 ctx.Recv_M_Put(v_2)
keywordstylekeywordstyle keywordstyle17 ch_W_W_1 := make(chan MsgUPipe, 1)
keywordstylekeywordstyle keywordstyle18 ctx_1 := ctx.Init_W_UPipe_Ctx()
keywordstylekeywordstyle keywordstyle19 wg.Add(1)
keywordstylekeywordstyle keywordstyle20 go UPipeW(ctx_1,wg, ch_W_W_1)
keywordstylekeywordstyle keywordstyle21 MuX:
keywordstylekeywordstyle keywordstyle22 for {
keywordstylekeywordstyle keywordstyle23 ... }
keywordstylekeywordstyle keywordstyle24 case Quit:
keywordstylekeywordstyle keywordstyle25 ctx.Recv_M_Quit(v_2)
keywordstylekeywordstyle keywordstyle26 ctx.End() }}

Figure 4 Implementation and context of role W in UPipe in Figure 3.

Local Protocol Specification. GoScr extracts local protocol specifications from global
protocols using an operation called projection. Local protocols describe the structured
sequence of interactions, from the point of view of a single participant. Figure 3 lists local
protocols for M and W. Consider the point of view of the new participant W in protocol
UPipe from Figure 3. W first receives an integer, either with label Put or Quit from M. If W

receives Quit, then the protocol finishes. Otherwise, W performs a protocol call, bringing in a
new participant W2 to act as W in UPipe. In the subsequent interactions, from Line 5, W acts
as both M (with respect to W2) and W (with respect to M). These lines (5 – 13) appear as a
result of projecting Line 5 onto W. Notice that, if we have two participants, one acting as
M and another one acting as W, this will generate a pipeline with an unbounded number of
stages, until the first participant acting as M sends Quit. These kinds of protocols could not
be represented in previous MPST theories and frameworks.

Program Logic. From local protocol specifications, GoScr generates the implementation
of each role as a self-contained function. GoScr interleaves communication actions and
the program logic. Communication actions in Go are a direct translation of those in local
protocols: a send is a regular Go send, a receive is a regular Go receive, a choice is a type
switch on a label, etc. Programmer inputs at this stage are, therefore, protocol specifications
and program logic. We follow a callback approach similar to [42, 62] that guarantees
correctness of communication by construction, unlike other approaches that required runtime
linearity checks [3]. We discuss this approach in detail in §4. Figure 4 presents the code that

D. Castro-Perez and N. Yoshida 6:7

GoScr generates for W in UPipe. The generated implementation requires that the programmer
implements the context interface Ctx_UPipe_W (Lines 3 – 8, Figure 4). This interface defines
all the necessary callbacks to implement the program logic. Programmers can use any type
definition to store a local state for each participant in the protocol, e.g.
keywordstylekeywordstyle keywordstyle1 type CtxW int // This type implements Ctx_UPipe_W, and stores the accumulated sum
keywordstylekeywordstyle keywordstyle2 func (c *CtxW) Recv_M_Put(v upipe.Put) { // upipe.Put is also an ’int’
keywordstylekeywordstyle keywordstyle3 *c += CtxW(v) }
keywordstylekeywordstyle keywordstyle4 ...

By using CtxW for implementing Ctx_UPipe_W, workers will store the sum of all the numbers
that they receive, and forward their accumulated sum to the next participant. The generated
code for W will signal when it has terminated (Line 11), and starts by receiving from M (Line
12). Depending on whether W receives Put or Quit, W continues with the corresponding branch
(Line 14). If M sends Put, then W creates a new participant that also acts as W (with respect to
the previous W). To create this participant, first a channel is created (Line 17), then a new
context is created (Line 18), the participant count is increased to guarantee that execution
does not end before all participants have ended (Line 19), and finally a new goroutine is
created (Line 20). Otherwise, if M sends Quit, the callback for ending is called, a last callback
to perform any necessary cleanup is called, and the participant ends (Lines 25 and 26).

As we show in Figure 2, from a global protocol specification GoScr produces an imple-
mentation of all of its participants. To run this generated implementation, programmers
must provide the necessary types to represent protocol contexts and their required callbacks.
Our code generation scheme statically ensures that implementations never lead to the errors
described in § 1, i.e. there will be no deadlocks and orphan messages.

3 Dynamically Updatable Unbounded Multiparty Session Protocols

This section introduces the theory of Dynamically Updatable Multiparty Session Types (DMst)
with examples, and proves that DMst satisfies deadlock-freedom and liveness. DMst is the
formalism that underlies GoScr. To illustrate our theory, consider the dynamic pipeline
of Figure 3. In this protocol, new participants are introduced into the protocol after each
iteration. In DMst, we write this dynamic pipeline as follows:

Pipe = λ⟨p; νq⟩.µt.(p → q:put[nat]. (t ♦ q ↪→ Pipe⟨q⟩)) + (p → q:quit. end)

This protocol definition requires two participants p and q. Participant q is annotated with ν

to specify that it is introduced dynamically (a dynamic participant). Participant p is called
a parameter participant. The body of the protocol specifies that it is a recursive protocol
(µt. . . .), with recursion variable t, where p sends to q either put or quit. This is a choice (+),
where each branch starts with p → q:put[nat] and p → q:quit respectively. If p sends put,
then both participants enter a new iteration, but q extends the protocol by performing call
to Pipe (q ↪→ Pipe⟨q⟩) before entering the new iteration. Note that although the signature
mentions two participants p and q, the call in the global type only needs to list the parameter
participants. This protocol call effectively brings in a new participant to the protocol (e.g.
r), creates and distributes the necessary additional channels, and extends the interactions of
the protocol with those of Pipe(q; r).

Introducing new interactions into an existing protocol requires to interleave them with
the actions of this existing protocol. For example, the interactions of Pipe(q; r) need to be
interleaved with the remaining interactions of Pipe(p; q). Our protocol specification allows
two forms of interleavings: (a) sequencing all the interactions of a protocol call with the
remaining interactions; and (b) alternating the actions of each iteration of two recursive
protocols. We introduce a protocol construct ♦ to specify the latter.

ECOOP 2023

6:8 Dynamically Updatable Multiparty Session Protocols

3.1 Global Types of DMst
The syntax of DMst global types (given in Definition 1) is an extension of the simplest version
of MPST [60]. The novel added features are highlighted.

▶ Definition 1 (DMst Global Types).

γ ::= p → q:m[U] | p ↪→ x⟨q⃗⟩ G ::= end | γ.G |
∑

i∈I Gi | µt.G | t | G ♦ γ⃗

Prefixes (γ, γ′, . . .) represent individual interactions between participants, also called
roles2, (p, q, r, . . .). There are two prefixes: messages and protocol calls. A message between
p and q with label m and payload type U (e.g. int, bool, . . .) is written p → q:m[U], or
p → q:m whenever the payload is not relevant, e.g. when U is unit. We write p ↪→ x⟨q⃗⟩ to
denote a call to protocol x by p, with participants q⃗ (= q1 . . . qn) (see protocol definitions
below). A protocol call prefix will introduce the new interactions described by x .

Global types (G, G′, . . .) denote global protocols among participants. The syntax of
global types is mostly standard: end is termination and it is often omitted. t denotes
a recursive variable. Choice

∑
i∈I Gi chooses any Gi, depending on the first action of

each Gi (see Definition 3). Recursive protocol µt.G behaves as G, binding recursive
variable t to µt.G. Sequencing γ.G denotes the execution of a prefix γ, and a continuation
G. The new construct G ♦ γ⃗ denotes an updatable protocol, where G is extended with
the interactions and participants introduced by γ⃗ (if any). When G is a recursive variable
t (t ♦ γ⃗), we often call these updatable recursion, or updatable recursion variable. We use
updatable protocols to represent recursive protocols where subsequent iterations are extended
with new message exchanges and/or participants. We will show in Example 6 how to use
updatable recursion to represent the dynamic recursive pipeline of Figure 3.

Choice well-formedness. Standard MPST syntax only allows choices where a participant p
sends to another participant q a distinct label in each branch. This means that p and q can
use the label to distinguish each branch of the choice [21, 60]. DMst’s syntax is more flexible,
since branches can also be distinguished by distinct protocol calls. However, we still require
that a single participant either sends a distinct label, or performs a distinct protocol call as
the first interaction of each branch. We say that the choices that satisfy this condition are
directed. Checking that choices are directed is necessary for well-formedness, but it is not
sufficient. Protocol well-formedness is defined in a standard way later in Definition 15. To
refer to the interaction that occurs in a branch, we use the extended labels.

▶ Definition 2 (Extended Labels). We define extended labels, ℓ ::= m | i@x(p⃗; q⃗), where
i@x(p⃗; q⃗) identifies a protocol call as the i-th participant of x with participants p⃗; q⃗. We use
participant index instead of name, since x may give different names to p⃗ and q⃗.

▶ Definition 3 (Directed Choices). Then, we define dc (directed choice):

dc(p, {ℓi}i∈I ,
∑

i∈I γi.Gi) = (∀i ∈ I.inter(p, ℓi, γi)) with all ℓi ̸= ℓj for i ̸= j

The predicate inter(p, ℓi, γi) states that γi is an interaction initiated by p with extended
label ℓi: inter(p, i@x(p⃗; q⃗), p ↪→ x⟨q⃗⟩), if i ≤ size(p⃗q⃗), and inter(p, m, p → q:m[U]).

2 A participant plays a role in the protocol, and this role is determined by the structured sequence of
interactions that are allowed by the global type.

D. Castro-Perez and N. Yoshida 6:9

Protocol definitions (x = λ⟨q⃗; ν r⃗⟩.G) associate a protocol name x with a global type G,
given a sequence of parameter participants q⃗, and a sequence of new participants r⃗ (where “ν”
means “new” [41]) that join the protocol dynamically (we call these dynamic participants).
Any participant occurring in G must be bound by q⃗ or r⃗. Protocol call prefixes (x⟨q⃗⟩) only
specify the parameter participants, not the dynamic ones. To refer to the global type of a
definition, we write x(q⃗; r⃗), with parameter participants q⃗, and dynamic participants r⃗.

▶ Example 4 (Fibonacci). The following protocol represents the interactions of an unbounded
series of participants, that together compute the Fibonacci sequence:

Fib = λ⟨s, f1, f2; νf3⟩.f1 → f3:F[int].f2 → f3:F[int].f3 → s:NF[int].f3 ↪→ Fib⟨s, f2, f3⟩.end

Fib defines a protocol that recursively creates new participants (f3 in the global type) to
compute the next element of the Fibonacci sequence after receiving the results from the
previous two participants (f1 and f2). Participant s receives all the results. Intuitively, the
implementation of f3 starts by receiving from f1 and f2, sends the new Fibonacci number to
s, and then creates a new participant and continues with f2 acting as f1, and f3 as f2. The
code generated by a similar protocol is shown later in Figure 5.

Protocol calls can also be used to represent recursive protocols that are augmented
dynamically with new interactions and/or participants. To represent such protocols we use
updatable recursion variables. Intuitively, subsequent iterations of a recursive protocol µt.G

that contains an updatable recursion variable t♦p ↪→ x⟨q⃗⟩ will proceed as µt.G combined with
the global type defined by x . Global types are combined by interleaving their interactions.

▶ Definition 5 (Combining Recursive Global Types). Let cont be a function that computes
the set of final continuations, i.e. recursion variables or end, after executing all possible
prefixes: cont(γ. G) = cont(G), cont(µt.G) = cont(G) \ {t}, cont(

∑
i∈I Gi) = ∪i∈Icont(Gi),

cont(t) = {t}, cont(G ♦ γ) = cont(G), cont(end) = {end}. We define

(µt.
∑

i∈I G′
i) ♢ (µt.

∑
i∈I Gi) = µt.

∑
i∈I (G′

i ♢t Gi)

where G′ ♢t G = [G/t]G′ if cont(G′) = cont(G) = {t}, G′ ♢t G = [G/end]G′ if cont(G′) =
cont(G) = {end}, and is undefined otherwise.

The composition operator takes two recursive protocols with the same branching structure,
and combines each of the branches using G′ ♢t G. This operator simply appends the
interactions of G after the interactions of G′ by substituting either end or t by G. Both G

and G′ must finish with the same last continuation, either t or end. For example:
((γ1. end) + (γ2. t)) ♢t ((γ3. end) + (γ4. t)) = (γ1. γ3. end) + (γ2. γ4. t),

but the following case is undefined: ((γ1. end) + (γ2. t)) ♢t ((γ3. end) + (γ4. t′)) (if t ̸= t′)

▶ Example 6 (Dynamic Recursive Pipeline). Consider again the dynamic pipeline of Figure 3:
Pipe = λ⟨p; νq⟩.µt.(p → q:put[nat]. (t ♦ q ↪→ Pipe⟨q⟩)) + (p → q:quit. end)

A set of processes that runs according to this specification would proceed as follows. The
first iteration is the same as the first iteration of Pipe, but without updatable recursion. This
is equivalent to the following global type:

G0 = µt.(p → q:put[nat]. t) + (p → q:quit. end)

I.e. participant p would start by sending put or quit to q, and q would receive this message.
Subsequent iterations will combine G0, with the result of the protocol call (Pipe⟨q⟩). Given
a fresh participant r, this is as follows:

ECOOP 2023

6:10 Dynamically Updatable Multiparty Session Protocols

G1 = G0 ♢ Pipe(q; r) = G0 ♢ (µt.(q → r:put[nat]. (t ♦ r ↪→ Pipe⟨r⟩)) + (q → r:quit. end))
= µt.(p → q:put[nat]. q → r:put[nat]. (t ♦ r ↪→ Pipe⟨r⟩)) + (p → q:quit. q → r:quit. end)

Note that ♢ plugs in the interactions of the first (second) branch of Pipe(q; r) after the first
(resp. second) branch of G0. This has the effect that, after each iteration of the protocol, a
new participant will join the pipeline, until the first participant sends message quit. Such
protocols could not be represented in previous MPST extensions. See §6 for a discussion.

▶ Example 7 (Dynamic Ring). DMst can also be used to model protocols, such a dynamic
ring, in which participants join a recursive ring protocol. Such dynamic rings are at the core
of some well-known protocols, such as Chord and its extensions. The protocol in DMst is as
follows, omitting choices and payload types for simplicity:

Ring = λ⟨i, p; νq⟩.µt.p → q:N. t ♦ (q → i:N. i ↪→ Ring⟨i, q⟩)

The entrypoint is Ring(p, p; q). Subsequent iterations would be combined with new protocol
calls (e.g. Ring(p, q; r)), producing the following sequences of interactions:

G0 = µt.p → q:N. q → p:N. t G1 = µt.p → q:N. q → q′:N. q′ → p:N. t G2 = . . .

3.2 Asynchronous Semantics of DMst Global Types
We guarantee the processes implementing all roles in a global type G indeed behave as G.
To characterise the set of behaviours that are allowed by G, we define the semantics of global
types as a Labelled State Transition System. The labels are the observable actions:

α ::= pq !ℓ | pq?ℓ | pq ν i@x (⃗r; s⃗)

Observable pq !ℓ is a send action from p to q with an extended label (either a label or
a protocol call, see Definition 2). Action pq?ℓ is receive and action pq ν i@x (⃗r; s⃗) is
participant creation which brings in q as a new participant acting as the i-th role in the
protocol specified by x (⃗r; s⃗). For simplicity, we sometimes write pq ν ℓ to refer to participant
creation, assuming that ℓ is of the form i@x (⃗r; s⃗), for some i, x , r⃗ and s⃗.

Extended Global Types. We extend the global types (Definition 1) with constructs that
capture intermediate states of the execution of a protocol. Note that these intermediate
states only appear as a result of applying the rules of the operational semantics, and these
will not need to be written by users specifying full protocols. Since extended global types
are a superset of Definition 1, we will use the same meta-variable G for both and, unless we
specify otherwise, all global types from now on are considered to be extended.

γ ::= . . . | p → q:ℓ[U] | p⇝ q:ℓ[U] | pν (⃗r : [i, j]@x(p⃗; q⃗)) | ▷[G]

Sending protocol call labels (e.g. p → q:i@x(p⃗; q⃗)) is a form of delegation that is used to
perform protocol calls (see Notations below). p⇝ q:ℓ[U] means p has sent a message to q,
yet q has not received it. pν (⃗r : [i, j]@x(p⃗; q⃗)) represents that p creates new participants r⃗,
acting as the ith to jth participants in x , and ▷[G] is the nested protocol with global type G.
Intuitively, a nested protocol prefix ▷[G0]. G1 is equivalent to sequencing G0 and G1.

D. Castro-Perez and N. Yoshida 6:11

Notations. We use notations to break down protocol calls into the individual interactions.
Suppose that q⃗ = (q1, . . . , qn) and r⃗ = (r1, . . . , rm). We define idx(p; q⃗) as {i}, if p = qi with
1 ≤ i ≤ n, or the empty set {} otherwise. We define the following shortcuts:

p → q⃗:⃗i@x(q⃗; r⃗) = p → q1:i1@x(q⃗; r⃗). p → qn:in@x(q⃗; r⃗)
p call x(q⃗; r⃗) = pν (⃗r : [n + 1, n + m]@x(q⃗; r⃗)). p → q⃗ \ {p}:([1, n] \ idx(p; q⃗))@x(q⃗; r⃗)

Notation p → q⃗:⃗i@x(q⃗; r⃗) represents a sequence of messages from p to each of the q ∈ q⃗
with the respective extended label. These are sometimes called invitations to x . Notation
p call x(q⃗; r⃗) is a sequence of actions, where p first creates r⃗, and then sends invitations to q⃗,
excluding itself to avoid self-communication.

Global Type Equivalence and LTS. We define the erasure of updatable recursive variables
as |t ♦ γ|t′ = t if t = t′; and |t ♦ γ|t′ = t ♦ γ otherwise (other cases are homomorphic).
The LTS is defined up to the equivalence: (1) pν(); G ≡ G; (2) ▷[end]. G ≡ G; (3) µt.G ≡
[µt.|G|t/t]G, and, assuming r⃗ fresh, (4) p ↪→ x⟨q⃗⟩. G ≡ p call x(q⃗; r⃗). ▷[x(q⃗; r⃗)]. G, and (5)

G ♦ (γ⃗. p ↪→ x⟨q⃗⟩) ≡ γ⃗. p call x(q⃗; r⃗). (G ♢ x(q⃗; r⃗)). Rules (1) and (2) capture that finished
prefixes (creating an empty list of participants, or a nested ended global type) can be skipped.
Rule (3) is recursion unrolling. Similarly to Example 6, subsequent iterations of the protocol
will combine the body of the recursion without updatable recursion variables, with the result
of the protocol calls. By this rule, recursion will be updated by protocol calls, and after the
first iteration, the protocol can continue as µt.|G|t (possibly combined with the result of a
protocol call). Rule (4) expands the sequence of a protocol call and a global type, and rule
(5) updates a global type by first executing the specified prefixes and then continuing with
G combined with the result of the protocol call. We guarantee that new roles are globally
fresh by adopting a Barendregt convention on all binders, i.e. each time we access a protocol
definition x , we alpha-rename the participants bound by ν r⃗ to avoid participant name clashes.
Without it, consecutive protocol calls could incorrectly introduce repeated participant names.

▶ Definition 8 (Active Participants). The active participants of a global type (prefix), pt(G)
(pt(γ)), is the set of participants that can perform an action in the protocol (or prefix).

pt(p → q:ℓ[U]) = {p, q} pt(p ↪→ x⟨q⃗⟩) = {p} ∪ q⃗ pt(p⇝ q:ℓ[U]) = {q} γ.G = pt(γ) ∪ pt(G)
pt(p ↪→ x⟨q⃗⟩) = {p} ∪ q⃗ pt(pν (⃗r : [i, j]@x(p⃗; q⃗))) = {p} ∪ r⃗ pt(▷[G]) = pt(G)

pt(end) = pt(t) = {} pt(µt.G) = pt(G) pt(
∑

i∈I
Gi) =

⋃
i∈I

pt(Gi) pt(G ♦ γ) = pt(G) ∪ pt(γ)

▶ Definition 9 (LTS for Global Types). Let the subject of an action denote the role that
performs it: p = subj(pq !ℓ) = subj(pq?ℓ) = subj(pq ν ℓ). The LTS for G:

[Br-a]
∀i ∈ I, Gi

α−→ G′
i∑

i∈I
Gi

α−→
∑

i∈I
G′

i

[Br-b]

Gj

pq !ℓj−−−→ G′
j dc(p, {ℓi}i,

∑
i∈I

Gi)∑
i∈I

Gi

pq !ℓj−−−→ G′
j

[Nest]
G1

α−→ G2

▷[G1]. G
α−→ ▷[G2]. G

[New] p(r, r⃗ : [i, j]@x(q⃗; r⃗′)). G
pr ν i@x(⃗q;⃗r′)−−−−−−−−→ p(⃗r : [i + 1, j]@x(q⃗; r⃗′)). G

[Send]
p → q:ℓ[U]. G

pq !ℓ−−−→ p⇝ q:ℓ[U]. G

[Recv]
p⇝ q:ℓ[U]. G

qp?ℓ−−→ G
[Seq]

G
α−→ G′ subj(α) ̸∈ pt(γ)

γ.G
α−→ γ.G′

[Br-a] specifies that if an action can be taken in all branches of a choice, it can be taken
before the choice is decided. The reason is that if an action can be taken in all branches,
then it must be independent of the choice. [Br-b] states that if the sender of a choice does
an action that selects branch j, then the choice transitions to this branch. [Seq] states that

ECOOP 2023

6:12 Dynamically Updatable Multiparty Session Protocols

an action can take place in a continuation, if the action does not involve the participants of
the prefix. In the prefix transitions, [Send] (resp. [Recv]) represents a send (resp. receive)
action. [New] specifies that a new participant r of the nested protocol is created, and [Nest]
represents the execution of an action in the nested global type.

▶ Example 10 (DMst Semantics). Consider the following protocol, cf. Example 6:

Pipe = λ⟨p; νq⟩.µt.G0 with G0 = (p → q:put[nat]. (t♦q ↪→ Pipe⟨q⟩))+(p → q:quit. end)

First, assuming two initial participants (p and q), we unfold recursion using ≡:

µt.G0 ≡ [µt.|G0|t/t]G0 = (p → q:put[nat]. (µt.|G0|t ♦ q ↪→ Pipe⟨q⟩)) + (p → q:quit. end)

There are two allowed actions: sending put and sending quit. By [Br-b] and [Send],

[µt.|G0|t/t]G0
pq !put−−−−→ p⇝ q:put[nat]. (µt.|G0|t ♦ q ↪→ Pipe⟨q⟩)

There are now two actions accepted. First, we can use [Recv]:

p⇝ q:put[nat]. (µt.|G0|t ♦ q ↪→ Pipe⟨q⟩) qp?put−−−−→ µt.|G0|t ♦ q ↪→ Pipe⟨q⟩

To enable the second action, we use equivalences to unfold the updatable global type:

G1 = p⇝ q:put[nat]. (µt.|G0|t ♦ q ↪→ Pipe⟨q⟩)
≡ p⇝ q:put[nat]. qν(r : 2@Pipe(q; r)). (µt.|G0|t ♢ Pipe(q; r))

Note that p is not in the set of active participants of the prefix, so p can take a step, using
repeated applications of [Seq], in (µt.|G0|t ♢ Pipe(q; r)).

µt.G2 = (µt.|G0|t ♢ Pipe(q; r))
= µt.(p → q:put[nat]. q → r:put[nat]. (t ♦ r ↪→ Pipe⟨r⟩)) + (p → q:quit. q → r:quit. end)
≡ (p → q:put[nat]. q → r:put[nat]. (µt.|G2|t ♦ r ↪→ Pipe⟨r⟩)) + (p → q:quit. q → r:quit. end)

Suppose that G2 proceeds by p sending quit: µt.G2
pq !quit−−−−→ (p⇝ q:quit. q → r:quit. end).

Then, G1 transitions to the following global type:

µt.G1
pq !quit−−−−→ p⇝ q:put[nat]. qν(r : 2@Pipe(q; r)). p⇝ q:quit. q → r:quit. end

After [Sq-a] and [Recv], the global type transitions to:

G3 = qν(r : 2@Pipe(q; r)). p⇝ q:quit. q → r:quit. end

With [Sq-a] and [New], the protocol transitions as follows:

G3
qr ν 2@Pipe(q;r)−−−−−−−−−−→ p⇝ q:quit. q → r:quit. end

At this stage, r is a new active participant of the protocol. The remaining global type can
run to completion via a sequence of [Recv], [Send], and finally [Recv].

3.3 Local Types
Local types describe the interactions of a protocol from the point of view of a single participant.

▶ Definition 11 (DMst Local Types). Let M ::= l[U] | L. The syntax of local types is:
π ::= p !M | p?M | ν(p⃗ : L⃗) | ▷[L] L ::= end | π. L |

∑
i∈I Li | µt.L | t | L ♦ π⃗

D. Castro-Perez and N. Yoshida 6:13

Local type syntax differs from that of global types in the prefixes (π instead of γ). Local
type prefixes are as follows: send p !M , receive p?M , new participant creation ν(p1 :
L1) · · · (pn : Ln), and the nested local type ▷[L]. We lift the definitions of directed choices,
updatable recursion erasure, and the composition operator from global types to local types.
Endpoint projection takes a global type G and a participant r, and produces the local
type (the local interactions) of r in G.

Similarly to global types, we introduce the notations for protocol calls. Assuming
q⃗ = q1, . . . , qn and r⃗ = r1, . . . , rm, we define these notations as follows:

q⃗ !⃗i@x(q⃗; r⃗) = q1 !i1@x(q⃗; r⃗). qn !in@x(q⃗; r⃗)
p call x(q⃗; r⃗) = ν (⃗r : [n + 1, n + m]@x(q⃗; r⃗)). q⃗ \ p !([1, n] \ idx(p; q⃗))@x(q⃗; r⃗)

▶ Definition 12 (Prefix Projection). Global type projection is defined in terms of prefix
projection. Prefix projection is a partial function that takes a global prefix, and produces a
possibly empty (ε) sequence of local prefixes. We give the two main rules:

p → q:l[U] ↾ r

=


q ! l[U] p = r ̸= q
p?l[U] p ̸= r = q
ε p, r, q distinct

p ↪→ x⟨q⃗⟩ ↾ r (⃗r fresh)

=


p call x(q⃗; r⃗). ▷[i@x(q⃗; r⃗)] p = r ∈i q⃗
p call x(q⃗; r⃗) p = r ̸∈ q⃗
p?i@x(q⃗; r⃗). ▷[i@x(q⃗; r⃗)] p ̸= r ∈ q⃗
ε p ̸= r ̸∈ q⃗

The projection of p → q:l[U] onto r is a send if r is p, and a receive if r is q, an empty
prefix if all roles are distinct, or undefined if r = p = q. The projection of p ↪→ x⟨q⃗⟩ follows a
similar pattern. If r is p, then the projected sequence of prefixes is the one that corresponds
to making the protocol call, i.e. delegating channels and creating new participants. If r is
the ith participant in q⃗, then r also takes part in the protocol, so the prefixes correspond to
the reception of the channel for acting as the ith participant in x , followed by the execution
of the nested local type for this ith participant in x, i@x(q⃗; r⃗). If r is both the protocol
caller p, and also takes part in it, then the prefix sequence is the sequence of prefixes for
making the protocol call, followed by the nested local type for i@x . Note that a participant
may call a protocol, and not take part in it. When this happens, the protocol caller simply
distributes the necessary channels for executing the nested protocol, and then proceeds to
the continuation, without entering the nested protocol.

▶ Definition 13 (Projection and Merging). Projection is defined as follows:

γ.G ↾ r = γ ↾ r. G ↾ r t ↾ r = t
end ↾ r = end G ♦ γ⃗ ↾ r =

{
G ↾ r (if r ̸∈ γ⃗)
G ↾ r ♦ (γ⃗ ↾ r) (if r ∈ γ⃗)

µt.G ↾ r =

µt.G ↾ r r ∈ pt(G) or
fv(µt.G) ̸= ∅

end otherwise

∑
i∈I

Gi ↾ r =
{∑

i∈I
(Gi ↾ r) dc(p, ℓ⃗,

∑
i∈I

Gi), r = p
d

i∈I(Gi ↾ r) dc(p, ℓ⃗,
∑

i∈I
Gi), r ̸= p

Projection is a partial function from global to local types. We lift the definition of directed
choices (Definition 3, dc) to local types. We define

d
i∈ILi as the merging operator:

(1) L ⊓ L = L (2) µt.L1 ⊓ µt.L2 = µt.(L1 ⊓ L2)
(3)

∑
i∈I

p?ℓi[Ui]. Li ⊓
∑

j∈J
p?ℓj [Uj]. L′

j =∑
k∈I∩J

(p?ℓk[Uk]. Lk ⊓ L′
k) +

∑
i∈I\J

(p?ℓi[Ui]. Li) +
∑

j∈J\I
(p?ℓj [Uj]. L′

j)

The projection rules are standard [60], except the choice. A choice is only defined if it is
directed. The projection of the participant that makes the choice is a local type choice of the
projection of the branches. The projection for all other participants is the merging of the

ECOOP 2023

6:14 Dynamically Updatable Multiparty Session Protocols

projection of the branches. Local types can be merged in three cases: (1) they are the same,
(2) they are recursive local types whose bodies can be merged, or (3) they become aware of
which branch of the choice was taken (if necessary), by receive actions with distinct labels.
Case (3) implies that both local types are choices with a receive prefix as the first action,
where the continuations for the branches with the same labels can be merged.

It is standard in MPST to define well-formedness in terms of projectability [21]. This
means that if a global type is projectable onto all of its roles, then it is well-formed and
therefore live and deadlock-free. Unfortunately, the use of ♦ means that this is not possible
with DMst. E.g., the following global type is projectable, but it will get stuck:

Proto1 = λ⟨p; νr⟩.µt.(r → p:m1. end) + (r → p:m2. t)
IllFormed = λ⟨p; νq⟩.µt.(p → q:m1. end) + (p → q:m2. t ♦ (p ↪→ Proto1 ⟨p⟩))

Specifically, r in Proto1 will not become aware of the branch taken by p in IllFormed, so
after unfolding IllFormed once, we will obtain the following global type:

µt.(p → q:m1. r → p:m1. end) + (p → q:m2. r → p:m2. t)

But this protocol would not be projectable. To avoid such cases, we define a necessary
condition for well-formedness, the safe protocol update condition.

▶ Definition 14 (Safe Protocol Update). Suppose that C[] and C ′[] are 1-hole global type
contexts. A global type µt.C[t ♦ (γ⃗. p ↪→ x⟨q⃗⟩)] contains a safe update if its 1-unfolding
is some C ′[G ♦ (γ⃗. p ↪→ x⟨q⃗⟩)], such that given a sequence of fresh roles r⃗, G ♢ x(q⃗; r⃗) is
projectable.

▶ Definition 15 (Projection and Well-Formed Global Types). A global type G is projectable
if its projection G ↾ r is defined on all roles r ∈ G. A global type is well formed iff it is
projectable, and contains only safe protocol updates.

▶ Definition 16 (Projections of Protocol Definitions). Assume a definition x = λ⟨p⃗; νp⃗′⟩.G,
with participants p⃗ = (p1, . . . , pn) and with participants p⃗′ = (pn+1, . . . , pm). The projections
of x are the local protocol definitions that correspond to each of the participants in the protocol:

1@x = λ⟨p⃗; νp⃗′⟩.G ↾ p1 . . . m@x = λ⟨p⃗; νp⃗′⟩.G ↾ pm

▶ Example 17 (Directed Choices and Merging). BFib computes the n-th Fibonacci number:

BFib = λ⟨r, f1, f2; νf3⟩.f1 → f3:F[int].
f2 → f3:F[int].((f3 → r:NF[int]. f3 → f2:quit.end)+(f3 ↪→ BFib⟨r, f2, f3⟩. end))

This protocol is similar to that of Example 4, but instead of calling BFib indefinitely, the
protocol offers a choice: f3 will either reply to r with its Fibonacci number, or call BFib
recursively to compute the next number. Participant f3 selects the branch of the protocol
that is taken, and r offers the two branches. The choice has a single sender, and both
branches can be distinguished by the labels or protocol calls, so the choice is directed by f3,
with extended labels ℓ⃗ = NF, i@BFib(r, f2, f3; f4). In a directed choice, one participant decides
the branch. But how do the remaining participants know which branch was taken? Consider
f1 in BFib. Its part in both branches of the protocol is the same, end, so we can project
f1 in the choice as end. This is one of the cases of Definition 13: two local types can be
merged if they are the same.But f2’s behaviour is different in each branch: f3?quit. end and
f3?2@BFib(r, f2, f3; f4). end respectively. However, f2 is aware of the branch that was taken
by receiving either label quit or protocol call label 2@BFib(r, f2, f3; f4). This is case (3), as
explained after Definition 13:

D. Castro-Perez and N. Yoshida 6:15

(f3?quit. end) ⊓ (f3?2@BFib(r, f2, f3; f4). end) = (f3?quit. end) + (f3?2@BFib(r, f2, f3; f4). end)

▶ Example 18 (Projecting Pipeline). Consider again Example 6. We are projecting the first
and second participants of x . The result of the syntactic projection is as follows:

x(p; q) = µt.(p → q:put[nat]. (t ♦ q ↪→ x⟨q⟩)) + (p → q:quit. end)
1@x(p; q) = µt.(q !put[nat]. t) + (q !put[nat]. end)
2@x(p; q) = µt.(p?put[nat]. (t ♦ (call x(q; r). q?q1@x(q; r). ▷[1@x(q; r)]))) + (p?quit. end)

3.4 Semantics of DMst Local Types and Correctness
The semantics for local types is defined for local type configurations. A configuration
is a pair of channel and participant environments, ⟨ ∆ ; Θ ⟩. The channel environment ∆
contains the shared channels used for the asynchronous communication between each pair of
participants, and the participant environment Θ is a set of the local types of all participants:

∆ = piqj :: w⃗1, . . . , pkql :: w⃗n w ::= ℓ[U] Θ = {p1 :: L1, · · · , qm :: Lm}

w denotes a payload of a message. We consider the channel and participant environments
up to commutativity and associativity, since all entries must be disjoint. Channels pq are
channels of messages to p from q. We use ∆(pq) as notation for retrieving channel pq, and
∆[pq :: w⃗] for updating channel pq with w⃗. Θ does not impose the ordering between the
entries (like a set). We update the entry by writing Θ[p :: L] = p :: L, (Θ \ p).

The semantics of configurations is defined by the LTS of local types and given in
Definition 19, and it is defined up to local type equivalences, analogous to those of global
types: (1) µt.L ≡ π⃗. end if L = t♦ π⃗; (2) [µt.|L|t/t]L if L ̸= t♦ π⃗, (3) L♦ (π⃗. π) ≡ π⃗. π. L, if
π ̸= ▷[L′], and (4) L♦(π⃗. π) ≡ π⃗. (L♢L′), if π = ▷[L′]. The semantics of choices requires that
they are directed. At the local type, all branches start with a send/receive prefix to/from the
same participant p. We use the predicate dc(p, {ℓi}i,

∑
i∈I πi. Li), and define it analogously

to the predicate for global types.

▶ Definition 19 (LTS for Local Types). The LTS for local types is defined as follows:

[L-cong]
⟨ ∆ ; p :: L ⟩ α−→ ⟨ ∆′ ; Θ′ ⟩

⟨ ∆ ; p :: L, Θ ⟩ α−→ ⟨ ∆′ ; Θ′, Θ ⟩
[L-nest]

⟨ ∆ ; p :: L′ ⟩ α−→ ⟨ ∆′ ; p :: L′′, Θ ⟩
⟨ ∆ ; p :: ▷[L′]. L ⟩ α−→ ⟨ ∆′ ; p :: ▷[L′′]. L, Θ ⟩

[L-choice]
j ∈ I ⟨ ∆ ; p :: Lj ⟩ α−→ ⟨ ∆′ ; Θ ⟩ dc(q, ℓ⃗,

∑
i∈I

Li)

⟨ ∆ ; p ::
∑

i∈I
Li ⟩ α−→ ⟨ ∆′ ; Θ ⟩

[L-send] ⟨ ∆, qp :: w⃗ ; p :: q !ℓ[U]. L ⟩ pq !ℓ−−−→ ⟨ ∆, qp :: w⃗ · ℓ[U] ; p :: L ⟩

[L-recv] ⟨ ∆, pq :: ℓ[U] · w⃗ ; p :: q?ℓ[U]. L ⟩ pq?ℓ−−−→ ⟨ ∆, pq :: w⃗ ; p :: L ⟩

[L-new] ⟨ ∆ ; p :: ν(qi : Li) · · · (qj : Lj) ⟩ pqi ν Li−−−−−→ ⟨ ∆ ; qi :: Li, p :: ν(qi+1 : Li+1) · · · (qj : Lj) ⟩

[L-cong] specifies a step by a participant in the configuration. [L-recur] unfolds recursion,
and [L-choice] selects one branch of a choice by performing a step into one of the continuations.
In [L-choice], only one action can take place in one branch, because the labels of all branches
must be distinct for the choice to be directed. [L-send] executes a send prefix by enqueuing
the label and the payload type into the channel of the receiver, [L-recv] executes a receive
prefix by dequeuing the label and payload type from the corresponding channel, [L-new]
creates a new participant by composing its associated local type in parallel with the remainder

ECOOP 2023

6:16 Dynamically Updatable Multiparty Session Protocols

of the local type environment, [L-nest] performs a step into a nested local type. We allow
the renaming of participants introduced by [L-new] to avoid participant name clashes. For
simplicity, we assume that ∆ always contains a (possibly empty) sequence of payloads for
every pair of roles. For example, if pq is not in ∆, we allow to match ∆ with ∆, pq :: ϵ.

We prove the correctness of DMst: (1) the global type semantics coincides with behaviours
of local endpoints, a well-formed global type is (2) deadlock-free and (3) live. (1) together with
(2) and (3) imply that the programs generated from local types projected from well-formed
global types are deadlock-free and live.

We define the projection of G as JGK = ⟨ [] ; p :: G ↾ p, . . . , q :: G ↾ q ⟩, for all p, . . . , q ∈
pt(G). A configuration is a subtype of another if it contains the same participants and their
local types are related under the standard subtyping relation [60], i.e., ⟨ ∆ ; Θ ⟩ ⩽ ⟨ ∆ ; Θ′ ⟩
implies that Θ(p) ⩽ Θ′(p) for all p.

▶ Theorem 20 (Trace Equivalence). If ⟨ ∆ ; Θ ⟩ ⩽ JGK, then Γ ⊢ G
α∗−−→ G′ if and only if

there exists ⟨ ∆′ ; Θ′ ⟩ such that ⟨ ∆ ; Θ ⟩ α∗−−→ ⟨ ∆′ ; Θ′ ⟩ and ⟨ ∆′ ; Θ′ ⟩ ⩽ JG′K.

Proof. The full proof uses the extended projection, that produces both local types and the
queue contents implicit in the intermediate forms. The core part of the proof is completed by
induction on the derivations for the global and local type LTS, using the fact that if G ≡ G′,
then G ↾ r ≡ G′ ↾ r. ◀

A configuration ⟨ ∆ ; Θ ⟩ is final if for all pq ∈ dom(∆), ∆(pq) = ε, and for all
p ∈ dom(Θ), Θ(pq) = end. The configuration is in a deadlock if it cannot make progress
and it is not final, i.e. the protocol has not ended, and all participants are stuck.

▶ Definition 21 (Deadlock). ⟨ ∆ ; Θ ⟩ is a deadlock configuration if there exists a sequence
of actions α∗ such that ⟨ ∆ ; Θ ⟩ α∗−−→ ⟨ ∆′ ; Θ′ ⟩, with ⟨ ∆′ ; Θ′ ⟩ not final and for all action
α, ⟨ ∆′ ; Θ′ ⟩ ̸α−→.

▶ Example 22 (Deadlock Configuration). A deadlock configuration is one in which the whole
system can get stuck and cannot progress. A usual example of this is a configuration where
all participants need to receive, but their messages have not been sent. We show below such
configuration, where after one action, it reaches a receive cycle:

⟨ [] ; p :: q ! l[U]. q?l[U]. L1, q :: r?l[U]. L2, r :: p?l[U]. L3 ⟩ pq ! l−−→
⟨ [qp :: l[U]] ; p :: q?l[U]. L1 , q :: r?l[U]. L2, r :: p?l[U]. L3 ⟩ ̸α−→

▶ Theorem 23 (Deadlock-Freedom). If ⟨ ∆ ; Θ ⟩ ⩽ JGK, then ⟨ ∆ ; Θ ⟩ is deadlock-free.

Proof. We show that either G is ended, or there is a step available for G, and use trace
equivalence to conclude this for ⟨ ∆ ; Θ ⟩ ⩽ JGK. ◀

Theorem 23 refers exclusively to the absence of global deadlocks, i.e. the whole system
will never get stuck. But DMst also guarantees the absence of local deadlocks, i.e. that
no participant in the system gets stuck. An example of such partial deadlocks is the usual
receive-cycle, where a subset of participants are waiting forever, and can never make progress.
DMst guarantees that this situation cannot happen. To prove this, we first show that DMst
guarantees orphan message freedom [10], which means that all messages are eventually
consumed without a type mismatch.

▶ Definition 24 (Orphan Message). ⟨ ∆ ; Θ ⟩ has an orphan message if there exists
w ∈ ∆(pq) but there exists no transition such that consumes it, i.e. there is no transition
⟨ ∆ ; Θ ⟩ α∗−−→⟨ ∆′ ; Θ′ ⟩ with pq?|w| ∈ α∗.

D. Castro-Perez and N. Yoshida 6:17

▶ Example 25 (Orphan Message). Orphan messages can occur whenever a send prefix is not
coupled with the corresponding receive, thus leaving a message hanging in the corresponding
buffer. For example, the following situation contains an orphan message:

⟨ [] ; p :: q ! l[U]. q?l[U]. end, q :: p ! l[U]. end ⟩ pq ! l−−→
⟨ [qp :: l[U]] ; p :: q?l[U]. end, q :: p ! l[U]. end ⟩ qp ! l·pq?l−−−−−→ ⟨ [qp :: l[U]] ; p :: end, q :: end ⟩

At the end of the execution, the configuration contains a non-empty buffer: qp :: l[U].
Another example of orphan messages is one in which the reduction gets stuck because of

receiving a message of the wrong type or label, i.e. there is a reception error.

⟨ [] ; p :: q ! l[int]. end, q :: p?l[bool]. end ⟩ pq ! l−−→
⟨ [qp :: l[int]] ; p :: end, q :: p?l[bool]. end ⟩ ̸α−→

In this case, reduction cannot continue, and the message qp :: l[int] cannot be consumed,
because q is expecting payload type bool.

Proving that DMst guarantees the absence of orphan messages relies on the absence of blocked
local types. A blocked local type is a local type that contains a nested session that cannot ter-
minate, followed by a non-empty continuation. For example, if L = ▷[µt.q2 ! l′[U ′]. t]. p?l[U],
then L is blocked, because it will enter the nested protocol (with local type µt.q2 ! l′[U ′]. t),
but it will never be able to continue executing p?l[U].

▶ Definition 26 (Blocked Participant). A blocked local type is one that contains a continuation
of the form ▷[L1]. L2, where: (a) L1 is blocked, or (b) L2 ̸= end and end is not reachable
from L1.

▶ Definition 27 (Liveness). We say that ⟨ ∆ ; Θ ⟩ is live, if no participant is stuck. A
participant p is stuck in a configuration whenever it cannot progress, i.e. if Θ(p) = L with
L ̸= end, but there is no trace ⟨ ∆ ; Θ ⟩ α∗−−→ ⟨ ∆′ ; Θ′ ⟩ with p = subj(α) and α ∈ α∗.

▶ Example 28 (Stuck Participant). The following configuration is not live, because even if p
and q can continue interacting, r and s are stuck in a local receive cycle:

⟨ [] ; p :: µt.q ! l[U]. t, q :: µt.p?l[U]. t, r :: s?l[U]. L3, s :: r?l[U]. L4 ⟩ pq ! lqp?l−−−−−→
⟨ [] ; p :: µt.q ! l[U]. t, q :: µt.p?l[U]. t, r :: s?l[U]. L3, s :: r?l[U]. L4 ⟩ α∗−−→ . . .

No possible trace can contain rs?l or sr?l. Participants r and s are stuck. Note that, from
Definition 19, only receive prefixes can get stuck, since send prefixes will always succeed.

▶ Theorem 29 (Orphan Message Freedom and Liveness).
Suppose ⟨ ∆ ; Θ ⟩ ⩽ JGK, such that Θ contains no blocked participants. Then ⟨ ∆ ; Θ ⟩ is
free of orphan messages and live.

Proof. Liveness is a straightforward consequence of orphan message freedom. The prefix
of a local type can have two kinds of actions: outputs (sending data or invitations), or
inputs (receiving data, or accepting invitations). Every input is coupled with an output by
another participant (see Definition 13). Hence outputs can always be performed, in any
state. To prove that inputs can always be consumed, we use trace equivalence. We show
that any pending message can be received, since a step can only happen in a continuation
if its subject is not in any of the previous prefixes, and it is always possible to end nested
protocols, because they cannot be blocked. ◀

▶ Proposition 30. As a consequence of Theorems 23, 29 and 20, the global types of Example 10
are live and deadlock-free.

ECOOP 2023

6:18 Dynamically Updatable Multiparty Session Protocols

4 GoScr Code Generation

This section describes the GoScr toolchain. GoScr is an extension of nuScr [48], which is a new
implementation of Scribble in OCaml. nuScr is designed with modularity and extensibility in
mind, so that extensions of the core MPST theory [60] can be easily integrated.

GoScr Global Protocols. The syntax of GoScr global protocols is given in Definition 31.

▶ Definition 31 (GoScr syntax).

P ::= global protocol x(role p1, . . . , role pn; new role q1, . . . , role qm) {P ∗ G}
g ::= m[U] from p to q | p calls x(p1, . . . , pn)
G ::= choice at p {G1} or . . . or{Gn} | g; G | rec t {G} | continue t | end

| continue t with{g1; . . . gn; p calls x(p1, . . . , pn)} | do x(p1, . . . , pn); G

A GoScr module is a sequence of one or more global protocols. The last protocol definition is
the entry point. The constructs of GoScr were chosen to mirror those defined in Definition 1:
global protocol are protocol definitions (x = λ⟨p⃗; νq⃗⟩.G. . .; global protocol can be used for
protocol declarations with no new participants; choice at p defines directed choices from p
to the receiver of the first interaction in the Gi; do is a protocol call to a global protocol; and
the rest of the constructs correspond to those of DMst. Protocol definitions in GoScr can
start by defining other nested protocols, but this is simply a syntactic convenience, since we
require every role in a nested protocol to be bound by the protocol signature.

Steps for Code Generation. The steps of code generation in GoScr are: (1) lifting all nested
protocol definitions to the top-level; (2) obtaining the projections of all roles in all protocol
definitions; (3) preprocessing local types to deal with instances of ♦ (or continue . . . with . . .

in GoScr); and, (4) translating the local types to Go functions, where communication is
implemented using Go channels, interleaved with callbacks that will be used to implement
the program logic.

Step (1) is straightforward. Step (2) is an implementation of Definition 13. Step (3)
requires applying local type equivalences to unfold any updatable recursion. Step (4) traverses
the local types, and generates on demand the necessary channels and callback interfaces.
The type of the Go channels is an interface that represents the allowed payload types. Then,
for each labelled message exchange: (1) we add a new type declaration for the label and
payload type that implements the interface of allowed messages; (2) we search for a channel
for the required endpoints, creating it if necessary; (3) we create the necessary callbacks
before or after the interaction. The channels can be created either synchronous, or buffered
with a user-specified size. Choosing synchronous channels is safe, since the traces accepted
by using synchronous semantics is a subset of those accepted by our asynchronous semantics,
which implies that the same safety properties will hold.

Go Code Generation. The Go code for each role and protocol is generated in protocol/.
Communication is implemented using regular Go send/receive statements. There is no need to
explicitly send message labels, since labels are encoded as type declarations. Protocol choices
are encoded as type switches, either on the value returned from a previous callback (internal
choices), or on the received value (external choices). We only generate implementations for
branching choices that start with an explicit interaction.

D. Castro-Perez and N. Yoshida 6:19

keywordstylekeywordstyle keywordstyle1 func BFib_F2(ctx Ctx_BFib_F2, wg *sync.WaitGroup, ch_F2_F3, ch_F3_F2 chan MsgBFib) {
keywordstylekeywordstyle keywordstyle2 x := ctx.Send_F3_BFib_Fib2() // Callback to generate payload
keywordstylekeywordstyle keywordstyle3 ch_F3_F2 <- x // Send payload to F3
keywordstylekeywordstyle keywordstyle4 x_1 := <- ch_F2_F3 // External choice by from F3
keywordstylekeywordstyle keywordstyle5 switch v := x_1.(type) {
keywordstylekeywordstyle keywordstyle6 case End: // F3 chooses to finish the protocol
keywordstylekeywordstyle keywordstyle7 ctx.Recv_F3_BFib_End(v) // Callback for processing label End
keywordstylekeywordstyle keywordstyle8 ctx.End()
keywordstylekeywordstyle keywordstyle9 return
keywordstylekeywordstyle keywordstyle10 case Call_F1_BFib: // F3 sends the channel for acting as F1 in BFib
keywordstylekeywordstyle keywordstyle11 ctx_1 := ctx.Init_F1_BFib_Ctx() // Initialise context for F1 in BFib
keywordstylekeywordstyle keywordstyle12 BFib_F1(ctx_1,wg,v) // Run code for F1 in BFib with channel [v]
keywordstylekeywordstyle keywordstyle13 ctx.End_F1_BFib_Ctx(ctx_1) // Close context for F1 in BFib
keywordstylekeywordstyle keywordstyle14 ctx.End()
keywordstylekeywordstyle keywordstyle15 return
keywordstylekeywordstyle keywordstyle16 } }

Figure 5 Implementation of role F2 in protocol BFib.

Calling a nested protocol is implemented as regular Go function calls. rec constructs
are generated as labelled for loops, where the body of the recursion is used to generate
the body of the for loop, and recursive variables are translated as continue to the label of
the corresponding variable. It is also possible to represent recursion using protocol calls.
However, protocol calls would need to create the necessary channels and send them to any
participant in the protocol, thus being less efficient than using rec and for.

4.1 Linearity and CFSM Code Generation
Program logic is defined through callbacks, similar to [42, 62], to avoid the linearity problem
of previous Communicating Finite State Machine approaches (e.g. [3]). In a CFSM approach,
code generation from a local protocol produces a series of interfaces that encode the protocol
states. Each protocol state exposes only the permitted actions (e.g. send/receive), and
returns the next state in the protocol. Programmers must use such states to implement their
program logic. The linearity problem arises from the fact that nothing prevents programmers
from mistakenly using the same protocol state again. For example, suppose that st0, st1, . . . ,
are protocol states that expose different send/recv actions. A programmer might (mistakenly)
save state st1 and perform its action twice in the implementation. In the Go code snippet
below, st1 is used both in Line 2 and Line 4, violating linearity:
keywordstylekeywordstyle keywordstyle1 st1 := st0.send_Msg_to_p(x)
keywordstylekeywordstyle keywordstyle2 st2 := st1.recv_Lbl_from_p(&z)
keywordstylekeywordstyle keywordstyle3 ...
keywordstylekeywordstyle keywordstyle4 stn := st1.recv_Lbl_from_p(&buffer) /* linearity error at st1 */

If participant p does not send any other message, then this implementation will deadlock. If
p does send another message, this might cause a run-time error. A callback-based approach
solves this problem by construction, since channels are not exposed to programmers [42, 62].

4.2 Example of Generated Go Code
Consider the following GoScr global type:

keywordstylekeywordstyle keywordstyle1 global protocol BFib(role Res, role F1, role F2; new role F3) {
keywordstylekeywordstyle keywordstyle2 Fib1(v:int) from F1 to F3; Fib2(v:int) from F2 to F3;
keywordstylekeywordstyle keywordstyle3 choice at F3 {
keywordstylekeywordstyle keywordstyle4 F3 calls BFib(Res, F2, F3);
keywordstylekeywordstyle keywordstyle5 } or {
keywordstylekeywordstyle keywordstyle6 Result(fib:int) from F3 to Res; End() from F3 to F2; }}

ECOOP 2023

6:20 Dynamically Updatable Multiparty Session Protocols

This is a bounded version of Example 4, that computes the Fibonacci sequence up to an
upper bound. F1 and F2 send their respective n − 2 and n − 1 Fibonacci numbers to F3. Then,
F3 computes the n-th number, and makes a choice: compute the n + 1 number, or end the
protocol. If F3 decides to continue, then a recursive call to BFib happens. Otherwise, it sends
the result to Res, and notifies F2 that the protocol is ending. F3 needs to notify F2, because
depending on F3’s decision, F2 may needs to forward its n − 1 number.

Figure 5 shows the code for F2 in BFib. The parameters of BFib_F2 are: ctx is the local
state for F2; wg is used to ensure that the main thread does not resume execution until all
participants have finished executing; ch_A_B is the channel for communicating from B to A.
The first interaction of F2 is a message to F3. The payload for this message is generated
in Line 2, it is sent in Line 3. Then, F3 makes a choice: either it sends the result back to
Res and sends End to F2 to communicate the end of the protocol, or it calls BFib recursively.
F2 performs a type switch to check which branch it needs to take (Line 4). If the label it
receives is End (Line 6), then F2 processes this label and ends the protocol. Otherwise, F2

receives an invitation as F1 in BFib (Line 10); then F2 initialises a new context for F1 using
the callback on Line 11; it calls BFib_F1 with this new context, the waitgroup, and the received
channel (Line 12); F2 performs cleanup on the context for F1, gathering any necessary results
from the call (Line 13); and, finally F2 finishes.

Finally, GoScr generates the main protocol entrypoint, which creates the goroutines for
F1, F2 and F3, all the needed channels, and waits for the completion of the protocol.

Usability and GoScr Front-end. The tool requires the user to instantiate a large number
of callbacks and interfaces to allow running a protocol. Since the GoScr methodology is
top-down, the user must start by specifying a protocol. Therefore we expect an end-user to
be aware of the callbacks and contexts that need to be instantiated. However, many of such
instantiations are tedious, but straightforward, and can be automated in future work. We
discuss this improvement in Section 7.

Deadlock Freedom and Liveness. Since the generated code follows the behaviour of the
local types, it will satisfy both deadlock freedom and liveness (Theorems 23 and 29).
Although the generated code satisfies these properties, whether the final code that is run
also satisfies them depends on three requirements on the callbacks. These requirements are
not checked by GoScr, and must be guaranteed by GoScr users. The three requirements
that the callbacks must satisfy are: (1) callbacks must not have side-effects that interfere
with other participants (e.g. using channels to add communication that is not accounted
for in the protocol) (2) callbacks must be terminating, otherwise a participant may block
before a necessary interaction, in a non-terminating callback; and, (3) callbacks must ensure
that nested protocol calls that are not in tail position are terminating. Requirement (1) is
to guarantee that programmers do not use local synchronisation mechanisms that are not
accounted for in the protocol, and can cause blocking. Requirement (3) is to guarantee
that any interaction after a nested protocol call is eventually performed. GoScr checks that
local types are not blocked (Definition 26), so the code for nested calls that are not in tail
position will always contain a path that ends the protocol. However, whether the actual
code is terminating depends on the callback implementation that the users need to provide
satisfying Requirement (3). Provided that these requirements are met, and assuming a
fair scheduler, GoScr implementations will be deadlock free and live by construction. These
requirements are not unique to our implementation. Similar requirements must be satisfied
in other MPST code generation approaches.

D. Castro-Perez and N. Yoshida 6:21

Figure 6 Execution time comparison (tbase / tGoScr), CLBG and Quicksort.

5 Evaluation

We evaluate three aspects of GoScr: (1) the runtime overhead of the GoScr backend (§ 5.1);
(2) the increased expressiveness with respect to related approaches (§ 5.3); and (3) the
applicability of GoScr for building realistic protocols, by implementing dynamic task del-
egation, a Domain Name System, and a parallel Min-Max strategy. We show that for
computation-intensive protocols, the runtime overhead of GoScr is negligible.

5.1 Runtime Overhead of GoScr

We use an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz processor with 4 physical cores, 16GB
RAM, running Ubuntu 16.04.7 and Go version go1.15.11. We use Golang’s time package to
measure execution times. There are two main sources of run-time overheads: (1) callbacks;
and (2) type switches and assertions. Our approach is to compare GoScr implementations
against baseline Go code. Baselines are taken from benchmarking repositories, and follow
similar communication patterns to the GoScr implementations. The measured time includes
session initialisation. We execute each benchmark for a minimum of 20 iterations and a
minimum of 20 seconds. The standard deviation for computationally expensive benchmarks
is less than 5%. Only the standard deviation of fibonacci and prime sieve with small inputs
(< 10th term, bound < 2000) remain high, at 70%. This is because these benchmarks with
very short execution times (in the order of nanoseconds) are highly dependent on the system
(e.g. channel creation, goroutine scheduling, etc). Our benchmarks are mainly taken from
the Computer Language Benchmarks Game [17], and we include a parallel Quicksort that
showcases the handling unbalanced workloads. Figure 6 shows the execution time of the Go
baseline relative to GoScr: tbase / tGoScr (below y = 1 is a slowdown, above is a speedup).

ECOOP 2023

https://golang.org/pkg/time/

6:22 Dynamically Updatable Multiparty Session Protocols

keywordstylekeywordstyle keywordstyle1 global protocol DynTaskGen(role S;
keywordstylekeywordstyle keywordstyle2 new role W) {
keywordstylekeywordstyle keywordstyle3 choice at S {
keywordstylekeywordstyle keywordstyle4 Req(req: string) from S to W;
keywordstylekeywordstyle keywordstyle5 S calls DynTaskGen(S);
keywordstylekeywordstyle keywordstyle6 choice at W {
keywordstylekeywordstyle keywordstyle7 Resp(resp: string) from W to S;
keywordstylekeywordstyle keywordstyle8 } or {
keywordstylekeywordstyle keywordstyle9 Error(err: string) from W to S; }
keywordstylekeywordstyle keywordstyle10 } or {
keywordstylekeywordstyle keywordstyle11 LastReq(req: string) from S to W;
keywordstylekeywordstyle keywordstyle12 choice at W {
keywordstylekeywordstyle keywordstyle13 Resp(resp: string) from W to S;
keywordstylekeywordstyle keywordstyle14 } or {
keywordstylekeywordstyle keywordstyle15 Error(err: string) from W to S;
keywordstylekeywordstyle keywordstyle16 }}}

keywordstylekeywordstyle keywordstyle11 global protocol ClientServer(role C,
keywordstylekeywordstyle keywordstyle12 role S) {
keywordstylekeywordstyle keywordstyle13 rec REPEAT {
keywordstylekeywordstyle keywordstyle14 Req(req: string) from C to S;
keywordstylekeywordstyle keywordstyle15 S calls DynTaskGen(S);
keywordstylekeywordstyle keywordstyle16 choice at S {
keywordstylekeywordstyle keywordstyle17 Resp(resp: string) from S to C;
keywordstylekeywordstyle keywordstyle18 continue REPEAT;
keywordstylekeywordstyle keywordstyle19 } or {
keywordstylekeywordstyle keywordstyle20 Error(err: string) from S to C;
keywordstylekeywordstyle keywordstyle21 continue REPEAT;
keywordstylekeywordstyle keywordstyle22 }}}

Figure 7 GoScr protocol for Dynamic Task Generation.

Computer Language Benchmarks Game (CLBG). CLBG [17] is a repository of programs
used to compare the performance of different languages. We use four concurrent Go programs:
(1)fannkuch counts the maximum number of flips for a permutation of length n; (2)regex
matches regex patterns in a DNA string; (3)spect (spectral-norm) calculates the greatest
eigenvalue of a matrix; and (4)k-nuc (k-nucleotide) counts the occurrences of a molecule
sequence in a DNA string. We selected these benchmarks out of [17] because they parallelise
the work using goroutines and channels, following a similar scatter/gather approach that
depends on runtime values, and they could not be accurately captured by previous MPST
approaches. We use the CLBG implementations [17] as the Go baseline implementations,
and we extracted the communication structure of the baseline implementations as GoScr
protocols. A single execution for each of these protocols takes between 1 millisecond–10
seconds depending on the input size. Smaller input sizes imply smaller local computation
times, and therefore, the overhead introduced by GoScr will be more significant. We can
observe a slowdown of up to 50%, in fannkuch, for executions in the order of magnitude
of milliseconds. However, as the workload increases, the difference in the execution time
shrinks to the point of becoming negligible, as we can observe in Figure 6. The regex
baseline has a high standard deviation, which explains the small peak for the first result
of regex, since when the execution time is in the order of hundreds of microseconds, the
non-deterministic scheduling of the goroutines can significantly affect the results. spect
seems to show that for large enough values, the GoScr implementation performs better than
its naively implemented counterpart. However, the real difference in the execution time is
negligible, and it is explained by differences in the program structure, e.g. the baseline uses
a single shared channel, whereas GoScr generates different channels for every new goroutine.

Microbenchmarks. Bounded fibonacci (fibonacci) shows, as expected, that the overhead
of performing type switches and callbacks is relatively high when compared with a simple
addition. The baseline runs in in 40% of the execution time of GoScr. Bounded prime sieve
(prime) shows that, when the computation complexity increases slightly (modulus operation
on a stream of values), then the GoScr version performs in about 80% the execution time of
the baseline. In both cases, when we add more participants and interactions to the protocol
(larger values on the x-axis) the overhead remains constant, and does not increase.

D. Castro-Perez and N. Yoshida 6:23

Unbalanced Workload. In Parallel QuickSort (qsort), workers either partition the array
and spawn two new workers, or apply a sequential Quicksort, depending on a threshold size
(T). The execution times are similar to the CLBG benchmarks (50 microseconds–2 seconds).
We observe a negligible difference in the execution time for different threshold sizes, and a
spike for small arrays due to the high standard deviation for array sizes under the threshold.
GoScr execution times are in the range of 1.05 and 0.95 times the baseline.

5.2 Use Cases
We demonstrate the expressiveness of GoScr using three applications, all of which require
dynamic participants, and could not be expressed by previous work [3, 37].
(a) Dynamic Task Generation: We present a correct implementation of the program in

Figure 1 using GoScr. It is a master-worker pattern with dynamic participants.
(b) Domain Name System (DNS) protocol: We demonstrate how GoScr can be used to

specify one of the core Internet protocols, modelling as dynamic participants the different
DNS servers which may need to be contacted in order to resolve a host’s IP address.

(c) Noughts and Crosses with Min-Max [49]: We implement a Min-Max strategy for
the well-known two-player game of Noughts and Crosses to demonstrate the suitability
of DMst to model a parallel Divide and Conquer paradigm.

Dynamic Task Generation. The aim of this program is to generate the first n square
numbers by delegating the calculation of each square number to a different worker goroutine.
The program uses a common computation in Go, the master-worker pattern, where goroutines
dynamically divide and delegate part of their tasks to other goroutines, aggregating their
partial results to produce the complete result. We highlighted in § 1 (Figure 1) how even in
such a simple example, incorrect management of channels can lead to orphan messages and
deadlocks. Figure 7 shows a GoScr protocol specification whose behaviour is a safe version
of the program in Figure 1. Notice how the behaviour of the select statement in Figure 1
is represented as a choice. In Figure 7, the ClientServer protocol models the behaviour of
the main loop of the program, where two roles, a client and a server, repeatedly exchange
requests (Line 14) and responses (Line 17). The server may also communicate an error in the
computation of the request to the client (Line 20). We model the master-worker pattern as
a call to protocol DynTaskGen (Line 15). Every call to the protocol introduces a new worker
(W), and the master (S) will delegate a task to each new worker (Lines 4,11). If there are
are more tasks to assign, it will assign those tasks to new workers through recursive calls to
DynTaskGen (Line 5). Once it has assigned the final task (Line 11), it will traverse the protocol
stack, aggregating the results from the different workers in reverse order (Lines 7,13). While
computing their subtask, the workers may encounter an error which they will communicate
back to the server (Lines 9, 15). As opposed to the original program in Figure 1, the server
will continue aggregating all the results from the workers even after encountering an error in
order to ensure that there are no orphan messages.

5.3 Expressiveness
We compare the expressiveness of GoScr against the parameterised Scribble [3] and the
static analysis framework of Go [37]. For a reference purpose, we also list comparisons with
theory-only work in [7, 9] (i.e., they are not implemented). See § 6 for more detailed
comparison with [7, 9]. In Table 1, we present the protocols that we implemented and
whether or how closely other approaches [37, 3] can represent them. All our DMst-based
implementations introduce dynamic, possibly unbounded participants. All representable

ECOOP 2023

6:24 Dynamically Updatable Multiparty Session Protocols

Table 1 Comparison of Expressiveness.

Protocol Dyn Unb Inv DMst [3] [37] [7] [9]
1. Dynamic Ring ✓ ✗ ✗ ✓ ✗
2. Dynamic Pipeline ✓ ✗ ✗ ✓ ✗
3. Dynamic Recursive Pipeline ✓ ✗ ✗ ✗ ✗
4. Dynamic Recursive Tree ✓ ✗ ✗ ✗ ✗
5. Dynamic Recursive Task Gen. ✓ ✗ ✗ ✗ ✗
6. Dynamic Fork-Join ✓ ✗ ✗ ✓ ✗
7. Recursive Fork-Join ✓ ✗ ✗ ✓ ✗
8. Bounded Fibonacci [3] # # ✓ △ △ ✓ ✗
9. Unbounded Fibonacci ✓ ✗ ✗ ✓ ✗

10. Fannkuch-Redux [17] # # ✓ △ △ ✓ ✓
11. Spectral-Norm [17] # ✓ △ △ ✓ ✓
12. Regex-Redux [17] # ✓ ✓ ✓ ✓ ✓
13. K-Nucleotide [17] # ✓ ✓ ✓ ✓ ✓
14. Bounded Prime Sieve ✓ ✗ ✗ ✓ ✗
15. Dynamic Task Generation ✓ ✗ ✗ ✓ ✗
16. Domain Name System [28] ✓ ✗ ✗ ✓ ✗
17. Noughts and Crosses [42, 49] ✓ ✗ ✗ ✓ ✗

Dyn: Dynamic participants; Unb: Unbounded participants; Inv: Choice through invitations

protocols (✓) by DMst in Table 1 are deadlock-free and live. For protocols which can be
modified and re-implemented with [37] or [3], we use #. Protocol 3 cannot be captured by
any of the previous work, since it requires the dynamic introduction of participants to a
recursive protocol. [3, 37] could only precisely model Protocols 12 and 13, as they create
all the participants at the start. In Protocols 8, 10 and 11, the goroutines are spawned
and assigned tasks dynamically, but [3, 37] can model them by initialising all goroutines
at the start. We write △ to represent such changes to protocol structure. Three use cases
(Protocols 13–15) discussed in § 5.2, could not be expressed by [3, 37]. In summary, DMst is
more expressive than [3, 37], and capture more closely the typical Go programming style.

6 Related Work

There are a vast amount of studies of session types [27, 15, 1]. Due to the space limitations,
we only compare with the most closely related work on multiparty session types (MPST).

Binary Session Types. While Scalas et al. [50] prove that the MPST processes can be
mimicked by linearly typed processes with a continuation-passing style translation, in general,
it is not possible to guarantee deadlock-freedom for more than two interleaved binary session
processes unless one uses additional sophisticated means such as a global causal analysis on
channels (e.g. [12, 4, 5]), graph-connectivity analysis with extensions on fork primitives [29],
and event-driven constructs [57, 24, 34]. GV, a linear functional language with binary session
types, can guarantee deadlock freedom by relying on linear typing [58]. However, linear typing
prevents cyclic topologies that change dynamically, since this would require a participant
to drop their communication channels when new participants join, as in Example 7. There
are further substantial differences with our approach. First, GV is an end-point calculus,
whereas DMst’s global types are global specifications, from which we can extract endpoint Go
code (GoScr). Secondly, while both GV and DMst support similar programming patterns (e.g.
pipeline and tree-like topologies, and channel passing), there are two major differences. Both
GV and GoScr support sending effectful functions over channels (e.g. using chan func() type in
Go, and passing a generated protocol implementation), GV’s type system would guarantee
deadlock-freedom, but in Go, it would depend on how the function is used (requirements 1-3
in Section 4).

D. Castro-Perez and N. Yoshida 6:25

Code Generation and Multiparty Session Types. We follow the standard MPST top-
down specification-guided methodology to guarantee safety and liveness properties
by construction using code generation, extending an extensible toolchain, nuScr [48].
Safety by construction via code generation is a common approach in MPST. Scribble is a
language/tool [51, 48] used for generating APIs for safely implementing distributed systems
written in the end-point programming language that are guaranteed to conform to a protocol,
and are therefore deadlock-free [25]. This approach has been applied to several languages,
e.g. Scala [50, 57], Java [33], F# [43], Go [3], TypeScript [42], F⋆ [62] and Rust [35, 6]. A
later extension of [25] proposed explicit connection actions as part of the Scribble protocol
[26], which is also recently applied to domain-specific language in [19]. This construction
specifies the point in the protocol where the different participants join, but the role of these
participants must be statically known. Hence it does not allow the unbounded participants
to change the protocol topology, as DMst does. Parameterised multiparty session types
extend MPST with a parametric number of participants [11]. One example is the work by
Castro-Perez et al. [3], discussed it in § 1. Pabble [46, 45] is another parameterised extension
of Scribble used for generating safe by construction C+MPI code. Zhou et al. [62] formalised
and implemented an extension of MPST with refinement types, which can specify constraints
in the messages. Their backend targets F⋆, and follows a similar callback approach to the one
in this paper. Miu et al. [42] define an extension of MPST for web programming in TypeScript
that uses the callback approach. Unlike DMst, the participants in all these approaches are
fixed from the start of the protocol. Viering et al. [57] present a theory and implementation
of MPST aimed at programming correct fault-tolerant distributed systems that supports
the dynamic replacement of participants in a protocol. In their work, the replacement of
participants must happen within some known roles, and their global types do not allow to
extend the current protocol interactions with those of new participants. Viering et al. [57]
use event handlers in their code generation, which allows safe session interleaving. Instead,
we use an operator to combine global types in a way that does not introduce deadlocks.
All previous work, unlike DMst, does not support dynamically growing protocols with an
unbounded number of participants such as Example 6. Jacobs et al. [30] extend GV, a binary
session typed calculus with multiparty session types. The calculus allows the introduction of
new participants, but the protocols themselves are restricted to a fixed set of participants.
Their use of linearity prevents the definition of recursive dynamic topologies, unlike DMst.

Dynamic Multiparty Session Types. Dynamic multirole session types (MRST) enable a
set of participants which belong to the same group (i.e. role) to join a multiparty session
type [9]. The major limitations are: (a) all the roles are fixed at the start (b) participants
can only join at specific points in the protocol: (1) at the beginning of each iteration of a
recursive protocol; or (2) at particular points marked with explicit barriers and locks. We
list a number of protocols that cannot be represented using MRST in Table 1. In contrast,
DMst allows any arbitrary role to join at any nested session call. A nested session call is
a form of delegation, which is not supported by MRST. Therefore, a protocol such as a
dynamically growing pipeline (e.g. Fibonacci in Example 4) cannot be represented by [9]
either, since it would require participants to evolve their behaviour through channel passing.
Nested multiparty session types [7] allow multiparty protocols with unbounded, dynamic
participants. However, [7] cannot represent recursive protocols that are updated with new
dynamic participants. Hence the main example of this paper, Example 6, is not representable
in [7]. Moreover, nested multiparty session types cannot prove liveness (our Theorem 29),
except for non-recursive protocols. Arbitrary session interleaving in [7] can introduce orphan

ECOOP 2023

6:26 Dynamically Updatable Multiparty Session Protocols

messages. DMst has proven deadlock-freedom and liveness clearly identifying the conditions
(Definition 26). This limitation is stated in [7, Proposition 3], i.e. a protocol that violates
liveness will be accepted in [7], but not in DMst. Additionally, the theory of DMst has a
number of differences that make it better suited for implementing than nested MPST: (a)
DMst’s choices are more flexible than those in nested MPST, since DMst can also depend on
protocol calls; (b) the semantics of nested MPST is synchronous, while DMst is asynchronous;
(c) nested MPST does not prove trace equivalence between global types and local type
configurations; (d) The syntax of DMst’s global types are simpler than those in nested MPST,
but more expressive – this is because in nested MPST, protocol definitions are part of the
global type syntax, which requires the use of a kinding relation for checking well-formedness.
Nested MPST protocols do not allow the occurrence of free roles, and are therefore equivalent
to DMst’s global types with just top-level protocol definitions, which avoids the kinding
relation for checking well-formedness. Due to our simpler but more expressive treatment,
DMst is more suitable for real language implementations.

Verification of Go Programs. Our work aims at providing correctness by construction. The
comparison with the previous code generation approach in Go [3] can be found in (C) in § 1
and Expressiveness in § 5.3. All of the previous work is limited to bounded participants.
The following are several recent lines of work on a posteriori verification of message passing
in existing Go programs. All of them use whole-program techniques, and support only the
built-in Go channel primitives (i.e., intra-process messaging); none of them, however, support
a dynamic, unbounded number of participants. Gobra is an automated tool for the modular
verification of Go programs, based on separation logic [59]. Gobra is aimed at the functional
verification of Go programs, whereas our approach focuses on communication safety. GoScr
is fully automated, and aimed at building live and deadlock-free communicating systems by
construction. In contrast, Gobra is aimed at the verification of annotated Go code, and it
requires a high amount of invariant annotations.

Ng and Yoshida [47] extract graph-based protocol specifications [38] from Go programs
that are checked for deadlock-freedom; Stadtmüller et al. [53] extract regex-based protocol
specifications [55], checked for deadlock-freedom. Both approaches work only for programs
restricted to synchronous Go channels; the former also requires all goroutines to be spawned
before any communication among them occurs, and the latter has limited support for branch-
ing behaviours. Lange et al. [36, 37] (already compared in (B) in § 1 and Expressiveness
in § 5.3) statically infer channel communication patterns from Go programs as behavioural
types, that are checked for liveness properties. This was recently extended to analyse shared
memory concurrency [14]. Like previous work, their tool is also limited to verify finite
controlled programs, it is best-effort only due to the imprecision of the inference, and the
verification times (and timeouts) preclude practical checking on the fly during programming.
Liu et al. [39] present a tool that detects blocking misuse-of-channel bugs in Go and produces
bug fixes for Go programs. Unlike DMst, Liu et al. [39] focuses only on practice, and does
not formalise nor guarantee communication safety, deadlock-freedom nor liveness. Moreover
their tool produces both false positive and false negative errors.

7 Conclusion and Future Work

GoScr is the first implementation of multiparty session types with dynamic, unbounded
participants, from which we generate Go code with unbounded participants that is, by
construction, deadlock-free and live. GoScr focuses on correctness (Theorems 20, 23 and

D. Castro-Perez and N. Yoshida 6:27

29), and it is strictly more expressive than previous Go verification frameworks (see § 1,
Table 1, § 6). Furthermore, we observe that whenever the computation time is large with
respect to the communication time, the performance overhead becomes negligible. GoScr
is therefore suitable for implementing systems where correctness is prioritised, or systems
where the computation times dominate over communication. Currently, DMst does not allow
a participant to communicate with an unbounded number of participants during protocol
execution. This is a limitation of the Go code generation, which we plan to address in future
work. We are also considering extending our back-end to use event-handlers in the style
of Viering et al. [57], and allow the arbitrary parallel composition of global types instead
of our combination operator. We are also planning to extend the back-end to disparate
transports (e.g. using TCP instead of Go channels), thus allowing the implementation of
distributed systems. The main challenge of this is integrating delegation, as it is required
by protocol invitations, in these disparate transports. Finally, to simplify usability, we plan
to extend the protocol specification with annotations to guide code generation, so we can
automatically generate trivial callback/context instantiation. We plan to draw inspiration
for such annotations from choreographies, e.g [31].

References
1 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-

Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas
Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral types in program-
ming languages. Foundations and Trends in Programming Languages, 3(2-3):95–230, 2016.
doi:10.1561/2500000031.

2 Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-
Ciancaglini, and Nobuko Yoshida. Global progress in dynamically interleaved multiparty
sessions. In CONCUR 2008 - Concurrency Theory, pages 418–433. Springer, 2008.

3 David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida.
Distributed programming using role-parametric session types in go. In POPL’19. ACM, 2019.
doi:10.1145/3290342.

4 Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. Inference
of Global Progress Properties for Dynamically Interleaved Multiparty Sessions. In 15th
International Conference on Coordination Models and Languages, volume 7890 of LNCS, pages
45–59. Springer, 2013.

5 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global
Progress for Dynamically Interleaved Multiparty Sessions. MSCS, 26:238–302, 2015.

6 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-Free Asynchronous Message
Reordering in Rust with Multiparty Session Types. In 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, volume abs/2112.12693. ACM, 2022.

7 Romain Demangeon and Kohei Honda. Nested protocols in session types. In CONCUR 2012 –
Concurrency Theory, pages 272–286. Springer, 2012.

8 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty session
types and python. Formal Methods in System Design, 46(3):197–225, 2015. doi:10.1007/
s10703-014-0218-8.

9 Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In POPL’11,
pages 435–446. ACM, 2011.

10 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating
automata: Characterisation and synthesis of global session types. In ICALP 2013, volume
7966 of LNCS, pages 174–186. Springer, 2013. doi:10.1007/978-3-642-39212-2_18.

ECOOP 2023

https://doi.org/10.1561/2500000031
https://doi.org/10.1145/3290342
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/978-3-642-39212-2_18

6:28 Dynamically Updatable Multiparty Session Protocols

11 Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. Logical Methods in Computer Science, 8(4), 2012. doi:10.2168/
LMCS-8(4:6)2012.

12 Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Nobuko Yoshida. On progress for
structured communications. In TGC 2007, volume 4912 of LNCS, pages 257–275. Springer,
2007. doi:10.1007/978-3-540-78663-4_18.

13 Docker: Empowering app development for developers. https://www.docker.com/, November
2020.

14 Julia Gabet and Nobuko Yoshida. Static Race Detection and Mutex Safety and Liveness for
Go Programs. In ECOOP’20, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

15 Simon Gay and Antonio Ravara, editors. Behavioural Types: from Theory to Tools. River
Publishers series in automation, control and robotics. River Publishers, June 2017.

16 Githut 2.0: A small place to discover languages in github. https://madnight.github.io/
githut/#/pull_requests/2020/3, 2020.

17 Issac Gouy. Computer language benchmark game. http://benchmarksgame.alioth.debian.
org, 2017.

18 gRPC - a high-performance, open source universal rpc framework. https://grpc.io/, Novem-
ber 2020.

19 Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty Session Types
for Safe Runtime Adaptation in an Actor Language. In ECOOP 2021, volume 194 of LIPIcs,
pages 10:1–10:30. Schloss Dagstuhl, 2021. doi:10.4230/LIPIcs.ECOOP.2021.10.

20 C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., 1985.
21 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.

In Proc. of 35th Symp. on Princ. of Prog. Lang., POPL ’08, pages 273–284. ACM, 2008.
doi:10.1145/1328438.1328472.

22 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

23 Raymond Hu. Distributed programming using Java APIs generated from Session Types.
Behavioural Types: from Theory to Tools, pages 287–308, 2017.

24 Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda. Type-
Safe Eventful Sessions in Java. In ECOOP 2010, volume 6183 of LNCS, pages 329–353.
Springer, 2010.

25 Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API
generation. In FASE 2016, volume 9633 of LNCS, pages 401–418. Springer, 2016. doi:
10.1007/978-3-662-49665-7_24.

26 Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session
types. In FASE 2017, volume 10202 of LNCS, pages 116–133. Springer, 2017. doi:
10.1007/978-3-662-54494-5_7.

27 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1–3:36, 2016. doi:10.1145/2873052.

28 Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. Multiparty session pro-
gramming with global protocol combinators. In ECOOP 2020, volume 166 of LIPIcs, pages
9:1–9:30. Schloss Dagstuhl, 2020. doi:10.4230/LIPIcs.ECOOP.2020.9.

29 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. Connectivity graphs: a method for
proving deadlock freedom based on separation logic. Proc. ACM Program. Lang., 6(POPL):1–
33, 2022. doi:10.1145/3498662.

30 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. Multiparty GV: Functional Multiparty
Session Types with Certified Deadlock Freedom. Proc. ACM Program. Lang., 6(ICFP), August
2022. doi:10.1145/3547638.

https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.1007/978-3-540-78663-4_18
https://www.docker.com/
https://madnight.github.io/githut/#/pull_requests/2020/3
https://madnight.github.io/githut/#/pull_requests/2020/3
http://benchmarksgame.alioth.debian.org
http://benchmarksgame.alioth.debian.org
https://grpc.io/
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1145/2873052
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.1145/3498662
https://doi.org/10.1145/3547638

D. Castro-Perez and N. Yoshida 6:29

31 Sung-Shik Jongmans and Petra van den Bos. A Predicate Transformer for Choreographies -
Computing Preconditions in Choreographic Programming. In ESOP 2022, volume 13240 of
LNCS, pages 520–547. Springer, 2022. doi:10.1007/978-3-030-99336-8_19.

32 Kubernetes: Production-grade container orchestration. https://kubernetes.io/, June 2017.
33 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols

with Mungo and StMungo. In PPDP, pages 146–159, 2016. doi:10.1145/2967973.2968595.
34 Dimitrios Kouzapas, Nobuko Yoshida, Raymond Hu, and Kohei Honda. On Asynchronous

Eventful Session Semantics. MSCS, 29:1–62, 2015.
35 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Implementing Multiparty

Session Types in Rust. In Coordination Models and Languages, volume 12134, pages 127–136.
Springer, 2020. doi:10.1007/978-3-030-50029-08.

36 Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. Fencing off Go: Liveness
and safety for channel-based programming. In Giuseppe Castagna and Andrew D. Gordon,
editors, POPL 2017, pages 748–761. ACM, 2017.

37 Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. A Static Verification
Framework for Message Passing in Go using Behavioural Types. In 40th International
Conference on Software Engineering, pages 1137–1148. ACM, 2018.

38 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical
choreographies. In POPL 2015, pages 221–232. ACM, 2015. doi:10.1145/2676726.2676964.

39 Ziheng Liu, Shuofei Zhu, Boqin Qin, Hao Chen, and Linhai Song. Automatically detecting
and fixing concurrency bugs in Go software systems. In ASPLOS ’21, April 2021.

40 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, i. Informa-
tion and Computation, 100(1):1–40, 1992. doi:10.1016/0890-5401(92)90008-4.

41 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, ii. Inform-
ation and Computation, 100(1):41–77, 1992. doi:10.1016/0890-5401(92)90009-5.

42 Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. Communication-safe web
programming in TypeScript with Routed Multiparty Session Types. In CC 2021, 2021.

43 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: Compile-time API generation of distributed protocols with refinements in F#. In
CC 2018, pages 128–138. ACM, 2018. doi:10.1145/3178372.3179495.

44 Rumyana Neykova and Nobuko Yoshida. Featherweight Scribble. Models, Languages, and
Tools for Concurrent and Distributed Programming, 11665:236–259, 2019. doi:10.1007/
978-3-030-21485-214.

45 Nicholas Ng, José Gabriel de Figueiredo Coutinho, and Nobuko Yoshida. Protocols by default
- safe MPI code generation based on session types. In CC 2015, volume 9031 of LNCS, pages
212–232. Springer, 2015. doi:10.1007/978-3-662-46663-6_11.

46 Nicholas Ng and Nobuko Yoshida. Pabble: parameterised scribble. Service Oriented Computing
and Applications, 9(3-4):269–284, 2015. doi:10.1007/s11761-014-0172-8.

47 Nicholas Ng and Nobuko Yoshida. Static deadlock detection for concurrent Go by global session
graph synthesis. In CC 2016, pages 174–184. ACM, 2016. doi:10.1145/2892208.2892232.

48 The nuScr authors. nuscr homepage. https://nuscr.github.io/nuscr/, 2019.
49 Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall

series in artificial intelligence. Pearson Education, 2016.
50 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition of

multiparty sessions for safe distributed programming. In ECOOP 2017, volume 74 of LIPIcs,
pages 24:1–24:31. Schloss Dagstuhl, 2017. doi:10.4230/LIPIcs.ECOOP.2017.24.

51 Scribble Authors. Scribble: Describing multiparty protocols. http://www.scribble.org/,
2015. Accessed in Nov. 2020.

52 Stack overflow developer survey 2020. https://insights.stackoverflow.com/survey/2020,
2020.

ECOOP 2023

https://doi.org/10.1007/978-3-030-99336-8_19
https://kubernetes.io/
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1007/978-3-030-50029-08
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1007/978-3-030-21485-2 14
https://doi.org/10.1007/978-3-030-21485-2 14
https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1007/s11761-014-0172-8
https://doi.org/10.1145/2892208.2892232
https://nuscr.github.io/nuscr/
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
http://www.scribble.org/
https://insights.stackoverflow.com/survey/2020

6:30 Dynamically Updatable Multiparty Session Protocols

53 Kai Stadtmüller, Martin Sulzmann, and Peter Thiemann. Static trace-based deadlock analysis
for synchronous mini-go. In APLAS 2016, volume 10017 of LNCS, pages 116–136, 2016.
doi:10.1007/978-3-319-47958-3_7.

54 I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaashoek, F. Dabek, and H. Balakrish-
nan. Chord: a Scalable Peer-to-peer Lookup Protocol for Internet Applications. IEEE/ACM
Transactions on Networking, 11(1):17–32, 2003. doi:10.1109/TNET.2002.808407.

55 Martin Sulzmann and Peter Thiemann. Forkable regular expressions. In LATA 2016, volume
9618 of LNCS, pages 194–206. Springer, 2016. doi:10.1007/978-3-319-30000-9_15.

56 Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. Understanding real-world concurrency
bugs in go. In ASPLOS 2019, pages 865–878. ACM, 2019. doi:10.1145/3297858.3304069.

57 Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. A multiparty session typing
discipline for fault-tolerant event-driven distributed programming. PACMPL, 5(OOPSLA):1–
30, 2021. doi:10.1145/3485501.

58 Philip Wadler. Propositions as Sessions. In ICFP’12, pages 273–286. ACM, 2012.
59 Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, João C. Pereira, and Peter

Müller. Gobra: Modular specification and verification of Go programs. In CAV, pages 367–379.
Springer, 2021.

60 Nobuko Yoshida and Lorenzo Gheri. A very gentle introduction to Multiparty Session Types.
In 16th International Conference on Distributed Computing and Internet Technology, volume
11969 of LNCS, pages 73–93. Springer, 2020.

61 T. Yuan, G. Li, J. Lu, C. Liu, L. Li, and J. Xue. GoBench: A benchmark suite of real-world
Go concurrency bugs. In CGO 2021. ACM/IEEE, 2021.

62 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Statically Verified Refinements for Multiparty Protocols. PACMPL, 4(OOPSLA), 2020.

https://doi.org/10.1007/978-3-319-47958-3_7
https://doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1007/978-3-319-30000-9_15
https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1145/3485501

Modular Compilation for Higher-Order Functional
Choreographies
Luís Cruz-Filipe #

Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Eva Graversen #

Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Lovro Lugović #

Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Fabrizio Montesi #

Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Marco Peressotti #

Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

Abstract
Choreographic programming is a paradigm for concurrent and distributed software, whereby descrip-
tions of the intended communications (choreographies) are automatically compiled into distributed
code with strong safety and liveness properties (e.g., deadlock-freedom).

Recent efforts tried to combine the theories of choreographic programming and higher-order
functional programming, in order to integrate the benefits of the former with the modularity of the
latter. However, they do not offer a satisfactory theory of compilation compared to the literature,
because of important syntactic and semantic shortcomings: compilation is not modular (editing a
part might require recompiling everything) and the generated code can perform unexpected global
synchronisations.

In this paper, we find that these shortcomings are not mere coincidences. Rather, they stem
from genuine new challenges posed by the integration of choreographies and functions: knowing
which participants are involved in a choreography becomes nontrivial, and divergence in applications
requires rethinking how to prove the semantic correctness of compilation.

We present a novel theory of compilation for functional choreographies that overcomes these
challenges, based on types and a careful design of the semantics of choreographies and distributed
code. The result: a modular notion of compilation, which produces code that is deadlock-free and
correct (it operationally corresponds to its source choreography).

2012 ACM Subject Classification Theory of computation Ñ Lambda calculus; Theory of computation
Ñ Distributed computing models; Computing methodologies Ñ Distributed programming languages

Keywords and phrases Choreographies, Concurrency, λ-calculus, Type Systems

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.7

Related Version Full Version: https://arxiv.org/abs/2111.03701

Funding This work was partially supported by Villum Fonden, grants no. 29518 and 50079, and the
Independent Research Fund Denmark, grant no. 0135-00219.

© Luís Cruz-Filipe, Eva Graversen, Lovro Lugović, Fabrizio Montesi, and Marco Peressotti;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 7; pp. 7:1–7:37

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lcfilipe@gmail.com
https://orcid.org/0000-0002-7866-7484
mailto:efgraversen@imada.sdu.dk
https://orcid.org/0000-0002-9430-4907
mailto:lugovic@imada.sdu.dk
https://orcid.org/0000-0001-9684-9567
mailto:fmontesi@imada.sdu.dk
https://orcid.org/0000-0003-4666-901X
mailto:peressotti@imada.sdu.dk
https://orcid.org/0000-0002-0243-0480
https://doi.org/10.4230/LIPIcs.ECOOP.2023.7
https://arxiv.org/abs/2111.03701
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Modular Compilation for Higher-Order Functional Choreographies

A -> B : x;
A -> C : y;
C computes z;
C -> B : z;
. . .

Choreography with n participants

Projection

send x to B;
send y to C;
. . .

Code for participant A

. . . projected behaviour

Code for participant n

Figure 1 Choreographic programming: the communication and computation behaviour of a
system is defined in a choreography, which is then projected (compiled) to deadlock-free distributed
code (adapted from [17]).

1 Introduction

Functional and choreographic programming

Higher-order functional programming is a popular paradigm, which allows programmers
to write modular code with strong guarantees through types. However, when dealing with
concurrent and distributed programs, functional programming still requires developers to
manually write a separate program for each participant, using send and receive actions to
communicate data. This makes it easy to write programs that deadlock, or perform in other
unexpected ways [22].

Choreographic programming (Figure 1) is a simple and powerful method to produce
distributed code that does what it is supposed to do [23, 21, 18]. In this paradigm, programs
are choreographies: structured compositions of the intended communications and computa-
tions that participants should perform, given from a joint perspective. A communication
is expressed in some variation of the communication term from security protocol notation,
Alice -> Bob : M , which reads “Alice communicates the message M to Bob” [26]. Given a cho-
reography, a compiler produces executable distributed code. In the theory of choreographies,
this compilation is called Endpoint Projection (EPP) [1]. A correct EPP has the powerful
consequence of guaranteeing deadlock-freedom “for free”: it is syntactically impossible to
specify mismatched communication actions in choreographies, so the resulting distributed
code cannot get stuck (deadlock-freedom by design) [2].

Recently, there have been two attempts at developing theories that combine the paradigms
of choreographic and functional programming, in the hope of reaping the benefits of both [18,
6]. Finding an adequate notion of EPP in this setting has been an issue. In [6] the λ-
calculus is extended with choreographic primitives for communications, yielding a simple
yet expressive model called Chorλ, but no EPP is presented. In [18] an EPP is given for a
choreographic language that extends a standard imperative choreographic language with
primitives for abstraction and application (for higher-order composition). However, this theory
comes at two important costs when compared to the expected properties of choreographic
programming [24]. First, EPP is not modular: changing a part of a choreography that involves
only some participants can change also the code projected for other participants. This means

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:3

that updating a choreography requires reprojecting and redeploying the entire system, which
is not necessary in previous work. Second, participants perform more synchronisations than
those written in the choreography. This breaks the design principle that all communications
are made syntactically manifest in choreographies.

These issues are not consequences of careless work. Rather, we find that they are both
caused by a novel challenge that arises precisely from the combination of functional and
choreographic programming – explained in the next paragraph. The aim of this work is to
develop a new theory that overcomes this challenge.

The problem

When projecting a choreography to a participant, say Alice, the parts of the choreography
not involving Alice should be ignored [1, 24]. Doing this is simple with traditional imperative
choreographies, which are essentially sequences of commands (c1; c2; . . .). For each command:
if the participant that we are projecting for is involved, we return some (appropriate) code;
otherwise, we just skip the command and go to the next. For example, given the choreography
Carol -> Bob : M ; Alice -> Bob : M 1, a standard EPP would produce for Alice only the code
to execute the second command (a send action towards Bob).

In a higher-order functional setting, checking if a participant is “involved” in a cho-
reographic term is not an easy syntactic check anymore. Consider a choreography C that
takes another choreography x as parameter, runs it, and communicates the result from
Alice to Bob. Since x can be an arbitrary choreography, the participants involved in C are
known only after x is instantiated. This is the technical issue that makes defining EPP for
functional choreographies nontrivial. In [18], the proposed solution sacrifices modularity:
every function application is projected to all participants, who then have to perform a global
system synchronisation for every function call.

This work

We define a notion of EPP for Chorλ, capitalising on the design of its type system and
semantics.

We start our development by focusing on the finite fragment Chorλ, i.e., without recursion.
First, we introduce a target language for representing distributed code: a distributed λ-
calculus, which consists of well-known terms extended with primitives for sending and
receiving messages. Then, we use this language to define a modular EPP for (finite) Chorλ.
The key insight for achieving modularity is the inclusion of a no-op term in the target
language, which is the projection of any choreographic term in which a participant is not
involved. In this way, if some choreographic subterm does not involve a participant p, it is
projected as no-op. And if this term is later edited without involving p, then the projection
for p remains no-op and does not need to be recompiled. This is explained in detail in
Example 6.

The rule for generating no-ops benefits from the careful design of the rule for typing
abstractions in Chorλ. This is not an accident: in [6] this particular rule was claimed
to be designed with the future development of a suitable EPP in mind, but this was not
substantiated. In this paper we show that our EPP satisfies the expected operational
correspondence between choreographies and their projections (Theorems 25 and 26). As a
consequence, projections of choreographies cannot deadlock.

Furthermore, we define a type system for the target language based on standard techniques,
and show that well-typed choreographies are projected onto well-typed target terms whose
types are projections of the source choreographic types (Proposition 10). This result is

ECOOP 2023

7:4 Modular Compilation for Higher-Order Functional Choreographies

relevant for applicability: knowing the type of projected functions lets programmers compose
them in larger projects through APIs under the control of the programmer, as is commonly
done with projected code [15, 17].

A unique feature of Chorλ is that conditionals can use whole choreographies as conditions,
and in particular ones that return distributed data structures – data structures that compose
data residing at different participants. For the first time, our EPP leverages this feature
to offer a new method for capturing knowledge of choice – distributed agreement regarding
choices between alternative choreographic behaviours [4]. Specifically, we can statically
guarantee that two (or more) participants will agree on the instantiation of a sum type
(representing alternative choices) solely by performing independent local checks. When this is
used in a conditional, it means that all participants are guaranteed to make the same choice
at runtime. This gives a simpler alternative to existing verification methods for distributed
choices [21]. We call types used in this way distributed choice types.

Lastly, we extend our development to the full language of Chorλ, including recursion.
Recursion allows for divergent behaviour, which gives an interesting problem: a divergent term
does not necessarily involve all participants, so generalising the operational correspondence
between choreographies and their projections requires allowing choreographies to perform
actions involving participants that are not blocked by divergent computations. The semantics
of Chorλ include rules for performing reductions out of order, which again were designed
with the future development of EPP in mind. We show that these rules are adequate to
generalise our results.

Contribution

We define the first notion of EPP for a functional choreographic programming language that
is modular and does not add extra communications. This necessitates using not only the
information contained in the syntactic structure of a choreography, but also the one contained
in the typing derivation that accompanies it. These sources of information give a number of
cases for projection that need to be designed carefully, in order to distinguish correctly when
a process is potentially involved in the realisation of part of a choreography. We show that
EPP satisfies the usual operational correspondence property between choreographies and
their projections. Our development also proves two unsubstantiated claims from [6]: that
the typing system of Chorλ is expressive enough to support a modular notion of EPP, and
that the semantics of Chorλ capture how distributed participants behave in the presence
of divergence. Furthermore, we check the practical applicability of our theory by using
it to project the model of the Extensible Authentication Protocol (EAP) [28] given in [6],
a nontrivial choreography that makes use of higher-order composition, distributed data
structures, and distributed choice types.

We anticipate that our developments on the theory of higher-order choreographies will
allow higher-order functions to be added to implementations of existing choreographic and
similar languages. We discuss this in Section 7.

Structure

We provide a review of the main features of recursion-free Chorλ in Section 2. In Section 3 we
describe the local endpoint language Chorλ is projected to and how to project a choreography.
We reintroduce recursion into Chorλ and introduce it to our endpoint language in Section 4.
An example of a realistic use case (the Extensible Authentication Protocol) projected using
our method can be seen in Section 5. Related work is given in Section 6. Conclusions are
presented in Section 7. Full definitions and proofs of results for the full language of Chorλ
can be found in Appendix A.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:5

2 Background

In this section, we recap the theory of the choreographic λ-calculus (Chorλ) without recursion,
from [6]. Chorλ extends the simply typed λ-calculus [5] with primitives that make distribution
and communication syntactically manifest.

System model

Chorλ is used to model systems of independent processes, which can interact by synchronous
communication. Each process has a name, and knows the names of the other processes in
the network. There are two kinds of messages that can be exchanged: values are results of
computations; and selection labels are special constants used to implement agreement on
choices about alternative distributed behaviour.

Syntax

The syntax of Chorλ is given by the following grammar

M ::“ V | M M | case M of Inl x ñ M ; Inr x ñ M | selectp,p l M

V ::“ x | λx : T .M | Inl V | Inr V | fst | snd | Pair V V | pq@p | comp,p

T ::“ T Ñρ T | T ` T | T ˆ T | pq@p

where M is a choreography, V is a value, T is a type, x is a variable, l is a label, p is a
process name, and ρ is a set of process names.

Terms are located at processes, to reflect distribution. For example, the value pq@A reads
“the unit value at A”. Types are annotated with process names, as well. In the typing rules
of Chorλ (shown later), term pq@A has the type pq@A, read “the unit type at A”. In our
examples, for simplicity, we assume the presence of primitives for integer values and an
integer type Int@p (“an integer at p”) – the formal treatment of these are straightforward
and similar to that of units.

Abstraction λx : T.M , variable x and application MM are as in the standard (simply
typed) λ-calculus. Sums and products are constructed, respectively, by using Inl/Inr and
Pair. They are deconstructed in the usual way, respectively with case and fst/snd. The
constructors can take only values as arguments, but this does not restrict expressivity (cf.
[6]).

The primitives comp,q and selectp,q l M (where p and q are process names) model
communications of, respectively, values and selection labels. A communication term comp,q
acts as a function that takes a value at the process named p and returns the same value at the
process named q. In a selection term selectp,q l M , instead, p informs q that it has selected
the label l before continuing as M . Selections choreographically represent the communication
of an internal choice made by p to q. As we shall see in our definition of EPP, they play a
key role in establishing agreement among processes regarding what behaviour they should
enact together.

Selections are standard in choreographic languages and should not to be confused with
the distributed choice types that we anticipated in the introduction (these will be illustrated
later, in the next section). The former used to implement agreement on choices, whereas the
latter are used to codify the information that an agreement has been reached and can thus
be used without requiring communication. We will touch on this topic later, in Example 15
and Section 5.

ECOOP 2023

7:6 Modular Compilation for Higher-Order Functional Choreographies

A key feature of Chorλ is distributed data structures. For example, Pair pq@p pq@q is
a distributed pair where the first element resides at p and the second at q. Types record
the distribution of values across processes: if p occurs in the type given to V then part of V

will be located at p. A function may involve more processes than those listed in the types
of its input and output, so the type of abstractions T Ñρ T 1 has the extra ingredient ρ,
which denotes the processes that may participate in the computation of the function besides
those occurring in T or T 1. We simply write T Ñ T 1 in place of T ÑH T 1. For example,
if Alice wants to communicate an integer to Bob directly (without intermediaries), she can
use a choreography of type Int@Alice Ñ Int@Bob; however, if the communication might go
through a proxy, then she can use a choreography of type Int@Alice ÑtProxyu Int@Bob. The
information given by ρ gives control on what processes may participate in choreographies
taken as arguments. As we show in Section 3, this information is essential to achieve a
modular EPP.

We write fvpMq for the set of free variables in a term M , and pnpT q and pnpMq for the set
of process names mentioned in respectively a type T and a choreography M . A choreography
is closed if it has no free variables. Our key results apply to closed choreographies.

▶ Example 1 (Remote Function [6]). The following choreography models a distributed
computation in which a client, C sends an integer val to a server S and a local function
fun located at S is applied to val before the result gets returned to C. The choreography is
parametrised on both fun and val.

λfun : Int@S ÑH Int@S. λval : Int@C. comS,C pfun pcomC,S valqq

{

Typing

Choreographies are typed with judgements of the form Θ; Γ $ M : T , where Θ is the set of
process names that can be used for typing M and Γ is a function assigning types to variables.
We recall a few key typing rules from [6]. Our rules use the notation pnpT q for the process
names that appear in the type T .

pnpT q “ tpu tp, qu Ď Θ
Θ; Γ $ comp,q : T ÑH T rp :“ qs

[TCom]

Θ; Γ $ N : T Ñρ T 1 Θ; Γ $ M : T

Θ; Γ $ N M : T 1
[TApp]

Θ1; Γ, x : T $ M : T 1 ρ Y pnpT q Y pnpT 1q “ Θ1 Ď Θ
Θ; Γ $ λx : T.M : T Ñρ T 1

[TAbs]

A communication is typed as a function from any type T located entirely at the sender p to
the same type moved to the receiver, as long as both process names are in Θ. Application and
abstraction are typed similarly to simply-typed λ-calculus, extended with ρ and Θ (whose
consistency is checked in rule TAbs). Note that ρ and Θ in rule TAbs are not necessarily
minimal, and it is possible to type, e.g., tp, qu;H $ λx : Int@p.x : Int@p Ñtqu Int@p. A
minimal ρ would consist of those processes that appear either in M or in the types of the
free variables of M according to Γ.

▶ Example 2. Let h be the function λx : Int@Alice.comProxy,Bob pcomAlice,Proxy xq, which
communicates an integer from Alice to Bob by passing through an intermediary Proxy. Then,
tAlice, Bob, Proxyu;H $ h : Int@Alice ÑtProxyu Int@Bob. For any term M , the composition

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:7

h M is well-typed if M has type Int@Alice, denoting that the evaluation of M will yield
an integer at Alice. By contrast, h 5@Bob is ill-typed because of wrong data locality (the
argument is not at the process expected by h). {

Semantics

Chorλ comes with an operational semantics given in terms of labelled reductions. Reduction
labels are used to keep track of which processes interact in a reduction, which is going to be
important for our development. We illustrate this with the two key rules below.

λx : T.M V
H
ÝÑ M rx :“ V s

[AppAbs]
fvpV q “ H

comq,p V
tq,pu
ÝÝÝÑ V rq ÞÑ ps

[Com]

Rule AppAbs is the standard application rule of call-by-value λ-calculus – annotated with
an empty set, which indicates that no synchronisation is taking place. Rule Com, instead,
implements a communication by “moving” the communicated value from the sender to the
receiver (through a substitution). Thus, for example, comAlice,Bob3@Alice tAlice,Bobu

ÝÝÝÝÝÝÝÑ 3@Bob.
Since it makes no sense to communicate a variable whose value is stored at the sender
rather than the value itself, we require that the communicated value has no free variables.
Communicating a free variable would cause problems for Chorλ’s type system, since it would
require changing the type of the variable in the environment.

Reductions are labelled with the processes synchronising in them, but this only becomes
relevant information in Section 4.

3 Endpoint Projection (EPP) for finite Chorλ

In this section we develop a theory of EPP for finite Chorλ.

3.1 Process Language
We write implementations of choreographies in a distributed λ-calculus, which we call process
language. Processes run in parallel, each with its own behaviour, and can interact by message
passing.

Syntax

The syntax of process behaviours is given by the following grammar

B ::“ L | B B | case B of Inl x ñ B; Inr x ñ B | ‘p l B

| &ptl1 : B1, . . . , ln : Bnu

L ::“ x | λx : T.B | Inl L | Inr L | fst | snd | Pair L L | pq | recvp | sendp | K

T ::“ T Ñ T | T ` T | T ˆ T | pq | K

where B is a behaviour, L is a local value, and T is a local type.
The terms from the λ-calculus are standard. Pairs and sums work as described for Chorλ,

but note that now they are completely local (as usual) because there are no process name
annotations anymore.

The terms for message passing are the local counterparts of choreographic communication
terms. Selections are implemented by the offer branching term &ptl1 : B1, . . . , ln : Bnu,
which offers a number of different ways it can continue for another process p to choose from,

ECOOP 2023

7:8 Modular Compilation for Higher-Order Functional Choreographies

Σ; Γ $ B : T

Σ; Γ $ ‘p l B : T
[NTChor]

Σ; Γ $ Bi : T for 1 ď i ď n

Σ; Γ $ &ptl1 : B1, . . . ln : Bnu : T
[NTOff]

Σ; Γ $ sendp : T Ñ K
[NTSend] Σ; Γ $ recvp : K Ñ T

[NTRecv]

Σ; Γ $ K : K [NTbotm]
Σ; Γ $ B : K Σ; Γ $ B1 : K

Σ; Γ $ B B1 : K
[NTApp2]

Figure 2 Typing rules for behaviours (selected rules).

and the choice term ‘p l B, which directs p to continue as the behaviour labelled l. Likewise,
value communication is divided into a send to p action, sendp, and a receive from p action,
recvp.

We also add the no-op term mentioned in the introduction, K, and its type, K. A term
K represents a terminated behaviour with no result. This term is used in the semantics
of send and receive: locally, sendp acts as a function that can take any input and returns
K, and recvp a function that given K returns some value. More interestingly, K also plays
an important role wrt modularity in our notion of EPP, which we will discuss later in our
presentation of projection. All types but K are standard (as in Chorλ, but without process
name annotations).

A system of running processes is called a network.

▶ Definition 3. A network N is a finite map from a set of process names to behaviours.

Given two networks N and N 1 with disjoint domains, their parallel composition N | N 1

maps each process name to the behaviour in the network defining the process. Any network
is equivalent to a parallel composition of networks with singleton domains, so we write
p1rB1s | . . . | pnrBns for the network where each process pi has behaviour Bi [24].

▶ Example 4. Consider the choreography comB,C pcomA,B pq@Aq. A correct implementation
is the network ArsendB pqs | BrsendC precvA Kqs | CrrecvB Ks. {

Typing

Behaviours are typed with judgements of the form Γ $ B : T . The typing rules are the local
counterparts of those in Chorλ, obtained by removing Θ and process names in types. We
add the K type for terms that can result in K. Figure 2 displays representative typing rules
to deal with K and communications.

Semantics

The semantics of networks is given as a labelled transition system. Figure 3 displays some
representative transition rules.

Labels for network transitions have the form τP, where P ranges over sets of one or two
process names. Rule NPro annotates an internal transition by a process with its name, and
rule NPar lifts transitions in parallel compositions.

The transition axioms for send and receive are typical of process calculi with early
semantics. Send and receive transitions are matched in rule NCom to perform a communica-
tion The label τp,q denotes an internal move (τ) and manifests the names of processes that
contribute to performing it (p and q). We treat the subscript p, q as an unordered set that
consists of the two process names.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:9

fvpLq “ H

sendp L
sendp L
ÝÝÝÝÝÑ K

[NSend]
recvp K

recvp L
ÝÝÝÝÑ L

[NRecv]

B1
sendq L
ÝÝÝÝÝÑ B1

1 B2
recvp L
ÝÝÝÝÑ B1

2

prB1s | qrB2s
τp,q
ÝÝÑ prB1

1s | qrB1
2s

[NCom]

‘p l B
‘p l
ÝÝÝÑ B

[NCho]
&ptℓ1 : B1, . . . , ℓn : Bnu

&pℓi
ÝÝÝÑ Bi

[NOff]

B1
‘q ℓ
ÝÝÝÑ B1

1 B2
&p ℓ
ÝÝÝÑ B1

2

prB1s | qrB2s
τp,q
ÝÝÑ prB1

1s | qrB1
2s

[NSel]

pλx : T.Bq L
τ
ÝÑ Brx :“ Ls

[NAbsApp]
K K

τ
ÝÑ K

[NBotm]

B
τ
ÝÑ B1

prBs
τp
ÝÑ prB1s

[NPro] N τP
ÝÑ N 2

N | N 1 τP
ÝÑ N 2 | N 1

[NPar]

Figure 3 Network semantics (representative rules).

The P-annotations in labels enable the formulation of the next lemma, which we use in
some of our proofs to focus on the processes involved in a transition. The proof of this result
and others for the full Chorλ language are provided in Appendix A.

▶ Lemma 5. For any p and N , if N τP
ÝÑ N 1 and p R P then N ppq “ N 1ppq.

Most of the other rules follow the same intuition and are otherwise standard. The
exception is rule NBotm, which garbage collects K terms. We discuss the role of this rule in
Example 9, after having presented our notion of EPP.

3.2 Endpoint Projection (EPP)
We now move to defining the endpoint projection (EPP) of a choreography M for an individual
process p, assuming that M is well-typed; that is, Θ; Γ $ M : T for some Θ, Γ, and T . The
definition of EPP formally depends on this typing derivation, but to keep notation simple we
write just JMKp for the projection of M on p and refer to the type T associated to M in the
specific derivation we are looking at as typepMq.

Projection translates each choreographic term to a corresponding local behaviour. For
example, a communication term comp,q is projected to a send action for the sender p and a
receive action for the receiver q.

Abstraction presents a novel challenge compared to previous, non-functional choreographic
languages. We discuss it in the next example, which also illustrates the importance of K in
our theory of EPP.

▶ Example 6. Let M “ λx : Int@p.M 1 for some M 1, and consider the issue of defining its
projection on a process q different than p, JMKq. Since EPP is usually defined inductively
on the structure of the choreography, this definition should not depend on the context that
M is used in.

The standard principle for EPP found in the literature is to ignore the parts that do not
mention the process we are currently projecting to. Following this principle, we should omit
the initial abstraction (λx) of M in the implementation of q.

ECOOP 2023

7:10 Modular Compilation for Higher-Order Functional Choreographies

For example, for M “ λx : Int@p.2@q, we could design EPP such that JMKq “ 2. This
works when M is used in an application as pλx : Int@p.2@qq 1@p, where JMKq “ 2 is still
reasonable (since q has nothing to do with the argument).

Unfortunately, this standard approach is not robust in the case of functional choreo-
graphies: even if q is not mentioned in the type of x in λx : Int@p, in general it could still
participate in the context that produces the value that x is going to be replaced with. For
example, let M2 “ pλx : Int@p.comq,p 2@qq pcomq,p 1@qq, which expresses a sequence of
communications between q and p (first of 1 and then of 2, in order). If we insist on excluding
the abstraction from the projection on q, then we obtain JM2Kq “ psendp 2q psendp 1q. This
is wrong, because it would send 2 before 1. Therefore, we cannot just skip abstractions that
do not involve the process we are projecting on. In this case, a correct implementation of q in
M2 would be pλx : K.sendp 2q psendp 1q. Our process language is carefully designed to make
terms like this normalise gracefully: after executing sendp 1 the righthandside is K, thus
allowing for the application to be resolved and for the second send action to be executed.

Sometimes, however, abstractions should be skipped. For example, if M is λx : Int@p.1@p,
then JMKq should clearly be K. The alternative, λx : K.K, would break modularity of EPP
because the structure of JMKq would depend on the internal behaviour of p. To solve this
issue, we take the approach of skipping an abstraction like λx : T.M 1 only if both T and M 1

do not mention the process that we are projecting on. Type information is therefore key to
our EPP, in addition to the usual syntactic checks, which is why we have made the EPP
dependent on a typing derivation.

We will come back to K and its companion rule NBotm in Example 9. {

In order to define EPP precisely, we need a few additional ingredients.
Projecting a term M requires knowing the processes involved in its type. As our EPP

takes an entire typing derivation of M as input, the type is implicitly given in the derivation
provided to EPP. So we write without ambiguity pnptypepMqq for this set of process names.

The second ingredient concerns knowledge of choice. When projecting a conditional
case M of Inl x ñ M 1; Inr y ñ M2, processes not occurring in M cannot know what branch
of the choreography is chosen; therefore, the projections of M 1 and M2 must be combined
in a uniquely-defined behaviour. We thus define a partial merge operator (\), adapted
from [1, 8, 19], whose key property is

&tli : BiuiPI \ &tlj : B1
jujPJ “ &

`

tlk : Bk \ B1
kukPIXJ Y tli : BiuiPIzJ Y tlj : B1

jujPJzI

˘

and which is homomorphically defined for the remaining constructs (see Appendix A for the
full definition). The idea is that a process not in M must either perform the same actions
in M 1 and M2 (so the choice does not matter) or receive an appropriate selection to know
which branch has been chosen. Merging of incompatible behaviours is undefined.

▶ Example 7. Consider the choreography

C “ case Inl pq@p of Inl x ñ selectp,q left 0@q; Inr y ñ selectp,q right 1@q .

Using merging, its projection on process q is JCKq “ &ptleft : 0, right : 1u. {

▶ Definition 8. The EPP of a choreography M on a specific process p (JMKp) is defined by
the rules in Figure 4. The EPP of a choreography (JMK) is the parallel composition of the
EPPs on its processes: JMK “

ś

pPpnpMq p
”

JMKp

ı

.

Intuitively, projecting a choreography on a process that is not involved in it returns a K.
In general, however, a choreography may involve processes not mentioned in its type. This
explains the first clause for projecting an application: even if p does not appear in the type of

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:11

Choreographies

JM NKp “

$

’

’

&

’

’

%

JMKp JNKp if p P pnptypepMqq or p P pnpMq X pnpNq

JMKp if JNKp “ K

JNKp otherwise

Jλx : T.MKp “

#

λx : JT Kp . JMKp if p P pnptypepλx : T.Mqq

K otherwise
q
case M of Inl x ñ N ; Inr x1

ñ N 1
y

p “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

case JMKp of Inl x ñ JNKp; Inr x1
ñ

q
N 1

y
p if p P pnptypepMqq

JMKp if JNKp “ JN 1Kp “ K

JNKp \
q
N 1

y
p if JMKp “ K

pλx2 : K. JNKp \
q
N 1

y
pq JMKp otherwise, for some

x2
R fvpNq Y fvpN 1

q

JInl V Kp “

#

Inl JV Kp if p P pnptypepInl V qq

K otherwise
JfstKp “

#

fst if p P pnptypepfstqq

K otherwise

Jselectq,q1 l MKp “

$

’

’

&

’

’

%

‘q1 l JMKp if p “ q ‰ q1

&qtl : JMKpu if p “ q1
‰ q

JMKp otherwise

Jcomq,q1Kp “

$

’

’

’

’

&

’

’

’

’

%

λx : JT Kp .x if p “ q “ q1 and typepcomq,q1q “ T ÑH T 1

sendq1 if p “ q ‰ q1

recvq if p “ q1
‰ q

K otherwise

Jpq@qKp “

#

pq if q “ p
K otherwise

JxKp “

#

x if p P pnptypepxqq

K otherwise

Types

Jpq@qKp “

#

pq if q “ p
K otherwise

q
T ˆ T 1

y
p “

#

JT Kp ˆ
q
T 1

y
p if p P pnpT ˆ T 1

q

K otherwise

q
T Ñρ T 1

y
p “

#

JT Kp Ñ
q
T 1

y
p if p P ρ Y pnpT q Y pnpT 1

q

K otherwise

Figure 4 Projecting a choreography in Chorλ onto a process – when cases overlap, the first one
takes precedence (representative rules).

ECOOP 2023

7:12 Modular Compilation for Higher-Order Functional Choreographies

M , it may participate in interactions in M . Vice versa, a process can appear in the type of a
choreography without appearing in the choreography itself. The difference between a process
appearing in a choreography or its type becomes important when we look at the projection
of case M of Inl x ñ N ; Inr x1 ñ N 1. Here, p appearing in the type of M indicates that p
will, at the end of the computation of M , know what branch will be chosen; therefore, the
projection on p is a case. However, it is possible that p is involved in the computation of
the condition M without knowing the final choice, e.g., if M “ comp,q M 1. In this case, the
projection on p is not a case but still needs code to participate in the implementation of M

correctly. If p is involved in the branches as well, then we need to project code for them too:
we inject an abstraction in order to maintain the correct order of computation (M before N

and N 1) and make the resulting process well typed (since p does not appear in the type of
M , that type will be projected to K).

The projection of abstraction illustrates the necessity of the ρ annotation on abstraction
types. For example, consider an application of a communication via a proxy pλx : Int@p Ñtru
Int@q.x 3@pq pλy : Int@p.comr,q comp,r yq. Without the annotation tru in subterm pλx :
Int@p Ñtru Int@q.x 3@pq, the projection of this subterm on r would just be K, which is wrong
for the overall application since r will actually be involved.

Selections and communications follow the intuition given before, with one interesting
detail: self-selections are ignored, and self-communications are projected to the identity
function. This is different from previous works, where self-communication is not allowed –
here we lift this restriction.

Likewise, projecting a type T yields K at any process not used in T .

▶ Example 9. Let M “ pcomp,q pλx : Int@p.3@pqq pcomp,q 5@pq, where a function and
a value are both sent from p to q before being applied at q. The implementation of q
is JMKq “ precvp Kq precvp Kq, whose execution is straightforward. At p, however, we
have that JMKp “ psendqpλx : Int.3qq psendq 5q, which after executing the two send actions
becomes K K. After executing its two communications, the choreography M becomes
M 1 “ pλx : Int@q.3@qq 5@q. M 1 is located entirely at q, and therefore JM 1Kp “ K, which is
different than the K K reached by JMKp. We therefore need a way to make the application
K K become K. Rule NBotm serves this purpose. The fact that this is not possible with
two units is the key semantic difference between K and pq. {

▶ Proposition 10. Let M be a closed choreography. If Θ; Γ $ M : T , then for any process p
appearing in M , we have that JΓK $ JMKp : JT Kp, where JΓK are defined by applying EPP to
all types occurring Γ.

▶ Example 11. Let M be the remote function choreography in Example 1. Its projections
on C and S are as follows.

JMKC “ λf : K. λval : Int. recvS psendS valq

JMKS “ λf : pInt Ñ Intq. λval : K. sendC pf precvC Kqq

This example illustrates the key features discussed in the text: projection of communications
as two dual actions; and the way function applications are projected when the process does
not appear in the function’s type. {

We describe what we consider modularity of EPP, formally defined in Definition 12.
Modular projection means that for any context Crs the projection of CrM s at p will be the
same for any M which does not involve p. The definition of context is as expected and can be
found in Appendix A. Modularity is typical (and expected) of EPP, because the projection
of p should not be generating junk code based on the behaviour of other processes.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:13

▶ Definition 12 (Modularity of EPP). An EPP J´K is called modular if JCrM sKp “ JCrN sKp
for any process p, context Crs, and choreographies M and N such that Θ; Γ $ M : T and
Θ; Γ $ N : T with p R Θ.

Modularity ensures that if we modify part of a choreography in which a process p is not
involved, we do not need to recompile the projection of the choreography onto p because
this projection is unaffected. In general, the strong equality requirement could be relaxed to
allow for some extra local actions that do not change the observable behaviour of a process,
e.g., adding “empty” applications like λx.K : K. This would yield some extra flexibility to
deal with cases such as the one seen in Example 6, so long as the interactions with other
processes and return value at p do not change. However, this design would come at some
costs: an increase in complexity due to the addition of a suitable notion of behavioural
equivalence; a potential loss in efficiency, since processes might gain unnecessary reductions
in their projections; and a potential leak of information, since the local code projected on a
process would reveals some information about the behaviours of other processes.

The following proposition, Proposition 14, shows that our EPP is modular.

▶ Lemma 13. Given a choreography M , if Θ; Γ $ M : T and p R Θ then JMKp “ K.

Proof. Follows from p R Θ implying p R pnpT q Y pnpMq and induction on the derivation of
JMKp. ◀

▶ Proposition 14. The EPP J´K given in Definition 8 is modular.

Proof. Follows from Lemma 13 and observing that the projection of any context always
treats K the same. ◀

▶ Example 15 (Distributed choice types). Now that we can project a choreography, we return
to the idea of distributed choice types from the introduction. Consider a choreography

M “ λx : Bool@pp, qq.case x of Inl y ñ comp,q3@p; Inr y ñ 5@q

Here Bool@pp, qq is equivalent to the type ppq@p ˆ pq@qq ` ppq@p ˆ pq@qq, and in general we
can encode a “distributed boolean” as

Bool@p⃗ “ ppq@p1 ˆ ¨ ¨ ¨ ˆ pq@pnq ` ppq@p1 ˆ ¨ ¨ ¨ ˆ pq@pnq

We can use distributed booleans to codify distributed choices, in this case by having both
p and q be able to make local choice without interacting but still guaranteeing that they
choose their respective behaviours correctly.

Specifically, when we project M we get two local choices made at p and q, both of which
are guaranteed to make the same choice. First we have the projections

JMKp “ λx : ppq ˆ Kq ` ppq ˆ Kq.case x of Inl y ñ sendq 3; Inr y ñ K

and

JMKq “ λx : pK ˆ pqq ` pK ˆ pqq.case x of Inl y ñ recvp K; Inr y ñ 5

For these processes to be deadlock-free when put in parallel, we need both of them to make
the same choice. Thankfully, the distributed boolean type ensures that x will always be
instantiated as either Inl pPair pq@p pq@qq or Inr pPair pq@p pq@qq. From the projection we
get JInl pPair pq@p pq@qqKp “ Inl pPair pq Kq and JInl pPair pq@p pq@qqKq “ Inl pPair K pqq,

ECOOP 2023

7:14 Modular Compilation for Higher-Order Functional Choreographies

and similar for the Inr case. We therefore know that Chorλ’s distributed choice works as
intended when projected. As we shall see in Section 5, one use for this technique is to have
different processes independently agree on the size of a distributed list.

Note that if we tried to model a distributed boolean as ppq@p` pq@pq ˆ ppq@q` pq@qq, it
would not be useful to represent a distributed choice because it would allow the processes to
make different choices. (Also, M would obviously not be well-typed, as a condition must
have a sum type.) {

We now show that there is a close correspondence between the executions of choreographies
and of their projections. Intuitively, this correspondence states that a choreography can
execute an action if, and only if, its projection can execute the same action, and both
transition to new terms in the same relation. Technically, we need to be more precise: if a
choreography M reduces by rule Case, then the result has fewer branches than the network
obtained by performing the corresponding reduction in the projection of M . (This is a
standard issue with choreographic conditionals [24].)

In order to capture this, we define a partial order Ě that relates a behaviour to a version
with fewer branches: B Ě B1 iff B \ B1 “ B. Intuitively, if B Ą B1, then B offers the same
or more branches than B1 (also in subterms). This notion extends to networks by defining
N Ě N 1 to mean that, for any process p, N ppq Ě N 1ppq. Example 16 shows the necessity of
Ě in order to get a meaningful notion of operational correspondence between choreographies
and their projection.

▶ Example 16. Consider again the choreography from Example 7,

C “ case Inl pq@p of Inl x ñ selectp,q left 0@q; Inr y ñ selectp,q right 1@q ,

and its projection B on q, B “ JCKq “ &ptleft : 0, right : 1u.
When entering the case, C reduces to C 1 “ selectp,q left 0@q, but q is not involved in

this action and its behaviour remains B, which is not JC 1Kq. However, &ptleft : 0, right :
1u \ &ptleft : 0u “ &ptleft : 0, right : 1u, so B Ě JC 1Kq. {

In addition to Ě, we need to equate behaviours that differ only by applications to K like
P and pλx : K.P q K introduced by the projection of applications.

▶ Definition 17. We define ” as the least equivalence relation on behaviours that is closed
under context and P ” pλx : K.P q K for any behaviour P . We write N ” N 1 for the
pointwise extension of ” to networks (i.e., ΠpprPps ” ΠpprP 1

ps iff Pp ” P 1
p for all ps) and

N Ŋ N 1 if there is a network N 2 such that N Ě N 2 and N 2 ” N 1.

We can finally show that the EPP of a choreography can do all that (completeness) and
only what (soundness) the choreography does. Here Ñ˚ denotes a sequence of transitions
with any labels, and Ñ` a nonempty such sequence.

▶ Theorem 18 (Completeness). Given a closed choreography M , if M
P
ÝÑ M 1, Θ; Γ $ M : T ,

and JMK is defined, then there exist networks N and M2 such that: JMK Ñ` N ; M 1 Ñ˚ M2;
and N Ŋ JM2K.

▶ Theorem 19 (Soundness). Given a closed choreography M , if Θ; Γ $ M : T and JMK Ñ˚ N
for some network N , then there exist a choreography M 1, and a network N 1 such that:
M Ñ˚ M 1; N Ñ˚ N 1; and N 1 Ŋ JM 1K.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:15

Since we have no recursion and only require that the choreography and projection
eventually get to the same state, we can prove soundness and correctness without needing
the out-of-order semantics usually required in choreographic languages [24].

From Theorems 18 and 19 and the type preservation and progress results from [6], we
obtain deadlock-freedom: the EPP of a well-typed closed choreography can continue to
reduce until all processes contain only local values.

▶ Corollary 20 (Deadlock-freedom). Given a closed choreography M , if Θ; Γ $ M : T then:
whenever JMK Ñ˚ N for some network N , either there exists p and N 1 such that N τP

ÝÑ N 1

or N “
ś

pPpnpMq prLps.

4 Recursion

So far we have worked with a recursion-free subset of Chorλ. In this section, we extend our
development to the full language presented of Chorλ, which includes recursive definitions [6].
As we will see, recursion is technically challenging because of the introduction of divergence.

4.1 Definitions
Choreographies

Recursion in Chorλ is achieved by named functions (f) parametrised on process names. We
use D to range over mappings of parametrised functions names to choreographies (the bodies
of the functions). To execute a choreography M containing calls to named functions, the
choreography must be associated with a mapping D that contains all the named functions
called by M . The grammar of choreographies is extended with M ::“ ¨ ¨ ¨ | f p⃗pq. A function
call f p⃗pq invokes f by instantiating its parameters with the process names p⃗, which evaluates
to the body of the function. In a function call or definition, parameters must be distinct.
Semantically, we add D as an annotation to the reduction relation for choreographies and use
the following rule to evaluate functions. Labels in Chorλ with recursion are extended to the
form ℓ, P, where the new ingredient ℓ can be either τ or λ. The need for ℓ is explained later.

Dpfpp⃗1qq “ M

f p⃗pq τ,H
ÝÝÑD M rp⃗1 ÞÑ p⃗s

[Def]

To type recursive choreographies, we introduce recursive type variables ranged over by t.
These are defined in a collection Σ, which contains type equations of the form t@p⃗ “ T –
the elements of p⃗ must be distinct. The grammar of types is extended with parametrised
variables: T ::“ ¨ ¨ ¨ | t@p⃗. Essentially, assuming the presence of an equation t@p⃗1 “ T , t@p⃗
can be unfolded into T rp⃗1 :“ p⃗s. Typing judgements are then of the form Θ; Σ; Γ $ M : T ,
where Γ may now also contain type assignments for recursive functions of the form f p⃗pq : T .

Θ; Σ; Γ $ M : t@p⃗1 t@p⃗ “Σ T p⃗1 Ď Θ ||⃗p|| “ ||p⃗1|| p⃗1 distinct
Θ; Σ; Γ $ M : T r⃗p :“ p⃗1s

[TEq]

We also write Θ; Σ; Γ $ D to denote that each function in D can be typed accordingly to
its type in Γ.

▶ Example 21 (Remote Map). With recursive functions, we can write more complex cho-
reographies that call themselves and each other. Let remoteFunctionpC, Sq be defined as
the choreography in Example 1. We use it to define a function remoteMappC, Sq, where a

ECOOP 2023

7:16 Modular Compilation for Higher-Order Functional Choreographies

server S applies a function to not just one value, but instead to each element of a stream
communicated from a client C. Then S returns the results, which C gathers into a list with
the standard cons function used to construct a new list.

remoteMappC, Sq “ λfun : Int@S Ñ Int@S. λlist : rInts@C.

case list of
Inl x ñ selectC,S stop pq@C;
Inr x ñ selectC,S again

conspCq premoteFunctionpC, Sq fun pfst xqq premoteMappC, Sq fun psnd xqq

Here, rInts@C is defined as rInts@C “ pq@C ` pInt@C ˆ rInts@Cq, representing a list of
integers. In general, we write rts@pp1, . . . , pnq to mean the type satisfying rts@pp1, . . . , pnq “

ppq@p1 ˆ ¨ ¨ ¨ ˆ pq@pnq ` pt@pp1, . . . , pnq ˆ rts@pp1, . . . , pnqq. {

▶ Example 22 (Diffie-Hellman [6]). We recall the choreography for the Diffie–Hellman key
exchange protocol [13], which allows two processes to agree on a shared secret key without
assuming secrecy of communications. Again, we use the primitive type Int.

To define this protocol, we use the local function modPowpRq of the type

modPowpRq : Int@R Ñ Int@R Ñ Int@R Ñ Int@R

which computes powers with a given modulo. Given modPowpRq, we can implement Diffie–
Hellman as the following choreography:

diffieHellmanpP, Qq “

λpsk : Int@P. λqsk : Int@Q. λpsg : Int@P.

λqsg : Int@Q. λpsp : Int@P. λqsp : Int@Q.

pair pmodPowpPq psg pcomQ,P pmodPowpQq qsg qsk qspqq pspq

pmodPowpQq qsg pcomP,Q pmodPowpPq psg psk pspqq qspq

Given the individual secret keys (psk and qsk) and a previously publicly agreed upon
shared prime modulus and base (psg “ qsg, psp “ qsp), the participants exchange their
locally-computed public keys in order to arrive at a shared key that can be used to encrypt
all further communication. This means diffieHellmanpP, Qq has the type:

Int@P Ñ Int@Q Ñ Int@P Ñ Int@Q Ñ Int@P Ñ Int@Q Ñ Int@P ˆ Int@Q

and represents the shared key as a pair of equal keys, one for each participant.
The choreography then takes a shared key as its parameter and produces a pair of

unidirectional channels that wrap the communication primitive with the necessary encryption
based on the key:

makeSecureChannelspP, Qq “ λkey : Int@P ˆ Int@Q.

Pair pλval : String@P. pdecpQq psnd keyq pcomP,Q pencpPq pfst keyq valqqqq

pλval : String@Q. pdecpPq pfst keyq pcomQ,P pencpQq psnd keyq valqqqq

Here enc and dec are local function for encoding and decoding values based on keys.
The fact that this choreography returns a pair of channels can also be seen from its type:

pInt@P ˆ Int@Qq Ñ ppString@P Ñ String@Qq ˆ pString@Q Ñ String@Pqq

Using the channels is as easy as using com itself and amounts to a function application.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:17

Process language

To implement recursive functions in Chorλ, we also add recursive functions to our process
language: B ::“ ¨ ¨ ¨ | f p⃗pq. They have the same syntax as in choreographies, being parametric
on the names of any other processes our process may interact with as part of the function.
Local function names are associated with their definition by a function D, which works the
same as D in the choreographic setting. Furthermore, we add a transition rule to the process
language similar to rule Def for choreographies.

Endpoint Projection

We respectively project function calls, type variables, and function definitions as follows.

Jf p⃗pqKp “

#

fipp1, . . . , pi´1, pi`1, . . . , pnq if p⃗ “ p1, . . . , pi´1, p, pi`1, . . . , pn

K otherwise

Jt@p⃗Kp “

#

ti if p⃗ “ p1, . . . , pi´1, p, pi`1, . . . , pn

K otherwise

JDK “ tfipp1, . . . , pi´1, pi`1, . . . , pnq ÞÑ JMKpi
| Dpfpp1, . . . , pnqq “ Mu

Each named function gets projected to a different named function for each process in its
list of parameters, with the projected environment now treating each of these as separate
functions parametric on the remaining involved processes. These parameters are needed to
implement interactions. Each process can enter a named function independently. Thus, for
example, if Dpfpp, qqq “ M we get JDK pf1pqqq “ JMKp and JDK pf2ppqq “ JMKq.

On the other hand, projection of recursive types does not need to consider other processes
than the one we are projecting on, since local types never mention any processes. Σ is
otherwise projected similarly to D. For example, if t@pp, qq “ T P Σ then t1 “ JT Kp P JΣK
and t2 “ JT Kq P JΣK.

JΣK “ tti “ JT Kpi
| t@pp1, . . . , pnq “ T P Σu

▶ Example 23 (Projecting Example 21). Projecting the choreography in Example 21 yields
the processes remoteMap1 (for the client) and remoteMap2 (for the server) below. The bodies
of remoteFunction1 and remoteFunction2 are the terms in Example 11.

remoteMap1pSq “ λfun : K. λlist : rInts.
case list of

Inl x ñ ‘S stop pq;
Inr x ñ ‘S again

cons1 premoteFunction1pSq K pfst xqq premoteMap1pSq K psnd xqq

remoteMap2pCq “ λfun : Int Ñ Int. λlist : K.

&Ctstop : K, again : premoteFunction2pCq fun Kq premoteMap2pCq fun Kqu

{

▶ Example 24 (Projecting Example 22). Projecting our choreographies diffieHellmanpP, Qq

and makeSecureChannelspP, Qq for process P yields the following behaviours.

JDpdiffieHellmanpP, QqqK1 pQq “ λpsk : Int. λqsk : K. λpsg : Int. λqsg : K. λpsp : Int. λqsp : K.

pair pmodPow1 psg precvQ Kqq pspq

psendQ pmodPow1 psg psk pspqq

ECOOP 2023

7:18 Modular Compilation for Higher-Order Functional Choreographies

JDpmakeSecureChannelspP, QqqK1 pQq “ λkey : Int ˆ K.

Pair pλval : String. ppsnd keyq psendQ pencrypt1 pfst keyq valqqq

pλval : K. pdecrypt1 pfst keyq precvQ psnd keyqqq

Note the way function calls such as modPowpPq in the choreography get projected to
modPow1 on P, since they are treated as degenerate choreographies (they have only one
process) and P is the first and only process involved. Conversely, modPowpQq on P gets
projected as K since it is located entirely at a different process.

4.2 Out-of-order execution
In the presence of recursion, getting a correspondence between a process and choreographic
language becomes much more challenging. In our results for Chorλ without recursion, we
relied on the fact that a choreography would eventually reduce to a value. This is no longer
true as choreographies can now diverge, and worse they can diverge at one process without
diverging at another. Let, for example, M “ pλx : Int@p.fst pPair 5@q xqq fppq. Assume
that Dpfpp1qq “ M 1, where M 1 diverges. Then the reduction rules that we have seen so
far would not allow x to be instantiated. However, JfppqKq “ K, so JMKq can reduce to 5.
Therefore, we need a way to let M copy the reduction of fst pPair 5@q xq to 5@q. In [6],
we included corresponding reduction rules for Chorλ to deal with this kind of issues. These
rules are all type preserving and avoid creating situations where processes disagree on which
communication should be performed first [6]. These rules were unnecessary to deal with the
recursion-free fragment, so we introduce them now.

Rule InAbs below addresses situations as in the previous example.

M
ℓ,P
ÝÝÑD M 1

λx : T.M
λ,P
ÝÝÑD λx : T.M 1

[InAbs]
M

ℓ,R
ÝÝÑD M 1 ℓ “ λ ñ P X pnpNq “ H

M N
τ,P
ÝÝÑD M 1 N

[App1]

Rule App1 use the ℓ-component in reduction labels to identify whether a reduction is
performed under an abstraction (ℓ “ λ) or not (ℓ “ τ). We need this distinction to prevent
interactions under an abstraction performed by processes involved in the righthandside
of an application. This restriction serves to avoid breaking causal dependencies between
communications. Consider the choreography pλx : Int@p.comq,p 4@qq pcomq,p 5@qq, where
the righthandside communication should be performed first – without the restriction, this
would not be guaranteed. Reductions under abstractions additionally necessitates a new
safety condition on rule AppAbs, ensuring that the free variables of V are distinct from the
bound variables of M to avoid problems with scope.

Our modification allows the choreography M “ pλx : Int@q.fst pPair 5@q xqq fpp, qq to
reduce to M 1 “ pλx : Int@p2.5@qq fpp, qq. Thus, the projections of M on p and q must be
able to reduce to the projections of M 1. For p this is easy, since JMKp “ JM 1Kp “ K f1pqq.
For q, however, we need JMKq “ pλx : Int.fst pPair K xqq f2ppq to reduce to JM 1Kq “ pλx :
Int.Kq f2ppq, which requires the process language to have similar out-of-order semantics. We
therefore add an equivalent rule NInAbs and modify rule NApp1 similarly to rule App1.

In the network, rather than checking for interacting processes, we do not allow commu-
nication actions (send, recv, ‘, &) from inside an abstraction. The reduction labels for the
process language are thus simpler (τ or λ), since we do not need to track process names
involved in actions.

Similar problems appear with applications that have divergent subterms on the lefthand-
side, like fpqq ppλx : Int@p.4@qq 3@pq, and are treated similarly (the corresponding reduction
rules are given in the appendix).

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:19

x R fvpM 1q

ppλx : T.Mq Nq M 1 ù pλx : T.pM M 1qq Nq
[R-AbsR]

x, x1 R fvpMq spnpMq X pnpNq “ H

M pcase N of Inl x ñ M1; Inr x1 ñ M2q ù

case N of Inl x ñ pM M1q; Inr x1 ñ pM M2q

[R-CaseL]

spnpMq X pnpNq “ H

M pselectq,p l Nq ù selectq,p l pM Nq
[R-SelL]

y fresh for M

λx : T.M ù λy : T.M rx :“ ys
[R-alph]

Figure 5 Rewriting of Chorλ (representative rules).

pnpBq “ H

B p&ptl1 : B1, . . . , ln : Bnuq ù &ptl1 : B B1, . . . , ln : B Bnu
[LR-OffL]

pnpB1q “ H

B1 p‘p l Bq ù ‘p l pB1 Bq
[LR-ChoL]

K K ù K
[LR-Botm]

Figure 6 Rewriting of behaviours (representative rules).

Dealing with recursive functions in nested applications requires another addition to the
semantics of Chorλ. Consider the choreography M “ ppλx : Int@p.λy : Int@q.3@pq fppqq 4@q.
We have JMKq “ ppλx : K.λy : Int.Kq Kq 4, which can reduce to K in two steps. Reducing M

accordingly requires being able to instantiate y as 4@q even if fppq diverges. For this, and
other cases of functions whose divergence blocks actions, Chorλ has a set of rewriting rules (see
Figure 5). In our example, M can be rewritten as pλx : Int@p.pλy : Int@q.3@p 4@qqq fppq
by using rule R-AbsR, which can reduce to pλx : Int@p.3@pq fppq as needed. In the
rewriting rules that move a subterm in a lefthandside further in, the synchronising processes
of the subterm, spnpMq, is used to prevent rewritings that would change the order of
communications. To use the rewritings in the semantics we add the rule

M ù˚ N N
τ,P
ÝÝÑ M 1

M
τ,P
ÝÝÑD M 1

[Str]

As before, equivalent rules must be added to the semantics of our process language
(see Figure 6), and the reduction relation is closed under these rewritings. This allows
JMKp “ ppλx : Int.λy : K.3q f1pqq K to be rewritten to pλx : Int.pλy : K.3 Kqq f1pq, which can
reduce to pλx : Int.3q f1pq.

4.3 Properties
Thanks to the extensions discussed in this section, our results can be generalised to the full
language of Chorλ with recursion.

▶ Theorem 25 (Completeness). Given a closed choreography M , if M
τ,P
ÝÝÑD M 1 and

Θ; Σ; Γ $ M : T and JMK is defined, then there exist networks N and M2 such that:
JMK Ñ

`

JDK N ; M 1 Ñ˚ M2; and N Ŋ JM2K.

ECOOP 2023

7:20 Modular Compilation for Higher-Order Functional Choreographies

▶ Theorem 26 (Soundness). Given a closed choreography M , if Θ; Γ $ M : T and JMK Ñ˚ N
for some network N , then there exist a choreography M 1, and a network N 1 such that:
M Ñ˚

D M 1; N Ñ˚ N 1; and N 1 Ŋ JM 1K.

From Theorems 25 and 26 and the type preservation and progress results from [6], we get
the following corollary about deadlock-freedom. Specifically, the EPP of a well-typed closed
choreography can keep reducing until all processes contain only local values (which denotes
termination).

▶ Corollary 27 (Deadlock-freedom). Given a closed choreography M and a function en-
vironment D containing all the functions of M , if Θ; Σ; Γ $ M : T and Θ; Σ; Γ $ D,
then: whenever JMK Ñ˚

JDK N for some network N , either there exists P and N 1 such that
N τP

ÝÑJDK N 1 or N “
ś

pPpnpMq prLps.

We also show that adding recursion does not stop our projection being modular.

▶ Proposition 28. The EPP J´K given in Definition 8 and extended with the equations in
Section 4.1 is modular.

Proof. The only change to the projection of choreographies is adding the projection of f p⃗pq,
for which Lemma 13 still holds. Since no new contexts have been added, projection is then
still modular. ◀

5 EAP

We now use our theory of EPP to obtain an implementation of the core of the Extensible
Authentication Protocol (EAP) [28], which was modelled as a choreography in [6]. EAP is a
widely-employed link-layer protocol that defines an authentication framework allowing a peer
P to authenticate with a backend authentication server S, with the communication passing
through an authenticator A that acts as an access point for the network.

The framework provides a core protocol parametrised over a set of authentication methods
(either predefined or custom vendor-specific ones), modelled as individual choreographies
with type AuthMethod@pP, A, Sq “ String@S ÑtP,Au Bool@S.

For reasons of modularity, it is desirable that the core of the protocol be written in a way
that does not assume any particular authentication method. The eappP, A, Sq choreography
does exactly that by leveraging higher-order composition of choreographies:

eappP, A, Sq “ λmethods : rAuthMethods@pP, A, Sq.

eapAuthpP, A, Sq peapIdentitypP, A, Sq "Auth request"@Sq methods

eapAuthpP, A, Sq “ λid : String@S. λmethods : rAuthMethods@pP, A, Sq.

if emptypP, A, Sq methods then
eapFailurepP, A, Sq "Try again later"@S

else
if pfst methodsq id then

selectS,P ok pselectS,A ok peapSuccesspP, A, Sq "Welcome"@Sqq

else
selectS,P ko pselectS,A ko peapAuthpP, A, Sq id psnd methodsqqq

For the sake of simplicity, we have left out the definitions of a couple of helper choreo-
graphies that are referenced in the example:

eapIdentitypP, A, Sq : String@S ÑtP,Au String@S

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:21

emptypP, A, Sq : rAuthMethods@pP, A, Sq Ñ Bool@pP, A, Sq
eapSuccesspP, A, Sq : String@S Ñ pString@P ˆ String@Aq
eapFailurepP, A, Sq : String@S Ñ pString@P ˆ String@Aq

First, eappP, A, Sq fetches the client’s identity using eapIdentitypP, A, Sq, a function which
exchanges the necessary EAP packets and delivers the client’s identity to the server. Once
the identity is known, eapAuthpP, A, Sq is invoked in order to try the list of authentication
methods until one succeeds, or the list is exhausted and authentication fails.

EAP is parametric on a list of choreographies called methods. We use the notation for lists
in rAuthMethods@pP, A, Sq as described in Example 21, as well as the if M then M 1 else M2

construct which is just syntactic sugar for the previously described case M of Inl x ñ

M 1; Inr x ñ M2. Each authentication method can be an arbitrarily-complex choreography
with its own communication structures that can involve all three involved processes, and it
implements a particular authentication method on top of EAP.

The function emptypP, A, Sq is used to determine whether the list of methods is empty.
Recall the distributed boolean from Example 15, and note how we now use the same idea
to minimise unnecessary communication while still guaranteeing that every process has the
necessary information. The return type of this function, Bool@pP, A, Sq, denotes that the
function uniformly returns either true (Inl pq) or false (Inr pq) at all of P, A, and S. That
is, the result is guaranteed to be the same at these three processess. Since agreement is
guaranteed, each process can locally check its own value without having to perform any
selections. This is in contrast to the return type of each authentication method, Bool@S,
meaning that only the server S has the authority of determining whether the authentication
method was successful or not.

Finally, depending on the outcome of the authentication, an appropriate EAP packet is
delivered by using either eapSuccesspP, A, Sq or eapFailurepP, A, Sq to indicate the result to
the client.

eap1pA, Sq “ λmethods : rAuthMethods.

eapAuth1pA, Sq peapIdentity1pA, Sq Kq methods

eap2pP, Sq “ λmethods : rAuthMethods.

eapAuth2pP, Sq peapIdentity2pP, Sq Kq methods

eap3pP, Aq “ λmethods : rAuthMethods.

eapAuth3pP, Aq peapIdentity3pP, Aq "Auth request"q methods

It is interesting to look at the projections of eapAuthpP, A, Sq for each of the three
participants, which follow below. For the purposes of projection, we desugar the if-then-else
construct.

eapAuth1pA, Sq “ λid : K. λmethods : rAuthMethods.

case empty1pA, Sq methods of
Inl _ ñ eapFailure1pA, Sq K

Inr _ ñ &Stok : eapSuccess1pA, Sq K

ko : eapAuth1pA, Sq K psnd methodsqu

eapAuth2pP, Sq “ λid : K. λmethods : rAuthMethods.

case empty2pP, Sq methods of
Inl _ ñ eapFailure2pP, Sq K

Inr _ ñ &Stok : peapSuccess2pP, Sq Kq

ko : peapAuth2pP, Sq K psnd methodsqq

ECOOP 2023

7:22 Modular Compilation for Higher-Order Functional Choreographies

eapAuth3pP, Aq “ λid : String. λmethods : rAuthMethods.

case empty3pP, Aq methods of
Inl _ ñ eapFailure3pP, Aq "Try again later"
Inr _ ñ case pfst methodsq id of

Inl _ ñ ‘P ok p‘A ok peapSuccess3pP, Aq "Welcome"qq

Inr _ ñ ‘P ko p‘A ko peapAuth3pP, Aq id psnd methodsqqq

Note that the implementation of the check emptypP, A, Sq methods at each process is
completely local, i.e., it does not perform communications. This is possible because all
processes have access to the same list. Afterwards however, only the server S is capable of
determining whether the authentication method was successful or not, and has to communicate
that result to the other two participants by means of selections.

6 Related Work

We already discussed the most related work on choreographic programming and EPP in
Section 1. In this section, we discuss some technical aspects of our development in the
context of previous work more in detail.

In our process language, the terms for communication actions (send, receive, selection, and
branching) are adaptations to the functional setting of standard primitives from traditional
imperative choreographic programming [8, 10, 21] and the local language of multiparty
session types (choreographies without computation) [20, 19, 3]. A similar adaptation was
carried out in [27] for the different setting of multi-threading (their primitives are not based
on process names, but shared channels). Modelling a network as a map from process names
to programs was previously done in [9, 24]. The idea of reporting the names of the involved
processes in transition labels comes from [2, 19, 9, 24].

The first attempt at adding higher-order composition to choreographies goes back to [11],
for a choreographic language that cannot express data nor computation (it is an abstract
specification language). The approach in [11] adopts centralised coordination: resolving
a choreographic application (M M 1 in Chorλ, with M 1 involving more than one process)
requires that the programmer picks a process as central coordinator, which then orchestrates
the other processes with multicasts. This coordination effectively acts as a barrier, so
processes cannot perform their own local computations independently of each other when
higher-order composition is involved. Ten years after [11], another attempt at a notion of EPP
for higher-order choreographies was proposed in [18]. The language in [18] is more expressive,
i.e., it supports expressing computation at processes. However, this feature came at a cost:
it is even more centralised than [11]. In particular, every application in a choreography
requires that all processes generated by projection go through a global barrier that involves
the entire system. The global barrier is modelled as a middleware in the semantics of the
language, and involves even processes that do not contribute at all to the function or its
arguments. Because processes need to participate also in the resolution of applications that
do not involve them, the notion of EPP in [18] is not modular.

In contrast to [11] and [18], Chorλ presents no “hidden” barriers: coordination among
processes is left to the programmer of the choreography, and EPP inserts no hidden syn-
chronisations. Our EPP thus generates more concurrent and faithful implementations. It
is also the first modular EPP for functional choreographic programming: changing the
behaviours of some processes in a choreography requires re-running EPP only for those
processes. This is important for the application of choreographic programming to DevOps
(continuous integration and deployment), library management, and modularity in general.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:23

Another related line of work is that on multitier programming and its progenitor calculus,
Lambda 5 [25]. Similarly to Chorλ, Lambda 5 and multitier languages have data types with
locations [29]. However, they are used very differently. In choreographic languages (thus
Chorλ), programs have a “global” point of view and express how multiple processes interact
with each other. By contrast, in multitier programming programs have the usual “local” point
of view of a single process but they can nest (local) code that is supposed to be executed
remotely. The reader interested in a detailed comparison of choreographic and multitier
programming can consult [17], which presents algorithms for translating choreographies to
multitier programs and vice versa. The correctness of these algorithms has never been proven,
because they use an informally-specified fragment of Choral as a representative choreographic
language. We conjecture that the introduction of an EPP for Chorλ could be the basis for a
future comparison of the compilations for choreographic programs (in terms of Chorλ) and
multitier programs (in terms of Lambda 5).

To the best of our knowledge, no other work supports distributed choice types. The
nearest feature is presented in [21], where choreographic conditionals for a first-order calculus
can be conjunctions of local conditions at different processes. These conditions must be
checked to be consistent by means of separate proofs given in a Hoare-like logic. Our syntax
is more general, since conditions can be choreographies, and our EPP requires no such
additional proofs. However, using a Hoare logic in [21] gives some interesting flexibility, in
that agreement does not need to be encoded as distributed sum types. In the future, it could
be interesting to integrate the two approaches such that agreement could be proved by using
a logic and then made manifest to EPP through our distributed choice types.

7 Conclusion and Future Work

We have presented a new theory of compilation for higher-order functional choreographies,
which introduces modularity and decentralisation.

Our development validates the design of Chorλ [6], but it also reveals that in the case
without recursion it can be significantly simplified: reduction rules for out-of-order execution
were not necessary until we had to deal with divergence. In particular, we have shown that
the fragment of Chorλ without recursion can be modelled by simple semantics and still
achieve the standard deadlock-freedom by design property. However, once recursion is added,
a more sophisticated semantics allowing for out-of-order execution is required. This stems
from the structure of a functional choreography being different than traditional imperative
choreographies.

Our study fills a knowledge gap that is relevant for the future implementations and
applications of choreographic languages. An ad-hoc distributed implementation of higher-
order choreographies exists already in the Choral programming language [16]. However,
Choral is a large object-oriented language that extends Java, meaning that it is not practical
to formally study and prove the standard results expected of a choreographic language. We
have been able to prove these results – correspondence between choreography and projected
distributed implementation (Theorems 25 and 26) and deadlock-freedom (Corollary 27) –
because Chorλ captures the essence of higher-order choreographic composition in a small
language based on the λ-calculus. Our EPP is largely consistent with the implementation of
the Choral compiler, but there are two key differences, both caused by Chorλ being based on
the λ-calculus. First, since Choral is an object-oriented language, not every expression needs
to return a value even if the result of the expression is located elsewhere as in send; therefore,
Choral does not need a K construct. Second, Choral does not have distributed choice types
and instead restricts all conditions to be local (at one process). Thus, our distributed choice
types could form the basis for an interesting extension of Choral.

ECOOP 2023

7:24 Modular Compilation for Higher-Order Functional Choreographies

Aside from Choral, existing choreographic programming languages either have no higher-
order constructs (e.g., Scribble [30], a language based on multiparty session types [19]), or
have the compilation of their higher-order constructs lack modularity and decentralisation
(e.g., Pirouette [18]). Our results provide a foundation for adding mechanisms for higher-order
composition to other choreographic and similar languages with modular compilation.

Future Work

Synchronous communication is widely adopted in theories of processes and is usually imple-
mented in practice by using acknowledgements. A potential extension of Chorλ is adding
support for asynchronous communication, which is usually achieved by adding message queues
and choreographic terms to represent partially-executed communications [12, 7, 14, 24].

Another potential extension of Chorλ, our process language, and our theory of EPP
would be to enable abstraction over process names, that is, extending the syntax such that
values can be the names of processes to be acted upon. This could, for example, enable the
modelling of choreographies with dynamic topologies, where processes discover whom they
have to interact with at runtime.

References
1 Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-centered

programming for web services. ACM Trans. Program. Lang. Syst., 34(2):8:1–8:78, 2012.
doi:10.1145/2220365.2220367.

2 Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty asynchronous
global programming. In Roberto Giacobazzi and Radhia Cousot, editors, Procs. POPL, pages
263–274. ACM, 2013. doi:10.1145/2429069.2429101.

3 Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. Multiparty
session types as coherence proofs. Acta Informatica, 54(3):243–269, 2017. doi:10.1007/
s00236-016-0285-y.

4 Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global types and
multi-party session. Log. Methods Comput. Sci., 8(1), 2012. doi:10.2168/LMCS-8(1:24)2012.

5 Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics,
33(2):346–366, 1932. URL: http://www.jstor.org/stable/1968337.

6 Luís Cruz-Filipe, Eva Graversen, Lovro Lugović, Fabrizio Montesi, and Marco Peressotti.
Functional choreographic programming. In Helmut Seidl, Zhiming Liu, and Corina S. Pasareanu,
editors, Theoretical Aspects of Computing – ICTAC 2022 – 19th International Colloquium,
Tbilisi, Georgia, September 27-29, 2022, Proceedings, volume 13572 of Lecture Notes in
Computer Science, pages 212–237. Springer, 2022. doi:10.1007/978-3-031-17715-6_15.

7 Luís Cruz-Filipe and Fabrizio Montesi. On asynchrony and choreographies. In Massimo
Bartoletti, Laura Bocchi, Ludovic Henrio, and Sophia Knight, editors, Proceedings 10th
Interaction and Concurrency Experience, ICE@DisCoTec 2017, Neuchâtel, Switzerland, 21-
22nd June 2017, volume 261 of EPTCS, pages 76–90, 2017. doi:10.4204/EPTCS.261.8.

8 Luís Cruz-Filipe and Fabrizio Montesi. A core model for choreographic programming. Theor.
Comput. Sci., 802:38–66, 2020. doi:10.1016/j.tcs.2019.07.005.

9 Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. Certifying choreography compilation.
In Antonio Cerone and Peter Csaba Ölveczky, editors, Theoretical Aspects of Computing
– ICTAC 2021 – 18th International Colloquium, Virtual Event, Nur-Sultan, Kazakhstan,
September 8-10, 2021, Proceedings, volume 12819 of Lecture Notes in Computer Science, pages
115–133. Springer, 2021. doi:10.1007/978-3-030-85315-0_8.

10 Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. Formalising a turing-complete
choreographic language in coq. In Liron Cohen and Cezary Kaliszyk, editors, 12th International
Conference on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy
(Virtual Conference), volume 193 of LIPIcs, pages 15:1–15:18. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ITP.2021.15.

https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.2168/LMCS-8(1:24)2012
http://www.jstor.org/stable/1968337
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.4204/EPTCS.261.8
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.4230/LIPIcs.ITP.2021.15

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:25

11 Romain Demangeon and Kohei Honda. Nested protocols in session types. In Maciej Koutny
and Irek Ulidowski, editors, CONCUR 2012 – Concurrency Theory – 23rd International
Conference, CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012. Proceedings,
volume 7454 of Lecture Notes in Computer Science, pages 272–286. Springer, 2012. doi:
10.1007/978-3-642-32940-1_20.

12 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating
automata: Characterisation and synthesis of global session types. In Fedor V. Fomin, Rusins
Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Languages, and
Programming – 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013,
Proceedings, Part II, volume 7966 of Lecture Notes in Computer Science, pages 174–186.
Springer, 2013. doi:10.1007/978-3-642-39212-2_18.

13 Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans. Inf.
Theory, 22(6):644–654, 1976. doi:10.1109/TIT.1976.1055638.

14 Simon Fowler, Sam Lindley, and Philip Wadler. Mixing metaphors: Actors as channels and
channels as actors. In Peter Müller, editor, 31st European Conference on Object-Oriented
Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain, volume 74 of LIPIcs, pages
11:1–11:28. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
ECOOP.2017.11.

15 Saverio Giallorenzo, Ivan Lanese, and Daniel Russo. Chip: A choreographic integration process.
In Hervé Panetto, Christophe Debruyne, Henderik A. Proper, Claudio Agostino Ardagna,
Dumitru Roman, and Robert Meersman, editors, Procs. OTM, part II, volume 11230 of Lecture
Notes in Computer Science, pages 22–40. Springer, 2018. doi:10.1007/978-3-030-02671-4_2.

16 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Object-oriented choreographic
programming. CoRR, abs/2005.09520, 2020. URL: https://arxiv.org/abs/2005.09520.

17 Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi,
and Pascal Weisenburger. Multiparty Languages: The Choreographic and Multitier Cases.
In 35th European Conference on Object-Oriented Programming, ECOOP 2021, July 12-17,
2021, Aarhus, Denmark (Virtual Conference), LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2021. To appear. Pre-print available at https://fabriziomontesi.com/files/
gmprsw21.pdf.

18 Andrew K. Hirsch and Deepak Garg. Pirouette: higher-order typed functional choreographies.
Proc. ACM Program. Lang., 6(POPL):1–27, 2022. doi:10.1145/3498684.

19 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9, 2016. Also: POPL, pages 273–284, 2008. doi:10.1145/2827695.

20 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1–3:36, 2016. doi:10.1145/2873052.

21 Sung-Shik Jongmans and Petra van den Bos. A predicate transformer for choreographies –
computing preconditions in choreographic programming. In Ilya Sergey, editor, Programming
Languages and Systems – 31st European Symposium on Programming, ESOP 2022, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, volume 13240 of Lecture Notes in Computer
Science, pages 520–547. Springer, 2022. doi:10.1007/978-3-030-99336-8_19.

22 Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gunawi. TaxDC:
A taxonomy of non-deterministic concurrency bugs in datacenter distributed systems. In Proc.
of ASPLOS, pages 517–530, 2016.

23 Fabrizio Montesi. Choreographic Programming. Ph.D. Thesis, IT University of Copenhagen,
2013. http://www.fabriziomontesi.com/files/choreographic-programming.pdf.

24 Fabrizio Montesi. Introduction to Choreographies. Cambridge University Press, 2023.
25 Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric modal

lambda calculus for distributed computing. In 19th IEEE Symposium on Logic in Computer
Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings, pages 286–295. IEEE
Computer Society, 2004. doi:10.1109/LICS.2004.1319623.

ECOOP 2023

https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.4230/LIPIcs.ECOOP.2017.11
https://doi.org/10.4230/LIPIcs.ECOOP.2017.11
https://doi.org/10.1007/978-3-030-02671-4_2
https://arxiv.org/abs/2005.09520
https://fabriziomontesi.com/files/gmprsw21.pdf
https://fabriziomontesi.com/files/gmprsw21.pdf
https://doi.org/10.1145/3498684
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2873052
https://doi.org/10.1007/978-3-030-99336-8_19
http://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://doi.org/10.1109/LICS.2004.1319623

7:26 Modular Compilation for Higher-Order Functional Choreographies

26 Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993–999, 1978. doi:10.1145/359657.359659.

27 Vasco Thudichum Vasconcelos, Simon J. Gay, and António Ravara. Type checking a multi-
threaded functional language with session types. Theor. Comput. Sci., 368(1-2):64–87, 2006.
doi:10.1016/j.tcs.2006.06.028.

28 John Vollbrecht, James D. Carlson, Larry Blunk, Dr. Bernard D. Aboba, and Henrik Levkowetz.
Extensible Authentication Protocol (EAP). RFC 3748, June 2004. doi:10.17487/RFC3748.

29 Pascal Weisenburger, Johannes Wirth, and Guido Salvaneschi. A survey of multitier program-
ming. ACM Comput. Surv., 53(4):81:1–81:35, 2020. doi:10.1145/3397495.

30 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In Martín Abadi and Alberto Lluch-Lafuente, editors, Trustworthy Global Computing
– 8th International Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013,
Revised Selected Papers, volume 8358 of Lecture Notes in Computer Science, pages 22–41.
Springer, 2013. doi:10.1007/978-3-319-05119-2_3.

A Full definitions and proofs

▶ Definition 29 (Free Variables). Given a choreography M , the free variables of M , fvpMq

are defined as:
fvpN N 1

q “ fvpNq Y fvpN 1
q fvpselectq,p l Mq “ fvpMq

fvpxq “ x fvpλx : T.Nq “ fvpNqztxu

fvppq@pq “ H fvpcomq,pq “ H

fvpf p⃗pqq “ H fvpPair V V 1
q “ fvpV q Y fvpV 1

q

fvpcase N of Inl x ñ M ; Inr y ñ M 1
q “ fvpNq Y pfvpMqztxuq Y pfvpM 1

qztyuq

fvpfstq “ fvpsndq “ H fvpInl V q “ fvpInr V q “ fvpV q

▶ Definition 30 (Bound Variables). Given a choreography M , the bound variables of M ,
bvpMq are defined as:

bvpN N 1
q “ bvpNq Y bvpN 1

q bvpselectq,p l Mq “ bvpMq

bvpxq “ H bvpλx : T.Nq “ bvpNq Y txu

bvppq@pq “ H bvpcomq,pq “ H

bvpf p⃗pqq “ H fvpPair V V 1
q “ bvpV q Y bvpV 1

q

bvpcase N of Inl x ñ M ; Inr y ñ M 1
q “ bvpNq Y bvpMq Y txu Y pbvpM 1

q Y tyuq

bvpfstq “ bvpsndq “ H bvpInl V q “ bvpInr V q “ bvpV q

▶ Definition 31 (Process names of a type). The process names of a type T , pnpT q, are defined
as follows.

pnpt@R⃗q “ R⃗ pnpT Ñρ T 1q “ pnpT q Y pnpT 1q Y ρ

pnppq@Rq “ tRu pnpT ` T 1q “ pnpT ˆ T 1q “ pnpT q Y pnpT 1q

▶ Definition 32 (Process names of a choreography). The process names of a choreography M ,
pnpMq, are defined as follows.

pnpM Nq “ pnpMq Y pnpNq

pnpselectp,q, l Mq “ tp, qu Y pnpMq

pnpxq “ H

pnpcase M of Inl x ñ N ; Inr y ñ N 1q “ pnpMq Y pnpNq Y pnpN 1q

pnpλx : T.Mq “ pnpT q Y pnpMq

pnpInl V q “ ppn Inr V q “ pnpV q

https://doi.org/10.1145/359657.359659
https://doi.org/10.1016/j.tcs.2006.06.028
https://doi.org/10.17487/RFC3748
https://doi.org/10.1145/3397495
https://doi.org/10.1007/978-3-319-05119-2_3

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:27

Θ1; Σ; Γ, x : T $ M : T 1 ρ Y pnpT q Y pnpT 1q “ Θ1 Ď Θ
Θ; Σ; Γ $ λx : T.M : T Ñρ T 1

[TAbs]

x : T P Γ pnpT q Ď Θ
Θ; Σ; Γ $ x : T

[TVar]
Θ; Σ; Γ $ N : T Ñρ T 1 Θ; Σ; Γ $ M : T

Θ; Σ; Γ $ N M : T 1
[TApp]

Θ; Σ; Γ $ N : T1 ` T2 Θ; Σ; Γ, x : T1 $ M 1 : T Θ; Σ; Γ, x1 : T2 $ M2 : T

Θ; Σ; Γ $ case N of Inl x ñ M 1; Inr x1 ñ M2 : T
[TCase]

Θ; Σ; Γ $ M : T q, p P Θ
Θ; Σ; Γ $ selectq,p l M : T

[TSel]

fpp⃗1q : T P Γ pnpT q Ď p⃗1 Ď Θ ||⃗p|| “ ||p⃗1|| distinctp⃗pq
Θ; Σ; Γ $ f p⃗pq : T rp⃗1 :“ p⃗s

[TFun]

p P Θ
Θ; Σ; Γ $ pq@p : pq@p

[TUnit]
q, p P Θ pnpT q “ q

Θ; Σ; Γ $ comq,p : T ÑH T rq :“ ps
[TCom]

Θ; Σ; Γ $ V : T Θ; Σ; Γ $ V 1 : T 1

Θ; Σ; Γ $ Pair V V 1 : pT ˆ T 1q
[TPair]

pnpT ˆ T 1q Ď Θ
Θ; Σ; Γ $ fst : pT ˆ T 1q ÑH T

[TProj1]
pnpT ˆ T 1q Ď Θ

Θ; Σ; Γ $ snd : pT ˆ T 1q ÑH T 1
[TProj2]

Θ; Σ; Γ $ V : T pnpT ` T 1q Ď Θ
Θ; Σ; Γ $ Inl V : pT ` T 1q

[TInl]
Θ; Σ; Γ $ V : T 1 pnpT ` T 1q Ď Θ

Θ; Σ; Γ $ Inr V : pT ` T 1q
[TInR]

Θ; Σ; Γ $ M : t@p⃗ t@p⃗1 “Σ T ||⃗p|| “ ||p⃗1|| distinctp⃗pq
Θ; Σ; Γ $ M : T rp⃗1 :“ p⃗s

[TEq]

@f p⃗pq P dompDq : f p⃗pq : T P Γ p⃗; Σ; Γ $ Dpf p⃗pqq : T distinctp⃗pq p⃗ Ď Θ
Θ; Σ; Γ $ D

[TDefs]

Figure 7 Full set of typing rules for Chorλ.

pnpPair V V 1q “ pnpV q Y pnpV 1q

pnpfstq “ pnpsndq “ H

pnpcomp,q,q “ tp, qu

▶ Definition 33. We define the set of synchronising processes of a choreography M , spnpMq,
by recursion on the structure of M :

spnpcomS,Rq “ tS, Ru, spnpselectS,R l Mq “ tS, Ru Y spnpMq,
spnpfpR⃗qq “ R⃗, and homomorphically on all other cases.

▶ Definition 34 (Merging). Given two behaviours B and B1, B \ B1 is defined as follows.

B1 B2 \ B1
1 B1

2 “ pB1 \ B1
1q pB2 \ B1

2q

case B1 of Inl x ñ B2; Inr y ñ B3 \ case B1
1 of Inl x ñ B1

2; Inr y ñ B1
3 “

case pB1 \ B1
1q of Inl x ñ pB2 \ B1

2q; Inr y ñ pB3 \ B1
3q

‘p ℓ B \ ‘p ℓ B1
“ ‘p ℓ pB \ B1

q

&tℓi : BiuiPI \ &tℓj : B1
jujPJ “ &

`

tℓk : Bk \ B1
kukPIXJ Y tℓi : BiuiPIzJ Y tℓj : B1

jujPJzI

˘

x \ x “ x λx : T.B \ λx : T.B1
“ λx : T.pB \ B1

q

ECOOP 2023

7:28 Modular Compilation for Higher-Order Functional Choreographies

fvpV q X bvpMq “ H

λx : T.M V
τ,H
ÝÝÑD M rx :“ V s

[AppAbs]
M

ℓ,P
ÝÝÑD M 1

λx : T.M
λ,P
ÝÝÑD λx : T.M 1

[InAbs]

M
ℓ,P
ÝÝÑD M 1 ℓ “ λ ñ P X pnpNq “ H

M N
τ,P
ÝÝÑD M 1 N

[App1]

N
τ,P
ÝÝÑD N 1

V N
τ,P
ÝÝÑD V N 1

[App2]
N

τ,P
ÝÝÑD N 1 P X pnpMq “ H

M N
τ,P
ÝÝÑD M N 1

[App3]

N
τ,P
ÝÝÑD N 1

case N of Inl x ñ M ; Inr x1 ñ M 1 τ,P
ÝÝÑD case N 1 of Inl x ñ M ; Inr x1 ñ M 1

[Case]

M1
ℓ,P
ÝÝÑD M 1

1 M2
ℓ,P
ÝÝÑD M 1

2 P X pnpNq “ H

case N of Inl x ñ M1; Inr x1 ñ M2
ℓ,P
ÝÝÑD case N of Inl x ñ M 1

1; Inr x1 ñ M 1
2

[InCase]

case Inl V of Inl x ñ M ; Inr x1 ñ M 1 τ,H
ÝÝÑD M rx :“ V s

[CaseL]

case Inr V of Inl x ñ M ; Inr x1 ñ M 1 τ,H
ÝÝÑD M 1rx1 :“ V s

[CaseR]

fst Pair V V 1 τ,H
ÝÝÑD V

[Proj1]
snd Pair V V 1 τ,H

ÝÝÑD V 1

[Proj2]

Dpfpp⃗1qq “ M

f p⃗pq τ,H
ÝÝÑD M rp⃗1 :“ p⃗s

[Def]

fvpV q “ H

comq,p V
τ,tq,pu
ÝÝÝÝÑD V rq :“ ps

[Com]
selectq,p l M

τ,tq,pu
ÝÝÝÝÑD M

[Sel]

M
ℓ,P
ÝÝÑD M 1 P X tq, pu “ H

selectq,p ℓ M
ℓ,P
ÝÝÑD selectq,p ℓ M 1

[InSel] M ù˚ N N
τ,P
ÝÝÑ N 1

M
τ,P
ÝÝÑD M 1

[Str]

Figure 8 Semantics of Chorλ.

fst \ fst “ fst snd \ snd “ snd
Inl L \ Inl L1

“ Inl pL \ L1
q Inr L \ Inr L1

“ Inr pL \ L1
q

Pair L1 L2 \ Pair L1
1 L1

2 “ Pair pL1 \ L1
1q pL2 \ L1

2q f \ f “ f

recvp \ recvp “ recvp sendp \ sendp “ sendp K \ K “ K

▶ Definition 35 (Context). We define a context Crs in Chorλ as follows:

Crs ::“ rs | M Crs | Crs M | selectp,p l Crs | case Crs of Inl x ñ M ; Inr x ñ M

| case M of Inl x ñ Crs; Inr x ñ M | case M of Inl x ñ M ; Inr x1 ñ Crs

| λx : T .Crs

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:29

x R fvpM 1q

ppλx : T.Mq Nq M 1 ù pλx : T.pM M 1qq Nq
[R-AbsR]

x R fvpM 1q spnpM 1q X pnpNq “ H

M 1 ppλx : T.Mq Nq ù pλx : T.pM 1 Mqq Nq
[R-AbsL]

x, x1 R fvpMq

pcase N of Inl x ñ M1; Inr x1 ñ M2q M ù

case N of Inl x ñ pM1 Mq; Inr x1 ñ pM2 Mq

[R-CaseR]

x, x1 R fvpMq spnpMq X pnpNq “ H

M pcase N of Inl x ñ M1; Inr x1 ñ M2q ù

case N of Inl x ñ pM M1q; Inr x1 ñ pM M2q

[R-CaseL]

pselectq,p l Nq M ù selectq,p l pN Mq
[R-SelR]

spnpMq X pnpNq “ H

M pselectq,p l Nq ù selectq,p l pM Nq
[R-SelL]

y fresh for M

λx : T.M ù λy : T.M rx :“ ys
[R-alph]

Figure 9 Rewriting of Chorλ.

ECOOP 2023

7:30 Modular Compilation for Higher-Order Functional Choreographies

fvpLq “ H

sendp L
sendp L
ÝÝÝÝÝÑD K

[NSend]
recvp K

recvp L
ÝÝÝÝÑD L

[NRecv]

B
sendq L
ÝÝÝÝÝÑDpqq B1

1 B2
recvp L
ÝÝÝÝÑDppq B1

2

qrB1s | prB2s
τq,p
ÝÝÑD qrB1

1s | prB1
2s

[NCom]

‘p l B
‘p l
ÝÝÝÑD B

[NCho]
&ptℓ1 : B1, . . . , ℓn : Bnu

&pℓi
ÝÝÝÑD Bi

[NOff]

Bi
µ
ÝÑD B1

i for 1 ď i ď n µ P tτ, λu

&ptℓ1 : B1, . . . , ℓn : Bnu
µ
ÝÑD &ptℓ1 : B1

1, . . . , ℓn : B1
nu

[NOff2]

B
µ
ÝÑD B1 µ P tτ, λu

‘p l B
µ
ÝÑD ‘p l B1

[NCho2]
B1

‘p ℓ
ÝÝÝÑDpqq B1

1 B2
&q ℓ
ÝÝÝÑDppq B1

2

qrB1s | prB2s
τq,p
ÝÝÑD qrB1

1s | prB1
2s

[NSel]

pλx : T.Bq L
τ
ÝÑD Brx :“ Ls

[NAbsApp]
B

µ
ÝÑD B1 µ P tτ, λu

λx : T.B
λ
ÝÑD λx : T.B1

[NInAbs]

B
µ
ÝÑD B2 if µ “ λ then µ1 “ τ else µ1 “ µ

B B1 µ1

ÝÑD B2 B1

[NApp1]

B
µ
ÝÑD B1

L B
µ
ÝÑD L B1

[NApp2] B1 τ
ÝÑD B2

B B1 τ
ÝÑD B B2

[NApp3]

B
µ
ÝÑD B3

case B of Inl x ñ B1; Inr x1 ñ B2 µ
ÝÑD case B3 of Inl x ñ B1; Inr x1 ñ B2

[NCase]

B1
µ
ÝÑD B1

1 B2
µ
ÝÑD B1

2 µ P tλ, τu

case B of Inl x ñ B1; Inr x1 ñ B2
µ
ÝÑD case B of Inl x ñ B1

1; Inr x1 ñ B1
2

[NCase2]

case Inl L of Inl x ñ B; Inr x1 ñ B1 τ
ÝÑD Brx :“ Ls

[NCaseL]

case Inr L of Inl x ñ B; Inr x1 ñ B1 τ
ÝÑD B1rx1 :“ Ls

[NCaseR]

fst Pair L L1 τ
ÝÑD L

[NProj1]
snd Pair L L1 τ

ÝÑD L1
[NProj2]

B
τ
ÝÑDppq B1

prBs
τp
ÝÑD prB1s

[NPro] N τP
ÝÑD N 2

N | N 1 τP
ÝÑD N 2 | N 1

[NPar]

Dpfpp⃗1qq “ B

f p⃗pq τ
ÝÑD Brp⃗1 :“ p⃗s

[NFun] B ù˚ B2 B2 µ
ÝÑ B1

B
µ
ÝÑD B1

[NStr]

Figure 10 Semantics of networks.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:31

ppλx.Bq B1q B2 ù pλx.B B2q B1q
[LR-AbsR]

pnpB2q “ H

B2 ppλx.Bq B1q ù pλx.B2 Bq B1q
[LR-AbsL]

pcase B of Inl x ñ B1; Inr x ñ B2q B1 ù

case B of Inl x ñ pB1 B1q; Inr x ñ pB2 B1q

[LR-CaseR]

pnpB1q “ H

B1 pcase B of Inl x ñ B1; Inr x ñ B2q ù

case B of Inl x ñ pB1 B1q; Inr x ñ pB1 B2q

[LR-CaseL]

pnpBq “ H

B p&ptl1 : B1, . . . , ln : Bnuq ù &ptl1 : B B1, . . . , ln : B Bnu
[LR-OffL]

p&ptl1 : B1, . . . , ln : Bnuq B ù &ptl1 : B1 B, . . . , ln : Bn Bu
[LR-OffR]

pnpB1q “ H

B1 p‘p l Bq ù ‘p l pB1 Bq
[LR-ChoL]

p‘p l Bq B1 ù ‘p l pB B1q
[LR-ChoR]

K K ù K
[LR-Botm]

y fresh for Bq

λx : T.B ù λy : T.Brx :“ ys
[LR-Alph]

Figure 11 Rewriting of processes.

Σ; Γ $ B : T

Σ; Γ $ ‘p ℓ B : T
[NTChor]

Σ; Γ $ Bi : T for 1 ď i ď n

Σ; Γ $ &ptℓ1 : B1, . . . ℓn : Bnu : T
[NTOff]

Σ; Γ $ sendp : T Ñ K
[NTSend] Σ; Γ $ recvp : K Ñ T

[NTRecv]

Σ; Γ, x : T $ B : T 1

Σ; Γ $ λx : T.B : T Ñ T 1
[NTAbs] x : T P Γ

Σ; Γ $ x : T
[NTVar]

Σ; Γ $ B : T Ñ T 1 Σ; Γ $ B : T

Σ; Γ $ B B1 : T 1
[NTApp]

Σ; Γ $ B : K Σ; Γ $ B1 : K
Σ; Γ $ B B1 : K

[NTApp2]

Σ; Γ $ B : T1 ` T2 Σ; Γ, x : T1 $ B1 : T Σ; Γ, x1 : T2 $ B2 : T

Σ; Γ $ case B of Inl x ñ B1; Inr x1 ñ B2 : T
[NTCase]

f : T P Γ
Σ; Γ $ f : T

[NTDef] Σ; Γ $ pq : pq
[NTUnit]

Σ; Γ $ K : K [NTbotm]

Σ; Γ $ Pair : T Ñ T 1 Ñ pT ˆ T 1q
[NTPair]

Σ; Γ $ fst : pT ˆ T 1q Ñ T
[NTProj1]

Σ; Γ $ snd : pT ˆ T 1q Ñ T 1
[NTProj2]

Σ; Γ $ B : T 1 tT “ T 1, T 1 “ T u X Σ ‰ H

Σ; Γ $ B : T
[NTEq]

@f P dompDq f : T P Γ Σ; Γ $ Dpfq : T

Σ; Γ $ D
[NTDefs]

Figure 12 Typing rules for behaviours.

ECOOP 2023

7:32 Modular Compilation for Higher-Order Functional Choreographies

Choreographies:

JM NKp “

$

’

’

’

’

’

&

’

’

’

’

’

%

JMKp JNKp if p P pnptypepMqq or p P pnpMq X pnpNq

K if JMKp “ JNKp “ K

JMKp if JNKp “ K

JNKp otherwise

Jλx : T.MKp “

#

λx. JMKp if p P pnptypepλx : T.Mqq

K otherwise

q
case M of Inl x ñ N; Inr x

1
ñ N

1y
p “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

case JMKp of Inl x ñ JNKp; Inr x
1
ñ

q
N

1y
p if p P pnptypepMqq

JMKp if JNKp “
q

N 1
y

p “ K

JNKp \
q

N
1y

p if JMKp “ K

pλx
2 : K. JNKp \

q
N

1y
pq JMKp otherwise, for some

x2
R fvpNq Y fvpN 1

q

q
selectq,q1 ℓ M

y
p “

$

’

’

&

’

’

%

‘q1 ℓ JMKp if p “ q ‰ q1

&qtℓ : JMKpu if p “ q1
‰ q

JMKp otherwise

q
comq,q1

y
p “

$

’

’

’

’

&

’

’

’

’

%

λx.x if p “ q “ q1

sendq1 if p “ q ‰ q1

recvq if p “ q1
‰ q

K otherwise

Jpq@qKp “

#

pq if q “ p
K otherwise

JxKp “

#

x if p P pnptypepxqq
K otherwise

Jf p⃗pqKp “

#

fipp1, . . . , pi´1, pi`1, . . . , pnq if p⃗ “ p1, . . . , pi´1, p, pi`1, . . . , pn

K otherwise

JPair V V
1Kp “

#

Pair JV Kp JV
1Kp if p P pnptypepV q ˆ typepV 1

qq

K otherwise

JfstKp “

#

fst if p P pnptypepfstqq
K otherwise

JsndKp “

#

snd if p P pnptypepsndqq
K otherwise

JInl V Kp “

#

Inl JV Kp if p P pnptypepInl V qq

K otherwise
JInr V Kp “

#

Inr JV Kp if p P pnptypepInr V qq

K otherwise

Types:

JT Ñρ T
1Kp “

#

JT Kp Ñ JT
1Kp if p P ρ Y pnpT q Y pnpT 1

q

K otherwise
Jpq@qKp “

#

pq if q “ p
K otherwise

JT ˆ T
1Kp “

#

JT Kp ˆ JT
1Kp if p P pnpT ˆ T 1

q

K otherwise
JT ` T

1Kp “

#

JT Kp ` JT
1Kp if p P pnpT ` T 1

q

K otherwise

Jt@p⃗Kp “

#

ti if p⃗ “ p1, . . . , pi´1, p, pi`1, . . . , pn

K otherwise

Definitions:
JDK “ tfipp1, . . . , pi´1, pi`1, . . . , pnq ÞÑ JDpfpp1, . . . , pnqqKpi

| fpp1, . . . , pnq P dompDquu

Figure 13 Projecting Chorλ onto a process.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:33

A.1 Proof of Theorem 25
Proof of Lemma 5. Straightforward from the network semantics. ◀

▶ Lemma 36. Given a value V , if Θ; Σ; Γ $ V : T and JV K is defined then for any process p
in pnpV q, JV Kp “ L.

Proof. Straightforward from the projection rules. ◀

▶ Lemma 37. Given a type T , for any process p R pnpT q, JT Kp “ K.

Proof. Straightforward from induction on T . ◀

▶ Lemma 38. Given a value V , for any process p R pnptypepV qq, if JV Kp is defined then
JV Kp “ K.

Proof. Follows from Lemmas 36 and 37 and the projection rules. ◀

▶ Lemma 39. If M ù M 1 and M
τ,P
ÝÝÑD M2 and JMK is defined then M 1 τ,P

ÝÝÑD M3 such
that M2 ù˚ M3

Proof. Follows from case analysis on M ù M 1. ◀

▶ Lemma 40. If M ù M 1 then for any process p, JMKp ù Y
τ
ÝÑ

˚
B such that B ” JM 1Kp

Proof. Follows from case analysis on M ù M 1. ◀

Proof of Theorem 25. We prove this by structural induction on M
τ,P
ÝÝÑD M 1.

Assume M “ λx : T.N V and M 1 “ N rx :“ V s. Then for any process p P pnptypepλx :
T.Nqq, we have JMKp “ pλx : JT Kp .JNKpq JV Kp and JM 1Kp “ JNKprx :“ JV Kps, and for
any p1 R pnptypepλx : T.Nqq, we have p1 R pnptypepV qq and therefore JMKp1 “ JM 1Kp1 “

K. We therefore get prJMKps
τ
ÝÑJDK JM 1Kp for all p P pnptypepλx : T.Nq and define

N “
ś

pPpnptypepλx:T.Nqq

prJM 1Kps |
ś

p1Rpnptypeppλx:T.Nqq

p1rKs and the result follows.

Assume M “ N M2, M 1 “ N 1 M2, and N
τ,P
ÝÝÑD N 1. Then for any process p P

pnptypepNqq, JMKp “ JNKp JM2Kp and JM 1Kp “ JN 1Kp JM2Kp. For any process p1 such
that JNKp1 “ JM2Kp1 “ K, by induction we have JN 1Kp1 “ K, and therefore JMKp1 “

JM 1Kp1 “ K. For any other process p2 such that JNKp2 “ K, by induction we get
JN 1Kp2 “ K and therefore JMKp2 “ JM 1Kp2 “ JM2Kp2 . For any other process p3 such
that JM2Kp3 “ K, we get JMKp3 “ JNKp3 and JM 1Kp3 “ JN 1Kp3 . And by induction
JNK Ñ˚

JDK NN and N 1 Ñ˚
JDK N2 for NN Ŋ JN2K. For any process p we therefore get

JNKp
µ0
ÝÑJDK

µ1
ÝÑJDK . . . Bp for Bp Ŋ JN2Kp for some sequences of transitions µ0

ÝÑJDK
µ1
ÝÑJDK

. . . , and from the network semantics we get

JMK Ñ˚

ś

pPpnptypepNqqYppnpNqXpnpM2qq

prBp JM2Kps |
ś

JNKp1“JM2Kp1“K

p1rKs

|
ś

JMKp2“JM2Kp2

p2rJM2Kp2s |
ś

JMKp3“JNKp3

p2rBp2s
“ N

and M 1 Ñ˚ N2 M . And since JNK Ñ˚
JDK N 1 and JN 1K Ñ˚

JDK N 1
N , we know these

sequences of transitions can synchronise when necessary, and if JNKp4 ‰ JN 1Kp4 “ K

then we can do the extra application to get rid of this unit.

ECOOP 2023

7:34 Modular Compilation for Higher-Order Functional Choreographies

Assume M “ V N , M 1 “ V N 1, and N
τ,P
ÝÝÑD N 1. Then for any process p P pnptypepV qq,

JMKp “ JV Kp JNKp and JM 1Kp “ JV Kp JN 1Kp. Since V is a value, for any process p1 R

pnptypepV qq, we have JV Kp1 “ K and so for any process p1 such that JV Kp1 “ JNKp1 “ K,
by induction we get JN 1Kp1 “ K and therefore JMKp1 “ JM 1Kp1 “ K. For any other process
p2 such that JV Kp2 “ K, we have JMKp2 “ JNKp2 and JM 1Kp2 “ JN 1Kp2 . By induction,
JNK Ñ˚

JDK NN and N 1 Ñ˚
JDK N2 for NN Ŋ JN2K. For any process p we therefore

get JNKp
µ0
ÝÑJDKppq

µ1
ÝÑJDKppq . . . Bp for Bp Ŋ JN2Kp for some sequences of transitions

µ0
ÝÑJDKppq

µ1
ÝÑJDKppq . . . and from the network semantics we get

JMK Ñ˚
ź

pPpnptypepNqq

prJV Kp Bps |
ź

p1RpnptypepNqq

p1rBp1s “ N

and

M 1 Ñ˚ V N2

and the result follows.
Assume M “ M2 N , M 1 “ M2 N 1, N

τ,P
ÝÝÑ N 1, and pnpMqXP “ H. Then for any p P P,

pnpJM2Kpq X P “ H and the result follows from induction and using rule NApp3.
Assume M “ case N of Inl x ñ N 1; Inr x1 ñ N2, M 1 “ case M2 of Inl x ñ

N 1; Inr x ñ N2, and N
τ,P
ÝÝÑD M2. Then for any process p such that p P pnptypepNqq,

we have projections JMKp “ case JNKp of Inl x ñ JN 1Kp; Inr x1 ñ JN2Kp and JM 1Kp “

case JM2Kp of Inl x ñ JN 1Kp; Inr x1 ñ JN2Kp. For any other process p1 such that
JNKp1 “ JN 1Kp1 “ JN2Kp1 “ K, by induction we get JM2Kp1 “ K, and therefore JMKp1 “

JM 1Kp1 “ K. For any other process p2 such that JNKp2 “ K, we get JMKp2 “ JM 1Kp2 “

JN 1Kp2 \ JN2Kp2 . For any other processes p3 such that JN 1Kp3 “ JN2Kp3 “ K, we
have JMKp3 “ JNKp3 and JM 1Kp3 “ JM2Kp3 . For any other process p4, we have
JMKp4 “ pλx : K.JN 1Kp4\JN2Kp4q JNKp4 and JM 1Kp4 “ pλx.JN 1Kp4\JN2Kp4q JM2Kp4

for x R fvpN 1q Y fvpN2q. The rest follows by simple induction similar to the second case.
Assume M “ case N of Inl x ñ N1; Inr x1 ñ N2, M 1 “ case N of Inl x ñ N 1

1; Inr x1 ñ

N 1
2, N1

τ,P
ÝÝÑD N 1

1, N1
τ,P
ÝÝÑD N2, and P X pnpNq “ H. Then for any process p such

that p P pnptypepNqq, we have JMKp “ case JNKp of Inl x ñ JN 1Kp; Inr x1 ñ JN2Kp
For any other process p1 such that JNKp1 “ JN1Kp1 “ JN2Kp1 “ K, by induction we get
JN 1

1Kp1 “ JN 1
2Kp1 “ K, and therefore JMKp1 “ JM 1Kp1 “ K. For any other process p2 such

that JNKp2 “ K, we get JMKp2 “ JN1Kp2 \ JN2Kp2 . For any other processes p3 such that
JN1Kp3 “ JN2Kp3 “ K, we have JMKp3 “ JNKp3 . For any other process p4, we have
JMKp4 “ pλx : K.JN1Kp4 \ JN2Kp4q JNKp4 . If JN 1

1Kp \ JN 1
2Kp is defined for all p then

the result follows from induction. Otherwise we have M1 and M2 such that N 1
1

τ,P
ÝÝÑD M1

and N 1
2 Ñ τ, PDM2 and JM1Kp \ JM2Kp for all p, and the result follows from induction

on these transitions.
Assume M “ case Inl V of Inl x ñ N ; Inr x1 ñ N 1 and M 1 “ N rx :“ V s. Then for any
process p P pnptypepInl V qq, we have JMKp “ case Inl JV Kp of Inl x ñ JNKp; Inr x1 ñ

JN 1Kp and JM 1Kp “ JN rx :“ JV KpsKp. By Lemma 38, JN rx :“ JV KpsKp “ JNKprx :“ JV Kps.
For any other process p1 R pnptypepInl V qq, JInl V Kp1 “ K, and therefore JMKp1 “

JNKp1 \ JN 1Kp1 Ą JNKp1 “ JM 1Kp1 . The result follows.
Assume M “ case Inr V of Inl x ñ N ; Inr x1 ñ N 1 and M 1 “ N 1rx1 :“ V s. This case is
similar to the previous.
Assume M “ case N of Inl x ñ N1; Inr x1 ñ N2, M 1 “ case N of Inl x ñ N 1

1; Inr x1 ñ

N 1
2, N1

P
ÝÑD N 1

1, N2
P
ÝÑ N 1

2, and P X pnpNq “ H. This case is similar to case four.

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:35

Assume M “ comq,pV and M 1 “ V rq :“ ps and fvpV q “ H. Then if q ‰ p,
JMKp “ recvq K, JM 1Kp “ JV rq :“ psKp “ JV Kprq :“ ps since pnptypepV qq “ q,
JMKq “ sendp JV Kq, JM 1Kq “ K, and for any p1 R tq, pu, JMKp1 “ JM 1Kp1 “ K. We there-
fore get JMKp

recvqJV Kqrq:“ps
ÝÝÝÝÝÝÝÝÝÝÑJDK JM 1Kp, JMKq

sendpJV Kq
ÝÝÝÝÝÝÑJDK JM 1Kq, and JMKp1 “ JM 1Kp1 .

We define N “ N 1 “ JM 1K and the result follows. If q “ p, then JMKp “ pλx.xq JV Kp
and JM 1Kp “ JV Kp and N “ N 1 “ JM 1K and the result follows.
Assume M “ selectq,p l M 1. Then JMKq “ ‘p l JM 1Kq, JMKp “ &tl : JM 1Kpu, and for
any p1 R tq, pu, JMKp1 “ JM 1Kp1 . We therefore get JMK

τp,q
ÝÝÑJDK JMKztp, qu | prJM 1Kps |

qrJM 1Kqs and the result follows.
Assume M “ selectq,p l N , M 1 “ selectq,p l N 1, N

τ,P
ÝÝÑD N 1, and P X tq, pu “ H. Then

JMKq “ ‘p l JNKq, JM 1Kq “ ‘p l JN 1Kq, JMKp “ &tl : JNKpu, JM 1Kp “ &tl : JN 1Kpu, and
for any p1 R tq, pu, JMKp1 “ JNKp1 and JM 1Kp1 “ JN 1Kp1 . The result follows from induction
and using rules NOff2 and NCho2.
Assume M “ fst Pair V V 1 and M 1 “ V . Then for any process p P pnptypepPair M 1 V 1qq,
JMKp “ fst Pair JM 1Kp JV 1Kp and for any other process p1 R pnptypepPair M 1 V 1q, we
have JMKp1 “ K and JM 1Kp1 “ K. We define N “ N 1 “ JM 1K and the result follows.
Assume M “ snd Pair V V 1 and M 1 “ V 1. Then the case is similar to the previous.
Assume M “ f p⃗pq and M 1 “ Dpfpp⃗1qqrp⃗1 :“ p⃗s. Then the result follows from the
definition of JDK.
Assume there exists N such that M ù N and N

τ,P
ÝÝÑD M 1. Then the result follows

from induction and Lemma 40. ◀

A.2 Proof of Theorem 26
▶ Definition 41. Given a network N “

ś

pPρ
prBps, we have N zρ1 “

ś

pPpρzρ1q

prBps

▶ Lemma 42. For any process p and network N , if N τP
ÝÑ N 1 and p R P then N ppq “ N 1ppq.

Proof. Straightforward from the network semantics. ◀

▶ Lemma 43. For any set of processes P and network N , if N τP1
ÝÝÑ N 1 and PXP1 “ H then

N zP τP1
ÝÝÑ N 1zP.

Proof. Straightforward from the network semantics. ◀

▶ Lemma 44. If JMKp ù B then there exists M 1 such that M ù M 1 and B ” JM 1Kp

Proof. Follows from case analysis on JMKp ù B keeping in mind that JMKp cannot be
K K. ◀

Proof of Theorem 26. If JMK Ñ˚
JDK N uses rule NStr then this follows from Lemma 44.

Otherwise we prove this by structural induction on M .
Assume M “ N1 N2. Then for any process p P pnptypepN1qq Y ppnpN1q X pnpN2q,
JMKp “ JN1Kp JN2Kp, for any process p1 such that JN1Kp1 “ JN2Kp1 “ K, we have
JMKp1 “ K. For any other process p2 such that JN1Kp2 “ K, JMKp2 “ JN2Kp2 . For any
other process p3 such that JN2K“ K, we get JMKp3 “ JN1Kp3 . We then have 2 cases.

Assume N2 “ V . Then JN2Kp “ L by Lemma 36, and for any p1 such that p1 R

pnptypepN2qq Ď pnptypepN1qq, by Lemma 38, JN2Kp1 “ K and therefore JMKp1 “

JN1Kp1 , and we have 5 cases.

ECOOP 2023

7:36 Modular Compilation for Higher-Order Functional Choreographies

∗ Assume N1 “ λx : T.N3. Then for any process p P pnptypepN1qq, JN1Kp “ λx :
JT Kp .JN3Kp. And for any process p1 R pnptypepN1qq, JN1Kp “ K. We have two cases,
using either rule NAbsApp or rules NInAbs and NApp1.
If we use rule NAbsApp, then there exists p2 such that P “ p2 and p2 P

pnptypepN1qq. We then get JMK τ,P
ÝÝÑJDK M “ JMKztp2u | p2rJN3Kp2rx :“ JN2Kp2ss.

Since M Ñ˚ JN3rx :“ N2sK and the remaining transitions in JMK Ñ˚
JDK N take

place in N3, the result follows from using rule NAbsApp in every process in
pnptypepN1qq and induction.
If we use rules NInAbs and NApp1 then there exists p2 such that P “ p2 and
JN3Kp2

µ
ÝÑ B and

JMK µ
ÝÑJDK JMK ztp2uq | p2rλx.B JN2Kp2s Ñ

˚
JDK N

By induction, N3 Ñ˚
D N 1

3 and pJN3K ztp2u | p2rBs ÑD N 2 such that JN3K Ě N 2,
and we define M 1 “ λx : T.N 1

3 N2 and

N 1 “ pN z pnptypepN1qqq |
ź

pPpnptypepN3qq

prpλx.N 2ppqq JN2Kp2s

and the result follows by using rules InAbs, App1, NInAbs, and NApp1 and
induction.

∗ Assume N1 “ comq,p. Then if q ‰ p, JMKq “ sendp JN2Kq, JMKp “ recvp K, and
for p1 R tq, pu, JN1Kp1 “ K “ JMKp1 , and therefore P “ q, p, and if q “ p then
JN1Kp “ λx.x.
If P “ q, p then N “ JMKztq, pu | qrKs | prJN2Kqrq :“ pss. Because JN2Kp “ K and
JN2Kq “ V , N2 “ V . Therefore M

P
ÝÑD V rq :“ ps and the result follows.

If P “ p then q “ p, N “ JMKztpu | prJN2Kps and the rest is similar to above.
∗ Assume N1 “ fst. Then N2 “ Pair V V 1 and for any process p P

pnptypepPair V V 1qq, JMKp “ fst Pair JV Kp JV 1Kp and for any other process
p1 R pnptypepPair V V 1q, by Lemma 38 we have JMKp1 “ JN1Kp1 “ K, and therefore
JMKp1 Û.
If P “ p P pnptypepPair V V 1qq then N “ JMKztpu | prJV Kps and M

P
ÝÑD V . The

result follows by use of rule NProj1 and Lemma 38.
∗ Assume N1 “ snd. This case is similar to the previous.
∗ Otherwise, N1 ‰ V and either JMK

τp
ÝÑJDK M Ñ˚

JDK N or JMK
τp,q
ÝÝÑJDK M Ñ˚

JDK N .

If JMK
τp
ÝÑJDK M Ñ˚

JDK N then either JN1Kp
τ
ÝÑ B and p P pnptypepN1qq, M “

JMKztpu | prB JN2Kps. We therefore have JN1K
τp
ÝÑ JN1Kztpu | prBs, and by

induction, N1 Ñ˚
D N 1

1 such that JN1Kztpu | prBs Ñ˚ N1 Ŋ JN 1
1K. Since all these

transitions can be propagated past N2 in the network and JN2Kp1 in any process p1

involved, we get the result for M 1 “ N 1
1 N2.

If JMK
τp,q
ÝÝÑJDK M Ñ˚

JDK N then the case is similar.
If N2 ‰ V then we have 2 cases.
∗ If JMK

τp
ÝÑJDK M Ñ˚

JDK N then either JN1Kp
τ
ÝÑ B or JN2Kp

τ
ÝÑ B and the case is

similar to the previous.
∗ If JMK

τp,q
ÝÝÑJDK M Ñ˚

JDK N then there exists L such that either JN1Kq
sendp L
ÝÝÝÝÝÑ Bq

or JN2Kq
sendp L
ÝÝÝÝÝÑ Bq and JN1Kp

recvq Lrq:“ps
ÝÝÝÝÝÝÝÝÑ Bp or JN2Kp

recvq Lrq:“ps
ÝÝÝÝÝÝÝÝÑ Bp.

If JN1Kq
sendp L
ÝÝÝÝÝÑ Bq then JN1Kq ‰ L1 and therefore JN1Kp

recvq Lrq:“ps
ÝÝÝÝÝÝÝÝÑ Bp and the

L. Cruz-Filipe, E. Graversen, L. Lugović, F. Montesi, and M. Peressotti 7:37

case is similar to the previous. If JN2Kq
sendp L
ÝÝÝÝÝÑ Bq then JN1Kq “ L1, and therefore

JN2Kp
recvq Lrq:“ps
ÝÝÝÝÝÝÝÝÑ Bp and the case is similar to the previous.

Assume M “ case N of Inl x ñ N 1; Inr x1 ñ N2. Then for any process p P pnptypepNqq,
JMKp “ case JNKp of Inl x ñ JN 1Kp; Inr x1 ñ JN2Kp. And for any other process
p1 R pnptypepNqq, JMKp1 “ pλx.JN 1Kp1 \ JN2Kp1q JNKp1 . We know that JMK τP

ÝÑJDK

M Ñ˚
JDK N and we have three cases.

Assume P “ p P pnptypepNqq. Then we have three cases.
∗ Assume N “ Inl V . Then JNKp “ Inl JV Kp and M “ JMKztpu | prJN 1rx :“ JV KpsKps.

We define M2 “ N 1 and the transitions used in M Ñ˚
JDK N can be used on

M2. By induction, since JN 1Kp1 Ŋ JN 1Kp1 \ JN2Kp1 the result follows from using
rules NAbsApp and NCaseL.

∗ Assume N “ Inr V . Then the case is similar to the previous.
∗ Otherwise, we use either rule NCase or rule NCase2. If we use rule NCase, we

have a transition JNKp
τ
ÝÑ B such that

M “ JMKztpu | prcase B of Inl x ñ JN 1Kp; Inr x1 ñ JN2Kps

and the result follows from induction similar to the last application case.
If we use rule NCase2 then JN 1Kp

τ
ÝÑD B and JN2Kp

τ
ÝÑD B. If JN 1Kp

τ
ÝÑD B then

by induction, N 1 Ñ˚
D N3 and JN 1K ztpu | prBs Ñ˚

D N 2 such that N 2 Ě JN3K and
N2 Ñ˚

D N4 and JN2K ztpu | prBs Ñ˚
D N3 such that N3 Ě JN4K. Since N 1 and

N2 are mergeable on other processes, the result follows from using rule InCase.
Assume P “ p R pnptypepNqq. Then we have three cases.
∗ Assume N “ Inl V . Then JNKp “ K and M “ JMKztpu | prJN 1Kp \ JN2Kps. We

define M 1 “ N 1 and the result follows.
∗ Assume N “ Inr V . Then the case is similar to the previous.
∗ Otherwise, JNKp ‰ L and we therefore have JNKp

τ
ÝÑ B and M “ JMKztpu |

prpλx.JN 1Kp \ JN2Kpq Bs. We therefore have JNK
τp
ÝÑ JNKztpu | prBs, and by

induction, N ÑD N3 such that JNKztpu | prBs Ñ˚ N3 for N3 Ŋ JN3K. Since all
these transitions can be propagated past N2 in the network and the conditional
or pλx.JN 1Kp2 \ JN2Kp2q in any other process p1 involved, we get the result for
M 1 “ case N3 of Inl x ñ N 1; Inr x1 ñ N2.

Assume P “ q, p. Then the logic is similar to the third subcases of the previous two
cases.

Assume M “ selectq,p ℓ N . This is similar to the N1 “ comq,p case above.
Assume M “ fpp1, . . . , pnq. Then

JMK “
n
ź

i“1
pirfipp1, . . . , pi´1, pi`1, . . . , pnqs |

ź

pRtp1,...,pnu

prKs

We therefore have some process p such that P “ p and pJMKzpiq | pirJDKpfipp⃗1qqrp⃗1 :“
p1, . . . , pi´1, pi`1, . . . , pnss Ñ˚ N . We then define the required choreography M2 “

Dpfpp1
1, . . . , p1

nqqrp1
1, . . . , p1

n :“ p1, . . . , pns and network

N “ JM2K “
n
ź

i“1
pirJDKpfipp⃗1qqrp⃗1 :“ p1, . . . , pi´1, pi`1, . . . , pnss |

ź

pRp1,...,pn

prKs

and the result follows from induction. ◀

ECOOP 2023

Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...
Jan de Muijnck-Hughes #

University of Glasgow, UK

Wim Vanderbauwhede #

University of Glasgow, UK

Abstract
Quantitative Type-Systems support fine-grained reasoning about term usage in our programming
languages. Hardware Design Languages are another style of language in which quantitative typing
would be beneficial. When wiring components together we must ensure that there are no unused
ports, dangling wires, or accidental fan-ins and fan-outs. Although many wire usage checks are
detectable using static analysis tools, such as Verilator, quantitative typing supports making these
extrinsic checks an intrinsic aspect of the type-system. With quantitative typing of bound terms, we
can provide design-time checks that all wires and ports have been used, and ensure that all wiring
decisions are explicitly made, and are neither implicit nor accidental.

We showcase the use of quantitative types in hardware design languages by detailing how we can
retrofit quantitative types onto SystemVerilog netlists, and the impact that such a quantitative type-
system has when creating designs. Netlists are gate-level descriptions of hardware that are produced
as the result of synthesis, and it is from these netlists that hardware is generated (fabless or fabbed).
First, we present a simple structural type-system for a featherweight version of SystemVerilog netlists
that demonstrates how we can type netlists using standard structural techniques, and what it means
for netlists to be type-safe but still lead to ill-wired designs. We then detail how to retrofit the
language with quantitative types, make the type-system sub-structural, and detail how our new
type-safety result ensures that wires and ports are used once.

Our ideas have been proven both practically and formally by realising our work in Idris2, through
which we can construct a verified language implementation that can type-check existing designs.
From this work we can look to promote quantitative typing back up the synthesis chain to a
more comprehensive hardware description language; and to help develop new and better hardware
description languages with quantitative typing.

2012 ACM Subject Classification Software and its engineering → General programming languages;
Software and its engineering → Language features; Software and its engineering → Domain specific
languages; Software and its engineering → System modeling languages

Keywords and phrases Hardware Design, Linear Types, Dependent Types, DSLs, Idris, System-
Verilog, Netlists

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.8

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.4
Software (Source Code): https://github.com/border-patrol/linear-circuits

archived at swh:1:dir:7faf6fa5d5aaccec3287a1359a52a16acf1be1f5

Funding The work is funded by EPSRC grants: Border Patrol (EP/N028201/1) and AppControl
(EP/V000462/1).

1 Introduction

Quantitative Type System (QTS) support fine-grained reasoning about term usage in our
programming languages, such that we can control precisely how many times a bounded
term can be used. We are even starting to see QTSs being introduced into general purpose
programming languages, for example: Linear Haskell [7], Idris2 [10], and Granule [33]. Issues
around term usage are, however, not limited to programming languages.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Jan de Muijnck-Hughes and Wim Vanderbauwhede;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 8; pp. 8:1–8:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Jan.deMuijnck-Hughes@glasgow.ac.uk
https://orcid.org/0000-0003-2185-8543
mailto:Wim.Vanderbauwhede@glasgow.ac.uk
https://orcid.org/0000-0001-6768-0037
https://doi.org/10.4230/LIPIcs.ECOOP.2023.8
https://doi.org/10.4230/DARTS.9.2.4
https://doi.org/10.4230/DARTS.9.2.4
https://github.com/border-patrol/linear-circuits
https://archive.softwareheritage.org/swh:1:dir:7faf6fa5d5aaccec3287a1359a52a16acf1be1f5;origin=https://github.com/border-patrol/linear-circuits;visit=swh:1:snp:59b72b9950594f1c7d7b1a4b91086895a00552bc;anchor=swh:1:rev:c5ce72b3f29be3a463c289839eb6ab5dcdec5259
https://doi.org/10.4230/DARTS.9.2.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

Widely used Hardware Description Languages (HDLs) capture not only how hardware
designs behave but also how they are physically structured. SystemVerilog is a leading
industry standard HDL that supports the modelling, verification, and fabrication of hardware
designs [14, 23]. Within SystemVerilog a hardware design consists of a high-level structural
description of hardware in which modules represent physical units of design, are connected with
wires, and each module contains descriptions of the modules behaviour. These behavioural
descriptions describe how values are either initially placed on a wire, modified, or distributed
through other channels. From this behavioural description, the design is verified (tested) to
ensure that it behaves as intended. Verification happens using a mixture of static analysis
tooling (to externally analyse the design), and testbench creation (in the same language) that
is then simulated. Once the design has been verified, a synthesis tool converts the high-level
description into a gate-level netlist; depending on the complexity of the described design,
synthesis can take hours to complete. Netlists sit at the end of the synthesis process that
takes high-level hardware designs and generates a single description from which hardware is
then generated for fabrication or deployed in fabless environments. These netlist descriptions
are also written in SystemVerilog, and the low-level gates offered can differ per hardware
platform.

Term usage within HDLs is, unfortunately, different to that seen in general purpose
programming languages. Bounded terms represent, quite literally, a physical resource that
is to be used. Figure 1 presents several illustrative valid hardware designs as specified in
Verilog, a subset of SystemVerilog. Each module has an explicit header (also known as a
portgroup) that details the module’s interface with the outside world. Portgroups detail
the typed ports in the interface and the direction that signals can flow through each port.
Within modules, we can connect ports to logic gates (or other synthesisable terms), introduce
internal wiring, and make direct assignments between ports. Now let us focus on the wiring
in our illustrative examples: Figure 1a presents a valid repeated use of a wire; Figure 1b
presents a potentially invalid fan-in in which the two inputting wires are negated and wired
into the outputting port; Figure 1c presents bit-vector indexing that requires repeated term
usage; and Figure 1d presents use of an intermediate variable to reroute part of a bit-vector,
and that the bit-vector’s last port is not used. All these examples are structurally valid
designs yet the wiring decisions (if a wire is to be used or not, and how often it is to be used)
are not always explicit. Existing tools, such as Verilator1, support external static analyses of
hardware designs that includes reasoning about wire usage. Such static analyses can detect,
amongst other things, if wires are unused, and if outputting ports are driven by multiple
wires. If such wiring issues are not resolved they could physically damage the hardware and
produce ill-behaved hardware.

An issue arising from using external tooling is that their checks are external to the design
being captured, thus allowing a time-of-check time-of-use issue to exist between when a
design is checked and when a design is used. With the rising popularity of QTS we must ask
ourselves: Can quantitative reasoning about term usage also be applied to HDLs? With such
quantitative reasoning we can start to embed wire usage constraints directly into our HDL’s
type-system, such that our external checks (using external tools) now become an intrinsic
aspect of the language design itself. By using a more expressive quantitative type-system we
can ensure that any and all wiring decisions are explicit, and that ill-wired designs cannot be
expressed as they are ruled out by the type-system as ill-typed designs.

1 https://verilator.org/

https://verilator.org/

J. de Muijnck-Hughes and W. Vanderbauwhede 8:3

module Example(output logic c,
input logic a);

nand(c, a, a);
endmodule;
(a) Repeated Wire Use.

module Example(output logic c,
input logic a,b);

wire logic temp;
assign temp = b;
assign temp = a;
not(c, temp);

endmodule;
(b) Fan-In.

module Example(output logic c,
input logic[1:0] ab);

and(c, ab[0], ab[1]);
endmodule;
(c) Bit-Vector Indexing.

module Example(output logic c,
input logic[2:0] ab);

wire logic temp;
temp = ab[0];
and(c, temp, ab[1]);

endmodule;
(d) Intermediate Wiring.

Figure 1 Example (System)Verilog.

1.1 Contributions
Existing efforts in developing calculi for verifying hardware designs in Verilog-like languages
have not sought to reason about quantitative wire usage [28, 31, 26]. Leaning on the idea of
featherweight languages [21, 36, 34, 24] we have explored a type-based approach to reasoning
about linear wire usage for netlists using Quantitative Type Theory (QTT) [4]. By capturing
a valid subset of Verilog we can type existing designs to ensure that all wires are used
exactly once, and showcase our approach. Moreover, we now have a foundation for future
work that can investigate ways in which the calculi can be extended up the synthesis chain
formally (inline with the formal specification); and safely (such that known properties of the
specification still hold).

Specifically, our contributions are:
We provide a formal unrestricted type-system (Circuits) for Verilog netlists, and in-
troduce notions of type-(un)safety based on denotational semantics relating to graph
topology.
We provide a formal restricted type-system (CirQTS) that is resource-oriented, and
detail how it provides fine-grained resource tracking for wires and ports without the need
for user annotations. Using CirQTS we ensure that wire and ports can only be connected
to once and we detail how we can supply new Verilog primitives that support explicit
weakening of a wire’s linearity safely. This weakening enables modelling of existing valid
designs, and ensure wiring decisions are explicitly made.
We put theory into practice by building a mechanised verified implementation of Circuits
and CirQTS in Idris2 such that we can type-check existing valid Verilog netlists (modulo
implementation restrictions and technology mapping) to detect wire usage violations.
The implementation of Circuits and CirQTS has been made freely available online,
and can also be found in the accompanying supplementary material.

With Circuits and CirQTS we have developed a better understanding of how to:
fundamentally type wiring in Verilog; and produce a type-system that makes wiring safer.
Moreover, with CirQTS we have also begun to understand what impact linear wire usage
has on circuit design. Although we can reason linearly about wire usage, we have found that

ECOOP 2023

8:4 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

sometimes linear usage is too restrictive and dependent on the intended behaviour of the
design. It remains an open question over how best we can weaken linearity in more nuanced
ways needed for hardware design.

1.2 Outline
Section 2 details a formal abstract syntax for Verilog netlists that our two type-systems type.
Our unrestricted netlist language (Circuits) is formally presented in Section 3, and the
linearly wired variant (CirQTS) in Section 4. For both calculi we detail their wire-safety,
our approach to type-safety as an interpretation to a graph, and how Circuits is wire unsafe
but CirQTS is not. With linear wiring, wire endpoints and ports, cannot be reused. We
detail in Section 5 new easy-to-add primitives to Verilog (as primitive gates), that support
valid weakening of linearity to allow wires to be split and combined. Section 6 details how
we have mechanised our realisation of both languages in Idris2, and Section 7 discusses the
results of using CirQTS for designing netlists. From our experimentation we discuss the
efficacy of our approach in Section 7. We end by relating our contributions to the wider
world in Section 8.

2 A Syntax for Netlists

Figure 2 presents the shared abstract syntax for Circuits and CirQTS. Both languages
abstract over a subset of Verilog’s concrete syntax required for gate-level modelling. The
syntax is unremarkable, which highlights the simplicity that accompanies netlist language
design.

𝑛 :NF Natural Numbers
𝑑 :D F I | O | IO
𝑖 :I F Logic | [𝑖 ; 𝑛]

𝑔 F mux2 (𝑒, 𝑒, 𝑒, 𝑒) | 𝑏 (𝑒, 𝑒, 𝑒), 𝑏 ∈ {and, or, . . .} | 𝑢 (𝑒, 𝑒), 𝑢 ∈ {not, . . .}
𝑒 F 𝜑 | port 𝑖 𝑑 as 𝜑 in 𝑒 | gate 𝑔 as 𝜑 in 𝑒 | wire 𝑖 as 𝜑 in 𝑒 | assign 𝑒 ← 𝑒 in 𝑒

| stop | (index 𝑒 𝑛) | (cast 𝑒 𝑓) | (readFrom 𝑒) | (writeTo 𝑒)

Figure 2 Abstract Syntax for Circuits and CirQTS.

We restrict our modelling to simple synthesisable datatypes (I) as seen in Verilog: 4-state
logic bits and their aggregation into bit-vectors. The set of supported gates (𝑔) is indicative,
as many netlists are dependent on the technology (gates) as supported by the underlying
hardware. For our investigation we explored two input multiplexers, binary logic gates, and
unary logic gates, as this presents an expressive enough set of gates to create interesting
designs. Although we do not consider gates with n-ary outputs, such as demultiplexers, our
setting does support them as we shall see in Section 4.2. Whilst this language seems overly
restrictive when compared to state-of-the-art HDLs, the syntax and type-system can be
extended to deal with n-ary gate syntax, and new primitive gates added.

Most notable from Figure 2 is that the top-level module header is implicit, and sequencing
(recall that Verilog is imperative) of statements is realised as continuations on desired sub-
terms. Circuit designs represent a single module with a predefined set of ports (supporting
uni-directional and bi-directional signals), as such we can represent the module header as a
series of bespoke let-bindings that introduce bound terms (with variables being represented

J. de Muijnck-Hughes and W. Vanderbauwhede 8:5

by 𝜑) into the corresponding scope. Declarations for gates and internal wires follow this same
pattern, as does the direct assignment (connection) of ports and wires which is supported
by the assign statement. Verilog also supports anonymous gate declarations, to keep our
minimal calculi small we have purposefully not incorporated them into the syntax but note
their addition is straightforward. Finally, the stop expression indicates the end of the netlist
specification.

The final set of expressions are required to capture type-safe wiring of ports and wires to
gates. Naturally, bit-vectors can be indexed to access individual wires in the vector. We do
not support slicing as it can be elaborated/synthesised into our core syntax. The remaining
expressions are however, not explicit in Verilog’s concrete syntax. Nonetheless, they can be
inserted automatically through syntax elaboration.

The first of these hidden expressions supports the insertion of bi-directional ports into
gates. Gates only have ports that are inputting or outputting, but bound ports may be
bi-directional. Cast, like index, is an in-place operation on ports and endpoints, that supports
transformation of the given direction to supplied direction 𝑓 .

The final two expressions relate to inserting internal wires into declared gates. Verilog’s
concrete syntax does not discriminate between ports and wire endpoints. We thus introduce
two projection terms to support such access, one that supports reading from a channel, and
the other to support writing to a channel.

We end this section with Figure 3 that illustrates how Figure 1d is encoded in the shared
syntax.

port Logic O as 𝑐 in
port Logic I as ab in
wire Logic as temp

in assign (writeTo temp) ← (index ab 0)
in gate and (𝑐, (readFrom temp), (index ab 1)) as ga
in stop

Figure 3 Figure 1d in the shared Syntax.

3 A Structural Type-System

The abstract syntax from Section 2 helps direct well-formed netlists through its syntactical
structure. Nonetheless, a type-system will categorically ensure that the netlists are well-
formed. This section introduces a simple, yet flawed, type-system for Circuits in which term
usage is unrestricted, but nonetheless respects how netlists are typed. Practically speaking,
the flaw allows uncontrolled fan-ins and fan-outs to be inserted unchecked into the design,
and for ports and channels to be left dangling (unused). Section 4 details how quantitative
wire usage ensures that ports and channels are used exactly once.

3.1 Types and Contexts
Figure 4 details the (unsurprising) set of types and typing context for Circuits. Ports types
(P) are parameterised by how signals flow from ports, together with the port’s shape as
captured by the given datatype. Similarly, wire types (W) are parameterised by the wire’s
shape, the provided datatype. Further, gates are given their own type (G), and the unit type
(1) signifies the end of a design.

ECOOP 2023

8:6 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

𝑡 : TypeF P (𝑖, 𝑑) | W (𝑖) | G | 1
Γ F ∅ | Γ + 𝑥 : 𝑡

Figure 4 Types and Contexts for Circuits.

3.2 Typing Rules

Figure 5 details the typing rules for Circuits. The introduction rules for natural numbers
and datatypes are not presented and are implicitly given in Figure 2. Much like the rest of the
definition of Circuits, the rules are for the most part unsurprising and follow standard norms.
Rule Stop introduces the unit type, signalling the end of the design. Rules Mux,Bin, & Un
type gates and, as in Verilog itself, gates present their output ports then their input ports such
that all ports have the same type, which for netlists will be: Logic. The Rules Port,Wire,
& Gate adapt the standard presentation for let-bindings in which the body is extended with
the introduced variable. Direct assignment (Rule Assign) of an output port to an input
port happens if they both have the same shape i.e. datatype. Indexing vector-shaped ports
(Rule Index) returns a single port from the array with the shape of the contained elements,
and the same signal flow. Further, a compile-time bounds check is required to ensure safe
vector-indexing.

Gates and direct assignment only support ports with flow input or output. Casting
(Rule Cast) supports safe transformation of a bidirectional port to either an input or output,
which we formally express as follows:

▶ Definition 1 (Valid Casting of Directions). Given 𝑎, 𝑏 :D the safe transformation of flow 𝑎

to 𝑏, which we denote as ValidCast (𝑎, 𝑏), is:

ValidCast (𝑎, 𝑏) I O IO
I × × ×
O × × ×
IO ✓ ✓ ×

We have purposefully presented a strict interpretation of casting, and do not include the
identity cast. During the mechanised elaboration of terms (Section 6), we wished to ensure
that casts are only inserted if the cast would change the direction. Inclusion of the identity
cast would not weaken our result.

The final two rules, Rules Read & Write detail how a wire’s endpoints are accessed by
projection. It is here that the typing rules become somewhat counter-intuitive. Intuition
tells us that projecting a wire to read its contents would return an outputting port, and
conversely writing to a wire would require its inputting port. Instead we have swapped the
directions: reading gives an input; writing gives an output. Such a swap supports the natural
typing rules when checking gates and direct assignments. That is, by swapping the expected
flow of information during projection we do not need to check if a port marked output will
go to an input and vice-versa. Checking for direction equality thus simplifies the typing rules,
and checking, for Circuits.

J. de Muijnck-Hughes and W. Vanderbauwhede 8:7

Var
𝜑 : 𝑡 ∈ Γ
Γ ⊢ 𝜑 : 𝑡

Stop
Γ ⊢ stop :1

Mux
Γ ⊢ 𝑜 :P (Logic,O) Γ ⊢ 𝑐 :P (Logic, I) Γ ⊢ 𝑎 :P (Logic, I) Γ ⊢ 𝑏 :P (Logic, I)

Γ ⊢ mux2 (𝑜, 𝑐, 𝑎, 𝑏) :G

Bin
Γ ⊢ 𝑜 :P (Logic,O) Γ ⊢ 𝑥 :P (Logic, I) Γ ⊢ 𝑦 :P (Logic, I) 𝑏 ∈ {and, or, . . .}

Γ ⊢ 𝑏 (𝑜, 𝑥, 𝑦) :G

Un
Γ ⊢ 𝑜 :P (Logic,O) Γ ⊢ 𝑖 :P (Logic, I) 𝑢 ∈ {not, . . .}

Γ ⊢ 𝑢 (𝑜, 𝑖) :G

Port
𝑖 :I 𝑑 :D Γ + 𝜑 :P (𝑖, 𝑑) ⊢ 𝑏 :1

Γ ⊢ port 𝑖 𝑑 as 𝜑 in 𝑏 :1
Wire

𝑖 :I Γ + 𝜑 :W (𝑖) ⊢ 𝑏 :1
Γ ⊢ wire 𝑖 as 𝜑 in 𝑏 :1

Gate
Γ ⊢ 𝑔 :G Γ + 𝜑 :G ⊢ 𝑏 :1

Γ ⊢ gate 𝑔 as 𝜑 in 𝑏 :1

Assign
𝑑 :I Γ ⊢ 𝑖 :P (𝑑, I) Γ ⊢ 𝑜 :P (𝑑,O) Γ ⊢ 𝑏 :1

Γ ⊢ assign 𝑖 ← 𝑜 in 𝑏 :1

Index
𝑑 :I 𝑓 :D 𝑛 :N Γ ⊢ 𝑝 :P ([𝑑 ;𝑚], 𝑓) [𝑛 < 𝑚]

Γ ⊢ (index 𝑝 𝑛) :P (𝑑, 𝑓)

Cast
𝑑 :I 𝑎, 𝑏 :D Γ ⊢ 𝑝 :P (𝑑, 𝑎) ValidCast (𝑎, 𝑏)

Γ ⊢ (cast 𝑝 𝑎) :P (𝑑, 𝑏)

Read
𝑑 :I Γ ⊢ 𝑐 :W (𝑑)

Γ ⊢ (readFrom 𝑐) :P (𝑑, I)
Write

𝑑 :I Γ ⊢ 𝑐 :W (𝑑)
Γ ⊢ (writeTo 𝑐) :P (𝑑,O)

Figure 5 Simple Typing Rules for Circuits.

3.3 Wire-(Un)Safety
As programming languages are computational it makes sense to reason about their type-safety
using their operational semantics: How they compute! Standard syntactic approaches require
that we describe how terms reduce (progress) during operation, and prove that once a value is
reached that the types have been preserved (preservation). HDLs on the other hand, not only
describe how signals flow across wires, but also the structure of the circuit itself. At the level
of netlists, HDLs are not computational languages and there is no reduction of terms. We
must, therefore be concerned with a design’s physical structure rather than its behaviour. As
such we will reason about our type system’s correctness based on its wire-safety, that is how
well the design has been wired together, as opposed to how the design behaves. Specifically,
we will use a denotational approach in which we use the circuit design as the instructions to

ECOOP 2023

8:8 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

construct a graph, and assess the design’s wire-safety using the constructed graph’s topology.
We stress that these results provide assurances over how circuits are wired and not how they
behave. Behavioural safety requires more work [22, 28].

We remark that our denotational approach to wire-safety is inspired by the use of
definitional interpreters [38, 37] to prove type-soundness [3]. We elide technical details,
highlighting the main results only, and remark that the accompanying artefact (which
provides a mechanisation of our contributions, see Section 6) contains the full details.

As a reminder, the “safety” result we present here is purposefully unsafe to capture how
a structural type-system does not provide guarantees over the sub-structural property that
is wire-safety. The next section Section 4 describes a more (type) safe way to determine
wire-safety.

3.3.1 Graphs for Hardware
Digital circuits (netlists) are just multigraphs. Leaf vertices map to a netlist’s inputting and
outputting ports, and internal vertices represent logic gates. Wires too can be represented
by pairs of internal vertices (one for each endpoint, with a single edge to connect the two),
and edges in our graph model wiring between ports, channels, and gates. To better reason
about our graph’s topology we categorise leaf vertices as being sources (𝑆; output ports),
targets (𝑇 ; input ports), or unknown (𝑈; bidirectional ports). Internal nodes (𝑁) capture
gates, casting, and projection of wires. Figure 6 shows how Figures 1a and 1c can be viewed
as a hardware graph, and that the edges represent the wiring between ports, gates, and wires.
More formally we can describe such graphs as:

▶ Definition 2 (Hardware Graph). Let 𝐻 = ⟨𝑣𝑠, 𝑒𝑠⟩ be a directed multigraph where 𝑣𝑠 is a
set of vertices, and 𝑒𝑠 is a list of edges. Vertices in 𝐻 will be labelled with an element of
{𝑆, 𝑇,𝑈, 𝑁}.

ab

S

ab[0]

ab[1]

N

N

and

N

c

T

(a) Figure 1c as a Hardware Graph.

a

S

nand

N

c

T

(b) Figure 1a as a Hardware Graph.

Figure 6 Example Hardware Graphs for Circuits.

To reason about wire usage we need to define what it means for our hardware graph to
be wired. We can determine the expected degree a vertex has directly from its categorisation:
source vertices will have zero incoming edges, and zero or more outgoing edges; leaf vertices
will have zero or more incoming edges, and zero outgoing edges; bi-directional vertices will
have zero or more incoming or outgoing edges; and internal vertices will have have zero or
more incoming or outgoing edges. Using deg+ (𝑣, 𝑒𝑠) and deg− (𝑣, 𝑒𝑠) to calculate the out
and in degrees for a vertex 𝑣 from a given list of edges 𝑒𝑠, we can compare the given degrees
with the expected degrees. If the relations hold then the circuit has been wired. We formally
present this definition as:

J. de Muijnck-Hughes and W. Vanderbauwhede 8:9

▶ Definition 3 (A Wired Hardware Graph). Let 𝐻 = ⟨𝑣𝑠, 𝑒𝑠⟩ be our hardware graph, the wiring
of 𝐻 is well-formed, C (𝐻), if:

∀𝑣 ∈ 𝑣𝑠


𝑆 deg+ (𝑆, 𝑒𝑠) ≥ 0 ∧ deg− (𝑆, 𝑒𝑠) ≡ 0
𝑇 deg+ (𝑇, 𝑒𝑠) ≡ 0 ∧ deg− (𝑇, 𝑒𝑠) ≥ 0
𝑈 deg+ (𝑈, 𝑒𝑠) ≥ 0 ∨ deg− (𝑈, 𝑒𝑠) ≥ 0
𝑁 deg+ (𝑁, 𝑒𝑠) ≥ 0 ∧ deg− (𝑁, 𝑒𝑠) ≥ 0

Interpretation of terms will result in either: an error related to binding; a hardware graph;
a vertex; the empty value (⊥) of the empty type. Port definitions are interpreted into leaf
vertices following the port’s direction, whereas gates, wires, and casts interpret into internal
nodes. The end of a specification is interpreted into the empty type. Port usages, and
channel projection, inserts edges into the graph. We can also strengthen the interpretation
by making it type-directed (represented by ⟦ 𝑡 ⟧𝑇), where terms from Circuits are mapped
to hardware graph concepts.

Formally we can denote the act of interpretation as follows:

▶ Definition 4 (Interpretation). Let Σ𝑖 be an interpretation environment and 𝐻𝑖 = ⟨𝑣𝑠, 𝑒𝑠⟩ be
a Hardware Graph. We denote the interpretation of Circuits specification (Γ ⊢ 𝑒 : 𝑡) as:

(Σ, 𝐻𝑖)⟦ 𝑒 ⟧F Error | Done (𝐻𝑜, 𝑣 : ⟦ 𝑡 ⟧𝑇)

where 𝐻𝑜 is the resulting hardware graph.

The interpretation environment (Σ) stores the result of interpretation for bound terms
and is passed around as an input to interpretation explicitly. The accumulator graph (𝐻)
carries the resulting graph as we traverse sub-terms. Here subscripts 𝑖 and 𝑜 denote an
inputting and resulting value. We cannot just return a complete graph for each interpretation
step as not all terms return a graph. Take ports, for example, they return a vertex when
interpreted during the construction of edges, and stop returns the empty value.

More information about the interpretation can be found in the accompanying artefact
which contains the mechanisation (Section 6) of Circuits.

3.3.2 Well-Typed Circuits are Valid Hardware Graphs
With this high-level description of interpretation we can detail our strong interpretation
soundness result, which is our wire-safety result.

▶ Theorem 5 (Strong Interpretation Soundness).

∅ ⊢ 𝑒 :1 ⟦ 𝑒 ⟧ = Done (Σ, 𝐻, 𝑣)
Σ ≡ ∅ 𝑣 ≡ ⊥ C (𝐻)

Strong interpretation soundness states that interpretation of a closed specification will result
in a valid wired hardware graph. A weak soundness result would be that we can construct
just a valid hardware graph.

3.3.3 Proof Sketch
Our soundness proof needs to ensure that our interpretation will result in a valid hardware
graph. We can structure our proof using Siek’s “three easy lemmas” [41] but adapted for
interpretation as seen with existing work [3] and adapted to build hardware graphs. Siek’s

ECOOP 2023

8:10 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

approach requires that we divide the proof into three sub-lemmas that, when combined,
cover all aspects of the interpretation process: 1) interpreting primitives; 2) ensuring that
variables are well-scoped; and 3) that doing interpretation will produce a value.

The first lemma deals with typing primitives.
▶ Lemma 6 (Primitives). Well-typed primitives are not stuck and will interpret correctly.
Proof. By induction on typing derivations. ◀

The only primitive term in Circuits is stop, the rest contain interpretable sub-terms.
The term stop will always interpret.

The next lemma addresses environment lookups. As in existing work [3] we must first define
a consistency relation (⊨) between typing contexts and interpretation environments. Such a
relation ensures that as the typing context grows, so will the interpretation environment.
▶ Definition 7 (Consistent Interpretation Environments).

EmptyEnv

∅ ⊨ ∅

ExtendEnv
Γ ⊨ Σ

Γ + 𝜑 : 𝑡 ⊨ Σ + (𝜑, 𝑣 : ⟦ 𝑡 ⟧𝑇)
Using our consistency relation (⊨) we can describe well-scoped environment lookups.

When given an interpretation environment that is consistent with a typing context, we
can map bound variables within the typing context to their equivalent bindings in the
corresponding interpretation environment. Thus when given a well-scoped variable 𝜑 ∈ Γ
such that 𝜑 has type 𝑡, then there is a value (𝑣 : ⟦ 𝑡 ⟧𝑇) in the interpretation environment
bound to 𝜑.
▶ Lemma 8 (Lookup). Well-typed interpretation environment lookups are not stuck and will
interpret correctly.

Γ ⊨ Σ 𝜑 : 𝑡 ∈ Γ 𝑥 ≡ ⟦ 𝑡 ⟧𝑇
(𝜑, 𝑣) ∈ Σ 𝑣 : 𝑥

Proof. By structural induction over the interpretation environment. ◀

As environment lookups are guided by the typing-context, interpretation will succeed
because all references to bound terms exist. Otherwise lookup will fail.

The final lemma, which we provide here, details interpretation.
▶ Lemma 9 (Interpretation). If the interpretation returns a result then the result is a valid
hardware graph.

Γ ⊢ 𝑒 : 𝑡 Γ |= Σ (Σ, 𝐻𝑖)⟦ 𝑒 ⟧F (Done res)
res = (𝐻𝑜, 𝑣) 𝑣 : 𝑡′ 𝑡′ ≡ ⟦ 𝑡 ⟧𝑇

Proof. By induction on typing derivations. ◀

We know that within definitional interpreters the strong soundness property [3] corre-
sponds to the classic strong soundness property used in proving type soundness [47]. With
our final lemma we can show that well-typed Circuits specifications will construct correctly
wired hardware graphs, if not an error will occur. Interpretation will finish when the term
stop is reached. The consistency relation ensures that the typing contexts and interpretation
environment remain consistent as we step across binders.

We only check the strong soundness result after the interpretation process has finished.
Sub-terms return components of a hardware graph, and not a complete graph itself, we need
to ensure that the soundness result is applied to a whole specification.

J. de Muijnck-Hughes and W. Vanderbauwhede 8:11

3.4 Towards True Wire-Safety
Our definition of a wire-safety, and thus safety of Circuits type-system, is not one that
leads to designs that are inherently safely wired: Designs in which wires are used once, and
wire usage is clear. The type-system for Circuits is not sub-structural, and will admit
designs in which ports (and wires) are left dangling or partially used. We know this because
our definition for wiredness (C (𝐻)) is too loosely specified. We can show this by changing
the definition of C (𝐻) to one where the expected degree of leaf nodes is greater than zero to
equal to one. Such a change now invalidates various graphs in which ports and wires were
left dangling, and were once admitted by Circuits type-system.

Consider, for example, the netlist and its corresponding hardware graph in Figure 7. The
netlist has a dangling input b. It is unclear from the immediate context if b is supposed to
be dangling or included in the design; gates in Verilog are n-ary. The change in definition of
C (𝐻) supports identification of ill-wired designs, as the expected out degree of for 𝑏 is one
but its given degree is zero.

module Example(output logic c,
input logic a,b);

not(c,a);
endmodule;

(a) Verilog.

a

b

S

S

not

N

c

T

(b) Hardware Graph.

Figure 7 Example Netlist with Ambiguous Wiring.

Changing the definition of C (𝐻) is still, however, not enough to get safe designs. We
need to reason about bidirectional ports, remember that bit-vectors can be indexed, ensure
that channel endpoints are accessed once, and that gates are only wired into once. We need
a sub-structural type-system to reason about wire/port usage. We will show this in the
next section, and provide a better definition of what it means for a hardware graph to be
well-wired.

4 A Sub-Structural Type-System

The illustrative designs from Figure 1 are not linear in their bound term usage. There are
repeated variables, dangling wires, and parts of bit-vectors left unused. Trying to fit wire
usage constraints into existing quantitative systems is hard. Generally speaking, QTSs such
as Atkey’s QTT [4], and those based around linear logic [45, 44] and graded semirings [33],
are designed to reason about term usage within general purpose programming languages.
Specifically, linear systems require that bounded terms are used exactly once; affine systems
require that bounded terms are used at most once; graded systems require that bounded
terms are used at most n-times; and QTT allows bounded terms to be used linearly, and
unbounded terms have unrestricted usage. None-One-Tonne systems do not have a fine
grained usage modality. HDLs capture circuit behaviour as well as structure.

A key design challenge when linearising Circuits type-system is to know what usage
means for HDLs, as bounded terms do not have singular usage. Within Circuits wires have
two endpoints that are used in separate locations, and bit-vector shaped wires/ports can

ECOOP 2023

8:12 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

be indexed in strange and wonderful ways. Roughly, projection of endpoints and indexing
implies that each sub-term may be partially used in a design and type-checking needs to take
this into account. Further, while ports/wire have bounded usage, gates are unbounded. It is
not clear how QTT and Granule can be co-opted to encode these domain specific usages
as part of a semiring structure. Our approach to the type-system for CirQTS must be
different, for now.

4.1 Types and Usages
Figure 8 details the additional infrastructure required to make Circuits linear. Inspiration
is taken from QTT to base our system of usages (Figure 8a) on the none-one-tonne semiring.
Things are free until used, and some things will always be free to use i.e. unbounded usage.
In practice, however, this can be distilled to the ordinary boolean semiring as our usage
requirements are more conservative and constrained, and we make no link between compile
time and runtime quantities as QTT is used in practice [10].

𝑅 F 0 | 1 | 𝜔

(a) Usages.

𝑖 :I
𝑢 : Usage𝐷 (𝑖)

Init𝐷 (𝑢)

F Logic [𝑖 ; 𝑛]
F 𝑅 {𝑢 𝑗 : Usage𝐷 (𝑖) 𝑗∈1..𝑛}
F 1 {Init𝐷 (𝑢 𝑗) 𝑗∈1..𝑛}

(b) DataTypes.

𝑡 : Type
𝑢 : Usage𝑇 (𝑡)

Init𝑇 (𝑢)

F P (𝑖, 𝑑) W (𝑖) G 1

F Usage𝐷 (𝑖) (Usage𝐷 (𝑖),Usage𝐷 (𝑖)) 𝜔 𝜔

B Init𝐷 (𝑖) (Init𝐷 (𝑖), Init𝐷 (𝑖)) 𝜔 𝜔

(c) Types.

Γ F ∅ | Γ + (𝜑 : 𝑡, 𝑢 : Usage𝑇 (𝑡)) | Γ ± (𝜑 : 𝑡, 𝑢 : Usage𝑇 (𝑡))

(d) Contexts.

Γ𝑖 ⊢ 𝑒 : 𝑡 ⊣ Γ𝑜

(e) Judgements.

Figure 8 Types and Contexts for CirQTS.

Figure 8b presents how we capture datatype usage. Recall that the types for ports and
channels are indexed by a datatype. The shape of a port/wire’s datatype will direct the
usage we need to track. Logic-shaped ports and channels will have a single wire to use, and
bit-vectors an array of elements to use. Bit-vectors are, however, multidimensional and the
usages should reflect that when indexing bit-vectors. When initialising usages for datatypes
we set them to be free.

Figure 8c presents how we specify usages for bindable types. Ports will have to keep track
of their usage based on the usage of the datatype they are indexed by, and wires will have a
pair of usages (one for each endpoint). Gates (and unit) will be left unrestricted as their use
is unrestricted. The syntax for Circuits/CirQTS enforces that stop can only be used once.
For newly introduced ports and wires, their initial usage will be free.

Figure 8d details how we situate our usages in the type-system. Following existing
work [46] we must annotate our typing context to keep track of the usage of bounded terms.
Given the different shapes of our boundable types, we cannot use linear algebra to capture
usage updates. Instead we take a simpler approach by envisaging our types (and type-system)

J. de Muijnck-Hughes and W. Vanderbauwhede 8:13

as a stateful resource in which the usage of bound term is a state. Specifically not only can
our context be extended, but we can also update the state of a bound term’s resource: its
usage.

We differ from standard linear typing approaches by not relying on context splitting.
Rather our judgement formation (Figure 8e), and typing rules, are more algorithmic. Success-
fully typing a term will may result in a new updated context. This mirrors the algorithmic
presentation of the Linear Lambda Calculus (LLC) [45, Figure 1-6].

4.2 New Syntax for Indexing

(index 𝑒 𝑛) → (index 𝜑𝑝 {𝑛𝑖 𝑖∈1..𝑚})
(readFrom 𝑒) → (readFrom 𝜑𝑐) | (readFromAt 𝜑𝑐 idx)
(writeTo 𝑒) → (writeTo 𝜑𝑐) | (writeToAt 𝜑𝑐 idx)

Figure 9 Syntax Changes required for CirQTS.

We can now start to describe the typing rules for CirQTS as presented in Figure 10.
We must first realise, however, that the abstract syntax (Figure 2) is too expressive. The
trouble stems from n-dimensional indexing of bit-vectors. Type-checking each (sub)term in
our stateful typing updates the states held within the typing context. How do we know which
sub-usage of the bit-vector for which bound term in the typing-context needs to be updated?
Indexing a one-dimensional bit-vector is simple, but for deeper indexing (i.e. indexing a
projection or an index of an index) updating the state is impossible. We need the location
within the context. Thus, we must flatten nested indices to a single term, and have separate
terms for when wire endpoints are also projected. This transformation step occurs during
elaboration, and Figure 9 presents the replacement terms required. How we can adapt the
type-system to support nested indexing is not clear.

4.3 Typing Rules
Figure 10 presents the salient typing rules for CirQTS. Missing are the rules for the write
projection as they mirror the rules for the read projection. The presented rules are not too
dissimilar from those in Figure 5. For each rule we reason, using custom predicates, about
the state of the usage resource for each binder, or expect context transitions to enforce our
linear wiring property.

Rule Var ensures that bound variables are only used if they are completely free; ruling
out use of partially used variables that have been used through indexing. Such a predicate
means that once a port/wire has been indexed it can only be used through indexing.

Rule Stop describes the end conditions for each bound term’s usage, as dictated by the
CanStop (𝑡, 𝑢) predicate that requires that all bound terms must be totally used. That is
all ports and wires must be used for the design to type-check. How we define CanStop (𝑡, 𝑢)
impacts on what it means for a design to be totally used. Verilator, for example, does not
require output ports to be fully used in its static analysis. That is, Verilator is affine for
outputs but linear for inputs, whereas CirQTS is linear for all wires/ports. We stress that the
termination conditions for CirQTS are not closed for debate. Rather it supports discussing
the conditions under which ports and wires are said to be sufficiently used. Verilator’s
termination choice, for example, can be replicated by requiring that CanStop (𝑡, 𝑢) requires
inputting ports and wire endpoints be used.

ECOOP 2023

8:14 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

Var
(𝑥 : 𝑡, 𝑜) ∈ Γ [IsFree (𝑜)]
Γ ⊢ 𝑥 : 𝑡 ⊣ Γ ± (𝑥 : 𝑡,Use (𝑜))

Stop
{CanStop (𝑡, 𝑢) | (𝑥 : 𝑡, 𝑢) ∈ Γ}

Γ ⊢ stop :1 ⊣ ∅

Cast
𝑑 :I 𝑎, 𝑏 :D Γ1 ⊢ 𝑝 :P (𝑑, 𝑎) ⊣ Γ2 ValidCast (𝑎, 𝑏)

Γ1 ⊢ (cast 𝑝 𝑎) :P (𝑑, 𝑏) ⊣ Γ2

Mux

Γ1 ⊢ 𝑜 :P (Logic,O) ⊣ Γ2
Γ2 ⊢ 𝑐 :P (Logic, I) ⊣ Γ3 Γ3 ⊢ 𝑎 :P (Logic, I) ⊣ Γ4 Γ4 ⊢ 𝑏 :P (Logic, I) ⊣ Γ5

Γ1 ⊢ mux2 (𝑜, 𝑐, 𝑎, 𝑏) :G ⊣ Γ5

Bin

Γ1 ⊢ 𝑜 :P (Logic,O) ⊣ Γ2
Γ2 ⊢ 𝑥 :P (Logic, I) ⊣ Γ3 Γ3 ⊢ 𝑦 :P (Logic, I) ⊣ Γ4 𝑏 ∈ {and, or, . . .}

Γ1 ⊢ 𝑏 (𝑜, 𝑥, 𝑦) :G ⊣ Γ4

Un
Γ1 ⊢ 𝑜 :P (Logic,O) ⊣ Γ2 Γ2 ⊢ 𝑖 :P (Logic, I) ⊣ Γ3 𝑢 ∈ {not, . . .}

Γ1 ⊢ 𝑢 (𝑜, 𝑖) :G ⊣ Γ3

Assign
𝑑 :I Γ1 ⊢ 𝑖 :P (𝑑, I) ⊣ Γ2 Γ2 ⊢ 𝑜 :P (𝑑,O) ⊣ Γ3 Γ3 ⊢ 𝑏 :1 ⊣ ∅

Γ1 ⊢ assign 𝑖 ← 𝑜 in 𝑏 :1 ⊣ ∅

Ports
𝑖 :I 𝑑 :D Γ + (𝜑 :P (𝑖, 𝑑), Init𝑇 (P (𝑖, 𝑑))) ⊢ 𝑏 :1 ⊣ ∅

Γ ⊢ port 𝑖 𝑑 as 𝜑 in 𝑏 :1 ⊣ ∅

Wire
𝑖 :I Γ + (𝜑 :W (𝑖), Init𝑇 (W (𝑖))) ⊢ 𝑏 :1 ⊣ ∅

Γ ⊢ wire 𝑖 as 𝜑 in 𝑏 :1 ⊣ ∅

Gate
Γ1 ⊢ 𝑔 :G ⊣ Γ2 Γ2 + (𝜑 :G, Init𝑇 (G)) ⊢ 𝑏 :1 ⊣ ∅

Γ1 ⊢ gate 𝑔 as 𝜑 in 𝑏 :1 ⊣ ∅

Index
𝑑 :I 𝑓 :D idx ≔ {𝑚𝑖

𝑖∈1.. 𝑗 } (𝜑𝑝 :P ([𝑑 ; 𝑛], 𝑓), 𝑢) ∈ Γ [IsFreeAt (𝑢, idx)]
Γ ⊢ (index 𝜑𝑝 idx) :P (HasTypeAt ([𝑑 ; 𝑛], idx), 𝑓) ⊣ Γ ± (𝜑𝑝 :P ([𝑑 ; 𝑛], 𝑓),UseAt (𝑢, idx))

Read
𝑑 :I (𝜑𝑐 :W (𝑖), (𝑢𝑟 , 𝑢𝑤)) ∈ Γ [IsFree (𝑢𝑟)]

Γ ⊢ (readFrom 𝜑𝑐) :P (𝑑, I) ⊣ Γ ± (𝜑𝑐 :W (𝑖), (Use (𝑢𝑟), 𝑢𝑤))

ReadAt
𝑑 :I idx ≔ {𝑚𝑖

𝑖∈1.. 𝑗 } (𝜑𝑐 :W (𝑖), (𝑢𝑟 , 𝑢𝑤)) ∈ Γ [IsFreeAt (𝑢𝑟 , idx)]
Γ ⊢ (readFromAt 𝜑𝑐 idx) :P (𝑑, I) ⊣ Γ ± (𝜑𝑐 :W ([𝑑 ; 𝑛]), (UseAt (𝑢𝑟 , idx), 𝑢𝑤))

Figure 10 Typing Rules for CirQTS.

The rules for gates (Rules Mux, Bin, & Un), casting (Rule Cast), and assignment
(Rule Assign) shows how the linearity checking can be propagated silently through the
type-system. Key to Rules Cast, Mux, Bin, & Un operation is that the premises for
ports updates the stateful typing-context. A port can only be used if it is either a variable
(Rule Var) or is the result of indexing a port, or a projection of a wire. Threading the
updated state left-to-right along the typing rules ensures that ports cannot be reused, as
each sub-term uses the latest version of the context possible.

J. de Muijnck-Hughes and W. Vanderbauwhede 8:15

Terms that introduce binders (Rules Ports,Wires,& Gate) are not complicated, and
extend the typing-context with a new variable binding with a default usage state.

The final rules deal with indexing ports, and channel projection. Rule Index becomes a
variant of Rule Var in which the typing conditions require that instead of the referenced
port being completely free, the port must be free at the specified index. Importantly, the
return type in Rule Index is not the inner type of 𝜑𝑝 but is, instead, the type of element
at the end of the presented index. The rules for projection also follow on from Rule Var
in that they resolve references. Whereas Rule Read acts on a port entirely, Rule ReadAt
adapts the structure for Rule Index but the usage resource associated with the wire’s input
endpoint is analysed/updated. Writing to a wire (rules not shown) mirrors those for reading
but affect the other resource.

4.4 Wire-Safety
Our approach to reasoning about wire-safety in CirQTS does not differ much from Section 3.3.
The core differences relate to how Hardware Graphs are defined, and what it means for a
Hardware Graph to be well wired. We highlight the key differences in approach.

To better reason about our graph’s topology we extend the definition of Hardware Graph
from Definition 2 and label each vertex with its expected in/out degree. More formally:

▶ Definition 10 (Hardware Graph). Let 𝐻 = ⟨𝑣𝑠, 𝑒𝑠⟩ be a directed multigraph graph where 𝑣𝑠

is a partitioned set of vertices, and 𝑒𝑠 a list of edges. Vertices in 𝐻 are labelled with their
minimum in/out degree, and are defined as 𝑣𝑜,𝑖 where: 𝑜 is the expected out-degree; 𝑖 the
expected in-degree; and the shape of each 𝑣 is taken from {𝑆 (𝑛,0) , 𝑇 (0,𝑛) ,𝑈 (𝑛,𝑛) , 𝑁 (𝑛, 𝑚) (𝑛,𝑚) }.

Like the previous definition of a hardware graph we must define what it means for such a
graph to be wired. Again, we do so by checking that the expected degrees for each vertex
must match the degrees as calculated from the set of edges. Our previous definition, however,
is too permissive. Must refine our definition to ensure that the given degrees will match
the expected degrees. Moreover, we must ensure that bi-directional ports are used in one
direction only, thus we require an exclusive disjunction (⊻) between the calculated in/out
degrees and the expected degrees. Formally we present his definition as:

▶ Definition 11 (Well-Wired Hardware Graph). Let 𝐻 = ⟨𝑣𝑠, 𝑒𝑠⟩ be our hardware graph, the
wiring of 𝐻 is well-formed, W (𝐻), if ∀𝑣 (𝑜.𝑖) ∈ 𝑣𝑠:

𝑣 (𝑜.𝑖)



𝑆 (𝑜,0) deg+ (𝑆 (𝑜,0) , 𝑒𝑠) ≡ 𝑜 ∧ deg− (𝑆 (𝑜,0) , 𝑒𝑠) ≡ 0
𝑇 (0,𝑖) deg+ (𝑇 (0,𝑖) , 𝑒𝑠) ≡ 0 ∧ deg− (𝑇 (0,𝑖) , 𝑒𝑠) ≡ 𝑖

𝑈 (𝑜,𝑖) deg+ (𝑈 (𝑜,𝑖) , 𝑒𝑠) ≡ 𝑜 ∧ deg− (𝑈 (𝑜,𝑖) , 𝑒𝑠) ≡ 0
⊻

deg+ (𝑈 (𝑜,𝑖) , 𝑒𝑠) ≡ 0 ∧ deg− (𝑈 (𝑜,𝑖) , 𝑒𝑠) ≡ 𝑖

𝑁 (𝑜,𝑖) deg+ (𝑁 (𝑜,𝑖) , 𝑒𝑠) ≡ 𝑜 ∧ deg− (𝑁 (𝑜,𝑖) , 𝑒𝑠) ≡ 𝑖

Figure 11 shows how Figures 1a and 1c can be viewed using the amended hardware graph.
With the new hardware graph definition correspondences (Figure 11a) and discrepancies
(Figure 11b) can be seen between the expected and given degrees for the vertices in each
example. This demonstrates the ability of our new hardware graph definition to more
accurately reason about wiring. If we compare these graphs with those in Figure 6 we can
better see the accuracy. Both Figure 11a and Figure 6a presents graphs in which there are

ECOOP 2023

8:16 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

no discrepancies. Figure 11b, however, now shows a discrepancy for vertex 𝑎 in which its
expected out degree is one but its given out degree is two, this was not seen in Figure 6b as
there is insufficient information to decide.

ab

S(2,0)

ab[0]

ab[1]

N(1,1)

N(1,1)

and

N(1,2)

c

T(0,1)

(a) Figure 1c as a Hardware Graph.

a

S(1,0)

nand

N(1,2)

c

T(0,1)

(b) Figure 1a as a Hardware Graph.

Figure 11 Example Hardware Graphs for CirQTS.

Interpretation of Verliog to hardware graphs is as before, however, to reason more
accurately about bit-vector wiring we calculate the degree of a vertex based on the size of its
datatype. The shape logic has size one, and bit-vectors have the size of its element multiplied
by the size of the bit-vector. We also need to take into account that type-checking will alter
the state associated with bound types. Thus, we must return both the accumulated hardware
graph (𝐻𝑜) and the resulting interpretation environment (Σ𝑜).

▶ Definition 12 (Interpretation). Let Σ𝑖 be an interpretation environment and 𝐻𝑖 = ⟨𝑣𝑠, 𝑤𝑠⟩
be a Hardware Graph. We denote the interpretation of a CirQTS design (Γ𝑖 ⊢ 𝑒 : 𝑡 ⊣ Γ𝑜) as:

(Σ𝑖 , 𝐻𝑖)⟦ 𝑒 ⟧F Error | Done (Σ𝑜, 𝐻𝑜, 𝑣 : ⟦ 𝑡 ⟧𝑇)

where Σ𝑜 and 𝐻𝑜 are the updated environment and resulting hardware graph.

With this new interpretation definition we must also update our interpretation soundness
result accordingly.

▶ Theorem 13 (Strong Interpretation Soundness).

∅ ⊢ 𝑒 :1 ⟦ 𝑒 ⟧ = Done (Σ, 𝐻, 𝑣)
Σ ≡ ∅ 𝑣 ≡ ⊥ W (𝐻)

and also the final lemma which details interpretation.

▶ Lemma 14 (Interpretation). Interpretation of a design is not stuck and will return a result
containing a valid hardware graph.

Γ𝑖 ⊢ 𝑒 : 𝑡 ⊣ Γ𝑜 Γ𝑖 |= Σ𝑖 (Σ𝑖 , 𝐻𝑖)⟦ 𝑒 ⟧F (Done res)
res = (Σ𝑜, 𝐻𝑜, 𝑣) Γ𝑜 |= Σ𝑜 𝑣 : 𝑡′ 𝑡′ ≡ ⟦ 𝑡 ⟧𝑇

Note that we also require a consistency relation on outgoing typing contexts and interpretation
environments, as well as the inputting ones. This is required, as stepping through each
sub-term modifies the type-level state, and returns a new interpretation environment. Further
we need to extend the consistency relation to account for context updates.

▶ Definition 15 (Consistent Interpretation Environments under Context Updates).
UpdateEnv

Γ ⊨ Σ

Γ ± 𝜑 : 𝑡 ⊨ Σ ± (𝜑, 𝑣 : ⟦ 𝑡 ⟧𝑇)

J. de Muijnck-Hughes and W. Vanderbauwhede 8:17

With these revised definitions we can now reason about the type system of CirQTS and
its linearity guarantees. The proof that well-typed designs are well-wired hardware graphs
does not change from the simply-typed proof sketch in Section 3.3.

An interesting aspect of our formulation, is that we can use the same wire-safety result
defined here to show that designs with Circuits specification will be unsafe as the resulting
hardware graphs are not linearly wired.

Unfortunately, we are still not done. CirQTS is too restrictive in its approach to linear
wiring. Our type-system, as it stands, will rule out valid designs by removing the ability to
fan-out and fan-in when it is benign to do so. Verilog designs require that we can split and
join wires together i.e. weaken linearity. The next section discusses how we can extend the
syntax to support this.

5 Weakening Linearity for Free with new Gates

Figure 12a presents a variant of Figure 1a with many potential linear violations, specifically
that the use of a is non-linear and that b is unused. From this example it is, however, unclear
what the designer’s intended wiring was. What was accidental: the repeated use of a, or
specification of b as an input? The linearity encoded within the type-system for CirQTS is
too restrictive. There will be valid cases, for example driving n-ary logic gates with the same
input (Figures 1a and 12a), in which we need to weaken linearity to support valid designs.
At the same time though, we need to report accidental dangling and repeated wiring.

module Example0(output logic c,
input logic a,b);

nand(c, a, a);
endmodule;
(a) Unclear usage.

module Example0(output logic c,
input logic a);

wire logic temp0, temp1;
split(temp0, temp1, a);
nand(c, temp0, temp1);

endmodule;
(b) Clear usage.

Figure 12 Example showing unclear usage violation, and new syntax to make usage explicit.

Figure 13 presents two new gate primitives that support wire duplication (splitting),
and wire joining (collection). With these new primitives designers must now explicitly state
when wires are to be duplicated (i.e. split) and when they are merged (i.e. drive the same
output). Presenting them as primitives addresses issues of backwards compatibility as the
SystemVerilog standard [23] supports new gate primitives to be introduced: No new syntax
changes are required! More so, our wire-safety result from Section 4.4 need not change either.

With the addition of these new primitives we can use internal wiring to rewrite Figure 12a
as Figure 12b if the duplication was required, and if not replace an a with the b. Again
we stress that the implicit wiring decision (duplication) is now an explicit one. Figure 14
illustrate this further by comparing the resulting hardware graph and circuit diagrams for
Figure 12b.

6 Mechanisation and Realisation in a Dependently-Typed Language

We have mechanised the implementations of Circuits and CirQTS using Idris2 [10, 9], a
general purpose dependently-typed language. Leveraging Idris2’s support for dependent types
we can provide both a verifiable practical type-checker for each language, but also formally

ECOOP 2023

8:18 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

𝑒 F . . . | collect (𝑒, 𝑒, 𝑒) | split (𝑒, 𝑒, 𝑒)

(a) Syntax.

Collect
Γ1 ⊢ 𝑜 :P (Logic,O) ⊣ Γ2 Γ2 ⊢ 𝑖𝑎 :P (Logic, I) ⊣ Γ3 Γ3 ⊢ 𝑖𝑏 :P (Logic, I) ⊣ Γ4

Γ1 ⊢ collect (𝑜, 𝑖𝑎, 𝑖𝑏) :G ⊣ Γ4

Split
Γ1 ⊢ 𝑜𝑎 :P (Logic,O) ⊣ Γ2 Γ2 ⊢ 𝑜𝑏 :P (Logic,O) ⊣ Γ3 Γ3 ⊢ 𝑖 :P (Logic, I) ⊣ Γ4

Γ1 ⊢ split (𝑜𝑎, 𝑜𝑏, 𝑖) :G ⊣ Γ4

(b) Typing Rules.
primitive collect (output logic o, input logic a, b);

assign o = a;
assign o = b;

endprimitive;

primitive split (output logic a, b, input logic i);
assign a = i;
assign b = i;

endprimitive;
(c) Verilog Primitives.

Figure 13 New Primitive Gates to Safely “Weaken” Linearity.

a

S(1,0)

split

N(2,1)

writeTo

N(1,1)

writeTo

N(1,1)

nand

N(1,2)

readFrom

N(1,1)

readFrom

N(1,1)

c

T(0,1)

(a) As a Hardware Graph.

a c

(b) As a Circuit Diagram.

Figure 14 Figure 12b as a Hardware Graph and Circuit Diagram.

J. de Muijnck-Hughes and W. Vanderbauwhede 8:19

reason about wire-safety. Thus, our implementations primarily support the type-checking
of netlists (modulo syntax restrictions from Section 2) written in Verilog. With Circuits
we can check if it is valid Verilog, with CirQTS we can check if the netlists are linearly
wired. Further, for both type-checkers we incorporated a soundness check (modelled on the
type-safety result from CirQTS) to show which designs accepted by Circuits are in-fact
wire unsafe.

Both Circuits and CirQTS have been realised as intrinsically well-typed well-scoped
Embedded Domain Specification Languages (EDSLs) within Idris2 using well documented
techniques [27, 2, 29, 25]. The terms, types, and usages for our languages translate directly
into standard dependently (and non-dependently) typed data structures. Reading of valid
Verilog netlists comes from a frontend Domain Specification Language (DSL) coupled with
an elaborator (also known as the type, scope, and usage checker) to construct intrinsically
typed terms.

There are three interesting aspects with our approach to the mechanisation: relation
between soundness check and our formal proof; intrinsic linearity checking; and error reporting.

Existing work has demonstrated how well-typed definitional interpreters can be realised
within dependently-typed languages [40, 35] to provide a mechanised runtime. We borrow
this approach to not only reason about our type-safety result (wire-safety) as code (i.e. its
mechanisation) but make the proof an integral aspect of our tool’s operation.

The core EDSLs representing CirQTS are intrinsically typed both structurally and
sub-structurally. Our approach is inspired by Leftover Typing [1] in which variable usage
updates a type-level state iff a variable is “free” to be used. We use a bespoke list quantifier
(presented in Figure 15) paired with a generic update datatype and decision procedure
(Figure 16) to provide a type-safe updating of the typing context respective to the predicate
being asserted. The type-level constraints that act on variables, that enable our linearity,
are instances of these decidable constructs.

data Elem : (p : type -> Type)
-> (x : type)
-> (xs : List type)
-> Type

where
Here : (prfSame : x = y)

-> (prfSat : p y)
-> Elem p x (y::xs)

There : (rest : Elem p x xs)
-> Elem p x (y::xs)

(a) Decidable Predicate.

isElemSat : DecEq type
=> (f : (x : type)

-> DecInfo (n x) (p x))
-> (x : type)
-> (xs : List type)

-> DecInfo (ElemNot n p x xs)
(Elem p x xs)

(b) Decision Procedure.

Figure 15 Quantification over Lists.

The standard decidable predicate (Dec) for decision procedures is lossy when reporting
errors, such that it is impossible to know at runtime why the procedure failed. Such
predicates are analogous to the Maybe datatype. We need an Either equivalent to help
report useful information when a decidable procedure fails: Dec needs to be decidedly
informative. Constructive negation is an interesting area of research that supports positive
information to be used when reporting errors [5]. Inspired by constructive negation we have
used DecInfo, which is similar to the definition for decidable but is further indexed by a
type that carries showable error messages as well as proofs of contradition. We see this in
the type signature for isElemSat in Figure 15, where ElemNot records why the procedure
failed and requires an informative decision procedure: empty list, or element does not satisfy

ECOOP 2023

8:20 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

data Update : (o,n : type -> Type)
-> (use : (x : type) -> (prfO : o x) -> (y : type) -> (prfN : n y) -> Type)
-> (old : List type) -> (prf : Elem o x old)
-> (new : List type)
-> Type

where
UHere : {0 u : (x : type) -> (pO : o x) -> (y : type) -> (pN : n y) -> Type}

-> (use : u x pX y pY)
-> Update o n u (x::xs) (Here Refl pX)

(y::xs)
UThere : (rest : Update o n u xs l ys)

-> Update o n u (x::xs) (There l) (x::ys)

(a) Instructions.

update : (use : {x : type} -> (prfO : o x) -> (y : type ** prfN : n y ** u x prfO y prfN))
-> (old : List type)
-> (prf : Elem o x old)
-> (new ** Update o n u old prf new)

(b) Procedure.

Figure 16 Safe List Updating.

the provided predicate. Sadly DecInfo is not truly positive as it carries a proof of void.
Making it positively negative, that is using only positive information to represent proofs and
refutations, is ongoing work.

Using Idris2 to construct our proof-of-concept type-checkers demonstrates the power of
mechanising our proofs in a practical general purpose language that supports dependent
types.

7 Evaluation

We investigated the efficacy of Circuits and CirQTS through creation of an illustrative
testbench. The testbench was designed to illustrate how well-known circuits can contain
implicit wiring decisions (checked against Circuits), and that by using CirQTS we can
make the wiring explicit. Other examples chosen were inspired by various online Verilog
tutorials and sought to test the ability of our type-systems to type-check existing designs
(Circuits) and to reason about quantitative wire usage for those designs (CirQTS). The
well-known designs chosen were flip flops, full and half adders, and gate-level multiplexers.
We provided normal and linear variants of these well-known designs, and Table 1 presents
salient modelling information comparing the two variants.

Table 1 Salient Modelling Information for Core Netlists used during Benchmarking.

Non-Linear Linear
Netlist Inputs Outputs Wires Gates Inputs Outputs Wires Gates

FlipFlopD 2 2 3 5 2 2 11 9
FullAdder 3 2 3 5 3 2 11 9
HalfAdder 2 2 0 2 2 2 4 4
Mux21 3 1 3 4 3 1 5 5

All examples presented were checked against: Circuits, CirQTS, and Verilator. We
performed these checks for two reasons. First, we wanted to show that designs that were
admitted by Circuits but failed the soundness checker, then failed to type check using

J. de Muijnck-Hughes and W. Vanderbauwhede 8:21

CirQTS, and that valid linear designs could also be checked using Circuits. Second,
Verilator is a well-known open source static analysis and simulation tool for SystemVerilog.
Comparison against Verilator provides a validation step that CirQTS is comparable to
existing tooling and that, unlike commercial static analysis tools, can be incorporated into
our supplied artefact due to its small installation footprint and permissive licence.

For all examples, we found that type-checking time was negligible, and comparable to
Verilator, whether an error was found or not. From this experimentation we made the
following observations.

We can Retrofit Linear Types onto Verilog NetLists

The gate-level syntax is the last intermediate representation before fabrication (or deployment
to an FPGA). For this subset of Verilog chosen for our featherweight language, we have
been successful in introducing linear wirings. From this subset the challenge will be how to
promote linearity to the remainder of Verilog, and of course SystemVerilog.

Verbosely Made Implicit Wirings Explicit

The new primitives presented in Section 5 support valid weakening of linearity, specifically
splitting and joining of wires. Such weakening, however, comes at the cost of design verbosity.
Compare in Figure 17, for example, the implementations of a half-adder in both Circuits
and CirQTS. For each wire split, or joined, new wires must be presented.

module Example(output logic sum, carry
,input logic a b);

xor g1(sum,a,b);
and g2(carry,a,b);

endmodule;

(a) Circuits.

module Example(output logic sum, carry
,input logic a b);

wire logic a1,a2,b1,b2;

split sa(a1,a2,a);
split sb(b1,b2,b);

xor g1(sum,a1,b1);
and g2(carry,a2,b2);

endmodule;

(b) CirQTS.

Figure 17 Half-Adder in both Circuits and CirQTS.

Although in the linear setting such redundant wires can be optimised away, their addition
to the language makes it verbose. If we are to introduce such linear restrictions elsewhere
in SystemVerilog, that is for synthesisable terms, the end user will be presented with a
needlessly verbose language. Thus raising the question of how best to retrofit existing HDLs
with quantitative types such that linearity does not get in the way. Perhaps we should not
take this approach, and instead look at providing annotations as seen in other extensions to
Verilog [48].

Some Ports are Linear but Some are More Linear Than Others

One aspect we found interesting is that CirQTS performs more finegrained resource tracking
for inputting n-dimensional bit-vectors when compared to Verilator. Although Verilator can
identify unused inputs in designs, for logic and bit-vectors, it does not consistently report

ECOOP 2023

8:22 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

unused inputs for n-dimensional bit-vectors. Consider, for example, the following illustrative
netlists presented in Figure 18. The netlist within Figure 18a is caught by Verilator as the
output port (out) is not fully used. The netlist within Figure 18b is not caught by Verilator
even though the input port (bc) is not fully used.

module Example(output logic[1:0][1:0] out, input logic a,b);

and n1(out[0][1],a,b);

endmodule;
(a) Caught by Verilator.
module Example(output logic out, input logic[1:0][1:0] bc);

and n1(out, bc[0][1], bc[1][0]);

endmodule;
(b) Not Caught by Verilator.

Figure 18 Illustrative Netlists with sparsly used input and output ports.

We noted the potential discrepancy in Section 4.3 when discussing the stopping condition,
that is when and how we check for linear usage. Such difference is because unused signals can
be safely removed from the design. Specifically, inputting ports can be left unused if they are
never connected to anything else in the entire design, and module outputs need to be driven
as they could potentially be used later in the design to drive another part of the design.

Such differences in granularity of reporting between CirQTS and Verilator does raise
interesting questions about the semantics (veracity) of linear wiring. Whilst outputting ports
must be linear in usage, inputting ports are affine. Linear usage restrictions are incredibly
restrictive, terms must be used exactly once. In certain circuit designs it is okay to leave
the input of a circuit dangling. Perhaps our quantitative type-system requires fine-tuning to
ensure that we are affine for inputs, but linear for outputs, or even gradations to specify how
much a signal must be used as seen in Granule? Although we could also extend our syntax
to support “noops” primitives that consumes purposefully dangling wires. . . . That being
said, such allowed dangling is very much a behavioural aspect that requires more information
that we do not presently give in the type-system about the intended behaviour being realised.
Our use of quantitative typing is purely structural and not behavioural. More descriptive
behavioural typing is required, and that is a different kettle of fish entirely.

8 Related Work

Section 4 discussed the limitations of modelling linear wiring in existing QTS , and mentioned
that Verilator performs an extrinsic graph-based check. This section looks to the wider world
of HDL design and verification, and where our work resides.

8.1 Formal Models of Verilog
There have been several attempts at verifying the behaviour of Verilog designs [28, 31,
26]. Many of these works are limited by looking at the behaviour of modules in isolation
and not their composition. CirQTS complements these attempts by providing a formal
account for wiring. Integrating our type-system into existing behavioural semantics would
be advantageous.

J. de Muijnck-Hughes and W. Vanderbauwhede 8:23

8.2 BlueSpecVerilog
Verilog-like languages view hardware in the traditional sense of wiring up boxes/gates that
communicate concurrently. BlueSpecVerilog (BSV) [32] takes a different route by allowing
designers to take a slightly higher-level view of hardware and describe circuits as atomic
actions on stateful elements i.e. registers. BSV builds upon SystemVerilog with strong types
and known techniques lifted from the well-known functional language Haskell. Kami and
Kôika are two rule-based hardware description languages that capture core behavioural
semantics of BSV [11, 8]. Both languages are presented as EDSLs written in the Coq
Theorem Prover. Our approach to wire-safety can compliment existing work relating to BSV
by enforcing wiring decisions to be explicit rather than implicit. How our work intersects
practically is an area for future investigation.

8.3 High-Level Synthesis
Similar to the realisation of Kami and Kôika, High-Level Synthesis (HLS) typically approaches
hardware design as EDSLs in high-level languages such as Haskell and Scala that are then
synthesised into hardware descriptions i.e. netlists. Popular HDLs that take this approach are
PyRTL [13], Lava [20], Chisel [6], Delite [43], ReWrire [39], and C𝜆ash [42]. By embedding
their work in an existing general-purpose language these languages can take full advantage
of the host language’s eco-system to provide guarantees about program composition and
behaviour. For instance Wire Sorts [12] is an extension to PyRTL to reason about wirings.
Many of the approaches described here model circuit level designs as combinators, and treat
hardware components as functions that can be translated directly to SystemVerilog. Our
work intersects through provision of a means to account for how wires are generated and
used in the synthesised designs.

More interestingly are HDLs embedded in languages that are QTS aware e.g. Haskell. It
will be interesting to see how Linear Haskell can be used by the Lava and C𝜆ash to enforce
linear wiring.

8.4 Cava
Coq + Lava (Cava) is an industrial research project2 that looks at providing an easy to verify
HDL for “network-style” low level circuits, rather than higher level processor designs as
seen in BSV . Cava primarily looks to verify circuit behaviour. Much like Kami and Kôika,
Cava is an EDSL in the Coq Theorem Prover. Interestingly, Cava and Circuits/CirQTS
share similarities in that they both describe netlists. We differ in that Cava syntax is not
verilog-like when representing wiring but ours is.

8.5 Formal Models for High-Level Synthesis
We end our discussion of related work by looking at theoretical models for hardware. The
Geometry of Synthesis series [16, 19, 17, 15, 18] looks at leveraging Geometry of Interaction
style interpretation as a way to better understand the behavioural and structural aspects of
hardware design. Especially, they target a HLS combined with category theory to better
tell the synthesis story. Fortunately, existing work (Section 8.1) has looked at the synthesis
story for Verilog. We have not explored these stories to include QTS , we have short-circuited
this story by jumping straight to the end. That being said we are, however, interested in
exploring how our QTS can be included.

2 https://project-oak.github.io/silveroak/

ECOOP 2023

https://project-oak.github.io/silveroak/

8:24 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

9 Conclusion

CirQTS demonstrates that quantitative typing, specifically, the idea of linearity, is not just
for general purpose programming languages. We can use fancy types to be reason about
hardware design. With Verilog being so integral to hardware design, our efforts at formal
verification (through typing) of the language itself has helped move existing extrinsic checks
(as performed by static analyses and simulation, and also caught during synthesis) directly
into the type-system, and become an integral part of the language itself. With the correct
type-system, errors that were once caught late in the design process will now be caught
earlier helping to increase design productivity and enhance the trustworthiness of developed
designs.

A question remains though over what precise usage restrictions should be applied to
hardware terms, and presented to the system designer. Is it the case that all terms should be
restricted equally, or that some terms be restricted less equally than others? Moreover, we
have not required designers to annotate their designs. Would it be better to extend/embed
Verilog with linear annotations? If such restrictions are given, would some form of gradations
a la Granule on terms be better for specifying usage? These are all exciting open areas of
investigation.

A secondary area of interest is where we place usage information in CirQTS. We have
used usage annotations on binders, as is common in QTS . An alternative approach would be
to index types directly with their usage, rather than as usage annotations on binders. We
think this is an equally valid approach but will require further investigation over soundness
and suitability.

Regardless, we have demonstrated how to retrofit a sub-structural type-system onto
existing syntax modulo minor syntax elaboration. Retrofitting means that we do not need
new languages that existing designs must be ported to. However, looking at what syntax
changes are needed to make Verilog more conducive to linear wiring, or new primitives, is also
a worthy area of future investigation. Our retrofitting approach also opens up future work on
what else needs changing (in the type-system) when bringing quantitative typing back up the
synthesis to higher-levels of abstraction. A key aspect of which will be design composition
in the face of modules and interfaces, and the quasi-dependently-typed parameterisation of
modules and interfaces.

Finally, within Idris2 the none-one-tonne rig [30] provides a distinction between code
available at runtime (1, 𝜔) and its usage, and code only available at compiletime (0). We
have used elements of QTT to reason about wire usage, but not their movement through the
fourth dimension: time. Whereas we think of a program’s journey as going first through the
compiletime and then the runtime, SystemVerilog is a language where designs will journey
through many more “times”: design, testing, simulation, synthesis, placement & routing,
and execution. A fascinating area of investigation would be to see if QTT , or QTT -like
structures, can help to better reason about terms as they traverse through the many times
of SystemVerilog. Can terms be stratified according to when in time they are expected to
be? We hope so!

References
1 Guillaume Allais. Typing with Leftovers – A mechanization of Intuitionistic Multiplicative-

Additive Linear Logic. In 23rd International Conference on Types for Proofs and Programs,
TYPES 2017, May 29-June 1, 2017, Budapest, Hungary, pages 1:1–1:22, 2017. doi:10.4230/
LIPIcs.TYPES.2017.1.

https://doi.org/10.4230/LIPIcs.TYPES.2017.1
https://doi.org/10.4230/LIPIcs.TYPES.2017.1

J. de Muijnck-Hughes and W. Vanderbauwhede 8:25

2 Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. A
type and scope safe universe of syntaxes with binding: their semantics and proofs. PACMPL,
2(ICFP):90:1–90:30, 2018. doi:10.1145/3236785.

3 Nada Amin and Tiark Rompf. Type soundness proofs with definitional interpreters. In
Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-
20, 2017, pages 666–679. ACM, 2017. URL: http://dl.acm.org/citation.cfm?id=3009866,
doi:10.1145/3009837.3009866.

4 Robert Atkey. Syntax and Semantics of Quantitative Type Theory. In Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July
09-12, 2018, pages 56–65, 2018. doi:10.1145/3209108.3209189.

5 Robert Atkey. Data Types with Negation. Extended Abstract (Talk Only) at Ninth Workshop
on Mathematically Structured Functional Programming, Munich, Germany, 2nd April 2022,
2022. URL: https://youtu.be/mZZjOKWCF4A.

6 Jonathan Bachrach, Huy Vo, Brian C. Richards, Yunsup Lee, Andrew Waterman, Rimas
Avizienis, John Wawrzynek, and Krste Asanovic. Chisel: constructing hardware in a Scala
embedded language. In Patrick Groeneveld, Donatella Sciuto, and Soha Hassoun, editors, The
49th Annual Design Automation Conference 2012, DAC ’12, San Francisco, CA, USA, June
3-7, 2012, pages 1216–1225. ACM, 2012. doi:10.1145/2228360.2228584.

7 Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and
Arnaud Spiwack. Linear Haskell: Practical Linearity in a Higher-Order Polymorphic Language.
Proc. ACM Program. Lang., 2(POPL), December 2017. doi:10.1145/3158093.

8 Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind. The essence of Bluespec:
a core language for rule-based hardware design. In Alastair F. Donaldson and Emina Torlak,
editors, Proceedings of the 41st ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, pages
243–257. ACM, 2020. doi:10.1145/3385412.3385965.

9 Edwin Brady. Idris, a general-purpose dependently typed programming language: Design and
implementation. J. Funct. Program., 23(5):552–593, 2013. doi:10.1017/S095679681300018X.

10 Edwin C. Brady. Idris 2: Quantitative Type Theory in Practice. In Anders Møller and Manu
Sridharan, editors, 35th European Conference on Object-Oriented Programming, ECOOP
2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference), volume 194 of LIPIcs, pages
9:1–9:26. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
ECOOP.2021.9.

11 Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chlipala, and Arvind.
Kami: a platform for high-level parametric hardware specification and its modular verification.
Proc. ACM Program. Lang., 1(ICFP):24:1–24:30, 2017. doi:10.1145/3110268.

12 Michael Christensen, Timothy Sherwood, Jonathan Balkind, and Ben Hardekopf. Wire sorts:
a language abstraction for safe hardware composition. In Stephen N. Freund and Eran Yahav,
editors, PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 20211, pages 175–189. ACM,
2021. doi:10.1145/3453483.3454037.

13 Deeksha Dangwal, Georgios Tzimpragos, and Timothy Sherwood. Agile Hardware Development
and Instrumentation With PyRTL. IEEE Micro, 40(4):76–84, 2020. doi:10.1109/MM.2020.
2997704.

14 Peter Flake, Phil Moorby, Steve Golson, Arturo Salz, and Simon Davidmann. Verilog HDL
and Its Ancestors and Descendants. Proc. ACM Program. Lang., 4(HOPL), June 2020.
doi:10.1145/3386337.

15 Dan R. Ghica. Geometry of synthesis: a structured approach to VLSI design. In Martin
Hofmann and Matthias Felleisen, editors, Proceedings of the 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2007, Nice, France, January
17-19, 2007, pages 363–375. ACM, 2007. doi:10.1145/1190216.1190269.

ECOOP 2023

https://doi.org/10.1145/3236785
http://dl.acm.org/citation.cfm?id=3009866
https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1145/3209108.3209189
https://youtu.be/mZZjOKWCF4A
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/3158093
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.1145/3110268
https://doi.org/10.1145/3453483.3454037
https://doi.org/10.1109/MM.2020.2997704
https://doi.org/10.1109/MM.2020.2997704
https://doi.org/10.1145/3386337
https://doi.org/10.1145/1190216.1190269

8:26 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

16 Dan R. Ghica. The Geometry of Synthesis – How to Make Hardware Out of Software. In
Mathematics of Program Construction – 11th International Conference, MPC 2012, Madrid,
Spain, June 25-27, 2012. Proceedings, pages 23–24, 2012. doi:10.1007/978-3-642-31113-0_3.

17 Dan R. Ghica and Alex I. Smith. Geometry of Synthesis II: From Games to Delay-Insensitive
Circuits. In Michael W. Mislove and Peter Selinger, editors, Proceedings of the 26th Conference
on the Mathematical Foundations of Programming Semantics, MFPS 2010, Ottawa, Ontario,
Canada, May 6-10, 2010, volume 265 of Electronic Notes in Theoretical Computer Science,
pages 301–324. Elsevier, 2010. doi:10.1016/j.entcs.2010.08.018.

18 Dan R. Ghica and Alex I. Smith. Geometry of synthesis III: resource management through type
inference. In Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA,
January 26-28, 2011, pages 345–356. ACM, 2011. doi:10.1145/1926385.1926425.

19 Dan R. Ghica, Alex I. Smith, and Satnam Singh. Geometry of synthesis IV: compiling
affine recursion into static hardware. In Proceeding of the 16th ACM SIGPLAN international
conference on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011,
pages 221–233, 2011. doi:10.1145/2034773.2034805.

20 Andy Gill, Tristan Bull, Garrin Kimmell, Erik Perrins, Ed Komp, and Brett Werling. Introduc-
ing Kansas Lava. In Marco T. Morazán and Sven-Bodo Scholz, editors, Implementation and
Application of Functional Languages – 21st International Symposium, IFL 2009, South Orange,
NJ, USA, September 23-25, 2009, Revised Selected Papers, volume 6041 of Lecture Notes in
Computer Science, pages 18–35. Springer, 2009. doi:10.1007/978-3-642-16478-1_2.

21 Robert Griesemer, Raymond Hu, Wen Kokke, Julien Lange, Ian Lance Taylor, Bernardo
Toninho, Philip Wadler, and Nobuko Yoshida. Featherweight Go. Proc. ACM Program. Lang.,
4(OOPSLA):149:1–149:29, 2020. doi:10.1145/3428217.

22 Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson. Formal
verification of high-level synthesis. Proc. ACM Program. Lang., 5(OOPSLA):1–30, 2021.
doi:10.1145/3485494.

23 IEEE. IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and Verifi-
cation Language, IEEE Std 1800-2017 edition, February 2018. doi:10.1109/IEEESTD.2018.
8299595.

24 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.
doi:10.1145/503502.503505.

25 Simon L. Peyton Jones. The Implementation of Functional Programming Languages. Prentice-
Hall, 1987.

26 Wilayat Khan, Alwen Tiu, and David Sanán. VeriFormal: An Executable Formal Model of a
Hardware Description Language. In Abhik Roychoudhury and Yang Liu, editors, A Systems
Approach to Cyber Security – Proceedings of the 2nd Singapore Cyber-Security R&D Conference
(SG-CRC 2017), Singapore, February 21-22, 2017, volume 15 of Cryptology and Information
Security Series, pages 19–36. IOS Press, 2017. doi:10.3233/978-1-61499-744-3-19.

27 Wen Kokke, Jeremy G. Siek, and Philip Wadler. Programming language foundations in Agda.
Sci. Comput. Program., 194:102440, 2020. doi:10.1016/j.scico.2020.102440.

28 Andreas Lööw. Lutsig: a verified Verilog compiler for verified circuit development. In Cătălin
Hrit,cu and Andrei Popescu, editors, CPP ’21: 10th ACM SIGPLAN International Conference
on Certified Programs and Proofs, Virtual Event, Denmark, January 17-19, 2021, pages 46–60.
ACM, 2021. doi:10.1145/3437992.3439916.

29 Conor McBride. Outrageous but meaningful coincidences: dependent type-safe syntax and
evaluation. In Bruno C. d. S. Oliveira and Marcin Zalewski, editors, Proceedings of the ACM
SIGPLAN Workshop on Generic Programming, WGP 2010, Baltimore, MD, USA, September
27-29, 2010, pages 1–12. ACM, 2010. doi:10.1145/1863495.1863497.

https://doi.org/10.1007/978-3-642-31113-0_3
https://doi.org/10.1016/j.entcs.2010.08.018
https://doi.org/10.1145/1926385.1926425
https://doi.org/10.1145/2034773.2034805
https://doi.org/10.1007/978-3-642-16478-1_2
https://doi.org/10.1145/3428217
https://doi.org/10.1145/3485494
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1109/IEEESTD.2018.8299595
https://doi.org/10.1145/503502.503505
https://doi.org/10.3233/978-1-61499-744-3-19
https://doi.org/10.1016/j.scico.2020.102440
https://doi.org/10.1145/3437992.3439916
https://doi.org/10.1145/1863495.1863497

J. de Muijnck-Hughes and W. Vanderbauwhede 8:27

30 Conor McBride. I Got Plenty o’ Nuttin’. In Sam Lindley, Conor McBride, Philip W. Trinder,
and Donald Sannella, editors, A List of Successes That Can Change the World – Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes
in Computer Science, pages 207–233. Springer, 2016. doi:10.1007/978-3-319-30936-1_12.

31 Patrick O’Neil Meredith, Michael Katelman, José Meseguer, and Grigore Rosu. A formal
executable semantics of Verilog. In 8th ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE 2010), Grenoble, France, 26-28 July 2010,
pages 179–188. IEEE Computer Society, 2010. doi:10.1109/MEMCOD.2010.5558634.

32 Rishiyur S. Nikhil. Bluespec System Verilog: efficient, correct RTL from high level specifications.
In 2nd ACM & IEEE International Conference on Formal Methods and Models for Co-Design
(MEMOCODE 2004), 23-25 June 2004, San Diego, California, USA, Proceedings, pages 69–70.
IEEE Computer Society, 2004. doi:10.1109/MEMCOD.2004.1459818.

33 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. Quantitative program
reasoning with graded modal types. PACMPL, 3(ICFP):110:1–110:30, 2019. doi:10.1145/
3341714.

34 Jens Palsberg. Featherweight X10: a core calculus for async-finish parallelism. In Wei-Ngan
Chin and Aquinas Hobor, editors, Proceedings of the 14th Workshop on Formal Techniques
for Java-like Programs, FTfJP 2012, Beijing, China, June 12, 2012, page 1. ACM, 2012.
doi:10.1145/2318202.2318203.

35 Casper Bach Poulsen, Arjen Rouvoet, Andrew Tolmach, Robbert Krebbers, and Eelco Visser.
Intrinsically-typed definitional interpreters for imperative languages. Proc. ACM Program.
Lang., 2(POPL):16:1–16:34, 2018. doi:10.1145/3158104.

36 Dimitri Racordon and Didier Buchs. Featherweight Swift: a Core calculus for Swift’s type
system. In Ralf Lämmel, Laurence Tratt, and Juan de Lara, editors, Proceedings of the
13th ACM SIGPLAN International Conference on Software Language Engineering, SLE 2020,
Virtual Event, USA, November 16-17, 2020, pages 140–154. ACM, 2020. doi:10.1145/3426425.
3426939.

37 John C. Reynolds. Definitional Interpreters for Higher-Order Programming Languages. High.
Order Symb. Comput., 11(4):363–397, 1998. doi:10.1023/A:1010027404223.

38 John C. Reynolds. Definitional Interpreters Revisited. High. Order Symb. Comput., 11(4):355–
361, 1998. doi:10.1023/A:1010075320153.

39 Thomas N. Reynolds, Adam M. Procter, William L. Harrison, and Gerard Allwein. A
core calculus for secure hardware: its formal semantics and proof system. In Jean-Pierre
Talpin, Patricia Derler, and Klaus Schneider, editors, Proceedings of the 15th ACM-IEEE
International Conference on Formal Methods and Models for System Design, MEMOCODE
2017, Vienna, Austria, September 29 – October 02, 2017, pages 122–131. ACM, 2017. doi:
10.1145/3127041.3127048.

40 Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. Intrinsically-typed
definitional interpreters for linear, session-typed languages. In Jasmin Blanchette and Catalin
Hritcu, editors, Proceedings of the 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pages 284–298.
ACM, 2020. doi:10.1145/3372885.3373818.

41 Jeremy Siek. Type Safety in Three Easy Lemmas. Online, May 2013. URL: https://siek.
blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html.

42 Gerard J. M. Smit, Jan Kuper, and Christiaan P. R. Baaij. A mathematical approach
towards hardware design. In Peter M. Athanas, Jürgen Becker, Jürgen Teich, and Ingrid
Verbauwhede, editors, Dynamically Reconfigurable Architectures, 11.07. – 16.07.2010, volume
10281 of Dagstuhl Seminar Proceedings. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Germany, 2010. doi:10.4230/DagSemProc.10281.3.

43 Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Hassan Chafi, Martin
Odersky, and Kunle Olukotun. Delite: A Compiler Architecture for Performance-Oriented
Embedded Domain-Specific Languages. ACM Trans. Embedded Comput. Syst., 13(4s):134:1–
134:25, 2014. doi:10.1145/2584665.

ECOOP 2023

https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1109/MEMCOD.2010.5558634
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714
https://doi.org/10.1145/2318202.2318203
https://doi.org/10.1145/3158104
https://doi.org/10.1145/3426425.3426939
https://doi.org/10.1145/3426425.3426939
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1023/A:1010075320153
https://doi.org/10.1145/3127041.3127048
https://doi.org/10.1145/3127041.3127048
https://doi.org/10.1145/3372885.3373818
https://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html
https://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html
https://doi.org/10.4230/DagSemProc.10281.3
https://doi.org/10.1145/2584665

8:28 Wiring Circuits Is Easy as {0, 1, 𝝎}, or Is It...

44 Philip Wadler. Linear Types can Change the World! In Manfred Broy and Cliff B. Jones,
editors, Programming concepts and methods: Proceedings of the IFIP Working Group 2.2, 2.3
Working Conference on Programming Concepts and Methods, Sea of Galilee, Israel, 2-5 April,
1990, page 561. North-Holland, 1990.

45 David Walker. Advanced Topic in Types and Programming Languages, chapter Substructural
Type Systems, pages 3–43. The MIT Press, 2004.

46 James Wood and Robert Atkey. A Linear Algebra Approach to Linear Metatheory. In
Ugo Dal Lago and Valeria de Paiva, editors, Proceedings Second Joint International Workshop
on Linearity & Trends in Linear Logic and Applications, Linearity & TLLA @ IJCAR-
FSCD 2020, Online, 29-30 June 2020, volume 353 of EPTCS, pages 195–212, 2020. doi:
10.4204/EPTCS.353.10.

47 Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type Soundness. Inf.
Comput., 115(1):38–94, 1994. doi:10.1006/inco.1994.1093.

48 Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A Hardware Design
Language for Timing-Sensitive Information-Flow Security. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’15, pages 503–516, New York, NY, USA, 2015. Association for Computing
Machinery. doi:10.1145/2694344.2694372.

https://doi.org/10.4204/EPTCS.353.10
https://doi.org/10.4204/EPTCS.353.10
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/2694344.2694372

VeriFx: Correct Replicated Data Types for the
Masses
Kevin De Porre # Ñ

Vrije Universiteit Brussel, Belgium

Carla Ferreira # Ñ

NOVA School of Science and Technology, Caparica, Portugal

Elisa Gonzalez Boix # Ñ

Vrije Universiteit Brussel, Belgium

Abstract
Distributed systems adopt weak consistency to ensure high availability and low latency, but state
convergence is hard to guarantee due to conflicts. Experts carefully design replicated data types
(RDTs) that resemble sequential data types and embed conflict resolution mechanisms that ensure
convergence. Designing RDTs is challenging as their correctness depends on subtleties such as the
ordering of concurrent operations. Currently, researchers manually verify RDTs, either by paper
proofs or using proof assistants. Unfortunately, paper proofs are subject to reasoning flaws and
mechanized proofs verify a formalization instead of a real-world implementation. Furthermore,
writing mechanized proofs is reserved for verification experts and is extremely time-consuming. To
simplify the design, implementation, and verification of RDTs, we propose VeriFx, a specialized
programming language for RDTs with automated proof capabilities. VeriFx lets programmers
implement RDTs atop functional collections and express correctness properties that are verified
automatically. Verified RDTs can be transpiled to mainstream languages (currently Scala and
JavaScript). VeriFx provides libraries for implementing and verifying Conflict-free Replicated Data
Types (CRDTs) and Operational Transformation (OT) functions. These libraries implement the
general execution model of those approaches and define their correctness properties. We use the
libraries to implement and verify an extensive portfolio of 51 CRDTs, 16 of which are used in
industrial databases, and reproduce a study on the correctness of OT functions.

2012 ACM Subject Classification Software and its engineering → Domain specific languages;
Computing methodologies → Distributed programming languages; Theory of computation →
Distributed algorithms

Keywords and phrases distributed systems, eventual consistency, replicated data types, verification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.9

Related Version Previous Version: https://arxiv.org/abs/2207.02502

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.19

Funding Kevin De Porre: Funded by the Research Foundation - Flanders. Project number 1S98519N.
Carla Ferreira: Partly funded by EU Horizon Europe under Grant Agreement no. 101093006
(TaRDIS), and FCT-Portugal under grants UIDB/04516/2020 and PTDC/CCI-INF/32081/2017.

Acknowledgements The authors would like to thank Nuno Preguiça, Carlos Baquero, and Imine
Abdessamad for their early feedback on this work.

1 Introduction

Replication is essential to modern distributed systems as it enables fast access times and
improves the system’s overall scalability, availability, and fault tolerance. When data is
replicated across machines, replicas must be kept consistent to some extent. When facing
network partitions, replicas cannot remain consistent while also accepting reads and writes,
a consequence of the CAP theorem [17,18,39]. Programmers thus face a trade-off between

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 9; pp. 9:1–9:45

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kevin.de.porre@vub.be
https://soft.vub.ac.be/~kdeporre
https://orcid.org/0000-0001-5469-1001
mailto:carla.ferreira@fct.unl.pt
http://ctp.di.fct.unl.pt/~cf/
https://orcid.org/0000-0003-3680-7634
mailto:egonzale@vub.be
https://soft.vub.ac.be/disco/elisa/
https://orcid.org/0000-0002-9966-6421
https://doi.org/10.4230/LIPIcs.ECOOP.2023.9
https://arxiv.org/abs/2207.02502
https://doi.org/10.4230/DARTS.9.2.19
https://doi.org/10.4230/DARTS.9.2.19
https://doi.org/10.4230/DARTS.9.2.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 VeriFx: Correct Replicated Data Types for the Masses

consistency and availability. Keeping replicas strongly consistent induces high latencies, poor
scalability, and reduced availability since updates must be coordinated, e.g. using a consensus
algorithm. By relaxing the consistency guarantees, latencies can be reduced and the overall
availability improved, but users may observe temporary inconsistencies between replicas.

Distributed systems increasingly adopt weak consistency models. However, concurrent
operations may lead to conflicts which must be solved in order to guarantee state convergence.
Consider the case of collaborative text editors. When a user edits a document, the operation
is immediately applied on the local replica and propagated asynchronously to other replicas.
Since concurrent edits are applied in different orders at different replicas, states can diverge.

To ensure convergence, Ellis and Gibbs [25] proposed a technique called Operational
Transformation (OT) that modifies incoming operations against previously executed concur-
rent operations such that the modified operation preserves the intended effect. Much work
focused on designing OT functions for collaborative text editing [25, 34, 64, 69, 72], but most
tombstone-free transformation functions (some with mechanized proofs) are wrong [34,49,62].

Since conflict resolution is hard [2, 41,68], researchers now focus on designing replicated
data types (RDTs) that serve as building blocks for the development of highly available
distributed systems. Such RDTs resemble sequential data types (e.g. counters, sets) but
include conflict resolution strategies that guarantee convergence.

Conflict-free Replicated Data Types (CRDTs) [68] are a widely adopted family of RDTs
that leverage mathematical properties (such as commutative operations) to avoid conflicts
by design. However, designing new RDTs is difficult [42] and even seasoned researchers miss
subtle corner cases for basic data structures such as maps [40]. Currently, researchers and
practitioners propose new or improved RDT designs [2, 8, 14, 19, 38, 41,66–68] and include a
formal specification or pseudo code of the RDT with a manual proof of convergence, mostly
paper proofs. Unfortunately, paper proofs are subject to reasoning flaws.

To avoid the pitfalls of paper proofs, Zeller et al. [79], Gomes et al. [27], and Nieto
et al. [59] propose formal frameworks to verify the correctness of CRDTs using proof
assistants. However, these frameworks use abstract specifications that are disconnected from
actual implementations (e.g. Akka’s CRDT implementations in Scala). Hence, a particular
implementation may be flawed, even if the specification was proven to be correct.

While interactive proofs are more convincing (as the proof logic is machine-checked),
they require significant programmer intervention which is time-consuming and reserved to
experts [45,60]. Recent works try to automate (part of) the verification process of CRDTs.
Nagar and Jagannathan [56] automatically verify CRDTs under different consistency models
but require a first-order logic specification of the CRDT’s operations that is cumbersome and
error-prone. Liu et al. [54] extend Liquid Haskell [75] to verify CRDTs but significant parts
need to be proven manually due to the way how Liquid Haskell encodes user-defined functions
in SMT. For example, their Map CRDT required more than 1000 lines of proof code. We
conclude that developing RDTs is reserved for experts in distribution and verification.

To simplify the development of RDTs, we propose VeriFx, a specialized functional object-
oriented programming language for designing, implementing, and automatically verifying
RDTs. The main challenge behind VeriFx’s design consists in striking a good balance between
expressiveness and automated verification. We designed VeriFx to support familiar, high-
level language constructs that are suited to implement RDTs, without breaking automated
verification. To implement RDTs, VeriFx provides extensive functional collections including
tuples, sets, maps, vectors, and lists. These collections are immutable which is said to be
desirable for the implementation of RDTs and their integration in distributed systems [30].
To verify RDT implementations, VeriFx features a novel proof construct that enables

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:3

programmers to express correctness properties. For each proof, VeriFx automatically derives
proof obligations and discharges them using SMT solvers. This is possible because VeriFx
efficiently encodes all functional collections and their operations using the Combinatory
Array Logic [23] for SMT solvers, which is decidable. This enables VeriFx to automatically
verify complex RDTs built atop these collections. VeriFx provides libraries that ease the
implementation and verification of CRDT and OT data types. Internally, these libraries use
the proof construct to define the necessary correctness properties. Verified RDTs can be
transpiled to one of the supported target languages (currently Scala and JavaScript).

VeriFx is reminiscent of existing object-oriented languages (like Scala) and demonstrates
that it is possible to automatically verify real-world RDT implementations without requiring
separate specifications. This avoids mismatches between the implementation and the specifi-
cation and simplifies software maintenance. We argue that the ability to implement RDTs
and automatically verify them in the same language allows programmers to catch mistakes
early during the development process.

To demonstrate the applicability of VeriFx, we implemented and automatically verified
51 CRDTs, including well-known CRDTs [2,8,14,40,66,67] and new variants. 50 of these
CRDTs were verified in a matter of seconds and one could not be verified due to its recursive
nature. The CRDTs we verified feature highly optimized designs and many are used in
industrial databases such as Riak [12], Cassandra [73], and AntidoteDB [1]. We also applied
VeriFx to OT and verified all transformation functions described by Imine et al. [34] and
some unpublished designs [33].

In summary, we make the following contributions:
VeriFx, the first high-level programming language that enables programmers to implement
RDTs by composing functional collections, express correctness properties about those
RDTs within the same language, and automatically verify those properties. The novelty
consists of carefully crafting the language such that every language construct is efficiently
encoded without breaking automated verification.
We devise VeriFx libraries that simplify the implementation of CRDT and OT data types
and automatically verify the necessary correctness properties.
We give the first fully automated and mechanized proofs for 51 CRDTs, including the
state-based and operation-based CRDTs proposed by Shapiro et al. [67], delta state-based
CRDTs proposed by Almeida et al. [2], pure op-based CRDTs proposed by Baquero et
al. [8], and many more. To the best of our knowledge, this is the most extensive treatment
of verified RDTs to date. Prior efforts [27,54,59,79] verified only a few CRDTs due to
the labour-intensive nature of the verification process.
We reproduce the study of Imine et al. [34] regarding the verification of OT functions.

2 Motivation

To motivate the need for a language with automated proof capabilities, consider a distributed
system in Scala with replicated data on top of Akka’s highly-available distributed key-value
store [52]. The store provides built-in CRDTs, e.g. sets, counters, etc. However, our system
requires a Two-Phase Set (2PSet) CRDT [67] that is not provided by Akka. We thus need
to implement it and verify our implementation.

For the implementation, we can take the specification from Shapiro et al. [67]. For
the verification, we typically need a complete formalization of the implementation and its
correctness properties which can then be proven manually using proof assistants. The resulting
interactive proofs are complex and require considerable expertise. For example, Nieto et
al. [59]’s implementation of a 2PSet in OCaml is only 25 LoC but its specification in Coq is
80 LoC and requires an additional 73 LoC to verify.

ECOOP 2023

9:4 VeriFx: Correct Replicated Data Types for the Masses

Alternatively, programmers could resort to Liu et al. [54]’s extension of Liquid Haskell that
automates part of the verification process. However, non-trivial RDTs still require significant
manual proof efforts: 200+ LoC for a replicated set and 1000+ LoC for a map [54]. Thus,
we cannot reasonably assume that programmers have the time nor the skills to manually
verify their implementation [45,60].

Implement RDT in VeriFx

Automated verification

correct?

Interpret
counterexample

Transpile

yes

Deploy in
system

Design RDT

Modify RDT
implementation

no

Figure 1 Envisioned workflow.

We argue that verification needs to be fully automatic to be accessible to non-experts.
Figure 1 shows the workflow for developing RDTs using VeriFx, our novel language with
a syntax reminiscent of Scala. Programmers start from a new or existing RDT design and
implement it in VeriFx which verifies the implementation automatically without requiring a
separate formalization. If the implementation is not correct, VeriFx returns a counterexample
in which the replicas diverge. After interpreting the counterexample, the programmer needs
to fix the RDT implementation and verify it again. This iterative process repeats until the
implementation is correct. Verified RDT implementations can be transpiled to a mainstream
language (e.g. Scala) and deployed in an actual system.

Our envisioned workflow verifies RDT implementations before deployment. Moreover,
our workflow benefits from a feedback loop allowing programmers to correct implementations
based on concrete counterexamples. In contrast, traditional verification techniques such as
interactive theorem provers do not provide such feedback; when programmers fail to verify a
property, they do not know if the implementation is flawed or if the chosen proof strategy is
not suited. Similarly, Liquid Haskell [75] may fail to verify a property and raise a type error
without providing additional information as to why the refinement type is not met. Next, we
illustrate each step of our workflow by means of an existing 2PSet design in which VeriFx
uncovered a bug. The corrected version was then transpiled to Scala, and deployed on Akka.

2.1 Design and Implementation
Specification 1 shows the design of the 2PSet CRDT taken from Shapiro et al. [67]

unaltered. The 2PSet is a state-based CRDT whose state (the A and R sets) thus forms a
join semilattice, i.e. a partial order ≤v with a least upper bound (LUB) ⊔v for all states.
Elements are added to the 2PSet by adding them to the A set and removed by adding them
to the R set. An element is in the 2PSet if it is in A and not in R. Hence, removed elements
can never be added again. Replicas are merged by computing the LUB of their states, which
in this case is the union of their respective A and R sets.

The compare(S,T) operation checks if S ≤v T and is used to define state equivalence [68]:
S ≡ T ⇐⇒ S ≤v T ∧T ≤v S. Since state equivalence is defined in terms of ≤v on the lattice,
replicas may be considered equivalent even though they are not identical. This is relevant

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:5

Specification 1 2PSet CRDT
taken from Shapiro et al. [67].

1: payload set A, set R
2: initial ∅, ∅
3: query lookup (element e) : boolean b
4: let b = (e ∈ A ∧ e /∈ R)
5: update add (element e)
6: A := A ∪ {e}
7: update remove (element e)
8: pre lookup(e)
9: R := R ∪ {e}

10: compare (S, T) : boolean b
11: let b = (S.A ⊆ T.A ∨ S.R ⊆ T.R)
12: merge (S, T) : payload U
13: let U.A = S.A ∪ T.A
14: let U.R = S.R ∪ T.R

Listing 1 2PSet implementation in VeriFx.
1 class TwoPSet[V](added: Set[V], removed: Set[V])
2 extends CvRDT[TwoPSet[V]] {
3 def lookup(element: V) =
4 this.added.contains(element) &&
5 !this.removed.contains(element)
6 def add(element: V) =
7 new TwoPSet(this.added.add(element), this.removed)
8 def remove(element: V) =
9 new TwoPSet(this.added, this.removed.add(element))

10 def compare(that: TwoPSet[V]) =
11 this.added.subsetOf(that.added) ||
12 this.removed.subsetOf(that.removed)
13 def merge(that: TwoPSet[V]) =
14 new TwoPSet(this.added.union(that.added),
15 this.removed.union(that.removed))
16 }

for CRDTs that keep additional information. For example, CRDTs often use a Lamport
clock [43] together with unique replica identifiers to generate globally unique IDs. Every
replica identifier is different and is not part of the lattice even though it is part of the state.

Listing 1 shows the implementation of the 2PSet CRDT in VeriFx, which is a straightfor-
ward translation of Specification 1. The TwoPSet class is polymorphic in the type of values
it stores. It defines the added and removed fields which correspond to the A and R sets
respectively. The add and remove methods return an updated copy of the state. The class
extends the CvRDT trait1 provided by VeriFx’s CRDT library (explained in Section 5.1). This
trait requires the class to implement the compare and merge methods.

2.2 Verification

We now verify our 2PSet implementation in VeriFx. State-based CRDTs guarantee con-
vergence if the merge function is idempotent, commutative, and associative [68]. VeriFx
provides several CvRDTProof traits which encode these correctness conditions (explained later
in Section 5.1). To verify the TwoPSet, we define a TwoPSetProof object that extends the
CvRDTProof1 trait (where 1 is the rank). The trait takes as argument the type constructor
of the CRDT we want to verify (i.e. TwoPSet):

object TwoPSetProof extends CvRDTProof1[TwoPSet]

The TwoPSetProof object inherits automated correctness proofs for the polymorphic TwoPSet
CRDT. When executing this object, VeriFx will automatically try to verify those proofs. In
this case, VeriFx proves that the TwoPSet guarantees convergence (independent of the type of
elements it holds), according to the notion of state equivalence that is derived from compare.
However, VeriFx warns the user that the proof for state equivalence fails, which means that
the derived notion of equivalence does not correspond to structural equality. As explained
before, this may be normal in some CRDT designs but it requires further investigation.

VeriFx provides the following counterexample for the equivalence proof:

enum V { v }
val s: TwoPSet[V] = TwoPSet({v}, {})
val t: TwoPSet[V] = TwoPSet({v}, {v})

1 VeriFx traits can declare abstract methods and fields, and provide default implementations for methods.

ECOOP 2023

9:6 VeriFx: Correct Replicated Data Types for the Masses

Listing 2 Transpiled 2PSet in Scala.
1 case class TwoPSet[V](added: Set[V], removed: Set[V])

extends CvRDT[TwoPSet[V]] { // CvRDT trait provided
by our CRDT library is also compiled to Scala

2 def lookup(element: V) = this.added.contains(element) &&
3 !this.removed.contains(element)
4 def add(element: V): TwoPSet[V] =
5 TwoPSet[V](this.added + element, this.removed)
6 def remove(element: V): TwoPSet[V] =
7 TwoPSet[V](this.added, this.removed + element)
8 def compare(that: TwoPSet[V]): Boolean =
9 this.added.subsetOf(that.added) &&

10 this.removed.subsetOf(that.removed)
11 def merge(that: TwoPSet[V]): TwoPSet[V] =
12 TwoPSet[V](this.added.union(that.added),
13 this.removed.union(that.removed)) }

Listing 3 Modified 2PSet implemen-
tation for integration with Akka’s distri-
buted key-value store.

1 @SerialVersionUID(1L)
2 case class TwoPSet[V](
3 added: Set[V], removed: Set[V])

extends CvRDT[TwoPSet[V]] with
ReplicatedData with Serializable {

4 type T = TwoPSet[V]
5 // The remainder of the implementation

is unchanged
6 }

The counterexample defines an enumeration V containing a single value v. It then defines two
instances s and t of a TwoPSet[V] that are considered equivalent s ≡ t (according to the
definition of compare) but are not structurally equivalent s ≠ t. These two instances should
indeed not be considered equivalent since v ∈ s but v /∈ t according to lookup. Looking
back at Spec. 1, we notice that the original specification of compare from Shapiro et al. [67]
defines replica s to be smaller or equal to replica t iff s.A ⊆ t.A or s.R ⊆ t.R. Since
s.A = t.A it follows that s ≤v t ∧ t ≤v s and thus they are considered equal (s ≡ t) without
even considering the removed elements (i.e. the R sets). Based on this counterexample, we
modify compare to consider both the A sets and the R sets:

def compare(that: TwoPSet[V]) =
this.added.subsetOf(that.added) && this.removed.subsetOf(that.removed)

We verify the implementation again and VeriFx proves that this modified implementation
still guarantees convergence and that the definition of equality that is derived from compare
now corresponds to structural equality, i.e. s ≡ t ⇐⇒ s = t.

This example showcases the importance of automated verification as it detected an error
in the specification that would have percolated to the implementation. We completed the
verification of the 2PSet CRDT in VeriFx without providing any verification-specific code.

2.3 Deployment

The final step in our workflow consists of automatically transpiling the CRDT implementation
from VeriFx to Scala and integrating the CRDT in our distributed application which uses
Akka’s distributed key-value store. Listing 2 shows the transpiled implementation of the
2PSet in Scala. To store the RDT in Akka’s distributed key-value store, we need to perform
two manual modifications which are shown in Listing 3. First, the RDT must extend Akka’s
ReplicatedData trait (Line 3) which requires at least the definition of a type member T

corresponding to the actual type of the CRDT (Line 4) and a merge method for CRDTs of
that type (which we already have). Second, the RDT must be serializable. For simplicity, we
use Java’s built-in serializer2. Hence, it suffices to extend the Serializable trait (Line 3) and
to annotate the class with a serial version (Line 1). After applying these modifications, our
verified TwoPSet can be stored in Akka’s distributed key-value store and will automatically
be replicated across the cluster and be kept eventually consistent.

2 In production it is safer and more efficient to implement a custom serializer [53], e.g. with Protobuf [28].

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:7

Verifier

VeriFx AST
derive

SMT-
LIB

 code

Compiler

parse
Model

VeriFx

verify

transpile

Scala plugin

SMT plugin JS plugin

...

VeriFx
source
code

Parser

Scalameta
transform

VeriFx AST

parse

imperative construct

Counter-
example

...

Proof
Obligations

logical construct

query

Scala

construct

Figure 2 VeriFx’s plugin architecture.

3 The VeriFx Language

The goal of this work is to build a familiar high-level programming language that is suited to
implement RDTs and automatically verify them. The main challenge is to efficiently encode
every feature of the language without breaking automatic verification. The result of this
exercise is VeriFx, a functional object-oriented programming language with Scala-like syntax
and a type system that resembles Featherweight Generic Java [32]. VeriFx features a novel
proof construct to express correctness properties about programs. For every proof construct a
proof obligation is derived that is discharged automatically by an SMT solver (cf. Section 4).

VeriFx advocates for the object-oriented programming paradigm as it is widespread across
programmers and fits the conceptual representation of replicated data as “shared” objects.
The functional aspect of VeriFx, in particular its immutable collections, makes it suitable for
implementing and integrating RDTs in distributed systems, as argued by Helland [30].

The remainder of this section is organized in three parts. First, we give an overview
of VeriFx’s architecture. Second, we define its syntax. Third, we describe its functional
collections. VeriFx’s type system is described in Appendix A.

3.1 Overall Architecture
Figure 2 provides an overview of VeriFx’s architecture. VeriFx programs consist of imperative
code and proof code (i.e. logic statements). VeriFx uses Scala Meta [65] to parse VeriFx
source code into an AST representing the program. This is possible because every piece of
VeriFx code is valid Scala syntax (but not necessarily semantically correct).

The AST representing a VeriFx program can be verified or transpiled to other languages.
Transpilation is done by the compiler which features compiler plugins. These plugins dictate
the compilation of the AST to the target language. Currently, VeriFx comes with compiler
plugins for Scala, JavaScript, and SMT-LIB [74], a standardized language for SMT solvers.
Support for other languages can be added by implementing a compiler plugin for them.

To verify the proofs that are defined by a VeriFx program, the verifier derives the
necessary proof obligations from the AST. VeriFx then compiles the program to SMT-LIB
and automatically discharges the proof obligations using the Z3 SMT solver [22]. For every
proof, the outcome is: accepted, rejected, or unknown. Accepted means that the property
holds, rejected means that a counterexample was found for which the property does not
hold, and unknown means that the property could not be verified within a certain time

ECOOP 2023

9:8 VeriFx: Correct Replicated Data Types for the Masses

L ::=class C ⟨X⟩ (v : T) { M } M ::=def m ⟨X⟩ (x : T) : T = e
| class C ⟨X⟩ (v : T) extends I ⟨ P ⟩{ M } T ::=int | string | bool | C ⟨ T ⟩

J ::=object O { A } | I ⟨ T ⟩ | E ⟨ T ⟩ | T → T
| object O extends I ⟨ T ⟩ { A } e ::=num | str | true | false | x | !e

F ::=trait I ⟨X <: T⟩ { B } | e ⊕ e | e ⊗ e | e.v | e.m ⟨T⟩ (e)
| trait I ⟨X <: T⟩ extends I ⟨ P ⟩ { B } | val x :T = e in e | (x :T) ⇒ e | e(e)

N ::=enum E ⟨X⟩ { K (v : T) } | if e then e else e
A ::=M | R | new C ⟨T⟩(e) | new K⟨T⟩(e)
B ::=valD | methodD | M | R | e match {case r ⇒ e}
R ::=proof p ⟨X⟩ { e } | forall (x : T) � e | exists (x : T) � e

valD ::=val x : T | e =⇒ e
methodD ::=def m ⟨X⟩(x : T) : T r ::=K(x) | x | _

Figure 3 VeriFx syntax. The metavariable C ranges over class names; O ranges over object
names; I ranges over trait names; E ranges over enumeration names; K ranges over constructor
names of enumerations; T , P and Q range over types; X and Y range over type variables; v ranges
over field names; x and y range over parameter and variable names; m ranges over method names; p
ranges over proof names; and e ranges over expressions. An overline, e.g. X , denotes zero or more.
A dashed overline, e.g. X , denotes one or more.

frame (which is configurable). When a proof is rejected by Z3, VeriFx constructs a high-level
counterexample that consists of concrete assignments of values to variables that violate the
given property. Note that VeriFx can automatically verify application-specific properties
because it derives the proof obligations from the program itself.

3.2 Syntax
Figure 3 defines the syntax of VeriFx. VeriFx programs consist of one or more statements
which can be the definition of an object O, a class C ⟨X⟩, a trait I ⟨X⟩, or an enumeration
E⟨X⟩. Objects, classes, enumerations, and traits can be polymorphic and inherit from a single
trait (except enumerations). Objects define zero or more methods and proofs. Classes contain
zero or more fields and (polymorphic) methods. Traits can declare values and methods
that need to be provided by concrete classes extending the trait, and define (polymorphic)
methods and proofs. Traits can express upper bounds on their type parameters to restrict
possible extensions. Enumerations define one or more constructors, each containing zero or
more fields. Programmers can deconstruct enumerations by pattern matching on them.

Unique to VeriFx is its proof construct which is defined by a name and a (well-typed)
boolean expression that expresses the property that must be verified. A proof is accepted if
its body always evaluates to true, otherwise it is rejected; when rejected, VeriFx provides a
concrete counterexample for which the property does not hold. Proofs can be polymorphic,
allowing properties to be proved for all possible type instantiations. Polymorphic proofs are
useful to prove that a polymorphic RDT converges independent of its type of values.

VeriFx supports a variety of expressions, including literal values, arithmetic ⊕ and
boolean operations ⊗, negation, field accesses, and method calls, variable definitions, if tests,
anonymous functions and function calls, class and enum instantiations, pattern matching,
quantified formulas, and logical implication. Functions are first-class and take at least one
argument. Nullary functions can be expressed as constants.

Single inheritance is supported from traits to foster code re-use but some restrictions are
imposed. E.g, the arguments of a class method need to be concrete (cannot be of a trait
type) because proofs about these methods require reasoning about all subtypes but these
may not necessarily be known at compile time. In contrast, enumerations are supported
because their constructors are fixed and known at compile time.

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:9

Tuple<A, B>

+ fst : A
+ snd : B
+ Tuple(fst: A, snd: B) : Tuple<A, B>

Set<V>

+ Set() : Set<V>
+ add(e: V) : Set<V>
+ remove(e: V) : Set<V>
+ contains(e: V) : bool
+ isEmpty() : bool
+ nonEmpty() : bool
+ union(s: Set<V>) : Set<V>
+ diff(s: Set<V>) : Set<V>
+ intersect(s: Set<V>) : Set<V>
+ subsetOf(that: Set[V]) : bool
+ map<W>(f: V => W) : Set<W>
+ filter(p: V => bool) : Set<V>
+ forall(p: V => bool) : bool
+ exists(p: V => bool) : bool

Map<K, V>

+ Map() : Map<K, V>
+ add(k: K, v: V) : Map<K, V>
+ remove(k: K) : Map<K, V>
+ contains(k: K) : bool
+ get(k: K) : V
+ getOrElse(k: K, default: V) : V
+ keys() : Set<K>
+ values() : Set<V>
+ bijective() : bool
+ map<W>(f: (K, V) => W) : Map<K, W>
+ mapValues<W>(f: V => W) : Map<K, W>
+ filter(p: (K, V) => bool) : Map<K, V>
+ zip<W>(m: Map<K, W>) : Map<K, Tuple<V, W>>
+ combine(m: Map<K, V>, f: (V, V) => V) : Map<K, V>
+ forall(p: (K, V) => bool) : bool
+ exists(p: (K, V) => bool) : bool
+ toSet() : Set<Tuple<K, V>>

Vector<V>

+ Vector() : Vector<V>
+ get(idx: Int) : V
+ write(idx: Int, value: V) : Vector<V>
+ append(value: V) : Vector<V>
+ map<W>(f: V => W) : Vector<W>
+ zip<W>(v: Vector<W>): Vector<Tuple<V,W>>
+ forall(p: V => bool) : bool
+ exists(p: V => bool) : bool

List<V>

+ List() : List<V>
+ get(idx: Int) : V
+ insert(idx: Int, value: V) : List<V>
+ delete(idx: Int) : List<V>
+ map<W>(f: V => W) : List<W>
+ zip<W>(l: List<W>): List<Tuple<V,W>>
+ forall(p: V => bool) : bool
+ exists(p: V => bool) : bool

Figure 4 An overview of VeriFx’s built-in functional collections.

3.3 Functional Collections
VeriFx features built-in collections for tuples, sets, maps, vectors, and lists. Every operation
of these collections are verifiable and can be arbitrarily composed to build custom RDTs. All
collections are immutable, “mutators” thus return an updated copy of the object. Figure 4
provides an overview of the interface exposed by these collections, which is heavily inspired
by functional programming.

Sets. Support the typical set operations and can be mapped over or filtered using user-
provided functions. The forall and exists methods check if a given predicate holds for
all (respectively for at least one) element of the set.

Maps. Associate keys to values. Support adding key-value pairs, removing keys, and fetching
the value associated with a key. The keys (resp. values) method returns a set containing
all keys (resp. values) in the map. The bijective method checks if there is a one-to-one
correspondence between keys and values. Maps support well-known functional operations;
zip returns a map of tuples containing only the keys that are present in both maps and
stores their values in a tuple; combine returns a map containing all entries from both
maps, using a user-provided function f to combine values that are present in both maps.

Vectors. Represent a sequence of elements that are indexed from 0 to size-1. Elements
can be written to a certain index which will overwrite the existing value at that index.
One can append a value to the vector which will write that value at index size, thereby,
making the vector grow. Like sets and maps, programmers can map functions over vectors,
zip vectors, and check predicates for all or for one element of a vector.

Lists. Represent a sequence of elements in a linked list. Unlike vectors, insert does not
overwrite the existing value at that index. Instead, the existing value at that index and
all subsequent values are moved one position to the right. Elements can also be deleted
from a list, making the list shrink.

ECOOP 2023

9:10 VeriFx: Correct Replicated Data Types for the Masses

T ::= int | string | bool G ::= adt A⟨X⟩{K(v : T)} C ::= const x T R ::= assert e
| Array⟨T , T⟩ | A⟨T⟩ | S⟨T⟩ e ::= e[e] | e[e] := e | λ(x : T).e D ::= sort S i H ::= check()

F ::= fun f ⟨X⟩(x : T) : T = e | ∀(x : T).e | ∃(x : T).e | . . .

Figure 5 Core SMT syntax. The metavariable S ranges over user-declared sorts; A ranges over
names of algebraic data types (ADTs); K ranges over ADT constructor names; X ranges over type
variables; v ranges over field names; f ranges over function names; T ranges over types; x ranges
over variable names; e ranges over expressions; and i ranges over integers.

4 Automated Verification

VeriFx leverages SMT solvers to enable automated verification. Such solvers try to (auto-
matically) determine whether or not a given formula is satisfiable. Modern SMT solvers
support various specialized theories (for bit vectors, arrays, etc.) and are very powerful if
care is taken to encode programs efficiently using these theories. However, SMT-LIB [74], the
language of SMT solvers, is low-level and is not meant to be used directly by programmers
to verify high-level programs. Instead, semi-automatic program verification usually involves
implementing the program in an Intermediate Verification Language (IVL) which internally
compiles to SMT-LIB to discharge the proof obligations using an appropriate SMT solver.
IVLs like Dafny [44], Spec# [11], and Why3 [26] are designed to be general-purpose but
this breaks automated verification since programmers need to specify preconditions and
postconditions on methods, loop invariants, etc.

VeriFx can be seen as a specialized high-level IVL that was carefully designed such that
every feature has an efficient SMT encoding; leaving out features that break automated
verification. For example, VeriFx does not support traditional loop statements but instead
provides higher-order operations (map, filter, etc.) on top of its functional collections. The
resulting language is surprisingly expressive given its automated verification capabilities.

The remainder of this section shows how VeriFx compiles programs to SMT and derives
proof obligations that can be discharged automatically by SMT solvers. Afterward, we
explain how VeriFx leverages a specialized theory of arrays to efficiently encode its functional
collections. These encodings are key to our approach because they enable fully automated
verification of RDTs built atop VeriFx’s functional collections. VeriFx’s encodings significantly
differ from related work such as Why3 [26] and Liquid Haskell [75] which encode higher-order
operations like map, and filter. recursively which hampers automated verification.

Appendix C.4 exemplifies VeriFx’s compilation rules using a concrete example.

4.1 Core SMT
The semantics of VeriFx are defined using translation functions from VeriFx to Core SMT,
a reduced version of SMT that suffices to verify VeriFx programs. Figure 5 defines the
syntax of Core SMT. Valid types include integers, strings, booleans, arrays, ADTs A⟨T ⟩,
and user-declared sorts S⟨T ⟩. Arrays are total and map values of the key types to a value of
the element type. Arrays can be multidimensional and map several keys to a value.

Core SMT programs consist of one or more statements which can be the declaration
of a constant or sort3, assertions, the definition of a function or ADT, or a call to check.
Constant declarations take a name and a type. Sort declarations take a name and a non-
negative number i representing their arity, i.e. how many type parameters the sort takes.

3 The literature on SMT solvers uses the term “sort” to refer to types and type constructors.

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:11

Declared constants and sorts are uninterpreted and the SMT solver is free to assign any valid
interpretation. Assertions are boolean formulas that constrain the possible interpretations of
the program, e.g. assert age >= 18.

Function definitions consist of a name f , optional type parameters X , formal parameters
x : T , a return type T , and a body containing an expression e. Valid expressions include
array accesses e[e], array updates e[e] :=e, anonymous functions, quantified formulas (the
full list of expressions is shown in Appendix B). Updating an array returns a modified copy
of the array. Note that arrays are total and that anonymous functions define an array. For
example, λ(x : int, y : int).x + y defines an Array⟨int, int, int⟩ that maps two integers to their
sum. As arrays are first-class values in SMT, it follows that lambdas are also first-class.

ADT definitions consist of a name A, optional type parameters X , and one or more
constructors. A constructor has a name K and optionally defines fields with name v and type
T . Constructors are called like regular functions and return an instance of the data type.

The decision procedure (check) checks the satisfiability of the SMT program. If the
program’s assertions are satisfiable, check returns a concrete model, i.e. an interpretation of
the constants and sorts that satisfies the assertions. A property p can be proven by showing
that the negation ¬p is unsatisfiable, i.e. that no counterexample exists.

Note that our Core SMT language includes lambdas and polymorphic functions which
are not part of SMT-LIB v2.6. Nevertheless, they are described in the preliminary proposal
for SMT-LIB v3.0 [35] and Z3 already supports lambdas. For the time being, VeriFx
monomorphizes polymorphic functions when they are compiled to Core SMT. For example,
given a polymorphic identity function id<X> :: X -> X, VeriFx creates a monomorphic
version id_int :: int -> int when encountering a call to id with an integer argument.

4.2 Compiling VeriFx to SMT
Similar to Dafny in [44], we describe the semantics of VeriFx by means of translation functions
that compile VeriFx to Core SMT. Types are translated by the JKt function:

JboolKt = bool JintKt = int JstringKt = string
JC ⟨T⟩Kt = C ⟨JTKt⟩ JE⟨T⟩Kt = E⟨JTKt⟩ JT → PKt = Array⟨JTKt, JPKt⟩

Primitive types are translated to the corresponding primitive type in Core SMT. Class
types and enumeration types keep the same type name and their type arguments are translated
recursively JTKt. Functions are encoded as arrays from the argument types to the return type.
Trait types do not exist in the compiled SMT program because traits are compiled away by
VeriFx, i.e. only the types of the classes that implement the trait exist in the SMT program.

We now take a look at the translation function def JK which compiles VeriFx’s main
constructs: enumerations, classes, and objects. Enumerations are encoded as ADTs:

def Jenum E ⟨X⟩ { K (v : T) }K = adt E⟨X⟩{K(v : JTKt)}

For every enumeration an ADT is constructed with the same name, type parameters, and constructors.
The types of the fields are translated recursively.

Classes are encoded as ADTs with one constructor and class methods become functions:

def Jclass C ⟨X⟩ (v : T) { M } extends I ⟨P⟩K =
adt C ⟨X⟩{ K(v : JTKt) } ; methodJC , X , M K ; methodJC , X , M ′[P/Y]K
where K = str_concat(C , ”_ctor”) and I is defined as trait I ⟨Y ⟩ { M ′ ; . . . }

methodJC , X , def m ⟨Y ⟩ (x : T) : Tr = eK = fun f ⟨X , Y ⟩(this : C ⟨X⟩, x : JTKt) : JTrKt = JeK
where f = str_concat(C , ”_”, m)

ECOOP 2023

9:12 VeriFx: Correct Replicated Data Types for the Masses

The ADT keeps the name of the class and its type parameters, and defines one constructor
containing the class’ fields. Since the name of the constructor must differ from the ADT’s
name, the compiler defines a unique name K which is the name of the class followed by
“_ctor”. Class methods M are compiled to regular functions by function methodJK. Further, a
class inherits all concrete methods M ′ defined by its super trait that are not overridden. This
entails substituting the trait’s type parameters Y by the concrete type arguments P defined by
the class. As such, traits are compiled away and do not exist in the transpiled SMT program.

For every method, a function is created with a unique name f that is the name of the
class followed by an underscore and the name of the method. In the argument list, the body,
and the return type of a method, programmers can refer to type parameters of the class
and type parameters of the method. Therefore, the compiled SMT function takes both the
class’ type parameters X and the method’s type parameters Y . Without loss of generality
we assume that a method’s type parameters do not override the class’ type parameters which
can be achieved through α-conversion. The method’s parameters become parameters of
the function. In addition, the function takes an additional parameter this referring to the
receiver of the method call which should be of the class’ type. The types of the parameters
and the return type are translated using function JKt. The body of the method must be a
well-typed expression. Expressions are translated by the JK function:

JxK = x Jnew K⟨T⟩(e)K = K⟨JTKt⟩(JeK)
Jval x : T = e1 in e2K = let x = Je1K in Je2K Je.vK = JeK.v
J(x : T) ⇒ eK = λ(x : JTKt).JeK Je1.m ⟨T⟩ (e)K = m′⟨JPKt, JTKt⟩(Je1K, JeK)
Je1(e2)K = Je1K[Je2K] where typeof (e1) = C ⟨P⟩
Jnew C ⟨T⟩(e)K = C ′⟨JTKt⟩(JeK) and m′ = str_concat(C , ”_”, m)

where C ′ = str_concat(C , ”_ctor”) and P ∩ T = ∅

Primitive values, variable references, and parameter references remain unchanged in Core
SMT. The definition of an immutable variable is translated to a let expression. Anonymous
functions remain anonymous functions in Core SMT, the type of the parameters and
the body are compiled recursively. Remember that anonymous functions in SMT define
(multidimensional) arrays from one or more arguments to the function’s return value. Hence,
function calls are translated to array accesses. To instantiate a class or ADT, the compiler
calls the data type’s constructor function. For classes, the constructor’s name is the name of
the class followed by “_ctor”. To access a field, the compiler translates the expression and
accesses the field on the translated expression. To invoke a method m on an object e1 the
compiler calls the corresponding function m′ which by convention is the name of the class
followed by an underscore and the name of the method. Recall that the function takes both
the class’ type arguments T and the method’s type arguments P as well as an additional
argument e1 which is the receiver of the call. The complete set of compilation rules for
expressions is provided in Appendix C.1 as part of the additional material.

Objects are singletons that can define methods and proofs, and are compiled as follows:

def Jobject O extends I ⟨T⟩ { M ; R }K =
def Jclass O′() {M} extends I ⟨T⟩K ; const O O′ ; assert O == O′() ; def JRK

The object is compiled to a regular class with a fresh name O′. Then, a single instance of
that class is created and assigned to a constant named after the object O. The proofs defined
by the object are compiled to functions. This translation is the subject of the next section.

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:13

4.3 Deriving Proof Obligations
We previously verified a 2PSet CRDT using VeriFx’s CRDT library which internally uses our
novel proof construct to define the necessary correctness properties (discussed in Section 5).
However, programmers can also define custom proofs, for instance to verify data invariants.

We now explain how proof obligations are derived from user-defined proofs in VeriFx
programs. Proofs are compiled to regular functions without arguments. While, the name
and type parameters remain unchanged, the body of the proof is compiled and becomes the
function’s body. Proofs always return a boolean since the body is a logical formula whose
satisfiability must be checked.

def Jproof p ⟨X⟩ { e }K = fun p⟨X⟩() : bool = JeK

To check if the property described by a proof holds, the negation of the proof must be
unsatisfiable – if no counterexample exists it constitutes a proof that the property is correct.
A (polymorphic) proof called p with zero or more type parameters i is checked as follows:

prove(p, i) = sort S1 0 ; . . . ; sort Si 0 ; assert ¬p⟨S1, . . . , Si⟩() ; check() == UNSAT

For every type parameter, an uninterpreted sort is declared. Then, the proof function is
called with those sorts as type arguments and we check that the negation is unsatisfiable. If
the negation is unsatisfiable, the (polymorphic) proof holds for all possible instantiations of
its type parameters. The underlying SMT solver can generate an actual proof which could
be reconstructed by proof assistants as shown by Böhme et al. [15], Böhme and Weber [16].

4.4 Encoding Functional Collections Efficiently in SMT
Some IVLs feature collections with rich APIs (e.g. Why3 [26]) but encode operations on
these collections recursively. Traditional SMT solvers fail to verify recursive definitions
automatically because they require inductive proofs, which is beyond the capabilities of
most solvers. However, many SMT solvers support specialized array theories. A key insight
of this paper consists of efficiently encoding the collections and their operations using the
Combinatory Array Logic (CAL) [23] which is decidable. As a result, VeriFx can automatically
verify RDTs that are built by arbitrary compositions of functional collections. Next, we
describe the encoding of sets using this array logic, while maps are described in Appendix C.3.

Set Encoding. Sets are encoded as arrays from the element type to a boolean type that
indicates whether the element is in the set:

JSet ⟨T⟩Kt = Array⟨JTKt, bool⟩

An empty set corresponds to an array containing false for every element. We can create
such an array by defining a lambda that ignores its argument and always returns false:

Jnew Set ⟨T⟩()K = λ(x : JTKt).false

Operations on sets are compiled as follows:

Je1.add(e2)K = Je1K[Je2K] := true Je1.remove(e2)K = Je1K[Je2K] := false
Je1.filter(e2)K = λ(x : JT Kt).Je1K[x] ∧ Je2K[x] Je1.contains(e2)K = Je1K[Je2K]

where typeof (e1) = Set⟨T ⟩ ∧ typeof (e2) = T → bool
Je1.map(e2)K = λ(y : JPKt).∃(x : JTKt).Je1K[x] ∧ Je2K[x] = y

where typeof (e1) = Set⟨T⟩ ∧ typeof (e2) = T → P

An element e2 is added to a set e1 by setting the entry for e2 in the array that results from
transforming e1 to true. Similarly, an element is removed by changing its entry in the array
to false. An element is in the set if its entry is true. A set e1 containing elements of type

ECOOP 2023

9:14 VeriFx: Correct Replicated Data Types for the Masses

T can be filtered such that only the elements that fulfil a given predicate e2 : T → bool
are retained. Calls to filter are compiled to a lambda that defines a set (i.e. an array
from elements to booleans) containing only the elements x that are in the original set e1
(i.e. Je1K[x]) and fulfil predicate e2 (i.e. Je2K[x]). Similarly, a function e2 : T → P
can be mapped over a set e1 of Ts, yielding a set of Ps. Calls to map are compiled to
a lambda that defines a set containing elements y of type JPKt such that an element x
exists that is in the original set e1 (i.e. Je1K[x]) and maps to y (i.e. Je2K[x] = y). The
remaining methods are described in Appendix C.2 as part of the additional material.

5 Implementing and Verifying Replicated Data Types

VeriFx aims to simplify the development of correct RDTs by integrating automated verification
capabilities in the language. Based on our experience implementing RDTs, we noticed that
RDTs need to fulfill specific correctness properties that are well-defined for each RDT family.
Therefore, VeriFx features built-in libraries for the development and automated verification of
two well-known RDT families: CRDTs [68] and OT [25]. These libraries are written in VeriFx
and define proofs that encode the necessary correctness properties such that programmers
do not need to redefine these proofs for every RDT they implement.

This section discusses the aforementioned libraries. For each library, we formally define
the correctness properties that must be verified for that specific RDT family. Section 5.1
describes the implementation of a general execution model for CRDTs and its verification
library in VeriFx. Next, Section 5.2 presents a library for implementing RDTs using OT
and verifying the transformation functions. VeriFx is not limited to these families of RDTs;
programmers can build custom libraries for implementing and verifying other abstractions or
families of RDTs. Last, Section 5.3 explains how to encode common assumptions such as
causal delivery in VeriFx since the CRDT and OT libraries do not make specific assumptions.

5.1 CRDT Library
CRDTs guarantee strong eventual consistency (SEC), a consistency model that strengthens
eventual consistency with the strong convergence property which requires replicas that received
the same updates, possibly in a different order, to be in the same state. VeriFx’s CRDT
library supports all CRDT families: state-based [68], delta state-based [2], op-based [68], and
pure op-based CRDTs [8]. The remainder explains how our library supports each family.

5.1.1 State-based CRDTs
State-based CRDTs (CvRDTs for short) periodically broadcast their state to all replicas and
merge incoming states by computing the least upper bound (LUB) of the incoming state and
their own state. Shapiro et al. [68] showed that CvRDTs converge if the merge function ⊔v is
idempotent, commutative, and associative. We define these properties based on their work:
Idempotent: ∀x ∈ Σ : reachable(x) =⇒ x ≡ x ⊔v x

Commutative: ∀x, y ∈ Σ : reachable(x) ∧ reachable(y) ∧ compatible(x, y)
=⇒ (x ⊔v y ≡ y ⊔v x) ∧ reachable(x ⊔v y)

Associative: ∀x, y, z ∈ Σ : reachable(x) ∧ reachable(y) ∧ reachable(z) ∧
compatible(x, y) ∧ compatible(x, z) ∧ compatible(y, z)
=⇒ ((x ⊔v y) ⊔v z ≡ x ⊔v (y ⊔v z)) ∧ reachable((x ⊔v y) ⊔v z)

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:15

Listing 4 Trait for the implemen-
tation of CvRDTs in VeriFx.

1 trait CvRDT[T <: CvRDT[T]] {
2 def merge(that: T): T
3 def compare(that: T): Boolean
4 def reachable(): Boolean = true
5 def compatible(that: T): Boolean =

true
6 def equals(that: T): Boolean = {
7 this.asInstanceOf[T].compare(that)
8 &&
9 that.compare(this.asInstanceOf[T])

10 }
11 }

Listing 5 Trait for the verification of CvRDTs in VeriFx.
The arrow function =>: implements logical implication.

1 trait CvRDTProof[T <: CvRDT[T]] {
2 proof mergeIdempotent {
3 forall (x: T) { x.reachable() =>: x.merge(x).equals(x) } }
4 proof mergeCommutative {
5 forall (x: T, y: T) {
6 (x.reachable() && y.reachable() && x.compatible(y)) =>:
7 (x.merge(y).equals(y.merge(x)) &&

x.merge(y).reachable())}}
8 proof mergeAssociative {
9 forall (x: T, y: T, z: T) {

10 (x.reachable() && y.reachable() && z.reachable() &&
11 x.compatible(y) && x.compatible(z) && y.compatible(z))
12 =>: (x.merge(y).merge(z).equals(x.merge(y.merge(z))) &&
13 x.merge(y).merge(z).reachable()) } }
14 proof equalityCheck {
15 forall (x: T, y: T) { x.equals(y) == (x == y) } } }

Σ denotes the set of all states. A state is reachable if it can be reached starting from the initial
state and applying only supported operations. Two states are compatible if they represent
different replicas of the same CRDT object4. As explained in Section 2.1, Shapiro et al. [68]
define state equivalence in terms of ≤v on the lattice: S ≤v T ∧ T ≤v S =⇒ S ≡ T .

VeriFx’s CRDT library provides traits for the implementation and verification of CvRDTs,
shown in Listings 4 and 5 respectively. Listing 4 shows the CvRDT trait that was used in
Listing 1 to implement the TwoPSet CRDT. Every state-based CRDT that extends the CvRDT
trait must provide a type argument which is the actual type of the CRDT and provide an
implementation for the merge and compare methods. By default, all states are considered
reachable and compatible, and state equivalence is defined in terms of compare. These
methods can be overridden by the concrete CRDT that implements the trait.

Listing 5 shows the CvRDTProof trait used to verify CvRDT implementations. This trait
defines one type parameter T that must be a CvRDT type and defines proofs to check that
its merge function adheres to the aforementioned properties (i.e. is idempotent, commutative,
and associative). It also defines an additional proof, equalityCheck, that checks that the
notion of state equivalence that, by default, relies on structural equality (i.e., the default
implementation of the equals method computes structural equality). However, programmers
can override the equals method to use another notion of state equivalence if needed.

Objects can extend the CvRDTProof trait to inherit automated correctness proofs for
the given CRDT type. Note that the trait’s type parameter T expects a concrete CvRDT
type (e.g. PNCounter) and will not work for polymorphic CvRDTs (e.g. ORSet) because
those are type constructors. Instead, the CRDT library provides additional CvRDTProof1,
CvRDTProof2, and CvRDTProof3 traits to verify polymorphic CvRDTs that expect 1, 2, or 3
type arguments respectively. For example, the TwoPSet[V] from Section 2 is polymorphic in
the type of values it stores; the TwoPSetProof object thus extended the CvRDTProof1 trait
because the TwoPSet expects one type argument.

5.1.2 Delta state-based CRDTs
Delta state-based CRDTs are a family of state-based CRDTs that exchange only the changes
to the state (called deltas) instead of the full state in order to reduce the amount of data
that is sent. Mutator operations return a delta which is joined into the replica’s local state,
propagated to the other replicas, and eventually joined into the state of all replicas.

4 The compatible predicate can be used to encode certain assumptions. For example, replicas have
unique identifiers which enables them to generate unique tags.

ECOOP 2023

9:16 VeriFx: Correct Replicated Data Types for the Masses

VeriFx’s CRDT library provides a DeltaCRDT trait that specializes the CvRDT trait and
can be used to implement delta state-based CRDTs. When extending DeltaCRDT traits,
programmers must implement a merge method that joins delta states into the local state.

To verify delta state-based CRDTs, programmers can reuse the CvRDTProof trait since
delta state-based CRDTs are essentially state-based CRDTs. As shown in Listing 5, the
CvRDTProof trait verifies that the merge is idempotent, commutative, and associative for all
valid states. This valid states contain all valid delta states as they are a subset of the full state.

5.1.3 Op-based CRDTs
Op-based CRDTs (CmRDTs for short) execute update operations in two phases, called
prepare and effect. The prepare phase executes locally at the source replica (only if its
source precondition holds) and prepares a message to be broadcast5 to all replicas (including
itself). The effect phase applies such incoming messages and updates the state (only if its
downstream precondition holds, otherwise the message is ignored).

Shapiro et al. [68] and Gomes et al. [27] have shown that CmRDTs guarantee SEC if all
concurrent operations commute. Hence, for any CmRDT it suffices to show that all pairs
of concurrent operations commute. Formally, for any operation o1 that is enabled by some
reachable replica state s1 (i.e. o1’s source precondition holds in s1) and any operation o2
that is enabled by some reachable replica state s2, if these operations can be concurrent, and
s1, s2, and s3 are compatible replica states, then we must show that on any reachable replica
state s3 the operations commute and the intermediate and resulting states are reachable:

∀s1, s2, s3 ∈ Σ, ∀o1, o2 ∈ Σ → Σ : reachable(s1) ∧ reachable(s2) ∧ reachable(s3) ∧
enabledSrc(o1, s1) ∧ enabledSrc(o2, s2) ∧ canConcur(o1, o2) ∧
compatible(s1, s2) ∧ compatible(s1, s3) ∧ compatible(s2, s3)
=⇒ o2 · o1 · s3 ≡ o1 · o2 · s3 ∧ reachable(o1 · s3) ∧ reachable(o2 · s3) ∧ reachable(o1 · o2 · s3)

We use the notation o · s to denote the application of an operation o on state s if its
downstream precondition holds, otherwise, it returns the state unchanged.

Listing 6 shows the CmRDT trait that must be extended by op-based CRDTs with concrete
type arguments for the supported operations, exchanged messages, and the CRDT type
itself. A CRDT that extends the CmRDT trait must implement the prepare and effect
methods. The tryEffect method has a default implementation that applies the operation if
its downstream precondition holds, otherwise, it returns the state unchanged. By default, we
assume all states are reachable, all operations are enabled at the source and downstream, all
operations can occur concurrently, and all states are compatible. For most CmRDTs these
settings do not need to be altered but some CmRDTs have other assumptions which can
be encoded by overriding the appropriate method. For example, in an OR-Set [67] it is not
possible to delete tags added concurrently; this can be encoded by overriding canConcur.

Similar to state-based CRDTs, our CRDT library provides a CmRDTProof trait and several
versions to verify op-based CRDTs. These traits define a general proof of correctness that
checks that all operations commute based on the previously described formula.

5.1.4 Pure op-based CRDTs
Pure op-based CRDTs are a family of op-based CRDTs that exchange only the operations
instead of data-type specific messages. The effect phase stores incoming operations in a
partially ordered log of (concurrent) operations. Queries are computed against the log and

5 While some CmRDT do not require causal delivery, the overall model assumes reliable causal broadcast.

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:17

Listing 6 Polymorphic CmRDT trait to implement op-based CRDTs in VeriFx.
1 trait CmRDT[Op, Msg, T <: CmRDT[Op, Msg, T]] {
2 def prepare(op: Op): Msg
3 def effect(msg: Msg): T
4 def tryEffect(msg: Msg): T = if (this.enabledDown(msg)) this.effect(msg) else this.asInstanceOf[T]
5 def reachable(): Boolean = true // by default all states are considered reachable
6 def canConcur(x: Msg, y: Msg): Boolean = true // all ops can occur concurrently
7 def compatible(that: T): Boolean = true // all states are compatible
8 def enabledSrc(op: Op): Boolean = true // no source preconditions by default
9 def enabledDown(msg: Msg): Boolean = true // no downstream preconditions by default

10 def equals(that: T): Boolean = this == that
11 }

operations do not need to commute. Data-type specific redundancy relations dictate which
operations to store in the log and when to remove operations from the log. VeriFx’s CRDT
library provides a PureOpBasedCRDT trait which is a specialization of the CmRDT trait for
implementing pure op-based CRDTs. The implementing CRDT inherits the prepare and effect
phase (the same for all pure op-based CRDTs) and only needs to implement the redundancy
relations. Since pure op-based CRDTs are essentially operation-based CRDTs, programmers
can reuse the CmRDTProof traits to verify pure op-based CRDT implementations.

5.2 OT Library
The Operational Transformation (OT) [25] approach applies operations locally and propagates
them asynchronously to the other replicas. Incoming operations are transformed against
previously executed concurrent operations such that the modified operation preserves the
intended effect. Operations are functions from state to state: Op : Σ → Σ and are transformed
using a transformation function T : Op × Op → Op. Thus, T (o1, o2) denotes the operation
that results from transforming o1 against a previously executed concurrent operation o2.
Suleiman et al. [70] and Sun et al. [72] proved that replicas eventually converge if the
transformation function satisfies two properties: TP1 and TP2 . Property TP1 states that
any two enabled concurrent operations oi and oj must commute after transforming them:

∀oi, oj ∈ Op, ∀s ∈ Σ : enabled(oi, s) ∧ enabled(oj , s) ∧ canConcur(oi, oj)
=⇒ T (oj , oi)(oi(s)) = T (oi, oj)(oj(s))

Property TP2 states that given three enabled concurrent operations oi, oj , and ok, the trans-
formation of ok does not depend on the order of the transformation of operations oi and oj :

∀oi, oj , ok ∈ Op, ∀s ∈ Σ : enabled(oi, s) ∧ enabled(oj , s) ∧ enabled(ok, s) ∧ canConcur(oi, oj) ∧
canConcur(oj , ok) ∧ canConcur(oi, ok) =⇒ T (T (ok, oi), T (oj , oi)) = T (T (ok, oj), T (oi, oj))

Note that properties TP1 and TP2 only need to hold for states in which the operations
can be generated, represented by the relation enabled : Op × Σ → B, and only if the two
operations can occur concurrently, represented by the relation canConcur : Op × Op → B.

VeriFx provides a library for implementing and verifying RDTs that use operational
transformations. Programmers can build custom RDTs by extending the OT trait shown in
Listing 7. Every RDT that extends the OT trait must provide concrete type arguments for the
state and operations, and implement the transform and apply methods. The transform
method transforms an incoming operation against a previously executed concurrent operation.
The apply method applies an operation on the state. By extending this trait, the RDT
inherits proofs for TP1 and TP2. By default, these proofs assume that operations are always
enabled and that all operations can occur concurrently. If this is not the case, the RDT can
override the enabled and canConcur methods respectively.

ECOOP 2023

9:18 VeriFx: Correct Replicated Data Types for the Masses

Listing 7 Polymorphic OT trait to implement and verify RDTs using operational transformation.
1 trait OT[State, Op] {
2 def transform(x: Op, y: Op): Op
3 def apply(state: State, op: Op): State
4 def enabled(op: Op, state: State): Boolean = true
5 def canConcur(x: Op, y: Op): Boolean = true
6 proof TP1 {
7 forall (opI: Op, opJ: Op, st: State) {
8 (this.enabled(opI, st) && this.enabled(opJ, st) && this.canConcur(opI, opJ)) =>: {
9 this.apply(this.apply(st, opI), this.transform(opJ, opI)) ==

10 this.apply(this.apply(st, opJ), this.transform(opI, opJ)) } } }
11 proof TP2 {
12 forall (opI: Op, opJ: Op, opK: Op, st: State) {
13 (this.enabled(opI, st) && this.enabled(opJ, st) && this.enabled(opK, st) &&
14 this.canConcur(opI, opJ) && this.canConcur(opJ, opK) && this.canConcur(opI, opK)) =>: {
15 this.transform(this.transform(opK, opI), this.transform(opJ, opI)) ==
16 this.transform(this.transform(opK, opJ), this.transform(opI, opJ)) } } } }

Although VeriFx supports the general execution model of OT, most transformation func-
tions described by the literature were specifically designed for collaborative text editing. They
model text documents as a sequence of characters and operations insert or delete characters at
a given position in the document. Every paper thus describes four transformations functions,
one for every pair of operations: insert-insert, insert-delete, delete-insert, delete-delete.

Likewise, VeriFx’s OT library provides a ListOT trait that models the state as a list
of values and supports insertions and deletions. RDTs extending the ListOT trait need
to implement four methods (Tii, Tid, Tdi, Tdd) corresponding to the transformation
functions for transforming insertions against insertions (Tii), insertions against deletions
(Tid), deletions against insertions (Tdi), and deletions against deletions (Tdd). The trait
provides a default implementation of transform that dispatches to the corresponding
transformation function based on the type of operations, and a default implementation of
apply that inserts or deletes a value from the underlying list.

5.3 Encoding RDT-Specific Assumptions

Some RDTs (most notably op-based CRDTs) assume causal delivery of operations but VeriFx
and its CRDT and OT libraries do not make any assumptions. In VeriFx, assumptions must
either be guaranteed by the RDT’s implementation or be explicitly encoded in the proofs.

We now show, using the OR-Set CRDT [67], how to encode RDT-specific assumptions.
The OR-Set CRDT assumes that 1) replicas can generate globally unique tags, and 2) add and
remove operations of the same element are delivered in causal order. These assumptions imply
that replicas cannot add a tag and concurrently remove the same tag. The first assumption
can be guaranteed by the RDT implementation if every replica has a unique ID that is
combined with a local counter that increases monotonically to generate unique tags. The
latter assumption about causal delivery can be explicitly encoded in the proof. One could also
model the underlying causal communication protocols in VeriFx to remove this assumption.

Listing 8 shows an excerpt from the implementation of the OR-Set CRDT. It overrides the
compatible predicate (Line 7) to encode the fact that replicas have unique IDs, and overrides
the canConcur predicate (Line 8 to 16) such that the proof does not consider add and remove
operations if the tag generated by add is contained in the set of tags that are removed
(because causal delivery precludes remove from having observed that tag). This example
shows how to encode specific assumptions but, in practice, many RDT implementations do
not require any assumptions. Only 7 out of the 51 verified CRDTs (cf. Section 6.1) required
assumptions, all of which are related to causal delivery and logical timestamps.

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:19

Listing 8 Excerpt from the implementation of the OR-Set CRDT [67].
1 class Tag[ID](replica: ID, counter: Int)
2 enum SetOp[V, ID] { Add(e: V) | Remove(e: V) }
3 enum SetMsg[V, ID] { AddMsg(e: V, tag: Tag[ID]) | RemoveMsg(e: V, tags: Set[Tag[ID]]) }
4 class ORSet[V, ID](id: ID, counter: Int, elements: Map[V, Set[Tag[ID]]])
5 extends CmRDT[SetOp[V, ID], SetMsg[V, ID], ORSet[V, ID]] {
6 // ...
7 override def compatible(that: ORSet[V, ID]) = this.id != that.id
8 override def canConcur(x: SetMsg[V, ID], y: SetMsg[V, ID]) = x match {
9 case AddMsg(_, tag) => y match {

10 case AddMsg(_, _) => true
11 case RemoveMsg(_, tags) => !tags.contains(tag) // tag cannot be in tags because of causal delivery
12 }
13 case RemoveMsg(_, tags) => y match {
14 case AddMsg(_, tag) => !tags.contains(tag) // tag cannot be in tags because of causal delivery
15 case RemoveMsg(_, _) => true
16 } } }

6 Evaluation

We now evaluate the applicability of VeriFx to implement and verify RDTs. Our evaluation
is twofold. First, we implement and verify numerous CRDTs taken from literature as well as
some new variants6. Also, we verify well-known OT functions and some unpublished designs.

All experiments reported were conducted on AWS using an m5.xlarge VM with 4 virtual
CPUs and 16 GiB of RAM. All benchmarks are implemented using JMH [61], a benchmarking
library for the JVM. We configured JMH to execute 20 warmup iterations followed by 20
measurement iterations for every benchmark. To avoid run-to-run variance JMH repeats
every benchmark in 3 fresh JVM forks, yielding a total of 60 samples per benchmark.

We do not conduct a performance evaluation for the transpiled RDT implementations as
the transpilation merely changes the syntax to Scala or JavaScript but does not modify the
RDT’s design. Thus, the transpilation step does not affect the RDT’s performance.

6.1 Verifying Conflict-free Replicated Data Types

We implemented and verified an extensive portfolio comprising 51 CRDTs, coming from
literature [2, 8, 14, 40, 66, 67], open source projects [9], and industrial databases [1, 12, 52]. To
the best of our knowledge, we are the first to mechanically verify all CRDTs from Shapiro
et al. [67], all delta state-based CRDTs from Almeida et al. [2], all pure op-based CRDTs
from Baquero et al. [8], and the map CRDT from Kleppmann [40].

Table 1 summarizes the verification results, including the average verification time and
code size of each CRDT. When applicable, we mention which CRDTs are used in industrial
databases. VeriFx was able to verify all implemented CRDTs except the Replicated Growable
Array (RGA) [67] due to the recursive nature of the insertion algorithm (cf. Section 7). We
found three issues: 1) the Two-Phase Set CRDT (described in Section 2) converges but is
not functionally correct, 2) the original Map CRDT proposed by Kleppmann [40] diverges
as VeriFx found the same counterexample as described in their technical report, and 3) the
Molli, Weiss, Skaf (MWS) Set is incomplete. We now describe the implementation and
verification of the Map CRDTs from [40], while Appendix E discusses the MWS Set.

6 All implementations and proofs are provided as supplementary material in this submission.

ECOOP 2023

9:20 VeriFx: Correct Replicated Data Types for the Masses

Table 1 Verification results for CRDTs implemented and verified in VeriFx. S = state-based, D
= delta state-based, O = op-based, P = pure op-based CRDT. � = timeout, a⃝ = adaptation of
an existing CRDT, i⃝ = incomplete definition. The database column includes databases that are
known to use these CRDTs. Some delta state-based CRDTs use a dot kernel abstraction that is not
counted in the LoC, this is indicated in the LoC column with an asterisk.

CRDT Type LoC Correct Time Database Source
Counter O 17 ✓ 3.2 s AntidoteDB Shapiro et al. [67]
Grow-Only Counter S 27 ✓ 4.3 s Shapiro et al. [67]
Grow-Only Counter D 27 ✓ 4.4 s Akka Almeida et al. [2]
Dynamic Grow-Only Counter S 27 ✓ 4.4 s Riak a⃝ Shapiro et al. [67]
Positive-Negative Counter S 12 ✓ 5.9 s Shapiro et al. [67]
Positive-Negative Counter D 17 ✓ 6.8 s Akka Almeida et al. [2]
Dynamic Positive-Negative Counter S 17 ✓ 9.3 s Riak a⃝ Shapiro et al. [67]
Lex Counter D 46 ✓ 4.7 s Cassandra Baquero et al. [9]
Causal Counter D 28* ✓ 6.7 s Riak Baquero et al. [9]
Enable-Wins Flag P 18 ✓ 4.0 s Baquero et al. [8]
Enable-Wins Flag D 14* ✓ 5.7 s Riak Baquero et al. [9]
Enable-Wins Flag O 44 ✓ 3.6 s AntidoteDB AntidoteDB [4]
Disable-Wins Flag P 20 ✓ 3.9 s Baquero et al. [8]
Disable-Wins Flag D 14* ✓ 5.8 s Riak Baquero et al. [9]
Disable-Wins Flag O 50 ✓ 3.8 s AntidoteDB AntidoteDB [3]
Multi-Value Register S 63 ✓ 8.8 s Shapiro et al. [67]
Multi-Value Register D 12* ✓ 7.1 s Almeida et al. [2]
Multi-Value Register P 18 ✓ 4.1 s Baquero et al. [8]
Last-Writer-Wins Register S 16 ✓ 5.3 s Riak Shapiro et al. [67]
Last-Writer-Wins Register O 38 ✓ 4.4 s Shapiro et al. [67]
Grow-Only Set O 17 ✓ 3.9 s AntidoteDB Shapiro et al. [67]
Grow-Only Set S 8 ✓ 5.3 s Riak Shapiro et al. [67]
Grow-Only Set D 9 ✓ 3.9 s Baquero et al. [9]
Two-Phase Set O 27 ✓ 4.4 s Shapiro et al. [67]
Two-Phase Set S 16 ✗ 6.3 s Shapiro et al. [67]
Two-Phase Set D 25 ✓ 4.5 s Baquero et al. [9]
Unique Set O 39 ✓ 4.4 s Shapiro et al. [67]
Add-Wins Set P 28 ✓ 4.3 s Baquero et al. [8]
Remove-Wins Set P 42 ✓ 4.5 s Baquero et al. [8]
Last-Writer-Wins Set S 36 ✓ 6.6 s Shapiro et al. [67]
Remove-Wins Last-Writer-Wins Set D 28 ✓ 4.8 s Baquero et al. [9]
Positive-Negative Set S 36 ✓ 9.6 s Shapiro et al. [67]
Observed-Removed Set O 75 ✓ 6.2 s AntidoteDB Shapiro et al. [67]
Observed-Removed Set S 34 ✓ 7.6 s Shapiro [66]
Optimized OR Set S 78 ✓ 30.2 s Riak Bieniusa et al. [14]
Add-Wins OR Set D 28 ✓ 6.5 s Almeida et al. [2]
Optimized Add-Wins OR-Set D 16* ✓ 7.3 s Almeida et al. [2]
Optimized Remove-Wins OR-Set D 27* ✓ 8.5 s Baquero et al. [9]
Molli, Weiss, Skaf (MWS) Set O 45 ✓ 4.7 s i⃝ Shapiro et al. [67]
Grow-Only Map S 32 ✓ 9.1 s new data type
Buggy Map O 87 ✗ 65.2 s Kleppmann [40]
Corrected Map O 101 ✓ 49.4 s Kleppmann [40]
2P2P Graph O 58 ✓ 7.8 s Shapiro et al. [67]
2P2P Graph S 41 ✓ 10.7 s a⃝ Shapiro et al. [67]
Add-Only Directed Acyclic Graph O 42 ✓ 4.7 s Shapiro et al. [67]
Add-Only Directed Acyclic Graph S 30 ✓ 8.7 s a⃝ Shapiro et al. [67]
Add-Remove Partial Order O 61 ✓ 10.4 s Shapiro et al. [67]
Add-Remove Partial Order S 49 ✓ 13.2 s a⃝ Shapiro et al. [67]
Replicated Growable Array O 156 � / Shapiro et al. [67]
Continuous Sequence O 108 ✓ 9.2 s a⃝ Shapiro et al. [67]
Continuous Sequence S 53 ✓ 11.4 s a⃝ Shapiro et al. [67]

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:21

6.1.1 Map CRDTs
Kleppmann [40] describes the implementation of a Map CRDT which he believed to be
“obviously correct” only to find out it contains a bug that causes divergence after spending
hours trying to verify it. He then tweeted the buggy pseudo code of the Map CRDT and
challenged his 29400 followers (mainly software engineers) to find the bug. Only one person
managed to manually identify the bug and one other person came close (at the time, both
were Ph.D. students specialized in RDTs). Kleppmann later tweeted a variation on the
algorithm: “Here is a variant of the algorithm that is correct (I believe)”.

We used VeriFx to implement and automatically verify both the buggy Map CRDT and
the corrected Map CRDT, which had not been formally verified. The full implementation
and verification of the buggy map CRDT is explained in Appendix D. We now present the
key takeaways from our experience implementing and verifying these map CRDTs.

Implementation. The implementation of the map CRDTs mainly consisted of translating
the mathematical specifications to VeriFx. We introduced slight changes to the design to
improve efficiency. For example, the specification keeps a set of triples where each triple
holds a key, a value, and a timestamp. Since every key appears at most in one triple, our
implementation uses a dictionary to efficiently map keys to their value and timestamp.

Verification. After implementing the buggy map CRDT, we proceeded to its automated
verification but VeriFx generated invalid counterexamples. For instance, one in which two
distinct replicas generated the same timestamp. This is not possible because the design
assumes that replicas have unique IDs and combines them with Lamport clocks [43] to
generate unique timestamps. However, VeriFx does not know this assumption nor does
it know the relation between a replica’s clock and the values it observed. In practice,
other CRDTs make similar implicit assumptions which is the reason they are complex
and difficult to get right. VeriFx helped us to explicitly encode all assumptions as it
kept returning invalid counterexamples which helped us find and formulate the missing
assumptions. Listing 11 in Appendix D.3 shows the encoding of these assumptions.

Counterexample. After explicitly defining all assumptions, VeriFx found a valid counterex-
ample for the buggy map CRDT that is equivalent to the one found manually by Nair [40].
It consists of a corner case in which the Put and Delete operations do not commute and
thus may cause replicas to diverge. We detail the counterexample in Appendix D.3.

Corrected Map CRDT. After finding the counterexample for the buggy map CRDT, we also
verified the corrected map CRDT from Kleppmann [40]. This did not require additional
efforts since we already distilled all assumptions for the buggy map CRDT. VeriFx
automatically proved that the corrected design indeed guarantees convergence, which to
the best of our knowledge, is the first mechanical proof of correctness for this CRDT.

As shown in Table 1, the verification times for the buggy and corrected map CRDTs are
slightly higher compared to the other CRDTs we verified, but are still very fast for a fully
automated verification approach. The higher times come from the fact that these CRDTs are
too complex to directly prove convergence of all operation pairs. Hence, we use a subproof
for every operation pair. The total verification time is the sum of the times of the subproofs.

6.1.2 Conclusion
Based on Table 1, we conclude that VeriFx is suited to verify CRDT implementations since all
were verified mechanically and fully automatically in a matter of seconds. To the best of our
knowledge, this is the most extensive portfolio of verified RDTs to date. It is representative
of real-world use cases as it includes several CRDTs used in industrial databases.

ECOOP 2023

9:22 VeriFx: Correct Replicated Data Types for the Masses

Table 2 Verification results of OT functions
in VeriFx.

Transformation
Function LoC Props Time

TP1 TP2 TP1 TP2

Ellis and Gibbs [25] 84 ✗ ✗ 115 s 29 s
Ressel et al. [64] 78 ✓ ✗ 68 s 30 s
Sun et al. [72] 68 ✗ ✗ 321 s 13 s
Suleiman et al. [69] 85 ✗ ✗ 34 s 40 s
Imine et al. [34] 83 ✓ ✗ 61 s 17 s
Registerv1 [33] 6 ✗ ✓ 3 s 3 s
Registerv2 [33] 6 ✓ ✗ 3 s 3 s
Registerv3 [33] 7 ✓ ✓ 3 s 3 s
Stack [33] 47 ✗ ✓ 5 s 5 s

Listing 9 Excerpt from the implemen-
tation of Imine et al. [34]’s functions.

1 enum Op { Ins(p: Int, ip: Int, c: Int) |
Del(p: Int) | Id() }

2 object Imine extends ListOT[Int, Op] {
3 def Tii(x: Ins, y: Ins) = {
4 val p1 = x.p; val ip1 = x.ip; val c1 = x.c
5 val p2 = y.p; val ip2 = y.ip; val c2 = y.c
6 if (p1 < p2) x
7 else if (p1 > p2) new Ins(p1 + 1, ip1, c1)
8 else if (ip1 < ip2) x
9 else if (ip1 > ip2) new Ins(p1+1, ip1, c1)

10 else if (c1 < c2) x
11 else if (c1 > c2) new Ins(p1+1, ip1, c1)
12 else new Id() }
13 def Tid(x: Ins, y: Del) =
14 if (x.p > y.p) new Ins(x.p - 1, x.ip, x.c)
15 else x
16 def Tdi(x: Del, y: Ins) =
17 if (x.p < y.p) x else new Del(x.p + 1)
18 def Tdd(x: Del, y: Del) = if (x.p < y.p) x
19 else if (x.p > y.p) new Del(x.p - 1)
20 else new Id() }

Overall, the main challenge to building such an extensive portfolio consisted of finding
and encoding the correct assumptions. Those assumptions were usually gradually discovered
as VeriFx returned counterexamples that cannot occur in practice, which indicates that one
or more assumptions are missing. In particular, counterexamples were crucial for verifying
the Map CRDTs from [40]. These are the designs that took the longest to implement and
verify and they required an afternoon of work.

6.2 Verifying Operational Transformation

We now show that VeriFx is general enough to verify other distributed abstractions such
as Operational Transformation (OT). We implemented all transformation functions for
collaborative text editing defined by Imine et al. [34] and verified TP1 and TP2 in VeriFx.

Table 2 summarizes the verification results. For each transformation function, the table
shows the code size, whether or not it satisfies TP1 and TP2 , and the average verification time.
As shown in the table, the functions proposed by Ellis and Gibbs [25], Sun et al. [72], and
Suleiman et al. [69] do not satisfy TP1 nor TP2 . Ressel et al. [64]’s functions satisfy TP1 but
not TP2 . These results confirm prior findings by Imine et al. [34]. VeriFx also found that the
functions proposed by Imine et al. [34] do not satisfy TP2 , which confirms the findings of Li
and Li [49] and Oster et al. [62]. That same counterexample also invalidates the transformation
functions of Suleiman for TP2 . Imine et al. [34] wrongly proved Suleiman’s functions [69]
correct, but VeriFx found counterexamples for both properties (the counterexample for TP1
was manually found in [63]). We believe that the specification defined in Imine et al. [34] may
have missed those counterexamples due to a wrong encoding of assumptions. Finally, in a
private communication, Imine [33] asked us to verify (unpublished) OT designs for replicated
registers and stacks. Out of the three register designs verified in VeriFx, only one is correct
for both TP1 and TP2 . Regarding the stack design, it guarantees TP2 but not TP1 . VeriFx
provided meaningful counterexamples for each incorrect design.

To exemplify our approach to verifying OT, we now describe the implementation and
verification of Imine et al. [34]’s transformation functions in VeriFx, which are shown in
Listing 9. The enumeration Op on Line 1 defines the three supported operations:

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:23

Ins(p, ip, c) represents the insertion of character c7 at position p. Initially, c was
inserted at position ip. Transformations may change p but leave ip untouched.
Del(p) represents the deletion of the character at position p.
Id() acts as a no-op (to which operations may be transformed).

Object Imine extends the ListOT trait and implements the transformation functions (Tii,
Tid, Tdi, Tdd) required for collaborative text editing (cf. Section 5.2). The implementation of
these transformation functions is a straightforward translation from their description by Imine
et al. [34]. The resulting object inherits automated proofs for TP1 and TP2 . When running
these proofs, VeriFx reports that the transformation functions guarantee TP1 but not TP2 .

Based on the results shown in Table 2, we conclude that VeriFx is suited to verify
other RDT families such as OT. Due to the number of cases that have to be considered, the
verification times are longer than for CRDTs but are still acceptable for static verification [21].

7 Discussion

We now discuss the main design decisions behind VeriFx, its limitations and trade-offs.

Traits. For simplicity, VeriFx only supports single inheritance from traits. However, it could
be extended to support multiple inheritance. Traits are not meant for subtyping because
subtyping complicates verification as every subtype needs to be verified but these might
not be known at compile time. Hence, class fields, method parameters, etc. cannot be
of a trait type. Programmers can, however, define enumerations as these have a fixed
number of constructors, which are known at compile time. Note that traits can define
type parameters with upper type bounds. The type checker uses these bounds to ensure
that every extending class or trait is well-typed. The compiled SMT program does not
contain traits as they are compiled away (cf. Section 4.2). Proofs, classes, and methods
cannot have bounds on type parameters because the compiler does not know all subtypes.

Functional collections. VeriFx encodes higher-order operations on collections (e.g. map,
filter) using arrays, which are treated as function spaces in the Combinatory Array
Logic (CAL) [23]. Hence, anonymous functions (lambdas) merely define arrays that
are first-class. SMT solvers can efficiently reason about VeriFx’s functional collections
because CAL is decidable. However, some operations are encoded using universal or
existential quantifiers which may hamper decidability. In practice, VeriFx can verify
RDTs involving complex functional operations. Unfortunately, VeriFx’s collections do
not yet provide aggregation methods (e.g. fold and reduce) because this is beyond the
capabilities of CAL. These restrictions may soon be lifted as SMT-LIB v3 [35] preliminary
plans incorporate new theories that include aggregation functions such as fold.

Trade-off between expressiveness and verifiability. All constructs in VeriFx were carefully
designed to have efficient SMT encoding. Overall, general loop constructs cannot be
verified automatically as those require inductive proofs. A key insight of VeriFx is
that implicit loop constructs (e.g. map, etc.) enable the automatic verification of an
extensive portfolio of RDTs. Even though the language does not provide general loop
constructs, programmers can define recursive methods. While VeriFx will not prove facts
about (unbounded) recursive methods out-of-the-box, programmers can still verify these
implementations by explicitly defining inductive proofs. This requires devising a suitable
induction hypothesis and defining two proofs: one for the base case, and another for the
induction step. Then, VeriFx can verify both proofs. This approach has been used to
verify nested CRDT designs [13].

7 We represent characters using integers that correspond to their ASCII code.

ECOOP 2023

9:24 VeriFx: Correct Replicated Data Types for the Masses

8 Related Work

We focus our comparison of related work on verification languages and approaches for
verifying RDTs, invariants in distributed systems, and operational transformation.

Verification languages. Verification languages can be classified into three categories: inter-
active, auto-active, and automated [45]. Interactive languages include proof assistants like
Coq and Isabelle/HOL in which programmers define theorems and prove them manually
using proof tactics. Although automation tactics exist, proving complex theorems requires
considerable manual proof efforts. Vazou et al. [76] introduce the idea of refinement
reflection in Liquid Haskell [75], where user-defined functions are reflected in a decidable
fragment of SMT logic and can be used in refinement types to express correctness proper-
ties. Similarly, in VeriFx every construct of the language and its collections are reflected
in SMT logic such that arbitrary VeriFx programs can be reflected in the logic. However,
VeriFx enables automated verification of user-defined correctness properties whereas,
Liquid Haskell requires programmers to express correctness properties using refinement
types and manually write proofs as Haskell functions. Moreover, VeriFx offers an iterative
process where incorrect designs are improved based on the counterexamples, whereas
Liquid Haskell only raises a type error. Auto-active verification languages like Dafny [44]
and Spec# [11] verify programs based on annotations provided by the programmer
(e.g. preconditions, postconditions, loop invariants). Intermediate verification languages
(IVLs) like Boogie [10] and Why3 [26] automate the proof task by generating verification
conditions (VCs) from source code and discharging them using one or more SMT solvers.
IVLs are not meant to be used by programmers directly. Instead, programs written in
some verification language (e.g. Dafny, Spec#) are translated to an IVL to verify the VCs.
Regarding automated verification, the work by Kaki and Jagannathan [37] integrated
an automated verification framework in a refinement type system. Programmers write
relational specifications that define structural relations for the RDT at hand and express
correctness properties as refinement types atop operations. However, writing relational
specifications for advanced data types is non-trivial and can be rather verbose, as noted
by the authors themselves. In contrast, VeriFx does not require separate specifications.

Verifying SEC for RDTs. Burckhardt et al. [20] propose a formal framework that enables the
specification and verification of RDTs. Attiya et al. [5] use a variation on this framework
to provide specifications of replicated lists and prove the correctness of an existing text
editing protocol. Gomes et al. [27] and Zeller et al. [79] propose formal frameworks in
the Isabelle/HOL theorem prover to mechanically verify SEC for CRDTs. In contrast to
VeriFx, Gomes et al. [27] only consider operation-based CRDTs but model the underlying
network to reason about causal delivery of messages. Nieto et al. [59] developed libraries
to implement and verify op-based CRDTs in separation logic. Their approach requires
programmers to write Coq specifications atop the provided libraries and manually prove
correctness. Liu et al. [54] extend Liquid Haskell with typeclass refinements and use
them to prove SEC for some of their own CRDTs. While simple proofs can be discharged
automatically by the underlying SMT solver, advanced CRDTs also require significant
proof efforts (as discussed in Section 2). All the aforementioned verification techniques
require significant effort and expertise whereas, VeriFx fully automatically verified 51
well-known CRDTs. Liang and Feng [51] propose a new correctness criterion for CRDTs
that extends SEC with functional correctness and enables manual verification of CRDT
implementations and client programs using them. They mainly focus on functional
correctness and provide paper proofs rather than automated verification. Wang et al. [77]

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:25

propose replication-aware linearizability, a criterion that enables sequential reasoning to
prove the correctness of CRDT implementations. The CRDTs were manually encoded in
the Boogie verification tool to prove correctness. Those encodings are non-trivial and
differ from real-world CRDT implementations. Nagar and Jagannathan [56] developed
a proof rule that is parametrized by the consistency model and automatically checks
convergence for CRDTs. Unfortunately, their framework introduces imprecision and may
reject correct CRDTs. Moreover, their framework requires a first-order logic specification
of the CRDT. In contrast, VeriFx can verify high-level CRDT implementations instead of
specifications. Finally, Jagadeesan and Riely [36] introduce a notion of validity for RDTs
and manually prove it for some CRDTs. We do not consider validity in this work.

Verifying applications invariants. Some work has focused on verifying application invariants
under weak consistency. Bailis et al. [6] introduce invariant confluent operations that
maintain application invariants, even without coordination. Whittaker and Hellerstein [78]
devise a decision procedure for invariant confluence that can be checked automatically.
Other work has focused on verifying invariants for RDTs [7, 29, 57, 58, 80]. Soteria [57]
verifies program invariants for state-based RDTs. Repliss [80] verifies program invariants
for applications that are built on top of their CRDT library. CISE [29, 58] proposes a
proof rule to check that a chosen consistency level for operations preserves the application
invariants. IPA [7] detects invariant-breaking operations and proposes changes to the
operations in order to preserve the invariants. All these approaches assume that the
underlying RDT is correct, while VeriFx enables programmers to verify that this is the
case. This paper does not consider RDTs with mixed consistency levels as [24,31, 46–48,
50,55,81,82].

Verifying operational transformation functions. Ellis and Gibbs [25] first proposed an algo-
rithm for OT together with a set of transformation functions. Several works [70,72] showed
that integration algorithms like adOPTed [64], SOCT2 [70], and GOTO [71] guarantee
convergence iff the transformation functions satisfy the TP1 and TP2 properties. Ellis
and Gibbs [25]’s functions do not satisfy these properties [64,70, 72] and, over the years,
several functions were proposed [64,69,72]. Imine et al. [34] used SPIKE, an automated
theorem prover, to verify the correctness of these functions and found counterexamples
for all of them, except for Suleiman et al. [69]’s functions. As shown in Section 6.2, we
reproduced their study and generated similar counterexamples. Imine et al. [34] proposed
a simpler set of functions which later was found to also violate TP2 [49, 62]. VeriFx
also found this counterexample.

9 Conclusion

To support the development of correct RDTs, we propose VeriFx, a high-level programming
language powerful enough to implement RDTs as CRDTs and OT, and verify them auto-
matically without requiring annotations or programmer intervention. Our approach enables
programmers to implement RDTs, and express and verify correctness properties, all within
the same language. This avoids gaps between the implementation and verification. VeriFx
high-level counterexamples enable programmers to iteratively improve their implementation.
Once verified, RDTs can be transpiled to mainstream languages, e.g. Scala and JavaScript.

VeriFx shows that automated verification based on SMT solving can verify real-world
RDT implementations with minimal programmer intervention. This work accounts for the
most extensive portfolio of mechanically verified RDTs to date, including 51 CRDTs and 9
OT designs. All were verified in a matter of seconds or minutes and with minimal effort.

ECOOP 2023

9:26 VeriFx: Correct Replicated Data Types for the Masses

In this work, we focused on verifying correctness properties in the domain of RDTs. In
future work, we would like to explore the applicability of VeriFx to other domains.

References
1 Deepthi Devaki Akkoorath and Annette Bieniusa. Antidote: The highly-available geo-replicated

database with strongest guarantees. Technical report, Technical Report. Tech. U. Kaiser-
slautern., 2016.

2 Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient state-based CRDTs by
delta-mutation. In Ahmed Bouajjani and Hugues Fauconnier, editors, Int. Conference on
Networked Systems, pages 62–76, Agadir, Morocco, 2015. Springer-Verslag.

3 AntidoteDB. Implementation of a Disable-Wins Flag CRDT in AntidoteDB.
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/
antidote_crdt_flag_dw.erl. Accessed: 2022-07-19.

4 AntidoteDB. Implementation of an Enable-Wins Flag CRDT in AntidoteDB.
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/
antidote_crdt_flag_ew.erl. Accessed: 2022-07-19.

5 Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang, and
Marek Zawirski. Specification and complexity of collaborative text editing. In Proceedings of
the 2016 ACM Symposium on Principles of Distributed Computing, PODC ’16, pages 259–268,
New York, NY, USA, 2016. ACM. doi:10.1145/2933057.2933090.

6 Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and Ion
Stoica. Coordination avoidance in database systems. Proc. VLDB Endow., 8(3):185–196,
November 2014. doi:10.14778/2735508.2735509.

7 Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, and Nuno Preguiça. IPA:
Invariant-preserving applications for weakly consistent replicated databases. Proc. VLDB
Endow., 12(4):404–418, December 2018.

8 Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Pure operation-based replicated data
types. CoRR, abs/1710.04469, 2017. arXiv:1710.04469.

9 Carlos Baquero, Omer Katz, Brian Cannard, and Georges Younes. JGraphT: a Java li-
brary of graph theory data structures and algorithms. https://github.com/CBaquero/
delta-enabled-crdts. Accessed: 22-11-2022.

10 Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Formal Methods for
Components and Objects, pages 364–387, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

11 Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian
Muntean, editors, Construction and Analysis of Safe, Secure, and Interoperable Smart Devices,
pages 49–69, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

12 Basho Technologies. Riak KV. https://riak.com/products/riak-kv/index.html. Accessed:
22-11-2022.

13 Jim Bauwens and Elisa Gonzalez Boix. Nested pure operation-based CRDTs. In To Appear in
37th European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023,
Seattle, WA, LIPIcs, 2023.

14 Annette Bieniusa, Marek Zawirski, Nuno M. Preguiça, Marc Shapiro, Carlos Baquero, Valter
Balegas, and Sérgio Duarte. An optimized conflict-free replicated set. CoRR, abs/1210.3368,
2012. arXiv:1210.3368.

15 Sascha Böhme, Anthony C. J. Fox, Thomas Sewell, and Tjark Weber. Reconstruction of Z3’s
bit-vector proofs in HOL4 and Isabelle/HOL. In Jean-Pierre Jouannaud and Zhong Shao,
editors, Certified Programs and Proofs, pages 183–198, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/antidote_crdt_flag_dw.erl
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/antidote_crdt_flag_dw.erl
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/antidote_crdt_flag_ew.erl
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/antidote_crdt_flag_ew.erl
https://doi.org/10.1145/2933057.2933090
https://doi.org/10.14778/2735508.2735509
https://arxiv.org/abs/1710.04469
https://github.com/CBaquero/delta-enabled-crdts
https://github.com/CBaquero/delta-enabled-crdts
https://riak.com/products/riak-kv/index.html
https://arxiv.org/abs/1210.3368

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:27

16 Sascha Böhme and Tjark Weber. Fast LCF-style proof reconstruction for Z3. In International
Conference on Interactive Theorem Proving, pages 179–194. Springer, 2010.

17 Eric Brewer. CAP twelve years later: How the “rules” have changed. Computer, 45:23–29,
February 2012.

18 Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Distributed Computing, PODC ’00, page 7, New
York, NY, USA, 2000. ACM. doi:10.1145/343477.343502.

19 Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P. Wood. Cloud types
for eventual consistency. In 26th European Conference on Object-Oriented Programming,
ECOOP’12, pages 283–307, Berlin, Heidelberg, 2012. Springer-Verlag.

20 Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated
data types: Specification, verification, optimality. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, pages 271–284,
New York, NY, USA, 2014. ACM. doi:10.1145/2535838.2535848.

21 Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino
Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. Moving
fast with software verification. In Klaus Havelund, Gerard Holzmann, and Rajeev Joshi,
editors, NASA Formal Methods, pages 3–11, Cham, 2015. Springer International Publishing.

22 Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan
and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

23 Leonardo de Moura and Nikolaj Bjørner. Generalized, efficient array decision procedures. In
2009 Formal Methods in Computer-Aided Design, pages 45–52, 2009. doi:10.1109/FMCAD.
2009.5351142.

24 Kevin De Porre, Carla Ferreira, Nuno Preguiça, and Elisa Gonzalez Boix. ECROs: Building
Global Scale Systems from Sequential Code. Proc. ACM Program. Lang., 5(OOPSLA),
November 2021.

25 C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. In Proceedings of the
1989 ACM SIGMOD International Conference on Management of Data, SIGMOD ’89, pages
399–407, New York, NY, USA, 1989. ACM. doi:10.1145/67544.66963.

26 Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet provers. In
Matthias Felleisen and Philippa Gardner, editors, Programming Languages and Systems, pages
125–128, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

27 Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alastair R. Beresford.
Verifying strong eventual consistency in distributed systems. Proc. ACM Program. Lang.,
1(OOPSLA), October 2017. doi:10.1145/3133933.

28 Google. Protocol buffers. https://developers.google.com/protocol-buffers. Accessed:
10-10-2022.

29 Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. ’cause
i’m strong enough: Reasoning about consistency choices in distributed systems. SIGPLAN
Not., 51(1):371–384, January 2016. doi:10.1145/2914770.2837625.

30 Pat Helland. Immutability changes everything: We need it, we can afford it, and the time is
now. Queue, 13(9):101–125, November 2015. doi:10.1145/2857274.2884038.

31 Farzin Houshmand and Mohsen Lesani. Hamsaz: Replication coordination analysis and
synthesis. Proc. ACM Program. Lang., 3(POPL), January 2019. doi:10.1145/3290387.

32 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, May 2001.
doi:10.1145/503502.503505.

33 Abdessamad Imine. Exchange of mails regarding OT, and unpublished register and stack
designs. personal communication.

34 Abdessamad Imine, Pascal Molli, Gérald Oster, and Michaël Rusinowitch. Proving correctness
of transformation functions in real-time groupware. In Proceedings of the Eighth Conference on
European Conference on Computer Supported Cooperative Work, ECSCW’03, pages 277–293,
USA, 2003. Kluwer Academic Publishers.

ECOOP 2023

https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/3133933
https://developers.google.com/protocol-buffers
https://doi.org/10.1145/2914770.2837625
https://doi.org/10.1145/2857274.2884038
https://doi.org/10.1145/3290387
https://doi.org/10.1145/503502.503505

9:28 VeriFx: Correct Replicated Data Types for the Masses

35 The SMT-LIB Initiative. SMT-LIB Version 3.0 - Preliminary Proposal. http://smtlib.cs.
uiowa.edu/version3.shtml. Accessed: 23-11-2022.

36 Radha Jagadeesan and James Riely. Eventual consistency for CRDTs. In Amal Ahmed, editor,
Programming Languages and Systems, pages 968–995, Cham, 2018. Springer International
Publishing.

37 Gowtham Kaki and Suresh Jagannathan. A relational framework for higher-order shape
analysis. SIGPLAN Not., 49(9):311–324, August 2014. doi:10.1145/2692915.2628159.

38 Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Jagannathan. Mergeable
replicated data types. Proc. ACM Program. Lang., 3(OOPSLA), October 2019. doi:10.1145/
3360580.

39 Martin Kleppmann. A critique of the CAP theorem. CoRR, abs/1509.05393, 2015. arXiv:
1509.05393.

40 Martin Kleppmann. Assessing the understandability of a distributed algorithm by tweeting
buggy pseudocode. Technical Report UCAM-CL-TR-969, University of Cambridge, Computer
Laboratory, May 2022. doi:10.48456/tr-969.

41 Martin Kleppmann and Alastair R Beresford. A conflict-free replicated JSON datatype. IEEE
Trans. on Parallel and Distributed Systems, 28(10):2733–2746, 2017.

42 Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, and Joseph M. Hellerstein. Katara:
Synthesizing CRDTs with verified lifting. Proc. ACM Program. Lang., 6(OOPSLA2), October
2022. doi:10.1145/3563336.

43 Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commu-
nications of the ACM, 21(7):558–565, 1978.

44 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning, pages 348–370, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

45 K. Rustan M. Leino and Michał Moskal. Usable auto-active verification. In Usable Verification
Workshop, 2010.

46 Cheng Li, João Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and Viktor Vafeiadis.
Automating the choice of consistency levels in replicated systems. In Proceedings of the 2014
USENIX Conference on USENIX Annual Technical Conference, USENIX ATC’14, pages
281–292, Berkeley, CA, USA, 2014. USENIX Association.

47 Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo
Rodrigues. Making geo-replicated systems fast as possible, consistent when necessary. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, pages 265–278, USA, 2012. USENIX Association.

48 Cheng Li, Nuno Preguiça, and Rodrigo Rodrigues. Fine-grained consistency for geo-replicated
systems. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 359–372,
Boston, MA, 2018. USENIX Association.

49 Du Li and Rui Li. Preserving operation effects relation in group editors. In Proceedings of the
2004 ACM Conference on Computer Supported Cooperative Work, CSCW ’04, pages 457–466,
New York, NY, USA, 2004. ACM. doi:10.1145/1031607.1031683.

50 Xiao Li, Farzin Houshmand, and Mohsen Lesani. Hampa: Solver-aided recency-aware replica-
tion. In Computer Aided Verification: 32nd International Conference, CAV 2020, Los Angeles,
CA, USA, July 21–24, 2020, Proceedings, Part I, pages 324–349, Berlin, Heidelberg, 2020.
Springer-Verlag. doi:10.1007/978-3-030-53288-8_16.

51 Hongjin Liang and Xinyu Feng. Abstraction for conflict-free replicated data types. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2021, pages 636–650, New York, NY, USA, 2021. ACM.
doi:10.1145/3453483.3454067.

52 Lightbend, Inc. Akka. https://akka.io/. Accessed: 22-11-2022.
53 Lightbend Inc. Serialization. https://doc.akka.io/docs/akka/current/serialization.

html. Accessed: 10-10-2022.

http://smtlib.cs.uiowa.edu/version3.shtml
http://smtlib.cs.uiowa.edu/version3.shtml
https://doi.org/10.1145/2692915.2628159
https://doi.org/10.1145/3360580
https://doi.org/10.1145/3360580
https://arxiv.org/abs/1509.05393
https://arxiv.org/abs/1509.05393
https://doi.org/10.48456/tr-969
https://doi.org/10.1145/3563336
https://doi.org/10.1145/1031607.1031683
https://doi.org/10.1007/978-3-030-53288-8_16
https://doi.org/10.1145/3453483.3454067
https://akka.io/
https://doc.akka.io/docs/akka/current/serialization.html
https://doc.akka.io/docs/akka/current/serialization.html

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:29

54 Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki Vazou.
Verifying replicated data types with typeclass refinements in liquid Haskell. Proc. ACM
Program. Lang., 4(OOPSLA), November 2020. doi:10.1145/3428284.

55 Mae Milano and Andrew C. Myers. MixT: A language for mixing consistency in geodistributed
transactions. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, pages 226–241, New York, NY, USA, 2018. ACM.
doi:10.1145/3192366.3192375.

56 Kartik Nagar and Suresh Jagannathan. Automated parameterized verification of CRDTs. In
Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification, pages 459–477, Cham,
2019. Springer International Publishing.

57 Sreeja S. Nair, Gustavo Petri, and Marc Shapiro. Proving the safety of highly-available
distributed objects. In Programming Languages and Systems: 29th European Symposium on
Programming, ESOP 2020, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020, Proceedings, pages
544–571, Berlin, Heidelberg, 2020. Springer-Verlag. doi:10.1007/978-3-030-44914-8_20.

58 Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, and Marc Shapiro. The
CISE tool: proving weakly-consistent applications correct. In Peter Alvaro and Alysson Bessani,
editors, Proceedings of the 2nd Workshop on the Principles and Practice of Consistency for
Distributed Data, PaPoC@EuroSys 2016, London, United Kingdom, April 18, 2016, pages
2:1–2:3. ACM, 2016. doi:10.1145/2911151.2911160.

59 Abel Nieto, Léon Gondelman, Alban Reynaud, Amin Timany, and Lars Birkedal. Modular
verification of op-based CRDTs in separation logic. Proc. ACM Program. Lang., 6(OOPSLA2),
October 2022. doi:10.1145/3563351.

60 Peter W. O’Hearn. Continuous reasoning: Scaling the impact of formal methods. In Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, pages
13–25, New York, NY, USA, 2018. ACM. doi:10.1145/3209108.3209109.

61 OpenJDK. jmh - OpenJDK. https://openjdk.java.net/projects/code-tools/jmh/. Ac-
cessed: 13-05-2020.

62 Gérald Oster, Pascal Molli, Pascal Urso, and Abdessamad Imine. Tombstone transformation
functions for ensuring consistency in collaborative editing systems. In 2006 International
Conference on Collaborative Computing: Networking, Applications and Worksharing, pages
1–10, 2006. doi:10.1109/COLCOM.2006.361867.

63 Aurel Randolph, Hanifa Boucheneb, Abdessamad Imine, and Alejandro Quintero. On synthe-
sizing a consistent operational transformation approach. IEEE Transactions on Computers,
64(4):1074–1089, 2015. doi:10.1109/TC.2014.2308203.

64 Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzenhäuser. An integrating,
transformation-oriented approach to concurrency control and undo in group editors. In
Proceedings of the 1996 ACM Conference on Computer Supported Cooperative Work, CSCW
’96, pages 288–297, New York, NY, USA, 1996. ACM. doi:10.1145/240080.240305.

65 Scalameta. Scalameta: Library to read, analyze, transform and generate Scala programs.
https://scalameta.org/. Accessed: 24-11-2022.

66 Marc Shapiro. Replicated Data Types. In Ling Liu and M. Tamer Özsu, editors, Encyclopedia
Of Database Systems, volume Replicated Data Types, pages 1–5. Springer-Verlag, July 2017.
doi:10.1007/978-1-4899-7993-3_80813-1.

67 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study
of convergent and commutative replicated data types. Research Report RR-7506, INRIA –
Centre Paris-Rocquencourt, January 2011.

68 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated
data types. In Xavier Défago, Franck Petit, and Vincent Villain, editors, 13th Int. Symp. on
Stabilization, Safety, and Security of Distributed Systems, SSS’11, pages 386–400, Grenoble,
France, 2011. Springer-Verslag.

ECOOP 2023

https://doi.org/10.1145/3428284
https://doi.org/10.1145/3192366.3192375
https://doi.org/10.1007/978-3-030-44914-8_20
https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1145/3563351
https://doi.org/10.1145/3209108.3209109
https://openjdk.java.net/projects/code-tools/jmh/
https://doi.org/10.1109/COLCOM.2006.361867
https://doi.org/10.1109/TC.2014.2308203
https://doi.org/10.1145/240080.240305
https://scalameta.org/
https://doi.org/10.1007/978-1-4899-7993-3_80813-1

9:30 VeriFx: Correct Replicated Data Types for the Masses

69 Maher Suleiman, Michèle Cart, and Jean Ferrié. Serialization of concurrent operations in a
distributed collaborative environment. In Proceedings of the International ACM SIGGROUP
Conference on Supporting Group Work: The Integration Challenge, GROUP ’97, pages 435–445,
New York, NY, USA, 1997. ACM. doi:10.1145/266838.267369.

70 Maher Suleiman, Michèle Cart, and Jean Ferrié. Concurrent operations in a distributed and
mobile collaborative environment. In Proceedings of the Fourteenth International Conference
on Data Engineering, ICDE ’98, pages 36–45, USA, 1998. IEEE Computer Society.

71 Chengzheng Sun and Clarence Ellis. Operational Transformation in Real-time Group Editors:
Issues, Algorithms, and Achievements. In Proc. of the 1998 ACM Conference on Computer
Supported Cooperative Work, CSCW ’98, pages 59–68, 1998.

72 Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen. Achieving
convergence, causality preservation, and intention preservation in real-time cooperative editing
systems. ACM Trans. Comput.-Hum. Interact., 5(1):63–108, March 1998. doi:10.1145/
274444.274447.

73 The Apache Software Foundation. Cassandra: Open source NoSQL database. https://
cassandra.apache.org/_/index.html. Accessed: 24-11-2022.

74 The SMT-LIB Initiative. SMT-LIB. https://smtlib.cs.uiowa.edu. Accessed: 24-11-2022.
75 Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones.

Refinement types for Haskell. In Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’14, pages 269–282, New York, NY, USA, 2014.
ACM. doi:10.1145/2628136.2628161.

76 Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip
Wadler, and Ranjit Jhala. Refinement reflection: Complete verification with SMT. Proc. ACM
Program. Lang., 2(POPL), December 2017. doi:10.1145/3158141.

77 Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo Petri. Replication-
aware linearizability. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, pages 980–993, New York, NY, USA, 2019.
ACM. doi:10.1145/3314221.3314617.

78 Michael J. Whittaker and Joseph M. Hellerstein. Interactive checks for coordination avoidance.
Proc. VLDB Endow., 12(1):14–27, 2018. doi:10.14778/3275536.3275538.

79 Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. Formal specification and verification
of CRDTs. In Erika Ábrahám and Catuscia Palamidessi, editors, Formal Techniques for
Distributed Objects, Components, and Systems, pages 33–48, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

80 Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. Combining state- and event-based
semantics to verify highly available programs. In Farhad Arbab and Sung-Shik Jongmans,
editors, Formal Aspects of Component Software, pages 213–232, Cham, 2020. Springer Interna-
tional Publishing.

81 Xin Zhao and Philipp Haller. Observable atomic consistency for CvRDTs. In Proceedings of
the 8th ACM SIGPLAN International Workshop on Programming Based on Actors, Agents,
and Decentralized Control, pages 23–32, 2018.

82 Xin Zhao and Philipp Haller. Replicated data types that unify eventual consistency and
observable atomic consistency. Journal of Logical and Algebraic Methods in Programming,
114:100561, 2020.

A VeriFx’s Type System

We now present VeriFx’s type system. An environment Γ is a partial and finite mapping
from variables to types. A type environment ∆ is a finite set of type variables. VeriFx’s type
system consists of a judgment for type wellformdness ∆ ⊢ T ok which says that type T is
well-formed in context ∆, and a judgment for typing ∆; Γ ⊢ e : T which says that in context ∆
and environment Γ, the expression e is of type T . We abbreviate ∆ ⊢ T1 ok, . . . , ∆ ⊢ Tn ok
to ∆ ⊢ T ok, and ∆; Γ ⊢ e1 : T1, . . . , ∆; Γ ⊢ en : Tn to ∆; Γ ⊢ e : T .

https://doi.org/10.1145/266838.267369
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/274444.274447
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://smtlib.cs.uiowa.edu
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1145/3314221.3314617
https://doi.org/10.14778/3275536.3275538

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:31

Below we define well-formed types:

∆ ⊢ string ok
(WF-String)

∆ ⊢ bool ok
(WF-Bool)

∆ ⊢ int ok
(WF-Int)

∆ ⊢ T ok
class C ⟨X⟩ (. . .) { . . . }

or class C ⟨X⟩ (. . .) extends I ⟨. . .⟩{ . . . }
∆ ⊢ C ⟨T⟩ ok

(WF-Class)

∆ ⊢ T ok T <: P
trait I ⟨X <: P⟩ { . . . }

or trait I ⟨X <: P⟩ extends I ⟨. . .⟩ { . . . }
∆ ⊢ I ⟨T⟩ ok

(WF-Trait)

∆ ⊢ T ok
enum E ⟨X⟩ { . . . }

∆ ⊢ E⟨T⟩ ok
(WF-Enum)

X ∈ ∆
∆ ⊢ X ok

(WF-TVar)

Primitive types are always well-formed. A type variable X is valid if it is in scope:
X ∈ ∆, i.e. the surrounding method or class defined the type parameter. Class types and
enumeration types are valid if a corresponding class or enumeration definition exists and all
type arguments are well-formed.

We now define a few auxiliary definitions which are needed for the typing rules. The
fields function takes a class type and returns its fields and their types:

class C ⟨X⟩ (v : T) { M } or class C ⟨X⟩ (v : T) extends I ⟨Q⟩{ M }
fields(C⟨P ⟩) = [P /X] v : T

(F-class)

The ftypes function takes an enumeration type and the name of one of its constructors
and returns the type of the fields of that constructor.

enum E ⟨X⟩ { K(v : T), . . . }
ftypes(E⟨P ⟩, K) = [P /X] T

(FT-enum)

The mtype function takes the name of a method and the type of a class, and returns the
actual type signature of the method. If the method is not found in the class (MT-class-rec
rule) it is looked up in the hierarchy of super traits by the MT-trait rules. For polymorphic
methods, the returned type signature is polymorphic:

class C ⟨X⟩ (. . .) { M } or class C ⟨X⟩ (. . .) extends I ⟨Q⟩{ M }
def m ⟨Y ⟩ (x : T) : T = e ∈ M

mtype(m, C⟨P ⟩) = [P /X] (⟨Y ⟩T → T)
(MT-class)

class C ⟨X⟩ (. . .) extends I ⟨Q⟩{ M }
def m ⟨Y ⟩ (x : T) : T = e /∈ M

mtype(m, C⟨P ⟩) = mtype(m, I ⟨Q⟩)
(MT-class-rec)

trait I ⟨X <: T ′⟩ { M } or trait I ⟨X <: T ′⟩ extends I ′⟨. . .⟩ { M }
def m ⟨Y ⟩ (x : T) : T = e ∈ M

mtype(m, I ⟨P⟩) = [P /X] (⟨Y ⟩T → T)
(MT-trait)

trait I ⟨X <: T ′⟩ { M } or trait I ⟨X <: T ′⟩ extends I ′⟨P⟩ { M }
def m ⟨Y ⟩ (x : T) : T = e /∈ M

mtype(m, I ⟨P⟩) = mtype(m, I ′⟨P⟩)
(MT-trait-rec)

ECOOP 2023

9:32 VeriFx: Correct Replicated Data Types for the Masses

Similarly, we assume that there are functions valNames(I ⟨P⟩) and declaredMethods(I ⟨P⟩)
that return all fields, respectively all methods, declared by a trait (and its super traits). The
ctors function takes an enumeration type and returns the names of its constructors.

enum E ⟨X⟩ { K (x : T) }
ctors(E⟨P ⟩) = K

(C-enum)

Figure 6 shows the typing rules for expressions. Most rules are a simplification of Feath-
erweight Generic Java [32] without subtyping. Quantified formulas are boolean expressions if
their body also types to a boolean expression in the environment that is extended with the
quantified variables (T-uni and T-exi rules). The logical implication is a well-typed boolean
expression if both the antecedent and the consequent are boolean expressions (T-impl rule).

Classes are well-formed if the types of the fields are well-formed and all its methods are
well-formed (T-class1 rule). If the class extends a trait, it must also implement all fields
and methods declared by the hierarchy of super traits (T-class2 rule). The typing rules for
trait definitions and object definitions can be defined similarly.

When instantiating an enumeration through one of its constructors new K ⟨P⟩(e), the
provided arguments e need to match the types of the constructors’ fields, and the result
effectively is an object of the enumeration type E⟨P⟩.

Programmers can pattern match on enumerations but the cases must be exhaustive, i.e.
every constructor must be matched by at least one case. If all cases are of type T , then the
resulting pattern match expression is also of type T .

Finally, the body of a proof must be a well-typed boolean expression.

B Core SMT Expressions

We will now discuss the expressions that are supported by Core SMT. Those expressions are
common to most SMT solvers, except lambdas which, as mentioned before, are described by
the preliminary proposal for SMT-LIB v3.0 and are only implemented by some SMT solvers
such as Z3 [22].

Figure 7 provides an overview of all Core SMT expressions. The simplest expressions are
literal values representing integers, strings, and booleans. Core SMT supports the typical
arithmetic operators (+, −, ∗, /) and boolean operators (∧, ∨, and negation ¬) as well as
universal and existential quantification, and logical implication. Immutable variables are
defined by let bindings. Pattern matching is supported but the cases must be exhaustive. For
example, when pattern matching against an algebraic data type every constructor must be
handled. Core SMT supports two types of patterns: constructor patterns n(n) that match a
specific ADT constructor n and binds names to its fields n, and wildcard patterns that match
anything and give it a name n. References v refer to variables that are in scope, e.g. function
parameters or variables introduced by let binding or pattern matching. If statements are
supported but an else branch is mandatory and both branches must evaluate to the same
sort. Functions can be called and type arguments can be provided explicitly to disambiguate
polymorphic functions. For example, we defined an ADT Option⟨T ⟩ with two constructors
Some and None. When calling the None constructor we need to explicitly provide a type
argument since it cannot be inferred from the call, e.g. None⟨int⟩(). Finally, fields of an ADT
can be accessed by their name. Arrays and lambdas were already discussed in Section 4.1.

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:33

∆; Γ ⊢ num : int
(T-num)

∆; Γ ⊢ str : string
(T-str)

∆; Γ ⊢ true : bool
(T-true)

∆; Γ ⊢ false : bool
(T-false)

x ∈ dom(Γ)
∆; Γ ⊢ x : Γ(x)

(T-var)
∆; Γ ⊢ e : bool
∆; Γ ⊢!e : bool

(T-neg)

∆; Γ ⊢ e1 : int ∆; Γ ⊢ e2 : int
∆; Γ ⊢ e1 ⊕ e2 : int

(T-op1)
∆; Γ ⊢ e1 : bool ∆; Γ ⊢ e2 : bool

∆; Γ ⊢ e1 ⊗ e2 : bool
(T-op2)

∆; Γ ⊢ e1 : bool
∆; Γ ⊢ e2 : T ∆; Γ ⊢ e3 : T

∆; Γ ⊢ if e1 then e2 else e3 : T
(T-if)

∆ ⊢ T1 ok
∆; Γ ⊢ e1 : T1 ∆; Γ, x : T1 ⊢ e2 : T2

∆; Γ ⊢ val x : T1 = e1 in e2 : T2
(T-val)

∆ ⊢ T ok ∆; Γ, x : T ⊢ e : T
∆; Γ ⊢ (x : T) ⇒ e : T → T

(T-abs)
∆; Γ ⊢ e1 : T → T ∆; Γ ⊢ e2 : T

∆; Γ ⊢ e1(e2) : T
(T-call)

fields(C⟨P⟩) = v : T
∆ ⊢ C⟨P⟩ ok ∆; Γ ⊢ e : T
∆; Γ ⊢ new C⟨P⟩(e) : C⟨P⟩

(T-n-class)
∆; Γ ⊢ e : To fields(To) = v : T

∆; Γ ⊢ e.vi : Ti

(T-field)

∆; Γ ⊢ eo : To ∆ ⊢ P ok
mtype(m, To) = ⟨X⟩T → T

∆; Γ ⊢ e : [P/X]T
∆; Γ ⊢ eo.m ⟨P⟩ (e) : [P/X]T

(T-inv)
∆ ⊢ T ok ∆; Γ, x : T ⊢ e : bool

∆; Γ ⊢ forall (x : T) � e : bool
(T-uni)

∆ ⊢ T ok ∆; Γ, x : T ⊢ e : bool

∆; Γ ⊢ exists (x : T) � e : bool
(T-exi)

∆; Γ ⊢ e1 : bool ∆; Γ ⊢ e2 : bool
∆; Γ ⊢ e1 =⇒ e2 : bool

(T-impl)

ctors(E⟨P⟩) = K K ∈ K ftypes(E⟨P⟩, K) = T
∆ ⊢ E⟨P⟩ ok ∆; Γ ⊢ e : T
∆; Γ ⊢ new K⟨P⟩(e) : E⟨P⟩

(T-n-enum)

∆; Γ ⊢ e0 : E⟨P⟩
(ctors(E⟨P⟩) \ c = ∅) ∨ (case x ⇒ e ∈ c) ∨ (case _ ⇒ e ∈ c)

for each c ∈ c : ∆; Γ ⊢ c : T IN e0 match {. . .}
∆; Γ ⊢ e0 match {c} : T

(T-match)

∆; Γ ⊢ e0 : E⟨P⟩ ftypes(E⟨P⟩, K) = Q ∆; Γ, x : Q ⊢ e : T
∆; Γ ⊢ case K(x) ⇒ e : T IN e0 match {. . .}

(T-ctor-ptn)

∆; Γ ⊢ e0 : E⟨P⟩ ∆; Γ, x : E⟨P⟩ ⊢ e : T
∆; Γ ⊢ case x ⇒ e : T IN e0 match {. . .}

(T-named-ptn)

∆; Γ ⊢ e : T
∆; Γ ⊢ case _ ⇒ e : T IN e0 match {. . .}

(T-wcard-ptn)

∆ = X ∆ ⊢ T ok

enum E ⟨X⟩ { K (v : T) } OK
(T-enum)

∆ = X, Y ∆ ⊢ T, T ok
class C ⟨X⟩ (. . .) { . . . } or

trait C ⟨X <: Q⟩ { . . . } or trait C ⟨X <: Q⟩ extends . . . { . . . }
∆; x : T, this : C⟨X⟩ ⊢ e : T

def m ⟨Y ⟩ (x : T) : T = e OK IN C⟨X⟩
(T-method)

∆ = X ∆; ∅ ⊢ e : bool

proof p ⟨X⟩ { e } OK
(T-proof)

∆ = X ∆ ⊢ T ok M OK IN C⟨X⟩

class C ⟨X⟩ (v : T) { M } OK
(T-class1)

∆ = X ∆ ⊢ T ok ∆ ⊢ I⟨P⟩ ok
trait I ⟨. . .⟩ { B } or trait I ⟨. . .⟩ extends . . . { B }

valNames(I⟨P⟩) ⊂ v declaredMethods(I⟨P⟩) ⊂ M M OK IN C⟨X⟩

class C ⟨X⟩ (v : T) extends I⟨P⟩{ M } OK
(T-class2)

∆ = X ∆ ⊢ T ok ∆ ⊢ I ′⟨P⟩ ok
trait I ′ ⟨. . .⟩ { . . . } or trait I ′ ⟨. . .⟩ extends . . . { . . . }

B = valD ∪ methodD ∪ M M OK IN I⟨X⟩
valNames(I ′⟨P⟩) ⊂ valD declaredMethods(I ′⟨P⟩) ⊂ (methodD ∪ M)

trait I ⟨X <: T⟩ extends I ′ ⟨ P ⟩ { B } OK
(T-trait)

Figure 6 Typing VeriFx expressions.

ECOOP 2023

9:34 VeriFx: Correct Replicated Data Types for the Masses

e ::= num | str | true | false (primitive values)
| e[e] | e[e] :=e | λ(x : T).e
| x | e ⊕ e | e ⊗ e | ¬e
| match(e, case(ptn, e)) (pattern matching)
| let x = e in e (let expression)
| if(e, e, e) (conditional expression)
| e(e) (function call)
| f ⟨T⟩(e) (function call with explicit type arguments)
| e.v (field access)
| ∀(x : T).e | ∃(x : T).e (quantified formulas)
| e =⇒ e (logical implication)

ptn ::= K(x) | x (patterns)

Figure 7 All Core SMT expressions.

C Compiler Semantics

We now discuss the compiler semantics that was not discussed in the main body of the paper.
First, we provide all compilation rules for expressions in Appendix C.1. Then, we provide all
compilation rules for sets and maps in Appendices C.2 and C.3 respectively.

C.1 Compiling Expressions
Figure 8 shows the compilation rules for expressions. The operands of binary operators ⊕
are compiled recursively. A negated expression is compiled to the negation of the compiled
expression. For if statements, the condition, and both branches are compiled recursively.
In VeriFx, this can be used inside the body of a method to refer to the current object.
The reference is compiled to a similar this reference in Core SMT which refers to the this

parameter which is always the first parameter of any method (cf. compilation of class methods
in Section 4.2). We explained how to compile the remaining expressions in Section 4.2.

Figure 9 shows the compilation rules for logic expressions which in VeriFx can only occur
within the body of proofs. For quantified formulas the types of the variables T and the
formula e are compiled. For logical implications, the antecedent and the consequent are
compiled recursively.

Finally, pattern match expressions are compiled to similar pattern match expressions in
Core SMT (shown in Figure 10). To this end, every pattern is compiled recursively. Core
SMT supports two types of patterns: constructor patterns n1(n2) that match an algebraic
data type constructor n1 and bind its fields to the provided names n2, and wildcard patterns
n that match any value and give it a name n. Every VeriFx pattern is compiled into the
corresponding Core SMT pattern. The first pattern, n1(n2), matches an ADT constructor n1
and binds its fields to n2. It is compiled to an equivalent constructor pattern in Core SMT.
The other two patterns match any expression and are compiled to an equivalent wildcard
pattern in Core SMT.

C.2 Compiling Sets
In Section 4.4 we explained how basic set operations (add, remove, contains) and some
advanced operations (filter, map) are compiled to Core SMT. Now, we explain how the
remaining operations on sets are compiled. Figure 11 shows the compilation rules for

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:35

JxK = x
Je1 ⊕ e2K = Je1K ⊕ Je2K
J!eK = ¬JeK
Jval x : T = e1 in e2K = let x = Je1K in Je2K
Jif e1 then e2 else e3K = if(Je1K, Je2K, Je3K)
J(x : T) ⇒ eK = λ(x : JTKt).JeK
Je1(e2)K = Je1K[Je2K]
Jnew Set ⟨T⟩()K = λ(x : JT Kt).false
Jnew Map ⟨T , P⟩()K = λ(x : JTKt).None⟨JPKt⟩()
Jnew C ⟨T⟩(e)K = C ′⟨JTKt⟩(JeK)

where C ′ = str_concat(C , ”_ctor”)
Jnew K⟨T⟩(e)K = K⟨JTKt⟩(JeK)
Je.vK = JeK.v
Je1.m ⟨T⟩ (e)K = m′⟨JPKt, JTKt⟩(Je1K, JeK)

where typeof (e1) = C ⟨P⟩
and m′ = str_concat(C , ”_”, m) and P ∩ T = ∅

Figure 8 Compiling expressions.

Jforall (x : T) � eK = ∀(x : JTKt).JeK
Jexists (x : T) � eK = ∃(x : JTKt).JeK
Je1 =⇒ e2K = Je1K =⇒ Je2K

Figure 9 Compiling logical expressions.

operations over sets. The union of two sets e1 and e2 is compiled to a lambda which defines
an array of elements x of type JT Kt containing only elements that are in at least one of
the two sets, i.e. Je1K[x] ∨ Je2K[x]. Similarly, the intersection of two sets e1 and e2 is
compiled to a lambda which defines an array containing only elements that are in both sets,
i.e. Je1K[x] ∧ Je2K[x]. For set difference, the lambda defines an array containing only
elements that are in e1 and not in e2. A set e1 is a subset of e2 iff all elements from e1 are
also in e2. A set e is non-empty if an element x exists that is in the set, i.e. JeK[x]. A
set e is empty if all elements x are not in the set. A predicate e2 : T → bool holds for
all elements of a set e1 if for every element x that is in the set the predicate is true, i.e.
Je1K[x] =⇒ JepK[x]. A predicate e2 : T → bool holds for at least one element of a
set e1 if there exists an element x that is in the set and for which the predicate holds, i.e.
Je1K[x] ∧ JepK[x].

C.3 Compiling Maps
Maps are encoded as arrays from the key type to an optional value:

JMap ⟨T , P⟩Kt = Array⟨JTKt, Option⟨JPKt⟩⟩

Optional values indicate the presence or absence of a value for a certain key. The option type
is defined as an ADT with two constructors: Some(value) which holds a value and None()
indicating the absence of a value. An empty map corresponds to an array containing None()
for every key and is created by a lambda that returns None() for every key:

ECOOP 2023

9:36 VeriFx: Correct Replicated Data Types for the Masses

Je match {case r ⇒ ec}K = match(JeK, patJcase r ⇒ ecK)
patJcase K(x) ⇒ eK = case(K(x), JeK)
patJcase x ⇒ eK = case(x, JeK)
patJcase _ ⇒ eK = case(_, JeK)

Figure 10 Compiling pattern match expressions.

Je1.add(e2)K = Je1K[Je2K] := true
Je1.remove(e2)K = Je1K[Je2K] := false
Je1.contains(e2)K = Je1K[Je2K]
Je1.filter(e2)K = λ(x : JT Kt).Je1K[x] ∧ Je2K[x] where typeof (e1) = Set⟨T ⟩
Je1.map(e2)K = λ(y : JPKt).∃(x : JTKt).Je1K[x] ∧ Je2K[x] = y

where typeof (e1) = Set⟨T⟩ ∧ typeof (e2) = T → P
Je1.union(e2)K = λ(x : JT Kt).Je1K[x] ∨ Je2K[x]

where typeof (e1) = Set⟨T ⟩ ∧ typeof (e2) = Set⟨T ⟩
Je1.intersect(e2)K = λ(x : JT Kt).Je1K[x] ∧ Je2K[x]

where typeof (e1) = Set⟨T ⟩ ∧ typeof (e2) = Set⟨T ⟩
Je1.diff (e2)K = λ(x : JT Kt).Je1K[x] ∧ ¬Je2K[x]

where typeof (e1) = Set⟨T ⟩ ∧ typeof (e2) = Set⟨T ⟩
Je1.subsetOf (e2)K = ∀(x : JT Kt).Je1K[x] =⇒ Je2K[x]

where typeof (e1) = Set⟨T ⟩ ∧ typeof (e2) = Set⟨T ⟩
Je.nonEmpty()K = ∃(x : JT Kt).JeK[x] where typeof (e) = Set⟨T ⟩
Je.isEmpty()K = ∀(x : JT Kt).¬JeK[x] where typeof (e) = Set⟨T ⟩
Je1.forall(ep)K = ∀(x : JT Kt).Je1K[x] =⇒ JepK[x]

where typeof (e1) = Set⟨T ⟩ and typeof (ep) = T → bool
Je1.exists(ep)K = ∃(x : JT Kt).Je1K[x] ∧ JepK[x]

where typeof (e1) = Set⟨T ⟩ and typeof (ep) = T → bool

Figure 11 Compiling set operations.

Jnew Map ⟨T , P⟩()K = λ(x : JTKt).None⟨JPKt⟩()

Operations on maps are compiled as follows:

mapJem.add(ek, ev)K = JemK[JekK] :=Some(JevK)
mapJem.remove(ek)K = JemK[JekK] :=None⟨JV Kt⟩()
mapJem.contains(ek)K = JemK[JekK] ̸= None⟨JV Kt⟩()
mapJem.get(ek)K = JemK[JekK].value
mapJem.getOrElse(ek, ev)K = if(JemK[JekK] = None⟨JV Kt⟩(), JevK, JemK[JekK].value)

A key-value pair ek 7→ ev is added to a map em by updating the entry for the compiled key
JekK in the compiled array JemK with the compiled value, Some(JevK). A key ek is removed
from a map em by updating the corresponding entry to None⟨JV Kt⟩(), thereby indicating the
absence of a value. Note that None is polymorphic but the type parameter cannot be inferred
from the arguments; it is thus passed explicitly. A key ek is present in a map em if the value
that is associated to the key is not None⟨JV Kt⟩(). The get method fetches the value that is
associated to a key ek in a map em. To this end, the compiled key JekK is accessed in the
compiled map JemK and the value it holds is then fetched by accessing the value field of

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:37

the Some constructor. Even though the entry that is read from the array is an option type
(i.e. a None or a Some) we can access the value field because the interpretation of value is
underspecified in SMT. If the entry is a None, the SMT solver can assign any interpretation
to the value field. Hence, the get method on maps should only be called if the key is known
to be present in the map, e.g. after calling contains. VeriFx also features a safe variant,
called getOrElse, which returns a default value if the key is not present.

Next, we explain how to encode the advanced map operations. Figure 12 defines the SMT
encoding for all advanced map operations. The keys method on maps returns a set containing
only the keys that are present in the map. Calls to keys on a map em of type Map ⟨K, V⟩ are
compiled to a lambda which defines a set of keys k of the compiled key type JKKt such that
a key is present in the set iff it is present in the compiled map: JemK[k] ̸= None⟨JV Kt⟩(). A
predicate ep of type (K, V) → bool holds for all elements of a map em of type Map ⟨K, V⟩ iff
it holds for every key k that is present in the map and its associated value:

JemK[k] ̸= None⟨JV Kt⟩()︸ ︷︷ ︸
em.contains(k)

=⇒ JepK[k, JemK[k].value]︸ ︷︷ ︸
ep(k, em.get(k))

Similarly, the values method returns a set with all values of the map. To this end, it defines
an array containing all values for which at least one key exists that maps to that value.

A predicate ep of type (K, V) → bool holds for at least one element of a map em of
type Map ⟨K, V⟩ iff there exists a key k with associated value v that is present in the map and
for which the predicate holds. Mapping a function ef over the key-value pairs of a map em

is encoded as a lambda that defines an array containing only the keys that are present in the
compiled map JemK and whose values are the result of applying ef on the original value, i.e.
Some(Jef K[k, JemK[k].value]). The mapValues method is similar except that it applies the
provided function only on the value. A map em can be filtered using a predicate ep such that
the resulting map only contains key-value pairs that fulfill the predicate. Calls to filter
are encoded as a lambda that defines an array containing only the key-value pairs that are
in the compiled map:

if(
in original map︷ ︸︸ ︷

JemK[k] ̸= None⟨JV Kt⟩() ∧

predicate holds︷ ︸︸ ︷
JepK[k, JemK[k].value],

Some(JemK[k].value)︸ ︷︷ ︸
then keep the value

, None⟨JV Kt⟩()︸ ︷︷ ︸
else not in the map

)

To zip two maps em1 and em2 the compiler creates a lambda that defines an array containing
only the keys that are present in both maps and the value is a tuple holding the corresponding
values from both maps:

Some(Tuple_ctor(Jem1K[k].value, Jem2K[k].value))

To combine two maps em1 and em2 with a function ef the compiler creates a lambda that
defines an array containing all the keys from em1 and em2 . If a key is present in both maps
their values are combined using the provided function ef :

Some(Jef K[Jem1K[k].value, Jem2K[k].value])

If a key-value pair is present in only one of the maps it is also present in the new map. If a
key is not present in em1 neither in em2 then it is also not present in the resulting map.

Vectors and Lists. The encoding of sets and maps is very useful to build new data structures
in VeriFx without having to encode them manually in SMT. For example, vectors and
lists are implemented on top of maps. Internally, they map indices between 0 and size − 1

ECOOP 2023

9:38 VeriFx: Correct Replicated Data Types for the Masses

mapJem.keys()K = λ(x : JKKt).JemK[x] ̸= None⟨JV Kt⟩()
where typeof (em) = Map⟨K, V ⟩

mapJem.values()K = λ(x : JV Kt).∃(k : JKKt).JemK[k] = Some(x)
where typeof (em) = Map⟨K, V ⟩

mapJem.bijective()K = ∀(k1 : JKKt, k2 : JKKt).
(k1 ̸= k2 ∧ JemK[k1] ̸= None⟨JV Kt⟩() ∧ JemK[k2] ̸= None⟨JV Kt⟩())

=⇒ JemK[k1] ̸= JemK[k2]
where typeof (em) = Map⟨K, V ⟩

mapJem.forall(ep)K = ∀(x : JKKt).JemK[x] ̸= None⟨JV Kt⟩() =⇒ JepK[x, JemK[x].value]
where typeof (em) = Map⟨K, V ⟩ and typeof (ep) = (K, V) → bool

mapJem.exists(ep)K = ∃(x : JKKt).JemK[x] ̸= None⟨JV Kt⟩() ∧ JepK[x, JemK[x].value]
where typeof (em) = Map⟨K, V ⟩ and typeof (ep) = (K, V) → bool

mapJem.map(ef)K = λ(x : JKKt). if(JemK[x] ̸= None⟨JV Kt⟩(),
Some(Jef K[x, JemK[x].value]),
None⟨JW Kt⟩())

where typeof (em) = Map⟨K, V ⟩ and typeof (ef) = (K, V) → W
mapJem.mapValues(ef)K = λ(x : JKKt). if(JemK[x] ̸= None⟨JV Kt⟩(),

Some(Jef K[JemK[x].value]),
None⟨JW Kt⟩())

where typeof (em) = Map⟨K, V ⟩ and typeof (ef) = V → W
mapJem.filter(ep)K = λ(x : JKKt). if(JemK[x] ̸= None⟨JV Kt⟩() ∧ JepK[x, JemK[x].value],

Some(JemK[x].value),
None⟨JV Kt⟩())

where typeof (em) = Map⟨K, V ⟩ and typeof (ep) = (K, V) → bool
mapJem1 .zip(em2)K = λ(x : JKKt). if(Jem1 K[x] ̸= None⟨JV Kt⟩() ∧ Jem2 K[x] ̸= None⟨JW Kt⟩(),

Some(T uple_ctor(Jem1 K[x].value, Jem2 K[x].value)),
None⟨JTuple⟨V, W ⟩Kt⟩())

where typeof (em1) = Map⟨K, V ⟩ and typeof (em2) = Map⟨K, W ⟩
mapJem1 .combine(em2 , ef)K = λ(x : JKKt).if(Jem1 K[x] ̸= None⟨JV Kt⟩() ∧ Jem2 K[x] ̸= None⟨JV Kt⟩(),

Some(Jef K[Jem1 K[x].value, Jem2 K[x].value]),
if(Jem1 K[x] ̸= None⟨JV Kt⟩(),

Jem1 K[x],
if(Jem2 K[x] ̸= None⟨JV Kt⟩(),

Jem2 K[x],
None⟨JV Kt⟩())))

where typeof (em1) = Map⟨K, V ⟩ and typeof (em2) = Map⟨K, V ⟩ and typeof (ef) = (V, V) → V
mapJem.toSet()K = λ(x : Tuple⟨JKKt, JV Kt⟩).JemK[x.fst] = Some(x.snd)

where typeof (em) = Map⟨K, V ⟩

Figure 12 Compiling advanced map operations.

to their value, and provide a traditional interface on top (cf. Figure 4). Note that this
encoding of vectors and lists on top of maps is only used when verifying proofs in SMT;
when compiling to a target language (e.g. Scala or JavaScript), VeriFx leverages the
language’s built-in vector and list data structures.

C.4 Compilation Example
Figure 13 shows a concrete example of a polymorphic set implemented in VeriFx and

its compiled code in Core SMT. The MSet class defines a type parameter V corresponding
to the type of elements it holds. It also contains one field set of type Set⟨V ⟩ and defines
a polymorphic method map that takes a function f : V → W and returns a new MSet
that results from applying f on every element. The compiled Core SMT code defines an
ADT MSet with one type parameter V and one constructor MSet_ctor. The constructor
defines one field set of sort Array⟨V, bool⟩ which is the compiled sort for sets. In addition,
a polymorphic MSet_map function is defined which takes two type parameters V and W

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:39

class MSet[V](set: Set[V]) {
def map[W](f: V => W): MSet[W] =

new MSet(this.set.map(f))
}

(a) A polymorphic class in VeriFx.

adt MSet⟨V ⟩{ MSet_ctor(set : Array⟨V, bool⟩) }
fun MSet_map⟨V, W ⟩(this : MSet⟨V ⟩,

f : Array⟨V, W ⟩) : MSet⟨W ⟩ =
MSet_ctor(

λ(y : W).∃(x : V).this.set[x] ∧ f [x] = y)

(b) Compiled Core SMT code.

Figure 13 Example of a polymorphic class in VeriFx and the compiled Core SMT code.

which correspond to MSet’s type parameter and map’s type parameter respectively. The
function takes two arguments, the object that receives the call and the function f . The
function’s body calls the MSet constructor with the result of mapping f over the set.

D Implementation and Verification of the Buggy Map CRDT

Section 6.1.1 reported on our experience implementing and verifying the buggy and corrected
map CRDTs proposed by Kleppmann [40]. In this appendix, we explain the implementation
and verification of the buggy map CRDT in detail using code examples. We also discuss the
counterexample found by VeriFx.

Specification 2 The buggy map CRDT algorithm, taken from [40].
on initialisation do

values := {}
end on

on request to read value for key k do
if ∃t, v.(t, k, v) ∈ values then return v else return null

end on

on request to set key k to value v do
t := newTimestamp() ▷ globally unique, e.g. Lamport timestamp
broadcast (set, t, k, v) by causal broadcast (including to self)

end on

on delivering (set, t, k, v) by causal broadcast do
previous := {(t′, k′, v′) ∈ values | k′ = k}
if previous = {} ∨ ∀(t′, k′, v′) ∈ previous. t′ < t then

values := (values \ previous) ∪ {(t, k, v)}
end if

end on

on request to delete key k do
if ∃t, v. (t, k, v) ∈ values then

broadcast (delete, t) by causal broadcast (including to self)
end if

end on

on delivering (delete, t) by causal broadcast do
values := {(t′, k′, v′) ∈ values | t′ ̸= t}

end on

D.1 Original Specification
The buggy map CRDT is a replicated dictionary storing key-value pairs where the values
are regular values (i.e. no nested CRDTs). Specification 2 shows the specification of the
buggy map CRDT. It defines a read operation to fetch the value associated with a certain

ECOOP 2023

9:40 VeriFx: Correct Replicated Data Types for the Masses

Listing 10 Excerpt from the implementation of the buggy map CRDT in VeriFx.
1 enum MapOp[K, V] { Put(k: K, v: V) | Delete(k: K) }
2 enum MapMsg[K, V] {
3 PutMsg(t: Clock, k: K, v: V) |
4 DeleteMsg(t: Clock, k: K) |
5 NopMsg()
6 }
7 class KMap[K, V](clock: Clock, values: Map[K, Tuple[Clock, V]])
8 extends CmRDT[MapOp[K, V], MapMsg[K, V], KMap[K, V]] {
9 def contains(k: K): Boolean = this.values.contains(k)

10 def get(k: K): V = this.values.get(k).snd
11

12 // Prepare phase for the "put" operation
13 // "put" corresponds to the "set" operation in the specification
14 def preparePut(k: K, v: V) = {
15 val t = this.clock
16 new PutMsg(t, k, v)
17 }
18 // Effect phase for incoming "put" messages
19 def put(t: Clock, k: K, v: V) = {
20 val newClock = this.clock.sync(t)
21 if (!this.values.contains(k) ||
22 this.values.get(k).fst.smaller(t))
23 new KMap(newClock, this.values.add(k, new Tuple(t, v)))
24 else
25 new KMap(newClock, this.values)
26 }
27

28 // Prepare phase for the "delete" operation
29 def prepareDelete(k: K) = {
30 if (this.values.contains(k)) {
31 val t = this.values.get(k).fst
32 new DeleteMsg[K, V](t, k)
33 }
34 else
35 new NopMsg[K, V]()
36 }
37 // Effect phase for incoming "delete" messages
38 def delete(t: Clock, k: K) = {
39 if (this.values.contains(k) && this.values.get(k).fst == t)
40 new KMap(this.clock, this.values.remove(k))
41 else
42 new KMap(this.clock, this.values)
43 }
44

45 override def equals(that: KMap[K, V]) =
46 this.values == that.values
47 }

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:41

key, and two update operations: set and delete which assign a value to a key, respectively,
delete a certain key. Every operation consists of two parts, a prepare phase (denoted “on
request“) that prepares a message to be broadcast to every replica (including itself), and an
effect phase (denoted “on delivering“) that applies the incoming message. We briefly explain
both update operations:
set(k, v). When preparing a set operation that assigns a value v to a key k, the replica

generates a new and globally unique timestamp t and broadcasts a (set, t, k, v) message.
When receiving such a message, the replica checks if it already stores a value for this key.
If this is not the case, or if the previous value has a smaller timestamp t′ < t, then it
assigns the incoming value v to the key k, thereby, overriding any previous value. On the
other hand, if the previous value has a bigger timestamp, then the incoming set message
is ignored and the previous value is kept.

delete(k). When preparing a delete operation that deletes a key k, the replica fetches the
timestamp t at which that key was inserted and broadcasts a (delete, t) message. Note
that the key itself is not added to the message because set always inserts a single key with
a unique timestamp, hence, the timestamp t uniquely identifies the key. When receiving
a (delete, t) message, the replica removes the key that was inserted at timestamp t (if it
is still present).

D.2 Implementation in VeriFx
Listing 10 shows the implementation of the buggy map CRDT in VeriFx. Every replica (i.e.
every instance of the KMap class) maintains a local Lamport clock (consisting of a counter and
a replica identifier) and keeps a dictionary that maps keys to timestamped values (i.e. a tuple
containing a timestamp and a value). This implementation strategy is slightly different from
Spec. 2 but more efficient because a dictionary allows for constant-time lookup, insertion,
and deletion. We also extended the DeleteMsg such that it not only contains the timestamp
t but also the key to be deleted (Line 4). This allows for an efficient implementation of
delete since the replica knows which key to delete and does not have to loop over the map
to find the key whose value has timestamp t.

We override equality - which by default is structural equality - because replicas have
different Lamport clocks [43] as our implementation of the clocks keeps a unique replica
identifier. Hence, two replicas are considered equal if they have the same values, independent of
their clocks. We also renamed the set operation to put. The remainder of the implementation
is a straightforward translation from the specification.

D.3 Verification in VeriFx
After implementing the buggy map CRDT in VeriFx we proceeded to the verification of the
map. As explained in Section 6.1.1, VeriFx returned invalid counterexamples because it is
not aware of the CRDT’s assumptions which are implicit in the design. For instance, VeriFx
does not know that replicas have unique IDs nor does it know the relation between a replica’s
clock and the values it observed. We need to encode these assumptions explicitly such that
VeriFx does not consider cases that cannot occur in practice. To this end, we override the
reachable and compatible predicates (cf. Section 5.1). The former defines which states
are reachable (i.e. valid), while the latter defines which replicas are compatible.

Listing 11 shows the implementation of the reachable and compatible predicates. First,
we define a state to be reachable iff every value has a unique timestamp (Line 3 to 6) and
all values have a timestamp whose count is smaller than the replica’s local clock (Line 10).

ECOOP 2023

9:42 VeriFx: Correct Replicated Data Types for the Masses

Listing 11 Encoding the assumptions of the Map CRDT in VeriFx.
1 override def reachable(): Boolean = {
2 // every value must have a unique timestamp
3 !(exists(k1: K, k2: K) {
4 k1 != k2 &&
5 this.values.get(k1).fst == this.values.get(k2).fst
6 }) &&
7 // All the values in the map must have a timestamp < than our local clock
8 // (since we sync our clock on incoming updates)
9 this.values.values().forall((entry: Tuple[Clock, V]) =>

10 entry.fst.counter < this.clock.counter)
11 }
12 private def noValueFromFuture(r1: KMap[K, V], r2: KMap[K, V]) {
13 r1.values.values().forall((entry: Tuple[Clock, V]) => {
14 val t = entry.fst
15 (t.replica == r2.clock.replica) =>:
16 (t.counter < r2.clock.counter)
17 })
18 }
19 override def compatible(that: KMap[K, V]) = {
20 // replicas have unique IDs
21 (this.clock.replica != that.clock.replica) &&
22 // we have no value from the future of the other replica
23 this.noValueFromFuture(this, that) &&
24 // the other did not observe a value from our future
25 this.noValueFromFuture(that, this) &&
26 // unique timestamps
27 !(exists(k1: K, k2: K) {
28 k1 != k2 && this.values.get(k1).fst == that.values.get(k2).fst
29 }) &&
30 // replicas cannot store different values for the same key and timestamp
31 !(exists(k: K) {
32 val thisTuple = this.values.get(k)
33 val thisTimestamp = thisTuple.fst
34 val thisValue = thisTuple.snd
35 val thatTuple = that.values.get(k)
36 val thatTimestamp = thatTuple.fst
37 val thatValue = thatTuple.snd
38 (thisTimestamp == thatTimestamp) && (thisValue != thatValue)
39 })
40 }

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:43

enum V { v0 | v2 }
enum K { k1 }
val s1 = KMap(Clock(1, 1), Map())
val s2 = KMap(Clock(2, 9), Map(k1 -> (Clock(4, 2), v2)))
val s3 = KMap(Clock(3, 3), Map(k1 -> (Clock(4, 2), v2)))
val x = Put(k1, v0) // operation generated by s1
// The prepare phase will broadcast the following message:
// s1.preparePut(k1, v0) = PutMsg(Clock(1, 1), k1, v0))
val y = Delete(k1) // operation generated by s2
// s2.prepareDelete(k1) = DeleteMsg(Clock(4, 2), k1)

(a) Simplified counterexample returned by VeriFx.

s3
{ k1 -> ((4, 2), v2) }
 PutMsg((1, 1), k1, v0))

DeleteMsg((4, 2), k1)

{ k1 -> ((4, 2), v2) }

{ }
PutMsg((1, 1), k1, v0))

{ k1 -> ((1, 1), v0) }

DeleteMsg((4, 2), k1)
{ }

s3
{ k1 -> ((4, 2), v2) }

(b) Visualization of the counterexample returned by VeriFx.

Figure 14 Counterexample for the buggy Map CRDT, found by VeriFx.

The latter property follows from the fact that the dictionary is constructed by successive
insertions and every insertion synchronizes the replica’s clock with the timestamp of the
inserted element.

Second, we define two replicas to be compatible iff:
they have unique IDs (Line 21),
they did not observe values with a timestamp that is bigger than the current clock of
the replica that inserted that value (Line 23 to 25) because that would mean that some
replica observed a value from the future of the origin replica which is not possible,
they do not have the same timestamp for different keys (Line 27 to 29) because every
insertion inserts a single key with a unique timestamp,
for every key k for which they store the same timestamp t they also store the same value
v (Line 31 to 39) because every timestamp uniquely identifies one insertion: PutMsg(t,
k, v).

Clearly, the above assumptions are not straightforward and are in fact implicit in the original
specification, but are nevertheless vital to the correctness of the algorithm. In practice, many
CRDTs make similar implicit assumptions which is the reason they are complex and difficult
to get right.

Counterexample. After defining all assumptions described above, VeriFx found a valid
counterexample which is shown in Figure 14a. We simplified the counterexample by
renaming the keys and values and removing those that do not affect the outcome. The
counterexample is equivalent to the one that was found manually by Nair (cf. [40]). It
consists of a corner case in which the Put and Delete operations do not commute and
thus may cause replicas to diverge.
Recall that a counterexample is a mapping from variables (defined by the proof) to values
that break the proof. In this case, the CmRDTProof2 trait (cf. Section 5.1) that was used to
check commutativity of the operations, defines three variables s1, s2, and s3 representing

ECOOP 2023

9:44 VeriFx: Correct Replicated Data Types for the Masses

the state of the replicas, and two variables x = Put(k1, v0) and y = Delete(k1)
representing concurrent operations that were generated by replica s1 and s2 respectively.
These replicas first prepare a message for the operations (respectively, PutMsg(Clock(1,
1), k1, v0)) and DeleteMsg(Clock(4, 2), k1)) and broadcast those messages to
every replica. Every replica receives these messages, possibly in a different order, and
applies them.
Depending on the order in which replica s3 applies the operations, the outcome is different.
This is visualized in Figure 14b. If s3 first processes the DeleteMsg(Clock(4, 2), k1)
message then key k1 is gone because the stored timestamp matches the timestamp that was
requested to delete. Afterwards, when processing the PutMsg(Clock(1, 1), k1, v0)
message, the replica will add key k1 with value v0. When applying the operations the other
way around, the outcome is different because the PutMsg(Clock(1,1), k1, v0) message
is ignored since its timestamp is smaller than the timestamp s3 currently stores for that key:
Clock(1,1) < Clock(4, 2). Later, when processing the DeleteMsg(Clock(4,2), k1)
message, s3 effectively deletes key k1 because the timestamp matches the one that is
stored. Thus, after the first execution, the resulting state contains key k1, whereas, after
the second execution, k1 is not present in the map. This explains the divergence bug.

E Verification of the MWS Set

Specification 3 describes the MWS Set, which associates a count to every element. An
element is considered in the set if its count is strictly positive. remove decreases the element’s
count, while add increments the count by the amount that is needed to make it positive
(or by 1 if it is already positive). Listing 12 shows the implementation of the MWS Set in
VeriFx as a polymorphic class that extends the CmRDT trait (cf. Section 5.1.3). The type
arguments passed to CmRDT correspond to the supported operations (SetOps), the messages
that are exchanged (SetMsgs), and the CRDT type itself (MWSSet). The SetOp enumeration
defines two types of operations: Add(e) and Remove(e).

The MWSSet class has a field, called elements, that maps elements to their count (Line 3).
Like all op-based CRDTs, the MWSSet implements two methods: prepare and effect. The
prepare method pattern matches on the operation and delegates it to the corresponding
source method which prepares a SetMsg to be broadcast to all replicas. The class overrides the
enabledSrc method to implement the source precondition on remove, as defined by Spec. 3.
When replicas receive incoming messages, they are processed by the effect method which
delegates them to the corresponding downstream method which performs the actual update.
For example, the removeDownstream method processes incoming RmvMsgs by decreasing
some count k′ by 1. Unfortunately, k′ is undefined in Spec. 3.

We believe that k′ is either defined by the source replica and included in the propagated
message (Spec. 4), or, k′ is defined as the element’s count at the downstream replica (Spec. 5).
We implemented both possibilities in VeriFx (Listings 13 and 14) and verified them to find
out which one, if any, is correct. To this end, the companion object of the MWSSet class
(cf. Line 26 in Listing 12) extends the CmRDTProof1 trait (cf. Section 5.1.3), passing along
three type arguments: the type of operations SetOp, the type of messages being exchanged
SetMsg, and the CRDT type constructor MWSSet. The object extends the CmRDTProof1 trait
since the MWSSet class is polymorphic and expects one type argument. When executing the
proof inherited by the companion object, VeriFx automatically proves that the possibility
implemented by Listing 14 is correct and that the one of Listing 13 is wrong. We thus
successfully completed the MWS Set implementation using VeriFx’s integrated verification
capabilities.

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:45

Specification 3 Op-based MWS Set
CRDT taken from Shapiro et al. [67].

1: payload set S = {(element, count), . . .}
2: initial E × {0}
3: query lookup (element e) : boolean b
4: let b = ((e, k) ∈ S ∧ k > 0)
5: update add (element e)
6: atSource (e) : integer j
7: if ∃(e, k) ∈ S : k ≤ 0 then
8: let j = |k| + 1
9: else

10: let j = 1
11: downstream (e, j)
12: let k′ : (e, k′) ∈ S
13: S := S\{(e, k′)} ∪ {(e, k′ + j)}
14: update remove (element e)
15: atSource (e)
16: pre lookup(e)
17: downstream (e)
18: S := S\{(e, k′)} ∪ {(e, k′ − 1)}

Specification 4 Remove with k′ de-
fined at source.

1: update remove (element e)
2: atSource (e) : integer k′

3: pre lookup(e)
4: let k′ : (e, k′) ∈ S

5: downstream (e, k′)
6: S := S\{(e, k′)} ∪ {(e, k′ − 1)}

Specification 5 Remove with k′ de-
fined in downstream.

1: update remove (element e)
2: atSource (e)
3: pre lookup(e)
4: downstream (e)
5: let k′ : (e, k′) ∈ S
6: S := S\{(e, k′)} ∪ {(e, k′ − 1)}

Listing 12 MWS Set implementation in VeriFx.
1 enum SetOp[V] { Add(e: V) | Remove(e: V) }
2 enum SetMsg[V] { AddMsg(e: V, dt: Int) | RmvMsg(e: V) }
3 class MWSSet[V](elements: Map[V, Int]) extends

CmRDT[SetOp[V], SetMsg[V], MWSSet[V]] {
4 override def enabledSrc(op: SetOp[V]) = op match {
5 case Add(_) => true
6 case Remove(e) => this.preRemove(e) }
7 def prepare(op: SetOp[V]) = op match {
8 case Add(e) => this.add(e)
9 case Remove(e) => this.remove(e) }

10 def effect(msg: SetMsg[V]) = msg match {
11 case AddMsg(e, dt) => this.addDownstream(e, dt)
12 case RmvMsg(e) => this.removeDownstream(e) }
13 def lookup(e: V) = this.elements.getOrElse(e, 0) > 0
14 def add(e: V): SetMsg[V] = {
15 val count = this.elements.getOrElse(e, 0)
16 val dt = if (count <= 0) (count * -1) + 1 else 1
17 new AddMsg(e, dt) }
18 def addDownstream(e: V, dt: Int): MWSSet[V] = {
19 val count = this.elements.getOrElse(e, 0)
20 new MWSSet(this.elements.add(e, count + dt)) }
21 def preRemove(e: V) = this.lookup(e)
22 def remove(e: V): SetMsg[V] = new RmvMsg(e)
23 def removeDownstream(e: V): MWSSet[V] = {
24 val kPrime = ??? // undefined in Specification 3
25 new MWSSet(this.elements.add(e, kPrime - 1)) } }
26 object MWSSet extends CmRDTProof1[SetOp,SetMsg,MWSSet]

Listing 13 Computing k′ at the source.
1 def remove(e: V): Tuple[V, Int] =
2 new Tuple(e, this.elements.getOrElse(e, 0))
3 def removeDown(tup: Tuple[V, Int]): MWSSet[V] = {
4 val e = tup.fst; val kPrime = tup.snd
5 new MWSSet(this.elements.add(e, kPrime - 1)) }

Listing 14 Computing k′ downstream.
1 def remove(e: V): V = e
2 def removeDown(e: V): MWSSet[V] = {
3 val kPrime = this.elements.getOrElse(e, 0)
4 new MWSSet(this.elements.add(e, kPrime - 1)) }

ECOOP 2023

On Leveraging Tests to Infer Nullable Annotations
Jens Dietrich # Ñ

Victoria University of Wellington, New Zealand

David J. Pearce #

ConsenSys, Wellington, New Zealand

Mahin Chandramohan #

Oracle Labs, Brisbane, Australia

Abstract
Issues related to the dereferencing of null pointers are a pervasive and widely studied problem,
and numerous static analyses have been proposed for this purpose. These are typically based on
dataflow analysis, and take advantage of annotations indicating whether a type is nullable or not.
The presence of such annotations can significantly improve the accuracy of null checkers. However,
most code found in the wild is not annotated, and tools must fall back on default assumptions,
leading to both false positives and false negatives. Manually annotating code is a laborious task and
requires deep knowledge of how a program interacts with clients and components.

We propose to infer nullable annotations from an analysis of existing test cases. For this
purpose, we execute instrumented tests and capture nullable API interactions. Those recorded
interactions are then refined (santitised and propagated) in order to improve their precision and
recall. We evaluate our approach on seven projects from the spring ecosystems and two google
projects which have been extensively manually annotated with thousands of @Nullable annotations.
We find that our approach has a high precision, and can find around half of the existing @Nullable
annotations. This suggests that the method proposed is useful to mechanise a significant part of the
very labour-intensive annotation task.

2012 ACM Subject Classification Software and its engineering → Software defect analysis; Software
and its engineering → Software reliability; Software and its engineering → Dynamic analysis

Keywords and phrases null analysis, null safety, testing, program analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.10

Supplementary Material Software (Source Code):
https://github.com/jensdietrich/null-annotation-inference

archived at swh:1:dir:af57d8b58579b09bdab080493b944d0a325821ed

Funding Jens Dietrich: The first author was supported by Oracle Labs, Australia.

Acknowledgements The authors would like to thank Chris Povirk for his feedback on using our tool
on guava, and Görel Hedin for assisting us to set up the experiment reported in Section 7.9.

1 Introduction

Null-pointer related issues are one of the most common sources of program crashes. Much
research has focused on this issue, including: eliminating the problems of null in new language
designs [55, 48, 51, 58]; mitigating the impact of null in existing programs [23, 66, 5, 19];
and, developing alternatives for languages stuck with null [20, 29, 67].

More recently, several industrial-strength static analyses have been developed to operate
at scale, such as infer / nullsafe [1, 19] and nullaway [5]. Such tools employ some form of
dataflow analysis and take advantage of an extended type system that distinguishes in some
way between nullable and nonnull types [23]. Here, a nonnull type is considered a subtype
of a nullable type, and this relationship enables checkers to identify illegal assignments
pointing to potential runtime issues. In Java, the standard annotation mechanism can be

© Jens Dietrich, David J. Pearce, and Mahin Chandramohan;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 10; pp. 10:1–10:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jens.dietrich@vuw.ac.nz
https://people.wgtn.ac.nz/jens.dietrich
https://orcid.org/0000-0001-9019-6550
mailto:dave01001110@gmail.com
https://orcid.org/0000-0003-4535-9677
mailto:mahin.chandramohan@oracle.com
https://doi.org/10.4230/LIPIcs.ECOOP.2023.10
https://github.com/jensdietrich/null-annotation-inference
https://github.com/jensdietrich/null-annotation-inference
https://archive.softwareheritage.org/swh:1:dir:af57d8b58579b09bdab080493b944d0a325821ed;origin=https://github.com/jensdietrich/null-annotation-inference;visit=swh:1:snp:aa796c7b634bece9302150cce63fb60625f01e7f;anchor=swh:1:rev:f1dab5dc053419da8a9d8b0324b20c6e001d01ac
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 On Leveraging Tests to Infer Nullable Annotations

used to define such custom pluggable types [9]. For instance, using an annotation defined
in JSR305 (i.e., the javax.annotation namespace), we can distinguish between the two
types @Nullable String and @Nonnull String, with @Nonnull String being a subtype
of @Nullable String. In a perfect world, developers would annotate all methods and fields,
allowing static checkers to perform analyses with high recall and precision. Not surprisingly,
this hasn’t happened. Annotating code is generally a complex problem [13], and recent
developer discussions reflect this. For instance, for commons-lang the issue LANG-1598
has been open since 14 August 20.1 In a comment on this issue one developer commented
“Agreed this idea, but it is a HUGE work if we want to add NotNull and Nullable to all public
functions in commons-lang.’ ’ A similar comment can be found in a discussion on adding
null-safety annotations to spring boot (“it may well be a lot of work”).2

Null-related annotations form part of a contract between the provider and consumer of
an API. For instance, consider a library that provides some class Foo with a method String
foo(). Adding an annotation may change this to @Nullable String foo(). This alters
the contract with downstream clients which may have assumed the return was not nullable.
Technically this change weakens the postcondition, thus violating Liskov’s Substitution
Principle (LSP) [41].3 This may therefore cause breaking changes, forcing clients to refactor,
for instance, by guarding call sites to protect against null pointer exceptions. Such a change
may imply the downstream client was using the API incorrectly (i.e. by assuming null
could not be returned). As such, one might argue the downstream client is simply at fault
here and this change helps expose this. But, such situations arise commonly and oftentimes
for legitimate reasons: perhaps the downstream client uses the API in such a way that, in
fact, null can never be returned; or, the method in question only returns null in very rare
circumstances which weren’t triggered despite extensive testing by the downstream client.
Regardless, developers must gauge the impact of such decisions carefully when modifying
APIs. This illustrates the complexity of the task, and suggests that it is laborious and
therefore expensive to add nullability-related annotations to projects.

Null checkers deal with missing annotations by using defaults to fill in the blanks. Those
assumptions have a direct impact on recall and precision. The question arises whether
suitable annotations can be inferred by other means.4 Indeed, some simple analyses could
be used here in principle, such as harvesting existing runtime contract checks. Using such
checks is increasingly common as programmers opt to implement defensive APIs in order
to reduce maintenance costs [17]. This includes the use of contract APIs such as guava’s
Preconditions 5, commons-lang3’s Validate 6, spring’s Assert 7 and the standard library
Objects::requireNonNull protocol which all include non-null checks. Such an analysis
could boost the accuracy of static null checkers that integrate with the compiler, as those
contract APIs are defined in libraries that are usually outside the scope of the analysis
performed by static checkers. However, exploiting the call sites of such methods is of limited
benefit as those checks would only establish that a reference must not be null.

1 Open as of 20 October 22, see https://issues.apache.org/jira/browse/LANG-1598
2 https://github.com/spring-projects/spring-boot/issues/10712
3 LSP was formulated for safe subtyping, but can be applied in this context if we consider evolution as

replacement
4 Other here means not using the same technique used by static checkers. One could argue that if a static

dataflow analysis was used to infer annotations, then that should be integrated into the checker in the
first place

5 https://guava.dev/releases/21.0/api/docs/com/google/common/base/Preconditions.html
6 https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/

Validate.html
7 https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/

util/Assert.html

https://issues.apache.org/jira/browse/LANG-1598
https://github.com/spring-projects/spring-boot/issues/10712
https://guava.dev/releases/21.0/api/docs/com/google/common/base/Preconditions.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/Validate.html
https://commons.apache.org/proper/commons-lang/apidocs/org/apache/commons/lang3/Validate.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/Assert.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/Assert.html

J. Dietrich, D. J. Pearce, and M. Chandramohan 10:3

It is much more beneficial for static checkers to annotate code indicating that a reference
may be null (i.e., “is nullable’ ’). The reason is that many static checkers use the non-null-by-
default assumption that was suggested by Chalin and James after studying real-world systems
and finding the vast majority of reference type declarations are not null, making this a
sensible choice to reduce the annotation burden for developers [14]. They also point out that
this is consistent with default choices in some other languages. The checkerframework and
infer nullness checkers are based on this assumption, whilst some other null checkers such as
the one embedded in the Eclipse IDE can be configured as such. Sometime, this is formalised.
For instance, the spring framework makes the use of the non-null-by-default assumption
explicit by defining and using two package annotations 8 @NonNullApi and @NonNullFields
in org.springframework.lang, with the following semantics (@NonNullApi, similar for
@NonNullFields for fields): “A common Spring annotation to declare that parameters and
return values are to be considered as non-nullable by default for a given package”. 9

Using dynamic techniques is a suitable approach to observe nullability, and can be
combined with static analyses to improve accuracy. Such hybrid techniques consisting of a
dynamic pre-analysis feeding into a static analysis have been used very successfully in other
areas of program analysis [7, 31]. A common reason to use those approaches is to boost
recall [65].

In this paper, we explore this idea of inferring nullable annotations from test executions.
This is based on the assumption that tests are a good (although imperfect) representation of
the intended semantics of a program. We then refine those annotations by means of various
static analyses in order to reduce the number of both false positives and false negatives.

Our analysis is sound in the sense that it will not infer or add @NonNull to a method
or field where it may become inconsistent with the runtime behaviour of the program.
It is conservative in the sense that it will never retract @Nullable annotations added by
developers.

This paper makes the following contributions:
1. a dynamic analysis to capture nullable API interactions representing potential

@Nullable annotations (“nullability issues”) from program executions,
2. a set of static analyses (“sanitisation”) to identify false positives
3. a static analysis (“propagation”) to infer additional nullability issues from existing

issues
4. a method to mechanically add the annotations inferred into projects by manipu-

lating the respective abstract syntax trees (ASTs)
5. an experiment evaluating how the annotations we infer compare to existing @Nullable

annotations of seven projects in the spring framework ecosystem and two additional google
projects, containing some of the most widely used components in the Java ecosystem

6. an open source implementation of the methods and algorithms proposed, available
from https://github.com/jensdietrich/null-annotation-inference

These contributions directly relate to concrete research questions which we study in the
context of evaluation experiments in Section 7.

Our approach meets the expectations of engineers for tools with high precision [6, 59],
and has clear economic benefits – it can partially automate the expensive task of manually
annotating code. At the time of writing, some of the results produced by our tool have
already been adapted into spring and guava.

8 I.e., annotation used in package-info.java
9 https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/

lang/NonNullApi.html

ECOOP 2023

https://github.com/jensdietrich/null-annotation-inference
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/lang/NonNullApi.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/lang/NonNullApi.html

10:4 On Leveraging Tests to Infer Nullable Annotations

The paper is organised as follows. Starting with the introduction in this section, we
provide a high-level overview of our approach in Section 2. This is followed by a more detailed
discussion of the major steps of our method: the capture of potential nullability issues from
the execution of instrumented tests (Section 3), the removal of likely false positives through
sanitisation (Section 4), and inference of additional issues to address false negatives through
propagation (Section 5). We then briefly discuss a utility to inject the annotations our tool
infers back into programs in Section 6, and present evaluation experiments in Section 7. This
includes the formulation of four research questions in Section 7.3. Finally, we discuss related
work in Section 8, and finish with a brief conclusion in Section 9.

2 Approach

Our approach consists of the following steps and the construction of a respective processing
pipeline:
1. Capture: The execution of an instrumented program and the recording of nullability

issues, i.e. uses of null in method parameters, returns and fields.
2. Refinement: The refinement of nullability issues captured using several light-weight

static analyses.
a. Sanitisation: The identification and removal of nullability issues captured that may

not be suitable to infer @Nullable annotations to be added to the program, therefore
eliminating potential false positives.

b. LSP Propagation: The inference of additional nullability issues to comply with
Liskov’s Substitution Principle [41], therefore addressing potential false negatives.

3. Annotation: the mechanical injection of captured and inferred annotations into projects.

These steps are described in detail in the following sections.

3 Capture

3.1 Driver Selection
A dynamic analysis can be used to observe an executing program, and to record when null
is used in APIs that can then be annotated. The question arises which driver to use to
exercise the program. One option is to use existing tests, assuming they are representative
of the expected and intended program behaviour.

If libraries are analysed there is another option – to use the tests of downstream clients.
This approach has been shown to be promising recently to identify breaking changes in
evolving libraries [46]. The advantage is that clients can be identified mechanically using an
analysis of dependency graphs exposed by package managers and the respective repositories.10

However, this raises the question which clients to use. Using an open world assumption
to include all visible clients (i.e., excluding clients not in public repositories) is practically
impossible given the high number of projects using commodity libraries like the ones we have
in our dataset. There is no established criteria of how to select representative clients.

10 Note that this requires the analysis of incoming dependencies, which is not as straightforward as the
analysis of outgoing dependencies (which can simply use the maven dependency plugin) and requires
some manual analysis, web site scraping or use of third-party repository snapshots such as libraries.io

J. Dietrich, D. J. Pearce, and M. Chandramohan 10:5

In principle, synthesised tests [53, 28] could also be used. However, they expose possible,
but not necessarily intended program behaviour. Using synthesised tests would therefore
likely result in too many @Nullable annotations being inferred. We note that some manually
written tests may have the same issue. We will address this in Section 4.2.

In the approach presented here we opted to use only a project’s own tests for generating
actual annotations.

3.2 Instrumentation
In order to instrument tests, Java agents were implemented to record uses of null in APIs
during the execution of tests. These agents can be deployed by modifying the (Maven or
Gradle) build script of the project under analysis. The agents intercept code executions
using the following six rules which check for occurrence of null references during program
execution, and record those occurrences:
ARG at method entries, parameter values are checked for null
RET at method exits, return values are checked for null
FL1 at constructor (<init>) exits, reflection is used to check non-static fields for null
FL2 at non-static field writes (i.e. the putfield bytecode instruction), the value to be set is

checked for null
SFL1 at class initialiser (<clinit>) exits, reflection is used to check static fields for null
SFL2 at static field writes (i.e. the putstatic bytecode instruction), the value to be set is

checked for null

We have implemented agents implementing those rules using a combination of asm [11]
and bytebuddy [70]. If null is encountered, nullability issues are created and made persistent
(written to disk).

Instrumentation can be restricted to certain (project-specific) packages, a system variable
is used to set a package prefix for this purpose. This is to filter out relevant issues early as
the amount of data collected is significant (see results in Table 2, column 3).

3.3 Capturing Context
A nullability issue is identified by the position of the nullable API element (return type or
argument index), and the coordinates (class name, method name, descriptor) of the respective
method or field. We are also interested to capture and record the execution context for
several reasons:
1. to record sufficient information providing provenance about the execution, sufficient for

an engineer who has to decide whether to add a @Nullable annotation or not
2. related to the previous item, the number of contexts in which a nullable issue has

been observed may itself serve as a quality indicator for the issue – more observed
contexts provide some support for this being an issue (instead of a single tests triggering
“unintended” program behaviour)

3. to distinguish issues detected by running a project’s own tests from issues detected by
running client tests

4. to facilitate the sanitisation of issues, with some sanitisation techniques analysing the
execution context.

In order to achieve this, we record the stack during capture. From the stack, we can then
infer the trigger, i.e. the test method leading to the issue. The following algorithm is used to
remove noise from the captured stack and identify the trigger:

ECOOP 2023

10:6 On Leveraging Tests to Infer Nullable Annotations

1. the invocation of java.lang.Thread::getStackTrace triggering the stacktrace capture
is removed from the stacktrace

2. all elements related to the instrumentation are removed
3. elements related to test processing (surefire, junit), reflection and other JDK-internal

functionality are removed based on the package names of the respective classes owning
those methods 11

4. the last element in the stacktrace is set to be the trigger

3.4 Example
Listing 1 shows an issue captured running a test in spring-core and serialized using JSON. The
test (trigger) is ConcurrentReferenceHashMapTests::shouldGetSize, it uses the Map::put
API implemented in ConcurrentReferenceHashMap, which leads to put returning null.

Listing 1 A serialised nullability issue captured in spring-core (for better readability
org.springframework.util is replaced by $s).

1 {
2 " className ":" $s. ConcurrentReferenceHashMap ",
3 " methodName ":" put",
4 " descriptor ":"(Ljava /lang/ Object ; Ljava /lang/ Object ;Z) Ljava /lang/ Object ;",
5 "kind ":" RETURN_VALUE ",
6 " argsIndex ":-1,
7 " stacktrace ":[
8 "$s. ConcurrentReferenceHashMap :: put :282" ,
9 "$s. ConcurrentReferenceHashMap :: put :271" ,

10 "$s. ConcurrentReferenceHashMapTests :: shouldGetSize :331"
11]
12 }

3.5 Deduplication
When issues are captured, it is common that several versions of the same issue are being
reported. For instance, there might be two nullability issues reported for the return type
of the same method in the same class, but triggered by different tests, and therefore with
different stack traces. Throughout the paper, only deduplicated (aggregated) issue counts are
reported unless mentioned otherwise. The raw issues might still be of interest as they differ
with respect to their provenance, which might be important for a developer reviewing issues.

3.6 Limitations
Our approach does not support generic types. For instance, consider a method returning
List<String>. In order to establish that the list may contain @Nullable strings the analysis
would need to traverse the object graph of the list object using reflection or some similar
method, in order to check that some elements of the list are (or in general some referenced
objects associated with the type parameters) are nullable. This is generally not scalable.

Secondly, there are dynamic programming techniques that may bypass the instrumentation.
This is in particular the case if reflective field access is used, either directly using reflection,
or via deserialisation. This is a known problem, however, reflective field access is rare in
practice [65].

11 More specifically, we consider methods in packages starting with the following prefixes as noise:
java.lang.reflect., org.apache.maven.surefire, org.junit., junit., jdk.internal.

J. Dietrich, D. J. Pearce, and M. Chandramohan 10:7

4 Sanitisation

4.1 Scope Sanitisation
When exercising code using instrumented tests, potential issues are captured and recorded for
all classes including classes defined in dependencies, system and project classes. By setting
project-specific namespace (package) prefixes, the analysis can be restricted to project-defined
classes only as discussed in Section 3.2. However, this still does not distinguish between
classes used at runtime (in Maven and Gradle, this is referred to as the main scope), and
classes only to be used during testing (the test scope). Engineers may not see the need to
annotate test code, and a static null checker would usually be configured to ignore test code
as its purpose if to predict runtime behaviour such as potential null dereferences resulting in
runtime exception.

The analysis to filter out classes not defined in main scope is straightforward: scopes
are encoded in the project directory structure if build systems like Maven and Gradle are
used. Those build systems and the associated project structures are the defacto-standards
used in Java projects [2]. For instance, spring uses Gradle, and the compiled classes in main
scope can be found in build/classes/java/main. The main scope sanitiser simply removes
issues in classes not found in this folder.

4.2 Negative Test Sanitisation
The code in Listing 2 from the spring-core project is an example of a defensive API practice
in org.springframework.util.Assert. A runtime exception is used to signal a violated
pre-condition, a null parameter in this case. The exception (IllegalArgumentException)
is thrown in the Assert::notNull utility method. While a null pointer exception is also a
runtime exception, throwing an IllegalArgumentException here is more meaningful as this
is (expected to be) thrown by the application, not by the JVM, and clearly communicates
to clients that this is a problem caused by how an API is used, as opposed to an exception
caused by a bug within the library.

Listing 2 A defensive API in spring-core, org.springframework.util.Assert::isInstanceOf.
1 public static void isInstanceOf (Class <?> type , @Nullable Object obj , String message) {
2 notNull (type , "Type to check against must not be null");
3 ..
4 }

This contract is then tested in org.springframework.util.AssertTests::isInstance-
OfWithNullType, shown in Listing 3.

Listing 3 Testing a defensive API in spring-core with JUnit5.
1 @Test void isInstanceOfWithNullType () {
2 assertThatIllegalArgumentException (). isThrownBy (
3 () -> Assert . isInstanceOf (null , "foo", " enigma ")
4). withMessageContaining (..);
5 }

We refer to such tests as negative tests – i.e. tests that exercise abnormal and unintended
but possible behaviour, and use an exception or error as the test oracle for this purpose.
Features often used to implement such tests are the assertThrows method in JUnit5, and
the expected attribute of the @Test annotation in JUnit4.

Including such tests (as drivers) is likely to result in false positives – nulls are passed to
the test to trigger defense mechanisms, such as runtime checks. We therefore excluded issues
triggered by such tests. This is done by a lightweight ASM-based static analysis that checks

ECOOP 2023

10:8 On Leveraging Tests to Infer Nullable Annotations

for the annotations and call sites indicating the presence of an exception oracle and produces
a list of negative tests, and a second analysis that cross-references the context information
captured while recording issues against this list, and removes issues triggered by negative
tests.

The analysis checks for the above-mentioned negative test patterns in JUnit4 and JUnit5,
and a similar pattern in the popular assertj library. We also check for call sites for the
JUnit4 and JUnit5 fail methods in try blocks, usually indicating that tests pass if they
enter the corresponding catch block. Finally, the analysis looks for call sites of methods
in com.google.common.testing.NullPointerTester. This is a utility that uses reflection
to call methods with null for parameters not marked as nullable, expecting a NPE or an
UnsupportedOperationException being thrown. This may be considered as over-fitting as
guava is also part of our data set used for evaluation. However, like JUnit, guava is a widely
used utility library, which warrants supporting this features in a generic tool.

4.3 Shaded Dependency Sanitisation
Shading is a common practice where library classes and often entire package or even libraries
are inlined, i.e. copied into the project and relocated into new name spaces. A common use
case is to avoid classpath conflicts when multiple versions of the same class are (expected to
be) present in a project [69].

For instance, the return type of org.springframework.asm.ClassVisitor::-
visitMethod is not annotated as nullable. The problem here is that spring-
core also defines several subclasses of this class overriding the method (including
SimpleAnnotationMetadataReadingVisitor, package name omitted for brevity), which
mark the return type as nullable. Reading this as pluggable types with the non-null by
default assumption, with @Nullable MethodVisitor being a subtype of MethodVisitor,
this violates Liskov’s substitution principle [41] as the postcondition of a non-null return value
is weakened in the overriding method. The reason that engineers wont add the annotation is
that this class originates from a shaded dependency.12 This is usually not done manually,
but automated using build plugins such as Maven’s shade plugin 13. The respective section
of the Gradle build script for spring-core is shown in Listing 4.

Listing 4 Shading spec in spring-corespring-core.gradle.
1 task cglibRepackJar (type: ShadowJar) {
2 archiveBaseName .set(’spring -cglib -repack ’)
3 archiveVersion .set(cglibVersion)
4 configurations = [project . configurations . cglib]
5 relocate ’net.sf.cglib ’, ’org. springframework .cglib ’
6 relocate ’org. objectweb .asm ’, ’org. springframework .asm ’
7 }

This makes adding @Nullable annotations for those classes unattractive – any developer
effort to add them is wasted as the source code is replaced during each build, and modern
projects are rebuilt often, sometimes multiple times a day. A possible solution would be to
add annotations during code generation at build time, but to the best of our knowledge,
there are no suitable tools or meta programming techniques readily available to engineers
that could be used for this purpose.

Another option would be to add the annotation to the respective method provided by
the shaded library, however, engineers are usually not in a position to make such a change.

A sanitiser to take this into account takes a list of packages corresponding to shaded
classes as input, and removes issues detected within those classes.

12 See https://github.com/spring-projects/spring-framework/pull/28852 for discussion
13 https://maven.apache.org/plugins/maven-shade-plugin/

https://github.com/spring-projects/spring-framework/pull/28852
https://maven.apache.org/plugins/maven-shade-plugin/

J. Dietrich, D. J. Pearce, and M. Chandramohan 10:9

4.4 Deprecation Sanitisation
The final sanitiser removes issues collected from deprecated (i.e., annotated with @java.lang.-
Deprecated) fields, methods or classes. The rationale is that given the significant cost of
annotating code, engineers might be reluctant to add annotations to code scheduled for
removal, and will consider the inference of such annotations less useful. Such a sanitiser can
be implemented with a straightforward byte code analysis as @Deprecated annotations are
retained in byte code. We used asm for this purpose in our implementation.

5 Propagation

Annotating an API with @Nullable annotations changes the expectations and guarantees
of the API contract with clients. In terms of Liskov’s Substitution principle (LSP), adding
@Nullable to a method (i.e., to the type it returns) weakens its postconditions if we consider
@NonNull to be the baseline. To preserve LSP, a non-null return type must not be made
nullable in a overriding method.

For nullable arguments, the direction changes: while overriding a method making argu-
ments nullable complies to LSP as expectations (for callers) are weakened, nullable arguments
must not be made non-null in overridden methods. If we assume @NonNull to be the default,
this implies that @Nullable should also be applied to the arguments of the overriding method.
However, the standard Java language semantics only supports covariant return types (e.g.,
methods can be overridden using a more specific return type), while for argument types
invariance is used. Different null checkers and other languages use a variety of approaches
here [13] and it is not completely clear what the canonical approach should be. Therefore,
in our proof-of-concept implementation, LSP propagation can be customised to propagate
nullability for arguments, or not, with propagation being the default strategy.

Listing 5 illustrates our approach. Assume we have annotated B::foo using observations
from instrumented test runs. Then we also have to add @Nullable to the return type of the
overridden method A::foo, and (if argument propagation is enabled) to the sole argument
of the overriding method C::foo.

Listing 5 Propagation of @Nullable to Sub- and Supertypes.
1 public class A {
2 public @Nullable Object foo (Object arg) ;
3 }
4 public class B extends A {
5 public @Nullable Object foo (@Nullable Object arg) ;
6 }
7 public class C extends B {
8 public Object foo (@Nullable Object arg) ;
9 }

LSP propagation is implemented using a lightweight ASM-based analysis that extracts
overrides relationships from compiled classes, and cross-references with with captured issues,
creating new issues. For provenance, references to the original parent issues leading to
inferred issues are captured as well and stored alongside the (JSON-serialised) inferred issues
as a parent attribute.

5.1 Limitations
There is a limitation to hierarchy-based propagation – subtype relationships may extend
across libraries, and we may infer nullable annotations for classes that are not in the scope
of the analysis, and cannot be refactored. While project owners know super types (and can
use methods like opening issues or creating pull requests for projects we don’t control), they

ECOOP 2023

10:10 On Leveraging Tests to Infer Nullable Annotations

are not in control of subtypes in an open world, and rely that downstream projects would
eventually pick up those annotations through notifications from some static analyses tools
checking for those issues.

5.2 Sanitisation vs Propagation Fixpoint
Sanitisation and propagation have opposite effects. Preferably, an algorithm used to refine
the initially collected nullability issues would reach a unique fix point where the future
application of sanitisation and propagation would not change the set of refined nullability
issues. However, such a fixpoint does not exist. Consider for instance a scenario where a
shaded class has a method that is overridden and has a nullable return type in the overriding
method. Then LSP propagation suggests to also add this to the return of the overridden
method in the super class (to avoid weakening the post conditions), while sanitisation
suggests not to refactor the shaded class. This is the issue we have observed in spring-core
and discussed in Section 4.3.

6 Annotation Injection

We implemented a tool to inject the inferred annotations into projects, using the following
steps:
1. compilation units are parsed into ASTs using the javaparser API [62]
2. for each nullable issue, the respective method arguments, returns or fields are annotated

by adding nodes representing the @Nullable annotation to the respective AST
3. after the AST for a compilation unit is processed, it is written out as a Java source code

file
4. if necessary, the respective import for the nullable annotation type used is added to the

pom.xml project file

The tool has been evaluated using standard JUnit unit tests, and by round-tripping
(removing and then reinserting existing annotations) the spring projects studied.

There are different annotation libraries available defining nullable annotations, and static
checkers often support multiple such annotations. For this reason, the annotator tool supports
pluggable annotations. This abstraction is implemented as a NullableAnnotationProvider
service, implementations provide the nullable type and package names, and the coordinates
of an Maven artifact providing the respective annotation. The default implementation is
based on JSR305. Alternative providers can be deployed using the standard Java service
loader mechanism.

7 Evaluation

Our evaluation is based on a study of some of the popular real-word projects which have
been manually null-annotated by project members. We compare those existing annotations
with the annotations captured and inferred by our method, and check those two sets for
consistency. This is done by measuring precision and recall. Informally, those measures
represent the ratio of inferred annotations to existing annotations, and the percentage of
existing annotations our method is able to infer. More precisely, given a set of existing
nullable annotations Existing and a set of annotations inferred using our method Inferred,
we define the following metrics:

J. Dietrich, D. J. Pearce, and M. Chandramohan 10:11

TP := Existing ∩ Inferred
FP := Inferred \ Existing
FN := Existing \ Inferred
precision := |TP |/(|TP | + |FP |)
recall := |TP |/(|TP | + |FN |)

Those are standard definitions, however, they need to be used with caution here. The
concepts suggest that the existing annotations are the ground truth. This hinges on two
assumptions:
1. The existing annotations are complete.
2. The project test cases provide enough coverage to exercise all possible nullable behaviour.

The first assumption means that all exiting nullable annotations our method fails to infer
are in fact false positives. This might not be true as the annotations may not be complete,
and we explore this issue further in Section 7.8. Therefore, the precision reported needs to
be understood as the lower precision bound (lpb) in the sense of false positive detection. The
second assumption means that all existing issues our tool cannot detect are false negatives.
While this is correct in some sense, it does not necessarily indicate a weakness of our method
as such, rather than an issue of the quality of input data, i.e. the quality of tests.

Existing annotations are extracted by using a simple byte code analysis (noting that
common nullable annotation use runtime retention), we are looking for @Nullable annotations
in any package to account for the multiple annotation providers. We also support two
semantically closely related annotations defined in widely used utility libraries or tools,
guava’s @ParametricNullness and findbug’s @CheckForNull.

7.1 Dataset
The data set we use in our study consists of seven projects (modules) from the spring
framework ecosystem, plus two additional google projects. Those projects were located by
searching the Maven repository for projects using libraries providing @Nullable annotations,
and the selecting projects that actually use a significant number of those annotations. The
reason that we chose this method was that we wanted to use existing annotations as (an
approximation of) the ground truth to evaluate the inferred annotations. We were particularly
looking for projects backed by large engineering teams and well-resourced organisations,
assuming that this would result in high-quality annotations.

Spring is the dominating framework for enterprise computing in Java [68], it is supported
by a large developer community, is almost 20 years old and keeps on maintaining and
innovating its code base. What makes those projects particularly suitable for evaluation
is the fact that they have been manually annotated with @Nullable annotations. Spring
defines its own annotation for this purpose in spring-core 14. The amount of annotations
found in those projects is extensive, see Section 7.4 for details. Spring uses gradle as build
system.

Spring is organised in modules, projects with their own build scripts producing independent
deployable binaries. We selected seven projects with different characteristics in particular
with respect to how APIs are provided or consumed: core, beans and context are foundational
projects for the spring framework overall, with few dependencies. orm and oxm are middleware

14 Defined in in org.springframework.lang

ECOOP 2023

10:12 On Leveraging Tests to Infer Nullable Annotations

Table 1 project summary, reporting the number of Java, Kotlin and Groovy source code files for
both main and test scope, and branch coverage.

main test
program version java kotlin groovy java kotlin groovy coverage
s.-beans 5.3.22 301 2 1 126 4 0 60%
s.-context 5.3.22 640 5 0 483 7 2 63%
s.-core 5.3.22 499 1 0 214 14 0 66%
s.-orm 5.3.22 72 0 0 32 0 0 39%
s.-oxm 5.3.22 31 0 0 19 0 0 58%
s.-web 5.3.22 653 1 0 268 5 0 18%
s.-webmvc 5.3.22 368 3 0 225 5 0 39%
guava 31.1 619 0 0 502 0 0 70%
error-prone 2.18.0 745 0 0 1,222 0 0 73%

components for applications to interact with XML data and relational databases, and integrate
with existing frameworks for this purpose like hibernate, jpa and jaxb. Finally, web is a utility
library for web programming (including an HTTP client), and webmvc is a comprehensive
application framework based on the model-view-controller design pattern [30].

We also include two additional non-spring programs to demonstrate the generality of the
method proposed, and avoid over-fitting for spring. Those are guava and error-prone, both by
google. Guava is a very popular utility library, whereas error-prone is a code analysis utility,
similar to findbugs. Those two projects use Maven as build system, and have a modular
structure, with some modules only containing tests, test tools or annotations. We analysed
nullability for the errorprone/core and guava/guava modules, respectively.

Table 1 provides an overview of the data set used together with some metrics, broken
down by scope as discussed in Section 4.1. While those projects predominately contain Java
classes, they also contain a smaller amount of Kotlin and Groovy code. Most of this are
tests, and as the capture is based on bytecode instrumentation, those tests are still being
used as drivers for the dynamic analysis. The table also contains some coverage data.15 This
provides some indication that the projects detected are well tested, and provide reasonable
drivers for a dynamic analysis. The coverage data compares favourably to the coverage
observed for typical Java programs [18].

7.2 Capture
For the dynamic analysis, we used the agents described in Section 3. With those agents
deployed in the build scripts, ground truth extraction is a matter of running the projects
builds using the test targets. The agents collect large amounts of data. For instance, the raw
uncompressed size of the nullability issue file collected is 19.96 GB for spring-context, 4.11
GB for guava and 3.57 GB for error-prone (see also Table 2). To avoid memory leaks caused
by instrumentation, agents dump data frequently, and after test execution using a shutdown
hook.

Not unexpectedly, the presence of the agents significantly prolongs the build times – to
around one hour for spring and 16 hours for guava 16. Profiling reveals that stack capture
and IO are performance bottlenecks.

15 Branch coverage is reported, calculated using the jacoco coverage tool integrated into the IntelliJ IDEA
2022.2 (Ultimate Edition) IDE, and reporting the values aggregated by IntelliJ for the respective
packages

16 Builds were run on a MacBook Pro (16-inch, 2021) with Apple M1 Pro, and OpenJDK 11.0.11

J. Dietrich, D. J. Pearce, and M. Chandramohan 10:13

We argue that this is acceptable as this is an one-off effort, i.e. this is not designed to be
integrated into standard builds.

7.3 Research Questions
We break down the evaluation into a number of research questions. RQ1 compares the
possible nullable annotations collected from instrumented test runs with existing annotations.
RQ2 and RQ3 assess the utility of the refinements (sanitisation and propagation) performed
on the nullability issues collected to improve recall and precision. Finally, in RQ4 we assess
the interaction between sanitisation and propagation.
RQ1 How does nullability observed during test execution compare to existing @Nullable

annotations?
RQ2 Can sanitisation techniques improve the precision of @Nullable annotation inference?
RQ3 Can propagation improve the recall of @Nullable annotation inference?
RQ4 Does the repeated application of sanitisation and propagation reach a fixpoint?

Results will be reported in Tables for each RQ, and we will summarise the distribution
of recall and lower precision bound values across our dataset at the end of Section 7.7 in
Figures 1 (for lpb) and 2 (for recall).

7.4 How does nullability observed during test execution compare to
existing @Nullable annotations ? [RQ1]

The data to answer this RQ are presented in Table 2. Column 2 (ex) contains the number of
@Nullable annotations found in the respective program (existing @Nullable annotations
are extracted and also represented as extracted issues to facilitate comparison), column 3
(obs) shows the number of @Nullable issues observed during the execution of instrumented
tests, corresponding to inferred @Nullable annotations. The number of observed issues
is surprisingly large, but often, multiple nullability issues are reported for the same field,
method parameter or method return. To take this into account, we also report the aggregated
issues resulting from deduplication as discussed in Section 3.5 in column 4 (agg), and the
aggregation ratio (agg/obs) in column 5. This demonstrates that deduplication is very
effective. I.e., nullability reported for a given field, method return or parameter is usually
supported by different tests, resulting in different contexts. We see this as a strength of
our methods as each context provides independent support for the nullability that is being
detected. Finally, we report recall and lower precision bound (r,lpb) in column 6. Both are
around 50% with two notable exceptions – the significantly lower recall for spring-core, and
the significantly lower precision for spring-context and error-prone.

These results suggests that inferring nullability issues dynamically by only observing tests
is not sufficient, and further refinement of those results by means of additional analyses is
needed.

7.5 Can sanitisation techniques improve the precision of @Nullable
annotation inference ? [RQ2]

The various sanitisation techniques discussed in Section 4 address potential false positives.
To evaluate their impact, we applied the sanitisers to the observed nullability issues for each
program in the data set, and report the number of aggregated inferred nullability issues after
santitisation. We also report the results of applying all sanitisers. The absolute numbers are
reported in Table 3, the recall / precision metrics are reported in Table 4.

ECOOP 2023

10:14 On Leveraging Tests to Infer Nullable Annotations

Table 2 RQ1 – existing (ex) vs observed (obs) issues, also reported are the aggregation of observed
issues (agg), aggregation ratios (agg/obs) and recall / lower precision bound (r,lpb).

program ex obs agg agg/obs r,lpb
s.-beans 1,290 321,851 1,320 0.0041 0.54,0.52
s.-context 1,435 6,872,413 5,945 0.0009 0.49,0.12
s.-core 1,510 175,725 1,171 0.0067 0.52,0.67
s.-orm 377 3,443 279 0.0810 0.47,0.63
s.-oxm 84 501 64 0.1277 0.54,0.70
s.-web 2,025 127,882 1,656 0.0129 0.45,0.55
s.-webmvc 1,437 192,800 2,392 0.0124 0.69,0.41
guava 3,993 2,708,816 4,923 0.0018 0.48,0.39
error-prone 507 1,095,752 1,736 0.0016 0.39,0.11

Table 3 RQ2a – observed issues after applying sanitisers (base – no sanitisation applied, D –
deprecation, M – main scope, N – negative tests, S – shading).

program base san(D) san(M) san(N) san(S) san(all)
s.-beans 1,320 1,298 763 1,247 1,320 687
s.-context 5,945 5,922 788 5,662 5,682 718
s.-core 1,171 1,140 999 1,024 1,124 780
s.-orm 279 279 192 270 279 184
s.-oxm 64 64 49 64 64 49
s.-web 1,656 1,606 1,076 1,544 1,656 941
s.-webmvc 2,392 2,374 1,076 2,327 2,392 1,048
guava 4,923 4,813 4,008 3,384 4,923 2,464
error-prone 1,736 1,736 1,337 1,736 1,736 1,337

Table 4 RQ2b – recall and lower precision bound (r,lpb) w.r.t. existing annotations after applying
sanitisers (D – deprecation, M – main scope, N – negative tests, S – shading).

program r,lpb(D) r,lpb(M) r,lpb(N) r,lpb(S) r,lpb(all)
s.-beans 0.52,0.52 0.54,0.91 0.52,0.53 0.54,0.52 0.50,0.95
s.-context 0.48,0.12 0.49,0.90 0.48,0.12 0.49,0.12 0.47,0.94
s.-core 0.50,0.67 0.52,0.78 0.49,0.72 0.52,0.70 0.47,0.92
s.-orm 0.47,0.63 0.47,0.92 0.45,0.63 0.47,0.63 0.45,0.93
s.-oxm 0.54,0.70 0.54,0.92 0.54,0.70 0.54,0.70 0.54,0.92
s.-web 0.43,0.54 0.45,0.85 0.44,0.57 0.45,0.55 0.42,0.90
s.-webmvc 0.68,0.41 0.69,0.92 0.68,0.42 0.69,0.41 0.67,0.92
guava 0.48,0.40 0.48,0.48 0.48,0.56 0.48,0.39 0.48,0.77
error-prone 0.39,0.11 0.39,0.15 0.39,0.11 0.39,0.11 0.39,0.15

The results suggest that most sanitisers have only a minor impact on precision and,
sometimes, those improvements come at the price of slight drops in recall. However, one
sanitiser stands out: by focusing on classes in the main scope, the precision can be improved
dramatically. This suggests that our instrumented tests pick up a lot of nullability in test
classes or other test-scoped classes supporting tests.

After applying all santisation techniques, we observe a very high lower precision bound of
0.9 or better for all spring programs, with some minor drops in recall. The lower precision
bound for guava is still fairly high, but surprisingly low for error-prone, to be discussed
below. Balancing precision and recall is a common issue when designing program analyses,
but we believe that the focus should be on precision as developers have little tolerance for
false alerts. For instance, it has been reported that “Google developers have a strong bias to
ignore static analysis, and any false positives or poor reporting give them a justification for
inaction.” [59].

J. Dietrich, D. J. Pearce, and M. Chandramohan 10:15

Table 5 Annotated vs annotatable program elements, in the last column the number of annotatable
elements of type java.lang.Void is reported.

program annotated annotatable annotation ratio Void usage
s.-beans 1,290 5,230 0.25 0
s.-context 1,435 8,849 0.16 0
s.-core 1,510 10,628 0.14 0
s.-orm 377 1,676 0.22 0
s.-oxm 84 467 0.18 0
s.-web 2,025 13,658 0.15 6
s.-webmvc 1,437 8,317 0.17 1
guava 3,964 25,472 0.16 2
error-prone 507 22,669 0.02 958

To investigate the low lower precision bound we observed for error-prone further, we
conducted an additional experiment where we calculated the annotation ratio. For this
purpose, we counted the existing @Nullable annotations, and the number of program
elements that can be annotated, i.e. fields, method parameters and return types for non-
synthetic methods and fields whose type is not a primitive type. The results are displayed in
Table 5. This show that the annotation ratio for error-prone is by on order of a magnitude
lower than for the other programs. Therefore, many of the potential false positives are
likely to be true positives, and the existing annotations are not suitable to act as a ground
truth here. To investigate the matter further, we looked for patterns amongst the potential
false positives detected. One pattern stands out – the frequent use of java.lang.Void as
method parameter and return type. The respective numbers are shown in Table 5, column
5. The use of Void in error-prone is unusually high. Void has an interesting semantics –
this class cannot be instantiated, i.e. it must be null, and is therefore always nullable by
definition. However, in error-prone, the respective method returns and parameters are not
annotated as @Nullable. Interestingly, this is in violation of one of error-prone’s own rule
VoidMissingNullable (‘The type Void is not annotated @Nullable‘”) 17. I.e., error-prone is
not dog-fooding [32] here. Error-prone has recently opened an issue to address this 18. We
also note that the nullaway checker treats Void as nullable 19, and the checkerframework
declares @Nullable as default for Void using a meta annotation 20.

We rerun the recall and precision calculation against a ground truth that interprets Void
as nullable, and for error-prone as expected the result change significantly to a recall of 0.72
and a lower precision bound of 0.79.

After performing sanitisation, we also investigated the context depth, i.e. the size of the
stack traces recorded. Without sanitisation this data would be distorted by issues discovered
in testing scope, leading to very low context depth. For each aggregated issue equivalence
class modulo the deduplication relationship (see Section 3.5), we computed the lowest context
depth for all issues in the respective equivalence class, and then counted aggregated issues
by this depth. The results are reported in Table 6.

17 https://errorprone.info/bugpattern/VoidMissingNullable
18 https://github.com/google/error-prone/issues/3792
19 https://github.com/uber/NullAway/blob/master/nullaway/src/main/java/com/uber/nullaway/

NullAway.java, commit
https://github.com/uber/NullAway/commit/1548c69a27e9e3dd1cb185d04b2e870f3b11a771

20 https://checkerframework.org/api/org/checkerframework/checker/nullness/qual/Nullable.
html

ECOOP 2023

https://errorprone.info/bugpattern/VoidMissingNullable
https://github.com/google/error-prone/issues/3792
https://github.com/uber/NullAway/blob/master/nullaway/src/main/java/com/uber/nullaway/NullAway.java
https://github.com/uber/NullAway/blob/master/nullaway/src/main/java/com/uber/nullaway/NullAway.java
https://github.com/uber/NullAway/commit/1548c69a27e9e3dd1cb185d04b2e870f3b11a771
https://checkerframework.org/api/org/checkerframework/checker/nullness/qual/Nullable.html
https://checkerframework.org/api/org/checkerframework/checker/nullness/qual/Nullable.html

10:16 On Leveraging Tests to Infer Nullable Annotations

Table 6 Observed and sanitised issues by context depths.

program all 2 3 4 5 6 7 8 9 10 >10
s.-beans 687 167 109 64 58 46 35 24 22 39 123
s.-context 718 197 122 76 58 52 25 26 22 11 129
s.-core 780 266 165 105 63 37 32 23 21 10 58
s.-orm 184 23 28 20 18 14 24 2 3 3 49
s.-oxm 49 35 4 1 7 0 0 0 0 0 2
s.-web 941 305 258 149 77 52 10 8 2 9 71
s.-webmvc 1,048 329 195 212 117 50 32 12 9 10 82
guava 2,464 972 606 399 163 122 37 20 13 11 121
error-prone 1,337 8 23 56 4 26 4 8 6 2 1,200

Table 7 RQ3a – effect of propagation, aggregated issue counts and recall / lower precision bound
for santitised issues (s), santitised and then propagated issues (sp) and santitised, propagated and
re-sanitised issues (sps).

program s sp r,sps r,lpb(s) r,lpb(sp) r,lpb(sps)
s.-beans 687 693 693 0.50,0.95 0.51,0.95 0.51,0.95
s.-context 718 736 736 0.47,0.94 0.48,0.94 0.48,0.94
s.-core 780 791 788 0.47,0.92 0.48,0.91 0.48,0.92
s.-orm 184 184 184 0.45,0.93 0.45,0.93 0.45,0.93
s.-oxm 49 49 49 0.54,0.92 0.54,0.92 0.54,0.92
s.-web 941 949 949 0.42,0.90 0.42,0.90 0.42,0.90
s.-webmvc 1,048 1,059 1,059 0.67,0.92 0.68,0.92 0.68,0.92
guava 2,464 2,503 2,503 0.48,0.77 0.49,0.77 0.49,0.77
error-prone 1,337 1,361 1,361 0.39,0.15 0.43,0.16 0.43,0.16

The results suggest that there are some issues revealed by trivial tests (e.g., tests directly
invoking functions with null parameters). However, a significant number of issues is revealed
by more complex behaviour with deep calling contexts. We consider this to be a strengths of
the analysis being presented. Note that the context depths are not inflated by boiler-plate
code as the stack traces are cleaned during capture (see Section 3.3).

7.6 Can propagation improve the recall of @Nullable annotation
inference ? [RQ3]

Next, we applied propagation to the sanitised nullability issues (using all sanitisers). This
can discover additional nullability issues not observable during testing, and therefore improve
recall. The results are reported in Table 7. Those results suggests that propagation does not
significantly change the quality of the analysis. We observe minor improvements in recall for
only four programs in our dataset.

As already discussed in Section 7.5, the results for error-prone are heavily impacted by
the fact that Void is not annotated as nullable. If we consider it as implicitly annotated as
nullable, and extend the ground truth used to compare the inferred annotations accordingly,
the results change to a recall of 0.73 and a lower precision bound of 0.79. We therefore
observe a small increase of the recall for error-prone as the result of propagation.

J. Dietrich, D. J. Pearce, and M. Chandramohan 10:17

Table 8 RQ3b – number of propagated issues and recall / lower precision bound of propagated
issues by type (F – field, P – method parameters, R – method return types).

program prop(F) prop(P) prop(R) r,lpb(F) r,lpb(P) r,lpb(R)
s.-beans 205 279 209 0.81,1.00 0.41,0.90 0.47,0.97
s.-context 308 220 208 0.80,0.98 0.34,0.91 0.41,0.90
s.-core 125 422 241 0.80,1.00 0.43,0.86 0.46,0.97
s.-orm 111 38 35 0.90,1.00 0.21,0.76 0.26,0.89
s.-oxm 35 12 2 0.70,1.00 0.45,0.83 0.00,0.00
s.-web 308 438 203 0.72,0.94 0.36,0.87 0.33,0.91
s.-webmvc 373 319 367 0.95,1.00 0.52,0.87 0.63,0.88
guava 353 1,474 676 0.88,0.98 0.42,0.68 0.48,0.87
error-prone 77 700 584 0.80,0.10 0.47,0.11 0.40,0.23

7.7 Does the repeated application of sanitisation and propagation reach
a fixpoint ? [RQ4]

Propagation can introduce new annotations which would otherwise be sanitised, and the
process generally does not converge against a fix point. An example was already discussed
in Section 5.2. However, it is still a relevant question to study and quantify whether we
come close to a fix point, and whether it is common for programs not to reach such a fix
point. Therefore, we investigated whether this is a significant observable effect by applying
sanitisation to the propagated inferred annotations. This had almost no effect, with only
a very few issues in spring-core being re-sanitised, the respective data is reported in the
columns labelled sps (sanitised-propagated-sanitised) in Table 7.

Since propagation is the last step of our inference pipeline (capture-sanitise-propagate),
we also report a breakdown of nullability issues by program element annotated, as shown in
Table 8. What stands out is that for fields both recall and precision of inferring nullability is
better than average.

Figures 1 and 2 show the distribution of lpb and recall values across the dataset after
each step discussed.

7.8 False False Positives
Despite the generally high precision our approach achieves, it is not perfect. The question
arises whether this is caused by false positives. This relates to the fact that our baseline – the
existing @Nullable annotations, only (under-)approximates the ground truth. In particular,
it is unclear whether it is complete. If it was not, some of the false positives our analysis
produces would actually be true positives. Sometimes additional analyses can reveal patterns
where developers missed annotations that should have been added by some heuristics, an
example is the Void analysis for error-prone discussed in Section 7.5. If no such pattern can
be identified, there is another way to find out – add additional annotations inferred by our
tool to the respective project(s) via pull requests.

The number of annotations to be added is still relatively large, and given the importance
spring has in the developer ecosystem, it can be expected that project owners are generally
reluctant to accept pull requests from newcomers. Pull requests have also experienced some
amount of inflation recently (partially caused by bots creating pull requests), and therefore
processing is delayed.21

21 There were 164 open pull requests on 20 October 2022, https://github.com/spring-projects/
spring-framework/pulls?q=is%3Aopen

ECOOP 2023

https://github.com/spring-projects/spring-framework/pulls?q=is%3Aopen
https://github.com/spring-projects/spring-framework/pulls?q=is%3Aopen

10:18 On Leveraging Tests to Infer Nullable Annotations

capture san−D san−M san−N san−S san−all prop sps Void

0.
2

0.
4

0.
6

0.
8

Figure 1 Lower precision bound distribution across the dataset after each step: capture, applying
the various sanitisers (san-*), propagation, propagation followed by re-sanitisation (sps), and special
handling of Void in errorprone.

We have submitted two pull requests with different outcomes: PR1 22 has resulted in
a @Nullable annotation inferred being added 23. PR2 24 was rejected, but the developers
refined the test the inference is based on 25 .

While PR1 and PR2 have resulted in different outcomes, they both have revealed issues in
spring, and after rerunning the analysis after the action taking by developers in response to
the PRs, precision would increase in both cases. Adding an inferred annotation clearly shows
that some false positives are actually true positive. Refining the tests has a similar effect –
the semantics of tests is sometimes at odds with what is considered intended behaviour, and
our tools exposes this. After the test is fixed, the false positive disappears as the tool can no
longer infer it.

Our tools has also led to the re-annotation of some classes in guava 26.

22 https://github.com/spring-projects/spring-framework/pull/29150
23 https://github.com/spring-projects/spring-framework/commit/

35d379f9d3882a02f0368f928b2cecb975404334
24 https://github.com/spring-projects/spring-framework/pull/29242
25 https://github.com/spring-projects/spring-framework/commit/

c14cbd07f449d845269c99faa29241e7e2d0dfc1
26 https://github.com/google/guava/commit/2b98d3c1e96b750dc997c29f283084aeb72fb3cf,

https://github.com/google/guava/pull/6490

https://github.com/spring-projects/spring-framework/pull/29150
https://github.com/spring-projects/spring-framework/commit/35d379f9d3882a02f0368f928b2cecb975404334
https://github.com/spring-projects/spring-framework/commit/35d379f9d3882a02f0368f928b2cecb975404334
https://github.com/spring-projects/spring-framework/pull/29242
https://github.com/spring-projects/spring-framework/commit/c14cbd07f449d845269c99faa29241e7e2d0dfc1
https://github.com/spring-projects/spring-framework/commit/c14cbd07f449d845269c99faa29241e7e2d0dfc1
https://github.com/google/guava/commit/2b98d3c1e96b750dc997c29f283084aeb72fb3cf
https://github.com/google/guava/pull/6490

J. Dietrich, D. J. Pearce, and M. Chandramohan 10:19

capture san−D san−M san−N san−S san−all prop sps Void

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

Figure 2 Recall distribution across the dataset after each step: capture, applying the various
sanitisers (san-*), propagation, propagation followed by re-sanitisation (sps), and special handling of
Void in errorprone.

7.9 Comparison with Purely Static Inference
Houdini [25] infers annotations using the Esc/Java checker. The platform has been deprecated
and replaced by other tools, and there is no implementation available. Houdini still uses
“pseudo-annotation“ using special markup. This approach is also highly unscalable. The
authors report that “the running time on the 36,000-line Cobalt program was 62 hours”. For
comparison, the version of spring-core used in the evaluation experiments alone contains over
146,000 lines of Java code, and checkers rarely scale linearly. For comparison, our analysis
generally scales. The bottleneck of our method is the capture, and while this is expensive it
generally scales as discussed in Section 7.2.

We contacted the authors of several tools [21, 35, 34] and succeeded in using jasaddj-
nonnullinference [21] to analyse some programs, and compare results.27 The tool has been
maintained until 2015, and based on advice by the authors, we selected some older programs
buildable with Java 1.7. The builds had to be heavily customised in order to deal with broken
dependencies, details are described in the artefact. The comparison is not straightforward as
jasaddj infers @Nonnull annotations, whereas our method infers @Nullable.

The results are shown in Table 9. The annotatable column shows the total number of
fields, method return and parameters with nullable types. The @Nonnull column show the
number of annotations inferred by jasaddj, and the @Nullable columns shows the number
of annotations our approach infers. We also report the intersection between both sets in
the last column. Both approaches annotate less than half of all annotatable elements. It

27 https://bitbucket.org/jastadd/jastaddj-nonnullinference

ECOOP 2023

https://bitbucket.org/jastadd/jastaddj-nonnullinference

10:20 On Leveraging Tests to Infer Nullable Annotations

Table 9 Comparing our approach with JastAddJ NonNull inference.

program annotatable @Nonnull @Nullable Intersection
commons-lang-3.0 4,647 1,480 1,041 633
commons-cli-3.1 2,724 1,179 65 17
commons-io-2.5 2,241 1,012 326 184
commons-math-3.0 9,404 3,208 270 50

is not clear how to interpret the set complement for both tools. If we interpret everything
not @Nonnull annotated by jasaddj as @Nullable, then jasaddj has a low precision. The
intersection column suggests that there are a significant number of cases where the tools
produce inconsistent results. Given the low number of false positive we observe with our
tool, it is likely that jasaddj produces false positives here.

However, this is not really surprising given that tools like jasaddj have been designed to
analyse program (as opposed to libraries), where all method calls and field access is known.
Our method however is designed for an open world where API interactions from unknown
clients have to be considered, and test cases act as proxies for those clients.

8 Related Work

Much work exists on the problem of eliminating null dereferences, of which the vast majority
focuses on static checking. Nevertheless, a number of empirical studies exist which are
relevant here. The early work of Chalin et al. empirically studied the ratio of parameter,
return and field declarations which are intended to be non-null, concluding 2/3 are [13, 14].
Another early work was that of Li et al. who sampled hundreds of real-world bugs from two
large open source projects [40]. They found (amongst other things) null dereferences are the
most prevalent of memory-related bugs.

Kimura et al. argued that “it is generally felt that a method returning null is costly to
maintain” [37]. Their study of several open source projects examined whether statements
returning null or checks against null were modified more frequently than others and they
observed a difference for the former (but not the latter). Furthermore, they found occurrences
of developers replacing statements returning null with alternatives (e.g. Null Objects [29]
or exceptions) suggesting a desire to move away from using null like this. Osman et al. also
investigated null checks across a large number of open source programs [52]. They found the
most common reason developers insert null checks is for method returns and, furthermore,
that this is most often to signal errors. The follow-up work of Leuenberger et al. investigated
the nullability of method returns in Apache Lucene (a widely-used search library) [39]. For
each method call site (either internally within Lucene or externally across clients), they
identified whether the method return was checked against null before being dereferenced (i.e.
as this indicates whether the caller expected it could return null or not). They confirmed
that most methods are expected to return non-null values. However, they also found that
external clients were more likely to check a method against null, suggesting clients employ
defensive behaviour (e.g. when documentation is missing, etc).

8.1 Migration
Dietrich et al. harvested lightweight contracts, such as @NonNull and @Nullable annotations,
from real-world code bases [17]. Unfortunately, they found such annotations are rarely used
in practice and that, instead, throwing IllegalArgumentExceptions and (to a lesser extent)
use of Java assert remain predominant. This suggests a key problem faced by all tools for
checking non-null annotations (such as those above) is that of annotating existing code bases.

J. Dietrich, D. J. Pearce, and M. Chandramohan 10:21

Brotherston et al. aimed to simplify migration of existing code bases to use non-null
annotations [10]. Their goal is to enable incremental migration of existing code bases to use
non-null annotations. Here, developers begin by annotating the most important parts of
their system and then slowly widen the net until, eventually, everything is covered. Their
approach follows gradual typing [61] and divides programs into the checked and unchecked
portions, such that null dereferences cannot occur in the former. To achieve this, runtime
checks are added to unchecked code to prevent exceptions occurring within checked code (i.e.
by forcing exceptions at the boundary between them). Such an approach is complementary
to our work, and the two could be used together. For example, one might start by inferring
annotations using our technique and, subsequently, shift to a gradual typing approach to
manage parts where inferred annotations were insufficiently strong, or otherwise require
manual intervention. Estep et al. further apply ideas of gradual typing to static analysis,
using null-pointer analysis as an example [22]. They argue gradual null-pointer analysis hits a
“sweet spot” by mixing static and dynamic analysis as needed. A key question they consider is
“why it is better to fail at runtime when passing a null value as a non-null annotated argument,
instead of just relying on the upcoming null-pointer exception”. In essence, they provide
two answers: (1) for languages such as C, null dereferences lead to undefined behaviour
and, hence, catching them in a controlled fashion is critical; (2) for others, such as Java,
it is generally better practice to catch errors as early as possible. Neito et al. also take
inspiration from gradual typing by considering blame across language interop boundaries [50].
In particular, when null-safe languages (e.g. Scala or Kotlin) interact with unsafe languages
(e.g. Java), problems can arise.

Houdini statically infers a range of annotations (including non-null) for Java programs [25].
The tool works by generating a large number of candidate annotations and using an existing
(modular) checker to eliminate spurious ones. Ekman et al. also developed a tool for inferring
non-null annotations which could identify roughly 70% of dereferences as safe [21]. Hubert
et al. formalised an inference tool for non-null annotations based on pointer analysis [35, 34],
whilst Spoto developed a similar system arguing it is faster and more precise in practice [63].
XYLEM employs a backwards analysis to find null dereferences [49]. Whilst it doesn’t
(strictly speaking) infer annotations, it could be modified to do so. Bouaziz et al. also
propose a backwards analysis to infer necessary field conditions on objects (e.g. that a field
is non-null) [8]. This approach is demand driven in the sense that fields are marked non-null
only if this is necessary to prohibit a null dereference being reported elsewhere.

Finally, inference tools have been developed for pluggable type systems [26, 27, 15, 16].
However, such tools typically cannot account for null checks in conditionals making them
relatively imprecise in this context.

8.2 Static Checking
Many tools for statically checking non-null annotations have been proposed. Typically, they
differ from traditional type checkers by operating flow-sensitively to account for conditional
null checks. They also assume non-null annotations have already been added to programs.
NullAway provides a nice example here, since it was developed by Uber for static non-null
checking at scale [5]. The key requirement was that it could run on all builds, rather than just
at code review time (as for a previous tool they used). Their tool is flow-sensitive, but often
takes an “optimistic” view (i.e. is unsound). Their reasoning is that sound (i.e. pessimistic)
tools produce too many false positives. NullAway does not soundly handle initialisation
(see below); likewise, for external (unannotated) code it assumes all interactions are safe.
Despite this, they found no cases where unsoundness lead to actual bugs across a 30-day

ECOOP 2023

10:22 On Leveraging Tests to Infer Nullable Annotations

period of usage on a real-world code base. Indeed, this corroborates the earlier findings of
Ayewah and Pugh who argued many null dereferences reported by tools do not actually
materialise as bugs in practice [4]. As another example, Eradicate is part of Facebook Infer
[1, 19, 12] and, in many ways, is similar to NullAway.

A number of other tools have been developed which can be used for static @NonNull
checking, such as FindBugs [33], ESC/Java [24], JastAdd [21], JACK [45] and more [56, 44].
Almost all of these employ flow-sensitive analysis, and many are unsound in various ways
(e.g. support for initialisation). Indeed, the initialisation problem has proved so challenging
that a large number of works are devoted almost exclusively to its solution [23, 36, 57, 66,
64, 60, 42, 43, 38]. Roughly speaking, the issue is that fields of reference type are assigned
a default value of null and, thus, every @NonNull field initially holds null (and this is
observable [66]). In our approach we check nullability at the end of object construction. This
method is unsound only if super constructors allow access to fields defined in subclasses. We
think that this is a rare programming pattern, and note that our approach while aiming for
high recall, does not guarantee soundness anyway as it is based on a dynamic analysis.

Finally, so-called “pluggable type systems” [9] allow optional type systems to be layered
on existing languages, thus allowing them to evolve independently [26, 27, 15, 3, 16, 47].
The checkers framework provides a prominent example which heavily influenced JSR308
(included in Java 8) [54]. A key advantage of this tool over others is the ability to support
for flow-sensitive type systems (a.k.a. flow typing [55]). Indeed, without this feature checking
non-null types is largely impractical [3].

9 Conclusion

We have presented a hybrid analysis pipeline that can be used to capture and refine nullability
issues and mechanically inject inferred @Nullable annotations into Java programs. Our
experiments on some of the most widely used Java commodity libraries demonstrates that
this approach is suitable for real-world programs, and that the inferred annotations are
consistent with annotations manually added by engineers. In particular, our approach has
high precision, and there is evidence from pull requests we have initiated that this precision
is potentially higher as our analysis is able to discover missing annotations in the already
nullable-annotated programs we have used for evaluation.

Mechanising this process addresses a major issues in real-world projects: the lack of
null annotations. Such annotations are part of the program semantics, and generally
the annotation process requires deep understanding by project owners and contributers.
However, the workload of adding such annotations is significant, and the lack of annotations
compromises the utility of static checkers. We have argued that the semantics of which
types are nullable and not is already at least partially encoded in existing test cases, and our
pipeline exploits this idea of leveraging tests.

The tool has been open sourced and is available from https://github.com/
jensdietrich/null-annotation-inference.

References

1 A tool to detect bugs in Java and C/C++/Objective-C code before it ships. URL: https:
//fbinfer.com/.

2 JetBrain Developer Ecosystem Survey 2021, 2021. URL: https://www.jetbrains.com/lp/
devecosystem-2021/java/.

3 C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework for implementing pluggable
type systems. In Proc. OOPSLA, pages 57–74, 2006.

https://github.com/jensdietrich/null-annotation-inference
https://github.com/jensdietrich/null-annotation-inference
https://fbinfer.com/
https://fbinfer.com/
https://www.jetbrains.com/lp/devecosystem-2021/java/
https://www.jetbrains.com/lp/devecosystem-2021/java/

J. Dietrich, D. J. Pearce, and M. Chandramohan 10:23

4 Nathaniel Ayewah and William Pugh. Null dereference analysis in practice. In Proc. PASTE,
pages 65–72. ACM Press, 2010.

5 Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. Nullaway: Practical type-based null
safety for java. In Proc. ESEC/FSE’19, pages 740–750. ACM, 2019.

6 Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros,
Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines of code later: using
static analysis to find bugs in the real world. Communications of the ACM, 53(2):66–75, 2010.

7 Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In Proc. ICSE’11,
pages 241–250. IEEE, 2011.

8 Mehdi Bouaziz, Francesco Logozzo, and Manuel Fähndrich. Inference of necessary field
conditions with abstract interpretation. In Proc. APLAS, pages 173–189. Springer-Verlag,
2012.

9 Gilad Bracha. Pluggable type systems. In Proc. Workshop on Revival of Dynamic Languages,
2004.

10 Dan Brotherston, Werner Dietl, and Ondrej Lhoták. Granullar: gradual nullable types for
java. In Proc. CC, pages 87–97. ACM Press, 2017.

11 Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: a code manipulation tool to
implement adaptable systems. Adaptable and extensible component systems, 30(19), 2002.

12 Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino
Luca, Peter W. O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. Moving
fast with software verification. In Proc. NFM, pages 3–11. Springer-Verlag, 2015.

13 Patrice Chalin and Perry R James. Non-null references by default in java: Alleviating the
nullity annotation burden. In European Conference on Object-Oriented Programming, pages
227–247. Springer, 2007.

14 Patrice Chalin, Perry R James, and Frédéric Rioux. Reducing the use of nullable types through
non-null by default and monotonic non-null. IET Software, 2(6):515–531, 2008.

15 Brian Chin, Shane Markstrum, and Todd Millstein. Semantic type qualifiers. In Proc. PLDI,
pages 85–95. ACM Press, 2005.

16 Brian Chin, Shane Markstrum, Todd Millstein, and Jens Palsberg. Inference of user-defined
type qualifiers and qualifier rules. In Proc. ESOP, 2006.

17 Jens Dietrich, David J Pearce, Kamil Jezek, and Premek Brada. Contracts in the wild: A study
of java programs. In Proc. ECOOP’17. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

18 Jens Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. XCorpus – An executable corpus of
Java programs. Journal of Object Technology, 16(4):1:1–24, August 2017. doi:10.5381/jot.
2017.16.4.a1.

19 Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. Scaling static
analyses at facebook. CACM, 62(8):62–70, 2019.

20 Kinga Dobolyi and Westley Weimer. Changing Java’s semantics for handling null pointer
exceptions. In Proc. ISSRE, pages 47–56. IEEE Computer Society, 2008.

21 T. Ekman and G. Hedin. Pluggable checking and inferencing of non-null types for Java. JOT,
6(9):455–475, 2007.

22 Sam Estep, Jenna Wise, Jonathan Aldrich, Éric Tanter, Johannes Bader, and Joshua Sunshine.
Gradual program analysis for null pointers. In European Conference on Object-Oriented
Programming (ECOOP), pages 3:1–3:25, 2021.

23 Manuel Fähndrich and K Rustan M Leino. Declaring and checking non-null types in an
object-oriented language. In Proceedings of the 18th annual ACM SIGPLAN conference on
Object-oriented programing, systems, languages, and applications, pages 302–312, 2003.

24 C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for Java. In Proc. PLDI, pages 234–245, 2002.

ECOOP 2023

https://doi.org/10.5381/jot.2017.16.4.a1
https://doi.org/10.5381/jot.2017.16.4.a1

10:24 On Leveraging Tests to Infer Nullable Annotations

25 Cormac Flanagan and K Rustan M Leino. Houdini, an annotation assistant for esc/java. In
International Symposium of Formal Methods Europe, pages 500–517. Springer, 2001.

26 Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A theory of type qualifiers. In
Proc. PLDI, pages 192–203, 1999.

27 Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers. In Proc.
PLDI, pages 1–12, 2002.

28 Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-oriented
software. In Proc. FSE’11, pages 416–419, 2011.

29 Maria Anna G. Gaitani, Vassilis Zafeiris, N. A. Diamantidis, and Emmanouel A. Giakoumakis.
Automated refactoring to the null object design pattern. Inf. Softw. Technol, 59, 2015.

30 Adele Goldberg and David Robson. Smalltalk-80: the language and its implementation.
Addison-Wesley Longman Publishing Co., Inc., 1983.

31 Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis. Heaps don’t
lie: countering unsoundness with heap snapshots. In Proc. OOPSLA’17, pages 1–27. ACM,
2017.

32 Warren Harrison. Eating your own dog food. IEEE Software, 23(3):5–7, 2006.
33 David Hovemeyer, Jaime Spacco, and William Pugh. Evaluating and tuning a static analysis

to find null pointer bugs. In Proc. PASTE, pages 13–19. ACM Press, 2005.
34 Laurent Hubert. A non-null annotation inferencer for java bytecode. In Proceedings of the 8th

ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering,
pages 36–42, 2008.

35 Laurent Hubert, Thomas Jensen, and David Pichardie. Semantic foundations and inference of
non-null annotations. In Proceedings of the International conference on Formal Methods for
Open Object-Based Distributed Systems (FMOODS), pages 132–149. Springer-Verlag, 2008.

36 Laurent Hubert and David Pichardie. Soundly handling static fields: Issues, semantics and
analysis. ENTCS, 253(5):15–30, 2009.

37 Shuhei Kimura, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji Kusumoto. Does return
null matter? In Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), pages 244–253. IEEE, 2014.

38 Alexander Kogtenkov. Practical void safety. In Proc. VSTTE, pages 132–151. Springer-Verlag,
2017.

39 Manuel Leuenberger, Haidar Osman, Mohammad Ghafari, and Oscar Nierstrasz. Harvesting
the wisdom of the crowd to infer method nullness in java. In 2017 IEEE 17th International
Working Conference on Source Code Analysis and Manipulation (SCAM), pages 71–80. IEEE,
2017.

40 Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang Zhai. Have
things changed now?: an empirical study of bug characteristics in modern open source software.
In Proceedings of the Workshop on Architectural and System Support for Improving Software
Dependability (ASID), pages 25–33. ACM Press, 2006.

41 Barbara H Liskov and Jeannette M Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems (TOPLAS), 16(6):1811–1841, 1994.

42 Fengyun Liu, Ondrej Lhoták, Aggelos Biboudis, Paolo G. Giarrusso, and Martin Odersky. A
type-and-effect system for object initialization. In Proc. OOPSLA, pages 175:1–175:28, 2020.

43 Fengyun Liu, Ondrej Lhoták, Enze Xing, and Nguyen Cao Pham. Safe object initialization,
abstractly. In Proceedings of the Symposium on Scala, pages 33–43. ACM Press, 2021.

44 Magnus Madsen and Jaco van de Pol. Relational nullable types with boolean unification. In
Proc. OOPSLA, pages 1–28, 2021.

45 C. Male, D.J. Pearce, A. Potanin, and C. Dymnikov. Java bytecode verification for @NonNull
types. In Proc. CC, pages 229–244, 2008.

46 Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp. Type regression testing to detect
breaking changes in node. js libraries. In proc. ECOOP’18. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

J. Dietrich, D. J. Pearce, and M. Chandramohan 10:25

47 Ana Milanova and Wei Huang. Inference and checking of context-sensitive pluggable types. In
Proc. ESEC/FSE, page 26. ACM Press, 2012.

48 Fabian Muehlboeck and Ross Tate. Empowering union and intersection types with integrated
subtyping. PACMPL, 2(OOPSLA):112:1–112:29, 2018.

49 Mangala Gowri Nanda and Saurabh Sinha. Accurate interprocedural null-dereference analysis
for java. In 2009 IEEE 31st International Conference on Software Engineering, pages 133–143.
IEEE, 2009.

50 Abel Nieto, Marianna Rapoport, Gregor Richards, and Ondrej Lhoták. Blame for null. In
Proc. ECOOP, pages 3:1–3:28, 2020.

51 Abel Nieto, Yaoyu Zhao, Ondřej Lhoták, Angela Chang, and Justin Pu. Scala with Explicit
Nulls. In Proc. ECOOP, volume 166, pages 25:1–25:26, 2020.

52 Haidar Osman, Manuel Leuenberger, Mircea Lungu, and Oscar Nierstrasz. Tracking null
checks in open-source java systems. In 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), volume 1, pages 304–313. IEEE, 2016.

53 Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed random testing for java. In
Proc. OOPSLA’07, pages 815–816. ACM, 2007.

54 Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D Ernst.
Practical pluggable types for java. In Proc. ISSTA’08, pages 201–212. ACM, 2008.

55 D. J. Pearce. Sound and complete flow typing with unions, intersections and negations. In
Proc. VMCAI, pages 335–354, 2013.

56 P. Pominville, F. Qian, R. Vallée-Rai, L. Hendren, and C. Verbrugge. A framework for
optimizing Java using attributes. In Proc. CC, pages 334–554, 2001.

57 Xin Qi and Andrew C. Myers. Masked types for sound object initialization. In Proc. POPL,
pages 53–65. ACM Press, 2009.

58 Baber Rehman, Xuejing Huang, Ningning Xie, and Bruno C. d. S. Oliveira. Union Types with
Disjoint Switches. In Proc. ECOOP, volume 222, pages 25:1–25:31, 2022.

59 Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan.
Lessons from building static analysis tools at google. Communications of the ACM, 61(4):58–66,
2018.

60 Marco Servetto, Julian Mackay, Alex Potanin, and James Noble. The billion-dollar fix - safe
modular circular initialisation with placeholders and placeholder types. In Proc. ECOOP,
volume 7920, pages 205–229. Springer-Verlag, 2013.

61 Jeremy Siek and Walid Taha. Gradual typing for objects. In Proc. ECOOP, pages 151–175.
Springer-Verlag, 2007.

62 Nicholas Smith, Danny Van Bruggen, and Federico Tomassetti. Javaparser: visited. Leanpub,
oct. de, 2017.

63 Fausto Spoto. Nullness analysis in boolean form. In Proc. SEFM, pages 21–30. IEEE, 2008.
64 Fausto Spoto and Michael D. Ernst. Inference of field initialization. In Proc. ICSE, pages

231–240. ACM Press, 2011.
65 Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. On the recall of static call graph

construction in practice. In Proc. ICSE’20, pages 1049–1060. IEEE, 2020.
66 Alexander J. Summers and Peter Mueller. Freedom before commitment: A lightweight type

system for object initialisation. In Proc. OOPSLA, pages 1013–1032, 2011.
67 Timothy A. V. Teatro, J. Mikael Eklund, and Ruth Milman. Maybe and either monads in

plain C++ 17. In Proc. CCECE, pages 1–4. IEEE, 2018.
68 Brian Vermeer. Spring dominates the java ecosystem with 60% using it for their main

applications, 2020. https://snyk.io/blog/spring-dominates-the-java-ecosystem-with-
60-using-it-for-their-main-applications/.

69 Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai Yu, Zhiliang
Zhu, and Shing-Chi Cheung. Do the dependency conflicts in my project matter? In Proc.
ESEC/FSE’18, pages 319–330, 2018.

70 Rafael Winterhalter. Byte Buddy – A code generation and manipulation library for creating
and modifying Java classes during the runtime, 2014. URL: https://bytebuddy.net/.

ECOOP 2023

https://snyk.io/blog/spring-dominates-the-java-ecosystem-with-60-using-it-for-their-main-applications/
https://snyk.io/blog/spring-dominates-the-java-ecosystem-with-60-using-it-for-their-main-applications/
https://bytebuddy.net/

super-Charging Object-Oriented Programming
Through Precise Typing of Open Recursion
Andong Fan #

The Hong Kong University of Science and Technology (HKUST), Hong Kong, China

Lionel Parreaux #

The Hong Kong University of Science and Technology (HKUST), Hong Kong, China

Abstract
We present a new variation of object-oriented programming built around three simple and orthogonal
constructs: classes for storing object state, interfaces for expressing object types, and mixins for
reusing and overriding implementations. We show that the latter can be made uniquely expressive
by leveraging a novel feature that we call precisely-typed open recursion. This features uses “this”
and “super” annotations to express the requirements of any given partial method implementation
on the types of respectively the current object and the inherited definitions. Crucially, the fact
that mixins do not introduce types nor subtyping relationships means they can be composed even
when the overriding and overridden methods have incomparable types. Together with advanced type
inference and structural typing support provided by the MLscript programming language, we show
that this enables an elegant and powerful solution to the Expression Problem.

2012 ACM Subject Classification Software and its engineering → Object oriented languages

Keywords and phrases Object-Oriented Programming, the Expression Problem, Open Recursion

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.11

Related Version Extended Version: https://lptk.github.io/superoop-paper

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.22
Software (Open-source implementation): https://github.com/hkust-taco/superoop

archived at swh:1:dir:7446abcf043f3546fae3ebce3efd85c07c70afa3
Software (Online demonstration): https://hkust-taco.github.io/superoop

Acknowledgements We thank the anonymous reviewers, Yaozhu Sun, and Marco Servetto for their
helpful comments, as well as Cunyuan Gao for his help with the implementation. This work follows
up on concepts previously presented by the first author as a research abstract [10].

1 Introduction

Every object-oriented programming (OOP) developer regularly uses the super keyword to
access overridden definitions from inherited classes. Yet, this keyword has received relatively
little attention in previous OOP literature and has been conspicuously absent from most
previous research, with few exceptions [17]. This may be due to the assumption that super-
calls can be resolved statically and are thus a mere syntactic convenience that is easily
desugared into traditional core OOP features [2]. In this paper, we propose to challenge
this assumption: noting that super is in fact late-bound in mixin-composition systems,1 we
describe an OOP approach which assigns precise types to super-calls to reflect the “open”
nature of this late binding. Consider the following prototypical Point example class:

class Point(x: Int , y: Int)

1 super is bound at the time the mixin method where it appears is composed into a class, which can
happen as late as runtime in many mixin-composition languages.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Andong Fan and Lionel Parreaux;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 11; pp. 11:1–11:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:afanab@cse.ust.hk
https://orcid.org/0000-0003-2124-9625
mailto:parreaux@cse.ust.hk
https://orcid.org/0000-0002-8805-0728
https://doi.org/10.4230/LIPIcs.ECOOP.2023.11
https://lptk.github.io/superoop-paper
https://doi.org/10.4230/DARTS.9.2.22
https://doi.org/10.4230/DARTS.9.2.22
https://github.com/hkust-taco/superoop
https://archive.softwareheritage.org/swh:1:dir:7446abcf043f3546fae3ebce3efd85c07c70afa3;origin=https://github.com/hkust-taco/superoop;visit=swh:1:snp:366e65a964cce1700214df84946ab6ebd0c7405b;anchor=swh:1:rev:00290c3434561b60f6bb6f3caf7afa79fda53fcc
https://hkust-taco.github.io/superoop
https://doi.org/10.4230/DARTS.9.2.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 super-Charging Object-Oriented Programming

This class simply defines two coordinates x and y as immutable fields.
Suppose we want to define a comparison function that works on points. We place this

definition in a mixin declaration, for reasons that shall soon become clear:
mixin ComparePoint {

fun compare(lhs: Point , rhs: Point): Bool =

lhs.x == rhs.x and lhs.y == rhs.y }

Now suppose we want to compare colored points, but we would like colored comparison
to be generally specified, so that it can be directly reused with other things than points.
This can be done using the following combination of interface and mixin (Base is a type
parameter):

interface Colored { color: String }

mixin CompareColored[Base] {

super: { compare: (Base , Base) → Bool }

fun compare(lhs: Base & Colored , rhs: Base & Colored): Bool =

super.compare(lhs , rhs) && lhs.color.equals(rhs.color) }

We define an interface specifying that a Colored object should contain a color method or field
of type String. We also define the CompareColored mixin, which implements a comparison
method based on an assumed existing comparison method, inherited from an unknown
parent implementation and referred to through super. The Base type parameter denotes
the type compared by that unknown parent implementation; it is needed in order to leave
the mixin open-ended, i.e., to allow mixing it with arbitrary parent implementations. Notice
that the type of compare in CompareColored is different from the one specified in the super

annotation, and is in particular not a subtype of it: the version defined in CompareColored

takes parameters of more precise type Base & Colored, where & is an intersection type
constructor, meaning that each parameter should be both a Base and a Colored. This
difference is a crucial ingredient in our precisely-typed open recursion approach.

We now define ColoredPoint and place its comparison implementation in a module:2

class ColoredPoint(x: Int , y: Int , color: String)

extends Point(x, y) implements Colored

module CompareColoredPoint extends ComparePoint , CompareColored[Point]

CompareColoredPoint did not need to define its own comparison method – that method was
composed automatically by inheriting from the ComparePoint and CompareColored mixins,
the latter using the correct Point base type argument. Note that mixins on the right override
those on the left. The signature of CompareColoredPoint’s compare method, which allows
passing in colored points, is:

CompareColoredPoint.compare: (Point & Colored , Point & Colored) → Bool

which is not a subtype of ComparePoint’s compare method. This is fine because mixins in
our approach do not introduce types, and there is thus no subtyping relationship between
CompareColoredPoint and ComparePoint, which is reminiscent of Cook et al. famous asser-
tion that inheritance is not subtyping [7].

2 A module declares a class with a singleton instance, similar to Scala’s object.

A. Fan and L. Parreaux 11:3

Now imagine we want to deal with “nested” objects, which are objects that may optionally
have a parent.3 We can similarly define a comparison mixin for nested objects as follows:

interface Nested[A] { parent: Option[A] }

mixin CompareNested[Base , Final] {

super: { compare: (Base , Base) → Bool }

this: { compare: (Final , Final) → Bool }

fun compare(lhs: Base & Nested[Final], rhs: Base & Nested[Final]): Bool =

super.compare(lhs , rhs) &&

if lhs.parent is Some(p)

then rhs.parent is Some(q) and this.compare(p, q)

else rhs.parent is None

}

In this variant, we additionally use a this refinement, which specifies the eventual types
of the methods the current object should support, after all inheritance and overriding is
performed. The reason we use this and not super in the recursive this.compare(p, q) call
is that we should take into account that p and q themselves may be nested points!

Finally, it is possible to compare points that are both nested and colored by directly
composing the corresponding implementations:

class MyPoint(x: Int , y: Int , color: String , parent: Option[MyPoint])

extends Point implements Colored , Nested[MyPoint]

module CompareMyPoint extends ComparePoint , CompareColored[Point],

CompareNested[Point & Colored , MyPoint]

Or alternatively, in a different order:
module CompareMyPoint extends ComparePoint , CompareNested[Point , MyPoint],

CompareColored[Point & Nested[MyPoint]]

Mixin composition order is meaningful because it determines overriding order; moreover, in
our approach, the types of methods may change through overriding – here, notice how we
pass different type arguments to CompareColored and CompareNested in each version.

To support this idea of precisely-typed mixin composition, we present the SuperOOP sys-
tem, a simple yet uniquely expressive core description of OOP built around three orthogonal
concepts: classes for storing object state, interfaces for expressing object types, and mixins for
reusing and overriding implementations.4 Notably, we only support inheriting from interfaces
and mixins, not from classes.5 We show that these simple, orthogonal concepts are sufficient
to explain the usual features of object-oriented programming languages, including those with
complicated multiple-inheritance disciplines, like Scala’s trait composition approach.

We also describe how the ideas of SuperOOP can be integrated into MLscript, a nascent
ML-inspired programming language with structural types and advanced type inference, based
on the recently proposed MLstruct type system [26]. Using this approach, all the types can

3 Option[A] is defined as the usual algebraic data type, with cases Some[A](value: A) and None.
4 Such separation of concerns was already proposed by previous authors, such as Bettini et al. [2] and

Damiani et al. [8], but the systems they developed did not support overriding and open recursion, which
is the raison d’être of our approach.

5 We see in Section 4.1 that the Point class inheritance example seen above can be desugared into our
core λsuper calculus through interface inheritance and without requiring class inheritance.

ECOOP 2023

11:4 super-Charging Object-Oriented Programming

be inferred automatically as long as they do not involve first-class polymorphism (which
requires explicit annotations). For instance, in MLscript, the CompareColored mixin shown
above could also be written as the more lightweight:

mixin CompareColored {

fun compare(lhs , rhs) =

super.compare(lhs , rhs) && lhs.color.equals(rhs.color) }

for which our compiler infers the following mixin signature:
mixin CompareColored: ∀ 'A1 'A2 'B . {

super: { compare: ('A1, 'A2) → Bool }

compare: ('A1 & {color: {equals: 'B → Bool}}, 'A2 & {color: 'B}) → Bool}

Our specific contributions are summarized as follows:
We explain the general ideas of SuperOOP in the context of the structurally-typed
MLscript programming language, and how it allows solving interesting problems simply
and elegantly, including the Expression Problem and derivatives (Section 2). SuperOOP
mixins improve on the state of the art by allowing precise typing of open recursion, which
to the best of our knowledge was never proposed before.
We formalize the core concepts of SuperOOP, including its precisely-typed mixin inherit-
ance mechanism, in a declarative type system called λsuper. We use big-step semantics
to closely reflect a real implementation and prove the soundness of λsuper through the
preservation and coverage properties (Section 3).
We discuss the expressiveness and limitations of the presented design of SuperOOP as
well as its implementation. We present several important approaches from previous
literature on the topic of inheritance and the Expression Problem, and explain how these
approaches compare to SuperOOP in detail (Section 4).
We provide an implementation of MLscript/SuperOOP which demonstrates how type
inference can be used to type check concise mixin and class definitions. Both the open-
source version and the archived artifact with documentation are available. A demo of
this implementation is included in the supplementary material of this paper.6

2 Motivation

In this section, we introduce a motivating example in MLscript “super-charged” by our OOP
approach in more detail.

The Expression Problem and Extensible Variants

In modular programming, the Expression Problem (EP) describes the dilemma posed by
the modular extension for both data types and their operations in object-oriented and
functional programming. There are many ways of tackling this problem, but one of the most
straightforward is to rely on some notion of extensible variants, as done by Garrigue [16]
with OCaml’s polymorphic variants. The general idea of extensible variants is that they are
similar to algebraic data types (a.k.a. variants) except that one is able to specify which data
type cases are allowed in a given type, and moreover one is able to add new data type cases
after the fact.

6 The demo is also available at: https://hkust-taco.github.io/superoop/.

https://hkust-taco.github.io/superoop/

A. Fan and L. Parreaux 11:5

MLscript supports a simple form of extensible variants implemented through subtyping and
structural types. In this section, we see how the combination of this feature and SuperOOP’s
precise typing of open recursion can achieve what we believe is one of the simplest and
cleanest solutions to the expression problem so far.

A Quick Look at MLscript

We first take a quick look at MLscript’s basic language features that enable a form of
extensible variants and serve as key ingredients in our solution to the Expression Problem.

Basic data type classes. Consider the following MLscript class definitions which encode a
very minimal expression language that we will later extend in several directions.

class Lit(value: Int)

class Add[T](lhs: T, rhs: T)

The Lit class represents integer literals and the Add class represents addition. Note that the
types of Add’s value parameter are polymorphic, meaning that they can be chosen arbitrarily.
We will see that the ability to leave the types of subexpressions open is crucial to the
extensibility of our approach.

Union types. Based on these class definitions, we can construct types such as:
type LitOrAddLit = Lit | Add[Lit]

where ‘|’ is called a union type constructor. LitOrAddLit represents the type of an expression
that is either an integer literal or an addition between two integer literals.

Equirecursive types. More interestingly, we can define the type of arbitrary expressions in
our little language as:

type SimpleExpr = Lit | Add[SimpleExpr]

Notice that this type is equirecursive, meaning that SimpleExpr is equivalent to its unrolling
Lit | Add[SimpleExpr]. This is quite convenient in the context of structural typing, and it
allows us to have subtyping relationships (denoted as ‘T1 <: T2’, meaning that T1 is a subtype
of T2) such as LitOrAddLit <: SimpleExpr. An equivalent way of specifying SimpleExpr

without having to introduce a type declaration is through MLscript’s ‘as’ binder (similar to
‘as’ in languages like OCaml), as in ‘Lit | Add['a] as 'a’ (where ‘as’ has least precedence).

Evaluation. To use values in our small expression language, we define an eval recursive
function:

fun eval(e) = if e is

Lit(n) then n

Add(lhs , rhs) then eval(lhs) + eval(rhs)

This function uses MLscript’s syntax for pattern matching, which extends the traditional
if-then-else syntactic form with multi-way-if-style functionality and destructuring through
an ‘is’ keyword [25]. The type of this function is inferred by MLscript to be:

eval: (Lit | Add['a] as 'a) → Int

ECOOP 2023

11:6 super-Charging Object-Oriented Programming

Default cases and constructor difference. It is quite instructive to consider what happens
when default cases are used in MLscript, as in:

fun eval2(e) =

if e is

Lit(n) then n

Add(lhs , rhs) then eval2(lhs) + eval2(rhs)

else e

In this case, the type inferred is
eval2: (Lit | Add['a] | 'b\Lit\Add as 'a) → (Int | 'b)

Above, ‘\’ is a constructor difference type operator,7 which is used to remove concrete class
type constructors from a given type (here 'b). This type operator applies incrementally, as
its left-hand side becomes concretely known upon type instantiation. For instance, after
instantiating the type variable 'b to, say, Add[Int] | Bool in the type above, 'b\Lit\Add

becomes (Add[Int] | Bool)\Lit\Add, which is equivalent to just Bool. Since all negative
occurrences of 'b (here there is only one) are subject to this constructor difference, passing
values for 'b which are of the Lit or Add forms is effectively prevented, which ensures type
safety8 [26]. On the other hand, any other type constructor is allowed, for example, we could
call eval2(true), with inferred result type Int | Bool.

Open Recursion in MLscript with SuperOOP Mixins

Now let us consider putting our original evaluation function inside of a mixin, in order to
enable future extensions. To make the recursion of evaluation open, we now recurse through
method calls of the form ‘this.eval’ (here ‘this’ is the class instance to be late-bound)
instead of a direct eval recursive function call:

mixin EvalBase {

fun eval(e) = if e is

Lit(n) then n

Add(lhs , rhs) then this.eval(lhs) + this.eval(rhs) }

The type signature inferred for that mixin definition is the following:
mixin EvalBase: ∀ 'A. {

this: { eval: ('A) → Int }

eval: (Lit | Add['A]) → Int

}

Above, 'A is a mixin-level type variable,9 meaning that it must be instantiated to a specific
type each time the mixin is inherited as part of a class. Since mixins do not introduce types
on their own, EvalBase cannot be used as a type. Using EvalBase as a type would be a

7 Constructor difference is not a primitive construct of MLscript’s underlying type system, MLstruct
[26]. Type A \ B is encoded in that type system as A & ~#B, where & is the type intersection operator,
~ is the type negation operator, and #B represents the nominal identity of class B, i.e., its raw type
constructor without any fields or type parameters attached.

8 Perhaps counter-intuitively, we do not need to restrict the positive occurrences of 'b, as they are
always effectively unrestricted due to covariance. Consider a function of type ('b\Lit\Add) → 'b.
Substituting Mul | Lit | Add for 'b results in ((Mul | Lit | Add)\Lit\Add) → (Mul | Lit |
Add), which is equivalent to Mul → (Mul | Lit | Add). This is a supertype of Mul → Mul, which
we could have obtained from substituting Mul for 'b in the first place, so this type would have been
reachable even after a “properly restricted” substitution of 'b. In other words, it does not make much
sense to restrict the positive occurrence of 'b and there is no practical need for it.

9 We use uppercase names for mixin-level type variables and lowercase names for function-level ones.

A. Fan and L. Parreaux 11:7

problem because there would be no definite type to replace 'A with in the signature of its
eval method – so we would not know how to type expressions such as x.eval when x has
type EvalBase. Note that 'A can even be instantiated to several incomparable types within a
single class, if EvalBase is inherited several times.

What is interesting here is that MLscript infers a this type refinement (also called self
type), which specifies what the type of this should be for the mixin to be well-typed. Here,
this represents the final object obtained from the future mixin composition. Crucially, notice
that the type of eval is no longer recursive – indeed, it no longer contains a recursive ‘as’
binder. This is because we have opened the recursion, and the type that is inferred for eval

precisely specifies what this partial definition accomplishes: it examines the top level of an
expression and when that expression is an Add, it calls eval open-recursively through this

with the corresponding subexpressions, expecting integer results from that recursive call.
Opening recursion in this way allows us to adapt the interpretation of this partially-

specified recursive function, as we shall see shortly.

Closing back. We can immediately tie the knot and obtain an equivalent implementation
to the original recursive function eval by defining a class that only inherits from EvalBase:

class SimpleLang extends EvalBase

whose inferred type signature is:
class SimpleLang: {

eval: (Lit | Add['a] as 'a) → Int

}

Something important happened here: by creating the class SimpleLang from the previous
mixin, we effectively tie the recursive knot for the corresponding method. That is, to type
check SimpleLang, MLscript constrains the “open” polymorphic type variable 'A associated
with eval in EvalBase and instantiates it to the correct type to make the overall mixin
composition type check. More specifically, remember that eval as defined in EvalBase

was given type (Lit | Add['A]) → Int assuming that this had type { eval: ('A) →
Int }. Here, we know that the type of this is SimpleLang and that SimpleLang’s eval

implementation is the one inherited from EvalBase. So when constraining types to make the
subtyping relation SimpleLang <: { eval: ('A) → Int } hold, this leads to constraining
(Lit | Add['A]) → Int <: ('A) → Int, which in turn leads to the constraint 'A <: (Lit

| Add['A]). So MLscript instantiates the type variable 'A to the principal solution, i.e the
recursive type (Lit | Add['a]) as 'a, which satisfies this recursive constraint.

Extending the operations. Now consider extending our code for a new expression pretty-
printing method:

mixin PrettyBase {

fun print(e) = if e is

Lit(n) then toString(n)

Add(lhs , rhs) then this.print(lhs) ++ "+" ++ this.print(rhs) }

Mixin PrettyBase defines a print method for Lit and Add. Its inferred type is analogous to
that of EvalBase. This demonstrates that we can extend the operations performed on our
simple language, which is one of the extensibility directions considered by the Expression
Problem.

ECOOP 2023

11:8 super-Charging Object-Oriented Programming

Extending the data types. Next, consider another direction of code extension – defining a
new expression constructor. We here define a negation expression type Neg:

class Neg[T](expr: T)

Now, the obvious question is how to extend arbitrary existing operations to this new data
type constructor in a way that is as general and modular as possible.

super-charging OOP with Polymorphic Mixins

As noticed by Garrigue [16], it is often useful to define components that extend yet unknown
base implementations, so that the same components can be applied to different base imple-
mentations, and so that in general we can merge independently-defined languages together.
This is possible to do in MLscript by defining mixins that make use of this and super, as in
the following example:

mixin EvalNeg {

fun eval(e) =

if e is Neg(d) then 0 - this.eval(d)

else super.eval(e)

}

which can be written more concisely using the following syntax sugar:
mixin EvalNeg { fun eval(override Neg(d)) = 0 - this.eval(d) }

We can include this partial Neg-handling recursion step as part of any previously-defined
base implementation, such as our previous EvalBase. We get the following inferred type for
EvalNeg, which precisely describes this property:

mixin EvalNeg: ∀ 'A 'B 'R . {

this: { eval: 'A → Int }

super: { eval: 'B → 'R }

eval: (Neg['A] | 'B\Neg) → (Int | 'R)

}

We can see that the type signature of our mixin now includes a super refinement in addition
to the this refinement. This is the key to enabling polymorphic extension: when composing
such a mixin later on, MLscript will match up this super requirement with whatever
implementation is provided by the previous mixin implementations in the chain of mixin
composition. Recursive knots will only be tied when the mixin is composed as part of a class.

The PrettyNeg extension for pretty-printing is defined analogously.

Tying the knot again. Finally, we can compose everything together as part of a new class:
class Lang extends EvalBase , EvalNeg , PrettyBase , PrettyNeg

And here is the type signature inferred for this definition:
class Lang: {

eval: (Lit | Add['a] | Neg['a] as 'a) → Int

print: (Lit | Add['a] | Neg['a] as 'a) → Str

}

Again, what happens here is important to consider. We are now tying the knot with respect
to both this and super in all the mixins making up the mixin inheritance stack. More
specifically, we start by making sure that the member types provided by the first mixin
EvalBase satisfy the super requirement of the second mixin EvalNeg, then we compute new
member types based on EvalNeg’s contributions, before checking that the resulting type

A. Fan and L. Parreaux 11:9

satisfies the super requirement of the next mixin in line, PrettyBase, etc. This results in
the inferred recursive types above, which precisely characterize what shapes of data that
Lang’s eval and print methods can handle.

Polymorphic extensibility. To demonstrate that our EvalNeg component is truly generic
over the existing implementation it is to be merged upon, we can define yet another mixin
that adds a new Mul language feature:

class Mul[T](lhs: T, rhs: T)

mixin EvalMul { fun eval(override Mul(l, r)) = this.eval(l) * this.eval(r) }

And then we compose all of these mixins together in two possible orders (the order determines
which of Neg and Mul will be matched first):

class LangNegMul extends EvalBase , EvalNeg , EvalMul

class LangMulNeg extends EvalBase , EvalMul , EvalNeg

In both cases, the inferred signature is equivalent:
class LangNegMul: { eval: (Lit | Add['a] | Neg['a] | Mul['a] as 'a) → Int }

Pattern-Matching All the Way

To conclude this motivating example, we exemplify a capability of our system that most
solutions to the expression problem lack, with the notable exception of polymorphic variants
(see Section 4.3): the ability of pattern matching deeply inside subexpressions, which enables
the definition of optimization passes.

For instance, below we define an EvalNegNeg optimization which shortcuts the evaluation
of double negations, directly evaluating the doubly-negated expression instead:

mixin EvalNegNeg { fun eval(override Neg(Neg(d))) = this.eval(d) }

of inferred type:
mixin EvalNegNeg: ∀ 'A 'B 'C 'D . {

super: {eval: (Neg['A] | 'B) → 'C}

this: {eval: 'D → 'C}

fun eval: (Neg[Neg['D] | 'A\Neg] | 'B\Neg) → 'C

}

This type deserves some explanation. The parameter type of eval is ‘Neg[Neg['D] | 'A \

Neg] | 'B\Neg’, which describes the fact that:
eval accepts either an instance of Neg or, failing that, a 'B that is not a Neg;
If the argument is a Neg, then its type argument must itself be either a Neg or an 'A that
is not a Neg;
If that nested type argument is a Neg, then its type argument must be 'D. Since this
type argument is passed to this.eval, we get the this refinement {eval: 'D → 'C}.
In case either the eval argument is not a Neg (so the argument is a 'B) or the eval

argument is a Neg['A] where 'A is not a Neg, evaluation falls back to a super call, which
is translated into the super refinement {eval: (Neg['A] | 'B) → 'C}.

This mixin can be merged onto any mixin stack to obtain the desired effect; for example:10

class Lang extends EvalBase , EvalNeg , EvalMul , EvalNegNeg

10 In this case, it is important to mix in EvalNegNeg after EvalNeg in the inheritance stack, so that
the optimization semantics override the base semantics, and not the other way around. This is a
fundamental property of optimization passes: their composition order matters.

ECOOP 2023

11:10 super-Charging Object-Oriented Programming

3 A Core Language for SuperOOP

In this section, we present an explicitly-typed core language that captures the core object-
oriented concepts of SuperOOP, leaving type inference aside. We first informally present the
key innovation of SuperOOP’s object-oriented type system and then define λsuper, a minimal
declarative and explicitly-polymorphic calculus.

3.1 SuperOOP Core Concepts
The core concepts of SuperOOP can be summarized as follows.

Interfaces, mixins, and classes. Interfaces, mixins, and classes are three orthogonal building
blocks that model OOP in our system. Interfaces define a set of method signatures. For
an object conforming to an interface, it should support all the methods specified in that
interface. Contrary to classes and mixins, which in our core language have no types, we
associate each interface with its own type. Mixins provide implementations for methods.
Classes, finally, implement interfaces by a set of parameters, which represent the state of
the object, and a linear composition of mixins.

Interface inheritance. As in most OOP languages, existing interfaces can be extended
with additional methods through interface inheritance. A child interface may inherit from
several parent interfaces (i.e., we support multiple inheritance of interfaces). Moreover, a
child interface may override parent method signatures with refined signatures, as determined
by the subtyping relation. As an example, consider the following interface composition:

interface I1 { a: S }; interface I2 { a: T }; interface I3 extends I1, I2

Method a’s signature in the composed interface I3 is the intersection of the inherited
signatures, i.e. S & T. Intersection types enable precise multiple interface inheritance, since
they are used as greatest lower bounds of the inherited type signatures, which also makes
the composed interface a subtype of all inherited interfaces.

Mixin composition. SuperOOP mixins are compositional and reusable building blocks
to construct classes. They provide partial method implementations that, when composed
together, are checked to satisfy the interface that the class is meant to conform to. A mixin
composition is simply a list of mixins. Each mixin in a mixin composition overrides not
only method implementations but also method types inherited from previous mixins. So the
type of a method may change along the mixin composition, but the type system ensures
that the typing assumptions made by each implementation (in the form of this and super

refinements) are satisfied. This also explains why mixins are not considered types (unlike,
e.g., Scala traits): the fact that a mixin is present in the inheritance clause of a class does
not imply that the resulting object will offer methods with types comparable to the ones
provided by the mixin.

Precisely-Typed Open Recursion. A crucial feature of OOP, open recursion is the ability
for a method to invoke itself or another method via a late-bound this instance, which may
lead to evaluating overriding implementations. In most OOP languages with inheritance,
the type of this is the current class’s type. In these languages, method invocations on this

are safe because overriding implementations from subclasses can only refine the types of
overridden methods. By contrast, in SuperOOP, methods are overridden regardless of types,

A. Fan and L. Parreaux 11:11

Names, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and termsNames, types, and terms
Class name C

Mixin name M, N

Interface name I, J

Field name m, p

Type S, T, U, V ::= X, Y | I[T] | S → T | ∀X. T | S & T | Object
Term e ::= x, y | this | super | λx : T. e | ΛX. e

| e1 e2 | e T | e.m | new C[T](e)

Interfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classesInterfaces, mixins, and classes

Structural type R ::= { m : T }

Implementation I ::= { m : T = e }
Top-level definition D ::=

Interface I[X] ◁ J [T] R

Mixin | M [X]RT I

Class | C[X](m : T) ◁ I[T], M [T]

Program P ::= D ; e

Figure 1 Syntax of λsuper.

and the actual type of this is only decided when the mixin composition is finalized as part
of a class definition. Therefore, a precise type specification for this is necessary for open
recursive calls in mixin methods. Importantly, this type refinement can be polymorphic at
the mixin level, being instantiated at mixin composition time (i.e., upon being used as part
of a class definition). Such polymorphism allows for later extensions to the shapes of data
types that a method may be made to work on, as described in Section 2.

3.2 Formal Syntax
We now introduce the λsuper calculus, a formalization of SuperOOP. The design of this
calculus is inspired by Featherweight Generic Java [19] and Pathless Scala [20]. Throughout
our formalization, we use the notation Ei

i∈n..m to denote the repetition of syntax form Ei

with index i from n to m. We use E as a shorthand when i is not necessary for disambiguation.
Moreover, we use [T/X] to denote the conventional capture-avoiding substitution of a list of
type parameters X (which can possibly be empty) to T . In definitions of metafunctions, we
use ∅ as a default vacuous result.

The syntax of λsuper is presented in Figure 1. Meta-variables S, T, U, V range over types,
which include type variables, interfaces with a list of type arguments, arrow types, universally
quantified types, intersection types, and the top type Object. For terms e, there are term
variables x and y. this and super are akin to term variables with special treatment. We
have standard explicitly-typed lambda abstractions and term applications, as well as type
abstraction and type application terms. Method invocation and access to object fields share
a single syntax: we consider access to object fields as method invocation. Objects are created
with a new keyword with term and type arguments supplied.

ECOOP 2023

11:12 super-Charging Object-Oriented Programming

S <: T

S-Refl

T <: T

S-Top

T <: Object

S-Interface
S ∈ parents(I[T])

I[T] <: S

S-Inv
S <: T T <: S

I[S] <: I[T]

S-Andl

S1 & S2 <: S1

S-Andr

S1 & S2 <: S2

S-And
S <: T1 S <: T2

S <: T1 & T2

S-Trans
S <: U U <: T

S <: T

S-Arrow
S2 <: S1 T1 <: T2

S1 → T1 <: S2 → T2

S-Forall
S <: T

∀X. S <: ∀X. T

Figure 2 Declarative subtyping.

The top-level definitions of λsuper are interfaces, mixins, and classes. Every interface
I[X] has a type parameter list [X], a structural refinement R, and inherits multiple parent
interfaces J [T]. A structural refinement R contains a list of method signatures m : T that
specify methods’ names and types. Mixins, parametrized by type parameters, provide
method implementations I. Crucially, each mixin has a structural refinement R attached
to super and a type T for this for precise typing of open recursion. Finally, a class has a
class-level type parameter list, immutable object fields, an interface it implements, and a
mixin composition M [T] that provides method implementations. A program consists in a
list of top-level definitions and a term that accesses them. For all top-level definitions, we
require the standard well-formedness conditions that all names are uniquely defined and no
class transitively inherits itself. In later rules, we assume terms’ access to the underlying
top-level definitions.

3.3 Static Semantics
We present the static semantics of λsuper which includes a declarative subtyping, term typing,
and well-formedness check of top-level definitions.

Declarative subtyping. Figure 2 shows the declarative subtyping of λsuper. Most rules
are unsurprising. Rule S-Interface describes that an interface is a subtype of its parent
interfaces. Auxiliary function parents(I[T]) (defined in the extended version) returns the list
of parent interfaces. For simplicity, we consider that interfaces are invariant in their type
parameters (rule S-Inv). A universally quantified type is a subtype of another universally
quantified type only when they are quantifying the same type variable.

Term typing. Figure 3 lists the typing rule of terms. Γ ⊢ e : T is the term typing relation.
A typing context Γ maps term variables to types, super to a structural refinement, and
this to a type. The typing rules for term variables (T-Var), lambda and type abstractions
(T-Abs and T-TAbs), term and type applications (T-App and T-TApp), as well as the
subsumption rule (T-Sub), are standard. Note that since super is not bound to a type (but
to a structural refinement) in typing contexts, super itself will never be assigned a type,
which matches the usual semantics of super that it should only receive method call messages
but not be passed around. The typing of method invocations is separated into two cases. If
the receiver is a term (other than super) that has a type, we look up the method signature

A. Fan and L. Parreaux 11:13

Typing context Γ ::= ϵ | Γ, x : T | Γ, super : R | Γ, this : T

Γ ⊢ e : T

T-Var
Γ(x) = T

Γ ⊢ x : T

T-This
Γ(this) = T

Γ ⊢ this : T

T-Abs
Γ, x : S ⊢ e : T

Γ ⊢ λx : S. e : S → T

T-TAbs
Γ ⊢ e : T

Γ ⊢ ΛX. e : ∀X. T

T-App
Γ ⊢ e1 : S → T Γ ⊢ e2 : S

Γ ⊢ e1 e2 : T

T-TApp
Γ ⊢ e : ∀X. S

Γ ⊢ e T : [T/X]S

T-Access
Γ ⊢ e : T mtype(m, T) = S

Γ ⊢ e.m : S

T-Super
Γ(super) = R

mrefn(m, R) = S

Γ ⊢ super.m : S

T-New
vparams(C[T]) = mi : Ui

i∈1..n

Γ ⊢ ei : Ui
i∈1..n ctype(C[T]) = V

Γ ⊢ new C[T](ei
i∈1..n) : V

T-Sub
Γ ⊢ e : S

S <: T

Γ ⊢ e : T

Given that interface I is defined as I[X] ◁ J [U] R:

mtype(m, I[T]) =

{
[T/X]S if (m : S) ∈ R
S if m /∈ R and mtype(m, &[T/X]J [U]) = S

mtype(m, S & T) =


U & V if mtype(m, S) = U and mtype(m, T) = V

U if mtype(m, S) = U and mtype(m, T) = ∅
V if mtype(m, S) = ∅ and mtype(m, T) = V

mtype(m, T) = ∅ otherwise

Figure 3 Term typing.

in the receiver’s type. Function mtype(m, T) computes method m’s signature from type T .
Otherwise, if the receiver is super, we directly read the method type from its associated
structural refinement using function mrefn(m, R) (defined in the extended version). To type
class instantiation (T-New), we check that all constructor arguments match the types of the
class fields returned by function vparams(C[T]), and the object has interface type ctype(C[T])
of the class (vparams and ctype are defined in the extended version).

The design of mtype basically follows that of Pathless Scala [20]. When a method signature
is present in an interface, we directly return it. Otherwise, we search parent interfaces by
calling mtype with the intersection of all parent interfaces (denoted as &J [U]). Note that
nullary intersection is Object. To compute a method signature from an intersection type, we
recursively consider both sides of the intersection. When both types define the method, we
take the intersection of corresponding results.

Well-formedness of top-level definitions. Figure 4 shows the well-formedness check of
mixins, classes, and interfaces. We put name lookup results of those structures as premises
in the rules. The first premises of rules in Figure 4 are the case.

ECOOP 2023

11:14 super-Charging Object-Oriented Programming

M ok

MixinCheck
M [X]RT { m : S = e }

∀(m : S = e) ∈ M . this : T, super : R ⊢ e : S

M ok

I ok

InterfaceCheck
I[X] ◁ J [T] { m : S } J ok

∀(m : S) ∈ I . mtype(m, &J [T]) = ∅ or
{

mtype(m, &J [T]) = U

S <: U

I ok

C ok

ClassCheck
C[X](p : T) ◁ I[U], Mi[U ′]

i∈n..1

I ok Mi ok Mi ⇒ C ∀m ∈ mnames(I[U]) .

 mtype(m, I[U]) = S

search(m, 0, C) = V

V <: S

C ok

Mi ⇒ C

InheritCheck
C[X](p : U ′) ◁ I[U], Mi[V]

i∈n..1
Mi[Y]RT I

I[U] <: [V/Y]T ∀(m : S) ∈ R .

{
search(m, (i + 1), C) = S′

S′ <: [V/Y]S
Mi ⇒ C

Figure 4 Well-formedness check of top-level definitions and mixin inheritance check.

Well-formed mixins. To check a mixin (M ok), we check that every method implementation
can be typed at its signature with precise types of this and super in the context.11

Well-formed interfaces. An interface is well-formed (I ok) when its parent interfaces
are all well-formed. A method signature should either be newly introduced (in this case,
mtype(m, &J [T]) = ∅), or have a subtype of the intersection of all m’s signatures in parents
(i.e., mtype(m, &J [T]) = U).

Well-formed classes. Class well-formedness check (C ok) considers the following aspects:
1. The implemented interface and each mixin in the mixin composition are well-formed.
2. Open-recursive calls via this in the mixin composition are safe: the class type is a subtype

of each mixin’s this type annotation.
3. The mixin composition is correct: each mixin’s structural refinement on super is satisfied.
4. The interface is satisfied: the class has all methods (and fields, as we uniformly treat

fields and methods) required, and their signatures conform to the interface.

11 Note that we bind this to a type while super to a structural refinement in each mixin. For super, the
parent mixin in the composition hierarchy does not define an object type. It is therefore enough to give
super a structural method refinement to tell what types the overridden methods should have. On the
other hand, this is late-bound to the receiver object that has a type, can be passed around, and receive
method invocation messages. Hence this is annotated with a type, and the annotated type should be a
supertype of the later defined class’s type.

A. Fan and L. Parreaux 11:15

Given that class C is defined as C[X](mj : Tj) ◁ I[S′], Mi[S]
i∈n..1

,
and mixin Mi is defined as Mi[Y]RV I:

search(mj , 0, C) =

{
Tj if mj : Tj ∈ mj : Tj

U if mj /∈ mj : Tj and search(mj , 1, C) = U

search(m, i, C) =

{
[S/Y]U if 0 < i ≤ n and (m : U = e) ∈ I
U if 0 < i ≤ n and m /∈ I and search(m, (i + 1), C) = U

search(m, i, C) = ∅ otherwise

Figure 5 Method implementation type search function.

For 1., I ok checks the interface, and M ok checks each mixin. Relation Mi ⇒ C implements
mixin inheritance check which deals with 2. and 3.. It checks if the inheritance of the i-th
mixin in class C’s mixin composition is correct. Note that the index i here ranges in n..1 (as
Mi[S]

i∈n..1
), which means syntactically, the rightmost mixin in the mixin composition is the

first one. Rule InheritCheck guarantees that, first, this type of the i-th mixin should be
a supertype of the interface that the class conforms to, which satisfies 2.. Second, for each
method m’s signature in the structural refinement of super, the parent mixin composition
provides a compatible implementation. Specifically, the type of m’s implementation provided
by mixins ranging in n..(i + 1) (computed by search(m, (i + 1), C), defined in Figure 5 and
explained later) should be a subtype of the i-th mixin’s super refinement on m, which satisfies
3.. To satisfy 4., for each method name m defined in the interface (computed by mnames,
defined in the extended version), its implementation type provided by the class fields or
mixin composition (computed by search(m, 0, C)) should be compatible with the signature
specified by the interface (computed by mtype).

Method implementation type search. Figure 5 defines function search(m, i, C) to search
implementation type of m provided by fields or mixins ranging in n..i. When i = 0, it
searches class fields for the method name m. If m is not implemented by fields, the search
continues with the first mixin (i = 1). For the i-th mixin, the search directly returns the
method signature if m is implemented in this mixin. Otherwise, it continues with the parent
mixin (indexed (i + 1)). The search returns ∅ if i exceeds the length of class C’s mixin
composition (i > n), which means m is not implemented in the class, and the search fails.

3.4 Dynamic Semantics
Figure 6 lists the syntax of values, results, and runtime contexts, and lists the evaluation
rules that produce values (the rules that produce runtime errors are omitted and can be
found in the extended version). The big-step evaluation judgment Ξ ⊢ e ⇓ r denotes that
term e evaluates to result r under runtime context Ξ. The result of evaluation may be a
normal value or an error. Values are either closures or objects. A runtime context Ξ binds
values to term variables and a configured object to this. A configured object {i ⋆ C[T](v)} is
a pair of an object and a natural number i called the search index. This index directs the
search for method implementation in the object fields and mixin composition at runtime.
The evaluation rules for variables and term applications are standard. For type applications,
while we use type substitution in the semantics, this will be no-op at runtime, as all generic
types are erasable – only class tags are used at runtime, which are concrete types that need

ECOOP 2023

11:16 super-Charging Object-Oriented Programming

Value v, w ::= ⟨λx : T. e, Ξ⟩ | ⟨ΛX. e, Ξ⟩ | C[T](v)

Runtime context Ξ ::= ϵ | Ξ, x 7→ v | Ξ, this 7→ {i ⋆ C[T](v)}
Result r ::= val v | err

Ξ ⊢ e ⇓ r

E-Var
Ξ(x) = v

Ξ ⊢ x ⇓ val v

E-This
Ξ(this) = {i ⋆ C[T](v)}
Ξ ⊢ this ⇓ val C[T](v)

E-App
Ξ ⊢ e1 ⇓ val ⟨λx : T. e, Ξ′⟩

Ξ ⊢ e2 ⇓ val v Ξ′, x 7→ v ⊢ e ⇓ val v′

Ξ ⊢ e1 e2 ⇓ val v′

E-TApp
Ξ ⊢ e ⇓ val ⟨ΛX. e′, Ξ′⟩

[T/X]Ξ′ ⊢ [T/X]e′ ⇓ val v

Ξ ⊢ e T ⇓ val v

E-Abs

Ξ ⊢ λx : T. e ⇓ val ⟨λx : T. e, Ξ⟩

E-TAbs

Ξ ⊢ ΛX. e ⇓ val ⟨ΛX. e, Ξ⟩

E-New
vparams(C[T]) = mi

Ξ ⊢ ei ⇓ val vi

Ξ ⊢ new C[T](ei) ⇓ val C[T](vi)

E-Access
Ξ ⊢ e ⇓ val C[S](v)

(this 7→ {0 ⋆ C[S](v)}) ⊢ super.m ⇓ val v′

Ξ ⊢ e.m ⇓ val v′

E-ArgMiss
Ξ(this) = {0 ⋆ C[S](v)} m /∈ vparams(C[S])

(this 7→ {1 ⋆ C[S](v)}) ⊢ super.m ⇓ val v′

Ξ ⊢ super.m ⇓ val v′

E-ArgHit
Ξ(this) = {0 ⋆ C[S](vi)}
vparams(C[S]) = mi : Ui

Ξ ⊢ super.mi ⇓ val vi

E-SuperMiss
Ξ(this) = {i ⋆ C[S](v)} i > 0

m /∈ methods(i, C[S](v)) (this 7→ {(i + 1) ⋆ C[S](v)}) ⊢ super.m ⇓ val v′

Ξ ⊢ super.m ⇓ val v′

E-SuperHit
Ξ(this) = {i ⋆ C[S](v)} i > 0

(m : U = e) ∈ methods(i, C[S](v)) (this 7→ {(i + 1) ⋆ C[S](v)}) ⊢ e ⇓ val v′

Ξ ⊢ super.m ⇓ val v′

Figure 6 Big-step operational semantics producing values.

no substitution. Note that evaluation of this is to simply read the configured object from the
context and return a plain object (i.e., with no search index). Class instantiations produce
objects. Lambda and type abstractions are evaluated to closures. Note that λsuper would not
need a value restriction [32] even if we added imperative effects to it, because it does not
evaluate under polymorphic abstractions. This is different from the real MLscript language,
which does need a value restriction as it uses ML-style polymorphism.

Method invocation and access to fields. Proper modeling of method invocation and access
to fields are of our particular interest. The following procedure explains the overall idea:
1. When the receiver is a term (modulo super), we first evaluate the term to an object and

search through the object’s fields for the method implementation (E-Access).
2. If the invoking method is not provided by any object field, we traverse the mixin

composition of the class (E-ArgMiss).

A. Fan and L. Parreaux 11:17

v : T

VT-Abs1
Γ ⊨ Ξ Ξ(this) = {i ⋆ C[U](v)}

R ⊨ {i ⋆ C[U](v)}
Γ, x : S, super : R ⊢ e : T

⟨λx : S. e, Ξ⟩ : S → T

VT-TAbs1
Γ ⊨ Ξ Ξ(this) = {i ⋆ C[S](v)}

R ⊨ {i ⋆ C[S](v)}
Γ, super : R ⊢ e : T

⟨ΛX. e, Ξ⟩ : ∀X. T

VT-Sub
v : S

S <: T

v : T

R ⊨ {i ⋆ C[S](v)}
C[X](n : T ′) ◁ I[...], M [...] ∀ (m : T) ∈ R .

{
search(m, i, C) = U

[S/X]U <: T

R ⊨ {i ⋆ C[S](v)}

Figure 7 Value typing of closures.

3. If the invoking method is provided as an object field, we return the value bound to the
field (E-ArgHit).

4. If the invoking method is not implemented by the i-th mixin, we search the next mixin in
the composition hierarchy (E-SuperMiss). Helper function methods(i, C[S](v)) (defined
in the extended version) returns all method implementations of the i-th mixin.

5. If the invoking method is implemented by the i-th mixin, we evaluate the method body
with this bound to the configured object where the search index points to the parent
mixin (E-SuperHit).

3.5 Metatheory
We now develop the metatheory of λsuper. We follow Ernst et al.’s approach to prove type
soundness of our big-step style semantics.

Value typing. Our metatheory focuses on strong soundness, that is, we need to type values
to ensure that the evaluation result keeps the type. Value typing rules of closures are listed in
Figure 7. Rule VT-Abs1 types lambda abstraction body under a typing context Γ with the
term variable bound to the input type and super refined by a structural refinement R. Here
we perform two consistency checks. First, the typing context should be consistent with the
runtime context (Γ ⊨ Ξ, rules are listed in the extended version), i.e., each term variable is
bound to a value that matches the variable’s type in the typing context. Second, to guarantee
that calls to super implementations are always safe, the structural refinement R giving precise
types to calls on super in the closure body should be consistent with the configured object in
the closure’s context. Relation R ⊨ {i ⋆ C[S](v)} implements the second consistency check,
which examines each method signature’s compatibility with the method implementation type
provided by the configured object. The remaining rules (in the extended version) that type
objects and closures with no binding to this in the context are non-surprising.

Soundness. We finally show the soundness results of our formal calculus. The complete
proofs can be found in the extended version. For a program P, we denote its top-level
definitions as DP and the associated term as eP . The preservation lemma is stated below:

▶ Lemma 1 (Preservation). If DP ok and ϵ ⊢ eP : T and ϵ ⊢ eP ⇓ r then r = val v and
v : T .

We define the finite evaluation relation [9] here to augment our big-step semantics with fuel.

ECOOP 2023

11:18 super-Charging Object-Oriented Programming

▶ Definition 2 (Finite evaluation). Define an evaluation relation Ξ ⊢ e ⇓k r+ (where
r+ ::= r | kill, and k is the step-counting index, i.e. fuel) with evaluation rules copied from
Ξ ⊢ e ⇓ r. For each rule, ⇓ in the conclusion is replaced by ⇓k, and ⇓ in premises is replaced
by ⇓k−1. Also, propagate timeout result of subderivations (the corresponding rules are listed
in the extended version). Finally, add the following axiom:

E-Timeout
Ξ ⊢ e ⇓0 kill

The soundness theorem of our calculus follows from the preservation lemma that rules out
errors when evaluation terminates and the coverage lemma that ensures our evaluation rules
with finite fuel always produce a result.

▶ Lemma 3 (Coverage). For all n, Ξ, and e, there exists an r+ such that Ξ ⊢ e ⇓n r+.

▶ Definition 4 (Expression divergence). e diverges ≜ For all n, ϵ ⊢ e ⇓n kill.

▶ Theorem 5 (Soundness). If DP ok and ϵ ⊢ eP : T then (1) ϵ ⊢ eP ⇓ val v and v : T , or
(2) eP diverges.

4 Discussion and Related Work

We now discuss the expressiveness, limitations, and implementation of SuperOOP as presented
in this paper, and we compare our approach to related work.

4.1 Expressiveness and Limitations
Thanks to the clear separation of concerns between the orthogonal concepts of interfaces,
mixins, and classes, and thanks to the flexibility of mixins, SuperOOP not only captures
standard OOP features but can also be used to explain existing advanced OOP models.

Desugaring traditional classes. A classic OOP class is desugared into three SuperOOP core
language components: (a) a core-language class for its fields; (b) a core-language mixin for its
implementations; and (c) a core-language interface for its method signatures. Although our
core language does not directly support class inheritance, this feature can easily be desugared
into SuperOOP. For example, recall ColoredPoint from Section 1, which inherited from
class Point. This class hierarchy can be desugared to SuperOOP as:

interface IPoint { x: Int; y: Int }

class Point(x: Int , y: Int) implements IPoint

interface IColoredPoint extends IPoint , Colored

class ColoredPoint(x: Int , y: Int , color: Color) implements IColoredPoint

Multiple inheritance and linearization. Languages that support multiple inheritance usually
have a linearization mechanism that determines the order of inherited parent classes, traits,
or mixins. The underlying assumption is that each parent can only be inherited at most once,
so if a parent transitively occurs more than once in an inheritance clause, the linearization
mechanism removes all but its first occurrence. Consequently, linearization affects the
semantics of method resolution and super-calls. For example, Scala uses linearization for
its multiple trait inheritance system [22]. The linearization of a Scala class definition of the
form class C extends B0, B1, ..., Bn starts with B0’s linearization and appends to it the

A. Fan and L. Parreaux 11:19

linearization of B1 save for those traits that are already in the constructed linearization of B0,
etc. Several languages such as Python adopt the influential C3 linearization algorithm [1].
Although SuperOOP does not natively support multiple class inheritance, we can still apply
any linearization algorithms used by existing languages and desugar the result using core
SuperOOP classes, interfaces, and mixins. On the other hand, in SuperOOP, one can inherit
a given mixin an arbitrary number of times at different positions in the mixin inheritance
stack. The resolution of method invocations simply follows the order of inherited mixins,
which do not necessarily need to be linearized. So SuperOOP’s approach is more general.

We show an example encoding of Scala multiple trait inheritance in SuperOOP in the
extended version of this paper.

Mixin parameters. Mixin parameters are a powerful extension to the core SuperOOP
language presented in this paper. They for instance allow one to define flexible and efficient
streaming processing abstractions that are composed through mixins, as in the following:

module MyPipeline extends

Map(x => x + 1),

Filter(x => x % 2 == 0),

Map(x => x * 2)

We use two instances of Map in the mixin composition above, showing that using this

refinements to encode mixin parameters would not be sufficient, as each of these two Map

instances needs to be given a different argument. Mixin parameters are implemented in
MLscript/SuperOOP, but we omitted this extension from λsuper for simplicity.

Member access control. We have not yet modeled in the core language nor implemented
any notions of encapsulation and visibility, such as the private and protected modifiers.
We expect that modeling these features should be straightforward, as their design is mostly
orthogonal to the features of SuperOOP.

4.2 Implementation of SuperOOP in MLscript
We now briefly describe our implementation and possible alternative implementation strategies.

Compilation to JavaScript. MLscript currently compiles to JavaScript, which supports
classes as first-class entities. This means it is possible to define mixins directly, by using
functions. For instance, the EvalNeg and EvalMul mixins and the LangNegMul class mentioned
in Section 2 are essentially compiled into the following JavaScript code:

function mkEvalNeg(base) {

return class EvalNeg extends base {

eval(e) {

if (e instanceof Neg) return 0 - this.eval(e.expr)

else return super.eval(e) } }

}

function mkEvalMul(base) {

return class EvalMul extends base {

eval(e) {

if (e instanceof Mul) return this.eval(e.lhs) * this.eval(e.rhs)

else return super.eval(e) } }

}

class LangNegMul extends mkEvalMul(mkEvalNeg(EvalBase))

ECOOP 2023

11:20 super-Charging Object-Oriented Programming

One side effect of this straightforward implementation is that mixins in MLscript can be
inherited an arbitrary number of times and that no inheritance linearization is needed.
MLscript classes, on the other hand, follow the usual single-inheritance hierarchy discipline,
which is useful for type checking pattern matching and inferring simple types for it.

Compilation to other targets. We are also considering adding alternative compilation
backends to MLscript, such as backend compilers targeting WebAssembly and the Java
Virtual Machine. In that context, we can still follow the general JavaScript-based semantics
described above, but we will make sure to evaluate the mixin functions at compilation
time, to guarantee optimal performance and simple compilation. Super calls would then
be resolved statically, allowing for efficient target code. Therefore, our approach to mixin
composition should offer better performance than alternative solutions to the expression
problem which rely on closure compositions and thus require virtual dispatch, like the
approach of Garrigue [16]. However, we reserve a rigorous performance evaluation for future
work.

Separate compilation. An aspect of the Expression Problem as originally stated is that it
should be possible to compile each extension separately before putting them all together.
We can essentially achieve this even in the static compiler scenario by separately compiling
method implementations and composing classes whose methods simply forward to these
pre-compiled implementations. This is more or less the approach used by Scala for traits,
which was shown to be practical in real-world scenarios.

Case studies. In the extended version of this paper, we provide case studies of MLscript/Su-
perOOP that include a modular evaluator of extended lambda calculus, as described by
Garrigue [16], and a simple “regions” DSL developed by Sun et al. [31]. These case studies
showcase the flexibility of SuperOOP polymorphic mixins, the ability to handle mutually-
recursive functions across different mixins, interpret complex data types, and optimize
domain-specific languages via built-in nested pattern matching. Additionally, thanks to
MLscript’s powerful principal type inference [26], those case studies type check without the
help of a single type annotation.

4.3 Solutions to the Expression Problem
There is a sea of work in extensible programming that address the Expression Problem, based
on techniques such as polymorphic variants [15] in OCaml, recursive modules [21] in ML,
and new programming paradigms [4, 23] like Compositional Programming [34]. We survey a
few of them by showing their solutions to the Expression Problem and discuss various design
tradeoffs with respect to the approach of SuperOOP.

Polymorphic Variants. The polymorphic variant (PV) solution [16] probably comes closest
to our approach. Open recursion there is implemented by way of an explicit parameter for
recursive calls, and by manually tying the recursive knots. For example, one defines an
open-recursive base implementation of evaluation on two expression data types as follows:

let eval_base eval_rec = function

| ‘Lit(n) → n

| ‘Add(e1, e2) → eval_rec e1 + eval_rec e2

(* val eval_base :

('a → int) → [< ‘Add of 'a * 'a | ‘Lit of int] → int *)

A. Fan and L. Parreaux 11:21

PVs differ from traditional variants or algebraic data types (ADTs) in that PVs allow
the use of arbitrary constructors without a corresponding data type definition; they can
be thought of as ADTs that are “not fully specified” and thus allow further extension. In
the example above, two constructors ‘Lit and ‘Add are introduced. Function eval_base

takes a first parameter eval_rec for open-recursive calls and the expression to evaluate as a
second parameter. Parameter eval_rec accepts expressions with type 'a, and the expression
is required to have type [< ‘Add of 'a * 'a | ‘Lit of int], which allows either an ‘Add

expression containing nested subexpressions of type 'a, or a ‘Lit instance with an integer
payload. Extending this base evaluator with new operations is done by composing it inside
new functions. To extend the supported expression forms, one defines another evaluation
implementation that works, e.g., on negations:

let eval_ext eval_rec = function

‘Neg(e) → 0 - eval_rec e

(* val eval_ext : ('a → int) → [< ‘Neg of 'a] → int *)

Finally, one needs to tie both implementations together:
type 'a expr_base = [‘Lit of int | ‘Add of 'a * 'a]

type 'a expr_ext = [‘Neg of 'a]

let rec eval = function

| #expr_base as x → eval_base eval x

| #expr_ext as x → eval_ext eval x

(* val eval :

([< ‘Add of 'a * 'a | ‘Lit of int | ‘Neg of 'a] as 'a) → int *)

Function eval dispatches the evaluation of the base and extended data types to the two
evaluation sub-implementations, and it ties the recursive knots by passing itself as the
entry point of the recursion. Note that eval has an inferred recursive type that accepts an
expression recursively constructed by the three variants. Compared with our solution, from a
programming style perspective, one programs with polymorphic variants in a functional way,
while SuperOOP adopts a more object-oriented style. More importantly, polymorphic variants
suffer from several practical drawbacks, including loss of polymorphism and approximated
typing of pattern matching [5]. Those drawbacks can be fixed by embracing “proper” implicit
subtyping as in MLscript [26]. In particular, we argue that union types are simpler than row
polymorphism, which imperfectly emulates subtyping through unification [26].

OCaml’s Object System. In OCaml class definitions, one can annotate “self” with a type
signature and define “super” explicitly in a way that superficially looks similar to SuperOOP.
One may be tempted to try and encode precise typing of open recursion in OCaml, to enable
extensible programming with classes. However, this does not work due to OCaml’s use of
unification and its lack of subtyping: the self and super types are unified with the object
type being defined, and thus all three must exactly coincide. By contrast, SuperOOP mixins
allows different self and super types and allows overriding methods with different types,
which is crucial for our technique. We discuss this in more detail in the extended version.

Featherweight Generic Go. Go is a popular programming language developed by Google.
Featherweight Go (FG) and its generic version Featherweight Generic Go (FGG) proposed by
Griesemer et al. [18] are formal developments of Go with the goal of helping “get polymorphism
right”. FGG provides a solution to the Expression Problem based on generics and covariant
matching of method receiver type refinements, as in:

func (e Plus(type a Evaler)) Eval() int {

return e.left.Eval() + e.right.Eval()

}

ECOOP 2023

11:22 super-Charging Object-Oriented Programming

Method Eval is generic in type variable ‘a’ which is upper-bounded by interface Evaler.
Once dissociated from the quantification of a, the receiver type of the method is Plus(a), the
type of a Plus instance with subexpressions of type ‘a’. To extend the supported operations
in the encoded language, one may define a similar pretty-printing method. Finally, one
combines the interfaces for different interpretations together in a final expression type:

type Expr interface {

Evaler

Stringer

}

Type Expr composes two operations together, so it implements both of Evaler and Stringer

(an interface for stringification). One can build and use such expressions as follows:
var e Expr = Plus(Expr){Lit{1}, Lit {2}}

var result Int = e.Eval()

var pretty string = e.String ()

While this allows FGG to solve the Expression Problem, the features that enable this solution
are not part of the Go team’s current design for generics [18]. Moreover, the inspection
of data structures only happens at the outermost level. If one wants to deeply transform
an expression instance, that is, to inspect its inner structure and, for example, perform
optimizations on it, one would have to make an additional method to delegate the inspection
semantics itself. This approach, called delegated method patterns in Sun et al.’s work [31], is
non-modular in FGG as it requires adding a new method for each inner structure inspection
and to implement this method for each constructor of the data type, even those constructors
that should otherwise fall into a default case of the encoded pattern matching.

Object Algebras. Object Algebras are a well-known object-oriented approach to solve the
Expression Problem [23]. The key to this solution is an abstract factory called object
algebra interface, which contains data type constructor signatures, leaving their interpretation
unspecified. An object algebra interface for expressions could be, in Scala syntax:

trait ExpAlg[Exp] {

def Lit: Int => Exp

def Add: (Exp , Exp) => Exp

}

Trait ExpAlg specifies two data type constructors, and it is parameterized by type parameter
Exp that indicates the interpretation of expression data types. We can implement evaluation
on expressions by implementing the object algebra interface:

trait IEval { def eval: Int }

trait Eval extends ExpAlg[IEval] {

def Lit = n => new IEval { def eval = n }

def Add = (e1 ,e2) => new IEval { def eval = e1.eval + e2.eval }

}

Trait Eval is an object algebra which implements ExpAlg with the type parameter instantiated
to IEval. Trait IEval indicates that expressions can be evaluated to integers. To extend
the language with new operations, we may simply define a new interpretation type and a
corresponding object algebra interface implementation. On the other hand, for new data
type extensions, we inherit the object algebra interface and the old implementation:

A. Fan and L. Parreaux 11:23

trait NegAlg[Exp] extends ExpAlg[Exp] {

def Neg: Exp => Exp

}

trait EvalNeg extends NegAlg[IEval] with Eval {

def Neg = (e) => new IEval { def eval = 0 - e.eval }

}

We can now define an expression instance and instantiate the language:
trait exp[Exp](f: NegAlg[Exp]) {

f.Add(f.Lit(1), f.Neg(f.Lit (-1)))

}

object eval extends EvalNeg

println(exp(eval).eval)

In trait exp, the data type constructors are accessed through the input object algebra f.
With different implementations of the object algebra interface passed in, the expression will
be interpreted in different ways. However, as noticed by Zhang et al. [34], one needs to create
an expression instance for each data type interpretation, and there is no built-in approach to
composing interpretations in different object algebras. Moreover, as data type constructors
are specified through type signatures in object algebra interfaces, there is no way to have an
inspectable representation of language instances without a complete definition of abstract
syntax, blocking useful extensions such as modular transformations and optimizations.

Compositional Programming. Compositional programming [34] (implemented in the CP
language) is a novel programming paradigm that features modularity. It supports a merge
operator as the introduction term for intersection types. At the type level, the intersec-
tion type operator composes interfaces. At the term level, the merge operator composes
first-class traits that contain data and operations. Similarly to Object Algebras, in Composi-
tional Programming, a compositional interface specifies data type signatures, leaving their
interpretation unspecified, and concrete interpretations are defined in first-class traits:

type ExpSig <Exp > = {

Lit : Int → Exp;

Add : Exp → Exp → Exp;

};

type Eval = { eval : Int };

evalNum = trait implements ExpSig <Eval > => {

(Lit n).eval = n;

(Add e1 e2).eval = e1.eval + e2.eval;

};

Trait evalNum implements the compositional interface ExpSig <Eval > which specifies that
Lit and Add support an evaluation method. Similarly, one can implement a pretty-printing
operation by adding another concrete interpretation. To extend the expression language with
new data types, one extends the compositional interface and implements new operations in
derived traits. Finally, everything is tied together with the merge operator as shown below:

type NegSig <Exp > extends ExpSig <Exp > = {

Neg : Exp → Exp → Exp;

};

evalNeg = trait implements NegSig <Eval > inherits evalNum => {

(Neg e).eval = 0 - e.eval;

};

ECOOP 2023

11:24 super-Charging Object-Oriented Programming

exp Exp = trait [self : NegSig <Exp >] => {

test = new Neg (new Add (new Lit 1) (new Lit 2));

};

// Assume pretty -printing of expression is analogously defined

e = new evalNeg ,, printNeg ,, exp @(Eval & Print);

Trait exp contains an example expression. The self type annotation in square brackets
enables the trait body to access the three data type constructors. With the merge operator,
trait instance e is composed of traits that contain different expression interpretations and the
test trait. Note that trait Exp is passed with an intersection type argument Eval & Print,
meaning the expression language supports both evaluation and pretty-printing.

In recent follow-up work on Compositional Programming by Sun et al. [31], different
aspects of domain-specific language embedding are investigated, including the two-direction
extensibility of language constructs and their interpretations, transformations and optimiza-
tions on language instances, etc. Since Compositional Programming does not natively support
nested pattern matching (unlike our approach), deep inspection of data is only possible via
the delegated method pattern (discussed above in the paragraph on Go), which is “not as
convenient”, as the authors put it. We also argue that this does not work well for defining
optimizations in a modular way. Indeed, optimizations are fundamentally order-sensitive,
and encoding them in terms of CP’s unordered patterns requires non-local transformations
of the involved pattern matching structures. For instance, one cannot independently define
optimizations for evaluating Neg(Neg(e)) as e and Neg(Lit(n)) as Lit(0 - n), whereas
doing so in MLscript/SuperOOP is straightforward.

Approaches lacking type safety. It is much easier to solve the Expression Problem if one no
longer cares about catching composition errors at compilation time. Zenger and Odersky [33]
propose to use exception-throwing default cases in base implementations and to override
these cases in further extensions, which relies on the programmer remembering to override
all default cases and to pass only supported expression forms to the various methods in the
program. Similar to SuperOOP, in a method that defines the interpretation of extended
data types and overrides the base interpretation, they delegate the interpretation of base
data types to the overridden method using super. While just as flexible as SuperOOP,
this approach is fundamentally unsafe and error-prone. Going further, at the other end of
the spectrum, approaches such as monkey-patching and Julia-style multiple dispatch allow
completely dynamic updates of base implementations, which trivially supports extension but
is anti-modular, as reasoning about the well-foundedness of method calls on given argument
types requires global knowledge of all extension points in the program and libraries.

4.4 Modeling Inheritance and Reuse
In this subsection, we discuss previous work related to modeling inheritance and code reuse.

In their seminal Inheritance Is Not Subtyping paper, Cook et al. [7] introduced the
crucial idea that inheritance could be unrestrained if it was decoupled from the subtyping
relationship. However, they do not provide a specific source language in which to realize
their ideas and only describe an imagined typed encoding of it, without an obvious way of
connecting that encoding back to a hypothetical source language.

Bracha and Cook [3] describe both a Smalltalk-style approach and a CLOS-style multiple
inheritance approach for modeling single inheritance and super. The paper uses a notion of
implementation “deltas” ∆, which are not first-class and only used for explanation. In our
approach, this notion of deltas exists as a first-class entity which we call mixins. Bracha and

A. Fan and L. Parreaux 11:25

Cook describe mixins as a form of abstraction (over an unknown base class), and linearization
as application (wiring in all the base classes), by analogy with the classical lambda calculus
concepts. In our approach, abstraction is similarly done through super and application is
done through extends, but we do not require linearization and allow mixins to be inherited
an arbitrary number of times. While Bracha and Cook leverage the notion that subtyping is
not inheritance and allow the types of methods to change, they do not support the idea of
precise this and super annotations and thus cannot precisely type open recursion.

The concept of “mixin” described by Flatt et al. [13, 14, 12] is related to ours, but
conceptually different. While they do model super, their mixins necessarily conform to
interfaces and are thus constrained to specific method signatures, preventing SuperOOP-style
modular programming. The authors discuss the possibility of solving the EP with modules
and their mixins in later work [11], but without proposing a static typing model.

Schärli et al. [29] study and discuss many perceived problems with mixin composition.
They suggest that traits are a better unit of abstraction. We agree that traits are useful
for architecting OOP code in the large, but argue that mixins are independently useful:
abstract (i.e., open-ended) base classes are specifically what unlocks the expressiveness of
mixin inheritance and our new solution to the Expression Problem. We believe that mixins
should be conceptualized as pure whitebox implementation bundles (the implementation itself
being the API) by contrast with interfaces, which hide implementation detail, and traits,
which enable a form of well-behaved (associative and commutative) multiple inheritance, and
that all three could have a place in an OO programmer’s toolkit.

The idea of separating reusable components from types was previously embraced by
Bettini et al. [2], who argue that the role of units of reuse and the role of types are competing,
as also observed by Cook et al. [7] and Snyder [30]. The semantics of Bettini et al.’s trait
systems are similar to Schärli et al.’s but provide additional flexibility, in that traits are
composed with explicit operations on methods such as renaming and exclusion to resolve
conflict. A similar idea is used by Damiani et al. [8] in their design of a language enabling
both trait reuse and deltas of classes, in the context of Software Product Line Engineering.

Type classes as in languages like Haskell [27] and Scala [24] also provide data abstraction
and powerful parametrization and extensibility [6]. SuperOOP’s super is a way of nesting
interpretations the same way one can design dependent type class instances. Any class
hierarchy encoded solely with super refinements in SuperOOP translates straightforwardly
to classic type classes. However, type classes per se are not enough for modular code reuse
with recursive data structures, as that requires open recursion. Explicit encodings of open
recursion can be implemented in Haskell and Scala, but these would live outside of the type
class definitions and are orthogonal to type classes. By contrast, SuperOOP directly provides
precisely-typed open recursion via this refinements in mixins.

5 Conclusion and Future Work

We presented a new approach to OOP which cleanly separates the concerns of state, imple-
mentations, and interfaces into the orthogonal constructs of classes, mixins, and interfaces.
We showed that a refined typing of mixins allows for a new and powerful solution to the
expression problem. Finally, we presented an implementation in MLscript, leveraging its
flexible type inference capabilities to enable annotation-free modular programming. The
main item of future work we would like to look into is the deep composition of mixin families,
reminiscent of Delta-Oriented Programming [28, 8] but with precisely-typed open recursion.

ECOOP 2023

11:26 super-Charging Object-Oriented Programming

References
1 Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford, and P. Tucker

Withington. A monotonic superclass linearization for dylan. In Proceedings of the 11th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’96, pages 69–82, New York, NY, USA, 1996. Association for Computing Machinery.
doi:10.1145/236337.236343.

2 Lorenzo Bettini, Ferruccio Damiani, Ina Schaefer, and Fabio Strocco. Traitrecordj: A program-
ming language with traits and records. Science of Computer Programming, 78(5):521–541,
2013. Special section: Principles and Practice of Programming in Java 2009/2010 & Special
section: Self-Organizing Coordination. doi:10.1016/j.scico.2011.06.007.

3 Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings of the European
Conference on Object-Oriented Programming on Object-Oriented Programming Systems, Lan-
guages, and Applications, OOPSLA/ECOOP ’90, pages 303–311, New York, NY, USA, 1990.
Association for Computing Machinery. doi:10.1145/97945.97982.

4 Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. J. Funct. Program., 19(5):509–543,
September 2009. doi:10.1017/S0956796809007205.

5 Giuseppe Castagna, Tommaso Petrucciani, and Kim Nguyen. Set-theoretic types for poly-
morphic variants. In Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming, ICFP 2016, pages 378–391, Nara, Japan, September 2016. Association
for Computing Machinery. doi:10.1145/2951913.2951928.

6 William R. Cook. On understanding data abstraction, revisited. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’09, pages 557–572, New York, NY, USA, 2009. Association for Computing Machinery.
doi:10.1145/1640089.1640133.

7 William R. Cook, Walter Hill, and Peter S. Canning. Inheritance is not subtyping. In
Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’90, pages 125–135, New York, NY, USA, 1989. Association for Computing
Machinery. doi:10.1145/96709.96721.

8 Ferruccio Damiani, Reiner Hähnle, Eduard Kamburjan, and Michael Lienhardt. A unified
and formal programming model for deltas and traits. In Marieke Huisman and Julia Rubin,
editors, Fundamental Approaches to Software Engineering, pages 424–441, Berlin, Heidelberg,
2017. Springer Berlin Heidelberg.

9 Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class calculus. In Conference
Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’06, pages 270–282, New York, NY, USA, 2006. Association for Computing
Machinery. doi:10.1145/1111037.1111062.

10 Andong Fan. Simple extensible programming through precisely-typed open recursion. In
Companion Proceedings of the 2022 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity, SPLASH Companion
2022, pages 54–56, New York, NY, USA, 2022. Association for Computing Machinery. doi:
10.1145/3563768.3563951.

11 Robert Bruce Findler and Matthew Flatt. Modular object-oriented programming with units and
mixins. In Proceedings of the Third ACM SIGPLAN International Conference on Functional
Programming, ICFP ’98, pages 94–104, New York, NY, USA, 1998. Association for Computing
Machinery. doi:10.1145/289423.289432.

12 Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen. Scheme with classes, mixins,
and traits. In Naoki Kobayashi, editor, Programming Languages and Systems, pages 270–289,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

13 Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’98, pages 171–183, New York, NY, USA, 1998. Association for Computing
Machinery. doi:10.1145/268946.268961.

https://doi.org/10.1145/236337.236343
https://doi.org/10.1016/j.scico.2011.06.007
https://doi.org/10.1145/97945.97982
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/2951913.2951928
https://doi.org/10.1145/1640089.1640133
https://doi.org/10.1145/96709.96721
https://doi.org/10.1145/1111037.1111062
https://doi.org/10.1145/3563768.3563951
https://doi.org/10.1145/3563768.3563951
https://doi.org/10.1145/289423.289432
https://doi.org/10.1145/268946.268961

A. Fan and L. Parreaux 11:27

14 Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A Programmer’s Reduc-
tion Semantics for Classes and Mixins, pages 241–269. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1999. doi:10.1007/3-540-48737-9_7.

15 Jacques Garrigue. Programming with polymorphic variants. In In ACM Workshop on ML, 1998.
URL: https://caml.inria.fr/pub/papers/garrigue-polymorphic_variants-ml98.pdf.

16 Jacques Garrigue. Code reuse through polymorphic variants. In In Workshop on Foundations of
Software Engineering, 2000. URL: https://www.math.nagoya-u.ac.jp/~garrigue/papers/
variant-reuse.pdf.

17 David S. Goldberg, Robert Bruce Findler, and Matthew Flatt. Super and inner: Together
at last! In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA ’04, pages 116–129, New York,
NY, USA, 2004. Association for Computing Machinery. doi:10.1145/1028976.1028987.

18 Robert Griesemer, Raymond Hu, Wen Kokke, Julien Lange, Ian Lance Taylor, Bernardo
Toninho, Philip Wadler, and Nobuko Yoshida. Featherweight go. Proc. ACM Program. Lang.,
4(OOPSLA), November 2020. doi:10.1145/3428217.

19 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java: A minimal
core calculus for java and gj. ACM Trans. Program. Lang. Syst., 23(3):396–450, May 2001.
doi:10.1145/503502.503505.

20 Guillaume Martres. Pathless scala: A calculus for the rest of scala. In Proceedings of the 12th
ACM SIGPLAN International Symposium on Scala, SCALA 2021, pages 12–21, New York,
NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3486610.3486894.

21 Keiko Nakata and Jacques Garrigue. Recursive modules for programming. In Proceedings of
the Eleventh ACM SIGPLAN International Conference on Functional Programming, ICFP
’06, pages 74–86, New York, NY, USA, 2006. Association for Computing Machinery. doi:
10.1145/1159803.1159813.

22 Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane
Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. An overview
of the scala programming language, 2004.

23 Bruno C. d. S. Oliveira and William R. Cook. Extensibility for the masses: Practical
extensibility with object algebras. In Proceedings of the 26th European Conference on Object-
Oriented Programming, ECOOP’12, pages 2–27, Berlin, Heidelberg, 2012. Springer-Verlag.
doi:10.1007/978-3-642-31057-7_2.

24 Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and
implicits. In Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, pages 341–360, New York, NY, USA, 2010.
Association for Computing Machinery. doi:10.1145/1869459.1869489.

25 Lionel Parreaux. The ultimate conditional syntax. ML Family Workshop,
2022. URL: https://icfp22.sigplan.org/details/mlfamilyworkshop-2022-papers/6/
The-Ultimate-Conditional-Syntax.

26 Lionel Parreaux and Chun Yin Chau. MLstruct: Principal type inference in a boolean
algebra of structural types. Proc. ACM Program. Lang., 6(OOPSLA2), October 2022. doi:
10.1145/3563304.

27 Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Journal of
Functional Programming, 13, January 2003.

28 Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tanzarella. Delta-
oriented programming of software product lines. In Jan Bosch and Jaejoon Lee, editors,
Software Product Lines: Going Beyond, pages 77–91, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

29 Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black. Traits: Compos-
able units of behaviour. In Luca Cardelli, editor, ECOOP 2003 – Object-Oriented Programming,
pages 248–274, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

ECOOP 2023

https://doi.org/10.1007/3-540-48737-9_7
https://caml.inria.fr/pub/papers/garrigue-polymorphic_variants-ml98.pdf
https://www.math.nagoya-u.ac.jp/~garrigue/papers/variant-reuse.pdf
https://www.math.nagoya-u.ac.jp/~garrigue/papers/variant-reuse.pdf
https://doi.org/10.1145/1028976.1028987
https://doi.org/10.1145/3428217
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/3486610.3486894
https://doi.org/10.1145/1159803.1159813
https://doi.org/10.1145/1159803.1159813
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1145/1869459.1869489
https://icfp22.sigplan.org/details/mlfamilyworkshop-2022-papers/6/The-Ultimate-Conditional-Syntax
https://icfp22.sigplan.org/details/mlfamilyworkshop-2022-papers/6/The-Ultimate-Conditional-Syntax
https://doi.org/10.1145/3563304
https://doi.org/10.1145/3563304

11:28 super-Charging Object-Oriented Programming

30 Alan Snyder. Encapsulation and inheritance in object-oriented programming languages. In
Conference Proceedings on Object-Oriented Programming Systems, Languages and Applications,
OOPSLA ’86, pages 38–45, New York, NY, USA, 1986. Association for Computing Machinery.
doi:10.1145/28697.28702.

31 Yaozhu Sun, Utkarsh Dhandhania, and Bruno C. d. S. Oliveira. Compositional embeddings
of domain-specific languages. Proc. ACM Program. Lang., 6(OOPSLA2), October 2022.
doi:10.1145/3563294.

32 Andrew K. Wright. Simple imperative polymorphism. LISP and Symbolic Computation,
8(4):343–355, December 1995. doi:10.1007/BF01018828.

33 Matthias Zenger and Martin Odersky. Extensible algebraic datatypes with defaults. In
Proceedings of the Sixth ACM SIGPLAN International Conference on Functional Programming,
ICFP ’01, pages 241–252, New York, NY, USA, 2001. Association for Computing Machinery.
doi:10.1145/507635.507665.

34 Weixin Zhang, Yaozhu Sun, and Bruno C. D. S. Oliveira. Compositional programming. ACM
Trans. Program. Lang. Syst., 43(3), September 2021. doi:10.1145/3460228.

https://doi.org/10.1145/28697.28702
https://doi.org/10.1145/3563294
https://doi.org/10.1007/BF01018828
https://doi.org/10.1145/507635.507665
https://doi.org/10.1145/3460228

LoRe: A Programming Model for Verifiably Safe
Local-First Software (Extended Abstract)
Julian Haas #

Technische Universität Darmstadt, Germany

Ragnar Mogk
Technische Universität Darmstadt, Germany

Elena Yanakieva
University of Kaiserslautern-Landau, Germany

Annette Bieniusa
University of Kaiserslautern-Landau, Germany

Mira Mezini
Technische Universität Darmstadt, Germany

Abstract
Local-first software manages and processes private data locally while still enabling collaboration
between multiple parties connected via partially unreliable networks. Such software typically involves
interactions with users and the execution environment (the outside world). The unpredictability of
such interactions paired with their decentralized nature make reasoning about the correctness of
local-first software a challenging endeavor. Yet, existing solutions to develop local-first software do
not provide support for automated safety guarantees and instead expect developers to reason about
concurrent interactions in an environment with unreliable network conditions.

We propose LoRe, a programming model and compiler that automatically verifies developer-
supplied safety properties for local-first applications. LoRe combines the declarative data flow
of reactive programming with static analysis and verification techniques to precisely determine
concurrent interactions that violate safety invariants and to selectively employ strong consistency
through coordination where required. We propose a formalized proof principle and demonstrate how
to automate the process in a prototype implementation that outputs verified executable code. Our
evaluation shows that LoRe simplifies the development of safe local-first software when compared to
state-of-the-art approaches and that verification times are acceptable.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Software and its engineering → Distributed programming languages; Software and its engineering
→ Data flow languages; Software and its engineering → Consistency; Theory of computation →
Pre- and post-conditions; Theory of computation → Program specifications; Computer systems
organization → Peer-to-peer architectures

Keywords and phrases Local-First Software, Reactive Programming, Invariants, Consistency, Auto-
mated Verification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.12

Related Version Extended Version: https://arxiv.org/abs/2304.07133 [13]

Supplementary Material Software (Source Code): https://github.com/stg-tud/LoRe
Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.11

Funding This work was funded by the German Federal Ministry of Education and Research together
with the Hessen State Ministry for Higher Education (ATHENE), the German Research Foundation
(SFB 1053), and the German Federal Ministry for Economic Affairs and Climate Action project
SafeFBDC (01MK21002K).

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Julian Haas, Ragnar Mogk, Elena Yanakieva, Annette Bieniusa, and
Mira Mezini;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 12; pp. 12:1–12:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haas@cs.tu-darmstadt.de
https://orcid.org/0000-0001-9959-5099
https://orcid.org/0000-0003-4583-1791
https://orcid.org/0000-0002-2900-7252
https://orcid.org/0000-0002-1654-6118
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.4230/LIPIcs.ECOOP.2023.12
https://arxiv.org/abs/2304.07133
https://github.com/stg-tud/LoRe
https://doi.org/10.4230/DARTS.9.2.11
https://doi.org/10.4230/DARTS.9.2.11
https://doi.org/10.4230/DARTS.9.2.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 LoRe: A Programming Model for Verifiably Safe Local-First Software

1 Introduction

Applications that enable multiple parties connected via partially unreliable networks to
collaboratively process data prevail today. An illustrative example is a distributed calendar
application with services to add or modify appointments, where a user may maintain multiple
calendars on different devices, may share calendars with other users, back them up in a cloud;
calendars must be accessible to users in a variety of scenarios, including offline periods, e.g.,
while traveling – yet, planning appointments may require coordination between multiple
parties. The calendar application is representative for other collaborative data-driven software
such as group collaboration tools, digital (cross-organizational) supply chains, multiplayer
online gaming, and more.

The dominating software architecture for such applications is centralized: data is collected,
managed, and processed centrally in data centers, while devices on the edge of the commu-
nication infrastructure serve primarily as interfaces to users and the outside world. This
architecture simplifies the software running on edge devices since concerns like consistent data
changes to ensure safety properties are managed centrally. However, this comes with issues
including loss of control over data ownership and privacy, insufficient offline availability, poor
latency, inefficient use of communication infrastructure, and waste of (powerful) computing
resources on the edge.

To address these issues, local-first principles for software development have been for-
mulated [17], calling for moving data management and processing to edge devices instead
of confining the data to clouds. But for programming approaches that implement these
principles to be viable alternatives to the centralized approach, they must support auto-
matically verifiable safety guarantees to counter for the simplifying assumptions afforded
by a centralized approach. Unfortunately, existing approaches to programming local-first
applications such as Yjs [31] or Automerge1 do not provide such guarantees. They use
conflict-free replicated data types (CRDTs) [34] to store the parts of their state that is shared
across devices and rely on callbacks for modeling and managing state that changes in both
time and space. The unpredictability of the interactions triggered by the outside world,
concurrently at different devices, paired with the absence of a central authority and the
prevailing implicit dependencies in current callback-centred programming models, makes
such reasoning without automated support a challenging, error-prone endeavour.

To close this gap, we propose a programming model for local-first applications that
features explicit safety properties and automatically enforces them. The model has three core
building blocks: reactives, invariants, and interactions. Reactives express values that change
in time, but also in space by being replicated over multiple devices. Invariants are formula in
first-order logic specifying safety properties that must hold at all times when the application
interacts with the outside world, or values of reactives are observable. Interactions interface
to the outside world and encapsulate changes to all reactives affected by interactions with
it (state directly changed by the interactions, device-local values derived from the changed
state, and shared state at remote devices). We use automatic verification with invariants
as verification obligations to identify interactions that need coordination across devices, for
which the compiler generates the coordination protocol; all other interactions become visible
in causal order. This way, the compiler makes an application-specific availability-safety
trade-off.

1 https://automerge.org/

https://automerge.org/

J. Haas, R. Mogk, E. Yanakieva, A. Bieniusa, and M. Mezini 12:3

In summary, we make the following contributions2:
1. A programming model for local-first applications with verified safety properties (Section 2),

called LoRe. While individual elements of the model, e.g., CRDTs or reactives, are not
novel, they are repurposed, combined, and extended in a unique way to systematically
address specific needs of local-first applications with regard to ensuring safety properties.

2. A formal definition of the model including a formal notion of invariant preservation and
confluence for interactions, and a modular verification that invariants are never violated.
In particular, our model enables invariants that reason about the sequential behaviour of
the program. In case of potential invariant violation due to concurrent execution, LoRe
automatically adds the necessary coordination logic (see the extended version of this
work2).

3. A verifying compiler3 that translates LoRe programs to Viper [28] for automated veri-
fication and to Scala for the application logic including synthesized synchronization to
guarantee the specified safety invariants (Section 3).

4. An evaluation of LoRe in two case studies (Section 4). Our evaluation validates two claims
we make about the programming model proposed, (a) It facilitates the development of
safe local-first software, and (b) it enables an efficient and modular verification of safety
properties. It further shows that the additional safety properties offered by our model do
not come with prohibitive costs in terms of verification effort and time.

2 LoRe in a Nutshell

We introduce the concepts of LoRe along the example of a distributed calendar for tracking
work meetings and vacation days. LoRe is an external DSL that compiles to Scala (for
execution) and Viper IR [28] (for verification); its syntax is inspired by both. A LoRe
program defines a distributed application that runs on multiple physical or virtual devices.4

Listing 1 shows a simplified implementation of the calendar example application in LoRe. As
any LoRe program, it consists of replicated state (Source reactives in Lines 2-3), local values
derived from them (Derived reactives in Lines 5-6), interactions (Lines 8-15), and invariants
(Lines 20-23).

2.1 Reactives
Reactives are the composition units in a LoRe program. We distinguish two types of them:
source and derived reactives, declared by the keywords Source and Derived, respectively.
Source reactives are values that are directly changed through interactions. Their state is
modeled as conflict-free replicated data types (CRDTs) [34, 32] and is replicated between the
different devices collaborating on the application. Derived reactives represent local values
that are automatically computed by the system from the values of other reactives (source or
derived). Changes to source reactives automatically (a) trigger updates of derived reactives
and (b) cause devices to asynchronously send update messages to the other devices, which
then merge the changes into their local state. Together, local propagations and asynchronous

2 This is a short version of this work. The extended version is available at: https://doi.org/10.48550/
arXiv.2304.07133.

3 The source code of our prototype implementation is available at https://github.com/stg-tud/LoRe.
4 We assume that every device is running the same application code (i.e., the same binary), and different

types of devices (such as client and server) are modeled by limiting them to execute a subset of the
defined interactions.

ECOOP 2023

https://doi.org/10.48550/arXiv.2304.07133
https://doi.org/10.48550/arXiv.2304.07133
https://github.com/stg-tud/LoRe

12:4 LoRe: A Programming Model for Verifiably Safe Local-First Software

Listing 1 The distributed calendar application.
1 type Calendar = AWSet [Appointment]
2 val work: Source [Calendar] = Source (AWSet ())
3 val vacation : Source [Calendar] = Source (AWSet ())
4
5 val all_appointments : Derived [Set[Appointment]] = Derived { work.

toSet. union (vacation . toSet) }
6 val remaining_vacation : Derived [Int] = Derived { 30 - sumDays (vacation .

toSet) }
7
8 val add_appointment : Unit = Interaction [Calendar][Appointment]
9 . requires { cal => a => get_start (a) < get_end (a) }

10 . requires { cal => a => !(a in cal. toSet)}
11 . executes { cal => a => cal.add(a) }
12 . ensures { cal => a => a in cal.toSet }
13 val add_vacation : Unit = add_appointment . modifies (vacation)
14 . requires { cal => a => remaining_vacation - a.days >= 0}
15 val add_work : Unit = add_appointment . modifies (work)
16
17 UI. display (all_appointments , remaining_vacation)
18 UI. vacationDialog . onConfirm {a => add_vacation . apply (a)}
19
20 invariant forall a: Appointment ::
21 a in all_appointments ==> get_start (a) < get_end (a)
22
23 invariant remaining_vacation >= 0

cross-device update messages ensure that users always have a consistent view of the overall
application state. All reactives are statically declared in the program source code. LoRe then
statically extracts knowledge about the data flow for modular verification and to minimize
the proof goals (cf. Sec 3.1). We discuss the technical implications of static reactives in
Section 6.

Listing 1 shows two source reactives, work and vacation (Line 2 and 3), each modeling a
calendar as a set of appointments. The work calendar tracks work meetings, while the vacation
calendar contains registered vacation days. When defining a source reactive, programmers
have to choose a CRDT for the reactive’s internal state. LoRe offers a selection of pre-
defined CRDTs including various standard data types such as sets, counters, registers and
lists. Further data types can be supported by providing a Viper specification for that data
type. In this case, an add-wins-set (a set CRDT where additions have precedence over
concurrent deletions) is selected for both source reactives. Appointments from both calendars
are tracked in the all_appointments derived reactive (Line 5), while the remaining_vacation

reactive (Line 6) tracks the number of remaining vacation days.

2.2 Interactions

Changes to the state of the system, e.g., adding appointments to a calendar, happen through
explicit interactions. Each interaction has two sets of type parameters: the types of source
reactives that it modifies and the types of parameters that are provided when the interaction
is applied. For example, the add_appointment interaction in Line 8 modifies a reactive of type
Calendar and takes a parameter of type Appointment. The semantics of an interaction I are
defined in four parts: (1) requires (Line 9) defines the preconditions that must hold for I

to be executed, (2) executes (Line 11) defines the changes to source reactives, (3) ensures

(Line 12) defines the postconditions that must hold at the end of I’s execution, (4) modifies

J. Haas, R. Mogk, E. Yanakieva, A. Bieniusa, and M. Mezini 12:5

→ remaining_vacation: -2

→ remaining_vacation: -2

D1

add_appointment(vacation, a1)
→ remaining_vacation: 10

add_appointment(vacation, a2)
→ remaining_vacation: 18

D2

D1

Figure 1 Concurrent execution of interactions may cause invariant violations. In this example,
device D1 adds a vacation of 20 days to the calendar, while D2 concurrently adds a vacation of
12 days. Given a total amount of 30 available vacation days, this leads to a negative amount of
remaining vacation once the devices synchronize.

(Line 13) defines the source reactives that I changes. The parameters of requires, executes,
and ensures are functions that take the modified reactives and the interaction parameters as
input (cal is of type Calendar and a is of type Appointment). The splitting of the definition of
interactions in four parts allows for modularization and reuse. For instance, add_appointment is
only a partial specification of an interaction, missing the modifies specification. Both add_work

(Line 15) and add_vacation (Line 13) specify complete interactions by adding modifies to
add_appointment; they are independent interactions that differ only in their modifies set.

Interactions encapsulate reactions to input from the outside world (e.g., the callback in
Line 18 that is triggered by the UI and applies the arguments to add_vacation). Applying
an interaction checks the preconditions, and – if they are fulfilled – computes and applies
the changes to the source reactives, and propagates them to derived reactives – all in a
“transactional” way in the sense that all changes to affected reactives become observable
at-once (“atomically”). Only source reactives are replicated between devices, while derived
reactives are computed by each device individually. LoRe gurantees that executing interactions
does not invalidate neither postconditions nor invariants.

2.3 Invariants and Conflicts
LoRe expects the developer to use invariants, introduced with the keyword invariant, to
specify application properties that should always hold. Invariants are first-order logic
assertions given to a verifier based on the Viper verification infrastructure [28]. Invariants
can help uncover programming bugs and reveal where the eventually-consistent replication
based on CRDTs could lead to safety problems.

For illustration, consider the invariants for the calendar application in Lines 20 and 23.
The invariant in Line 20 requires that all appointments must start before they end. Notice,
how the invariant can be defined without knowing the amount of calendars and the actual
structure of the data-flow graph by simply referring to the all_appointments reactive. This
invariant represents a form of input validation, and is directly ensured by add_appointment

interactions because the precondition on the arguments requires the added appointment to
start before it ends (Line 9). In absence of this precondition, the LoRe compiler would reject
the program and report a safety error due to a possible invariant violation. The invariant
in Line 23 requires that employees do not take more vacation days than available to them.
Again, this is locally enforced by the precondition of the add_vacation interaction, which
ensures that new entries do not exceed the remaining vacation days. But there is nothing
stopping two devices from concurrently adding vacation entries, which in sum violates the
invariant. Figure 1 illustrates such a situation: A user plans a vacation of 20 days on
the mobile phone (device D1) and later schedules a 12-day vacation on a desktop (device
D2), at a time when D1 was offline. Thus, both interactions happened concurrently and
after merging the states the calendar contains a total of 32 days of vacation, violating the
remaining_vacation invariant.

ECOOP 2023

12:6 LoRe: A Programming Model for Verifiably Safe Local-First Software

Figure 2 Overview of LoRe’s automated compilation and verification procedure.

This example illustrates a conflict between (concurrent) execution of interactions – in
this case, two executions of the add_vacation Interaction must be coordinated (synchronized)
in order to avoid invariant violations. The LoRe compiler reports conflicting interactions to
the developer and automatically synthesizes the required coordination code for the execution
of such interactions (see Section 3.3). In a local-first setting, it is of paramount importance
to minimize the required coordination to allow offline availability. Reporting of conflicts due
to invariants helps developers to explore different situations and make informed decisions
about the safety guarantees of their program. When they find that their program requires
too much synchronization, they can lower the guarantees by adapting their invariants.

3 Implementation

Figure 2 depicts the architecture of LoRe’s verifying compiler. The input to the compiler is
a program with its specifications expressed by the invariants, e.g., the program in Listing 1.
The output consists of the conflicting interactions and a safe executable program. We use
the Viper program verifier to reason about invariant violations and possible conflicts between
interactions. We employ an analysis of the data-flow graph to minimize proof obligations to
those invariant pairs that may actually conflict.

The rest of this section describes the pipeline from Figure 2 in detail – from left to right,
top to bottom.

3.1 Graph Analysis
Checking all pairs of interactions for confluence would result in an exponential amount of proof
obligations. To avoid this, we employ a graph analysis to quickly detect pairs of interactions
that cannot conflict, because they change completely separate parts of the data-flow graph.
For illustration, consider the add_work interaction. It modifies the work reactive, and –
transitively – all_appointments. Hence, the reachable reactives are {work, all_appointments}
and only the first but not the second invariant in Listing 1 overlaps. Thus, neither the
remaining_vacation reactive, nor the invariant on this reactive will be part of the proof
obligation for the add_work interaction.

3.2 Automated Verification
We use Viper to classify each interaction into one of the following three categories: 1) Non-
preserving interactions can violate invariants during execution and are reported as bugs to
the developer. 2) Invariant-preserving interactions preserve an invariant when executed on
a single device but can violate an invariant in the presence of concurrent interactions by
other devices. 3) Invariant-confluent [4] interactions can be executed concurrently without
ever violating an invariant. Whenever two interactions in the second category must not

J. Haas, R. Mogk, E. Yanakieva, A. Bieniusa, and M. Mezini 12:7

be executed concurrently to each other, they are conflicting and have to be coordinated to
ensure invariant-safety. Using the proofs, we can precisely determine the sets of conflicting
interactions and automatically synthesize coordination procedures which ensure safety at
runtime while limiting the synchronization points to the necessary cases.

3.3 Synchronization at Runtime
Our compiler generates an executable application by converting the data-flow graph to a
distributed REScala program [26, 27]. REScala supports all reactive features we require and
integrates well with our CRDT-based replication, but has no mechanism for synchronization.
LoRe’s formal synchronization semantics (see the extended version of this work2) could be
implemented using any existing form of coordination, such as a central server, a distributed
ledger, a consensus algorithm, or a distributed locking protocol. Which choice is suitable,
depends on the target application, network size, and the reliability of the chosen transport
layer. We use a simple distributed locking protocol for our implementation: Each interaction
has an associated lock (represented as a simple token). Whenever a device wants to execute
an interaction, it acquires the tokens of all conflicting interactions. If multiple devices
request the same token concurrently, the token is given to the device with the lowest ID that
requested it. This ensures deadlock freedom; fairness is left for future work. After performing
the interaction, the resulting state changes are synchronized with the other devices and
the tokens are made available again. Timeouts ensure that whenever a device crashes or
becomes unavailable for a longer period of time, its currently owned tokens are released and
any unfinished interactions by the device are aborted.

4 Evaluation

Our evaluation aims to validate two claims about LoRe’s programming model:
C1: It facilitates the development of safe local-first software.
C2: It enables an efficient and modular verification of safety properties.

We base our validation on two case studies. First, we implemented the standard TPC-C
benchmark [36] as a local-first application in LoRe. This case study enables comparing
LoRe’s model with traditional database-centered development of data processing software
and showcasing the benefits of LoRe’s verifiable safety guarantees on standard consistency
conditions. Second, we implemented the running calendar example (Section 2) using Yjs [31].
This case study allows comparing LoRe with an existing framework for local-first applications
that we consider a representative of the state-of-the-art.

4.1 Does LoRe facilitate the development of safe local-first software?
4.1.1 Local-first TPC-C
TPC-C models an order fulfillment system with multiple warehouses in different districts,
consisting of five database transactions alongside twelve consistency conditions. We imple-
mented TPC-C in LoRe by mapping database tables to source reactives and derived database
values to derived reactives. Each database transaction was modelled as a LoRe interaction.

While modelling the application using reactives might require some adaption from
developers not familiar with data-flow programming, we found that using derived reactives
led to a more concise and less error-prone design when compared to storing derived values
in separate tables. For example, instead of storing the year to date (YTD) value of each
TPC-C district in a separate table and updating it each time the payment history changes,

ECOOP 2023

12:8 LoRe: A Programming Model for Verifiably Safe Local-First Software

Listing 2 Defining source and derived
variables in Yjs.

1 const ydoc = new Y.Doc ()
2 let work = ydoc. getMap (’work ’);
3 let vacation = ydoc. getMap (’

vacation ’);
4 let all_appointments ;
5 let remaining_vacation = 30;
6
7 work. observe (ymapEvent => {
8 all_appointments = getMap (work ,

vacation);
9 })

10
11 vacation . observe (ymapEvent => {
12 let days_total = getTotalVacDays

(vacation);
13 remaining_vacation = 30 -

daysTotal ;
14 all_appointments = getMap (work ,

vacation);
15 })

Listing 3 Adding appointments in Yjs.

1 function addAppointment (calendar ,
appointment) {

2 if(appointment . start <
appointment .end){

3 calendar .set(appointment .id ,
appointment);

4 }
5 }
6
7 function addVacation (appointment)
8 {
9 let days =

10 appointment . getDays ();
11 if(remainingVacation < days){
12 console .log("Sorry , no

vacation left!");
13 }
14 else{
15 addAppointment (vacation ,

appointment)
16 }
17 }

we can model the district YTD as a derived reactive. Following this approach automatically
guarantees 9 out of 12 consistency conditions of TPC-C that express consistency requirements
between multiple related tables. We were able to phrase the remaining 3 conditions as
invariants by directly translating the natural language formulations into logical specifications.
To prove them, we additionally needed to specify pre- and postconditions of interactions
corresponding to transactions. Other than that, LoRe relieves the TPC-C developer from any
considerations of transaction interleavings that could potentially violate the conditions as
well as from implementing the synchronization logic, both tedious and error-prone processes.

4.1.2 Yjs-based Calendar

We now compare the LoRe implementation of the distributed calendar to an implementation
using the state of the art local-first framework Yjs [31]. Like other solutions for local-first
software, Yjs uses a library of CRDTs (usually maps, sets, sequences / arrays, and counters)
composed into nested trees – called a documents – used to model domain objects.

Source and Derived Variables. For illustration, consider Listing 2, showing how one could
implement the domain model of the calendar application. Lines 2 and 3 initialize two CRDTs
for the work and vacation calendar. Yjs has no abstraction for derived values and only
provides callbacks for reacting to value changes, e.g., Lines 7-15 declare callback methods
that update the derived variables in case the Yjs document changes.

Safety Guarantees. Using callbacks to model and manage complex state that changes
both in time and in space has issues. It requires that developers programmatically update
the derived values once the sources get updated, via local interactions or on receiving updates
from other devices, with no guarantees that they do so consistently. It yields a complex
control-flow and requires intricate knowledge of the execution semantics to ensure atomicity
of updates, let alone to enforce application-level safety properties. Frameworks like Yjs do
not offer support for application invariants and thus force developers to integrate custom
safety measures at each possible source of safety violations.

J. Haas, R. Mogk, E. Yanakieva, A. Bieniusa, and M. Mezini 12:9

Table 1 Seconds to verify combinations of interactions and invariants of the two example
applications. Each entry represents the mean verification time over 5 runs with the deviation shown
in parentheses.

Distributed Calendar

Interaction Invariant

1 2

Add vacation 3.32 (± 0.05) 2.97 (± 0.03)
Remove vacation 3.28 (± 0.06) 3.00 (± 0.02)
Change vacation 3.32 (± 0.05) 3.04 (± 0.03)
Add work 3.31 (± 0.04) –
Remove work 3.30 (± 0.06) –
Change work 3.34 (± 0.06) –

TPC-C

Interaction Consistency Condition

3 5 7

New Order 45.4 (± 63.69) 7.63 (± 0.11) 14.49 (± 7.31)
Delivery 5.78 (± 0.03) 5.74 (± 0.07) 5.76 (± 0.09)

In summary, while the replication capabilities of systems like Yjs are valuable for local-first
applications, these systems still require the developer to do state management manually.
The prevailing use of callbacks and implicit dependencies makes reasoning about the code
challenging for both developers and automatic analyses. In contrast, LoRe allows declarative
definitions of derived values, with positive effects on reasoning [33, 10]. Moreover, LoRe
integrates application invariants as explicit language constructs, which allows for a modular
specification and verification and relieves developers from having to consider every involved
interaction whenever the specification changes.

4.2 Does LoRe enable efficient and modular verification of safety
properties?

To empirically evaluate the performance of LoRe’s verifier, we quantify how long it takes
to verify different combinations of interactions and invariants of our two case studies. The
results are shown in Table 1. The calendar example has two additional types of interactions,
which we have not shown in Section 2: removing and changing calendar entries. This leads
to a total of 6 interactions (3 per calendar reactive). For TPC-C we only had to verify
consistency conditions 3, 5, and 7 because the others were already ensured by the respective
derived reactives. The benchmarks were performed on a desktop PC with an AMD Ryzen 7
5700G CPU and 32 GB RAM using Viper’s silicon verification backend (release v.23.01) [37].

Results. In summary, every interaction/invariant combination in our case studies could
be verified in less than a minute. Verification times differed depending mainly on the
complexity and length of the interactions and invariants under consideration. Differences
become apparent especially when looking at the results for TPC-C. Proofs involving the
New Order interaction, which is the most “write-heavy” interaction of TPC-C that changes
many source reactives at once, generally took longer to verify than others. For New Order,
we also observe a much higher deviation of up to 64 seconds which we assume to be caused

ECOOP 2023

12:10 LoRe: A Programming Model for Verifiably Safe Local-First Software

by internal Z3 heuristics5. When interpreting the results, it is important to note that each
interaction/invariant combination has to be verified only once and independently of other
combinations. Large-scale applications can be verified step-by-step by splitting them into
smaller pieces. Furthermore, we limit the need for verification to potential conflicts that we
derive from the reactive data-flow graph. Programmers can add new functionality to the
application (i.e., specify interactions) and only have to reason about the properties of that
new functionality (i.e., specify its invariants) and the system ensures global safety – at only
the cost of the amount of overlap with existing functionality. This allows for an incremental
development style, where only certain parts of programs have to be (re-)verified, when they
have been changed or added.

5 Related Work

Our work relates to three areas: distributed datatypes, formal reasoning, and language-based
approaches. Sections below relate work from each area to respective aspects of our approach.

5.1 Consistency Through Distributed Data Types
Conflict-Free Replicated Datatypes (CRDTs)[34, 32] are a building block for constructing
systems and applications that guarantee eventual consistency. CRDTs are used in distributed
database systems such as Riak [18] and AntidoteDB [1]. These databases make it possible
to construct applications that behave under mixed consistency, but unlike our approach,
they leave reasoning about application guarantees to the programmer. Several works [12, 30]
propose frameworks for formally verifying the correctness of CRTDs, while others [16, 20]
focus on synthesizing correct-by construction CRDTs from specifications.

De Porre et al. [9, 8] suggest strong eventually consistent replicated objects (SECROs)
relying on a replication protocol that tries to find a valid total order of all operations. Similar
to LoRe, SECROs [9, 8] and Hamsaz [14] extend upon the eventually consistent replication of
CRDTs by automatically choosing the right consistency level based on application invariants.
Both approaches tie consistency and safety properties to specific datatypes/objects. This
is not sufficient to guarantee end-to-end correctness of an entire local-first application -
consistency bugs can still manifest in derived information (e.g., in the user interface).

5.2 Automated Reasoning about Consistency Levels
Our formalization is in part inspired by the work of Balegas et al. [6, 7] on Indigo. The work
introduces a database middleware consisting of transactions and invariants to determine the
ideal consistency level – called explicit consistency. They build on the notion of invariant-
confluence for transactions that cannot harm an invariant which was first introduced by
Bailis et al. [4]. While they work on a database level, we show how to integrate this reasoning
approach into a programming language. An important difference between our invariant-
confluence and the one by Balegas et al. [6] is that our approach also verifies local preservation
of invariants, whereas their reasoning principle assumes invariants to always hold in a local
context. In a more recent work called IPA, Balegas et al. [5] propose a static analysis
technique that aims at automatically repairing transaction/invariant conflicts without adding
synchronization between devices. We consider this latter work complementary to ours.

5 These could likely be improved by annotating quantifiers in invariants and pre-/postconditions with
hand-crafted trigger expressions [28].

J. Haas, R. Mogk, E. Yanakieva, A. Bieniusa, and M. Mezini 12:11

Whittaker and Hellerstein [38] also build on the idea of invariant-confluence and extend it
to the concept of segmented invariant-confluence. Under segmented invariant-confluence,
programs are separated into segments that can operate without coordination and coordination
only happens in between the segments. The idea is similar to our definition of conflicting
interactions, however, their procedure cannot suggest a suitable program segmentation, but
requires developers to supply them.

The SIEVE framework [22] builds on the previous work on Red/Blue-Consistency [23] and
uses invariants and program annotations to infer where a Java program can safely operate
under CRDT-based replication (blue) and where strong consistency is necessary (red). They
do so by relying on a combination of static and dynamic analysis techniques. Compared
to SIEVE, our formal reasoning does not require any form of dynamic analysis. Blazes [2]
is another analysis framework that uses programmer supplied specifications to determine
where synchronization is necessary to ensure eventual consistency. Contrary to Blazes, LoRe
ensures that programs are “by design” at least eventually consistent, while also allowing the
expression and analysis of programs that need stronger consistency. Q9 [15] is a bounded
symbolic execution system, which identifies invariant violations caused by weak consistency
guarantees. Similar to our work, Q9 can determine where exactly stronger consistency
guarantees are needed to maintain certain application invariants. However, its verification
technique is bound by the number of possible concurrent operations. LoRe can provide
guarantees for an unlimited amount of devices with an unlimited amount of concurrent
operations.

5.3 Language Abstractions for Data Consistency
We categorize language-based approaches based on how they achieve consistency and on the
level of programmer involvement.

Manual Choice of Consistency Levels. Li et al. [23] propose RedBlue Consistency where
programmers manually label their operations to be either blue (eventually consistent) or
red (strongly consistent). In MixT [25], programmers annotate classes with different con-
sistency levels and the system uses an information-flow type system to ensure that the
requested guarantees are maintained. However, this still requires expert knowledge about
each consistency level, and wrong choices can violate the intended program semantics. Other
approaches [29, 19] expect programmers to choose between consistency and availability, again
leaving the reasoning duty about consistency levels to the programmer. Compared to LoRe,
languages in this category place higher burden on programmers: They decide which operation
needs which consistency level, a non-trivial and error-prone selection.

Automatically Deriving Consistency from Application Invariants. CAROL [21] uses
CRDTs to replicate data and features a refinement typing discipline for expressing safety
properties similar to our invariants. Carol makes use of pre-defined datatypes with consistency
guards used by the type system to check for invariant violations. The compatibility of datatype
operations and consistency guards is verified ahead of time using an algorithm for the Z3
SMT solver. This approach hides much of the complexity from the programmer, but the
abstraction breaks once functionality that is not covered by a pre-defined datatype is needed.
Unlike Carol, LoRe does not rely on predefined consistency guards, but allows the expression
of safety properties as arbitrary logical formulae. Additionally, CAROL only checks the
concurrent interactions of a program for invariant violations, whereas LoRe verifies the
overall application including non-distributed parts. Sivaramakrishnan et al. [35] propose
QUELEA, a declarative language for programming on top of eventually consistent datastores.
It features a contract-language to express application-level invariants and automatically

ECOOP 2023

12:12 LoRe: A Programming Model for Verifiably Safe Local-First Software

generates coordination strategies in cases where invariants could be violated by concurrent
operations. QUELEA’s contract-language requires programmers to express the desired
properties using low-level visibility relations, which can be challenging to get right for non-
experts. LoRe avoids this intermediate reasoning and automatically derives the right level of
consistency for satisfying high-level safety invariants to enable end-to-end correctness.

Automating Consistency by Prescribing the Programming Model. Languages in this
category seek to automate consistency decisions by prescribing a certain programming model
such that certain consistency problems are impossible to occur. In Lasp [24], programmers
model the data flow of their applications using combinator functions on CRDTs. Programs
written in Lasp always provide eventual consistency but contrary to LoRe, Lasp does not
allow arbitrary compositions of distributed datatypes. Bloom [3] provides programmers with
ways to write programs that are logically monotonic and therefore offer automatic eventual
consistency. Both Lasp and Bloom, however, are not meant to formulate programs that need
stronger consistency guarantees. LoRe is similar to Lasp and Bloom in the sense that we
also prescribe a specific – reactive – programming style. However, our programming model is
less restrictive and allows arbitrary compositions of distributed datatypes. This is enabled
by leveraging the composability properties of reactive data-flow graphs. Secondly, LoRe
provides a principled way to express hybrid consistency applications with guarantees stronger
than eventual consistency. Drechsler et al. [11] and Mogk et al. [26, 27] also use a reactive
programming model similar to ours to automate consistency in presence of multi-threading
respectively of a distributed execution setting. However, they do not support a hybrid
consistency model. Drechsler et al. [11] enable strong consistency (serializability) only, while
Mogk et al. [26, 27] support only eventual consistency.

6 Conclusion and Future Work

In this paper, we proposed LoRe, a language for local-first software with verified safety
guarantees. LoRe combines the declarative data flow of reactive programming with static
analysis and verification techniques to precisely determine concurrent interactions that could
violate programmer-specified safety properties. We presented a formal definition of the
programming model and a modular verification that detects concurrent executions that may
violate application invariants. In case of invariant violation due to concurrent execution,
LoRe automatically enforces the necessary amount of coordination. LoRe’s verifying compiler
translates LoRe programs to Viper [28] for automated verification and to Scala for the
application logic including synthesized synchronization to guarantee the specified safety
invariants. An evaluation of LoRe’s programming model in two case studies confirms that it
facilitates the development of safe local-first applications and enables efficient and modular
automated reasoning about an application’s safety properties. Our evaluation shows that
verification times are acceptable and that the verification effort required from developers is
reasonable.

In the future, it would be desirable to integrate existing libraries of verified CRDTs [12]
or even solutions that allow ad-hoc verification of CRDT-like datatypes [30, 20]. This would
enable us to support a wider range of data types or even allow programmers to use custom
distributed datatypes, which can be verified to be eventually consistent. Furthermore, our
current data-flow analysis is limited to static data-flow graphs. While static reasoning about
dynamic graphs is impossible in the general case, most applications make systematic use of
dynamic dependencies, and we believe it would be feasible to support common cases.

J. Haas, R. Mogk, E. Yanakieva, A. Bieniusa, and M. Mezini 12:13

References
1 Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, Zhongmiao Li, Tyler Crain,

Annette Bieniusa, Nuno Preguiça, and Marc Shapiro. Cure: Strong Semantics Meets High
Availability and Low Latency. In 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS), 2016. doi:10.1109/ICDCS.2016.98.

2 Peter Alvaro, Neil Conway, Joseph M Hellerstein, and David Maier. Blazes: Coordination
analysis for distributed programs. In 2014 IEEE 30th International Conference on Data
Engineering. IEEE, March 2014. doi:10.1109/ICDE.2014.6816639.

3 Peter Alvaro, Neil Conway, Joseph M Hellerstein, and William R Marczak. Consistency
Analysis in Bloom: A CALM and Collected Approach. In CIDR. Citeseer, 2011. URL:
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf.

4 Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein, and Ion
Stoica. Coordination Avoidance in Database Systems. Proceedings of the VLDB Endowment,
8(3):185–196, November 2014. doi:10.14778/2735508.2735509.

5 Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, and Nuno Preguiça. IPA:
Invariant-Preserving Applications for Weakly Consistent Replicated Databases. Proceedings
of the VLDB Endowment, 12(4):404–418, December 2018. doi:10.14778/3297753.3297760.

6 Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça, Mahsa
Najafzadeh, and Marc Shapiro. Putting consistency back into eventual consistency. Proceedings
of the Tenth European Conference on Computer Systems - EuroSys ’15, pages 1–16, 2015.
doi:10.1145/2741948.2741972.

7 Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça, Mahsa
Najafzadeh, and Marc Shapiro. Towards Fast Invariant Preservation in Geo-replicated Systems.
ACM SIGOPS Operating Systems Review, 49(1):121–125, January 2015. doi:10.1145/2723872.
2723889.

8 Kevin De Porre, Carla Ferreira, Nuno M. Preguiça, and Elisa Gonzalez Boix. Ecros: building
global scale systems from sequential code. Proceedings of the ACM on Programming Languages,
5(OOPSLA):1–30, 2021. doi:10.1145/3485484.

9 Kevin De Porre, Florian Myter, Christophe De Troyer, Christophe Scholliers, Wolfgang
De Meuter, and Elisa Gonzalez Boix. Putting order in strong eventual consistency. In
Distributed Applications and Interoperable Systems, pages 36–56, Cham, 2019. Springer Inter-
national Publishing. doi:10.1007/978-3-030-22496-7_3.

10 Moritz Dinser. An empirical study on reactive programming. Master’s thesis, Technische Uni-
versität Darmstadt, 2021. URL: http://tubama.ulb.tu-darmstadt.de/id/eprint/30079.

11 Joscha Drechsler, Ragnar Mogk, Guido Salvaneschi, and Mira Mezini. Thread-Safe Reactive
Programming. Proceedings of the ACM on Programming Languages, 2(OOPSLA), October
2018. doi:10.1145/3276477.

12 Victor B F Gomes, Martin Kleppmann, Dominic P Mulligan, and Alastair R Beresford.
Verifying Strong Eventual Consistency in Distributed Systems. Proceedings of the ACM on
Programming Languages, 1(OOPSLA):109:1–109:28, October 2017. doi:10.1145/3133933.

13 Julian Haas, Ragnar Mogk, Elena Yanakieva, Annette Bieniusa, and Mira Mezini. Lore: A
programming model for verifiably safe local-first software, 2023. arXiv:2304.07133.

14 Farzin Houshmand and Mohsen Lesani. Hamsaz: Replication Coordination Analysis and
Synthesis. Proceedings of the ACM on Programming Languages, 3(POPL):74:1–74:32, January
2019. doi:10.1145/3290387.

15 Gowtham Kaki, Kapil Earanky, K C Sivaramakrishnan, and Suresh Jagannathan. Safe Repli-
cation through Bounded Concurrency Verification. Proceedings of the ACM on Programming
Languages, 2(OOPSLA), October 2018. doi:10.1145/3276534.

16 Gowtham Kaki, Swarn Priya, K C Sivaramakrishnan, and Suresh Jagannathan. Mergeable
replicated data types. Proceedings of the ACM on Programming Languages, 3(OOPSLA):154:1–
154:29, October 2019. doi:10.1145/3360580.

ECOOP 2023

https://doi.org/10.1109/ICDCS.2016.98
https://doi.org/10.1109/ICDE.2014.6816639
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.14778/3297753.3297760
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1145/2723872.2723889
https://doi.org/10.1145/2723872.2723889
https://doi.org/10.1145/3485484
https://doi.org/10.1007/978-3-030-22496-7_3
http://tubama.ulb.tu-darmstadt.de/id/eprint/30079
https://doi.org/10.1145/3276477
https://doi.org/10.1145/3133933
https://arxiv.org/abs/2304.07133
https://doi.org/10.1145/3290387
https://doi.org/10.1145/3276534
https://doi.org/10.1145/3360580

12:14 LoRe: A Programming Model for Verifiably Safe Local-First Software

17 Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan. Local-first
software: You own your data, in spite of the cloud. In Proceedings of the 2019 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! 2019, New York, NY, USA, October 2019. Association for Computing
Machinery. doi:10.1145/3359591.3359737.

18 Rusty Klophaus. Riak Core: Building Distributed Applications without Shared State. In
ACM SIGPLAN Commercial Users of Functional Programming, New York, NY, USA, 2010.
Association for Computing Machinery. doi:10.1145/1900160.1900176.

19 Mirko Köhler, Nafise Eskandani, Pascal Weisenburger, Alessandro Margara, and Guido
Salvaneschi. Rethinking Safe Consistency in Distributed Object-Oriented Programming.
Proceedings of the ACM on Programming Languages, 4(OOPSLA):188:1–188:30, 2020. doi:
10.1145/3428256.

20 Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, and Joseph M. Hellerstein. Katara:
Synthesizing CRDTs with verified lifting. Proceedings of the ACM on Programming Languages,
6(OOPSLA2):173:1349–173:1377, October 2022. doi:10.1145/3563336.

21 Nicholas V Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and Pavol Černý. Sequential
Programming for Replicated Data Stores. Proceedings of the ACM on Programming Languages,
3(ICFP):106:1–106:28, July 2019. doi:10.1145/3341710.

22 Cheng Li, João Leitão, Allen Clement, Nuno M. Preguiça, Rodrigo Rodrigues, and
Viktor Vafeiadis. Automating the Choice of Consistency Levels in Replicated Sys-
tems. In 2014 USENIX Annual Technical Conference (USENIX ATC 14), Philadel-
phia, PA, 2014. USENIX Association. URL: https://www.usenix.org/conference/atc14/
technical-sessions/presentation/li_cheng_2.

23 Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguic, and Rodrigo
Rodrigues. Making Geo-Replicated Systems Fast as Possible, Consistent when Necessary.
OSDI’12 Proceedings of the 10th USENIX conference on Operating Systems Design and
Implementation, pages 265–278, 2012. URL: https://www.usenix.org/conference/osdi12/
technical-sessions/presentation/li.

24 Christopher Meiklejohn and Peter Van Roy. Lasp: A Language for Distributed, Coordination-
free Programming. In Proceedings of the 17th International Symposium on Principles and
Practice of Declarative Programming, pages 184–195, New York, NY, USA, 2015. Association
for Computing Machinery. doi:10.1145/2790449.2790525.

25 Mae Milano and Andrew C Myers. MixT: A Language for Mixing Consistency in Geodistributed
Transactions. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3192366.3192375.

26 Ragnar Mogk, Lars Baumgärtner, Guido Salvaneschi, Bernd Freisleben, and Mira Mezini. Fault-
tolerant Distributed Reactive Programming. In 32nd European Conference on Object-Oriented
Programming (ECOOP 2018), volume 109, Dagstuhl, Germany, 2018. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECOOP.2018.1.

27 Ragnar Mogk, Joscha Drechsler, Guido Salvaneschi, and Mira Mezini. A Fault-tolerant
Programming Model for Distributed Interactive Applications. Proceedings of the ACM on
Programming Languages, 3(OOPSLA):144:1–144:29, October 2019. doi:10.1145/3360570.

28 P Müller, M Schwerhoff, and A J Summers. Viper: A Verification Infrastructure for Permission-
Based Reasoning. In Verification, Model Checking, and Abstract Interpretation (VMCAI),
volume 9583, Berlin, Heidelberg, 2016. Springer-Verlag. doi:10.1007/978-3-662-49122-5_2.

29 Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. A CAPable Distributed
Programming Model. In Proceedings of the 2018 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software, Onward! 2018, New
York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3276954.3276957.

https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/1900160.1900176
https://doi.org/10.1145/3428256
https://doi.org/10.1145/3428256
https://doi.org/10.1145/3563336
https://doi.org/10.1145/3341710
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_cheng_2
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_cheng_2
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://doi.org/10.1145/2790449.2790525
https://doi.org/10.1145/3192366.3192375
https://doi.org/10.4230/LIPIcs.ECOOP.2018.1
https://doi.org/10.1145/3360570
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/3276954.3276957

J. Haas, R. Mogk, E. Yanakieva, A. Bieniusa, and M. Mezini 12:15

30 Sreeja S Nair, Gustavo Petri, and Marc Shapiro. Proving the Safety of Highly-Available
Distributed Objects. In Programming Languages and Systems, pages 544–571, Cham, 2020.
Springer International Publishing. doi:10.1007/978-3-030-44914-8_20.

31 Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. Near real-time peer-to-peer
shared editing on extensible data types. In Proceedings of the 19th International Conference
on Supporting Group Work, Sanibel Island, FL, USA, November 13 - 16, 2016. Association for
Computing Machinery, 2016. doi:10.1145/2957276.2957310.

32 Nuno Preguiça. Conflict-free Replicated Data Types: An Overview. ArXiv, June 2018.
doi:10.48550/arXiv.1806.10254.

33 Guido Salvaneschi, Sebastian Proksch, Sven Amann, Sarah Nadi, and Mira Mezini. On the
Positive Effect of Reactive Programming on Software Comprehension: An Empirical Study.
IEEE Transactions on Software Engineering, 43(12), 2017. doi:10.1109/TSE.2017.2655524.

34 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study of
convergent and commutative replicated data types. Research Report RR-7506, Inria – Centre
Paris-Rocquencourt ; INRIA, January 2011. URL: https://hal.inria.fr/inria-00555588.

35 KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Declarative Programming
over Eventually Consistent Data Stores. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’15, pages 413–424, New York,
NY, USA, June 2015. Association for Computing Machinery. doi:10.1145/2737924.2737981.

36 TPC. TPC-C Specification 5.11.0, 2021. URL: http://tpc.org/TPC_Documents_Current_
Versions/pdf/tpc-c_v5.11.0.pdf.

37 Viper. Viperproject/silicon Github Repository. Viper Project, April 2021. URL: https:
//github.com/viperproject/silicon.

38 Michael Whittaker and Joseph M Hellerstein. Interactive Checks for Coordination Avoidance.
Proceedings of the VLDB Endowment, 12(1):14–27, September 2018. doi:10.14778/3275536.
3275538.

ECOOP 2023

https://doi.org/10.1007/978-3-030-44914-8_20
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.48550/arXiv.1806.10254
https://doi.org/10.1109/TSE.2017.2655524
https://hal.inria.fr/inria-00555588
https://doi.org/10.1145/2737924.2737981
http://tpc.org/TPC_Documents_Current_Versions/pdf/tpc-c_v5.11.0.pdf
http://tpc.org/TPC_Documents_Current_Versions/pdf/tpc-c_v5.11.0.pdf
https://github.com/viperproject/silicon
https://github.com/viperproject/silicon
https://doi.org/10.14778/3275536.3275538
https://doi.org/10.14778/3275536.3275538

Dynamic Determinacy Race Detection for
Task-Parallel Programs with Promises
Feiyang Jin #

College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

Lechen Yu #

College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

Tiago Cogumbreiro #

College of Science and Mathematics, University of Massachusetts Boston, MA, USA

Jun Shirako #

College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

Vivek Sarkar #

College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

Abstract
Much of the past work on dynamic data-race and determinacy-race detection algorithms for task
parallelism has focused on structured parallelism with fork-join constructs and, more recently,
with future constructs. This paper addresses the problem of dynamic detection of data-races and
determinacy-races in task-parallel programs with promises, which are more general than fork-join
constructs and futures. The motivation for our work is twofold. First, promises have now become a
mainstream synchronization construct, with their inclusion in multiple languages, including C++,
JavaScript, and Java. Second, past work on dynamic data-race and determinacy-race detection for
task-parallel programs does not apply to programs with promises, thereby identifying a vital need
for this work.

This paper makes multiple contributions. First, we introduce a featherweight programming
language that captures the semantics of task-parallel programs with promises and provides a basis for
formally defining determinacy using our semantics. This definition subsumes functional determinacy
(same output for same input) and structural determinacy (same computation graph for same input).
The main theoretical result shows that the absence of data races is sufficient to guarantee determinacy
with both properties. We are unaware of any prior work that established this result for task-parallel
programs with promises. Next, we introduce a new Dynamic Race Detector for Promises that we
call DRDP. DRDP is the first known race detection algorithm that executes a task-parallel program
sequentially without requiring the serial-projection property; this is a critical requirement since
programs with promises do not satisfy the serial-projection property in general. Finally, the paper
includes experimental results obtained from an implementation of DRDP. The results show that,
with some important optimizations introduced in our work, the space and time overheads of DRDP
are comparable to those of more restrictive race detection algorithms from past work. To the best
of our knowledge, DRDP is the first determinacy race detector for task-parallel programs with
promises.

2012 ACM Subject Classification Software and its engineering → Software creation and management;
Software and its engineering → Software verification and validation; Software and its engineering →

Software defect analysis; Software and its engineering → Software testing and debugging; Software and
its engineering → Software notations and tools; Software and its engineering → General programming
languages; Software and its engineering → Concurrent programming languages

Keywords and phrases Race detection, Promise, Determinism, Determinacy-race, Serial projection

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.13

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.24

Funding This material is based upon work supported by the National Science Foundation under
Grant No. 2204986.

V1.1

A
rt
ifa

cts Available

ECOOP

© Feiyang Jin, Lechen Yu, Tiago Cogumbreiro, Jun Shirako, and Vivek Sarkar;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 13; pp. 13:1–13:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fjin35@gatech.edu
mailto:lechen.yu@gatech.edu
mailto:tiago.cogumbreiro@umb.edu
mailto:shirako@gatech.edu
mailto:vsarkar@gatech.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2023.13
https://doi.org/10.4230/DARTS.9.2.24
https://doi.org/10.4230/DARTS.9.2.24
https://doi.org/10.4230/DARTS.9.2.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

1 x ← alloc
2 y ← new_promise
3 async {
4 store 5 to x

5 y.set
6 return
7 }
8 a ← load x

9 y.get
10 b ← load x

11 return

Figure 1 Example program.

1 Introduction

In recent years, promises have been incorporated as a general synchronization construct into
multiple mainstream languages, including C++ [17], Java [28], and JavaScript [27]. A promise
is a wrapper for a data payload that is initially empty. It typically has two operations which
we refer to as set and get. Each get operation blocks until the promise receives a value for
its payload; multiple get operations may be performed on the same promise from multiple
tasks, and they all return the same value. Figure 1 shows the usage: an async task sets the
promise at line 5, and the main task gets the promise at line 9.

A promise with a set payload is referred to as a fulfilled promise. Following standard
conventions, we assume that promises obey the single-assignment policy, where an invocation
of set on a fulfilled promise (i.e., a second assignment) will induce a runtime error. Compared
to futures [20], promises generalize the semantics for synchronization in that a promise need
not be bound to the return value of a specific task; instead, any task can choose to perform a
set operation on a given promise. Promises support arbitrary point-to-point synchronization
wherein one or more tasks can await the arrival of a payload for which the producer task is
not known in advance. However, it has been observed that the convenience of this generality
may also be accompanied by the increasing complexity of dynamic analysis for bug detection
in parallel programs [42].

As with any source of parallelism, accesses to shared memory locations must be correctly
ordered to avoid determinacy races [15], defined as race conditions causing non-determinism.
A determinacy race often results from a data race [26,31], which occurs when two concurrent
memory accesses operate on the same memory location and at least one of them is a write. A
key result in our paper is that the absence of data races is sufficient to guarantee determinacy
for task-parallel programs with promises; in contrast, this property does not hold for programs
that use mutual exclusion constructs such as locks or transactions.

For dynamic race detectors, enumerating all possible inputs is usually intractable; therefore,
they are typically per-input or per-schedule race detectors. Per-input race detectors report all
potential races for a given input by covering all possible thread schedules [15,30,31,35,43–45],
whereas per-schedule race detectors only cover the observed schedule when analyzing a
program’s execution [1, 16, 33]. However, prior work related to dynamic determinacy race
detection has some major limitations:

F. Jin, L. Yu, T. Cogumbreiro, J. Shirako, and V. Sarkar 13:3

1. None of these race detectors support promises.

2. No formal definition of “determinacy” is provided. For example, in the SP-Bags paper [15],
the authors state “[determinacy race]... may cause the program to behave nondetermin-
istically. That is, different runs of the same program may produce different behaviors”.
However, no formal definition was provided for what is meant by “different behaviors.”

3. It has been observed in some past work (e.g., [7, 31,35]) that for certain classes of task-
parallel programs, data-race freedom leads to determinacy but no formal proof was given
for this observation.

In this paper, we introduce a featherweight programming language that captures the
semantics of Task-Parallel Programs with Promises (TP3) and use it as a basis for formally
defining determinacy, along with a proof that data-race freedom implies both structural and
functional determinacy for TP3. We also designed and implemented a race detector for TP3.
A major obstacle is that the tasks issuing get/set operations on a given promise cannot be
identified in advance. As a result, TP3 do not satisfy the serial-projection property [32], i.e.,
the property that a sequential execution of the program with all parallel constructs removed
is guaranteed to be a legal execution of the original parallel program. This feature is utilized
by a number of dynamic race detectors [4,15,30,35,37]. Without this property, the sequential
execution of a parallel program may be blocked by a get operation. To address this and
other challenges, we extended the Habanero-C/C++ library [8] to enable correct single-
worker execution of such programs via cooperative task switching. However, keeping track of
happens-before relationships also becomes more challenging in the presence of task switching.
Efficient data structures used previously [4,15,30,35,37] rely on the serial-projection property
to maintain happens-before information correctly and cannot directly be used for programs
with promises.

In summary, the key contributions of this paper are as follows:

1. A formalization of determinacy for TP3 using a featherweight programming language
(Section 2).

2. A proof that TP3 are guaranteed to be determinate in the absence of data races (Section 3).

3. A new dynamic race detection algorithm for TP3 called Determinacy Race Detector for
Promises (DRDP, Section 4). To the best of our knowledge, this is the first precise and
efficient per-input race detector for TP3.

4. An implementation of DRDP on top of the Habanero-C/C++ library and its evaluation
on a set of benchmarks using promises (Section 5). The results show that, with some
essential optimizations introduced in our work, the space and time overheads of DRDP
are comparable to those of more restrictive race detection algorithms from past work.

2 A Featherweight Language for Task-Parallel Programs with
Promises

In this section, we introduce a featherweight language that features task parallelism and
promises to establish determinacy. Our language is Turing-complete. We do not include
functions and types because we aim to use this core language to prove properties of dynamic
program executions that are possible from a given static program, rather than using this
language for static program analysis.

ECOOP 2023

13:4 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

Program P ∶∶= s ; P ∣ return
Statement s ∶∶= m

∣ async{P } (create asynchronous task)
∣ x ← new_promise
∣ x.set
∣ x.get
∣ x ← e
∣ while (0 ≠ load y) {P }

Memory Operation m ∶∶= y ← alloc
∣ x ← load y

∣ store e to y

Expression e ∶∶= x (local variable)
∣ y (local variable that saves shared variable name)
∣ c (integer constant)
∣ e1 + e2

Runtime value k ∶∶= c ∣ r ∣ p

Figure 2 Syntax of the core language.

2.1 Language Syntax
Figure 2 lists the syntax of our language. A program consists of a sequence of statements
terminated by a return. A single statement can be task creation (async)1, a memory
operation (alloc, load, and store), a promise operation (new_promise, set, get), a local
variable assignment (x ← e), or a conditional loop (while). We use symbols x and y to
denote local variables within a specific task, along with an LLVM-style syntax and convention.

The language syntax introduces two types of variables: local variables and shared variables.
Each task has a set of scoped local variables which must satisfy the single-assignment rule;
apart from local variables, tasks may also access shared variables using memory operations.
In fact, the only way for two tasks2 to share data is via memory operations.

Shared variables are modeled as a global map (i.e., memory), in which each instance has
a unique name assigned during its allocation; this name serves as a reference for operating
on the corresponding shared variable. Statement y ← alloc allocates a new shared variable,
with its reference saved into y. Statement x ← load y retrieves a shared variable’s content
using the reference in local variable y and saves the retrieved content into another local
variable x. Likewise, statement store e to y locates a shared variable using the reference in
y and updates the shared variable’s content with value e.

Statement x ← e initializes single-assignment local variable x with the value e. According
to the syntax, e could be an integer, a local variable, or a sum of two expressions. Statement
async{P } spawns a concurrent task to execute the body P . Statement while (0 ≠ load y) {P }
will continuously execute the loop body P until the condition no longer holds. Statement x ←

new_promise creates a new promise, and saves a reference to the promise in local variable
x. Statement x.set signals promise x, and statement x.get blocks until a task issues a
set operation on promise x. To simplify the presentation, we eschew the data payload of
promises, thus only offering synchronization functionality. Communicating data through a
promise is still possible, but must be encoded using additional shared variables.

1 We do not include join operations like finish and sync in our language, since they can be modeled
using sets of promises.

2 For convenience, the main program is considered to be a root task.

F. Jin, L. Yu, T. Cogumbreiro, J. Shirako, and V. Sarkar 13:5

2.2 Runtime State
The runtime state σ of our language is a pair σ = (M,G), where M maps shared variables
into runtime values, and a computation graph G. We denote a map M as {r1 ∶ k1, r2 ∶
k2, . . . rn ∶ kn}. We use the notation M [r ∶= k] to extend M . We define computation
graphs G inductively using the rules in Figure 3.

n ∶∶= t ∣ Unful(p) ∣ Ful(p) Runtime nodes
t ∶∶= [f, P, L] Task nodes
G ∶∶= t

∣ G + t1
cont
−−−−→ t2 Continue edges

∣ G + t2
fork
←−−−− t1

cont
−−−−→ t3 Fork edges

∣ G + Unful(p) np
←−− t1

cont
−−−−→ t2 New promise edges

∣ G + Unful(p) cont
−−−−→ Ful(p) set

←−−− t1
cont
−−−−→ t2 Set edges

∣ G + t1
cont
−−−−→ t2

join
←−−−− Ful(p) Join edges

R-NAT
c ⇓tmem

c

R-ADD
e1 ⇓tmem

c1 e2 ⇓tmem
c2

e1 + e2 ⇓tmem
c1 + c2

R-VAR
x ⇓tmem

tmem[x]

Figure 3 Computation graph and reduction rule.

In a computation graph G, nodes represent the states of tasks and promises across
time, and edges represent happens-before relations. There are three types of nodes in a
computation graph: a task node t, an unfulfilled promise Unful(p), and fulfilled promise Ful(p).
A task node t is a triple that includes a task name f , a program P to execute, and a map L

representing the task’s local variables. We define three helper functions to obtain the content
of a task node t: ttid, tcode, and tmem, which return the task name (t.f), the program (t.P),
and the local variable map (t.L), respectively.

The base case of a computation graph is a task node t. Notation G + t1
cont
−−−−→ t2 depicts

a computation graph acquired by adding a new continue edge from t1 to t2 on top of the
original graph G. Notation G + t2

fork
←−−−− t1

cont
−−−−→ t3 captures the semantics of task creation:

node t1 issues the task creation, node t2 represents the child task, and node t3 represents
the continuation after spawning t2. Since t2 and t3 may happen in parallel, there exists no
path between the two nodes. Notation G + Unful(p) np

←−− t1
cont
−−−−→ t2 represents the semantics

of promise creation. Node Unful(p) represents the spawned instance of promise and t2

represents the continuation after promise creation. Notation G + Unful(p) cont
−−−−→ Ful(p) set

←−−−

t1
cont
−−−−→ t2 depicts an invocation of set issued by node t1. Node Ful(p) represents the

fulfilled promise after the set, and t2 represents the task state upon the set operation.
Finally, Notation G + t1

cont
−−−−→ t2

join
←−−−− Ful(p) signifies a get operation. Node t1 issues the

synchronization, while node t2 observes the synchronization.

ECOOP 2023

13:6 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

Example. The corresponding computation graph of the example program in Figure 1 is
shown in Figure 4. Note that there is a determinacy race between line 4 and line 8 in the
program. In different executions, variable a can be either 0 or 5. The race is also reflected in
the computation graph, as no path connects the two nodes in red. On the other hand, the
store in line 4 happens before the load on line 10 because of the get operation in line 9; the
final value of variable b will always be five, regardless of the actual task schedule.

main
x ← alloc

{}

main
y ← new_pm

{x:r}

main
a ← load x

{x:r y:p}

main
async t1
{x:r y:p}

main
y.get

{x:r y:p
a:0/5}

main
b ← load x

{x:r y:p
a:0/5}

main
return

{x:r y:p
a:0/5 b:5}

t1
store 5 to x

{x:r y:p}

t1
y.set

{x:r y:p}

t1
return

{x:r y:p}

Unful (p)

Ful (p)

Task Node

Unfulfilled Promise Node

Fulfilled Promise Node

Fork Edge

Continue Edge

New Promise Edge

Set Edge

Join Edge

Figure 4 Associated computation graph of Figure 1.

Leveraging the formal definition in Figure 3, we formalize the happens-before relation
between two task nodes and memory accesses performed by task nodes.

▶ Definition 1 (Happens-before). We say node v precedes or happens before node u if and
only if one directed path from v to u exists in the computation graph. We denote the
happens-before relation as v ↝ u. We use v ↝̸ u to indicate that there exists no path from u

to v.

▶ Definition 2 (May-happen-in-parallel). Node v may happen in parallel with node u, denoted
by v ∥ u, iff u ↝̸ v and v ↝̸ u.

▶ Definition 3 (Read and Write). A task node t reads from a shared variable r if 1).
tcode = {x ← load y ; P }, tmem[y] = r, or 2). tcode = {while (0 ≠ load y) {P ′} ; P },
tmem[y] = r. A task node t writes to a shared variable r if tcode = {store x to y ; P } and
tmem[y] = r. Node t accesses a shared variable r if node t reads from or writes to r.

F. Jin, L. Yu, T. Cogumbreiro, J. Shirako, and V. Sarkar 13:7

(1) G-ASYNC
tcode = async{P ′} ; P g does not occur in G ttid = f

(M,G) → (M,G + [g, P ′
, tmem] fork

←−−−− t
cont
−−−−→ [f, P, tmem])

(2) G-ALLOC
tcode = y ← alloc ; P r ∉M ttid = f

(M,G) → (M [r ∶= 0], G + t
cont
−−−−→ [f, P, tmem[y ∶= r]])

(3) G-LOAD
tcode = x ← load y ; P tmem[y] = r M [r] = k ttid = f

(M,G) → (M,G + t
cont
−−−−→ [f, P, tmem[x ∶= k]])

(4) G-STORE
tcode = store e to y ; P e ⇓tmem

k tmem[y] = r ttid = f

(M,G) → (M [r ∶= k], G + t
cont
−−−−→ [f, P, tmem])

(5) G-PROMISE
tcode = x ← new_promise ; P Unful(p) ∉ G ttid = f

(M,G) → (M,G + Unful(p) np
←−− t

cont
−−−−→ [f, P, tmem[x ∶= p]])

(6) G-SET
tcode = x.set ; P tmem[x] = p Unful(p) no outgoing edges in G ttid = f

(M,G) → (M,G + Unful(p) cont
−−−−→ Ful(p) set

←−−− t
cont
−−−−→ [f, P, tmem])

(7) G-GET
tcode = x.get ; P tmem[x] = p Ful(p) ∈ G ttid = f

(M,G) → (M,G + t
cont
−−−−→ [f, P, tmem] join

←−−−− Ful(p))

(8) G-ASSIGN
tcode = x ← e ; P e ⇓tmem

k ttid = f

(M,G) → (M,G + t
cont
−−−−→ [f, P, tmem[x ∶= k]])

(9) G-WHILE-1
tcode = while (0 ≠ load y) {P ′} ; P M [tmem[y]] = 0 ttid = f

(M,G) → (M,G + t
cont
−−−−→ [f, P, tmem])

(10) G-WHILE-2
tcode = while (0 ≠ load y) {P ′} ; P M [tmem[y]] ≠ 0 ttid = f

(M,G) → (M,G + t
cont
−−−−→ [f, P ′ ; while (0 ≠ load y) {P ′} ; P, tmem])

Figure 5 Small-step semantics.

2.3 Small-step Operational Semantics

We introduce the small-step operational semantics, denoted by σ → σ
′, in Figure 5. Spawning

a task g with async creates a new node for the child task, which inherits the local memory of
the parent task f (Rule 1). Memory allocation creates a new shared variable r, initializes
it with 0, and assigns its name r to y in the local memory (Rule 2). A load retrieves the
content of shared variable r from the shared memory M . A store writes the value e to shared
variable r (variable name r is stored in local variable y). Creating a promise adds a new node
that marks promise p as unfulfilled (Rule 5). Our semantics only allows a single set per
promise; thus, a pre-condition of Rule 6 is to ensure that promise p is unfulfilled. Getting a
promise links the fulfilled promise Ful(p) to the continuation node [f, P, tmem], thus adding a

ECOOP 2023

13:8 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

happens-before relation from the set to the get (Rule 7). Assignment extends local memory
with a new variable x, which has the value of evaluating expression e (Rule 8). Rules 9 and
10 handle a while loop in a standard way.

Let root(P) denotes runtime state (m, [main, P, l]): a runtime state that holds the initial
memory m and the initial computation graph with a single vertex [main, P, l], where l is
the local memory for the single vertex. When it is clear from the context we may say P to
signify the runtime state root(P). Let notation P ⇓ σ be defined as root(P) →⋆

σ and σ /→ σ
′

for any σ′.
We use a naming convention that gives unique and consistent name to each variable in

the operational semantics. “unique” means whenever a new task, variable, or promise is
being created, it will be given a unique name that does not yet exist in σ; “consistent” means
the name is the same name that other program runs will have when creating this new task,
variable or promise.

3 Proof of Determinism

In this section, we show that determinacy-race freedom implies determinism for programs in
our featherweight language. Our proof structure is adapted from prior work on Concurrent
Collection (CnC) [6, Theorem 1]. CnC applies a single-assignment policy on all shared
variables (called data collections in CnC) to assure determinism. An important distinction
between this work and [6] is that our formalism expresses both promises and shared memory,
whereas [6] only expresses a construct akin to promises. Our proof utilizes the property of
determinacy-race freedom to show that the shared memory and the computation graph will
be determinate for a given input (the initial program state root(P)).

▶ Definition 4 (Determinacy Race and Determinacy-Race Freedom). A determinacy race is
a triple (r, t1, t2); it happens on a shared variable r if and only if two task nodes t1 and t2
access r, at least one of them conducts a write, and t1 ∥ t2. A computation graph G is
determinacy-race-free if and only if for any task nodes t1, t2 in G, there is no determinacy
race (r, t1, t2) for any shared variable r. A program P is determinacy-race-free if for any G
and M such that P →

⋆ (M,G), G is determinacy-race-free.

We define an ordering ≤ on runtime states such that σ ≤ σ
′ if and only if dom(σ.M) ⊆

dom(σ′
.M) and σ.G is a subgraph of σ′

.G. Next, we establish the necessary lemmas to prove
our main result: if P ⇓ σ and P ⇓ σ

′, then σ = σ
′.

▶ Lemma 5 (Monotonicity). If σ → σ
′, then σ ≤ σ

′

Proof. The proof follows by case analysis on the derivation of σ → σ
′. Let σ = (M,G). The

key insight is that nodes and edges are only added to G; nodes and edges are never removed.
Similarly, the domain of M either grows or remains the same. We omit the proof details. ◀

We use σ →v σ
′ to denote that executing node v triggers the state transition.

▶ Lemma 6 (Independence). Let σ →v σ
′, σ →u σ

′′ and σ′
≠ σ

′′. We have v ∥ u.

Proof. If v ↝ u or u ↝ v, we can only derive either σ′ or σ′′ from σ, but not both. ◀

The next Lemma proves what we call strong local confluence. This property essentially
implies that from the same program state σ, if there exists more than one choice to proceed,
those different choices will eventually proceed to the same state σc. The proof also reveals
why determinacy-race freedom is necessary for this property.

F. Jin, L. Yu, T. Cogumbreiro, J. Shirako, and V. Sarkar 13:9

▶ Lemma 7 (Strong Local Confluence). Let P be determinacy-race-free and P →
∗
σ. If

σ →v σ
′ and σ →u σ

′′, then there exists σc, i, j such that σ′
→

i
σc, σ′′

→
j
σc, i ≤ 1 and j ≤ 1.

Proof. If v = u, we have σ
′
= σ

′′; in this case σc = σ
′
, i = 0, j = 0. If v ≠ u, we claim

σ
′
→u σc, σ

′′
→v σc, i = 1, j = 1. To prove the claim, we do a case analysis on the rule used to

derive σ →v σ
′.

(3) G-LOAD: We know vcode = x ← load y ; P ′ and vmem[y] = r and M [r] = k. We have
σ
′
.G = σ.G+ v

cont
−−−−→ [vtid, vmem[x ∶= k], P ′], σ′

.M = σ.M . Let us do a case analysis of the
rule used to derive σ →u σ

′′.
1. G-ALLOC: We know ucode = y

′
← alloc ; P ′′. We have σ

′′
.G = σ.G + u

cont
−−−−→

[utid, umem[y′ ∶= r′], P ′′], σ′′
.M = σ.M [r′ ∶= 0]. Because our naming system is unique,

we have r
′
≠ r. We can pick σc such that σc.M = σ

′′
.M , σc.G = σ

′′
.G + v

cont
−−−−→

[vtid, vmem[x ∶= k], P ′]. It is clear that σ′′
→v σc. It is also true that σ′

→u σc because
our naming system is consistent among different execution. In this case, i = 1, j = 1.

2. G-LOAD: ucode = x
′
← load y

′ ; P ′′ and umem[y′] = r
′ and M [r′] = k

′. We have
σ
′′
.G = σ.G+ u

cont
−−−−→ [utid, umem[x′ ∶= k′], P ′′], σ′′

.M = σ.M . In this case, it is fine that
r
′
= r because concurrent reads on the same memory location are allowed. We can

pick σc such that σc.M = σ
′′
.M , σc.G = σ

′′
.G + v

cont
−−−−→ [vtid, vmem[x ∶= k], P ′]. It is

clear that σ′
→u σc and σ

′′
→v σc. In this case, i = 1, j = 1.

3. G-STORE: We know ucode = store e′ to y
′ ; P ′′ and e′ ⇓ k′ and umem[y′] = r′. We

have σ′′
.G = σ.G + u

cont
−−−−→ [utid, umem, P

′′], σ′′
.M = σ.M [r′ ∶= k

′]. If r′ = r, this is
a determinacy race by Definition 4 and Lemma 6. Because r′ ≠ r, we can pick σc

such that σc.M = σ
′′
.M, σc.G = σ

′′
.G + v

cont
−−−−→ [vtid, vmem[x ∶= k], P ′]. It is clear that

σ
′
→u σc and σ

′′
→v σc. In this case, i = 1, j = 1.

4. Any other rules: we omit the details for other rules because the proof is similar to the
above cases.

(4) G-STORE: We know vcode = store e to y ; P ′ and e ⇓ k and vmem[y] = r. We have
σ
′
.G = σ.G + v

cont
−−−−→ [vtid, vmem, P

′], σ′
.M = σ.M [r ∶= k]. Let us do a case analysis of the

rule used to derive σ →u σ
′′.

1. G-STORE: We know ucode = store e′ to y
′ ; P ′′ and e′ ⇓ k′ and umem[y′] = r′. We

have σ′′
.G = σ.G + u

cont
−−−−→ [utid, umem, P

′′], σ′′
.M = σ.M [r′ ∶= k

′]. If r′ = r, this is
a determinacy race by Definition 4 and Lemma 6. Because r′ ≠ r, we can pick σc

such that σc.M = σ
′′
.M [r ∶= k], σc.G = σ

′′
.G + v

cont
−−−−→ [vtid, vmem, P

′]. It is clear that
σ
′
→u σc and σ

′′
→v σc. In this case, i = 1, j = 1.

2. G-WHILE-*: We know ucode = while (0 ≠ load y
′) {P ′′′} ; P ′′ and umem[y′] = r′. If

r
′
= r, this is a determinacy race by Definition 4 and Lemma 6. Because r′ ≠ r, we

can pick σc such that σc.M = σ
′′
.M [r ∶= k], σc.G = σ

′′
.G + v

cont
−−−−→ [vtid, vmem, P

′]. It is
clear that σ′

→u σc and σ
′′
→v σc. In this case, i = 1, j = 1.

3. Any other rules: we omit the details for other rules because the proof is similar to the
above cases.

(6) G-SET: we know vcode = x.set ; P ′ and vmem[x] = p and Unful(p) has no outgoing
edge. We have σ′

.G = σ.G+Unful(p) cont
−−−−→ Ful(p) set

←−−− v
cont
−−−−→ [vtid, vmem, P

′], σ′
.M = σ.M .

Let us do a case analysis of the rule used to derive σ →u σ
′′.

1. G-Set: we know ucode = x
′
.set;P ′′ and umem[x′] = p′ and Unful(p′) has no outgoing edge.

We have σ′′
.G = σ.G + Unful(p′) cont

−−−−→ Ful(p′) set
←−−− u

cont
−−−−→ [utid, umem, P

′′], σ′′
.M = σ.M .

If p = p′, this violates the single set policy for promises. Because p ≠ p′, we can pick σc

such that σc.M = σ
′′
.M, σc.G = σ

′′
.G+Unful(p) cont

−−−−→ Ful(p) set
←−−− v

cont
−−−−→ [vtid, vmem, P

′].
It is clear that σ′

→u σc and σ
′′
→v σc. In this case, i = 1, j = 1.

ECOOP 2023

13:10 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

2. G-GET: we know ucode = x
′
.get ; P ′′ and umem[x′] = p

′ and Ful(p′) ∈ G. We have
σ
′′
.G = σ.G + u

cont
−−−−→ [utid, umem, P

′′] join
←−−−− Ful(p′), σ′′

.M = σ.M . In this case, we must
have p ≠ p

′ because otherwise, we cannot make the step σ →u σ
′ until v is executed.

We can pick σc such that σc.M = σ
′′
.M , σc.G = σ

′′
.G+Unful(p) cont

−−−−→ Ful(p) set
←−−− v

cont
−−−−→

[vtid, vmem, P
′]. It is clear that σ′

→u σc and σ
′′
→v σc. In this case, i = 1, j = 1.

3. Any other rules: we omit the details for other rules because the proof is similar to the
above cases.

(7) G-GET: we know vcode = x.get ; P ′ and vmem[x] = p and Ful(p) ∈ G. We have
σ
′
.G = σ.G + v

cont
−−−−→ [vtid, vmem, P

′] join
←−−−− Ful(p), σ′

.M = σ.M . Let us do a case analysis
of the rule used to derive σ →u σ

′′.
1. G-GET: we know ucode = x

′
.get ; P ′′ and umem[x′] = p

′ and Ful(p′) ∈ G We have
σ
′′
.G = σ.G+u

cont
−−−−→ [utid, umem, P

′′] join
←−−−− Ful(p′), σ′′

.M = σ.M . In this case, it is fine if
p = p

′ because concurrent get operations performed on the same promise is allowed. We
can pick σc such that σc.M = σ

′′
.M, σc.G = σ

′′
.G + v

cont
−−−−→ [vtid, vmem, P

′] join
←−−−− Ful(p).

It is clear that σ′
→u σc and σ

′′
→v σc. In this case, i = 1, j = 1.

2. Any other rules: we omit the details for other rules because the proof is similar to the
above cases.

Any other rules v and u could execute: we omit the details for other rules because the
proof is similar to the above cases. ◀

▶ Lemma 8 (Strong One-Sided Confluence). Let P be determinacy-race-free and P →
∗
σ. If

σ → σ
′, σ →

m
σ
′′, where 1 ≤ m, then there exist σc, i, j such that σ′

→
i
σc, σ′′

→
j
σc, i ≤ m

and j ≤ 1.

Proof. We prove it by inducting on m.
Base case: m = 1. Proved by Lemma 7.
Induction step: suppose σ →

m
σ
′′
→ σ

′′′. By our induction hypothesis, the lemma holds for
m. We have σ′

c, i
′
, j

′ such that σ′
→

i
′

σ
′
c and σ

′′
→

j
′

σ
′
c and i

′
≤ m and j

′
≤ 1. We want to

prove the lemma holds for m + 1. There are two cases based on the value of j ′:
1. j ′ = 0. In this case, σ′

c = σ
′′. We pick σc = σ

′′′
, i = i

′ + 1, j = 0. Because i′ ≤ m, we have
i ≤ m + 1, which obeys the lemma.

2. j ′ = 1. In this case, we have σ′′
→ σ

′′′ and σ
′′
→ σ

′
c. By Lemma 7, there exist σd, a, b

such that σ′′′
→

a
σd and σ′

c →
b
σd and a ≤ 1 and b ≤ 1. So we also have σ′

→
i
′

σ
′
c →

b
σd.

As a result, we pick σc = σd, i = i
′+b, j = a. This is fine because i = i′+b ≤ m+1 and j =

a ≤ 1. ◀

▶ Lemma 9 (Strong Confluence). Let P be determinacy-race-free and P →
∗
σ. If σ →

n
σ
′,

σ →
m
σ
′′, where 1 ≤ m, 1 ≤ n, then there exist σc, i, j such that σ′

→
i
σc, σ′′

→
j
σc, i ≤ m and

j ≤ n.

Proof. We prove it by inducting on n.
Base case: n = 1. Proved by Lemma 8.
Induction step: suppose σ →

n
σ
′
→ σ

′′′. By our induction hypothesis, the lemma holds for
n. We have σ′

c, i
′
, j

′ such that σ′
→

i
′

σ
′
c and σ

′′
→

j
′

σ
′
c and i

′
≤ m and j

′
≤ n. We want to

prove the lemma holds for n + 1. There are two cases based on the value of i′:
1. i′ = 0. In this case, σ′

= σ
′
c. We pick σc = σ

′′′
, i = 0, j = j ′ + 1. Because j ′ ≤ n, we have

j ≤ n + 1, which obeys the lemma.

F. Jin, L. Yu, T. Cogumbreiro, J. Shirako, and V. Sarkar 13:11

2. i′ ≥ 1. In this case, we have σ′
→ σ

′′′ and σ
′
→

i
′

σ
′
c. By Lemma 8, there exist σd, a, b

such that σ′′′
→

a
σd and σ′

c →
b
σd and a ≤ i

′ and b ≤ 1. So we also have σ′′
→

j
′

σ
′
c →

b
σd.

As a result, we pick σc = σd, i = a, j = j
′ + b. This is fine because i = a ≤ i

′
≤ m and j =

j
′ + b ≤ n + 1. ◀

▶ Lemma 10 (Confluence). Let P be determinacy-race-free and P →
∗
σ. If σ →

∗
σ
′ and σ →

∗

σ
′′, then there exists σc such that σ′

→
∗
σc and σ′′

→
∗
σc.

Proof. Implied by Lemma 9 ◀

With Lemma 10, we are ready to present our main theorem. Notice that we do not assume
deadlock freedom for the program P . The notation P ⇓ σ is defined as P cannot make
further progress; some get operations never resume after blocking because no task elects to
set the required promises. However, our main theorem reveals that even if deadlock(s) exists
in a determinacy-race-free program P , any execution of P will still reach the same final state
(same shared memory, same computation graph).

▶ Theorem 11 (Determinism). Let P be determinacy-race-free. If P ⇓ σ and P ⇓ σ
′, then

σ = σ
′.

Proof. By Lemma 10, we have σc such that σ →
∗
σc and σ′

→
∗
σc. Given that neither σ nor

σ
′ can proceed, we must have σ = σ

′
= σc. ◀

4 DRDP Race Detection Algorithm

Race detection for parallel programs has evolved with the development of parallel pro-
gramming models. The widely-used ThreadSanitizer [33] and other vector-clock-based race
detectors [16, 21] work well for multithreaded programs with lock-based synchronization.
More recently, task-based parallel programming models have gained popularity for developing
parallel programs intended to be determinate, i.e., these programs are always expected to com-
pute the same results when given the same inputs. The work to be carried out is decomposed
into a large number of user-defined fine-grained tasks, and dependencies among tasks are
specified using join operations/futures/promises rather than locks. Task-parallel programs
execute on a group of worker threads, with the actual schedule of tasks on worker threads
determined adaptively and automatically by a runtime system. Although vector-clock-based
race detectors can be applied to task-parallel programs at the worker-thread level, such an
approach may also exhibit false negative results. For two tasks executing on the same worker
thread, a vector-clock-based race detector may enforce a happens-before relation between
them, and then fail to identify potential data races3. On the other hand, it is not practical
to use such race detectors by treating each task as a thread. Task-parallel programs may
create millions of tasks at runtime, making it intractable to store associated vector clocks of
spawned tasks in the memory space. Other researchers have also made similar observations
about the limitations of using the vector clock approach for task parallelism [29,44,45].

Per-input dynamic race detectors designed for task parallelism can usually be classified
by the task-parallel constructs they support. Different task-parallel constructs impose
different structural constraints on the computation graphs generated by programs, and
the determinacy race detection problem becomes more challenging as the computation

3 ThreadSanitizer limits the vector clock size to 256 [11], and can also exhibit false negatives for programs
with larger numbers of threads.

ECOOP 2023

13:12 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

graphs become more general [4, 15, 26, 30, 31]. For example, SP-Bags is a race detection
algorithm designed for spawn-sync task-parallel programs which only generate fully strict
computation graphs [15]. ESP-Bags is an extension of SP-Bags that can support the more
general terminally strict computation graphs [30] generated by async-finish task parallelism.
More recent algorithms have been introduced for task-parallel programs with futures, one
as an extension to async-finish constructs [35] and others as an extension to spawn-sync
constructs [37,43].

In this section, we introduce DRDP, a dynamic determinacy race detector taking task
parallelism and promises into account. DRDP is based on our theoretical conclusion
in Section 3. For better time and memory efficiency, we make two revisions to the notation
of computation graph. Such changes do not affect the precision of race detection.

We introduce step nodes to replace task nodes. A step node is a sequence of statements
without task creation, set, or get except the last statement. For example, node s1
in Figure 6 is a step node ending with a task creation.

We simplify the computation graph construction related to promises. Every promise has
only one corresponding node in the computation graph (see promises a and b in Figure 6),
created when the set happens.

x alloc←
y new_pm ←
async { // task f
 p new_pm ←
 store p to x
 y.set // promise a
 p.get
 return
}
y.get
async { // task g
 p load x←
 p.set // promise b
 return
}
return

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

 S1

S2

S3
S7

S4
S5

S6

S8

S9

S1

S4

S5

S9

S2

S3

S7

S6

S8

a

b

mainTask main

Task f

Task g

Step Node

 Fulfilled
Promise

Node

Fork Edge

Continue Edge

Join Edge

Figure 6 Example program and its computation graph.

As with other dynamic race detectors, DRDP consists of 1). a reachability data structure
that keeps track of the happens-before relationship and 2). a shadow memory that records
access history for every memory location. We first introduce our reachability structure, which
is built on-the-fly as the program executes.

F. Jin, L. Yu, T. Cogumbreiro, J. Shirako, and V. Sarkar 13:13

4.1 DRDP Reachability Data Structures
The reachability data structure of DRDP is adapted from previous work [31,35] on async-
finish task parallelism (but no support for promise). The statement “finish { s }” causes the
current task to execute the body s and wait for all spawned tasks, including transitively
created tasks within the finish statement.

We leverage Dynamic Program Structure Tree (DPST) [31] to encode happens-before
relations created by async-finish parallelism efficiently. Figure 7 shows an instance of DPST
associated with the example program in Figure 6. DPST resembles the computation graph
by nature. Each leaf node in the DPST represents a step node. Each internal node in the
DPST is either an async or a finish node, denoting an instance of such construct in the
program. Node A1 in Figure 7 represents the async in line 3 of the example program and A3
represents the one in line 11. The other two async nodes, A2 and A4, represent the promise
set in lines 6 and 13.

R

A1 s4 s5 A3 s9s1

s2 A2 s3 s7

a

s6 A4 s8

b

edges not
kept by
DPST

set task nt lsa
0 [main] [a]
1 [f] [b]
2 [g] (main, [a])
3 [a]
4 [b] (main, [a])

Figure 7 DPST and set information for the example program.

For any two step nodes si, sj in a DPST, their happens-before relation (↝) can be
determined by examining the children of their least common ancestor (LCA). Assume si is to
the left of sj in the DPST. Among all children of the two node’s LCA (denoted as lca(si, sj)),
a node V (denoted as lca_lc(si, sj)) must exist such that V is a’s ancestor or a itself. If V is
not an async node, a ↝ b; otherwise, a ∥ b.

As an example, in Figure 7, step nodes s1 and s2 have the root R as their LCA. The
node V , in this case, is s1 itself because s1 is a child of R. Since s1 is a step node, DPST
will report s1 ↝ s2, which is confirmed by the path from s1 to s2 in Figure 6.

Limitation of DPST. DPST may report incorrect happens-before relationships when naively
applied to programs with promises. Let us consider step nodes s2 and s6 in Figure 7. Their
LCA is R, and among R’s children, the one that is s2’s ancestor is A1. The DPST-based
happens-before check will decide that s2 ∥ s6. However, Figure 6 clearly shows a path from
s2 to s6, so the happens-before check returns an incorrect result. The reason is that DPST
does not consider synchronization semantics brought by promises.

Thus, we need to maintain additional information for those happens-before relations
incurred by promises. We refer to those promise join edges in a computation graph as
non-tree joins (nt) because DPST does not store them. For other task joins kept by DPST,
we call them tree joins. The problem turns into how to store these non-tree joins efficiently.

Inspired by previous work [35], we use disjoint sets [12] to effectively save non-tree joins
information. Tasks synchronized by tree joins will be grouped into the same set. Each set
will maintain its non-tree joins, plus the lowest ancestor with at least one non-tree join,
which we refer to as the least-significant ancestor (LSA). How do we use and maintain set,
non-tree joins, and LSAs will be introduced in Section 4.3.

ECOOP 2023

13:14 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

DRDP Example. From a high-level perspective, DRDP checks happens-before relations in
two stages. It first carries out the DPST-based happens-before check. If the happens-before
check returns that the two steps may happen in parallel, DRDP conducts an additional
graph traversal on the computation graph. The graph traversal loops through non-tree joins
and LSAs to see if the two steps are ordered by non-tree joins.

We now explain how DRDP can find out s2 ↝ s6 by the information in Figure 7. DRDP
first checks DPST and finds lca_lc(s2, s6) is an async node, so it continues with the graph
traversal. Because s6 is in task g and task g is in set 2, DRDP examines the column nt of
set 2. In this case, we do not have any non-tree join for set 2. Finally, DRDP checks the
column lsa of set 2, realizes set 2’s lsa is the main task, and the main task has a non-tree
join from task a. Now, DRDP knows a ↝ s6. The goal becomes deciding if s2 ↝ a. DRDP
inspects DPST and finds lca_lc(s2, a) is a step node, which indicates s2 ↝ a. Now DRDP
can conclude s2 ↝ s6.

4.2 DRDP Task Scheduling and Shadow Memory
Existing race detectors [4, 15,30,35,37] that execute programs sequentially usually rely on
the serial-projection property, which ensures that there is a legal scheduling strategy that
executes a parallel program sequentially without any blocking. Crucially, however, programs
with promises do not enjoy the serial-projection property.

As a solution, our runtime follows a depth-first execution order and switches to task T ’s
parent task recursively when T is blocked. As soon as some other task S sets the promise
that T is waiting on, the worker thread will suspend task S and resume the execution of task
T . If the fulfilled promise P enables more than one task, we execute these enabled tasks in
the same order as they were placed in the waiting queue for promise P . The worker switches
back to task S after all tasks previously blocked on promise P are finished. If a deadlock
exists in the program, our race detector works up to the point of deadlock.

Shadow memory also needs careful design due to possible blockings. For each memory
location, we save the last step node that writes to it, plus a read list that records all step
nodes reading from the memory location after the last write. When a write occurs, if no race
is found with the recorded historical accesses, we empty the reader list and save the current
step node as the last write. When a read occurs, if no race is found with the last write, we
add it to the reader list.

4.3 Algorithm
DRDP algorithm is presented in Figure 8 and Figure 9. Figure 8 explains how we maintain
the reachability structure and the shadow memory, which happens per instruction of the
program being executed; Figure 9 defines procedure PRECEDE for happens-before check.
When encountering a read or write to memory location M , DRDP will do race checks as in
lines 40 - 44 and lines 45 - 55; if the function reports a race, it means a race exists between
current access and previous access to M .

The built-in function run_eager(U) suspends the execution of current task T and starts
executing task U . For tasks returning from blocking, run_eager will resume their execution
from the first statement after blocking.

Now we briefly explain each callback executed by DRDP.
Task creation: When a task is created, we initialize some information and create a disjoint

set. The worker then starts executing the task until finished or blocked.
Task termination: We set the task state from active to finished.

F. Jin, L. Yu, T. Cogumbreiro, J. Shirako, and V. Sarkar 13:15

// Task creation:
// task T creates task U

1 SU = new set_info(U)
2 set[U.id] = SU

3 U.state = ACT IV E
4 U.parent = T.id
5
6 ST = set[T.id]
7 if ST .nt.isEmpty() then
8 SU .lsa = ST .lsa
9 else

10 SU .lsa = lsa_info (T.id, ST .nt)
11 end
12 run_eager(U)

// Task termination:
// task T terminates

13 T.state = F INISHED

// Promise set:
// task T sets promise P

14 P.setter_task_id = T.id
15 P.empty_task_id = (new task()).id
16 foreach task X waiting on P do
17 run_eager(X)
18 end

// Promise get:
// task T gets promise P

19 if P.satisfied == false then
20 T.state = BLOCKED
21 run_eager(T.parent)
22 end
23 x = new nt_info (P.empty_task.id)
24 ST = set[T.id]
25 ST .nt = ST .nt ∪ x

// Finish end:
// Finish F ends in task T

26 ST = set[T.id]
27 foreach task X in F do
28 SX = set[X.id]
3030 nt = ST .nt ∪ SX .nt
3232 lsa = ST .lsa
3434 ST = Union(ST , SX)
3636 ST .nt = nt
3838 ST .lsa = lsa
39 end

// Read check:
// step s reads from memory_location

M
40 w = M.writer
41 if P RECEDE(w, s) == false then
42 report race
43 end
44 M.reader_list = M.reader_list + s

// Write check:
// step s writes to memory_location

M
45 w = M.writer
46 if P RECEDE(w, s) == false then
47 report race
48 end
49 foreach r in M.reader_list do
50 if P RECEDE(r, s) == false then
51 report race
52 end
53 end
54 M.reader_list = {}
55 M.writer = s

Figure 8 DRDP algorithm parts that maintain data structures and shadow memory.

Promise set: We create an empty task, and if any task is enabled, the worker will begin
to execute enabled tasks. The worker will go back to the current task sometime in the
future.

Promise get: If the promise is not yet set, we block the current task and switch to its parent
recursively; if the promise is set, we add its empty task to the current set’s nt.

Finish end: This happens at the end of a finish statement. The finish’s owner task will merge
all spawned tasks in the finish by keeping its original LSA plus unionizing the tasks and
non-tree joins (nt) from the merged sets.

Read check: If current step s reads from memory location M , we first check race against
M ’s writer. If no race is reported, we directly add s to the reader_list.

Write check: If current step s writes to memory location M , we check race against M ’s
writer and all recorded steps in M ’s reader_list. If no race is reported, we clear the
reader_list and update M ’s writer to be the current step.

Reachability query: Figure 9 elucidates how we perform reachability checks in DRDP. Given
two step nodes a, b, we first examine if a precedes b by inspecting DPST. If lca_lc(a, b) is
not an async node, we return true; this is reflected in lines 3-5. Next, we check if the
previous task is still active starting from line 7. If a’s task is still active, either b is a’s

ECOOP 2023

13:16 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

descendant, or a’s task sets the promise that b depends on; both cases indicate a ↝ b.
The remaining code in Figure 9 conducts a breadth-first search on the computation graph
based on fields nt and lsa. Lines 23-39 search through non-tree joins. Lines 41 to 57
search through lsa’s non-tree joins. We return false if there are no more step nodes to
search.

▶ Theorem 12. DRDP’s race detection algorithm is sound and precise. For a program
P , if no execution with input ψ has any determinacy race, DRDP will not report any race
(sound). For a program P , if any execution with input ψ has a determinacy race, DRDP
will report the race (precise).

Proof. To relate the theoretical result given by Theorem 11, the input ψ here refers to the
initial program state root(P). The proof is presented in Appendix A. ◀

▶ Theorem 13. Given a parallel program consisting of async, finish and promise that runs in
time T1 on one worker. Assume it creates P promises and Q async tasks. Let H be the height
of DPST at the end of the execution, and m be the number of non-tree joins. DRDP can be
implemented to check this program for determinacy races in O(T1 ∗Q ∗H ∗m ∗α(T1, P +Q))
time, where α is the inverse Ackermann function.

Proof. For a single run of PRECEDE, it could take up to O(H ∗m ∗ α(T1, P +Q)) in the
worst case if it checks all non-tree joins, and each check contains one DPST traversal plus a
disjoint set operation. The maximum count of disjoint sets is (P +Q) because we create one
set for each task and one set for each empty task.

The PRECEDE routine may be called Q times for each shadow memory location access.
This is because the reader list for a single memory location can be as large as size Q if we
save all the tasks. We have at most T1 shared memory access; thus, with DRDP checking
races, the original program can be finished in O(T1 ∗Q ∗H ∗m ∗ α(T1, P +Q)) time. ◀

4.4 Optimizations
We introduce two optimization techniques used for DRDP. The impacts of these optimizations
are respectively evaluated in Sections 5.5 and 5.6.

4.4.1 Adaptive Selection of Graph Traversal Order
A complete computation graph traversal can become necessary without restricted graph
structures that enable fast encoding and checking reachability. To accelerate this part, how
to traverse all non-tree joins and lsa is the key. We optimize the graph traversal in two ways:
first, rather than conducting a depth-first search starting from the current node, we apply a
breadth-first search instead; second, when iterating through non-tree joins, we start from the
latest join to the oldest. The impact of the proper selection of these two choices is evaluated
in Section 5.5.

4.4.2 Redundant Check Elimination
A single step node may access the same memory location multiple times. This may introduce a
substantial amount of unnecessary duplicate checks. We present the performance improvement
by skipping these redundant checks in Section 5.6. Here we introduce our approach based
on the polyhedral model, a powerful linear algebraic framework for affine program analysis,
transformations, and code generation.

F. Jin, L. Yu, T. Cogumbreiro, J. Shirako, and V. Sarkar 13:17

Input: step nodes a, b
1 Procedure PRECEDE(a, b)
2 SB = set[b.task_id]
3 if lca_lc(a, b).type ≠ ASY NC then
4 return true
5 end
6
7 if task[a.task_id].state == ACT IV E then
8 return true
9 end

10
// breadth-first search the computation graph via nt and lsa

11 visited = set()
12 nt − steps = deque()
13 lsa − sets = deque()
14 foreach t in SB .nt do
15 nt − steps.push_back(task[t.task_id].last_step_node)
16 end
17
18 if SB .lsa ≠ NULL then
19 lsa − sets.push_back(SB .lsa)
20 end
21
22 while true do
23 while nt − steps.size > 0 do
24 step = nt − steps.pop_front()
25 if lca_lc(a, step).type ≠ ASY NC then
26 return true
27 end
28
29 visited.insert(step.task_id)
30 Sstep = set[step.task_id]
31 foreach t in Sstep.nt do
32 if t.task_id not in visited then
33 nt − steps.push_back(task[t.task_id].last_step_node)
34 visited.insert(t.task_id)
35 end
36 end
37
38 add Sstep.lsa to lsa − sets if exists
39 end
40
41 while lsa − sets.size > 0 do
42 lsa = lsa − sets.pop_front()
43 Slsa = set[lsa.task_id]
44 add Slsa.lsa to lsa − sets if exists
45 foreach t in lsa.nts do
46 taskt = task[t.task_id]
47 if taskt.id in visited then
48 Continue
49 end
50 if lca_lc(a, taskt.last_step_node) ≠ ASY NC then
51 return true
52 end
53 add set[taskt.id].nt to nt − steps
54 add set[taskt.id].lsa to lsa − sets if exists
55 visited.insert(taskt.id)
56 end
57 end
58
59 if nt − steps.size == 0 then
60 return false
61 end
62 end

Figure 9 Reachability Check.

ECOOP 2023

13:18 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

1 /* Input code */
2 for(int i = 0; i < n; i++)
3 for(int j = 0; j < m; j++)
4 for(int k = 0; k < l; k++)
5 S: C[i, j] += A[i, k] * B[k,

j];

1 /* Code to scan written elements
*/

2 if (l >= 1)
3 for (int c1 = 0; c1 < n; c1 +=

1)
4 for (int c2 = 0; c2 < m; c2 +=

1)
5 write (C[c1 , c2]);

1 /* Code to scan read elements */
2 if (l >= 1)
3 for (int c1 = 0; c1 < n; c1 +=

1)
4 for (int c2 = 0; c2 < m; c2 +=

1)
5 read(C[c1 , c2]);
6 if (m >= 1)
7 for (int c1 = 0; c1 < n; c1 +=

1)
8 for (int c2 = 0; c2 < l; c2 +=

1)
9 read(A[c1 , c2]);

10 if (n >= 1)
11 for (int c1 = 0; c1 < l; c1 +=

1)
12 for (int c2 = 0; c2 < m; c2 +=

1)
13 read(B[c1 , c2]);

Figure 10 Matmul input (left), loops to scan written elements (center), and read elements (right).

When the code region of interest are composed of affine loops – i.e., their loop bounds
and array accesses are affine combinations of symbolic constants and outer loop iterators,
that region is converted into SCoP format [3]. This format precisely specifies the set of
read/written elements in the region via affine mapping representation. As an example shown
in Figure 10, the SCoP representation of matmul after delinearization [18] is:

DomainS = {S(i, j, k) ∣ 0 ≤ i < n ∧ 0 ≤ j < m ∧ 0 ≤ k < l}
WriteS = {S(i, j, k) → C[i, j]}
ReadS = {S(i, j, k) → C[i, j]; S(i, j, k) → A[i, k]; S(i, j, k) → B[k, j]}

DomainS is the iteration space of statement S while WriteS and ReadS are respectively the
mappings from statement instance S(i, j, k) to the written and read elements of arrays A, B,
C. The set of elements that are written/read by statement S is computed as the projection
of DomainS via WriteS/ReadS mapping.

WriteS (DomainS) = {C[i, j] ∣ 0 ≤ i < n ∧ 0 ≤ j < m}
ReadS (DomainS) = {C[i, j] ∣ 0 ≤ i < n ∧ 0 ≤ j < m;A[i, k] ∣ 0 ≤ i < n ∧ 0 ≤ k < l;

B[k, j] ∣ 0 ≤ k < l ∧ 0 ≤ j < m}

Using the above written & read element sets, as with the abstract memory layout [34] as
scanning order, the loop nests that scan all the written and read elements are generated by
the polyhedral code generation method [2].

Layout = {C[c1, c2] → (0, c1, c2); A[c1, c2] → (1, c1, c2); B[c1, c2] → (2, c1, c2); }
Codewrite = codegen(Layout ⋅WriteS(DomainS))
Coderead = codegen(Layout ⋅ReadS(DomainS))

This polyhedral optimization phase has been implemented as a source-to-source transforma-
tion tool using PET [40] and ISL [39], integrated in the overall LLVM-based instrumentation
pass (Section 5.1). The LLVM transformation pass first identifies the SCoP-convertible code
regions and outputs them as sequential C code with SCoP annotations. Given SCoP region,
the polyhedral phase computes the exact sets of read/written array elements and generates
the loops that scan all elements only once. Finally, the output scanning loops are fed back
to the LLVM instrumentation as the optimized code after array-based redundant check
elimination. The code fragments generated by our polyhedral phase are shown in Figure 10
(center and right).

F. Jin, L. Yu, T. Cogumbreiro, J. Shirako, and V. Sarkar 13:19

5 Evaluation

In this section, we evaluate a prototype implementation of the DRDP algorithm to address
the following research questions:
1. Correctness (Section 5.2). How does DRDP compare with state-of-the-art data race

detectors with respect to false positives and false negatives?
2. Performance (Section 5.4). How does DRDP perform in practice, and how does its time

and space performance depend on dynamic characteristics of task-parallel programs with
promises (DPST height, number of reads/writes, number of join operations, number of
tasks created)?

3. What is the impact of graph traversal order on performance? (Section 5.5).
4. What is the impact of redundant check elimination on performance? (Section 5.6).

5.1 DRDP Implementation
We have implemented DRDP in a prototype race detector for task-parallel programs written
in Habanero-C/C++Library (HCLIB). Notice that any parallel program with promises that
exhibits a determinacy race in the HCLIB version will also exhibit the race if rewritten with
C++ promises. Our prototype can be downloaded here4, which includes
a) an LLVM transform pass for instrumentation, and
b) a C++ library for dynamic analysis.

The instrumentation pass is executed along with LLVM. When compiling a task-parallel
program using the Clang/LLVM compiler, the instrumentation pass will inject a call into the
dynamic analysis library after each read and write operation. The library also adds hooks
into runtime to capture the invocations of HCLIB constructs (async, finish, promise). The
library applies a direct-mapping shadow memory implementation [46]. A contiguous memory
region shadows the entire address space, and each memory location’s shadow memory cell
can be efficiently located using pointer arithmetic.

5.2 Correctness Evaluation
DataRaceBench [24] is a micro-benchmark suite designed to gauge the effectiveness of
OpenMP data race detectors. In the latest 1.4.0 version, there are 181 C/C++ micro-
benchmarks that cover the majority of OpenMP constructs. We leveraged DataRaceBench
to conduct a correctness evaluation for DRDP. We found that micro-benchmarks using
OpenMP tasking constructs can be transformed into equivalent HCLIB programs, and task
dependencies specified by the depend clause can be achieved using promises. Therefore, we
picked up all C/C++ micro-benchmarks containing the depend clause except DRB135 and
DRB136. These two micro-benchmarks combine mutexes with the depend clause, which
go beyond the set of programs captured by TP3 and also do not satisfy the determinacy
property of TP3.

The evaluation results for these micro-benchmarks are shown in Table 1. The “yes/no”
suffix in the benchmark name indicates whether the benchmark has a known data race. For
short, we refer to these two groups of benchmarks as yes-benchmarks and no-benchmarks.
The evaluation results are described using four terms in Table 1. FP and FN stand for
false positive and false negative, respectively. A false-positive result means the race detector

4 https://github.com/FeiyangJin/hclib/tree/ecoop

ECOOP 2023

https://github.com/FeiyangJin/hclib/tree/ecoop

13:20 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

reports false alarms on a no-benchmark. A false-negative result means the race detector
misses potential races on a yes-benchmark. The other two terms, TP and TN, stand for true
positive and true negative. TP/TN indicates that the race detector generates the expected
result on a yes-benchmark/no-benchmark.

Evaluation results are shown for five state-of-the-art data-race detection tools, followed
by our work (DRDP). The results for the five other tools were downloaded from the
DataRaceBench GitHub repository [25] and evaluated on the OpenMP versions of the
micro-benchmarks; these results were obtained in 2021 by the authors of DataRaceBench. All
five tools were evaluated with the number of worker threads set to 8. Among the five tools,
Intel Inspector [21], ThreadSanitizer [33], and ROMP [19] are dynamic race detectors, while
Coderrect [36] and LLOV [5] are static race detectors. The DRDP results were obtained by
converting the OpenMP benchmarks to HCLIB task-parallel programs with promises. From
the results, we observe that DRDP is the only tool that does not report any false-positive or
false-negative results for these benchmarks.

We were unable to identify the root cause of false-positive and false-negative results for
ROMP and Intel Inspector since their papers did not provide sufficient information on how
their dynamic analysis supports the depend clause. For ThreadSanitizer, the documentation
states that it applies a fixed-size shadow cell to each memory location. When the shadow
cell is full, ThreadSanitizer will randomly discard a recorded memory access to reserve space
for the latest one. As a result, ThreadSanitizer may miss data races if one of the involved
memory accesses has been discarded from the shadow cell thereby leading to false negatives.
For Coderrect and LLOV, it appears that their support for tasking constructs and the depend
clause is still under development which may explain the false-negative results. We would
also expect false-positive results from these static analysis tools, when evaluated on larger
benchmarks.

Apart from these converted micro-benchmarks from DataRaceBench, we also wrote some
additional tests to check DRDP’s implementation. All converted micro-benchmarks and
additional tests are included in our code repository.

Table 1 Correctness evaluation results on DataRaceBench.

Benchmarks Has Race? Intel Inspector ThreadSanitizer ROMP Coderrect LLOV DRDP

DRB027-taskdependmissing-orig-yes.c Yes TP TP TP TP FN TP
DRB072-taskdep1-orig-no.c No TN TN TN TN TN TN
DRB078-taskdep2-orig-no.c No TN TN TN TN TN TN
DRB079-taskdep3-orig-no.c No TN TN TN TN TN TN
DRB131-taskdep4-orig-omp45-yes.c Yes TP FN FN TP FN TP
DRB132-taskdep4-orig-omp45-no.c No FP TN TN TN TN TN
DRB133-taskdep5-orig-omp45-no.c No FP TN TN TN TN TN
DRB134-taskdep5-orig-omp45-yes.c Yes TP TP FN FN FN TP
DRB173-non-sibling-taskdep-yes.c Yes TP FN TP FN FN TP
DRB174-non-sibling-taskdep-no.c No TN TN FP TN TN TN
DRB175-non-sibling-taskdep2-yes.c Yes TP TP FN FN FN TP
DRB176-fib-taskdep-no.c No FP TN TN TN TN TN
DRB177-fib-taskdep-yes.c Yes TP TP FN FN FN TP

5.3 Performance Evaluation Benchmarks and Setup
Since we could not easily locate an existing set of performance benchmarks for task-parallel
programs using promises, we assembled a suite of seven benchmarks from other benchmark
sets as follows. We did not convert the program with the largest lines of code for each set.

4 https://github.com/LLNL/dataracebench/wiki/Tool-Evaluation-Dashboard

https://github.com/LLNL/dataracebench/wiki/Tool-Evaluation-Dashboard

F. Jin, L. Yu, T. Cogumbreiro, J. Shirako, and V. Sarkar 13:21

We first converted the future-based matmul, sort and strassen (shared by Kastors) programs
from [43] (originally from the Rodinia suite [9]) to use promises. Next, we examined the
Kastors benchmark suite [41] for OpenMP task dependencies and converted two (sparselu,
poisson) to use promises instead to implement the same dependencies. Finally, we converted
two task-parallel OpenMP programs from the BOTS benchmark suite(health, knapsack) [14].
We only convert two because race detection on pure task-parallel programs has been widely
studied before.

The summary of each benchmark is as follows:
matmul: multiplies two matrices of size 2048 * 2048 with base case size 64 * 64.
sort: sorts an array of size 10000000.
strassen: multiplies two matrices of size 2048 * 2048 by Strassen algorithm.
poisson: solves the Poisson equation (aka jacobi iteration) on the unit square. The
parameters we have are 8192,128,3 for matrix size, block size and number of iterations.
sparselu: computes the LU decomposition of a sparse matrix. The parameters we have
are 128 and 32 for matrix size and submatrix size.
knapsack: calculates the solution of the knapsack problem with 40 items as input.
health: simulates the Colombian health care system. We estimate the running time for
the small model input file given in the source.

The evaluation was conducted on a single-node AMD server machine consisting of a
12-core Ryzen9 3900X running at 3.8GHZ with 128GB memory. All benchmarks were
compiled using -O3 optimizations by Clang/LLVM 14.0.0 running on Ubuntu 18.04.05. We
report each benchmark’s mean execution time and memory usage of 5 runs for base and rd
configurations. “base” is the program running time without race detection; “rd” is the one
with full race detection. The standard deviations for both configurations are within 5%.

5.4 Performance Evaluation Results
The results of our evaluation are shown in Table 2; the corresponding time overheads are in
Figure 11. The first four columns show the running time in seconds and memory usage in
GB, for the two configurations mentioned above. The next column “H” shows the height
of DPST. Columns “Check Write” and “Check Read” are the numbers of shared memory
access conducted for write and read. The following two columns, “Tree Join” and “NT Join”,
are the numbers of tree and non-tree joins in the programs. Finally, column “Task” contains
the number of dynamic tasks created during program execution.

Table 2 DRDP performance and statistics.

Bench Base
Time

RD
Time

Base
Mem

RD
Mem

H Check
Write

Check
Read

Tree
Join

NT
Join

Task

health 1.51 31.99 0.45 11.64 5 49554260 84975199 2253510 0 2253511
knapsack 1.61 8.00 0.38 4.40 37 3939935 19699117 1969965 0 1969966
matmul 2.52 51.84 0.06 13.44 7 134231771 268477586 28086 0 28087
sort 0.99 40.95 0.18 4.91 15 207671935 261760850 118205 0 118206
strassen 1.37 39.97 0.20 26.12 12 123772570 243307611 29182 16380 45563
sparselu 2.46 69.01 0.04 16.70 4 187379732 362287128 12416 357760 195521
poisson 1.56 71.92 0.80 20.09 4 251658242 654802935 0 122870 106497

From the experiment statistics, we can make several observations. First, the sum of joins
for sparselu and poisson surpasses the number of tasks; the reason is that each task may
set and get more than one promise. This pattern is not achievable by pure task-parallel

ECOOP 2023

13:22 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

programs. Even the future construct cannot produce more synchronization than the task
number because creating a future requires creating a new task (who is responsible for setting
the future). Moreover, from Table 2 and Figure 11, the race detection time overheads increase
with the complexity of the parallelism pattern of the programs. Strassen, sparselu and poisson,
with relatively high overheads, use promises without restrictions. The computation graphs
created by the three are much more complex than the others, which is reflected by the
number of non-tree joins generated.

health knapsack matmul sort strassen sparselu poisson
Benchmarks

100

101

102

Ti
m

e
Ov

er
he

ad
 (x

) 21.13

4.96

20.53

42.13

29.13 28.07

46.10

Time Overhead

Figure 11 DRDP time overhead.

5.5 Performance Optimization: Graph Traversal Order
The motivation for selection between depth-first search (dfs) and breadth-first search (bfs)
is summarized in Table 3, which shows traversal counts by different combinations of graph
order (dfs vs. bfs) and iterating order through non-tree joins (back-to-front vs. front-to-back).
Our optimization is extremely helpful: we always get the smallest values for columns “Max
Task Visited” and “Average Task Visited” when doing bfs on the computation graph and
iterating non-tree joins back-to-front. The rows with these two choices are marked in yellow
in Table 3. The column “Max Task Visited” records the max number of tasks traversed in
any run of the reachability check. The column “Average Task Visited” is the average number
of tasks visited for each reachability check that does the graph traversal part. We picked bfs
and back-to-front approach in our race detector and evaluated all benchmarks on them.

5.6 Performance Optimization: Redundant Check Elimination
Another crucial observation is that duplicate read and write checks in the same step are the
bottlenecks for four benchmarks (matmul, strassen sparselu and poisson). The results in
Section 5.4 included the optimized performance for these four benchmarks. In this section,
we study the performance impact of the Redundant Check Elimination optimization for
these four benchmarks; currently this optimization had no impact on the remaining three
benchmarks evaluated in Section 5.4 because they would need interprocedural analysis across
recursive calls, which is currently not performed by our optimizing compiler.

F. Jin, L. Yu, T. Cogumbreiro, J. Shirako, and V. Sarkar 13:23

Table 3 Graph traversal order comparison.

Bench Graph Order Input NT Order Min Visited Task Max Visited Task Average Visited Task

strassen dfs 512 16 back to front 1 2 1.43
strassen dfs 512 16 front to back 1 337 11.04
strassen bfs 512 16 back to front 1 1 1.00
strassen bfs 512 16 front to back 1 4 1.13

sparselu dfs 32 8 back to front 1 544 8.85
sparselu dfs 32 8 front to back 1 544 65.72
sparselu bfs 32 8 back to front 1 2 1.07
sparselu bfs 32 8 front to back 1 17 6.08

poisson dfs 2048 128 3 back to front 1 32 9.54
poisson dfs 2048 128 3 front to back 1 32 9.54
poisson bfs 2048 128 3 back to front 1 6 2.84
poisson bfs 2048 128 3 front to back 1 6 2.84

We record runtime statistics for these programs with or without reducing redundant
checks. To measure the time overhead and memory usage, we have to re-evaluate these
benchmarks on a different machine with enough memory. We present the outcomes in Table 4.
The parentheses after some data show the increase/decrease percentage.

Table 4 Performance comparison for reducing redundant checks.

Bench Reduce Checks RD Time RD Mem Input Reachability Check Write Check Read Check

matmul No 118.95 (+1038%) 74.77 (+3805%) 1024 1.57E+07 (+0%) 1.68E+07 (+0%) 2.15E+09 (+6299%)
matmul Yes 10.45 1.91 1024 1.57E+07 1.68E+07 3.36E+07

strassen No 19.73 (+233%) 12.88 (+584%) 512 16 1.94E+08 (+496%) 4.10E+06 (-47%) 7.74E+07 (+408%)
strassen Yes 5.93 1.88 512 16 3.26E+07 7.77E+06 1.52E+07

poisson No 214.85 (+135%) 37.87 (+129%) 7424 128 3 1.93E+09 (+84%) 2.07E+08 (-0.02%) 1.36E+09 (+154%)
poisson Yes 91.49 16.56 7424 128 3 1.05E+09 2.07E+08 5.38E+08

sparselu No 1137.68 (+918%) 382.37 (+2189%) 128 32 9.94E+08 (+84%) 5.86E+09 (+3029%) 1.20E+10 (+3219%)
sparselu Yes 111.74 16.70 128 32 5.41E+08 1.87E+08 3.62E+08

All four benchmarks (matmul, strassen, poisson and sparselu) are matrix-based. As
explained in Section 4.4.2, a considerable amount of redundant read checks can be eliminated
in such cases. After the transformation, as shown in Table 4, the running time increases by
135% to 1038% when comparing the optimized version with the unoptimized version.

5.7 Comparison with ThreadSanitizer
Directly evaluating other tools on our benchmarks will typically generate false positives
because they do not consider synchronization constraints imposed by promises. Neverthe-
less, given the widespread use of ThreadSanitizer in practice, we decided to evaluate it on
one of our benchmarks (matmul), which is the only one for which ThreadSanitizer was
able to complete successfully and that too with a smaller input. We set “report_bugs=0,
ignore_uninstrumented_modules=1” for ThreadSanitizer to ensure that it ignores uninstru-
mented code and does not print a race report.

The issue we encountered is that ThreadSanitizer crashes on large inputs for our promise-
based applications. The error messages from these crashes report a stack overflow. Most
likely, it was caused by the fixed-size stack ThreadSanitizer set5, especially since all of our
benchmarks use recursion. We use a smaller input size (128 x 128 for the matmul benchmark)
instead to perform the evaluation.

5 https://github.com/llvm/llvm-project/blob/2e999b7dd1934a44d38c3a753460f1e5a217e9a5/
compiler-rt/lib/tsan/rtl/tsan_platform_posix.cpp#L53

ECOOP 2023

https://github.com/llvm/llvm-project/blob/2e999b7dd1934a44d38c3a753460f1e5a217e9a5/compiler-rt/lib/tsan/rtl/tsan_platform_posix.cpp#L53
https://github.com/llvm/llvm-project/blob/2e999b7dd1934a44d38c3a753460f1e5a217e9a5/compiler-rt/lib/tsan/rtl/tsan_platform_posix.cpp#L53

13:24 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

Table 5 Performance comparison between DRDP and ThreadSanitizer.

Tool Threads Time Memory Time Memory
Overhead Overhead (ms) (MB)

ThreadSanitizer 4 20.26× 34.91× 45.8 180.49
Baseline 4 1.00× 1.00× 2.3 5.17
DRDP 1 6.10× 33.65× 17.6 166.31
Baseline 1 1.00× 1.00× 2.9 4.94

This benchmark generates 7 tasks at runtime for the given input size, so we reasonably
chose to execute it with 4 worker threads for the ThreadSanitizer case. From the results
in Table 5, we can see that when the input size is small DRDP has a better time performance
and a similar memory performance compared with ThreadSanitizer. This is even though the
ThreadSanitizer execution uses 4 threads, and the DRDP execution uses 1 thread. (The
Baseline measurements were obtained on the same original version of the benchmark, but
with 4 threads and 1 thread respectively.)

6 Related Work

The concept of determinacy was introduced by Karp and Miller in the late 1960s [23]. More
recently, Dennis et al. reviewed this past work and introduced the concepts of structural and
functional determinism [13]. Related work on the Habanero-Java programming model [7]
classified task-parallel programs into seven categories where each category satisfies or does
not satisfy certain properties, such as data race freedom, deadlock-freedom or determinism.
The paper observed that for some parallel constructs, data race freedom implies determinacy
but no proof was given for that claim. Concurrent Collection (CnC) is a dataflow-based
coordination language, which was proved to be determinate [6]. Data-race free GPU programs
that use barriers for synchronization have been proven to be determinate [10], though the
programming model is data parallel rather than task parallel. Similarly, programs designed
for heterogeneous systems can achieve portability (same input, same result regardless of the
specific backend used) if data-race free [22].

There has been a long history of dynamic determinacy race detection algorithms and
tools based on vector clocks [16,21,33]. A major advantage of the vector clock approach is
that it can be applied to parallel programs with arbitrary parallel constructs, including locks
and transactions (say). However, its major limitation when applied to task-parallel programs
is that it can only provide guarantees on a per-schedule (rather than per-input) basis since it
is not practical for vector clock sizes to be proportional to the number of active tasks.

The serial projection property has been used in past work to perform per-input race
detection via sequential execution for restricted classes of task-parallel programs [4,30]. These
algorithms take advantage of the structural property of computation graphs for fork-join
programs, but they do not support the arbitrary computation graphs that can be generated
by task-parallel programs with promises. Surendran and Sarkar also leveraged the serial
projection property to devise the first per-input dynamic race detector for task-parallel
programs with futures [35]. The futureRD race detector from Utterback et al. [37] supports
a restricted class of futures: it does not allow multiple get operations on a future handle.
In contrast to previous algorithms, DRDP can support general blocking operations in
task-parallel programs with promises. It also illustrates how dynamic race detection can be
performed via sequential execution for task-parallel programs that do not satisfy the serial
projection property.

F. Jin, L. Yu, T. Cogumbreiro, J. Shirako, and V. Sarkar 13:25

Labeling techniques have also been used in past work on race detection for task parallelism.
This approach enables reachability checking between two nodes by comparing two labels.
Mellor-Crummey introduced the Offset-Span [26] algorithm as one such approach, in which
the length of the label attached to each task can grow as large as the depth of nested fork
structures. The SP-Bags [15] structure devised by Feng and Leiserson, and the ESP-Bags [30]
introduced by Raman et al. are also examples of using labeling to record happens-before
relationships.

More recently, there have been some new results on performing per-input dynamic race
detection when executing programs in parallel instead of sequentially. In 2012, Raman et
al. introduced the DPST data structure [31], which runs in parallel and efficiently tracks
happens-before relationships of async-finish constructs. An application of DPST targets
task parallelism in OpenMP has been proposed [45]. Utterback et al. [38] proposed an
asymptotically optimized parallel race detection algorithm for fork-join programs. More
recently, Xu et al. [43] introduced the first known parallel dynamic race detector for task-
parallel programs with futures. However, none of these prior works support per-input
determinacy race detection of task-parallel programs with promises.

7 Conclusions

In this paper, we addressed the problem of dynamic detection of data-races and determinacy-
races in Task-Parallel Programs with Promises (TP3), which support more flexible synchro-
nization patterns than fork-join constructs and futures. We first introduced a featherweight
programming language that captures the semantics of TP3 and provides a basis for formally
defining determinacy using our semantics. This definition subsumes functional determinacy
(same output for same input) and structural determinacy (same computation graph for same
input). We also introduced DRDP, the first-known per-input dynamic determinacy race
detector algorithm for TP3, and demonstrated that it is practical to implement. To the best
of our knowledge, DRDP is the first race detector that executes a task-parallel program
sequentially without requiring the serial-projection property, which is a critical requirement
for TP3 in general. The execution time slowdowns are all under 50×, which is comparable
to overheads incurred by other dynamic race detection and debugging tools used in practice.
The results also highlighted the impact of two important optimizations, traversal order
and redundant check elimination, in obtaining these results. Opportunities for future work
include exploring static and dynamic optimizations to further reduce the overheads in our
implementation of the DRDP, as well as extensions to support determinacy race detection
for promise-like constructs used in heterogeneous parallelism (e.g., CUDA graph) and in
distributed-memory parallelism (e.g., MPI_Request).

References
1 Simone Atzeni, Ganesh Gopalakrishnan, Zvonimir Rakamaric, Dong H Ahn, Ignacio Laguna,

Martin Schulz, Gregory L Lee, Joachim Protze, and Matthias S Müller. Archer: effectively
spotting data races in large openmp applications. In 2016 IEEE international parallel and
distributed processing symposium (IPDPS), pages 53–62. IEEE, 2016.

2 Cedric Bastoul. Code generation in the polyhedral model is easier than you think. In
Proceedings of the 13th International Conference on Parallel Architectures and Compilation
Techniques, PACT ’04, pages 7–16, USA, 2004. IEEE Computer Society.

3 Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric Bastoul.
The polyhedral model is more widely applicable than you think. In Rajiv Gupta, editor, CC,
volume 6011 of Lecture Notes in Computer Science, pages 283–303. Springer, 2010. URL:
http://dblp.uni-trier.de/db/conf/cc/cc2010.html#BenabderrahmanePCB10.

ECOOP 2023

http://dblp.uni-trier.de/db/conf/cc/cc2010.html#BenabderrahmanePCB10

13:26 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

4 Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E. Leiserson. On-the-fly
maintenance of series-parallel relationships in fork-join multithreaded programs. In Proceedings
of the sixteenth annual ACM symposium on Parallelism in algorithms and architectures, New
York, NY, USA, 2004. Association for Computing Machinery. doi:10.1145/1007912.1007933.

5 Utpal Bora, Santanu Das, Pankaj Kukreja, Saurabh Joshi, Ramakrishna Upadrasta, and
Sanjay Rajopadhye. Llov: A fast static data-race checker for openmp programs. ACM
Transactions on Architecture and Code Optimization (TACO), 17(4):1–26, 2020.

6 Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney, Ryan Newton,
Jens Palsberg, David Peixotto, Vivek Sarkar, Frank Schlimbach, and Sağnak Taşırlar. Concur-
rent collections. Scientific Programming, 18:203–217, 2010. 3-4. doi:10.3233/SPR-2011-0305.

7 Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-java: the new
adventures of old x10. In Proceedings of the 9th International Conference on Principles and
Practice of Programming in Java, pages 51–61, 2011.

8 Sanjay Chatterjee, Sagnak Tasırlar, Zoran Budimlic, Vincent Cavé, Milind Chabbi, Max
Grossman, Vivek Sarkar, and Yonghong Yan. Integrating asynchronous task parallelism with
mpi. In 2013 IEEE 27th International Symposium on Parallel and Distributed Processing,
pages 712–725, 2013. doi:10.1109/IPDPS.2013.78.

9 Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee,
and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In 2009
IEEE International Symposium on Workload Characterization (IISWC), pages 44–54, 2009.
doi:10.1109/IISWC.2009.5306797.

10 Nathan Chong, Alastair F. Donaldson, and Jeroen Ketema. A sound and complete abstraction
for reasoning about parallel prefix sums. In Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, pages 397–409, New York,
NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2535838.2535882.

11 LLVM Community. Tsan predefined constants for vector clocks, May 2022. URL:
https://github.com/lechenyu/llvm-project/blob/main/compiler-rt/lib/tsan/rtl/
tsan_defs.h.

12 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

13 Jack B Dennis, Guang R Gao, and Vivek Sarkar. Determinacy and repeatability of parallel
program schemata. In 2012 Data-Flow Execution Models for Extreme Scale Computing, pages
1–9. IEEE, 2012.

14 Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard Ayguade.
Barcelona openmp tasks suite: A set of benchmarks targeting the exploitation of task paral-
lelism in openmp. In Proceedings of the 2009 International Conference on Parallel Processing,
ICPP ’09, pages 124–131, USA, 2009. IEEE Computer Society. doi:10.1109/ICPP.2009.64.

15 Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races in cilk
programs. In Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’97, pages 1–11, New York, NY, USA, 1997. Association for Computing
Machinery. doi:10.1145/258492.258493.

16 Cormac Flanagan and Stephen N Freund. Fasttrack: efficient and precise dynamic race
detection. ACM Sigplan Notices, 44(6):121–133, 2009.

17 Standard C++ Foundation. C++11 Standard Library Extensions — Concurrency, May 2021.
URL: https://isocpp.org/wiki/faq/cpp11-library-concurrency.

18 Tobias Grosser, J. Ramanujam, Louis-Noel Pouchet, P. Sadayappan, and Sebastian Pop.
Optimistic delinearization of parametrically sized arrays. In Proceedings of the 29th ACM on
International Conference on Supercomputing, ICS ’15, pages 351–360, New York, NY, USA,
2015. Association for Computing Machinery. doi:10.1145/2751205.2751248.

19 Yizi Gu and John Mellor-Crummey. Dynamic data race detection for openmp programs. In
SC18: International Conference for High Performance Computing, Networking, Storage and
Analysis, pages 767–778. IEEE, 2018.

https://doi.org/10.1145/1007912.1007933
https://doi.org/10.3233/SPR-2011-0305
https://doi.org/10.1109/IPDPS.2013.78
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/2535838.2535882
https://github.com/lechenyu/llvm-project/blob/main/compiler-rt/lib/tsan/rtl/tsan_defs.h
https://github.com/lechenyu/llvm-project/blob/main/compiler-rt/lib/tsan/rtl/tsan_defs.h
https://doi.org/10.1109/ICPP.2009.64
https://doi.org/10.1145/258492.258493
https://isocpp.org/wiki/faq/cpp11-library-concurrency
https://doi.org/10.1145/2751205.2751248

F. Jin, L. Yu, T. Cogumbreiro, J. Shirako, and V. Sarkar 13:27

20 Robert H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM Trans.
Program. Lang. Syst., 7(4):501–538, October 1985. doi:10.1145/4472.4478.

21 Intel. Intel inspector, May 2021. URL: https://software.intel.com/content/www/us/en/
develop/tools/oneapi/components/inspector.html#gs.1wvmbu.

22 Feiyang Jin, John Jacobson, Samuel D. Pollard, and Vivek Sarkar. Minikokkos: A calculus of
portable parallelism. In 2022 IEEE/ACM Sixth International Workshop on Software Correct-
ness for HPC Applications (Correctness), pages 37–44, 2022. doi:10.1109/Correctness56720.
2022.00010.

23 Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer
and System Sciences, 3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.

24 Chunhua Liao, Pei-Hung Lin, Joshua Asplund, Markus Schordan, and Ian Karlin.
Dataracebench: A benchmark suite for systematic evaluation of data race detection tools. In
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’17, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3126908.3126958.

25 LLNL. C cpp details oct 2021, October 2021. URL: https://github.com/LLNL/
dataracebench/wiki/Tool-Evaluation-Dashboard.

26 John Mellor-Crummey. On-the-fly detection of data races for programs with nested fork-
join parallelism. In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing,
Supercomputing ’91, pages 24–33, New York, NY, USA, 1991. Association for Computing
Machinery. doi:10.1145/125826.125861.

27 Mozilla Developer Network. Javascript reference – Promise, July 2021. URL:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Promise.

28 Oracle. Java® Platform, Standard Edition and Java Development Kit Version 17 API
Specification - CompletableFuture, October 2021. URL: https://docs.oracle.com/en/java/
javase/17/docs/api/java.base/java/util/concurrent/CompletableFuture.html.

29 Joachim Protze, Martin Schulz, Dong H Ahn, and Matthias S Müller. Thread-local concurrency:
a technique to handle data race detection at programming model abstraction. In Proceedings
of the 27th International Symposium on High-Performance Parallel and Distributed Computing,
pages 144–155, 2018.

30 Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. Efficient data
race detection for async-finish parallelism. Formal Methods in System Design, 41(3):321–347,
December 2012. doi:10.1007/s10703-012-0143-7.

31 Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. Scalable
and precise dynamic datarace detection for structured parallelism. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, pages 531–542, New York, NY, USA, 2012. Association for Computing Machinery.
doi:10.1145/2254064.2254127.

32 Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding recursive
fork-join parallelism into llvm’s intermediate representation. ACM Trans. Parallel Comput.,
6(4), December 2019. doi:10.1145/3365655.

33 Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer: Data race detection in
practice. In Proceedings of the workshop on binary instrumentation and applications, pages
62–71, 2009.

34 Jun Shirako and Vivek Sarkar. Integrating Data Layout Transformations with the Polyhedral
Model. In Proc. of IMPACT 2019, 2019.

35 Rishi Surendran and Vivek Sarkar. Dynamic determinacy race detection for task parallelism
with futures. In Yliès Falcone and César Sánchez, editors, Runtime Verification, pages 368–385,
Cham, 2016. Springer International Publishing.

36 Bradley Swain, Yanze Li, Peiming Liu, Ignacio Laguna, Giorgis Georgakoudis, and Jeff
Huang. Ompracer: A scalable and precise static race detector for openmp programs. In SC20:
International Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1–14. IEEE, 2020.

ECOOP 2023

https://doi.org/10.1145/4472.4478
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/inspector.html#gs.1wvmbu
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/inspector.html#gs.1wvmbu
https://doi.org/10.1109/Correctness56720.2022.00010
https://doi.org/10.1109/Correctness56720.2022.00010
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1145/3126908.3126958
https://github.com/LLNL/dataracebench/wiki/Tool-Evaluation-Dashboard
https://github.com/LLNL/dataracebench/wiki/Tool-Evaluation-Dashboard
https://doi.org/10.1145/125826.125861
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/CompletableFuture.html
https://doi.org/10.1007/s10703-012-0143-7
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/3365655

13:28 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

37 Robert Utterback, Kunal Agrawal, Jeremy Fineman, and I-Ting Angelina Lee. Efficient race
detection with futures. In Proceedings of the 24th Symposium on Principles and Practice of
Parallel Programming, PPoPP ’19, pages 340–354, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3293883.3295732.

38 Robert Utterback, Kunal Agrawal, Jeremy T. Fineman, and I-Ting Angelina Lee. Provably good
and practically efficient parallel race detection for fork-join programs. In Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’16, pages 83–94, New
York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2935764.2935801.

39 Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Mathematical
Software – ICMS 2010, Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2010.

40 Sven Verdoolaege and Tobias Grosser. Polyhedral extraction tool. In Second Int. Workshop
on Polyhedral Compilation Techniques (IMPACT’12), Paris, France, January 2012.

41 Philippe Virouleau, Pierrick Brunet, François Broquedis, Nathalie Furmento, Samuel Thibault,
Olivier Aumage, and Thierry Gautier. Evaluation of openmp dependent tasks with the kastors
benchmark suite. In Luiz DeRose, Bronis R. de Supinski, Stephen L. Olivier, Barbara M.
Chapman, and Matthias S. Müller, editors, Using and Improving OpenMP for Devices, Tasks,
and More, pages 16–29, Cham, 2014. Springer International Publishing.

42 Caleb Voss and Vivek Sarkar. An ownership policy and deadlock detector for promises. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’21, pages 348–361, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3437801.3441616.

43 Yifan Xu, Kyle Singer, and I-Ting Angelina Lee. Parallel determinacy race detection for
futures. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’20, pages 217–231, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3332466.3374536.

44 Adarsh Yoga, Santosh Nagarakatte, and Aarti Gupta. Parallel data race detection for task
parallel programs with locks. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 833–845, 2016.

45 Lechen Yu, Feiyang Jin, Joachim Protze, and Vivek Sarkar. Leveraging the dynamic program
structure tree to detect data races in openmp programs. In 2022 IEEE/ACM Sixth International
Workshop on Software Correctness for HPC Applications (Correctness), pages 54–62, 2022.
doi:10.1109/Correctness56720.2022.00012.

46 Qin Zhao, Derek Bruening, and Saman Amarasinghe. Efficient memory shadowing for 64-bit
architectures. In Proceedings of the 2010 international symposium on Memory management,
pages 93–102, 2010.

A Proof

▶ Lemma 14. Non-tree joins (nt) and least-significant ancestor (lsa) maintain happens-before
relationships correctly, given the routines in Figure 8.

Proof. For a task T in the disjoint-set D, there are two conditions we may update D’s nt
according to Figure 8.

Lines 19 to 25: when task T gets a promise, we add the empty task created by the promise
setter to D’s nt. In this way, we create dependency from step nodes (those before the set
operation) in the setter task to the remaining step nodes in T .
Line 26 to 38: when finish F ends in task T , we merge all non-tree joins from merged
tasks. The merged tasks are essentially descendants of T and we keep those non-tree
joins in D’s nt.

For a task T in the disjoint-set D, there are two conditions we may update D’s lsa
according to Figure 8.

https://doi.org/10.1145/3293883.3295732
https://doi.org/10.1145/2935764.2935801
https://doi.org/10.1145/3437801.3441616
https://doi.org/10.1145/3332466.3374536
https://doi.org/10.1109/Correctness56720.2022.00012

F. Jin, L. Yu, T. Cogumbreiro, J. Shirako, and V. Sarkar 13:29

Lines 1 to 12: when task T is created, if the parent has non-tree joins, we set D’s lsa to
be the parent. Otherwise, we set D’s lsa to be the lsa of parent. This obeys the definition
of lsa (the lowest ancestor that has non-tree joins).
Line 26 to 38: when finish F ends in task T , we keep T ’s lsa and ignore merged tasks’ lsa.
This is valid because merged tasks are essentially descendants of T , so for any merged
task, its lsa is either T , T ’s lsa or one of T ’s descendants. In all cases, the nt and lsa of
D already cover the information. ◀

▶ Theorem 15. If DRDP does not report any determinacy race during an execution of
program P with input ψ, then no execution of P with ψ will have a write-write race on any
memory location r.

Proof. Consider an execution δ of a program P with input ψ in which DRDP is enabled
and does not report any determinacy race.

Suppose that a write-write race, χ, occurs on a memory location r in some execution δ
′

of P with ψ. Let W1 and W2 denote the two steps that write to r resulting in the race in δ
′.

Note that the execution δ
′ does not have any race until χ occurs. Without loss of generality,

assume W1 writes to r first and W2 writes to r later in δ. We will prove by contradiction
that DRDP must report the race in δ. There are two cases:

1. There are no writes to r between W1 and W2 in δ.
When W1 occurs in δ′, Figure 8 lines 45 - 55 check all readers in reader list and last writer
of r to see if any can execute in parallel with W1. Because χ is the first determinacy race
in δ

′, no race will be reported when W1 occurs. We then save W1 as the last writer to r
in δ

′.
When W1 occurs in δ, because no determinacy race occurs yet, we then save W1 as the
last writer to r in δ.
When W2 occurs in δ, we will run PRECEDE(W1,W2) to check if W1 ↝ W2. In δ

′,
PRECEDE(W1,W2) returns false. In δ, PRECEDE(W1,W2) returns true. We are
going to show it is impossible in δ that true was returned.
In Algorithm 9, we may return true in four places: lines 4, 8, 26, and 51.
Line 4 cannot be executed in δ because DPST is the same across all executions without
determinacy race. When W2 happens, the related DPST parts that were previously
generated are the same across δ, δ′. As a result, in δ, DRDP cannot return true at line 4.
Line 8 cannot be executed in δ. This line only returns true if the task W1 in is still
active in δ at this point. This means either W2 is W1’s descendant or W1’s task has set
a promise that W2’s task needs. Both conditions cannot be true because in δ

′ we have
W1 ∥W2.
Lines 26 and 51 cannot be executed in δ. We may return in these two lines if we find a
path from W1 to W2 in a graph traversal over the computation graph. The validity is
proved in Lemma 14.

2. There are writes to r by steps Wi ... Wj between W1 and W2 in δ.
In δ

′, the happens-before relationship must be W1 ↝ Wi ↝ Wi+1 ↝ . . .Wj−1 ↝ Wj

because χ is the first race in δ
′. As W1 ∥ W2, we have Wj ∥ W2, so Wj and W2 is also

a pair of write that leads to a race. Because the related computation graph parts are
the same across data-race free execution, the same happens-before relationship exists in
δ. When W2 occurs in δ, the shadow memory has Wj as the last writer. We will run
PRECEDE(Wj ,W2) to check if Wj ↝ W2. In δ, PRECEDE(Wj ,W2) cannot return
true, which can be proved similarly as part 1. This is a contradiction with the statement
DRDP does not report any race in δ. ◀

ECOOP 2023

13:30 Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

▶ Theorem 16. If DRDP does not report any data race during an execution of program P

with input ψ, then no execution of P with ψ will have a read-write determinacy race on any
memory location r.

Proof. Consider an execution δ of a program P with input ψ in which DRDP is enabled
and does not report any determinacy race.

Suppose that a read-write race, χ, occurs on a memory location r in some execution δ′ of
P with ψ. Let R1 and W1 denote the two steps that read and write r resulting in the race in
δ
′. Because this is a read-write data race, R1 occurs before W1 in δ′. Note that the execution
δ
′ does not have any race until χ occurs. We will prove by contradiction that DRDP must

report the race in δ. There are two cases:
1. R1 executes before W1 in δ.

a. There are no writes of r between R1 and W1 in δ.
When R1 occurs in δ, we check race with the last write. We then save R1 to the reader
list of r in δ.
When W1 occurs in δ, we will run PRECEDE(R1,W1) to check if R1 ↝W1. The call
returns returns true in δ. This is impossible. The reasoning is similar to Theorem 15
part 1.

b. There are writes of r by steps Wi . . .Wj between R1 and W1 in δ.
Theorem 15 states that if there is a write-write race in the program P, DRDP will
always report it. This means if there exists a race in any pair of writers in Wi . . .Wj ,W1,
DRDP must find it. Because in δ execution, DRDP does not report any write-write
race, we must have Wi ↝ Wi+1 ↝ . . . ↝ Wj−1 ↝ Wj ↝ W1. This relationship is the
same in δ

′.
As a result, we can conclude in δ

′, we have R1 ∥Wi, otherwise there cannot be a race
between R1 and W1 in δ

′. In δ, when Wi occurs, DRDP must report the race. The
reasoning is similar to part a. This is a contradiction with the statement that DRDP
does not report any race in δ.

2. W1 executes before R1 in δ.
a. There are no writes of r between W1 and R1 in δ.

The proof is similar to Theorem 15 part 1. We omit the details.
b. There are writes of r by steps Wi . . .Wj between W1 and R1 in δ.

The proof is similar to Theorem 15 part 2. We omit the details. ◀

▶ Theorem 17. If DRDP does not report any determinacy race during an execution of
program P with input ψ, then no execution of P with ψ will have a write-read determinacy
race on any memory location r.

Proof. We omit the proof because it is similar to proof for Theorem 16. ◀

▶ Theorem 18. If DRDP reports a determinacy race on r during an execution of program
P with input ψ, then at least one execution of P with ψ will have this determinacy race on r.

Proof. In Algorithm 9, we may return true in four places: lines 4, 8, 26, and 51. If DRDP
reports a write-write race or a read-write race or a write-read race, we know none of the lines
is executed. The validity of the check is explained in Theorem 15 part 1.

From the definition of determinacy race and the fact DRDP reports a race, we know at
least one execution of program P will show the race. ◀

▶ Theorem 19. The race detection algorithm described in Figure 8 and 9 is sound and
precise.

Proof. Theorem 15,16,17 show that the algorithm is sound for a given input. Theorem 18
proves that the algorithm is precise for a given input. ◀

Algebraic Replicated Data Types:
Programming Secure Local-First Software
Christian Kuessner
Technische Universität Darmstadt, Germany

Ragnar Mogk
Technische Universität Darmstadt, Germany

Anna-Katharina Wickert
Technische Universität Darmstadt, Germany

Mira Mezini
hessian.AI, Darmstadt, Germany
Technische Universität Darmstadt, Germany

Abstract
This paper is about programming support for local-first applications that manage private data
locally, but still synchronize data between multiple devices. Typical use cases are synchronizing
settings and data, and collaboration between multiple users. Such applications must preserve the
privacy and integrity of the user’s data without impeding or interrupting the user’s normal workflow
– even when the device is offline or has a flaky network connection.

From the programming perspective, availability along with privacy and security concerns pose
significant challenges, for which developers have to learn and use specialized solutions such as
conflict-free replicated data types (CRDTs) or APIs for centralized data stores. This work relieves
developers from this complexity by enabling the direct and automatic use of algebraic data types –
which developers already use to express the business logic of the application – for synchronization and
collaboration. Moreover, we use this approach to provide end-to-end encryption and authentication
between multiple replicas (using a shared secret), that is suitable for a coordination-free setting.
Overall, our approach combines all the following advantages: it (1) allows developers to design
custom data types, (2) provides data privacy and integrity when using untrusted intermediaries,
(3) is coordination free, (4) guarantees eventual consistency by construction (i.e., independent of
developer errors), (5) does not cause indefinite growth of metadata, (6) has sufficiently efficient
implementations for the local-first setting.

2012 ACM Subject Classification Information systems → Data management systems; Computer
systems organization → Dependable and fault-tolerant systems and networks; Security and privacy
→ Cryptography

Keywords and phrases local-first, data privacy, coordination freedom, CRDTs, AEAD

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.14

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.26
Software (Source Code): https://github.com/rescala-lang/REScala

archived at swh:1:dir:9d1f296a61ad08d53d81f8e8042373e82d0a3e84

Funding This work was funded by the German Federal Ministry of Education and Research together
with the Hessen State Ministry for Higher Education (ATHENE), the German Research Foundation
(DFG) within the Collaborative Research Center 1053 MAKI, the LOEWE initiative (Hesse, Germany)
within the emergenCITY center, and the German Federal Ministry for Economic Affairs and Climate
Action (BMWK) project SafeFBDC (01MK21002K).

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Christian Kuessner, Ragnar Mogk, Anna-Katharina Wickert, and
Mira Mezini;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 14; pp. 14:1–14:33

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0004-0317-2649
https://orcid.org/0000-0003-4583-1791
https://orcid.org/0000-0002-1441-2423
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.4230/LIPIcs.ECOOP.2023.14
https://doi.org/10.4230/DARTS.9.2.26
https://doi.org/10.4230/DARTS.9.2.26
https://github.com/rescala-lang/REScala
https://archive.softwareheritage.org/swh:1:dir:9d1f296a61ad08d53d81f8e8042373e82d0a3e84;origin=https://github.com/rescala-lang/REScala;visit=swh:1:snp:4af071843b6301542798be9e0d535750fbd4f322;anchor=swh:1:rev:b3498f4b2ada20e199845b1488cca8ada0573f38
https://doi.org/10.4230/DARTS.9.2.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Algebraic Replicated Data Types: Programming Secure Local-First Software

1 Introduction

Today, the dominant software architecture for distributed applications is centralized. This
is true for a wide variety of application types, such as single user applications deployed
on multiple devices (e.g., calendars, notes, email, etc.), software that enables multi-party
collaboration (e.g., shared calendars, document editors, business workflows, etc.), and software
for autonomous systems with remote control and interactions (e.g., home automation and
autonomous vehicles). Data is collected, managed, and processed in the cloud. Devices at
the edge – owned by individuals and companies – serve merely as gateways to the cloud.
Such an architecture has strengths, but also several weaknesses: It causes undue lost control
over data ownership and privacy, lack of offline availability, poor latency, inefficient use of
communication infrastructure, and waste of powerful computing resources on the edge.

To address these issues, local-first software design principles [25] call for “data confiden-
tiality and privacy by default” and “ultimate ownership and control” by the user – both to be
achieved by moving data storage and processing to the edge. However, developing local-first
applications is challenging. Crucially, suitable existing mechanisms for efficient decentralized
data management, specifically coordination-free replicated data types (CRDTs) [52], were
invented for the geo-replicated database setting, which differs significantly from the local-first
setting.

First, each local-first application has its own unique application-specific data model,
designed by developers to encode domain knowledge. Developers have to figure out how to
map application-specific data models to CRDTs, which are only available “off-the-shelf” in
the form of databases [50] or libraries with a fixed API [24, 37]. Designing application state
based on a fixed set operations is known to cause application design issues [11], because it
requires translation between the application domain model and the fixed set of operations.

Second, in a local-first setting, a diverse set of networks is used for state synchronization.
But general off-the-self CRDTs are designed for the geo-replicated database setting. The
assumed network has mostly available direct connections between replicas, i.e., systems
are designed to deal with seconds or minutes of latency between data centers. In contrast,
local-first replicas (on user devices) have varied network conditions, ranging from always
online devices, to personal computers that are turned off when unused, to mobile devices
that only synchronize data when connected to a Wi-Fi network. In such a setting, we cannot
assume direct connections between devices. Notably, this implies that connection oriented
security protocols (e.g., TLS) are not applicable. A common solution for such indirect
communication are cloud servers that act as intermediaries, i.e., as post offices that store,
manage, and forward messages – further complicating the network model.

Third, the geo-replicated and the local-first settings have different security assumptions.
Local-first applications often process personal data, with better data privacy and security
being a selling point to users of local-first software. Existing security efforts for CRDTs in
the geo-replicated setting [4] do not apply, due to weak attacker models and reliance on
encrypted direct connections. Specifically, communication over untrusted intermediaries must
not jeopardize the principles of local-first software, i.e., intermediaries must be unable to
inspect or modify application data.

To fill the gaps, we propose algebraic replicated data types (ARDTs) – algebraic data types
(ADT) that provide, by construction, provably consistent decentralized data management.
ARDTs are delivered as a library that integrates seamlessly with existing language support
for function composition and algebraic data types. Behind the scenes, ARDTs combine the
theory of consistency as logical monotonicity (CALM theorem) [12] with delta replication [2]

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:3

for efficient and correct synchronization. Moreover, ARDTs also offer an encryption layer for
efficient synchronization over untrusted intermediaries. Overall, ARDTs provide the ease
of development of traditional applications, the privacy advantages of local-first, with the
data sharing advantages of clouds – independent of the underlying network. We evaluate
the proposed ARDT-based design of local-first applications on a case study and with micro-
benchmarks. The results show that (a) typical local-first applications can be implemented
with negligible performance overhead compared to existing data synchronization and UI
rendering costs, and (b) encryption comes with minimal computational costs and with
predictable, reasonable storage overhead on intermediaries.

In summary, our contributions are:
A critical analysis of the state-of-the-art in developing local-first applications (Section 2).
Use of standard ADTs suitable for application design for replication the realm of local-first
software (Section 3).
A novel synchronization-free authenticated encryption scheme, itself provided as an
algebraic replicated data type (Section 4). As part of designing the encryption scheme,
we contribute a systematic analysis of the suitability of existing encryption primitives for
decentralized synchronization protocols (Section 5).
An implementation of our proposal as an embedding into Scala along with a systematic
empirical evaluation (Section 6).

2 State of the Art and Problem Statement

Below, we discuss two families of existing approaches, which are relevant for our work: (a)
dedicated systems for collaborative workflows and (b) approaches to replicated data types
employed in geo-replicated data stores. We briefly introduce relevant and missing features
with respect to developing secure local-first software. We also introduce existing building
blocks for distributed systems programming, which we adopt and combine to exploit their
advantages in our setting.

2.1 Systems for Distributed Workflows
There are two kinds of systems for distributed workflows. The first kind has automated
handling of conflicts at the price of centralized coordination; prominent examples are
Google Docs or Firefox Sync. The other kind has flexible replication that does not rely
on centralization; the most prominent example is Git, which allows for replication via
different intermediaries including specialized ones like GitHub, or general ones like email.
Similarly, systems like Syncthing and Resilio Sync enable peer-to-peer file synchronization
in an arbitrary network topology, and even support encrypted intermediaries. But Git,
Syncthing, and Resilio Sync require manual user intervention for conflict resolution.

We aim for combining flexible and secure data synchronization à la Git with automated
conflict resolution à la Google Docs. Crucially, we aim to offer this combination to general-
purpose programs with unconstrained types of data. This is unlike the above solutions, which
target specific use cases and specific types of data. For example, Google Docs builds on
research around operational transform [54] to enable efficient synchronization specifically for
text documents. Such specialized solutions are infeasible for arbitrary local-first applications
from different domains. Adapting existing solutions would require developers to become
experts and understand the underlying assumptions and data models, or otherwise risk to
introduce errors into an adaptation.

ECOOP 2023

14:4 Algebraic Replicated Data Types: Programming Secure Local-First Software

2.2 Replicated Data Types in Geo-replicated Data Stores
Another class of solutions that are relevant for our purposes are those developed to enable
availability in geo-replicated data stores in the presence of network partitions – a scenario
that bears some superficial similarity with local-first software. In particular, the solution
from this context that is most relevant to the development of local-first applications are
conflict-free replicated data types (CRDTs) [52]. CRDTs are data types, whose API consists
of a fixed set of query and update operators, which satisfy the condition that two replicas
that know of the same updates return the same result for all queries (also known as eventual
consistency). This property is key in supporting coordination-free synchronization. CRDTs
are typically built into a replicated data store with specific assumptions about the underlying
network for efficiency (e.g., availability of reliable causal broadcast, trustworthiness of the
involved servers).

The assumptions built into the design of off-the-shelf CRDTs limits their applicability to
local-first software development. First, application developers are left with not much choice
but to express their application design using the fixed APIs of existing CRDTs. A similar
approach – object-relational mappings in database-centric software – is known to be a leaky
abstraction, requiring frequent security relevant changes, and does not work well together
with language-based tooling [11]. Second, local-first software operates in varied network
scenarios for which there is no “one size fits all” solution to handle network communication.
Thus, some CRDT runtimes allow developers to provide a custom message dissemination
system that is specific to their needs. However, for two common network scenarios – using
a cloud provider to store and forward messages, and using epidemic routing in an ad-hoc
network – messages are not secure by default. Adding security burdens developers with
ensuring correct and efficient encryption of messages, a task that requires expert knowledge
of both the CRDT implementation and the network dissemination scheme to accomplish
correctly and efficiently.

To recap, local-first applications have multiple new challenging concerns including design
of the application state with replication-awareness, efficient dissemination of messages given
the target network topology, and security of exchanged data, considering that messages may be
stored for a long time before delivery. Each of these concerns needs both, system-level expert
knowledge and application-specific insight. It is too much to ask of application developers to
become experts in all of these fields. Thus, we must make expert implementations of system-
level concerns such as state synchronization, message dissemination over physical networks,
and security, available in a reusable and composable manner to application developers.

2.3 Building Blocks for Algebraic Replicated Data Types
Our solution builds on insights from previous research, but makes them reusable and
combinable by application developers.

CALM and lattices. The first result we exploit is the consistency as logical monotonicity
(CALM) theorem [21]. It states that consistency is possible without coordination if and only
if all replicas only add to (i.e., monotonically increase) but never invalidate prior results.
Existing solutions using replicated data types generally require all operations to prove (or
pray for) a correctness property related to monotonicity. For example, state-based CRDTs
require all operators to monotonically increase the state according to a specified order, and
operation-based CRDTs require all operators to commute with one another. However, as
we want to enable developers to define their own synchronization-free replicated data types

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:5

including new operations, it would be too easy for them to accidentally introduce consistency
bugs (i.e., design operations that are not eventually consistent). A constructive way to
enable consistency by-design, is to restrict available programming support to monotonic
functions [12]. But such an approach may be too restrictive and does not integrate well into
general-purpose languages.

Our solution is based on join semi-lattices – a set of states (i.e., a data type) with an
associative, commutative, and idempotent merge function. In practical terms, associativity
ensures that states can be combined before transmission, commutativity tolerates disordered
arrivals of messages, and idempotence handles duplicated transmissions. Any (merge) function
⊔ with the above three properties provides monotonicity in the sense above, because it implies
an order on states: s1 ≤ s2 if and only if s1 ⊔ s2 = s2. Lattices have been used to reason
about correctness of CRDTs since their beginning [52], but our approach makes states and
merge functions directly available as building blocks for application developers.

Delta replication. We use delta replication [2] to separate efficient message dissemination
from the application logic. Delta replication is a variant on state-based replicated data
type design, where monotonic changes are expressed as a delta to prior state. The overall
application state results by merging all deltas (according to the lattice merge). The application
logic is free to generate deltas however it wants, and the message dissemination algorithm is
free to optimize the transmission of deltas for the specific networking platform.

Note that not every combination of lattice semantics and message dissemination provides
causal consistency (only eventual consistency). However, causal consistency always comes
at the cost of waiting for messages to arrive, and most local-first applications do not
require causal consistency. It is well understood how to add causal delivery to any message
dissemination scheme, and doing so is compatible with our results.

But delta replication does not tell how to add encryption transparently, i.e., without having
to adapt all existing message dissemination implementations (of which, each application may
have its own). In general, message dissemination in a local-first setting needs to consider
many application- and environment-specific interwoven concerns in addition to security.
Such concerns include causal delivery, importance of messages to the application logic, and
messages that become obsolete because of newer state changes. While we focus on security,
our approach is designed to be parametric over the dissemination strategy for deltas, and
thus enables customization.

Authenticated encryption with associated data. Local-first applications require confiden-
tiality – the guarantee that application private data can not be accessed by unauthorized
parties – and integrity – the guarantee that neither private data nor communication metadata
(the associated data) can be tampered with by an attacker. These guarantees are provided
by authenticated encryption with associated data (AEAD) [44], a family of cryptographic
solutions based on symmetric-key cryptography, where only trusted parties (in our case
replicas) have access to a single shared key. AEAD is well studied and widely used, e.g.,
in TLS 1.3 [43]. But each use of a cryptographic construction in a new field requires to
carefully select concrete implementations of cryptographic functions and to ensure that they
are executed with suitable parameters. The local-first setting is no exception in this respect.
Specifically, in local-first applications, an unknown number of replicas need to encrypt and
decrypt data using a single shared key. Widely available AEAD functions require a globally
unique number (nonce) as an input for each operation using the same key. Guaranteeing
global uniqueness requires coordination, which we need to avoid in the local-first setting.

ECOOP 2023

14:6 Algebraic Replicated Data Types: Programming Secure Local-First Software

Figure 1 Architecture overview.

3 Algebraic Replicated Data Types

The architecture of our solution is structured in three layers depicted as colored areas in
Figure 1. The layer on the left concerns algebraic replicated data types (ARDTs), which are
used to model the application logic. The layer on the right concerns message dissemination
over physical networks; this includes sending messages (serialized deltas) and applying a
merge function to recombine received deltas into the full application state. Finally, the middle
layer concerns encrypted replication (encrypted ARDTs – encARDTs). We provide a library
with implementations of each layer. It includes ARDTs for common data types auch as set
and map, different encARDT implementations with different performance versus metadata
tradeoffs, and implementations for message dissemination over TCP, Websockets, WebRTC,
and disruption tolerant networks (DTNs). We expect that developers want to design new
ARDTs specific for their application logic. In doing so, they can freely combine different
implementations of each layer to address specific application needs. This section presents
how developers design their own ARDTs and configure it to use a message dissemination
module. Section 4 and Section 5 elaborate on encrypted ARDTs.

3.1 Programming and Replicating ARDTs
An ARDT is an (immutable) algebraic data type (ADT) of the host language (Scala in our
case) plus a set of associated operators. The ADT values represent the (lattice) state of the
ARDT. The values represent application data and, depending on the used lattice, may also
include metadata for automatic merging. Operators are functions/methods that operate on
an ARDT’s state. Operators may (i) just read the ARDT state to produce a value used
by the application, or (ii) produce a delta that describes the desired changes to the current
state. A delta is technically an instance of the ARDT, but it must first be merged into the
current state to become meaningful in the context of the application.

For illustration, assume that we want to implement a local-first social media application
to be used by a group of friends in a peer-to-peer network to share messages, comments, likes,
and dislikes. The ARDT in Figure 2 models the state and operators of such an application1.
The SocialMedia type (Line 1) is defined as a product type with named components (a
case class in Scala). SocialMedia wraps a Map (Scala’s built-in dictionary type) of IDs to
values of type SocialPost (Line 6 – type parameters are in square brackets). A social post
uses the built-in type Set for comments, two Counters for likes and dislikes, and a LWW
(last-writer-wins) register for the post and comment contents. The LWW register is a built-in
ARDT provided by our library that can be set to a new value, with the implication that
all replicas will show the newest value according to a real-time clock. Counter is an ARDT
defined in Figure 3.

1 All code examples in the paper use Scala 3 syntax.

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:7

1 case class SocialMedia (sm: Map[ID , SocialPost]):
2 def like(post: ID , replica : ReplicaID): SocialMedia =
3 val increment = sm(post).likes.inc(replica)
4 SocialMedia (Map(post -> SocialPost (likes = increment)))
5

6 case class SocialPost (message : LWW[String], comments :
Set[LWW[String]], likes: Counter , dislikes : Counter)

Figure 2 Compositional design of the social media ARDTs.

7 case class Counter (c: Map[ReplicaID , Int]):
8 def value: Int = c. values .sum
9 def inc(id: ReplicaID): Counter =

10 Counter (Map(id -> (c. getOrElse (id , 0) + 1))
11

12 object Counter : // object for static methods
13 def zero: Counter = Counter (Map.empty)

Figure 3 The state and operators of a counter ARDT.

The operators of ARDTs implement their application logic. While Counter (Line 7) and
SocialMedia (Line 1) are both wrappers around a Map, their operators make the difference.
Each Int stored in the Map of the Counter ARDT represents an individual amount contributed
by the specific ReplicaID. This is expressed by the value operator (Line 8). A zero counter is
expressed by the empty map (Line 13). Like other immutable data structures, operators that
modify ARDTs return a new state, e.g., inc (Line 9) increases a counter by returning a new
counter. But for ARDTs it is sufficient to return a delta – the changed parts of the state –
the rest is managed automatically by applying the merge function. For instance, inc (Line 9)
returns only the entry with the increased values; unchanged entries in the Map are omitted.
The like operator of the SocialMedia ARDT in Line 2, while being a bit more complex, follows
the same pattern. To “like” the post with the given ID, it computes the increment of the
likes counter (Line 3) and returns a new delta of the SocialMedia state, which contains only
the changed ID and defines only the likes component2 of the social post (Line 4). Returning
deltas is preferable, because it is more efficient to send and merge smaller values. But since
merging is idempotent, developers could also return full states without impacting behavior.

In the examples so far we assumed that a merge function for our ARDTs exist. This is
indeed the case, because all built-in types we used have merge functions provided off-the-shelf
by our library, and the user-defined ADTs (SocialMedia, SocialPost, and Counter) have their
merge function automatically generated. For example, the merge functions for Counter and
SocialMedia keep all entries of both maps and (recursively) merge the values that have the
same key; and the merge function of the SocialPost merges each component individually. See
Subsection 3.2 for the precise definition of these merge functions. In general, the availability
of a merge function for a type S (e.g., Counter or SocialMedia) is modeled by the type class
Lattice[S] below.

14 trait Lattice [S] { def merge(left: S, right: S): S }

2 The syntax that looks like an assignment in Line 4 is a named parameter, and we assume that this
constructor sets all other components to “empty” values (not shown in the example for brevity). The
-> operator constructs a key-value pair.

ECOOP 2023

14:8 Algebraic Replicated Data Types: Programming Secure Local-First Software

15 class MessageDissemination [S]:
16 def send(delta: S): Unit
17 def recombine (using Lattice [S]): S

Figure 4 Example message dissemination module.

18 val smd = new MessageDissemination [SocialMedia]
19 val current : SocialMedia = smd. recombine
20 val delta: SocialMedia = current .like(myPost , replicaID)
21 smd.send(delta)
22 val updated : SocialMedia = smd. recombine

Figure 5 Using and replicating the social media ARDT.

Specifically, we say that S is the state of an ARDT, when there exists a correct instance
of Lattice[S]; an instance is correct if its merge function is associative, commutative, and
idempotent. The correctness of the merge function is the only requirement for eventual
consistency in our system, and we do not want to burden developers with its definition. Thus,
our library comes with a broad range of built-in ARDTs (with state, operators, and merge
function). Moreover, correct instances of Lattice for standard data structures, user-defined
product types, and the compositions of all of the above, are automatically generated. The
system produces a compilation error if no lattice instance for a custom type can be generated.
In other words, eventual consistency is always guaranteed automatically.

We put ARDTs into action by composing them with a concrete message dissemination
module. The API of the message dissemination module is shown in Figure 4. It allows to
send and recombine a replicated state of type S (Line 15)3. The send method (Line 16) sends
a delta message of type S. The recombine method (Line 17) merges all received delta messages
into a full state of type S, which requires a Lattice[S]. The using keyword (Line 17) asks
the compiler to provide such an instance automatically if available, or report a compilation
error. Figure 5 shows how to use and replicate the social media platform. Line 18 creates
a MessageDissemination named smd. We access the current state of social media (current)
using recombine (Line 19). To like a post named myPost, we first apply the like operator on
current to compute the delta state.4 Once we send delta (Line 21), the like is merged into the
rest of social media, and we can access the full updated state by calling recombine (Line 22).

3.2 Lattice Composition
By design, the correctness of both the operators and the distributed consistency of ARDTs
rely exclusively on their state forming a lattice, i.e., on having a correct merge function.
We provide ready-to-use Lattice instances for a range of data types such as last-writer-wins
registers, multi-version registers, and lists (RGA). We have implemented those based on
existing schemes for state-based CRDTs [51, 2]. On top, our library supports automatic
generation of merge functions for compound data types including associative maps, pairs,
tuples, optional values, and user-defined case classes (generally all product types), given their

3 This supports multiple ARDTs by composing them into a single type S.
4 Note that while delta is of type SocialMedia, it only contains that single like.

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:9

23 given Lattice [Int] with
24 def merge(left: Int , right: Int): Int = max(left , right)

Figure 6 Lattice instance for integers using their maximum.

25 given [A]: Lattice [Set[A]] with
26 def merge(left: Set[A], right: Set[A]): Set[A] = left union

right
27

28 case class LWW[A](time: Time , value: A)
29 given [A]: Lattice [LWW[A]] with
30 def merge(left: LWW[A], right: LWW[A]): LWW[A] =
31 if right.time < left.time then left else right

Figure 7 Set and last-writer-wins lattice.

constituents are ARDTs (i.e., have a lattice instance)5. For example, SocialPost’s merge is
automatically generated from its constituent types, Set, Counter, LWW. The generation is
recursive with pre-defined ARDTs (e.g., LWW) being the recursion anchors.

The generation for product types exploits the canonical representation of a compound
data type as a function (e.g., a key-value map is a function from keys to values). The merge
of two functions l and r is a new function f that merges the result of applying l and r

(f(x) = merge(l(x), r(x))). Sum types (i.e., types representing alternatives such as colors:
red, green, blue) either use built-in lattice instances, or use an explicitly specified order of
the cases (e.g., red < green < blue) and merging returns the larger case.

In the following, we elaborate on how concrete lattice instances are defined for different
ARDTs starting with the recursion anchors and ending with automatic derivation of instances
for compound data types.

3.2.1 Provided and Custom Lattice Instances
We provide ready-to-use lattice instances for primitive data types and for common CRDTs.

For example, the code in Figure 6 implements lattice instances for integers. The given keyword
defines an unnamed instance of Lattice[Int]. The with keyword states that the following is
the implementation of the Lattice methods, in this case, the implementation of merge as the
application of the max function. This definition uses Scala’s support for implicit values to
seamlessly integrate ARDTs into the rest of the language. Methods can access an instance
with the using keyword (as seen in the recombine method from Figure 4); the developer does
not need to explicitly provide the instance, when the method is called.

Figure 7 shows lattice instances for sets and last-writer-wins registers. Merging sets is
delegated to the existing union method on sets. LWW is a custom type, whose state associates
a unique timestamp and a value. Its merge function makes an arbitrary but deterministic
decision – it selects the state with the larger timestamp and ignores the other one.

We do not expect developers to define their own merge functions. It is possible to do so,
by providing custom lattice instances, but carries the risk of an incorrect implementation.
Instead, our library provides support to automatically derive lattice instances for custom
ADTs, as elaborated in the following sections.

5 This is not unlike Haskell’s support for deriving instances of type classes for compound data structures.

ECOOP 2023

14:10 Algebraic Replicated Data Types: Programming Secure Local-First Software

32 given [K, V](using Lattice [V]): Lattice [Map[K, V]] with
33 def merge(left: Map[K, V], right: Map[K, V]) =
34 left. merged (right){
35 case ((id , v1), (_, v2)) => (id , Lattice [V]. merge(v1 , v2))
36 }

Figure 8 Map lattice.

3.2.2 Derived Lattice Instances

Deriving lattices for a compound type makes use of lattices of its component types. Technically,
this is represented as given instances that take other instances as parameters. In the following,
we present how to derive lattices for generic map and product types. The appendix includes
proofs of their correctness by showing that the respective merge functions are commutative,
associative, and idempotent.

The map lattice. Figure 8 states how any Map[K, V] has a lattice instance, if its values V
also have a lattice instance. Specifically, the using keyword states that to create the lattice
instance for the map we require a Lattice[V] where V is the type of values stored in the map.
The merge function (Line 33) for a map delegates to the built-in merged function of Map
(Line 34). The built-in merged function does not automatically handle the case when a key
is assigned to value in both the left and the right map and requires a custom function to
handle such conflicts. We implement this function to delegate to the merge function of the
value type provided by Lattice[V] (Line 35). We prove correctness of this merge function in
Appendix A.1.

The product lattice. We support automatic generation of lattices for any product type
whose elements themselves have lattice instances. In Scala, product types include tuples and
case classes. Consider the exemplary case class MyData in the first line of the code snippet
below, and an explicit definition of the automatically generated lattice instance in the second
line.

37 case class MyData (a: A, b: B)
38 given Lattice [MyData] = Lattice . derived [MyData]

The derived method generates a lattice instance for any product type S. Its implementation
is shown in Figure 16 (in the Appendix). At a high-level of abstraction, a lattice instance
for a product is generated as follows. (i) Acquire lattice instances for each component of
the product. (ii) Define the merge function for two instances of the product type (a left
and a right one) to (iii) take each component of the left product and merge it with the
corresponding component of the right product and (iv) return the results wrapped in a new
instance of the product.

We give the full technical details of the implementation in Appendix A.2. We prove
correctness of the merge function for arbitrary products in Appendix A.3.

3.3 Qualitative Assessment of Design Features

We recap key advantages and limitations of our approach to defining and using ARDTs.

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:11

Reused implementations. When designing a new ARDT, expert developers can reuse
any existing data structure, as long as they can define a merge function. For instance, the
Map data structure in our social media ARDT is a highly optimized implementation from
the Scala standard library. But developers are not limited to the options in our library
and are free to choose an implementation that best suits their needs. For instance, there
are multiple implementation strategies for sets to chose from, including sorted trees and
hash-based solutions. The decision about the particular data type to use for representing the
state of custom ARDTs is decoupled from and does not affect consistency management. Our
approach enables to reuse existing off-the-shelf CRDTs by providing a suitable lattice instance.
State-based CRDTs have a correct merge function, which we can and have directly used
for this purpose. Operation-based CRDTs can be systematically converted to state-based
CRDTs [52], thus they can be reused, too.

Unified consistency management. The CALM theorem [21] implies that monotonicity
is a necessary requirement for consistency without coordination. To achieve monotonicity,
existing state-based CRDT implementations [52] require that operators return a state that is
larger than the original one (with respect to a pre-defined order of all possible states) and
operation-based CRDTs require operators to be commutative. In contrast, our approach
automatically enforces monotonicity of operators by merging their delta result with the
current state. Thus, application developers do not need to reason about consistency when
designing operators. The potential for introducing consistency bugs is limited to custom
merge functions, which we assume to be designed by experts.

To illustrate the positive effects of this, consider again the Counter ARDT in the social
media application. We only have to ensure that operators implement the intended application
semantics, but we are always guaranteed consistent results. That is, the developer may
make a mistake and the increment operator does not increment the value of the counter, as
it is supposed to do. But it is guaranteed that the operator exhibits the same (erroneous)
behavior on all replicas. This is in contrast to classic CRDTs, where an incorrect operator
may lead to different states on different replicas. Due to unified consistency, distributed
correctness boils down to correctness of a single replica, i.e., we get along with local reasoning,
which simplifies development and testing.

Finally, since correctness relies exclusively on the properties of the merge functions,
reasoning about consistency and ensuring it automatically is greatly simplified. An indi-
cation for this are the proofs (in the Appendix) for generated merge functions presented
in Subsubsection 3.2.2. First, they are of manageable size. Second and more importantly,
one can prove the correctness of individual merge functions independently of other merge
functions and operators, because they do not rely on any global assumptions. Correctness
for all composed data types then follows automatically from the individual proofs.

Versatile message dissemination. Local-first applications may run on diverse communi-
cation infrastructures, especially when considering various potential intermediaries ranging
from a centralized server, to a shared network disk, to passing data along multiple ad-hoc
Wi-Fi connections, to storing messages on a USB drive and sending the latter via physical
mail.6 Even though concrete strategies for message dissemination are not a focus of our

6 Networks, where messages are not exchanged directly, but rather stored and forwarded until they are
eventually received, are called delay-tolerant networks (DTN) [5]). They are actively developed and
researched to enable resilient communication [53, 48, 5, 6], a highly relevant area for local-first software.

ECOOP 2023

14:12 Algebraic Replicated Data Types: Programming Secure Local-First Software

contributions, our assumptions about message dissemination are explicitly designed to admit
many different such strategies. Moreover, the separation of message dissemination from
ARDTs enables independent improvement of separate concerns. Specifically, in Section 4, we
thoroughly explore secure communication that works in any setting. On the other side of
the spectrum, in Section 6, we also explore possible optimizations of message dissemination
in less challenging environments such as a central server.

Limitations. According to the CALM theorem [21], coordination-free consistent replication
schemes can only express algorithms that do not require consensus. This is true for ARDTs,
too. Even though we support arbitrary code to express operators, the deltas produced by
operators are merged back into the current state, which enforces that the actual change to
the state is monotonic. For example, a decrement operation on the counter ARDT (Figure 3)
could produce a delta that decrements one of the integer values in the counter. However,
because merging integers (Figure 6) returns the maximum, such a delta has no effect when
merged into the current value.

4 Encrypting ARDTs

The design of ARDTs is motivated by the need for a flexible encryption mechanism suited
for local-first applications. In particular, encryption should be independent of the message
dissemination mechanism to provide the same guarantees in any network scenario. Moreover,
the encryption should enable efficient storage of encrypted data on untrusted intermediaries.

Our solution provides encryption as a special kind of ARDTs, called encrypting ARDTs
(encARDTs in the middle of Figure 1). EncARDTs are normal ARDTs for all purposes –
they can be replicated using any message dissemination mechanism, and they can be parts
of composed ARDTs. EncARDTs provide encryption via their operators, specifically, they
implement the message dissemination API (send and recombine) where sending encrypts
and recombine decrypts the state.

For example, a naive implementation of an encARDT is shown in Figure 9. Line 41
defines the state of the encARTD as a set of encrypted values. For encryption, we rely
on authenticated encryption with associated data (AEAD) to ensure confidentiality of the
state and integrity of both the state and the metadata. There are multiple encryption
primitives that provide AEAD, and we elaborate on the challenge of correct use of AEAD
in a coordination-free setting in Section 5. For now, we assume that there exists a suitable
AEAD module with the following interface.

39 def encrypt [S, A](data: S, meta: A, key: Secret): AEAD[S, A]
40 def decrypt [S, A](aead: AEAD[S, A], key: Secret): Option [(S, A)]

The naive encARDT in Figure 9 stores values of type AEAD. We generally refer to
encrypted states as messages to distinguish them from the state of the encARDT itself. The
send operator (Line 42) adds new messages into the encARDT, by using the encrypt method
of the AEAD module, and producing a delta containing the message. This delta is handled
as usual, i.e., it is merged into the current state using the automatically derived merge
function. The recombine operator (Line 44) reconstructs the plaintext ARDT state of type S.
To do so, all messages are processed by the decrypt method (Line 45), whose return value
for authentication failures makes flatMap discard that message. The successfully decrypted
messages are merged pairwise using the lattice of the plaintext ARDT Lattice[S].

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:13

41 case class Naive[S](messages : Set[AEAD[S, Unit]]):
42 def send(data: S, key: Secret , rID: ReplicaID): Naive[S] =
43 Naive(Set(encrypt (data , (), key)))
44 def recombine (key: Secret)(using Lattice [S]): Option [S]=
45 messages . flatMap (aead => decrypt (aead , key)).map(_.data)
46 . reduceOption (Lattice [S]. merge)

Figure 9 Naive encARDT stores all states.

47 case class Subsuming [S](messages : Set[AEAD[S, Version]]):
48 def version : Version = messages .map(_. metadata)
49 . reduceOption (Lattice .merge[Version])
50 . getOrElse (Version .zero)
51 def send(data: S, key: Secret , replicaID : ReplicaID) =
52 val cause = version merge version .inc(replicaID)
53 Set(encrypt (recombine (key) merge data , cause , key))
54

55 given [S]: Lattice [Subsuming [S]] with
56 def merge(left: Subsuming [S], right: Subsuming [S]): Subsuming [S]=
57 val combined = left union right
58 combined . filterNot (s =>
59 combined . exists (o => s. metadata < o. metadata))
60

61 extension [S] (c: Subsuming [S])

Figure 10 Subsuming encARDT based on version data.

Consistency of the naive encARDT directly follows from the automatic construction of the
merge function, because we only ever add new messages. However, storing all messages forever
is a naive solution, because the state grows indefinitely. Yet, the naive encARDT represents
the realistic case where an intermediary has no further information about encrypted messages.
The following sections describe how to fix the indefinite growth of required space by using
associated metadata.

4.1 Pruning Subsumed States
The naive encARDT stores messages even if they are no longer relevant. As an example why
this is problematic, consider the counter ARDT. The counter stores an integer per replica ID,
each time a counter is incremented we store the new value and no longer need the old value
for that replica ID. In such cases, we say that the old state is subsumed by the new state.
Formally, a state s′ subsumes another state s, if s′ contains all updates of s, i.e., s ⊔ s′ = s′

(where ⊔ is the merge function).
The subsuming encARDT attaches logical timestamps [28] in the form of version vec-

tors [10] to messages as associated metadata. Version vector metadata provides an order ≤
on encrypted states e(s) that implies subsumption: e(s) ≤ e(s′) =⇒ s ⊔ s′ = s′. This allows
intermediaries to remove subsumed messages without inspecting their contents. Figure 10
shows the implementation of the subsuming encARDT, whose messages include the Version
as associated metadata for the encrypted states. A version vector is semantically a counter
CRDT, and Version uses the implementation from Figure 3, but is renamed to reflect its use
within the subsuming encARDT.

ECOOP 2023

14:14 Algebraic Replicated Data Types: Programming Secure Local-First Software

63 case class Dotted [S](messages : Set[AEAD[S, (Dot , Set[Dot])]]):
64 def send(data: S, key: Secret , replicaID : ReplicaID) =
65 val cont = messages . flatMap (aead => decrypt (aead , key))
66 val sub = cont. filter (s =>
67 Lattice [S]. merge(s.data , data) == data)
68 . flatMap (s => dotsIn (s. metadata)).toSet
69 Set(encrypt (data , (Dots.next(replicaID), sub), key))

Figure 11 Dotted encARDT – precise subsumption.

The operators of the subsuming encARDT automatically add the correct metadata to
messages. The helper method version (Line 48) merges all currently stored versions, thus
returning the upper bound of all versions. The send operator increments the upper bound of
versions (Line 52), implying that the new message subsumes all existing messages, but is
not subsumed by any of them. To ensure this is true, the delta state to be send (data in
Line 53) is merged with all current values in the encARDT, thus producing a full state that
does contain all others. The recombine operator is the same as for the naive encARDT in
Figure 9, hence not shown.

An explicit lattice instance implements subsumption as part of the merge function
(Line 55). After computing the union of the sets of encrypted states (Line 57), the merge
keeps only the states that are not subsumed by another state (Line 58); formally the kept
states are {e(s)|∄e(s′) : e(s) < e(s′)}.

For an intuition to how a subsuming encARDT behaves, consider that a message subsumes
all messages that are currently stored in the encARDT, and the merge function removes all
subsumed messages. Thus, each time a replica sends a message, only that message (containing
all deltas) is stored. However, when multiple untrusted intermediaries synchronize between
each other, each may store multiple incomparable messages (generated by different replicas),
and merging will keep all of these messages until a trusted replica decrypts and merges them.

In Appendix A.5, we prove that the subsuming encARDT is transparent, i.e., sending and
recombining behaves as if we just merge states without encryption, and without removing
them based on subsumption metadata. This proof includes correctness of the custom merge
function (associative, commutative, idempotent).

4.2 Pruning Encrypted Deltas
With the subsuming encARDT, we lose the advantages of delta replication, because it
combines all deltas into a single state when sending a message. To address the problem,
dotted encARDT in Figure 11 store precise per-delta subsumption information in the metadata.
Specifically, the metadata contains (a) a globally unique logical timestamp for the message,
called a dot [40], and (b) the set of dots that the message subsumes. The send operator
computes the set of messages currently contained (cont in Line 65) in the dotted encARDT.
For each contained message, it uses the merge function (Line 67) to check if it is subsumed
by the new message. Subsumption is transitive, thus the new subsumption info combines
all dots in the metadata of all subsumed messages (sub in Line 68). Finally, the message
containing only the delta (data) and subsumption info is returned (Line 69). The other
methods (including the merge function) of the dotted encARDT are the same as for the
subsuming encARDT, thus are not shown.

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:15

With dotted encARDTs, intermediaries still cannot decide if two concurrent messages
from different trusted replicas subsume one another, but the messages are potentially much
smaller compared to the subsuming encARDT. However, dotted encARDTs require more
metadata, thus use more space when no concurrent messages occur. See Section 6 for an
empirical evaluation, but keep in mind that the best choice is highly dependent on the used
ARDTs and application behavior. It is possible to use different encARDTs for different
ARDTs in the application, thus providing maximum flexibility. Correctness proofs for the
dotted encARDTs are analogous to the subsuming encARDT, because using a more precise
notion of subsumption only strengthens the preconditions of the proof.

4.3 Security Assessment

We have presented three different encARDT strategies that cover different points in the
design space. Assuming that only trusted replicas know the shared secret, and that AEAD
protects data confidentiality and authenticity of the contained messages, all encARDTs
prevent the following attacks. Intermediaries cannot tamper with the order of data, because
recombination is order independent. Replay attacks using duplicated messages also have no
effect, since merging is idempotent. Intermediaries can forge new messages using incorrect
keys, but these are ignored when decrypting. The only way for intermediaries to interfere is
to selectively stop disseminating messages to (some or all) replicas – this is not worse than
the scenario where the intermediary did not exist.

Encrypted communication may still leak information, e.g., the size of messages, and
who sends which message at what time. In addition, different encARDTs have different
tradeoffs. The naive encARDT leaks no metadata, but stores unneeded messages. The dotted
encARDT is as precise as possible, but also leaks precise subsumption metadata. Subsuming
encARDTs are in the middle. They leak the order of messages, which can be learned anyway
by an attacker that can observe the overall network (a common threat model), while still
enabling to remove unneeded messages.

Leaking metadata is considered as unproblematic when synchronizing rich data such
as texts and images, because the contained data is not deducible by the order in which
modifications happened. But it can be problematic for certain simple ARDTs, e.g., in
the case of Counter (Figure 3), which has a single operation, one can deduce the current
values by learning the number of messages. But these issues are not unique to our solution,
and countermeasures exist [20, 56]. Moreover, because encARDTs do not require a central
entity, it becomes easier to apply countermeasures. For example, one can split messages
over multiple intermediaries (hence, no single intermediary may learn all metadata), or can
use randomized routing such as TOR [13], because ARDTs are resilient against unreliable
message delivery.

5 Coordination-free Encrypted ARDTs

The discussion in the previous section leaves out one open challenge: AEAD primitives
require each call to the encrypt method to use a globally unique number (nonce). In general,
ensuring global uniqueness of something requires coordination, which contradicts our goal
to support coordination-free synchronization. Thus, the open question is how to guarantee
global uniqueness while practically avoiding coordination. To answer this question, we are the
first to analyze multiple stochastic methods of selecting unique numbers for their suitability
for the local-first setting.

ECOOP 2023

14:16 Algebraic Replicated Data Types: Programming Secure Local-First Software

Java Web libsodium Tink
AES-GCM • • • •

AES-GCM-SIV •
ChaCha20-Poly1305 • • •

XChaCha20-Poly1305 • •

Figure 12 Overview of supported AEAD modes in various environments.

5.1 The Study Setup
Existing solutions vary in different respects: their availability, the number of replicas that are
securely supported, the number of operations that can be executed without coordination. The
goal of our analysis is to delimit the chances for conflicts within common security standards.

We considered the following AEAD constructions: AES-GCM, AES-GCM-SIV, and
(X)ChaCha20-Poly1305. Figure 12 shows their availability in the Java Cryptography
Architecture7, Web Cryptography API8, libsodium9, and Tink10. All libraries support AES-
GCM due to its use in the TLS specification [43]. The more modern AEAD construction
ChaCha20-Poly1305 was introduced in TLS 1.3 [43] and is currently also supported by
all libraries except Web Cryptography API. XChaCha20-Poly1305 [3] is an adaption of
ChaCha20-Poly1305 with a larger nonce-size and proven to be at least as secure [7]; while not
yet standardized by IETF, it is supported by libsodium and Tink [3]. AES-GCM-SIV [19]
(implemented only in Tink) claims resistance to nonce reuse; it is also not standardized.

In summary, the best available options are:
AES-GCM Use a 64 bit random ID per replica and 32 bit replica specific counter as nonces.

Supports up to 92,000 replicas, communicating once per second for 132 years.
XChaCha20-Poly1305 Use fully random 192 bit nonces. Supports 232 replicas for communi-

cating once per millisecond for 8900 years.
Our implementation defaults to XChaCha20-Poly1305, because it allows to completely hide
the use of nonces from the developer. In the following, we elaborate on how we reached the
conclusion that the above solutions are the best available options.

5.2 Coordination-free Generation of Nonces for AEAD
To encrypt and authenticate a message, AEAD schemes generally require three inputs: the
message, the encryption key, and a nonce [45]. A nonce is a number that must only be
used once together with the same key. If a nonce is used multiple times, then encryption
schemes leak information about the plaintext, e.g., in AES, an attacker learns the bitwise
exclusive-or of messages [31]. The Nonce misuse has lead to severe real-world attacks, e.g.,
on TLS [9] and WPA2 [57]. The issue is that the decision on how to choose nonces is left
to the developer, and, unfortunately, previous research on crypto misuses has shown that
developers struggle with secure choices for crypto APIs [27, 36, 41]. This is not surprising,
considering that libraries like the Web Cryptography API do not even document that nonces
should be unique. Ensuring uniqueness is a classical coordination problem. Thus, we discuss
how to select unique nonces without coordination, while staying within generally accepted
levels of certainty for the provided confidentiality.

7 https://docs.oracle.com/en/java/javase/16/security/
8 https://www.w3.org/TR/WebCryptoAPI/
9 https://libsodium.org/
10 https://developers.google.com/tink

https://docs.oracle.com/en/java/javase/16/security/
https://www.w3.org/TR/WebCryptoAPI/
https://libsodium.org/
https://developers.google.com/tink

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:17

5.2.1 Selecting Nonces by Space Partitioning
A textbook approach to ensure uniqueness of nonces is using a strictly monotonic counter [14].
This is the case for AEAD algorithms in TLS 1.3 [43]. Using a single counter for all replicas
is not possible without coordination, since this is a prime example of mutual exclusion. An
adaption of the counter approach is to partition the nonce space into multiple ranges, each
exclusive to a single replica. This strategy requires coordination only once per replica. Fixed
ranges are a good choice for a set of devices provided by a single authority (a single user or
company). In large groups of loosely cooperating devices, however, deterministic coordination
of non-overlapping nonce ranges is infeasible. An alternative approach is cryptographically
secure pseudorandom number generation (CSPRNG).

Using replica IDs for partitioning. Certain ARDTs such as the counter (Figure 3) already
require replica-specific IDs for their behavior. Therefore, it seems intuitive to reuse the
replica ID to partition the space of nonces. If the chance of collisions of any two replica IDs
is small enough to be negligible, this is a secure choice. In general, to ensure uniqueness,
typical examples for replica-IDs are randomly generated UUIDs (as seen in automerge11), or
a hash of a replica-specific public-key [24], with the size of such identifiers usually being 128
bits [29]. Unfortunately, this size is too large for use with popular AEAD constructions. For
example, the NIST specification for AES-GCM recommends that implementations should
restrict their nonce lengths in AES-GCM to 96 bits [14]. Thus, direct use of replica IDs to
partition the nonce space is not possible.

Using small random replica-specific numbers for partitioning. Instead of using the replica
ID, we can generate short replica-specific numbers using a CSPRNG, but this leaves us with
a probability of collisions of replica-specific numbers, thus a collision of nonces. According
to the NIST specification, the probability that a nonce is reused for a given key must be
less or equal to 2−32 [14]. Considering the birthday paradox [49], there is a surprisingly high
probability that two replicas choose the same replica-specific number. With a 64-bit long
replica-specific number, we can have 92,000 replicas before the collision probability reaches
over 2−32. Assuming 92,000 replicas are sufficient, and given the explicit 96-bit nonces of
AES-GCM, a 64-bit replica-specific number leaves room for 32-bit replica-specific counters.
This provides 232 ≈ 4.3 × 109 messages to each replica. Assuming that a replica encrypts one
message per second, the counter could be used for 136 years, before requiring coordination
to select a new shared secret. This is a realistic choice for local-first applications, when only
AES-GCM is available.

5.2.2 Selecting Fully Random Nonces
A fully coordination-free approach to nonce generation is to rely on a CSPRNG to generate
a new random nonce for each message. Literature warns against random nonces in some
cases [9]. For example, nonces in TLS (using AES-GCM) consist of 32-bit part specific to
the sender and connection, and a 64-bit part to ensure uniqueness [46]. With 64-bit random
nonces the collision probability after encrypting 228 ≈ 2.7 × 108 (three hundred million)
messages would be around 0.2 % and for 232 ≈ 4.3 × 109 messages around 39 % [9].

11 https://github.com/automerge/automerge

ECOOP 2023

https://github.com/automerge/automerge

14:18 Algebraic Replicated Data Types: Programming Secure Local-First Software

For using 96-bit random nonces with AES-GCM, the libsodium documentation recom-
mends against it [30], while the documentation of Tink recommends it for “most uses” [17].
Specifically, Tink guarantees that AES-GCM with random nonces can be used for at least
232 ≈ 4.3 × 109 messages, while keeping the attack probability smaller than 2−32 [17].

This, however, is a global message limit, i.e., counting all messages encrypted by all
replicas using the same key. The only way to enforce this limit without coordination is to
restrict the number of distinct messages to 232

n , where n is the maximum number of replicas
that can use a single key. Thus, further limiting the number of encrypted messages. Assuming
1024 as an upper bound on the number of replicas, this leaves 232

1024 = 222 ≈ 4.2×106 messages
to each replica. Or, in other words, 7 weeks of coordination-free operation using one outbound
message per second for each replica. Moreover, enforcing a limit on the number of replicas
also requires coordination.

Fortunately, random nonces become practical with the very large nonce sizes supported
by XChaCha20-Poly1305 [3]. The use of 192-bit nonces allows 280(≈ 1024) messages to
be encrypted with a nonce collision probability of 2−32 [3]. Putting this in context: If
every possible of the 232 IPv4 devices is encrypting messages at the rate of one message per
millisecond, this leaves us with over 8900 years before we must rotate keys. Therefore, with
random nonces, we only recommend XChaCha20-Poly1305.

5.2.3 Nonce Misuse-resistant AEAD Schemes
Nonce misuse-resistant authenticated encryption schemes, such as AES-GCM-SIV [19], aim
to be secure even when a nonce is reused for the same key with a different message. Thus, in
theory, they are good candidates for use with shared, long-lived keys. But these schemes also
do have bounds on the number of messages that can be safely sent [22]. Moreover, they are
not yet standardized and fully scrutinized, and, as discussed in Figure 12, an implementation
of AES-GCM-SIV is not widely available; thus, we can not give clear recommendations.

6 Evaluation

In our interim qualitative assessments, our focus was on design considerations in Section 3
(e.g., reusability, flexibility, correctness) and security guarantees in Section 4 and Section 5.
The question remains: What is the cost of the properties of our approach featured in the
qualitative assessments. To assess this cost, we empirically evaluate our approach along the
following research questions:

RQ1: Is the performance of ARDTs – including encryption – good enough for use in
local-first applications?
RQ2: Are the space requirements of ARDTs using intermediaries acceptable?

We use two methods to explore each of these questions: A concrete case study that makes
specific choices about the used ARDTs and a set of microbenchmarks that explore encARDTs
more generally to uncover their behavior in multiple dimensions, in particular the overhead
caused by encryption and intermediaries. The implementation is part of the REScala project,
and all implementations and benchmarks – in addition to further case studies that explore
different scenarios – can be found on the project website12. The case study evaluated here
runs on the JVM (using a JavaFX UI) due to the generally better availability of tooling for

12 https://www.rescala-lang.com

https://www.rescala-lang.com

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:19

empirical evaluation, but our approach works for both the JVM and on the Web platform
(integrating with various Scala-based Web UI frameworks). Unless otherwise noted, we use
the following hardware and software setup for this evaluation.
CPU 2015 Intel Core i7-6700HQ (laptop CPUs are the most common for local-first software).
OS Arch Linux (Linux 5.16.16).
JRE We use the Java runtime OpenJDK 17.0.3.
Microbenchmarks For performance microbenchmarks, we use JMH13 the standard Java

benchmarking tool. The time measurements we conduct have very stable runtime behavior,
with a maximum relative error of 3%, thus we do not show error bars.

Libraries AEAD implementations are provided by Tink 1.6.114, which uses hardware accel-
eration for AES variants, but not for XChaCha20-Poly1305. To serialize states, we use
jsoniter-scala15 (the arguably fastest JSON serializer available on the JVM16).

6.1 Case Study
We implement the popular to-do list example as a JavaFX GUI application. The application
manages a list of to-dos, and the user may add entries containing arbitrary text, mark to-dos
as completed, change their text, or delete to-dos completely. Its correctness and consistency
properties are: added to-dos remain until deleted, and all users see the same to-dos in
the same order. The interactions and properties of the case study touch on most of the
complexity in the design space of local-first applications. Furthermore, the state of the to-do
list – a potentially ordered set of changeable entries – is complex enough to demonstrate the
need for composed data types.

We experienced no limitations in implementing the to-do list application with ARDTs and
encARDTs. The prototype makes heavy use of the composability of ARDTs. Concretely, the
to-do list uses an add-wins last-writer-wins map for its primary state. This is a composition
out of a tombstone-free add-wins set [8] and a last-writer-wins register. When two users
edit the same to-do entry, a deterministic decision keeps one of the edits and the other is
discarded. Changes to the primary state are normally triggered by the UI library (e.g., a
button click handler), but the UI is replaced by our benchmark infrastructure. The handlers
for each change are similar to the example in Figure 5. Each handler uses a corresponding
operator on the to-do entries (the add-wins-last-writer-wins map) to compute the delta of
the new application state. The delta is passed to the send operator of the dotted encARDT,
and the operator computes its own delta that is in turn passed to the message dissemination
implementation (a custom one for benchmarking the transferred data). In addition, there is
a notification API (not discussed in the paper) in the message dissemination module that
executes a handler whenever a change happens (caused locally or remotely), which triggers
the UI to update and show the new state.

To answer our research questions, we run a deterministic simulation of the to-do list. Our
simulation uses a single intermediary and simulates a total of one million operations that add,
modify, and remove to-do entries (see Subsection 6.2 for a discussion of concurrent operations
and multiple intermediaries). A million operations correspond to about 11 days of usage,
with an interaction per second. We include serialization, encryption, and other application
logic in the simulation. We omit physical network, storing the state on disk, or rendering the

13 https://openjdk.java.net/projects/code-tools/jmh/
14 https://developers.google.com/tink
15 https://github.com/plokhotnyuk/jsoniter-scala
16 https://plokhotnyuk.github.io/jsoniter-scala/

ECOOP 2023

https://openjdk.java.net/projects/code-tools/jmh/
https://developers.google.com/tink
https://github.com/plokhotnyuk/jsoniter-scala
https://plokhotnyuk.github.io/jsoniter-scala/

14:20 Algebraic Replicated Data Types: Programming Secure Local-First Software

graphical UI, as their performance is not part of our contributions. The simulation follows a
randomly generated trace of operations: adding to-dos, marking to-dos as completed, and
deleting batches of the 30 oldest to-dos. To-dos are added and completed individually, but
deleted in batches to reflect the expected usage of the application, which has a “remove all
completed to-dos” button, but no methods of batch insertion or completion.

The top plot of Figure 13 shows the runtime behavior of the simulation. The x-axis
represents abstract time as the number of executed interactions and the graphs show the
respective state of the application, i.e., the number of open and completed to-do entries.

RQ1. Time overhead is presented in Figure 13 (middle plot). It shows the runtime per
interaction (measured in batches of 100 interactions). This time includes executing the
operator locally, merging it into the local state, serializing then encrypting and sending
the delta, merging the encrypted delta into the encARDTs thus computing subsumption,
and replicating the encARDTs to the intermediary. The spike in the beginning is due to
the warm-up of the JVM. Otherwise, the overall runtime is proportional to the size of the
current application state, because tasks – such as merging the add-wins-map, computing
subsumption for existing deltas, and the application logic – linearly depend on the number of
to-do entries. We believe that staying within 3 ms per operation is reasonable. While further
optimizations are certainly possible, there is no indication that our core architecture has
prohibitive costs for local-first applications.

RQ2. Space overhead is presented in Figure 13 (bottom). Note that we show the accumu-
lated bandwidth of 100 interactions (i.e., 100 deltas), because the size would otherwise not
be visible at the scale of the figure. In summary, we observe that the total data stored at the
intermediary has a linear relation to the actual size of the application state and grows and
shrinks accordingly. We want to point out that neither the state, nor the causality metadata
increases over time. While encARDTs require that we store information about subsumed
deltas indefinitely (the set of subsumed dots), it is stored as efficient ranges that only grow
with the number of replicas, concurrent operations, and current size of the data set, but
not with the number of total interactions over time. The data transferred (used bandwidth)
between the replica and the intermediary remains mostly constant because transfer time
depends on the size of deltas, which are largely unaffected by the size of the application state.
The slight increase in bandwidth is because each removal delta includes causality information
in the encARDT that grows with the amount of currently non-removed entries. We show
the difference to using a trusted intermediary (i.e., no encARDT) in Appendix A.6, which
requires less space due to the impact of encrypted deltas discussed in Subsection 6.2. In
conclusion, we consider the size demand and required bandwidth of ARDTs adequate for the
local-first scenario.

6.2 Microbenchmarks

We perform microbenchmarks to acquire data points that the case study does not exhibit.
Specifically, we investigate the isolated overhead of encryption as well as the effect of
concurrent operations (e.g., due to multiple intermediaries) on the required storage size. We
use the same add-wins last-writer-wins map (AWLWWMap) that was used for the to-do list
case study. Yet, the results are independent from the concrete choice of ARDT, because for
the microbenchmarks only the serialized size of the state matters, which we give explicitly.

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:21

0.0 0.2 0.4 0.6 0.8 1.0
Number of Interactions ×106

0

500

1000

Nu
m

be
ro

f Completed to-do entries
Uncompleted to-do entries

0.0 0.2 0.4 0.6 0.8 1.0
Number of Interactions ×106

0

2

4

Ti
m

e(
m

s)

Time per interaction (avg. last 100)

0.0 0.2 0.4 0.6 0.8 1.0
Number of Interactions ×106

0

250

500

Si
ze

(K
iB

)

Overall size of intermediary
Bandwidth of 100 interactions
Causality of intermediary

Figure 13 To-do list case study measurement
results.

AES128 GCM AES256 GCM AES256 GCM SIV XCHACHA20 POLY1305
0.0
0.5
1.0
1.5
2.0
2.5

Ti
m

e(
m

s)

Serialization time
Encryption time

Figure 14 Encryption vs. serialization time
for AWLWWMap states of 256 KB.

1 2 3 4
Concurrent updates

0
5

10
15
20
25
30
35
40
45
50
55
60

Si
ze

(K
iB

)

Subsuming encARDT
Trusted replica
Intermediary

1 2 3 4
Concurrent updates

0
5

10
15
20
25
30
35
40
45
50
55
60

Si
ze

(K
iB

)

Dotted encARDT
Trusted replica
Intermediary

Figure 15 State size when storing concurrent
encrypted messages.

RQ1: Time overhead of encARDTs. We measure how long it takes to prepare the serialized
bytes compared to the time for encrypting those bytes via an encARDT. The results in
Figure 14 show the difference (encryption time vs. serialization time) for different AEAD
schemes, and for a payload of 256 KiB (1,000 to-do entries). Hardware accelerated AES has
an overhead of a fraction of a millisecond. XChaCha20-Poly1305 is designed to be efficiently
implemented in software [3], thus should be considered for systems where no hardware
accelerated encryption is available. Even if it does not benefit from hardware acceleration it
has an overhead of less than 3 ms.

To put these numbers into context, consider the relative sizes of operations. The full
state of a to-do list with 1000 to-do entries serializes into a 256 KiB state. The dotted
encARDT requires an additional 0.16 ms for encryption. The serialization of the state alone
takes 0.67 ms. Sending data over the network has expected latencies of 0.1~100 ms. Receiving
and processing the data on the other replica and displaying the result adds a minimum of
7~33 ms due to typical refresh rates of monitors. In summary, we consider the time overhead
of encARDTs to be negligible compared to all other parts of the synchronization process.

RQ2: Space overhead of encARDTs. Intermediaries cannot merge states that are created
concurrently by different replicas, due to the limitations of the plaintext metadata. The
overhead depends on the encARDT and the number concurrent operations. Figure 15 shows
the space requirement of storing 1 to 4 concurrent updates using a subsuming encARDT
(left) and a dotted encARDT (right). The base size of the stored ARDT is an AWLWWMap
with 96 (+1 to +4 added) entries requiring about 14 KiB. Any trusted replica (in blue) can
always merge any received updates, thus the total stored size does not grow noticeably.

For the intermediary, however, we observe that the size of subsuming encARDT (left
subfigure) grows linearly with each concurrent update. We expected this result as each update
contains the full state to be stored, and the timestamps of the four updates are incomparable,
because each full state differs in exactly one item, thus they do not subsume each other. For
the dotted encARDT (right subfigure), the stored state is larger than the state of the trusted
replica, because each delta is stored separately, which introduces a constant overhead per

ECOOP 2023

14:22 Algebraic Replicated Data Types: Programming Secure Local-First Software

delta. However, each concurrent update only marginally increases the state size to store the
single additional delta. Note that the number of concurrent operations is typically limited
by the number intermediaries, because once a replica is connected to an intermediary the
next operations of the replica will merge and subsume concurrent operations.

In general, storing only deltas at intermediaries has a fixed overhead, but avoids large
storage increases for concurrent updates. Which strategy is more suitable depends on how
reliable connections are, and how many intermediaries are part of the system, because both
unreliability and more intermediaries introduce more concurrency. In summary, we believe
that a wide range of potential use cases are covered by the presented encARDTs. If other
behavior is required, new variants of encARDTs with different subsumption strategies can be
used.

7 Related Work

Programming methods for local-first software. Two popular general-purpose CRDT
implementations that can be integrated into applications are automerge17 (loosely based
on a paper by Kleppmann et al. [24]) and Yjs18 [37]. Both libraries are based on the
operation-based variant of CRDTs. They run in the same process as the application and
provide the latter with an API to update and query a single JSON document (a nested tree
structure). The intended way to use the API is to have developers convert their application
state into the JSON structure, with no further customization of available operations.

REScala [34] provides programming support for local-first applications. It integrates
off-the-shelf CRDTs with functional reactive programming, the latter being a very common
approach to UI and thus local-first applications. The rationale for the integration is that
reactive applications are practically not limited by the monotonicity restriction of CRDTs,
because user interactions are monotonic by nature: Users can only press, click, and touch keys
and buttons and not “unpress” a prior action. However, REScala assumes that the developer
provides CRDTs with suitable operations, and does not consider encryption [33, 35].

Similar to our work, other systems for local-first software consider message dissemination
as an orthogonal concern that depends on the concrete network environment. Yjs, and
automerge, provide default implementations to be ready to use, while REScala defers to
ScalaLoci [58] – a library that abstracts over communication implementations. None of the
approaches considers network security beyond encrypted direct connections. Almeida et al.
and Enes et al. [2, 15] show how to achieve causal consistency for delta CRDTs independently
of the underlying network. This is done by providing an additional layer on top of another
message dissemination algorithm. While they do not consider security, their approach is
similar in that they separate different concerns in the message dissemination.

Security in replicated systems. Preguiça et al. [39] survey CRDTs in the geo-distributed
setting and point out the need for future research on security. They observe that replicas are
vulnerable to harmful operations of other replicas, and that authentication and encryption
between replicas is insufficient in the geo-distributed setting. This is because the trusted
entities in that setting are the clients (end users) that issue operations to a replica (in the
cloud). They conclude that end-to-end security between clients is (nearly) impossible in the
existing architecture, and argue for “moving computations to the edge”. Moving computation
to the edge, while replicating state in the cloud, is exactly what ARDTs enable.

17 https://github.com/automerge/automerge
18 https://github.com/yjs/yjs

https://github.com/automerge/automerge
https://github.com/yjs/yjs

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:23

Barbosa et al. [4] implement an approach that keeps the client/replica split while prov-
ing some guarantees to clients. The clients use customized solutions from the space of
homomorphic encryption to secure their data before storing it in a distributed database
(AntidoteDB [50]), which then handles replication. This approach has the major shortcoming
that all the cryptographic constructions are specific to individual CRDTs. Moreover, they
only target honest-but-curious adversaries, which is an assumption where the attacker is
bound to service-level agreements, and only interested in secretly extracting information (i.e.,
a cloud service provider hosting the database). Crucially, this entails that an adversarial
provider could modify data, because operations cannot be authenticated.

High-level cryptographic APIs. We do believe that encARDTs offer an advantage even
when used with simple direct connections. Security is often treated as an afterthought, and
it has been shown that leaving this task of using crypto solutions to application developers
often leads to insecure systems [16, 38]. The correct usage of cryptographic components is
challenging in general [36], with 84 % of Apache projects containing cryptographic misuses [41].
Especially developers of end-user applications seem to have a hard time, with more than 95 %
of android applications that use a cryptographic API using it incorrectly [27]. High-level
abstractions with built-in cryptographic features are considered as an effective solution to
support developers with writing secure software [1, 18, 32]. With encARDTs, we bring high-
level cryptographic APIs to local-first applications, thus reducing the potential for misuse.
In addition, encARDTs define encryption of data structures, not encryption of connections,
which is better suited to the flexible dynamic connections of local-first applications.

Identities and attackers. Security and authentication of our approach require a shared
secret between trusted parties. If secrets are shared with untrusted parties, our approach does
not provide additional guarantees. Sanjuan et al. [47] and Kleppmann [23] investigate settings
where other replicas are not trusted. They argue that CRDTs are well suited to detect
Byzantine faults at the eventual consistency layer. Specifically, by including cryptographic
hashes of the causal history of each change, it is possible to discard and detect messages
from misbehaving replicas. We believe that these solutions also apply to ARDTs due to their
similarity to CRDTs. However, even when using these solutions an attacker may still execute
consistent but undesirable actions, and is able to read the system state.

To prevent undesirable actions, we need a way to manage and enforce access policies over
time. EncARDTs use a shared secret to define the current set of trusted replicas, and it is
possible to rotate this key to change the set of trusted replicas. Rault et al. [42] propose how
to manage access control itself as a CRDT, thus answering the question of who should have
access to the shared secret. Truong et al. [55] discuss authentication of the log of operations
in an RDT, which allows replicas to identify and attribute tampering carried out by replicas
with full access. Kollmann et al. [26] propose a solution to compress such authentication
information within a snapshot of an RDT. This also allows them to keep the exact history of
changes hidden from newly joined replicas by leveraging coordination-free authentication of
snapshots. We believe that these approaches could be adapted for the use with ARDTs.

8 Conclusions and Future Work

Local-first applications address several weaknesses of a centralized software architecture. But
designing applications with consistent replication is challenging for application developers,
because it requires expertise in several system-level concerns such as consistency, networking,

ECOOP 2023

14:24 Algebraic Replicated Data Types: Programming Secure Local-First Software

and security protocols. Existing solutions such as CRDTs provide consistency “out-of-the-
box”, but have several shortcomings otherwise. First, they do not integrate well into the
application design process: Application developers have to map application-specific data
models to CRDTs, which are only available “off-the-shelf” in the form of databases [50]
or libraries with a fixed API [24, 37]. Designing application state based on a fixed set
operations is known to cause design issues [11]. Second, off-the-shelf systems do not support
heterogeneous network environments, and authenticity and confidentiality is considered as
afterthought at best.

The foundation of our solution to the above gaps is an approach for systematic, modular,
and extensible design of algebraic replicated data types (ARDTs). The approach provides the
same guarantees as CRDTs, but as a modular and extensible library that embraces algebraic
data types, which are widely used to model application state. This approach facilitates the
integration of ARDTs into existing programming models and existing network runtimes.
Further, our solution provides confidentiality and authenticity by design. Specifically, we
presented a family of encrypting ARDTs for different network requirements. Each such
encARDT wraps around the data of an ARDT and secures the data independently of
how messages are disseminated, with specific support to transmit data over untrusted
intermediaries. Using our encARDTs, the application data is authenticated and encrypted,
while retaining coordination freedom and preventing common misuses of cryptographic
primitives. A significant partial result of the above is, that while current AEAD schemes
theoretically require coordination due to the uniqueness constraint on the nonces, it is
possible to avoid coordination for long enough to make them applicable in a coordination-free
setting. Specifically, this result applies to all other approaches for local-first software that
could adapt our techniques to encrypt and authenticate their network communication.

Our evaluation shows that we can implement typical local-first applications efficiently
and that any ARDT can be securely disseminated. The performance overhead is only a
small fraction of the existing dissemination cost. The additional storage requirement is
limited by the amount of concurrent changes in the worst case and can be minimized further
by including more precise metadata. Moreover, the storage requirement does not increase
indefinitely, as ARDTs makes it possible to remove data that is no longer needed by the
application logic. Together, the results of the experiments show that it is feasible to use the
proposed solution in practice.

A remaining issue – common to all encrypted synchronization techniques – is that it
needs to leak metadata to enable efficient dissemination of messages. However, because our
approach is resilient to poor network conditions including reordering, delay, and duplication
of messages, we believe that many common mitigation techniques can be applied without
impeding normal operations. Such mitigations include sending fake data to make metadata
less usable, or routing data on multiple intermediaries such that no single one has a full view
of the system. We may also be able to apply concepts from homomorphic encryption or
secure enclaves to enable intermediaries to learn which states subsume each other, without
gaining any further insight into the exact metadata of each message.

Finally, it is noteworthy that besides solving the practical problem of ensuring the integrity
and authenticity of replicated state in the presence of untrusted replicas, encARDTs also
represent the novel concept of RDT-based implementations of what would classically be seen
as a (network) protocol. An encARDT addresses protocol concerns such as transparency of
encrypting and decrypting transferred data, which messages are important (and must be
retransmitted), and which ones have been superseded by newer messages. Crucially, these
concerns are separated from concrete issues concerning physical networks such as message

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:25

losses, retries and retransmission delays, or splitting large packages. These concerns are
specific to each communication platform and are handled by concrete message dissemination
modules. As a future expansion on this concept it could be possible to implement other
concerns of network protocols as ARDTs. A concrete example is message delivery in causal
order, which can be achieved by attaching ordering information to each message [2]. Such an
ARDT would wrap another ARDT, similar to how an encARDT works, but use its operator
to present a state merged in causal order (temporarily ignoring messages that were received
out of order).

References
1 Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon Kim, Michelle L.

Mazurek, and Christian Stransky. Comparing the usability of cryptographic apis. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 154–171, 2017. doi:10.1109/SP.2017.52.

2 Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta state replicated data types.
Journal of Parallel and Distributed Computing, 111:162–173, 2018. doi:10.1016/j.jpdc.2017.
08.003.

3 Scott Arciszewski. XChaCha: eXtended-nonce ChaCha and AEAD_XChaCha20_Poly1305.
Internet-Draft draft-irtf-cfrg-xchacha-03, Internet Engineering Task Force, 2020. Work in
Progress. URL: https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha-03.

4 Manuel Barbosa, Bernardo Ferreira, João Marques, Bernardo Portela, and Nuno Preguiça.
Secure conflict-free replicated data types. In International Conference on Distributed Computing
and Networking 2021, ICDCN ’21, pages 6–15, New York, NY, USA, 2021. Association for
Computing Machinery. doi:10.1145/3427796.3427831.

5 Lars Baumgärtner, Jonas Höchst, and Tobias Meuser. B-dtn7: Browser-based disruption-
tolerant networking via bundle protocol 7. In 2019 International Conference on Information
and Communication Technologies for Disaster Management (ICT-DM), pages 1–8, 2019.
doi:10.1109/ICT-DM47966.2019.9032944.

6 Lars Baumgärtner, Patrick Lieser, Julian Zobel, Bastian Bloessl, Ralf Steinmetz, and Mira
Mezini. Loragent: A dtn-based location-aware communication system using lora. In 2020
IEEE Global Humanitarian Technology Conference (GHTC), pages 1–8, 2020. doi:10.1109/
GHTC46280.2020.9342886.

7 Daniel J. Bernstein. Extending the salsa20 nonce. In Workshop Record of Symmetric Key
Encryption Workshop 2011, 2011. URL: https://cr.yp.to/snuffle/xsalsa-20110204.pdf.

8 Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos Baquero, Valter
Balegas, and Sérgio Duarte. An optimized conflict-free replicated set. Research Report
RR-8083, INRIA, October 2012. URL: https://inria.hal.science/hal-00738680.

9 Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp Jovanovic. Nonce-
disrespecting adversaries: Practical forgery attacks on GCM in TLS. In 10th USENIX
Workshop on Offensive Technologies (WOOT 16). USENIX Association, 2016. URL: https:
//www.usenix.org/conference/woot16/workshop-program/presentation/bock.

10 Russell Brown. Vector clocks revisited, 2015. Online; accessed 18 October 2021. URL:
https://riak.com/posts/technical/vector-clocks-revisited/index.html.

11 Tse-Hsun Chen, Weiyi Shang, Jinqiu Yang, Ahmed E. Hassan, Michael W. Godfrey, Mo-
hamed N. Nasser, and Parminder Flora. An empirical study on the practice of maintaining
object-relational mapping code in java systems. In Miryung Kim, Romain Robbes, and
Christian Bird, editors, Proceedings of the 13th International Conference on Mining Software
Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016, pages 165–176. ACM, 2016.
doi:10.1145/2901739.2901758.

12 Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein, and David Maier.
Logic and lattices for distributed programming. In Michael J. Carey and Steven Hand, editors,
ACM Symposium on Cloud Computing, SOCC ’12, San Jose, CA, USA, October 14-17, 2012,
page 1. ACM, 2012. doi:10.1145/2391229.2391230.

ECOOP 2023

https://doi.org/10.1109/SP.2017.52
https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.1016/j.jpdc.2017.08.003
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha-03
https://doi.org/10.1145/3427796.3427831
https://doi.org/10.1109/ICT-DM47966.2019.9032944
https://doi.org/10.1109/GHTC46280.2020.9342886
https://doi.org/10.1109/GHTC46280.2020.9342886
https://cr.yp.to/snuffle/xsalsa-20110204.pdf
https://inria.hal.science/hal-00738680
https://www.usenix.org/conference/woot16/workshop-program/presentation/bock
https://www.usenix.org/conference/woot16/workshop-program/presentation/bock
https://riak.com/posts/technical/vector-clocks-revisited/index.html
https://doi.org/10.1145/2901739.2901758
https://doi.org/10.1145/2391229.2391230

14:26 Algebraic Replicated Data Types: Programming Secure Local-First Software

13 Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. In 13th USENIX Security Symposium (USENIX Security 04), San Diego,
CA, August 2004. USENIX Association. URL: https://www.usenix.org/conference/
13th-usenix-security-symposium/tor-second-generation-onion-router.

14 Morris J. Dworkin. Recommendation for block cipher modes of operation: Galois/counter
mode (gcm) and gmac. Technical report, National Institute of Standards and Technology,
2007. doi:10.6028/nist.sp.800-38d.

15 Vitor Enes, Paulo Sérgio Almeida, Carlos Baquero, and João Leitão. Efficient synchronization
of state-based crdts. In 2019 IEEE 35th International Conference on Data Engineering (ICDE),
pages 148–159. IEEE, 2019. doi:10.1109/ICDE.2019.00022.

16 Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben, and
Matthew Smith. Why eve and mallory love android: An analysis of android ssl (in)security.
In Proceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS ’12, pages 50–61, New York, NY, USA, 2012. Association for Computing Machinery.
doi:10.1145/2382196.2382205.

17 Google. Authenticated encryption with associated data (aead). Online; accessed 12 October
2021. URL: https://developers.google.com/tink/aead.

18 Matthew Green and Matthew Smith. Developers are not the enemy!: The need for usable
security apis. IEEE Security & Privacy, 14(5):40–46, 2016. doi:10.1109/MSP.2016.111.

19 Shay Gueron and Yehuda Lindell. GCM-SIV: Full Nonce Misuse-Resistant Authenticated
Encryption at Under One Cycle per Byte. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15, pages 109–119, New York, NY, USA,
October 2015. Association for Computing Machinery. doi:10.1145/2810103.2813613.

20 Christoph Hagen, Christian Weinert, Christoph Sendner, Alexandra Dmitrienko, and Thomas
Schneider. All the numbers are US: large-scale abuse of contact discovery in mobile messengers.
In 28th Annual Network and Distributed System Security Symposium, NDSS 2021, virtually,
February 21-25, 2021. The Internet Society, 2021. doi:10.14722/ndss.2021.23159.

21 Joseph M. Hellerstein and Peter Alvaro. Keeping calm: When distributed consistency is easy.
Commun. ACM, 63(9):72–81, 2020. doi:10.1145/3369736.

22 Antoine Joux. Nonce misuse-resistant authenticated encryption, 2019. doi:10.17487/RFC8452.
23 Martin Kleppmann. Making CRDTs Byzantine fault tolerant. In 9th Workshop on Principles

and Practice of Consistency for Distributed Data, PaPoC 2022, pages 8–15. ACM, April 2022.
doi:10.1145/3517209.3524042.

24 Martin Kleppmann and Alastair R. Beresford. A conflict-free replicated json datatype. IEEE
Transactions on Parallel and Distributed Systems, 28(10):2733–2746, 2017. doi:10.1109/tpds.
2017.2697382.

25 Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan. Local-first
software: you own your data, in spite of the cloud. In Proceedings of the 2019 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! 2019, pages 154–178, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3359591.3359737.

26 Stephan A Kollmann, Martin Kleppmann, and Alastair R Beresford. Snapdoc: Authen-
ticated snapshots with history privacy in peer-to-peer collaborative editing. Proceed-
ings on Privacy Enhancing Technologies (PoPETS), 2019(3):210–232, July 2019. doi:
10.2478/popets-2019-0044.

27 Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini. CrySL: An
extensible approach to validating the correct usage of cryptographic APIs. IEEE Transactions
on Software Engineering, 47(11):2382–2400, 2019. doi:10.1109/TSE.2019.2948910.

28 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

29 Paul J. Leach, Rich Salz, and Michael H. Mealling. A universally unique identifier (uuid) urn
namespace. RFC 4122, 2005. doi:10.17487/RFC4122.

https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://doi.org/10.6028/nist.sp.800-38d
https://doi.org/10.1109/ICDE.2019.00022
https://doi.org/10.1145/2382196.2382205
https://developers.google.com/tink/aead
https://doi.org/10.1109/MSP.2016.111
https://doi.org/10.1145/2810103.2813613
https://doi.org/10.14722/ndss.2021.23159
https://doi.org/10.1145/3369736
https://doi.org/10.17487/RFC8452
https://doi.org/10.1145/3517209.3524042
https://doi.org/10.1109/tpds.2017.2697382
https://doi.org/10.1109/tpds.2017.2697382
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.2478/popets-2019-0044
https://doi.org/10.2478/popets-2019-0044
https://doi.org/10.1109/TSE.2019.2948910
https://doi.org/10.1145/359545.359563
https://doi.org/10.17487/RFC4122

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:27

30 Libsodium Project. Aes256-gcm. Online; accessed 14 October 2021. URL: https://libsodium.
gitbook.io/doc/secret-key_cryptography/aead/aes-256-gcm.

31 David McGrew. An interface and algorithms for authenticated encryption. RFC 5116, 2008.
doi:10.17487/RFC5116.

32 Kai Mindermann, Philipp Keck, and Stefan Wagner. How usable are rust cryptography apis?
In 2018 IEEE International Conference on Software Quality, Reliability and Security (QRS),
pages 143–154, 2018. doi:10.1109/QRS.2018.00028.

33 Ragnar Mogk. A Programming Paradigm for Reliable Applications in a Decentralized Setting.
PhD thesis, Technische Universität Darmstadt, Darmstadt, March 2021. doi:10.26083/
tuprints-00019403.

34 Ragnar Mogk, Lars Baumgärtner, Guido Salvaneschi, Bernd Freisleben, and Mira Mezini.
Fault-tolerant distributed reactive programming. In Todd D. Millstein, editor, 32nd European
Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam,
The Netherlands, volume 109 of LIPIcs, pages 1:1–1:26. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.ECOOP.2018.1.

35 Ragnar Mogk, Joscha Drechsler, Guido Salvaneschi, and Mira Mezini. A fault-tolerant
programming model for distributed interactive applications. Proc. ACM Program. Lang.,
3(OOPSLA):144:1–144:29, 2019. doi:10.1145/3360570.

36 Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. Jumping through hoops: why do
java developers struggle with cryptography APIs? In Laura K. Dillon, Willem Visser, and
Laurie A. Williams, editors, Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages 935–946. ACM, 2016.
doi:10.1145/2884781.2884790.

37 Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. Yjs: A framework for near
real-time p2p shared editing on arbitrary data types. In Philipp Cimiano, Flavius Frasincar,
Geert-Jan Houben, and Daniel Schwabe, editors, Engineering the Web in the Big Data Era,
pages 675–678. Springer International Publishing, 2015. doi:10.1007/978-3-319-19890-3_
55.

38 Marten Oltrogge, Nicolas Huaman, Sabrina Amft, Yasemin Acar, Michael Backes, and Sascha
Fahl. Why eve and mallory still love android: Revisiting TLS (In)Security in android applica-
tions. In 30th USENIX Security Symposium (USENIX Security 21), pages 4347–4364. USENIX
Association, August 2021. URL: https://www.usenix.org/conference/usenixsecurity21/
presentation/oltrogge.

39 Nuno Preguiça, Carlos Baquero, and Marc Shapiro. Conflict-free replicated data types crdts.
In Sherif Sakr and Albert Zomaya, editors, Encyclopedia of Big Data Technologies, pages 1–10.
Springer International Publishing, 2018. doi:10.1007/978-3-319-63962-8_185-1.

40 Nuno Preguiça, Carlos Bauqero, Paulo Sérgio Almeida, Victor Fonte, and Ricardo Gonçalves.
Brief announcement: Efficient causality tracking in distributed storage systems with dotted
version vectors. In Proceedings of the 2012 ACM Symposium on Principles of Distributed
Computing, PODC ’12, pages 335–336, New York, NY, USA, 2012. Association for Computing
Machinery. doi:10.1145/2332432.2332497.

41 Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz, Murat
Kantarcioglu, and Danfeng (Daphne) Yao. Cryptoguard: High precision detection of crypto-
graphic vulnerabilities in massive-sized java projects. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’19, pages 2455–2472, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3319535.3345659.

42 Pierre-Antoine Rault, Claudia-Lavinia Ignat, and Olivier Perrin. Distributed access control
for collaborative applications using CRDTs. In 9th Workshop on Principles and Practice
of Consistency for Distributed Data, PaPoC 2022, pages 33–38. ACM, April 2022. doi:
10.1145/3517209.3524826.

43 Eric Rescorla. The transport layer security (tls) protocol version 1.3. RFC 8446, 2018.
doi:10.17487/RFC8446.

ECOOP 2023

https://libsodium.gitbook.io/doc/secret-key_cryptography/aead/aes-256-gcm
https://libsodium.gitbook.io/doc/secret-key_cryptography/aead/aes-256-gcm
https://doi.org/10.17487/RFC5116
https://doi.org/10.1109/QRS.2018.00028
https://doi.org/10.26083/tuprints-00019403
https://doi.org/10.26083/tuprints-00019403
https://doi.org/10.4230/LIPIcs.ECOOP.2018.1
https://doi.org/10.1145/3360570
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1007/978-3-319-19890-3_55
https://doi.org/10.1007/978-3-319-19890-3_55
https://www.usenix.org/conference/usenixsecurity21/presentation/oltrogge
https://www.usenix.org/conference/usenixsecurity21/presentation/oltrogge
https://doi.org/10.1007/978-3-319-63962-8_185-1
https://doi.org/10.1145/2332432.2332497
https://doi.org/10.1145/3319535.3345659
https://doi.org/10.1145/3517209.3524826
https://doi.org/10.1145/3517209.3524826
https://doi.org/10.17487/RFC8446

14:28 Algebraic Replicated Data Types: Programming Secure Local-First Software

44 Phillip Rogaway. Authenticated-encryption with associated-data. In Proceedings of the 9th
ACM conference on Computer and communications security, CCS ’02, pages 98–107, New
York, NY, USA, November 2002. Association for Computing Machinery. doi:10.1145/586110.
586125.

45 Phillip Rogaway. Nonce-based symmetric encryption. In Bimal K. Roy and Willi Meier, editors,
Fast Software Encryption, 11th International Workshop, FSE 2004, Delhi, India, February
5-7, 2004, Revised Papers, volume 3017 of Lecture Notes in Computer Science, pages 348–359.
Springer, 2004. doi:10.1007/978-3-540-25937-4_22.

46 Joseph A. Salowey, David McGrew, and Abhijit Choudhury. Aes galois counter mode (gcm)
cipher suites for tls. RFC 5288, 2008. doi:10.17487/RFC5288.

47 Hector Sanjuan, Samuli Poyhtari, Pedro Teixeira, and Ioannis Psaras. Merkle-CRDTs: Merkle-
DAGs meet CRDTs. CoRR, April 2020. arXiv:2004.00107.

48 Sebastian Schildt, Tim Lüdtke, Klaus Reinprecht, and Lars Wolf. User study on the feasibility
of incentive systems for smartphone-based dtns in smart cities. In Proceedings of the 2014 ACM
International Workshop on Wireless and Mobile Technologies for Smart Cities, WiMobCity
’14, pages 67–76, New York, NY, USA, 2014. Association for Computing Machinery. doi:
10.1145/2633661.2633662.

49 Bruce Schneier. Applied cryptography – Protocols, algorithms, and source code in C, 2nd
Edition. Wiley, 1996. URL: https://www.worldcat.org/oclc/32311687.

50 Marc Shapiro, Annette Bieniusa, Nuno M. Preguiça, Valter Balegas, and Christopher Meikle-
john. Just-right consistency: Reconciling availability and safety. CoRR, abs/1801.06340, 2018.
doi:arXiv.1801.06340.

51 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study
of Convergent and Commutative Replicated Data Types. Research Report RR-7506, Inria –
Centre Paris-Rocquencourt ; INRIA, 2011. URL: https://hal.inria.fr/inria-00555588.

52 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated
data types. In Xavier Défago, Franck Petit, and Vincent Villain, editors, Stabilization,
Safety, and Security of Distributed Systems, pages 386–400. Springer Berlin Heidelberg, 2011.
doi:10.1007/978-3-642-24550-3_29.

53 Milan Stute, Florian Kohnhauser, Lars Baumgartner, Lars Almon, Matthias Hollick, Stefan
Katzenbeisser, and Bernd Freisleben. RESCUE: A resilient and secure device-to-device
communication framework for emergencies. IEEE Transactions on Dependable and Secure
Computing, pages 1–1, 2020. doi:10.1109/TDSC.2020.3036224.

54 Chengzheng Sun. Reflections on collaborative editing research: From academic curiosity to
real-world application. In Weiming Shen, Pedro Antunes, Nguyen Hoang Thuan, Jean-Paul A.
Barthès, Junzhou Luo, and Jianming Yong, editors, 21st IEEE International Conference on
Computer Supported Cooperative Work in Design, CSCWD 2017, Wellington, New Zealand,
April 26-28, 2017, pages 10–17. IEEE, 2017. doi:10.1109/CSCWD.2017.8066663.

55 Hien Thi Thu Truong, Claudia-Lavinia Ignat, and Pascal Molli. Authenticating operation-based
history in collaborative systems. In 17th ACM International Conference on Supporting Group
Work, GROUP 2012, pages 131–140. ACM, October 2012. doi:10.1145/2389176.2389197.

56 Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. Vuvuzela: Scalable
private messaging resistant to traffic analysis. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, pages 137–152, New York, NY, USA, 2015. Association
for Computing Machinery. doi:10.1145/2815400.2815417.

57 Mathy Vanhoef and Frank Piessens. Key reinstallation attacks: Forcing nonce reuse in wpa2.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, pages 1313–1328, New York, NY, USA, October 2017. Association for
Computing Machinery. doi:10.1145/3133956.3134027.

58 Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. Distributed system development
with scalaloci. Proc. ACM Program. Lang., 2(OOPSLA):129:1–129:30, 2018. doi:10.1145/
3276499.

https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.17487/RFC5288
https://arxiv.org/abs/2004.00107
https://doi.org/10.1145/2633661.2633662
https://doi.org/10.1145/2633661.2633662
https://www.worldcat.org/oclc/32311687
https://doi.org/arXiv.1801.06340
https://hal.inria.fr/inria-00555588
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1109/TDSC.2020.3036224
https://doi.org/10.1109/CSCWD.2017.8066663
https://doi.org/10.1145/2389176.2389197
https://doi.org/10.1145/2815400.2815417
https://doi.org/10.1145/3133956.3134027
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:29

70 inline def derived [S<: Product](using pm: ProductOf [S]): Lattice [S]=
71 val lattices =
72 summonAll [Tuple.Map[pm. MirroredElemTypes , Lattice]]
73 . toIArray .map(_. asInstanceOf [Lattice [Any]])
74 new Lattice [S]:
75 def merge(left: S, right: S): S = pm. fromProduct (
76 new Product {
77 def productElement (i: Int): Any =
78 lattices (i).merge(left. productElement (i),
79 right. productElement (i))
80 })

Figure 16 Automatic derivation of lattice instances for product types.

A Appendix

A.1 Map Merge is Correct
Proof. Given that K is the set of all keys (replica ids), xk is a lookup of key k in map x that
returns 0 if the key is not present, {k → v}k∈K constructs a new map that associates the
key k to the value v, that m0 is a correct merge function for the values stored in the map,
and m(x, y) = {k → m0(xk, yk)}k∈K is the implementation of the merge function. All three
proofs are calculations that first expand the definition of m, then use the respective property
of the m0 function, and finally use the reverse definition of m (except in the idempotence
case which is already done).

Commutative: m(x, y) = {k → m0(xk, yk)}k∈K

= {k → m0(yk, xk)}k∈K = m(y, x)
(1)

Associative: m(m(x, y), z) = {k → m0(m0(xk, yk), zk)}k∈K

= {k → m0(xk, m0(yk, zk)}k∈K = m(x, m(y, z))
(2)

Idempotent: m(x, x) = {k → m0(xk, xk)}k∈K

= {k → xk}k∈K = x
(3)

◀

A.2 Derived Product Merge Implementation
We elaborate on the technical details of the implementation of method derived in Figure 16.
The method is marked inline to make use of compile-time meta programming, which we use
to acquire lattice instances of the individual components of the product, specifically, the
summonAll method used later. The using keyword asks the compiler to provide a product
mirror (named pm) for the product type S to allow inspection of the components of S.

The summonAll method in Line 72, similar to the using keyword, “summons” instances
provided by the given keyword based on their types. Specifically, the type we request are the
component types (pm.MirroredElemTypes) of our product mapped to the Lattice type. As an
example, the component types of our MyData class returns the type (A, B) and mapping

ECOOP 2023

14:30 Algebraic Replicated Data Types: Programming Secure Local-First Software

that onto the lattice type results in the type (Lattice[A], Lattice[B]) which is the type for
which we “summon” the instances. The result is a tuple of typed lattice instances, but we
throw away all type information (Line 73) and rely on the fact that all used products have
the same component type at the same structural position.

Having computed lattice instances of the components, we create a new instance of the
lattice trait (Line 74). The merge function of that instance (defined in Line 75) uses the
pm.fromProduct helper to generically create a new instance of the result product S (e.g., a
new instance of our MyData class) in Line 76. The parameter to pm.fromProduct essentially
assigns each component at index i (productElement in Line 76) the result of using merge
function i to merge the left and right components at position i.

The technical challenges of generating merge functions for arbitrary products are mostly
related to practical concerns in the programming language.

A.3 Derived Product Merge is Correct

Proof. Given that K is the set of product indices (this would be the field names of a case
class), xk is a lookup of index k in product x, the syntax {k → v}k∈K constructs a new
product of correct type that associates the index k to the value v, each component type at
index k has a merge function mk, and m(x, y) = {k → mk(xk, yk)}k∈K is the implementation
of the merge function for the product. We show that m is commutative, associative, and
idempotent. All three proofs are calculations that first expand the definition of m, then
use the respective property of the component merge functions, and finally use the reverse
definition of m (except in the idempotence case which is already done).

Commutative: m(x, y) = {k → mk(xk, yk)}k∈K

= {k → mk(yk, xk)}k∈K = m(x, y)
(4)

Associative: m(m(x, y), z) = {k → mk(mk(xk, yk), zk)}k∈K

= {k → mk(xk, mk(yk, zk)}k∈K = m(x, m(y, z))
(5)

Idempotent: m(x, x) = {k → mk(xk, xk)}k∈K

= {k → xk}k∈K = x
(6)

◀

A.4 Naive encARDT is Transparent

Proof. We show that for any subset of states c ⊂ S sending (encrypting) and recombining
(decrypting and merging) the set c is equivalent to merging the set c directly. This uses the
secret key k, the merge function mS for states in S, the merge function me = union of the
encARDT, the encrypt ek and decrypt dk function with dk(ek(s)) = s, the send function
sendk(s) = {ek(s)}, and the recombine function reck(c) = mS({dk(s)|s ∈ c}). The proof is
done by expanding the above definitions (highlighted in blue) when appropriate.

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:31

reck(me({sendk(s′)|s′ ∈ c}))
= mS({dk(s)|s ∈ me({sendk(s′)|s′ ∈ c})}) def of rec
= mS({dk(s)|s ∈ me({{ek(s′)}|s′ ∈ c})}) def of send
= mS({dk(s)|s ∈ {ek(s′)|s′ ∈ c}}) def of me

= mS({dk(ek(s))|s ∈ c}) simplify set ops
= mS({s|s ∈ c}) def of ek and dk

= mS(c)

(7)

◀

A.5 Subsuming encARDT is Transparent
Proof. Given a secret key k, a subset of states c ⊂ S, individual states s, x, y, z, a merge
function mS for states in S, associated data for each state as where ax ≤ ay if mS(x, y) = y,
the filter function f(c) = {x ∈ c|∄y ∈ c : ax < ay}, the merge function me(c) = f(

⋃
(c)) of the

encARDT, the encrypt ek the decrypt dk function with dk(ek(s)) = s, the current encrypted
states ce, the send function sendk(ce, s) = {ek(mS(reck(ce), s))}, and the recombine function
reck(ce) = mS({dk(s)|s ∈ ce}).

It holds that filtering distributes over union f(p ∪ q) = f(f(p) ∪ q), because all elements
of f(p) are larger or equal to all elements in p, so filtering them out first does not change the
result of f(p ∪ q).

Filter distributes over decryption, i.e., {dk(s)|s ∈ f(c)} = f({dk(s)|s ∈ c}), because
filtering is defined on associated data which is also available in the encrypted state.

It holds that filtering is subsumed by merging mS(f(c)) = mS(c), because for each
removed element r ∈ p \ f(p) it is subsumed by one of the remaining elements q ∈ f(p) thus
merging it again makes no difference mS(r, p) = p.

We first show that the merge function of the encARDT me is associative, idempotent,
and commutative. Note, that up until now, we have proven a slightly stronger version
of idempotence that requires less calculation, but we can not do so here, because the
filtering function does not provide the stronger guarantee that f(a) = a, thus we only have
m(x, x) = f(x). Instead of strong idempotence, we prove that m(m(x, y), y) = m(x, y), that
is, merging y multiple times still makes no difference, but we must merge at least once.

Commutative: me(x, y) = f(x ∪ y) = f(y ∪ x) = me(y, x) (8)

Associative: me(me(x, y), z) = f(f(x ∪ y) ∪ z) = f(x ∪ y ∪ z)
= f(x ∪ f(y ∪ z)) = me(x, me(y, z))

(9)

Idempotent: me(me(x, y), y) = f(f(x ∪ y) ∪ y) = f(x ∪ y ∪ y)
= f(x ∪ y) = me(x, y)

(10)

Finally, transparency of the subsuming encARDT, i.e., that receiving a set of send and
filtered states is equivalent to merging those states directly. The applied definitions are listed
and the changes highlighted in blue.

ECOOP 2023

14:32 Algebraic Replicated Data Types: Programming Secure Local-First Software

reck(me({sendk(ce, s′)|s′ ∈ c}))
= mS({dk(s)|s ∈ me({sendk(ce, s′)|s′ ∈ c})}) def of rec
= mS({dk(s)|s ∈ me({{ek(mS(reck(ce), s′))}|s′ ∈ c})}) def of send
= mS({dk(s)|s ∈ f({ek(mS(reck(ce), s′))|s′ ∈ c})}) def of me

= mS(f({dk(s)|s ∈ {ek(mS(reck(ce), s′))|s′ ∈ c}})) filter distributes
= mS(f({dk(ek(mS(reck(ce), s′)))|s′ ∈ c})) simplify set ops
= mS(f({mS(reck(ce), s′)|s′ ∈ c})) def of ek and dk

= mS({mS(reck(ce), s′)|s′ ∈ c}) filter subsumed
= mS(reck(ce), mS(c)) merge properties
= mS(mS({dk(ek(s))|ek(s) ∈ ce}), mS(c)) def of rec
= mS(mS({s|ek(s) ∈ ce}), mS(c)) decrypted
= mS({s|ek(s) ∈ ce} ∪ c) merge properties

(11)

◀

A.6 Case Study with Trusted Intermediary
Figure 17 shows the benchmark results for the to-do list case study when we trust the
intermediaries and do not use an encARDT. The overall trends are similar, both the time per
interaction and the size stored on the intermediary have a linear correlation to the current
number of to-do entries. This is because those costs are inherent to the ARDT of the to-do
list. There are notable differences. First, the overall runtime when using encARDTs is better
(each interaction is faster), because merging the encARDT on the intermediary (i.e., pruning
subsumed deltas) is faster than merging the to-do list on the intermediary (i.e., merging the
two add-wins-last-writer-wins maps). The encryption overhead is negligible compared to
that cost. Second, the overall size of the stored data on the trusted intermediary is smaller,
because storing individual encrypted deltas requires more space as discussed in Subsection 6.2.
Third, the client does not have to transmit any additional causality information and also
does not create subsuming deltas that would reduce the overall size of an encARDT, but
lead to larger deltas in some cases. This leads to a nearly constant bandwidth use, with
small variations for the random difference between the relative amount of added, completed,
and removed to-dos, as well as differences in to-do description lengths.

C. Kuessner, R. Mogk, A.-K. Wickert, and M. Mezini 14:33

0.0 0.2 0.4 0.6 0.8 1.0
Number of Interactions ×106

0

500

1000

Nu
m

be
ro

f Completed to-do entries
Uncompleted to-do entries

0.0 0.2 0.4 0.6 0.8 1.0
Number of Interactions ×106

0

2

4

Ti
m

e(
m

s)

Time per interaction (avg. last 100)

0.0 0.2 0.4 0.6 0.8 1.0
Number of Interactions ×106

0

250

500

Si
ze

(K
iB

)

Overall size of intermediary
Bandwidth of 100 interactions
Causality of intermediary

Figure 17 To-do list case study measurement results with trusted intermediary.

ECOOP 2023

Behavioural Types for Local-First Software
Roland Kuhn #

Actyx AG, Kassel, Germany

Hernán Melgratti #

University of Buenos Aires, Argentina
Conicet, Buenos Aires, Argentina

Emilio Tuosto #

Gran Sasso Science Institute, L’Aquila, Italy

Abstract
Peer-to-peer systems are the most resilient form of distributed computing, but the design of robust
protocols for their coordination is difficult. This makes it hard to specify and reason about global
behaviour of such systems.

This paper presents swarm protocols to specify such systems from a global viewpoint. Swarm
protocols are projected to machines, that is local specifications of peers. We take inspiration
from behavioural types with a key difference: peers communicate through an event notification
mechanism rather than through point-to-point message passing. Our goal is to adhere to the
principles of local-first software where network devices collaborate on a common task while retaining
full autonomy: every participating device can locally make progress at all times, not encumbered
by unavailability of other devices or network connections. This coordination-free approach leads to
inconsistencies that may emerge during computations. Our main result shows that under suitable
well-formedness conditions for swarm protocols consistency is eventually recovered and the locally
observable behaviour of conforming machines will eventually match the global specification.

Our model elaborates on the Actyx industrial platform and provides the basis for tool support:
we sketch an implemented prototype which proves this work a viable step towards reasoning about
local-first and peer-to-peer software systems.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Software
and its engineering → Distributed systems organizing principles; Software and its engineering →
Distributed programming languages

Keywords and phrases Distributed coordination, local-first software, behavioural types, publish–
subscribe, asynchronous communication

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.15

Related Version The extended version of this paper [27] contains more examples, a comparison
between our model and state machine replication [32], more details on the Actyx middleware, and a
discussion on the limitation of our approach.
Extended Version: https://arxiv.org/abs/2305.04848

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.14

Funding Research partly supported by the EU H2020 RISE programme under the Marie Skłodowska-
Curie grant agreement No 778233, by MIUR project PRIN 2017FTXR7S IT MATTERS (Methods
and Tools for Trustworthy Smart Systems), by the PRO3 MUR project Software Quality, and by the
PNRR MUR project VITALITY (ECS00000041), Spoke 2 ASTRA – Advanced Space Technologies
and Research Alliance. machine-runner and machine-check partly funded by the European Union
(TaRDIS, 101093006).

Acknowledgements The authors thank the anonymous reviewers for their useful and insightful
comments and Daniela Marottoli for her help in the initial phase of this project.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Roland Kuhn, Hernán Melgratti, and Emilio Tuosto;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 15; pp. 15:1–15:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:roland@actyx.io
https://orcid.org/0000-0003-1582-6238
mailto:hmelgra@dc.uba.ar
https://orcid.org/0000-0003-0760-0618
mailto:emilio.tuosto@gssi.it
https://orcid.org/0000-0002-7032-3281
https://doi.org/10.4230/LIPIcs.ECOOP.2023.15
https://arxiv.org/abs/2305.04848
https://doi.org/10.4230/DARTS.9.2.14
https://doi.org/10.4230/DARTS.9.2.14
https://doi.org/10.4230/DARTS.9.2.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Behavioural Types for Local-First Software

1 Introduction

Fully decentralised systems like peer-to-peer (P2P) networks are notoriously hard to design
and analyse. A main challenge is to coordinate components so that the composed system
exhibits the expected behaviour. As all decisions in such a system are made locally based
on the available partial knowledge, the main problem is to specify which information is
transferred to whom and when and how to interpret it, i.e. protocol design. The example we
observed with Actyx is implemented in factory shop floor coordination, which is mission-
critical: logistics robots compete for transport orders to move goods between machines and
warehouses1. For familiarity, we use taxi rides instead which are of the same shape.

▶ Example 1.1 (Our running example). The fleet of a taxi company organises rides within
a town using a P2P network. The main goal is to provide any registered passenger who
requests a ride with some offers from taxis willing to perform the desired transportation;
the passenger may pick one offer based on price and estimated time of arrival – followed
by tracking the pickup, ride, and arrival – or cancel the ride. At the end of the trip the
accounting office provides a receipt for the journey or cancellation. Note how there is some
level of trust between the parties involved; we will treat this as a non-adversarial setting.

The structure of the expected interaction between the different peers (classified by roles)
can be informally illustrated with the following diagram involving a passenger role P, a taxi
role T, and an accounting office role as O.

1 2 3 4 5 6 7
Request@P

Offer@T

Select@P Arrive@T Start@P

Record@T

Finish@P

Cancel@P

Receipt@O

When a passenger needs a ride (state 1 in the diagram above), they open an auction by
executing a Request. Then, any taxi with capacity can proceed with an Offer. In this
description, we do not make any assumption about the number of instances playing each role;
in fact, we expect to have many taxis playing role T and hence many offers. The passenger
ends the auction by using Select to pick a winner; note that we do not capture which taxi
won the contract, instead we assume that only the winning taxi will perform actions after
state 3 (we could model one selected branch per taxi and replicate states 3–6, but this only
makes the example larger without additional insight).

The second phase starts with a race in state 3: the taxi begins the ride invoking Arrive
while the passenger loses patience and uses the Cancel command to back out. The office will
create a receipt in either case, but we must settle the dispute whether a ride happened. ⌟

The classic solution to such a problem would use a central database to present an up-
to-date view of the respective data each participant is allowed to see. This solution avoids
conflicts, maintains invariants, and steers the whole process by virtue of there being only
one source of truth – one of the Arrive or Cancel commands would happen first and the

1 This use-case has been implemented and is used in factories based on the Actyx Pond library, which
uses the same event log replication mechanism as described in this article but does not model the
interaction of differently shaped machines nor does it provide formal verification of the protocol. For
a different factory the implementation and deployment is ongoing using the theory presented herein
– developers report greater confidence and productivity than with established approaches. The main
difficulty in factory logistics is reasoning about transient network partitions of mobile participants. Note
that orchestrating the movement of goods on the shop floor is most critical for a factory’s success!

R. Kuhn, H. Melgratti, and E. Tuosto 15:3

other would be rejected. It is well-known (cf. the CAP [16] and FLP [14] results) that
such a solution suffers from unavailability if the system model includes network partitions,
since either the database is localised and may be unreachable, or it is distributed and may
need to reject requests to maintain consistency. With the advent of conflict-free replicated
data types (CRDTs) [33] a different solution came into view: instead of avoiding conflicts
through coordination, CRDTs provide a data model of such a structure that is conflict-free by
construction. CRDTs facilitate that by demanding a join semi-lattice for the data structure,
i.e. that there is a merge function that given two differently evolved states will compute a
new state that represents the sum of all operations that were done to either input. Applied
to Example 1.1 this would typically be achieved by systematically preferring either side of
the choice at state 3, e.g. “cancellation always wins” (cf. the add-wins set CRDT). This
illustrates that CRDTs are not well-suited for capturing and fairly resolving conflicts such
as the one in our example. Nevertheless, the increasing research focus on coordination-free
systems inspired the formulation of local-first software [25] in which all participants in a
distributed system maintain full autonomy and control over their data. Besides the focus
on agency and ownership, local-first principles can also be used to build software that is
fully available and maximally resilient [26], where each participant can independently make
decisions that are globally valid.

We propose a new way of approaching local-first software based on embracing conflict,
recognising it, and finally reconciling it to reach eventual consensus [38]. Our model builds
upon the middleware developed at Actyx [1], which provides a reliable durable pub–sub
mechanism for event logs as well as a coordination-free total order of all events. A distributed
system in our model is realised by a set of participants, dubbed machines, that can exhibit
discordant behaviour and interact by broadcasting and reacting to events. Events are
generated locally in response to the execution of commands, added to the local log and
then propagated to other participants, to be merged into the log local at the recipient. We
assume that events propagate asynchronously and that there is no traditional mechanism for
coordination (like consensus or central nodes): machines liaise with each other purely on the
basis of the events spreading in the system. We refer to such systems as swarms.

Each machine in a swarm implementing the scenario in Example 1.1 plays a role, i.e. it
subscribes to a defined subset of event types and applies an assigned logic to interpret those.
Depending on its local state (which it computes from its local log), any machine may decide
to execute a command. For instance, a machine playing the role P may execute Request,
which generates new events containing details of the request. Such events are appended to
the local log of the machine and then propagated asynchronously to other machines that
have subscribed to such events, e.g. the machines corresponding to taxis. After receiving
such events, a taxi updates its local state and decides whether to place an offer for the ride.
In such case, it executes Offer, which generates the events describing the offer, appends
them to local log and propagates them to the rest of the system. The interaction described
in Example 1.1 may proceed to completion in this way. Our swarms protocols specify the
intended communications in an ideal run of the protocol, assuming that different sessions are
independent from each other – we therefore do not represent sessions in our syntax.

Noteworthy, our computational model does not preclude the execution of conflicting
commands. For instance, the race in state 3 of Example 1.1 allows two machines to generate
their respective events and propagate them through the system. When receiving such events,
each machine will be in charge of detecting and properly resolving the conflict. This is
achieved by using the total order between events – interpreted as manifestation of (logical)
time: the earliest event emitted after a choice decides which branch is taken (events from a

ECOOP 2023

15:4 Behavioural Types for Local-First Software

losing branch are ignored). Note that we do not assume knowledge of when the event log is
complete, i.e. a machine cannot detect whether an event is globally the earliest after a choice;
thus, computed local states may transiently diverge. As soon as events up to and including a
given choice are fully replicated across the swarm, all machines will agree upon which branch
is taken (i.e. we achieve eventual consensus [38]).

The fact that events are processed only by subscribers makes the resolution of choices
subtle. Assume that the accounting office incorrectly subscribes to the cancellation event but
not to the arrival one. In the presence of a conflicting choice, it may incorrectly conclude that
the ride was cancelled even when all other roles understand that the ride took place. We rely
on a typing discipline for ruling out such inconsistencies. We follow a top-down approach
featuring swarm protocols, namely abstractions similar to the diagram in Example 1.1 that –
akin to global types [19, 20] – formalise a description of the expected protocol from a global
viewpoint. A projection operation can automatically generate local specifications of each role
formally defined as machines (cf. Section 2.3). Our typing discipline establishes sufficient
conditions – well-formedness of swarm protocols – to guarantee that well-typed systems will
resolve conflicting choices consistently once information has sufficiently spread to participants.
This and the fact that swarm protocols fully abstract away from the number of instances
enacting a role are distinguished features of our approach.

Main contributions. We develop a behavioural typing discipline for local-first software
tailored to a formal operational model distilled from a real middleware. More specifically:
1. We introduce an operational model for distributed computation based on replication

of event logs to drive the behaviour of machines (Section 2). We do not assume log
stability but combine speculative computation with a “rewind” mechanism à la time warp
machine [22]: a conflict is resolved by backtracking and re-execution along the right path.

2. We define a novel behavioural type approach (Section 4) in which swarm protocols are
specified in terms of the information injected into a heterogeneous swarm through the
actions performed by participants of specific roles. Swarm protocols enjoy a lightweight
syntax and simple operational semantics; they are deadlock-free and communication-safe;
yet they are expressive enough for modelling complex protocols.

3. We define well-formedness conditions for swarm protocols (Definition 6.7) and a projec-
tion operation to derive local machine specifications (Section 5). These ensure eventual
consistency between local observations and globally specified behaviour (Theorem 7.14
and Corollary 7.15), which is non-trivial due to the absence of any infrastructure coordin-
ation, non-homogeneous event subscriptions across roles, and the ability to implement a
role with an arbitrary positive number of replicas.

4. We apply our approach to the TypeScript language and Actyx middleware in the form of
a runtime library and a tool for checking protocol well-formedness and conformance, as
well as a stochastic simulation tool exploring possible executions.

Assumptions. We work under the following assumptions (cf. Section 9 for extensions):
collaborative setting: we consider P2P participants to not be malicious or adversarial;
pure effects: effects performed by machines can be reverted or compensated;
reliable pub–sub mechanism: events (incl. metadata) are neither forged nor lost;
session encoding: machines only receive events pertaining to their session.

Structure. We present the semantics of machines and of log shipping in Section 2. An
overview of the accompanying tooling is in Section 3. Swarm protocols are introduced
in Section 4 and their local projection onto machines in Section 5. We define well-formed

R. Kuhn, H. Melgratti, and E. Tuosto 15:5

InitialP

AuctionP

RideP

1

2

Request / Requested

Requested?

Select / Selected · PassengerID

Bid?
BidderID?

Selected?

PassengerID?

1 // analogous for other events; "type" property matches type name (checked by tool)
2 type Requested = { type: 'Requested'; pickup: string; dest: string }
3 type Events = Requested | Bid | BidderID | Selected | ...
4
5 /** Initial state for role P */
6 @proto('taxiRide') // decorator injects inferred protocol into runtime
7 export class InitialP extends State<Events> {
8 constructor(public id: string) { super() }
9 execRequest(pickup: string, dest: string) {

10 return this.events({ type: 'Requested', pickup, dest })
11 }
12 onRequested(ev: Requested) {
13 return new AuctionP(this.id, ev.pickup, ev.dest, [])
14 }
15 }
16 @proto('taxiRide')
17 export class AuctionP extends State<Events> {
18 constructor(public id: string, public pickup: string, public dest: string,
19 public bids: BidData[]) { super() }
20 onBid(ev1: Bid, ev2: BidderID) {
21 const [price, time] = ev1
22 this.bids.push({ price, time, bidderID: ev2.id })
23 return this
24 }
25 execSelect(taxiId: string) {
26 return this.events({ type: 'Selected', taxiID },
27 { type: 'PassengerID', id: this.id })
28 }
29 onSelected(ev: Selected, id: PassengerID) {
30 return new RideP(this.id, ev.taxiID)
31 }
32 }
33 @proto('taxiRide')
34 export class RideP extends State<Events> { ... }

Listing 1 Definition of state machines in TypeScript.

swarm protocols in Section 6 and study eventual correctness in Section 7. Related works are
discussed in Section 8 and Section 9 yields final remarks together with possible generalisations
and future work.

2 Asymmetric Replicated State Machines

Our model hinges on three ingredients: machines, event emission and consumption, and log-
shipping. The behaviour of a machine is captured by a finite-state automaton as described
in Section 2.1. In Section 2.2 we show how machines may offer commands that, upon
execution, emit events as well as how machines consume (typed) events stored in their local
log. Such events are immediately stored in the local log of the emitting machine and later
asynchronously shipped to the other machines as described in Section 2.3.

2.1 From TypeScript to automata
We formalise (and elaborate on) the computational model realised in the middleware of
Actyx by offering a new library for writing endpoint code. Like the Actyx SDK, we use
the TypeScript language. Our API focuses on a concise but well-structured expression of
finite-state machines for interpreting the current state of distributed computation.

We illustrate this by considering the implementation of the request and auction part
of our running taxi example from the passenger’s point of view, with the TypeScript code
given in Listing 1. For the purposes of this section – all details, including runtime evaluation,
are given in Section 3 – it suffices to know that each state of a machine is represented by a

ECOOP 2023

15:6 Behavioural Types for Local-First Software

Table 1 Notation for machines.

Notation:
⊢ e : t : event e is of type t
src(e) : identity of the machine generating e

l : event log (seq. without repetition)
l : event log type (sequence of types)

c / l : command c emits log type l
t? : consumption of event of type t
M : machine (labelled transition system)

State computation:
Let q0 be the initial state of M and M[q] be machine
M with initial state changed to q:

δ(M, ϵ) = q0

δ(M, e · l) =
{

δ(M[q], l) if ⊢ e : t , q0
t?−−→ q in M

δ(M, l) otherwise

TypeScript class, with methods for command invocation whose name is prefixed with “exec”,
and event handler methods to compute the next state (names prefixed with “on”). The types
of the event handler method arguments are significant, as are the return types of command
methods. Listing 1 also depicts the finite-state automaton corresponding to the snippet, as
inferred by the machine-check build tool (cf. Section 3.2):

states InitialP, AuctionP, and RideP of the automaton respectively correspond to the
classes in the snippet with the same name;
states 1 and 2 of the automaton correspond to the implicit states interspersed between
the events specified as arguments to the event handler methods onBid and onSelected;
command methods correspond to self-loops in the automaton, labelled with the command
name and the resulting event log type, such as Request / Requested in state InitialP;
event handlers correspond to transitions or sequences thereof, where each transition is
labelled with an event type, such as Requested? from state InitialP.

The correspondence sketched above is the basis for our formalisation of swarms and it is at
the heart of the library machine-runner introduced in Section 3.

Note that in the automaton we abstract away from payloads, considering only the types
of events. We also ignore internal computations not involving event emission/consumption
(e.g. the computation of the constructor arguments for state AuctionP is immaterial).

2.2 Commands execution and events consumption
A machine can be thought of as the proxy of an agent (algorithm or human) that processes
the information in the local log, comes to conclusions, and makes decisions which may lead
to the invocation of an enabled command. For instance, in state AuctionP, the machine in
Section 2.1 enables the passenger to execute the command Select triggering the emission of a
log like selected · passengerid . This sequence of events is added to the local event log making
the machine move to state 2 first by consuming the event selected and then to state RideP
by consuming the event passengerid . This is why the inferred machine state diagram records
commands as self-loops while only event consumption may induce state changes.

The automata representation of machines discussed in Section 2.1 allows us to limit
technicalities in defining the behaviour of machines. We illustrate the notation given in
Table 1 by abstracting the above example: a machine M enabling command c will upon
invoking that command emit a sequence of events e1 · e2 · . . . = l (called a log); the events are
decidably typed as ⊢ ei : ti, with t1 · t2 · . . . = l being the log type associated with c. We only
consider deterministic machines, i.e. the labels of event transitions t? are pairwise distinct.

For the purpose of enabling commands a machine M with log l is implicitly in a state
denoted δ(M, l). The determinism of M ensures that there is a unique such state. δ(M, l) is
a transition function defined by adapting the standard transition function of finite-state
automata. Starting with the initial state of M we inductively remove the oldest event, say e ,

R. Kuhn, H. Melgratti, and E. Tuosto 15:7

written by MA: e1A e2A e4A
Lamport time

written by MB : e2B e3B

(virtual) global log: e1A e2A e2B e3B e4A e1A e2A e2B e4A

local log MC
shipping

Subscripts of events specify Lamport timestamp and the identity of the machine generating them

Figure 1 Events sliced by their source: each event starts out at the machine where it is emitted.
Logs are disseminated such that the recipient (like machine MC) holds a prefix of each of the source
slices, which is a partial view of the global log. The recipient’s local log is ordered like the global log.
Eventually every event arrives at all machines, filling the transient gaps that may have existed.

and check it against the outgoing transitions of the current state: if M has a transition with
label t? and e has type t we transition to its target state, otherwise the event e is dropped;
in either case we repeat this step until the log is empty.

It is important to note that a command may be invoked only if it is enabled in the state
reached after fully processing the local log. Also, emitted events are appended to the local
log of the machine they originate at. This ensures causality preservation since the new events
are ordered after all events previously known by this machine.

2.3 Swarms and log-shipping
The last piece of our computational model is the mechanism for disseminating event logs
among the machines of a swarm. This mechanism affects the behaviour of a recipient: as
described in Section 2.2, the local log contains more events, leading to a new current state
being computed, which in turn may change the set of available commands.

Our goal is eventual consensus between machines, in particular different replicas of the
same machine must reach the same state when consuming the same events. According to the
definition of the state transition function in Table 1, this can achieved only if the events are
ordered in the same way in the local logs. We address this by enforcing a total order between
events, without requiring coordination between machines. As discussed in the previous
section this total order preserves causality. Note that the ordering of events that are not yet
locally known is arbitrary but well-defined, and to capture this concept we introduce the
notion of a global log. Figure 1 illustrates the dissemination of logs, where each event begins
in the local log of the emitting machine and simultaneously takes its place in the virtual
global log based on the total order. We model log-shipping as a machine enlarging its local
log with events from the global log; in practice, events flow from the local log of a machine
to another machine’s local log. The precise algorithm for selecting the source and destination
is not relevant to our theory. Due to the uncoordinated total order, it may happen that an
incoming event is sorted into the middle of a local log, which can alter the interpretation of
all subsequent events and affect the computation of the current state.

For example, consider the case in our running example in which the passenger selects
the taxi at the same time that another taxi places a new bid. If the passenger’s selection is
ordered before the bid, a later inspection of the log may reveal that the passenger selected
suboptimally, but the selection still remains in effect and the bid is ignored. (In a system
based on a central database the “bid” transaction would being rejected instead.) On the
other hand, if the event selected were placed in between bid and bidderid , it would be ignored
once the logs are replicated. In this case there are two reasonable paths forward: honouring
the passenger’s previous wish would require a compensating action of executing the same
selection again, or the selection could be redone including the new bid, possibly leading to a
different outcome – this workflow choice needs to be made by the application designer.

ECOOP 2023

15:8 Behavioural Types for Local-First Software

Table 2 Swarm semantics: coinductively unfold machines to inductively build up logs.

Notation:
S : a list of pairs (Mi, li)

(S, l) : a system (machines with local logs
paired with a global log)

κ : set of command invocations c / l

==⇒=−−→⋆ where −−→= τ−−→ ∪
⋃
c,l

c / l−−−→

Log merging:
Let ⊑ be the sublog relation of Definition 2.1:

l1 ▷◁ l2 = {l
∣∣ l ⊆ l1 ∪ l2 and l1 ⊑ l and l2 ⊑ l}

Machine step:
If δ(M, l) has a self-loop with label c / l and ⊢ l′ : l

then (M, l) c / l−−−→ (M, l · l′).

Operational semantics:

S(i) = (M, li) (M, li)
c / l−−−→ (M, l′

i) src(l′
i \ li) = {i} l′ ∈ l ▷◁ l′

i

(S, l) c / l−−−→ (S[i 7→ (M, l′
i)], l′)

[Local]

S(i) = (M, li) li ⊑ l′
i ⊑ l li ⊂ l′

i

(S, l) τ−−→ (S[i 7→ (M, l′
i)], l)

[Prop]

2.4 Formalisation
A swarm (of size n) is a pair (S, l) where S maps indices 1 ≤ i ≤ n to machines and their local
log, i.e. S(i) = (Mi, li) and l is the global log. It is convenient to let (M1, l1) | . . . | (Mn, ln) | l de-
note the swarm (S, l) such that S(i) = (Mi, li) for 1 ≤ i ≤ n. A swarm (M1, l1) | . . . | (Mn, ln) | l
is coherent when the local log li of each machine Mi is made of events actually emitted in S
in the order in which they appear in the global log.

▶ Definition 2.1 (Sublogs and coherence). A log l = e1 · · · en induces a total order <l on
its elements as follows: ei <l ej ⇐⇒ i < j. The sublog relation on logs ⊑ demands an
order-preserving and downward-complete morphism from l1 into l2. Formally, l1 ⊑ l2 if
1. all events of l1 appear in l2 (l1 ⊆ l2) in the same order (<l1 ⊆ <l2); and
2. the per-source partitions of l1 are prefixes of the corresponding partitions of l2, i.e. for

all e1 ∈ l1, e2 ∈ l2 from a given src, e2 <l2 e1 implies e2 ∈ l1.
A swarm (M1, l1) | . . . | (Mn, ln) | l is coherent if

⋃
1≤i≤n li = l and li ⊑ l for 1 ≤ i ≤ n.

The operational semantics of swarms accounts for the construction of the global log,
i.e. the total order defined over generated events. To model that this assignment is non-
deterministic we rely on the merge operator _ ▷◁ _ defined in Table 2 to combine two logs
that may share events. This operator generates all possible logs that contain the events from
both original logs while maintaining their input order.

The operational semantics is given by the rules Local and Prop in Table 2. They
respectively formalise the effects of command execution described in Section 2.2 and the
non-deterministic log-shipping mechanism illustrated in Section 2.3. Recall that a machine M

with a log l is implicitly in state δ(M, l). We can hence define the relation (M, l) c / l−−→ (M, l · l ′)
holding when the state δ(M, l) enables the command c / l and l ′ has type l. The type of a
log l is the sequence of the types of its events. We write ⊢ l : l when l has type l; this is
decidable since the typing of events (cf. Table 1) is decidable.

Rule Local describes the invocation of the command c enabled at the i-th machine of the
swarm (S, l). In addition to updating the local log of the i-th machine to l ′

i, which extends li

with the events generated by c, the rule also updates the global log. The new global log now

R. Kuhn, H. Melgratti, and E. Tuosto 15:9

includes the events generated by the i-th machine, assigning their place in the total order by
picking one of the possible orders generated by the merge operator defined in Table 2. Rule
Prop defines event log propagation between machines. The idea is to non-deterministically
select a machine whose local log is a strict sublog of the global log, identify a larger sublog
l ′
i ⊑ l , and transfer events to the machine by assigning l ′

i as its new local log.
Note that our formalisation acts on the logs which grow by appending newly generated

events. These features play an important role in the realisation of the local-first principle
and permit to formally represent the conflicts discussed in Section 1.

Let ==⇒ be the reflexive and transitive closure of the operational semantics relation (cf.
Table 2). The following properties hold on coherent swarms.

▶ Lemma 2.2 (Coherence preservation and eventual consistency). Given a coherent swarm
(S, l) = (M1, l1) | . . . | (Mn, ln) | l then

coherence preservation: (S, l) α−−→ (S′, l ′) implies that (S′, l ′) is coherent
eventual consistency: (S, l) ==⇒ (M1, l) | . . . | (Mn, l) | l .

3 Tool support

Our theoretical development is accompanied by a set of software tools that support the
implementation of swarms as a composition of type-checked TypeScript machines [30] and
runs them based on the Actyx middleware [1]. The ecosystem is depicted in Figure 2.

3.1 Execution of compiled machines
The machine-runner library uses the Actyx SDK (cf. arrow 4 in Figure 2) to drive machines
written in TypeScript; more precisely, it employs 5 local types to interpret incoming events
and execute 6 the corresponding machine logic. The declaration of a machine revolves around
the event types that it can handle. Referring back to Listing 1, we show the Requested
event type on line 2 as an example: using a property called type to hold a string of singleton
type (here: ’Requested’) is a customary way to express a tagged union in TypeScript, as
shown on line 3.

Every machine state is represented by a class that derives from the State base class (or
prototype in JavaScript terms) provided by the machine-runner library. This serves both as
a marker for machine states and to carry the type parameter constraining all emitted events
to a common type: the inherited this.events function used for example on line 28 is a
utility for helping TypeScript to correctly capture the tuple type [Selected, PassengerID]
(instead of the otherwise inferred array type Events[]) and assert that each of the event
types conforms to type Events.

A program using the passenger’s machine would start by constructing the initial state
using for example “new InitialP(’myID’)”. Together with a suitable set of Actyx event
tags (like ’ride:12345’ to tag this particular taxi ride protocol session) and a state change
callback (see below). This initial state is then passed to the library’s runMachine function.
This will set up a subscription for events with those tags using the Actyx SDK, where Actyx
will first deliver all historic events already locally known and then switch to live mode.

Whenever an event is received, it is slated for consumption by the appropriate event
handler method; to this end the handler method for the event’s type is dynamically looked
up in the JavaScript object underlying the state’s class. If that method takes only a single
argument then the event is immediately consumed by calling the method, which returns
the next state of the machine. Otherwise, the event is enqueued, awaiting the receipt of
the following required event type etc. until the desired event sequence is complete and

ECOOP 2023

15:10 Behavioural Types for Local-First Software

Actyx-SDK machine-runner

Machines
(TypeScript code)

LocalTypes
initial State
transitions [...]

TypeScript
compiler machine-check

subscription
Map MachineID (Set EventType)

simulator
GlobalType

initial State
transitions [...]

TypeChecking

Well-Formedness

Projection

Equivalence test

· · ·
language support

· · ·
our tool

· · ·
TypeScript code

· · ·
data type
inputs

uses
1

analyses 2
infers

3

infers
3

uses
4 5

executes
6

Figure 2 Tool ecosystem.

the method can be invoked with all arguments. During this whole process, whenever the
incoming event type does not have a matching handler or is not of the next required type in
an argument list, the event is discarded as detailed in Section 2.2.

Whenever the machine state changes (i.e. when δ(M, l) computes a new value), the
new state is passed to a function that the application passed to runMachine earlier – this
scheme is termed a callback in TypeScript (note that this language implements an imperative
style with mutable bindings). This could update a user interface or trigger an algorithm to
compute reactions. The state’s command methods can therein be used to construct adequate
event payloads for enabled commands, which would then be stored in Actyx using an SDK
function and come back via the event subscriptions – now with metadata – to be applied to
the current state and eventually trigger another invocation of the callback.

3.2 Enforcing typing at run-time

Readers versed in TypeScript may have noticed that we glossed over a difficulty here:
TypeScript types are fully erased at runtime, meaning that the machine-runner code will
not be able to find the event handler method by using the event type, and it will also not
know how many arguments that method takes and what its types are. Therefore, the first
responsibility of the machine-check build tool is to analyse 2 the TypeScript code and
ascertain that all event types are declared such that they can be recognised at runtime
on their type property – the handler method’s name can then be constructed by prefixing
the value of this property with ’on’. The second responsibility is to extract the function
signatures of all event handlers, check that each handler’s name corresponds to the name of
its first argument type, and then construct a per-state mapping from first event type to the
list of following events (possibly empty). This information is made available to runMachine
by decorating [37] the user-written state class: the @proto decorator transforms the class
definition as it is loaded by the JavaScript VM, overriding the reactions method inherited
from the State prototype. To do that, the implementation of the proto function needs to
access the machine-check’s extraction results. This is done by importing 5 a source module
generated by machine-check that contains all protocol information in JSON format [36].

While the aforementioned duties of machine-check are crucial for machine-runner’s
operation, the more interesting function of this build tool relates to the inference of local
types and subscriptions (arrows 3 in Figure 2) as well as initiating the type-checking process
on swarm protocols. To this end, the TypeScript compiler is used 1 as a library to obtain 2 a
fully typed AST representation of the user program. Since we are only interested in machines,
our entry points are State subclasses that are marked as initial states by a documentation

R. Kuhn, H. Melgratti, and E. Tuosto 15:11

comment starting with “Initial state for role”, as is shown on line 5 of Listing 1. This
comment serves the secondary purpose of naming the role this machine aspires to play (P for
passenger in this example). The @proto decorator on line 6 not only has its runtime duties as
explained above, it also carries in its argument the name of the swarm protocol that provides
the context for the role name – we discuss both concepts in detail in the following sections;
machine-check expects to find the definition of the swarm protocol in a correspondingly
named file in JSON format. Finally, machine-check assembles the lists of command and
event handler methods by inspecting (arrow 5) a state class’s method names and signatures
and follows up with recursively processing the result types of event handlers in the same
fashion. Any event type seen in an event handler argument list is automatically added to
the subscription set of the machine (needed for the projection as explained in Section 5).

3.3 Type-checking, simulation and more
As a result of the analysis described above machine-check has assembled the following
pieces for each machine definition within the user program: swarm protocol, role name,
subscriptions, states, and transitions. Each such tuple is then passed – again in JSON format
– to the typechecking tool, our third artifact contribution, written in Haskell. This tool first
checks that the provided swarm protocol and subscription are well-formed (according to the
rules presented in Section 6), computes the projection for the given role, and finally checks
the inferred machine type for equivalence to the projection result (where state names are
immaterial).

We provide a tool written in Haskell for the simulation of the formal operational semantics
of the model. For a given protocol and subscription, the tool computes the projections and
simulates the execution of swarms consisting of machines according to those projections. It
supports both exhaustive and random generation of traces up to a given length. The tool
has been used for checking claims and results about our running example.

The aforementioned tools are detailed in [28]. Through an example project, the accompa-
nying paper also demonstrates the use of the inferred machine type to generically render
a machine UI. Besides showing the current state of the computation, the UI gives the user
the possibility to interact with machines by invoking enabled commands, where command
arguments are gathered using automatically generated HTML forms.

4 Swarm protocols

A swarm protocol (hereafter also called protocol for short) describes the intended overarching
event log structure realised by a swarm of machines; it corresponds to a global type in the
terminology of session types, with our machines playing a similar role to local types. The
protocol captures the overall communication structure as well as the details relevant for
implementing it with machines. As it is customary with behavioural types, swarm protocols
rely on an idealised environment where all communication is infallible and instantaneous.
The link to the realisation in terms of machines is given in the following section by way of a
projection operation.

When defining the syntax of swarm protocols, we follow the approach initiated in [7] that
avoids fixing a syntactic representation of recursion and simplifies later treatment by instead
using infinite regular trees. A swarm protocols is a possible infinite, regular term coinductively
generated by the grammar in Table 3. A term is regular if it consists of finitely many distinct
subterms. The language generated by the coinductive grammar is thus finitely representable
either using the so-called “µ notation” [31] or as solutions of finite sets of equations [9]. The

ECOOP 2023

15:12 Behavioural Types for Local-First Software

Table 3 Swarm protocols: traverse a coinductive type to inductively build up an event log.

Swarm protocol syntax:
Regular terms generated by:

G co::=
∑
i∈I

ci@Ri⟨li⟩ . Gi

∣∣ 0

Ri : role
c, l, l : as for machines

State computation:

G
cj / lj−−−−→ Gj ⇐⇒ G =

∑
i∈I

ci@Ri⟨li⟩ . Gi and j ∈ I

δ(G, l) =


G if l = ϵ

δ(G′, l′′) if G c / l−−−→ G′ and ⊢ l′ : l and l = l′ · l′′

⊥ otherwise
A swarm protocol is well-formed (Def. 6.7) if it is causal consistent (Def. 6.1), choice determinate (Def. 6.3),
and confusion-free (Def. 6.5).

Operational semantics:
δ(G, l) c / l−−−→ G′ ⊢ l′ : l l′ log of fresh events

(G, l) c / l−−−→ (G, l · l′)
[G-Cmd]

interested reader is referred to [9] for a comprehensive treatment. Intuitively, the protocol
progresses by some role Ri invoking command ci, appending a non-empty event sequence of
type li to the global log and continuing as protocol Gi. As discussed at the end of Section 2.4,
the resolution of the choice specified in a swarm protocol is not coordinated among the
instances of the roles involved in the choice (i.e. there is no unique selector). In fact, instances
of different roles involved in the choice may enable commands at the same time as well as
different instances of the same role may enable different commands (recall that each machine
tracks a separate local log and event replication is asynchronous). This is in contrast to most
other behavioural type systems hitherto, which do not permit such race conditions.

▶ Definition 4.1 (Determinism). A protocol G =
∑

i∈I ci@Ri⟨li⟩ . Gi is log-deterministic if
the event types li[0] are pairwise different and all Gi are log-deterministic. G is command-
deterministic if the tuples (ci, Ri) are pairwise different and all Gi are command-deterministic.
G is deterministic if it is log-deterministic and command-deterministic.

Hereafter we only consider deterministic swarm protocols. Note that determinism is
evidently decidable on swarm protocols due to the regularity constraint.

▶ Example 4.2 (Taxi service). The swarm protocol for the scenario in Example 1.1 is

G = Request@P⟨Requested⟩ . Gauction

Gauction = Offer@T⟨Bid · BidderID⟩ . Gauction + Select@P⟨Selected · PassengerID⟩ . Gchoose

Gchoose = Arrive@T⟨Arrived⟩ . Start@P⟨Started⟩ . Gride + Cancel@P⟨Cancelled⟩ . Receipt@O⟨Receipt⟩ . 0
Gride = Record@T⟨Path⟩ . Gride + Finish@P⟨Finished · Rating⟩ . Receipt@O⟨Receipt⟩ . 0

The structure in terms of commands and roles is straightforwardly induced from Example 1.1,
with event log types filled in according to further requirements. The event type BidderID
represents identifying information illustrating that not all events are of interest to all roles
(e.g., the office does not need to know all bidders, it only needs to know which taxi was
Selected). It is straightforward to check that G is both log- and command-deterministic. ⌟

Mirroring the formulation of machines we ascribe operational semantics to a swarm
protocol via the generation and processing of an event log. The main difference in state
computation is that swarm protocols generate and consume logs instead of events, as
illustrated with the Offer, Select, and Finish commands in the example above.

R. Kuhn, H. Melgratti, and E. Tuosto 15:13

The state reached by a swarm protocol G after processing a log l is computed using an
extension of the transition function δ as defined in Table 3. Analogously to the definition for
machines, the transition function δ(G, l) returns the continuation of the swarm protocol G
after processing the entire log l . We stress that δ is a partial function on swarm protocols,
it is undefined when log l cannot be generated according to G (unlike the definition of δ

on machines, which is a total function since it just discharges unrecognised events). Note
also that δ is well-defined over log-deterministic swarm protocols because a log in a branch
cannot appear as a prefix of the logs of the remaining branches of the choice.

The operational semantics of a swarm protocol is defined as a labelled transition system
given by rule [G-Cmd] in Table 3. This rule states that a swarm protocol G with log l
enables command c, upon whose invocation the log is extended with fresh events l ′ of type l
before possibly allowing another command to be invoked. The freshness of the events in l ′

can e.g. be guaranteed by the inclusion of node ID and logical timestamp.

▶ Example 4.3 (Idealised taxi service). Consider the protocol from Example 4.2, starting out
with (G, ϵ). After invoking the Request command our log contains requested and we reach
state GAuction. Two bids later the passenger makes their selection, leading us to

δ(G, requested · bidA · bidderidA · bidB · bidderidB · selected · passengerid) = Gchoose

with Gchoose offering two options: either the passenger invokes Cancel or the taxi Arrives. ⌟

5 Projection

For the definition of our projection operation it is convenient to introduce a textual presenta-
tion of machines equivalent to the automata-based presentation used so far. Let κ denote
a finite function mapping commands to non-empty log types; we allow ourselves to treat
κ as set (the graph of function κ) and e.g. write c / l ∈ κ for κ(c) = l or else write
{c1 / l1, . . . , ch / lh} for the function κ mapping ci to li for each i ∈ {1, . . . h}. ti ranges over
event types.

Similarly to swarm protocols, the textual presentation of our machines is a regular term2

of the following coinductive grammar:

M
co::= κ·[t1? M1 & · · · & tn? Mn] (1)

and we abbreviate κ·[t1? M1 & · · · & tn? Mn] as κ·0 when n = 0 and as t1? M1 & · · · & tn? Mn

when κ is the empty map. We also write &1≤i≤n li? Mi in place of t1? M1 & · · · & tn? Mn.
In turning our attention to projection operations we first note that the responsibility for

driving the protocol forward is distributed across the participants: each transition in the
swarm protocol is labelled with one role that may trigger it by invoking the command. Each
machine plays one role, whose machine specification is obtained by the projection operation
G ↓R . Note that multiple machines may implement the same role.

One could define G ↓R such that each transition in G produces a series of event transitions
in the machine plus a command invocation on the originating state if the role matches.(∑

i∈I

ci@Ri⟨li⟩ . Gi

)
↓R= κ·

[
&i∈I li? Gi ↓R

]
where κ = {(ci / li)

∣∣ Ri = R and i ∈ I}

2 The correspondence between these regular terms and finite-state automata yields exactly the presentation
of machines in terms of finite-state automata that we have adopted so far.

ECOOP 2023

15:14 Behavioural Types for Local-First Software

P

Request / Requested

Requested?
Select / Selected · PassengerID

Bid?BidderId?

Selected? PassengerID?
Cancel / Cancelled

Cancelled?

Arrived?

Started?
Start / Started Finish / Finished

Path?

Finished? Receipt?

T
Requested?

Offer / Bid · BidderID

Bid?BidderId?

Selected? PassengerID?
Arrive / Arrived

Arrived?

Started?
Record / Path

Path?

Finished?

Cancelled?

Receipt?

O
Requested? Bid? Selected?

Bid?
Arrived? Started? Finished?

Path? Receipt / Receipt
Receipt?

Cancelled?

Figure 3 Projection of Example 4.2 on P, T, and O as automata.

Albeit simple, this projection scheme generates unnecessarily large machines in all but the
most trivial cases. More crucially, forcing each machine to process all events is undesirable
for reasons of security and efficiency. It would be highly desirable to allow some information
to be kept secret from certain roles (like passengerID in Example 4.2), and it would be
most efficient if every role processed just enough information to correctly enable and disable
command invocations. We therefore define a more appealing construction.

Our projections are based on the notion of whether a machine shall process a certain type
of event. Formally, the projection operation is parameterised by a subscription, namely a
map σ assigning to each role the set of event types that it reacts to. Given a set of log types
E, let filter (_, E) be a function transforming a log type, retaining only the event types in
E while preserving their relative order. Intuitively, subscriptions correspond to topics in a
publish–subscribe framework whereby processes declare which kinds of messages they are
interested in receiving.

▶ Definition 5.1 (Projection). Given a swarm protocol G and a subscription σ, the projection
of G over a role R with respect to σ, written G ↓σ

R , is defined as follows:

(∑
i∈I

ci@Ri⟨li⟩ . Gi

)
↓σ

R = {ci / li

∣∣ Ri = R and i ∈ I}·
[
&j∈Jfilter (lj , σ (R)) ? (Gj ↓σ

R)
]

where J = {i ∈ I
∣∣ filter (li, σ (R)) ̸= ϵ}.

Notice that we omit the projection of a branch when a role R is not subscribed to any
of the event types emitted by the command that selects that branch. We opted for this
simplification of the formalism because our well-formedness conditions (cf. Section 6) ensure
that if a role is involved in the continuation it will subscribe to the the first event in the
branch. Further, note that this pruning applies to branches in isolation, later states reachable
by other paths remain part of the projection.

▶ Example 5.2. Let σ be such that σ(P) consists of all the event types in the protocol G
defined in Example 4.2. The projections of G are in Figure 3. ⌟

R. Kuhn, H. Melgratti, and E. Tuosto 15:15

6 Well-formedness

We now focus on the well-formedness conditions of our swarm protocols. As is standard in
behavioural types, sufficient conditions are established on global specifications that guarantee
relevant properties on projections such as deadlock or lock freedom and absence of orphan
messages. The properties of interest to us are quite different from those common in standard
settings since we aim to guarantee that eventual consensus is reached even when some of the
participants make choices that are discordant due to their incomplete view on the global log.
The idea is that transitory deviations are tolerated provided that consistency is eventually
recovered, which happens once information has sufficiently spread within the swarm. For
instance, a taxi in our running example may keep bidding for a passenger’s auction after the
passenger has made their selection as long as the selection event has not yet been received.
This temporary inconsistency is recognised and resolved once the events have propagated to
the deviating taxi and the passenger, respectively.

Realising swarms with this property is not straightforward. The rest of this section
illustrates the problems arising in our setting with a few examples. For each problem we
identify sufficient conditions on our swarm protocols that rule out the problem for coordination
issues in realistic scenarios based on our running example). These conditions culminate in
our definition of well-formedness (cf. Definition 6.7).

6.1 On causality and propagation
The first problem we look at is related to how a command is disabled once it has been
invoked. In our setting, this boils down to fine tuning the registration of roles to event types.
For example, if a command c should be enabled only after another, say c′ has been executed,
then the role executing c′ should be subscribed to some event type emitted in response to
the execution of c. Another example is that a command can stay perpetually enabled if the
role executing it is oblivious of all resulting events (cf. [27]).

Another class of problems is caused by the fact that events propagate asynchronously
within a swarm and that an emission of multiple events is not guaranteed to reach all other
machines as one atomic transmission (cf. [27]) This anomaly may be excluded by a runtime
system that never applies the [Prop] rule to a strict subset of the event log emitted by a
single command, i.e. it treats the log from each command invocation as an atomic unit. We
chose to not restrict the way in which a runtime system should propagate events between
network sites because we consider it important that implementations be free to optimise
their strategy in different ways (e.g. for latency, bandwidth, efficiency, or consistency).

We define the active roles of a swarm protocol G as those that can select one of the
branches in the top-level choice of G and – given a subscription σ – the roles of G as those
that can invoke commands or are subscribed to events in G. Formally,

active
(∑

i∈I

ci@Ri⟨li⟩ . Gi

)
= {Ri

∣∣ i ∈ I}

roles
(∑

i∈I

ci@Ri⟨li⟩ . Gi , σ
)

=
⋃
i∈I

(
{R ∈ dom σ

∣∣ Ri = R ∨ li ∩ σ(R) ̸= ∅} ∪ roles (Gi, σ)
)

(note that the latter is a coinductive definition). With this notation we define the following
sufficient condition for avoiding the aforementioned problems.

▶ Definition 6.1 (Causal consistency). A swarm protocol
∑

i∈I ci@Ri⟨li⟩ . Gi is causal-consis-
tent in a subscription σ if for all i ∈ I

ECOOP 2023

15:16 Behavioural Types for Local-First Software

1. li ∩ σ (Ri) ̸= ∅, and
2. R ∈ active (Gi) implies li ∩ σ (R) ̸= ∅ and for all R′ ∈ roles (Gi, σ), li ∩ σ (R′) ⊆ li ∩ σ (R)
Condition (1) requires that the role that performs one of the commands ci should observe
some of the corresponding emitted events li. This simple mechanism ensures that repeated
command invocation can only occur where foreseen in the swarm protocol. Condition (2)
ensures the adequate tracking of causality for subsequent command invocations. The first
part ensures that the immediately following command must wait for the enabling transition to
occur, while the second part guarantees the ordering of the subsequent command’s generated
events after all events from the preceding command that are observed by some role in the
further evolution of the protocol.

▶ Example 6.2. The protocol of the running example G in Example 4.2 is causal-consistent
for the subscription σ in Example 5.2. In fact, the commands generate logs that start with
pairwise-different event types. Hence, the conditions straightforwardly hold for roles P and
T, which observe every event. For O, we observe that they only execute the command receipt;
which should be performed after Cancelled or Finished, which are also observed by O. ⌟

6.2 On distributed choices
The next anomaly we study is caused by the fact that our model permits multiple roles
to be active at the same time without coordination – this property is essential for perfect
availability as demanded by local-first cooperation. Such behaviour would be ruled out in all
the global type systems we are aware of. Our strategy for coping with the inevitably arising
conflicts is that we permit machines to make inconsistent local decisions but reconcile those
once the corresponding events have propagated to all relevant parties (e.g., the office in our
example can make a choice inconsistent with the decisions taken by other participants as
shown in see [27]). We fix this by requiring determinacy.

▶ Definition 6.3 (Determinacy). A swarm protocol G =
∑

i∈I ci@Ri⟨li⟩ . Gi is determinate for
subscription σ if it is causal-consistent and R ∈ roles (Gi, σ) implies li[0] ∈ σ(R) for i ∈ I.

This definition of determinacy is prompted by our determinism rule (Definition 4.1): we
identify a branch by the first event type of its emitted log. Note that a role involved in one
branch but not in another may invoke commands that are later invalidated without that role
being able to recognise this situation; we will explore mechanisms for compensating such
errors in future work, which may require strengthening the rule above.

▶ Example 6.4. The swarm protocol G in Example 4.2 is determinate for the subscription σ

in Example 5.2. ⌟

6.3 On interference
Events emitted by the losing parties to a conflict should be ignored in order to let every
machine eventually agree on each choice. Each machine must locally be able to ignore such
events, which means that it would be problematic to confuse a machine by emitting such a
branch-choosing event in another context (e.g. while proceeding along a sibling branch which
this machine does not follow). We avoid this confusion by requiring that any branch of a
swarm protocol is communicated using a dedicated event type, i.e. that event type cannot be
emitted by any other command. We formulate this notion in terms of the set subterms(G)
of all subterms (incl. indirect) of a swarm protocol G. Recall that this set is finite because
our swarm protocols are regular.

R. Kuhn, H. Melgratti, and E. Tuosto 15:17

In what follows we write events (G) and guards (G) respectively for the sets of all event
types and the ones that identify branches; formally, if G =

∑
i∈I ci@Ri⟨li⟩ . Gi then

events (G) =
⋃
i∈I

(
events (Gi) ∪

⋃
j

li[j]
)

and guards (G) =
⋃
i∈I

({li[0]} ∪ guards (Gi))

(observe that events (0) = guards (0) = ∅ and that these coinductively defined sets correspond
to computable greatest fixpoint since swarm protocols are regular trees).

A swarm protocol G is invariant under event type t if either (i) t does not appear in G,
i.e. t ̸∈ events (G) or (ii) it only appears as part of the same choice, i.e. there is a unique
G′ ∈ subterms(G) such that G′ c / l−−−→ and t ∈ l.

▶ Definition 6.5 (Confusion-freeness). A swarm protocol G is confusion-free if G is invariant
for all event types in guards (G).

▶ Example 6.6. It is easy to check that the protocol of the running example G in Example 4.2
is invariant for all types. The only type appearing in two guards is Receipt; however, the
occurrences are associated to the same subterm. Hence, the protocol is confusion-free. ⌟

6.4 Putting the pieces together
With this, we can finally state our well-formedness condition.

▶ Definition 6.7 (Well-formedness). A swarm protocol G =
∑

i∈I ci@Ri⟨li⟩ . Gi is well-formed
with respect to a subscription σ (σ-WF for short) if
1. G is causal-consistent, determinate, and confusion-free; and
2. Gi is σ-WF for all i ∈ I;

Note that well-formedness is defined coinductively and decidable on swarm protocols.

▶ Example 6.8. Examples 6.2, 6.4, and 6.6 imply that the protocol G in Example 4.2 is
well-formed with respect to the subscription σ given in Example 5.2. ⌟

Projection preserves determinism in well-formed protocols:

▶ Proposition 6.9. Let G and σ respectively be a swarm protocol and a subscription. If G is
σ-WF then G ↓σ

R is deterministic for all R.

Well-formed swarm protocols guarantee that local machines reach eventual consensus [38]
on each choice, as we show next. However, anomalies (cf. [27]) occur at system level:

Machines could have commands enabled that would be disabled if the model were
synchronous; this may lead to the emission of events that need to be ignored later.
Events are ignored according to their type only, therefore even after full propagation of
the events in the global log a machine may process events stemming from the anomalous
invocation of a command.

We note that the first anomaly above is inherent to local-first architecture requirements.
The second anomaly can be avoided by a runtime system that tracks full causality

information. We chose to not require full causality tracking since it imposes additional
storage, communication, and computation requirements on the implementation. Our weaker
causality model supports deployment on less capable hardware where needed.

ECOOP 2023

15:18 Behavioural Types for Local-First Software

7 Correct Realisations of swarm protocols

We now turn our attention to the formal characterisation of correct implementations of
swarm protocols. As discussed in the previous sections, we deviate from the usual expected
properties of mainstream (multiparty) session types, such as communication safety, session
fidelity, and progress (i.e., absence of deadlocks or its variants). We first note that there
are no communication mismatches in our model because every machine simply ignores
unexpected or unwanted events (recall the definition of δ in Section 2.1). Session fidelity
instead advocates implementations that behave as described by their types, which customarily
means that the states of all components are always aligned with the global state of the
protocol. Contrastingly, we aim to tolerate deviations provided that all machines eventually
agree on the state of the execution of the protocol. In our setting, an implementation
may be correct even if machines temporarily diverge, executing different branches of the
protocol; this is quite expected if we allow independent decisions taken based on incomplete
views of the global state. Consequently, correct implementations may perform sequences
of commands – and hence generate logs – that are different from those derived from the
corresponding protocol. In such cases, we still expect machines to be able to eventually agree
on an interpretation of the log that matches one possible execution of the specification.

We tackle this problem by first defining the relevant events of an execution, namely
those that are part of the effective log. Based on this, we establish an equivalence relation
on logs that allows us to characterise the logs that can be produced by an execution of a
swarm protocol’s realisation as a swarm. Armed with these tools we then state that all
correct realisations produce valid effective logs and that all swarm protocol executions have
corresponding swarms that realise them.

7.1 Eventual fidelity

We start by introducing some machinery for making precise the notion of correct implement-
ation of a swarm protocol.

Roughly, one may think that (S, ϵ) is a faithful implementation of a swarm protocol G if
it produces only global logs that can be generated by G. However, this notion is too strong
for our setting; in fact, we appeal to a weaker notion of fidelity such that for any global
log l produced by (S, ϵ), i.e. (S, ϵ) ==⇒ (S, l), there is a related log l ′ that G admits, i.e.
(G, ϵ) ==⇒ (G, l ′). We postpone for a moment the formal definition of the expected relation
between logs, and convey some intuitions in the following example.

▶ Example 7.1. Consider the swarm protocol G in Example 4.2, and the swarm (P, ϵ) |
(T, ϵ) | (T, ϵ) | (O, ϵ) | (T, ϵ) | ϵ having three taxis dubbed A, B, and C. The swarm can produce
the global log

lauc = requested · bidB · bidderidB · bidA · bidderidA · selected · bidC · bidderidC · passengerid

Contrastingly, G cannot generate such log; in fact, the protocol continuation after generating
the prefix l1 = requested · bidB · bidderidB · bidA · bidderidA is δ(G, lauc) = GBid; hence, log
l1 can only grow by appending bidC · bidderidC or selected · passengerid . In the second case,
we obtain the log l2 = requested · bidB · bidderidB · bidA · bidderidA · selected · passengerid .
Remarkably, all the machines discard the events bidC and bidderidC when processing lauc,
i.e., they behave as if they were processing l2. In fact, δ(P, lauc) = δ(P, l2), δ(T, lauc) = δ(T, l2)
and δ(O, lauc) = δ(O, l2). ⌟

R. Kuhn, H. Melgratti, and E. Tuosto 15:19

As highlighted by the previous example, despite the actual log generated by the swarm
differing from the logs generated by the protocol, all the machines are able to consistently
discard those ill-generated events after complete propagation. In other words, the states of
the machines in the swarm depend only on a subset of the events in the log. We characterise
such subset via a type, called effective type. Intuitively, the effective type of a log is the
type of the sublog containing all those events that are effectively relevant to the machines
in the swarm. Given a protocol G and a subscription σ, we expect an implementation to
process only those events which some role has been subscribed to; consequently, our notion
of effective type is relative to a subscription. However, the effective type of a log is not just
the projection of its type with respect to the image of the subscription σ. This is illustrated
in the following example.

▶ Example 7.2 (Effective type and projection). The type of the log lauc in Example 7.1 is

lauc = Requested · Bid · BidderID · Bid · BidderID · Selected · Bid · BidderID · PassengerID

which differs from the type of l2 which is Requested · Bid · BidderID · Bid · BidderID · Selected ·
PassengerID. Let us consider a subscription σ such that σ(P) ⊇ {Requested, Bid, BidderID,

Selected, PassengerID}. Then, if we just keep the sublog of lauc containing all types for which
at least one role has been subscribed to, then we obtain exactly lauc, which does not reflect
the type of the sublog that is effectively processed by the machines. For this reason, the
effective type depends also on the protocol being implemented. ⌟

▶ Definition 7.3 (Effective type). The effective type of a log l with respect to a swarm
protocol G and a subscription σ, written Tσ(l , G) = Tσ(l , G, ϵ), is defined as follows

Tσ(ϵ, G, l) = ϵ (2)

Tσ(e · l , G, ϵ) = t · Tσ(l , G′, l′) if ⊢ e : t, t ∈ σ(roles(G, σ)), G c / t · l−−−−→ G′, and
l′ = filter (l, σ (active (G′)))

(3)

Tσ(e · l , G, t . l) = t · Tσ(l , G, l) if ⊢ e : t (4)
Tσ(e · l , G, l) = Tσ(l , G, l) otherwise (5)

As expected, the effective type of an empty log is the empty log type. The effective type
of a non-empty log keeps track of those events that match the type of a log that can be
generated by the protocol (and discards all ill-ordered events). Hence, the effective type
of e · l with respect to G records the type t of the first event e only if it has a type that is
expected by the protocol (namely at least one of the roles in the protocol is subscribed to that
type). According to case (3), a protocol G expects some event whose type t coincides with the
guard of one of its branches and at least one role is subscribed to t. In such case, the effective
type of the remaining log l is processed first by consuming events of type l′ (rule (4)), which
is the sequence of the remaining types generated by the branch that are observed by the
active roles in the continuation G′, followed by considering the continuation G′. We remark
here that only the types of events that are relevant for active roles are reflected in the effective
type (more details are given in Section 7.2.1). Note that the types that are not observed are
just disregarded from the effective type as per (5). We have that Tσ(l , G) is a well-defined
function over deterministic swarm protocols because log-determinism (Definition 4.1) ensures
that at most one branch of G can match the event type t of the event e .

▶ Example 7.4. Let Gauction and Gchoose the swarm protocol in Example 4.2. We have

Gauction
Offer@T⟨Bid · BidderID⟩−−−−−−−−−−−−−→ Gauction (6) Gauction

Select@T⟨Selected · PassengerID⟩−−−−−−−−−−−−−−−−−→ Gchoose (7)

ECOOP 2023

15:20 Behavioural Types for Local-First Software

Let us compute the effective type of the log l = bidA · bidderidA · rating · l ′ on Gauction
using a subscription σ for which P, T and O are subscribed to all events but rating . We have

Tσ(l , Gauction) = Bid · Tσ(bidderidA · rating · l ′, Gauction, BidderID)
= Bid · BidderID · Tσ(rating · l ′, Gauction, ϵ)
= Bid · BidderID · Tσ(l ′, Gauction, ϵ)

where the first equality holds by (3) since Bid ∈ σ(T) and (6), the second equality holds
by (4) since ⊢ bidderidA : BidderID, and the third equation holds by (5) since by hypothesis
rating ̸∈ σ(P) ∪ σ(T) ∪ σ(O). If l ′ = ϵ then Tσ(l , Gauction) = Bid · BidderID by (2).

Suppose instead that l ′ = selected · passengerid · bidB · bidderidB . Then, similarly to the
first two equations above (using (7)), we have

Tσ(l ′, Gauction, ϵ) = Selected · PassengerID · Tσ(bidB · bidderidB , Gchoose, ϵ)

And, by (4), Tσ(bidB · bidderidB , Gchoose, ϵ) = Tσ(ϵ, Gchoose, ϵ) = ϵ. ⌟

The relation between logs of an implementation with those of a specification that we need
is the equivalence induced by the equality of their effective types.

▶ Definition 7.5 (Log equivalence). Two logs l and l ′ are equivalent with respect to a swarm
protocol G and a subscription σ, written l ≡G,σ l ′, if they have the same effective type with
respect to G and σ, i.e., Tσ(l , G) = Tσ(l ′, G).

Then, the notion of correct implementation is simply stated as follows.

▶ Definition 7.6 (Eventual fidelity). A swarm (S, ϵ) is eventually faithful to a swarm protocol
G and a subscription σ if (S, ϵ) ==⇒ (S, l) implies (G, ϵ) ==⇒ (G, l ′) and l ≡G,σ l ′ for a log l ′.

7.2 Implementation correctness by projection
Our projection operation yields an effective procedure for obtaining correct implementations
out of well-formed swarm protocols which we call realisations.

▶ Definition 7.7 (Realisation). Let G be a swarm protocol and σ be a subscription. A
realisation (of size n) of G with respect to σ, shortened as (σ, G)-realisation, is a swarm
(S, ϵ) of size n such that, for each 1 ≤ i ≤ n, there exists a role R ∈ roles (G, σ) such that
S(i) = (G ↓σ

R , ϵ). A realisation S is complete if for all R ∈ roles (G, σ) there exists 1 ≤ i ≤ n

such that S(i) = (G ↓σ
R , ϵ); we call partial a realisation which is not complete.

Remarkably, the number of machines in a realisation is not related to the number of roles in
the corresponding swarm protocol. Indeed, Definition 7.7 simply requires that each machine
in the swarm plays one of the roles in the swarm protocol. Concretely, we may have several
components implementing the same role (i.e., the role is replicated) as well as roles without
a corresponding machine, that is partial realisations.

▶ Example 7.8 (Realisations). The swarm protocol in Example 4.2 would typically be realised
by one machine for the passenger G ↓σ

P , several taxis running the machine G ↓σ
T , and at least

one accounting office running G ↓σ
O . A partial realisation could be one without an accounting

office, in which case no machine can generate receipt events. ⌟

The rest of this section is devoted to showing that realisations (either complete or partial)
are eventually faithful if they are obtained by projecting well-formed swarm protocols.

R. Kuhn, H. Melgratti, and E. Tuosto 15:21

7.2.1 Projections and effective types
We first establish a correspondence between the behaviour of a single projection and that
of the respective protocol. In particular, we show that effective types provide an accurate
abstraction of the information contained in a log that is relevant for a role. Concretely, the
next result states that a projection enables a command after processing a log l only when
the protocol enables the same command after producing an equivalent log l ′.

▶ Lemma 7.9. If G is a σ-WF swarm protocol and
(
δ(G ↓σ

R , l)
)

↓c / l then there exists

l ′ ≡G,σ l such that (G, ϵ) ==⇒ (G, l ′) and δ(G, l ′) c / l−−→ G′.

Apparently equivalent logs are indistinguishable for a machine, i.e., l ≡G,σ l ′ implies
δ(G ↓σ

R , l) = δ(G ↓σ
R , l ′). However this might not be the case if logs do not include all the

events generated by the same command as shown in the next example.

▶ Example 7.10. Consider the swarm protocol G = c@R⟨a · b⟩ . d@S⟨c⟩ . 0 with σ =
{

R 7→
{a, b}, S 7→ {a, c}}. If ⊢ a : a and ⊢ b : b then Tσ(a , G) = a and Tσ(a · b, G) = a; in fact the
first equation holds by definition and the second holds because b ̸∈ σ (active (d@S⟨c⟩ . 0′)) =
σ (S) = {a, c}. Therefore, a ≡G,σ a · b. Now take the projection of G over R with respect to
σ, i.e., MR = G ↓σ

R = a? b? (d@S⟨c⟩ . 0 ↓σ
R) = a? b? 0. Clearly δ(MR , a · b) ̸= δ(MR , a). ⌟

Two considerations on Example 7.10 are worthwhile. On the one hand, while a · b has
all the events produced by the execution of the command c, the log consisting of just the
event a does not. Since we assume that all events are eventually propagated, our technical
development in the next section will disregard incomplete (global) logs. On the other hand,
one may wonder about the fact that effective types do not collect information of events that
are not observed by active roles. This is essential to account for the fact that a realisation
may interject events. For instance, a realisation may actually generate a log of type a · c · b
because a machine that implements the role S may perform the command d as soon as it
processes an event of type a; hence the generated event can precede the one of type b in the
consolidated log. If our notion of log equivalence were fine enough to distinguish logs of type
a · c · b from a · b · c then we would rule out implementations behaving as above, which is not
what we want because the interaction does not violate the protocol.

7.2.2 Characterisation of the logs admitted by a protocol
We now provide a characterisation of the logs that can be generated by a realisation of a well-
formed swarm protocol. To do this we have to take into account for the possible reordering and
the spurious events that can be generated by machines that faithfully implement a protocol.
Intuitively, we may think that a realisation generates logs that correspond to the combination
of several executions of the protocol, which might share a common prefix. Consider again
the swarm protocol G in Example 4.2. As discussed in Example 7.1, we expect realisations
to be able to generate logs such as lauc of this example. Note that such log can be generated
by merging, among others, two different reductions of G, e.g. (G, ϵ) ==⇒ (G, requested ·
bidB · bidderidB · bidA · bidderidA · selected · passengerid) and (G, ϵ) ==⇒ (G, requested · bidB ·
bidderidB · bidC · bidderidC). Note that the reductions share events (accounting for an
scenario in which the computation has diverged). Intuitively, two runs can be combined
either if they produce disjoint logs or they share events that come from a common execution
prefix (as in the previous example). Formally, two runs (G, ϵ) ==⇒ (G, li) with i = 1, 2 are
consistent if there exist logs l , l ′

1 ∩ l ′
2 = ∅, such that li = l · l ′

i and (G, ϵ) ==⇒ (G, l) ==⇒ (G, l · l ′
i)

ECOOP 2023

15:22 Behavioural Types for Local-First Software

for i = 1, 2. The notion of consistency is lifted to sets of runs {(G, ϵ) ==⇒ (G, li)}1≤i≤k, by
requiring pair-wise consistency. We write lj

i for the sequence of events produced by the j-th
step in the reduction i, i.e., (G, ϵ) ==⇒j−1 (G, l ′

i)
c / l−−→ (G, l ′

i · lj
i) ==⇒ (G, li).

▶ Definition 7.11 (Admissible log). A log l is admissible for a σ-WF protocol G if there are
consistent runs {(G, ϵ) ==⇒ (G, li)}1≤i≤k and a log l ′ ∈ (▷◁1≤i≤k li) with l ′ ≡G,σ l =

⋃
1≤i≤k li,

and for all 1 ≤ i ≤ k and lj
i ⊑ l for all events lj

i produced by the j-th step in reduction i.

Remarkably, admissible logs are not just those that can be obtained by merging several
logs li; it may be the case that l is admissible but l ̸∈ (▷◁1≤i≤k li). In fact the notion is weaker
and accounts for the possible reorderings of events that do not change the effective type of
the log. Consider the protocol in Example 7.10 and its complete realisation consisting of two
machines. As previously discussed, that realisation may generate a log of type a · c · b. With
a single run of the protocol, i.e. by fixing k = 1 and taking (G, ϵ) c / a · b−−−−→ (G, a · b) d / c−−−→ (G, l1)
with l1 = a · b · c , we can conclude that a · c · b is generated by some realisation. Note that
▷◁1≤i≤1 li = {l1} = {a · b · c}. Hence, l ′ ∈ ▷◁i≤1≤1 li iff l ′ = a · b · c and Tσ(l ′, G) = a · c.
Then, the log a · c · b is equivalent (i.e., it has the same effective type), and moreover it has
the same elements and preserves the relative order between events generated by the same
command (i.e., a precedes b). Hence, we conclude that the protocol admits the log a · c · b.
On the contrary, the last condition lj

i ⊑ l about the preservation of the relative order of
events generated by the same command bans logs such as b · a · c .

Next lemma ensures that any admissible log of a well-formed protocol is equivalent to a
log obtained by the sequential execution of the protocol. Namely, despite a log may contain
events produced by conflicting decisions, its effective type corresponds to a sequential run.

▶ Lemma 7.12. If l is admissible for a σ-WF swarm protocol G then there exists a log l ′

such that (G, ϵ) ==⇒ (G, l ′) and l ≡G,σ l ′.

Moreover, if we extend an admissible log with events generated by the execution of
command enabled over a partial view of the global log, then we obtain an admissible log.
This property is instrumental for our main result in the following section (Theorem 7.14).

▶ Lemma 7.13. Let l1 and l2 ⊆ l1 be admissible logs for a σ-WF swarm protocol G. If
(G, l2) c / l−−→ (G, l2 · l3) and l ∈ l1 ▷◁(l2 · l3) then l is admissible for G.

7.2.3 Realisations are faithful
Our key result shows that realisations of well-formed protocols only generate admissible logs.

▶ Theorem 7.14. Let (S, ϵ) be a realisation of a σ-WF swarm protocol G. If (S, ϵ) ==⇒ (S′, l)
then l is admissible for G.

Since every admissible log is equivalent to a log generated by the protocol (Lemma 7.12),
we conclude that any realisation of a well-formed swarm protocol is eventually faithful (i.e.,
correct). Note that this implies that all realisations of a well-formed swarm protocol exhibit
eventual consensus [38] regarding which branch is taken in its choices (concretely, there is a

τ−−→ step after which all machines take the same branch in their state computation).

▶ Corollary 7.15. Every realisation of size n of a σ-WF swarm protocol G is eventually
faithful with respect to G and σ.

The above result is independent from the number of replicas that implement each role; it
also holds for partial realisations (i.e., when some roles are absent).

R. Kuhn, H. Melgratti, and E. Tuosto 15:23

7.3 Implementation completeness
Differently from common session type systems, the behaviour of a complete realisation (i.e.,
one in which every role is implemented) is complete with respect to the protocol, in the sense
that every reduction of the protocol can be mimicked by the realisation. This derives from the
fact that non-determinism in our model arises from the execution of external commands but
not because of the abstraction of internal (and customary deterministic) choices. Firstly, we
note that logs that are generated sequentially according to the protocol drives the machines
to the corresponding states.

▶ Lemma 7.16. If G is σ-WF swarm protocol and (G, ϵ) ==⇒ (G, l) then δ(G ↓σ
R , l) = δ(G, l) ↓σ

R
for all R ∈ roles (G, σ).

Moreover, Proposition 7.17 below states that a complete realisation is able to generate
the logs that are generated by the protocol (the result is obtained by using previous result
and by propagating all events to all replicas right after a machine performs a command).

▶ Proposition 7.17. Let (S, ϵ) be a complete realisation of size n of the σ-WF swarm protocol
G. If (G, ϵ) ==⇒ (G, l) then there is a swarm S′ such that (S, ϵ) ==⇒ (S′, l).

8 Related work

It is widely accepted that solutions to distributed coordination problems strongly depend on
the adopted computation model [15, 21, 2]. Our proposal is grounded on the principles of
local-first cooperation [26, 25]. Key to this architecture is the autonomy of each participating
node within a swarm. Autonomy allows each node to make progress independently of
network connections, availability of other nodes, or delay in the communications. Our target
model features specific hues that distinguish it from other behavioural types systems. In
our case, distributed heterogeneous components interact asynchronously by emitting and
consuming events according to a role specified in a given protocol (such as passenger and
the taxis in our running example). More precisely, events are the side effects of commands
non-deterministically executed by components; events are locally logged by each of the
components and asynchronously spread through the swarm. Crucially, we do not make
any assumption on the relative speed of communications and simply require that logs
eventually agree on the order of events [4]. This liberal setting permits inconsistencies:
components may take discordant decisions which compromise the execution of the protocol
and exhibit behaviour precluded in strongly consistent models. Our approach lies within
methods related to data replication, which are notoriously complex. In fact, standard
techniques have to trade-off among availability, consistency, and partition tolerance [16].
Several techniques have been proposed, such as conflict-free replicated data types [34], cloud
types [5], consistency contracts [35], invariants [18, 24, 3], linearizability [40], and operational
models for applications such as GSP [6, 17]. An original facet of our approach is that we use
behavioural types to discipline data replication in order to eventually reach consistency. We
focus on the consequences that arise from the ability of each node to take decisions based
exclusively on local information.

Our proposal is inspired by the choreographic framework introduced in the seminal work
on multiparty session types [19, 20]. However, the peculiarities of our execution model as well
as on the properties that we target require a radical change in the definition of well-established
notions of global types, such as projections and well-formedness. The main originality of
our approach is that components speculatively proceed along several (possibly inconsistent)

ECOOP 2023

15:24 Behavioural Types for Local-First Software

branches of distributed choices provided that an agreement is eventually reached. Intuitively,
this is attained by disregarding all executions bar one when the local logs “consolidate”, namely
when relevant events have propagated to all relevant components. As far as we are aware
of, multiple selectors are forbidden in the well-formedness conditions of most behavioural
type systems [21]. A slight weakening of this condition is given in [23] but the conditions
there still reject the protocol in Example 1.1. Noteworthy, we divert from the research
path of behavioral types with respect to the properties we are after. We aim to guarantee
that projections of global specifications yield realisations of swarms that eventually reach a
consistent view of the distributed execution, even in presence of transitory inconsistencies.
This is in contrast with behavioural type systems designed to attain (dead)lock freedom or
some notions of progress (see [21] and [10] for a recent account on the binary case).

Secondly, our behavioural specifications completely abstract over the number of instances
enacting a role. This is often not the case for multiparty session types. Parametric multiparty
session types have been considered in [41, 11, 12] and more recently in [8, 23]. These proposals
aim to capture the fact that roles in a protocol are “connected” to form a topology that can be
generalised (e.g. parameterising a ring topology by its size). These behavioural type systems
therefore require to explicitly handle the parameters of the protocol. Our specifications are
instead completely oblivious of such parameters. To the best of our knowledge, multiparty
session types have focused on point-to-point, message-passing communication model, even to
deal with highly dynamic scenarios, as those involving robot coordination [29].

9 Final Remarks

We proposed rather unconventional behavioural types deviating from point-to-point, message-
passing communication, which is a common practice (see e.g. [13, 39, 21]). Components in our
setting interact via a shared distributed log built without any further coordination mechanism.
More precisely, each component keeps a local, possibly partial and inconsistent view of the
global log. Based on that view alone a component may perform an action with immediate
effect on its local state; those effects are then propagated asynchronously to the rest of the
system. This implies that components can perform globally invalid actions (as long as they
are locally valid), but we require every component be able to recognise these and eventually
behave as if only valid actions were performed. Technically this means that we renounce
established properties like session fidelity to guarantee instead that systems eventually agree
without dedicated coordination (our typing discipline guarantees deadlock-freedom, though).

Our target applications intrinsically involve sets of components whose number is statically
unknown: components may dynamically join and leave the execution of an interaction. A
reference application domain is factory logistics where all the assumptions listed at the end
of Section 1 apply: collaborative components act in a trustworthy setting, compensations
are specified for irreversible actions, and the underlying communication infrastructure is
controlled by the business owner. The collaborative assumption, while commonplace in the
literature on behavioural types, may be unrealistic in some domains. Extension to adversarial
settings will for example require enforcing that machines cannot violate causality when
emitting events, i.e. they cannot artificially truncate their local log to undo an earlier choice
via an event that they maliciously sort before it. This can be achieved by requiring them to
cryptographically sign their logs, allowing other nodes to prove illicit behaviour; similarly,
machines joining later would be required to sign recent events before being allowed to emit.

Common practice in behavioural types is to describe protocols in terms of the roles that
components may play. Unlike most behavioural types, ours are agnostic to the number of
instances playing each role. We assume that any role in any swarm protocol can be replicated

R. Kuhn, H. Melgratti, and E. Tuosto 15:25

as many times as needed. This choice also impacts the interpretation of choices. In standard
approaches, every choice is assigned to a single role implemented by a single component
responsible for coordinating the decision. This is problematic when the implementation
of a role can be replicated, even more when the states of the replicas may be misaligned:
different components may decide differently. Consequently, choices in our swarm protocols are
intended to be resolved distributedly among components that may implement different roles.
Our solution is based on speculative computation: different choices can proceed concurrently
until components are able to agree (by inspecting their local state) on the branch that has
been selected based on a total order for all events (implemented for example using Lamport
timestamps and unique node identifiers).

Our computational model gives an abstract description of Actyx infrastructure [1], in
which machines are actually implemented as programs in TypeScript: the machines presented
here play the role of local types that describe the intended behaviour of each component.

Subscriptions can be seen as a minimum requirement for which events need to be available
to each participant in a swarm protocol. This directly translates to which events need to (or
shall) be sent to a swarm member participating in a given protocol session. Swarm members
not partaking in the session do not need to see any of the events (e.g. other passengers), so
the middleware should not send them there (this can be elevated to a security guarantee if
needed). Our system does not cause additional information to be sent, it is minimal within
the constraints of our well-formedness conditions (which are sufficient but not necessary, so
there is some room for further improvement).

Determining a suitable subscription could be hard in general. We conjecture that the
swarm protocol itself could be used to infer a suitable “minimal” registration enforcing
well-formedness to be suggested to designers. Such subscription could then manually be
refined, provided that well-formedness is preserved. Moreover, we may envision programmers
specifying just the relevant information that needs to be transmitted and then automatically
infer the events needed for coordinating choices (pretty much in the style of the communication
of labels in session types).

An underlying assumption about speculative execution is that the effects of performing
invalid actions can be discarded. In other words, invalid actions have no consequences. In
several situations this may be unacceptable. Swarm protocols could be used to systematically
identify such situations – e.g. by noting when corresponding events are disregarded by
machines – and enable principled treatment at the application level. We plan to study
suitable extensions for our projections that automatically inject the required behaviour for
executing amending actions. Alternatively, we will explore monitoring approaches equipped
with sanitisers responsible for compensation.

We have only partly addressed failures in our model: while we do model transient inability
to receive (which would inhibit the event propagation transition [Prop]) or to operate (i.e.
inhibit command invocation [Local]), we do not model permanent inability to send. In the
presence of a stop failure a machine could communicate the first event of a choice but then
fail in propagating all the expected following events resulting from the command invocation,
in which case the system could get stuck. A fix for this issue could be to only proceed with
an external choice once all specified events are present in the local log, allowing the swarm to
permanently discard a choice made by a failing machine; this could be expressed by ingesting
logs instead of single events in the definition of machine semantics.

Another worthwhile extension, hinted at in Section 2.3, is to achieve a per-choice notion
of non-interference if the first event of a choice not only decided which branch to take but
also from which source machine to consume the rest of the choice’s events. This would

ECOOP 2023

15:26 Behavioural Types for Local-First Software

further strengthen the failure handling sketched above by making sure that inputs from
failing machines are consistently discarded. Characterising the precise guarantees that derive
from such a scheme will be an interesting topic for further study.

References
1 Actyx AG. Actyx developer website, 2020-2022. accessed 2022/07/06. URL: https://

developer.actyx.com.
2 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-

Malo Deniélou, Simon J Gay, Nils Gesbert, Elena Giachino, Raymond Hu, et al. Behavioral
types in programming languages. Foundations and Trends in Programming Languages, 3(2-
3):95–230, 2016.

3 Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, and Nuno M. Preguiça.
IPA: invariant-preserving applications for weakly consistent replicated databases. Proc. VLDB
Endow., 12(4):404–418, 2018. doi:10.14778/3297753.3297760.

4 Sebastian Burckhardt. Principles of eventual consistency. Found. Trends Program. Lang.,
1(1–2):1–150, October 2014. doi:10.1561/2500000011.

5 Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P. Wood. Cloud types
for eventual consistency. In James Noble, editor, ECOOP 2012 – Object-Oriented Programming,
pages 283–307, Berlin, Heidelberg, 2012. Springer.

6 Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich. Global
Sequence Protocol: A Robust Abstraction for Replicated Shared State. In John Tang
Boyland, editor, 29th European Conference on Object-Oriented Programming (ECOOP
2015), volume 37 of Leibniz International Proceedings in Informatics (LIPIcs), pages
568–590, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ECOOP.2015.568.

7 Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web services.
ACM Transactions on Programming Languages and Systems (TOPLAS), 31(5):1–61, 2009.

8 David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida.
Distributed programming using role-parametric session types in go: statically-typed endpoint
apis for dynamically-instantiated communication structures. Proc. ACM Program. Lang.,
3(POPL):29:1–29:30, 2019. doi:10.1145/3290342.

9 Bruno Courcelle. Fundamental properties of infinite trees. Theor. Comput. Sci., 25:95–169,
1983. doi:10.1016/0304-3975(83)90059-2.

10 Ornela Dardha and Jorge A. Pérez. Comparing type systems for deadlock freedom. J. Log.
Algebraic Methods Program., 124:100717, 2022. doi:10.1016/j.jlamp.2021.100717.

11 Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In Thomas Ball
and Mooly Sagiv, editors, POPL, pages 435–446. ACM, 2011. doi:10.1145/1926385.1926435.

12 Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. Log. Methods Comput. Sci., 8(4), 2012. doi:10.2168/LMCS-8(4:
6)2012.

13 Mariangiola Dezani-Ciancaglini and Ugo de’Liguoro. Sessions and session types: An over-
view. In WS-FM, volume 6194 of LNCS, pages 1–28. Springer, 2009. doi:10.1007/
978-3-642-14458-5_1.

14 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, April 1985. doi:10.1145/3149.
214121.

15 Simon Gay and Antonio Ravara, editors. Behavioural Types: from Theory to Tools. Automation,
Control and Robotics. River, 2009.

16 Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002. doi:10.1145/564585.
564601.

https://developer.actyx.com
https://developer.actyx.com
https://doi.org/10.14778/3297753.3297760
https://doi.org/10.1561/2500000011
https://doi.org/10.4230/LIPIcs.ECOOP.2015.568
https://doi.org/10.1145/3290342
https://doi.org/10.1016/0304-3975(83)90059-2
https://doi.org/10.1016/j.jlamp.2021.100717
https://doi.org/10.1145/1926385.1926435
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.1007/978-3-642-14458-5_1
https://doi.org/10.1007/978-3-642-14458-5_1
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601

R. Kuhn, H. Melgratti, and E. Tuosto 15:27

17 Alexey Gotsman and Sebastian Burckhardt. Consistency Models with Global Operation
Sequencing and their Composition. In Andréa W. Richa, editor, 31st International Symposium
on Distributed Computing (DISC 2017), volume 91 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 23:1–23:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.DISC.2017.23.

18 Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro.
’Cause i’m strong enough: reasoning about consistency choices in distributed systems. In
POPL 2016, pages 371–384, 2016.

19 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In Proceedings of the 35th annual ACM SIGPLAN-SIGACT Symposium on principles of
programming languages, pages 273–284, 2008.

20 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
Journal of the ACM (JACM), 63(1):1–67, 2016.

21 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1–3:36, 2016.

22 David R Jefferson. Virtual time. ACM Transactions on Programming Languages and Systems
(TOPLAS), 7(3):404–425, 1985.

23 Sung-Shik Jongmans and Nobuko Yoshida. Exploring type-level bisimilarity towards more
expressive multiparty session types. In Peter Müller, editor, Programming Languages and
Systems, pages 251–279, Cham, 2020. Springer International Publishing.

24 Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh Jagannathan. Safe replic-
ation through bounded concurrency verification. Proceedings of the ACM on Programming
Languages, 2(OOPSLA):1–27, 2018.

25 Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark McGranaghan. Local-first
software: You own your data, in spite of the cloud. In Proceedings of the 2019 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software, Onward! 2019, pages 154–178, New York, NY, USA, 2019. Association for
Computing Machinery. doi:10.1145/3359591.3359737.

26 Roland Kuhn. Local-first cooperation: Autonomy at the edge, secured by crypto,
100% available, 2021. accessed 2021/06/20. URL: https://www.infoq.com/articles/
local-first-cooperation/.

27 Roland Kuhn, Hernán Melgratti, and Emilio Tuosto. Behavioural types for local-first software,
2023. arXiv:2305.04848.

28 Roland Kuhn, Hernán Melgratti, and Emilio Tuosto. Behavioural Types for Local-First
Software (Artifact). Dagstuhl Artifacts Series, 9(2):14:1–14:5, 2023. doi:10.4230/DARTS.9.2.
14.

29 Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey. Motion session
types for robotic interactions (brave new idea paper). In 33rd European Conference on Object-
Oriented Programming (ECOOP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2019.

30 Microsoft. Typescript: Javascript with syntax for types, 2012-2023. accessed 2023/02/02.
URL: https://www.typescriptlang.org/.

31 Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
32 Fred B Schneider. Implementing fault-tolerant services using the state machine approach: A

tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.
33 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated

data types. In Stabilization, Safety, and Security of Distributed Systems, pages 386–400.
Springer, 2011.

34 Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated
data types. In SSS 2011, pages 386–400, 2011. doi:10.1007/978-3-642-24550-3_29.

ECOOP 2023

https://doi.org/10.4230/LIPIcs.DISC.2017.23
https://doi.org/10.1145/3359591.3359737
https://www.infoq.com/articles/local-first-cooperation/
https://www.infoq.com/articles/local-first-cooperation/
https://arxiv.org/abs/2305.04848
https://doi.org/10.4230/DARTS.9.2.14
https://doi.org/10.4230/DARTS.9.2.14
https://www.typescriptlang.org/
https://doi.org/10.1007/978-3-642-24550-3_29

15:28 Behavioural Types for Local-First Software

35 KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Declarative programming
over eventually consistent data stores. In PLDI 2015, pages 413–424. ACM, 2015.

36 Ecma TC39. Ecma-404, 2017. accessed 2023/02/13, alternative RFC8259. URL: https:
//www.ecma-international.org/publications-and-standards/standards/ecma-404/.

37 Ecma TC39. Decorators, 2022. accessed 2023/02/02. URL: https://github.com/tc39/
proposal-decorators.

38 Lewis Tseng. Eventual consensus: Applications to storage and blockchain : (extended ab-
stract). In 2019 57th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 840–846, 2019. doi:10.1109/ALLERTON.2019.8919675.

39 Vasco T. Vasconcelos. Fundamentals of session types. Inf. and Comp., 217:52–70, 2012.
doi:10.1016/j.ic.2012.05.002.

40 Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo Petri. Replication-
aware linearizability. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 980–993, 2019.

41 Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. In C.-H. Luke Ong, editor, Foundations of Software Science and
Computational Structures, 13th International Conference, FOSSACS 2010, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos,
Cyprus, March 20-28, 2010. Proceedings, volume 6014 of Lecture Notes in Computer Science,
pages 128–145. Springer, 2010. doi:10.1007/978-3-642-12032-9_10.

https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://github.com/tc39/proposal-decorators
https://github.com/tc39/proposal-decorators
https://doi.org/10.1109/ALLERTON.2019.8919675
https://doi.org/10.1016/j.ic.2012.05.002
https://doi.org/10.1007/978-3-642-12032-9_10

Constraint Based Compiler Optimization for
Energy Harvesting Applications
Yannan Li1 #

University of Southern California, Los Angeles, CA, USA

Chao Wang #

University of Southern California, Los Angeles, CA, USA

Abstract
We propose a method for optimizing the energy efficiency of software code running on small computing
devices in the Internet of Things (IoT) that are powered exclusively by electricity harvested from
ambient energy in the environment. Due to the weak and unstable nature of the energy source,
it is challenging for developers to manually optimize the software code to deal with mismatch
between the intermittent power supply and the computation demand. Our method overcomes the
challenge by using a combination of three techniques. First, we use static program analysis to
automatically identify opportunities for precomputation, i.e., computation that may be performed
ahead of time as opposed to just in time. Second, we optimize the precomputation policy, i.e., a way
to split and reorder steps of a computation task in the original software to match the intermittent
power supply while satisfying a variety of system requirements; this is accomplished by formulating
energy optimization as a constraint satisfiability problem and then solving the problem using an
off-the-shelf SMT solver. Third, we use a state-of-the-art compiler platform (LLVM) to automate
the program transformation to ensure that the optimized software code is correct by construction.
We have evaluated our method on a large number of benchmark programs, which are C programs
implementing secure communication protocols that are popular for energy-harvesting IoT devices.
Our experimental results show that the method is efficient in optimizing all benchmark programs.
Furthermore, the optimized programs significantly outperform the original programs in terms of
energy efficiency and latency, and the overall improvement ranges from 2.3X to 36.7X.

2012 ACM Subject Classification Software and its engineering → Compilers; Theory of computation
→ Constraint and logic programming

Keywords and phrases Compiler, energy optimization, constraint solving, cryptography, IoT

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.16

Supplementary Material Software: https://github.com/YannanLiCS/CouponMaker

Funding This work was partially funded by the U.S. NSF grants CNS-1702824 and CCF-2220345.

1 Introduction

Energy harvesting is an environment-friendly technology that converts ambient energy in the
environment such as sunlight, RF emission, and vibration into electricity [41, 38, 7, 33, 35,
32, 48]. When being used to power small computing devices in the Internet of Things (IoT),
it avoids a main problem in the deployment of IoT at scale, which is the need to frequently
change batteries [12]. Due to this reason, energy harvesting has been increasingly used in
real-world deployment of IoT devices [44, 26]. However, due to the weak and unstable nature
of the energy source, it is often challenging for developers to manually optimize the software
code running on these IoT devices, to deal with problems caused by mismatch between the
intermittent power supply and the often unpredictable computation demand.

1 Corresponding author

© Yannan Li and Chao Wang;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 16; pp. 16:1–16:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yannanli@usc.edu
mailto:wang626@usc.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2023.16
https://github.com/YannanLiCS/CouponMaker
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Constraint Based Compiler Optimization for Energy Harvesting Applications

Free energy
available

saving

time

precomputation step online computation step

Program P’

Program P

time

Online input
available

Store coupons Load coupons
non-volatile

memory

Figure 1 Using precomputation to reduce the energy needed by the (online) computation task.

Consider an IoT device powered by electricity harvested from sunlight as an example.
During the day time, there may be significantly more harvested electricity than the combined
total of what can be stored in the supercapacitor of the device, and what can be consumed
by the software code running on the device. During the night time, however, the electricity
stored in the supercapacitor may be significantly less than what is needed by the software
code running on the device. In this context, an important research question is whether the
mismatch between supply and demand can be avoided, or at the very least mitigated by
rewriting the original software in such a way that, while the functionality of the software
remains the same, the overall energy efficiency is improved. Prior work [4, 5, 47] has
demonstrated the feasibility of this approach, based on two observations made for typical
energy-harvesting IoT devices.

The first observation is that, since the software on an IoT device only runs from time
to time, rather than continuously, the device may be idle when ambient energy in the
environment is abundant (e.g., sunlight during the day time) and yet the supercapacitor
used to store the harvested electricity is full. In such a case, the freely available energy in
the environment cannot be utilized. The second observation is that, in such an IoT device,
the most common computation tasks are collecting sensor data from time to time, and
encrypting these sensor data before sending them to some remote servers, e.g., servers in
the cloud. Thus, the most time-consuming and energy-consuming part of the computation
is the execution of the secure communication protocol. While the sensor data may have
to be collected just in time, a significant part of the secure communication protocol (e.g.,
computing security tokens needed for encrypting the sensor data) may be executed ahead of
time. This leads to the idea of leveraging the precomputation opportunities to utilize the
freely-available ambient energy in the environment.

Figure 1 illustrates how to optimize a computation task that must be executed during
the night time, when ambient energy is not available. While the original program (P) has
to execute the entire computation task during the night time using electricity stored in the
supercapacitor, the optimized program (P ′) executes a significant part of the task during
the day time, by harvesting the freely-available ambient energy that otherwise would have to
be wasted due to the storage limit of the supercapacitor. In some sense, the precomputation
performed during the day time transforms the solar energy to a digital form, called coupons,
and stores them in the non-volatile memory of the IoT device. During the night time, these
coupons are used to lower the energy cost of the remaining part of the computation task.

Y. Li and C. Wang 16:3

Original

Program

LLVM

Bitcode

MSP430

Emulation

LLVM

Bitcode

Dependency

Analysis

Identifying

preSet

Static Analysis

Constraint

Solving

Optimizing

preSet

Optimization

Equivalence

Analysis

Refactoring

Code

Transformation

Figure 2 The overall flow of our constraint based method for energy optimization.

There are two main benefits. The first one is reduction in latency for the online computa-
tion part, since a significant portion of the computation task has been completed ahead of
time. The second one is increase in the number of computation tasks that can be completed
by the device. As a concrete example, Suslowicz et al. [47] show that, for a popular secure
communication protocol based on one-time pad (OTP) [45], using precomputed OTPs for
sensor data encryption reduces the energy cost of the online computation to 5% of the
original energy cost needed for AES-OFB. Since the energy used to precompute OTPs is
free, the overall energy reduction is close to 18 times (18X). To understand what this means,
consider an IoT device that must complete 20 tasks during the day time and 20 tasks during
the night time, but the electricity stored in the supercapacitor is only enough to support
the completion of 2 tasks during the night time. Without precomputation, the device may
be able to complete 20 tasks during the day time and only 2 tasks during the night time.
By leveraging the coupons precomputed during the day time, the same device is able to
complete 20 tasks and 20 partial tasks during the day time and finish off these 20 partial
tasks during the night time.

However, to obtain the aforementioned benefits of precomputation, the current state of
the art [4, 5, 47] requires a domain expert to optimize the software code manually, which
is not only labor intensive but also error prone. Furthermore, the domain expert must be
familiar with both the functionality of the software code and the energy characteristics of
the hardware platform. The domain expert must also consider all of the system requirements
while making the trade-off between energy reduction and increase in storage cost. In addition,
manual optimization does not respond well to frequent software updates in practice: if the
original software code is updated due to a bug fix or a security patch, there will be no easy
way to update the manually-optimized software code.

To solve these problems, we propose a fully automated method for optimizing the energy
efficiency of software running on energy-harvesting IoT devices. Toward this end, we must
overcome three technical challenges. The first challenge is to identify the precomputation
opportunities from the original software code automatically. The second challenge is to
optimize the precomputation policy by exploiting the energy–storage trade-off and deciding
which part of the computation task should be precomputed and which part of the computation
task should be computed just in time. The third challenge is to automatically transform the
software code to implement the energy optimization policy.

Figure 2 shows the overall flow of our method, which builds upon the state-of-the-art
LLVM compiler platform [29]. Given the original program, our method takes three steps
to produce the optimized program. In the first step, our method conducts a static analysis
of the original program to identify precomputation opportunities, which are captured by
preSet – the set of instructions in the program that may be computed ahead of time. In the
second step, our method computes an optimal subset of preSet based on a variety of system

ECOOP 2023

16:4 Constraint Based Compiler Optimization for Energy Harvesting Applications

requirements, to minimize the energy cost while satisfying all requirements, including the
storage limit of non-volatile memory used to save precomputation results. In the third step,
our method leverages the LLVM compiler to generate the optimized program that has the
ability to load the precomputation results from non-volatile memory and leverage them to
speed up the just-in-time (online) computation part of the task. Finally, we evaluate the
performance of the optimized programs on a popular hardware platform (MSP430 [24]) for
energy-harvesting applications.

At the center of our method is a constraint based technique for optimizing the precom-
putation policy. The policy captures a solution to the complex optimization problem. The
optimization problem is complex for several reasons. First, just because an instruction may
be precomputed does not mean it is beneficial to precompute it, since precomputing does
not always reduce energy cost; there is a trade-off between the cost of storing a precomputed
coupon and the benefit of avoiding computing it directly. Second, decisions on which in-
structions to precompute cannot be made in isolation, since many of these instructions are
dependent on each other; the precomputation policy has to consider all of the intra- and
inter-procedural control- and data-flow dependencies in the program. Third, the size of the
non-volatile memory used to store the precomputed coupons may not grow monotonically
with the number of precomputed instructions, and furthermore, not all intermediate compu-
tation results in the program need to be stored as coupons in non-volatile memory. We will
use concrete examples in Section 2 to illustrate these challenges and our proposed solution
to overcome these challenges.

To demonstrate the effectiveness of our method, we have implemented and evaluated it
on a large number of benchmark programs. Our implementation builds upon the LLVM
compiler [29] and the Z3 SMT solver [11]. Specifically, we use LLVM to parse the original
software code (written in the C language), conduct static program analysis, and generate the
optimized software code; we use Z3 to solve the constraint satisfiability problems formulated
by our method. Our tool was evaluated on 26 benchmark programs, which are C programs
implementing popular secure communication protocols for IoT devices; in total, they have
31,113 lines of C code (LoC). The LoC of each program ranges from 339 to 1,572. Our target
hardware platform is MSP430 [24], a family of ultra-low-power microcontroller units (MCUs)
popular for energy-harvesting IoT applications.

Our experimental results are promising. In terms of the efficiency of our method, the
experimental evaluation shows that all of the benchmark programs can be optimized by our
tool quickly, and the optimization time is always limited to a few seconds. In terms of the
effectiveness of our method, the experimental evaluation shows that all of the optimized
programs significantly outperform the original programs in terms of energy efficiency and
latency. Specifically, reduction in the overall energy cost ranges from 2.3X to 36.7X.

To summarize, this paper makes the following contributions:

We propose a compiler based technique for automatically identifying precomputation
opportunities in the software code using static analysis and then exploiting these oppor-
tunities using a semantic-preserving program transformation.

We formulate energy optimization as a constraint satisfiability problem and solve the
problem using an off-the-shelf SMT solver; this approach is not only flexible but also
efficient in minimizing the energy cost while satisfying a variety of system requirements.

We implement the method using a state-of-the-art compiler (LLVM) and a popular
hardware platform (MSP430) for energy-harvesting applications, and demonstrate the
effectiveness on a large number of benchmark programs.

Y. Li and C. Wang 16:5

2 Background

We review the technical background, including the characteristics of the hardware platform
(MSP430) and an example software program to motivate our approach.

2.1 The Hardware Platform

MSP430 is a family of microcontroller units (MCUs) based on a 16-bit RISC instruction set
architecture. Due to our focus on energy-harvesting applications, we are concerned with a
subset of MSP430 MCUs that have the main memory partitioned into the volatile part and
the non-volatile part. Depending on the application, data may be stored either in volatile
memory or in non-volatile memory. These MCUs have a large number of configuration
parameters, including sixteen nominal frequencies in the range 0.06 MHz to 16 MHz. For
example, they may run in a low-power mode at the clock frequency of 1 MHz and the supply
voltage of 1.8V, or in a high-performance mode at the clock frequency of 16 MHz and the
supply voltage of 2.9V.

Since MSP430 MCUs are designed for low-power applications, they have no instruction
cache or data cache. Unlike high-end CPUs widely used in servers and desktops, which
routinely use advanced frequency or voltage scaling techniques, low-power MCUs such as
MSP430 have significantly simpler energy models: fluctuations in power consumption are
primarily due to the dynamics in supply voltage and clock speed. In fact, power consumption
may be modeled using a non-linear function derived by empirically measuring the impact of
varying voltage supplies and clock speeds on the power consumption of real hardware for all
possible MCU configurations [2].

Accurate compile-time analysis for energy prediction [10, 3] is well studied topic for
transiently powered computing systems [2], where software developers need to know the
worst-case energy cost of a computation task, to maximize the software’s utilization of the
electricity harvested from the environment and to ensure timely checkpointing of the program
state before loss of power. The accuracy of such compile-time analysis techniques have come
close to direct hardware emulation. While direct hardware emulation [20, 8] offers the highest
possible accuracy due to the direct measurement on target hardware, it does not offer the
level of convenience and automation desired at the early stages of software development.

In this work, we evaluate our proposed method using MSPSim [15, 39], which is a
popular compile-time analysis tool for MSP430, Specifically, we use MSPSim to compute and
then compare the latency and energy cost of all benchmark programs, before and after our
constraint-based optimization. MSPSim allows the developer to tag a piece of the software
code for which energy consumption will be estimated. It does this by first generating the
assembly code for MSP430, and then analyzing the assembly code to compute the number of
MCU cycles needed to execute each basic block. Then, it estimates the energy consumption
of each basic block based on the empirically derived energy model, the supply voltage, and
the clock speed of the device.

At a high level, the energy consumption depends on the supply voltage as well as the
electrical current for a given resistance of the MCU, the latter of which in turn depends on
the supply voltage and the clock speed. For more details on the energy model used in such
compile-time analysis tools, refer to Ahmed et al. [2].

ECOOP 2023

16:6 Constraint Based Compiler Optimization for Energy Harvesting Applications

1 __interrupt void ISR(void) {
2 if (msg_ready) {
3 wots(msg, pub_key, sig);
4 //Send the pair <pub_key,sig> to verifier;
5 }
6 }
7 void wots(MSG msg, KEY pub_key, SIG sig) {
8 gen_key(priv_key, pub_key);
9 sign(msg, priv_key, sig);

10 }

Figure 3 An example program that invokes the W-OTS routine when msg is ready. Here,
msg_ready and msg are global variables updated by other functions not presented in this figure. For
wots(), msg is the input while pub_key and sig are the output. For gen_key(), both priv_key and
pub_key are the output. For sign(), msg and priv_key are the input while sig is the output.

2.2 The Software Program
Figure 3 shows the program, where ISR stands for the interrupt service routine. Assume that
the routine is triggered periodically by a timer. Whenever the input data stored in msg is
ready, the subroutine wots() is invoked (Line 3). It implements a hash-based cryptographic
primitive called the Winternitz one-time signature (W-OTS [40]). Here, msg is the input,
while pub_key and sig are the output. After generating the output, the device sends the
pair (pub_key,sig) to a verifier on a remote server (Line 4).

Let us take a closer look at the routine wots() defined in Lines 7-10, which consists of
two subroutines. The subroutine gen_key() is invoked first, which returns a fresh pair of the
private key priv_key and the public key pub_key as output. Then, the subroutine sign()
is invoked, which takes msg and priv_key as input and returns the signature sig as output.

Since the input msg may be sensor data generated just in time, in the context of our
work, it is called an online input. Furthermore, any output or intermediate variable that is
control- or data-dependent on the online input must be computed just in time. In contrast,
results that do not depend on the online input may be computed ahead of time.

2.2.1 The Original Program
Figure 4 shows the definitions of the two subroutines invoked by wots(). The subroutine
sign() in Line 7 takes msg and priv_key as input and returns sig as output. While msg is
an online input, priv_key is computed by the subroutine gen_key(). In this sense, sign()
depends on gen_key().

The subroutine gen_key() does not have any input, and thus does not depend on
any other subroutine. More importantly, it does not depend on any online input. Thus,
gen_key() may be executed ahead of time, e.g., whenever ambient energy is available to
the harvester. It means that both priv_key and pub_key may be computed ahead of time.
These precomputed keys may be saved to non-volatile memory as coupons, and later used by
sign() to encrypt the online input msg.

Although the subroutine sign() partially depends on the online input msg, and thus
cannot be executed ahead of time in its entirety, a significant part of the function body can
still be executed ahead of time. Specifically, the subroutine gen_random() does not depend
on the online input at all, and the subroutine memcpy() depends only on rand computed by
gen_random(); thus, both subroutines can be computed ahead of time.

Y. Li and C. Wang 16:7

1 gen_key(priv_key, pub_key) {
2 gen_random(priv_key, PRIV_KEY_SIZE);
3 sha256_init(&keyHash);
4 sha256_update(&keyHash, priv_key, PRIV_KEY_SIZE);
5 sha256_final(&keyHash, pub_key);
6 }
7 sign(msg, priv_key, sig) {
8 gen_random(rand, SHA_BLK_SIZE);
9 memcpy(sig, rand, SHA_BLK_SIZE);

10 message_digest(digest_bits, sig, msg);
11 gen_sig(sig, priv_key, digest_bits);
12 }

Figure 4 Definitions of the subroutines used by the W-OTS routine.

1 wots_precom(msg, pub_key, sig) {
2 gen_key(priv_key, pub_key);
3 //NVM-Store <priv_key, pub_key> to coupon pool;
4 sign_precom(msg, priv_key, sig);
5 }
6 wots_online(msg, pub_key, sig) {
7 //NVM-Load <priv_key, pub_key> from coupon pool;
8 sign_online(msg, priv_key, sig);
9 }

10 gen_key(priv_key, pub_key) {
11 gen_random(priv_key, PRIV_KEY_SIZE);
12 sha256_init(&keyHash);
13 sha256_update(&keyHash, priv_key, PRIV_KEY_SIZE);
14 sha256_final(&keyHash, pub_key);
15 }
16 sign_precom(msg, priv_key, sig) {
17 gen_random(rand, SHA_BLK_SIZE);
18 memcpy(sig, rand, SHA_BLK_SIZE);
19 //NVM-Store <sig> to coupon pool;
20 }
21 sign_online(msg, priv_key, sig) {
22 //NVM-Load <sig> from coupon pool;
23 message_digest(digest_bits, sig, msg);
24 gen_sig(sig, priv_key, digest_bits);
25 }

Figure 5 Conceptually, the program may be divided into two parts (precom and online).

If we continue this analysis by going down the chain of function calls, we may identify
more precomputation opportunities, e.g., instructions inside subroutines message_digest()
and gen_sig(). In our proposed method, this process of systematically identifying these
precomputation opportunities is automated, based on static program analysis techniques.

2.2.2 Dividing into Two Parts
Based on the precomputation opportunities identified by static program analysis, the original
program may be divided into two parts: the precomputation (precom) part and the online
computation (online) part, as shown by Figure 5.

Specifically, top-level routine wots() is divided into wots_precom() and wots_online().
The subroutine wots_precom() may be invoked ahead of time, since it does not depend on
the online input msg at all. After invoking gen_key() to compute the public and private
keys, denoted priv_key and pub_key, it stores them in non-volatile memory (Line 3). Then,
it invokes sign_precom() defined in Line 16, to compute the signature sig, before storing it
in non-volatile memory (Line 19).

ECOOP 2023

16:8 Constraint Based Compiler Optimization for Energy Harvesting Applications

The subroutine wots_online() must be invoked just in time, since it depends on the
online input msg. This subroutine first loads the precomputed keys priv_key and pub_key
from non-volatile memory (Line 7) and then invokes sign_online() defined in Line 21.
Inside sign_online(), the precomputed signature sig is loaded from non-volatile memory
(Line 22) and then used together with msg and priv_key to compute the final version of the
signature sig (Lines 23-24).

According to our experimental evaluation (presented in Section 7), on low-power devices
such as MSP430, this kind of precomputation can reduce the energy cost of running W-OTS
to 42.89% of the original cost. In other words, it is more than 2.3X reduction. Thus, with
the same amount of electricity used to run the original W-OTS program once, now, we can
run the optimized W-OTS program 2.3 times.

2.2.3 Challenges in Optimization

Just because an instruction may be precomputed (i.e., it does not depend on any online
input) does not mean that it is beneficial to do so, since precomputation does not always
reduce the energy cost. Depending on the hardware platform, it is possible for the cost of
storing and retrieving the precomputed result to outweigh the benefit.

For example, in Line 18 of Figure 5, if we choose to precompute memcpy() inside the
subroutine sign(), the energy cost of loading the precomputed coupon sig from non-volatile
memory may be slightly higher than the energy needed to execute memcpy() directly. If that
is the case, precomputation should be avoided.

In general, whether precomputation is beneficial or not depends on both the software
and the hardware. Consider the characteristics of volatile and non-volatile memory used
in MSP430FR5969 [24] as an example. According to the hardware data-sheet, at the clock
frequency of 8 MHz, the energy per clock cycle is 0.33 nJ for volatile memory, but is 0.42 nJ
for non-volatile memory. This kind of information must be considered during optimization.

Furthermore, decisions on which instructions to precompute cannot be made in isolation,
since many of these instructions are dependent on each other according to the control and
data flows of the program. Therefore, we must consider all of the intra- and inter-procedural
control- and data-flow dependencies in the program while performing the optimization.

These are the reasons why we propose the constraint based method. By first formulating
it as a constraint satisfiability problem and then solving the problem using an off-the-shelf
SMT solver, we are able to optimally partition the program into the precomputation part
and the online computation part, while satisfying a variety of requirements coming from the
hardware platform as well as the software program.

2.2.4 The Optimized Program

To keep the size of the optimized program small, we do not actually divide the program into
two parts as shown by Figure 5. Instead, we keep the two parts in a single program, and try
to retain the original control and data flows of the program as much as possible.

Figure 6 illustrates our method by showing the optimized program for the original program
in Figure 4. Our method adds two parameters, precom_flag and online_flag, to represent
the following three use cases:

When ⟨ precom_flag,online_flag ⟩ = ⟨ true,false ⟩, it does precomputation.
When ⟨ precom_flag,online_flag ⟩ = ⟨ false,true ⟩, it does online computation.
When ⟨ precom_flag,online_flag ⟩ = ⟨ true,true ⟩, it acts as the original program.

Y. Li and C. Wang 16:9

1 wots_trans(msg, pub_key, sig, precom_flag, online_flag) {
2 if (precom_flag == true)
3 gen_key(priv_key, pub_key);
4 if (!online_flag)
5 //NVM-Store <priv_key, pub_key> to coupon pool;
6 if (!precom_flag)
7 //NVM-Load <priv_key, pub_key> from coupon pool;
8 sign_trans(msg, priv_key, sig, precom_flag, online_flag);
9 }

10 sign_trans(msg, priv_key, sig, precom_flag, online_flag) {
11 if (precom_flag == true) {
12 gen_random(rand, SHA_BLK_SIZE);
13 memcpy(sig, rand, SHA_BLK_SIZE);
14 }
15 if (!online_flag)
16 //NVM-Store <sig> to coupon pool;
17 if (!precom_flag)
18 //NVM-Load <sig> from coupon pool;
19 if (online_flag == true) {
20 message_digest(digest_bits, sig, msg);
21 gen_sig(sig, priv_key, digest_bits);
22 }
23 }

Figure 6 Merging the two parts into a single optimized W-OTS routine.

1 __interrupt void ISR(void) {
2 if(!msg_ready) {
3 if (ambient_energy_available)
4 wots_trans(NULL, pub_key, sig, true, false); //precom (part 1)
5 }
6 else {
7 if (!ambient_energy_available)
8 wots_trans(msg, pub_key, sig, false, true); //online (part 2)
9 else

10 wots_trans(msg, pub_key, sig, true, true); //combined (part 1 + part 2)
11 //Send the pair <pub_key,sig> to verifier;
12 }
13 }

Figure 7 Different scenarios for invoking the optimized W-OTS routine.

Compared to the original program in Figure 4, the only difference in Figure 6 is the
addition of two flags as input parameters of some of the subroutines, together with the if-
conditions that indicate whether a code block should be executed during the precomputation
step or during the online computation step.

Figure 7 shows how the optimized program may be invoked by the interrupt service
routine. Unlike what is shown in Figure 3, here, precomputation is performed when msg is
not available but ambient energy is available (Line 4). When msg is available, it depends
on whether ambient energy is still available. If ambient energy is not available, then online
computation is performed (Line 8). However, if ambient energy is available, operations that
access non-volatile memory will be skipped, which makes wots_trans() behaves exactly the
same as the original program (Line 10).

ECOOP 2023

16:10 Constraint Based Compiler Optimization for Energy Harvesting Applications

3 Overview of Our Method

We first present our top-level procedure and then outline the main technical challenges.

3.1 The Top-Level Procedure
Algorithm 1 shows our top-level procedure. The input consists of the original program (P),
the online input (OI) of the program, and the system constraint (C). The output is the
optimized program (P ′).

Algorithm 1 The top-level procedure of our method.

input : original program P , online input OI, system constraint C

output : optimized program P ′

1 PDG← ConstructPDG (P);
2 preSet← IdentifyPreSet (P , PDG, OI);
3 preSet∗ ← OptimizePreSet (preSet, PDG, C);
4 P ′ ← Transform (P , PDG, preSet∗);
5 return P ′

For the running example in Figure 3, where the entry function is wots(), the online input
is OI = {msg}, since msg is the only input value that must be ready at run time. C consists
of a set of platform-dependent requirements, e.g., the size of non-volatile memory used to
store coupons must be limited to ≤256 KB.

In Algorithm 1, our method first constructs a program dependency graph (PDG) for the
program P . Then, our method uses the PDG and the set of variables in the online input OI

to compute preSet, which is the set of instructions in P that may be precomputed. Next, it
computes preSet∗, which is a subset of preSet that represents the optimal solution to the
constraint satisfiability problem. Finally, our method transforms the program P to a new
program P ′ based on the information stored in both PDG and preSet∗.

Before presenting the detailed algorithms inside the subroutines IdentifyPreSet(),
OptimizePreSet() and Transform(), we point out the main technical challenges.

3.2 The Technical Challenges
The first challenge, related to the subroutine IdentifyPreSet(), is the complex nature of
the program dependency analysis. In Figures 3 and 4, for example, we observe that the
subroutine sign() depends on gen_key(); furthermore, the subroutine gen_sig() invoked
by sign() depends on gen_key(). It means that we must consider not only dependencies of
instructions within each subroutine, but also dependencies between subroutines.

Moreover, since we aim to transform individual functions of the original program without
changing the overall function call structure, each function must be analyzed in all of its
calling contexts, to figure out how the function body should be optimized. In Figure 4, for
example, it means that since gen_random() is called by both gen_key() and sign(), we
must consider both calling contexts.

The second challenge, related to the subroutine OptimizePreSet(), is optimizing the
precomputation policy while satisfying a variety of system constraints. Given preSet (which
is the set of instructions that may be computed), we need to identify a proper subset. For the
MSP430 family of microcontroller units, a limiting factor may be the capacity of non-volatile

Y. Li and C. Wang 16:11

memory, only part of which may be dedicated to coupon storage. In general, this is a
non-linear optimization problem, e.g., the storage cost may not increase linearly, or even
monotonically, as more instructions are added to the precomputation set.

In Figure 4, for example, the cost of precomputing only Lines 2-4 is size(priv_key) +
size(keyHash), where size() denotes the size of non-volatile memory for storing the value.
However, the cost of precomputing Lines 2-5 is size(priv_key) + size(pub_key), because
keyHash no longer needs to be stored in non-volatile memory. Since size(pub_key) is much
smaller than size(keyHash) in the W-OTS example, this means that precomputing one more
line actually decreases the overall storage cost.

The third challenge, related to the subroutine Transform(), is the difficulty in preserving
functional equivalence while allowing the program to change its execution order and data
flow. For example, if we want to precompute Line 2 and Line 8 in Figure 4, we must modify
the program to ensure that the original execution order (Line l3 executed before Line l8)
changes to the new execution order (l8 executed before l3); at the same time, we must ensure
that the original data flow priv_key(l2)− l3, l4, l5− l8 changes to priv_key(l2)− l8− l3, l4, l5.
While doing so for this particular example may seem easy, in general, maintaining functional
equivalence during such program transformation can be challenging.

4 Identifying the Precomputation Set

In this section, we present our method for computing preSet, as shown in Algorithm 2. It
takes the program P , the program dependency graph PDG, and the online input OI as
parameters, and return preSet as output.

Algorithm 2 The subroutine IdentifyPreSet (P, P DG, OI).

1 Let pred(inst) be a predecessor node of instruction inst in the PDG

2 preSet← {elementary instructions in P} ∪ ({input parameters of P} \OI)
3 while ∃inst ∈ preSet and pred(inst) ̸∈ preSet do
4 remove inst from preSet
5 end
6 return preSet

Recall that preSet is the set of instructions in P that may be computed ahead of time.
Internally, our method computes preSet in two steps. The first step is identifying the inter-
procedural dependencies related to the online input OI. These dependencies will be captured
by function such as pred(inst), preds(inst), and succs(inst), which returns the predecessor,
set of predecessors, and set of successors of an instruction inst, respectively. The second step
is leveraging these dependencies to compute the instructions in preSet.

In Algorithm 2, initially, preSet consists of all the elementary instructions and input
parameters of P , except for the ones in OI. Variables in OI are excluded because they are
the online variables. Here, an elementary instruction means that during our analysis the
instruction will be treated as a whole. First, non-function-call instructions are elementary
instructions. Second, when an instruction invokes a function call, whether it is elementary
depends on how many times the function is called. If the function is called only once, it is not
treated as an elementary instruction; instead, we enter the function body to try to identify
more precomputation opportunities. But if the function is called from multiple sites, we
treat each call as an elementary instruction, meaning that we do not enter the function body

ECOOP 2023

16:12 Constraint Based Compiler Optimization for Energy Harvesting Applications

8 2: msg_ready

9

4

(a) The PDG for Figure 3.

2

msg_ready

5

10

9

11

8

3 4

(b) The PDG for Figure 4.

Figure 8 The program dependency graphs (PDGs) of the example W-OTS program. Here, each
node represents an instruction, and the number is the instruction’s line number in the program.

to explore further. This is a reasonable compromise since, when a function is called from
multiple sites, the function body often implements some basic computation, e.g., generating
a random number, and there is no need to split it further.

4.1 Inter-Procedural Dependencies

To identify the maximum set of instructions in PreSet using Algorithm 2, we need the
dependencies associated with the online input OI. These dependencies are more complex
than what are typically available in the compiler. For example, by default, LLVM provides
the control- and data-dependencies between instructions only within each function. However,
we need to know dependencies not only within each function, but also between functions.

To identify inter-procedural dependencies, we first compute a PDG for each function,
together with a call graph that represents the caller-callee relations of all functions in the
program. We also extend LLVM to add the ability to determine whether a function call
may change the content of a function parameter passed by reference or the value of a global
variable. This is accomplished by traversing paths in the call graph and analyzing all of the
functions involved in the path.

Next, we analyze the inter-procedural dependencies in a bottom-up fashion, according to
the function call graph. Consider the example of the following two functions: fun1(arg1)
and fun2(arg2,arg3), where the input parameter arg1 of fun1() depends on the output
parameter arg2 of fun2(). Assume that arg3 is also an output parameter of fun2().

Assume that inside the function fun2() there is an instruction I that computes the value
of arg2. Furthermore, inside fun1() there is an instruction I ′ that computes the value
of arg1. While all intra-procedural dependencies may be computed in isolation, we must
combine them to identify the inter-procedural dependencies, such as the dependency between
I ′ of fun1() and I of fun2().

Figure 8 shows a more concrete example, where the PDGs are constructed for the code
snippets in Figures 3 and 4. Consider the edge 2→ 11 in Figure 8 (b), which represents the
dependency between the instruction at Line 2 and the instruction at Line 11 of the program
in Figure 4. It means the input parameter priv_key used by sign() at Line 11 comes from
the output parameter priv_key of gen_key() at Line 2.

With the inter-procedural dependencies, we can define the notion of a predecessor, denoted
by pred(). For example, in Figure 8 (b), due to the edge 2→ 11, we say that the instruction
at Line 2 is a predecessor of the instruction at Line 11 inside the program shown by Figure 4.

Y. Li and C. Wang 16:13

4.2 Iteratively Computing preSet
Using the notion of a predecessor of an instruction inst, denoted pred(inst), our method
computes the preSet according to the while-loop in Algorithm 2.

It starts with all elementary instructions and input parameters that are not in OI. Then,
it removes any instruction (inst) that has a predecessor pred(inst) not in preSet. There are
two possible reasons why pred(inst) is not in preSet: either it is in OI, or during the previous
iteration, it has been removed from preSet. Thus, it is a fixed-point computation.

The correctness of the fixed-point computation can be understood as follows: By definition,
the instruction inst depends on its predecessor pred(inst). If pred(inst) ̸∈ preSet, meaning
the predecessor instruction cannot be precomputed, then the instruction inst itself cannot
be precomputed either.

As an example, consider the instructions of W-OTS in Figure 4. For ease of presentation,
we use li to represent the instruction at Line i, and we treat all instructions in this program
as elementary instructions. Initially, we have preSet = {l2 − l5, l8 − l11}.

Next, we check if any of these instructions should be removed, based on the predecessor
relation shown in Figure 8. The instruction l10 should be removed, since its predecessor
(msg_ready) is not in preSet. Thus, we remove l10 from preSet.

The removal of l10 leads to the removal of l11 during the next iteration, since l10 is the
predecessor of l10. If l11 cannot be precomputed, then l10 cannot be precomputed either.

Thus, in the end, we have preSet = {l2 − l5, l8 − l9}.

▶ Theorem 1. Our method for computing preSet is sound in that, for all inst ∈ preSet,
there is guarantee that the instruction (inst) can indeed be computed ahead of time.

Proof. An instruction inst remains in preSet only if all of its predecessors are also in
preSet. As long as the inter-procedural dependencies represented by the PDGs are an
over-approximation of the actual dependencies, the preSet is guaranteed to be an under-
approximation of the set of instructions that may be computed ahead of time.

The reason why it is an under-approximation because pred(inst) is an over-approximation
of the predecessors. Whenever pred(inst) ̸∈ preSet, Algorithm 2 removes inst from preSet.

The reason why pred(inst) is an over-approximation is due to the nature of PDG-based
analysis techniques. Refer to Horwitz et al. [22] and Reps et al. [42] for more information. ◀

4.2.1 Handling Loops
Similar to all other PDG-based analysis techniques [22, 42], our method has no problem in
handling software code with loops. In most of the practical cases, computing the predecessor
is straightforward. For example, the function call sign() at Line 9 in Figure 3 requires msg
and priv_key to be available. These dependencies are due to data flow represented by the
definition-use correspondence.

However, there are cases where definitions and uses do not have one-to-one mapping. For
example, in Figure 9, the variable i used at Line 7 may be defined at either Line 2 or Line 5.
In the context of data-flow analysis, the definition at Line 5 does not kill the definition
at Line 2. Therefore, it may or may not be necessary to precompute Line 3-6 in order to
precompute Line 7, for example, if CNT[len-1]!=0xff.

Since our method is designed to be sound, to ensure that the optimized program is correct
for all input values, it is allowed to first over-approximate the predecessor relation, and then
conservatively assume that an instruction can be precomputed only if all of its predecessors
can be precomputed.

ECOOP 2023

16:14 Constraint Based Compiler Optimization for Energy Harvesting Applications

1 void increment_CNT(BYTE *CNT, int len){
2 int i = len;
3 while ((i > 0) && (CNT[i-1] == 0xff)){
4 CNT[i-1] = 0;
5 i--;
6 }
7 if (i) {
8 CNT[i-1]++;
9 }

10 }

Figure 9 Code snippet taken from the benchmark program named AES-CTR.

5 Optimizing the Precomputation Set

While all instructions in preSet have been identified at this moment, it may not be beneficial
to compute all of them ahead of time. In this section, we present our method for computing an
optimal subset preSet∗ ⊆ preSet. This is implemented in OptimizePreSet(preSet, PDG, C),
where C is the system constraint. Besides the characteristics of the hardware platform, such
as the size of non-volatile memory, it also includes the characteristics of the software program,
such as how often the encrypted sensor data must be transmitted to the remote server.

5.1 The Motivation
We use an example to illustrate the complex nature of the optimization problem, which in
turn motivates our development of the constraint based solution.

Consider the W-OTS program in Figure 4 and its PDGs in Figure 8 (b). According to
Algorithm 2, preSet = {l2− l5, l8− l9}. Since these instructions do not depend on the online
input msg, in theory, they may be precomputed as many times as possible. However, due to
the storage capacity, in practice, the number has to be bounded.

Let Si be a subset of preSet, called a precomputation choice, and mi be the maximum
number of times that Si may be precomputed. Since each time Si produces an intermediate
result, or coupon, we also call mi the coupon count (number of copies of this particular
coupon). Let NVM(Si) be the storage cost for this coupon, and maxNVM be the storage
capacity of the entire device. We use the maximal allowed NVM size to avoid the potential risk
of running out of NVM. One precomputation choice for the running example is represented
by S1 = {l2}, where m1 ≤ maxNVM/NVM(S1). That is, the coupon count m1 is bounded
only by the storage capacity.

Below are some other precomputation choices:

S2 = {l2 − l5, l8}, where m2 ≤ maxNVM/NVM(S2)
S3 = {l2 − l5, l8 − l9}, where m3 ≤ maxNVM/NVM(S3)
. . .

Let n = |preSet|, the number of precomputation choices is Σn
i=1

(
n
i

)
. Since it causes combin-

atorial explosion, we cannot afford to enumerate them to decide which one is optimal.
The number of precomputation choices can be even higher than Σn

i=1
(

n
i

)
. For example,

when S4a = {l2 − l5} and S4b = {l2 − l5, l8 − l9}, if we allow the coupon counts m4a and m4b

to have different values, they would be bounded only by the constraint m4a × NVM(S4a) +
m4b × NVM(S4b) ≤ maxNVM. This leads to another combinatorial explosion.

Y. Li and C. Wang 16:15

While making a precomputation choice, we cannot consider instructions in isolation, since
they may be dependent on each other. For example, precomputing one instruction may
require precomputing another instruction. Recall that in the example program shown in
Figure 4, we cannot precompute l5 without precomputing l4, because there is dependency
from l4 to l5. In other words, l4 = pred(l5).

All these challenges motivate us to define the constraint satisfiability problem, which
allows us to consider all of the selected instructions as a whole, together with a variety of
system constraints. Specifically, it allows us to consider the coupon count (mi) and the
coupon size NVM(Si) for each subset Si ⊆ preSet, together with system constraints such as
the capacity of non-volatile memory used to store coupons computed by different instructions,
and the inter-procedural dependencies between these chosen instructions.

5.2 The Problem Statement

Our goal is to compute the optimal subset, denoted S∗ ⊆ preSet, that satisfies the system
constraint. For ease of presentation, assume that S represents a precomputation choice,
while V (S) represents the value (or benefit) of precomputing S, and C(S) represents the
cost of precomputing S. The optimization problem is defined formally as follows:

S∗ = argmax
S⊆preSet

V (S) subject to C(S) ≤ maxNVM (5.2)

In other words, the optimal subset is the subset S that maximize the value V (S) while
keeping the cost C(S) under control. Recall that explicitly enumerating solutions would
lead to combinatorial explosion. Thus, we encode them symbolically using a set of logical
constraints and solve these constraints using an off-the-shelf SMT solver.

One advantage of the constraint based approach is flexibility in modeling various tradeoffs.
While it is easy to compute the coupon size or the coupon count individually, finding the
right combination may be hard due to the fact that they are inter-dependent.

Another advantage of our approach is flexibility in modeling the chain of influence; that
is, precomputing one instruction (e.g., l4 of gen_key in Figure 4) may require precomputing
another instruction (e.g., l3).

Yet another advantage is the ability to bound the total cost of storing coupons from
different instructions. As mentioned earlier, precomputing more instructions may not always
increase the storage cost. In Figure 4, if we precompute l3 − l4 but not l5, we need to store
both pub_key and keyHash, the latter of which is an array of 108 bytes; but if we precompute
l3 − l5, we only need to store pub_key, which is an array of 32 bytes.

5.3 Defining the Value and Cost Functions

First, we define the energy saving (value) and storage overhead (cost).

5.3.1 Value

Since the value of precomputing one instruction may depend on which other instructions are
precomputed, we can only define it based on which other instructions are chosen. Since an
instruction inst may be precomputed only if all its predecessors are precomputed, we define
the value of precomputing inst based on the predecessor relation.

ECOOP 2023

16:16 Constraint Based Compiler Optimization for Energy Harvesting Applications

Let S be the set of chosen instructions, and v(inst | S) be the value of precomputing
inst in the presence of S. We have

v(inst | S) =
{

E(inst) if preds(inst) ⊆ S
−∞ otherwise

Here, E(inst) is the energy saved by precomputing inst, and preds(inst) is the set of all
predecessors of inst in the PDG. We use the large value −∞ to avoid precomputing inst
before all of its predecessors in preds(inst) are precomputed.

With the values of precomputing individual instructions, we define the value of precom-
puting the entire set S as follows:

V (S) =
∑

inst∈S
v(inst | S).

For the example in Figures 4 and 8 (b), we have V ({l2}) = E(l2). We also have V ({l2, l5}) =
−∞ since l5 cannot be selected when its predecessors l3 − l4 are not selected.

5.3.2 Cost

Unlike the value v(inst), which depends only on the predecessors of inst, the cost of precom-
puting inst depends also on its successors in the PDG.

Let S be the set of chosen instructions, and c(inst | S) be the cost of precomputing inst
in the presence of S. In Figure 4, for instance, we have

c(l3 | S) =
{

0 if l4, l5 ∈ S
NVM(keyHash) otherwise

and

c(l4 | S) =
{

0 if l2, l3 ∈ S
+∞ otherwise

That is, if l3− l5 are selected, we do not need to store keyHash; but if l4− l5 are not selected,
we need to store keyHash. Thus, the cost of precomputing l3 depends on if (l4 − l5) are
selected. Here, the large value +∞ is used to avoid selecting instructions whose predecessors
in the PDG are not selected.

With the costs of precomputing individual instructions, we define the cost of precomputing
the entire set S as follows:

C(S) =
∑

inst∈S
c(inst | S).

5.4 Symbolic Encoding of the Constraints

We construct an SMT formula Ψ = ΦDep ∧ ΦValue ∧ ΦCost , where the subformula ΦDep
captures the dependencies that we have computed in the previous section, ΦValue captures
the value constraint, and ΦCost captures the cost constraint. Thus, a satisfying assignment
to Ψ corresponds to S∗ ⊆ preSet.

Y. Li and C. Wang 16:17

5.4.1 Dependency Constraint
ΦDep encodes the dependency relations captured by edges of the inter-procedural PDG.
Specifically, for each dependency edge (n1, n2), we add a Boolean constraint (¬n2 ∨ n1),
where n1 and n2 are Boolean variables indicating whether these nodes are precomputed,
and the constraint means that, if n2 is true, then n1 must also be true. Therefore, n2 being
precomputed implies that n1 is also precomputed. Then, all these individual constraints are
conjoined to form ΦDep. As an example, consider the PDG in Figure 8 (b): the dependency
constraints include (¬l4 ∨ l3) ∧ (¬l4 ∨ l2) ∧ (¬l5 ∨ l4) ∧ (¬l9 ∨ l8).

5.4.2 Value Constraint
ΦValue encodes the value of precomputing each instruction. Since ΦDep already guarantees
that an instruction is precomputed only if all its predecessors (as in the PDG) are precomputed,
the encoding becomes straightforward. That is, if inst is selected, then v(inst) = E(inst);
otherwise v(inst) = 0. The total value of precomputing the set of instructions in preSet is
simply the sum of all the individual values. In Figure 4, the value of precomputing each
instruction li, where i = 2, 3, . . . , 5, 8, 9, would be v(li) = (li ? E(li) : 0) and the total would
be V (S) =

∑
v(li).

5.4.3 Cost Constraint
ΦCost encodes the cost of precomputing the chosen instructions. Recall that the cost of
precomputing inst depends on not only if its predecessors are precomputed but also if its
successors are precomputed. Since ΦDep guarantees to select the predecessors whenever inst
is selected, here we only need to deal with the set of successors, denoted succs(inst).

In general, precomputing inst increases storage cost only when its result (coupon) is used
by some of the successors in the online computation step; otherwise, there is no need to save
the coupon. For example, the cost of precomputing l3 in Figure 4 is zero if instructions in
succs(l3) ={l4, l5} are also precomputed.

For the entire program shown in Figure 4, the cost constraint would be

(c(l2) = (¬l2 ∨ l3 ∧ l4 ∧ l5 ∧ lsend) ? 0 : NVM[priv_key]) ∧
(c(l3) = (¬l3 ∨ l4) ? 0 : NVM[keyHash]) ∧
(c(l4) = (¬l4 ∨ l5) ? 0 : NVM[keyHash]) ∧
(c(l5) = ¬l5 ? 0 : NVM[pub_key]) ∧
(c(l8) = (¬l8 ∨ l9) ? 0 : NVM[rand]) ∧
(c(l9) = ¬l9 ? 0 : NVM[sig])
(C(S) = c(l2) + c(l3) + c(l4) + c(l5) + c(l8) + c(l9)) ∧
(C(S) ≤ maxNVM)

With proper definitions of the cost and value functions, our constraint based method can
also handle other optimization metrics.

5.5 Solving the Constraints
After constructing the entire SMT formula Ψ, we solve it using the Z3 SMT solver [11].
Specifically, we use Z3’s optimize interface iteratively to search for the optimal solution.
This is done by insisting that the total value V (S) shown in Equation (5.2) is greater than a
given constant value; then, we find the maximum constant by gradually increasing the value
of the constant as long as Z3 can still find a satisfying solution.

ECOOP 2023

16:18 Constraint Based Compiler Optimization for Energy Harvesting Applications

6 Transforming the Program

We now explain the subroutine Transform(P, PDG, preSet∗), which transforms the original
program P to a new program P ′ to implement preSet∗. Recall that in Figure 6, we gave an
example of such a transformed program for W-OTS. There are two important properties of
the program P ′: (1) it retains the overall function call structure in P and (2) it changes the
body of each function to implement both the precomputation and online computation steps.

6.1 The Terminology
For each function f in the program P , we must separate the precomputation instructions from
the online computation instructions. This leads to a partition of the program to segments,
{S1, S̃2, S3, S̃4, ...}, where Si represents a precomputation segment and S̃j represents an
online computation segment. A segment is a maximal set of instructions that may execute
continuously during precomputation or online computation.

Consider an example program P = {S1, S̃2, S3, S̃4} whose original execution order is
S1 → S̃2 → S3 → S̃4. In the transformed program P ′, however, the execution order must be
changed to S1 → S3 → S̃2 → S̃4. In general, changes in the execution order lead to changes
in the data flow.

Before discussing changes in the data flow, we define the terminology.
Let def (x) be an instruction that defines the value of variable x, and use(x) be an
instruction that uses the value. The two instructions may form a def-use pair.
Given two segments Si and S̃j , where def (x) ∈ Si and use(x) ∈ S̃j , we represent the
data-flow edge (or def-use pair) as ⟨Si, S̃j⟩(x).
Let Val[x, Si] denote the value of x at the end of executing the segment Si.
A variable x is live at a program location p if its value is used before it is defined again
along some path from p to the program exit.

6.2 The Problem
Now, we show an example where changes in the execution order bring unexpected changes of
the data flow.

▶ Example 6.1. In program P = {S1, S̃2, S3, S̃4}, assume that def 1(x) ∈ S1, def 2(x) ∈ S̃2,
use(x) ∈ S̃4. Due to the execution order, the def-use chain contains only def 2(x) and use(x),
meaning the value of x used in S̃4 should be from def 2(x).

In the original execution order S1 → S̃2 → S3 → S̃4, the value Val[x, S3] comes from
def 2(x), and the variable x is live in S3, since Val[x, S3] will be used in S̃4.

In the new program, however, since the execution order is changed to S1 → S3 → S̃2 → S̃4,
without our intervention, the value Val[x, S3] would come from def 1(x), and the variable x

would no longer be live in S3. Such unexpected changes of the data flow may change the
semantics of the program. This is illustrated by Figure 10.

In general, it can be challenging to preserve the data flow while allowing change of
the execution order. While the technique of checkpointing has been used in intermittent
computing systems [32, 48, 35], it cannot solve our problem because checkpointing does not
involve splitting a program into two parts and then executing the two parts in an interleaved
order. For the program in Example 6.1, specifically, checkpointing techniques would have
failed to preserve the data flow.

Y. Li and C. Wang 16:19

Precomuting

Section 𝑆1

Online

Section 𝑆2

Online

Section 𝑆4

Precomputing

Section 𝑆3

∼

∼

(a) Execution order of P .

Precomputing

Section 𝑆1

Online

Section 𝑆2

Online

Section 𝑆4

Precomputing

Section 𝑆3

~

∼

(b) Execution order of new program P ′.

Figure 10 Difference in execution order means P and P ′ are no longer functionally equivalent.

To understand why checkpointing would fail, consider the fact that variable x is live
at the end of S̃2, at the end of S3, and at the start of S̃4. Checkpointing would insert
nvm_ST(Val[x, S̃2]) at the end of S̃2 and insert nvm_ST(Val[x, S3]) at the end of S3. It would
also insert nvm_LD(Val[x, S̃2]) and nvm_LD(Val[x, S3]) at the start of S̃4.

When executing P ′ (S1 → S3 → S̃2 → S̃4), nvm_LD(Val[x, S3]) would over-write
nvm_LD(Val[x, S̃2]); thus, the value of x used in S̃4 would be V al(x, S3) = def 1(x). However,
in the original program, the value of x used in S̃4 is def 2(x).

The fundamental reason why checkpointing techniques are ill-suited for our project is
that the liveness property of a program variable, which forms the theoretical foundation of
checkpointing techniques, is not preserved by the split of a program into the precomputation
and online computation parts. Thus, instead of relying on the liveness property, our method
relies on the def-use relations.

6.3 The Baseline Method
We first present the baseline method using the def-use relations, and then present the
optimized method in the next subsection.

Since we treat each segment as an atomic unit during transformation, we only need to
consider the def-use relations between segments. Thus, whenever two segments have def-use
relations, there can only be three scenarios:

(I) ⟨Si, Sj⟩, meaning both are precomputation segments;
(II) ⟨Si, S̃j⟩, meaning Si is a precomputation and S̃j is an online computation; and
(III) ⟨S̃i, S̃j⟩, meaning both are online computation segments.

The fourth scenario, ⟨S̃i, Sj⟩, is impossible due to our method for computing preSet.
In other words, a use in a precomputation segment always comes from a definition in a

precomputation segment, whereas a use in an online computation segment may come from a
definition in a precomputation or an online computation segment.

Furthermore, it suffices to handle only type (II) case ⟨Si, S̃j⟩, because for the other two
cases, the value can be propagated directly between the two segments of the same type.

To maintain the def-use chains between precomputation and online computation segments
in the type (II) case, we must insert nvm_LD and nvm_ST instructions at the proper def and
use locations.

ECOOP 2023

16:20 Constraint Based Compiler Optimization for Energy Harvesting Applications

Thus, our baseline method can be summarized as follows: For each data-flow edge
⟨Si, S̃j⟩(x), we insert nvm_ST(Val[x, Si]) at the end of Si, and insert nvm_LD(Val[x, Si]) at
the start of S̃j .

Recall the scenario shown in Example 6.1, where the def-use chain contains only def 2(x)
and use(x). According to our baseline method, no NVM operation needs to be added, since
the def-use is of the type (III). The value of x used in S̃4 comes directly from def 2(x).

6.4 The Optimized Method
Now, we present an optimization to avoid redundant NVM operations inserted by the baseline
method. To understand why some of the NVM operations inserted by our baseline method
may be redundant, consider the following example.

▶ Example 6.2. In {S1, S̃2, S3, S̃4}, assume that def (x) ∈ S1, use1(x) ∈ S̃2, use2(x) ∈ S̃4,
and the def-use chain contains both def (x)–use1(x) and def (x)–use2(x). Our baseline method
would insert

nvm_ST(Val[x, S1]) after S1 (twice);
nvm_LD(Val[x, S1]) before S̃2;
nvm_LD(Val[x, S1]) before S̃4.

However, executing nvm_LD(Val[x, S1]) before S̃4 is redundant because the value of x can be
propagated directly from S̃2.

To avoid the redundant operations, we should insert nvm_LD of a def (x) at the start
of the earliest online computation segment where def (x) is available. For the program in
Example 6.2, the earliest segment is S̃2, which means we should insert nvm_LD(Val[x, S1])
right before S̃2.

Thus, our optimized method can be summarized as follows: For each data-flow edge
⟨Si, S̃j⟩(x) that we have not inserted nvm_ST(Val[x, Si]) after Si, insert nvm_ST(Val[x, Si])
after Si and insert nvm_LD(Val[x, Si]) before S̃i+1.

To understand the benefit of this optimization, let us compare the data flows of the
following two programs. If, for example, in the original program, Val[x, Si] is available (and
not killed) in the range

end[Si]→ S̃i+1 → Si+2 → S̃i+3 → · · · (1)

and in the transformed program, Val[x, Si] is available (and not killed) in the range

end[Si]→ Si+2 → Si+4 → Si+6 → · · · (2)

and nvm_LD Val[x, Si] has been inserted before S̃i+1 in the transformed program, the loaded
value will also be available in the entire range

S̃i+1 → S̃i+3 → S̃i+5 → S̃i+7 → · · · (3)

Therefore, we can avoid the other (redundant) nvm_LD operations before S̃i+3 . . . S̃i+7.

6.5 The Transformation Algorithm
To sum up, our optimized method for transforming each function f of the original program
based on preSet∗ is presented in Algorithm 3.

Our method first partitions the instructions in function f to precomputation segments
{Si} and online computation segments {S̃j}. Next, it inserts if-condition to each segment
using the two flags, to differentiate the three use cases. Finally, for each data-flow edge

Y. Li and C. Wang 16:21

Algorithm 3 Transforming a function f in program P based on preSet∗.

1 Partition f into segments {Si} and segments {S̃j};
2 Add if-condition to each segment using precom_flag and online_flag;
3 foreach data-flow edge denoted ⟨Si, S̃j⟩(x) do
4 if there is no nvm_ST(Val[x, Si]) after segment Si then
5 Add nvm_ST(Val[x, Si]) after Si;
6 Add nvm_LD(Val[x, Si]) before S̃i+1;
7 end
8 end

⟨Si, S̃j⟩(x), it insert NVM operations to store the value of variable x computed in Si (the
coupon) at the end of segment Si.

While in the baseline method, the coupon is loaded from NVM at the start of S̃j , in the
optimized method, it is loaded at the start of the online computation segment S̃i+1. Loading
the coupon earlier provides the opportunity to eliminate many redundant NVM operations.

7 Experiments

We have implemented our method in a software tool, named CouponMaker, which builds
upon the LLVM compiler platform [29] and the Z3 SMT solver [11]. We leverage LLVM
to parse the C code of the original program, conduct inter-procedural dependency analysis
and implement the semantic-preserving transformation. We use Z3 to solve the constraint
satisfiability subproblems. In total, our implementation adds 1,852 lines of C++ code.

Our tool generates the LLVM bit-code of the optimized program as output, which in
turn is compiled to machine code for the MSP430 MCU. To evaluate the performance of the
optimized program, we use the cycle-accurate emulator MSPSim [39]. Specifically, we use
MSPSim to compute the latency and energy consumption of the optimized program, and
compare them with the latency and energy consumption of the original program.

7.1 Benchmarks

We evaluated CouponMaker on 26 benchmark programs, which are C programs imple-
menting lightweight cryptographic protocols. In total, they have 31,113 lines of C code.
Table 1 shows the statistics, where Columns 1-3 show the name, category, and source of each
program, and Column 4 shows the number of lines of code (LoC).

The benchmark programs fall into two groups. The first group consists of programs
that compute one-time signatures (W-OTS and Lamport) and the second group consists
of programs that implement block-ciphers (e.g., AES and Camellia). A one-time signature
scheme allows a message to be signed using a fresh key pair. Since any fresh key pair may
work for any message, it is possible to precompute many key pairs and store them as coupons
for future use. A block cipher divides a message into fixed-size blocks and then encrypts each
block. For example, AES-CTR encrypts each block by first encrypting a counter value and
then XOR-ing it with the plaintext to generate the ciphertext. The precomputing function
is responsible for encrypting the counter value. Since there are multiple blocks, different
counter values need to be encrypted. For each of the eight block-cipher programs, we also
configure it in three different modes, marked by suffixes -OFB, -CFB, and -CTR, respectively.

ECOOP 2023

16:22 Constraint Based Compiler Optimization for Energy Harvesting Applications

Table 1 Statistics of the benchmark programs.

Name Category Source LoC

W-OTS One-time signature Merkle signature [40] 1,062
Lamport One-time signature Lamport signature[28] 339
AES Block cipher OpenSSL[37] 1,572
Camellia Block cipher OpenSSL[37] 708
DES Block cipher avr-crypto-lib[6] 1,277
Blowfish Block cipher OpenSSL[30] 1,112
skipjack Block cipher avr-crypto-lib[6] 475
GOST Block cipher OpenSSL[37] 357
SEED Block cipher OpenSSL[30] 476
CAST128 Block cipher OpenSSL[31] 963

Our experiments were conducted on a computer with 2 GHz Intel Core i5 CPU and 16
GB memory. These experiments were designed to answer the following questions:

Is CouponMaker efficient in optimizing the benchmark programs?
Are the optimized programs better than the original programs in terms of both energy
efficiency and latency?

7.2 Performance of the Optimization Tool
Table 2 shows the results of evaluating the optimization tool. Column 1 shows the benchmark
name. Column 2 shows the total running time in seconds. Column 3 shows the size of preSet,
which is the set of instructions that may be precomputed. Columns 4-5 compare the size
of the original and optimized programs, where the size is measured in the number of bytes
of the LLVM bit-code. Columns 6-8 show the details of the coupons stored in non-volatile
memory, including the number of coupons, and the total bytes, and whether the coupons
may be precomputed multiple times (copies).

Specifically, ∞ in the last column means the coupons may be precomputed an unlimited
number of times, while 1 means they may be precomputed only once.

For programs that compute one-time signatures (W-OTS and Lamport), a theoretically
unbounded number of signatures (coupons) may be precomputed. For block-cipher programs
in the -OFB mode, the ciphertext of the first block may also be precomputed as many times
as possible (after the first block becomes available), and in the -CNT mode, the counter
CNT may be incremented as many times as possible and then pre-encrypted for future use.

For block-cipher programs in the -CFB mode, however, precomputation can only be done
once per block, i.e., after the current block arrives.

The results show that our method is able to analyze, optimize, and transform all benchmark
programs quickly. The total running time is limited to a few seconds. Moreover, the size of
the program before and after optimization changes moderately. Furthermore, the number
and size of precomputed coupons are significant for all programs.

7.3 Performance of the Optimized Programs
Table 3 shows the result of evaluating the performance of the optimized programs. These
results were obtained using the MSPSim tool for MSP430FR599x [24]. Since MSPSim
requires the programs to be executed under concrete test inputs, for one-time signature
programs (W-OTS and Lamport), we obtain the test inputs by signing a fixed-length message;
for block-cipher programs, we obtain the test inputs by encrypting sensor data that represent
a sequence of temperature measurements.

Y. Li and C. Wang 16:23

Table 2 Performance of the analysis tool CouponMaker.

Name Time PreSet Program Size Coupon Size
(s) Size orig. opti. num bytes copies

W-OTS 5.26 1,632 16,116 21,704 3 1,152 ∞
Lamport 4.08 1,000 14,268 19,116 2 512 ∞
AES-OFB 3.35 3,964 52,636 57,984 1 16 ∞
AES-CFB 3.62 3,964 56,162 56,168 1 16 1
AES-CTR 3.73 4,064 53,164 58,584 1 16 ∞
Camellia-OFB 3.37 1,412 20,228 25,276 1 16 ∞
Camellia-CFB 3.30 1,412 20,696 25,788 1 16 1
Camellia-CTR 3.89 1,460 24,964 29,984 1 16 ∞
DES-OFB 3.11 2,072 26,384 26,496 1 8 ∞
DES-CFB 3.14 2,072 26,432 26,644 1 8 1
DES-CTR 3.05 2,112 26,896 27,556 1 8 ∞
Blowfish-OFB 3.38 1,196 16,200 21,308 1 8 ∞
Blowfish-CFB 3.27 1,196 16,180 21,288 1 8 1
Blowfish-CTR 3.70 1,242 16,636 21,724 1 8 ∞
skipjack-OFB 3.09 1,896 34,452 39,552 1 8 ∞
skipjack-CFB 3.26 1,896 34,404 39,536 1 8 1
skipjack-CTR 3.32 1,940 34,864 40,008 1 8 ∞
GOST-OFB 2.79 596 12,508 17,504 1 8 ∞
GOST-CFB 3.16 596 12,492 17,484 1 8 1
GOST-CTR 3.01 844 12,952 17,984 1 8 ∞
SEED-OFB 2.67 196 31,120 36,384 1 8 ∞
SEED-CFB 2.68 196 31,100 36,368 1 8 1
SEED-CTR 3.11 340 31,564 36,852 1 8 ∞
CAST128-OFB 2.49 352 46,628 51,748 1 8 ∞
CAST128-CFB 2.74 352 46,608 51,732 1 8 1
CAST128-CTR 3.00 396 47,064 52,228 1 8 ∞

In the result table, Column 1 shows the benchmark name. Column 2 shows the energy
(µJ) consumed by the original program. Columns 3-4 show the energy (µJ) consumed by the
optimized program, which is divided into the precomputing and online steps. Recall that in
energy-harvesting applications, energy reported in the E(pre) column is considered to be
free. Thus, the ratio in Column 5 represents the actual performance improvement.

The results show that the optimized programs significantly outperform the original
programs in terms of energy efficiency. The improvement ranges from 2.3X to 36.7X. We
also compared the latency of the original and optimized programs and observed a similar
improvement; we omit the result table due to space limit. Overall, these results show that
our method is effective in reducing the latency and energy cost.

7.4 Impact of the Precomputation Policy

Finally, we evaluate the impact of precomputation policy by computing the energy saving per
unit use of non-volatile memory storage, measured by qf = (E(ori)− E(on))/Size(coupon),
where qf stands for quality factor. The results are shown in Figure 11, where the x-axis
is the index of the array of benchmark programs and the y-axis is the quality factors (qf)
achieved by the baseline and optimized methods for program transformation (Section 6).

In this figure, blue bars (optimal) correspond to the optimized precomputation policy
(preSet∗), while orange bars (baseline) corresponds to the initial precomputation policy
(preSet). Here, a higher qf value corresponds to a better result. Overall, the optimized
precomputation policy leads to significantly better results.

ECOOP 2023

16:24 Constraint Based Compiler Optimization for Energy Harvesting Applications

Table 3 Evaluating reduction in energy cost on MSP430.

Name Original Program Optimized Program Improvement
E(ori) free E(pre) E(on) E(ori)/E(on)

W-OTS 115565.43 56114.99 49576.70 2.3X
Lamport 355.91 287.31 82.71 4.3X
AES-OFB 89.06 87.96 4.85 18.4X
AES-CFB 90.67 87.96 6.46 14.0X
AES-CTR 89.23 88.15 3.36 26.5X
Camellia-OFB 28.66 27.56 4.85 5.9X
Camellia-CFB 30.27 27.56 6.46 4.7X
Camellia-CTR 28.84 27.75 4.87 5.9X
DES-OFB 198.84 197.87 5.42 36.7X
DES-CFB 200.56 197.88 7.14 28.1X
DES-CTR 199.18 198.25 5.45 36.6X
Blowfish-OFB 15.63 14.66 5.43 2.9X
Blowfish-CFB 17.35 14.66 7.14 2.4X
Blowfish-CTR 15.97 12.64 4.01 4.0X
skipjack-OFB 26.16 25.20 5.42 4.8X
skipjack-CFB 29.33 25.20 8.58 3.4X
skipjack-CTR 26.73 26.06 5.71 4.7X
GOST-OFB 29.10 29.01 2.59 11.3X
GOST-CFB 29.83 29.01 3.32 9.0X
GOST-CTR 29.65 29.61 2.62 11.3X
SEED-OFB 20.32 19.21 4.85 4.2X
SEED-CFB 21.92 19.21 6.45 3.4X
SEED-CTR 20.49 17.64 3.22 6.4X
CAST128-OFB 164.89 161.86 16.89 9.8X
CAST128-CFB 170.24 161.86 22.24 7.7X
CAST128-CTR 165.95 163.05 16.99 9.8X

For W-OTS, qf(optimal) is also significantly higher than qf(baseline). However, the qf

values for W-OTS are not included in the figure, to avoid making the rest of the bar chart
less readable. This is because W-OTS takes several orders-of-magnitude more clock cycles
than the other programs, and thus has a much higher qf value.

8 Related Work

While prior work has shown the feasibility of optimizing energy-harvesting applications using
precomputation [47], optimization is performed manually; to the best of our knowledge, this is
the first automated optimization method. Compared to Suslowicz et al. [47], in particular, our
method can complete all of the optimization work with comparable performance. Moreover,
our method can support additional constraints for optimization, which the manual method
cannot deal with easily. Since our method is designed to preserve the original program
semantics, it is not meant for scenarios where the underlying algorithms are intended to be
rewritten according to some mathematical rules [4, 5] – automation for such transformation
is beyond the scope of this work.

Our method differs from the large number of intermittent computing techniques aimed
to improve general-purpose systems with a strong and yet unstable power supply; these
techniques [43, 35, 32, 48] focus on recovering from power loss using checkpointing, avoiding
the costly register accesses, or reducing the cost for loop-heavy programs [18, 17]. There are
also techniques for robustly supporting peripherals [46, 36]. However, none of them considers
the scenario where ambient energy source is ample but the computing device is idle, let alone
leveraging precomputation to reduce the energy cost.

Y. Li and C. Wang 16:25

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

La
mp
ort

AE
S-O
FB

AE
S-C
FB

AE
S-C
TR

Ca
me
llia
-O
FB

Ca
me
llia
-CF
B

Ca
me
llia
-CT
R

DE
S-O
FB

DE
S-C
FB

DE
S-C
TR

Blo
wf
ish
-O
FB

Blo
wf
ish
-C
FB

Blo
wf
ish
-C
TR

ski
pja
ck-
OF
B

ski
pja
ck-
CF
B

ski
pja
ck-
CT
R

GO
ST
-O
FB

GO
ST
-CF
B

GO
ST
-CT
R

RC
5-O

FB

RC
5-C
FB

RC
5-C
TR

XT
EA
-O
FB

XT
EA
-CF
B

XT
EA
-CT
R

qf(optimal)

Figure 11 The impact of the precomputation policy on performance improvement. Here, baseline
corresponds to preSet and optimal corresponds to preSet∗.

There are also techniques for programming transiently-powered computers with both
volatile and non-volatile memory, for example, by leveraging the application’s memory access
patterns to manually optimize data placement [9, 32, 34], or mapping of code sections to
either volatile or non-volatile memory [25] based on where the optimal energy consumption
could be achieved. There are also efficient checkpointing techniques [21, 1] for CPUs with
fully non-volatile main memory. However, none of them focuses on automated program
optimization based on precomputation.

Constraint solving based techniques are widely used for program verification, repair and
optimization. For example, they have been used to debug concurrent software [27, 23] and
optimize the quality of embedded software [13]. They have also been used to mitigate side-
channel vulnerabilities [49, 19, 52, 50], including power side-channel leaks [54, 51]. However,
power side-channel mitigation focuses on eliminating tiny fluctuations in power consumption
that are also secret-dependent [14], instead of reducing the power consumption itself.

While our focus in this work is on optimizing software for energy-harvesting applications,
the underlying ideas may be applied to other applications of similar nature, e.g., precompu-
tation for Trusted Authority (TA) in the context of multi-party computation (multi-party
learning and predicting[53, 16]). Since the application domain is significantly different, to
deal with software used in such applications, our LLVM based implementation may need to
be updated accordingly – we leave this for future work.

9 Conclusion

We have presented a constraint based method for optimizing the energy efficiency of software
code running on devices powered by electricity harvested from the environment. Our method
is sound and fully automated. It relies on static program analysis to identify instructions
that may be precomputed, constraint solving to compute an optimal subset, and compiler
transformation to generate the new software code. Our experimental evaluation on a large
number of benchmark programs shows that the proposed method can handle all of the
benchmark programs quickly, and the optimized programs significantly outperform the
original programs in terms of both energy efficiency and latency.

ECOOP 2023

16:26 Constraint Based Compiler Optimization for Energy Harvesting Applications

References
1 Saad Ahmed, Naveed Anwar Bhatti, Muhammad Hamad Alizai, Junaid Haroon Siddiqui, and

Luca Mottola. Efficient intermittent computing with differential checkpointing. In Jian-Jia
Chen and Aviral Shrivastava, editors, ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, and Tools for Embedded Systems, pages 70–81. ACM, 2019. doi:
10.1145/3316482.3326357.

2 Saad Ahmed, Muhammad Nawaz, Abu Bakar, Naveed Anwar Bhatti, Muhammad Hamad
Alizai, Junaid Haroon Siddiqui, and Luca Mottola. Demystifying energy consumption dynamics
in transiently powered computers. ACM Trans. Embed. Comput. Syst., 19(6):47:1–47:25, 2020.
doi:10.1145/3391893.

3 James Allen, Matthew Forshaw, and Nigel Thomas. Towards an extensible and scalable
energy harvesting wireless sensor network simulation framework. In Walter Binder, Vittorio
Cortellessa, Anne Koziolek, Evgenia Smirni, and Meikel Poess, editors, Companion Proceedings
of the 8th ACM/SPEC on International Conference on Performance Engineering, ICPE 2017,
L’Aquila, Italy, April 22-26, 2017, pages 39–42. ACM, 2017. doi:10.1145/3053600.3053610.

4 Giuseppe Ateniese, Giuseppe Bianchi, Angelo Capossele, and Chiara Petrioli. Low-cost
standard signatures in wireless sensor networks: a case for reviving pre-computation techniques?
In Network and Distributed System Security Symposium, 2013.

5 Giuseppe Ateniese, Giuseppe Bianchi, Angelo T Capossele, Chiara Petrioli, and Dora Spenza.
Low-cost standard signatures for energy-harvesting wireless sensor networks. ACM Transactions
on Embedded Computing Systems, 16(3):64, 2017.

6 The avr-crypto-lib software package. https://github.com/cantora/avr-crypto-lib. Ac-
cessed: 2019-09-26.

7 Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-Hashimi, Davide Brunelli,
and Luca Benini. Hibernus: Sustaining computation during intermittent supply for energy-
harvesting systems. IEEE Embedded Systems Letters, 7(1):15–18, 2015.

8 Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample. An energy-
interference-free hardware-software debugger for intermittent energy-harvesting systems.
In Tom Conte and Yuanyuan Zhou, editors, International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 577–589. ACM, 2016.
doi:10.1145/2872362.2872409.

9 Alexei Colin and Brandon Lucia. Chain: tasks and channels for reliable intermittent programs.
In Eelco Visser and Yannis Smaragdakis, editors, ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pages 514–530. ACM,
2016. doi:10.1145/2983990.2983995.

10 Riccardo Dall’Ora, Usman Raza, Davide Brunelli, and Gian Pietro Picco. SensEH: From
simulation to deployment of energy harvesting wireless sensor networks. In IEEE 39th
Conference on Local Computer Networks, Edmonton, AB, Canada, 8-11 September, 2014
– Workshop Proceedings, pages 566–573. IEEE Computer Society, 2014. doi:10.1109/LCNW.
2014.6927704.

11 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

12 The tiny Dutch startup solving the IoT industry’s battery problem. https://sifted.eu/
articles/nowi-dutch-startup-solving-iot-battery-problem/. Accessed: 2020-08-04.

13 Hassan Eldib and Chao Wang. An SMT based method for optimizing arithmetic computations
in embedded software code. In International Conference on Formal Methods in Computer-Aided
Design, pages 129–136. IEEE, 2013.

14 Hassan Eldib, Chao Wang, Mostafa M. I. Taha, and Patrick Schaumont. Quantitative masking
strength: Quantifying the power side-channel resistance of software code. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., 34(10):1558–1568, 2015.

https://doi.org/10.1145/3316482.3326357
https://doi.org/10.1145/3316482.3326357
https://doi.org/10.1145/3391893
https://doi.org/10.1145/3053600.3053610
https://github.com/cantora/avr-crypto-lib
https://doi.org/10.1145/2872362.2872409
https://doi.org/10.1145/2983990.2983995
https://doi.org/10.1109/LCNW.2014.6927704
https://doi.org/10.1109/LCNW.2014.6927704
https://sifted.eu/articles/nowi-dutch-startup-solving-iot-battery-problem/
https://sifted.eu/articles/nowi-dutch-startup-solving-iot-battery-problem/

Y. Li and C. Wang 16:27

15 Joakim Eriksson, Fredrik Österlind, Thiemo Voigt, Niclas Finne, Shahid Raza, Nicolas Tsiftes,
and Adam Dunkels. Accurate power profiling of sensornets with the COOJA/MSPSim
simulator. In IEEE 6th International Conference on Mobile Adhoc and Sensor Systems, pages
1060–1061, 2009.

16 Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In International Conference on Machine Learning, pages 201–210, 2016.

17 Graham Gobieski, Brandon Lucia, and Nathan Beckmann. Intelligence beyond the edge:
Inference on intermittent embedded systems. In International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 199–213. ACM, 2019.

18 Graham Gobieski, Amolak Nagi, Nathan Serafin, Mehmet Meric Isgenc, Nathan Beckmann,
and Brandon Lucia. MANIC: A vector-dataflow architecture for ultra-low-power embedded
systems. In IEEE/ACM International Symposium on Microarchitecture, pages 670–684, 2019.

19 Shengjian Guo, Meng Wu, and Chao Wang. Adversarial symbolic execution for detecting
concurrency-related cache timing leaks. In ACM Joint Meeting on European Software Engin-
eering Conference and Symposium on the Foundations of Software Engineering, pages 377–388.
ACM, 2018.

20 Josiah D. Hester, Timothy Scott, and Jacob Sorber. Ekho: realistic and repeatable experi-
mentation for tiny energy-harvesting sensors. In Ákos Lédeczi, Prabal Dutta, and Chenyang
Lu, editors, ACM Conference on Embedded Network Sensor Systems, pages 1–15. ACM, 2014.
doi:10.1145/2668332.2668336.

21 Matthew Hicks. Clank: Architectural support for intermittent computation. In International
Symposium on Computer Architecture, pages 228–240. ACM, 2017. doi:10.1145/3079856.
3080238.

22 Susan Horwitz and Thomas W. Reps. The use of program dependence graphs in software
engineering. In Tony Montgomery, Lori A. Clarke, and Carlo Ghezzi, editors, International
Conference on Software Engineering, Melbourne, Australia, May 11-15, 1992, pages 392–411,
1992.

23 Zunchen Huang and Chao Wang. Symbolic predictive cache analysis for out-of-order execution.
In International Conference on Fundamental Approaches to Software Engineering, pages
163–183. Springer, 2022.

24 Texas Instrument. MSP430FR599x Technical Documentation. URL: https://www.ti.com/
product/MSP430FR5994.

25 Hrishikesh Jayakumar, Arnab Raha, Jacob R. Stevens, and Vijay Raghunathan. Energy-aware
memory mapping for hybrid FRAM-SRAM mcus in intermittently-powered iot devices. ACM
Trans. Embed. Comput. Syst., 16(3):65:1–65:23, 2017. doi:10.1145/2983628.

26 Mustafa Emre Karagozler, Ivan Poupyrev, Gary K Fedder, and Yuri Suzuki. Paper generators:
harvesting energy from touching, rubbing and sliding. In ACM symposium on User interface
software and technology, pages 23–30, 2013.

27 Sepideh Khoshnood, Markus Kusano, and Chao Wang. ConcBugAssist: constraint solving for
diagnosis and repair of concurrency bugs. In International Symposium on Software Testing
and Analysis, pages 165–176. ACM, 2015.

28 The lamport_signature software package. https://github.com/detomastah/lamport_
signature. Accessed: 2019-09-26.

29 Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In International Symposium on Code Generation and Optimization:
feedback-directed and runtime optimization, page 75, 2004.

30 The Libgcrypt software package. https://gnupg.org/software/libgcrypt/index.html. Ac-
cessed: 2019-09-26.

31 The Libmcrypt software package. https://github.com/tugrul/libmcrypt-gyp/tree/
master. Accessed: 2019-09-26.

ECOOP 2023

https://doi.org/10.1145/2668332.2668336
https://doi.org/10.1145/3079856.3080238
https://doi.org/10.1145/3079856.3080238
https://www.ti.com/product/MSP430FR5994
https://www.ti.com/product/MSP430FR5994
https://doi.org/10.1145/2983628
https://github.com/detomastah/lamport_signature
https://github.com/detomastah/lamport_signature
https://gnupg.org/software/libgcrypt/index.html
https://github.com/tugrul/libmcrypt-gyp/tree/master
https://github.com/tugrul/libmcrypt-gyp/tree/master

16:28 Constraint Based Compiler Optimization for Energy Harvesting Applications

32 Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution model
for intermittent systems. ACM SIGPLAN Notices, 50(6):575–585, 2015.

33 Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan, Xueqing Li, Yongpan
Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan Narayanan. Architecture exploration for
ambient energy harvesting nonvolatile processors. In IEEE International Symposium on High
Performance Computer Architecture, pages 526–537, 2015.

34 Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: intermittent execution without
checkpoints. Proc. ACM Program. Lang., 1(OOPSLA):96:1–96:30, 2017. doi:10.1145/
3133920.

35 Kiwan Maeng and Brandon Lucia. Adaptive dynamic checkpointing for safe efficient intermit-
tent computing. In USENIX Symposium on Operating Systems Design and Implementation,
pages 129–144, 2018.

36 Kiwan Maeng and Brandon Lucia. Supporting peripherals in intermittent systems with
just-in-time checkpoints. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 1101–1116, 2019.

37 Shorter Merkle Signatures. https://www.openssl.org. Accessed: 2019-09-26.
38 Azalia Mirhoseini, Ebrahim M Songhori, and Farinaz Koushanfar. Idetic: A high-level synthesis

approach for enabling long computations on transiently-powered ASICs. In IEEE International
Conference on Pervasive Computing and Communications, pages 216–224, 2013.

39 The MSP430 emulator. https://github.com/contiki-ng/mspsim.
40 OpenSSL. https://www.openssl.org. Accessed: 2019-09-26.
41 Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: System support for long-running

computation on RFID-scale devices. In ACM SIGARCH Computer Architecture News, pages
159–170, 2011.

42 Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In Ron K. Cytron and Peter Lee, editors, ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Francisco, California, USA, January
23-25, 1995, pages 49–61, 1995.

43 Emily Ruppel and Brandon Lucia. Transactional concurrency control for intermittent, energy-
harvesting computing systems. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 1085–1100, 2019.

44 Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V Mamishev, and Joshua R
Smith. Design of an rfid-based battery-free programmable sensing platform. IEEE transactions
on instrumentation and measurement, 57(11):2608–2615, 2008.

45 Claude E. Shannon. Communication theory of secrecy systems. Bell Syst. Tech. J., 28(4):656–
715, 1949.

46 Milijana Surbatovich, Limin Jia, and Brandon Lucia. I/O dependent idempotence bugs in
intermittent systems. Proceedings of the ACM on Programming Languages, 3(OOPSLA):183,
2019.

47 Charles Suslowicz, Archanaa S Krishnan, and Patrick Schaumont. Optimizing cryptography
in energy harvesting applications. In Proceedings of the Workshop on Attacks and Solutions in
Hardware Security, pages 17–26. ACM, 2017.

48 Joel Van Der Woude and Matthew Hicks. Intermittent computation without hardware support
or programmer intervention. In USENIX Symposium on Operating Systems Design and
Implementation, pages 17–32, 2016.

49 Chao Wang and Patrick Schaumont. Security by compilation: an automated approach to
comprehensive side-channel resistance. ACM SIGLOG News, 4(2):76–89, 2017.

50 Jingbo Wang, Chungha Sung, Mukund Raghothaman, and Chao Wang. Data-driven synthesis
of provably sound side channel analyses. In International Conference on Software Engineering,
pages 810–822. IEEE, 2021.

https://doi.org/10.1145/3133920
https://doi.org/10.1145/3133920
https://www.openssl.org
https://www.openssl.org

Y. Li and C. Wang 16:29

51 Jingbo Wang, Chungha Sung, and Chao Wang. Mitigating power side channels during
compilation. In ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 590–601. ACM, 2019.

52 Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. Eliminating timing side-
channel leaks using program repair. In Frank Tip and Eric Bodden, editors, ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 15–26. ACM, 2018.

53 Jiawei Yuan and Shucheng Yu. Privacy preserving back-propagation neural network learning
made practical with cloud computing. IEEE Transactions on Parallel and Distributed Systems,
25(1):212–221, 2013.

54 Jun Zhang, Pengfei Gao, Fu Song, and Chao Wang. SCInfer: Refinement-based verification
of software countermeasures against side-channel attacks. In International Conference on
Computer Aided Verification, pages 157–177. Springer, 2018.

ECOOP 2023

Restrictable Variants: A Simple and Practical
Alternative to Extensible Variants
Magnus Madsen #

Department of Computer Science, Aarhus University, Denmark

Jonathan Lindegaard Starup #

Department of Computer Science, Aarhus University, Denmark

Matthew Lutze #

Department of Computer Science, Aarhus University, Denmark

Abstract
We propose restrictable variants as a simple and practical alternative to extensible variants. Re-
strictable variants combine nominal and structural typing: a restrictable variant is an algebraic
data type indexed by a type-level set formula that captures its set of active labels. We introduce
new pattern-matching constructs that allows programmers to write functions that only match on a
subset of variants, i.e., pattern-matches may be non-exhaustive. We then present a type system for
restrictable variants which ensures that such non-exhaustive matches cannot get stuck at runtime.

An essential feature of restrictable variants is that the type system can capture structure-
preserving transformations: specifically the introduction and elimination of variants. This property
is important for writing reusable functions, yet many row-based extensible variant systems lack it.

In this paper, we present a calculus with restrictable variants, two partial pattern-matching
constructs, and a type system that ensures progress and preservation. The type system extends
Hindley-Milner with restrictable variants and supports type inference with an extension of Algo-
rithm W with Boolean unification. We implement restrictable variants as an extension of the Flix
programming language and conduct a few case studies to illustrate their practical usefulness.

2012 ACM Subject Classification Theory of computation → Program semantics

Keywords and phrases restrictable variants, extensible variants, refinement types, Boolean unification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.17

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.12

1 Introduction

“Perfection is achieved, not when there is nothing more to add, but when there is
nothing left to take away.” – Antoine de Saint-Exupéry

In functional programming, algebraic data types and pattern matching have been hugely
successful. So successful that many non-functional mainstream programming languages,
including Kotlin and Rust have also adopted them. While algebraic data types, i.e. sum and
variant types, are widely used, their cousins extensible variants and extensible records are
far less available. Extensible variants and records, based on row-polymorphic type systems,
have been known for several decades [11, 16, 37]. Yet one has to look far to find usable
implementations. OCaml does not support extensible records, but does support a form of
extensible variants as a “language extension”, but this implementation is far less powerful
than simple row-polymorphic systems. PureScript supports extensible records, but not
extensible variants.1 Elm had support for extensible records, but this feature was removed.2
We speculate that there are at least a few reasons for this lack of support: (i) lack of real (or
perceived) use cases, (ii) implementation difficulty, and (iii) hitting the “right” expressiveness.

1 https://github.com/purescript/documentation/blob/master/language/Records.md
2 https://github.com/elm/compiler/issues/985

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Magnus Madsen, Jonathan Lindegaard Starup, and Matthew Lutze;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 17; pp. 17:1–17:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:magnusm@cs.au.dk
https://orcid.org/0000-0002-7510-8724
mailto:jls@cs.au.dk
https://orcid.org/0000-0002-0931-7878
mailto:mlutze@cs.au.dk
https://orcid.org/0000-0002-2904-5099
https://doi.org/10.4230/LIPIcs.ECOOP.2023.17
https://doi.org/10.4230/DARTS.9.2.12
https://doi.org/10.4230/DARTS.9.2.12
https://github.com/purescript/documentation/blob/master/language/Records.md
https://github.com/elm/compiler/issues/985
https://doi.org/10.4230/DARTS.9.2.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Restrictable Variants

To expand on (iii), we believe we have identified a major practical weakness in existing
row-based extensible variant systems. We illustrate the problem with an example: In a
compiler pipeline, we can view each compiler phase as a function, and the whole compiler as
the composition of these functions. For example, we might have:
let compile = ... >> typecheck >> lambdalift >> codegen

where >> is forward function composition. The lambdalift phase performs closure conversion
and lambda lifting which is required before we can generate machine code. Concretely, we can
imagine that the lambdalift function replaces Lambda expressions with Closure expressions in
the abstract syntax tree. We say that lambdalift introduces the Closure variant and eliminates
the Lambda variant. Importantly, we must run lambdalift before we can run codegen.

As compiler writers, it would be very useful if we could type check the abstract syntax
trees produced by lambdalift. That is, we would like to write:
let compile = ... >> typecheck >> lambdalift >> typecheck >> codegen

This requires us to extend the typecheck function to handle Closure expressions, but that is
simple; type checking them is similar to type checking lambdas.

We might think that the above scenario can be programmed with row-based extensible
variants, but, unfortunately, this is not the case. The problem is the following: The codegen
phase cannot handle abstract syntax trees unless they have been closure-converted and
lambda-lifted, i.e. unless the Lambda expression has been eliminated. But after the second
call to typecheck, a row-based system loses the knowledge that the Lambda variant has been
eliminated, hence the above program does not type check.

We call this phenomenon the co-domain problem for extensible variants:

The Co-Domain Problem: Type systems with extensible variants based on row
polymorphism are unable to precisely capture the introduction and elimination of
variants in pattern-matches. (We expand on the details in Section 5.)

To overcome this issue, we propose restrictable variants. A restrictable variant is a sum
type indexed by a type-level set formula that over-approximates the “active” set of labels
of the sum. We can think of a restrictable variant as a form of refinement type [10, 36]
where the type-level index refines the possible labels of an expression of that type. In this
way, restrictable variants combine nominal and structural typing. With restrictable variants,
programmers can write one data type definition and reuse it in different contexts. This is in
contrast to the standard functional programming approach of writing multiple, but similar,
data types definitions or using a purely structural type system.

In this paper, we introduce restrictable variants and a new partial pattern-matching
construct which comes in two flavors: choose and choose*. The choose expression permits a
non-exhaustive pattern-match on a restrictable variant where only some variants are handled.
The choose* expression goes further and enables programmers to write structure-preserving
transformations which are captured at the type level. Specifically, we can precisely capture
the introduction or elimination of variants. This overcomes the co-domain problem that was
outlined above. We propose a type system for restrictable variants which is an extension of
Hindley-Milner, supports complete type inference, and ensures that programs with partial
pattern-matches (i.e. with choose and choose*) cannot get stuck.

We compare the expressiveness of restrictable variants to other existing systems, including
row-based extensible variants [11, 16, 33, 37], row theories [30], occurrence typing [7], and
relational nullable types [25]. We find that many of these systems are significantly more
expressive (and sometimes more complex) than restrictable variants, yet most cannot express

M. Madsen, J. L. Starup, and M. Lutze 17:3

the simple programming patterns that we use in our case studies. We think that restrictable
variants (like row-based systems) have simple types that will be understandable by ordinary
programmers and which will work well in practice. It is also our hope that restrictable
variants can serve as inspiration for new and more sophisticated type systems that can handle
the use cases we present.

The ideas in this paper are simple, but as far as we can tell, they have not yet been
explored in the literature, and we believe they solve real problems. While we present
restrictable variants as an alternative to extensible variants, we have found that it is natural
to combine restrictable variants with extensible records (a point we return to in Section 6).

We implement restrictable variants as an extension of the Flix programming language.
We discuss how the implementation supports complete type inference as a natural extension
of Algorithm W. The two key ideas are: (i) a type rule, for the choose* expression, which
relates the type-level index of the “input” (scrutinee expression) to the “output” (result
expression), and (ii) a formulation of the type rule as a set equation which is solvable by
Boolean unification in the algebra of sets.

We use the implementation to conduct a case study of a few programs that use restrictable
variants. The first case study models Boolean formulas and is used as a running example
throughout the paper. The second case study combines the Option, List, and Nel (non-empty
list) data types into one restrictable variant. The third case study shows how to combine
restrictable variants with extensible records. The case studies demonstrate that programming
with restrictable variants is simple and valuable.

In summary, the contributions of this paper are:

(Restrictable Variants) We present restrictable variants: a simple alternative to
extensible variants. Restrictable variants offer a new point in the design space with
different trade-offs from existing systems. Moreover, restrictable variants solve the
function composition problem for row-based extensible variants.

(Type System) We present a type system for restrictable variants. We prove the
standard progress and preservation theorems. The type system ensures that a program
with partial pattern-matches (the choose and choose* expressions) cannot get stuck.

(Implementation) We implement restrictable variants as an extension of the Flix
programming language. We discuss how the type system supports type inference via an
extension of Algorithm W with Boolean unification.

(Expressiveness) We compare the expressiveness of restrictable variants to other systems.
We observe that restrictable variants are simple, yet they support reasonable use cases that
cannot be handled by many other systems, in particular those based on row polymorphism.

(Case Study) We present a case study of a few programs that use restrictable variants.
The case study shows that (a) restrictable variants are useful and (b) capture real-world
programming patterns.

This paper is organized as follows: In Section 2 we present restrictable variants and
motivate their use with several examples. In Section 3 we present a type system for restrictable
variants based on type-level set formulas. In Section 4 we discuss our implementation of
restrictable variants and show how to implement type inference. In Section 5 we compare
the expressiveness of restrictable variants to other systems, including row-based extensible
variants. In Section 6 we present a case study on the use of restrictable variants. In Section 7
we present related work and in Section 8 we conclude the paper.

ECOOP 2023

17:4 Restrictable Variants

2 Motivation

We motivate restrictable variants with several examples. We begin with a simple example to
build intuition. Next, we move on to a more realistic example of modeling Boolean formulas,
which we use as a running example throughout the rest of the paper. We show many types,
but, of course, the point is that they can be inferred. All examples are runnable in our
extension of Flix.

▶ Example 1 (Restrictable Variant). We can define a restrictable variant data type:

enum Color [s] {
case Red
case Green
case Blue

}

The Color type is indexed by a type variable s that ranges over the labels of the algebraic
data type. The labels of the Color data type are: Red, Green, and Blue. The index is a set
formula that captures which variants of the data type may be present. For example:

Color[{}] = ∅ Color[{Red,Blue}] = {Red,Blue} Color[Green∁] = {Red,Blue}

We can also have richer indices where a free variable is involved. For example:

Color[s−Red] ⊆ {Green,Blue} {Green,Blue} ⊆ Color[(s−Red)+(s∁)] ⊆ {Red,Green,Blue}

where s is a free variable. In full generality, the index is a type-level set formula whose
valuations capture which variants of the data type may be present. As the examples
show, there are many equivalent set formulas. For example, Green∁ is equivalent to the set
{Red,Blue}. The set formulas may also contain variables, a fact that becomes important
when we consider pattern-matches on restrictable variants.

We can write a function that only operates on some colors of a restrictable variant:

def isWarm (c: Color [{Red , Blue }]): Bool = choose c {
case Red => true
case Blue => false

}

Here the type of isWarm, which can be fully inferred, captures that the function can accept
any color which is either Red or Blue. Specifically, the type system ensures that it is a
compile-time type error to call isWarm with the color Green.

This example demonstrates a key feature of the proposed type system: We can write
pattern-matches that are non-exhaustive and have the type system ensure that a function
like isWarm is never invoked with a value that is not handled.

With some intuition in place, we now move on to our running example: a restrictable
variant that models Boolean formulas. We use Boolean formulas since they are well-known
and they are sufficient to illustrate several key features of our system. We want to stress
that the following ideas scale to more complex data types, e.g. abstract syntax trees, as we
shall discuss in Section 6.

A remark on notation: In Flix source code we shall write ~S for S∁, S1 + S2 for S1 ∪S2, and
S1 & S2 for S1 ∩ S2. We use these symbols because they are in ASCII and are reminiscent of
the bitwise operators. In the formal treatment of the calculus and its type system (Section 3),
we will use the standard math symbols.

M. Madsen, J. L. Starup, and M. Lutze 17:5

▶ Example 2 (Variant Restriction). We can define a restrictable variant for Boolean formulas:

enum Expr[s] {
case Var(Int32)
case Cst(Bool)
case Not(Expr[s])
case Or(Expr[s], Expr[s])
case And(Expr[s], Expr[s])
case Xor(Expr[s], Expr[s])

}

We can write a function which reduces closed terms to a Boolean constant:

def eval(e: Expr [~ Var]): Bool =
choose e {

// Var case omitted : We can only evaluate closed terms.
case Cst(b) => b
case Not(x) => not eval(x)
case Or(x, y) => eval(x) or eval(y)
case And(x, y) => eval(x) and eval(y)
case Xor(x, y) => eval(x) != eval(y)

}

The evaluator itself is straightforward. We simply pattern-match on each case and implement
the semantics directly. What is interesting is that we cannot evaluate an open term (i.e. a
formula with variables in it), hence we simply omit the Var case from the pattern-match.
The type system then infers that the eval function can passed any Boolean expression as
long as it does not use the Var variant. This is captured by the type Expr[{~Var}] which is
equivalent to Expr[{Cst, Not, Or, And, Xor}].

▶ Example 3 (Variant Elimination). We can also write a Boolean formula simplifier which
eliminates the Xor term by translation:

def simplify (e: Expr[s]): Expr [~ Xor] =
choose e {

case Var(x) => Var(x)
case Cst(b) => Cst(b)
case Not(x) => Not(simplify (x))
case Or(x, y) => Or(simplify (x), simplify (y))
case And(x, y) => And(simplify (x), simplify (y))
case Xor(x, y) =>

let x1 = simplify (x);
let y1 = simplify (y);
Or(And(x1 , Not(y1)), And(Not(x1), y1))

}

The simplifier is also straightforward. The return type of the simplify function now excludes
the possibility that the returned value can contain a Xor variant. This is captured by the
type Expr[{~Xor}] which is equivalent to Expr[{Var, Cst, Not, Or, And].

The unfortunate weakness of the simplifier is that if we know that the input cannot
contain any variables (e.g. the Var variant) then this information is lost in the output. For
example, if we have a closed Boolean formula, we cannot simplify it and then evaluate it
because the return type of simplify includes the Var variant in its type. We lost the knowledge
that the term was closed!

ECOOP 2023

17:6 Restrictable Variants

The fundamental issue is that in simplify we have lost the relation between the type-level
index in the argument type (i.e., Expr[s]) and the result type (i.e., Expr[~Xor]). To overcome
this, we introduce the choose* construct. The choose* construct allows us to maintain a
relation between the input type and the output type, as the following example shows:
▶ Example 4 (Structure-Preserving Map). We can use the choose* construct to write a
structure-preserving map function:

def map(f: Int32 -> Int32 , e: Expr[s]): Expr[s] =
choose * e {

case Var(x) => Var(f(x))
case Cst(b) => Cst(b)
case Not(x) => Not(map(f, x))
case Or(x, y) => Or(map(f, x), map(f, y))
case And(x, y) => And(map(f, x), map(f, y))
case Xor(x, y) => Xor(map(f, x), map(f, y))

}

The map function applies a function f : Int32 → Int32 to every variable in the given expression.
What is essential is that the argument type is Expr[s] and the result type is Expr[s] which
means that information about the “active” variants in the input is preserved in the output.

▶ Example 5 (Simplify – Revisited). Recall that the original version of simplify used choose

and had the signature:
def simplify (e: Expr[s]): Expr [~ Xor] = ...

If we change the implementation to use choose* we instead get the more precise signature:
def simplify (e: Expr[s]): Expr [(s - Xor) + {Not , And , Or }]

which captures that simplify will return an expression that may contain the Not, Or, And
variants plus the Cst and Var variants, if the input contains them. We might have hoped the
return type would simply be Expr[(s - Xor)], but the type system cannot exclude the Not, Or,
And variants because they are introduced by elimination of Xor. Fortunately, the signature
of simplify is strong enough to capture the two important properties we care about:

The Var variant can only occur in the output if it occurs in the input.
The Xor variant is eliminated, i.e. cannot occur in the output.

Consequently, if the input is a closed formula (i.e. lacks the Var variant) then after
simplification it will still be closed and we can evaluate it.

With the updated simplify, we can write a function:
let run = simplify >> eval

which is inferred to have the type Expr[s− Var] → Bool where the closedness requirement is
propagated “backwards” through the (forward) function composition operator >>.
▶ Example 6 (Substitution). We can also write a substitution function that replaces each
variable in a Boolean formula with a value from an environment:

def subst (m: Map[Int32 , Bool], e: Expr[s]): Expr [(s - Var) + Cst] =
choose * e {

case Var(x) => Cst(Map. getWithDefault (x, false , m))
case Cst(b) => Cst(b)
case Not(x) => Not(subst (m, x))
case Or(x, y) => Or(subst (m, x), subst (m, y))
case And(x, y) => And(subst (m, x), subst (m, y))
case Xor(x, y) => Xor(subst (m, x), subst (m, y))

}

M. Madsen, J. L. Starup, and M. Lutze 17:7

We define the subst function to operate on all Boolean expressions. The return type of subst
is the same as the input type (sans Var), but may potentially contain the Cst variant. The
reason is that the type system is not sufficiently expressive to capture that the Cst variant
can only occur if either the Var or the Cst variants are present in the input. This “loss of
precision” only affects the Cst variant. For example, we still know that if the input cannot
contain the Xor variant then neither can the output.

▶ Example 7 (Function Composition). Imagine that we have a fast evaluator, but it only
supports the Cst, Not, And, and Or variants. We can capture this with the signature:

def fasteval (e: Expr[s & {Cst , Not , And , Or }]): Bool = ...

We can compose the simplify, subst, and fasteval functions as follows:
let fastrun = m -> simplify >> subst (m) >> fasteval

The (inferred) type of fastrun is:

fastrun : ∀s.Map[Int32, Bool] → Expr[s] → Bool

i.e., given an environment and a Boolean expression it computes a primitive Bool.
What is essential is that the function types of simplify, subst, and fasteval compose in

a way that preserves the information that simplify eliminates the Xor variant and subst
eliminates the Var variant, hence the final call to fasteval is valid. Looking at the types:

simplify : ∀s1.Expr[s1] → Expr[s1 - Xor + {Not, And, Or}]
subst(m) : ∀s2.Expr[s2] → Expr[(s2 - Var) + Cst]

fasteval : ∀s3.Expr[s3 & {Cst, Not, And, Or}] → Bool

We see that when we apply the output of simplify as the input to subst(m), we get the type:

Expr[(((s1 - Xor + {Not, And, Or})) - Var) + Cst]

This type is compatible with the input type of fasteval because the set equation:

(((s1 - Xor + {Not, And, Or})) - Var) + Cst = s3 & {Cst, Not, And, Or}

has a solution. Specifically, it has the most-general unifier:

{s3 7→ s1 + {Cst, Not, And, Or}}

where s1 and s2 are implicitly mapped to themselves. This solution can be found by
Boolean unification. Thus, in summary, we are able to infer that fastrun has the type
∀s.Map[Int32, Bool] → Expr[s] → Bool which means that it works for any Boolean formula.

As we shall discuss in Section 5, the power of our system is this ability to track the
introduction and elimination of variants through function composition. Notably, several other
existing systems lack this property, including row-based extensible variants. The key issue
is that a row polymorphic system is unable to precisely relate the input type of a (partial)
pattern-match to its output type. Thus we lose track of the fact that simplify eliminates the
Xor variant and hence we cannot call fasteval. We call this phenomenon the “co-domain”
problem for extensible variants since these type systems lack the ability to relate the domain
of a (partial) pattern-match (i.e. its input type) to its co-domain (i.e. its output type).

ECOOP 2023

17:8 Restrictable Variants

In our experience and based on the case studies (Section 6), we find it important to stress
how important this property is for reusability. In a compiler, we want to write the subst
function once and for the entire abstract syntax tree. However, if the subst function loses
information about what variants can be returned in its output, then its utility is hampered,
as most compiler phases only operate on a subset of the entire abstract syntax tree.

2.1 Summary
We conclude with a summary of the properties of the proposed system:

(Property I) Restrictable variants are sum types indexed by a type-level set formula that
over-approximates the “active” set of labels of the sum. Programmers can use restrictable
variants to write one data type definition that is reusable in many different contexts.
(Property II) The choose construct enables programmers to write non-exhaustive
pattern-matches on restrictable variants handling only the relevant cases. The choose*

construct enables a form of refinement typing where the result type of a non-exhaustive
pattern-match is related to its input type.
(Property III) Functions on restrictable variants compose under introduction and
elimination of labels; i.e., a sequence of introductions and eliminations does not lose
information at the type level.
(Property IV) The type system ensures that the non-exhaustive choose or choose*

constructs cannot get stuck at runtime. The type system extends Hindley-Milner and
supports complete type inference.
(Property V) Restrictable variants are a natural generalization of algebraic data types
and are simple to implement.

3 Restrictable Variants

We now present λres
var: a minimal lambda calculus with restrictable variants. We present its

syntax and semantics, then its type system, and finally its meta theoretic properties. The
λres

var calculus and its type system are mostly standard; the novelties are the choose and choose*

constructs and the use of set formulas in the type system.

3.1 Syntax and Semantics
We begin with a discussion of the syntax and semantics of the λres

var calculus.

Syntax

The syntax of the λres
var calculus (cf. Figure 1a) includes the standard lambda calculus constructs:

variables, constants, lambda abstractions, and function applications. The let-expression
allows polymorphic generalization, as is standard in Hindley-Milner. We include the if-then-
else expression to illustrate how the type system merges information. We require that every
λres

var program comes with a map Σ : Enum → Label → Scheme of declared variants.
The raison d’être is the choose e {η} and choose⋆ e {η} expressions. In both expressions,

e is the match expression and η is a sequence of match cases. A match case is of the form
case E .ℓ(x) ⇒ e where E is the enum that the label ℓ belongs to, x is the match variable, and
e is the match expression body. As shown, we prefix all labels with the enum they come from;
i.e., we write “Color.Red” and not just “Red”. Recall that both choose expressions are needed,
since choose allows expression bodies to have an arbitrary type, whereas choose* requires that
the expression bodies have the same type as the match expression (modulo the type-level

M. Madsen, J. L. Starup, and M. Lutze 17:9

v ∈ Val = () | true | false
| λx. e

| E .ℓ(v)
e ∈ Exp = x | v | e e | E .ℓ(e)

| let x = e in e

| if e then e else e

| choose e {η}
| choose⋆ e {η}
| open e

η ∈ Case = case E .ℓ(x) ⇒ e

E ∈ Enum = a set of enums
ℓ ∈ Tag = a set of tags

x, y ∈ Var = a set of variables

(a) Syntax of λres
var.

φ ∈ Formula = ∅ | {E .ℓ} | β | φ∁ | φ ∪ φ | φ ∩ φ

τ ∈ Type = α | Unit | Bool | τ → τ | E [φ]

σ ∈ Scheme = τ | ∀α. σ | ∀β. σ

α ∈ TypeVar = a set of type variables
β ∈ BoolVar = a set of Boolean variables

(b) Types and Type Schemes of λres
var.

Figure 1 Syntax and Types of λres
var.

(λx. e) v ⇝ e[x 7→ v] (E-App)
let x = v in e⇝ e[x 7→ v] (E-Let)

if true then e1 else e2 ⇝ e1 (E-Ite-T)
if false then e1 else e2 ⇝ e2 (E-Ite-F)

open E .ℓ(v)⇝ E .ℓ(v) (E-Open)

ηi = case E .ℓ(x) ⇒ e

choose E .ℓ(v) {η}⇝ e[x 7→ v]
(E-Choose)

ηi = case E .ℓ(x) ⇒ e

choose⋆ E .ℓ(v) {η}⇝ open e[x 7→ v]
(E-Choose-⋆)

e1 ⇝ e′
1

e1 e2 ⇝ e′
1 e2

(C-App)
e⇝ e′

v e⇝ v e
(C-App2)

e1 ⇝ e′
1

let x = e1 in e2 ⇝ let x = e′
1 in e2

(C-Let)

e1 ⇝ e′
1

if e1 then e2 else e3 ⇝ if e′
1 then e2 else e3

(C-Ite)

e⇝ e′

open e⇝ open e′ (C-Open)

e⇝ e′

choose e {η}⇝ choose e′ {η}
(C-Choose)

e⇝ e′

choose⋆ e {η}⇝ choose⋆ e′ {η}
(C-Choose-⋆)

Figure 2 Evaluation Rules of λres
var.

indices). We construct a variant value with the E .ℓ(e) expression, e.g. “Color.Red()” where ()
is the unit value. The choose e {η} and choose⋆ e {η} expressions are akin to pattern-matches,
except there are no wildcards, tuple patterns, or nested patterns. Importantly, the choose

and choose* expressions do not have to be exhaustive.
The open e expression is not part of the surface syntax, and is present only during

evaluation. Semantically, open e is equivalent to e. Its purpose is explained in Section 3.2.

Semantics

The semantics of λres
var is a call-by-value operational semantics for the lambda calculus. Figure 2

shows the evaluation rules of λres
var which are standard except for (E-Open),(E-Choose), and

(E-Choose-⋆). We write e[x 7→ v] for the capture avoiding substitution of x 7→ v into e. The
congruence rules, prefixed with C, enforce a left-to-right evaluation order. The (E-Open)
rule reduces a tagged value E .ℓ(v) to itself. The (E-Choose) evaluation rule captures that
if we evaluate a tagged value E .ℓ(v) for some value v then we look for a case case E .ℓ(x) ⇒ e

in the pattern-match. If found, we evaluate the case body, i.e. we step to e[x 7→ v]. The
(E-Choose-⋆) is very similar, but it instead steps to open e[x 7→ v].

ECOOP 2023

17:10 Restrictable Variants

How λres
var Programs “Get Stuck”

We briefly illustrate how λres
var programs may get stuck during evaluation. The obvious reason

is when true or false is applied as a function, or when a lambda expression is used as a
condition in an if-then-else. The more interesting case is when a choose or choose* expression
is applied to a variant for which there is no case:
choose Green {

case Red => true
case Blue => false

}

The type system will reject such programs.

3.2 Type System
We now describe the type system of λres

var: its types, type rules, and meta-theory.

Mono Types and Poly Types (Type Schemes)

The types of λres
var are separated into mono types (τ) and type schemes (σ). The mono types

include type variables α, the base types Unit and Bool, function types τ → τ , and variant
types E [φ] which consist of an enum symbol E indexed by a type-level Boolean set formula φ.
The language of formulas, for a given variant type E , consists of the empty set ∅, a singleton
set with one label {E .ℓ}, Boolean variables β, the complement of a formula φ∁, the union
of two formulas φ ∪ φ, and the intersection of two formulas φ ∩ φ. We write A−B for set
difference which is equivalent to A ∩B∁. We also write A <: B as an alias for the constraint
A−B = ∅ (i.e. A <: B ⇔ A ∩B∁ = ∅). Note that the complement of a set is well-defined,
since a variant type is declared to have a fixed finite set of labels (which forms the universe).

In principle, to ensure that it always clear what the universe of labels is, we should always
index each set formula with its associated variant type E symbol, e.g. we should write φE .
However, we typically omit the enum name when it is clear from the context.

We write ftv(φ) for the variables in φ. A valuation ν for a formula φ is an assignment of
concrete sets of labels to all of the variables in ftv(φ). In this way, we can view a set formula
as a function from concrete sets to a concrete set. Two set formulas φ1 and φ2 are equivalent
(written φ1 ≡B φ2) if they describe the same function. That is, if ∀ν. ν(φ1) = ν(φ2) where ν
must be a valuation of both φ1 and φ2.

Type schemes σ extend types by quantification over type variables α and Boolean variables
β. That is, a type scheme is of the form ∀γ. τ , where γ is a vector of type variables and
Boolean variables. Figure 1b shows the types and type schemes of λres

var.
We define type equivalence as the smallest relation ≡B

3 such that:
τ ≡B τ .
If τ1 ≡B τ

′
1 and τ2 ≡B τ

′
2 then τ1 → τ2 ≡B τ

′
1 → τ ′

2.
If φ ≡B φ

′, then E [φ] ≡B E [φ′].
For example, we have that Color[{Red}∁] ≡B Color[{Green,Blue}]. Two types, with set
formulas in them, do not have to share the same variables (or even share the same number of
variables) to be equivalent. For example: Color[{Green}] ≡B Color[(β ∩ {Green}) ∪ {Green}].

We define substitutions S : (TypeVar ∪ BoolVar → Type) as assignment of type variables
to types and Boolean variables to Boolean formulas. We say the type τ is an instance of
type scheme σ, written σ ⊑ τ , if σ = ∀γ.τ ′ and there exists a type substitution S such

3 We overload the ≡B symbol to stand for both Boolean equivalence and type equivalence.

M. Madsen, J. L. Starup, and M. Lutze 17:11

that dom(S) = γ and S(τ ′) = τ . Moreover, we define a context Γ as a map of bindings
x : σ, and ftv(σ) to be the type variables that occur free in σ, and ftv(Γ) as the union of
all free type variables in its range. We also define the generalization of a type gen(Γ, τ) as
∀α1, · · · , ∀αn.∀β1, · · · , ∀βn.τ where {α1, · · · , αn, β1, · · · , βn} = ftv(τ) \ ftv(Γ).

Variant Declarations

As stated earlier, we require every restrictable variant to be declared. Specifically, we assume
that there is a set of enum symbols Enum and map Σ : Enum → Label → Scheme4 which
assigns a type scheme to every constructor (label) of the type. We require that the type
schemes are of one of the two following forms5:
1. Σ(E .ℓ) = ∀β. τ → E [β] ftv(τ) = ∅
2. Σ(E .ℓ) = ∀β. E [β] → E [β]
These requirements ensure that:

A constructor is applied to a simple type (e.g. Σ(Color.Red) = ∀β.Unit → Color[β]), or
A constructor is applied to the same variant type, but with the same type-level index
(e.g. Σ(Expr.Not) = ∀β.Expr[β] → Expr[β]).
The type scheme of a constructor is always polymorphic function type over β whose result
type is of the form E [β].

And that the following lemma holds:

▶ Lemma 8 (Label-instantiation). If two instantiations of the same label type scheme
share the same result type then they must share the same argument type.

Σ(E .ℓ) ⊑ τ1 → E [φ] ∧ Σ(E .ℓ) ⊑ τ2 → E [φ] =⇒ τ1 = τ2

Intuitively, the result type of an instantiated label type scheme uniquely determines its
argument type. The idea is that if we know that Not(e) : Expr[{Cst,Not}] then know that
the type of e is also Expr[{Cst,Not}]. In other words, the type-level index of a restrictable
variant also applies to its constituents. This fact is used to show preservation.

Type Rules

Figure 3 shows the declarative type rules of λres
var. A declarative typing judgment is of the

form Γ ⊢ e : τ . As is standard, the context Γ : Var ↪→ Scheme is a partial function from
variables to type schemes. Most of the type rules are standard.

The (T-Eq) rule states that if an expression e can be typed as τ1, that type can be
replaced by any equivalent type τ2 ≡B τ1. The (T-Var) rule is the standard Hindley-Milner
instantiation rule. It states that if the assumption x : σ is in the context, then we can
instantiate σ to a specific type τ , and conclude x : τ . The (T-Let) rule is the standard
Hindley-Milner generalization rule. The rule states that if we can type e1 as τ1 under the
environment Γ then we may generalize the type τ1 to a type scheme σ, and type e2 under an
extended environment with x : σ.

The (T-Tag) rule states that we can type a tag expression E .ℓ(e) with the type E [φ∪{E .ℓ}]
where the type-level formula φ is obtained by instantiating the type scheme associated with
the label E .ℓ to τ → E [φ ∪ {E .ℓ}]. The reason that the label is not part of the scheme is
that we do not want to assume the occurrence of the label when the scheme is used in
(T-Choose) and (T-Choose-⋆).

4 In the implementation the Σ map is simply constructed from the enum declarations in the program.
5 The calculus does not have tuples, but the extension to tuples and polymorphic enums is straightforward.

They are supported in the implementation.

ECOOP 2023

17:12 Restrictable Variants

Γ ⊢ e : τ

Γ ⊢ e : τ1 τ1 ≡B τ2

Γ ⊢ e : τ2
(T-Eq)

Γ ⊢ () : Unit
(T-Unit)

Γ ⊢ true : Bool
(T-True)

Γ ⊢ false : Bool
(T-False)

(x, σ) ∈ Γ σ ⊑ τ

Γ ⊢ x : τ
(T-Var)

Γ ⊢ e : τ Σ(E .ℓ) ⊑ τ → E [φ ∪ {E .ℓ}]
Γ ⊢ E .ℓ(e) : E [φ ∪ {E .ℓ}]

(T-Tag)

Γ ⊢ e1 : Bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ
(T-Ite)

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx. e : τ1 → τ2
(T-Abs)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
(T-App)

Γ ⊢ e1 : τ1 Γ, x : gen(Γ, τ1) ⊢ e2 : τ2

Γ ⊢ let x = e1 in e2 : τ2
(T-Let)

Γ ⊢ e : E [φ]
Γ ⊢ open e : E [φ ∪ φ′]

(T-Open)

ηi = case E .ℓi(xi) ⇒ ei Γ, xi : τi ⊢ ei : τout
Γ ⊢ e : E [φin]

φin <:
⋃

i
{E .ℓi} Σ(E .ℓi) ⊑ τi → E [φin]

Γ ⊢ choose e {η} : τout
(T-Choose)

ηi = case E .ℓi(xi) ⇒ ei Γ, xi : τi ⊢ ei : E [φout
i]

Γ ⊢ e : E [φin] Σ(E .ℓi) ⊑ τi → E [φin] φin <:
⋃

i
{E .ℓi}(

φin ∩
(⋃

i

(
φout

i ∩ {E .ℓi}
)))

∪
⋃

i

(
φout

i − {E .ℓi}
)

<: φout

Γ ⊢ choose⋆ e {η} : E [φout]
(T-Choose-⋆)

gen(Γ, τ) = ∀α.τ where α = ftv(τ) \ ftv(Γ)

Figure 3 Type Rules for λres
var.

The (T-Open) rule allows tagged values to be typed with additional labels. Essentially, the
(T-Open) rule enables a form of weakening, which is necessary for the proof of preservation,
without having to introduce general sub-typing into the system, since that would break type
inference (recall that the surface language does not have open e expressions).

The (T-Choose) rule states that a choose expression of the form choose e {η}, where
ηi = case E .ℓi(xi) ⇒ ei, can be typed as τout, if the scrutinee e has the type E [φin], each tag’s
type scheme can be instantiated to τ in

i → E [φin], φin is less than the union of the handled
tags E .ℓi, if each result ei has the type τout under an environment where xi has type τi. This
rule expresses the standard match typing conditions, but allows non-exhaustive matches as
long as the type of e ensures that the value of e will be handled. In this rule we see why the
scheme of labels do not include their tag. If it was included, then φin would have to include
the label of the case.

The (T-Choose-⋆) is similar to the (T-Choose) rule but with two major differences:
First, the type of each result ei must be of the form E [φout

i], and second, a side-condition
is posed relating the input and output. The side-condition requires the output φout to be
greater than a union of two set formulas: The first formula represents the set of labels
maintained in φin; i.e. the labels in the type of the cases that matches the label of the case
and also exists in φin. The second formula represents the set of labels introduced by each
case; i.e. the labels in the type of the cases that does not match the label of the case.

M. Madsen, J. L. Starup, and M. Lutze 17:13

We explain the additional side-condition in the (T-Choose-⋆) rule with an example.
Assume that we have the program below on the left and we assign the case expressions the
types on the right:
choose * c {

case Red => Red
case Green => Blue
case Blue => Green

}

φout
1 = Red

φout
2 = Blue

φout
3 = Green

If we instantiate the additional side-constraint (T-Choose-⋆), we get:

(φin ∩ (R ∩ R) ∪ (G ∩ B) ∪ (B ∩ G)) ∪ (R − R) ∪ (G − B) ∪ (B − G) <: φout (1)

where we have highlighted the two parts of the outer union. This simplifies to:

(φin ∩ R) ∪ (G ∪ B) <: φout (2)

That is, the result may contain Blue and Green, but whether it contains Red is dependent on
whether the input contains Red.

If, instead of φout
2 = {Blue} , we had assumed φout

2 = {Blue} ∪ β then we get:

(φin ∩ (Red ∪ (Green ∩ β))) ∪ (Green ∪ Blue) ∪ (β − Green) <: φout (3)

This is sensible because if we later learn that β = Yellow (i.e. the second case could return
Blue or Yellow) then the above type reduces to:

(φin ∩ Red) ∪ (Green ∪ Blue ∪ Yellow) <: φout (4)

3.3 Uninhabited Types
The type system of λres

var admits programs that have uninhabited types. For example:

def f(c) = // c must have type Color[s]
choose c { case Red => ... }; // where s <: {Red}
choose c { case Green => ... } // where s <: {Green}

Here, the two pattern-matches give rise to the constraints s <: {Red} and s <: {Green}.
Thus, the type of the formal parameter c is Color[{}] which is uninhabited. However, this is
not a problem; it simply means we cannot call f .

3.4 Meta Theory
The meta theory for the type system is fairly straightforward. We want to ensure that
programs which use choose and choose* cannot get stuck. In other words, we want to prove
the standard progress and preservation theorems.

We begin with the canonical forms lemma extended with typing inversion. The lemma
shows that the index of a tagged value over-approximates its label:

▶ Lemma 9 (Canonical-Tag). If a value is typed with an enum type then the value must
be a label of that enum and the enum index includes the label of the value.

If ⊢ v : E [φ] then for some ℓ, v′, τ1, and φ′ it holds that:
1. v = E .ℓ(v′)
2. ⊢ v′ : τ1

ECOOP 2023

17:14 Restrictable Variants

3. φ ≡B φ
′ ∪ {E .ℓ}

4. Σ(E .ℓ) ⊑ τ1 → E [φ′ ∪ {E .ℓ}]

Another key lemma shows that the open e expression enables a form of subtyping (which
is used to prove preservation of choose*):

▶ Lemma 10 (Open-Tag). If a value can be typed as an enum with some index then it can
also be typed with a super set of that index.

If ⊢ E .ℓ(v) : E [φ] then ⊢ E .ℓ(v) : E [φ ∪ φ′].

▶ Theorem 11 (Progress). For any closed, well-typed expression then either it is a value
or it can evaluate to another expression.

If ⊢ e : τ then e ∈ Val or e⇝ e′.

▶ Theorem 12 (Preservation). If a closed well-typed expression can take a step then the
new expression can also be typed with the original type.

If ⊢ e : τ and e⇝ e′, then ⊢ e′ : τ .

The proofs are available in the extended version of the paper.

3.5 Type Inference
We can support type inference for λres

var with a suitable extension of Algorithm W [8, 28] with
Boolean unification on set formulas [27]. We can use the type rules from the declarative
type system of Figure 3 to systematically obtain a collection of type inference rules. The
declarative system uses a typing judgment of the form Γ ⊢ e : τ , the type inference system
extends this to Γ ⊢ e : τ ;S where S is a substitution. Here the type environment Γ and the
expression e can be seen as the input to the type inference algorithm and τ and S as the
output. We omit the actual inference rules, but they mostly concern a lot of administration
around the careful use of substitutions and the composition of substitutions. As is standard,
equalities in the declarative system become unification queries in the inference system.

We solve unification queries on types in the standard way, but when we reach two Boolean
set formulas we use Boolean unification to solve the queries. Specifically, we rely on the
Successive Variable Elimination (SVE) algorithm [27]. The most interesting aspect is how we
translate set formula constraints, in the declarative type rules, into unification queries. This
however – by design – turns out to be straightforward. Given the (T-Choose) type rule:

ηi = case E .ℓi(xi) ⇒ ei Γ ⊢ e : E [φin] φin <:
⋃

i
{E .ℓi}

Γ, xi : τi ⊢ ei : τout Σ(E .ℓi) ⊑ τi → E [φin]
Γ ⊢ choose e {η} : τout

(T-Choose)

The interesting part is to translate what is shown in the gray box. Recall that this is
the part of the constraint which ensures that the input is upper-bounded by the labels that
occur in the pattern-match. We translate this constraint to the Boolean unification query:

φin
⋂ (⋃

i

{E .ℓi}

)∁

?= ∅

whose most-general unifier will capture exactly the above property. Similarly, we can translate
the additional side-condition in (T-Choose-⋆) as a unification problem on set formulas.

M. Madsen, J. L. Starup, and M. Lutze 17:15

At the time of writing, the type inference machinery works (c.f. Section 4), but sometimes
the substitutions computed by SVE can be very large. Large substitutions lead to large
formulas which leads to slow inference. Fortunately, we have good reason to believe that
the situation can be improved. We know from the case studies (c.f. Section 6) that most
functions have small types (i.e. small formulas). Hence the challenge is to compute them.
We think that this should be possible with a more sophisticated implementation of SVE that
exploits Boolean technology, such as BDDs or ZDDs [1, 29].

3.6 Subtyping
The type system does not have explicit support for subtyping, but instead, like row-based
systems, relies on parametric polymorphism [16, 37]. For example, the if-then-else expression:

if (true) then Red else Blue

is typable because we can assign the types:

Γ ⊢ Red : Color[{Red,Blue} ∪ s] and Γ ⊢ Blue : Color[{Blue,Red} ∪ s]

for some type variable s. We could probably extend the type system with subtyping, but
then we would likely lose principal type inference.

3.7 A Few Practical Aspects
We conclude with a discussion of a few practical issues.

When should a programmer use choose or choose*? A programmer should use choose

when he or she wants to partially pattern-match on a subset of labels, but the result can
be of any type. On the other hand, a programmer should reach for choose* when he or
she wants to partially pattern-match on a restrictable variant and the result is the same
restrictable variant. In this case, choose* is preferable because it is structure-preserving;
relating the “input” labels to the “output” labels.
Would it be possible to have one “universal” type that holds all possible variants? Yes, in
the limit one could define a single gigantic restrictable variant with all possible labels
and then use that type everywhere in the program. In practice, this would probably be
cumbersome and confusing. For example, it would seem pointless to merge the Color and
Expr restrictable variants, even though one could conceptually do so.

4 Implementation

We have implemented the λres
var calculus as an extension of the Flix programming language.

Flix is a functional, imperative, and logic programming language that supports algebraic
data types, pattern matching, higher-order functions, parametric polymorphism, type classes,
higher-kinded types, first-class Datalog constraints, channel and process-based concurrency,
and has a polymorphic type and effect system [23, 21, 22, 24]. The Flix compiler project,
including the standard library and tests, is approximately 230,000 lines of code.

Adding restrictable variants required approximately 2,000 lines of code. Most of the code
was straightforward; the most complex components were the implementation of the type
inference rules and Boolean unification on set formulas.

Flix, with our extension, is open source, ready for use, and freely available at:

https://flix.dev/ and https://github.com/flix/flix/

ECOOP 2023

https://flix.dev/
https://github.com/flix/flix/

17:16 Restrictable Variants

5 Expressiveness and Comparison to Other Systems

In this section, we compare the expressiveness of restrictable variants to other nominal and/or
structural type systems. We focus on type systems that support complete type inference.
We remind the reader that in Section 2 we used restrictable variants to express:

def simplify (e: Expr[s]): Expr [(s - Xor) + {Not , And , Or }]
def subst (m: Map[Int32 , Bool], e: Expr[s]): Expr [(s - Var) + Cst]
def fasteval (e: Expr[s & {Cst , Not , And , Or }]): Bool

which allowed us to use function composition to define:
let fastrun = m -> simplify >> subst (m) >> fasteval

We now discuss our ability to express this in other systems with extensible variants.

5.1 Row Polymorphism à la Wand, Gaster and Jones, and Leijen
Row polymorphism is a classic solution to extensible records and variants [37]. A row
polymorphic type system supports three primitive operations [11, 16] on variants which are
injection, embedding, and decomposition:

⟨ℓ = _⟩ : ∀α, r. α → ⟨ℓ : α | r⟩ (injection)
⟨ℓ | _⟩ : ∀α, r. ⟨r⟩ → ⟨ℓ : α | r⟩ (embedding)

(ℓ ∈ _ ? _ : _) : ∀α, β, r. ⟨l : α | r⟩ → (α → β) → (⟨r⟩ → β) → β (decomposition)

The last operation is allows us to implement pattern matching. What is important is that
each use of the ternary-like conditional (ℓ ∈ _ ? _ : _) peels off a variant. Note that if we
fail to match on ℓ then we refine the type to ⟨r⟩ which we continue with in the else branch.

Leijen gives the example [16]:

showEvent e =
(key in e) ? (c -> showChar (c)) :

(e’ -> (mouse in e’) ? (p -> showPoint (p)) : error ())

Here the idea is that showEvent pattern-matches on an extensible variant of the type:

⟨key : KeyEvent | mouse : MouseEvent⟩

using the decomposition operator. Note that the program type-checks because both functions
showChar and showPoint (and error) return a value of the same type, i.e. Unit.

In any case, the return type of the entire “pattern-match” is β, which means that the
returned values must have the same type (modulo row-equivalence). Looking over our three
functions, we see that6:

We can express the eval and fasteval functions which are given the types:

eval : ⟨Cst : · | Not : · | Or : · | And : · | Xor : ·⟩ → Bool
fasteval : ⟨Cst : · | Not : · | Or : · | And : ·⟩ → Bool

6 For simplicity, we ignore the fact that the data type is recursive. We just focus on the labels themselves.

M. Madsen, J. L. Starup, and M. Lutze 17:17

Here the rows are closed and the two functions accept any Boolean formula as long as it only
has one of the listed variants. In particular, we cannot accidentally call eval or fasteval with
an open Boolean formula that has the Var label.

We can also express the simplify and subst functions which are given the types:

simplify : ⟨Var : · | Cst : · | Not : · | Or : · | And : · | Xor : ·⟩ →
⟨Var : · | Cst : · | Not : · | Or : · | And⟩

subst : Map[Int32, Bool] → ⟨Var : · | Cst : · | Not : · | Or : · | And : · | Xor : ·⟩ →
⟨Cst : · | Not : · | Or : · | And | Xor : ·⟩

Each function accepts a Boolean expression as input, with any labels, and returns a Boolean
formula without the Xor and Var labels, respectively. However, their row types cannot
capture how the input is related to the output. Hence, unlike with restrictable variants, when
we compose the two functions we lose information about the output. In particular, the
information that simplify has eliminated the Xor variant is lost. Hence we cannot call fasteval.

One might wonder if we could give the simplify function the type:

simplify : ⟨Xor : · | r⟩ → ⟨r⟩

since that seems to capture what we want. However, this type judgment would be unsound
since we could instantiate r to ⟨Cst : Int32⟩ and clearly the implementation of simplify is
not exhaustive for that label. Moreover, if we fail to mention e.g. Var then we could also
instantiate r to ⟨Var : Banana⟩ which is also not sound. Thus the only sound solution must
mention all the variants that simplify is prepared to accept. Thus we lose the relationship
between the input and output.

A challenge with extensible records and variants based on rows is the question of whether
extensions adds a new field (or variant) or overrides an existing field (or variant). The
literature has proposal several solutions to this problem:

Extensible Records and Variants with Qualified Types

Gaster and Jones present a type system for extensible records and variants extended with
qualified types [11, 13]. The idea is that rows capture the structure of the record (or variant)
while predicates are used to ensure that rows are not extended with labels that are already
present. Thus the Gaster and Jones system ensures that a record (or variant) cannot be
extended with a label it already has. For example, record extension is given the type:

(l := _ | _) : (r \ l) ⇒ α → Rec r → Rec {l : α | r}

where the predicate (r \ l) in the qualified type captures that r must not contain the label l.

Extensible Records with Scoped Labels

Leijen proposes a different approach that embraces the idea of duplicate labels in records
and variants [16]. In Leijen’s type system, extensible records are allowed to have multiple
fields with the same name (and of different type). This means that fields are scoped.

For example, we can have a record r with the type:

r : {y : Bool | x : Int32 | y : Int32}

ECOOP 2023

17:18 Restrictable Variants

This means that r has two fields named y; one of type Bool and the other of type Int32.
We can access the former, the outermost, with the expression r.y. To access the latter, the
innermost, we must first remove the outermost y field. Thus we have to write (r − y).y. The
advantage of Leijen’s over Gaster and Jones’s is that it has principal types without the need
for qualified types. The disadvantage is its somewhat unnatural semantics.

What does this mean for a variant to be scoped? It roughly means that when we pattern-
match (i.e. decompose) on an extensible variant we always see the outermost label. To find
an inner label, we must decompose once, and then decompose again. In pseudo-code:

match v /* has type: { Label: Int32 | Label : String | ... } */ {
case Label (n) => n + 123
case rest => match rest /* has type: { Label : String | ... } */ {

case Label (s) => String . toUpperCase (s)
}

}

where we peel off one layer of v to expose the inner Label of type String. As Leijen writes,
this is a “curious” feature and it is not so clear whether it is useful in practice.

Abstracting Extensible Data Types à la Morris et al.

Morris and McKinna presents a type system that unifies the previous type systems into
one framework based on qualified types and row theories [30]. The framework can be
instantiated to model the systems of Gaster and Jones and Leijen among others. Importantly,
the framework also supports instantiations with row concatenation.

The framework can also support a form of extensible variants with the key constructs:

λ x . ℓ ▷ x : τ → Σ(ℓ ▷ τ) (Construction)
λ x . x/ℓ : Σ(ℓ ▷ τ) → τ (Extraction)

λ x . inj x : ∀ z1 z2 . z1 ⋖ z2 ⇒ Σz1 → Σz2 (Injection)
λ x y . x ▽ y : ∀ z1 z2 z3 τ . z1 ⊚ z2 ∼ z3 ⇒

(Σz1 → τ) → (Σz2 → τ) → (Σz3 → τ) (Match)

The key idea is the use of qualified types with two predicates: the containment predicate
z1 ⋖ z2 and the combination predicate z1 ⊚ z2 ∼ z3. Using these qualified type predicates,
we can define the operations:

(Construction) constructs a singleton variant with the label ℓ and type τ .
(Extraction) destructs a singleton variant and extracts the value of the variant.
(Injection) extends a variant with additional labels. The operation uses the containment
predicate z1 ⋖ z2. Its meaning is dependent on the specific row theory. For example,
using a theory that disallows duplicates, it means that the labels of z1 must be a subset
of the labels of z2 (with compatible types).
(Match) is a combinator that composes two functions which operate on parts of a variant
into a single function that works on the row concatenation of their input types. The
operation uses the combination predicate z1⊚ z2 ∼ z3. Its meaning is again dependent on
the specific row theory. For example, using a theory that disallows duplicates, it means
that z1 and z2 must be disjoint sets of labels and z3 must be their union. Note that the
return type τ of the two functions must be same, hence the match construct does not
relate its input type to its output type.

M. Madsen, J. L. Starup, and M. Lutze 17:19

We illustrate this loss of precision with the following example:

λ x .

((
λ y . inj (A ▷ y/A)

)
▽
(
λ z . inj (B ▷ z/B)

))(
inj x

)
:

∀z1, z2, τ1, τ2 . z1 ⋖ (A ▷ τ1, B ▷ τ2), (A ▷ τ1, B ▷ τ2) ⋖ z2 ⇒ Σz1 → Σz2

Informally, the function is simple the identity function on a variant with two labels A
and B, i.e. it maps A to A and B to B. Assume – without loss of generality – that we work
on a row theory based on Gaster and Jones which does not allow duplicate labels in variants.

The function receives a variant x, which is allowed to be a subset of the variant Σ(A ▷
τ1, B ▷ τ2). It is first injected to be typable with the complete variant, then it is matched on
in two different functions that either assume that the variant was A or B via their respective
extraction (y/A or z/B). Lastly, the variant is constructed again in singleton variants and
injected into the full variant type.

The intention of the function is clearly shown in the type; the input must be a subset
of a variant with A and B and the output must be a superset of a variant with A and
B. While this type is correct, it is unfortunately not as a precise as we would have hoped.
In particular, since the function is actually the identity we would have liked the type:
∀z. z ⋖ (A ▷ τ1, B ▷ τ2) ⇒ Σz → Σz.

The type systems of Gaster and Jones, Leijen, and Morris and McKinna do not solve the
fundamental “co-domain problem” for extensible variants. Rather they expose difficulties
with row-based variants which require additional machinery or unnatural semantics to fix.
Restrictable variants do not suffer from such issues because they rely on set formulas.

5.2 Occurrence Typing à la Castagna
Castagna et al. present an expressive set-theoretic type system with a type-case expression [7].
The type system supports union, intersection, and negation types. In their system, the Color
type can be represented as the union type of three singleton types:

Red ∨ Green ∨ Blue

and we can match on these using the type-case expression:

e1 ∈ τ ? e2 : e3

where control flow enters the e2 branch if e1 reduces to a value v : τ , or e3 if it does not; i.e.
v : ¬τ . The type-case expression is their powerful alternative to the if-then-else/match/choose
expression, allowing an association between each possible type of the input and the respective
type of the output. For example, in their system, the isWarm function can be expressed as:

λx. x ∈ Red ? True : (x ∈ Blue ? False : undefined)

which has the type:

(Red → True) ∧ (¬Blue → False)

Note that, in the last case, where x /∈ Red and x /∈ Blue the untypable expression undefined
is used to indicate an unreachable case. The precision of the typing – essentially encoding
the entire pattern-match at the type level – is very expressive and solves the “co-domain
problem” we have outlined. However, the types can become very complex and unwieldy,
and there is limited support recursive types and recursive functions [7]. For example, the
subst(m) function would be given the large intersection type:

ECOOP 2023

17:20 Restrictable Variants

(Var(Int32) ∨ Cst(Bool) → Cst(Bool)) ∧ (Not(Expr) → Not(ClosedExpr)) ∧ (Or(Expr, Expr) →
Or(ClosedExpr, ClosedExpr)) ∧ (And(Expr, Expr) → And(ClosedExpr, ClosedExpr)) ∧ (Xor(Expr, Expr) →
Xor(ClosedExpr, ClosedExpr))

where we also have to define the Expr and ClosedExpr data types as two large union types.
While the goal of λres

var is to capture the introduction and elimination of variants, the
occurrence typing system goes far beyond this, capturing a large amount of additional
information as it maps variant to variant; the cost of the additional information is borne in
the complexity of the types. Furthermore, it is not clear that the occurrence typing system
is capable of inferring the type of recursive functions, meaning that in order to capture the
same elimination and introduction properties, the programmer would have to provide the
large type annotations themselves.

5.3 Relational Nullable Types à la Madsen et al.
Madsen and van de Pol present a relational nullable type system [25]. The type system
captures the nullability (i.e. whether an expression may evaluate to null) of an expression in
relation to the nullability of other related expressions. For example, using their type system,
one can express a function:

let f = (host , port) -> match (host , port) {
case (Absent , Absent) => ...
case (Present (h), Present (p)) => ...

}

which captures that either both host and port are Absent (i.e., “null”) or both host and port
are Present (i.e., non-“null”). For example, the following two calls type-check:

f(Absent , Absent) // OK
f(Present ("www. google .com"), Present (80)) // OK

whereas the next two calls are rejected by the type system:

f(Absent , Present (80)) // NOT OK
f(Present ("www. google .com"), Absent) // NOT OK

The relational nullable type system associates every expression with a proper type π and a
pair of Boolean formulas (φ,ψ) that over-approximate whether the expression may evaluate
to Absent (i.e., null) and may evaluate to Present (i.e., non-null) [25]. The two Boolean
formulas form a small lattice where: String ? (F,F) is an uninhabited type (i.e., a type that
is neither null nor non-null), and e.g. String ? (F, ψ) is the type of non-null Strings.

Relational nullable types and restrictable variants share some similarities:
The restrictable variants type system use one type-level set formula to over-approximate
the set of variants of an expression, whereas the relational nullable type system uses two
type-level Boolean formulas to over-approximate the nullability and non-nullability of an
expression.
Both systems extend Hindley-Milner with Boolean unification; their system on Boolean
formulas and our system on set formulas.
We find that the relational nullable types tend to be significantly more complex than
restrictable variant types. For example, the function from above is given the type:

∀t1, t2, t3, b1, b2, b3, b4. (t1, b1 ∧ ¬b3 ∧ ¬b4, b3) → (t2, b2 ∧ ¬b3 ∧ ¬b4, b4) → t3

M. Madsen, J. L. Starup, and M. Lutze 17:21

5.4 Summary
We believe that restrictable variants offer a new simple and practical sweet-spot in the
design space of “extensible” data types. In terms of expressive power, for the programming
patterns we have shown, we identify restrictable variants as laying between row-based type
systems and full-blown occurrence typing. Importantly, restrictable variants precisely capture
the introduction and elimination of variants which leads to better compositionality than
row-based variants.

6 Case Studies

We now report on three small case studies that use restrictable variants. The first is the
running example of Boolean formulas. The second is a new data structure that combines
the Option, List, and NonEmptyList data types. The third is a theoretical study of how
restrictable variants can be combined with extensible records to model abstract syntax trees.

6.1 Case Study: Boolean Expressions
We have seen how we can use restrictable variants to represent Boolean formulas. The key
idea is that we can use the same data type represent both simple formulas (made from the
Not, And, Or connectives) and more complex formulas (e.g. using the Xor connective). We
can also represent both open and closed formulas (i.e. formulas with or without Vars).

6.2 Case Study: Option, List, and NonEmptyList
The Flix standard library supports the three central functional data types: Options, Lists,
and Nels (non-empty lists). The Option module offers 75 functions and spans 587 lines of
code, the List module offers 136 functions and spans 1,398 lines of code, and finally the Nel
module offers 104 functions and spans 703 lines of code. While this “batteries included”
approach is great for programmers, the downside is that the implementations of Option,
List, and Nel duplicate a lot of functionality. Given that Option, List, and Nel are really just
sequences of different lengths (0 − 1 for Option, 0 − n for List, and 1 − n Nel), one might
wonder if they could not be unified into one data type. As it turns out, they can!

We can define one data type for sequences of integers7:

enum Seq[s] {
case Nil
case One(Int32)
case Cons(Int32 , Seq[s])

}

We can then define Option, List, and Nel as type aliases:

type alias Option = Seq [{Nil , One }]
type alias List = Seq [{Nil , Cons }]
type alias Nel = Seq [{One , Cons }]

7 Flix naturally supports polymorphic data types, but for simplicity we focus on integer-valued sequences.

ECOOP 2023

17:22 Restrictable Variants

A slightly more general type would be e.g., type alias Option[s] = Seq[s & {Nil, One}].
What’s important is that we can define common operations on Seq once and reuse them for
different types of sequences.

For example, we can write a forall function:

def forall (f: Int32 -> Bool , s: Seq[s]): Bool = choose s { ... }

And we can also can write a map function:

def map(f: Int32 -> Int32 , s: Seq[s]): Seq[s] = choose * s { ... }

Importantly, the map function preserves information about what variants can occur in the
output based on the input. Thus, if we map over an Option, we know that the result is an
Option and if we map over a Nel, we know the result is a Nel.

We can also write functions that only work for non-empty lists. For example:

def head(s: Seq[s - Nil]): Int32 = choose s { ... }
def last(s: Seq[s - Nil]): Int32 = choose s { ... }

More interestingly, we can express a function that appends an element to a sequence:

def append (elm: Int32 , s: Seq[s]): Seq [{One , Cons }] = choose * s {
case Nil => One(w)
case One(x) => Cons(x, One(elm))
case Cons(x, xs) => Cons(x, append (elm , xs))

}

The return type of append, which is equivalent to Nel, captures that the result lacks the Nil
variant, hence is non-empty. We can use append to write a reverse function:

def reverse (s: Seq[s]): Seq [(s & {Nil }) + {One , Cons }] = choose * s {
case Nil => Nil
case One(x) => One(x)
case Cons(x, xs) => append (x, reverse (xs))

}

The type of the reverse function is not as precise as we would like. In particular, if we reverse
an Option type, we lose the information that the sequence has 0 − 1 elements. However, the
type is sufficiently precise to capture that if we reverse a non-empty list then the result is
also non-empty.

In summary, in our experience, most aggregation functions such as head, forall, and count
can be implemented on the Seq data type. We can also implement structure preserving
functions such as map. Where it gets more difficult is with transformations such as append,
reverse, and flatMap which do not always have the types we would want. In such cases, we
can sometimes implement 2 − 3 functions (corresponding to one for Option, List, and Nel)
and thus still have the desired functionality.

M. Madsen, J. L. Starup, and M. Lutze 17:23

6.3 Case Study: Restrictable Variants, Extensible Records

While we have presented restrictable variants as a better alternative to extensible variants,
we have found that it is natural to combine restrictable variants with extensible records. For
example, returning to the compiler use case, one can imagine an abstract syntax tree that is
transformed and decorated with additional information through several compiler phases. We
can use restrictable variants to capture the active labels and extensible records to capture
the extra information. For example, we can define an abstract syntax tree:

enum Expr[s][r: RecordRow] {
case Cst ({ value = Bool | r}),
case Num ({ value = Int32 | r}),
case Var ({ ident = String | r}),
case Add ({ e1 = Expr[s, r], e2 = Expr[s, r] | r}),
case Ite ({ e1 = Expr[s, r], e2 = Expr[s, r], e3 = Expr[s, r] | r})
// ...

}

Here the the Expr data type has two type-level indices: The s index controls the variant part
whereas the r index controls the record part. Assume that we also have a data type:

enum Type { case TBool , case TInt }

then we can use row extension to capture that type inference decorates the AST:

def infer (e: Expr[s][r]): Expr[s, (tpe = Type | r)] = ...

At the same time, we can also capture that code generation only works for closure-converted,
lambda-lifted, and well-typed ASTs:

def codeGen (e: Expr[s - Lam][(tpe = Type | r)]): ByteCode = ...

This example illustrates that restrictable variants and extensible records complement each
other well. We use the variant index to constrain what cases we are prepared to deal with
and we use the record index to constrain what additional information we need.

6.4 Pretty Printing Types with Lower– and Upper Bounds

Programmers might find it difficult to read a type signature like:

def reverse (s: Seq[s]): Seq [(s & {Nil }) + {One , Cons }]

For this reason, we have experimented with showing lower- and upper-bounds of type-level set
formulas. For example, the set formula: Seq[(s & {Nil}) + {One, Cons}] has the lower-bound:
{One , Cons} and the upper-bound: {Nil, One , Cons}. This means a choose or choose* must
handle the One and Cons variants and may optionally handle the Nil variant.

7 Related Work

We have already discussed how the expressiveness of restrictable variants compares to several
other existing systems. In this section, we aim to provide high-level overview of related work.

ECOOP 2023

17:24 Restrictable Variants

Row-based Extensible Records and Variants

Wand originally introduced the concept of row variables for an object-oriented setting [37].
A key challenge in the literature on row-based systems has been how to deal with duplicate
labels. A challenge that remains to this day [30]. Gaster and Jones present a type system
for extensible records and variants that use qualified types [13] to ensure that rows do not
contain duplicate labels [11]. Leijen instead propose a type system that permits duplicate
labels and gives a semantics to such “scoped” records and variants [16]. Another major
challenge has been the question of row concatenation [30]. In this direction, Harper and
Pierce presents a record calculus and type system that permits record concatenation [12], but
lacks type inference. Morris and McKinna presents a unified framework for row-polymorphic
type systems based on row theories [30].

Row-based type systems have been used successfully in many applications other than
extensible records and variants. For example, type systems based on rows have been used to
track exceptions [31], to track effects in algebraic effect systems [17, 18], to model database
queries [19], and to type first-class Datalog program values [22].

We refer to Gaster and Jones for a detailed introduction to row polymorphism [11].

Occurrence Typing, GADTs, Constructor Subtyping, and Relational Nullability

Castagna et al. present an occurrence-based type system [7] which uses set-theoretic types to
infer precise function signatures. Applied to variants and pattern-matching, the system can
track exactly how a function maps labels among each other. The system is purely structural
and based on semantic subtyping, whereas our system includes nominal typing.

Generalized algebraic data types (GADTs) extend algebraic data types with additional
expressive power by allowing the type scheme of a constructor to restrict its return type [15, 35].
The canonical example is the ability to write an algebraic data type for arithmetic and
Boolean expressions Expr[α] and an evaluation function eval : Expr[α] → α where α is a
type-level index that determines whether the expression evaluates to a Bool or Int. A
significant body of work has focused on how to recover type inference in the presence of
GADTs [14, 32]. We think it would be interesting future work to explore possible connections
between restrictable variants and GADTs.

Constructor subtyping is an alternative to extensible and restrictable variants where
one inductive type τ1 is considered a subtype of another inductive type τ2 if τ2 has more
constructors than τ1 [3, 26]. In relation to restrictable variants, the idea would be to have
multiple data types that share similar constructors and then use subtyping to allow functions
to operate on multiple of these types.

Madsen and van de Pol propose a type system with support for relational nullable
types [25]. While a nullable type system tracks whether an expression may evaluate to
null based on its type, relational nullable type systems track whether an expression may
evaluate to null based on its type and the type of other related expressions. As discussed,
the Madsen and van de Pol system has some similarities to ours: both systems allow partial
(non-exhaustive) pattern-matching and both systems are based on Hindley-Milner extended
with Boolean unification. However, their system is purely structural and focuses on nullability,
whereas our system combines nominal and structural typing.

M. Madsen, J. L. Starup, and M. Lutze 17:25

Refinement Kinds

Luís and Toninho propose refinement typing at the kind level to enable metaprogramming
with records [6]. We believe their system could be adapted to variants and pattern matching:
The dependent types in their system precisely track the associations between the input and
output types of functions. Refinement kinds, however, do not support type inference.

Boolean Unification

Boole studied Boolean unification in the single-variable case and presented a simplified
version of the successive variable elimination algorithm [4]. Later, Löwenheim presented
another Boolean unification algorithm [20]. Today, an accessible introduction to Boolean
unification is provided by Martin and Nipkow [27]. Additional background information is
provided by Baader [2], Boudet et al. [5], Robinson and Voronkov [34].

Boolean unification was first used in a type system by de Vries et al. who used it model
uniqueness [9]. Later, Madsen and van de Pol presented a polymorphic type and effect
system which used Boolean unification for inference [24].

8 Conclusion

We have presented restrictable variants as a simple and practical alternative to extensible
variants. A restrictable variant is a sum type indexed by a type-level set formula of its
active labels. We have also introduced the choose and choose* pattern-matching constructs
which enable non-exhaustive patterns matches on restrictable variants. Notably, the choose*

construct allow us to precisely track the introduction and elimination of variants through
function composition.

We have presented a type system for a minimal calculus with restrictable variants. The
type system, which based on Hindley-Milner extended with type-level set formulas, ensures
that non-exhaustive pattern-matches cannot get stuck. The system supports complete
inference via a suitable extension of Algorithm W with Boolean unification on set formulas.

We have implemented restrictable variants as an extension of the Flix programming
language and used the implementation for a few case studies. The extension is ready for use,
freely available, and open-source.

References
1 Sheldon B. Akers. Binary decision diagrams. IEEE Transactions on computers, C-27(06),

1978. doi:10.1109/TC.1978.1675141.
2 Franz Baader. On the complexity of Boolean unification. Information Processing Letters,

67(4), 1998. doi:10.1016/S0020-0190(98)00106-9.
3 Gilles Barthe and Maria João Frade. Constructor subtyping. In Programming Lan-

guages and Systems: 8th European Symposium on Programming (ESOP), 1999. doi:
10.1007/3-540-49099-X_8.

4 George Boole. The mathematical analysis of logic. Macmillan, Barclay and Macmillan, 1847.
5 Alexandre Boudet, Jean-Pierre Jouannaud, and Manfred Schmidt-Schauss. Unification in

Boolean rings and abelian groups. Journal of Symbolic Computation, 8(5), 1989. doi:
10.1016/S0747-7171(89)80054-9.

6 Luís Caires and Bernardo Toninho. Refinement kinds: Type-safe programming with practical
type-level computation. Proc. of the ACM on Programming Languages, 3(OOPSLA), 2019.
doi:10.1145/3360557.

ECOOP 2023

https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1016/S0020-0190(98)00106-9
https://doi.org/10.1007/3-540-49099-X_8
https://doi.org/10.1007/3-540-49099-X_8
https://doi.org/10.1016/S0747-7171(89)80054-9
https://doi.org/10.1016/S0747-7171(89)80054-9
https://doi.org/10.1145/3360557

17:26 Restrictable Variants

7 Giuseppe Castagna, Mickaël Laurent, Kim Nguyen, and Matthew Lutze. On type-cases, union
elimination, and occurrence typing. Proc. of the ACM on Programming Languages, 6(POPL),
2022. doi:10.1145/3462306.

8 Luis Damas. Type assignment in programming languages. PhD thesis, The University of
Edinburgh, 1984.

9 Edsko de Vries, Rinus Plasmeijer, and David M Abrahamson. Uniqueness typing simplified.
In Implementation and Application of Functional Languages: 19th International Workshop
(IFL), 2008. doi:10.1007/978-3-540-85373-2_12.

10 Tim Freeman and Frank Pfenning. Refinement types for ML. In Proc. of the ACM SIGPLAN
1991 conference on Programming language design and implementation (PLDI), 1991. doi:
10.1145/113445.113468.

11 Benedict R Gaster and Mark P Jones. A polymorphic type system for extensible records and
variants. Technical report, University of Nottingham, 1996.

12 Robert Harper and Benjamin Pierce. A record calculus based on symmetric concatenation.
In Proc. of the 18th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL), 1991. doi:10.1145/99583.99603.

13 Mark P Jones. A theory of qualified types. Science of Computer Programming, 22(3), 1994.
doi:10.1016/0167-6423(94)00005-0.

14 Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich. Wobbly types: type inference
for generalised algebraic data types. Technical report, University of Pennsylvania, 2004.

15 Andrew Kennedy and Claudio V. Russo. Generalized algebraic data types and object-oriented
programming. In Proc. of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2005. doi:10.1145/1094811.
1094814.

16 Daan Leijen. Extensible records with scoped labels. In Revised Selected Papers from the Sixth
Symposium on Trends in Functional Programming (TFP), 2005.

17 Daan Leijen. Koka: Programming with row polymorphic effect types. In Proc. 5th Workshop
on Mathematically Structured Functional Programming (MSFP), 2014. doi:10.4204/EPTCS.
153.8.

18 Daan Leijen. Type directed compilation of row-typed algebraic effects. In Proc. of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), 2017.
doi:10.1145/3009837.3009872.

19 Sam Lindley and James Cheney. Row-based effect types for database integration. In Proc. of
the 8th ACM SIGPLAN Workshop on Types in Language Design and Implementation (TLDI),
2012. doi:10.1145/2103786.2103798.

20 Leopold Löwenheim. Über das auflösungsproblem im logischen klassenkalkul. In Sitzungs-
berichte der Berliner Mathematischen Gesellschaft 7, 1908.

21 Magnus Madsen. The principles of the Flix programming language. In Proc. of the 2022
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward!), 2022. doi:10.1145/3563835.3567661.

22 Magnus Madsen and Ondřej Lhoták. Fixpoints for the masses: programming with first-class
Datalog constraints. Proc. of the ACM on Programming Languages, 4(OOPSLA), 2020.
doi:10.1145/3428193.

23 Magnus Madsen, Jonathan Lindegaard Starup, and Ondřej Lhoták. Flix: A meta programming
language for Datalog. In Proc. of the 4th International Workshop on the Resurgence of Datalog
in Academia and Industry (Datalog 2.0), 2022.

24 Magnus Madsen and Jaco van de Pol. Polymorphic types and effects with Boolean unification.
Proc. of the ACM on Programming Languages, 4(OOPSLA), 2020. doi:10.1145/3428222.

25 Magnus Madsen and Jaco van de Pol. Relational nullable types with Boolean unification.
Proc. of the ACM on Programming Languages, 5(OOPSLA), 2021. doi:10.1145/3485487.

https://doi.org/10.1145/3462306
https://doi.org/10.1007/978-3-540-85373-2_12
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/99583.99603
https://doi.org/10.1016/0167-6423(94)00005-0
https://doi.org/10.1145/1094811.1094814
https://doi.org/10.1145/1094811.1094814
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/2103786.2103798
https://doi.org/10.1145/3563835.3567661
https://doi.org/10.1145/3428193
https://doi.org/10.1145/3428222
https://doi.org/10.1145/3485487

M. Madsen, J. L. Starup, and M. Lutze 17:27

26 Andrew Marmaduke, Christopher Jenkins, and Aaron Stump. Zero-cost constructor subtyping.
In Proc. of the 32nd Symposium on Implementation and Application of Functional Languages
(IFL), 2020. doi:10.1145/3462172.3462194.

27 Urusula Martin and Tobias Nipkow. Boolean unification - the story so far. Journal of Symbolic
Computation, 7(3), 1989. doi:10.1016/S0747-7171(89)80013-6.

28 Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3), 1978. doi:10.1016/0022-0000(78)90014-4.

29 Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In
Proc. of the 30th Design Automation Conference (DAC), 1993. doi:10.1145/157485.164890.

30 J Garrett Morris and James McKinna. Abstracting extensible data types: or, rows by any other
name. Proc. of the ACM on Programming Languages, 3(POPL), 2019. doi:10.1145/3290325.

31 François Pessaux and Xavier Leroy. Type-based analysis of uncaught exceptions. ACM
Transactions on Programming Languages and Systems (TOPLAS), 22(2), 2000. doi:10.1145/
349214.349230.

32 François Pottier and Yann Régis-Gianas. Stratified type inference for generalized algebraic data
types. In Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), 2006. doi:10.1145/1111037.1111058.

33 Didier Rémy. Type inference for records in a natural extension of ML. Technical report,
University of Pennsylvania, 1990.

34 Alan JA Robinson and Andrei Voronkov. Handbook of automated reasoning, volume 1. Elsevier
and MIT Press, 2001.

35 Vincent Simonet and François Pottier. A constraint-based approach to guarded algebraic data
types. ACM Transactions on Programming Languages and Systems (TOPLAS), 29(1), 2007.
doi:10.1145/1180475.1180476.

36 Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones.
Refinement types for Haskell. In Proc. of the 19th ACM SIGPLAN international conference
on Functional programming (ICFP), 2014. doi:10.1145/2628136.2628161.

37 Mitchell Wand. Type inference for simple objects. In Proc. of the Fourth Annual Symposium
on Logic in Computer Science, 1987.

ECOOP 2023

https://doi.org/10.1145/3462172.3462194
https://doi.org/10.1016/S0747-7171(89)80013-6
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/157485.164890
https://doi.org/10.1145/3290325
https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/349214.349230
https://doi.org/10.1145/1111037.1111058
https://doi.org/10.1145/1180475.1180476
https://doi.org/10.1145/2628136.2628161

Programming with Purity Reflection: Peaceful
Coexistence of Effects, Laziness, and Parallelism
Magnus Madsen #

Department of Computer Science, Aarhus University, Denmark

Jaco van de Pol #

Department of Computer Science, Aarhus University, Denmark

Abstract
We present purity reflection, a programming language feature that enables higher-order functions to
inspect the purity of their function arguments and to vary their behavior based on this information.
The upshot is that operations on data structures can selectively use lazy and/or parallel evaluation
while ensuring that side effects are never lost or re-ordered. The technique builds on a recent
Hindley-Milner style type and effect system based on Boolean unification which supports both effect
polymorphism and complete type inference. We illustrate that avoiding the so-called ’poisoning
problem’ is crucial to support purity reflection.

We propose several new data structures that use purity reflection to switch between eager and
lazy, sequential and parallel evaluation. We propose a DelayList, which is maximally lazy but
switches to eager evaluation for impure operations. We also propose a DelayMap which is maximally
lazy in its values, but also exploits eager and parallel evaluation.

We implement purity reflection as an extension of the Flix programming language. We present a
new effect-aware form of monomorphization that eliminates purity reflection at compile-time. And
finally, we evaluate the cost of this new monomorphization on compilation time and on code size,
and determine that it is minimal.

2012 ACM Subject Classification Theory of computation → Program semantics

Keywords and phrases type and effect systems, purity reflection, lazy evaluation, parallel evaluation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.18

1 Introduction

Programming languages are increasingly multi-paradigm. Kotlin and Scala embrace object-
oriented, functional, and imperative programming. JavaScript has a functional core and
its ecosystem is increasingly adopting a functional style. Rust, a decidedly imperative
language, has a functional flavor with support for algebraic data types, pattern matching, and
higher-order functions. C# and Java have adopted lambda expressions and added streams.

Nevertheless, the marriage of paradigms is not always a happy one: laziness and parallelism
expose a deep rift between functional and imperative programming. The delayed or parallel
evaluation of an impure function may cause its side effects to be lost, to occur out-of-order, or
to interfere with each other, leading to potentially disastrous consequences. For these reasons,
imperative programming languages tend to use eager and sequential semantics everywhere,
thus foregoing the potential benefits of lazy and/or parallel evaluation.

Most mainstream languages, such as Java, Kotlin, and Scala, offer access to a limited
form of laziness and parallelism with streams. Yet anarchy reigns: the use of side effects in
streams can have unpredictable consequences and nothing prohibits stream operations from
having side effects, except for stern warnings in the documentation. Stream pipelines are
often described as declarative, but in the presence of side effects, they are anything but that.

We propose to overcome these challenges with a new programming language construct
that enables higher-order functions to inspect the purity of their function arguments and to
vary their behavior based on this information. For example, List.map can vary its behavior

© Magnus Madsen and Jaco van de Pol;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 18; pp. 18:1–18:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:magnusm@cs.au.dk
https://orcid.org/0000-0002-7510-8724
mailto:jaco@cs.au.dk
https://orcid.org/0000-0003-4305-0625
https://doi.org/10.4230/LIPIcs.ECOOP.2023.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

as follows: when given a pure function it lazily maps the function over the list, whereas when
given an impure function it eagerly maps the function over the list. Thus, List.map ensures
that side effects are never lost or re-ordered while simultaneously allowing lazy evaluation for
pure functions. We say that the List.map function is purity reflective. Similarly, Set.count can
vary its behavior as follows: when given a pure function it performs the counting in parallel
over the set, whereas when given an impure function it performs the counting sequentially
following the order of the elements in the set. Thus, Set.count ensures that side effects do not
lead to thread-safety hazards (like deadlocks, race conditions), while still admitting parallel
evaluation when given a pure function. Purity reflection empowers programmers, and in
particular library authors, to write new data structures that selectively use lazy and/or
parallel evaluation under the hood, while semantically appearing to their clients as-if always
under eager, sequential evaluation.

We argue that purity reflection, as a simple form of effect reflection [22], hits a “sweet
spot” for practical programming. The distinction between pure and impure functions
is straightforward and understandable by ordinary programmers, while at the same time
providing sufficient information to be useful. We want to stress that purity reflection increases
the value of effect systems. In particular, most use cases of type and effect systems focus
on soundness, i.e. the ability to rule out certain erroneous programs. This is of course very
desirable, but it does not really add any new expressive power to a programming language.
With purity reflection (and effect reflection in general), we empower programmers to write
new programs that they could not express before. Thus, “fighting the types and effects” now
comes with an additional reward. Purity reflection is enabled by a recent technique to infer
fine-grained, polymorphic effects automatically [27].

In this paper, we implement purity reflection, from end-to-end, in a production compiler.
We use the implementation to retrofit existing and implement new data structures. A key
implementation technique is the use of an effect-aware form of monomorphization. In theory,
this technique could lead to an exponential blow-up in compilation time and code size, but
we experimentally show that this is not the case.

In summary, the contributions of this paper are:

(Purity Reflection) We introduce purity reflection, a new programming language feature
that enables higher-order functions to inspect the purity of their function arguments and
to vary their behavior based on this information. We argue that purity reflection is a
“sweet spot” in the design space of effect reflection.

(Data Structures) We propose several new data structures that use purity reflection to
switch between lazy and eager, sequential and parallel evaluation, including the DelayList
and DelayMap data structures.

(Compilation) We discuss two compilation strategies supporting purity reflection: one
based on extending the runtime to track purity information in closures and the other
based on a new form of effect-aware monomorphization. We implement the latter.

(Implementation) We extend the Flix programming language with purity reflection.
We believe Flix is the first large-scale programming language development to support any
form of effect reflection.

(Evaluation) We experimentally evaluate the impact of effect-aware monomorphization
on compilation time and code size. The results show that the overhead is minimal.

M. Madsen and J. van de Pol 18:3

2 Motivation

We motivate our idea with an example. We will use the Flix programming language, but our
technique is equally applicable to other ML-style programming languages.

2.1 A Word & Line Count Program
Imagine that we want to write a program that determines if a text contains a specific word.
We might start with the program fragment:

use List .{ flatMap , memberOf };
use String . splitOn ;
let lines = haystack |> splitOn ("\n");
let words = lines |> flatMap (l -> splitOn (" ", l));
memberOf (needle , words)

The program works as follows: Given two strings: haystack and needle, the program splits
haystack into a list of lines, then it flatMaps over each line splitting it into a list of words,
and finally it computes if words contains the string needle.

The program works as expected and is written in a natural style: We have two local
variables: lines and words that hold understandable intermediate results. Unfortunately, the
program is not very efficient. We construct several intermediate lists and these entire lists
are not even needed if the search word needle occurs early in the text.

If evaluation of splitOn and flatMap were lazy, then the program would run fast and
not require the construction of these large intermediate lists. Instead, splitOn and flatMap
would build and operate on lazy lists, whose elements would be constructed on-demand when
needed by memberOf. But, since Flix is strict, this is not the case at the moment.

Let us imagine that we later decide to extend the program to also count the number of
lines and words in the text, reminiscent of the wc command from UNIX. Thus, we change
the program to:

let lineCount = ref 0;
let wordCount = ref 0;
let lines = haystack |> splitOn ("\n");
let words = lines |> flatMap (l -> {

lineCount := deref lineCount + 1;
let ws = splitOn (" ", l);
wordCount := deref wordCount + length (ws);
ws

});
println ("Lines: ${ deref lineCount }");
println ("Words: ${ deref wordCount }");
println ("Found: ${ memberOf (needle , words)}")

The extended program is more sophisticated. Running it might print: Lines: 21, Words:
261, Found: true. The new program uses a natural style of functional and imperative
programming that is common in Java, Kotlin, and Scala. The core of the program remains
functional, but the counting is performed in an imperative manner. The program could be
written in a purely functional style, but this would require careful threading of state: We
would have to operate on triples of the current words on a line and the two counters.

Importantly, this program must be evaluated eagerly. If we were to lazily evaluate splitOn
and flatMap then the two counters would not be updated before they are printed, and the
program would print the wrong result (e.g. Lines: 0, Words: 0, true).

ECOOP 2023

18:4 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

The two programs expose a rift between functional and imperative programming. In the
functional paradigm we would like certain operations to be lazy to improve performance,
whereas in the imperative paradigm it is vital that effectful operations are evaluated eagerly.

We believe that the fundamental tension is between two different views on the essence of
operations such as filter, map, and flatMap. In the imperative view, these operations eagerly
transform one data structure into another data structure. If the transformation has any side
effects, these occur immediately and in a deterministic order (e.g. the order of a list, the
natural order of a tree, etc.). In the declarative view, these operations describe how a data
structure should be transformed, but the transformation is not applied until needed. In this
view, effectful transformations are evil; either banned outright (like in Haskell) or strongly
discouraged with stern warnings (like in Java, Scala).

So what can be done? In this paper, we propose a technique, i.e. purity reflection, where
we can have our cake and eat it too. Purity reflection allows both programs – exactly as
written – to compute their expected results while the first is evaluated lazily and the second
is evaluated eagerly. This allows us to write programs the way we want while ensuring that
side effects are never lost and always occur in the expected order.

We can use purity reflection to switch between eager and lazy evaluation, but our technique
is equally applicable to switching between sequential and parallel evaluation. For example, if
we know that the predicate function passed to Set.count is pure, then it is safe to evaluate
the function in parallel over disjoint subsets of the set.

2.2 Streams: An Unsound Solution
Before we proceed, we want to highlight the challenges posed by trying to combine side
effects, laziness, and parallelism in a single programming language. Mainstream programming
languages, such as Java and Scala, support a small collection of data structures that are lazy
and/or parallel. Most prevalent is the support for streams, a lazy (and sometimes parallel)
data structure that represents a sequence of elements.

2.2.1 Java
The java.util.Stream package offers a collection of utilities for working with “sequences of
elements supporting sequential and parallel aggregate operations”. The documentation for
the package states that1:

“side effects in behavioral parameters to stream operations are, in general, discouraged,
as they can often lead to unwitting violations of the statelessness requirement, as well
as other thread-safety hazards.”

A bit later, the documentation goes on to state:

“[...] The ordering of side effects may be surprising. [...] The eliding of side effects
may also be surprising. [...]”

In total, the documentation for Stream warns about side effects almost twenty times!

1 https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/
package-summary.html

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/stream/package-summary.html

M. Madsen and J. van de Pol 18:5

2.2.2 Scala
The scala.collection.parallel package offers a collection of parallel data structures. The
documentation for the package states that2:

“[...] These concurrent and “out-of-order” semantics of parallel collections lead to the
[...] implications:

Side effecting operations can lead to non-determinism
Non-associative operations lead to non-determinism

Given the concurrent execution semantics of the parallel collections framework, opera-
tions performed on a collection which cause side effects should generally be avoided,
in order to maintain determinism.”

The documentation for ParIterable goes on to state3:

“[...] Since implementations of bulk operations may not be sequential, this means
that side effects may not be predictable and may produce data-races, deadlocks or
invalidation of state if care is not taken. [...]

As these examples illustrate, the combination of effectful operations with lazy and/or
parallel evaluation is fraught with danger. A mindful programmer is left weary. Perhaps as a
consequence, a study by Khatchadourian et al. finds that “stream parallelization is rarely
used”, despite the fact that “streams tend not to have side effects” [17].

This paper provides a path out of the quagmire.

2.3 Proposed Solution
We propose a solution based on the following simple idea:

Data structure operations (such as map, filter, ...) may use lazy or parallel evaluation
when they are given pure function arguments, but revert to eager, sequential evaluation
when given impure function arguments to ensure that side effects are not lost and
that the order of effects is preserved.

We illustrate this idea with two examples:
@LazyWhenPure
def map(f: a -> b & ef , l:List[a])

= reifyEff (f) {
case Pure(g) => mapL(g, l)
case _ => mapE(f, l)

}

@ParallelWhenPure
def cnt(f: a -> Bool & ef , s:Set[a])

= reifyEff (f) {
case Pure(g) => parCnt (g, s)
case _ => fold (...)

}

The program construct reifyEff(exp) allows us to reflect on the purity of the closure exp.
In the program fragment on the left, which implements the map function on a list, we use
reifyEff to inspect the purity of the function argument f. If it is pure, we use mapL to lazily
apply the function f over the list (i.e. no evaluation happens yet). If, on the other hand, f is
impure we use mapE to immediately apply f eagerly over the elements of the list.

2 https://docs.scala-lang.org/overviews/parallel-collections/overview.html
3 https://www.scala-lang.org/api/2.12.2/scala/collection/parallel/ParIterable.html

ECOOP 2023

https://docs.scala-lang.org/overviews/parallel-collections/overview.html
https://www.scala-lang.org/api/2.12.2/scala/collection/parallel/ParIterable.html

18:6 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

Note that in the pure case, reifyEff rebinds f as g (i.e. it is the same function), but now g
is typed as a pure function. This rebinding avoids the need for flow-sensitive typing.

In the program fragment on the right, we use reifyEff to determine whether to count the
elements that satisfy a given predicate f sequentially or in parallel over a set. If f is pure
then we perform the counting in parallel, otherwise, we perform it sequentially using an
ordinary fold.

The annotations @LazyWhenPure and @ParallelWhenPure have no semantic meaning, but
serve as documentation for the programmer.

The reifyEff construct is enabled by a recent Hindley-Milner style type and effect system
that supports effect polymorphism, type inference, and computes purity information for every
sub-expression in a program [27]. Building on this type and effect system, we can implement
purity reflection as a compile-time programming construct that is eliminated by a new form
of effect-aware monomorphization. For example, we will monomorph two versions of the map
function: one for pure functions and one for impure functions.

We now discuss some properties of the proposed solution:
(Modular) The technique supports abstraction: A library author can implement data
structure operations that make selective use of lazy or parallel evaluation without leaking
those details to the client. A library user can reason about his or her code as-if under
eager and sequential semantics.
(Gradual) It is easy to start using the technique: A data structure can be made gradually
lazy or parallel without affecting the semantics of its clients†.
(Programmable) The technique is based on a new programming language construct. Thus,
maximum power is placed in the hands of library authors (and programmers in general)
who may have better knowledge of when to exploit laziness or parallelism.
(Zero Cost‡) The new programming construct can be eliminated entirely at compile-time.
Thus programs using the technique suffer no runtime overhead.
(Sound††) The technique is based on a sound type and effect system: It ensures that if
an expression is pure then it cannot have a side effect. The typing of lazy expressions
ensures that side effects cannot be hidden and later revealed.

† Of course, programmers and library authors should be aware that (i) switching from
eager to lazy evaluation can potentially lead to space leaks, and (ii) switching from sequential
to parallel evaluation may slow down the program. However, we believe both situations can
be managed. For (i), lazy evaluation should only be used for stream-like data structures where
space leaks are less likely to occur, and for (ii), parallel evaluation should use light-weight
threads and only be enabled for sufficiently large data structures.

‡ We use an effect-aware form of monomorphization that specializes (i.e. copies) higher-
order functions based on the purity of their function argument(s). This ensures that there
is no runtime overhead, but it could potentially lead to increased compilation time and
increased code size. In Section 7 we experimentally evaluate this cost.

†† The technique does not magically guarantee correctness. For example, a programmer
could mistakenly implement List.map to always return the empty list when given a pure
function argument. This does not violate the soundness of the type and effect system itself,
but it does violate the commonly understood specification of what List.map should do.

M. Madsen and J. van de Pol 18:7

c ∈ Cst = () | true | false | · · ·
v ∈ Val = c | λx. e

e ∈ Exp = x | v | e e

| let x = e in e

| if e then e else e

| lazy e | force e

| print e

x, y ∈ Var = a set of variables

(a) Expressions of λB.

τ ∈ Type = α | ι | τ
φ→ τ | lazy τ

φ ∈ Formula = T | F | β | ¬φ | φ ∧ φ | φ ∨ φ

σ ∈ Scheme = τ | ∀α. σ | ∀β. σ

ι ∈ BaseType = Unit | Bool | Int | · · ·
α ∈ TypeVar = a set of type variables
β ∈ BoolVar = a set of Boolean variables

(b) Types of λB.

Figure 1 Syntax and Types of λB.

3 Purity Reflection

We begin with a brief introduction to the λB calculus and its Hindley-Milner-style type and
effect system [12, 30, 7]. The system is from [27] but extended with the standard lazy and
force constructs [31]. The λB calculus is the foundation for the Flix programming language
implementation (which we build on top of). The λB calculus is proven sound in [27]. In
Section 3.4, we propose a simple extension that requires just one new expression and one
new type rule.

3.1 A Minimal Calculus
Syntax

The syntax of λB includes the standard lambda calculus constructs: variables, constants,
lambda abstractions, and function application. As is standard in Hindley-Milner style type
systems, the let-expression let x = e1 in e2 supports polymorphic generalization of e1

4. The
if-then-else expression is standard and included to illustrate how the type and effect system
merges information from different control-flow paths. The print expression is included to have
a side effect in the calculus. We add lazy e and force e to suspend and resume computations.
We assume that force e uses memoization. Figure 1a shows the syntax of λB.

Semantics

We assume a standard call-by-value semantics, i.e., function arguments are reduced to values
before they are substituted into the body of a lambda abstraction. The same applies to
let-bindings. The only exceptions are if-then-else, which uses short circuiting semantics,
and lazy expressions, which are treated as closures that are computed only once when forced,
and then memoized.

4 In Flix, which has mutable references, let-generalization is subject to the value restriction [8].

ECOOP 2023

18:8 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

Γ ⊢ e : τ1 & φ1 τ1 ≡ τ2 φ1 ≡ φ2

Γ ⊢ e : τ2 & φ2
(T-Eq)

typeOf(c) = σ σ ⊑ ι

Γ ⊢ c : ι & T
(T-Cst)

(x, σ) ∈ Γ σ ⊑ τ

Γ ⊢ x : τ & T
(T-Var)

Γ ⊢ e : String & φ

Γ ⊢ print e : Unit & F
(T-Prt)

Γ, x : τ1 ⊢ e : τ2 & φ

Γ ⊢ λx. e : τ1
φ→ τ2 & T

(T-Abs)

Γ ⊢ e1 : τ1
φ→ τ2 & φ1 Γ ⊢ e2 : τ1 & φ2

Γ ⊢ e1 e2 : τ2 & φ1 ∧ φ2 ∧ φ
(T-App)

Γ ⊢ e : τ & T

Γ ⊢ lazy e : lazy τ & T
(T-Lazy)

Γ ⊢ e : lazy τ & φ

Γ ⊢ force e : τ & φ
(T-Force)

Γ ⊢ e1 : τ1 & φ1

Γ, x : gen(Γ, τ1) ⊢ e2 : τ2 & φ2

Γ ⊢ let x = e1 in e2 : τ2 & φ1 ∧ φ2
(T-Let)

Γ ⊢ e1 : Bool & φ1

Γ ⊢ e2 : τ & φ2 Γ ⊢ e3 : τ & φ3

Γ ⊢ if e1 then e2 else e3 : τ & φ1 ∧ φ2 ∧ φ3
(T-Ite)

gen(Γ, τ) = ∀α1, · · · , ∀αn.∀β1, · · · , ∀βn.τ where {α1, · · · , αn, β1, · · · , βn} = ftv(τ) \ ftv(Γ)

Figure 2 Type Rules for λB with judgments of the form Γ ⊢ e : τ & φ.

3.2 Type and Effect System
Types

The types of λB are separated into monotypes (τ) and type schemes (σ). The monotypes
include type variables α, a set of base types ι, and function types τ1

φ→ τ2 that represents
functions from values of type τ1 to values of type τ2 with latent effect φ. We use the type
lazy τ to denote suspended computations. The type schemes of λB include monotypes τ and
quantified types ∀α.σ and ∀β.σ, where α is a type variable and β is a Boolean effect variable.
Figure 1b shows the types and type schemes of λB.

In λB the language of effects is a single Boolean formula φ, i.e. there is only a single
“effect”: impurity. If the Boolean formula is equivalent to true (T) then the expression it
describes must be pure. If the Boolean formula is equivalent to false (F) then the expression
may have a side effect. A Boolean formula with variables in it captures the conditions under
which the expression is pure. The system is over-approximating: An expression typed as pure
cannot have a side effect whereas an expression typed as impure may have a side effect [27].

Type Judgements

Figure 2 shows the type rules of λB. We define a context Γ as a partial function of bindings
x : σ from variables to type schemes. We also define ftv(σ) to be the type variables that occur
free in σ, and ftv(Γ) as the union of all free type variables in its range. A type judgement is
of the form Γ ⊢ e : τ & φ, which states that under type environment Γ, the expression e has
type τ and effect φ, where φ is a Boolean formula that captures when the expression is pure.

We now briefly discuss the most important type rules. Except for (T-Eq), the rules are
syntax-directed. The (T-Cst) rule states that a constant expression is pure. The (T-Ite)
rule states in an if e1 then e2 else e3 the overall effect is φ1 ∧ φ2 ∧ φ3 where φi is the effect of
expression ei. The (T-Abs) and (T-App) rules type lambda abstractions and applications.
An abstraction takes the effect φ of an expression e and moves it onto the arrow type whereas
an application releases the latent effect of the arrow type. The (T-Var) and (T-Let)
rules are the standard Hindley-Milner type rules. We add the (T-Lazy) and (T-Force)
rules. Note that only pure expressions can be suspended. Thus effects cannot be delayed.
The (T-Eq) rule states that we can use type equivalence. In λB two types are considered
equivalent modulo Boolean equivalence.

M. Madsen and J. van de Pol 18:9

For example, the following two functions types are equivalent:

Int x∨¬x−→ Int ≡B Int T→ Int

By a suitable extension of Algorithm W with Boolean unification, the type and effect
system supports complete type inference. We refer to [27] for the full details.

3.3 Effect Polymorphism
The λB calculus supports effect polymorphism, i.e. the effect of a higher-order function may
depend on the effects of its function arguments. For example, the List.map function can be
given the type:

List.map : ∀α1, α2, β. (α1
β→ α2) T→ List[α1] β→ List[α2]

which can be read as: the effect of List.map is the same as the effect of its function argument,
i.e. List.map is pure if its function argument is.

Forward function composition » can be given the type:

» : ∀α1, α2, α3, β1, β2. (α1
β1→ α2) T→ (α2

β2→ α3) T→ (α1
β1∧β2→ α3)

which can be read as: the composition of f and g is pure if both are pure. Note that the
purity of » is constructed from the purity of both f and g.

3.4 Purity Reflection with ReifyEff
We extend the λB calculus with a single new expression:

reifyEff(e1){case Pure(f) ⇒ e2, case _ ⇒ e3}

The idea is that if e1 evaluates to a pure function v then it is bound to f and the whole
reifyEff expression reduces to e2[f 7→ v]. Otherwise, the expression reduces to e3. Of course,
one cannot in general determine whether a function is pure. Thus, we rely on the type and
effect system to tell us whether a function value is pure. In other words, in the extended λB
calculus (and Flix in general), only well-typed terms have an operational semantics [35]. In
Section 5 we discuss two compilation strategies for how to implement the reifyEff construct.

The type rule for the reifyEff expression is straightforward and shown in Figure 3. The
type rule requires that the expression e1 has a function type τ1

φ→ τ2 where φ is the latent
effect of the function. We type check e2 in an extended environment, where we introduce a
new binder f for the function which is typed as pure (i.e., with effect T). We do not introduce
a new binder for the case where the function is impure. This asymmetry is for two reasons:

The type and effect system is over-approximating: If an expression is pure then it cannot
have a side effect, but the opposite is not true: an impure expression is not guaranteed to
produce a side effect.

Γ ⊢ e1 : τ1
φ→ τ2 & φ1

Γ, f : τ1
T→ τ2 ⊢ e2 : τ3 & φ2 Γ ⊢ e3 : τ3 & φ3

Γ ⊢ reifyEff(e1){case Pure(f) ⇒ e2, case _ ⇒ e3} : τ3 & φ1 ∧ φ2 ∧ φ3

(T-Reify-Eff)

Figure 3 Type rule for the reifyEff construct.

ECOOP 2023

18:10 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

If we had introduced a new binder for f and given it the effect impure (i.e., effect F)
then any use of f inside e3 would cause the whole expression to be impure. But this
would prevent purity reflection. We would not be able to use reifyEff inside List.map while
keeping it effect-polymorphic.

3.4.1 Correctness
The correctness of the approach depends on the soundness of the type and effect system
and completeness of type inference [27]. There, it is proved that the type system enjoys the
progress- and preservation-property. Also, Algorithm W extended with Boolean unification
will always compute the most general type and effect. Finally, it is proved that a pure
expression can at no time perform an effectful step. So it is not possible to hide effects.
Moreover, the lazy construct in Flix can only be applied to pure expressions, so it impossible
to delay effects.

Of course, nothing in the type and effect system ensures that an implementation satisfies
its specification. For example, a programmer could accidentally reverse a list before mapping
an effectful function over it. In that case, the effects will happen in the wrong order. Ensuring
functional correctness, i.e., that a function respects its specification of return values and
emitted effects, is generally beyond the scope of Hindley-Milner style type systems.

3.5 Fine-Grained Purity and the Poisoning Problem
We stress that the type rules are compositional and fine-grained: the purity of an expression
is constructed from the purity of its sub-expressions. This is in contrast to the situation in
row-polymorphic type and effect systems [39, 20], where the effects of the sub-expressions
are required to be the same. Such systems suffer from the so-called poisoning problem [40],
where the effect of a sub-expression is over-approximated to fit its context.

We illustrate this issue with an example:

airplanes |>
List.map(plane -> plane .pilot) |>
List.map(pilot -> pilot .name) |>
List. foreach (println)

Here a row polymorphic system infers that sub-expression List.foreach(println) has the
Print effect. This in turn pollutes every sub-expression with the Print effect. Consequently,
the row polymorphic system cannot be used to infer that the first two List.map operations are
pure (and could be applied lazily with our technique). However, the Boolean effect system
can infer that each of the List.map operations is given pure arguments, even through the
polymorphic usage of the pipeline function |>. This example demonstrates that for purity
reflection to work, one needs a compositional and fine-grained type and effect system.

3.6 Purity Reflection: A Sweet Spot
We believe that purity reflection hits a “sweet spot”. First, it is simple to explain to
programmers: they only have to understand the distinction between pure and impure
functions. Second, it requires us to maintain minimal information to implement, either at
runtime or compile-time, as discussed in Section 5. Third, as we argue below, a richer effect
system may be difficult to exploit in practice. In particular, it is difficult to determine when
two effects may interfere. For example:

M. Madsen and J. van de Pol 18:11

(Aliasing) Given two effects Read(p1) and Write(p2) where p1 and p2 are pointers to
mutable memory, can we safely evaluate them lazily or in parallel? The answer depends
on whether p1 and p2 are aliased, i.e., can point to the same memory location. If they
are, then any re-ordering or parallel execution may change the meaning of the program.
Unfortunately, we cannot statically know if p1 and p2 are aliases without additional heavy
machinery: either alias analysis or a sub-structural type system. To solve this, one needs
more information, such as fine-grained regions [15, 37, 10].
(External Aliasing) Given two effects ReadFile(f1) and WriteFile(f2) where f1 and
f2 are file paths, can we safely evaluate them lazily or in parallel? As before, the answer
depends on whether f1 and f2 refer to the same file. We cannot statically determine if
f1 and f2 may denote the same filename without some notion of control- and data flow
analysis. Worse, even, if f1 and f2 are guaranteed to be distinct strings, the two file
paths may still refer to the same file due to symbolic links in the underlying file system.
(Implicit Dependencies) Given two effects WriteFile and CurrentTime, can we
safely evaluate them lazily or in parallel? Maybe, but not if the programmer is trying to
measure the time it takes for the WriteFile operation to complete.

These examples do not imply that the task is impossible. If we had a specification of each
effect, i.e., if we had much more information from the programmer, we could probably apply
lazy and/or parallel evaluation more aggressively. Instead, our system makes the simple and
sound assumption that effects should never be omitted nor re-ordered.

4 Four New Data Structures

We now illustrate how reifyEff can be used to extend two existing and implement two new
data structures that make selective use of lazy and/or parallel evaluation.

4.1 From List to LazyList to DelayList
4.1.1 From List to LazyList
In Flix, the familiar definition of List is:

enum List[a] {
case Nil ,
case Cons(a, List[a])

}

A list is either the empty list Nil or a cons cell Cons(x, xs) with an element x and a tail xs.
We can implement list operations such as filter, map, and flatMap in the standard way.

The definition of List does not permit lazy evaluation. We can fix that by redefining List
to have a lazy tail:

enum List[a] {
case Nil ,
case Cons(a, Lazy[List[a]])

}

Flix has two expressions to support lazy evaluation: lazy e and force e. The former suspends
the evaluation of an expression e returning a thunk of type Lazy[t] where t is the type of the
expression. The latter evaluates a thunk and memoizes the result. Recall that only pure
expressions can be suspended. With the updated definition of List, we can express eager and
lazy versions of every list operation.

ECOOP 2023

18:12 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

For example, here is the lazy definition of map5:

def mapL(f: a -> b, l: List[a]): List[a] =
match l {

case Nil => Nil
case Cons(x, xs) =>

// The tail is *not* yet evaluated .
Cons(f(x), lazy mapL(f, force xs))

}

The mapL function takes a pure function f from values of type a to type b and a list l of
elements of type a. If the list is empty, it returns the empty list. Otherwise, there is a Cons(x,
xs) cell where the tail xs is lazy. In this case, we evaluate f on the head x and construct a lazy
computation that maps f over the rest of the list xs. Thus, no evaluation of the tail happens
until it is needed. Note that the use of lazy and force requires the suspended computation
to be pure. Consequently, f must be pure, as reflected in the function signature.

We can also implement an eager and effect-polymorphic version of map6:

def mapE(f: a -> b & ef , l: List[a]): List[a] & ef =
match l {

case Nil => Nil
case Cons(x, xs) =>

let hd = f(x); // Eagerly evaluate f(x)
let tl = mapE(f, force xs); // Force the rest of the list
Cons(hd , lazy tl) // Tail is lazy , but fully evaluated

}

The mapE function takes a function f from values of type a to type b with latent effect ef
and a list l of elements of type a. It pattern-matches on l. If the list is empty it returns the
empty list. Otherwise, there is a Cons(x, xs) cell where the tail xs is lazy. We evaluate f

on the head x; then we perform a recursive call on the tail xs (forcing the list). Note that
moving the tail-computation to a let-binding makes it eager. Finally, we return a cons-cell
with the new head and tail, where the tail is made lazy (but nevertheless has been fully
evaluated). Unlike, mapL, the mapE function permits side effects, because it materializes
those effects immediately.

We now have mapL and mapE which have lazy and eager semantics, respectively. We can
use these two functions to define a purity reflective map function that varies its behavior
depending on the purity of its function argument:

def map(f: a -> b & ef , l: List[a]): List[b] & ef =
reifyEff (f) {

case Pure(g) => mapL(g, l) // Use lazy evaluation .
case _ => mapE(f, l) // Use eager evaluation .

}

The implementation is straightforward: The map function matches on the purity of f . If f is
pure, then we bind it to g (which is typed as pure) and call mapL passing g. Otherwise, f

may be impure, and we call mapE.

5 The syntax a -> b denotes a pure function from a to b.
6 The syntax a -> b & ef denotes an effect polymorphic function from values of type a to type b with

latent effect ef.

M. Madsen and J. van de Pol 18:13

Example I

The Flix program fragment7:

List.range (1, 1 _000_000_000) |> // Lazy
List.map(x -> { println ("a"); x + 1}) |> // Eager
List.map(x -> { println ("b"); x * 2}) // Eager

Prints one billion a’s followed by one billion b’s. This takes a while, but ultimately the
program terminates. The a’s are printed before the b’s preserving the order of effects.

Example II

The following Flix program fragment Prints Some(4) and terminates immediately. The two
map operations are pure, consequently they are applied lazily and only evaluated for the
first element of the list.

List.range (1, 1 _000_000_000) |> // Lazy
List.map(x -> x + 1) |> // Lazy
List.map(x -> x * 2) |> // Lazy
List.head |> println // Eager in head.

Example III

The Flix program fragment:

let count = ref 0;
List.range (1, 1 _000_000_000) |> // Lazy
List.map(x -> x + 1) |> // Lazy
List.take (1 _000) |> // Lazy
List.map(x -> { // Eager

count := deref count + 1; x * 2
});
println (deref count)

Prints 1000 and terminates rather quickly. The first map operation is applied lazily, and the
subsequent take operation is also applied lazily. The final map operation is applied eagerly,
but only to the first 1000 elements.

4.1.2 From LazyList to DelayList
While the previous lazy list data structure permits both eager and lazy evaluation, its
representation is inefficient. In particular, the lazy list definition has two issues: (i) each use
of Lazy introduces a layer of indirection. This indirection requires extra memory, slows down
access, and puts additional pressure on the garbage collector, and (ii) each force operation
is guarded by a lock to ensure that the thunk is evaluated at most once. This can cause
lock contention and is antithetical to the idea that immutable data structures can be shared
freely and efficiently in a concurrent program. To overcome these issues, we actually use the
following definition:

7 The List.range(b, e) function returns a (suspended) list of integers from b until e.

ECOOP 2023

18:14 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

enum DelayList [a] {
case ENil
case ECons (a, DelayList [a])
case LCons (a, Lazy[DelayList [a])]

}

The idea is that a fully evaluated list is represented with the ENil and ECons constructors
whereas a list with a lazy tail is represented with the LCons constructor. We implement all
operations to be maximally lazy. Evaluation occurs for two reasons: (i) when required by a
terminal operation (e.g., count and foldLeft), or (ii) when a non-terminal operation is given
an impure function argument (e.g., filter and map).

We have implemented the DelayList data structure. The following pure operations are
always lazy: append, drop, flatten, from, intercalate, intersperse, range, repeat, replace, take,
and zip. The operations shown in Fig. 4a are lazy when given pure function arguments and
otherwise eager.

We can use the DelayList data structure to realize the word count example from Section 2.

4.2 From Set to Parallel Set
We have refactored the Flix Standard Library implementation of the Set data structure to
use parallel evaluation for all of its aggregation operations (shown in Fig. 4b). Each of these
functions use reifyEff to inspect the purity of their function argument, and then they dispatch
to either a sequential or a parallel function that operates on the underlying Red-Black tree.
For example, here is the implementation of Set.count:

@ParallelWhenPure
pub def count (f: a -> Bool & ef , s: Set[a]): Int32 & ef =

reifyEff (f) {
case Pure(g) if useParallelEvaluation (s) =>

RedBlackTree . parCount (g, s)
case _ =>

foldLeft ((b, x) -> if (f(x)) b + 1 else b, 0, s)
}

Here we use purity reflection on f to determine whether it is safe to perform the count in
parallel or if we must perform it sequentially (going from left to right). Moreover, we use
the function useParallelEvaluation to estimate whether it is worth to perform the count in

@LazyWhenPure

def dropWhile(...)
def filter(...)
def filterMap(...)
def flatMap(...)
def map(...)
def mapWithIndex(...)
def span(...)
def takeWhile(...)
def zipWith(...)

(a) DelayList: lazy when pure.

@ParallelWhenPure

def count(...)
def maximumBy(...)
def minimumBy(...)
def productWith(...)
def sumWith(...)

(b) Set: parallel when pure.

@ParallelWhenPure

def count(...)
def map(...)
def mapWithKey(...)
def maximumKeyBy(...)
def maximumValueBy(...)
def minimumKeyBy(...)
def minimumValueBy(...)
def productWith(...)
def sumWith(...)

(c) Map: parallel when pure.

Figure 4 Selective Lazy or Parallel datastructures, depending on purity of function arguments.

M. Madsen and J. van de Pol 18:15

parallel. In particular, the useParallelEvaluation function relies on some heuristics, including
the height of the Red-Black tree, to determine whether we should use parallel evaluation,
given that we could.

The implementation of RedBlackTree.parCount is straightforward:

@Parallel
def parCount (f: (k, v) -> Bool , t: RedBlackTree [k, v]): Int32 =

match t {
case Leaf => 0
case DoubleBlackLeaf => 0
case Node(_, l, k, v, r) => // left , key , value , right

par (cl <- parCount (f, l);
cm <- if (f(k, v)) 1 else 0;
cr <- parCount (f, r))

yield cl + cm + cr
}

Here we use the built-in Flix construct par to evaluate three expressions in parallel. Thus,
the count is performed in parallel on the left subtree, on the key and value, and on the right
subtree.

We might worry that spawning too many threads may impose an overhead much larger
than the time saved by using parallel evaluation. With OS-level threads, which are expensive,
this is likely to be the case. A standard solution to this problem is the use of thread pools
and/or a fork-join framework. However, with the imminent arrival of light-weight threads in
Java (Project Loom), we hope that such administration will no longer be necessary since
VirtualThreads are very cheap.

4.3 From Map to Parallel Map
We have also refactored the Flix Standard Library implementation of the Map data structure
(mapping keys to values), to use parallel evaluation for all the aggregation and transformation
operations when given pure function arguments (shown in Fig. 4c). The map and mapWithKey
functions are the most interesting since they allow parallel rebuilding of the map when applying
a pure function to all of its values. As before, these functions use reifyEff to dispatch to the
appropriate operation inside RedBlackTree.

For example, here is a simplified version RedBlackTree.parMapWithKey:

@Parallel
pub def parMapWithKey (f: (k, v1) -> v2 , t: RedBlackTree [k, v1]):

RedBlackTree [k, v2] =
match t {

case Leaf => Leaf
case DoubleBlackLeaf => DoubleBlackLeaf
case Node(c, l, k, v, r) =>

par (l1 <- parMapWithKey (f, l);
v1 <- f(k, v);
r1 <- parMapWithKey (f, r))

yield Node(c, l1 , k, v1 , r1)
}

4.4 From Map and ParallelMap to DelayMap
We now turn to perhaps the most interesting new data structure: DelayMap, a data structure
that uses both selective lazy and parallel evaluation. A DelayMap[k, v] is a map from strict
keys (of type k) to lazy values (of type v). Pure transformations on the values of a DelayMap

ECOOP 2023

18:16 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

are lazy (e.g., DelayMap.map). Pure terminal operations use parallelism (e.g., Delay.count).
The operations in Fig. 5a use lazy evaluation when given pure function arguments. The
unionWith operation is especially interesting, as it enables the lazy merge of two maps (if the
combine operation is pure). The operations in Fig. 5b use parallel evaluation when given
pure function arguments. Consider the program fragment:

m1 |> DelayMap .map(x -> x + 1) // Lazy.
DelayMap .map(x -> x * 2) // Lazy.
DelayMap .count (x -> { println (x); x > 5}) // Parallel + sequential

Assume we start with a map m1 from strings to integers. The first and second map
operation transform the values and are applied lazily because they are pure. The last count
operation is impure, hence must be applied eagerly. However, before doing so, we force the
entire map in parallel (i.e., applying x -> x + 1 and x -> x * 2 to every value) and only then
the counting is performed, sequentially from left to right. This example shows that we apply
pure operations lazily, but once we have performed an impure operation, we force the entire
data structure in parallel, and then switch back to sequential evaluation.

4.4.1 Example I
We can use a DelayMap to write code that is both natural and efficient. Assume that we
have two maps m1 and m2 of type DelayMap[String, Int32]. Each map records the number of
occurrences of a specific word drawn from some documents d1 and d2. We can merge the
two maps and then compute the total number of occurrences of the word “foo”:

let m1 = ...
let m2 = ...
let m3 = DelayMap . unionWith ((x, y) -> x + y, m1 , m2);
DelayMap . getWithDefault ("foo", 0, m3) |> println

Here the unionWith function merges two maps using the supplied merge function to resolve
conflicts when a key occurs in both maps. The merge operation is pure and hence unionWith
is evaluated lazily. This means that we only have to merge and perform the addition for the
key “foo” (and any other key we may look up).

@LazyWhenPure

def adjust(...)
def adjustWithKey(...)
def insertWith(...)
def insertWithKey(...)
def map(...)
def mapWithKey(...)
def unionWith(...)
def unionWithKey(...)
def update(...)
def updateWithKey(...)

(a) DelayMap: lazy when pure.

@ParallelWhenPure

def count(...)

def maximumKeyBy(...)

def maximumKeyBy(...)

def maximumValueBy(...)

def minimumKeyBy(...)

def minimumValueBy(...)

def sumWith(...)

def productWith(...)

(b) DelayMap: parallel when pure.

Figure 5 Selective Lazy and Parallel datastructure, depending on purity of function arguments.

M. Madsen and J. van de Pol 18:17

Table 1 Overview of Data Structures. (LWP = Lazy When Pure, PWP = Parallel When Pure).

Data Structure Lines Tests Functions @LazyWhenPure @ParallelWhenPure LWP + PWP

Set 610 384 51 - 5 -
Map 924 591 80 - 9 -

DelayList 1,158 498 54 9 - -
DelayMap 786 298 58 10 9 2

4.4.2 Example II
We can merge the two DelayMaps, while using a mutable list to compute all the words that
occur in both maps:

let m1 = ...
let m2 = ...
let duplicates = MutList .empty ();
let merge = (key , x, y) -> {

MutList .add !(key , duplicates);
x + y

};
let m3 = DelayMap . unionWithKey (merge , m1 , m2)

The merge operation is impure and hence unionWith is evaluated eagerly. This ensures that
the mutable list duplicates is updated correctly.

4.5 Summary
We have demonstrated the usefulness of reifyEff by using it in four data structures:

We refactored the Flix Standard Library implementation of the Set and Map data
structures to use selective parallel evaluation.
We have introduced two new data structures: DelayList which uses selective lazy evaluation
and DelayMap which uses selective lazy and parallel evaluation.

Table 1 shows an overview of the data structures that we have implemented. The Data
Structure column gives the name of the data structure. The Lines column gives the number
of Flix source code lines (excluding tests). The Tests column gives the number of manually
written unit tests. The Functions column gives the number of functions implemented on the
data structure. Most functions are first-order and “terminal”. For example, Set.memberOf
is first-order and terminal, i.e., it does not transform the Set but rather returns a value.
The @LazyWhenPure gives the number of functions that use purity reflection to enable lazy
evaluation. The @ParallelWhenPure gives the number of functions that use purity reflection to
enable parallel evaluation. The LWP + PWP gives the number of functions that use purity
reflection to enable both lazy and parallel evaluation. For example, the line for DelayMap
shows that the data structure is implemented in 786 lines of Flix code with 298 unit tests. The
data structure offers 58 functions of which 10 use purity reflection to enable lazy evaluation,
7 use purity reflection to enable parallel evaluation, and 2 use purity reflection to enable
both. Except for DelayList, these three data structures build on a Red-Black Tree, whose
line counts are not included.

ECOOP 2023

18:18 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

5 Compilation Strategies

We now discuss two ways to implement purity reflection: one based on runtime dispatch and
the other on a novel form of effect-aware monomorphization. Both approaches rely on the
type and effect system since we cannot readily determine if an expression will be pure at
runtime. In other words, our extension of Flix only assigns meaning to well-typed programs.

5.1 Runtime Dispatch
Given a well-typed program, we can annotate each closure with a Boolean (or Boolean
formula) to track if it is pure or impure. For a first-order function (i.e., a function without
function arguments), its purity is readily determined by the typing judgment. For a higher-
order function, its purity may depend on its function arguments. In this case, we label the
closure with a Boolean formula that refers to the purity of the closure arguments. Given
such an annotated closure, the reifyEff construct can be implemented by simply inspecting
these annotations (and potentially evaluating a Boolean formula). For example, if we have
the program fragment:

let f = x -> x + 1;
let g = x -> println (x);
let h = u -> v -> x -> u(v(x));

Then the closure of f stores a Boolean formula which is the constant true, the closure of g

stores a Boolean formula which is the constant false, and the closure of h stores a Boolean
formula which is the conjunction of the two bits of the higher-order arguments u and v. Thus,
at runtime, the purity of h can be computed once u and v are known.

The cost of the runtime dispatch strategy is that we must store a Boolean formula with
each closure. For first-order functions, this is just the constant true or false. For higher-order
functions, it is a formula with several variables corresponding to its higher-order functions.
Thus, in general, these formulas will be small since most functions are first-order and since
higher-order functions tend to have only a few function arguments. Hence, the increase in
code size should be modest. At runtime, the reifyEff construct has to evaluate small Boolean
formulas which should be fast.

5.2 Effect-Aware Monomorphization
As an alternative to runtime dispatch, we propose an effect-aware form of monomorphization.

Monomorphization is a compile-time transformation that replaces polymorphic functions
with copies that are specialized to the concrete types of their arguments. For example, if
List.map is used with both integer and string lists, then monomorphization generates two copies
of List.map: one specialized to integers and one specialized to strings. Monomorphization
avoids boxing at the cost of larger executables. In practice, code size can be significantly
reduced with the proper use of inlining and dead code elimination. A potential downside of
monomorphization is that it may prevent separate compilation.

Before our work, the Flix compiler performed specialization of type variables and erased
effect variables. In this work, we have extended the Flix compiler to specialize effect variables.
In other words, the Flix compiler is now able to generate two versions of List.map[Int]: one
specialized for pure functions and one specialized for impure functions. The upshot is that
reifyEff can be eliminated – entirely at compile-time – because its argument is statically
known to be pure or impure. Thus, the use of reifyEff incurs zero runtime overhead.

M. Madsen and J. van de Pol 18:19

A technical detail is that during monomorphization a type or effect variable can potentially
be left un-instantiated. For example, in the expression Nil == Nil each Nil can be given any
type α. For effect variables, we can use two strategies to deal with such situations:

(Opportunistic) We opportunistically treat all un-instantiated effect variables as pure.
This is sound because the type system is closed under substitution (i.e., if a variable is
free we may substitute it by T).
(Conservative) We reject programs that contain un-instantiated effect variables during
monomorphization. The programmer can always resolve the situation with a type (or
effect) annotation.

In our extension of Flix, we choose the conservative option because it is consistent with how
ordinary un-instantiated type variables are treated. As an example, the following (contrived)
program has an un-instantiated effect variable:

let f = g -> reifyEff (g) {
case Pure(w) => g
case _ => g

};
f(f)

Here the type of f is: ∀α1, α2, β. (α1
β→ α2) T→ (α1

β→ α2). When f is applied to itself it
returns a function of the same type which has an un-instantiated effect variable even after
monomorphization. In Section 7, we investigate how common un-instantiated effect variables
are in real programs. We have not observed un-instantiated effect variables in existing code.

5.3 Discussion
We believe that both the runtime dispatch and the effect-aware monomorphization approaches
are viable. We decided to implement purity reflection via monomorphization since:

Flix already uses monomorphization to eliminate parametric polymorphism.
Monomorphization enables more aggressive optimizations performed by the Flix inliner.
Monomorphization ensures that the technique imposes zero runtime overhead.

Finally, as our experiments in Section 7 demonstrate, the increase in compilation time and
code size is small.

6 Implementation

We have implemented purity reflection as an extension of the Flix programming language.

6.1 The Flix Programming Language
Flix is a functional-first, imperative, and logic programming language that supports algebraic
data types, pattern matching, higher-order functions, parametric polymorphism, type classes,
higher-kinded types, polymorphic effects, extensible records, first-class Datalog constraints,
channel and process-based concurrency, and tail call elimination [24, 25, 26, 27, 28].

The Flix compiler project, including the standard library and tests, consists of 230,000
lines of Flix and Scala code. Adding reifyEff and effect-aware monomorphization required
less than 2,000 lines of code. The extended Flix Standard Library required approximately
4,000 lines of code with unit tests (see Section 4).

Flix, with our extension, is open source, ready for use, and freely available at:

https://flix.dev/ and https://github.com/flix/flix/

ECOOP 2023

https://flix.dev/
https://github.com/flix/flix/

18:20 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

6.2 Integration with Type Classes
Flix supports type classes and higher-kinded types. The Flix compiler implements type
classes using monomorphization, i.e., there is no dynamic dispatch or dictionary passing.
This also has the advantage that purity reflection works with type classes without any
modifications. For example, if a polymorphic function requires a Foldable instance because
of a call to Foldable.count then during monomorphization the call to Foldable.count will be
replaced by a call to the appropriate instance function. Thus, the benefits of selective lazy
and/or parallel evaluation are available even for polymorphic functions that use type classes.

7 Evaluation

We now turn to the question of the viability of an implementation strategy based on
effect-aware monomorphization. In particular, we consider the following research questions:

RQ1: What is the impact of effect-aware monomorphization on compilation time?
RQ2: What is the impact of effect-aware monomorphization on code size?
RQ3: How common are un-instantiated effect variables in practice?

7.1 RQ1 and RQ2: Impact on compilation time and code size
Monomorphization specializes (i.e., copies) functions for each of their concrete type arguments.
For example, the List.map function has the polymorphic type:

∀a, ∀b, ∀e . (a e→ b) → List[a] e→ List[b]

Under standard monomorphization, the List.map function is copied for every instantiation of
the type variables a and b. If, for example, List.map is called with the two functions that
have types: Int32 → Bool and String → Int32, we would get two copies of List.map.

With effect-aware monomorphization, a function is copied for every instantiation of its
type variables and its effect variables. In other words, List.map will be copied for every
instantiation of a, b, and e. Every effect variable is either pure or impure which means that
we can get two copies of a function per effect variable (in addition to its other type variables).
In the worst case, this can lead to an exponential blow-up in the number of copies.

We can construct a worst-case example with three effect variables:

def hof(f: a -> b & ef1 , g: a -> b & ef2 , h: a -> b & ef3): Unit = ...

def p(): Unit & Pure = ... // a pure function
def i(): Unit & Impure = ... // an impure function

def main (): Unit & Impure =
hof(p, p, p);
hof(i, p, p);
// ... omitted for brevity ...
hof(i, i, i)

The higher order function hof takes three function arguments f , g, and h. Each function
argument has an effect variable, which can be instantiated to pure or impure. Inside main,
we call hof with all possible combinations of pure and impure function arguments. There are
23 = 8 combinations of these. This means that during effect-aware monomorphization we
will construct 8 copies of hof, which duplicates its entire function body. If hof is large this
can lead to a blow-up in compilation time and code size.

M. Madsen and J. van de Pol 18:21

Table 2 Impact of Effect-Aware Monomorphization on Compilation Time and Code Size.
†: The “DeliveryDate” and “Stratifier” programs depend on the Flix Datalog engine, which is a part of
the Flix Standard Library and implemented in Flix itself. Hence, these programs are not actually 35-116
lines of code, but more accurately thought of as 35-116 lines of code plus the 3, 055 lines of code used to
implement the Datalog engine in Flix.

Std. Monomorphization Effect-Aware Monomorphization

Program Lines Time Bytes Classes Time Bytes Classes

Standard Library 33,689 4.6s 4,954 8 – – –

BoolTable 206 4.6s 766,638 759 4.6s (+0%) 766,546 (+0%) 759 (+0%)
DeliveryDate † 35 5.1s 2,913,210 2,762 5.1s (+0%) 3,019,959 (+4%) 2,888 (+5%)
fcwg 2,796 5.0s 1,700,982 1,911 5.0s (+0%) 1,699,107 (+0%) 1,911 (+0%)
flixball 1,767 4.8s 875,858 1,012 4.8s (+0%) 877,762 (+0%) 1,012 (+0%)
IfNoSub 1,870 5.2s 1,967,390 1,849 5.2s (+0%) 2,046,480 (+4%) 1,921 (+4%)
JSON 348 4.9s 486,521 573 4.9s (+0%) 487,025 (+0%) 573 (+0%)
Regex 1,891 4.5s 223,429 316 4.5s (+0%) 222,479 (+0%) 316 (+0%)
Stratifier † 116 4.9s 3,063,802 2,925 4.9s (+0%) 3,191,718 (+4%) 3,070 (+5%)

TestDelayList 3,060 5.1s 4,050,485 5,304 5.1s (+0%) 4,174,417 (+3%) 5,431 (+2%)
TestDelayMap 2,039 5.1s 4,111,046 5,090 5.1s (+0%) 4,750,187 (+16%) 5,631 (+11%)
TestMap 2,780 5.4s 5,230,078 5,782 5.4s (+0%) 5,572,129 (+7%) 6,107 (+6%)
TestSet 1,640 4.9s 2,598,250 2,759 4.9s (+0%) 2,757,388 (+6%) 2,930 (+6%)

Analysis
Given a polymorphic function f with n type parameters (quantified type variables) and m

effect parameters (quantified Boolean variables), effect-aware monomorphization will create
at most tn × 2m copies of f where t is the number of types that occur in the program after
type checking but before monomorphization. In practice, type-based monomorphization does
not lead to an exponential blow-up, but what about effect-aware monomorphization?

Table 2 shows the impact of effect-aware monomorphization on compilation time and code
size for several Flix programs. We briefly discuss each program: The Flix “Standard Library”
is included for completeness. When the library is compiled alone, without any entry point, a
mere 8 Java classes are generated. These 8 classes are hard-coded and are always emitted.
One class represents the Unit value. Other classes represent various exceptions. “BoolTable”
is a Flix program to generate a table of smallest formulas for all Boolean functions of 4
arguments. “DeliveryDate” is a Flix program that uses first-class Datalog constraints with
lattice semantics to compute the earliest delivery date for a “component” that consists of
subcomponents, each with its delivery date and assembly time. “fcwg” is a Flix program
generator that generates wrapper code for Java classes. “flixball” is a basic multi-player,
2-dimensional shooter game, run in the console. Bots compete in a last-player standing
arena, taking simultaneous turns to rotate, move, or fire their weapon. “IfNoSub” is an
implementation of Algorithm W for Flix written in Flix. It captures the relational nullable
type system from [28]. “JSON” is, as the name implies, a JSON library for Flix. “Regex” is,
as the name implies, a Regex library for Flix (based on Java’s regex package). “Stratifier” is
a Flix program that uses first-class Datalog constraints with lattice semantics to implement
a version of Ullman’s algorithm to compute the stratification of a Datalog program. “TestX”
is the collection of unit tests for the data structure X.

ECOOP 2023

18:22 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

We now explain each column of the table: The Program column gives the name of the Flix
program. The Lines column shows the number of lines of code in the program (excluding the
Flix Standard Library), The Time column shows the total compilation time in seconds (without
effect-aware monomorphization). The Bytes column shows the number of bytes generated by
the compiler (without effect-aware monomorphization). The Classes column shows the number
of classes generated by the Flix compiler (without effect-aware monomorphization). The last
three columns then repeat but now with effect-aware monomorphization. The numbers in
parentheses show the percentage increase (resp. decrease) in the specific measurement.

For example, the “IfNoSub” program consists of 1, 870 lines of code (in addition to the
30,000 lines of code from the Flix Standard Library). Under type-based monomorphization,
the Flix compiler generates 1, 849 Java classes, totaling 1, 967, 390 bytes in 5, 2s. With
effect-aware monomorphization, the compiler generates 1, 921 Java classes totaling 2, 046, 480
bytes in the same amount of time. This represents a 4% increase in code and classes.

As a second example, the “TestDelayMap” program consists of 2, 039 lines of code, which
contain all the unit tests for the DelayMap data structure. Every purity reflective function is
tested with both a pure and impure function argument. Under type-based monomorphization,
the Flix compiler generates 5, 090 Java classes totaling 4, 111, 046 bytes in 5, 1s. With effect-
aware monomorphization, the compiler generates 5, 631 Java classes totaling 4, 750, 187 bytes
within the same time. This represents an 16% increase in code and an 11% increase in classes.

As Table 2 shows, the cost of effect-aware monomorphization is low. For real programs,
there is no increase in compile time and the increase in code size is between 0% to 5%.
We offer a few explanations why real programs show only a modest increase:

Most functions are first-order (i.e., they do not take function arguments). A first-order
function cannot be copied by effect-aware monomorphization, hence it cannot lead to
increased compilation time or code size. To give two examples: In the Set module 17/45
functions are higher-order whereas in the String module 24/94 functions are higher-order.
The majority of function calls are to first-order functions. For example, List.sum is
probably more widely used than e.g., List.zipWith3. In other words, there are fewer
higher-order functions than first-order functions, and they are on the balance also less
likely to be used.
When a higher-order function is used, it is not necessarily used with both pure and impure
function arguments. For example, in many of the programs, higher-order functions are
always used with a pure or an impure function argument, but more rarely with both.

In sum, we conclude that effect-aware monomorphization is a viable implementation strategy.

7.2 RQ3: How common are un-instantiated effect variables in practice?
As discussed in Section 5.2, an effect variable is potentially left un-instantiated during
monomorphization. We showed a carefully crafted example – which relied on self-application
– that would lead to an un-instantiated effect variable. We discussed two sound solutions:
(i) an optimistic strategy that treats every un-instantiated variable as true (i.e., as pure),
and (ii) a conservative strategy that rejects programs with un-instantiated (effect) variables.
Flix uses the conservative strategy.

An important empirical question is then how common such situations are. In more than
100,000 lines of Flix code, we have never encountered a single un-instantiated effect. In
fact, we have only been able to trigger the rejection with our carefully crafted example. We
conclude that un-instantiated effect variables are not of practical concern. Intuitively, most
expressions are either pure or impure. A few expressions are effect-polymorphic, but they
are almost always called with pure or impure function arguments. Consequently, during
monomorphization, we always end up with expressions that are either pure or impure.

M. Madsen and J. van de Pol 18:23

8 Related Work

We consider related work along three axes: type and effect systems, reflection, and streams.

8.1 Type and Effect Systems
The Flix type and effect system is based on Hindley-Milner [12, 30, 7] extended with Boolean
unification [29, 27]. The Flix system is effect-polymorphic, a notion that goes back to
Lucassen et al. [23].

Algebraic effects is a hot research topic [33, 14, 19, 1, 21, 3, 4]. An algebraic effect system
allows the programmer to define a collection of effects that can be invoked and interpreted
by effect handlers installed on the stack (similar to exceptions). A type and effect system for
an algebraic effect system ensures that all effects are ultimately handled. Most prototype
programming languages that support algebraic effects and complete type inference are based
on row polymorphism. Purity reflection seems orthogonal to algebraic effects; we are not
interested in a collection of effects nor in how to interpret them. We are interested in enabling
higher-order functions to selectively use lazy or parallel evaluation when passed pure function
arguments. As interesting future work, we can imagine a type and effect system that tries to
combine algebraic effects with purity reflection while retaining complete type inference.

A line of research has used uniqueness and ownership type systems to prevent data races
and deadlocks and to enable parallelism [2, 6, 9]. Boyapati et al. present a type system
that prevents data races and deadlocks. In the system, programmers partition locks into
equivalence classes and define a partial order on them. The type checker then verifies that
the locks are acquired in descending order [2]. Craik and Kelly present a type, effect, and
ownership system that uses read-and-write effect sets to reason about data dependence. This
information is then exploited to enable data or task parallelism [6]. Gordon et al. present a
type and effect system that restricts updates to mutable memory shared by multiple threads.
The system relies on a combination of immutable and uniqueness types, which ensure the
absence of data races [9].

8.2 Type Case and Effect Reflection
Tarditi et al. propose type case, a meta-programming construct that enables polymorphic
functions to reflect on their concrete type arguments [11, 36]. In the TIL Standard ML
compiler, type casing is used to implement several polymorphic functions more efficiently.
For example, an array indexing (“subscript”) operation can be implemented more efficiently
if the compiler knows the concrete type of the underlying array. One might think of our
work as an effect case which is used to enable selective lazy or parallel evaluation.

Long et al. propose a calculus and type system with reflection for effects representing
region accesses [22]. Their effects are first-class expressions that can be inspected by pattern
matching. The features of their system are orthogonal to our system: they have a hybrid
approach, based on static and dynamic types; their calculus provides over-approximating
(may) and under-approximating (must) types, and is based on sub-typing/effecting and
refinement types. Instead, we support type and effect polymorphism with inference based on
Boolean unification. We also provide an implementation in a programming language.

8.3 Streams
Broadly speaking, the relation between our work and work on streams is that most stream
implementations aim to provide lazy and/or parallel evaluation capabilities in programming
languages that are eager and impure, at the risk of unsoundness. Purity reflection allows
library authors to soundly determine when it is safe to use lazy and/or parallel evaluation.

ECOOP 2023

18:24 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

Wadler et al. introduce the notion of “odd” and “even” lazy lists [38]. Wadler et al.’s
observation is that in the standard definition of a lazy list, the first element of the list is eager
whereas the rest of the list is lazy. In other words, the lazy list is not entirely lazy which can
lead to unexpected behavior. We agree with this observation and in our real implementation
of DelayList every element is lazy.

Jones et al. present an extension of Haskell, where the programmer can define a collection
of rewrite rules that are applied to the program by the Haskell compiler [13]. Using rewrite
rules, a programmer (typically a library author) can express program optimizations as a
collection of transformations. The mechanism is extended and applied to stream fusion in [5].
The rewrite mechanism could provide an alternative implementation of purity reflection.
Similar to our solution using monomorphization, rewrite rules are applied at compile time
and induce no run-time overhead. However, we see two advantages in our solution based on
purity reflection: First, rewrite rules only apply if there is a syntactic pattern match, while
our technique also applies across various let-bindings or even function calls, since it is based
on a type and effect system that propagates information. Second, a programmer could easily
add unsound rewrite rules, while our type system provides some guarantees; in particular,
impure functions cannot be postponed.

Prokopec et al. show that the overhead of functional combinators (e.g., filter, map) on the
JVM can be overcome with a sufficiently aggressive JIT compiler [34]. Kiselyov et al. present
a technique to overcome the overhead of stream operations through staging [18]. Møller
and Veileborg propose to use static analysis to eliminate the overhead of stream pipelines in
Java [32]. In summary, the bulk of this work has focused on how to make streams execute
faster. In contrast, our work concerns when it is safe to do so. We use monomorphization to
implement purity reflection. After monomorphization, we have a mono-typed program where
each use of a non-terminal operation (e.g., filter and map) has been replaced by its eager or
lazy version. We can pass the monomorphed AST to any technique that performs stream
fusion without the risk of unsoundness.

Khatchadourian et al. present a study on the use and misuse of streams in Java [17].
Interestingly two of their findings are: “Finding 1: Stream parallelization is not widely used”
and “Finding 3: Streams tend not to have side effects.” The former finding could suggest that
even though parallel streams are readily available, developers are either unaware or reluctant
to use them. With purity reflection, the choice of whether to use parallelism rests not just
with the programmer but also with the library author. This suggests that purity reflection
can help programmers by exploiting parallelism when they did not consider it themselves.

Khatchadourian et al. also present an automatic technique to refactor code to use streams
more efficiently [16]. The technique is based on heavy-weight program analysis. Flix, with
purity reflection, offers an alternative approach where reasoning about and reflecting on
purity is built directly into the language.

9 Conclusion

We have proposed purity reflection, a new programming language feature that enables higher-
order functions to vary their behavior depending on the purity of their function arguments.
Purity reflection enables selective use of lazy and/or parallel evaluation, while ensuring that
side effects are never lost or re-ordered. We have implemented purity reflection in the Flix
programming language. We have retrofitted and extended the Flix Standard Library with
new data structures that automatically use lazy or parallel evaluation when it is safe to do
so. Effect-aware monomorphization provides a mechanism to implement purity reflection as

M. Madsen and J. van de Pol 18:25

a construct that is entirely eliminated at compile-time. Therefore, the technique imposes no
run-time overhead. Experimental results show that the cost of effect-aware monomorphization
in compilation time and code size is minimal.

References
1 Andrej Bauer and Matija Pretnar. Programming with Algebraic Effects and Handlers. Journal

of Logical and Algebraic Methods in Programming, 84(1), 2015. doi:10.1016/j.jlamp.2014.
02.001.

2 Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership Types for Safe
Programming: Preventing Data Races and Deadlocks. In International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2002.
doi:10.1145/582419.582440.

3 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Effect Handlers
for the Masses. Proc. of the ACM on Programming Languages, 2(OOPSLA), 2018. doi:
10.1145/3276481.

4 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Effects as Ca-
pabilities: Effect Handlers and Lightweight Effect Polymorphism. Proc. of the ACM on
Programming Languages, 4(OOPSLA), 2020. doi:10.1145/3428194.

5 Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream Fusion: From Lists to Streams
to Nothing at All. International Conference of Functional Programming (ICFP), 42(9), 2007.
doi:10.1145/1291220.1291199.

6 Andrew Craik and Wayne Kelly. Using Ownership to Reason about Inherent Parallelism in
Object-Oriented Programs. In International Conference on Compiler Construction (CC), 2010.
doi:10.1007/978-3-642-11970-5_9.

7 Luis Damas. Type Assignment in Programming Languages. PhD thesis, The University of
Edinburgh, 1984.

8 Jacques Garrigue. Relaxing the value restriction. In International Symposium on Functional
and Logic Programming, 2004. doi:10.1007/978-3-540-24754-8_15.

9 Colin S Gordon, Matthew J Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
Uniqueness and Reference Immutability for Safe Parallelism. In International Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2012.
doi:10.1145/2398857.2384619.

10 Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney.
Region-based Memory Management in Cyclone. In Programming Language Design and
Implementation (PLDI), 2002. doi:10.1145/512529.512563.

11 Robert Harper and Greg Morrisett. Compiling Polymorphism using Intensional Type Analysis.
In Principles of Programming Languages (POPL), 1995. doi:10.1145/199448.199475.

12 Roger Hindley. The Principal Type-scheme of an Object in Combinatory Logic. Transactions
of the American Mathematical Society (AMS), 1969.

13 Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the Rules: Rewriting as
a Practical Optimisation Technique in GHC. In Haskell Workshop, 2001.

14 Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in Action. International Conference
on Functional Programming (ICFP), 48(9), 2013. doi:10.1145/2544174.2500590.

15 Ohad Kammar and Gordon D. Plotkin. Algebraic Foundations for Effect-dependent Opti-
misations. In Principles of Programming Languages (POPL), 2012. doi:10.1145/2103656.
2103698.

16 Raffi Khatchadourian, Yiming Tang, and Mehdi Bagherzadeh. Safe Automated Refactoring
for Intelligent Parallelization of Java 8 Streams. Science of Computer Programming, 2020.
doi:10.1016/j.scico.2020.102476.

ECOOP 2023

https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1145/582419.582440
https://doi.org/10.1145/3276481
https://doi.org/10.1145/3276481
https://doi.org/10.1145/3428194
https://doi.org/10.1145/1291220.1291199
https://doi.org/10.1007/978-3-642-11970-5_9
https://doi.org/10.1007/978-3-540-24754-8_15
https://doi.org/10.1145/2398857.2384619
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/199448.199475
https://doi.org/10.1145/2544174.2500590
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1145/2103656.2103698
https://doi.org/10.1016/j.scico.2020.102476

18:26 Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism

17 Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh, and Baishakhi Ray. An Empirical
Study on the Use and Misuse of Java 8 Streams. In Fundamental Approaches to Software
Engineering (FASE), 2020. doi:10.1007/978-3-030-45234-6_5.

18 Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. Stream Fusion,
to Completeness. In Principles of Programming Languages (POPL), 2017. doi:10.1145/
3009837.3009880.

19 Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible Effects: An Alternative to Monad
Transformers. Haskell Workshop, 2013. doi:10.1145/2578854.2503791.

20 Daan Leijen. Extensible Records with Scoped Labels. Trends in Functional Programming
(TFP), 2005.

21 Daan Leijen. Type Directed Compilation of Row-typed Algebraic Effects. In Principles of
Programming Languages (POPL), 2017. doi:10.1145/3009837.3009872.

22 Yuheng Long, Yu David Liu, and Hridesh Rajan. First-class Effect Reflection for Effect-
Guided Programming. In International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2016. doi:10.1145/3022671.2984037.

23 John M Lucassen and David K Gifford. Polymorphic Effect Systems. In Principles of
Programming Languages (POPL), 1988.

24 Magnus Madsen. The Principles of the Flix Programming Language. In International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software
(Onward!), 2022. doi:10.1145/3563835.3567661.

25 Magnus Madsen and Ondřej Lhoták. Fixpoints for the Masses: Programming with First-class
Datalog Constraints. Proc. of the ACM on Programming Languages, 4(OOPSLA), 2020.
doi:10.1145/3428193.

26 Magnus Madsen, Jonathan Lindegaard Starup, and Ondřej Lhoták. Flix: A Meta Programming
Language for Datalog. In Proc. International Workshop on the Resurgence of Datalog in
Academia and Industry (Datalog-2.0 2022), 2022.

27 Magnus Madsen and Jaco van de Pol. Polymorphic Types and Effects with Boolean Unification.
Proc. of the ACM on Programming Languages, 4(OOPSLA), 2020. doi:10.1145/3428222.

28 Magnus Madsen and Jaco van de Pol. Relational Nullable Types with Boolean Unification.
Proc. of the ACM on Programming Languages, 5(OOPSLA), 2021. doi:10.1145/3485487.

29 Urusula Martin and Tobias Nipkow. Boolean Unification - The Story So Far. Journal of
Symbolic Computation, 1989.

30 Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and
System Sciences, 1978.

31 Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. Real World OCaml: Functional
Programming for the Masses. O’Reilly Media, 2013.

32 Anders Møller and Oskar Haarklou Veileborg. Eliminating Abstraction Overhead of Java
Stream Pipelines using Ahead-of-Time Program Optimization. Proc. of the ACM on Program-
ming Languages, 4(OOPSLA), 2020. doi:10.1145/3428236.

33 Matija Pretnar and Gordon D Plotkin. Handling Algebraic Effects. Logical Methods in
Computer Science, 2013. doi:10.2168/LMCS-9(4:23)2013.

34 Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, and Thomas Würthinger. Making
Collection Operations Optimal with Aggressive JIT Compilation. In Proc. International
Symposium on Scala, 2017. doi:10.1145/3136000.3136002.

35 John C Reynolds. The meaning of types from intrinsic to extrinsic semantics. BRICS Report
Series, 7(32), 2000.

36 David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and Peter Lee.
TIL: A Type-directed Optimizing Compiler for ML. In Programming Language Design and
Implementation (PLDI), 1996. doi:10.1145/249069.231414.

37 Mads Tofte and Jean-Pierre Talpin. Region-based Memory Management. Information and
Computation, 1997. doi:10.1006/inco.1996.2613.

https://doi.org/10.1007/978-3-030-45234-6_5
https://doi.org/10.1145/3009837.3009880
https://doi.org/10.1145/3009837.3009880
https://doi.org/10.1145/2578854.2503791
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3022671.2984037
https://doi.org/10.1145/3563835.3567661
https://doi.org/10.1145/3428193
https://doi.org/10.1145/3428222
https://doi.org/10.1145/3485487
https://doi.org/10.1145/3428236
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1145/3136000.3136002
https://doi.org/10.1145/249069.231414
https://doi.org/10.1006/inco.1996.2613

M. Madsen and J. van de Pol 18:27

38 Philip Wadler, Walid Taha, and David MacQueen. How to Add Laziness to a Strict Language
Without Even Being Odd. In SML’98, The SML workshop, 1998.

39 Mitchell Wand. Complete Type Inference for Simple Objects. In Logic in Computer Science,
1987.

40 Keith Wansbrough and Simon L. Peyton Jones. Once Upon a Polymorphic Type. In Principles
of Programming Languages (POPL), 1999. doi:10.1145/292540.292545.

ECOOP 2023

https://doi.org/10.1145/292540.292545

Exact Separation Logic
Towards Bridging the Gap Between Verification and Bug-Finding

Petar Maksimović
Imperial College London, UK
Runtime Verification Inc., Urbana, IL, USA

Caroline Cronjäger
Ruhr-Universität Bochum, Germany

Andreas Lööw
Imperial College London, UK

Julian Sutherland
Nethermind, London, UK

Philippa Gardner
Imperial College London, UK

Abstract
Over-approximating (OX) program logics, such as separation logic (SL), are used for verifying
properties of heap-manipulating programs: all terminating behaviour is characterised, but established
results and errors need not be reachable. OX function specifications are thus incompatible with
true bug-finding supported by symbolic execution tools such as Pulse and Pulse-X. In contrast,
under-approximating (UX) program logics, such as incorrectness separation logic, are used to find
true results and bugs: established results and errors are reachable, but there is no mechanism for
understanding if all terminating behaviour has been characterised.

We introduce exact separation logic (ESL), which provides fully-verified function specifications
compatible with both OX verification and UX true bug-funding: all terminating behaviour is
characterised and all established results and errors are reachable. We prove soundness for ESL with
mutually recursive functions, demonstrating, for the first time, function compositionality for a UX
logic. We show that UX program logics require subtle definitions of internal and external function
specifications compared with the familiar definitions of OX logics. We investigate the expressivity of
ESL and, for the first time, explore the role of abstraction in UX reasoning by verifying abstract
ESL specifications of various data-structure algorithms. In doing so, we highlight the difference
between abstraction (hiding information) and over-approximation (losing information). Our findings
demonstrate that abstraction cannot be used as freely in UX logics as in OX logics, but also that it
should be feasible to use ESL to provide tractable function specifications for self-contained, critical
code, which would then be used for both verification and true bug-finding.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of com-
putation → Program reasoning; Theory of computation → Separation logic; Theory of computation
→ Hoare logic; Theory of computation → Abstraction

Keywords and phrases Separation logic, program correctness, program incorrectness, abstraction

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.19

Related Version Extended Version: https://arxiv.org/abs/2208.07200

Funding Maksimović, Lööw and Gardner were partially supported by the EPSRC Fellowship
“VetSpec: Verified Trustworthy Software Specification” (EP/R034567/1). Cronjäger was partially
supported by the Erasmus Plus Student Mobility for Traineeships scheme.

Acknowledgements We would like to thank Sacha-Élie Ayoun and Daniele Nantes Sobrinho for the
many discussions that have improved the quality of the paper. We would also like to thank the
anonymous reviewers for their comments.

© Petar Maksimović, Caroline Cronjäger, Andreas Lööw, Julian Sutherland, and Philippa Gardner;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 19; pp. 19:1–19:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2023.19
https://arxiv.org/abs/2208.07200
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Exact Separation Logic

1 Introduction

Over-approximating (OX) program logics were introduced to reason about program cor-
rectness, starting with Hoare logic [18] and evolving to separation logic (SL) [27, 30]. SL
is used for verification and features function specifications of the form

{
P

}
f (⃗x)

{
Q

}
, the

meaning of which is that all terminating executions of the function f that start from a state
in the pre-condition P end in a state covered by the post-condition Q. SL has the standard
rule of forward consequence, which allows one to lose information (for example, if we had a
post-condition with x = 42, we could soundly weaken this precise information to the less
precise x > 0 or even to the non-informative true). In essence, the philosophy underlying the
OX approach in general can be stated as:

no paths can be cut, but information can be lost.

A key property of SL is that function specifications are compositional, enabling scalable
reasoning about the heap. This is due to their locality, which allows the pre-condition to
describe only the partial state sufficient for the function to execute, and the frame property,
which allows the function to be called in any larger state. SL function specifications have
been used for verification of complex, real-world code in tools such as VeriFast [19], Iris [20],
and Gillian [10,23]. However, given that their post-conditions may describe states that are
not reachable from their pre-conditions, such OX specifications are not compatible with true
bug-finding, as found, for example, in Meta’s Pulse [28] and Pulse-X [21] tools.

Under-approximating (UX) program logics were recently introduced, originating from
reverse Hoare logic (RHL) [8] for reasoning about correctness of probabilistic programs,
and coming to prominence with incorrectness logic [26] and incorrectness separation logic
(ISL) [28], which identified their bug-finding potential. ISL function specifications are of the
form

[
P

]
f (⃗x)

[
ok : Qok

]
and

[
P

]
f (⃗x)

[
err : Qerr

]
, the meaning of which is that any state

in the success post-condition Qok or the error post-condition Qerr is reachable from some
state in the pre-condition P by executing the function f ; this guarantees that all results and
bugs reported in the post-conditions will be true. In contrast to SL, ISL uses the rule of
backward consequence, which allows one to cut paths (for example, if we had a post-condition
with x > 0, we could soundly strengthen this information to consider only the path in which
x = 42). Therefore, the philosophy underlying UX logics in general can be summarised as:

paths can be cut, but no information can be lost.

When it comes to the use of ISL function specifications, whilst this has been implemented
in Pulse-X, as far as we are aware, ISL does not feature function-call rules, and function
compositionality for ISL and UX logics has not been proven. Moreover, as it is not possible
to determine if UX specifications cover all terminating behaviour, they remain incompatible
with verification and cannot therefore be used in tools such as VeriFast, Iris, and Gillian.

Our challenge is to develop a program logic in which we can state and prove function
specifications that are compatible with both verification and true bug-finding. Our motivation
comes from the unique flexibility and expressivity that such specifications would provide,
as they could be used by verification and bug-finding tools alike, closing the gap between
these two contrasting paradigms. From our experience in program logics and associated tool-
building, we believe that the main use case for exact specification should be self-contained,
critical code, such as widely-used data-structure libraries.

We introduce exact separation logic (ESL), with exact (EX) function specifications of
the form

(
P

)
f (⃗x)

(
ok : Qok

) (
err : Qerr

)
, whose meaning combines that of SL and ISL

specifications: all terminating executions of the function that start from a state in the

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:3

pre-condition P end in a state covered by the post-conditions; and all states in two post-
conditions are reachable from a state in the pre-condition by executing the function. The
exactness of ESL can be captured by the slogan:

no paths can be cut and no information can be lost.

The slogan is supported by the rule of equivalence, which combines the forward consequence
of SL and the backward consequence of ISL. In fact, ESL proof rules form a common core of
SL and ISL, and ESL should therefore be a familiar setting to those acquainted with either.

We prove soundness for ESL with mutually recursive functions, which we believe is the
first proof of function compositionality for a UX logic, and which transfers immediately
to ISL. In doing so, drawing inspiration from InsecSL [25], we provide formal definitions
of external and internal function specifications, which describe, respectively, the interface
a function exposes towards its clients and towards its implementation, and highlight the
difference in complexity between these two types of specifications in OX and UX reasoning.

Using numerous examples, we demonstrate here and in the extended version [24] how
ESL can be used to reason about data-structure libraries, language errors, mutual recursion,
and non-termination. In doing so, we introduce, for the first time, abstract predicates to
UX reasoning and provide abstract function specifications for a number of data-structure
algorithms, focussing on singly-linked lists and binary trees. In doing so, we highlight an
important difference between the concepts of abstraction and over-approximation: in partic-
ular, abstraction corresponds to hiding information whereas over-approximation corresponds
to losing it. Our findings demonstrate that, while abstraction cannot be used as freely in UX
logics as in OX logics, sometimes resulting in less abstract specifications and more complex
proofs, it should be feasible to use ESL to provide tractable function specifications for
self-contained, critical code that can then be used for both verification and true bug-finding.

2 Exact Separation Logic by Example

We guide the reader through what it means to write ESL specifications and proofs by intuition
and example, contrasting our findings with those known from SL and ISL.

Illustrative Example. Consider the command C ≜ if (x > 0) {y := 42} else {y := 21},
which can be specified, starting from the pre-condition x ∈ Z, in ESL, SL, and ISL as follows:

(x ∈ Z)
if (x > 0) {

(x > 0)
y := 42
(Q1 : x > 0 ∧ y = 42)

} else {
(x ≤ 0)
y := 21(

Q2 : x ≤ 0 ∧ y = 21
)

}
(Q1 ∨ Q2)

{
x ∈ Z

}
if (x > 0) {

. . .

// Same as ESL
. . .

}{
Q1 ∨ Q2

}
// Losing information{

x ∈ Z ∧ y > 0
}

[
x ∈ Z

]
if (x > 0) {[

x > 0
]

y := 42[
Q1 : x > 0 ∧ y = 42

]
} else { y := 21 }
// Path cutting[

x > 0 ∧ y = 42
]

As ESL specifications must neither cut paths nor lose information (in this example, about
the values of x and y), the ESL post-condition of C must be equivalent to (x > 0 ∧ y =
42) ∨ (x ≤ 0 ∧ y = 21). In SL, it is possible to use forward consequence to weaken this

ECOOP 2023

19:4 Exact Separation Logic

information and obtain, for example, x ∈ Z ∧ y > 0, or just x ∈ Z, or even just true. In ISL,
it is possible to cut, for example, the else branch of the if statement, but the values of x
and y must be maintained in the post-condition of the then branch, x > 0 ∧ y = 42.

One question that we have been often asked is whether it is simpler to prove an exact
specification

(
P

)
C

(
ok : Qok

) (
err : Qerr

)
in ESL, or to prove it separately in SL and ISL.

The answer is that it is simpler to prove the specification in ESL. If a specification is exact,
then it does not cut paths and it does not lose information. Therefore, the tools that make
SL and ISL proofs simpler than ESL proofs, namely forward consequence and backward
consequence, can only be used in very limited ways, if at all. From our experience, the ISL
proof of an exact specification will turn out to be almost identical to the ESL one, and an SL
proof on top of that would duplicate a large part of the work. In fact, if one were to try to
prove the exact specification (x ∈ Z) C ((x > 0 ∧ y = 42) ∨ (x ≤ 0 ∧ y = 21)) from the above
example in either SL or ISL, they would obtain exactly the same proof as in ESL.

We also emphasise that ESL is not meant to replace either SL or ISL. If one is interested in
only verification or only bug-finding, then one should use a formalism tailored to that type of
analysis to exploit the available shortcuts. However, if one wanted to use the same codebase
for both verification and bug-finding, then ESL offers a way of providing specifications useful
for both. One example of such a codebase would be a widely-used data-structure library,
where some of the users use it for verification and others for bug-finding.

List-length in ESL: Intuition. We consider a list-length function, LLen(x), which takes a
list at x, does not modify it, and returns its length, and the following ESL specification:

(x = x ⋆ list(x, n)) LLen(x) (ok : list(x, n) ⋆ ret = n)

This specification uses a standard list-length predicate, list(x, n), which states that the length
of the list at x equals n and is defined as follows:

list(x, n) ≜ (x = null ⋆ n = 0) ∨ (∃v, x′. x 7→ v, x′ ⋆ list(x′, n − 1)),

hiding the information about the values and internal node addresses of the list. Before
proving this specification, we establish some intuition about why it holds. Let us assume that
it does not hold and try to find a counter-example: by the meaning of ESL specifications,
it is either not OX-valid or it is not UX-valid. The former, however, is not possible, as the
analogous SL specification holds. The latter means that it is possible to find a state in the
post-condition not reachable by the execution of f from any state in the pre-condition, and
may be unfamiliar to the reader as UX program logics have been introduced only recently.

We start looking for such a state in the post-condition (post-model) by choosing some
values for x and n: say, x = 0 and n = 2. This also fixes ret to 2. Then, we fully unfold
list(0, 2) to obtain ∃v1, x1, v2. 0 7→ v1, x1 ⋆ x1 7→ v2, null, and instantiate the existentials v1,
x1, and v2: say, with 1, 4, and 9, respectively. In this way, we obtain the state described
by the assertion 0 7→ 1, 4 ⋆ 4 7→ 9, null. When it comes to the pre-condition, x and n (and
also x) are fixed by the post-model choices, and when we unfold the list, the pre-condition
becomes x = 0 ⋆ ∃v1, x1, v2. 0 7→ v1, x1 ⋆ x1 7→ v2, null. As the algorithm does not modify
the list, it becomes clear that if we choose v1, x1, and v2 as for the post-model (that is, 1, 4,
and 9, respectively), the algorithm will reach our post-model. Given that the same reasoning
would apply for any choice of x and n, we realise that the given specification is, in fact, also
UX-valid and hence exact. This reveals an important observation, which is that

abstraction does not always equate to over-approximation, that is,
hiding information does not always mean losing information.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:5

For those used to OX reasoning, it might appear that the post-condition list(x, n) ⋆ ret = n

loses information about the structure of the list, but the insight here is that this information
was never known in the pre-condition in the first place, as we also only had list(x, n) there.

List-length in ESL: Proof Sketch. Reasoning about function specifications in the UX/EX
setting has not been studied previously and requires subtle definitions of external function
specifications, which provide the interface that the function exposes to the client, and internal
function specifications, which provide the interface to the function’s implementation. With
OX logics, these are well-understood and the gap between them is small. For UX/EX logics,
this gap is larger. We illustrate these concepts informally using the list-length example, and
give the corresponding formal definitions in §4.

The proof sketch of the ESL external specification of the list-length algorithm is given in
Figure 1. It is more complex than its SL counterpart (cf. [24]), but is manageable and comes
with the benefit that this ESL specification can be used for both verification and bug-finding.

First, as the function is recursive, we have to provide a measure and prove the specification
extended with this measure: in this case, the measure is α = n, given by the length of
the list. This measure is necessary to ensure the finite reachability property for mutually
recursive functions in UX logics, and is a known technique from the work on total correctness
specifications for OX logics [7, 9]. Recursive function calls are then allowed only if they use
specifications of a strictly smaller measure, represented in the proof sketch by the function
specification context Γ(α), which contains the specification of LLen(x) for all β < α.

The move from the external to the internal pre-condition initialises the local function
variables to null. The ESL rule for the if statement, just like in SL, adds the condition to
the then-branch, its negation to the else-branch, and collects the branch post-conditions using
disjunction. The rules for the basic commands (here, the assignments r := 0 and r := r + 1
and the lookup x := [x + 1]) are also the same as in SL, as these are already exact. The
unfolding of the list is also done in the same way, as unfolding always preserves equivalence;
note how the condition of the if statement determines the appropriate disjunct for the list
predicate. The recursive function call is allowed to go through as it is used with measure n−1
(with the parts of the assertion representing the pre- and the post-condition highlighted).

The major difference between ISL/ESL and SL proofs is that we cannot lose information
about the function parameters and local variables in the middle of the former. Therefore,
we cannot simplify the assertions Q′

1 and Q′
2 further and cannot fold back the list predicate

within the internal specification, as we would do in SL (cf. corresponding proof in [24]).
The most complex part of the proof sketch is the transition from the internal to the

external post-condition, in which we have to somehow forget the local variables of the
function, given that they must not spill out into the calling context. This is done by replacing
them with fresh, existentially quantified logical variables, which in this case also allows us
to use equivalence to fold back the list predicate and reach the target post-condition. The
details of this transition, in which we denote ret = n ⋆ α = n by R, are as follows:

∃xq, rq. Q′[xq/x][rq/r] ⋆ ret = r[xq/x][rq/r]
⇔ ((x = null ⋆ n = 0) ∨ (∃xq, rq, v, x′. xq = x′ ⋆ x 7→ v, x′ ⋆ list(x′, n − 1) ⋆ rq = n)) ⋆ R

⇔ ((x = null ⋆ n = 0) ∨ (∃v, x′. x 7→ v, x′ ⋆ list(x′, n − 1))) ⋆ R // can fold now
⇔ list(x, n) ⋆ (n = 0 ∨ n > 0) ⋆ R

⇔ list(x, n) ⋆ ret = n ⋆ α = n

Observe that, since we are proving an EX specification, we are not allowed to cut paths.
This means that the ISL proof of the analogous ISL specification of LLen(x) would be identical,
noting that the use of equivalence would technically be replaced by backward consequence.

ECOOP 2023

19:6 Exact Separation Logic

// Function is recursive and requires a measure: α = n

Γ(α) ⊢ (x = x ⋆ list(x, n) ⋆ α = n)
LLen(x) {

// Transition from external to internal pre-condition: initialise locals to null
(x = x ⋆ list(x, n) ⋆ α = n ⋆ r = null)
if (x = null) {

(x = x ⋆ list(x, n) ⋆ α = n ⋆ r = null ⋆ x = null)
r := 0
(Q′

1 : x = x ⋆ list(x, n) ⋆ α = n ⋆ r = 0 ⋆ x = null)
} else {

(x = x ⋆ list(x, n) ⋆ α = n ⋆ r = null ⋆ x ̸= null)
// Unfold list(x, n) using the equivalence
// |= list(x, n) ⋆ x ̸= null ⇔ ∃v, x′. x 7→ v, x′ ⋆ list(x′, n − 1)
(∃v, x′ . x = x ⋆ x 7→ v, x′ ⋆ list(x′, n − 1) ⋆ α = n ⋆ r = null)
x := [x + 1];
(∃v, x′. x = x′ ⋆ x 7→ v, x′ ⋆ list(x′, n − 1) ⋆ α = n ⋆ r = null)
// As α − 1 < α, we can use the specification of LLen(x) with measure α − 1
(∃v, x′. x = x′ ⋆ x 7→ v, x′ ⋆ list(x′, n − 1) ⋆ α − 1 = n − 1 ⋆ r = null)
r := LLen(x);
(∃v, x′. x = x′ ⋆ x 7→ v, x′ ⋆ list(x′, n − 1) ⋆ α − 1 = n − 1 ⋆ r = n − 1)
r := r + 1
(Q′

2 : ∃v, x′. x = x′ ⋆ x 7→ v, x′ ⋆ list(x′, n − 1) ⋆ α − 1 = n − 1 ⋆ r = n)
};
(Q′ : Q′

1 ∨ Q′
2)

return r
(Q′ ⋆ ret = r)
// Transition from internal to external post-condition given in text

}
(list(x, n) ⋆ ret = n ⋆ α = n)

Figure 1 ESL proof sketch: (x = x ⋆ list(x, n)) LLen(x) (ok : list(x, n) ⋆ ret = n).

List-insert in ESL: Intuition. The list-length function, LLen(x), is an example of an algorithm
where the EX specification is analogous to the traditional OX specification. At times, however,
ESL specifications have to be more complex. Consider, for example, the list-insert algorithm
LInsertFirst(x, v), which inserts the element v at the beginning of the list x. Its traditional
OX specification is:

{x = x ⋆ v = v ⋆ list(x, vs)} LInsertFirst(x, v) {list(ret, v : vs)}

where list(x, vs) is the standard list predicate that exposes the values of the list:

list(x, vs) ≜ (x = null ⋆ vs = []) ∨ (∃v, x′, vs′. x 7→ v, x′ ⋆ list(x′, vs′) ⋆ vs = v : vs′)

Using the counter-example approach to check if this specification is EX-valid, we easily see
that it loses information: in particular, no end-state where x is not the second pointer in the
returned list ret is reachable from the given pre-condition. Consequently, for EX validity, we
are required to use the following, less abstract, ESL specification for LInsertFirst:

(x = x ⋆ v = v ⋆ list(x, xs, vs)) LInsertFirst(x, v) (list(ret, ret : xs, v : vs) ⋆ listHead(x, xs))

where list(x, xs, vs) is a predicate that exposes the internal pointers of a given list in addition
to the values, and listHead(x, xs) states that the list xs starts with x.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:7

Further Examples. In §5 and [24], we give many additional examples of ESL specifications
and proofs to illustrate reasoning about list algorithms and binary trees, as well as language
errors, mutual recursion, non-termination, and client programs.

3 The Programming Language

We introduce ESL using a simple programming language, the syntax of which is given below.

Language Syntax

v ∈ Val ::= n ∈ Nat | b ∈ Bool | s ∈ Str | null | v x ∈ PVar
E ∈ PExp ::= v | x | E + E | E − E | ... | E = E | E < E | ¬ E | E ∧ E | ... | E : E | E @ E | ...

C ∈ Cmd ::= skip | x := E | x := nondet | error(E) | if (E) C else C | while (E) C | C; C |
y := f(E⃗) | x := [E] | [E] := E | x := new(E) | free(E)

Values, v ∈ Val, include: natural numbers, n ∈ Nat; Booleans, b ∈ Bool ≜ {true, false};
strings, s ∈ Str; a dedicated value null; and lists of values, v ∈ List. Expressions, E ∈ Exp,
comprise values, program variables, x ∈ PVar, and various unary and binary operators (e.g.,
addition, equality, negation, conjunction, list prepending, and list concatenation). Commands
comprise: the variable assignment; non-deterministic number generation; error raising; the
if statement; the while loop; command sequencing; function call; and memory management
commands, that is, lookup, mutation, allocation, and deallocation. The sets of program
variables for expressions and commands, denoted by pv(E) and pv(C) respectively, and the
sets of modified variables for commands, denoted by mod(C), are defined in the standard way.

▶ Definition 1 (Functions). A function, denoted by f (⃗x) { C; return E }, comprises: a function
identifier, f ∈ Str; the function parameters, x⃗, given by a list of distinct program variables; a
function body, C ∈ Cmd; and a return expression, E ∈ PExp, with pv(E) ⊆ {⃗x} ∪ pv(C).

Program variables in function bodies that are not the function parameters are treated as
local variables initialised to null, with their scope not extending beyond the function.

▶ Definition 2 (Function Implementation Contexts). A function implementation context,
γ : Str ⇀fin PVar List × Cmd × PExp, is a finite partial function from function identifiers to
their implementations. For γ(f) = (⃗x, C, E), we also write f (⃗x){C; return E} ∈ γ.

We next define an operational semantics that gives a complete account of the behaviour
of commands and does not get stuck on any input, as we explicitly account for language
errors and missing resource errors.

▶ Definition 3 (Stores, Heaps, States). Variable stores, s : PVar ⇀fin Val, are partial finite
functions from program variables to values. Heaps, h : Nat ⇀fin (Val ⊎ ∅), are partial finite
functions from natural numbers to values extended with a dedicated symbol ∅ /∈ Val. Program
states, σ = (s, h), consist of a store and a heap.

Heaps are used to model the memory, and the dedicated symbol ∅ /∈ Val is required for
UX frame preservation1 to hold (cf. Definition 10). In particular, h(n) = v means that an
allocated heap cell with address n contains the value v; and h(n) = ∅ means that a heap

1 UX frame preservation means that if a program runs with a non-missing outcome to a given final state,
then it also runs with the same outcome to an extended final state, with the extension (the frame)
unaffected by the execution. From ISL [28], it is known that losing deallocation information breaks UX
frame preservation; the solution is to keep track of deallocated cells, which we achieve by using ∅.

ECOOP 2023

19:8 Exact Separation Logic

cell with address n has been deallocated [11–14,28]. This linear memory model is used in
much of the SL literature, including ISL [28]. Onward, ∅ denotes the empty heap, h1 ⊎ h2
denotes heap disjoint union, and h1 ♯ h2 denotes that h1 and h2 are disjoint.

▶ Definition 4 (Expression Evaluation). The evaluation of an expression E with respect to a
store s, denoted JEKs, results in either a value or a dedicated symbol denoting an evaluation
error, /∈ Val. Some illustrative cases are:

JvKs = v JxKs =

{
s(x), x ∈ dom(s)
 , otherwise

JE1 + E2Ks =

{
JE1Ks + JE2Ks, JE1Ks, JE2Ks ∈ Nat
 , otherwise

The big-step operational semantics uses judgements of the form σ, C ⇓γ o : σ′, read: given
implementation context γ and starting from state σ, the execution of command C results
in outcome o ∈ O = {ok, err , miss} and state σ′. The outcome can either equal: ok (elided
where possible), denoting a successful execution; err , denoting an execution faulting with a
language error, or miss, denoting an execution faulting with a missing resource error.

▶ Definition 5 (Operational Semantics). The representative cases of the big-step operational
semantics are given in Figure 2. The complete semantics is given in [24].

The successful transitions are straightforward: for example, the nondet command generates
an arbitrary natural number; the function call executes the function body in a store where
the function parameters are given the values of the function arguments and the function
locals are initialised to null; and the control flow statements behave as expected. Allocation
requires the specified amount of contiguous cells (always available as heaps are finite), and
lookup, mutation, and deallocation require the targeted cell not to have been freed.

The semantics stores error information in a dedicated program variable err, not available to
the programmer. For simplicity of error messages, we assume to have a function str : PExp →
Str, which serialises program expressions into strings. The faulting semantic transitions are
split into language errors, which can be captured by program-logic reasoning, and missing
resource errors, which cannot, as such errors break the frame property. Language errors
arise due to, for example, expressions being incorrectly typed (e.g. null + 1) or an attempt
to access deallocated cells (that is, the use-after-free error). On the other hand, missing
resource errors arise from accessing cells that are not present in memory.

4 Exact Separation Logic

We introduce an exact separation logic for our programming language, giving the assertion
language in §4.1, specifications in §4.2, and the program logic rules in §4.3.

4.1 Assertion Language

To define assertions and their meaning, we introduce logical variables, x, y, z, ∈ LVar, distinct
from program variables, and define the set of logical expressions as follows:

E ∈ LExp ≜ v | x | x | E + E | E − E | ... | E = E | ¬ E | E ∧ E | ... | E · E | E : E | ...

Note that we can use program expressions in assertions (for example, E ∈ Val), as they
form a proper subset of logical expressions.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:9

JEKs = v s′ = s[x → v]
(s, h), x := E ⇓γ (s′, h)

n ∈ N s′ = s[x → n]
(s, h), x := nondet ⇓γ (s′, h)

JEKs = false
(s, h), while (E) C ⇓γ (s, h)

JEKs = true (s, h), C ⇓γ σ′′

σ′′, while (E) C ⇓γ o : σ′

(s, h), while (E) C ⇓γ o : σ′

f (⃗x) { C; return E′ } ∈ γ JE⃗Ks = v⃗ pv(C) \ {⃗x} = {⃗z}
sp = ∅[⃗x → v⃗][⃗z → null] (sp, h), C ⇓γ (sq, h′) JE′Ksq = v′

(s, h), y := f(E⃗) ⇓γ (s[y → v′], h′)

JEKs = n h(n) = v

(s, h), x := [E] ⇓γ (s[x → v], h)
JE1Ks = n h(n) ∈ Val JE2Ks = v h′ = h[n 7→ v]

(s, h), [E1] := E2 ⇓γ (s, h′)

(n′ + i /∈ dom(h))|JEKs−1
i=1 h′ = h ⊎ {(n′ + i 7→ null)|JEKs−1

i=1 }
(s, h), x := new(E) ⇓γ (s[x → n′], h′)

JEKs = n h(n) ∈ Val
(s, h), free(E) ⇓γ (s, h[n 7→ ∅])

JEKs = verr = [“ExprEval”, str(E)]
(s, h), x := [E] ⇓γ err : (serr , h)

JEKs = n /∈ dom(h) verr = [“MissingCell”, str(E), n]
(s, h), x := [E] ⇓γ miss : (serr , h)

h(JEKs) = ∅ verr = [“UseAfterFree”, str(E1), JEKs]
(s, h), x := [E] ⇓γ err : (serr , h)

JEKs = v verr = [“Error”, v]
(s, h), error(E) ⇓γ err : (serr , h)

Figure 2 Operational semantics (excerpt), with serr ≜ s[err → verr] and str : PExp → Str.

▶ Definition 6 (Assertion Language). The assertion language is defined as follows:

π ∈ BAsrt ≜ E1 = E2 | E1 < E2 | E ∈ X | . . . | ¬π | π1 ⇒ π2
P ∈ Asrt ≜ π | False | P1 ⇒ P2 | ∃x. P | emp | E1 7→ E2 | E 7→ ∅ | P1 ⋆ P2 | �E1≤x<E2 P

where E , E1, E2 ∈ LExp, X ⊆ Val, and x ∈ LVar.

Boolean assertions, π ∈ BAsrt, lift Boolean logical expressions to assertions. Assertions,
P ∈ Asrt, contain Boolean assertions, standard first-order connectives and quantifiers, and
spatial assertions. Spatial assertions include: the empty memory assertion, emp; the positive
cell assertion, E1 7→ E2; the negative cell assertion, E 7→ ∅ (as in [11–14] and denoted in ISL
by E ̸7→ [28]), the separating conjunction (star); and its iteration (iterated star).

To define assertion satisfiability, we introduce substitutions, θ : LVar ⇀fin Val, which are
partial finite mappings from logical variables to values, extending expression evaluation of
Definition 4 to JEKθ,s straightforwardly, with a new base case for logical variables:

JxKθ,s = θ(x), if x ∈ dom(θ) JxKθ,s = , if x /∈ dom(θ)

▶ Definition 7 (Satisfiability). The assertion satisfiability relation, denoted by θ, σ |= P , is
defined as follows:

θ, (s, h) |= π ⇔ JπKθ,s = true ∧ h = ∅
θ, (s, h) |= False ⇔ never
θ, (s, h) |= P1 ⇒ P2 ⇔ θ, (s, h) |= P1 ⇒ θ, (s, h) |= P2

θ, (s, h) |= ∃x. P ⇔ ∃v ∈ Val. θ[x 7→ v], (s, h) |= P

θ, (s, h) |= emp ⇔ h = ∅
θ, (s, h) |= E1 7→ E2 ⇔ h = {JE1Kθ,s 7→ JE2Kθ,s}
θ, (s, h) |= E1 7→ ∅ ⇔ h = {JE1Kθ,s 7→ ∅}
θ, (s, h) |= P1 ⋆ P2 ⇔ ∃h1, h2. h = h1 ⊎ h2 ∧ θ, (s, h1) |= P1 ∧ θ, (s, h2) |= P2

θ, (s, h) |= �E1≤x<E2 P ⇔ ∃hi, . . . , hk−1. h = ⊎k−1
j=i hj ∧ ∀j. i ≤ j < k ⇒ θ, (s, hj) |= P [j/x]

where i = JE1Kθ,s, k = JE2Kθ,s, and x is not free in E1 or E2.

ECOOP 2023

19:10 Exact Separation Logic

Assertion satisfiability is defined in the standard way. For convenience, we choose Boolean
assertions to be satisfiable only in the empty heap.

▶ Definition 8 (Validity). An assertion P is valid, denoted by |= P , iff ∀θ, σ. θ, σ |= P .

4.2 Specifications
We define specifications for commands and functions, focussing in particular on external and
internal function specifications and the relationship between them.

▶ Definition 9. Specifications, t =
(
P

) (
ok : Qok

) (
err : Qerr

)
∈ Spec, comprise a pre-

condition, P , a success post-condition, Qok, and a faulting post-condition, Qerr .

We denote that command C has specification t by C : t, or by
(
P

)
C

(
ok : Qok

) (
err : Qerr

)
in quadruple form. Additionally, we use the following shorthand:

(P) C (Q) ≜
(
P

)
C

(
ok : Q

) (
err : False

)
(P) C (err : Q) ≜

(
P

)
C

(
ok : False

) (
err : Q

)
(P) C (Q) ≜

(
P

)
C

(
ok : −

) (
err : −

)
noting the use of Q for cases in which the post-condition details are not relevant. We use
quadruples rather than triples since, even though the post-condition could be expressed as a
disjunction of ok- and err-labelled assertions, we find the quadruple distinction helpful as
compound commands (e.g. sequence) treat the two differently (cf. Figure 3).

The EX-validity of a specification t for a command C in an implementation context γ

requires both OX and UX frame-preserving validity.

▶ Definition 10 (γ-Valid Specifications). Given implementation context γ, command C, and
specification t =

(
P

) (
ok : Qok

) (
err : Qerr

)
, t is γ-valid for C, denoted by γ |= C : t or

γ |=
(
P

)
C

(
ok : Qok

) (
err : Qerr

)
, if and only if:

// Frame-preserving over-approximating validity
(∀θ, s, h, hf , o, s′, h′′. θ, (s, h) |= P =⇒

(s, h ⊎ hf), C ⇓γ o : (s′, h′′) =⇒ (o ̸= miss ∧ ∃h′. h′′ = h′ ⊎ hf ∧ θ, (s′, h′) |= Qo)) ∧
// Frame-preserving under-approximating validity
(∀θ, s′, h′, hf , o. θ, (s′, h′) |= Qo =⇒ hf ♯ h′ =⇒

(∃s, h. θ, (s, h) |= P ∧ (s, h ⊎ hf), C ⇓γ o : (s′, h′ ⊎ hf)))

Observe that the outcome o can either be success or a language error; it cannot be
a missing resource error as this would break UX frame preservation. As our operational
semantics is complete, we can also use ESL to characterise non-termination. In particular, if
a command satisfies a specification with both post-conditions False, then the execution of the
command is guaranteed to not terminate if executed from a state satisfying the pre-condition.
Were the semantics incomplete (for example, if it did not reason about errors), then such a
specification might also indicate the absence of a semantic transition.

Compared to traditional OX reasoning, UX reasoning brings additional complexity to
proofs of function specifications. To handle this complexity, we introduce two types of
function specifications: external specifications, which provide the interface the function
exposes to the client, and the related internal specifications, which provide the interface to
the function implementation. This terminology is also used informally in InsecSL [25]. We
use these in subsequent sections to show that ESL exhibits function compositionality.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:11

▶ Definition 11 (External Specifications). A specification
(
P

) (
ok : Qok

) (
err : Qerr

)
is an

external function specification if and only if:
P = (⃗x = x⃗ ⋆ P ′), for some distinct program variables x⃗, distinct logical variables x⃗, and
assertion P ′, with pv(P ′) = ∅; and
either pv(Qok) = {ret} or Qok = False, and either pv(Qerr) = {err} or Qerr = False.

The set of external specifications is denoted by ESpec.

▶ Definition 12 (Function Specification Contexts). A function specification context,
Γ : Fid ⇀fin P(ESpec), is a finite partial function from function identifiers to a set of external
specifications, with the more familiar notation

(⃗
x = x⃗ ⋆ P

)
f (⃗x)

(
ok : Qok

) (
err : Qerr

)
∈ Γ

at times used in place of
(⃗
x = x⃗ ⋆ P

) (
ok : Qok

) (
err : Qerr

)
∈ Γ(f).

The constraints on external specifications are well-known from OX logics and follow the
usual scoping of function parameters and local variables, which are limited to the function
body: the pre-conditions only contain the function parameters, x⃗; and the post-conditions
may only have the (dedicated) program variables ret or err, which hold, respectively, the
return value on successful termination or the error value on faulting termination.

Internal function specifications are more interesting for exact and UX than for OX
reasoning. The internal pre-condition is straightforward, extending the external pre-condition
by instantiating the local variables to null. The internal post-condition must therefore
include information about the parameters and local variables, as the internal specification
cannot lose information. This means that the connection between internal and external
post-conditions is subtle, given the constraints on the latter. To address this, we define an
internalisation function, relating an external function specification with a set of possible
internal specifications. In particular, the external post-condition has to be equivalent to an
internal one in which the parameters and local variables of the internal post-condition have
been replaced by fresh existentially quantified logical variables.

▶ Definition 13 (Internalisation). Given implementation context γ and function f ∈ dom(γ),
a function specification internalisation, Intγ,f : ESpec → P(Spec), is defined as follows:

Intγ,f (
(
P

) (
ok : Qok

) (
err : Qerr

)
) =

{
(
P ⋆ z⃗ = null

) (
ok : Q′

ok
) (

err : Q′
err

)
| |= Q′

ok ⇒ E ∈ Val ⋆ True and
|= Qok ⇔ ∃p⃗. Q′

ok [p⃗/p⃗] ⋆ ret = E[p⃗/p⃗] and
|= Qerr ⇔ ∃p⃗. Q′

err [p⃗/p⃗]},

where f (⃗x){C; return E} ∈ γ, z⃗ = pv(C) \ pv(P), p⃗ = pv(P) ⊎ {⃗z}, and the logical variables
p⃗ are fresh with respect to Qok and Qerr .

This approach also works for SL and ISL as well (with ⇐ instead of ⇔ for the post-
conditions for SL, and ⇒ instead of ⇔ for ISL). It is not strictly necessary for SL, however,
as information about program variables can be forgotten in the internal post-conditions
before the transition to the external post-condition.

▶ Definition 14 (Environments). An environment, (γ, Γ), is a pair consisting of an imple-
mentation context γ and a specification context Γ.

An environment (γ, Γ) is valid if and only if every function specified in Γ has an imple-
mentation in γ and every specification in Γ has a γ-valid internal specification.

ECOOP 2023

19:12 Exact Separation Logic

▶ Definition 15 (Valid Environments). Given an implementation context γ and a specification
context Γ, the environment (γ, Γ) is valid, written |= (γ, Γ), if and only if

dom(Γ) ⊆ dom(γ) ∧
(∀f, x⃗, C, E. f (⃗x){C; return E} ∈ γ =⇒ (∀t. t ∈ Γ(f) =⇒ ∃t′ ∈ Intγ,f (t). γ |= C : t′))

Finally, a specification t is valid for a command C in a specification context Γ if and only
if t is γ-valid for all implementation contexts γ that validate Γ.

▶ Definition 16 (Γ-Valid Specifications). Given a specification context Γ, a command C, and
a specification t = (P) (Q), the specification t is Γ-valid for command C, written Γ |= C : t

or Γ |= (P) C (Q), if and only if ∀γ. |= (γ, Γ) =⇒ γ |= (P) C (Q).

4.3 Program Logic
We give the representative ESL proof rules in Figure 3 and all in [24]. We introduce and
discuss in detail the function-related rules, given for the first time in a UX setting. We denote
the repetition of the pre-condition in the post-condition by pre. When reading the rules, it is
important to remember that we must not drop paths and must not lose information. The
judgement Γ ⊢

(
P

)
C

(
ok : Qok

) (
err : Qerr

)
means that the specification t is derivable for a

command C given the specifications recorded in Γ.
The basic command rules are fairly straightforward. The [nondet] rule existentially

quantifies the generated value via x ∈ N to capture all paths, in contrast with the RHL [8]
and ISL [28] rules, which explicitly choose one value to describe one path. The E ′ ∈ Val in the
post-condition is necessary as we know that E ′ evaluates to a value from the pre-condition
and cannot lose information; the same principle applies to many other rules. The [assign]
rule requires that the evaluation of E does not fault in the pre-condition via E ∈ Val. Strictly
speaking, we should have an additional case in which the assigned variable is not in the
store. To avoid this clutter, we instead assume that program variables are always in the store
as we are analysing function bodies and, in our programming language, all local variables
are initialised on function entry. The error-related rules capture cases in which expression
evaluation faults (e.g. [lookup-err-val] rule, using E /∈ Val), expressions are of the incorrect
type, or memory is accessed after it has been freed (e.g. [lookup-err-use-after-free]
rule, using E 7→ ∅). Note that missing resource errors cannot be captured without breaking
frame preservation, as the added-on frame could contain the missing resource.

When it comes to composite commands, we opt for two if-rules, covering the branches
separately. The sequencing rule shows how exact quadruples of successive commands can
be joined together, highlighting, in particular, how errors are collected using disjunction.
One interesting aspect of this rule is what happens when C1 only throws an error or does
not terminate, meaning that R = False. In both those cases, given the exactness of the
rules, it has to be that Qok = Q2

err = False, and the post-condition of the sequence becomes
(ok : False) (err : Q1

err ∨ False), meaning that, if C1 only throws an error (that is, Q1
err ̸= False)

then that is the only error that can come out of the sequence, and if C1 does not terminate
(that is, Q1

err = False) then the sequence does not terminate either.
The while rule is an adaptation of the RHL while rule [8], generalising the invariant of the

SL while rule with two natural-number-indexed families of variants, Pi and Qi, which explicitly
maintain the iteration index. Note how the i in the premise is a meta-variable representing a
natural number, which in the conclusion gets substituted for an existentially quantified logical
variable; a similar principle will be applied later when dealing with environment extension.
Interestingly, this rule does not require adjustment to reason about non-termination.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:13

skip
Γ ⊢ (emp) skip (emp)

nondet
x /∈ pv(E ′)

Q ≜ E ′ ∈ Val ⋆ x ∈ N
Γ ⊢ (x = E ′) x := nondet (Q)

assign
x /∈ pv(E ′)

Q ≜ E ′ ∈ Val ⋆ x = E[E ′/x]
Γ ⊢ (x = E ′ ⋆ E ∈ Val) x := E (Q)

lookup
x /∈ pv(E ′)

Q ≜ E ′ ∈ Val ⋆ x = E1[E ′/x] ⋆ E[E ′/x] 7→ E1[E ′/x]
Γ ⊢ (x = E ′ ⋆ E 7→ E1) x := [E] (Q)

mutate
Q ≜ E1 7→ E2 ⋆ E ∈ Val

Γ ⊢ (E1 7→ E ⋆ E2 ∈ Val) [E1] := E2 (Q)

new
x /∈ pv(E ′)

Q ≜ E ′ ∈ Val ⋆ � 0≤i<E[E′/x]((x + i) 7→ null)
Γ ⊢ (x = E ′ ⋆ E ∈ N) x := new(E) (ok : Q)

error
Eerr ≜ [“Error”, E]

Γ ⊢ (E ∈ Val) error(E) (err : err = Eerr)

free
Q ≜ E ′ ∈ Val ⋆ E 7→ ∅

Γ ⊢ (E 7→ E ′) free(E) (ok : Q)

lookup-err-val
P ≜ x = E ′ ⋆ E /∈ Val

Eerr ≜ [“ExprEval”, str(E)]
Γ ⊢ (P) x := [E] (err : Q∗

err)

lookup-err-use-after-free
P ≜ x = E ′ ⋆ E 7→ ∅

Eerr ≜ [“UseAfterFree”, str(E), E]
Γ ⊢ (P) x := [E] (err : Q∗

err)

if-then
C ≜ if (E) C1 else C2

Γ ⊢ (P ⋆ E) C1 (Q)
Γ ⊢ (P ⋆ E) C (Q)

if-else
C ≜ if (E) C1 else C2
Γ ⊢ (P ⋆ ¬E) C2 (Q)
Γ ⊢ (P ⋆ ¬E) C (Q)

if-err-val
C ≜ if (E) C1 else C2

Eerr ≜ [“ExprEval”, str(E)]
Γ ⊢ (P ⋆ E /∈ Val) C (err : Q∗

err)

seq
Γ ⊢ (P) C1 (ok : R) (err : Q1

err)
Γ ⊢ (R) C2 (ok : Qok) (err : Q2

err)
Γ ⊢ (P) C1; C2 (ok : Qok) (err : Q1

err ∨ Q2
err)

while
∀i ∈ N. |= Pi ⇒ E ∈ B ⋆ True

∀i ∈ N. Γ ⊢ (Pi ⋆ E) C (ok : Pi+1) (err : Qi)
Γ ⊢ (P0) while (E) C (ok : ¬E ⋆ ∃i. Pi) (err : ∃i. Qi)

equiv
Γ ⊢ (P ′) C (ok : Q′

ok) (err : Q′
err)

|= P ′, Q′
ok , Q′

err ⇔ P, Qok , Qerr

Γ ⊢ (P) C (ok : Qok) (err : Qerr)

frame
mod(C) ∩ fv(R) = ∅

Γ ⊢ (P) C (ok : Qok) (err : Qerr)
Γ ⊢ (P ⋆ R) C (ok : Qok ⋆ R) (err : Qerr ⋆ R)

exists
Γ ⊢ (P) C (ok : Qok) (err : Qerr)

Γ ⊢ (∃x. P) C (ok : ∃x. Qok) (err : ∃x. Qerr)

disj
Γ ⊢ (P1) C (ok : Q1

ok) (err : Q1
err)

Γ ⊢ (P2) C (ok : Q2
ok) (err : Q2

err)
Γ ⊢ (P1 ∨ P2) C (ok : Q1

ok ∨ Q2
ok) (err : Q1

err ∨ Q2
err)

Figure 3 ESL proof rules (excerpt), with Q∗
err = (pre ⋆ err = Eerr).

The structural rules are not surprising, with equivalence replacing the forward/backward
consequence of OX/UX reasoning and with frame, existential introduction, and disjunction
affecting both post-conditions. Disjunction allows us to derive the standard SL if rule, which
captures both branches at the same time. Note that there, however, is no sound conjunction
rule, as the conjunction rules of SL and ISL cannot be combined in ESL, since conjunction
does not distribute over the star in both directions, breaking frame preservation.

Function Call. We discuss the ESL function-call rule in detail, creating it starting from the
standard OX-sound SL rule, adapted for quadruples:{

x⃗ = x⃗ ⋆ P
}

f (⃗x)
{

ok : Qok
} {

err : Qerr
}

∈ Γ y ̸∈ pv(Ey)

Γ ⊢
{

y = Ey ⋆ E⃗ = x⃗ ⋆ P
}

y := f(E⃗)
{

ok : Qok [y/ret]
} {

err : y = Ey ⋆ Qerr
}

In order to make this rule UX-sound, we only have to ensure that no information from the
pre-condition is lost in the post-conditions. In particular, we have to remember:

ECOOP 2023

19:14 Exact Separation Logic

that the evaluation of Ey does not fault, captured by Ey ∈ Val and needed in the success
post-condition only, as it is already implied by the error post-condition; and
that E⃗ = x⃗ holds (with the substitution [Ey/y] needed in the success post-condition as
the value of y may change if the function call succeeds);

bringing us to the ESL function call rule:(⃗
x = x⃗ ⋆ P

)
f (⃗x)

(
ok : Qok

) (
err : Qerr

)
∈ Γ y ̸∈ pv(Ey)

Q′
ok ≜ Ey ∈ Val ⋆ E⃗[Ey/y] = x⃗ ⋆ Qok [y/ret] Q′

err ≜ y = Ey ⋆ E⃗ = x⃗ ⋆ Qerr

Γ ⊢
(

y = Ey ⋆ E⃗ = x⃗ ⋆ P
)

y := f(E⃗)
(
ok : Q′

ok
) (

err : Q′
err

)
Environment Formation. Whereas the ESL function-call rule does not deviate substan-
tially from its OX counterpart, the environment formation rules illustrate the difference in
complexity between OX and UX function compositionality. These rules use the judgement
⊢ (γ, Γ) to state that the environment (γ, Γ) is well-formed. The base case, ⊢ (∅, ∅), is trivial
and the same as for SL, stating that the environment consisting of an empty implementation
context and an empty specification context is well-formed. For illustrative purposes, we give
a simplified version of the extension rule, extending the environment with a single, possibly
recursive, function. The full rule, which extends the environment with a group of mutually
recursive functions, is given in [24]. We start from the corresponding OX-sound rule from SL:

env-extend-sl
⊢ (γ, Γ) f ̸∈ dom(γ) γ′ = γ[f 7→ (⃗x, C, E)] Γ′ = Γ[f 7→ {t}] ∃t′ ∈ Intγ′,f (t). Γ′ ⊢ C : t′

⊢ (γ′, Γ′)

which states that a well-formed environment (γ, Γ) can be extended with a given function f

and its external specification t to (γ′, Γ′) if some corresponding internal specification of f can
be proven for the body of f under the extended specification context Γ′.2 Note that using Γ′

means that a specification can be used to prove itself, which is sound in SL but unsound
in ISL: specifically, it would allow us to prove UX-invalid specifications of non-terminating
functions. For example, we would be able to prove that the function f() { r := f(); return r }
satisfies the EX-valid specification (emp) f() (False), but also the EX-invalid specification
(emp) f() (ret = 42). The latter is vacuously OX-valid as there are no terminating executions,
but when considered from the UX viewpoint, it implies the existence of an execution path
from the pre- to the post-condition, contradicting the non-termination of f.

Therefore, to be soundly usable in UX reasoning, specifications with satisfiable post-
conditions (onward: terminating specifications) must come with a mechanism that disallows
the above counter-example. We achieve this by following a standard approach for reasoning
about termination [7,9], based on decreasing measures on well-ordered sets. In particular,
we require the terminating specification to be proven, t ≜

(
P

) (
ok : Qok

) (
err : Qerr

)
to be

extended with a measure α ∈ N, denoting this extension by t(α):3

t(α) ≜
(
P ⋆ α = Eµ

) (
ok : Qok ⋆ α = Eµ

) (
err : Qerr ⋆ α = Eµ

)
where Eµ is a logical expression describing how the measure is computed. Then, we prove that
t(α) holds for every specific α, assuming that recursive calls to f can only use the terminating

2 Internalisation is normally omitted in SL as forward consequence allows information about program
variables to be lost, making internal and external post-conditions of SL specifications almost the same.

3 We can extend the measure beyond natural numbers to computable ordinals, O ≜ ωCK
1 , allowing us to

reason about a broader set of functions, such as those with non-deterministic nested recursion (cf. [24]).

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:15

specifications t(β) of a measure β strictly smaller than α. This restriction is standard and, if
the proof succeeds, ensures that f has at least one terminating execution. Also, it disallows
the above-mentioned counter-example, as no measure given in the pre-condition would be
able to decrease before the recursive call. Importantly, the measure is only a tool required
for proving specification validity and once this proof has been completed, the specification
without the measure is added to Γ and can be used in proofs of client code.

In addition, we incorporate reasoning about non-terminating specifications (NT-specifica-
tions). This is relevant in situations in which the operational semantics of the analysed lan-
guage is complete, which allows non-termination to be captured using the post-condition False.
As NT-specifications are vacuously UX-sound, our focus is on ensuring their OX-soundness,
which we do by again imposing a measure α, but allowing recursive calls for a measure β

smaller or equal than α, that is, for an NT-specification to be used to prove itself. This, for
example, allows for a proof of the specification (emp) f() { r := f(); return r } (False) by
choosing a constant measure α. The ESL environment extension rule, therefore, is as follows:

env-extend
// Assume valid environment, extend implementation context with new function f

⊢ (γ, Γ) f ̸∈ dom(γ) γ′ = γ[f 7→ (⃗x, C, E)]
// Extend the specifications of f with a measure α

t ≜
(
P

) (
ok : Qok

) (
err : Qerr

)
t∞ ≜

(
P∞

) (
False

)
t∞(α) ≜

(
P∞ ⋆ α = Eµ

) (
False

)
t(α) ≜

(
P ⋆ α = Eµ

) (
ok : Qok ⋆ α = Eµ

) (
err : Qerr ⋆ α = Eµ

)
// Construct Γ(α): assume t for measure β < α and t∞ for measure β ≤ α

Γ(α) = Γ[f 7→ {t(β) | β < α} ∪ {t∞ | β ≤ α}]
// For every α, prove internal specifications of f corresponding to t and t∞
∀α. ∃t′ ∈ Intγ′,f

(
t(α)

)
. Γ(α) ⊢ C : t′ ∀α. ∃t′ ∈ Intγ′,f (t∞(α)). Γ(α) ⊢ C : t′

// Extend Γ with t and t∞
Γ′ := Γ[f 7→ {t, t∞}]

⊢ (γ′, Γ′)

4.4 Soundness
We state the soundness results for ESL and give intuition about the proofs; the full proofs
can be found in [24].

▶ Theorem 17. Any derivable specification is valid: Γ ⊢ (P) C (Q) =⇒ Γ |= (P) C (Q).

Proof. By induction on Γ ⊢ (P) C (Q). Most cases are straightforward; the [fun-call] rule
obtains a valid specification for the function body from the validity of the environment. ◀

▶ Theorem 18. Any well-formed environment is valid: ⊢ (γ, Γ) =⇒ |= (γ, Γ).

Proof. At the core of the proof is a lemma stating that |= (γ, Γ) =⇒ (∀α. |= (γ′, Γ(α))),
where γ′ and Γ(α) have been obtained from γ and Γ as per [env-extend]. Using this lemma,
we derive the desired |= (γ′, Γ′), where Γ′ is obtained from Γ and Γ(α) as per [env-extend].
The proof of this lemma is done by transfinite induction on α and has the standard zero,
successor, and limit ordinal cases. We outline the proof for the case in which a single, possibly
recursive, function f with body Cf is added; the generalisation to n mutually recursive
functions is straightforward and can be seen in [24].

ECOOP 2023

19:16 Exact Separation Logic

In all three cases, the soundness of all specifications except the NT-specification with
the highest considered ordinal follows from the inductive hypothesis. This remaining NT-
specification is vacuously UX-valid, meaning that we only need to prove its OX-validity.
For this, we use a form of fixpoint induction called Scott induction (see, e.g., Winskel [31]),
required when specifications can be used to prove themselves (e.g. any SL specification).

We set up the Scott induction by extending the set of commands with two pseudo-
commands, scope and choice, with the former modelling the function call but allowing
arbitrary commands to be executed in place of the function body, and the latter denoting
non-deterministic choice. We then construct the greatest-fixpoint closure of these extended
commands, denoted by C, whose elements may contain infinite applications of the command
constructors. We define a behavioural equivalence relation ≃γ′ on C and denote by Cγ′ the
obtained quotient space. This relation induces a partial order ⊑γ′ , and a join operator that
coincides with choice, and we show that (Cγ′ , ⊑γ′) is a domain.

We next define Sα as the set of all equivalence classes that hold an element that, for
every specification in (Γ(α))(f), OX-satisfies at least one of its internal specifications, and
show that Sα is an admissible subset of Cγ′ , that is, that it contains the least element of Cγ′

(represented, for example, by the infinite loop while (true) { skip }) and is chain-closed.
We then define the function h(C) ≜ Cf [C, γ′, f], which replaces all function calls to

f in Cf with C using the scope command, and the function g as the lifting of h to Cγ′ :
g([C]) := [h(C)]. We next prove that g is continuous (that is, monotonic and supremum-
preserving) and that g(Sα) ⊆ Sα, from which we can apply the Scott induction principle,
together with a well-known identity of the least-fixpoint, which implies that Cf ∈ lfp(g), to
obtain that [Cf] ∈ Sα. From there, we are finally able to prove that |= (γ′, Γ(α)). ◀

These two theorems, to the best of our knowledge, are the first to demonstrate sound
function compositionality for UX logics. Previous work on UX logics [25,28,29] used function
specifications in examples but did not include rules in the logic for calling functions and
managing a function specification environment. Program logics that do not include function
rules and function specification environments in effect delegate soundness responsibilities to
the meta-logic within which they are embedded. This might be appropriate in some contexts,
such as in interactive theorem provers, whose meta-logic is reliable. Charguéraud’s clean-slate
tutorial SL implementation in Coq [6], for example, does not provide either function call
rules or program-logic-level infrastructure for a function specification environment; instead,
it relies on Coq’s induction mechanism and definitional mechanism to use and store function
specifications. However, when implementing an SL/ISL/ESL-based tool in a mainstream
non-ITP language, such as C++ or OCaml, no reliable meta-logic that can act as a safety
net is available. This is particularly concerning for UX logics, which require complex rules for
handling functions, including forgetting information about function-local mutable variables.
In ESL, the handling of functions is fully internalised into the logic, no meta-logic facilities
are required to handle function calls, and the program-logic-level facilities of ESL for handling
functions are validated by the soundness proof.

The proof of Theorem 18 can be adjusted for ISL: the function call rule would remain the
same, and [env-extend] would not include NT-specifications, removing the need for Scott
induction. On the other hand, the Scott induction itself could be easily adapted for SL.

5 Examples: ESL in Practice

We demonstrate how to use ESL to specify and verify correctness and incorrectness properties
of data-structure algorithms, focussing on singly-linked lists and binary search trees.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:17

We investigate, for the first time, the use of abstract predicates in a UX program
logic, decoupling abstraction from over-approximation. Our findings show that UX/EX
specifications can soundly incorporate abstraction, but also that it, ultimately, cannot be used
as freely as in the OX setting. Firstly, since UX reasoning cannot lose information, not all
algorithms can be UX-specified at all levels of abstraction, and hence sometimes specifications
have to be less abstract than in OX reasoning. Secondly, because specifications are only
composable when expressed at the same level of abstraction, specifications of a library client
have to be written at the “least common level of abstraction” of the specifications of all of
the library functions that the client calls.

Building on §2, we give further intuition on how to think informally about UX/EX
specifications using a number of list algorithms and predicates describing lists with various
degrees of abstraction (§5.1, §5.2), more detail on how to write formal ESL proofs (§5.3),
and examples of ESL reasoning for binary-search-tree algorithms (§5.4).

5.1 List Predicates
We implement singly-linked lists in the standard way: every list consists of two contiguous
cells in the heap (denoted x 7→ a, b, meaning x 7→ a ⋆ x + 1 7→ b), with the first holding the
value of the node, the second holding a pointer to the next node in the list, and the list
terminating with a null pointer. To capture lists in ESL, we use a number of list predicates:

list(x) ≜ (x = null) ∨ (∃v, x′. x 7→ v, x′ ⋆ list(x′))
list(x, n) ≜ (x = null ⋆ n = 0) ∨ (∃v, x′. x 7→ v, x′ ⋆ list(x′, n − 1))

list(x, vs) ≜ (x = null ⋆ vs = []) ∨ (∃v, x′, vs′. x 7→ v, x′ ⋆ list(x′, vs′) ⋆ vs = v : vs′)
list(x, xs) ≜ (x = null ⋆ xs = []) ∨ (∃v, x′, xs′. x 7→ v, x′ ⋆ list(x′, xs′) ⋆ xs = x : xs′)

list(x, xs, vs) ≜ (x = null ⋆ xs = [] ⋆ vs = []) ∨
(∃v, x′, xs′, vs′. x 7→ v, x′ ⋆ list(x′, xs′, vs′) ⋆ xs = x : xs′ ⋆ vs = v : vs′)

These predicates expose different parts of the list structure in their parameters, hiding the rest
via existential quantification: the list(x) predicate hides all information about the represented
mathematical list, just declaring that there is a singly-linked list at address x; the list(x, n)
predicate hides the internal node addresses and values, exposing the list length via the
parameter n; the list(x, xs) predicate hides information about the values of the mathematical
list, exposing the internal addresses of the list via the parameter xs; the list(x, vs) predicate
hides information about the internal addresses, exposing the list’s values via the parameter vs;
and the list predicate list(x, xs, vs) hides nothing, exposing the entire node-value structure via
the parameters xs and vs. These predicates are related to each other via logical equivalence;
for example, it holds that:

|= list(x) ⇔ ∃n. list(x, n) |= list(x) ⇔ ∃vs. list(x, vs)
|= list(x) ⇔ ∃xs, vs. list(x, xs, vs) |= list(x, n) ⇔ ∃vs. list(x, vs) ⋆ |vs| = n

5.2 Writing UX/EX Abstract Specifications
We consider a number of list algorithms, described in words, and guide the reader on how to
write correct UX/EX specifications for these algorithms using the list abstractions given in
the previous section (§5.1), comparing how the UX/EX approach and specifications differ
from their OX counterparts. We provide detailed proofs and implementations for each type
of algorithm (iterative/recursive, allocating/deallocating, pure/mutative, etc.) in [24].

ECOOP 2023

19:18 Exact Separation Logic

An important point is to understand how to look for counter-examples to a given
specification: from the definition of OX validity, it follows that breaking OX reasoning
amounts to “finding a state in the pre-condition (pre-model) for which the execution of f

terminates and does not end in a state in the post-condition”; from the definition of UX
validity, breaking UX reasoning means “finding a model of the post-condition (post-model)
not reachable by execution of f from any state in the pre-condition”; and from the definition
of EX validity, it follows that breaking EX reasoning means breaking either OX or UX
reasoning. In addition, it is useful to remember that, for breaking UX validity, it is sufficient
to find information known in the pre-condition but lost in the post-condition.

Length. We first revisit the list-length function LLen(x), which takes a list at address x,
does not modify it, and returns its length. In §2, we have shown that it satisfies the exact
specification (x = x ⋆ list(x, n)) LLen(x) (list(x, n) ⋆ ret = n) and observed that

(O1) abstraction does not always equal over-approximation.

Using similar reasoning, we can come to the conclusion that the following, less abstract
specifications for LLen(x) are also EX-valid:

(x = x ⋆ list(x, vs)) LLen(x) (list(x, vs) ⋆ ret = |vs|)
(x = x ⋆ list(x, xs, vs)) LLen(x) (list(x, xs, vs) ⋆ ret = |xs|)

On the other hand, if we consider the following OX-valid specification:{
x = x ⋆ list(x)

}
LLen(x)

{
∃n ∈ N. list(x) ⋆ ret = n

}
we see that it is not UX-valid as the post-condition does not connect the return value to the
list. In particular, if we choose a post-model for list(x) that has length 2, but then choose,
for example, ret = 42, we run into a problem: as the algorithm does not modify the list, we
have to choose the same model of list(x) for the pre-model to have a chance of reaching the
post-model, but then the algorithm will return 2, not 42, meaning that this specification is
indeed not UX/EX-valid. From this discussion, we observe that:

(O2) in valid UX/EX specifications, data-structure abstractions used in a post-condition
must expose enough information to capture the behaviour of the function being specified

with respect to the information given in the pre-condition.

Note that, given a specification less abstract than strictly needed, one can obtain more
abstract ones by using validity-preserving transformations on specifications that correspond
to the structural rules of the logic. We refer to these as admissible transformations, give the
ones for existential introduction and equivalence below, and the rest in [24]:

adm-exists
Γ |=

(⃗
x = x⃗ ⋆ P

)
f (⃗x)

(
ok : Qok

) (
err : Qerr

)
y /∈ x⃗

Γ |=
(⃗
x = x⃗ ⋆ ∃y. P

)
f (⃗x)

(
ok : ∃y. Qok

) (
err : err : ∃y. Qerr

)
adm-equiv

Γ |=
(⃗
x = x⃗ ⋆ P ′) f (⃗x)

(
ok : Q′

ok
) (

err : Q′
err

)
|= P ′, Q′

ok , Q′
err ⇔ P, Qok , Qerr

Γ |=
(⃗
x = x⃗ ⋆ P

)
f (⃗x)

(
ok : Qok

) (
err : Qerr

)
For list-length, starting from the least abstract specification using list(x, xs, vs), we can

derive, for example, the specification using list(x, n), as follows:

(x = x ⋆ list(x, xs, vs)) LLen(x) (list(x, xs, vs) ⋆ ret = |xs|)
[adm-exists] (∃vs. x = x ⋆ list(x, xs, vs)) LLen(x) (∃vs. list(x, xs, vs) ⋆ ret = |xs|)
[adm-exists] (∃xs, vs. x = x ⋆ list(x, xs, vs)) LLen(x) (∃xs, vs. list(x, xs, vs) ⋆ ret = |xs|)
[adm-equiv] (x = x ⋆ list(x, n)) LLen(x) (list(x, n) ⋆ ret = n)

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:19

Interestingly, from one more application of [adm-exists] and [adm-equiv], we can derive

(x = x ⋆ list(x)) LLen(x) (∃n. list(x, n) ⋆ ret = n)

which further illustrates observation (O2), in that even though the pre-condition does not
talk about the length of the list, the post-condition has to expose it because the function
output depends on it, and hence the post-condition must connect up the return value to the
length of the list, here by an existentially quantified variable.

This approach of deriving abstract specifications can be used in general for working with
ESL: for a given algorithm, first prove the least abstract specification, which exposes all
details, and then adjust the degree of abstraction to fit the needs of the client code. We
discuss this further in the upcoming paragraph on reasoning about client programs.

Membership. Next, we consider the list-membership function LMem(x, v), which takes a list
at address x, does not modify it, and returns true if v is in the list, and false otherwise. Given
(O2) and the fact that the function output depends on the values in the list, we understand
that, for its UX/EX specification, we should be using a list abstraction that exposes at least
the values, that is, list(x, vs) or list(x, xs, vs). The corresponding specifications are:

(x = x ⋆ v = v ⋆ list(x, vs)) LMem(x, v) (list(x, vs) ⋆ ret = (v ∈ vs))
(x = x ⋆ v = v ⋆ list(x, xs, vs)) LMem(x, v) (list(x, xs, vs) ⋆ ret = (v ∈ vs))

and are proven similarly to list-length. We can check that a more abstract specification, say:{
x = x ⋆ v = v ⋆ list(x)

}
LMem(x, v)

{
∃b ∈ B. list(x) ⋆ ret = b

}
is not UX-valid, by choosing, as the post-model, b to be false and the list at x to contain v.
As for list-length, since list-membership does not modify the list, we have to choose the same
model of list(x) for the pre-model to have a chance of reaching the post-model, but then the
algorithm will return true, not false, so this post-model is not reachable.

Swap-First-Two. Next, we consider the list-swap-first-two function LSwapFirstTwo(x),
which takes a list at address x, swaps its first two values if the list is of sufficient length,
returning null, and throws an error otherwise without modifying the list. Given (O2), to
specify this function we need an abstraction that captures list length and, apparently, also the
list values; for example, list(x, vs). As this function can throw errors, its full EX specification
has to use the ESL quadruple, in which the two post-conditions are constrained with the
corresponding, shaded, branching conditions:

(x = x ⋆ list(x, vs))
LSwapFirstTwo(x, v)

(ok : ∃v1, v2, vs′. vs = v1 : v2 : vs′ ⋆ list(x, v2 : v1 : vs′) ⋆ ret = null)
(err : list(x, vs) ⋆ |vs| < 2 ⋆ err = “List too short!”)

observing that the success post-condition, given the used abstraction, has to not only state
that the length of the list is not less than two, but also how the values are manipulated, and
also that the error message is chosen for illustrative purposes.

However, note that the swapped values are not featured in the function output, but instead
remain contained within the predicate. This indicates that a more abstract specification:

(x = x ⋆ list(x, n))
LSwapFirstTwo(x, v)

(ok : list(x, n) ⋆ n ≥ 2 ⋆ ret = null) (err : list(x, n) ⋆ n < 2 ⋆ err = “List too short!”)

ECOOP 2023

19:20 Exact Separation Logic

which only reveals the list length, might be EX-valid, and indeed it is. Any list we choose in
the error post-model will have length less than two, and can then be used in the pre-model to
reach the post-model. On the other hand, whichever list we choose in the success post-model
will have length at least two, that is, its values will be of the form v1 : v2 : vs and it will have
some addresses, and then we can choose a list with the same addresses and values v2 : v1 : vs
in the pre-model and we will reach the post-model by executing the function.

Pointer-Reverse. Let us now examine the list-pointer-reverse function, LPRev(x), which
takes a list at address x and reverses it by reversing the direction of the next-pointers, returning
the head of the reversed list. Given (O2) and the fact that the algorithm manipulates pointers
and returns an address, but the actual values in the list are not exposed, we will try to use
the address-only list(x, xs) predicate to specify this function as in the following OX triple,
where xs† denotes the reverse of the mathematical list xs:{

x = x ⋆ list(x, xs)
}

LPRev(x)
{

list(ret, xs†)
}

which would seem to be UX-valid given our OX experience and previous examples, but
is not. In particular, it has no information about the logical variable x, which exists only
in the pre-condition. This is not an issue in OX reasoning, but in UX reasoning it would
mean that there exists a logical environment that interprets the post-condition but not the
pre-condition, and such a specification, by the definition, could never be UX-valid.

To understand which specific information about x is required, we first add the general
x ∈ Val, making the post-condition list(ret, xs†) ⋆ x ∈ Val, and then try to choose a post-
model by picking values for ret, xs, and x. Note that, given the definition of list(x, xs), we
cannot just pick any non-correlated values for ret and xs: in particular, either xs is an empty
list and ret is null, or xs is non-empty and ret is its last element. This observation, in fact,
reveals the information needed about x: either x is null and xs is empty, or xs is non-empty
and x is its first element. We capture this information using the listHead(x, xs) predicate:

listHead(x, xs) ≜ (xs = [] ⋆ x = null) ∨ (∃xs′. xs = x : xs′)

and arrive at the desired EX specification of the list-pointer-reverse algorithm:

(x = x ⋆ list(x, xs)) LPRev(x) (list(ret, xs†) ⋆ listHead(x, xs))

Let us make sure that this specification is UX-valid. If we pick a post-model with xs = [],
then x = ret = null and the pre-model with the same x and xs will work, as the list holds
no values. For a post-model with non-empty xs, x must equal the head of xs, ret must equal
the tail of xs, and we also have to pick some arbitrary values vs, with |vs| = |xs|. Then, given
the described behaviour of the algorithm, we know that this post-model is reachable from a
pre-model which has the list at x with addresses xs and values vs†.

Free. Next, we take a look at the LFree(x) function, which frees a given list at address x. Its
OX specification is

{
x = x ⋆ list(x)

}
LFree(x)

{
ret = null

}
, but it does not transfer to UX

contexts because no resource from the pre-condition can be forgotten in the post-condition
as that would break the UX frame property [28]. Instead, we have to keep track of the
addresses to be freed, which we can do using the list(x, xs) predicate (or list(x, xs, vs)), and
we also have to explicitly state in the post-condition that these addresses have been freed:

(x = x ⋆ list(x, xs)) LFree(x) (freed(xs) ⋆ listHead(x, xs) ⋆ ret = null)

using the freed(xs) predicate, which is defined as follows:

freed(xs) ≜ (xs = []) ∨ (∃x, xs′. xs = x : xs′ ⋆ x 7→ ∅,∅ ⋆ freed(xs′))

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:21

Client Programs and Specification Composition. We discuss the usability of ESL specific-
ations in general and abstraction in particular in the context of client programs that call
multiple library functions. Consider the following (slightly contrived) client program, which
takes a list and: pointer-reverses it if its length is between 5 and 10; frees it and then throws
an error if its length is smaller than 5; and does not terminate otherwise:

LClient(x) {
l := LLen(x);
if (l < 5)

{ r := LFree(x); error(“List too short!”) } else
{ if (l > 10) { while (true) { skip } } else { r := LPRev(l) } };

return r
}

Our first goal is to understand which is the most abstract list predicate that could be used
for reasoning about this client, since we want to minimise the amount of details we need to
carry along in the proof, noting that the least abstract one, list(x, xs, vs), will always work.
Observe that, importantly, only specifications expressed at the same abstraction level are
composable with each other, because they must be composed using equivalence. We explore
this in more detail in the subsequent formal discussion (see, in particular, observation (O5)).

When it comes to LClient(x), for list-length, we need information about the list length,
meaning that we can use either list(x, n), list(x, xs), or list(x, vs), but not list(x). For list-free,
we must have information about the addresses, meaning that list(x, n) and list(x, vs) will not
work, leaving us with list(x, xs), which is also usable for list-pointer-reverse. Therefore, we
can write the specification of this client using the list(x, xs) predicate, as follows:

(x = x ⋆ list(x, xs))
LClient(x)

(ok : 5 ≤ |xs| ≤ 10 ⋆ list(ret, xs†) ⋆ listHead(x, xs))
(err : |xs| < 5 ⋆ freed(xs) ⋆ listHead(x, xs) ⋆ err = “List too short!”)

In general, however, it is sufficient for a client to call one function that works with addresses
and another that works with values for the only applicable predicate to be list(x, xs, vs),
which is still abstract in the sense that it allows for unbounded reasoning about lists, but
does not hide any of its internal information. This leads us to the following observation:

(O3) specifications that use predicates which hide data-structure information,
albeit provable, may have limited use in UX client reasoning.

As a final remark on abstraction, note that we have only considered predicates that expose
the data-structure sub-parts (for lists, these sub-parts are values vs and addresses xs) either
entirely or not at all. It would be also possible to expose some of this structure for some of the
algorithms, but because of (O3), specifications using such abstractions are only composable
with specifications exposing the same partial structure, and hence likely to be of limited use.

Non-termination. We conclude our discussion on specifications with two remarks on EX
reasoning about non-terminating behaviour. First, consider the non-terminating branch of the
LClient function, which is triggered when |xs| > 10. Observe that this branch is implicit in
the client specification, in that it is subsumed by the success post-condition (since |= P ∨(|xs|>
10 ⋆ False) ⇔ P). However, to demonstrate that it exists, we can constrain the pre-condition
appropriately to prove the specification (x = x ⋆ list(x, xs) ⋆ |xs| > 10) LClient(x) (False).
This implicit loss of non-terminating branches can be characterised informally as follows:

ECOOP 2023

19:22 Exact Separation Logic

(O4) if the post-conditions do not cover all paths allowed by the pre-condition,
then the “gap” is non-terminating.

In this case, the pre-condition implies |xs| ∈ N and the post-conditions cover the cases where
|xs| ≤ 10, leaving the gap when |xs| > 10, for which we provably have client non-termination.

Second, we observe that, in contrast to terminating behaviour, for non-terminating
behaviour EX is as expressive as OX; that is, the EX triple (P) C (False) is equivalent to the
OX triple

{
P

}
C

{
False

}
as the UX triple

[
P

]
C

[
False

]
is vacuously true. This is not to say

that all non-terminating behaviour can be captured by ESL specifications. For example, as
in OX, if the code branches on a value that does not come from the pre-condition, and if one
of the resulting branches does not terminate, and if the code can also terminate successfully,
then the non-terminating branch will be implicit in the pre-condition, but no gap in the
sense of (O4) will be present. This is illustrated by the code and specification below, where
the pre- and the post-condition are the same, but a non-terminating path still exists:

(x = 0) x := nondet; if (x > 42) { while (true) {skip} } else { x := 0 } (x = 0)

5.3 More ESL Proofs: Iterative list-length
In §2, we have shown a proof sketch for a recursive implementation of the list-length algorithm,
demonstrating how to handle the measure for recursive function calls; how the folding of
predicates works in the presence of equivalence; and how to move between external and
internal specifications. We highlight again the UX-specific issue that we raised and that is
related to predicate folding, which can be formulated generally as follows:

(O5) if the code accesses data-structure information that the used predicate hides, then that
predicate might not be foldable in a UX-proof in all of the places in which

it would be foldable in the corresponding OX-proof.

Here, we show how to write ESL proofs for looping code, using as example an iterative
implementation of the list-length algorithm. Proofs for the majority of the other algorithms
mentioned in §5.2 can be found in [24]; the rest are similar.

Iterative list-length in ESL: Proof Sketch. In Figure 4, we give an iterative implementation
of the list-length algorithm and show that it satisfies the same ESL specification as its
recursive counterpart, (x = x ⋆ list(x, n)) LLen(x) (ok : list(x, n) ⋆ ret = n). Since there is
no recursion, we elide the (trivial) measure. To state the loop variant, we use the list-segment
predicate, defined as follows:

lseg(x, y, n) ≜ (x = y ⋆ n = 0) ∨ (∃v, x′. x 7→ v, x′ ⋆ lseg(x′, y, n − 1))

and to apply the [while] rule, we define:

Pi ≜ ∃j. lseg(x, x, i) ⋆ list(x, j) ⋆ n = i + j ⋆ r = i

Note that we could have chosen to elide i from the body of Pi in this simple example, but
since this is not necessarily possible or evident in general as well as for instructive purposes,
we chose to keep it in the proof. Note how, on exiting the loop, the negation of the loop
condition collapses the existentials i and j. This allows us to obtain the given internal
post-condition, from which we then easily move to the desired external post-condition. For
this proof, we also use three equivalence lemmas, which state that a non-empty list segment
can be separated into its last element and the rest, that the length of an empty list equals
zero, and that a null-terminated list-segment is a list.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:23

Γ ⊢ (x = x ⋆ list(x, n))
LLen(x) {

(x = x ⋆ list(x, n) ⋆ r = null)
r := 0
(x = x ⋆ list(x, n) ⋆ r = 0)
(P0)
while (x ̸= null) {

(Pi ⋆ x ̸= null)(
∃j, v, x′. lseg(x, x, i) ⋆ x 7→ v, x′ ⋆ list(x′, j − 1) ⋆ n = i + j ⋆ r = i

)
x := [x + 1];(

∃j, v, x′. lseg(x, x′, i) ⋆ x′ 7→ v, x ⋆ list(x, j) ⋆ n = i + (j + 1) ⋆ r = i
)

// equivalence: |= lseg(x, y, n + 1) ⇔ ∃x′, v. lseg(x, x′, n) ⋆ x′ 7→ v, y]](
∃j. lseg(x, x, i + 1) ⋆ list(x, j) ⋆ n = (i + 1) + j ⋆ r = i

)
r := r + 1
(Pi+1)

}(
x = null ⋆ ∃i. Pi

)(
∃i, j. lseg(x, x, i) ⋆ list(x, j) ⋆ n = i + j ⋆ r = i ⋆ x = null

)(
lseg(x, null, n) ⋆ r = n ⋆ x = null

)
// equivalence: |= list(null, j) ⇔ j = 0(

list(x, n) ⋆ r = n ⋆ x = null
)

// equivalence: |= lseg(x, null, n) ⇔ list(x, n)
return r
(list(x, n) ⋆ r = n ⋆ x = null ⋆ ret = r)
(∃xq, rq. list(x, n) ⋆ rq = n ⋆ xq = null ⋆ ret = rq)
(list(x, n) ⋆ ret = n)

}
(list(x, n) ⋆ ret = n)

Figure 4 ESL proof sketch: iterative list-length.

5.4 Beyond List Examples: Binary Search Trees

While list algorithms illustrate many aspects of exact reasoning, it is also important to
understand how ESL specification and verification works with other data structures. For
this reason, we discuss two algorithms operating over binary search trees (BSTs) that are
intended to represent sets of natural numbers. We use two abstractions for BSTs, one in
which only their values are considered as a mathematical set:

BST(x, K) ≜ (x = null ⋆ K = ∅) ∨ (∃k, l, r, Kl, Kr. x 7→ k, l, r ⋆ BST(r, Kr) ⋆ BST(l, Kl) ⋆

K = Kl ⊎ {k} ⊎ Kr ⋆ Kl < k ⋆ k < Kr)

and another that fully exposes the BST structure:

BST(x, τ) ≜ (x = null ⋆ τ = τ∅) ∨ (∃k, l, r, τl, τr. E 7→ k, l, r ⋆ BST(r, τr) ⋆ BST(l, τl) ⋆

τ = ((x, k), τl, τr) ⋆ τl < k ⋆ k < τr)

where τ is a mathematical tree, that is, an algebraic data type with two constructors
representing, respectively, an empty tree and a root node with two child trees: τ ∈ Tree ≜
τ∅ | ((x, n), τl, τr), where the notation (x, n) represents a BST node with address x and
value n. Note the overloaded < notation, where one of the operands can be a set or a tree,
which carry the intuitive meaning.

ECOOP 2023

19:24 Exact Separation Logic

BST algorithms. We first consider the BST-find-minimum algorithm, BSTFindMin(x), which
takes a tree with root at x, does not modify it, and returns its minimum element or throws
an empty-tree error. Since that algorithm operates only on the values in the tree, we are
able to state its ESL specification using the BST(x, K) predicate as follows:

(x = x ⋆ BST(x, K)) BSTFindMin(x) (ok: x ̸= null ⋆ BST(x, K) ⋆ ret = min(K))
(err : x = null ⋆ BST(x, K) ⋆ err = “Empty tree!”)

We have also considered the BST-insert algorithm, BSTInsert(x, v), which takes a tree with
root at x and inserts a new node with value v into it as a leaf if v is not already in the tree, or
leaves the tree unmodified if it is. As this algorithm interacts both with values and addresses
in the tree, the appropriate abstraction for it is BST(x, τ), and its ESL specification is:

(x = x ⋆ v = v ⋆ BST(x, τ))
BSTInsert(x, v)

(∃x′. BST(ret, BSTInsert(τ, (x′, v))) ⋆ BSTRoot(x, τ))

where BSTInsert(τ, ν) is the mathematical algorithm that inserts the node ν into the tree τ :

BSTInsert(τ∅, (x′, v)) ≜ BSTInsert(((x, k), τl, τr), (x′, v)) ≜
((x′, v), τ∅, τ∅) if v < k then ((x, k), BSTInsert(τl, (x′, v)), τr)

else if k < v then ((x, k), τl, BSTInsert(τr, (x′, v)))
else((x, k), τl, τr)

and the predicate BSTRoot(x, τ) is defined analogously to listHead(x, xs):

BSTRoot(x, τ) ≜ (τ = τ∅ ⋆ x = null) ∨ (∃k, τl, τr. τ = ((x, k), τl, τr))

This example shows how in EX verification, just as in OX verification, we end up relating
an imperative heap-manipulating algorithm to its mathematical/functional counterpart
(cf. Appel [3] for a recent reiteration of this idea). The additional work required is that
EX mathematical models must be more detailed: we are, yet again, not allowed to lose
information. In particular, in OX verification we could relate BSTInsert(x, v) to mathematical
sets, but in EX verification we must relate our imperative implementation to tree models,
including both values and pointers. Moreover, our mathematical model of the algorithm,
BSTInsert(τ, (x′, v)), must insert elements in the same way as the imperative implementation,
that is, in this case at the leaves of the tree. The proofs for both algorithms are given in [24].

6 Related Work

In the previous sections, we have placed ESL in the context of related work on OX and UX
logics and associated tools. Here, we discuss formalisms capable of reasoning both about
program correctness and program incorrectness, as well as existing approaches to the use of
function specifications (summaries) and abstraction in symbolic execution.

Program Logics for Both Correctness and Incorrectness. Developed in parallel but
independently of ESL, Outcome Logic (OL) [33], much like ESL, brings together reasoning
about correctness and incorrectness into one logic. Both OL and ESL rely on the traditional
meaning of correctness, but OL introduces a new approach to incorrectness, based on
reachability of sets of states. It has not yet been shown that this approach has the same bug-
finding potential as that of ISL: in particular, bi-abduction has not yet been demonstrated to
be compatible with OL. In addition, the OL work, in contrast to ESL, does not discuss function
compositionality or the interaction between abstraction, reachability, and incorrectness.

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:25

LCLA [4, 5] is a non-function-compositional, first-order logic that combines UX and OX
reasoning using abstract interpretation. It is parametric on an abstract domain A, and
proves UX triples of the form ⊢A [P] C [Q] where, under certain conditions, the triple also
guarantees verification. These conditions, however, normally mean that only a limited number
of pre-conditions can be handled. The conditions also have to be checked per-command and
if they fail to hold (due to, e.g., issues with Boolean guards, which are known to be a major
source of incompleteness), then the abstract domain has to be incrementally adjusted; the
complexity of this adjustment and the expressivity of the resulting formalism is unclear.

Compositional Symbolic Execution. There exists a substantial body of work on symbolic
execution with function summaries (e.g. [1, 15–17, 22, 32]), which is primarily based on
first-order logic. We highlight the work of Godefroid et al., which initially used exact
summaries of bounded program behaviour to drive the compositional dynamic test generation
of SMART [15], and later distinguished between may (OX) and must (UX) summaries,
leveraging the interaction between them to design the SMASH tool for compositional
property checking and test generation [16]. SMASH, however, is limited in its ability to
reason about heap-manipulating programs because, for example, it lacks support for pointer
arithmetic. Nevertheless, it shows that interactions between OX and UX summaries can be
exploited for automation, which is an important consideration for any automation of ESL. For
example, SMASH is able to use not-may summaries (which amount to non-reachability) when
constructing must-summaries (which amount to reachability), using the former to restrict
the latter. When it comes to abstraction, for example, Anand et al. [2] implement linked-list
and array abstractions for true bug-finding in non-compositional symbolic execution, in
the context of the Java PathFinder, and use it to find bugs in list and array partitioning
algorithms. True bug-finding is maintained by checking for state subsumption, which requires
code modification rather than annotation and a record of all previously visited states.

7 Conclusions

We have introduced ESL, a program logic for exact reasoning about heap-manipulating
programs. ESL specifications provide a sweet spot between verification and true bug-finding:
as SL specifications, they capture all terminating behaviour, and, as ISL specifications,
they describe only results and errors that are reachable. ESL specifications are therefore
compatible with tools that target OX verification, such as VeriFast [19] and Iris [20], tools
that target UX true bug-finding, such as Pulse [26, 28], and tools capable of targeting both,
such as Gillian [10, 23]. ESL supports reasoning about mutually recursive functions and
comes with a soundness result that immediately transfers to SL and ISL, thus demonstrating,
for the first time, scalable functional compositionality for UX logics.

We have verified exact specifications for a number of illustrative examples, showing that
ESL can reason about data-structure libraries, language errors, mutual recursion, and non-
termination. In doing so, we emphasise the distinction between the often-conflated concepts
of abstraction and over-approximation. We have demonstrated that abstract predicates can
be soundly used in EX and UX reasoning, albeit not as freely as in OX reasoning.

We believe that ESL reasoning, in its intended context of semi-automatic verification of
functional correctness properties, is useful for the verification of self-contained, critical code
that underpins a larger codebase. To demonstrate this, we will in the future incorporate
UX and EX verification inside Gillian [10, 23], which already has support for function
compositionality and semi-automatic predicate management as part of its OX verification.

ECOOP 2023

19:26 Exact Separation Logic

References
1 Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-driven compositional

symbolic execution. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2008. doi:10.1007/978-3-540-78800-3_28.

2 Saswat Anand, Corina S. Pasareanu, and Willem Visser. Symbolic execution with abstraction.
International Journal on Software Tools for Technology Transfer, 11(1), 2009. doi:10.1007/
s10009-008-0090-1.

3 Andrew W. Appel. Coq’s vibrant ecosystem for verification engineering. In Conference on
Certified Programs and Proofs (CPP), 2022. doi:10.1145/3497775.3503951.

4 Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. A logic for locally
complete abstract interpretations. In Symposium on Logic in Computer Science (LICS), 2021.
doi:10.1109/LICS52264.2021.9470608.

5 Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. A correctness and
incorrectness program logic. Journal of the ACM, 70(2), 2023. doi:10.1145/3582267.

6 Arthur Charguéraud. Separation logic for sequential programs (functional pearl). Proceedings
of the ACM on Programming Languages, 4(ICFP), 2020. doi:10.1145/3408998.

7 Pedro da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner, and Julian Sutherland.
Modular termination verification for non-blocking concurrency. In European Symposium on
Programming (ESOP), 2016. doi:10.1007/978-3-662-49498-1_8.

8 Edsko de Vries and Vasileios Koutavas. Reverse Hoare logic. In Software Engineering and
Formal Methods (SEFM), 2011. doi:10.1007/978-3-642-24690-6_12.

9 Robert W. Floyd. Assigning meanings to programs. Proceedings of Symposium on Applied
Mathematics, 19, 1967.

10 José Fragoso Santos, Petar Maksimović, Sacha-Élie Ayoun, and Philippa Gardner. Gillian,
part I: A multi-language platform for symbolic execution. In Programming Language Design
and Implementation (PLDI), 2020. doi:10.1145/3385412.3386014.

11 José Fragoso Santos, Petar Maksimović, Théotime Grohens, Julian Dolby, and Philippa
Gardner. Symbolic execution for JavaScript. In Principles and Practice of Declarative
Programming (PPDP), 2018. doi:10.1145/3236950.3236956.

12 José Fragoso Santos, Petar Maksimović, Daiva Naudžiūnienė, Thomas Wood, and Philippa
Gardner. JaVerT: JavaScript verification toolchain. Proceedings of the ACM on Programming
Languages, 2(POPL), 2018. doi:10.1145/3158138.

13 José Fragoso Santos, Petar Maksimović, Gabriela Sampaio, and Philippa Gardner. JaVerT 2.0:
Compositional symbolic execution for JavaScript. Proceedings of the ACM on Programming
Languages, 3(POPL), 2019. doi:10.1145/3290379.

14 Philippa Gardner, Sergio Maffeis, and Gareth David Smith. Towards a program logic for
JavaScript. In Principles of Programming Languages (POPL), 2012. doi:10.1145/2103656.
2103663.

15 Patrice Godefroid. Compositional dynamic test generation. In Principles of Programming
Languages (POPL), 2007. doi:10.1145/1190216.1190226.

16 Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali. Compositional
may-must program analysis: Unleashing the power of alternation. In Principles of Programming
Languages (POPL), 2010. doi:10.1145/1706299.1706307.

17 Benjamin Hillery, Eric Mercer, Neha Rungta, and Suzette Person. Exact heap summaries for
symbolic execution. In Verification, Model Checking, and Abstract Interpretation (VMCAI),
2016. doi:10.1007/978-3-662-49122-5_10.

18 C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the
ACM (CACM), 12(10), 1969. doi:10.1145/363235.363259.

19 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In NASA
Formal Methods Symposium (NFM), 2011. doi:10.1007/978-3-642-20398-5_4.

https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1007/s10009-008-0090-1
https://doi.org/10.1007/s10009-008-0090-1
https://doi.org/10.1145/3497775.3503951
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1145/3582267
https://doi.org/10.1145/3408998
https://doi.org/10.1007/978-3-662-49498-1_8
https://doi.org/10.1007/978-3-642-24690-6_12
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.1145/3236950.3236956
https://doi.org/10.1145/3158138
https://doi.org/10.1145/3290379
https://doi.org/10.1145/2103656.2103663
https://doi.org/10.1145/2103656.2103663
https://doi.org/10.1145/1190216.1190226
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1007/978-3-662-49122-5_10
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-642-20398-5_4

P. Maksimović, C. Cronjäger, A. Lööw, J. Sutherland, and P. Gardner 19:27

20 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning.
In Principles of Programming Languages (POPL), 2015. doi:10.1145/2676726.2676980.

21 Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn.
Finding real bugs in big programs with incorrectness logic. Proceedings of the ACM on
Programming Languages, 6(OOPSLA1), 2022. doi:10.1145/3527325.

22 Yude Lin, Tim Miller, and Harald Sondergaard. Compositional symbolic execution using
fine-grained summaries. In Australasian Software Engineering Conference, 2015. doi:10.1109/
ASWEC.2015.32.

23 Petar Maksimović, Sacha-Élie Ayoun, José Fragoso Santos, and Philippa Gardner. Gillian,
part II: Real-world verification for JavaScript and C. In Computer Aided Verification (CAV),
2021. doi:10.1007/978-3-030-81688-9_38.

24 Petar Maksimović, Caroline Cronjäger, Andreas Lööw, Julian Sutherland, and Philippa
Gardner. Exact separation logic (extended version), 2023. arXiv:2208.07200.

25 Toby Murray, Pengbo Yan, and Gidon Ernst. Incremental vulnerability detection with
insecurity separation logic, 2021. arXiv:2107.05225.

26 Peter W. O’Hearn. Incorrectness logic. Proceedings of the ACM on Programming Languages,
4(POPL), 2019. doi:10.1145/3371078.

27 Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs
that alter data structures. In Computer Science Logic, 2001. doi:10.1007/3-540-44802-0_1.

28 Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard.
Local reasoning about the presence of bugs: Incorrectness separation logic. In Computer Aided
Verification (CAV), 2020. doi:10.1007/978-3-030-53291-8_14.

29 Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. Concurrent incorrectness
separation logic. Proceedings of the ACM on Programming Languages, 6(POPL), 2022.
doi:10.1145/3498695.

30 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in
Computer Science (LICS), 2002. doi:10.1109/LICS.2002.1029817.

31 Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction, Chapter
10. MIT Press, 1993.

32 Greta Yorsh, Eran Yahav, and Satish Chandra. Generating precise and concise procedure
summaries. In Principles of Programming Languages (POPL), 2008. doi:10.1145/1328438.
1328467.

33 Noam Zilberstein, Derek Dreyer, and Alexandra Silva. Outcome logic: A unifying foundation for
correctness and incorrectness reasoning. Proceedings of the ACM on Programming Languages,
7(OOPSLA1), 2023. doi:10.1145/3586045.

ECOOP 2023

https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3527325
https://doi.org/10.1109/ASWEC.2015.32
https://doi.org/10.1109/ASWEC.2015.32
https://doi.org/10.1007/978-3-030-81688-9_38
https://arxiv.org/abs/2208.07200
https://arxiv.org/abs/2107.05225
https://doi.org/10.1145/3371078
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1145/3498695
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/1328438.1328467
https://doi.org/10.1145/1328438.1328467
https://doi.org/10.1145/3586045

Morpheus: Automated Safety Verification of
Data-Dependent Parser Combinator Programs
Ashish Mishra #

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Suresh Jagannathan #

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Abstract
Parser combinators are a well-known mechanism used for the compositional construction of parsers,
and have shown to be particularly useful in writing parsers for rich grammars with data-dependencies
and global state. Verifying applications written using them, however, has proven to be challenging in
large part because of the inherently effectful nature of the parsers being composed and the difficulty
in reasoning about the arbitrarily rich data-dependent semantic actions that can be associated
with parsing actions. In this paper, we address these challenges by defining a parser combinator
framework called Morpheus equipped with abstractions for defining composable effects tailored for
parsing and semantic actions, and a rich specification language used to define safety properties
over the constituent parsers comprising a program. Even though its abstractions yield many of the
same expressivity benefits as other parser combinator systems, Morpheus is carefully engineered to
yield a substantially more tractable automated verification pathway. We demonstrate its utility in
verifying a number of realistic, challenging parsing applications, including several cases that involve
non-trivial data-dependent relations.

2012 ACM Subject Classification Software and its engineering → General programming languages

Keywords and phrases Parsers, Verification, Domain-specific languages, Functional programming,
Refinement types, Type systems

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.20

Related Version Full Version: https://doi.org/10.48550/arXiv.2305.07901

Funding Funding for this work was provided in part by DARPA under the SafeDocs program (grant
HR0011-19-C-0073).

Acknowledgements The authors thank the reviewers for their insightful and useful comments.

1 Introduction

Parsers are transformers that decode serialized, unstructured data into a structured form.
Although many parsing problems can be described using simple context-free grammars
(CFGs), numerous real-world data formats (e.g., pdf [34], dns [9], zip [35], etc.), as well as
many programming language grammars (e.g., Haskell, C, Idris, etc.) require their parser
implementations to maintain additional context information during parsing. A particularly
important class of context-sensitive parsers are those built from data-dependent grammars,
such as the ones used in the data formats listed above. Such data-dependent parsers allow
parsing actions that explicitly depend on earlier parsed data or semantic actions. Often, such
parsers additionally use global effectful state to maintain and manipulate context information.
To illustrate, consider the implementation of a popular class of tag-length-data parsers; these
parsers can be used to parse image formats like PNG or PPM images, networking packets
formats like TCP, etc., and use a parsed length value to govern the size of the input payload
that should be parsed subsequently. The following BNF grammar captures this relation for a
simplified PNG image.

© Ashish Mishra and Suresh Jagannathan;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 20; pp. 20:1–20:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mishr115@purdue.edu
https://orcid.org/0000-0002-0513-3107
mailto:suresh@cs.purdue.edu
https://orcid.org/0000-0001-6871-2424
https://doi.org/10.4230/LIPIcs.ECOOP.2023.20
https://doi.org/10.48550/arXiv.2305.07901
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Morpheus: Automated Safety Verification for Parser Combinators

png ::= header . chunk∗

chunk ::= length . typespec . content

The grammar defines a header field followed by zero or more chunks, where each chunk has a
single byte length field parsed as an unsigned integer, followed by a single byte chunk type
specifier. This is followed by zero or more bytes of actual content. A useful data-dependent
safety property that any parser implementation for this grammar should satisfy is that “the
length of content plus typespec is equal to the value of length”.

Parser combinator libraries [44, 25, 12, 33] provide an elegant framework in which to
write parsers that have such data-dependent features. These libraries simplify the task of
writing parsers because they define the grammar of the input language and implement the
recognizer for it at the same time. Moreover, since combinator libraries are typically defined
in terms of a shallowly-embedded DSL in an expressive host language like Haskell [1, 19] or
OCaml [25], parser implementations can seamlessly use a myriad of features available in the
host language to express various kinds of data-dependent relations. This makes them capable
of parsing both CFGs as well as richer grammars that have non-trivial semantic actions.
Consequently, this style of parser construction has been adopted in many domains [2, 1, 33],
a fact exemplified by their support in many widely-used languages like Haskell, Scala, OCaml,
Java, etc.

Although parser combinators provide a way to easily write data-dependent parsers,
verifying the correctness (i.e., ensuring that all data dependencies are enforced) of parser
implementations written using them remains a challenging problem. This is in large part due
to the inherently effectful nature of the parsers being composed, the pervasive use of rich
higher-order abstractions available in the combinators used to build them, and the difficulty
of reasoning about complex data-dependent semantic actions triggered by these combinators
that can be associated with a parsing action.

This paper directly addresses these challenges. We do so by imposing modest constraints
on the host language capabilities available to parser combinator programs; these constraints
enable mostly automated reasoning and verification, without comprising the ability to specify
parsers with rich effectful, data-dependent safety properties. We manifest these principles in
the design of a deeply-embedded DSL for OCaml called Morpheus that we use to express
and verify parsers and the combinators that compose them. Our design provides a novel
(and, to the best of our knowledge, first) automated verification pathway for this important
application class. This paper makes the following contributions:
1. It details the design of an OCaml DSL Morpheus that allows compositional construction

of data-dependent parsers using a rich set of primitive parsing combinators along with
an expressive specification language for describing safety properties relevant to parsing
applications.

2. It presents an automated refinement type-based verification framework that validates the
correctness of Morpheus programs with respect to their specifications and which supports
fine-grained effect reasoning and inference to help reduce specification annotation burden.

3. It justifies its approach through a detailed evaluation study over a range of complex
real-world parser applications that demonstrate the feasibility and effectiveness of the
proposed methodology.

The remainder of the paper is organized as follows. The next section presents a detailed
motivating example to illustrate the challenges with verifying parser combinator applications
and presents a detailed overview of Morpheus that builds upon this example. We formalize
Morpheus’s specification language and type system in Secs. 3 and 4. Details about Morpheus’s
implementation and benchmarks demonstrate the utility of our framework is given in Sec. 5.
Related work and conclusions are given in Secs. 6 and 7, respectively.

A. Mishra and S. Jagannathan 20:3

1 decl ::= typedef . type−expr . id=rawident
2 | extern ...
3 | ...
4 typename ::= rawident
5 type−exp ::= "int" | "bool"
6 expr ::= ... | id=rawident

1 decl ::= typedef . type−expr . id=rawident [
¬ id ∈ (!identifiers)]

2 {types.add id}
3 | ...
4 typename ::= x = rawident [x ∈ (!types)]{

return x}
5 type−exp ::= "int" | "bool"
6 expr ::= ... | id=rawident {identifiers.add id ;

return id}

Figure 1 Context-free and context-sensitive grammars for C declarations.

2 Motivation and Morpheus Overview

To motivate our ideas and give an overview of Morpheus, consider a parser for a simplified
C language declarations, expressions and typedefs grammar. The grammar must handle
context-sensitive disambiguation of typenames and identifiers 1. Traditionally, C-parsers
achieve this disambiguation via cumbersome lexer hacks2 which use feedback from the symbol
table maintained in the parsing into the lexer to distinguish variables from types. Once the
disambiguation is outsourced to the lexer-hack, the C-decl grammar can be defined using
a context-free-grammar. For instance, the left hand side, Figure 1, presents a simplified
context-free grammar production for a C declaration.

Unfortunately, ad-hoc lexer-hacks are both tedious and error prone. Further, this
convoluted integration of the lexing and parsing phases makes it challenging to validate the
correctness of the parser implementation. A cleaner way to implement such a parser is to
disambiguate typenames and identifiers when parsing by writing an actual context-sensitive
parser. One approach would be to define a shared context of two non-overlapping lists of
types and identifiers and a stateful-parser using this context. The modified context-sensitive
grammar is shown in right hand side, Figure 1.

The square brackets show context-sensitive checks e.g. [¬ id ∈ (!identifier)] checks that
the parsed rawident token id is not in the list of identifiers, while the braces show semantic
actions associated with parser reductions, e.g. {typed.add id}, adds the token id to types, a
list of identifiers seen thus far in the parse.

Given this grammar, we can use parser combinator libraries [25, 30] in our favorite
language to implement a parser for C language declarations. Unfortunately, although
cleaner than the using unwieldy lexer hacks, it is still not obvious how we might verify that
implementations actually satisfy the desired disambiguation property, i.e. typenames and
identifiers do not overlap. In the next section we provide an overview of Morpheus that
informally presents our solution to this problem.

2.1 Morpheus Surface Language
An important design decision we make is to provide a surface syntax and API very similar to
conventional monadic parser combinator libraries like Parsec [25] in Haskell or mParser [30] in
OCaml; the core API that Morpheus provides has the signature shown in Figure 3. The library

1 https://web.archive.org/web/20070622120718/
http://www.cs.utah.edu/research/projects/mso/goofie/grammar5.txt

2 https://www.lysator.liu.se/c/ANSI-C-grammar-l.html

ECOOP 2023

https://web.archive.org/web/20070622120718/
http://www.cs.utah.edu/research/projects/mso/goofie/grammar5.txt
https://www.lysator.liu.se/c/ANSI-C-grammar-l.html

20:4 Morpheus: Automated Safety Verification for Parser Combinators

1 let ids = ref []
2 let types = ref []
3 type decl =
4 Typedecl of {typeexp;string}
5 | . . .

6 type expression =
7 Address of expression
8 | Cast of string ∗ expression
9 | . . .

10 | Identifier of string
11

expression :
PEstexc

{∀ h,
ldisjoint (sel (h, ids),sel (h, types)) = true)}

ν : expression result
{∀ h, ν, h’.ν = Inl (v1) =>

ldisjoint (sel (h’, ids),sel (h’, types)) = true)
∧ ν = Inr (Err) => included(inp,h,h’) = true }

12 let expression =
13 dom char ’(’
14 tn ← typename
15 char ’)’
16 e ← expression
17 return Cast (tn, e))
18 <|> . . .

19 <|>
20 dom

21 id ← identifier
22 let b = List.mem id !types
23 if (!b) then
24 ids := id :: (!ids)
25 return (Identifier id)
26 else
27 fail

28

typedecl :
PEstexc

{∀ h,
ldisjoint (sel (h, ids),sel (h, types)) = true) }

ν : tdecl result
{∀ h, ν, h’.ν = Inl (v1) =>
ldisjoint (sel (h’, ids),sel (h’, types)) = true)

∧ ν = Inr (Err) => included(inp,h,h’) = true }

29let typedecl =
30dom

31td ← keyword "typedef"
32te ← string "bool" <|> string "int"
33id ← indentifier
34(* incorrect-check: if (not(List.mem id

!types)) then*)
35if (not (List.mem id !ids)) then
36types := id :: (!types)
37return Tdecl {typeexp; id}
38else
39fail
40

typename :
PEstexc

{∀ h.
ldisjoint (sel (h, ids),sel (h, types)) = true}

ν : string result
{∀ h, ν, h’.ν = Inl (v) =>
mem (sel (h’, types), v) = true
∧ ν = Inr (Err) => included(inp,h,h’) = true}

41let typename =
42dom

43x ← identifier
44if (List.mem x !types) then
45return x
46else
47fail

Figure 2 A simplified C-declaration parser written in Morpheus. Specifications in blue are
provided by the programmer; specifications in gray are inferred by Morpheus. Line number 28
represents the complete multiline type specification.

defines a number of primitive combinators: eps defines a parser for the empty language,
bot always fails, and char c defines a parser for character c. Beyond these, the library
also provides a bind (>>=) combinator for monadically composing parsers, a choice (<|>)
combinator to non-deterministically choose among two parsers, and a fix combinator to
implement recursive parsers. The return x is a parser which always succeeds with a value
x. As we demonstrate, these combinators are sufficient to derive a number of other useful
parsing actions such as many, count, etc. found in these popular combinator libraries. From
the parser writer’s perspective, Morpheus programs can be expressed using these combinators
along with a basic collection of other non-parser expression forms similar to those found in
an ML core language, e.g., first-class functions, let expressions, references, etc.

A. Mishra and S. Jagannathan 20:5

type ’a t
val eps : unit t
val bot : ’a t
val char : char → char t
val (>>=) : ’a t → (a → ’b t) → ’b t
val <|> : ’a t → ’a t → ’a t
val fix : (’b t → ’b t) → ’b t
val return : ’a → ’a t

Figure 3 Signatures of primitive parser combinators supported by Morpheus.

For instance a parser for option p, which either parses an empty string or anything that p
parses can be written:

let option p = (eps >>= λ_. return None) <|> (p >>= λ x. return Some x)

We can also define more intricate parsers like Kleene-star and Kleene-plus:

let star p = fix (λ p_star. eps <|> p >>= λ x. p_star >>= λ xs . return (x :: xs))
let plus p = fix (λ p_star. p <|> p >>= λ x. p_star >>= λ xs . return (x :: xs))

Figure 2 shows a Morpheus implementation that parses a valid C language decl.3 The
parser uses two mutable lists to keep track of types and identifiers. The structure is similar
to the original data-dependent grammar, even though the program uses ML-style operators
for assignment and dereferencing. For ease of presentation, we have written the program
using do-notation as syntactic sugar for Morpheus’s monadic bind combinator.

The typedecl parser follows the grammar and parses the keyword typedef using the keyword
parser (not shown).4 It uses a choice combinator (<|>) (line 32), which has a semantics
of a non-deterministic choice between two sub-parsers. The interesting case occurs while
parsing an identifier (lines 33 - 39), in order to enforce disambiguation between typenames
and identifiers, the parser needs to maintain an invariant that the two lists, types for parsed
typenames and ids for parsed identifiers are always disjoint or non-overlapping.

In order to maintain the non-overlapping list invariant, a parsed identifier token (line 33)
can be a valid typename only if it is not parsed earlier as an identifier expression. i.e. it is
not in the ids list. The parser performs this check at (line 35). If this check succeeds, the list
of typenames (types) is updated and a decl is returned, else the parsing fails.

The disambiguation decision is required during the parsing of an expression. The expression
parser defines multiple choices. The parser for the casting expression parses a typename
followed by a recursive call to expression. The typename parser in turn (line 41) parses an
identifier token and checks that the identifier is indeed a typename (line 44) and returns it,
or fails.

The ids list is updated during parsing an identifier expression (line 20), here again to
maintain disambiguation, before adding a string to the ids list, its non-membership in the
current types list is checked (line 22).

Although the above parser program is easy to comprehend given how closely it hews to
the grammar definition, it is still nonetheless non-trivial to verify that the parser actually
satisfies the required disambiguation safety property. For example, an implementation in

3 For now, ignore the specifications given in gray and blue.
4 Morpheus, like other parser combinator libraries provides a library of parsers for parsing keywords,

identifiers, natural numbers, strings, etc.

ECOOP 2023

20:6 Morpheus: Automated Safety Verification for Parser Combinators

which line 34 is replaced with the commented expression above it would incorrectly check
membership on the wrong list. We describe how Morpheus facilitates verification of this
program in the following section.

2.2 Specifying Data-dependent Parser Properties
Intuitively, verifying the above-given parser for the absence of overlap between the typenames
and identifiers requires establishing the following partial correctness property: if the types and
identifiers lists do not overlap when the typedecl parser is invoked, and the parser terminates
without an error, then they must not overlap in the output state generated by the parser.
Additionally, it is required that the parser consumes some prefix of the input list. Morpheus
provides an expressive specification language to specify properties such as these.

Morpheus allows standard ML-style inductive type definitions that can be refined with
qualifiers similar to other refinement type systems [38, 43, 18]. For instance, we can refine
the type of a list of strings to only denote non-empty lists as: type nonempty = { ν : [string]
| len (ν) > 0 }. Here, ν is a special bound variable representing a list and (len ν > 0) is a
refinement where len is a qualifier, a predicate available to the type system that captures the
length property of a list.

2.2.1 Specifying effectful safety properties
Standard refinement type systems, however, are ill-suited to specify safety properties for
effectful computation of the kind expressible by parser combinators. Our specification
language, therefore, also provides a type for effectful computations. We use a specification
monad (called a Parsing Expression) of the form PEε { ϕ } ν : τ { ϕ′ } that is parameterized
by the effect of the computation ε (e.g., state, exc, nondet, and their combinations like stexc
for (both state and exc), stnon (for both state and nondet), etc.); and Hoare-style pre- and
post-conditions [31, 41, 40]. Here, ϕ and ϕ′ are first-order logical propositions over qualifiers
applied to program variables and variables in the type context. The precondition ϕ is defined
over an abstract input heap h while the postcondition ϕ′ is defined over input heap h, output
heap h’, and the special result variable ν that denotes the result of the computation. Using
this monad, we can specify a safety property for the typedecl subparser as shown at line 28
in Figure 2. The type should be understood as follows: The effect label stexc defines that
the parser may have both state effect as it reads and updates the context; and exc effect
as the parser may fail. The precondition defines a property over a list of identifiers ids
and a list of typenames types in the input heap h via the use of the built-in qualifier sel
that defines a select operation on the heap [27]; here, ν is bound to the result of the parse.
Morpheus also allows user-defined qualifiers, like the qualifier ldisjoint. It establishes the
disjointness/non-overlapping property between two lists. This qualifier is defined using the
following definition:

qualifier ldisjoint [] l2 → true
| l1 [] → true
| (x :: xs) l2 → member (x, l2) = false ∧ ldisjoint (xs, l2)
| l1 (y :: ys) → member (y, l1) = false ∧ ldisjoint (l1, ys)

This definition also uses another qualifier for list membership called member. Morpheus
automatically translates these user-defined qualifiers to axioms, logical sentences whose
validity is assumed by the underlying theorem prover during verification. For instance, given
the above qualifier, Morpheus generates axioms like:

A. Mishra and S. Jagannathan 20:7

Axiom1: ∀ l1, l2 : α list. (empty(l1) ∨ empty (l2)) => ldisjoint (l1, l2) = true
Axiom2: ∀ xs, l2: α list, x : α. ldisjoint (xs, l2) = true ∧ member (x, l2) = false => ldisjoint ((x::

xs), l2) = true
Axiom3: ∀ l1, l2: α ldisjoint (l1, l2) <=> ldisjoint (l2, l1)

The specification (at line 28) also uses another qualifier, included(inp,h,h’), which captures
the monotonic consumption property of the input list inp. The qualifier is true when the
remainder inp after parsing in h’ is a suffix of the original inp list in h.

The types for other parsers in the figure can be specified as shown at lines 11, 40, etc.;
these types shown in gray are automatically inferred by Morpheus’s type inference algorithm.
For example, the type for the typename parser (line 40) returns an optional string (result
is a special option type) and records that when parsing is successful, the returned string is
added to the types list, and when unsuccessful, the input is still monotonically consumed.

2.2.2 Verification using Morpheus
Note that the pre-condition in the specification (ldisjoint (Id, Ty) = true)) and the type ascribed
to the membership checks in the implementation (line 35) are sufficient to conclude that the
addition of a typename to the types list (line 36) maintains the ldisjoint invariant as required
by the postcondition.

In contrast, an erroneous implementation that omits the membership check or replaces
the check at line 34 with the commented line above it will cause type-checking to fail.
The program will be flagged ill-typed by Morpheus. For this example, Morpheus generated
21 verification conditions (VCs) for the control-path representing a successful parse and
generated 5 VCs for the failing branch. We were able to discharge these VCs to the SMT
solver Z3 [7], which took 6.78 seconds to verify the former and 1.90 seconds to verify the
latter.

3 Morpheus Syntax and Semantics

3.1 Morpheus Syntax
Figure 4 defines the syntax of λsp, a core calculus for Morpheus programs. The language is a
call-by-value polymorphic lambda-calculus with effects, extended with primitive expressions
for common parser combinators and a refinement type-based specification language. A λsp

value is either a constant drawn from a set of base types (int, bool, etc.), as well as a special
Err value of type exception, an abstraction, or a constructor application. Variables bound to
updateable locations (ℓ) are distinguished from variables introduced via function binding
(x). A λsp expression e is either a value, an application of a function or type abstraction,
operations to dereference and assign to top-level locations (see below), polymorphic let
expressions, reference binding expressions, a match expression to pattern-match over type
constructors, a return expression that lifts a value to an effect, and various parser primitive
expressions that define parsers for the empty language (eps), a character (char) parser, and
⊥, a parser that always fails. Additionally, the language provides combinators to monadically
compose parsers (>>=), to implement parsers defined in terms of a non-deterministic choice
of its constituents (< | >), and to express parsers that have recursive (µ (x : τ).p) structure.

We restrict how effects manifest by requiring reference creation to occur only within
let expressions and not in any other expression context. Moreover, the variables bound
to locations so created (ℓ) can only be dereferenced or assigned to and cannot be supplied

ECOOP 2023

20:8 Morpheus: Automated Safety Verification for Parser Combinators

Expression Language

c, unit, Err ∈ Constants
x ∈ Vars
inp, ℓ ∈ RefVars
v ∈ Value ::= c | λ (x : τ). e | Λ (α). e | Di tk vj

e ∈ Exp ::= v | x | p | e x | e [t] | deref ℓ | ℓ := e
| let x = v in e | let ℓ = ref e in e
| match v with Di α xj → e | return e

p ∈ Parsers ::= | eps | ⊥ | char e | (µ (x : τ). p)
| p >>= e | p <|> p

Specification Language

α ∈ TypeVariables
TN ∈ User Defined Types ::= α list, α tree, . . .

t ∈ Base Types ::= α | int | bool | unit | heap | TN | t
result | t ref | exc

τ ∈ Type ::= {ν : t | ϕ} | (x : τ)→ τ | PEε{ϕ1}ν : t {ϕ2}
ε ∈ Effect Labels ::= pure | state | exc | nondet | . . .

σ ∈ Type Scheme := τ | ∀α. τ

Q ∈ Qualifiers := QualifierName(xi)
ϕ, P ∈ Propositions ::= true | false | Q | Q1 = Q2

| ¬ ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ∀(x : t).ϕ
Γ ∈ Type Context ::= ∅ | Γ, x : σ | Γ, ℓ : τ ref | Γ, ϕ

Σ ∈ Constructors ::= ∅ | Σ, Di αk xj : τj → τ

Figure 4 λsp Expressions and Types.

as arguments to abstractions or returned as results since they are not treated as ordinary
expressions. This stratification, while arguably restrictive in a general application context, is
consistent with how parser applications, such as our introductory example are typically written
and, as we demonstrate below, do not hinder our ability to write real-world data-dependent
parser implementations. Enforcing these restrictions, however, provides a straightforward
mechanism to prevent aliasing of effectful components during evaluation, significantly easing
the development of an automated verification pathway in the presence of parser combinator-
induced computational effects.

3.2 Semantics
Figure 5 presents a big-step operational semantics for λsp parser expressions; the semantics
of other terms in the language is standard. The semantics is defined via an evaluation relation
(⇓) that is of the form (H; e) ⇓ (H′; v). The relation defines how a Morpheus expression e
evaluates with respect to a heap H, a store of locations to base-type values, to yield a value
v, which can be a normal value or an exceptional one, the latter represented by the exception
constant Err, and a new heap H′.

A. Mishra and S. Jagannathan 20:9

(H; e) ⇓ (H′; v)

P-eps
(H; eps) ⇓ (H; ())

P-⊥
(H;⊥) ⇓ (H; Err) P-fix

(H; [µx : σ.p/x]p)) ⇓ (H′; v)
(H; µx : σ.p) ⇓ (H′; v)

P-char-true

(H; e) ⇓ (H; ‘c’) H(inp) = (‘c’ :: s)
H′ = H[inp 7→ s]

(H; char e) ⇓ (H′; ‘c’)

P-char-false

(H; e) ⇓ (H; ‘c’) H(inp) ̸= (‘c’ :: s)
H′ = H[inp 7→ inp]

(H; char e) ⇓ (H′; Err))

P-bind-success

(H; p) ⇓ (H′; v1) (H′; e) ⇓ (H′; (λ x : τ. e′))
(H′; [v1/x]e′) ⇓ (H′′; v2)

(H; p»=e) ⇓ (H′′; v2)

P-bind-err
(H; p) ⇓ (H′; Err)

(H; p»=e) ⇓ (H′; Err))

P-choice-l
(H; p1) ⇓ (H′; v1)

(H; (p1 <|> p2)) ⇓ (H′; v1))
P-choice-r

(H; p2) ⇓ (H′′; v2)
(H; (p1 <|> p2)) ⇓ (H′′; v2))

Figure 5 Evaluation rules for λsp parser expressions.

The empty string parser (rule P-eps) always succeeds, returning a value of type unit,
without changing the heap. A “bottom” (⊥) parser on the other hand always fails, producing
an exception value, also without changing the heap. If the argument e to a character parser
char yields value (a char ‘c’), and ‘c’ is the head of the input string (denoted by inp) being
parsed, the parse succeeds (rule P-char-true), consuming the input and returning ‘c’,
otherwise, the parse fails, with the input not consumed and the distinguished Err value being
returned (rule P-char-false). The fixpoint parser µ x.p (P-fix) allows the construction
of recursive parser expressions. The monadic bind parser primitive (rule P-bind-success)
binds the result of evaluating its parser expression to the argument of the abstraction
denoted by its second argument, returning the result of the evaluating the abstraction’s body
(P-bind-success); the P-bind-err rule deals with the case when the first expression fails.
Evaluation of “choice” expressions, defined by rules P-choice-l and P-choice-r, introduce
an unbiased choice semantics over two parsers allowing non-deterministic choices in parsers.

4 Typing λsp Expressions

4.1 Specification Language
The syntax of Morpheus’s type system is shown in the bottom of Figure 4 and permits the
expression of base types such as integers, booleans, strings, etc., as well as a special heap type
to denote the type of abstract heap variables like h, h′ found in the specifications described
below. There are additionally user-defined datatypes TN (list, tree, etc.), a special sum type
(t result) to define two options of a successful and exceptional result respectively, and a

ECOOP 2023

20:10 Morpheus: Automated Safety Verification for Parser Combinators

special exception type. More interestingly, base types can be refined with propositions to
yield monomorphic refinement types. Such types [41, 38, 43] are either base refinement types,
refining a base typed term with a refinement; dependent function types, in which arguments
and return values of functions can be associated with types that are refined by propositions;
or a computation type specifying a type for an effectful computation.

Effectful computations are refined using an effect specification monad:

PEε {∀ h.ϕ1} ν : t {∀ h, ν, h′.ϕ2}

that encapsulates a base type t, parameterized by an effect label ε, with Hoare-style pre-
({∀ h.ϕ1}) and post- ({∀ h, ν, h′.ϕ2}) conditions. This type captures the behavior of a com-
putation that (a) when executed in a pre-state with input heap h satisfies proposition ϕ1;
(b) upon termination, returns a value denoted by ν of base type t along with output heap
h′; (c) satisfies a post-condition ϕ2 that relates h, ν, and h′; and (d) whose effect is over-
approximated by effect label ε [20, 45]. An effect label ε is either (i) a pure effect that records
an effect-free computation; (i) a state effect that signifies a stateful computation over the
program heap; (ii) an exception effect exc that denotes a computation that might trigger an
exception; (iii) a nondet effect that records a computation that may have non-deterministic
behavior; or (iv) a join over these effects that reflect composite effectful actions. The need
for the last is due to the fact that effectful computations are often defined in terms of a
composition of effects, e.g. a parser oftentimes will define a computation that has a state
effect along with a possible exception effect. To capture these composite effects, base effects
can be joined to build a finite lattice that reflects the behavior of computations which perform
multiple effectful actions, as we describe below.

Propositions (ϕ) are first-order predicate logic formulae over base-typed variables. Pro-
positions also include a set of qualifiers which are applications of user-defined uninterpreted
function symbols such as mem, size etc. used to encode properties of program objects, sel
used to model accesses to the heap, and dom used to model membership of a location in the
heap, etc. Proposition validity is checked by embedding them into a decidable logic that
supports equality of uninterpreted functions and linear arithmetic (EUFLIA).

A type scheme (σ) is either a monotype (τ) or a universally quantified polymorphic type
over type variables expressed in prenex-normal form (∀ α.σ). A Morpheus specification is
given as a type scheme.

There are two environments maintained by the Morpheus type-checker: (1) an environment
Γ records the type of variables, which can include variables introduced by function abstraction
as well as bindings to references introduced by let expressions, along with a set of propositions
relevant to a specific context, and (2) an environment Σ maps datatype constructors to their
signatures. Our typing judgments are defined with respect to a typing environment

Γ ::= . | Γ, x : σ | Γ, ℓ: τ ref

that is either empty, or contains a list of bindings of variables to either type schemes or
references. The rules have two judgment forms: (Γ ⊢ e : σ) gives a type for a Morpheus
expression e in Γ; and (Γ ⊢ σ1 <: σ2) defines a dependent subtyping rule under Γ.

Since our type expressions contain refinements, we generalize the usual notion of type
substitution to reflect substitution within refined types:

[xa/x]{ν : t|ϕ} = {ν : t|[xa/x]ϕ}
[xa/x](y : τ)→ τ ′ = (y : [xa/x]τ)→ [xa/x]τ ′, y ̸= x

[xa/x]PEε{ϕ1}{ν : t}{ϕ2} = PEε{[xa/x]ϕ1}{ν : t}{[xa/x]ϕ2}

A. Mishra and S. Jagannathan 20:11

4.2 Typing Base Expressions

Figure 6 presents type rules for non-parser expressions. The type rules for non-reference
variables, functions, and type abstractions (T-typ-fun) are standard. The syntax for function
application restricts its argument to be a variable, allowing us to record the argument’s
(intermediate) effects in the typing environment when typing the application as a whole.

Base Expression Typing Γ ⊢ e : σ

T-var
Γ(x) = σ

Γ ⊢ x : σ
T-fun

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λ(x : τ1).e : τ1 → τ2
T-typApp Γ ⊢ Λα.e : ∀α.σ

Γ ⊢ Λα.e[t] : [t/α]σ

T-App
Γ ⊢ ef : (x : {ν : t | ϕx})→ PEε{ϕ} ν : t {ϕ′} Γ ⊢ xa : {ν : t | ϕx}

Γ ⊢ ef xa : [xa/x]PEε{ϕ} ν : t {ϕ′}

T-typFun
Γ ⊢ e : σ α /∈ F V (Γ)

Γ ⊢ Λα.e : ∀α.σ
T-let

Γ ⊢ v : ∀α.σ Γ, x : ∀α.σ ⊢ e2 : σ′

Γ ⊢ let x = v in e2 : σ′

T-return
Γ ⊢ e : {ν : t | ϕ}

Γ ⊢ return e : PEpure{∀h.true} ν : t {∀h, ν, h′.h′ = h ∧ ϕ}

T-capp
Σ(Di) = ∀αk.xj : τj → τ ∀i, j.Γ ⊢ vj : [tk/αk][vj/xj]τj

Γ ⊢ Di tkvj : [t/α][vj/xj]τ

T-match

Σ(Di) = ∀αk.xj : τj → τ0
Γ ⊢ v : τ0 Γi = Γ, αk, xj : τj

Γi ⊢ (Di αkxj) : τ0 Γi ⊢ ei : PEε{ϕi} ν : t {ϕi′}
Γ ⊢match v with Di αkxj → ei :

PEε{∀ h.
∧

i
(v = Di αkxj)⇒ ϕi} ν : t {∀ h, ν′, h′.

∨
i
ϕi′}

T-deref
Γ ⊢ ℓ : PEstate{ϕ1} ν : t ref {ϕ2}

Γ ⊢ deref ℓ : PEstate{∀ h.dom(h, ℓ)} ν′ : t {∀ h, ν′, h′.sel(h, ℓ) = ν′ ∧ h = h′}

T-assign
Γ ⊢ e : {ν : t | ϕ}

Γ ⊢ ℓ := e : PEstate{∀h.dom(h, ℓ)} ν′ : t {∀ h, ν′, h′.sel(h′, ℓ) = ν′ ∧ ϕ(ν′)}

T-ref

Γ ⊢ v : { ν : t | ϕ }
Γ, ℓ : PEstate{∀ h.¬ dom(h, ℓ)} ν′ : t ref {∀ h, ν′, h′.sel(h′, ℓ) =

v ∧ ϕ(v) ∧ dom(h′, ℓ)} ⊢ eb : PEε{dom(h, ℓ)} ν′′ : t {ϕ′
b}

Γ , hi : heap ⊢ let ℓ = ref v in eb :
PEε⊔state{∀ h.¬ dom(h, ℓ)} ν′′ : t {∀ h, ν′′, h.dom(hi, ℓ) ∧ sel(hi, ℓ) = v ∧ ϕ(v) ∧ ϕ′

b}

Figure 6 Typing Semantics for Morpheus Base Expressions.

The type rule for the return expression (T-return) lifts its non-effectful expression
argument e to have a computation effect with label pure, thereby allowing e’s value to be
used in contexts where computational effects are required; a particularly important example
of such contexts are bind expressions used to compose the effects of constituent parsers.

ECOOP 2023

20:12 Morpheus: Automated Safety Verification for Parser Combinators

In the constructor application rule (T-capp), the expression’s type reflects the instanti-
ation of the type and term variables in the constructor’s type with actual types and terms.
A match expression is typed (rule T-match) by typing each of the alternatives in a corres-
ponding extended environment and returning a unified type. The pre-condition of the unified
type is a conjunction of the pre-conditions for each alternative, while the post-condition
over-approximates the behavior for each alternative by creating a disjunction of each of the
possible alternative’s post-conditions. Location manipulating expressions (T-deref and
T-assign) use qualifiers sel and dom to define constraints that reflect state changes on the
underlying heap. The argument ℓ of a dereferencing expression (rule T-deref) is associated
with a computation type over a tref base type. Its pre-condition requires ℓ to be in the
domain of the input heap, and its post-condition establishes that ℓ’s contents is the value
returned by the expression and that the heap state does not change. The assignment rule
(T-assign) assigns the contents of a top-level reference ℓ to the non-effectful value yielded
by evaluating expression e. The pre-condition of its computation effect type requires that
ℓ is in the domain of the input heap and that ℓ’s contents in the output heap satisfies the
refinement (ϕ) associated with its r-value. Finally, rule T-ref types a let expression that
introduces a reference initialized to a value v. The body is typed in an environment in which
ℓ is given a computational effect type. The pre-condition of this type requires that the input
heap, i.e., the heap extant at the point when the binding of ℓ to ref v occurs, not include ℓ

in its domain; its postcondition constrains ℓ’s contents to be some value ν′ that satisfies the
refinement ϕ associated with v, its initialization expression. The body of the let expression
is then typed in this augmented type environment.

4.3 Typing Parser Expressions
Figure 7 presents the type rules for Morpheus parser expressions. The (T-sub) rule defines
the standard type subsumption rule. The empty string parser typing rule (T-p-eps) assigns a
type with pure effect and unit return type, while the postcondition establishes the equivalence
of the input and the output heaps. The T-p-bot rule captures the always failing semantics
of ⊥ with an exception effect exc and corresponding return types and return values while
maintaining the stability of the input heap. The type rules governing a character parser
(T-p-char) is more interesting because it captures the semantics of the success and the failure
conditions of the parser. We use a sum type (α result) to define two options representing a
successful and exceptional result, resp. (with the Err exception value in the latter case), using
standard injection functions to differentiate among these alternatives. In the successful case,
the returned value is equal to the consumed character, captured by an equality constraint
over characters. In the successful case, the structure of the output heap with respect to the
parse string inp must be the same as the input heap except for the absence of the ’c’, the
now consumed head-of-string character. In the failing case, the input remains unconsumed.
Note that we also join the effect labels (state ⊔ exc), highlighting the state and exception
effect. These effect labels form a standard join semi-lattice with an ordering relation (≤) 5.

Rule T-p-choice defines the static semantics for a non-deterministic choice parser. It
introduces a non-determinism effect to the parser’s composite type. The effect’s precondition
requires that either of the choices can occur; we achieve this by restricting it to the conjunction
of the two preconditions for the sub-parsers. The disjunctive post-condition requires that
both the choices must imply the desired goal postcondition for a composite parser to be
well-typed. The effect for the choice expression takes a join over the effects of the choices
and the non-deterministic effect.

5 Details of the effect-labels and their join semi-lattice is provided in the accompanied technical report [28]

A. Mishra and S. Jagannathan 20:13

Parser Expression Typing Γ ⊢ e : σ

T-sub Γ ⊢ e : σ1 Γ ⊢ σ1 <: σ2

Γ ⊢ e : σ2

T-p-eps
Γ ⊢ eps : PEpure {∀h. true} ν : unit {∀h, ν, h′.h′ = h}

T-p-bot
Γ ⊢ ⊥ : PEexc {∀h. true} ν : exc {∀h, ν, h′.h′ = h ∧ ν = Err}

T-p-char

Γ ⊢ e : {ν′ : char | ν′ = ‘c′}
ϕ2 = ∀h, ν, h′.∀x, y.

(Inl(x) = ν =⇒ x = ‘c′ ∧ upd(h′, h, inp, tail(inp)))∧
(Inr(y) = ν =⇒ y = Err ∧ sel(h, inp) = sel(h′, inp))

Γ ⊢ char e : PEstate ⊔ exc{∀h.true} ν : char result {ϕ2}

T-p-choice
Γ ⊢ p1 : PEε {ϕ1} ν1 : τ {ϕ′

1} Γ ⊢ p2 : PEε {ϕ2} ν2 : τ {ϕ′
2}

Γ ⊢ (p1<|>p2) : PEε ⊔ nondet {(ϕ1 ∧ ϕ2)} ν : τ {(ϕ′
1 ∨ ϕ′

2)}

T-p-fix
Γ, x : (PEε {ϕ} ν : t {ϕ′}) ⊢ p : PEε {ϕ} ν : t {ϕ′} x /∈ F V (ϕ, ϕ′)

Γ ⊢ µ x : (PEε {ϕ} ν : t {ϕ′}). p : PEε {ϕ} ν : t {ϕ′}

T-p-bind

Γ ⊢ p : PEε {ϕ1} ν : t{ϕ1′} Γ ⊢ e : (x : τ)→ PEε {ϕ2} ν′ : t′ {ϕ2′}
Γ′ = Γ, x : τ, hi : heap hi fresh

Γ′ ⊢ p »= e :
PEε {∀h. ϕ1 h ∧ ϕ1′ (h, x, hi)⇒ ϕ2 hi}

ν′ : t′ result
{∀h, ν′, h′, y. (x ̸= Err⇒ ν′ = Inl y ∧ ϕ1′ (h, x, hi) ∧ ϕ2′ (hi, y, h′))∧

(x = Err⇒ ν′ = Inr Err ∧ ϕ1′ (h, x, hi))}

Subtyping Γ ⊢ σ1 <: σ2

T-Sub-Base

Γ ⊢ {ν : t | ϕ1} Γ ⊢ {ν : t | ϕ2}
Γ ⊨ ϕ1 ⇒ ϕ2

Γ ⊢ {ν : t | ϕ1} <: {ν : t | ϕ2}
T-Sub-Schema Γ ⊢ σ1 <: σ2

Γ ⊢ ∀α.σ1 <: ∀α.σ2

T-Sub-Arrow Γ ⊢ τ21 <: τ11 Γ ⊢ τ12 <: τ22

Γ ⊢ (x : τ11)→ τ12 <: (x : τ21)→ τ22

T-Sub-TVar
Γ ⊢ α <: α

T-Sub-Comp
Γ ⊨ ϕ2 ⇒ ϕ1 Γ ⊢ τ1 <: τ2 Γ ⊢ ε1 ≤ ε2 Γ, ϕ2 ⊨ (ϕ1′ ⇒ ϕ2′)

Γ ⊢ PEε1 {ϕ1} τ1 {ϕ1′} <: PEε2 {ϕ2} τ2 {ϕ2′}

Figure 7 Typing semantics for primitive parser expressions and subtyping rules.

Rule (T-P-Fix) defines the semantics for the terminating recursive fix-point combinator.
Given an annotated type τ for the parameter x, if the type of the body p in an extended
environment which has x mapping to τ , is τ , then τ is also a valid type for a recursive

ECOOP 2023

20:14 Morpheus: Automated Safety Verification for Parser Combinators

fixpoint parser expression. The T-p-bind rule defines a typing judgement for the exceptional
monadic composition of a parser expression p with an abstraction e. The composite parser is
typed in an extended environment (Γ’) containing a binding for the abstraction’s parameter
x and an intermediate heap hi that acts as the output/post-state heap for the first parser
and the input/pre-state for the second. The relation between these heaps is captured by the
inferred pre-and post-conditions for the composite parser. There are two possible scenarios
depending upon whether the first parser p results in a success (i.e. x ̸= Err) or a failure (x =
Err).

In the successful case, the inferred conditions capture the following properties: a) the
output of the combined parser is a success; b) the post-condition for the first expression over
the intermediate heap hi and the output variable x should imply the precondition of the
second expression (required for the evaluation of the second expression); and, c) the overall
post-condition relates the post-condition of the first with the precondition of the second using
the intermediate heap hi. The case when p fails causes the combined parser to fail as well,
with the post-condition after the failure of the first as the overall post-condition. Note that
the core calculus is sub-optimal in size since λsp supports both return and eps, even though
the latter could be modeled using return. However, this design choice enables decidable
typechecking by limiting the combination of higher-order functions, combinators and states.
This is achieved using a limited bind p >>= e, rather than the general e >>= e, allowing
for the definition of semantic actions e that only perform limited state manipulation, i.e.,
reading and updating locations. Thus >>= and < | > only take parser arguments; thus, eps
<|> p is not equivalent to (return () <|> p), in fact the latter is disallowed. Another such
design restriction shows up in the typing rules, e.g., the typing rule for function application
(T-APP) restricts the arguments to be of basetype, thus disallowing expressions returning
abstractions or computations, like return (λx. e) or return (x := e) A more general definition
for >>= will allow valid HO arguments, like λx. e »= e1, but translating such general HO
stateful programs to decidable logic fragments is not always feasible, as is discussed in other
fully dependent type systems [41].

The subtyping rules enable the propagation of refinement type information and relate
the subtyping judgments to logical entailment. The subtyping rule for a base refinement
(T-Sub-Base) relates subtyping to the logical implication between the refinement of the
subtype and the supertype. The (T-Sub-Arrow) rule defines subtyping between two
function refinement types. The (T-Sub-Comp) rule for subtyping between computation
types follows the standard Floyd-Hoare rule for consequence, coupled with the subtyping
relation between result types and an ordering relation between effects(≤). The subtyping
rule for type variables (T-Sub-TVar) relates each type variable to itself in a reflexive way,
while the subtyping for a type-schema lifts the subtyping relation from a schema to another
schema.

4.4 Properties of the Type System
▶ Definition 1 (Environment Entailment Γ |= ϕ). Given Γ = . . . , ϕi, the entailment of a
formula ϕ under Γ is defined as (

∧
i ϕi) =⇒ ϕ

In the following, Γ |= ϕ(H) extends the notion of semantic entailment of a formula over
an abstract heap Γ |= ϕ (h) to a concrete heap using an interpretation of concrete heap H to
an abstract heap h and the standard notion of well-typed stores (Γ ⊢ H).6

To prove soundness of Morpheus typing, we first state a soundness lemma for pure
expressions (i.e. expressions with non-computation type).

6 Details are provided in the accompanied technical report [28].

A. Mishra and S. Jagannathan 20:15

▶ Lemma 2 (Soundness Pure-terms). If Γ ⊢ e : {ν : t | ϕ } then:
Either e is a value with Γ |= ϕ (e)
OR Given there exists a v, such that (H; e) ⇓ (H; v) then Γ ⊢ v : t and Γ |= ϕ (v)

▶ Theorem 3 (Soundness Morpheus). Given a specification σ = ∀α. PEε {ϕ1} ν : t {ϕ2}
and a Morpheus expression e, such that under some Γ, Γ ⊢ e: σ, then if there exists H such
that Γ |= ϕ1(H) then:
1. Either e is a value, and: Γ, ϕ1 |= ϕ2 (H, e, H)
2. Or, if there exists an H′ and v such that (H; e) ⇓ (H′; v), then
∃ Γ′, Γ ⊆ Γ′ and (consistent Γ Γ′), such that:
a. Γ′ ⊢ v : t.
b. Γ′, ϕ1 (H) |=ϕ2 (H, v, H′)

where (consistent Γ Γ′) is a Boolean-valued function that ensures that ∀ x ∈ (dom (Γ) ∩
dom (Γ′)). Γ ⊢ x : σ =⇒ Γ′ ⊢ x : σ. Additionally, ∀ϕ. Γ |= ϕ =⇒ Γ′ |= ϕ.

Proof. The soundness proof is by induction on typing rules in Figures 6 and 7, proving the
soundness statement against the evaluation rules in Figures 5.7 ◀

5 Evaluation

5.1 Implementation
Morpheus is implemented as a deeply-embedded DSL in OCaml8 equipped with a refinement-
type based verification system. It encodes the typing rules given in Section 4 and a parser
translating an OCaml-based surface language of the kind presented in our motivating example
to the Morpheus core, described in Section 3. To allow Morpheus programs to be easily
used in an OCaml development, its specifications can be safely erased once the program has
been type-checked. Note that a Morpheus program, verified against a safety specification is
guaranteed to be safe when erased since verification takes place against a stricter memory
abstraction; in particular, since Morpheus programs are free of aliasing by construction and
thus remain so when evaluated as an ML program. This obviates the need for a separate
interpreter/compilation phase and gives Morpheus-verified parsers efficiency comparable to
the parsers written using OCaml parser-combinator libraries [30, 3].

Morpheus specifications typically require meaningful qualifiers over inductive data-types,
beyond those discussed in our core language; in addition to the qualifiers discussed previously,
typical examples include qualifiers to capture properties such as the length of a list, member-
ship in a list, etc. Morpheus provides a way for users to write simple inductive propositions
over inductive data types, translating them to axioms useful for the solver, in a manner
similar to the use of measures and predicates in other refinement type works [38, 42]. For
example, a qualifier for capturing the length property of a list can be written as:

qualifier len [] → 0 | len (x :: xs) → len (xs) + 1.

Morpheus generates the following axiom from this qualifier:

∀ xs : α list, x : α. len (x :: xs) = len (xs) + 1 ∧ len [] = 0

7 The decidability theorem and proofs for all the theorems are provided in the technical report [28].
8 https://github.com/aegis-iisc/morpheus.git

ECOOP 2023

https://github.com/aegis-iisc/morpheus.git

20:16 Morpheus: Automated Safety Verification for Parser Combinators

Morpheus is implemented in approximately 9K lines of OCaml code. The input to the
verifier is a Morpheus program definition, correctness specifications, and any required qualifier
definitions. Given this, Morpheus infers types for other expressions and component parsers,
generates first-order verification conditions using the typing semantics discussed earlier, and
checks the validity of these conditions.

5.2 Results and Discussions
We have implemented and verified the examples given in the paper, along with a set of
benchmarks capturing interesting, real-world safety properties relevant to data-dependent
parsing tasks. The goal of our evaluation is to consider the effectiveness of Morpheus with
respect to generality, expressiveness and practicality. Table 1 shows a summary of the
benchmark programs considered. Each benchmark is a Morpheus parser program affixed
with a meaningful safety property (last column). The first column gives the name of the
benchmark. The second column of the table describes benchmark size in terms of the number
of lines of Morpheus code, without the specifications. The third column gives a pair D/P,
showing the number of unique derived (D) combinators (like count, many, etc.) used in the
benchmark from the Morpheus library, and the number of primitive (P) parsers (like string,
number, etc.) from the Morpheus library used in the benchmark; the former provides some
insight on the usability of our design choices in realizing extensibility. The fourth column
lists the size of the grammar along with the number of production rules in the grammar.
The fifth column gives the number of verification conditions generated, followed by the time
taken to verify them (sixth column). The overall verification time is the time taken for
generating verification conditions plus the time Z3 takes to solve these VCs. All examples
were executed on a 2.7GHz, 64 bit Ubuntu The next column quantifies the annotation effort
for verification. It gives a ratio (#A/#Q) of required user-provided specifications (in terms
of the number of conjuncts in the specification) to the total specification size (annotated
+ inferred). User-provided specifications are required to specify a top-level safety property
and to specify invariants for fix expressions akin to loop invariants that would be provided
in a typical verification task. Finally, the last column gives a high-level description of the
data-dependent safety property being verified.

Our benchmarks explore data-dependent parsers from several interesting categories.9

The first category, represented by Idris do-block, Haskell case-exp and Python while-statement,
capture parsing activities concerned with layout and indentation introduced earlier. Languages
in which layout is used in the definition of their syntax require context-sensitive parser
implementations [1, 2]. We encode a Morpheus parser for a sub-grammar for these languages
whose specifications capture the layout-sensitivity property.

The second category, represented by png and ppm consider data-dependent image formats
like PNG or PPM. Verifying data-dependence is non-trivial as it requires verifying an invariant
over a monadic composition of the output of one parser component with that of a downstream
parser component, interleaved with internal parsing logic.

The next category, captured by xauction, xprotein, and health, represent data-dependent
parsing in data-processing pipelines over XML and CSV databases. For xauction and
xprotein, we extend XPath expressions over XML to dependent XPath expressions. Given
that XPath expressions are analogous to regular-expressions over structured XML data,
dependent XPath expressions are analogous to dependent regular-expressions over XML.

9 The grammar for each of our implementations is given in the technical report [28].

A. Mishra and S. Jagannathan 20:17

Table 1 Summary of Benchmarks : #Loc Loc defines the size of the parser implementation in
Morpheus; D/P gives the number of derived/primitive combinator uses in the parser implementation;
grammar size G(# prod) defines size of the grammar along with the number of production rules in
the grammar; #VCs defines number of VCs generated; T(s) is the time for discharging these VCs in
seconds; (#A/#Q) defines the ratio of number of conjuncts used in the specification provided by the
user (#A) to the total number of conjuncts (#Q) across all files in the implementation; Property
gives a high-level description of the data-dependent safety property.

Name # Loc D/P G(#prod) # VCs T (s) (#A/#Q) data-dependence
haskell 110 5/4 20 (7) 17 8.11 9/39 layout-sensitivity

idris 115 5/5 22(8) 33 10.46 7/26 layout-sensitivity

python 47 3/3 25 (7) 23 7.44 6/20 layout-sensitivity

ppm 46 5/2 21 (7) 20 5.33 4/9 tag-length-data

png chunk 30 3/4 10 (2) 12 3.38 2/7 tag-length-data

xauction 54 4/4 31 (10) 19 6.70 2/8 data-dependent
XPath expression

xprotein 45 3/3 24(6) 22 6.23 4/10 data-dependent
XPath expression

health 40 4/3 15(5) 13 4.56 2/8 data-dependent CSV
pattern-matching

c typedef 60 4/4 14 (5) 21 6.78 4/16 context-sensitive dis-
ambiguation

streams 51 4/2 12 (4) 16 5.21 2/9 safe stream manipu-
lation

We use these expressions to encode a property of the XPath query over XML data for an
online auction and protein database, resp. Note that verifying such properties over XPath
queries is traditionally performed manually or through testing. In the case of health, we
extend regular custom pattern-matching over CSV files to stateful custom pattern-matching,
writing a data-dependent custom pattern matcher. We verify that the parser correctly checks
relational properties between different columns in the database.

The next two categories have one example each: we introduced the c typedef parser in
Section 2 that uses data dependence and effectful data structures to disambiguate syntactic
categories (e.g., typenames and identifiers) in a language definition. Benchmark streams
defines a parser over streams (i.e. input list indexed with natural numbers).

5.2.1 Annotation overhead vs inference

There are some interesting things to note in the second to last column(#A/#Q); First, as
the benchmarks (grammars) become more complex, i.e., have a greater number of functions
(sub-parsers), the ratio decreases (small is better). In other words, the gains of type-inference
become more visible (e.g., haskell, idris, c typedef). The worst (highest) ratio is for the
PPM parser. This parser is interesting because, even though the grammar is small, it makes
multiple calls to fixpoint combinators. Thus, the user must provide specifications for the
top-level parser and each fix-point combinator, thus increasing (#A). Additionally, given a
small number of functions (sub-parsers) due to small grammar size, the gains due to inference
are also low. In summary, these trends show that the efforts needed for verification are at
par with other Refinement typed languages like, Liquid Types [38], FStar [41], etc, and as
the parsers become bigger, the benefits of inference become more prominent.

ECOOP 2023

20:18 Morpheus: Automated Safety Verification for Parser Combinators

DoBlock ::= ’do’ OpenBlock Do∗
CloseBlock;

Do ::=
’let’ Name TypeSig’ ’=’ Expr

| ’let’ Expr’ ’=’ Expr
| Name ’← ’ Expr
| Expr’ ’← ’ Expr
| Ext Expr
| Expr

(a) An Idris grammar rule for a do block.

expr = do
t ← term
symbol "+"
e ← expr
pure t + e

symbol ’∗’

(b) An input to the parser.

Figure 8 An Idris grammar rule for a do block and an example input.

5.3 Case Study: Indentation Sensitive Parsers
As a case study to illustrate Morpheus’s capabilities, we consider a particular class of stateful
parsers that are indentation-sensitive. These parsers are characterized by having indentation
or layout as an essential part of their grammar. Because indentation sensitivity cannot be
specified using a context-free grammar, their specification is often specified via an orthogonal
set of rules, for example, the offside rule in Haskell.10 Haskell language specifications define
these rules in a complex routine found in the lexing phase of the compiler [26]. Other
indentation-sensitive languages like Idris [4] use parsers written using a parser combinator
libraries like Parsec or its variants [25, 19] to enforce indentation constraints.

Consider the Idris grammar fragment shown in Figure 8a. The grammar defines the rule
to parse a do-block. Such a block begins with the do keyword, and is followed by zero or
more do statements that can be let expressions, a binding operation (←) over names and
expressions, an external expression, etc. The Idris documentation specifies the indentation
rule in English governing where these statements must appear, saying that the “indentation of
each do statement in a do-block Do* must be greater than the current indentation from which
the rule is invoked [13].” Thus, in the Idris code fragment shown in Figure 8b, indentation
sensitivity constraints require that the last statement is not a part of the do-block, while the
inner four statements are. A correct Idris parser must ensure that such indentation rules are
preserved.

Figure 9 presents a fragment of the parser implementation in Haskell for the above
grammar, taken from the Idris language implementation source, and simplified for ease of
explanation. The implementation uses Haskell’s Parsec library, it implements indentation
rules using a state abstraction (called IState) that stores the current indentation level as
parsing proceeds. The parser then manually performs reads and updates to this state
and performs indentation checks at appropriate points in the code (e.g. line 24, 53). The
IdrisParser (line 8) is defined in terms of Parsec’s parser monad over an Idris state (here,
IState), which along with other fields has an integer field (ist) storing the current indentation
value. A typical indentation check (e.g. see lines 22 - 24) fetches the current value of ist
using getIst, fetches the indentation of the next lexeme using the Parsec library function
indent, and compares these values.

The structure of the implementation follows the grammar (Figure 8a): the doBlock
parser parses a reserved keyword “do” followed by a block of do_ statement lists. The
indentation is enforced using the parser indentedDoBlock (defined at line 49) that gets the

10 https://www.haskell.org/onlinereport/haskell2010/haskellch10.html

https://www.haskell.org/onlinereport/haskell2010/haskellch10.html

A. Mishra and S. Jagannathan 20:19

1 data IState = IState {
2 ist :: Int
3 . . .
4 } deriving (Show)
5 data PTerm = PDoBlock [PDo]
6 data PDo t = DoExp t | DoExt t
7 | DoLet t t | . . .
8 type IdrisParser a = Parser IState a
9

10 getIst :: IdrisParser IState
11 getIst = get
12 putIst :: (i : Int) → IdrisParser ()
13 pustIst i = put {ist = i}
14
15 doBlock :: IdrisParser PTerm
16 doBlock = do
17 reserved "do"
18 ds ← indentedDoBlock
19 return (PDoBlock ds)
20 indentedDo :: IdrisParser (PDo PTerm)
21 indentedDo = do
22 allowed ← ist getIst
23 i ← indent
24 if (i <= allowed)
25 then fail ("end of block")
26 else do_
27 indent :: IdrisParser Int
28 indent =
29 do
30 if (lookAheadMatches (operator)) then
31 do
32 operator
33 return (sourceColumn.getSourcePos)
34 else
35 return (sourceColumn.getSourcePos)

36do_ :: IdrisParser (PDo PTerm)
37do_ = do
38reserved "let"
39i ← name
40reservedOp "="
41e ← expr
42return (DoLet i e)
43<|> do
44e ← expr
45return (DoExt i e)
46<|> do e ← expr
47return (DoExp e)
48indentedDoBlock :: IdrisParser [PDo PTerm]
49indentedDoBlock =
50do
51allowed ← ist getIst
52lvl’ ← indent
53if (lvl’ > allowed) then
54do
55putIst lvl’
56res ← many (indentedDo)
57putIst allowed
58return res
59else fail "Indentation error"
60
61lookAheadMatches :: IdrisParser a →

IdrisParser Bool
62lookAheadMatches p =
63do
64match ← lookAhead (optional p)
65return (isJust match)

Figure 9 A fragment of a Parsec implementation for Idris do-blocks with indentation checks.

current indentation value (allowed) and the indentation for the next lexeme using indent,
checks that the indentation is greater than the current indentation (line 53) and updates
the current indentation so that each do statement is indented with respect to this new
value. It then calls a parser combinator many (line 56), which is the Parsec combinator for
the Kleene-star operation, over the result of indentedDo, i.e., indentedDo∗. The indentedDo
parser again performs a manual indentation check, comparing the indentation value for the
next lexeme against the block-start indentation (set earlier by indentedDoBlock at line 55)
and, if successful, runs the actual do_ parser (line 26). Finally, indentedDoBlock resets the
indentation value to the value before the block (line 57).

Unfortunately, it is non-trivial to reason that these manual checks suffice to enforce
the indentation sensitivity property we desire. Since they are sprinkled throughout the
implementation, it is easy to imagine missing or misplacing a check, causing the parser to
misbehave. More significantly, the implementation make incorrect assumptions about the

ECOOP 2023

20:20 Morpheus: Automated Safety Verification for Parser Combinators

1 expr = do
2 t ← term
3 do
4 symbol "+"
5 e ← expr
6 pure t + e
7 ‘‘mplus’’ pure t

Figure 10 An input expression that is incorrectly parsed by the implementation shown in Figure 9.

effectful actions performed by the library that are reflected in API signatures. In fact, the
logic in the above code has a subtle bug [1] that manifests in the input example shown in
Figure 10.

Note that the indentation of the token “mplus” is such that it is not a part of either do
block; the implementation, however, parses the last statement as a part of the inner do-block,
thereby violating the indentation rule, leading to the program being incorrectly parsed.

The problem lies in a mismatch between the contract provided by the library’s indent
function and the assumptions made about its behavior at the check at line 24 in the indentedDo
parser (or similarly at line 53). Since checking indentation levels for each character is costly,
indent is implemented (line 28) in a way that causes certain lexemes (user defined operators
like “mplus”) to be ignored during the process of computing the next indentation level. It
uses a lookAdheadMatches parser to skip all lexemes that are defined as operators. In this
example, indent does not check the indentation of lexeme “mplus”, returning the indentation
of the token pure instead. Thus, the indentation of the last statement is considered to start
at pure, which incorrectly satisfies the checks at line 24 or line 53, and thus causes this
statement to be accepted as part of indentedDoBlock. Unearthing and preventing such bugs is
challenging. We show how implementing the same parser in Morpheus allows us to catch the
bug and verify a correct version of the parser. Figure 11 shows a Morpheus implementation
for a portion of the Idris doBlock parser from Figure 9 showing the implementation of three
parsers for brevity, doBlock, indentedDo, and indent, along with other helper functions. The
structure is similar to the original Haskell implementation.

To specify an indentation-sensitivity safety property, we first define an inductive type for
a parse-tree (tree) and refine this type using a dependent function type, (offsideTree i), that
specifies an indentation value for each parsed result.

type tree = Tree {term : pterm; indentT : int; children : tree list}
type offsideTree i = Tree {term : pterm; indentT : { v : int | v > i }; children : (offsideTree i) list}

This type defines a tree with three fields:
A term of type pterm.
The indentation (indentT) of a returned parse tree, the refinement constraints on indentT
requires its value to be greater than i.
A list of sub-parse trees (children) for each of the terminals and non-terminals in the
current grammar rule’s right-hand side, each of which must also satisfy this refinement.

Morpheus additionally automatically generates qualifiers like, indentT, children, etc, for each
of the datatype’s constructors and fields with the same name that can be used in type
refinements. However, this type is not sufficiently expressive to specify the required safety
property for doBlock that requires “the indentation of the parse tree returned by doBlock
must be greater than the current value of ist” because ist is an effectful heap variable.

A. Mishra and S. Jagannathan 20:21

1 type α pdo = DoExp of α
2 | DoExt of α | . . .
3 type pterm =
4 PDoBlock of ((pterm pdo) list)
5 let ist = ref 0 . . .
6

doBlock :
PEstexc

{∀ h, I. sel(h, ist) = I}
ν : (offsideTree I) result

{∀ h, ν, h’, I, I’.
(ν = Inl (_) => (sel (h, ist) = I ∧
sel (h’, ist) = I’) => I’ = I)
∧ ν = Inr (Err) =>
(sel (h’, inp) ⊆ sel (h, inp)) }

7 let doBlock =
8 dom
9 dot ← reserved "do"

10 ds ← indentedDoBlock
11 return Tree {term = PDoBlock ds;
12 indentT = indentT (dot);
13 children = (dot :: ds) }
14

do_ : PEstexc {∀ h, I. sel(h, inp) = I}
ν : tree result

{∀ h, ν, h’, I, I’.
(ν = Inl(_) =>
indentT(ν)= pos (sel (h, inp))
children (ν) = nil)
∧ ν = Inr (Err) =>
(sel (h’, inp) ⊆ sel (h, inp)) }

15 let do_ = . . .
16

lookAheadMatches : PEpure {true}
ν : bool {[h’=h]}

17 lookAheadMatches p =
18 dom
19 match ← lookAhead (optional p)
20 return (isJust match)

21

indentedDo :
PEstexc {∀ h, I.sel(h, ist) = I }

ν : tree result
{∀ h, ν, h’, I, I’.
∀ i :int.(i <= I ⇒ sel (h’, inp) ⊆ sel (h, inp)) ∧

(i > I ⇒ indentT (ν) = pos (sel (h, inp) ∧
children (ν) = nil}

22let indentedDo =
23dom
24allowed ← !ist
25i ← indent
26if (i <= allowed) then
27fail ("end of block")
28else
29do_
30

sourceColumn : (char * int) list -> int

31let sourceColumn = . . .
32

indent : PEstate{true}
ν : int

{∀ h, ν, h’.
sel (h’, inp) ⊆ sel (h, inp) }

33let indent =
34dom
35if (lookAheadMatches (operator)) then
36dom
37operator
38return (sourceColumn !inp)
39else
40return (sourceColumn !inp)

Figure 11 Morpheus implementation and specifications for a portion of an Idris Do-block with
indentation checks, dom is a syntactic sugar for Morpheus’s monadic bind. Specifications given in
Blue are provided by the parser writer; Gray specifications are inferred by Morpheus. Line number 21
represents the complete multiline type specification.

We can specify a safety property for a doBlock parser as shown on line 6 in Figure 11.
Again, the type specification in blue are provided by the programmer. The type should be
understood as follows: The effect label (stexc) defines that the possible effects produced
by the parser include state and exc. The precondition binds the value of the mutable state
variable ist, a reference to the current indentation level, to I via the use of the built-in qualifier
sel that defines a select operation on the heap [27]. The return type (offsideTree I result)
obligates the computation to return a parse tree (or a failure) whose indentation must be
greater than I. The postcondition constraints that the final value of the indentation is to be
reset to its value prior to the parse (a reset property) when the parser succeeds (case ν = Inl
(_)) or that the input stream inp is monotonically consumed when the parser fails (case ν

= Inr (Err)). The types for other parsers in the figure can be specified as shown at lines
14, 21, 32, etc.; these types shown in gray are automatically inferred by Morpheus’s type
inference algorithm.

ECOOP 2023

20:22 Morpheus: Automated Safety Verification for Parser Combinators

5.3.1 Revisiting the Bug in the Example

The bug described in the previous paragraph is unearthed while typechecking the indentedDo
implementation or the indentedDoBlock implementation. We discuss the case for indentedDo
case here. To verify that doBlock satisfies its specification, Morpheus needs to prove that the
type inferred for the body of indentedDo (lines 22- 29):
1. has a return type that is of the form, offsideTree I. Concretely, the indentation of the

returned tree must be greater than the initial value of ist (i.e. indentT (ν) > I).
2. asserts that the final value of ist is equal to the initial value.

Goal (1) is required because indentedDo is used by indentedDoBlock (see Figure 9), which
is then invoked by doBlock, where its result constructs the value for children, whose type is
offsideTree I list. Goal (2) is required because doBlock’s specified post-condition demands it.
Type-checking the body for indentedDo yields the type shown at line 21. The two conjuncts
in the post-condition correspond to the then (failure case) and else (success case) branch in
the parser’s body.

The failure conjunct asserts that the input stream is consumed monotonically if the
indentation level is greater than ist. The success conjunct is the post-condition of the do_
parser. This inferred type is, however, too weak to prove goal (1) given above, which requires
the combinator to return a parse tree that respects the offside rule. The problem is that
indent’s type (line 32), inferred as:

indent : PEstate{true} ν : int {∀ h, ν, h’. sel (h’, inp) ⊆ sel(h, inp)}

does not allow us to conclude that indentedDo satisfies the indentation condition demanded
by doBlock, i.e., that it returns a well-typed (offsideTree I). This is because the type imposes
no constraint between the integer indent returns and the function’s input heap, and thus
offers no guarantees that its result gives the position of the first lexeme of the input list.

We can revise indent’s implementation such that it does not skip any reserved operators
and always returns the position of the first element of the input list, allowing us to track the
indentation of every lexeme:

indent : PEstate {true} ν : int{∀ h, ν, h’.ν = pos (sel (h, inp)) ∧ sel (h’, inp) ⊆ sel (h, inp)}

let indent = dom s ← !inp
return (sourceColumn s)

This type defines a stronger constraint, sufficient to type-check the revised implementation
and raise a type error for the original. For this example, Morpheus generated 33 Verification
Conditions (VCs) for the revised successful case and 6 VCs for the failing case. We were able
to discharge these VCs to the SMT Solver Z3 [7], yielding a total overall verification time of
10.46 seconds in the successful case, and 2.06 seconds in the case when type-checking failed.

This example highlights several key properties of Morpheus verification: The specification
language and the type system allows verifying interesting properties over inductive data
types (e.g., the offsideTree property over the parse trees). It also allows verifying properties
dependent on state and other effects such as the input consumption property over input
streams (inp). Secondly, the annotation burden on the programmer is proportional to the
complexity of the top-level safety property that needs to be checked. Finally, the similarities
between the Haskell implementation and the Morpheus implementation minimize the idiomatic
burden placed on Morpheus users.

A. Mishra and S. Jagannathan 20:23

6 Related Work

Parser Verification. Traditional approaches to parser verification involve mechanization
in theorem provers like Coq or Agda [29, 6, 10, 21, 39, 23, 15]. These approaches trade-off
both automation and expressiveness of the grammar they verify to prove full correctness.
Consequently, these approaches cannot verify safety properties of data-dependent parsers,
the subject of study in this paper. For instance, RockSalt [29] focuses on regular grammars,
while [21, 10] present interpreters for parsing expression grammars (without nondeterminism)
and limited semantic actions without data dependence. Jourdan et al. [16] gives a certifying
compiler for LR(1) grammars, which translates the grammar into a pushdown automaton
and a certificate of language equivalence between the grammar and the automaton. More
recently CoStar [23] presents a fully verified parser for the ALL(*) fragment mitigating some
of the limitations of the above approaches. However, unlike Morpheus, CoStar does not handle
data-dependent grammars or user-defined semantic actions.

Deductive synthesis techniques for parsers like Narcissus [8] and [37] focus mainly
on tag-length-payload, binary data formats. Narcissus [8] provides a Coq framework (an
encode_decode tactic) that can automatically generate correct-by-construction encoders and
decoders from a given user format input, albeit for a restricted class of parsers. Notably, the
system is not easily extensible to complex user-defined data-dependent formats such as the
examples we discuss in Morpheus. This can be attributed to the fact that the underlying
encode_decode Coq tactic is complex and brittle and may require manual proofs to verify a
new format. In contrast, Morpheus enables useful verification capabilities for a larger class of
parsers, albeit at the expense of automatic code generation and full correctness. Writing a
safe parser implementation for a user-defined format in Morpheus is no more difficult than
manually building the parser in any combinator framework with the user only having to
provide an additional safety specification. EverParse [37] likewise focuses mainly on binary
data formats, guaranteeing full-parser correctness, albeit with some expressivity limitations.
For example, it does not support user-defined semantic actions or global data-dependences
for general data formats. Compared to these efforts, the properties Morpheus can validate
are more high-level and general. E.g., “non-overlapping of two lists of strings” in a C-decl
parser; “layout-sensitivity properties”, etc,. Verifying these properties requires reasoning
over a challenging combination of rich algebraic data types, mutable states, and higher-order
functions.

[22] also explore types for parsing, defining a core type-system for context-free expressions.
However, their goals are orthogonal to Morpheus and are targeted towards identifying
expressions that can be parsed unambiguously.

Data-dependent and Stateful Parsers. Morpheus allows writing parsers for data-dependent
and stateful parsers. There is a long line of work aimed at writing such parsers [14, 1, 2, 24].
None of these efforts, however, provide a mechanism to reason about the parsers they can
express. Further, many of these systems are specialized for a particular class/domain of
problems, such as [14] for data-dependent grammars with trivial semantic actions, or [1]
for indentation sensitive grammars, etc. Morpheus is sufficiently expressive to both write
parsers and grammars discussed in many of these approaches, as well as verifying interesting
safety properties. Indeed, several of our benchmarks are selected from these works. In
contrast, systems such as [14] argue about the correctness of the input parsed against the
underlying CFG, a property challenging to define and verify as a Morpheus safety property,
beyond simple string-patterns and regular expressions. We leave the expression of such
grammar-related properties in Morpheus as a subject for future work.

ECOOP 2023

20:24 Morpheus: Automated Safety Verification for Parser Combinators

Refinement Types. Our specification language and type system builds over a refinement
type system developed for functional languages like Liquid Types [38] or Liquid Haskell [43].
Extending Liquid Types with bounds [42] provides some of the capabilities required to realize
data-dependent parsing actions, but it is non-trivial to generalize such an abstraction to
complex parser combinators found in Morpheus with multiple effects and local reasoning over
states and effects.

Effectful Verification. Our work is also closely related to dependent-type-based verification
approaches for effectful programs based on monads indexed with either pre- and post-
conditions [31, 32] or more recently, predicate monads capturing the weakest pre-condition
semantics for effectful computations [41]. As we have illustrated earlier, the use of expressive
and general dependent types, while enabling the ability to write rich specifications (certainly
richer than what can be expressed in Morpheus), complicates the ability to realize a fully
automated verification pathway.

Verification using natural proofs [36] is based on a mechanism in which a fixed set of
proof tactics are used to reason about a set of safety properties; automation is achieved via a
search procedure over in this set. This idea is orthogonal to our approach where we rather
utilize the restricted domain of parsers to remain in a decidable realm. Both our effort and
these are obviously incomplete. Another line of work verifying effectful specifications use
characteristic formulae [5]; although more expressive than Morpheus types, these techniques
do not lend themselves to automation.

Local Reasoning over Heaps. Our approach to controlling aliasing is distinguished from
substructural typing techniques such as the ownership type system found in Rust [17]. Such
type systems provide a much richer and more expressive framework to reason about memory
and effects, and can provide useful guarantees like memory safety and data-race freedom
etc. Since our DSL is targeted at parser combinator programs which generally operate
over a much simplified memory abstraction, we found it unnecessary to incorporate the
additional complexity such systems introduce. The integration of these richer systems within
a refinement type framework system of the kind provided in Morpheus is a subject we leave
for future work.

Parser Combinators. There is a long line of work implementing Parser Combinator Libraries
and DSLs in different languages [11]. These also include those which provide a principled
way for writing stateful parsers using these libraries [1, 24]. As we have discussed, none of
these libraries provide an automated verification machinery to reason about safety properties
of the parsers. However, since they allow the full expressive power of the host language, they
may, in some instances, be more expressive than Morpheus. For example, Morpheus does not
allow arbitrary user-defined higher-order functions and builds only on the core API discussed
earlier. This may require a more intricate definition for some parsers compared to traditional
libraries. For example, traditional parser combinator libraries typically define a higher-order
combinator like many_fold_apply with the following signature and use this combinator to
concisely define a Kleene-star parser:

many_fold_apply : f : (’b → ’a → ’b) → (a : ’a) → (g : ’a → ’a) → p : (’a, ’s) t → (’b, ’s) t
let many p = many_fold_apply (fun xs x → x :: xs) [] List.rev p

Contrary to this, in Morpheus, we need to define Kleene-star using a more complex, lower-level
fixpoint combinator.

A. Mishra and S. Jagannathan 20:25

7 Conclusions

This paper presents Morpheus, a deeply-embedded DSL in OCaml that offers a restricted
language of composable effectful computations tailored for parsing and semantic actions and
a rich specification language used to define safety properties over the constituent parsers
comprising a program. Morpheus is equipped with a rich refinement type-based automated
verification pathway. We demonstrate Morpheus’s utility by using it to implement a number
of challenging parsing applications, validating its ability to verify non-trivial correctness
properties in these benchmarks.

References
1 Michael D. Adams and Ömer S. Ağacan. Indentation-sensitive parsing for parsec. In SIGPLAN

Notices, volume 49(12), pages 121–132, New York, NY, USA, September 2014. Association for
Computing Machinery. doi:10.1145/2775050.2633369.

2 Ali Afroozeh and Anastasia Izmaylova. One parser to rule them all. In 2015 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software
(Onward!), Onward! 2015, pages 151–170, New York, NY, USA, 2015. Association for
Computing Machinery. doi:10.1145/2814228.2814242.

3 Angstrom. Angstrom parser-combinator library, 2021. URL: https://github.com/
inhabitedtype/angstrom.

4 Edwin Brady. Idris: Implementing a dependently typed programming language. In Proceedings
of the 2014 International Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice, LFMTP ’14, New York, NY, USA, 2014. Association for Computing Machinery.
doi:10.1145/2631172.2631174.

5 Arthur Charguéraud. Characteristic formulae for the verification of imperative programs.
SIGPLAN Not., 46(9):418–430, September 2011. doi:10.1145/2034574.2034828.

6 Nils Anders Danielsson. Total parser combinators. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’10, pages 285–296, New York,
NY, USA, 2010. Association for Computing Machinery. doi:10.1145/1863543.1863585.

7 Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan
and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

8 Benjamin Delaware, Sorawit Suriyakarn, Clément Pit-Claudel, Qianchuan Ye, and Adam
Chlipala. Narcissus: Correct-by-construction derivation of decoders and encoders from binary
formats. Proc. ACM Program. Lang., 3(ICFP), July 2019. doi:10.1145/3341686.

9 DNS. Domain names – Implementation and specification, 1987. Network Working Group.
URL: https://www.rfc-editor.org/rfc/rfc1035.

10 J. Gross and Adam Chlipala. Parsing parsers a pearl of (dependently typed) programming
and proof, 2015.

11 HaskellWiki. Parsec – HaskellWiki, 2021. [Online; accessed 7-July-2022]. URL: https:
//wiki.haskell.org/index.php?title=Parsec&oldid=64649.

12 Graham Hutton and Erik Meijer. Monadic parser combinators, September 1999.
13 Documentation for the Idris Language, 2017. URL: https://docs.idris-lang.org/en/

latest/index.html.
14 Trevor Jim, Yitzhak Mandelbaum, and David Walker. Semantics and algorithms for data-

dependent grammars. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’10, pages 417–430, New York, NY, USA,
2010. Association for Computing Machinery. doi:10.1145/1706299.1706347.

15 Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. Validating lr(1) parsers. In Helmut
Seidl, editor, Programming Languages and Systems, pages 397–416, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

ECOOP 2023

https://doi.org/10.1145/2775050.2633369
https://doi.org/10.1145/2814228.2814242
https://github.com/inhabitedtype/angstrom
https://github.com/inhabitedtype/angstrom
https://doi.org/10.1145/2631172.2631174
https://doi.org/10.1145/2034574.2034828
https://doi.org/10.1145/1863543.1863585
https://doi.org/10.1145/3341686
https://www.rfc-editor.org/rfc/rfc1035
https://wiki.haskell.org/index.php?title=Parsec&oldid=64649
https://wiki.haskell.org/index.php?title=Parsec&oldid=64649
https://docs.idris-lang.org/en/latest/index.html
https://docs.idris-lang.org/en/latest/index.html
https://doi.org/10.1145/1706299.1706347

20:26 Morpheus: Automated Safety Verification for Parser Combinators

16 Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. Validating lr(1) parsers. In Helmut
Seidl, editor, Programming Languages and Systems, pages 397–416, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

17 Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rustbelt: Securing
the foundations of the rust programming language. Proc. ACM Program. Lang., 2(POPL),
December 2017. doi:10.1145/3158154.

18 Gowtham Kaki and Suresh Jagannathan. A relational framework for higher-order shape
analysis. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’14, pages 311–324, New York, NY, USA, 2014. Association for Computing
Machinery. doi:10.1145/2628136.2628159.

19 Mark Karpov. Megaparsec: Monadic Parser Combinators, 2022. URL: https://github.com/
mrkkrp/megaparsec.

20 Shin-ya Katsumata. Parametric effect monads and semantics of effect systems. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, pages 633–645, New York, NY, USA, 2014. Association for Computing Machinery.
doi:10.1145/2535838.2535846.

21 Adam Koprowski and Henri Binsztok. Trx: A formally verified parser editor=Gordon, Andrew
D., interpreter. In Programming Languages and Systems, pages 345–365, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

22 Neelakantan Krishnaswami and Jeremy Yallop. A typed, algebraic approach to parsing. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 379–393, June 2019. doi:10.1145/3314221.3314625.

23 Sam Lasser, Chris Casinghino, Kathleen Fisher, and Cody Roux. Costar: A verified all(*)
parser. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2021, pages 420–434, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3453483.3454053.

24 Nicolas Laurent and Kim Mens. Taming context-sensitive languages with principled stateful
parsing. In Proceedings of the 2016 ACM SIGPLAN International Conference on Software
Language Engineering, SLE 2016, pages 15–27, New York, NY, USA, 2016. Association for
Computing Machinery. doi:10.1145/2997364.2997370.

25 Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators
for the real world. Technical Report UU-CS-2001-27, University of Utrecht, July
2001. User Modeling 2007, 11th International Conference, UM 2007, Corfu, Greece,
June 25-29, 2007. URL: https://www.microsoft.com/en-us/research/publication/
parsec-direct-style-monadic-parser-combinators-for-the-real-world/.

26 Simon Marlow. Haskell 2010 language report, 2010. URL: https://www.haskell.org/
onlinereport/haskell2010/.

27 J. McCarthy. Towards a Mathematical Science of Computation, pages 35–56. Springer
Netherlands, Dordrecht, 1993. doi:10.1007/978-94-011-1793-7_2.

28 Ashish Mishra and Suresh Jagannathan. Morpheus: Automated safety verification of data-
dependent parser combinator programs, 2023. doi:10.48550/arXiv.2305.07901.

29 Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward Gan.
Rocksalt: Better, faster, stronger sfi for the x86. In Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’12, pages 395–404,
New York, NY, USA, 2012. Association for Computing Machinery. doi:10.1145/2254064.
2254111.

30 Max Murato. MParser, A Simple Monadic Parser Combinator Library, 2021. URL: https:
//github.com/murmour/mparser.

31 Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism and separation in
hoare type theory. SIGPLAN Not., 41(9):62–73, September 2006. doi:10.1145/1160074.
1159812.

https://doi.org/10.1145/3158154
https://doi.org/10.1145/2628136.2628159
https://github.com/mrkkrp/megaparsec
https://github.com/mrkkrp/megaparsec
https://doi.org/10.1145/2535838.2535846
https://doi.org/10.1145/3314221.3314625
https://doi.org/10.1145/3453483.3454053
https://doi.org/10.1145/2997364.2997370
https://www.microsoft.com/en-us/research/publication/parsec-direct-style-monadic-parser-combinators-for-the-real-world/
https://www.microsoft.com/en-us/research/publication/parsec-direct-style-monadic-parser-combinators-for-the-real-world/
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://doi.org/10.1007/978-94-011-1793-7_2
https://doi.org/10.48550/arXiv.2305.07901
https://doi.org/10.1145/2254064.2254111
https://doi.org/10.1145/2254064.2254111
https://github.com/murmour/mparser
https://github.com/murmour/mparser
https://doi.org/10.1145/1160074.1159812
https://doi.org/10.1145/1160074.1159812

A. Mishra and S. Jagannathan 20:27

32 Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and Lars Birkedal.
Ynot: Dependent types for imperative programs. SIGPLAN Not., 43(9):229–240, September
2008. doi:10.1145/1411203.1411237.

33 Meredith L. Patterson. Hammer primer, 2015. URL: https://github.com/sergeybratus/
HammerPrimer.

34 PDF. Iso 32000 (pdf), 2008. PDF Association. URL: https://www.pdfa.org/resource/
iso-32000-pdf/pdf-2.

35 PKWare. żip file format specification, 2020. URL: https://pkware.cachefly.net/webdocs/
casestudies/APPNOTE.TXT.

36 Xiaokang Qiu, Pranav Garg, Andrei Ştefănescu, and Parthasarathy Madhusudan. Natural
proofs for structure, data, and separation. SIGPLAN Not., 48(6):231–242, June 2013. doi:
10.1145/2499370.2462169.

37 Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, Nikhil Swamy, Tej Chajed,
Nadim Kobeissi, and Jonathan Protzenko. Everparse: Verified secure zero-copy parsers for
authenticated message formats. In Proceedings of the 28th USENIX Conference on Security
Symposium, SEC’19, pages 1465–1482, USA, 2019. USENIX Association.

38 Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid types. In Proceedings of the
29th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’08, pages 159–169, New York, NY, USA, 2008. Association for Computing Machinery.
doi:10.1145/1375581.1375602.

39 Kathleen Fisher Sam Lasser, Chris Casinghino and Cody Roux. A verified ll(1) parser generator.
In ITP, 2019.

40 Wolfram Schulte. VCC: Contract-based modular verification of concurrent C. In 31st
International Conference on Software Engineering, ICSE 2009. IEEE Computer Society,
January 2008.

41 Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits. Verifying
higher-order programs with the dijkstra monad. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, pages 387–398,
New York, NY, USA, 2013. Association for Computing Machinery. doi:10.1145/2491956.
2491978.

42 Niki Vazou, Alexander Bakst, and Ranjit Jhala. Bounded refinement types. In Proceedings
of the 20th ACM SIGPLAN International Conference on Functional Programming, ICFP
2015, pages 48–61, New York, NY, USA, 2015. Association for Computing Machinery. doi:
10.1145/2784731.2784745.

43 Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon L. Peyton Jones.
Refinement types for Haskell. In Johan Jeuring and Manuel M. T. Chakravarty, editors,
Proceedings of the 19th ACM SIGPLAN international conference on Functional programming,
Gothenburg, Sweden, September 1-3, 2014, pages 269–282. ACM, 2014. doi:10.1145/2628136.
2628161.

44 Philip Wadler. Monads for functional programming. In Manfred Broy, editor, Program Design
Calculi, pages 233–264, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

45 Philip Wadler and Peter Thiemann. The marriage of effects and monads. ACM Trans. Comput.
Logic, 4(1):1–32, January 2003. doi:10.1145/601775.601776.

ECOOP 2023

https://doi.org/10.1145/1411203.1411237
https://github.com/sergeybratus/HammerPrimer
https://github.com/sergeybratus/HammerPrimer
https://www.pdfa.org/resource/iso-32000-pdf/pdf-2
https://www.pdfa.org/resource/iso-32000-pdf/pdf-2
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://doi.org/10.1145/2499370.2462169
https://doi.org/10.1145/2499370.2462169
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/2491956.2491978
https://doi.org/10.1145/2491956.2491978
https://doi.org/10.1145/2784731.2784745
https://doi.org/10.1145/2784731.2784745
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/601775.601776

Automata Learning with an Incomplete Teacher
Mark Moeller #

Cornell University, Ithaca, NY, USA

Thomas Wiener #

Cornell University, Ithaca, NY, USA

Alaia Solko-Breslin #

University of Pennsylvania, Philadelphia, PA, USA

Caleb Koch #

Stanford University, CA, USA

Nate Foster #

Cornell University, Ithaca, NY, USA

Alexandra Silva #

Cornell University, Ithaca, NY, USA

Abstract
The preceding decade has seen significant interest in use of active learning to build models of
programs and protocols. But existing algorithms assume the existence of an idealized oracle – a
so-called Minimally Adequate Teacher (MAT) – that cannot be fully realized in practice and so is
usually approximated with testing. This work proposes a new framework for active learning based
on an incomplete teacher. This new formulation, called iMAT, neatly handles scenarios in which the
teacher has access to only a finite number of tests or otherwise has gaps in its knowledge. We adapt
Angluin’s L⋆ algorithm for learning finite automata to incomplete teachers and we build a prototype
implementation in OCaml that uses an SMT solver to help fill in information not supplied by the
teacher. We demonstrate the behavior of our iMAT prototype on a variety of learning problems from
a standard benchmark suite.

2012 ACM Subject Classification Theory of computation → Active learning

Keywords and phrases Finite Automata, Active Learning, SMT Solvers

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.21

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.21
Software (Source Code): https://github.com/cornell-pl/nerode-public

archived at swh:1:dir:c5e04db5d43057cfb4a080a987539d73486e676a

Funding This material is based upon work supported by the Office of Naval Research under Contract
No. N68335-22-C-0411.

Acknowledgements We thank Marijn Heule, Martin Leucker, and Arlindo Oliveira for their efforts
in providing us access to their code and benchmarks. We also thank Akshat Singh and Sheetal
Athrey, with whom this project began as an undergraduate research project.

1 Introduction

Automata are among the most basic structures in computer science, yet they continue to
offer profound insights for modeling and analyzing systems. Recent years have seen renewed
interest in the problem of closed-box inference of automata, often motivated by applications
in verification and security – see [33] for an overview.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Mark Moeller, Thomas Wiener, Alaia Solko-Breslin, Caleb Koch,
Nate Foster, and Alexandra Silva;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 21; pp. 21:1–21:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:moeller@cs.cornell.edu
https://orcid.org/0009-0002-9512-565X
mailto:tfw29@cornell.edu
mailto:alaia@seas.upenn.edu
https://orcid.org/0009-0009-3723-5181
mailto:ckoch@stanford.edu
mailto:jnfoster@cs.cornell.edu
https://orcid.org/0000-0002-6557-684X
mailto:alexandra.silva@cornell.edu
https://orcid.org/0000-0001-5014-9784
https://doi.org/10.4230/LIPIcs.ECOOP.2023.21
https://doi.org/10.4230/DARTS.9.2.21
https://doi.org/10.4230/DARTS.9.2.21
https://github.com/cornell-pl/nerode-public
https://archive.softwareheritage.org/swh:1:dir:c5e04db5d43057cfb4a080a987539d73486e676a;origin=https://github.com/cornell-pl/nerode-public;visit=swh:1:snp:b478a0299e464679c9a928272621cea2bd45b674;anchor=swh:1:rev:c54561332f25fc4896a71f1019fc9c178cb227ef
https://doi.org/10.4230/DARTS.9.2.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Automata Learning with an Incomplete Teacher

Many of the algorithms developed for closed-box inference are based on the minimally
adequate teacher (MAT) framework, in which a Learner interacts with a Teacher (also
sometimes referred to as an oracle) in an attempt to learn a finite automaton known by the
Teacher. The Learner can pose two types of queries to the Teacher: membership queries
(“does the automaton accept a given input word?”) and equivalence queries (“is a given
automaton correct?”). It turns out that these primitives are sufficient to show that the MAT
framework terminates and produces the correct automaton. Numerous variants of the basic
algorithm have been proposed (e.g., L⋆ [2], KV [19], TTT [18] or L♯ [34]), using different data
structures to collect and organize gathered information. The MAT framework has also been
instantiated for other kinds of automata – e.g Mealy machines, weighted automata [5], and
nominal automata [28] to name a few.

Contrary to its name, however, in many practical settings, even finding a Minimally
Adequate Teacher is challenging. For example, consider learning a model of a closed-box
system. How would the Teacher determine whether a given automaton supplied by the
Learner captures the behavior of the closed-box system? The best the Teacher can do is
check whether they agree on a finite set of tests. Likewise, in settings where the Teacher
only has access to a set of positive and negative examples (also known as passive learning) it
is unclear how to answer membership queries for inputs that lie outside of the example set.

This paper presents an alternative to MAT: the incomplete Minimally Adequate Teacher
(iMAT) framework. An iMAT is allowed to answer “don’t care” in response to membership
queries and it does not answer equivalence queries at all. We show that Angluin’s classic
L⋆ algorithm can be instantiated with an incomplete Teacher, by using an SMT solver to
help fill in the missing information without needlessly expanding the size of the automaton.
More precisely, we show – under modest assumptions – that our algorithm infers the minimal
automaton compatible with the information provided by the Teacher. We present an OCaml
prototype and demonstrate its behavior on well-known benchmarks [23, 29].

We see the framework developed in this paper as a first step towards building connections
between several different areas. As we explain later, iMAT provides a bridge between active
and passive learning. In active learning, additional information can always be gathered (i.e.,
from the Teacher), whereas in passive learning, the assumption is that all of the information
that will be used for learning has been gathered in advance. With iMAT, one can use the
passive information as an incomplete Teacher and proceed to learn the automaton using active
techniques like L⋆. A lack of perfect information about the language in question also arises in
program synthesis, in particular in the “programming by example” paradigm [7, 22, 23, 25, 36].
Here, the goal is to infer a model that is correct for the examples, and hope that it generalizes
to other scenarios – i.e., that the examples are somehow representative of a more general
pattern. We explore this connection in our use of benchmarks from AlphaRegex [23].

The problem of using finite information to infer a DFA was first studied by Gold in the
1970s [14], and has since been studied by many others [32, 30, 21, 20]. Gold showed that
finding a DFA with the minimum number of states is NP-complete [15]. As iMAT subsumes
DFA inference from finite data, its scalability is necessarily limited.

Others have studied problems similar to iMAT in prior work, either in their use of
incomplete information or SAT solvers [8, 29, 17, 16, 24]. Leucker and Neider’s paper [24]
includes an “inexperienced teacher” and surveys several learners with similar capabilities as
ours. Section 10 presents a detailed survey of their paper and other related work. No previous
work has studied iMAT in full generality, including: formulating the problem, establishing
correctness, building an open-source implementation, and exploring alternate formulations.
Hence, compared to prior work, this paper makes the following contributions:

M. Moeller, T. Wiener, A. Solko-Breslin, C. Koch, N. Foster, and A. Silva 21:3

1. We review the MAT framework (Section 2) which sets the stage for our formulation of
active learning based on an incomplete Teacher (Section 3). We also adapt the notion of
a Learner, giving it access to a Solver.

2. We instantiate the iMAT framework in the context of DFAs, using an SMT solver to fill
in missing information (Section 4).

3. We prove that the Learner terminates and returns a minimal automaton compatible with
the known information (Section 5).

4. We show how to modify our learning algorithm in the presence of the more limited Teacher
that uses a simpler interface for compatibility checks (Section 6), and prove a (partial)
correctness result (Section 7).

5. We implement the Learner in OCaml and present optimizations to accelerate the search
for a DFA. We evaluate our proposed optimizations with an ablation study, and present
performance data on a standard benchmark suite [23, 29].

Next, we review MAT and L⋆, to set the stage for the iMAT framework in later sections.

2 The MAT framework

In the MAT framework, a Learner seeks to discover an unknown language by interacting with
a Teacher who can answer two types of queries:

Membership: The Learner sends a word u to the Teacher, who answers “yes” if u belongs
to the language or “no” if it does not.

Equivalence: The Learner sends a hypothesis automaton H to the Teacher, who either
confirms that H is correct or provides a counterexample.

The MAT framework has been the basis for active model learning since its introduction
in the late 1980s, providing the basis for a variety of algorithms, data structures, and proof
techniques (e.g. L⋆ [2], KV [19], TTT [18], L♯ [34], etc.). The rest of this section presents
Angluin’s L⋆ algorithm, which introduces the notation and concepts used in this paper.

2.1 Strings, Languages, and Automata
Fix an alphabet of symbols, Σ. We let a ∈ Σ denote an arbitrary symbol and ε the empty
string. For strings (also called words) u, v ∈ Σ∗, we write uv for the concatenation of u and
v (we will occasionally write u.v for emphasis). We use capital letters U, V ⊆ Σ∗ to denote
languages – i.e. sets of strings. Concatenation of languages U, V is written U · V = {uv | u ∈
U, v ∈ V }. The set of prefixes for a string s is written prefixes(s) = {u | s = uv, u, v ∈ Σ∗}.
Likewise, suffixes(s) = {v | s = uv, u, v ∈ Σ∗}. We sometimes even take prefixes of a set
S ⊆ Σ∗, written prefixes(S) = {u | u ∈ prefixes(s), s ∈ S}. A set S ⊆ Σ∗ is called prefix-
closed (suffix-closed) if S = prefixes(S) (S = suffixes(S)). Finally, we denote the symmetric
difference of two sets by S ⊕ S′ = S − S′ ∪ S′ − S.

An important class of languages is that of regular languages, which are the languages
accepted by deterministic finite automata (DFAs). A DFA is a five-tuple D = (Q, Σ, δ, q0, F)
where Q is a finite set of states, Σ is the alphabet, δ : Q× Σ→ Q is the transition function,
q0 ∈ Q is the start state, and F ⊆ Q are the accepting states. The transition function is
extended to strings inductively by δ̂ : Q× Σ∗ → Q, where for any q ∈ Q, δ̂(q, ε) = q and for
any a ∈ Σ, u ∈ Σ∗, δ̂(q, au) = δ̂(δ(q, a), u). A string u is accepted by the automaton D iff
δ̂(q0, u) ∈ F . Moreover, the language accepted by D, written L(D), is the set of all such
strings: L(D) = {u ∈ Σ∗| δ̂(q0, u) ∈ F}.

ECOOP 2023

21:4 Automata Learning with an Incomplete Teacher

Learner Teacher

Membership: u ∈ Σ∗?

Yes (+)/No (-)

Equivalence: H correct?

Yes/No & counterexample u ∈ Σ∗

Figure 1 The Minimally Adequate Teacher framework.

Regular languages have unique minimal representatives: for every regular language,
there is a unique DFA with a minimal number of states. There are different ways to build
such minimal DFA corresponding to a regular language, but the one that is used to prove
correctness of L⋆ is based on so-called Myhill-Nerode equivalence classes. Given a language L

and a word s ∈ Σ∗, the Myhill-Nerode equivalence class of s, denoted [s]L is the set of all
words s′ satisfying: s ≡L s′ △⇐⇒ ∀e∈Σ∗ · (se ∈ L ⇐⇒ s′e ∈ L). Myhill-Nerode equivalence
classes provide an alternative characterization of regular languages: a language is regular iff it
has a finite number of Myhill-Nerode equivalence classes. Furthermore, there is a one-to-one
correspondence between the states of the minimal automaton accepting a regular language L

and its Myhill-Nerode equivalence classes.

2.2 L⋆: Data Structures
L⋆ is an algorithm that implements a Learner according to the interfaces in the MAT framework
(see Figure 1). The core data structure used in the algorithm is an observation table, which
records the information gathered from membership queries and the counterexamples obtained
from equivalence queries.

▶ Definition 1 (Observation Table). Given a language L ⊆ Σ∗, an observation table (wrt L)
is a triple (S, E, T), where:

S ⊆ Σ∗ is a prefix-closed set of “accessor strings”;
E ⊆ Σ∗ is a suffix-closed set of “distinguishing strings”;
T : (S ∪ S · Σ) · E → {+,−} is a map on a finite set of words defined by

T (u) =
{

+ u ∈ L

− u /∈ L

Note that once L is fixed, T is fully determined by S and E, so sometimes we refer to the
observation table as simply (S, E). We can think of L ⊆ Σ∗ as a function L : Σ∗ → {+,−}
and then simply write T (u) = L(u). Every u in the domain of T is obtained as a concatenation
of a string s ∈ S ∪ S · Σ and e ∈ E.

Intuitively, one can think of an observation table as a snapshot of a language L. When
L is regular, we will show how the table is organized in a way that its rows can be used to
recover the Myhill-Nerode equivalence classes of L, and therefore the minimal deterministic
automaton. The use of accessor strings and distinguishing strings to name the elements of S

and E will become clear when we explain how to build a DFA from a table.
Consider the regular language L = {w ∈ {a, b}∗ | w has at least one a}, and sets S =

{ε, a}, and E = {ε, b}. The observation table (S, E) is given on the left in Figure 2. When
depicting the table, we divide it into an upper part and a lower part. The rows in the upper
part are labelled by strings in S, whereas the rows of the lower part are labelled by strings
in S · Σ− S = {sa | s ∈ S, a ∈ Σ, sa /∈ S}. The strings in E label the columns of the table.
The entries of the table correspond to the function T .

M. Moeller, T. Wiener, A. Solko-Breslin, C. Koch, N. Foster, and A. Silva 21:5

ε b

ε - -
a + +
b - -

aa + +
ab + +

−− ++

b

a

a, b

Figure 2 An observation table and corresponding automaton.

It is important to note that depicting the finite map T : (S ∪ S · Σ) · E → {+,−} as a
table leads to some repetition. For example, the entry in row a, column b must match the
entry in row ab, column ε – i.e., since a.b = ab.ε we also have T (a.b) = T (ab.ε). It will be
convenient to access the rows of the table as follows:

row : S ∪ S · Σ→ E → {+,−} row(s)(e) = T (se).

We will sometimes abuse notation and apply row to a set of strings to obtain a set of rows.
For example, in the table above row(S) is the set of distinct rows in the upper part of the
table – row(S) = {{ε 7→ +, b 7→ +}, {ε 7→ −, b 7→ −}}. Additionally, when E is clear from
the context, we will sometimes omit the column indices, writing row(S) = {++,−−}.

To build a DFA from an observation table, we will use as states the upper rows of the
table, but the well-definedness of the construction requires two properties to be satisfied1.

▶ Definition 2 (Closedness and Distinctness). A table (S, E, T) is closed if for each string
s ∈ S and letter a ∈ Σ, we have row(sa) ∈ row(S). It is distinct if all the rows labelled by
s ∈ S are distinct: s, s′ ∈ S ⇒ row(s) ̸= row(s′).

Note that the example table above is closed and distinct. We can now make the connection
between observation tables and finite automata precise.

▶ Definition 3 (DFA associated with a table). Given a closed and distinct table (S, E, T),
with distinct rows in S, we associate a DFA, D(S, E, T) = (Q, Σ, δ, q0, F), where:

Q = row(S) δ(row(s), a) = row(sa) q0 = row(ε) F = {row(s) | row(s)(ε) = +}.

The above definition relies on the fact that S is prefix-closed and E is suffix-closed and
so both contain ε. Moreover, the transition function δ is well-defined whenever the table is
closed and distinct. The first property ensures that row(sa) ∈ Q, whereas the second ensures
the well definedness of δ(row(s), a).

The DFA corresponding to the example observation table is depicted on the right in
Figure 2. The start state is indicated with an incoming arrow, and final state with a double
circle. Each state is labeled by its unique row vector.

2.3 L⋆ learner
We are now ready to present L⋆, the algorithm in which a Learner incrementally builds an
observation table based on interactions with a Teacher as depicted in Figure 1. The L⋆

Learner is shown in Figure 3. It starts with S = E = {ε} and then explores potential new

1 Readers familiar with L⋆ will notice we jettisoned consistency for a simpler property – keeping the upper
rows of the table distinct. This optimization is due to Maler and Pnueli [27].

ECOOP 2023

21:6 Automata Learning with an Incomplete Teacher

1. Initialize S = {ε}, and E = {ε}
2. While (S, E, T) is not closed, do:

S ← S ∪ {sa},
where s ∈ S, a ∈ Σ, but row(sa) /∈ row(S).

3. Conjecture M = D(S, E, T):
a. If M is correct, halt.
b. Otherwise, E ← E ∪ suffixes(c), where c is the provided counterexample. Goto 2.

Figure 3 Angluin’s L⋆ (Maler-Pnueli version). Whenever S and E change, T is updated using
membership queries. Note the extensions of S and E preserve distinctness as an invariant.

rows by examining the rows in the lower part of the table (labelled by strings in S ·Σ−S). If
no new rows are found (i.e., as compared to the ones in row(S)), then we conclude that the
table is closed. If, on the other hand, a row in the lower part of the table does not appear in
the upper part, there is a closedness defect, which can be repaired by adding another string
to S. In essence, this repair moves a row from the lower part of the table to the upper part.
Accordingly, we generate new rows in the lower part until there is a row in the table for each
s ∈ SΣ. Once the Learner finds a closed table (distinctness is maintained by construction),
it poses an equivalence query to the Teacher. If the hypothesis is wrong the Teacher returns
a counterexample which is used to extend the columns of the table.

L⋆ can also be understood as incrementally discovering the Myhill-Nerode equivalence
classes for the Teacher’s language L, which correspond to the states of the minimal DFA.
Since the start state always corresponds to the equivalence class for the empty string ε,
it starts with the observation table where S = {ε} and E = {ε}. Each hypothesis is a
refinement of the previous guess, getting closer and closer to the correct minimal automaton.
Termination of the algorithm follows as every closedness defect repaired or counterexample
processed, results in an automaton with more states than the previous hypothesis.

2.4 L⋆ Example
Suppose we choose Σ = {a} and the Teacher knows the language L described by the regular
expression a(aaa)∗. The Learner begins by building the observation table below, on the left:

ε

ε -
a +

ε

ε -
a +
aa -

- +
a

a

(1)

The table on the left is not closed, because the row for a is not represented in the upper part
of the table, hence the Learner extends S and this yields the table above in the middle. This
table is closed so the Learner conjectures the corresponding DFA on the right.

The Teacher returns counterexample aaa (which is accepted by the automaton in Equa-
tion (1) but should be rejected).2 The Learner processes this counterexample by extending
E with its suffixes {ε, a, aa, aaa}, yielding the table on the left below:

2 In general, there is no requirement for the Teacher to return the shortest counterexample and, indeed,
the original complexity analysis of L⋆ takes into account that longer counterexamples might be returned
resulting in larger than needed tables. Note that, however, minimality is never compromised as equal
rows will be mapped to the same state in the automaton.

M. Moeller, T. Wiener, A. Solko-Breslin, C. Koch, N. Foster, and A. Silva 21:7

Learner
Incomplete
Teacher

Solver

Membership: u ∈ Σ∗

Yes(+)/No(-)/Unknown(□)

Validity: DFA H

Yes/No & counterexample u ∈ Σ∗

Completion: H□

Yes & H

No

Figure 4 The Incomplete Minimally Adequate Teacher framework (iMAT).

ε a aa aaa

ε - + - -
a + - - +
aa - - + -

ε a aa aaa

ε - + - -
a + - - +
aa - - + -
aaa - + - -

The table on the left above is not closed, as row(aa) is different from all other rows. To
fix this, the Learner adds aa to S yielding the table above, on the right. This table is closed
and distinct, so the Learner makes the following conjecture which the Teacher accepts:

ε a aa
a a

a

(2)

Angluin [2] showed that the L⋆ learner finds the minimal DFA for the target language
using a polynomial number of membership queries – results which also apply to the Maler-
Pnueli version. However, this property relies on the assumption that the Teacher can answer
membership and equivalence queries.

The rest of this paper is devoted to introducing an alternative to the MAT framework,
in which the Teacher is incomplete – it might not have answers to all the membership
questions – but there is a third agent in the process that can help the Learner guess the
missing information. We will then devise, implement, and evaluate an algorithm based on L⋆.

The challenges in devising and implementing such an algorithm are two-fold: on the one
hand, since we do not have access to arbitrary membership queries, we will be building a
table that has holes; on the other hand, the notion of minimality is now with respect to
the existing information. Hence, progress towards this automaton is not as simple as in L⋆,
requiring the use of heuristics to guess the missing information while still minimizing the
size of the final automaton.

3 The iMAT Framework

This section introduces iMAT, a new framework for automata learning in which the Teacher
is incomplete (see Figure 4). In iMAT, the Learner still wants to infer a regular language L,
but the teacher only has partial information about the language. In particular, instead of
holding an explicit language L, the Teacher is assumed to hold disjoint, possibly infinite sets
of positive L+ and L− negative examples. The Learner seeks to find any language L such
that L+ ⊆ L and L− ∩ L = ∅. In the literature, such an L is said to separate L+ and L−
[8]. We assume that at least one regular L exists, but there may be several.3

3 Note that we do not require that L+ or L− be regular. For example, neither L+ = anbn, n > 0 nor
L− = bnan, n > 0 are regular, but they are separated by L = a∗b∗.

ECOOP 2023

21:8 Automata Learning with an Incomplete Teacher

1. worklist← [({ε}, {ε})]
2. Call to SMT solver to fill in □s with + or − in hd(worklist).

a. if UNSAT then:
i. worklist← tl(worklist)@[(S ∪ {s′}, E) | s′ ∈ S · Σ− S]
ii. Goto step (2).

b. if SMT solver returns table (S, E), build the corresponding DFA and make a validity query.
i. If the validity query succeeds, return the DFA.
ii. Otherwise, get a counterexample c, set E′ = E ∪ suffixes(c), build table with □’s (S, E′)

and set worklist← (S, E′) :: worklist; goto step (2).

Figure 5 L⋆ with blanks algorithm, L⋆
□. We use ‘@’ and ‘::’ to denote standard list operations

(i.e., append and cons). As before, we omit membership queries; these occur whenever S and E are
changed. Since observation tables are fully determined by S and E, we elide T .

The iMAT framework has three components: a Learner, an incomplete Teacher, and a
Solver. The Teacher answers two types of queries, like MAT, but with weaker assumptions:
Membership: The Learner sends a word u to the incomplete Teacher, who answers with

“yes” (+), “no” (-), or “unknown” (□).
Validity: Given a hypothesis automaton, H, the teacher determines whether L+ ⊆ L(H)

and L− ∩L(H) = ∅. If so, it returns None, otherwise, it returns a counterexample string
either in L+ − L(H) or in L− ∩ L(H).

The other component in the iMAT framework is the Solver which the Learner can ask for
help in completing the hypothesis construction. The solver answers just one type of query:
Completion: The Learner sends an incomplete hypothesis to the solver and asks whether

there is a way to complete it into a full automaton. The Solver either says “yes” and
returns a complete hypothesis or “no”.

iMAT’s Validity query is obviously similar to MAT’s Equivalence query, but it is different
in an important way: an incomplete Teacher cannot return any string not in L+ or L−
as counterexamples as it lacks information about those strings. Hence, a Validity query
returns “yes” whenever there is no evidence against the hypothesis, which is subtly different
than confirming the hypothesis directly. So while Validity may seem just as complex as
Equivalence, we include it here as a first step toward more practical queries.

▶ Remark 4. Note that if the incomplete Teacher happens to be a complete oracle, then the
iMAT setup can be used for MAT. Consider an iMAT instance where (i) the membership
queries always return “yes” or “no” and (ii) the validity query returns a counterexample
iff one exists. It follows that the hypothesis H can be built without ever calling the Solver
(and with the same membership query complexity as MAT) and Validity queries correspond
precisely to Equivalence queries.

4 L⋆
□: an iterative iMAT Learner

We now present an iMAT Learner, closely following the approach used in L⋆. In essence,
looking back at the schema in Figure 4 we want to devise a learner that exploits the loop of
membership-validity queries to promote a steady construction of a minimum-size automaton
with the minimum amount of information. For the Solver component of iMAT we use an
SMT solver (i.e., Z3 [11]).

M. Moeller, T. Wiener, A. Solko-Breslin, C. Koch, N. Foster, and A. Silva 21:9

The Learner holds a (sorted, in increasing size) worklist of candidate observation tables
with □’s. The algorithm works by constructing a worklist of potential hypotheses of increasing
size, starting from a table with just ε as row and column labels.

We iteratively take each of these candidate tables and use an SMT solver to attempt
filling in the □’s (Completion) so that the table is closed and distinct (see Figure 6). Based on
the result of the SMT query, we will either pass the completed table to the Teacher (Validity)
or try another candidate table. If the Validity query succeeds, we return it. Otherwise, if we
get a counterexample c, we refine the current hypothesis table by adding all the suffixes of c

to E, and add the table (with □’s) back to the worklist. The resulting iterative algorithm,
L⋆ with blanks (L⋆

□), is shown in Figure 5.

Given an observation table, (S, E, T):
1. Declare a Boolean variable bs for each string s ∈ (S ∪ S · Σ) · E for which T (s) = □.
2. For strings in L+ or L−, we fix the Boolean constraints:∧

s∈L+

bs = true (Positive Evidence)

∧
s∈L−

bs = false (Negative Evidence)

3. Define a predicate to assert rows equal:

Eq(s, s′) ≜
∧

e∈E

bse = bs′e (Rows equal)

4. Assert the table is closed:∧
s′∈S·Σ−S

∨
s∈S

Eq(s, s′) (Closed)

5. Define a predicate to represent the property that a row is unique (more precisely, that it
is the first time the row appears):

Unique(s) ≜
∧

s′∈S : s′<lexs

¬Eq(s, s′) (Row unique)

6. Declare a Boolean us for each string s ∈ S. We set us to true if row(s) is the first time
that row appears:

us = Unique(s)

7. Assert the uniqueness of the rows in S (to maintain distinctness invariant):∧
s∈S

Unique(s)

Figure 6 SAT encoding for table constraints.

ECOOP 2023

21:10 Automata Learning with an Incomplete Teacher

When the SMT solver finds that the instance is unsatisfiable, we know that the table
cannot be made closed, but we do not know which s from S ·Σ− S we need to promote to S

to fix things as we would in classic L⋆. So we make progress by extending separate “copies”
of S with each string in S · Σ− S, and adding these tables to the worklist.

▶ Remark 5. By adopting the Maler-Pnueli variation of L⋆, the rows in S will always be
distinct and correspond to nodes in a prefix tree. The worklist of tables with □’s is providing
an enumeration of the search space of prefix trees that correspond to DFAs of increasing size.
The SMT solver will essentially be checking for every entry of the worklist whether, for a
given prefix tree corresponding to a table, the other transitions not in the tree can be filled
in to be consistent with the data. For example, consider the following snapshot of a table in
the worklist and the corresponding prefix tree:

ε a aa baa

ε □ - □ +
a - □ - □

b - + + +
ba + + + □

aa □ - □ □

ab □ - □ □

baa + + □ □

bab - + □ □

bb - + + □

q0 q2

q1

q3

a

b a

It turns out this table can be made closed and distinct – which indeed means the remaining
transitions can be filled in. Here is the filled-in table and the resulting DFA:

ε a aa baa

ε ⊟ - ⊟ +
a - ⊟ - ⊟

b - + + +
ba + + + ⊞

aa ⊟ - ⊟ ⊞

ab ⊟ - ⊟ ⊞

baa + + ⊞ ⊞

bab - + ⊞ ⊞

bb - + + ⊞

q0 q2

q1

q3

a

b

a, b

a

b

a
b

4.1 L⋆
□ Example

We illustrate the L⋆
□ algorithm (from Figure 5) with a teacher that starts with the following

data: L+ = {ϵ, aa, ab} and L− = {a, bb, abb}. We begin with the following table on the left
as the only item in the worklist.

ε

ε +
a -
b □

ε

ε +
a -
ab +
aa +
b □

ε

ε +
a -
ab +
aa +
b ⊞

+ -

b

a

a, b

M. Moeller, T. Wiener, A. Solko-Breslin, C. Koch, N. Foster, and A. Silva 21:11

Next, we pop the table on the left off of the worklist and send it to the solver. We can
see that even without filling in the blanks that the solver will return UNSAT (observe row(a)
cannot possibly match row(ε)). So we add a to S and b to S and append the two new tables
to the worklist (which was empty). We pop the middle table above off of the worklist and
send it to the SMT solver. The solver finds that filling the single blank with a + satisfies the
constraints, resulting in the table on the right. We conjecture the corresponding machine on
the right and get counterexample bb. We then add the suffixes of bb to E, and enqueue the
horizontally extended (S, E, T) to the head the worklist. Thus we again pop the updated
table and attempt to fill it in:

ε b bb

ε + □ +
a - + -
ab + - □

aa + □ □

b □ - □

ε b ab

ε + - +
b - - □

a □ + □

bb - □ □

ba □ □ □

ab + - □

aa + □ □

The table on the left is unsat. So we branch our search out by add ab, aa, and b to S on
three new tables and append each of them to the worklist (which currently only holds the
table with S = {ϵ, b}). For brevity, we fast forward to the table from the last step where
b was added, shown above on the right. We take the table off the worklist and the solver
successfully fills in the blanks. We then conjecture the machine that corresponds to this
table and this is correct on all data in L+, L− so the algorithm returns it.

ε b ab

ε + - +
b - - ⊞

a ⊟ + ⊟

bb - ⊞ ⊟

ba ⊟ ⊞ ⊟

ab + - ⊞

aa + ⊟ ⊞

+ − + − − +

− + −

aa, b

b

a, b

The reader may have noticed that several times we naively added all row labels from the
lower part of the table, when we could have localized the problem to a single row causing
the unsat (we skipped ahead to these tables). This intuition leads to an optimization based
on unsatisfiable cores, which we describe in Section 8.1.

5 Correctness of L⋆
□

In this section, we show that the Learner L⋆
□ we introduced in the previous section is

correct: the algorithm terminates with the minimum size automaton compatible with L+, L−
(Theorems 10 and 11). We first show that the search proceeds monotonically in the size of S

(and therefore in the size of automata).

▶ Lemma 6 (Size of work lists). The worklists generated in Figure 5 can contain tables of at
most 2 sizes, n and n + 1. When both are present, all the tables of size n are at the front.

ECOOP 2023

21:12 Automata Learning with an Incomplete Teacher

Proof. The initial worklist is [({ε}, {ε})]. So there is one size, |S| = 1, and claim is trivially
satisfied. As we enter the cycle with a worklist of size n in step (2) note that we add to the
worklist in two places. In step 2(a), we add a list of items of size n + 1 so the property is
maintained in both cases (it may be that the item we popped was the last one of size n, in
which case the list is now a single size). In step 2(b), we process the counterexample and add
the table back to the front of the worklist – since we do not modify S this is an item of size
n and he property is maintained. ◀

The following definition expresses the notion that an observation table is “on the path”
to identifying some target DFA, which will be useful shortly:

▶ Definition 7 (Compatible Observation Table). An observation table (S, E, T) is compatible
with a DFA M = (Q, Σ, δ, q0, F) if:
1. The function q : S → Q defined by q(s) = δ̂(q0, s) is injective,
2. The blanks can be filled in by M to make the rows of S distinct, and
3. For each s such that T (s) ̸= □, then T (s) = + if and only if s ∈ L(M). (i.e. M agrees

with the non-blank entries of (S, E, T)).

In other words, a table which is compatible with a target DFA can be extended to find
the target DFA by adding zero or more strings to S while maintaining the invariant that each
row corresponds to a unique state. The next lemma ensures that the worklist will always
have some compatible table with a minimum DFA.

▶ Lemma 8. Let M = (Q, Σ, δ, q0, F) be a minimum-size DFA consistent with L+, L−. All
worklists generated in the algorithm in Figure 5 contain at least one table (S, E, T) that is
compatible with M .

Proof. First observe that M has no unreachable states since it is minimal. Initially, the
table ({ε}, {ε}) is compatible with M since (a) any function from S = {ε} is injective and
(b) there is only one row, so it is distinct. We now check that the algorithm maintains the
invariant of having a compatible table in the worklist. As we enter the cycle with a worklist
of length n, the only interesting case is when the compatible table (S, E, T) is the head of
the list, since in all other cases it will clearly still be on the worklist at the next iteration.
We proceed to analyse what happens while processing (S, E, T):

In Step 2(a), we know that (S, E, T) could not be made made closed by filling in blanks,
but by induction hypothesis that the rows of S are distinguished by M . Hence, for at
least one s ∈ S ·Σ−S we have that s accesses a new state in M (if this were not the case,
then SAT instance could be satisfied using M as an oracle, since then each row in the
lower part would match the row in the upper part corresponding to the state accessed).
By the same argument, after adding this s to S, we know it will still be distinguishable
from the other rows, because if it were not, then using M as an oracle would have satisifed
the core. Hence, the table obtained by adding s to S is compatible with M .
Step 2(b)(i) does not return, so we need not maintain the invariant.
In Step 2(b)(ii), we do not change S, so that condition (a) of Definition 7 is immediate. Any
rows which can be distinguished by M using only the suffixes in E are still distinguished
by additional suffixes in E′. So (S, E′, T ′) is compatible with M . ◀

We now prove a lemma which illustrates that the crux of the search is finding the correct
prefix set, S. At this point, we will make a validity query (possibly incorrectly – but the
table will be satisfiable) until we are correct. If we have a particular oracle in mind (i.e., any
correct automaton), then the lemma says that if S contains accessor prefixes for the states of

M. Moeller, T. Wiener, A. Solko-Breslin, C. Koch, N. Foster, and A. Silva 21:13

the oracle (and E is large enough to distinguish states), the table will be satisfiable. To be
clear, in the algorithm we of course do not use an oracle to fill in the blanks – we use an
SMT solver as we do not yet know the automaton. The point is simply that the satisfiability
of the SMT instance when a solution exists will be used to establish correctness.

▶ Lemma 9 (Existence of a solution). Let L+, L− be example sets, and let A = (Q, Σ, δ, q0, F)
be a minimum state DFA consistent with L+, L−. Let (S, E, T) be an observation table that
is compatible with A and such that |S| = |Q|. Then there is a closed, distinct, complete
observation table (S, E, T ′) where T ′(s) = T (s) for all T (s) ̸= □.

Proof. Use the DFA A as an oracle to complete the table: let T ′(s) = + if s ∈ L(A),
otherwise T ′(s) = −. Since A is consistent with the datasets, so T (s) = T ′(s) whenever
T (s) ̸= □.

(closed) Let s ∈ S, a ∈ Σ. If sa ∈ S, we are done, so assume sa /∈ S. Let q = δ̂(q0, sa).
By hypothesis, there is a string s′ ∈ S such that δ̂(q0, s′) = q. Then for each e ∈ E,
T ′(sae) = δ̂(q0, sae) = δ̂(δ̂(q0, sa), e) = δ̂(q, e) = δ̂(δ̂(q0, s′), e) = δ̂(q0, s′e) = T ′(s′e). Thus
row(sa) = row(s′).

(distinct) By the fact that (S, E, T) is compatible with A, we have that using A to fill in
the blanks of T distinguishes all of the rows labeled by S. ◀

▶ Theorem 10 (Partial Correctness). If the algorithm terminates, then it returns a DFA of
minimal size consistent with L+, L−.

Proof. Let M be any minimal DFA for L+, L+. Then by Lemma 8, at each point there
is an observation table on the worklist that is compatible with M . Assume the algorithm
eventually terminates. In the worst case, it is when we find the table (S, E, T) with |S| = n,
for n the number of states of M , (and potentially with E = suffixes(L+∪L−)). By Lemma 6,
we traverse the worklist in nondecreasing order. Hence, if we terminated earlier, it was by
conjecturing a correct machine smaller than n, which is a contradiction. ◀

All that remains to be shown is that we make progress towards this solution and indeed
the algorithm terminates.

▶ Theorem 11 (Termination). The L⋆
□ algorithm terminates.

Proof. Let M be a minimal DFA for L+, L−, and let (S, E, T) be a table in the worklist
compatible with M guaranteed to exist by Lemma 8. Step 2(a) makes progress by increasing
the size of S. Moreover, since there are finitely many automata M ′ whose size is less than or
equal to M , there are only finitely many counterexamples we can get in Step 3(b) (because
we never again misclassify an example we have seen). Each time we reach the compatible
table, we enqueue a table with larger size by 1. When, at latest, we reach the compatible
table whose size matches M , then we may need many, but only finitely many more validity
queries before we are correct and terminate. ◀

6 Weakening the Teacher: iMAT with Distinguish

Next, we explore another kind of incomplete teacher that is not required to implement
Validity queries, but only a weaker set of Distinguish queries. Two strings s1, s2 ∈ Σ∗ are
said to be distinguished if there exists e ∈ Σ∗ such that,

s1e ∈ L+ and s2e ̸∈ L+ (or vice versa), or
s1e ∈ L− and s2e ̸∈ L− (or vice versa).

ECOOP 2023

21:14 Automata Learning with an Incomplete Teacher

Membership: As before, the Learner sends a string u and the Teacher responds with “+” if
u ∈ L+, “−” if u ∈ L−, and “□” otherwise.

Distinguish: The learner sends two strings s1 and s2, together with a finite “exclusion set”
E, and the teacher responds “yes” with a suffix e /∈ E that distinguishes these two strings
or “no” if it cannot distinguish the strings.

It should be clear that Distinguish queries are less powerful than Validity queries, as they
only concern a pair of strings and not the full language. However, it turns out that when L+
and L− are finite, we can adapt the learner to still have a terminating procedure to learn a
correct automaton. We prove these results in Section 7.

iMAT with Distinguish has close ties to foundational concepts in formal languages. In
particular, the distinguish query is closely related to the Myhill-Nerode equivalence classes
≡L of the target language L.

▶ Lemma 12. Given strings s1, s2 ∈ Σ∗ with distinguish ∅ s1 s2 = e for some e ∈ Σ∗, then
there exists some language L that separates L+ and L− such that s1 ̸≡L s2. Moreover if,
in addition, the result of membership queries to s1e and s2e are not □, then for every L

separating L+ and L−, we have that s1 ̸≡L s2.

Proof. For the second claim, suppose T (s1e) ̸= T (s2e) and both are not □. Without loss
of generality, T (s1e) = + and T (s2e) = −. Let L be any language separating L+ and L−.
Clearly s1e ∈ L and s2e /∈ L. That s1 ̸≡L s2 follows from the definition of the Myhill-Nerode
equivalence. Now for the first part, assume T (s1e) = − and T (s2e) = □ (the other cases are
similar), and assume L is a regular language that separates L+ and L−. Then L′ = L∪{s2e}
is also regular and separates L+ and L−. Moreover, for this L we have s1 ̸≡L s2. ◀

Although iMAT with Distinguish is guaranteed to terminate only when L+ and L− are
finite, we can show that arbitrary problem instances can be modeled using finite instances.
Hence, finite example sets are in a sense complete. More formally, suppose we are given
possibly infinite sets of positive and negative examples L+ and L−. Then we can find finite
subsets of L+ and L− that are sufficient for the Learner to recover the minimum-size DFA
compatible with L+ and L−.

▶ Theorem 13. Let L+, L− ⊆ Σ∗ be infinite, disjoint example sets (not necessarily regular),
and let M be a minimum-size DFA that separates L+ and L−. Then there are finite subsets
L+, L− such that M is also a minimum-size DFA separating L+, L−.

Proof. Consider the set M of all DFAs over Σ that have strictly fewer states than M .
(Observe that M is potentially very large, but finite). By the minimality of M on L+, L−,
each M ′ ∈ M misclassifies a string from either L+ or L−. So we can define a function
c : M→ Σ∗ that maps each M ′ to one such counterexample string. Then the set S = {s | s =
c(M ′), M ′ ∈M} is finite (in fact, |S| ≤ |M|). Moreover, we have by construction that for
S+ = L+ ∩ S and S− = L− ∩ S that each M ′ ∈M fails to separate S+, S− by misclassifying
c(M ′), so that M is a minimum-size separating automaton for S+, S− as needed. ◀

7 Correctness of L⋆
□ with Distinguish

We now show how to adapt the L⋆
□ to the situation that we only have an iMAT with Distinguish,

not Validity. The idea is that we perform L⋆
□ as before, but when we have a hypothesis

machine, we do a series of distinguish queries instead of a validity query. Intuitively, we will
ask a distinguish query for each pair of rows which are “made the same” by the hypothesis:

M. Moeller, T. Wiener, A. Solko-Breslin, C. Koch, N. Foster, and A. Silva 21:15

▶ Definition 14 (Distinguish queries for a hypothesis). Given a closed, distinct, complete table,
(S, E, T) and associated DFA M , we say the distinguish queries for hypothesis M are:

distinguish E s′s

for each s′ ∈ S · Σ− S and for the unique s such that row(s) = row(s′).

Observe these distinguish queries are well-defined because each s′ ∈ S ·Σ−S is guaranteed
to have a unique matching row in S.

The first theorem shows that if all of the distinguish queries for a hypothesis return None,
then the hypothesis is correct.

▶ Theorem 15 (Validity using Distinguish). Suppose a learner has a hypothesis DFA M =
(Q, Σ, δ, q0, F) constructed from a closed, distinct, complete observation table (S, E, T). Sup-
pose also that the teacher returns None for all of the distinguish queries for M . Then
L+ ⊆ L(M) and L(M) ∩ L− = ∅.

Proof. We show the contrapositive. Suppose there is a counterexample string c ∈ L+ such
that c /∈ L(M) (without loss of generality; the other case is similar). It suffices to show
that there is a distinguish query that is not None. First of all c cannot be in T since we
inherit from L⋆ that hypotheses are correct on all evidence already considered. So we must
have c = s′

0v0 for a prefix s′
0 ∈ S · Σ− S, since S · Σ− S includes exactly one prefix of each

word not in SΣ. By closedness of the table, there is an s0 ∈ S such that row(s′
0) = row(s0).

Consider distinguish E s0 s′
0. If this query returns a suffix, we are done, so assume it is None.

In particular, this means that s0v0 ∈ L+, since otherwise v0 would be a response to the
query. Moreover, since row(s0) = row(s′

0) we must have that δ̂(row(s0), v0) = δ̂(row(s′
0), v0),

implying that s0v0 /∈ L(M) and s0v0 is also a counterexample. So, as before, there must be
an s′

1 ∈ S · Σ− S and suffix v1 such that s0v0 = s′
1v1. Crucially, s0 (as s0 ∈ S) is a proper

prefix of s′
1, making v1 a proper suffix of v0. Since, again, there must be an s1 ∈ S for which

row(s1) = row(s′
1) We proceed by considering the query distinguish E s1 s′

1 and applying
the same reasoning, except that we have made progress because v1 is a suffix of v0. Clearly
we will see a distinguishing suffix after a finite number of these iterations: in particular by
the time that vi = ε, then s′

ivi = s′
i ∈ S · Σ − S. But that means s′

i is a string we have
already seen and is also a counterexample (i.e., s′

i ∈ L+ but rejected), which is impossible by
the construction of the table (which means the distinguishing suffix must be at latest the
previous round). ◀

We modify L⋆
□ as follows:

1. Run L⋆
□ until ready to make a validity query for hypothesis H.

2. In place of the validity query, make the distinguish queries for H.
a. If they are all None, stop and return H.
b. Otherwise, add the first suffix returned by the teacher to E, and return to Step 1.

▶ Corollary 16. If the modified L⋆
□ terminates, the learned machine is correct.

Proof. This follows immediately from Theorem 15. ◀

Of course, this modified procedure is not guaranteed to terminate in general. For some
sparse, infinite L+ and L−, it is possible for the teacher to have infinitely many suffixes that
the learner must consider without making progress. For example, if we have L+ = (aa)∗ and
L− = (aaaa)∗a, the learner will soon reach:

ECOOP 2023

21:16 Automata Learning with an Incomplete Teacher

ε

ε +
a -
aa +

q0 q1
a

a

At this point, the Learner will ask the query distinguish E ε aa and the trouble is that
the teacher has an infinite set of suffixes to give in response to distinguish E ε aa, namely
those strings in the set (aa)∗a. As a result, the procedure above will not terminate in this
case. We are unaware of a query weaker than Validity that still guarantees termination –
settling this is an interesting question for future work.

We do have, however, as a special case, guaranteed termination for finite example sets.

▶ Corollary 17. Let L+ and L− be finite, disjoint sets of strings. A learner can still learn a
correct automaton for L+, L− with only membership and distinguish queries.

Proof. Run L⋆
□ modified for distinguish. Because of Theorem 15, we need only show that

it terminates. Each time through Step 2 that we do not terminate, the teacher returns a
suffix e. But since we add e to E, the teacher can never return this suffix again, and since
the examples are finite, they can only have finitely many suffixes. Termination follows. ◀

7.1 A Landscape of Teacher Queries
As we have already presented two variants of iMAT, it is natural to ask how it relates to other
formulations of automata learning problems. In this section, we summarize some known
results for a variety of queries provided by a Teacher including:

Query name Type
membership Σ∗ → 2
equivalence DFA→ Σ∗ + 1

membership□ Σ∗ → {+,−,□}
distinguish Pfin(Σ∗)× Σ∗ × Σ∗ → {+,−,□}

validity DFA→ Σ∗ + 1

Recall that though equivalence and validity have the same type, they are provided by
Teachers with different capabilities: an incomplete Teacher cannot return any string not in
L+ or L− as counterexamples as it lacks information about those strings. Hence, a Validity
query returns “yes” whenever there is no evidence against the hypothesis, which is subtly
different than confirming the hypothesis directly, which is what a complete teacher proves
through an Equivalence query.

We distinguish two classes of learning problems. For the first class, the Teacher knows a
specific regular language and will not return “unknown” in response to Membership queries.
Conversely, in the second class, the teacher is incomplete and may return “unknown” in
response to Membership queries.

Teacher holds concrete regular language (i.e., no blanks)

Only Membership. Suppose we run L⋆, but replace each equivalence query with a loop that
queries all strings looking for a counterexample. It is a consequence of the Myhill-Nerode
Theorem that this process will eventually discover the correct automaton. However, the
Learner will never be able to determine that it has converged. If the Learner is told the
number of states, a terminating procedure is possible [1].

M. Moeller, T. Wiener, A. Solko-Breslin, C. Koch, N. Foster, and A. Silva 21:17

Only Equivalence. We can obtain a trivial terminating procedure with only the equivalence
query simply by conjecturing all automata in increasing order of states. Angluin [3]
showed that we cannot improve the learner to a polynomial time procedure.

Membership and Equivalence. This is Angluin’s MAT: L⋆ is an efficient terminating proced-
ure for determining the correct DFA [2]. See Section 2.

Teacher is incomplete (i.e., may return blanks)

Only Membership. Just as in the non-blanks case, a learner can identify a minimum-size
correct machine eventually, but cannot determine that it has done so – so there is no
terminating procedure. This is Gold’s notion of “identification in the limit” [13].

Membership and Validity. Because this problem subsumes all instances of DFA inference
from finite data, it is NP-Hard [15] and cannot be approximated in polynomial time
(unless P = NP) [32]. We give a terminating procedure, L⋆

□, in Section 4 and prove it
correct in Section 5. The complexity comments from “Only Equivalence” also hold here.

Membership and Distinguish. We consider a modification of L⋆
□ which produces a minimum-

size automaton if it terminates. We explore this in Section 6.

8 Implementation

We have built an OCaml implementation of the learner (using Validity) presented in this
paper. The goal of our implementation is to provide a reusable implementation of our
framework in a functional language that can be used to explore the iMAT framework, run our
algorithm, and implement other algorithms that use similar primitives. Our implementation
consists of two packages: (i) nerode, a general library for regular languages, with data
structures for regular expressions, DFAs, and NFAs, as well as conversions between them, and
(ii) nerode-learn, which implements Angluin’s L⋆ algorithm, as well as the iMAT variants
developed in this paper. The nerode package is approximately 2,400 lines of code, while
the nerode-learn package is approximately 3,000 lines of code. We use Z3 as the backend
solver for checking all SMT problems.

Data Structures

Our OCaml implementation uses the following types.
Strings are encoded in a module called Word, where their representation is a list of
Alphabet symbols. Alphabet symbols internally are int.4

type Word.t = Alphabet . symbol list

In particular, defining modules for Word and Alphabet allowed for a modular design and
allows us to support different alphabets.
The rows of the observation table (or more precisely, the labels of the rows) are encoded
as a set of Words:

type RowLabels .t = WordSet .t

The columns of the observation table are also encoded as a set of words:

type ColLabels .t = WordSet .t

4 We abuse OCaml syntax slightly: type Word.t is not a valid type definition, but we keep the module
names to show our module boundaries, and concisely differentiate all of our types t.

ECOOP 2023

21:18 Automata Learning with an Incomplete Teacher

Individual entries in the observation table are encoded using the following data type:

type entry = True | False | Blank

Here, the constructors include Plus, Minus, and Blank.
Thus we can encode the actual lookup function of the table as a map from words to
entries:

type TblMap .t = entry WordMap .t

Putting these all together, an observation table is encoded as a record s, sa, e, t where s, sa,
and e are sets of strings, and tmap is a map from strings to entries:

type Table .t = {s : RowLabels .t ; sa : RowLabels .t ;
e : ColLabels .t ; tmap : TblMap .t}

When implementing algorithms on observation tables, there is an interesting data structure
choice to be made. An obvious approach is to keep the entire table explicitly as a two-
dimensional array. The advantage to this approach is that the row function corresponds
precisely to rows in the array. The downside is that to update the entry for a string, one has
to visit each location in the table corresponding to how the string can be decomposed into
prefix and suffix. To avoid this, instead of keeping the whole table, we keep S, S · Σ − S,
and E as sets and T as a map from strings in (S ∪ S · Σ) · E to table entries. Thus entries
for a string are updated everywhere they appear by a single update to T . The downside is
that we must generate the row function “on the fly” by repeatedly accessing T .

Algorithms

We now present our OCaml implementation of L⋆
□. We encode the worklist as a list of tables,

which is maintained as an argument in the main recursive loop. A collection of all entries in
the observation tables is also maintained globally as an argument in the loop.

let wl : Table .t list = ...
let entry_map : entry WordMap .t = ...

The main algorithm is a recursive function that searches for the smallest table that is
compatible with the given positive and negative examples:

let rec lstar_blanks wl (e: ColLabels .t) entry_map : Dfa.t =
let t, entry_map = List.hd wl |> Table. extend_cols entry_map e in
match fill_blanks_smt t with
| None →

let new_ts , entry_map ’ =
List.fold

~f:(fun (ts_acc , em_acc) sa →
let new_t , em_acc ’ = (Table . move_up em_acc sa t) in
new_t :: ts_acc , em_acc ’)

~init :([] , entry_map) (Table . lower_rows t) in
lstar_blanks (wl @ new_ts |> List.tl) e entry_map ’

| Some obs →
let dfa = table_to_dfa obs in
match conjecture dfa with
| None → dfa
| Some cex →

lstar_blanks wl (ColLabels . union e (suffixes cex)) entry_map

For the most part, the OCaml implementation follows the pseudocode given in Figure 5, but
there are a few differences. In particular, the columns of the tables (e) in the worklist are not
updated until right before we attempt to fill them in. We keep a cumulative mapping from
strings to table entries (entry_map) in the main loop, preventing redundant membership

M. Moeller, T. Wiener, A. Solko-Breslin, C. Koch, N. Foster, and A. Silva 21:19

queries, and we also accumulate the suffixes learned from counterexamples (e) in the main
loop. Intuitively, this approach is sound because it is safe to share counterexamples across
tables and thus have the same column labels (e) for each (see Lemma 19 below).

Operationally, the lstar_blanks function proceeds as follows. First, it removes an item t

from the worklist. It adds additional suffixes in e to the table t, using membership queries to
determine new column entries in e that cannot be found in entry_map, filling in t with Plus,
Minus, or Blank; it also updates the entry collection entry_map with any new queries. Next,
it attempts to fill the blanks in the observation table encoded by t, calling fill_blanks_smt,
which uses use an SMT solver as discussed below. If the SMT solver cannot find values
for the blanks, the algorithm extends the worklist with each new table new_t obtained by
adding one row from the bottom part of the table t, using Table.add, and recurses. It also
updates the entry_map with any new query results while filling in new rows. Otherwise, the
blanks can be filled, and it makes a conjecture to the teacher. If the conjecture is correct, we
have the minimal DFA. Otherwise, the conjecture fails, so we add the suffixes for the new
counterexample to e, keep t at the head of wl, and recurse.

Efficient SMT Encoding

The key to achieving good performance in any solver-aided algorithm, is having an efficient
encoding of observation tables. We use the theory of bitvectors, which is widely supported
by SMT solvers, to express the blank-filling constraints. Specifically, given a table with k

columns, we encode the rows in the table as bitvector variables of length k. We add assertions
to constrain the bitvectors so they correspond to the rows in the table5. For example, the
bitvector variable for the jth row in the table would be declared as follows,

(declare -const s_j (_ BitVec k))

and if the entry in the ith column was positive, we would add an assertion:

(assert (= ((_ extract i i) s_j) #b1))

Alternatively, if the entry in the ith column were a blank, we would declare a bitvector
variable of length 1 to encode the blank,

(declare -const b_ij (_ BitVec 1))

and add the corresponding constraint:

(assert (= ((_ extract i i) s_j) b_ij))

Hence, a model of the SMT formula corresponds to a way of filling in the blanks that is
consistent with the positive and negative entries in the table.

Returning to our algorithm, recall that we need the rows in the upper part of the table
to be distinct, and we need the table to be closed. For distinctness, we use the built-in
distinct function from the bitvector theory. For closedness, we generate assertions stating
that each row in the bottom part of the table must be equal to some row in the upper part.

For example, given the observation table on the left:

5 An earlier version used SAT, with individual entries as boolean variables, but we found that using the
bitvector theory performed better

ECOOP 2023

21:20 Automata Learning with an Incomplete Teacher

ε a

ε + □

a □ -
b □ +

aa - □

ab □ □

ba + -
bb □ □

=⇒

ε a

ε + ⊟

a ⊟ -
b ⊞ +

aa - ⊟

ab ⊞ ⊟

ba + -
bb ⊞ ⊟

Our SMT encoding would have 7 bitvectors of size 2, one for each row, and 7 bitvectors of
size 1, one for each (unique) blank:

(declare -const s1 (_ BitVec 2)) (declare -const b1 (_ BitVec 1))
(declare -const s2 (_ BitVec 2)) (declare -const b2 (_ BitVec 1))
(declare - const s3 (_ BitVec 2)) (declare - const b3 (_ BitVec 1))
(declare -const s4 (_ BitVec 2)) (declare -const b4 (_ BitVec 1))
(declare -const s5 (_ BitVec 2)) (declare -const b5 (_ BitVec 1))
(declare -const s6 (_ BitVec 2)) (declare -const b6 (_ BitVec 1))
(declare -const s7 (_ BitVec 2)) (declare -const b7 (_ BitVec 1))

Note that in the table above, the blank in the first row, second column and the blank in
the second row, first column must have the same value as they both encode the membership
of the string a in the language. Our SMT encoding account for such constraints between
blanks. Next, we add assertions to encode the entries in the table:

(assert (=((_ extract 1 1) s1) #b1)) (assert (=((_ extract 2 2) s1) b1))
(assert (=((_ extract 1 1) s2) b1)) (assert (=((_ extract 2 2) s2) #b0))
(assert (=((_ extract 1 1) s3) b2)) (assert (=((_ extract 2 2) s3) #b1))
(assert (=((_ extract 1 1) s4) #b0)) (assert (=((_ extract 2 2) s4) b3))
(assert (=((_ extract 1 1) s5) b4)) (assert (=((_ extract 2 2) s5) b5))
(assert (=((_ extract 1 1) s6) #b1)) (assert (=((_ extract 2 2) s6) #b0))
(assert (=((_ extract 1 1) s7) b6)) (assert (=((_ extract 2 2) s7) b7))

Note that the assertions reflect the fact the blanks in the first rows must be filled in with
the same value, since they are both associated with the string “a”. We would also assert
distinctness for the upper part,

(assert (distinct s1 s2 s3))

Finally, we would add assertions for closedness:

(assert (or (= s1 s4) (= s2 s4) (= s3 s4)))
(assert (or (= s1 s5) (= s2 s5) (= s3 s5)))
(assert (or (= s1 s6) (= s2 s6) (= s3 s6)))
(assert (or (= s1 s7) (= s2 s7) (= s3 s7)))

To fill in the rows in table, we can simply read off values assigned to the variables,

(define -fun b1 () (_ BitVec 1) #b0)
(define -fun b2 () (_ BitVec 1) #b1)
(define -fun b3 () (_ BitVec 1) #b0)
(define -fun b4 () (_ BitVec 1) #b1)
(define -fun b5 () (_ BitVec 1) #b0)
(define -fun b6 () (_ BitVec 1) #b1)
(define -fun b7 () (_ BitVec 1) #b0)

which corresponds to the table on the right above.

Teacher Module
Because our design relied on an abstract interface to the teacher, it was straightforward
to implement the teacher in different ways. While the benchmarks we used for evaluation
(Section 9) are lists of labeled examples, we also implemented a feature that allows the
user to specify infinite L+ and L− using regular expressions. For example, we could specify
L+ = (0101)∗ and L− = 10∗, and the system correctly identifies:

M. Moeller, T. Wiener, A. Solko-Breslin, C. Koch, N. Foster, and A. Silva 21:21

q0 q1
1

0

1

0

Note that the correct language has a smaller DFA than the one for L+!

8.1 Optimizations
We now look at several optimizations we implemented. The first one will reduce the number
of tables generated in step 2(a) of Figure 5 by making use of unsat-cores; the second prevents
the learner from making needlessly similar conjectures by reusing counterexamples that it
gets from the teacher, and the third explores the use of a priority queue instead of a list.

Unsat-cores

When a table’s blanks cannot be filled in by the SMT solver we explore the tables that result
by adding each string from S · Σ − S to S. In many cases, however, we might be able to
identify a row, say s′ ∈ S ·Σ−S that is already distinguished from every row in S by suffixes
in E. In this case, any filling of the blanks would result in an unclosed table because of this
row, so we can promote only this one, as in classic L⋆.

To generalize this, we observe that the closedness assertion corresponding to the row
s′ above was unsatisfiable on its own. Modern SMT solvers can be configured to compute
subets of constraints that are unsatisfiable alone, called unsat cores, when returning “unsat”
[26]. To justify that we are still guaranteed to find the minimal automaton boils down to
extending the argument of Lemma 8:

▶ Lemma 18. The invariant of Lemma 8 holds, even when L⋆
□ is modified to add only tables

resulting from promoting only strings in unsat core.

Proof. The argument for Lemma 8 applies, but we need to justify that a string in the unsat
core accesses a new state of M . This must be true, or else using M as an oracle would fill in
the blanks to satisfy the unsat core. ◀

Suffix-set Sharing

The reader may have noticed that the L⋆
□ Algorithm described above cleverly reuses counter-

examples, accumulating the suffix set E. Hence, instead of maintaining a worklist with
elements (S, E, T), we only need a worklist that maintains prefix sets S for each individual
table. For T , we maintain a cumulative mapping of strings to entries as a parameter in
the main loop and simply update missing entries for columns of the popped table on each
iteration. For E, we prove that sharing counterexamples is sound:

▶ Lemma 19. Let M be a DFA, and let (S, E, T) be compatible with M and let (S, E′, T ′)
be a table such that E ⊆ E′. Then (S, E′, T ′) is also compatible with M , where T ′ is the
extension of T by membership queries for E′.

Proof. Condition (a) of compatibility is immediate since S is unchanged. If M distinguishes
the upper part rows with only the suffixes in E, they remain distinguished by E′, implying
condition (b). Condition (c) holds by hypothesis. ◀

▶ Corollary 20. The algorithm in Figure 5 is still guaranteed to produce minimal machines
when modified to share a single E across the worklist.

ECOOP 2023

21:22 Automata Learning with an Incomplete Teacher

Table 1 Performance results on established benchmarks. “Learn time” is the total time spent on
an individual benchmark, while “Z3 time” is the time spent on a benchmark within the SMT solver.
“Worklist items” are the number of tables processed from the worklist during learning.

Benchmark DFA # Benchmarks Mean Learn Median Learn Mean Z3 Mean worklist
set Size time (s) time (s) Time (s) items

Lee, So, 2 1 0.0082 0.0082 0.0081 2.0000
and Oh 3 10 0.0234 0.0229 0.0226 5.0000

4 9 0.0600 0.0417 0.0529 7.5556
5 4 0.1676 0.1360 0.1401 19.0000

Oliveira and 1 80 0.0056 0.0053 0.0055 1.0000
Silva 2 15 0.0100 0.0093 0.0097 2.0667

3 91 0.0226 0.0216 0.0213 4.0879
4 84 0.0396 0.0338 0.0346 5.7619
5 100 0.1237 0.0775 0.0935 8.6200
6 105 0.3803 0.1684 0.2566 13.6381
7 79 1.1251 0.6419 0.7583 20.0886
8 93 10.6307 1.7830 6.1782 44.1613
9 74 50.1672 7.7361 28.8381 96.8784
10 25 98.0573 7.3782 65.2680 176.5200
11 14 1498.4836 101.2503 988.9716 933.2857

Proof. Sharing E means instead of adding a counterexample to the current item’s E, traverse
the worklist updating all E. By Lemma 19 adding additional strings to E does not affect
compatibility, and so the invariant of Lemma 8 still holds and minimality follows. ◀

Heuristic prioritization

Our algorithm as described above uses a list that is sorted only by the size of the prefix set.
By instead using a priority queue, we can apply heuristics to investigate tables which are
more likely to be compatible with a minimal DFA (in the sense of Definition 7). Because we
search monotonically by size, this trick can only save effort on the “last size searched,” since
all smaller automata are checked first. Still, the number of prefix sets grows rapidly enough
that the savings on even this last size justify the optimization.

9 Evaluation

To evaluate the performance of our implementation, we timed it on a portion of the benchmark
sets created by Oliveira and Silva [29] (for their system Bica) and the benchmarks of Lee,
So, and Oh6 [23]. We present summary data of these runs in Table 1 and Figure 7. Table 1
shows that median total learning times were consistently shorter than the mean total learning
times, suggesting that, at each size, the more expensive examples are less common. The
mean Z3 time column suggests the system spends around two-thirds of its running time in
SMT solving at all sizes. The last column shows how the number of worklist items processed
increases with DFA solution size. All benchmarks use the alphabet Σ = {0, 1}. We ran the
experiments on a 2.10GHz Intel Xeon Silver 4216 machine with 512GB of memory.

6 We omit benchmark #9, which has a DFA solution of size 16.

M. Moeller, T. Wiener, A. Solko-Breslin, C. Koch, N. Foster, and A. Silva 21:23

2 4 6 8 10
Minimum DFA size

10−2

10−1

100

101

102

103

104

To
ta

l l
ea

rn
in

g
tim

e
(s

)

Learning time vs. DFA size

Figure 7 Performance on Oliveira and Silva benchmarks generated by automata of sizes 4 to 11.

Oliveira and Silva’s benchmark set is large: for each size from 4 states to 23 states,
they produced 19 random DFAs. For each DFA, there are 5 sets of positive and negative
example strings. Each example set is a set of 20 strings of length 30 produced by random
walks on the generated DFA. Each problem also contains all the prefixes of those 20 strings.
Using this process, they generated a total of 95 problems using each size of random DFA.
Importantly, as a result of this generation process, it is very often the case that there is a
smaller consistent machine than the one used in generation. In Table 1, summary data is
presented for benchmarks generated from size 4 to size 11 machines, however, note that for
Table 1 and Figure 8, the size shown is the size of the learned (i.e., minimum-size) automaton,
not the one used to generate the examples.

From the results of our experiments, we conclude that the scalability of our system is
limited. It is practical in cases where the DFA to be learned is of size 11 or smaller. However,
in its current form, learning larger DFAs is prohibitively expensive (see Section 11 for a
discussion of future work in this direction). In contrast, Heule and Verwer [17] report solving
all of the Oliveira and Silva benchmarks for sizes 4 to 21 “within 200 seconds per instance,”
although their method requires access to all of the finite examples at the start.

9.1 Evaluation of optimizations
We evaluated the optimizations from Section 8.1 by conducting an ablation-style study,
presented in Figure 8. The ablation study was performed in two stages. First, we ran the
system on the Oliveira benchmarks (generated by sizes 4 to 9) with all optimizations turned
on. Then, we ran the system on the same benchmarks a separate time for each of the three
optimizations, with the optimization turned off. The results show significant time and search
space savings for the unsat-cores optimization and heuristic prioritization. The “suffix-set
sharing” optimization cannot affect the number of worklist items processed and turned out
to result in an entirely negligible time improvement (these figures are omitted).

10 Related Work

DFA Inference from finite data. Inference of DFAs from finite data is a long standing
problem and different solutions have appeared in the literature (see e.g [10] for an overview).
Gold introduced the observation table and considered blank entries (“holes”) in the context
of passive learning, but his algorithm does not guarantee minimality of the automaton
produced [14]. Modern algorithms attack the problem from the perspective of “state

ECOOP 2023

21:24 Automata Learning with an Incomplete Teacher

4 5 6 7 8 9
Minimum DFA ize

10−1

100

101

102

103

Le
ar
n
tim

e
(
)

Learn time v . DFA ize
No Un at core
All optimization

(a) Time reduction from unsat core optimization.

4 5 6 7 8 9
Minimum DFA size

101

102

103

W
or

kl
ist

 it
em

s p
ro

ce
ss

ed

Worklist items processed vs. DFA size
No Unsat cores
All optimizations

(b) Search space reduction of unsat core optimiza-
tion.

4 5 6 7 8 9
Minimum DFA size

10−1

100

101

102

Le
ar
n
tim

e
(s
)

Learn time vs. DFA size
No priority q e e
All optimizations

(c) Time reduction from heuristic prioritization.

4 5 6 7 8 9
Minimum DFA size

101

102

103

W
or

kl
ist

 it
em

s p
ro

ce
ss

ed

Worklist items processed vs. DFA size
No priority queue
All optimizations

(d) Search space reduction of heuristic prioritiza-
tion.

Figure 8 Ablation study of optimizations proposed in Section 8.1. Data for “Suffix-set sharing”
is omitted because it produced only negligible speedup.

merging” [30]. The main idea of these approaches is to build an automaton from the tree of
all prefixes of positive examples, called the prefix tree accepter (PTA), and then attempt
to merge states, using the negative examples to validate merges. It is invariant that the
positive examples are accepted, but a merge might cause a negative example to be accepted –
in which case it is backtracked. Much research has gone into the selection of which merges
to prioritize [21, 9]. State merging methods are much faster than the algorithm described
in this paper but in general do not guarantee minimum size. A notable exception to this
is the exbar Algorithm due to Lang [20], which gives a method for exhaustively exploring
potential merges in a way that finding a minimum size DFA is guaranteed at exponential
running time cost.

Inference of Separating Automata. Chen et al [8] use a similar notion of blanks in L⋆

(which they call “Don’t care”). The problem they solve is closely related, but it requires that
the teacher start with two regular languages, for which they seek to find a minimal separating
DFA. The algorithm they present, Lsep, computes the final DFA by first computing a 3-valued
automaton (3DFA), which has “Don’t care” as output. They then convert this automaton
to the minimum-size consistent DFA. Crucially, the interface they define with the teacher
requires that the positive and negative example sets be regular languages. Thus in light of
this restriction, the problem solved by Lsep may be seen as a special case of the iMAT setting.

M. Moeller, T. Wiener, A. Solko-Breslin, C. Koch, N. Foster, and A. Silva 21:25

DFA Inference using SAT solvers. Oliveira and Silva use constraint solvers to find a
mapping from the states of a PTA to a particular size [29]. If the search fails, the size is
increased until a DFA is found. Their work extends the method of Biermann and Feldman
[6], who first explored such mappings from the PTA. Heule and Verwer [17] also use SAT
solvers to infer DFAs from examples but their approach uses a SAT formulation closely tied
to graph coloring. They first build a compatibility graph for states of the PTA, where states
are compatible if their merge is not immediately ruled out by examples. The colors assigned
in the coloring instance thus correspond to states in the smaller DFA, with the edges of the
incompatibility graph ruling out incorrect merges.

Active learning of Network Invariants. Grinchtein, Leucker, and Piterman [16] present an
algorithm that augments L⋆ to handle missing information with a SAT solver for inferring
network invariants – i.e., in the sense of Wolper and Lovinfosse’s inductive technique verifying
for large compositions of finite-state systems [35]. Their work, which improves the earlier
method of Pena and Oliveira [31], extends the Angluin notions of table closedness and
consistency to tables with blanks (called “weakly closed” and “weakly consistent”). The
learner can proceed by performing L⋆ corresponding actions on tables while there are still
blanks. Once the table is weakly closed and weakly consistent, they produce a series of SAT
queries following Biermann and Feldmen’s approach ([6], also mentioned below). The result
of these SAT queries is a minimum-size automaton consistent with the examples in the table –
in their scheme, they do not maintain the invariant that the minimum automaton is equal in
size to the upper part of the table as in our approach, so they do not necessarily conjecture
hypotheses monotonically.

In follow-on work Leucker and Neider [24] presented a framework which distills the
essentials of the algorithm of [16] for learning DFAs. Their formal framework presents the
teacher similar to our presentation in Section 3, but they do not highlight the solver as a
first-class citizen in the framework and think of it as part of the Learner. They do give an
overview of potential learners that work with inexperienced teachers. These encompass an
approach without membership queries (a naive enumeration of all DFAs of increasing size)
and the approach of [16] with a SAT solver, as well as the approach of [8], which we described
above. They do not consider any modification similar to our iMAT with Distinguish, and
they do not explore any implementation aspects or benchmarking.

11 Discussion

We have presented algorithms that solve the problem of automata inference from an incomplete
teacher. The core ideas we applied to produce our algorithm are data structure agnostic and
therefore a first direction for future work is whether we can adapt the work we did in this
paper to recent optimizations of L⋆, such as L♯.

A particularly interesting optimization is the use of discrimination trees, an efficient
replacement for observation tables [19, 18]. The first challenge will be to understand how
the operations on discrimination trees can be generalized in the setting with □’s.

Another interesting direction would be to look at L⋆ variants developed for other automata
models. We expect that the work in this paper applies directly to Mealy and Moore machines,
with the caveat that the number of options for filling in blanks will be affected by the size
of the output sets. But one could also explore how SMTs solvers could help in learning of
weighted and symbolic automata, two models with interesting applications for which L⋆-like
algorithms were proposed [5, 4, 12].

ECOOP 2023

21:26 Automata Learning with an Incomplete Teacher

Finally, there is another L⋆ adaptation, due to Bollig et al., that learns non-deterministic
finite automata with access to an Angluin MAT. Another interesting direction for future
work would be to investigate the adaptation of their approach to the incomplete setting.

References

1 Dana Angluin. A note on the number of queries needed to identify regular languages. Inf.
Control., 51:76–87, 1981.

2 Dana Angluin. Learning regular sets from queries and counterexamples. Information and
computation, 75(2):87–106, 1987.

3 Dana Angluin. Negative results for equivalence queries. Mach. Learn., 5(2):121–150, July
1990. doi:10.1023/A:1022692615781.

4 Borja Balle and Mehryar Mohri. Learning weighted automata. In Andreas Maletti, editor,
Algebraic Informatics, pages 1–21, Cham, 2015. Springer International Publishing.

5 Francesco Bergadano and Stefano Varricchio. Learning behaviors of automata from multiplicity
and equivalence queries. SIAM J. Comput., 25(6):1268–1280, December 1996. doi:10.1137/
S009753979326091X.

6 A. W. Biermann and J. A. Feldman. On the synthesis of finite-state machines from samples
of their behavior. IEEE Trans. Comput., 21(6):592–597, June 1972. doi:10.1109/TC.1972.
5009015.

7 Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. Multi-modal synthesis of
regular expressions. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, pages 487–502, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3385412.3385988.

8 Yu-Fang Chen, Azadeh Farzan, Edmund M. Clarke, Yih-Kuen Tsay, and Bow-Yaw Wang.
Learning minimal separating dfa’s for compositional verification. In Stefan Kowalewski and
Anna Philippou, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 31–45, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

9 Orlando Cicchello and Stefan C. Kremer. Beyond edsm. In Proceedings of the 6th International
Colloquium on Grammatical Inference: Algorithms and Applications, ICGI ’02, pages 37–48,
Berlin, Heidelberg, 2002. Springer-Verlag.

10 Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cambridge
University Press, 2010. doi:10.1017/CBO9781139194655.

11 Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

12 Samuel Drews and Loris D’Antoni. Learning symbolic automata. In Axel Legay and Tiziana
Margaria, editors, Tools and Algorithms for the Construction and Analysis of Systems - 23rd
International Conference, TACAS 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, Part I, volume 10205 of Lecture Notes in Computer Science, pages 173–189, 2017.
doi:10.1007/978-3-662-54577-5_10.

13 E. Mark Gold. Language identification in the limit. Inf. Control., 10:447–474, 1967.
14 E. Mark Gold. System identification via state characterization. Automatica, 8(5):621–636,

September 1972. doi:10.1016/0005-1098(72)90033-7.
15 E Mark Gold. Complexity of automaton identification from given data. Information and

Control, 37(3):302–320, 1978. doi:10.1016/S0019-9958(78)90562-4.

https://doi.org/10.1023/A:1022692615781
https://doi.org/10.1137/S009753979326091X
https://doi.org/10.1137/S009753979326091X
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1145/3385412.3385988
https://doi.org/10.1017/CBO9781139194655
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1016/0005-1098(72)90033-7
https://doi.org/10.1016/S0019-9958(78)90562-4

M. Moeller, T. Wiener, A. Solko-Breslin, C. Koch, N. Foster, and A. Silva 21:27

16 O. Grinchtein, M. Leucker, and N. Piterman. Inferring network invariants automatically. In
3rd International Joint Conference on Automated Reasoning, volume 4130 of Lecture Notes in
Computer Science, pages 483–497. Springer-Verlag, 2006.

17 Marijn J. H. Heule and Sicco Verwer. Exact dfa identification using sat solvers. In José M.
Sempere and Pedro García, editors, Grammatical Inference: Theoretical Results and Applica-
tions, pages 66–79, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

18 Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT Algorithm: A Redundancy-Free
Approach to Active Automata Learning. In Borzoo Bonakdarpour and Scott A. Smolka, editors,
Runtime Verification, volume 8734, pages 307–322. Springer International Publishing, Cham,
2014. Series Title: Lecture Notes in Computer Science. doi:10.1007/978-3-319-11164-3_26.

19 Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning Theory.
MIT Press, Cambridge, MA, USA, 1994.

20 Kevin J. Lang. Faster algorithms for finding minimal consistent dfas. Technical report, NEC
Research Institute, 1999.

21 Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Results of the abbadingo one
dfa learning competition and a new evidence-driven state merging algorithm. In Proceedings
of the 4th International Colloquium on Grammatical Inference, ICGI ’98, pages 1–12, Berlin,
Heidelberg, 1998. Springer-Verlag.

22 Vu Le and Sumit Gulwani. Flashextract: A framework for data extraction by examples.
SIGPLAN Not., 49(6):542–553, June 2014. doi:10.1145/2666356.2594333.

23 Mina Lee, Sunbeom So, and Hakjoo Oh. Synthesizing regular expressions from examples for
introductory automata assignments. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences, GPCE 2016, pages 70–80,
New York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2993236.
2993244.

24 M. Leucker and Daniel Neider. Learning minimal deterministic automata from inexperienced
teachers. In Leveraging Applications of Formal Methods, 2012.

25 Yeting Li, Shuaimin Li, Zhiwu Xu, Jialun Cao, Zixuan Chen, Yun Hu, Haiming Chen, and
Shing-Chi Cheung. Transregex: Multi-modal regular expression synthesis by generate-and-
repair. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pages 1210–1222. IEEE, 2021.

26 Mark Liffiton and Karem Sakallah. Algorithms for computing minimal unsatisfiable subsets of
constraints. J. Autom. Reasoning, 40:1–33, January 2008. doi:10.1007/s10817-007-9084-z.

27 Oded Maler and Amir Pnueli. On the learnability of infinitary regular sets. In COLT 1991,
1991.

28 Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and Michał Szynwelski.
Learning nominal automata. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL), POPL ’17, pages 613–625, 2017.

29 Arlindo Oliveira and J.P.M. Silva. Efficient algorithms for the inference of minimum size dfas.
Machine Learning, 44, July 2001.

30 Jose Oncina and Pedro García. Inferring regular languages in polynomial update time. World
Scientific, January 1992. doi:10.1142/9789812797902_0004.

31 J.M. Pena and A.L. Oliveira. A new algorithm for exact reduction of incompletely specified
finite state machines. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 18(11):1619–1632, 1999. doi:10.1109/43.806807.

32 Leonard Pitt and Manfred K. Warmuth. The minimum consistent dfa problem cannot be
approximated within any polynomial. J. ACM, 40(1):95–142, January 1993. doi:10.1145/
138027.138042.

33 Frits Vaandrager. Model learning. Commun. ACM, 60(2):86–95, January 2017. doi:10.1145/
2967606.

ECOOP 2023

https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1145/2666356.2594333
https://doi.org/10.1145/2993236.2993244
https://doi.org/10.1145/2993236.2993244
https://doi.org/10.1007/s10817-007-9084-z
https://doi.org/10.1142/9789812797902_0004
https://doi.org/10.1109/43.806807
https://doi.org/10.1145/138027.138042
https://doi.org/10.1145/138027.138042
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606

21:28 Automata Learning with an Incomplete Teacher

34 Frits W. Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten Wißmann. A New
Approach for Active Automata Learning Based on Apartness. In Dana Fisman and Grigore
Rosu, editors, Tools and Algorithms for the Construction and Analysis of Systems - 28th
International Conference, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
Part I, volume 13243 of Lecture Notes in Computer Science, pages 223–243. Springer, 2022.
doi:10.1007/978-3-030-99524-9_12.

35 Pierre Wolper and Vinciane Lovinfosse. Verifying properties of large sets of processes with
network invariants. In International Workshop on Automatic Verification Methods for Finite
State Systems, pages 68–80, 1990.

36 Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L Glassman. Interactive program
synthesis by augmented examples. In Proceedings of the 33rd Annual ACM Symposium on
User Interface Software and Technology, pages 627–648, 2020.

A Another L⋆
□ Example

Suppose we start with the following input.

L+ = {ab, aab, bab, aaab, abab, baab, bbab}
L− = {aa, ba, bb, aaa, baa, aba, bba, abb, bbb}

We begin with the following table as the only item in the worklist.

ε

ε □

a □

b □

ε

ε ⊟

a ⊟

b ⊟

q0

a, b

We pop this table off of the worklist, and the SMT solver attempts to fill in its blanks.
The solver finds that filling all the blanks with a - satisfies the constraints. We then conjecture
the machine that corresponds to the filled-in table.

We get the counterexample baab, add its suffixes to E, and push the new (S, E, T), below
on the left, onto the top of worklist.

ε b ab aab baab

ε □ □ + + +
a □ + + + □

b □ - + + □

ε b ab aab baab

ε □ □ + + +
a □ + + + □

aa - + + □ □

ab + - + □ □

b □ - + + □

Now the table on the left is unsatisfiable. Hence, we add each element in SΣ− S to S

and add each resulting (S, E, T) to the tail of the worklist. Now the head of the worklist
has S = {ε, a} (table depicted on the right above), and the last item has S = {ε, b}. Once
again, the solver fails because there is no way to fill in the blanks and maintain closedness.
Once more, we add each element in SΣ− S to S and add each new (S, E, T) to the tail of
the worklist. Now the head of the worklist has S = {ε, b}, the next item has S = {ε, a, aa},
and the last item has S = {ε, a, ab}.

https://doi.org/10.1007/978-3-030-99524-9_12

M. Moeller, T. Wiener, A. Solko-Breslin, C. Koch, N. Foster, and A. Silva 21:29

ε b ab aab baab

ε □ □ + + +
b □ - + + □

a □ + + + □

ba - + + □ □

bb - - + □ □

We pop the table above off of the worklist. Again the solver fails because there is no
way to fill in the blanks and maintain closedness. We add each element in SΣ − S to S

and add each new (S, E, T) to the tail of the worklist. Now the head of the worklist has
S = {ε, a, aa}, the next item has S = {ε, a, ab}, the next item has S = {ε, b, ba}, and the
last item has S = {ε, a, bb}.

In the next step, we pop the table below on the left off of the worklist. Unsat again. We
add each element in SΣ− S to S and add each new (S, E, T) to the tail of the worklist. At
the head of the list we now have the table on the right.

ε b ab aab baab

ε □ □ + + +
a □ + + + □

aa - + + □ □

aaa - + □ □ □

aab + □ □ □ □

ab + - + □ □

b □ - + + □

ε b ab aab baab

ε □ □ + + +
a □ + + + □

ab + - + □ □

aa - + + □ □

aba - + □ □ □

abb - □ □ □ □

b □ - + + □

This time SMT solver successfully fills in the blanks:

ε b ab aab baab

ε ⊟ ⊞ + + +
a ⊞ + + + ⊞

ab + - + ⊞ ⊞

aa - + + ⊞ ⊞

aba - + ⊞ ⊞ ⊞

abb - ⊞ ⊞ ⊞ ⊞

b ⊞ - + + ⊞

q0

q1

q2
a

b a, b

a

b

We get counterexample bbb, add its suffixes to E, and the head of the worklist becomes:

ε b ab aab baab bb bbb

ε □ □ + + + - -
a □ + + + □ - □

ab + - + □ □ □ □

aa - + + □ □ □ □

aba - + □ □ □ □ □

abb - □ □ □ □ □ □

b □ - + + □ - □

Finally the SMT solver successfully fills in the blanks:

ECOOP 2023

21:30 Automata Learning with an Incomplete Teacher

ε b ab aab baab bb bbb

ε ⊟ ⊟ + + + - -
a ⊟ + + + ⊞ - ⊟

ab + - + ⊞ ⊞ ⊟ ⊟

aa - + + ⊞ ⊞ ⊟ ⊟

aba - + ⊞ ⊞ ⊞ ⊟ ⊟

abb - ⊟ ⊞ ⊞ ⊞ ⊟ ⊟

b ⊟ - + + ⊞ - ⊟

q0 q1

q2

a

b a

b ab

The corresponding automaton is consistent with L+, L− so we return it as the result.

Modular Verification of State-Based CRDTs in
Separation Logic
Abel Nieto
Aarhus University, Denmark

Arnaud Daby-Seesaram
ENS Paris-Saclay, France

Léon Gondelman
Aarhus University, Denmark

Amin Timany
Aarhus University, Denmark

Lars Birkedal
Aarhus University, Denmark

Abstract
Conflict-free Replicated Datatypes (CRDTs) are a class of distributed data structures that are
highly-available and weakly consistent. The CRDT taxonomy is further divided into two subclasses:
state-based and operation-based (op-based). Recent prior work showed how to use separation logic to
verify convergence and functional correctness of op-based CRDTs while (a) verifying implementations
(as opposed to high-level protocols), (b) giving high level specifications that abstract from low-level
implementation details, and (c) providing specifications that are modular (i.e. allow client code to
use the CRDT like an abstract data type). We extend this separation logic approach to verification
of CRDTs to handle state-based CRDTs, while respecting the desiderata (a)–(c). The key idea is to
track the state of a CRDT as a function of the set of operations that produced that state. Using
the observation that state-based CRDTs are automatically causally-consistent, we obtain CRDT
specifications that are agnostic to whether a CRDT is state- or op-based. When taken together with
prior work, our technique thus provides a unified approach to specification and verification of op-
and state-based CRDTs. We have tested our approach by verifying StateLib, a library for building
state-based CRDTs. Using StateLib, we have further verified convergence and functional correctness
of multiple example CRDTs from the literature. Our proofs are written in the Aneris distributed
separation logic and are mechanized in Coq.

2012 ACM Subject Classification Theory of computation → Program verification; Theory of
computation → Distributed algorithms; Theory of computation → Separation logic

Keywords and phrases separation logic, distributed systems, CRDT, replicated data type, formal
verification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.22

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.15

Funding This work was supported in part by a Villum Investigator grant (no. 25804), Center for
Basic Research in Program Verification (CPV), from the VILLUM Foundation.

1 Introduction

Conflict-free Replicated Data Types (CRDTs) are a class of distributed data structures that
trade off strong consistency in favour of high availability. That is, local updates are not
blocked by inter-replica synchronization; instead, they are immediately applied locally, and

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Abel Nieto, Arnaud Daby-Seesaram, Léon Gondelman, Amin Timany, and
Lars Birkedal;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 22; pp. 22:1–22:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2741-8119
https://orcid.org/0000-0002-0226-4638
https://orcid.org/0000-0001-8262-6397
https://orcid.org/0000-0002-2237-851X
https://orcid.org/0000-0003-1320-0098
https://doi.org/10.4230/LIPIcs.ECOOP.2023.22
https://doi.org/10.4230/DARTS.9.2.15
https://doi.org/10.4230/DARTS.9.2.15
https://doi.org/10.4230/DARTS.9.2.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Modular Verification of State-Based CRDTs in Separation Logic

then propagated to other replicas. Because of the lack of synchronization, CRDTs need
a mechanism for resolving conflicting updates: a typical strategy is to make all updates
commutative, so that they can be applied in any order.

There are two main implementation strategies for CRDTs, differing in how updates
are propagated. Operation-based (op-based) CRDTs propagate local updates by reifying
updates as operations, which are then transmitted to other nodes. Once these (now remote)
operations are received by other replicas, they can be applied to their local states so they can
“catch up”. By contrast, in state-based CRDTs, an update is first applied to the local state,
and then the state is propagated to other replicas. This is achieved by letting the state be an
element of a join-semilattice, constraining updates to be monotonic, and combining local and
remote states via the lattice’s join operator. The choice of implementation style for a CRDT
(op vs state-based) incurs several tradeoffs. Op-based based CRDTs are conceptually simpler,
but make assumptions about the underlying delivery mechanism (e.g. at most once delivery).
By contrast, the state-based approach can easily cope with duplicates and messages delivered
out of order, because the merge operation (modelled with joins) is idempotent, associative,
and commutative. On other hand, not only must the datatype semantics be encoded via
joins, but also sending the entire state across the network might be inefficient.

Figure 1 shows a grow-only counter (g-counter) CRDT implemented in both styles. A
g-counter is a datatype with two operations: it can be read and it can be incremented by a
non-negative number. The op-based implementation defines the counter’s initial state (0),
an effect function that adds the value we are incrementing by to the counter’s current state,
and a read function that is just the identity. An event is a tuple containing an operation
(the value to increment by) plus metadata, including the replica id where the operation
originated. The state-based g-counter is more complex. The counter’s state is kept as a list
of integers tracking each replica’s contribution to the counter’s value. The initial state is
the list of all zeroes with size numRep, the number of replicas. A mutator function takes the
current state and the increment value, and returns the updated list where the right entry, as
determined by the operation’s origin, was incremented. The merge function takes two states
and computes their join in the underlying lattice. For the g-counter, we take the pointwise
maximum of the two lists. Finally, to read the value of the g-counter we just sum all entries
in the state list. These purely functional implementations capture the g-counter’s core logic,
but do not show how events are propagated between replicas.

The standard consistency model for CRDTs is Strong Eventual Consistency (SEC). SEC
can, in turn, be divided into two sub-properties: convergence (two replicas that have processed
the same set of updates must be in the same state) and eventual delivery (any update sent
by a replica will eventually be delivered to all other replicas).

Additionally, the guarantees of SEC are sometimes strengthened to imply causal con-
sistency [2], meaning that the causal order of updates is respected. In other words, given
updates u and w, if u happened before w at a replica [12], then u must be processed before w

at all other replicas. Causal consistency captures programmer’s intuitions on how the order
of operations should be preserved; for example, it implies that reads are monotonic: a read
always returns data that is “fresher” than what previous reads have returned.

1.1 Denotational Specifications
Specifying CRDTs is tricky because of their replicated nature and relaxed consistency model.
Some works adopt SEC as the correctness criteria and do not provide functional correctness
specifications of CRDTs [18, 7, 17]. Eventual consistency is a key correctness property,
but this approach has at least two (related) shortcomings. First, given, e.g., a g-counter

A. Nieto, A. Daby-Seesaram, L. Gondelman, A. Timany, and L. Birkedal 22:3

(* op - based g- counter *)
let init = 0

let effect st e =
let (op , _, _) = e in
st + op

let read st = st

(* state - based g- counter *)
let init = List.init numRep (fun _ → 0)

let mutator st e =
let (op , src) = e in
List.mapi (fun i c →

if i = src then c + op else c)

let merge st1 st2 =
let max = fun p →

Int.max (fst p) (snd p) in
List.map max (List. combine st1 st2)

let read = List. fold_left (+) 0

Figure 1 Op-based and state-based OCaml implementations of a grow-only counter. numRep is
the number of replicas.

implementation, proving SEC shows that different replicas eventually converge, but does
not tell us what they converge to. This means we cannot rule out bugs such as subtracting
instead of adding in the definition of effect in Figure 1. Another problem is that by focusing
on SEC we cannot abstract away from implementation details. For example, Figure 1 shows
two g-counter implementations that use different techniques, but we should be able to reason
about a g-counter as an abstract data type [15], without worrying about whether it is op-based
or state-based.

Burckhardt et al. [3] were the first to give functional correctness specifications of CRDTs.
Their key observation is that just like a sequential data type (e.g., a queue) can be specified
as a partial function from a list of operations to a (final) state, a replicated data type can
be specified as a partial function from a set of events to a state. As in Figure 1, an event
contains an operation plus additional metadata, including the id of the replica that created
the operation and a timestamp. The timestamps induce a partial or total order on the set of
events and, furthermore, that order is consistent with causality.1

We call this partial function from sets of events to the CRDT’s state after processing the
events a denotation.2 For example, the denotation for a g-counter is JsK =

∑
e∈s e.o, where s

is a set of events and e.o extracts e’s operation (the value to increment by). In this particular
case we do not use the event metadata to specify the g-counter, but we do so for other, more
complex, CRDTs where all operations do not naturally commute. Note that any CRDT
specification that uses denotations trivially satisfies the convergence part of SEC, because J·K
is insensitive to the order in which events arrive at different replicas: if they have received
the same set of events, then their states will be the same. Also notice that denotations are
by nature closer to the informal op-based specification in Figure 1 than to the state-based
one. This is because op-based CRDTs are framed in terms of individual operations.

1.2 Verifying with Denotations
The papers by Burckhardt et al. and Leinjse et al. [3, 13] are concerned with specifying
CRDTs, but there is still a need for a mechanism that ties the high-level specifications, given
in terms of denotations, to executable code written using features of a modern programming
language: e.g., mutation, node-local concurrency, and higher-order functions. The recent

1 In Burckhardt et al. [3] a visibility relation is used to order events, instead of a timestamp.
2 The term is due to Leijnse et al. [13], who recast Burckhardt et al.’s formalism in a style more amenable

to specifying CRDT combinators.

ECOOP 2023

22:4 Modular Verification of State-Based CRDTs in Separation Logic

work of Nieto et al. [20] connects denotations to low-level CRDT implementations using the
Aneris distributed separation logic [11]. Specifically, they show how to build separation logic
propositions that track the local state of a CRDT, where, e.g., the return value of a read is
then given by a denotation of the local state. Nieto et al. demonstrate their approach by
verifying a library for building op-based CRDTs: the library user (the CRDT implementer)
instantiates the library with a purely-functional implementation of the CRDT (similar to
the op-based example in Figure 1), and obtain in return a replicated data type. The library
handles network operations, concurrency control, and mutation of local state. Nieto et al.
exclusively reason about operation-based CRDTs. As future work, the authors include a
high-level sketch of how their techniques might be adapted to the state-based setting.

There is then, to the best of our knowledge, an unexplored gap in the literature for
verifying functional correctness of state-based CRDTs using modular specifications.

Related to the last point, existing approaches to verifying CRDTs target either op-
based [7, 16, 14, 17, 20] or state-based [23, 18, 24] CRDTs, but never both kinds. This is
important because it means that it is not possible to give the same specification to two
implementations of the same replicated data type, where each uses a different implementation
strategy (as in Figure 1). Having specifications that hide away implementation details is
something we take for granted for sequential data types (e.g. a set abstract data type can be
implemented both via a linked list and a hash table, but both implementations can be given
the same specifcation). It would be useful to have the same hold for CRDTs.

1.3 Contributions
We fill the gaps identified above through the following contributions:
1. We give the first modular specification of a general class of state-based CRDTs. Our

specifications are given in the Aneris distributed separation logic and our proofs are
mechanized in Coq.

2. Furthermore, when taken together with Nieto et al. [20], our work provides a unified
framework for the specification and verification of both kinds of CRDTs. This is because
our specifications of state-based CRDTs are compatible with Nieto et al.’s specifications
of op-based CRDTs. We emphasize this point by re-verifying the example client program
in Nieto et al. that uses a positive-negative counter CRDT, except we swap their op-
based counter by a state-based equivalent. Crucially, the client’s safety proof remains
virtually unchanged,3 showing that it is possible to specify CRDTs while hiding their
implementation strategy.

3. We give the first formal proof that state-based CRDTs are causally-consistent.
4. We evaluate our approach by verifying a set of example CRDTs from the literature. The

evaluation shows that our techniques can handle a variety of CRDTs, including counters,
sets, and higher-order combinators.

2 Aneris Primer

Aneris [11] is a distributed separation logic built on top of the Iris program logic framework [9].
Aneris is designed to reason about safety properties of distributed systems written in Aneris-
Lang, which can be thought of as a subset of OCaml deeply embedded in Coq. This subset

3 Modulo some manual editing of Nieto et al.’s proof development, which could be further eliminated
with additional Coq engineering work that refactors some typeclasses

A. Nieto, A. Daby-Seesaram, L. Gondelman, A. Timany, and L. Birkedal 22:5

includes support for higher-order functions, mutable state, node-local concurrency (including
the ability to fork new threads dynamically), as well as expressions for sending and receiving
messages over UDP-style sockets. The operational semantics models an unreliable network:
once sent, messages can be dropped, re-ordered, arbitrarily-delayed, and duplicated.

Figure 2 shows the fragment of Aneris most relevant to this paper. First, notice that the
logic includes the usual connectives of a higher-order logic. The separation logic connectives
include the separating conjunction P ∗ Q, indicating ownership of a resource that can be
split into two parts, one satisfying P and the other satisfying Q. The magic wand P −∗ Q

denotes resources that, when combined with a resource satisfying P then together satisfy
Q. The points-to proposition ℓ 7→ip v grants exclusive ownership of memory location ℓ on
the node with IP address ip alongside the knowledge that value v is stored in ℓ. In other
words, only the owner of this resource is allowed to read or modify ℓ’s contents. As usual,
the Hoare triple {P } ⟨ip; e⟩ {x. Q} is a partial correctness assertion for expression e running
on the node with IP address ip. Notice that in the postcondition we bind the return value of
e to x, whose scope extends over Q.

Aneris inherits from Iris a notion of invariant. An invariant P
N (N being the name – see

below), once established at a point in a proof, asserts that the proposition P hold throughout
the execution of the program from that point on and is respected by all threads and nodes.
This is enforced by the program logic and is reflected in the invariant opening rule. The
invariant opening rule allows invariants to be accessed around atomic expressions. That is, it
allows us to assume that the invariant holds before the atomic step and enforces that after
the atomic step executes, the invariant needs to be closed again, meaning that we have to
show that it holds again after the execution of the atomic step. The notation P

N says that
P is an invariant with namespace N . One can think of N as an identifier for the invariant
that helps the logic keep track of which invariants are open at any given point in the proof:
this is important because an invariant that is currently open cannot be re-opened.

The points-to proposition ℓ 7→ip v is but one example of the kind of resources that one
can assert ownership over. In fact, the user of the logic can define new kinds of resources by
creating partial-commutative monoids (PCMs): monoids where the product is commutative
and partial. Given a PCM M and a ∈ M the proposition a

γ asserts ownership of ghost state
a. Here, γ is the ghost name under which a is stored. Crucially, a

γ ∗ b
γ is equivalent to the

monoid product a · b
γ . The logic guarantees that the product of all resources stored under

the same ghost name is well-defined: hence by choosing appropriate monoids we can tweak
the properties of ghost state.

The proposition □P , read persistently P , tells us that P holds and it does not assert
ownership of any exclusive resources. We say that P is a persistent proposition if P ⊢ □P .
Persistent propositions are duplicable in the sense that □P ⊢ □P ∗ □P . Finally, the update
modality |⇛E1 E2 P says that P holds after updating (allocating or modifying) resources;
furthermore, we can assume that all invariants in the set E1 hold when establishing P but
must also (re)establish all invariants in the set E2. The notation |⇛E is shorthand for |⇛E E .

3 Main Ideas

The main idea of this paper is that, from a user’s perspective, whether a CRDT is op-
based or state-based is an implementation detail, and one that ought not affect the data
structure’s specification. To capture this idea formally we reach for two tools: separation
logic propositions for tracking the global and local states of the CRDT as a function of sets
of events (user operations), and high-level specifications for the CRDT based on denotations.

ECOOP 2023

22:6 Modular Verification of State-Based CRDTs in Separation Logic

P, Q ∈ iProp ::= True | False | P ∧ Q | P ⇒ Q | P ∨ Q | ∀x. P | ∃x. P | · · · higher-order logic
| P ∗ Q | P −∗ Q | ℓ 7→ip v | {P } ⟨ip; e⟩ {x. Q} separation logic
| P

N | a
γ invariants and resources

| □ P | |⇛E1 E2 modalities

Figure 2 Aneris fragment adapted from Nieto et al. [20].

To track a CRDT’s state we construct propositions GlobSt(sg) and LocSt (i, sown, sfor)
for global and local states, respectively, as well as a global invariant GlobInv. Ownership
of the global state tells us that sg is exactly the set of all events issued by any replica. An
event is a triple (op, source, time) where op is the user-provided operation (e.g. inc(10) for
a g-counter), source is the id of the replica that issued the operation (ids are just natural
numbers), and time is a logical timestamp that allows us to order events according to the
usual happens-before relation. Ownership of the local state LocSt (i, sown, sfor) tells us that
replica i has issued exactly the events in sown, and that it has received at least the events
in sfor, which all originate outside of i (we only get an approximation of the events from
outside of i because in between two user interactions with the CRDT at replica i, new merge
operations might have taken place).

Once the above propositions have been defined, we prove a comprehensive suite of
“resource lemmas” that allow a client to reason about the state of the CRDT. For example,
we prove that if a user knows both GlobSt(sg) and LocSt (i, sown, sfor), and they can find
events e and e′ where e ∈ sown ∪ sfor (e is in the local state), e′ ∈ sg (e′ is in the global state)
and e′ happens before e, then e′ must have been received at replica i as well: e′ ∈ sown ∪ sfor.
This is an encoding of causality in separation logic [8, 20]. We do not claim this formulation
as a contribution; instead, our contribution is defining the above predicates in such a way
that they can track state-based CRDTs, and then proving existing lemma statements for our
definitions. In effect, we have re-implemented an existing interface. This is crucial because it
means that from a client’s perspective it does not matter what kind of CRDT (state-based
or op-based) they are working with: they all satisfy the same laws.

Technical Challenges

Resource lemmas like causality hold only in the presence of the global invariant GlobInv.
This invariant guarantees that at all times the state of the system is valid. The system state
is a tuple s⃗l of the local state at every replica. Defining a notion of validity suitable for
state-based CRDTs is one of the tricky technical parts of our proof. Two complications arise:
how to represent local states, and how to represent time.

Defining local state as an element of the lattice over which the CRDT is implemented
does not work, because we lose track of the individual events. For example, we might
remember that the state of the counter is [4, 5], but not that it resulted from three events:
two increments of 2 each at replica 0, and one increment of 5 at replica 1. Remembering
events is needed to show the resource lemmas. We therefore represent local states as sets
of events, but now we need a way to link these sets of events to the lattice element that is
computed at runtime. We do this with denotations, which are functions from sets of events
to lattice elements. In our proof, a local invariant ensures that, for every replica i, if s is the
set of tracked events for i and the runtime CRDT state at i is st, we must have JsK = st. The
definition of denotation for a state-based CRDT must then satisfy a number of coherence
properties with respect to the underlying lattice: for example, we require that, under certain

A. Nieto, A. Daby-Seesaram, L. Gondelman, A. Timany, and L. Birkedal 22:7

conditions, if JsK = st and Js′K = st′, then Js ∪ s′K = st ⊔ st′. In other words, our proof tracks
the logical state with a free lattice of events, while the implementation computes using the
CRDT-specific lattice. The denotation is the homomorphism between the two.

For lemmas like causality we also need to be able to compare events according to time.
Prior work on op-based CRDTs implements a causal broadcast library that tags each event
with a (physical) vector clock 4 that serves as a timestamp [20]. In our setting, since state-
based CRDTs do not assume causal broadcast, we use a purely logical notion of time. Given
an event e, its timestamp is taken to be the set of events that e causally depends on. This
set is computed at the point e is created: if e was issued at replica i where the local state is
an event set s, then e causally depends on every element of s. This works because we can
show that local states are always dependency-closed: if e′ ∈ s and ed is a dependency of e′,
then ed ∈ s as well. Our definition of logical time allows us to give the first formal proof
that state-based CRDTs are causally-consistent.

Verified Examples

With the above in place we turn to the verification of different state-based CRDTs. We
implemented and verified five CRDTs from the literature [21]: a grow-only counter, a positive-
negative counter, an add-only set, a combinator for products of CRDTs, and a combinator
for maps from strings to an underlying CRDT type. We implemented these examples in two
steps: first, we implemented a StateLib library that factors out all the common elements
in different examples: network calls, merging of remote states, and concurrency control.
The library takes as input a purely-functional implementation of a state-based CRDT, in
the form of a triple (init_st, mutator, merge), where init_st is the CRDT’s initial (lattice
based) state, mutator is a function that takes a state and an operation and produces the next
state, and merge implements the lattice’s least upper bound operation. StateLib requires
that the CRDT implementer proves the aforementioned coherence properties (e.g., that
merging two states is the same as taking the denotation of the union of their corresponding
event sets) about their purely-functional implementation. Given this core logic, the library
returns a fully-fledged replicated data type and two functions, get_state and update, to query
and update the state of the data-structure. In the second step, we wrote purely-functional
implementations for each of the previously-mentioned examples and proved the relevant
coherence properties so the library can be instantiated with them. The modular design of
the library allows us to prove the library safe just once, and then re-use that proof to obtain
safety proofs for each of the CRDTs.

Finally, we wanted to validate our claim that a client need not know whether the CRDT
they are interacting with is state-based or not. We did this by using the example in Nieto et al.
where they verify a client program together with an op-based positive-negative counter [20].
We were able to swap their op-based counter with our state-based positive-negative counter
while leaving the proof virtually unmodified (small technical changes are required, but these
could be eliminated with further Coq engineering). This shows that CRDTs can be true
abstract data types, and can be specified while abstracting away implementation details.

The rest of the paper is structured as follows: Section 4 gives an overview of the CRDT
resource lemmas in Nieto et al. [20], which we re-prove in the state-based context. Sections 5,
6, and 7 present StateLib’s design, specification, and safety proof, respectively. Section 8
describes the verified example CRDTs, as well as the proof of the client program that is
agnostic to the CRDT class. Section 9 surveys related work and Section 10 concludes.

4 A vector of integers, with one entry per node in the system. The ith entry tells us how many updates
have been done by replica i.

ECOOP 2023

22:8 Modular Verification of State-Based CRDTs in Separation Logic

4 Background: CRDTs in Separation Logic

We give an overview of the separation logic approach to verification of op-based CRDTs in
Nieto et al. [20]. Specifically, they introduce abstract separation logic resources (abstract
predicates) for tracking the local and global states of a CRDT. The abstract resources are
later used in the specifications of CRDT operations. Nieto et al. reason only about op-based
CRDTs, but in this paper we show how to instantiate the abstract resources so that we can
verify state-based CRDT implementations as well. As we will later see, this allows clients to
reason about a CRDT while remaining agnostic of the CRDT’s implementation strategy.

4.1 Time, Events, and Denotations
We start by giving a few definitions that we will use throughout the paper.

Logical time allows us to order events in a distributed system using causal order. Time
is axiomatized by a triple (Time, ≤t, <t), where Time is a set of timestamps, ≤t is a partial
order on timestamps, and <t is the strict version of ≤t. For example, for working with
op-based CRDTs, Nieto et al. instantiate logical time by taking timestamps to be vector
clocks and ≤t to be the associated pointwise ordering.

Logical events represent operations that are executed by the CRDT, together with
metadata. A logical event is a triple (op, source, time) ∈ Event ≜ Op × N × Time. Here Op
is the type of operations on the CRDT (e.g. Op ≜ {inc(n) | n ∈ N} for a g-counter), source
is the id of the replica that generated the event, and time is a timestamp. For an event e we
write e.o, e.s, and e.t for the operation, source, and timestamp of e, respectively.

Given two event sets s and s′, we say that s is a causally-closed subset of s′, written
s ⊆cc s′, if s ⊆ s′ and

∀e e′, e ∈ s′ ⇒ e′ ∈ s′ ⇒ e.t ≤t e′.t ⇒ e′ ∈ s ⇒ e ∈ s

That is, if we start with two events from s′ and the later one e′ (according to timestamp
ordering) is in s, then e (its causal dependency) must be in s as well.

Finally, we use denotations to specify CRDTs. A denotation is a tuple (Op, St, sinit :
St, J·K : P(Event) ⇀ St). For example, as in Figure 1, for a g-counter we could have Op as
previously defined, St ≜ N, sinit ≜ 0, and JsK =

∑
e∈s unwrap(e.o) with unwrap(inc(n)) = n.

We could have also chosen St to be the set of lists of naturals of length N , where N is the
number of replicas. This latter denotation would be closer to the state-based implementation.

It is useful for denotations to be partial because we can avoid giving a meaning to
ill-formed sets of events. For example, suppose we have s = {a, b} with a.t = b.t but a ̸= b.
We might know that in practice events with equal timestamps must be equal, so s can never
arise during an execution. We might then choose JsK to be undefined.

4.2 Separation Logic Resources
So far we have not shown any Aneris definitions. We do so in Figure 3, which shows the types
of different abstract separation logic resources (predicates) that, together with associated
lemmas, can be used to reason about the state of CRDTs. Specifically, these resources
appear in the pre and post-conditions of functions that operate on a CRDT. The abstract
resources are designed to be generic so they can be used with multiple CRDTs. Indeed,
Nieto et al. verified multiple op-based example CRDTs using these resources [20], and we
have also verified multiple state-based examples. Notice that Figure 3 does not show the
definition of the resources. The reader can think of Figure 3 as defining an interface in the

A. Nieto, A. Daby-Seesaram, L. Gondelman, A. Timany, and L. Birkedal 22:9

Resources (abstract predicates)

(Global invariant) GlobInv : iProp
(Global state) GlobSt : P(Event) → iProp

(Global snapshot) GlobSnap : P(Event) → iProp
(Local state) LocSt : N → P(Event) ⇒ P(Event) → iProp

(Local snapshot) LocSnap : N → P(Event) ⇒ P(Event) → iProp

Global state laws

(GlobStTakeSnap) ∀E s, N ↑ ⊆ E ⇒ GlobInv −∗ GlobSt(s) −∗ |⇛E GlobSt(s) ∗ GlobSnap(s)
(GlobSnapIncl) ∀E s s′, N ↑ ⊆ E ⇒ GlobInv −∗ GlobSnap(s) −∗ GlobSt(s′) −∗ |⇛E s ⊆ s′ ∗ GlobSt(s′)

Local state laws

(LocSnapIncl) ∀E i sown sfor s′
own s′

for, N ↑ ⊆ E ⇒ GlobInv −∗ LocSnap(i, sown, sfor) −∗ LocSt (i, s′
own, s′

for) −∗
|⇛E sown ∪ sfor ⊆cc s′

own ∪ s′
for ∗ LocSt (i, s′

own, s′
for)

(LocSnapExt) ∀E i i′ sown sfor s′
own s′

for, LocSnap(i, sown, sfor) −∗ LocSnap(i′, s′
own, s′

for) −∗
|⇛E ∀e e′, e ∈ sown ∪ sfor ⇒ e′ ∈ s′

own ∪ s′
for ⇒ e.t = e′.t ⇒ e = e′

(LocSnapProv) ∀E i sown sfor e, N ↑ ⊆ E ⇒ e ∈ sown ∪ sfor −∗ GlobInv −∗ LocSnap(i, sown, sfor) −∗
|⇛E ∃sg, GlobSnap(sg) ∗ e ∈ sg

(GlobSnapProv) ∀E i sown sfor sg, N ↑ ⊆ E ⇒ GlobInv −∗ LocSt (i, sown, sfor) −∗ GlobSnap(sg) −∗
|⇛E LocSt (i, sown, sfor) ∗ ∀e, e ∈ sg ⇒ EV_Orig(e) = i ⇒ e ∈ sown

(Causality) ∀E i sown sfor sg, N ↑ ⊆ E ⇒ GlobInv −∗ LocSt (i, sown, sfor) −∗ GlobSnap(sg) −∗
|⇛E LocSt (i, sown, sfor) ∗ ∀e e′, e ∈ sg ⇒ e′ ∈ sown ∪ sfor ⇒ e <t e′ ⇒ e ∈ sown ∪ sfor

Figure 3 CRDT resources and selected lemmas, from Nieto et al. [20].

software engineering sense. Nieto et al. implement this interface for op-based CRDTs, while
we re-implement it for state-based CRDTs. For space reasons, we do not show the entire
interface; the full interface can be found in the accompanying Coq code.

The defined resources are as follows: there is a global invariant GlobInv that holds
throughout the CRDT’s existence. Then we define resources for tracking global (GlobSt)
and local (LocSt) states. The intuition is that if GlobSt(sg) holds, then we know that sg is
exactly the set of events issued by any CRDT replica in the system. Similarly, ownership
of LocSt (i, sown, sfor) tells us that replica i has processed exactly the events in sown and at
least the events in sfor. The events in sown (the “own” events) must have all originated at i,
while the ones in sfor (the “foreign” events) must all originate outside of i. This is because a
client of the CRDT knows exactly which events it has issued, but is potentially not aware of
all events that have been received “in the background” since the last interaction with the
CRDT.

Global and local states are exclusive (not shown in Figure 3), meaning that only one copy
of the resource (or one per replica in the case of local state) can exist: e.g., GlobSt(sg) −∗
GlobSt(s′

g) −∗ ⊥.
By contrast, the interface also declares global and local snapshots (GlobSnap and LocSnap),

which are persistent (duplicable) and give us a lower bound on global and local states,
respectively. Snapshots are useful as a “certificate” that an event was generated by a given
replica: this is the case if one can prove, e.g., that GlobSnap(sg) and e ∈ sg for an event e.
The use of global snapshots as certificates is validated by lemma GlobSnapIncl (Figure 3).
The lemma says that under the global invariant, if we own GlobSnap(sg) and GlobSt(s′

g),
then we must have sg ⊆ s′

g. This conclusion holds under the update modality |⇛E , which

ECOOP 2023

22:10 Modular Verification of State-Based CRDTs in Separation Logic

IncSpec
{LocSt (i, sown, sfor) ∗ GlobSt(sg)}

⟨ipi; inc(n)⟩

{v. ∃e s′
for. s′

for ⊇ sfor ∗ e /∈ sg ∗ e.o = n ∗ e.s = i

Jsown ∪ {e} ∪ s′
forK = v ∗ LocSt

(
i, sown ∪ {e}, s′

for
)

∗ GlobSt(sg ∪ {e})}
Figure 4 Simplified spec of an increment operation, which returns the counter’s current value.

means that it holds possibly after opening (and closing) all invariants in the mask E. The
premise N ↑ ⊆ E tells us that the global invariant’s namespace N ↑ is part of E. This means
that GlobInv must not be open when the lemma is called (because the proof of the lemma
opens GlobInv). LocSnapIncl provides similar inclusion guarantees for local snapshots, but
note that we actually get the stronger causally-closed inclusion ⊆cc, as opposed to just ⊆.

GlobStTakeSnap allows us to take snapshots of global states. LocSnapExt says that if two
events in a local snapshot have equal timestamps, then the events must be equal.

Finally, we have three lemmas that tie together local and global states. LocSnapProv says
that if e is tracked locally, then there must exist some global snapshot GlobSnap(sg) such that
e ∈ sg. That is, all local events are also tracked globally. GlobSnapProv says that if an event
e ∈ sg has origin i and we know GlobSnap(sg) (e is tracked globally), then e must also be in the
local state for i. Finally, Causality is our definition of causality in separation logic. This take
on causality was originally developed for reasoning about a causally-consistent key value store
by Gondelman et al. [8], and later generalized by Nieto et al. [20] so it can apply to events in
an arbitrary CRDT. The lemma is as follows: suppose we have two events e and e′ such that
e′ was recorded locally at node i (that is, e′ ∈ sown ∪ sfor and we know LocSt (i, sown, sfor)).
Next suppose that e happened before e′, and e is a logically tracked event (which we can show
by presenting GlobSnap(sg) with e ∈ sg). Then causal delivery requires that e be observed
locally at i as well: i.e., e ∈ sown ∪ sfor. Gondelman et al. [8] show how this definition of
causality is strong enough to prove four session guarantees (monotonic reads, monotonic
writes, read your writes, and writes follow reads) that programmers intuitively expect when
interacting with a causally-consistent datatype.

Reasoning With Resources

To tie all the above together, Figure 4 shows how the previously-discussed resources can be
used to specify the inc operation on a g-counter CRDT. We assume that inc both increments
the counter and returns its current local value. The precondition for calling inc at replica i

requires knowledge of both LocSt (i, sown, sfor) and GlobSt(sg). This is because every single
increment must be tracked both locally at the replica where it is performed and globally.
In the postcondition we get back LocSt (i, sown ∪ {e} , s′

for), where e is the event generated
by the increment and sfor ⊆ s′

for. Notice that the “own events” grow by exactly one event,
e, but the “foreign events” grow to some superset s′

for of sfor. This is because since the
last time inc was called any number of new events could have been propagated from other
replicas to replica i. Notice how we connect the implementation to its functional correctness
specification by saying that the return value v is the denotation of the locally-observed
events sown ∪ {e} ∪ s′

for. Finally, observe that by using denotations we automatically obtain
convergence (the safety part of SEC), because the return value is a function of a set of events,
so two replicas that have seen the same set of events must return the same result.

A. Nieto, A. Daby-Seesaram, L. Gondelman, A. Timany, and L. Birkedal 22:11

Resources for State-Based CRDTs

Two difficulties arise when instantiating the resource interface for state-based CRDTs.
1. How should we track local state? The replica state in an implementation of a state-

based CRDT is a lattice element. By contrast, the resource interface logically tracks replica
states as sets of events (operations). The solution is to link the two representations via
a denotation: if the logical state is LocSt (i, sown, sfor), then the physical state must be
Jsown ∪ sforK, which in turn must be drawn from the appropriate lattice. The link is also
needed when propagating a replica’s state to other replicas. In the implementation, a replica
sends a message containing its entire state e, so others can merge it. Logically, we require
that the sent state be paired with a local snapshot whose denotation is e.

2. How do we track time to prove causal consistency? For their treatment of op-based
CRDTs, Nieto et al. [20] implemented a causal broadcast algorithm that ensures that every
message sent by a CRDT replica is delivered in causal order. This is achieved via vector
clocks in the standard way. But state-based CRDTs should not rely on causal broadcast; in
fact, one of the main advantages of the state-based approach is that messages can be delivered
out-of-order and re-delivered without causing issues (because of the properties of least upper
bound). It is not immediately clear why the state-based design satisfies causal delivery. The
first key observation is that if we start with a replica state st and look at the event set s that
produced it, i.e., JsK = st, then s “has no holes” with respect to causality. That is, if we take
an event e ∈ s and e′ is another event that happened before e, then it must be the case that
e′ ∈ s as well. This is formalized via the notion of dependency-closure (Section 7.1). The
second observation is that when a new operation o is applied to a local state st with JsK = st,
it (logically) generates a new event e′ with e′.o = o. e′’s causal dependencies are exactly the
events in s. This is important because it means that we can track an event’s dependencies
purely logically, without the need for vector clocks. Using these ideas we are able to prove
that the (Causality) lemma holds for state-based CRDTs (Lemma 5). To our knowledge, this
is the first formal proof that state-based CRDTs are causally-consistent.

5 StateLib : a Library for Implementing State-Based CRDTs

We have structured our CRDT implementations so that common functionality is factored
out into a separate library, which can then be instantiated as needed by different CRDT
examples. The library, called StateLib, is responsible for maintaining the CRDT’s internal
state and inter-replica propagation. The library’s code is shown in Figure 5, together with
an abridged example instantiating a grow-only set (g-set) CRDT, a set to which we can add
elements, but from which we cannot remove them [21].

We start by describing the init function, which is the library’s entry point. A CRDT
implementer calls init with the following arguments: serialization and de-serialization
functions, a list of all replica addresses, the current replica id, and a crdt parameter that
describes how the specific CRDT being instantiated should behave. The serialization functions
have the expected types: type ’s serT = ’s → string and type ’s deserT = string → ’s. The
crdt argument has type (’o,’s) crdT, parametrized on operations and states:
type ’s mergeT = ’s → ’s → ’s
type (’o,’s) mutT = int → ’s → ’o → ’s
type (’o,’s) crdtT = ((’s * (’o,’s) mutT) * ’s mergeT)

That is, a value of type (’o, ’s) crdtT is a triple (init_st, mutator, merge) containing an initial
state, a mutator function, and a merge function. The mutator takes a replica id, the current
state, and a new operation, and returns the state that results after applying the operation
locally. The merge function takes two states and returns their least upper bound.

ECOOP 2023

22:12 Modular Verification of State-Based CRDTs in Separation Logic

let get_state lock st () =
acquire lock;
let res = !st in (* LP *)
release lock;
res

let rec loop_forever thunk =
thunk ();
loop_forever thunk

let apply deser lk sh st merge : =
loop_forever (fun () →

let msg =
unSOME (receiveFrom sh) in

let st ’ = deser (fst msg) in
acquire lk;
st := merge !st st ’;
release lk)

let update lk mut i st op =
acquire lk;
st := mut i !st op; (* LP *)
release lk

let sendToAll sh dstl i msg =
let j = ref 0 in
let rec aux () =

if !j < list_length dstl then
if i = j then (j := !j +1; aux ())
else begin

let dst =
unSOME (list_nth dstl !j) in

sendTo sh msg dst;
j := !j + 1
aux ()

end
else ()

in aux ()

let broadcast ser lk sh st dstl i =
loop_forever (fun () →

Unix. sleepf 2.0;
acquire lk;
let s = !st in
release lk;
let msg = ser s in
sendToAll sh dstl i msg)

let init ser deser addrs rid crdt =
let ((init_st , mut), merge) = crdt in
let st = ref (init_st ()) in
let lk = newlock () in
let sh = socket () in
let addr = unSOME (list_nth addrs rid) in
socketBind sh addr;
fork (apply deser lk sh st merge);
fork (broadcast ser lk sh st addrs rid);
let get = get_state lk st in
let upd = update lk mut rid st in
(get , upd)

(* G-Set instantiation *)

let mutator i st op = set_add op st
let merge st1 st2 = set_union st1 st2
let init_st = set_empty
let gset_crdt = ((init_st , mutator), merge)

(* Instantiate via *)
let (get , upd) = init ... gset_crdt

Figure 5 StateLib implementation and a G-Set example. Linearization points are marked with
an LP comment.

Back to the body of init, we see that it unpacks the crdt argument. It then allocates
a local reference to hold the current state of the CRDT, a lock to control updates to the
state, and a socket over which it can communicate with other replicas. The function then
spawns two concurrent threads, apply and broadcast, in charge of receiving updates from other
replicas and propagating local updates, respectively. Finally, init returns a pair of functions
get_state and update allowing the library user to query and update the CRDT state.

Both get_state and update have simple implementations. The former just dereferences the
local state, while the latter uses the user-provided mutator to compute the CRDT’s next
state. Both operations are guarded by a lock.5

The apply function, which is spawned off as a separate thread from init, is responsible
for receiving updates from other replicas and then merging them with the local state, using
the user-provided merge function. The call to receiveFrom blocks until a message is available
at the given socket handle. The function unSOME : ’a option → ’a unwraps a value of an
option type, crashing if the argument is None. Notice that the received message needs to be
deserialized via the user-provided deser function. Also notice that apply does not terminate,
but mutates the CRDT’s state.

5 In the case of get_state, loads in AnerisLang are atomic, so the lock is not strictly needed; however,
dereferences are not atomic in OCaml [6], which we use to run our code, so we use a lock.

A. Nieto, A. Daby-Seesaram, L. Gondelman, A. Timany, and L. Birkedal 22:13

The dual of apply is broadcast, which is tasked with propagating the local state to other
replicas. This function also runs on a separate thread, and loops forever, working solely via
side effects. The broadcast function retrieves a copy of the local state, serializes it, and then
calls a helper function sendToAll. This helper takes a list of IP addresses dstl, the current
replica id i and the message (state) to be sent. It then loops over the elements of dstl and
sends the message to each of them (taking care to not send a message to itself).

Finally, Figure 5 sketches how one might implement a g-set via the library. We represent
the state with a sequential set. The mutator is just set insertion, merge is implemented via set
union, and the initial state is the empty set. We can then package these three components
into a tuple gset_crdt, and provide the latter as an argument to init (together with the
serialization functions and replica IP addresses). From init we get back a pair functions for
querying the current value of the set and updating it.

6 Specifying StateLib

The StateLib library has two interfaces: an internal interface used by the CRDT implementer,
consisting of the init function, and an external interface used by the CRDT client, consisting
of get_state and update.

6.1 Internal Interface
Recall that StateLib is initialized by the CRDT implementer through an init function,
taking in (de-) serialization functions for the CRDT state, a list of replica IP addresses,
and finally a crdt argument describing the lattice being implemented (Figure 5). This
last parameter is a triple crdt = (initSt, mut, merge) consisting of the CRDT’s initial state
initSt ∈ LatSt, a mutator function mut : LatSt → Event → LatSt, and a merge function
merge : LatSt → LatSt → LatSt.

The CRDT implementer first defines a poset (LatSt, ≤L) and then proves that it is a
lattice. Because our tracking of replica states is defined in terms of event sets (Figure 3) we
need a way to connect said events to the physical CRDT state, which is a lattice element.
Intuitively, we would like to guarantee that the CRDT’s physical state is the denotation of
the set of events received so far. For this to be true, we need certain coherence properties
between event sets, their denotations, and lattice elements. These are shown in Figure 6 and
consist of specifications for initSt, mut and merge.

InitStSpec says that the denotation of the empty set of events must be the initial state.
MutatorSpec says that if we start in a state st = JsK and through a mutation get to

a state st′ = mut(st, op), then we can also arrive at st′ by taking the denotation Js ∪ {e}K,
where e is the event containing op. We also need to show that the mutator is monotonic: we
must have st ≤L st′ in the lattice order. In proving these goals we get to make additional
assumptions about s and e. Specifically, we can assume that s is a set of events that is valid
with respect to coherence (we explain validity in Section 7.1); additionally, we know that e is
the maximum element with respect to timestamp ordering in the set s ∪ {e}. Intuitively, this
is because e is a new event being added, so it has every event in s as a causal dependency.

MergeSpec shows coherence of merges. Here we start with two states st and st′ that
we want to merge to get a third state st′′. We know that JsK = st and Js′K = st′, and we
would like to conclude that Js ∪ s′K = st′′ and also that merge is in fact computing the least
upper bound, so st ⊔ st′ = st′′. Once again we get to assume validity of the relevant event
sets, and now additionally we know an inclusion property of sections (a section is a subset of
events that originates at a specific replica). The proposition SectIncl(s, s′) tells us that if we

ECOOP 2023

22:14 Modular Verification of State-Based CRDTs in Separation Logic

InitStSpec: J∅K = initSt
MutatorSpec

{JsK = st ∧ e.o = op ∧ e.s = i ∧ e /∈ s

∧ CohVal(s ∪ {e}) ∧ maximum(e, s ∪ {e})}
⟨ipi; mut(st, op)⟩

{st′. Js ∪ {e}K = st′ ∧ st ≤L st′ }

MergeSpec

{Js1K = st1 ∧ Js2K = st2 ∧ SectIncl(s1, s2)

∧ CohVal(s1) ∧ CohVal(s2) ∧ CohVal(s1 ∪ s2)}
⟨ipi; merge(st1, st2)⟩

{st′. st1 ⊔ st2 = st′ ∧ Js1 ∪ s2K = st′ }
sect(s, i) ≜ {e ∈ s | e.s = i}
SectIncl(s, s′) ≜ ∀i. sect(s, i) ⊆ sect(s′, i) ∨ sect(s′, i) ⊆ sect(s, i)
CohVal(s) is a version of “local state validity” (Section 7.1) that does not imply depclosed(s).
CrdtSpec((initSt, mut, merge)) ≜ InitStSpec(initSt) ∗ MutatorSpec(mut) ∗ MergeSpec(merge)

InitSpec
{ . . . ∗ CrdtSpec(crdt) }

⟨ipi; init(addrs, repId, crdt)⟩

{(get_state, update). LocSt (i, ∅, ∅) ∗ GetStateSpec(get_state) ∗ UpdateSpec(update) }

Figure 6 Internal specifications. GetStateSpec and UpdateSpec are defined in Figure 7.

look at any particular section, say section i, then either sect(s, i) is a subset of sect(s′, i), or
the other way around. Intuitively, this is because sections are always “complete”: if a replica
has received event (6, 5), it must have also received all events in the range (6, 1), . . . , (6, 4).

We package the three specifications in the assertion CrdtSpec(crdt), which asserts that
each of the components of the crdt tuple satisfies the corresponding spec above. Finally we
have specification for the init function. In the precondition of InitSpec, we assert that the
crdt argument satisfies CrdtSpec. In the postcondition, we learn that init returns a pair
of functions get_state and update that satisfy the same-named specifications (described in
the next section). We also gain ownership of the resource LocSt (i, ∅, ∅), indicating that the
local replica has yet to receive any events (because it has just been initialized).

6.2 External Interface

StateLib’s external interface consists of two functions: get_state, which takes no arguments
and returns the local state of the CRDT, and update, which takes an operation, updates
the local state, and returns a Unit. Figure 7 shows specifications for both functions; these
specifications are identical to the ones for the same-named functions in Nieto et al.’s library
for op-based CRDTs [20]. This is by design: by proving that our library meets the same
specification as the equivalent library for op-based CRDTs we then make it possible for client
programs to use (and reason about) a replicated data type without knowledge of whether
the data type is op-based or state-based. That is, we hide implementation details to turn
CRDTs into true abstract data types.

Looking at Figure 7, the reader will notice that the specifications use angle brackets
instead of braces: i.e. we write ⟨P ⟩e⟨Q⟩N , instead of the usual Hoare triple {P}e{Q}.
The former is a logically-atomic triple [10]. The motivation for these triples is that Aneris
invariants can only be opened around atomic steps (otherwise concurrent threads might
observe invariant violations); this means we cannot use a specification {P}e{Q} if we need
to open an invariant to prove P , provided e is not atomic, as is the case for both get_state
and update. In particular, the precondition of update requires the global state GlobSt(sg),
which a client is likely to keep in an invariant because it is shared by all (concurrent) replicas.

A. Nieto, A. Daby-Seesaram, L. Gondelman, A. Timany, and L. Birkedal 22:15

GetStateSpec
⟨LocSt (i, sown, sfor)⟩

⟨ipi; get_state()⟩

⟨v. ∃s′
for w. s′

for ⊇ sfor ∗ StCoh(w, v) ∗

LocSt
(
i, sown, s′

for
)

∗ Jsown ∪ s′
forK = w⟩

N

UpdateSpec
⟨LocSt (i, sown, sfor) ∗ GlobSt(sg)⟩

⟨ipi; update(v)⟩

⟨(). ∃e s′
for. s′

for ⊇ sfor ∗ e /∈ sown ∗ e /∈ sg ∗ e.o = v ∗

e.s = i ∗ e ∈ maximals(sg ∪ {e}) ∗

maximum(e, sown ∪ s′
for ∪ {e}) ∗

LocSt
(
i, sown ∪ {e}, s′

for
)

∗ GlobSt(sg ∪ {e})
⟩N

Figure 7 External specifications. N is any invariant namespace that includes GlobInv’s name.
Adapted from Nieto et al. [20].

Logically-atomic triples solve this problem by allowing us to open invariants when proving
the pre-condition. Their informal semantics are as follows: if we know ⟨P ⟩e⟨Q⟩N , then we
know that e executes without crashing (although it might not terminate) provided that P

holds. When proving P we are allowed to use any invariants that are not in namespace N . 6

We also need to show that if Q holds we can close any invariants that were open when
proving P . Another point of view is that P and Q hold around a linearization point in e;
the linearization points for get_state and update are marked with an LP comment in Figure 5.

The specification of get_state can be read as follows. Before calling get_state we should
know the local state at replica i: LocSt (i, sown, sfor); afterwards, the function returns a phys-
ical state v which is coherent with a logical state w, 7 the local state is now LocSt (i, sown, s′

for)
where s′

for ⊇ sfor (reflecting the fact the set of local events is unchanged, but additional
remote events might have been received), and the returned value w is the denotation of
sown ∪ s′

for. Notice that the fact that the returned value is a function of the set of received
events automatically gives us the safety part of eventual consistency (convergence): if two
replicas have received the same set of events, then they are in the same state.

The specification of update says that we need to know both the local state
LocSt (i, sown, sfor) at replica i and the global state GlobSt(sg). This is because every event
needs to be tracked both locally and globally. The function does not return any meaningful
value, but we do get (logical) knowledge that the set of events has expanded: locally we
now know LocSt (i, sown ∪ {e}, s′

for) with sfor ⊆ s′
for, and globally we have GlobSt(sg ∪ {e}).

The new event e (e /∈ sg) has the value we are updating by as its payload (e.o = v) and it
originates at replica i. Finally, we know that this new event is more recent than any other
locally-received event (maximum(e, sown ∪ s′

for ∪ {e})), and we also know that no other event
(even globally) has the new event as its dependency: e ∈ maximals(sg ∪ {e}).

7 Verifying StateLib

To prove that StateLib meets its external specification we follow a proof methodology
inspired by previous Aneris developments [8, 20]:

1. We first model the CRDT as a state-transition system (STS), where the STS states are
tuples detailing the state of the CRDT both globally and at each replica (Section 7.1).
Transitions correspond to mutations and merges. Crucially, we show that transitions
preserve state validity, a safety invariant from which we can derive properties of interest
(e.g., causality). This is done in the meta-logic (i.e., Coq) and outside of separation logic.

6 This is to prevent a user of StateLib from opening the global invariant, which is needed by StateLib.
Invariants cannot be reopened, to preserve soundness of the logic.

7 The state coherence predicate StCoh(w, v) links the physical and logical states. This is useful when the
physical state has a more involved representation due to limitations of AnerisLang: for example, v might
be a pair of pairs while w is a 3-tuple, because AnerisLang only supports pairs.

ECOOP 2023

22:16 Modular Verification of State-Based CRDTs in Separation Logic

2. We then embed the STS model inside Aneris via a combination of invariants and ghost
state (defined via PCMs, see Section 7.3). We use state validity and the properties of the
relevant PCMs to show that the resource interface from Section 4 holds.

3. Finally, using the separation logic resources defined in the previous step, we prove that
StateLib’s implementation meets its external specification (Section 7.4).

The rest of Section 7 is technical in nature, so the reader interested in an overview of our
work can skip to Section 8. We highlight Lemmas 4 and 5, which, to our knowledge, are the
first formal proofs that state-based CRDTs are causally-consistent.

7.1 State-Transition System Model

We model the execution of a CRDT via an STS that keeps track of the per-replica state,
as well as the global state. We then show a number of safety invariants that hold for any
execution of the STS. In later sections we show how the AnerisLang implementation simulates
the STS, therefore inheriting its safety properties. We use the simulation to prove the
resource laws in Figure 3.

The reader might wonder why we develop this STS model when state-based CRDTs
already have a well-understood model that is lattice-based. We do this because our goal is to
prove that StateLib satisfies general functional correctness specifications that apply to both
state-based CRTDs and op-based CRDTs. To this end we write our high-level specifications
in terms of denotations, which talk about sets of events instead of lattice elements. This is
why we need the STS model below. At an operational level, the STS model is needed to
define the ghost state in Section 7.3 and as such is not directly exposed to the user.

We start by defining a purely logical notion of time that allows us to reason about
causality in the absence of vector clocks. Logical time for state-based CRDTs is a triple
LogTimest ≜ (P(EvId), ⊆, ⊂), where EvId ≜ N × N. Here EvId is the set of event ids, which
are pairs (r, n) of a replica id and a sequence number, respectively. We show that LogTimest
satisfies the requirements on logical time from Section 4.1.

Given a set d ∈ P(EvId) of event ids we can extract the subset that originates at a given
replica id via a section: sect(d, i) ≜ {(i, n) | (i, n) ∈ d}. We can also compare event ids, but
only if they are in the same section: (s, n) ≤ (s, n′) ≜ n ≤ n′.

We define logical events as triples (op, src, time) ∈ Op ×N× P(EvId). We tag each event e

with the set of event ids of its causal dependencies e.t and are then able to sort events according
to causal order. For example, if e.t = {(1, 1)} and e′.t = {(1, 1), (2, 1)}, then e.t <t e′.t. Let
s ∈ P(Event). We lift causal dependencies to sets of events: deps(s) ≜

⋃
e∈s e.t.

The id of an event e can be computed by counting the number of dependencies that
originate at e’s origin: id(e) = (e.s, |sect(e.t, e.s)|). This way of computing event ids makes
sense only if we assume that sequence numbers (a) start at 1 and (b) there are no “holes” in
the ids stored in e.t. In our proof we maintain an invariant that implies these two properties.

To ensure causal consistency, we care about event sets that are closed with respect to
causal dependencies. Let s be a set of events, then s is dep-closed, written depclosed(s), if
∀e ∈ s, id ∈ e.t, ∃e′ ∈ s, id(e′) = id. For example, if e ∈ s and (1, 2) ∈ e.t, then we must have
e′ ∈ s with id(e′) = (1, 2). Dep-closure is preserved by set union, which is key because it will
allow us to link logical and physical states when we take least upper bounds of the latter.

We now define local states, which track the state of the CRDT at a given replica. Unlike
in the implementation the replica state will not be a lattice element, but a set of events:
Lst = P(Event). We lift sections to local states: if s ∈ Lst then sect(s, i) ≜ {e | e.s = i}.

A. Nieto, A. Daby-Seesaram, L. Gondelman, A. Timany, and L. Birkedal 22:17

Recall that numRep ∈ N denotes the number of replicas. We define global states Gst ≜
P(Event)×LstnumRep. The intuition for a global state (sg, s⃗l) ∈ Gst is that the first component
sg gives us a global view of the system (we will ensure that sg equals the union of all sl, i).
The second component s⃗l is a vector of length numRep containing the local state at each replica.

▶ Definition 1 (State-transition system model). The state-transition system model is S =
(Gst, initS , →S). STS states are elements of Gst and initS ≜ (∅, ∅⃗) is the initial state. The
transition relation →S∈ Gst × Gst is defined by the following two inference rules:8

sl, i = s d = deps(s) n = |sect(d, i)| + 1 t = {(i, n)} ∪ d e = (op, i, t)
TUpdate

(sg, s⃗l) →S (sg ∪ {e}, s⃗l[i 7→ s ∪ {e}])

s ⊆ sl, j depclosed(s)
TMerge

(sg, l⃗) →S (sg, l⃗[i 7→ sl, i ∪ s])

The TUpdate rule models the execution of a new operation at a particular replica. The
premises say that the local state at replica i is s and d is the set of dependencies of all events
in s. Then we compute the sequence number for the new event: since it originates in i this
needs to be exactly one larger than the number of dependencies in d that come from i, hence
n = |sect(d, i)| + 1. Then we build a timestamp for the new event: every (old) event in s

should be a causal dependency of the new event, plus the new event’s id is also a dependency,
so t = {(i, n)} ∪ d. Finally we build the new event e = (op, i, t). Given all the above, we can
take a step in the STS from a state (sg, s⃗l) to a state that includes the new event e. Because
e is new, it should be added both to the global state and the local state for i. The notation
s⃗l[i 7→ s′] stands for the vector that is like s⃗l except that the i’th entry is now s′.

The TMerge rule models merge operations where a replica updates its state by receiving
and merging a (potentially old) state that was sent by another replica. In the rule, we start
with some subset s of the local state at replica j. It is crucial that said subset be dep-closed
so that we can preserve causality. In the rule’s conclusion, we merge s with the state at
replica i. That is, we can think of this rule as saying that replica j transmitted its state to
replica i, which subsequently merged it. Finally, notice that the fact that s is a subset of
sl, j and not exactly sl, j allows us to model the delay imposed by the network on message
transmission – the fact that s is a dep-closed subset of sl, j means that s is a version of the
state of the jth replica from the past.

7.2 Safety Invariants

The goal of the STS model is to allow us to show a number of safety invariants about the
execution of the system. We do this through the notions of local and global state validity.
Let s ∈ Lst. Then s is a valid local state, written LocStValid(s), if all the following hold:

8 As usual →∗
S denotes the reflexive transitive closure of →S .

ECOOP 2023

22:18 Modular Verification of State-Based CRDTs in Separation Logic

(DepClosed) depclosed(s)
(SameOrigComp) ∀i, ∀e e′ ∈ sect(s, i), e.t <t e′.t ∨ e.t = e′.t ∨ e′.t <t e.t

(ExtId) ∀e e′ ∈ s, id(e) = id(e′) ⇒ e = e′

(ExtTime) ∀e e′ ∈ s, e.t = e′.t ⇒ e = e′

(OrigRange) ∀e ∈ s, e.s < numRep

(SeqIdComplete) ∀e ∈ s, n ∈ N, 0 < (e.s, n) ≤ id(e) ⇒ (e.s, n) ∈ e.t

(SeqIdNon0) ∀e ∈ s, r n ∈ N, id(e) = (r, n) ⇒ 0 < n

(EvIdMon) ∀e e′ ∈ s, e.s = e′.s ⇒ e.t ≤t e′.t ⇒ id(e) ≤ id(e′)
(EvIdIncl) ∀e ∈ s, id(e) ∈ e.t

(EvIdTime) ∀e e′ ∈ s, id(e) ∈ e′.t ⇒ e.t ≤t e′.t

The different requirements on valid local states are as follows. (DepClosed) requires
that a valid state s be also dep-closed. (SameOrigComp) says that events with the same
origin can be totally ordered by timestamp ordering. (ExtId) and (ExtTime) say that events
with equal id, resp. timestamp, must be equal. (OrigRange) ensures that replica ids are
in the expected range. (SeqIdComplete) says that if e ∈ s and e’s id is e.g. (4, 10), then
all timestamps in the range (4, 1) . . . (4, 9) must also be in e’s dependencies. (SeqIdNon0)
says that all event ids have a sequence number that starts at 1. (EvIdMon) requires that
timestamps ordering and event id ordering agree. (EvIdIncl) says that an event id must be
included in the event’s dependencies. Finally, (EvIdTime) requires that if e’s id is in the
dependencies of e′ then e must have in fact happened before e′ according to timestamp
ordering. The definition of local state validity has been simplified with respect to prior
developments [8, 20]. This is because these works use vector clocks as their notion of logical
and physical time, whereas we only track time logically via sets of dependencies.

From local state validity we obtain a number of derived lemmas. For example, we can
relate dep-closed and causally-closed subsets:

▶ Lemma 2. Let s ⊆ sg where depclosed(s) and LocStValid(sg). Then s ⊆cc sg.

Now we define validity of global states. Let q = (sg, s⃗l) ∈ Gst. Then q is a valid global
state, written GlobStValid(q), if all the following hold:

(InclLocal) sg =
⋃

1≤i≤numRep sl, i

(InclOrig) ∀e ∈ sg, e ∈ sl, e.s

(GlobValid) LocStValid(sg)
(LocValid) ∀1 ≤ i ≤ numRep, LocStValid(sl, i)

Given a global state (sg, s⃗l), global state validity amounts to requiring that sg be
the union of the sl, i (InclLocal), that events be present in the local state from which they
putatively originate (InclOrig), that the global state sg itself be valid if treated as a local
state (GlobValid) and that each local state be valid (LocValid). The definition of global state
validity is essentially unchanged from prior work [8, 20].

The definitions of local and global state validity are motivated by two desiderata: they
must be invariants, i.e. hold for all reachable states (including the initial state); and they
must imply the CRDT resource lemmas from Figure 3 “at the model level”.

▶ Theorem 3 (Validity invariant). Let q ∈ Gst such that initS →∗
S q. Then GlobStValid(q).

We use validity to show model-level counterparts of the lemmas in Figure 3. Intuit-
ively, ownership of GlobSt(sg) tells us that the global state is (sg, s⃗l), whereas if we know
GlobSnap(s′

g) all we can say is that s′
g ⊆ sg. Similarly, ownership of LocSt (i, sown, sfor)

A. Nieto, A. Daby-Seesaram, L. Gondelman, A. Timany, and L. Birkedal 22:19

corresponds to knowing that the local state sl, i (which we can assume to be valid) equals
sown∪̇s′

for (disjoint union), with sfor ⊆ s′
for. The local snapshot LocSnap(i, sown, sfor) give us

sown∪̇sfor ⊆ sl, i. With this analogy in mind, here is the model-level version of causality.

▶ Lemma 4 (Model-level causality). Let q = (sg, s⃗l) and GlobStValid(q). Also let e ∈ s ⊆cc sl, i

and e′ ∈ sg, with e′.t <t e.t. Then e′ ∈ s.

Proof. From GlobStValid(q) we can conclude LocStValid(sl, i), which in turn gives us
depclosed(sl, i). Since sl, i ⊆ sg, by Lemma 2 we get sl, i ⊆cc sg. Since we assumed s ⊆cc sl, i,
we can use transitivity of ⊆cc to conclude s ⊆cc sg. This implies the conclusion. ◀

7.3 Separation Logic Encoding
The next step in the proof is to encode the validity invariant using separation logic. We do
this using a combination of Iris invariants and resources [9]. Recall that Iris invariants are
propositions that hold throughout the execution of the operational semantics and resources
are elements of partial commutative monoids (PCMs).

Here we use resources whose ownership reveals what state the system is partially in
(e.g. the set of events received by a specific replica). In particular, we use three main PCM
constructions, which we review below: 9

1. The authoritative PCM Auth(M), where M is itself a PCM. Given a PCM X, we can
define the extension order on elements of the carrier as follows: x ≤X y ≜ ∃z, x · z = y.
The authoritative construction gives us two kinds of resources: a full part •M g and one or
more fragmental parts ◦M s, where g, s ∈ M. Ownership of the full part is exclusive, while
ownership of a fragment ◦M s is exclusive or persistent depending on whether ownership
of s is exclusive or persistent in M. The fragmental parts are guaranteed to be smaller
than the full part according to extension order, so that if we own •M g

γ ∗ ◦M s
γ we can

conclude s ≤M g. We also have that ◦M g · ◦M s = ◦M (g · s).
2. The fractional PCM Frac(X), where X is a carrier set. Elements of this monoid are of

the form sp, where s ∈ X and p ∈ Q(0,1]. This PCM allows us to split and re-combine
fractions of a resource: sp+q = sp · sq. We also know that if we own multiple fractions
then they must add to less than 1. This is useful to e.g. make a proposition exclusive
(non-duplicable) by defining it as a fraction greater than 1

2 as no two copies of such a
resource can be owned separately. We also know that all fractions agree on the underlying
element: sp γ ∗ rq γ implies s = r.

3. The monotone PCM Mono(R), where R ⊆ X × X is a pre-order on a carrier set
X [22]. This PCM allows us to lift R to the extension order of Mono(R): any
x ∈ X can be injected into Mono(R) via a principalR function such that xRy ⇐⇒
principalR(x) ≤Mono(R) principalR(y). Combining this with the authoritative PCM gives
us a monoid Auth(Mono(R)) where if we know •M principalR(g) γ ∗ ◦M principalR(s) γ

we can conlude sRg. We instantiate this construction with R =⊆cc.

We use the defined invariants and resources to prove the interface described in Figure 3.
In this section, we sketch out proofs for some of the interface lemmas.

9 We use a few additional PCMs in the Coq formalization but elide those additional structures here for
the sake of brevity.

ECOOP 2023

22:20 Modular Verification of State-Based CRDTs in Separation Logic

The global invariant uses the predicate GI below. The predicate states that there exists
a (model-level) global state h which is valid. Furthermore, it asserts ownership of global and
local resources defined by the predicates GR(sg) and LR(i, sl, i), respectively.

GI ≜ ∃h ∈ Gst.h = (sg, s⃗l) ∗ GlobStValid(h) ∗ GR(sg) ∗
numRep∗

i=1
LR(i, sl, i)

Given the above definition and an invariant name ι, we can instantiate the GlobInv predicate
from Figure 3 by allocating an Aneris invariant stating that GI holds after every execution
step: GlobInv ≜ GI ι.

The global resource predicate GR(sg) asserts ownership of two pieces of ghost state, both

of which precisely track the value of sg: GR(sg) ≜ s
1
3g

γgst

∗ •S sg
γgsnap .

The ghost state s
1
3g is drawn from the Frac(Gst) PCM. Its purpose is to track the global

set of events. The remaining 2
3 fraction is kept outside of the invariant as the user-facing

resource GlobSt from Figure 3: GlobSt(sg) ≜ s
2
3g

γgst

. Because the fraction in GlobSt is greater
than a half, we can prove that GlobSt(sg) is exclusive (GlobStExcl, Figure 3).

The second part of GR(sg) asserts ownership of •S sg. Here, S is the PCM of finite sets
of events, with set union as composition. This means that p ≤S q iff p ⊆ q. Consequently,
•S sg

γgsnap ∗ ◦S s′
g

γgsnap implies s′
g ⊆ sg. We keep the full part in the invariant and use the

fragmental part to define global snapshots: GlobSnap(s) ≜ ◦S s′
g

γgsnap . Note that these
fragmental parts are persistent (duplicable) as the set union operation is idempotent.

The next step is to define the local resources predicate LR(i, s) which tracks in the
invariant the local resources for replica i:

LR(i, s) ≜ ∃sown sfor ssub, s = sown ∪ sfor ∗ sown ∪ ssub ⊆cc sown ∪ sfor

∗ LocEv(i, sown) ∗ ForEv(i, sfor) ∗ ForEv(i, ssub) ∗ s
1
3own

γowni

∗ s
1
2
for

γfori
∗ s

1
3
sub

γsubi

∗ •M principal⊆cc(sown ∪ sfor)
γccfori ∗ •M principal⊆cc(sown ∪ ssub) γccsubi

The predicate LR(i, s) says that s can be broken up into two (disjoint) sets sown and sfor. The
sets are disjoint because every event in sown originates at replica i, whereas all events in sfor
originate outside of replica i. This is expressed by the predicates LocEv(i, p) = ∀e ∈ p.e.s = i

and ForEv(i, p) = ∀e ∈ p. e.s ≠ i, respectively. Additionally, there is a third set ssub which is
a subset of sfor (this is implied by sown ∪ ssub ⊆cc sown ∪ sfor). The intuition for sown and sfor is
that they precisely track the set of events that have been delivered at replica i and originate
at i or outside of i, respectively. However, the user at replica i is not aware of all those events:
specifically, while the user is aware of (the effects of) all its local events, it might not have
observed all events that originate outside of i. The set ssub precisely tracks the set of remote
events, ForEv(i, ssub), that replica i has observed and is aware of. The tracking of all these

event sets is precise because of the ownership of the fractions s
1
3own

γowni

∗ s
1
2
for

γfori
∗ s

1
3
sub

γsubi

.
Additionally, the invariant has “read-only” access to the three pieces of ghost state because
it does not possess the full fractions. Before pressing on with the definition of LR(i, s), let
us look at the definition of local state and snapshot from Figure 3:

LocSt (i, sown, ssub) ≜ s
1
3own

γowni

∗ s
2
3
sub

γsubi

∗ LocSnap(i, sown, ssub)

LocSnap(i, sown, ssub) ≜ LocEv(i, sown) ∗ ForEv(i, ssub) ∗ ◦M principal⊆cc(sown ∪ ssub) γccsubi

A. Nieto, A. Daby-Seesaram, L. Gondelman, A. Timany, and L. Birkedal 22:21

Notice that ownership of the local state resource gives us knowledge of some but not
all of the missing fractions for sown and ssub: s

1
3own

γowni

∗ s
2
3
sub

γsubi

. This corresponds to our
intuition that ssub tracks the set of events the user is aware of. Notice that local state does
not contain a fraction of sfor, because otherwise the library could not accept remote updates
in a background thread.

We next explain the use of the PCM M ≜ Mono(⊆cc), where ⊆cc: Event × Event. We use
two instances of this PCM, each under a different family of ghost names: γccsubi

and γccfori
.

The local state contains just γccsubi and the invariant contains both γccsubi and γccfori . The
intuition for holding the fragmental part ◦M principal⊆cc(sown ∪ ssub) is to allow us to prove
inclusion of local snapshots (LocSnapIncl, Figure 3).

We can now sketch the proof of the causality lemma. This proof is representative of our
methodology: use the properties of the different PCMs to identify parts of a (valid) global
state we are currently in, and then rely on a model-level lemma to get the result we want.

▶ Lemma 5 (Causality, Figure 3). GlobInv −∗ LocSt (i, o, s) −∗ GlobSnap(h) −∗
|⇛ι LocSt (i, o, s) ∗ ∀e e′, e ∈ h ⇒ e′ ∈ o ∪ s ⇒ e <t e′ ⇒ e ∈ o ∪ s.

Proof. We open the global invariant and learn that the current global state (sg, s⃗l) is valid.

We also obtain global resources s
1
3g

γgst

∗ •S sg
γgsnap and local resources s

1
3own

γowni

∗ s
1
3
sub

γsubi

,
where sown ∪ ssub ⊆cc sown ∪ sfor = sl, i. From LocSt (i, o, s) we get o

1
3

γowni ∗ s
2
3

γsubi , which
tells us that o = sown and s = ssub. From GlobSnap(h) we get ◦S h

γgsnap , which tells us that
h ⊆ sg. This means we have e ∈ sg and e′ is in a causally-closed subset of sl, i, so we can
finish by applying Lemma 4. ◀

There are additional two resources in the definition of LR(i, s): s
1
2
for

γfori
and

•M principal⊆cc(sown ∪ sfor)
γccfori . These are used in the definition of the lock invariant and

socket protocol, respectively. We explain them in the next section.
In addition to proving the resource lemmas from Figure 3, we also need to show that

the PCMs we have chosen can make frame-preserving updates that are compatible with the
two transitions (TUpdate and TMerge) from Definition 1. We refer to reader to our Coq
formalization for details.

7.4 Safety Proof
StateLib’s init function allocates a reference with the CRDT’s initial state and spawns
two concurrent threads: apply receives states from other replicas and merges them with the
current state, and broadcast regularly sends the current state to all other replicas. Access
to the (shared) local state is coordinated via a spinlock. The associated lock invariant [1],
defined by the predicate LI(i, ℓ) below, is the key ingredient of the library’s safety proof (ℓ is
the memory location holding the CRDT’s state). When a thread acquires the lock, it gets to
assume LI(i, ℓ); unlike a regular invariant, which needs to be restored after a single atomic
step, a lock invariant need not be restored until the thread releases the lock.

LI(i, ℓ) ≜ ∃st sown sfor. LocEv(i, sown) ∗ ForEv(i, sfor) ∗ ℓ 7→ip st

∗ Jsown ∪ sforK = st ∗ s
1
3own

γowni

∗ s
1
2
for

γfori

ECOOP 2023

22:22 Modular Verification of State-Based CRDTs in Separation Logic

The lock invariant says that the CRDT’s state is always the denotation of some set of
events sown ∪ sfor (ip is the IP address of replica i). Additionally, the invariant holds resources

s
1
3own

γowni

∗ s
1
2
for

γfori
which guarantee that the we are “in sync” with the logical state recorded

for replica i in the global invariant GlobInv. Notice the lock invariant keeps γfori
and not γsubi

because the library knows exactly the set of foreign events that have been processed so far.
The table below summarizes where the different fractions of γowni

, γfori
and γsubi

are kept:

γowni γfori γsubi

Global invariant 1
3

1
2

1
3

Lock invariant 1
3

1
2

Local state 1
3

2
3

As part of the proof we also need to define StateLib’s socket protocol SP(i, st); i.e.
a predicate that holds for all states st received by a replica (which dually creates a proof
obligation whenever a replica messages others). The abridged version below assumes that st

is already deserialized and that i is the replica id of the message’s sender:

SP(i, st) ≜∃s′
own s′

for. LocEv(i, s′
own) ∗ ForEv(i, s′

for) ∗ Js′
own ∪ s′

forK = st

∗ LocStValid(s′
own ∪ s′

for) ∗ ◦M principal⊆cc(s
′
own ∪ s′

for)
γccfori

The socket protocol assumes that the received state st is the denotation of the union
s′

own ∪ s′
for, where s′

own and s′
for are event sets that are local and foreign, respectively, relative

to the message’s sender (not relative to the receiver). Additionally, we know that s′
own ∪ s′

for
is a causally closed subset of the events recorded at replica i (in particular, we know the
sender is not accidentally including events that have not been previously recorded).

Since both apply and broadcast recurse forever, their specifications are not very interesting:
in particular, we do not care about their post-conditions. We do care about preserving the
lock and global invariants as they execute. We briefly sketch the proof of apply. Before apply

updates the CRDT state via st := merge !st st’, we know that all the following hold: the
global invariant GlobInv, the lock invariant LI(i, st), and the socket protocol SP(j, st′), where
i and j are the ids of the local and sender replicas, respectively, and i ≠ j. We open the lock
invariant and get !st = Jsown ∪ sforK ∗ s

1
3own

γowni

∗ s
1
2
for

γfori
. Similarly, from the socket protocol

we know that st’ = Js′
own ∪ s′

forK∗ LocStValid(s′
own ∪ s′

for) ∗ ◦M principal⊆cc(s
′
own ∪ s′

for)
γccfori . We

would like to apply the coherence lemma (MergeCoh), which tells us that merging two states
is the same as (1) merging the corresponding events that generated those states, and (2)
then taking the denotation of the union of the event sets. The premises of (MergeCoh) all
follow from local state validity after opening the global invariant, and from the fact that
◦M principal⊆cc(s

′
own ∪ s′

for)
γccfori proves that the events we are merging have been previously

recorded. The resulting logical state is s
1
3own

γowni

∗ (sfor ∪ s′
own ∪ {e ∈ s′

for|e.s ̸= i}) 1
2

γfori .
The proof of get_state uses the lock invariant to conclude that the returned state is the

denotation of the set of events received so far. It then uses the global invariant: specifically
the relation sown ∪ ssub ⊆cc sown ∪ sfor in the definition of LR(i, s) to update the local state
to LocSt (i, o, f ′). The proof of update uses the preservation of global validity under a
TUpdate transition (Theorem 3) to show that GlobInv is preserved. We refer the reader to
our formalization for additional details.

A. Nieto, A. Daby-Seesaram, L. Gondelman, A. Timany, and L. Birkedal 22:23

8 Verified CRDTs

To test StateLib we verified five example CRDTs from the literature: grow-only counter
(g-counter), grow-only set, product combinator, map combinator, and positive-negative
counter (pn-counter). We also verified a closed program consisting of client code that uses
the pn-counter. This closed program appears in Nieto et al. [20], and we were able to swap
out their op-based pn-counter for our state-based version without modifying their safety
proof.10 We used the closed example as a case study in giving our state-based CRDT the
same specification as its op-based counterpart, hiding implementation details in the process.

In this section we focus on describing the pn-counter and the closed program. A pn-
counter is a data structure that supports two operations: add(z) adds the integer z, which
may be negative, to the counter, and get_value returns the counter’s current value. The
initial value is 0. The denotation for pn-counter used in Nieto et al. [20] is JsK =

∑
e∈s e.o.

We implemented the counter as a wrapper over the product prod(g-counter, g-counter). We
now explain how g-counter and prod work.

The g-counter is a simpler version of pn-counter where we can only add non-negative
numbers. Operations are of the form add(n) with n ∈ N. If N is the number of CRDT
replicas, the lattice state is a vector c⃗ with N entries. The ith entry tracks the contribution
of replica i to the counter’s state. The initial value is the 0-vector of length N . The mutator
is defined as mut(c⃗, e) = s[e.s 7→ c⃗e.s + e.o], and merges are done by taking the maximum of
two vectors pointwise. The denotation JsK is the pointwise sum of all the vectors in s.

Given two CRDTs CA = (OpA, StA, initA, mutA, mergeA) and CB = (OpB , StB , initB ,

mutB , mergeB), their product is CA×B = (OpA × OpB , StA × StB , initA × initB , mutA×B ,

mergeA×B). Both the mutator and merge function operate in a component-wise fashion. The
denotation JsK splits s into two sets sA and sB of A-events and B-events, respectively. It
then computes the pair (JsAKA, JsBKB).

We then implement the pn-counter as a wrapper over the product
prod(g-counter, g-counter). Specifically, we wrap the product’s get_state and update

as follows (sum_entries is the function that sums all the entries of a vector):

let pncounter_add z =
if z >= 0 then prod_update ((z, 0))

else prod_update ((0 , -z))

let pncounter_get_value () =
let (v1 , v2) = prod_get_state () in
(sum_entries v1) - (sum_entries v2)

Finally, we describe the closed program we verified. This example shows client code
interacting with a pn-counter. The relevant snippet is shown below: we have two replicas,
A and B, each of which increments the counter, reads it, and then asserts that the read
returns one of two possible values. In A the possible values are 1 and 3, depending on
whether the remote operation add 2 has been propagated from B to A by the time the read
happens. In either case, the add 1 must be visible by the subsequent read because the latter
happened later according to program order: this is the so-called reads-follow-writes session
guarantee [8]. An analogous situation happens for replica B.

(* replica A *)
add 1;
let r = get_value () in
assert (r = 1 || r = 3)

(* replica B *)
add 2;
let r = get_value () in
assert (r = 2 || r = 3)

10 We have added one additional property to the common CRDT resource interface (an excerpt of which
was shown in Figure 3), and thus we extended the proof of Nieto et al. [20] such that this additional
property is also proved for their op-based library.

ECOOP 2023

22:24 Modular Verification of State-Based CRDTs in Separation Logic

The reader can consult Nieto et al. [20] for more details on the proof that the assertions
in the example above do not fail, but the important part is that we were able to swap out
the op-based counter implementation by our state-based counter, while (almost) keeping the
proof intact. The two implementations are quite different: the op-based implementation relies
on a causal broadcast algorithm, while ours does not and instead relies on lattice properties,
as well as on applications of the product combinator. The fact that both implementations
meet the same specification is good evidence that the denotation-based separation logic
specifications are general, flexible, and can hide implementation details.

9 Related Work

As previously mentioned, the idea of specifying CRDTs as a partial function from event
histories (including causality metadata) to the data type’s state comes from Burckhardt
et al. [3]. We also learned from their paper that state-based CRDTs can be thought of as
transitively delivering (the effects of) events when states are merged, which in turn makes it
possible to prove, as we have done, that state-based CRDTs are causally-consistent. 11

Leijnse et al. [13] reformulate the above specification style so it can be better applied
to higher-order combinators, coining the term CRDT denotation. They work solely with
specifications, and do not implement these combinators nor verify an implementation.

The idea of tracking the state of a concurrent data structure via a logical set of operations
that is divided into contributions by the current thread and those originating from other
threads, as in our LocSt (i, o, f) resource, has previously appeared in the context of the
FCSL logic (where they are termed “self” and “other” contributions, respectively) [19, 5].

The Compass separation logic framework [4] (also Iris-based) can be used to specify and
verify functional correctness of concurrent data structures in a relaxed memory model. There
are a number of commonalities with our work: their specs are also given as logically-atomic
triples that track the state of a data structure as a function of the set of writes that are
visible by a given thread. They develop a notion of logical views that is similar to our
local snapshots LocSnap(i, o, f) (without the distinction between own and foreign events):
ownership of a view provides a lower bound on the set of observed events, and the views
contain logical metadata that tracks the happens-before relation between writes. The main
difference with our work is that we operate at the intersection of weak consistency and
message passing, whereas their work is in the context of shared memory.

Zeller et al. [24] implement and formally verify multiple state-based CRDTs in Isa-
belle/HOL. To our knowledge, they are the first to explicitly link denotation-style specific-
ations to their lattice-based implementations. Like us, they prove both convergence and
functional correctness. There are two main differences with our work: their system model is
an STS where the states map each replica id to the replica state (this is very similar to our
STS model from Section 7.1). By contrast, in our work the system model is the operational
semantics of AnerisLang, with support for mutation, node-local concurrency, higher-order
functions, etc. This means that while their technique can only be used to reason about
a CRDT in isolation, ours can verify a system where the CRDT and a client (or a larger
distributed system of which the CRDT is a small part) are executing together, and where
both of these are implemented in a realistic programming language. The second difference
is that in Zeller et al.’s work one needs to come up with a different invariant that implies

11 They do mention that state-based CRDTs are causally-consistent, but there is no formal proof, or even
a precise lemma statement.

A. Nieto, A. Daby-Seesaram, L. Gondelman, A. Timany, and L. Birkedal 22:25

coherence between the denotation and the lattice for each implemented CRDT, as well as
proving for each example that the invariant is preserved by the different transitions. In our
work, we prove just one invariant, global state validity, and the CRDT implementer then
needs to prove coherence given that global validity holds.

Nair et al. [18] verify several state-based CRDTs. These are not “pure” CRDTs in the
sense that some of data structure’s operations are at times disabled. For example, they show
how to verify a distributed lock implemented as a CRDT (the release-the-lock operation can
only be enabled if the local replica owns the lock). Proof wise, this means that sometimes
it is useful to enforce example-specific invariants on the CRDT being verified: it would be
interesting to modify StateLib so it can support these user-defined invariants and so can
tackle the examples presented in their paper.

Gondelman et al. [8] verify functional correctness of a causally-consistent key-value store
using Aneris. Their work introduces the encoding of causality in separation logic that we use.
However, their key-value store is not a CRDT because it violates convergence. Additionally,
their work is closer to op-based CRDTs because writes are propagated individually.

Timany et al. [23] develop an extension of Aneris called Trillium where one simultaneously
proves both safety and also that the program being verified refines an STS model. Unlike in
our work, where the STS is used just to prove safety, their refinement is history-preserving,
which allows them to prove liveness properties as well. As one case study, they show
that a state-based G-Counter CRDT is eventually consistent. They do not tackle any
other (more complex) CRDTs, and their specification of the G-Counter relies on the fact
that the G-Counter is monotonic. It would be interesting to recast our work using the
Trillium methodology with the goal of showing that any CRDT implemented via StateLib
is eventually-consistency (that is, additionally showing eventual delivery).

The closest related work is Nieto et al. [20], from which we inherit the CRDT resource
interface from Figure 3, the modular structure of the implementation (a core library that can
be instantiated for different CRDT examples), as well as the general structure of the proof: a
state-transition system model that is embedded in the logic, as well as a lock invariant that
ties the denotation-style specification to the lattice-based state. The main difference is that
their paper deals exclusively with op-based CRDTs: as mentioned in Section 4.2 adapting
their technique to the state-based setting leads to a number of technical challenges we had
to solve in our approach.

10 Conclusions

We have shown how to give modular specifications to realistic state-based CRDT imple-
mentations using the Aneris separation logic. Our specifications show both convergence and
functional correctness relative to an abstract denotational model of the CRDT.

We have explored our approach by implementing and verifying a library, StateLib, for
building state-based CRDTs. Our library takes as input a purely-functional implementation
of a state-based CRDT’s core logic, together with coherence proofs between the CRDT’s
lattice-based and denotation-based models. The library then produces as output a fully-
fledged CRDT that is replicated over multiple nodes. Using the library we implemented and
verified multiple example CRDTs from the literature.

When taken together with Nieto et al. [20], our work presents a unified framework for the
specification and verification of op- and state-based CRDTs. To show that we can abstract
away from the fact that a CRDT is state-based, we re-prove Nieto et al.’s interface for
resources tracking CRDT state using a new definition of resources that is compatible with

ECOOP 2023

22:26 Modular Verification of State-Based CRDTs in Separation Logic

state-based CRDTs. We test this approach by showing that one can start with a client
program that uses an op-based counter CRDT, swap out the counter’s implementation by
our state-based implementation, and recover the safety proof for the entire closed program
while making minimal changes to the original proof.

References
1 Lars Birkedal and Aleš Bizjak. Lecture notes on iris: Higher-order concurrent separation log,

2017. URL: http://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf.
2 Kenneth Birman, Andre Schiper, and Pat Stephenson. Lightweight causal and atomic group

multicast. ACM Transactions on Computer Systems (TOCS), 9(3):272–314, 1991. doi:
10.1145/128738.128742.

3 Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated data
types: Specification, verification, optimality. In 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2014, pages 271–284. ACM, January 2014.
doi:10.1145/2535838.2535848.

4 Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen, William Mansky, Jeehoon
Kang, and Derek Dreyer. Compass: strong and compositional library specifications in relaxed
memory separation logic. In Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, pages 792–808, 2022.

5 Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Concur-
rent data structures linked in time. arXiv preprint, 2016. arXiv:1604.08080.

6 Stephen Dolan, K. C. Sivaramakrishnan, and Anil Madhavapeddy. Bounding data races in
space and time. In PLDI, pages 242–255. ACM, 2018.

7 Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alastair R. Beresford.
Verifying strong eventual consistency in distributed systems. Proc. ACM Program. Lang.,
1(OOPSLA):109:1–109:28, 2017. doi:10.1145/3133933.

8 Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin Timany, and Lars Birkedal.
Distributed causal memory: Modular specification and verification in higher-order distributed
separation logic. Proc. ACM Program. Lang., 5(POPL):1–29, 2021. doi:10.1145/3434323.

9 Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation
logic. J. Funct. Program., 28:e20, 2018.

10 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent
reasoning. In Sriram K. Rajamani and David Walker, editors, Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015, pages 637–650. ACM, 2015. doi:10.1145/2676726.
2676980.

11 Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen,
and Lars Birkedal. Aneris: A mechanised logic for modular reasoning about distributed systems.
In ESOP, volume 12075 of Lecture Notes in Computer Science, pages 336–365. Springer, 2020.

12 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

13 Adriaan Leijnse, Paulo Sérgio Almeida, and Carlos Baquero. Higher-order patterns in replicated
data types. In PaPoC@EuroSys, pages 5:1–5:6. ACM, 2019. doi:10.1145/3301419.3323971.

14 Hongjin Liang and Xinyu Feng. Abstraction for conflict-free replicated data types. In Stephen N.
Freund and Eran Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25,
20211, pages 636–650. ACM, 2021. doi:10.1145/3453483.3454067.

15 Barbara H. Liskov and Stephen N. Zilles. Programming with abstract data types. In SIGPLAN
Symposium on Very High Level Languages, pages 50–59. ACM, 1974.

http://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/2535838.2535848
https://arxiv.org/abs/1604.08080
https://doi.org/10.1145/3133933
https://doi.org/10.1145/3434323
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/3301419.3323971
https://doi.org/10.1145/3453483.3454067

A. Nieto, A. Daby-Seesaram, L. Gondelman, A. Timany, and L. Birkedal 22:27

16 Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki Vazou.
Verifying replicated data types with typeclass refinements in liquid haskell. Proc. ACM
Program. Lang., 4(OOPSLA):216:1–216:30, 2020. doi:10.1145/3428284.

17 Kartik Nagar and Suresh Jagannathan. Automated parameterized verification of crdts. In
CAV (2), volume 11562 of Lecture Notes in Computer Science, pages 459–477. Springer, 2019.

18 Sreeja S. Nair, Gustavo Petri, and Marc Shapiro. Proving the safety of highly-available
distributed objects. In ESOP, volume 12075 of Lecture Notes in Computer Science, pages
544–571. Springer, 2020.

19 Aleksandar Nanevski. Separation logic and concurrency. oregon programming languages
summer school, 2016.

20 Abel Nieto, Léon Gondelman, Alban Reynaud, Amin Timany, and Lars Birkedal. Modular
verification of op-based crdts in separation logic. Proc. ACM Program. Lang. OOPSLA (2022).
Accepted for publication, 2022.

21 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study
of convergent and commutative replicated data types. Research Report 7506, INRIA, January
2011. URL: http://hal.inria.fr/inria-00555588/.

22 Amin Timany and Lars Birkedal. Reasoning about monotonicity in separation logic. In CPP,
pages 91–104. ACM, 2021.

23 Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Léon Gondelman, Abel Nieto,
and Lars Birkedal. Trillium: Unifying refinement and higher-order distributed separation logic.
CoRR, abs/2109.07863, 2021.

24 Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. Formal specification and verification
of crdts. In FORTE, volume 8461 of Lecture Notes in Computer Science, pages 33–48. Springer,
2014. doi:10.1007/978-3-662-43613-4_3.

ECOOP 2023

https://doi.org/10.1145/3428284
http://hal.inria.fr/inria-00555588/
https://doi.org/10.1007/978-3-662-43613-4_3

Information Flow Analysis for Detecting
Non-Determinism in Blockchain
Luca Olivieri #

University of Verona, Italy
Corvallis Srl, Padova, Italy

Luca Negrini #

Corvallis Srl, Padova, Italy

Vincenzo Arceri #

University of Parma, Italy
Fabio Tagliaferro #

CYS4 Srl, Florence, Italy

Pietro Ferrara #

Ca’ Foscari University of Venice, Italy
Agostino Cortesi #

Ca’ Foscari University of Venice, Italy

Fausto Spoto #

University of Verona, Italy

Abstract
A mandatory feature for blockchain software, such as smart contracts and decentralized applications,
is determinism. In fact, non-deterministic behaviors do not allow blockchain nodes to reach one
common consensual state or a deterministic response, which causes the blockchain to be forked,
stopped, or to deny services. While domain-specific languages are deterministic by design, general-
purpose languages widely used for the development of smart contracts such as Go, provide many
sources of non-determinism. However, not all non-deterministic behaviours are critical. In fact, only
those that affect the state or the response of the blockchain can cause problems, as other uses (for
example, logging) are only observable by the node that executes the application and not by others.
Therefore, some frameworks for blockchains, such as Hyperledger Fabric or Cosmos SDK, do not
prohibit the use of non-deterministic constructs but leave the programmer the burden of ensuring
that the blockchain application is deterministic. In this paper, we present a flow-based approach to
detect non-deterministic vulnerabilities which could compromise the blockchain. The analysis is
implemented in GoLiSA, a semantics-based static analyzer for Go applications. Our experimental
results show that GoLiSA is able to detect all vulnerabilities related to non-determinism on a
significant set of applications, with better results than other open-source analyzers for blockchain
software written in Go.

2012 ACM Subject Classification Security and privacy → Distributed systems security; Theory of
computation → Program analysis; Theory of computation → Program verification; Software and its
engineering → Software notations and tools

Keywords and phrases Static Analysis, Program Verification, Non-determinism, Blockchain, Smart
contracts, DApps, Go language

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.23

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.23

Funding Vincenzo Arceri: Bando di Ateneo per la ricerca 2022, founded by University of Parma,
project number: MUR_DM737_2022_FIL_PROGETTI_B_ARCERI_COFIN, Formal verification
of GPLs blockchain smart contracts
Pietro Ferrara: SERICS (PE00000014) under the NRRP MUR program funded by the EU – NGEU,
iNEST-Interconnected NordEst Innovation Ecosystem funded by PNRR (Mission 4.2, Investment 1.5)
NextGeneration EU – Project ID: ECS 00000043, and SPIN-2021 “Static Analysis for Data Scientists”
funded by Ca’ Foscari University
Agostino Cortesi: SERICS (PE00000014) under the NRRP MUR program funded by the EU
– NGEU, iNEST-Interconnected NordEst Innovation Ecosystem funded by PNRR (Mission 4.2,
Investment 1.5) NextGeneration EU – Project ID: ECS 00000043, and SPIN-2021 “Ressa-Rob”
funded by Ca’ Foscari University

V1.1

A
rt
ifa

cts Available

ECOOP

© Luca Olivieri, Luca Negrini, Vincenzo Arceri, Fabio Tagliaferro, Pietro Ferrara,
Agostino Cortesi, and Fausto Spoto;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 23; pp. 23:1–23:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luca.olivieri@univr.it
https://orcid.org/0000-0001-8074-8980
mailto:luca.negrini@corvallis.it
https://orcid.org/0000-0001-9930-8854
mailto:vincenzo.arceri@unipr.it
https://orcid.org/0000-0002-5150-0393
mailto:fabio.tagliaferro@cys4.com
https://orcid.org/0000-0002-5904-8768
mailto:pietro.ferrara@unive.it
https://orcid.org/0000-0002-4678-933X
mailto:cortesi@unive.it
https://orcid.org/0000-0002-0946-5440
mailto:fausto.spoto@univr.it
https://orcid.org/0000-0003-2973-0384
https://doi.org/10.4230/LIPIcs.ECOOP.2023.23
https://doi.org/10.4230/DARTS.9.2.23
https://doi.org/10.4230/DARTS.9.2.23
https://doi.org/10.4230/DARTS.9.2.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Information Flow Analysis for Detecting Non-Determinism in Blockchain

1 Introduction

In the last decade, blockchain software has undergone a notable evolution. In 2008, Bitcoin [33]
introduced a Turing-incomplete low-level language to specify locking conditions that must
hold for a transaction to be accepted by the network [3]. In 2013, Ethereum [8, 4] provided a
Turing-complete bytecode where smart contract rules are enforced by the blockchain consensus.
The execution of the code takes place on the Ethereum Virtual Machine (EVM), resulting in
software identified as decentralized applications (DApps). EVM bytecode is supported by high-
level domain-specific languages (DSLs), such as Solidity and Vyper, that have been designed
from scratch for the purpose of being executed in the restricted environment of blockchain.
Subsequently, thanks to frameworks such as Hyperledger Fabric [2], Tendermint [6, 29], and
Cosmos SDK [30], general-purpose programming languages (GPLs) such as Go, Java and
JavaScript can also be used to develop smart contracts and DApps, with Go being the most
popular in industrial blockchains.

The popularity of GPLs for writing smart contracts and DApps is steadily increasing.
Their success is mostly due to the maturity of the languages themselves, directly resulting in
wide communities, consolidated tools (such as IDEs and debuggers), and most importantly a
pool of expert and knowledgeable developers that can write highly efficient smart contracts.
Yet, GPLs were not conceived solely for blockchain ecosystems: code that is harmless and
bug-free in other contexts may result in vulnerabilities and errors. Among these, one of
the most insidious is non-determinism. When the result of an operation on a blockchain
is non-deterministic, there is no guarantee that a common state can be reached by the
network’s nodes, possibly preventing it from reaching consensus. This can manifest, among
other possibilities, as transaction failures or denial of service. Nevertheless, not all instances
of non-determinism are intrinsically dangerous: logging the time of a transaction can result
in different timestamps appearing in each node’s logs, but it does not endanger consensus as
it is not observable by other nodes. In fact, non-deterministic instructions are problematic
only if they can affect the shared blockchain state.

As an example, consider the code in Figure 1, reporting an excerpt of the ValidateBasic
method from module x/authz (part of the Cosmos SDK versions 0.43.x and 0.44.{0,1}) and
affected by the vulnerability reported in CVE-2021-411351. The code is meant to fail the
validation of expired grants. Note that the guard at line 2 involves the local clock of nodes
(time.Now()) rather than leveraging the timestamp included in the Block header provided
by the Byzantine Fault Tolerant clock, that is agreed upon by the consensus. As reported in
the official Cosmos forum [12]:

Local clock times are subjective and thus non-deterministic. An attacker could craft
many Grants, with different but close expiration times (e.g., separated by a few seconds),
and try to exercise the granted functionality for all of them close to their expiration
time. It is likely in such a scenario that some nodes would consider a grant to have
expired while others would not, leading to a consensus halt.

The code was then fixed in version 0.44.2, but is still a clear example of a vulnerability arising
from non-deterministic constructs.

The problem of non-determinism in blockchain software is clearly felt by the communities
of the blockchain frameworks treated in this paper. As a representative example, the
Tendermint Core documentation [27], while discussing non-determinism, reports:

1 https://nvd.nist.gov/vuln/detail/CVE-2021-41135.

https://nvd.nist.gov/vuln/detail/CVE-2021-41135

L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi, and F. Spoto 23:3

1 func (g Grant) ValidateBasic () error {
2 if g. Expiration .Unix () < time.Now (). Unix () {
3 return sdkerrors .Wrap(ErrInvalidExpirationTime , "Time can ’t be in the past")
4 }
5 // [...]
6 }

Figure 1 Cosmos SDK code affected by CVE-2021-41135.

While programmers can avoid non-determinism by being careful, it is also possible
to create a special linter or static analyzer for each language to check for determinism.
In the future we may work with partners to create such tools.

Paper contribution

This paper presents a software verification approach based on static analysis for the detection
of non-deterministic vulnerabilities in blockchain ecosystems, covering the most popular
frameworks for developing this kind of software, such as Hyperledger Fabric, Tendermint
Core and Cosmos SDK. We shift the classical focus that has been applied in this context
beyond the mere syntactic absence of non-deterministic constructs. In fact, we aim at
distinguishing harmful usages of non-determinism, that is, constructs affecting the blockchain
state and response, from harmless ones. As a consequence, the set of alarms issued to the
user sensibly shrinks, as shifting from a syntactic approach towards a semantic one leads to
a sensible reduction in false positives. We propose a semantic flow-based static analysis for
detecting flows from non-deterministic constructs to blockchain state modifiers and response
builders. The choice of a flow-based analysis seems natural when the problem is phrased
as “is there execution where a non-deterministic value affects the blockchain state or the
contract’s response?”. We thus exploit the well-consolidated literature in this area to adopt
scalable solutions that soundly over-approximate all program executions.

We provide a static analyzer implementing our approach: GoLiSA2, a sound static analyzer
based on abstract interpretation [10] for Go applications. Intuitively, we use our analyzer’s
fixpoint engine to mark all program variables (local variables, objects’ fields, . . .) that can
contain values affected, directly or indirectly, by a non-deterministic construct or computation.
Specifically, we can perform a shallower analysis detecting only explicit flows using Taint
analysis [43, 14], where non-deterministic constructs and blockchain state modifiers are
modeled as sources and sinks, respectively. Alternatively, we can perform a deeper analysis
able to also detect implicit flows by means of the Non-interference analysis [24, 25], where
non-deterministic constructs and blockchain state modifiers are instead modeled as low and
high variables, respectively. Both solutions are implemented in GoLiSA, whose analysis
starts by syntactically visiting the input application to annotate all sources and sinks. The
annotations are dynamically generated depending on the kind of application of interest (i.e.,
Hyperledger Fabric, Cosmos SDK, or Tendermint Core). Since there is no predefined set
of sources in the target program, both Taint analysis and Non-interference are parametric:
they consider as harmful (i.e., tainted or low integrity, depending on the analysis that is to
be executed) only variables that are annotated as sources. The fixpoint engine then takes
care of propagating values coming from sources on the entirety of the program, exploiting
our analyses implementations. After the fixpoint converges, a mapping stating if each
program variable is the result of a non-deterministic computation is available at each program

2 https://github.com/lisa-analyzer/go-lisa

ECOOP 2023

https://github.com/lisa-analyzer/go-lisa

23:4 Information Flow Analysis for Detecting Non-Determinism in Blockchain

point. These are then used by our non-deterministic semantic checkers, that visit the whole
application searching for statements annotated with the sink annotation. Whenever one is
found, the mappings are used to determine if the values used as parameters of the call are
critical or, in the case of Non-interference, if the call happens on a critical state.

Our approach, as highlighted by our evaluation, shows a significant decrease of false
positives on real-world blockchain applications compared to other analyzers for blockchain
non-determinism. The solution has been experimented on a benchmark of more than 600
real-world blockchain programs written in Go. These show that GoLiSA is able to perform the
analysis on the totality of smart contracts in this significant benchmark, and to successfully
report their non-determinism vulnerabilities.

The analyses are then evaluated in terms of precision of the results (true positive, false
positive, and false negative alarms). Based on these criteria, GoLiSA outperforms existing
open-source static analyzers for Go blockchain software. Moreover, the evaluation shows that
the execution time of the analyses is not impractical for real use cases.

To the best of our knowledge, GoLiSA is the first sound semantic-based static analyzer
for blockchain software able to precisely detect critical non-determinism behaviors while
scaling to real-world programs.

Summarizing, our contribution is threefold, as we provide:

a detailed investigation on the sources and the sinks that lead to non-determinism issues
in the most popular blockchain frameworks;

a flow-based static analysis for the detection of critical non-determinism behaviors, with
two instantiations exploiting different formalizations;

an open-source sound static analyzer for detecting critical non-deterministic behaviors in
blockchain software written in Go.

Paper structure

Sect. 2 reports an overview about blockchain software using Go and the most popular
frameworks to develop it. Sect. 3 discusses the problem of non-deterministic behavior in
blockchain context. After reporting an overview on information flow analyses, Sect. 4 presents
our core contribution for detecting non-deterministic behavior in blockchain software, that
relies on GoLiSA. Sect. 5 reports our experimental results. Sect. 6 discusses the related work.
Finally, Sect. 7 concludes the paper.

2 Preliminaries: Go and Blockchain

Go (https://golang.org) is a statically typed, compiled, open-source, and general-purpose
high-level programming language designed by Google to speed up software development,
and that is appreciated for its cross-compilation feature. Its versatility and performance
contributed to its diffusion in the blockchain environment: popular frameworks such as the
Hyperledger Fabric3, Tendermint4 and the Cosmos SDK5 are written in Go. These rely on
Go to develop efficient smart contracts and DApps, exploiting its high performances.

https://golang.org

L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi, and F. Spoto 23:5

putState(key, value)

getState(key, value)

key value

world state database

chaincode

key value

key value

…

Figure 2 The world state database of Hyperledger Fabric.

Application

State

Tendermint

Database of blocks

Messages

TCPTCP

ABCI
via

TCP

Other
Tendermint

nodes
running
the same

application

Cosmos SDK

Modules

Figure 3 Cosmos SDK architecture.

2.1 Blockchain Environments
Hyperledger Fabric (HF) is a permissioned blockchain framework designed to be adopted
in enterprise contexts, supported by the Linux Foundation and other contributors such as
IBM, Cisco, and Intel. In HF, smart contracts and DApps are written in chaincode that
can be implemented in several GPLs such as Go, JavaScript, and Java. In most cases, the
chaincode interacts only with the world state database component of the ledger, and not
with the transaction log [26]. Go is currently the most popular language on GitHub related
to chaincode6, as Go smart contracts are the best performing ones [23].

Tendermint Core, recently rebranded as Ignite, is a platform for building blockchain
nodes, supporting both public and permissioned proof-of-stake (PoS) networks. It is a
Byzantine Fault Tolerant (BFT) middleware that separates the application logic from the
consensus and networking layers, allowing one to develop blockchain applications written in
any programming language, including Go, and replicate them on many machines [7].

Cosmos SDK is an open-source Go framework that eases the development of blockchain
applications while optimizing their execution by running them on Tendermint Core. As shown
in Figure 3, Cosmos SDK abstracts all the boilerplate code needed to set up a Tendermint

3 https://www.hyperledger.org/use/fabric
4 https://tendermint.com/
5 https://v1.cosmos.network/sdk
6 Querying the keyword chaincode on GitHub (https://github.com/search?q=chaincode) results in

more than 2100 repositories, about half of which are written in Go. Accessed: 01-12-2022.

ECOOP 2023

https://www.hyperledger.org/use/fabric
https://tendermint.com/
https://v1.cosmos.network/sdk
https://github.com/search?q=chaincode

23:6 Information Flow Analysis for Detecting Non-Determinism in Blockchain

Core node, allowing for customized protocol configurations. The programming style follows
the object-capability model, where the security of subcomponents is imperative, especially
those belonging to the core library. Cosmos SDK is a framework for DApps, supporting
different functionalities through highly customizable modules (that can also manage smart
contracts).

2.2 Blockchain Consensus
Consensus protocols ensure the validity and authenticity of transactions performed in the
blockchain, as they check results of smart contracts or DApps computations through the
state of the network’s nodes. If a given number of nodes agree on the final state, consensus is
reached and the transaction is validated. Otherwise, it is discarded and the nodes proposing
spurious states are excluded from the network. When consensus cannot be reached, the
blockchain either forks or halts. Deterministic execution is thus required for software that
runs in a blockchain, as it guarantees that, when starting from a common state, the same
result is reached in any distinct blockchain node, avoiding inconsistencies among peers and
consensus failures. Nevertheless, GPLs provide several components that can explicitly lead
to non-determinism, such as (pseudo-)random number generators or external computations.
Furthermore, even methods that are explicitly sequential and deterministic pose a threat
when executed on different nodes, such as the time.Now() call from Figure 1. Despite
these threats, popular blockchain frameworks such as HF and Cosmos SDK do not enforce
particular restrictions on the usage of non-deterministic methods and components.

3 Non-Deterministic Behaviors in Blockchain Software: Sources and
Sinks

When trying to prevent non-deterministic vulnerabilities, a first solution is to limit the
expressiveness of the GPL by either black- or white-listing APIs and constructs. Consider
the Go snippets reported in Figure 4. Both fragments rely on the time API to retrieve
a timestamp from the host system. In general, the results of calls to the time API are
subjective to the node executing them, and they might lead to blockchain non-determinism
due to different system settings (e.g., time, date, time zones, . . .) or due to nodes executing
the code at slightly different times. Specifically, Figure 4a shows a safe usage of the time API:
the timestamp is only used for logging with no observable consequences on the blockchain
state or the execution result. Instead, Figure 4b reports a problematic usage of the API,
as the timestamp is stored in the blockchain using PutState, an HF-specific function that
updates the shared network state. Since timestamps could differ on each node, this potentially
leads to inconsistent executions (i.e., different blockchain states or execution results), causing
transaction failure7.

It should thus be evident that identifying sources of non-determinism and preventing
their usage is not enough when we aim at discerning between harmful and harmless non-
deterministic constructs. In fact, one should also recognize how these are used, determining if
they can influence the shared blockchain state. In the rest of this section we discuss, for each
blockchain framework presented in Section 2, (i) the constructs that generate potentially
harmful non-determinism (that is, sources of non-deterministic values), and (ii) the blockchain

7 In this case, the GetTxTimestamp method from the HF API should have been used instead of
time.Now.

L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi, and F. Spoto 23:7

1 func transfer (from , to Address , value int64 , stub *shim. ChaincodeStub) {
2 start := time.Now ()
3 // ... transfer operations that takes some milliseconds ...
4 elapsed := time.Now (). Sub(start)
5 log. Println ("Time elapsed for the transfer operations : ", elapsed)
6 }

(a) Example of safe use of the time API.

1 func transfer (from , to Address , value int64 , stub *shim. ChaincodeStub) {
2 t := time.Now ()
3 // ... transfer operations ...
4 err := shim. PutState (" transaction -time", t)
5 // ... other operations ...
6 }

(b) Example of issue of non-determinism with the time API.

Figure 4 Examples of harmless and harmful non-determinism in blockchain.

state modifiers and response builders (i.e., statements that make a transaction succeed or fail),
namely sinks that are sensitive to non-determinism8. This will prepare the ground for the
core contribution of this paper: a static approach to detect critical usages of non-determinism
in blockchain software, reported in Section 4.

3.1 Sources of Non-Determinism
The sources of non-determinism can be logically split in two families, the first being related
to the combination of framework and GPL adopted to develop the software. This family
comprises a set of constructs and APIs allowed by the framework that may break the
consensus during the execution of smart contracts or DApps. In Go, these are:

iteration over maps that, being the iteration order unspecified9, is not guaranteed to be
deterministic;
parallelization and concurrency, that can lead to race conditions on shared resources,
thus creating non-determinism on the computed values;
global variables, that may change innately and cause inconsistencies to the results, since
they depend on the application state of a peer and not on that of the blockchain [32, 5].
random value generators, that can potentially be allowed in smart contracts [9] to employ
custom logic while being non-deterministic by-definition.

The second family instead involves statements related to the underlying environment,
such as file systems, operating systems, databases, and Internet connections. While these are
not intrinsically non-deterministic, they become dangerous when their result is expected to
be consistent on different environments. These comprise APIs handling:

file systems, as the program might rely on files that are not present on all nodes, as they
might have been deleted, edited, moved, or there might be insufficient disk space causing
any operation to fail;
operating systems (OS), since the blockchain might operate on various hosts and language
APIs could return different results on each OS (e.g., time and date methods could return
different values if nodes are not synchronized);

8 The complete list of sources and sinks of non-determinism is available at https://github.com/
lisa-analyzer/go-lisa/blob/master/go-lisa/sources-sinks.md.

9 https://golang.org/ref/spec#For_statements

ECOOP 2023

https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/sources-sinks.md
https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/sources-sinks.md
https://golang.org/ref/spec#For_statements

23:8 Information Flow Analysis for Detecting Non-Determinism in Blockchain

Table 1 Potential non-deterministic behaviors related to Go.

Level Category Package Statements/Methods
Framework/Language Map iteration - range on map

Parallelization/concurrency - go (Go routine), <- (channel)
Random number generation APIs math/rand, crypto/rand *
Global variables - -

Environment File system APIs io, embed, archive, compress *
OS APIs os, syscall, internal, time *
Database APIs database *
Internet APIs net *

1 func (s * SmartContract) transaction (APIstub shim. ChaincodeStubInterface) sc. Response {
2
3 if rand.Int () % 2 == 0 {
4 return shim. Error ("Fail")
5 } else {
6 return shim. Success (nil)
7 }
8 }

Figure 5 Example of issue of non-determinism related to the blockchain response.

databases, where records might be deleted, edited, or contain different data;
Internet connections, as networking setup or errors could cause some addresses to be
unreachable on few nodes of the network.

Table 1 summarizes the instructions and libraries of Go10 that we considered as cases of
non-determinism, where ∗ represents the entirety of the package. For the sake of simplicity,
the table reports instructions and packages omitting the full signatures of each method.
Note that only few methods within those packages lead to non-deterministic behaviors: for
instance, most methods from package time handling dates and times do not pose a threat
in smart contracts and DApps, and are in fact quite common. However, operations such
as retrieving the current time of the OS (i.e., methods Since, Now, Until) are potentially
dangerous.

3.2 Sinks of Non-Determinism
Sinks of non-determinism comprise constructs and APIs with the ability of both modifying
the common state of the blockchain or having an impact on the response of blockchain
networks. While the former is inherently involved in consensus protocols, the execution
of code within the blockchain does not necessarily change the shared state (e.g., functions
that simply read a value). However, the execution may lead to non-deterministic responses,
compromising the consensus of the network, as in the simple example reported in Figure 5.
Table 2, where the Critical point column identifies what part of the API should not receive
non-deterministic values, summarizes the main instructions and components that we consider
as sinks for non-determinism.

3.2.1 Hyperledger Fabric APIs for Go
In HF, chaincode executes transaction proposals against world state data that may change its
state. Programmatically, interface ChaincodeStubInterface from the HF Go APIs enables
access and modification of the blockchain state. Table 2 reports the current components (as

10 The full list of Go APIs sources considered in our analyses is available at https://github.com/
lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_
sources.txt. The list consider API until Go version 1.17.

https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_sources.txt
https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_sources.txt
https://github.com/lisa-analyzer/go-lisa/blob/master/go-lisa/src/main/resources/for-analysis/nondeterm_sources.txt

L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi, and F. Spoto 23:9

Table 2 Main sinks for blockchain software written in Go.

Framework Package Type/Interface Statements/Methods Critical point
HyperLedger Fabric shim ChaincodeStubInterface PutState parameters

DelState parameters
PutPrivateData parameters
DelPrivateData parameters
Success statement
Error statement

Tendermint Core abci/types Application ResponseBeginBlock instance returned
ResponseDeliverTx instance returned
ResponseEndBlock instance returned
ResponseCommit instance returned
ResponseCheckTx instance returned

Cosmos SDK types KVStore Set parameters
Delete parameters

kv, dbadapter, gaskv, iavl, Store Set parameters
listenkv, prefix, tracekv, Delete parameters
types/errors ABCIError statement

Redact statement
ResponseDeliverTx statement
ResponseCheckTx statement
WithType statement
Wrap statement
Wrapf statement

of version 2.4) involved in the data-write proposal. The semantics of these components does
not affect the blockchain state until the transaction is validated and successfully committed.
Hence, if these components lead to different results (i.e., changes to the shared state) due
to non-determinism, consensus will not validate the transaction and no new state will be
committed. Regarding the response statements, HF provides the Success and Error methods
to yield successful and failed transaction responses, respectively.

3.2.2 Tendermint Core APIs for Go
Tendermint Core is a middleware with no explicit access to application state by design,
enabling communication through the Application BlockChain Interface (ABCI11). Figure 6
depicts the consensus process used to validate and store a transaction using the ABCI
methods. As reported in the official documentation [27] of Tendermint Core v. 0.35.1, only
BeginBlock, DeliverTx, EndBlock, and Commit must be strictly deterministic to ensure
consensus. Although the logic of these methods is different, they possess similar structure:
they all accept a request and return a response (ResponseBeginBlock, ResponseDeliverTx,
ResponseEndBlock, ResponseCommit), with the latter that must be deterministic.

3.2.3 Cosmos SDK APIs
Cosmos SDK handles both the application and the blockchain state through the store12. At
a high level, the store is a set of key-value pairs used to store and retrieve data, implemented
by default as a multistore (i.e., a store of stores), as shown in Figure 7. The multistore
encapsulation enables modularity of the Cosmos SDK, as each module declares and manages

11 https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/
docs/introduction/what-is-tendermint.md#abci-overview.

12 https://github.com/cosmos/cosmos-sdk/blob/2b24afad075894dd1727d057f87e2be24238016f/
docs/core/store.md.

ECOOP 2023

https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/what-is-tendermint.md#abci-overview
https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/what-is-tendermint.md#abci-overview
https://github.com/cosmos/cosmos-sdk/blob/2b24afad075894dd1727d057f87e2be24238016f/docs/core/store.md
https://github.com/cosmos/cosmos-sdk/blob/2b24afad075894dd1727d057f87e2be24238016f/docs/core/store.md

23:10 Information Flow Analysis for Detecting Non-Determinism in Blockchain

Figure 6 ABCI methods and consensus flow.

Store 1 - Manage by keeper of
Module 1

Store 2 - Manage by keeper of
Module 2

…

Main Multistore

Figure 7 Main store of Cosmos SDK.

its own subset of the state using specific keys. Keys are typically held by keepers, a Cosmos
SDK abstraction with the role of managing access to the multistore’s subset defined by each
module. The Store type is declared in several packages (e.g., kv, tracekv, gaskv, ival),
with all definitions implementing the KVStore interface. The latter provides common APIs
to access and modify the state of the blockchain using methods such as Set and Del. As for
responses, Cosmos provides several methods (such as ABCIError, Wrap, ResponseDeliverTx)
in package types/errors to return failed transaction responses.

4 Information Flow Analysis for Non-Determinism Detection

In this section we introduce and discuss our approach for detecting non-deterministic behaviors
in blockchain software. In particular, we consider non-determinism as critical only if a non-
deterministic value can affect the blockchain state, either directly (i.e., being stored inside
the state) or indirectly (e.g., guarding the execution of state updates). Any other usage of
non-determinism is considered safe, as it does not affect the blockchain state or response. As
such, when mentioning non-determinism in the remainder of the chapter, we implicitly refer

L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi, and F. Spoto 23:11

1 var l, h
2 h := l

(a)

1 var l, h
2 if l = true then
3 h := 3
4 else
5 h := 42

(b)

1 var l, h
2 if h = 1 then
3 (* time - consuming work *)
4 l := 0

(c)

Figure 8 Example of (a) explicit, (b) implicit, and (c) side channel flows, where h and l represent
secret and public variables respectively.

to its critical version. We rely on information flow analysis for detecting values originating
from sources of non-determinism that can affect the state of the blockchain. We only focus
on static analyses, since they soundly over-approximate all possible behaviors of target
programs and can thus give guarantees about the absence of such behaviors. We instantiate
two types of analyses: a Taint analysis, able to capture the so-called explicit flows, and a
Non-interference analysis, that can also detect implicit flows.

4.1 An Overview on Information Flow
Information flow analyses [11, 38] address the problem of understanding how information

flows from one variable to another during a program’s execution. These analyses usually
partition the space of program variables into private (or secret) and public, with the latter
being accessible to – and in some cases also modifiable by – an external attacker. The goal of
these analyses is then to find program executions where information flows from one partition
to the other, that is, where values of variables from one partition can affect the values of
variables from the other one. Figure 8 reports examples13 of the three main types of flows,
namely:

explicit flow: when a secret variable is assigned to a value obtained starting from public
variables;
implicit flow: when an assignment to a secret variable is conditionally executed depending
on values of public variables;
side channel: where some observable properties of the execution, e.g., the amount of
computational resources used, depends on the values of some secret variables.

In general, the term source is traditionally used for variables holding values that one
wants to track along program executions, while sink is used to describe locations where
values coming from sources should not flow. Using this terminology, when the property of
interest ensures the integrity of secret variables, information flow analyses can be instantiated
using public variables as sources and private ones as sinks, exactly as in Fig. 8 and in the list
above. These are able to detect situations where (i) a possibly corrupted value provided by a
malicious attacker could be stored into variables whose content is supposed to be reliable, or
(ii) such a value governs the update to private variables. If, however, one wants to ensure the
confidentiality of secret variables, the same analyses can be recasted with private variables
acting as sources and public ones as sinks, thus searching for flows in the opposite direction.
The target of the analysis is then to find disclosures of private data to external entities.

In the context of non-deterministic behaviors in blockchain environments, information
flow analyses can be used to detect when non-deterministic values end up or affect the
blockchain’s state, thus checking the integrity of that state w.r.t. non-deterministic values.

13 https://en.wikipedia.org/wiki/Information_flow_(information_theory).

ECOOP 2023

https://en.wikipedia.org/wiki/Information_flow_(information_theory)

23:12 Information Flow Analysis for Detecting Non-Determinism in Blockchain

As such, we are interested in information flowing from public to private variables, and
we will use sources to identify ones that are initialized to non-deterministic values and
sinks to identify all variables that have an effect on the blockchain’s state. Moreover, we
will focus on explicit and implicit flows. In fact, side channels are typically studied to
detect secret information leaking through, for instance, execution time, thus violating the
confidentiality of that information instead of its integrity. On the other hand, explicit and
implicit flows identify non-deterministic values that are either used to update the blockchain’s
state or a transaction’s result, or that govern their execution. As a concrete example, recall
the code from Figure 1: the vulnerability presented there is an implicit flow since the
blockchain’s state is not directly updated with non-deterministic values, but the execution of
the update (i.e., the return statement) is conditional to some non-deterministic value (i.e.,
g.Expiration.Unix() < time.Now().Unix()).

In the following, we introduce two well-established information flow analyses that we will
use for non-determinism detection.

4.1.1 Non-Interference

Non-interference [24, 25] is a notion of security capturing the idea that if computations over
private information are independent from public information, then no leakage of the former
can happen. In simple terms, after partitioning the space of inputs of a program P into low
(private or secret, denoted by L), and high (public or available to anyone, denoted by H),
Non-interference is satisfied if changes in the high input do not affect the observable (i.e.,
low) output of the program:

∀iL ∈ L, ∀iH, i′
H ∈ H . P(iL, iH)L = P(iL, i′

H)L

This notion is often instantiated in language-based security by partitioning the space of
program variables between L and H, and finding instances of explicit or implicit flows between
these partitions. Such analysis computes, for each program point, a mapping from variables
to the information level they hold (low or high), while also keeping track of an execution state
depending on the information level of the Boolean conditions that guard the program point.
Violations of Non-interference for integrity can then be detected whenever an assignment to
a variable in H either (i) assigns a low value (that is, an expression involving variables in L),
or (ii) happens with a low execution state (that is, guarded by at least a Boolean condition
that involves variables in L), thus identifying both explicit and implicit flows. This can be
formalized as a type system for security [38].

4.1.2 Taint Analysis

Taint analysis [43, 14] is an instance of information flow analysis that can be seen as
simplification of Non-interference considering only explicit flows. In this context, variables
are partitioned into tainted and untainted (or clean), with the former representing variables
that can be tampered with by an attacker and the latter representing variables that should
not contain tainted values across all possible program executions. Roughly, Taint analysis
corresponds to the language-based Non-interference instantiation without the execution state,
thus unable to detect implicit flows. Taint has been instantiated to detect many defects
in real-world software, such as web-application vulnerabilities [16], privacy issues [22] (also
related to GDPR compliance [20]), and vulnerabilities of IoT software [17].

L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi, and F. Spoto 23:13

Abstract state

Value domain

Heap domain

Go front-endGo application

LiSA

CFG fix-point

Semantic checker
Analysis dump

CFG dump
Warnings

LiSA CFGs

…

Interprocedural
analysis

• Intraprocedural analysis
• Context-sensitive analysis
• …

analysis results

compute results

GoLiSA value analyses
• Taint analysis
• Non-interference
• …

GoLiSA heap analyses
• Monolithic heap
• Point-based heap
• …

Analysis results
abstract

semantics

to
symbolic

expressions

GoLiSA

GoLiSA semantic checker
• Non-determinism checker
• Overflow checker
• …

Figure 9 GoLiSA overall execution.

4.2 The GoLiSA Static Analyzer
GoLiSA14 is an abstract interpretation [10] based static analyzer for Go applications, on
which we will rely for the rest of the paper for reasoning about blockchain software written
in Go. In this section, we present its architecture and its main feature. GoLiSA relies
on LiSA [19, 34] (Library for Static Analysis15), a Java library that provides a complete
infrastructure for the development of static analyzers based on abstract interpretation. In
particular, LiSA implements several standard components of abstract interpretation-based
analyzers, such as an extensible control-flow graph representation (CFG), a common analysis
framework for the development of new static analyses, and fixpoint algorithms on LiSA
CFGs.

The high-level analysis process of GoLiSA is reported in Fig. 9. The analysis starts with
the Go front-end (a sub-component of GoLiSA) that compiles Go source code into LiSA
CFGs and defines the semantics, types and language-specific algorithms that implement the
Go execution model, capturing the peculiarities of Go in order to make them understandable
to LiSA (e.g., scoping and shadowing of variables16). These CFGs are then passed to LiSA,
that analyzes them in a generic language-independent fashion. Roughly, CFGs are passed
to an interprocedural analysis, a component that cooperates with a call graph to resolve
calls and compute their results. The interprocedural analysis computes fixpoints over CFGs
according to some implementation-specific logic (e.g., modularly, relying on call chains, ...).
Each individual fixpoint relies on language-specific analysis-independent semantics for CFG
nodes, that is directly provided by GoLiSA: each node is rewritten into a sequence of symbolic
expressions, modelling the effects that executing a high-level instruction has on the program
state through low-level atomic semantic operations. Each of these symbolic expressions is fed

14 Available at https://github.com/lisa-analyzer/go-lisa
15 LiSA project and documentation available at https://github.com/lisa-analyzer/lisa
16 https://go.dev/ref/spec#Declarations_and_scope

ECOOP 2023

https://github.com/lisa-analyzer/go-lisa
https://github.com/lisa-analyzer/lisa
https://go.dev/ref/spec#Declarations_and_scope

23:14 Information Flow Analysis for Detecting Non-Determinism in Blockchain

to an abstract state [15], a combination of an abstract domain modelling the dynamic memory
of the program (heap domain, e.g., point-based heap analysis [1]) and one for tracking values
of program variables and memory locations (value domain, e.g., intervals [10]). The abstract
state and its underlying domains compute a sound over-approximation of the expression’s
effects according to their specific logic, and this can later be exploited by semantic checks to
issue warnings that are of interest for the user. All analysis components (interprocedural
analysis, call graph, abstract state, heap domain, value domain and semantic checks) are
part of LiSA’s configuration, enabling modular composition and implementation of each
component.

4.3 GoLiSA for Non-Deterministic Behaviors Detection
At this point, we are in position to instantiate GoLiSA for the static detection of non-
deterministic behaviors in blockchain software. The core idea of our solution is to track the
values generated by the hotspots identified in Section 3.1 during the execution of a program
using either Taint analysis or Non-interference. Similarly, after the analysis completes, we
can use a semantic checker to exploit the abstract information provided by the domain of
choice, checking if any of the sinks specified in Section 3.2 receives one such non-deterministic
value as parameter or, in the case of Non-interference, if the sink is found in a low execution
state.

GoLiSA’s analysis is instantiated as follows:
Taint analysis and Non-interference are implemented as value domains, both of them
being non-relational domains (i.e., mapping from variables to abstract values – taintedness
and integrity level respectively – with no relations between different variables), with
Non-interference keeping track of the abstractions for each guard;
field-insensitive program point-based heap domain (Section 8.3.4 of [37]), where any
concrete heap location allocated at a specific program point is abstracted to a single
abstract heap identifier;
context-sensitive [39, 28] interprocedural analysis, abstracting full call-chain results until
a recursion is found;
runtime types-based call graph, using the runtime types of call receivers to determine
their targets;
two semantic checkers, for Taint analysis and Non-interference, that scan the code in
search for sinks, checking the taintedness or integrity level of each sink.

The analysis begins by visiting the input program to detect the statements annotated as
sources and propagating the information from them. The analyses produce, for each program
point, a mapping stating if each variable is the result of a non-deterministic computation.
These mappings are then used by our semantic checkers, that visit the program in search for
statements annotated as sinks. When one is found, the mappings are used to determine if
values used as parameters of the call are critical or, in the case of Non-interference, if the
call happens on a critical state. The choice of the analysis to run (and thus of the checker to
execute) is left to the user.

For instance, let us consider the fragment reported in Figure 4a. At line 5, despite
variable elapsed being marked as tainted, no warning is raised by GoLiSA regardless of the
chosen analysis, as it does not reach any sensitive sink. Instead, analyzing the fragment from
Figure 4b results in the following alarm:
The value passed for the 2nd parameter of this call is tainted ,
and it reaches the sink at parameter ’value ’

The warning is issued with both analyses, since variable t is marked as tainted and reaches a
blockchain state modifier through an explicit flow.

L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi, and F. Spoto 23:15

Consider now the example reported in Figure 1. Here, no explicit flow happens at
line 3, that contains the blockchain state modifier Wrap, but its execution depends on the
non-deterministic value used in the condition at line 2, that is, time.Now().Unix(). As this
is an implicit flow, the Taint analysis is not able the detect it. GoLiSA will however discover
it with Non-interference, raising the following alarm:
The execution of this call is guarded by a tainted condition ,
resulting in an implicit flow

4.4 Detection of Sources and Sinks in GoLiSA
To exploit information flow analyses, the analyzer must know which are the sources and sinks
of the program. In this regard, GoLiSA provides a solution based on annotations, marking
the corresponding statements as sources and sinks. In the following, we describe how GoLiSA
annotates sources (Table 1) and sinks (Table 2) depending on their types.

Methods and functions

As shown in Tables 1 and 2, all sinks and several sources correspond to functions and
methods of APIs from either the Go runtime or the blockchain frameworks. GoLiSA contains
a list of the signature of these functions and methods and it automatically annotates the
corresponding calls in the program by syntactically matching them. While we rely on manual
annotations, they can also be generated using automated tools (e.g., Sarl [18]). For instance,
when GoLiSA iterates over the following snippet, it is able to discover the call to time.Now,
that gets annotated as source, and the one to PutState, whose parameters get annotated as
sinks:

1 key := "key"
2 tm := time.Now ()
3 stub. PutState (key , [] byte(tm))

Then, the information flow analysis propagates taintedness from the return value of time.Now
to the second parameter of PutState, thus issuing an alarm at line 3.

Map iterations

To detect iterations over maps, one needs to reason about typing. GoLiSA exploits runtime
types inferred by the analysis to identify range statements happening over maps. If a map
iteration occurs, that is, if the object in a range statement is inferred to be a map, then
GoLiSA marks as sources the variables used to store keys and values of the map. Consider
as an example the following code snippet:

1 s := ""
2 kvs := map[string] string {"a": " hello ", "b": " world !"}
3 for k, v := range kvs {
4 s += v
5 }
6 stub. PutState ("key", [] byte(s))

While analyzing the code, range statements are checked for the types of their parameter.
GoLiSA annotates as sources both k and v, as kvs is inferred to be a map, while the sink
at line 6 is detected through already discussed annotations. Information flow analyses can
then propagate the taintedness from v to s, that in turn flows to the second parameter of
PutState, issuing an alarm at line 6.

ECOOP 2023

23:16 Information Flow Analysis for Detecting Non-Determinism in Blockchain

Global variables

GoLiSA syntactically annotates every global variable appearing in the program as a source
of non-determinism, as their value could be modified independently on each peer. For
instance, in the following code, the value of global variable glob could differ from peer to
peer depending on the number of times function inc has been executed. This can happen as
not all peers simulate the same transaction, for instance due to differences in the endorsement
policy of each peer [32].

1 var glob string
2 func inc () {
3 glob += "a"
4 }
5 func (s * SmartContract) transaction (stub shim. ChaincodeStubInterface) sc. Response {
6 stub. PutState ("key", [] byte(glob))
7 }

Before the analysis, GoLiSA iterates over all program components, annotating glob as a
source. The sink at line 6 is annotated as sink as previously discussed. Then, the information
flow analysis propagates taintedness from glob to the second parameter of the call to
PutState, raising an alarm at line 6.

Go routines

GoLiSA inspects the code of Go routines, checking the scope of variables they use. If these are
defined outside the routine using them, they are effectively shared among threads, potentially
leading to race conditions or non-deterministic behaviors. Hence, GoLiSA annotates the
such variables as sources. As an example, the following snippet defines and invokes a simple
Go routine that modifies a variable defined in an enclosing scope:

1 s:= ""
2 go func (){
3 for i := 1; i <= 10000; i++ {
4 s += "0"
5 }
6 }
7 stub. PutState ("key", [] byte(s))

When GoLiSA finds the Go routine, it checks the scopes of each variable, inferring that s
is declared outside the routine itself. Hence, GoLiSA annotates s at line 1 as source, while
the sink at line 7 is annotated as previously discussed. Then, the information flow analysis
propagates taintedness from s to the second parameter of PutState, issuing an alarm at line
7 since the value of s depends how many times the Go routine has executed the loop body.

Go channels

Channels are pipes that connect concurrent Go routines. Operator <- allows interaction with
channels to retrieve a value from them, blocking until one is available. GoLiSA annotates as
sources the instructions reading values from channels, as the order in which these are written
is intrinsically non-deterministic. Consider the following example:

1 c := make(chan int)
2 go myroutine1 (c)
3 go myroutine2 (c)
4 x, y := <- c, <- c
5 stub. PutState ("key", [] byte(x))

GoLiSA iterates over the program searching for occurrences of the operator <- . It then
annotates variables x and y as sources, as they receive a value from channel c. The sink at
line 5 is detected as previously discussed. The information flow analysis can then propagate
taintedness from x to the second parameter of PutState, resulting in an alarm at line 5.

L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi, and F. Spoto 23:17

5 Experimental Evaluation

In this section, we discuss the experimental evaluation of the information flow analyses
implemented in GoLiSA to detect non-determinism issues in real-world blockchain software.
First, we study them from a quantitative point of view, on a set of 651 real-world HF
smart contracts retrieved from public GitHub repositories. The evaluation focuses on the
HF framework since, to the best of our knowledge, it is the only framework supported by
several static analyzers detecting non-determinism issues. This will allow us to compare
GoLiSA against state-of-the-art static analyzers in this domain. Furthermore, HF is currently
the most popular and widespread blockchain framework among public GitHub repositories,
with most smart contracts written in Go. Nevertheless, GoLiSA provides support also for
detecting non-determinism behaviors for Cosmos SDK and Tendermint Core smart contracts
and DApps.17

We compare GoLiSA with two open-source static analyzers for chaincodes, namely Re-
viveˆCC and ChainCode Analyzer. The experiments show that GoLiSA produces more precise
results in detecting non-deterministic behaviors, outperforming existing static analyzers.

Then, we evaluate the quality of our results on two specific real-world applications, to show
how the static analyses discussed in Section 4 work and how the information is propagated
in smart contracts. In particular, we selected the first application from the HF benchmark,
while the second one is a Cosmos SDK application.18

All the experiments was performed on a HP EliteBook 850 G4 equipped with an Intel
Core i7-7500U at 2,70/2,90 GHz and 16 GB of RAM running Windows 10 Pro 64bit, Oracle
JDK version 13, and Go version 1.17.

5.1 Quantitative Evaluation
The experimental artifact set has been retrieved from 954 GitHub repositories, by querying
for the chaincode keyword, as smart contracts are called in HF, and selecting chaincodes
from unforked Go repositories only19, that include the Invoke and Init methods: these are
the transaction requests’ entry points for chaincodes.20 Then, we filtered out files unrelated
to smart contracts and removed chaincodes not analyzable due of failures either GoLiSA
or the tools discussed in Sect. 5.1.1. In particular, GoLiSA failures on such chaincodes are
due to current missing support of high-order functions, recursion, and C code invocation via
the built-in Go cmd/go package.21 This resulted in a benchmark consists of 651 chaincodes
only (∼167391 LoCs), that, from here on, we refer to as HF. Then, each chaincode has been
manually inspected before applying GoLiSA to search for critical non-deterministic behavior.
In particular, for each chaincode, we manually searched for sources of non-determinism (if
present) and checked if the result of the corresponding instructions could have an impact
(i.e., an update) on the blockchain global state or on the response. If so, we classified this
behaviour as critical/harmful. On the selected benchmark, we have found a total of 124
critical/harmful non-deterministic behaviours. In our evaluation, a warning raised by an

17 An industrial application of GoLiSA for detecting non-determinism in Cosmos SDK can be found
here [36].

18 The example reported in Figure 1 contains a snippet of code of this application
19 https://api.github.com/search/repositories?q=chaincode+fork:false+language:Go+archived:

false&sort=stars&order=desc. Accessed: 17-10-2022.
20 See https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim.
21 We decided not to implement those standard features since this would have required a relevant effort to

support only a few more chaincodes.

ECOOP 2023

https://api.github.com/search/repositories?q=chaincode+fork:false+language:Go+archived:false&sort=stars&order=desc
https://api.github.com/search/repositories?q=chaincode+fork:false+language:Go+archived:false&sort=stars&order=desc
https://pkg.go.dev/github.com/hyperledger/fabric-chaincode-go/shim

23:18 Information Flow Analysis for Detecting Non-Determinism in Blockchain

Table 3 Analysis evaluation.

Analysis #A #U ET AT #W #TP #FP #FN
Taint 68 583 2h:15m:03s 12.45s 173 118 55 7
Non-interference 69 582 2h:25m:18s 13.39s 195 124 71 0

analyzer has been classified as true positive (TP) if it was part of the 124 critical behaviours
mentioned above, and as false positive (FP) if not. All the critical behaviours, part of the
124 manually detected, for which there was no warning, have been marked as false negative
(FN).

Table 3 reports the results of the experimental evaluation of GoLiSA over the benchmark
HF, where #A is the number of affected chaincodes (i.e., chaincodes where at least a warning
was issued), #U is the number of unaffected chaincodes (i.e., chaincodes where no warning
was raised), ET is the total execution time, AT is the average execution time, #W is the
total number of warnings issued, #TP is the number of true positives among the raised
warnings, #FP is the number of false positives among the raised warnings, and #FN is the
number of false negatives. In terms of execution time, the analyses performed averagely in
around 15 seconds per chaincode. The experiments shows that Non-interference performs
better than Taint in terms of precision, being able to detect all the true positives contained
in HF, with a ratio of false positives less than 40%. This was expected since, as we have
already discussed in Section 4 and unlike Non-interference, Taint is only able to track explicit
information flows. In fact, the 7 false negatives (column #FN of Table 3) produced by Taint
correspond to implicit non-deterministic behaviors.

5.1.1 Comparison
We compared GoLiSA with the open-source static analyzers for Go chaincode described in
Section 6, namely ChainCode Analyzer and ReviveˆCC. Table 4 reports the comparison
between GoLiSA and these tools over the same benchmark HF discussed in Section 5.1.

The comparison shows that GoLiSA - Non-interference finds all the true issues contained
in the benchmark, achieving the best and most accurate result in terms of precision with a
36.41% false positives ratio. Instead, although it has some false negatives, GoLiSA - Taint is
the analysis with the lowest percentage of false positives with the 31.79% .

ReviveˆCC triggers 351 warnings out of which 77.49% are false positives. The only
non-deterministic behaviour not detected by ReviveˆCC (last column) is due to the fact that
it considers the ioutil.ReadFile API as safe, although reading a file should be considered
non-deterministic in the blockchain context. Finally, ChainCode Analyzer is more precise
w.r.t. ReviveˆCC, with 66.50% of false positives, but it has also the greatest number of false
negatives, failing to detect a huge number of critical non-deterministic behaviors. This can
be attributed to the fact that ChainCode Analyzer does not consider several APIs leading to
non-determinism as critical and it fails to soundly detect iteration over maps.

Note that the amount of true positives discovered by GoLiSA analyses differs from the
ones of other tools. In fact, GoLiSA is the only tool involved in our comparison that issues
warnings on sinks rather than sources. This translates to fewer alarms being issued whenever
values of multiple sources flow to the same sink (here, GoLiSA issues a single warning, while
other tools issue one for each source), and to more alarms being raised whenever the value of
a single source flows to multiple sinks (here instead, other tools issue a single warning, while
GoLiSA issues one for each sink).

L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi, and F. Spoto 23:19

Table 4 Warnings triggered by the analyzers on HF.

Tools # W # TP # FP # FN
GoLiSA - Taint 173 118 55 7
GoLiSA - Non-interference 195 124 71 0
ChainCode Analyzer 203 68 135 53
ReviveˆCC 351 79 272 1

1 func (s * SmartContract) registrarBoleto (APIstub shim. ChaincodeStubInterface , args []
string) sc. Response {

2 // [...]
3 objBoleto . CodigoBarra = strconv .Itoa ((rand.Intn (5) + 10000000 + // [...]
4 var notExpiredDate = time.Now ()
5 objBoleto . DataVencimento = notExpiredDate . Format (" 02/01/2006 ")
6 // [...]
7 boletoAsBytes , _ := json. Marshal (objBoleto)
8 APIstub . PutState (args [0] , boletoAsBytes)
9 // [...]

10 }

Figure 10 Method registrarBoleto of boleto contract.

5.2 Qualitative Evaluation
5.2.1 Explicit Flow: the Boleto Contract
The boleto contract22, taken from HF, comes with a real non-determinism issue that can be
found with explicit flows, and that was also detected by other tools during the comparison of
Section 5.1.1. The boleto contract (Figure 10) seems to be a proof of concept application
handling tickets in an e-commerce store, with the method registrarBoleto used to register
a ticket.

Analyzing boleto, GoLiSA detects the explicit flow leading to a non-deterministic behavior
with both Taint and Non-interference. Method registrarBoleto contains two different
sources of non-determinism that directly flow into the same sink. The first source detected
by GoLiSA is the usage of the Random API to generate a barcode at line 3. Instead, the
second source is the usage of the OS API that retrieves the local machine’s time to set a
date at line 4. As values from both sources are used to update fields of objBoleto, the latter
is marked as tainted by the analysis, resulting in boletoAsBytes being tainted as well. As
reported in Table 2, PutState’s parameters are considered as sinks by GoLiSA’s analyses.
According to the official documentation of HF23, the PutState method does not affect the
ledger until the transaction is validated and successfully committed. However, a transaction
needs to produce the same results among different peers to be validated. Hence, as passing
non-deterministic values to PutState will cause the transaction to fail, GoLiSA raises a
warning on line 8.

5.2.2 Implicit Flow: Cosmos SDK v.43
Analyzing the code in Figure 1, GoLiSA is able to detect an implicit flow that leads
to a non-deterministic behavior, that can only be detected using Non-interference. The
ValidateBasic method of Cosmos SDK v. 0.43.x and v. 0.44.{0,1} was designed to validate

22 https://github.com/arthurmsouza/boleto/blob/master/boleto-chaincode/boleto.go
23 https://github.com/hyperledger/fabric-chaincode-go/blob/

1476cf1d3206f620db7eea12312c98669d39fa22/shim/interfaces.go.

ECOOP 2023

https://github.com/arthurmsouza/boleto/blob/master/boleto-chaincode/boleto.go
https://github.com/hyperledger/fabric-chaincode-go/blob/1476cf1d3206f620db7eea12312c98669d39fa22/shim/interfaces.go
https://github.com/hyperledger/fabric-chaincode-go/blob/1476cf1d3206f620db7eea12312c98669d39fa22/shim/interfaces.go

23:20 Information Flow Analysis for Detecting Non-Determinism in Blockchain

CALL
Time.Now()

Line 2

CALL
.Unix(…)
Line 2

IF GUARD
g.Expiration.Unix() <

Line 2

CALL
sdkerrors.Wrap(…)

Line 3

Source for the analysis

Sink for the analysis

Propagation step

Legenda

Explicit flow
Implicit flow

CALL
Time.Now()

Line 2

CALL
.Unix(…)
Line 2

IF GUARD
g.Expiration.Unix() <

Line 2

CALL
sdkerrors.Wrap(…)

Line 3

Source for the analysis

Sink for the analysis

Propagation step

Legenda

Explicit flow
Implicit flow

CALL
rand.Intn(5)

Line 5

CALL
Time.Now()

Line 7

CALL
strconv.Itoa(…)

Line 5

ASSIGNAMENT
objBoleto.CodigoBarra

Line 5

ASSIGNAMENT
notExpiredDate

Line 7

CALL
notExpiredDate.Format(…)

Line 8

ASSIGNAMENT
objBoleto.DataVencimento

Line 8

CALL
json.Marshal(…)

Line 12

ASSIGNAMENT
boletoAsBytes

Line 12

CALL
APIstub.PutState(…)

Line 13

CALL
Time.Now()

Line 2

CALL
.Unix(…)
Line 2

IF GUARD
g.Expiration.Unix() <

Line 2

CALL
sdkerrors.Wrap(…)

Line 3

Source for the analysis

Sink for the analysis

Propagation step

Legenda

Explicit flow
Implicit flow

Figure 11 Simplified view of explicit flow computed by GoLiSA during the analysis of
registrarBoleto.

a grant to ensure it has not yet expired. In this case, the source detected by GoLiSA is
the OS API used to retrieve the local machine time involved in the expiration check of
the grant time at line 2 of Figure 1. By propagating the information, GoLiSA detects that
the expiration check governs the execution of return statement. Since the Wrap method is
annotated as a sink, GoLiSA triggers an alarm at line 3 of Figure 1 as the sink is contained
in a block whose guard depends on non-deterministic values.

5.3 Limits

Unlike some frameworks and GPLs used in other blockchains, frameworks targeted by this
paper are used to develop permissioned, and often private, blockchains, meaning that the
related software is not publicly available or released with open-source licenses. This is also
the reason why the benchmark HF crawled from GitHub consists of 651 chaincodes, a number
that is not comparable with smart contract benchmarks obtained investigating other (public
and permissioned) blockchains. For instance, [44] collects 3075 distinct smart contracts from
the Ethereum blockchain, resulting in a wider benchmark.

The proposed solution for detecting non-deterministic behaviors is fully static. It is well
known that static analysis is intrinsically conservative and may produce false positives. Even
if few have been raised by GoLiSA on the selected benchmark, one should expect more false
positives when applying our approach to arbitrary DApps.

L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi, and F. Spoto 23:21

CALL
Time.Now()

Line 2

CALL
.Unix(…)
Line 2

IF GUARD
g.Expiration.Unix() <

Line 2

CALL
sdkerrors.Wrap(…)

Line 3

Source for the analysis

Sink for the analysis

Propagation step

Legenda

Explicit flow
Implicit flow

CALL
Time.Now()

Line 2

CALL
.Unix(…)
Line 2

IF GUARD
g.Expiration.Unix() <

Line 2

CALL
sdkerrors.Wrap(…)

Line 3

Source for the analysis

Sink for the analysis

Propagation step

Legenda

Explicit flow
Implicit flow

CALL
rand.Intn(5)

Line 5

CALL
Time.Now()

Line 7

CALL
strconv.Itoa(…)

Line 5

ASSIGNAMENT
objBoleto.CodigoBarra

Line 5

ASSIGNAMENT
notExpiredDate

Line 7

CALL
notExpiredDate.Format(…)

Line 8

ASSIGNAMENT
objBoleto.DataVencimento

Line 8

CALL
json.Marshal(…)

Line 12

ASSIGNAMENT
boletoAsBytes

Line 12

CALL
APIstub.PutState(…)

Line 13

CALL
Time.Now()

Line 2

CALL
.Unix(…)
Line 2

IF GUARD
g.Expiration.Unix() <

Line 2

CALL
sdkerrors.Wrap(…)

Line 3

Source for the analysis

Sink for the analysis

Propagation step

Legenda

Explicit flow
Implicit flow

Figure 12 Simplified view of implicit flow computed by GoLiSA during the analysis of Figure 1.

6 Related Work

The non-determinism of smart contracts written in GPLs is a well-known issue [32, 45].
Frameworks such as Takamaka [41, 42] enforce determinism adopting a conservative approach
that limits the set of instructions and APIs of the target language, avoiding unsafe statements
that might lead to non-deterministic behaviors through white-listing fully deterministic APIs.
This approach ensures safe development while preventing that API extensions coming with
new language versions can bypass the check. However, it also severely limits the exploitable
features of the GPL. On the other hand, black-listing undesired APIs is a much harder
approach to maintain, but it seems the most widespread technique in Go analyzers. For
instance, ChainCode Analyzer [31] and ReviveˆCC [40] detect mainly black-listed imports
related non-deterministic APIs using a syntactical approach. Besides, they can detect non-
deterministic map iterations by AST traversal with minimal syntactic reasoning. Signature of
invoked functions can also be black-listed instead of imports [32]. These tools and frameworks
inherently limit API usage, sensibly reducing the benefits of adopting a GPL even when the
code poses no harm to the blockchain. The problem of detecting non-determinism has also
been covered for parallel applications, suggesting that non-determinism is “most often the
result of a mistake on the part of the programmer” [13].

7 Conclusion

In this paper, we proposed a flow-based approach for detecting critical non-deterministic
behaviors, namely the ones affecting the blockchain state. Our proposal has been implemented
in GoLiSA, a static analyzer for Go applications. To the best of our knowledge, GoLiSA is the
first semantic-based static analyzer for blockchain software able to detect non-deterministic
behaviors, with an extremely low false alarm prevision. In the context of smart contracts, the
proposed approach is placed in an off-chain architecture, i.e., the analysis is done before smart
contracts are deployed in the blockchain, and it is not mandatory. As future work, besides
supporting the missing Go features discussed in Section 5 to enhance the analysis coverage,
we plan to test GoLiSA in an on-chain architecture [35], making the non-determinism checker
part of the consensus protocol, with the goal of keeping the code stored within the blockchain
deterministic. The analysis could be enriched with a context-sensitive flow reconstructor,

ECOOP 2023

23:22 Information Flow Analysis for Detecting Non-Determinism in Blockchain

such as BackFlow [21], that starting from the results of a information flow engine, reconstructs
how the information flows inside the program and builds paths connecting sources to sinks.
Moreover, we have focused on the non-determinism problem, but our future research will
address the problem of detecting other and equally critical vulnerabilities that can affect
blockchain software written using general-purpose languages, such as numerical overflow.

Our proposal follows a fully static approach, justified by the fact that we aim at proving
the determinism of blockchain software, regardless of the possible executions. However,
even if the evaluation on the selected benchmark shows optimal results, the risk of getting
false alarms analyzing other applications is still present, being our approach based on
over-approximating possible executions via abstract interpretation. In future works, hybrid
approaches between static and dynamic analyses will be investigated to get the benefits of
both techniques.

Finally, in order to assess the effectiveness of our proposal, we have conducted our
evaluation on Hyperledger Fabric blockchain software, mostly because it is the most popular
framework among those cited in the paper. To give a larger coverage to GoLiSA of the
blockchain software that can analyze, the next step will be to design significant benchmarks
also for the other frameworks, such as Tendermint core and Cosmos SDK, on which we can
experiment our static analyzer.

References
1 Lars Ole Andersen. Program Analysis and Specialization for the C Programming Language,

1994. Accessed: 01-12-2022. URL: https://www.cs.cornell.edu/courses/cs711/2005fa/
papers/andersen-thesis94.pdf.

2 Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,
Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith
Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed Cocco,
and Jason Yellick. Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains. In Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018, Porto,
Portugal, April 23-26, 2018, pages 30:1–30:15. ACM, 2018. doi:10.1145/3190508.3190538.

3 A. M. Antonopoulos. Mastering Bitcoin: Programming the Open Blockchain. O’Reilly, 2nd
edition, 2017.

4 A. M. Antonopoulos and G. Wood. Mastering Ethereum: Building Smart Contracts and Dapps.
O’Reilly, 2018.

5 Sotirios Brotsis, Nicholas Kolokotronis, Konstantinos Limniotis, Gueltoum Bendiab, and
Stavros Shiaeles. On the security and privacy of hyperledger fabric: Challenges and open
issues. In 2020 IEEE World Congress on Services (SERVICES), pages 197–204, 2020. doi:
10.1109/SERVICES48979.2020.00049.

6 E. Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains. PhD thesis,
University of Guelph, 2016.

7 Ethan Buchman. Byzantine Fault Tolerant State Machine Replication in Any Programming
Language. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
PODC ’19, page 546, New York, NY, USA, 2019. Association for Computing Machinery.

8 V. Buterin. Ethereum Whitepaper, 2013. Available at https://ethereum.org/en/
whitepaper/.

9 Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Arash Pourdamghani. Probabilistic
Smart Contracts: Secure Randomness on the Blockchain. In IEEE International Conference
on Blockchain and Cryptocurrency, ICBC 2019, Seoul, Korea (South), May 14-17, 2019, pages
403–412. IEEE, 2019. doi:10.1109/BLOC.2019.8751326.

10 Patrick Cousot. Principles of Abstract Interpretation. MIT Press, 2021.
11 Dorothy E. Denning. A Lattice Model of Secure Information Flow. Commun. ACM, 19(5):236–

243, 1976. doi:10.1145/360051.360056.

https://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
https://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1109/SERVICES48979.2020.00049
https://doi.org/10.1109/SERVICES48979.2020.00049
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://doi.org/10.1109/BLOC.2019.8751326
https://doi.org/10.1145/360051.360056

L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi, and F. Spoto 23:23

12 ebuchman. Cosmos-SDK Vulnerability Retrospective: Security Advisory Jackfruit, Oc-
tober 12, 2021, 2021. Accessed: 01-12-2022. URL: https://forum.cosmos.network/t/
cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-
2021/5349.

13 Perry A. Emrath and David A. Padua. Automatic Detection of Nondeterminacy in Parallel
Programs. In Proceedings of the 1988 ACM SIGPLAN and SIGOPS Workshop on Parallel
and Distributed Debugging, PADD ’88, pages 89–99, New York, NY, USA, 1988. Association
for Computing Machinery. doi:10.1145/68210.69224.

14 Michael D. Ernst, Alberto Lovato, Damiano Macedonio, Ciprian Spiridon, and Fausto Spoto.
Boolean Formulas for the Static Identification of Injection Attacks in java. In Logic for
Programming, Artificial Intelligence, and Reasoning - 20th International Conference, LPAR-
20 2015, Suva, Fiji, November 24-28, 2015, Proceedings, volume 9450 of Lecture Notes in
Computer Science, pages 130–145. Springer, 2015. doi:10.1007/978-3-662-48899-7_10.

15 Pietro Ferrara. A generic framework for heap and value analyses of object-oriented programming
languages. Theor. Comput. Sci., 631:43–72, 2016. doi:10.1016/j.tcs.2016.04.001.

16 Pietro Ferrara, Elisa Burato, and Fausto Spoto. Security Analysis of the OWASP Benchmark
with Julia. In Proceedings of the First Italian Conference on Cybersecurity (ITASEC17),
Venice, Italy, January 17-20, 2017, volume 1816 of CEUR Workshop Proceedings, pages
242–247. CEUR-WS.org, 2017. Accessed: 01-12-2022. URL: http://ceur-ws.org/Vol-1816/
paper-24.pdf.

17 Pietro Ferrara, Amit Kr Mandal, Agostino Cortesi, and Fausto Spoto. Static analysis for
discovering IoT vulnerabilities. Int. J. Softw. Tools Technol. Transf., 23(1):71–88, 2021.
doi:10.1007/s10009-020-00592-x.

18 Pietro Ferrara and Luca Negrini. SARL: Oo framework specification for static analysis. In
Maria Christakis, Nadia Polikarpova, Parasara Sridhar Duggirala, and Peter Schrammel,
editors, Software Verification, pages 3–20, Cham, 2020. Springer International Publishing.

19 Pietro Ferrara, Luca Negrini, Vincenzo Arceri, and Agostino Cortesi. Static analysis for dum-
mies: experiencing lisa. In Lisa Nguyen Quang Do and Caterina Urban, editors, SOAP@PLDI
2021: Proceedings of the 10th ACM SIGPLAN International Workshop on the State Of the
Art in Program Analysis, Virtual Event, Canada, 22 June, 2021, pages 1–6. ACM, 2021.
doi:10.1145/3460946.3464316.

20 Pietro Ferrara, Luca Olivieri, and Fausto Spoto. Tailoring Taint Analysis to GDPR. In Privacy
Technologies and Policy - 6th Annual Privacy Forum, APF 2018, Barcelona, Spain, June
13-14, 2018, Revised Selected Papers, volume 11079 of Lecture Notes in Computer Science,
pages 63–76. Springer, 2018. doi:10.1007/978-3-030-02547-2_4.

21 Pietro Ferrara, Luca Olivieri, and Fausto Spoto. Backflow: Backward context-sensitive
flow reconstruction of taint analysis results. In Verification, Model Checking, and Abstract
Interpretation, pages 23–43, Cham, 2020. Springer International Publishing.

22 Pietro Ferrara, Luca Olivieri, and Fausto Spoto. Static Privacy Analysis by Flow Reconstruction
of Tainted data. Int. J. Softw. Eng. Knowl. Eng., 31(7):973–1016, 2021. doi:10.1142/
S0218194021500303.

23 Luca Foschini, Andrea Gavagna, Giuseppe Martuscelli, and Rebecca Montanari. Hyperledger
Fabric Blockchain: Chaincode Performance Analysis. In 2020 IEEE International Conference
on Communications, ICC 2020, Dublin, Ireland, June 7-11, 2020, pages 1–6. IEEE, 2020.
doi:10.1109/ICC40277.2020.9149080.

24 Joseph A. Goguen and José Meseguer. Security Policies and Security Models. In 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, pages 11–20.
IEEE Computer Society, 1982. doi:10.1109/SP.1982.10014.

25 Joseph A. Goguen and José Meseguer. Unwinding and Inference Control. In Proceedings of
the 1984 IEEE Symposium on Security and Privacy, Oakland, California, USA, April 29 -
May 2, 1984, pages 75–87. IEEE Computer Society, 1984. doi:10.1109/SP.1984.10019.

ECOOP 2023

https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349
https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349
https://forum.cosmos.network/t/cosmos-sdk-vulnerability-retrospective-security-advisory-jackfruit-october-12-2021/5349
https://doi.org/10.1145/68210.69224
https://doi.org/10.1007/978-3-662-48899-7_10
https://doi.org/10.1016/j.tcs.2016.04.001
http://ceur-ws.org/Vol-1816/paper-24.pdf
http://ceur-ws.org/Vol-1816/paper-24.pdf
https://doi.org/10.1007/s10009-020-00592-x
https://doi.org/10.1145/3460946.3464316
https://doi.org/10.1007/978-3-030-02547-2_4
https://doi.org/10.1142/S0218194021500303
https://doi.org/10.1142/S0218194021500303
https://doi.org/10.1109/ICC40277.2020.9149080
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1984.10019

23:24 Information Flow Analysis for Detecting Non-Determinism in Blockchain

26 Hyperledger. Hyperledger fabric documentation. URL: https://hyperledger-fabric.
readthedocs.io/en/release-2.2/blockchain.html#what-is-hyperledger-fabric.

27 Tendermint Inc. What is Tendermint: A Note on Determinism, 2022. Ac-
cessed: 01-12-2022. URL: https://github.com/tendermint/tendermint/blob/
7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/what-is-tendermint.
md#a-note-on-determinism.

28 Uday P. Khedker and Bageshri Karkare. Efficiency, precision, simplicity, and generality
in interprocedural data flow analysis: Resurrecting the classical call strings method. In
Compiler Construction, pages 213–228, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
doi:10.1007/978-3-540-78791-4_15.

29 J. Kwon. Tendermint: Consensus without mining, 2014.
30 J. Kwon and E. Buchman. Cosmos whitepaper, 2019.
31 kzhry. Chaincode Analyzer, 2021. Accessed: 01-12-2022. URL: https://github.com/

hyperledger-labs/chaincode-analyzer.
32 Penghui Lv, Yu Wang, Yazhe Wang, and Qihui Zhou. Potential Risk Detection System

of Hyperledger Fabric Smart Contract based on Static Analysis. In IEEE Symposium on
Computers and Communications, ISCC 2021, Athens, Greece, September 5-8, 2021, pages 1–7.
IEEE, 2021. doi:10.1109/ISCC53001.2021.9631249.

33 S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Available at https://bitcoin.
org/bitcoin.pdf, 2008.

34 Luca Negrini. A generic framework for multilanguage analysis. PhD thesis, Universitá Ca’
Foscari Venezia, 2023.

35 Luca Olivieri, Fausto Spoto, and Fabio Tagliaferro. On-Chain Smart Contract Verification over
Tendermint. In Financial Cryptography and Data Security. FC 2021 International Workshops
- CoDecFin, DeFi, VOTING, and WTSC, Virtual Event, March 5, 2021, Revised Selected
Papers, volume 12676 of Lecture Notes in Computer Science, pages 333–347. Springer, 2021.
doi:10.1007/978-3-662-63958-0_28.

36 Luca Olivieri, Fabio Tagliaferro, Vincenzo Arceri, Marco Ruaro, Luca Negrini, Agostino Cortesi,
Pietro Ferrara, Fausto Spoto, and Enrico Talin. Ensuring determinism in blockchain software
with golisa: an industrial experience report. In Laure Gonnord and Laura Titolo, editors, SOAP
’22: 11th ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis,
San Diego, CA, USA, 14 June 2022, pages 23–29. ACM, 2022. doi:10.1145/3520313.3534658.

37 Xavier Rival and Kwangkeun Yi. Introduction to static analysis: an abstract interpretation
perspective. Mit Press, 2020.

38 A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE Journal on
Selected Areas in Communications, 21(1):5–19, 2003. doi:10.1109/JSAC.2002.806121.

39 Micha Sharir, Amir Pnueli, et al. Two approaches to interprocedural data flow analysis. New
York University. Courant Institute of Mathematical Sciences, 1978.

40 sivachokkapu. Revivecc, 2021. Accessed: 01-12-2022. URL: https://github.com/
sivachokkapu/revive-cc.

41 Fausto Spoto. A Java Framework for Smart Contracts. In Financial Cryptography and Data
Security - FC 2019 International Workshops, VOTING and WTSC, St. Kitts, St. Kitts and
Nevis, February 18-22, 2019, Revised Selected Papers, volume 11599 of Lecture Notes in
Computer Science, pages 122–137. Springer, 2019. doi:10.1007/978-3-030-43725-1_10.

42 Fausto Spoto. Enforcing Determinism of Java Smart Contracts. In Financial Cryptography and
Data Security - FC 2020 International Workshops, AsiaUSEC, CoDeFi, VOTING, and WTSC,
Kota Kinabalu, Malaysia, February 14, 2020, Revised Selected Papers, volume 12063 of Lecture
Notes in Computer Science, pages 568–583. Springer, 2020. doi:10.1007/978-3-030-54455-3_
40.

43 Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman. TAJ:
effective taint analysis of web applications. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2009, Dublin,
Ireland, June 15-21, 2009, pages 87–97. ACM, 2009. doi:10.1145/1542476.1542486.

https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html#what-is-hyperledger-fabric
https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html#what-is-hyperledger-fabric
https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/what-is-tendermint.md#a-note-on-determinism
https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/what-is-tendermint.md#a-note-on-determinism
https://github.com/tendermint/tendermint/blob/7983f9cc36c31e140e46ae5cb00ed39f637ef283/docs/introduction/what-is-tendermint.md#a-note-on-determinism
https://doi.org/10.1007/978-3-540-78791-4_15
https://github.com/hyperledger-labs/chaincode-analyzer
https://github.com/hyperledger-labs/chaincode-analyzer
https://doi.org/10.1109/ISCC53001.2021.9631249
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-662-63958-0_28
https://doi.org/10.1145/3520313.3534658
https://doi.org/10.1109/JSAC.2002.806121
https://github.com/sivachokkapu/revive-cc
https://github.com/sivachokkapu/revive-cc
https://doi.org/10.1007/978-3-030-43725-1_10
https://doi.org/10.1007/978-3-030-54455-3_40
https://doi.org/10.1007/978-3-030-54455-3_40
https://doi.org/10.1145/1542476.1542486

L. Olivieri, L. Negrini, V. Arceri, F. Tagliaferro, P. Ferrara, A. Cortesi, and F. Spoto 23:25

44 Shuai Wang, Chengyu Zhang, and Zhendong Su. Detecting nondeterministic payment bugs
in ethereum smart contracts. Proc. ACM Program. Lang., 3(OOPSLA):189:1–189:29, 2019.
doi:10.1145/3360615.

45 Kazuhiro Yamashita, Yoshihide Nomura, Ence Zhou, Bingfeng Pi, and Sun Jun. Potential
Risks of Hyperledger Fabric Smart Contracts. In 2019 IEEE International Workshop on
Blockchain Oriented Software Engineering (IWBOSE), pages 1–10, 2019. doi:10.1109/IWBOSE.
2019.8666486.

ECOOP 2023

https://doi.org/10.1145/3360615
https://doi.org/10.1109/IWBOSE.2019.8666486
https://doi.org/10.1109/IWBOSE.2019.8666486

Toward Tool-Independent Summaries for Symbolic
Execution
Frederico Ramos # Ñ

Instituto Superior Técnico, University of Lisbon, Portugal
INESC-ID Lisbon, Portugal

Nuno Sabino # Ñ

Instituto Superior Técnico, University of Lisbon, Portugal
Carnegie Mellon University, Pittsburgh, PA, USA
Institute of Telecommunications, Campus de Santiago, Aveiro, Portugal

Pedro Adão # Ñ

Instituto Superior Técnico, University of Lisbon, Portugal
Institute of Telecommunications, Campus de Santiago, Aveiro, Portugal

David A. Naumann # Ñ

Stevens Institute of Technology, Hoboken, NJ, USA

José Fragoso Santos # Ñ

Instituto Superior Técnico, University of Lisbon, Portugal
INESC-ID Lisbon, Portugal

Abstract
We introduce a new symbolic reflection API for implementing tool-independent summaries for
the symbolic execution of C programs. We formalise the proposed API as a symbolic semantics
and extend two state-of-the-art symbolic execution tools with support for it. Using the proposed
API, we implement 67 tool-independent symbolic summaries for a total of 26 libc functions.
Furthermore, we present SumBoundVerify, a fully automatic summary validation tool for checking
the bounded correctness of the symbolic summaries written using our symbolic reflection API. We
use SumBoundVerify to validate 37 symbolic summaries taken from 3 state-of-the-art symbolic
execution tools, angr, Binsec and Manticore, detecting a total of 24 buggy summaries.

2012 ACM Subject Classification Software and its engineering → Software verification and validation;
Security and privacy → Formal methods and theory of security

Keywords and phrases Symbolic Execution, Runtime Modelling, Symbolic Summaries

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.24

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.7

Funding The authors were supported by Fundação para a Ciência e a Tecnologia (UIDB/50008/2020,
Instituto de Telecomunicações, and UIDB/50021/2020, INESC-ID multi-annual funding, and PhD
grant SFRH/BD/150692/2020), project DIVINA (CMU/TIC/0053/2021), the SmartRetail project
(C6632206063-00466847) financed by IAPMEI, the European Commission under grant agreement
number 830892 (SPARTA), and the NSF award CNS-1718713.

1 Introduction

Symbolic execution [14, 34] is a program analysis technique that allows for the exploration of
all the execution paths of the given program up to a bound, by executing the program with
symbolic values instead of concrete ones. For each execution path, the symbolic execution
engine builds a first order formula, called path condition, which accumulates the constraints
on the symbolic inputs that cause the execution to follow that path. Symbolic execution
engines rely on an underlying SMT solver [20, 9] to check the feasibility of execution paths

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Frederico Ramos, Nuno Sabino, Pedro Adão, David A. Naumann, and
José Fragoso Santos;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 24; pp. 24:1–24:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:frederico.ramos@tecnico.ulisboa.pt
https://frediramos.github.io
https://orcid.org/0000-0002-1689-9650
mailto:nuno.sabino@tecnico.ulisboa.pt
https://icemonster.github.io
https://orcid.org/0000-0001-6302-477X
mailto:pedro.adao@tecnico.ulisboa.pt
https://web.tecnico.ulisboa.pt/pedro.adao/
https://orcid.org/0000-0002-4049-1954
mailto:dnaumann@stevens.edu
https://dnaumann.github.io/dnaumann
https://orcid.org/0000-0002-7634-6150
mailto:jose.fragoso@tecnico.ulisboa.pt
https://web.ist.utl.pt/jose.fragoso
https://orcid.org/0000-0001-5077-300X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.24
https://doi.org/10.4230/DARTS.9.2.7
https://doi.org/10.4230/DARTS.9.2.7
https://doi.org/10.4230/DARTS.9.2.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Toward Tool-Independent Summaries for Symbolic Execution

and the validity of any assertions supplied by the developer. Despite being extensively used
in practice [15, 26, 7, 54], symbolic execution suffers from two main limitations when applied
to real-world code: interactions with the runtime environment (e.g. file system, network,
operating system) and path explosion. An effective approach to deal with these two issues is
to use symbolic summaries to model the behaviour of both external runtime functions as
well as internal functions with a high level of branching [6].

Symbolic summaries constrain the symbolic state of the given program so as to simulate
the behaviour of the modelled functions without having to symbolically execute them. The
idea is that instead of symbolically executing the code of a given concrete function on some
symbolic inputs, one implements a symbolic summary that models the behaviour of that
function, and then executes the summary instead of the concrete function. Importantly,
symbolic summaries allow developers to merge different symbolic execution paths into a
single path by explicitly interacting with the current symbolic state [6, 52]. Hence, they
provide an effective mechanism for containing the number of paths to be explored during
symbolic execution, allowing developers to mitigate the effect of the path explosion problem.

When writing a symbolic summary, tool developers must carefully construct the symbolic
state that properly captures the outcome of all the execution paths that the summary is
supposed to model. They do this by directly interacting with the various elements of the given
symbolic state using symbolic reflection mechanisms [6, 52]. This is often a challenging task
that is both error prone and difficult to validate. For this reason, most symbolic execution
tools for C have very limited support for external functions and commonly used library
functions, such as those of the Standard C Library (libc).

State-of-the-art symbolic execution tools [50, 15, 38] come with their own symbolic
summaries implemented in the programming languages used to build each tool. For instance,
angr ’s [50] summaries are implemented in Python, KLEE ’s [15] summaries in C, and
BINSEC ’s [19] summaries in OCaml, even though all these tools target C code. These
summaries often rely on specific aspects of the tools for which they were implemented,
making it extremely difficult to share summaries between different symbolic execution tools.
Surprisingly, and although there is a clear lack of appropriate tool support for developing
and sharing symbolic summaries across different symbolic execution tools, the research
community has not yet given much attention to this topic. The current state of affairs is,
however, dire: even though the Standard C Library (libc) includes more than one thousand
functions, the symbolic execution tool with the broadest support for libc is angr [50],
with only 128 unverified symbolic summaries. This situation is made considerably worse
by the fact that even the few existing summaries are written manually and not verified,
potentially compromising the correctness and coverage guarantees of their corresponding
symbolic execution tools.

In this paper, we introduce a new symbolic reflection API for the implementation of
tool-independent symbolic summaries for the C programming language. The proposed
API consists of a set of symbolic reflection primitives [52] for the explicit manipulation of
C symbolic states in a tool-independent way. Our symbolic primitives include a variety
of instructions for: creating symbolic variables and first-order constraints, checking the
satisfiability of constraints, and extending the path condition of the current symbolic state
with a given constraint. Symbolic summaries implemented using our API are written directly
in C and can therefore be shared across different symbolic execution tools, provided that these
tools implement the proposed API. Importantly, the goal of our API is not to make symbolic
summaries simpler or easier to write, but rather to establish a symbolic reflection interface
shared by all symbolic execution tools, allowing for the decoupling of symbolic summaries from

F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:3

the internal details of each tool. To illustrate the applicability of our API, we have extended
the symbolic execution tools angr [50] and AVD [45] with support for it and developed
67 tool-independent symbolic summaries for a total of 27 libc functions, including string-
manipulating, number-parsing, input/output, and heap-manipulating functions. Furthermore,
we formalised our symbolic reflection API as a symbolic semantics [52, 21] and used this
semantics to formally characterise the correctness properties that symbolic summaries are
expected to observe, specifically, over- and/or under-approximation.

Leveraging our symbolic reflection API, we developed SumBoundVerify, a new fully-
automated tool for the bounded verification of symbolic summaries. SumBoundVerify
works by comparing the execution paths modelled by the given summary against those
generated by symbolically executing its corresponding concrete function up to the chosen
bound. In order to assess the effectiveness of SumBoundVerify, we used it to verify
summaries belonging to three state-of-the-art symbolic execution tools: angr [50], Binsec [19,
39, 18], and Manticore [38]. Out of the 37 analysed summaries, 24 were flagged as buggy,
clearly demonstrating the need for tool support when it comes to designing and implementing
symbolic summaries. This need is further confirmed by our own experience in the development
of symbolic summaries, which we typically found to be highly complex and error-prone.
This paper bridges this gap by providing the first verification tool specifically aimed at the
development of correct symbolic summaries.

In summary, the contributions of this paper are the following: (1) a formally defined API
for developing symbolic summaries for C; (2) a library of 67 symbolic summaries modelling
26 libc functions; and (3) SumBoundVerify, an automatic bounded verification tool for
validating symbolic summaries against their corresponding concrete implementations.

2 Overview

In this section, we first contrast the existing methodology for implementing symbolic sum-
maries with our proposed approach (§2.1) and then give a high-level overview of SumBound-
Verify (§2.2), illustrating how it can be used to verify symbolic summaries.

2.1 Tool-Specific vs. Tool-Independent Symbolic Summaries
A symbolic summary is an operational model of a function that simulates its behaviour by
interacting directly with the underlying symbolic state. So far, each symbolic execution tool
for C comes with its own summaries directly implemented in the programming language
used to build the tool. Existing symbolic summaries are therefore tightly connected to the
architecture of their corresponding tools, preventing summaries from being shared between
different tools. In order to cater for the reuse of symbolic summaries, we propose an alternative
approach: Symbolic summaries are to be directly implemented in C using a shared symbolic
reflection API for direct manipulation of symbolic states at the programming language level.

To illustrate the difference between tool-specific and tool-independent summaries, we
compare Manticore’s [38] symbolic summary for strlen (Figure 1) with the equivalent
summary written directly in C using our API (Figure 2).

Manticore’s Tool-Specific Summary

Figure 1 shows Manticore’s summary for the function strlen. This summary first checks if
the given string pointer is itself symbolic, in which case it throws an error (lines 3-4). Then,
the summary uses the Manticore’s internal function find_zero to determine the index of the

ECOOP 2023

24:4 Toward Tool-Independent Summaries for Symbolic Execution

1 def strlen_approx(state: State, s: Union[int, BitVec]) -> Union[int, BitVec]:
2
3 if issymbolic(s):
4 raise ConcretizeArgument(state.cpu, 1)
5
6 #Find max string length
7 cpu = state.cpu
8 zero_idx = _find_zero(cpu, state, s)
9 ret = zero_idx

10
11 #Build nested ITE formula
12 for offset in range(zero_idx - 1, -1, -1):
13 byt = cpu.read_int(s + offset, 8)
14 if issymbolic(byt):
15 ret = ITEBV(cpu.address_bit_size, byt == 0, offset, ret)
16
17 return ret

Figure 1 Implementation of Manticore’s strlen summary.

first concrete null character in the input string, zero_idx. Note that if the string does not
contain any symbolic character, zero_idx coincides with the length of the string. In the final
for-loop, the summary iterates over the characters of the given string to construct a symbolic
expression denoting its length. For instance, given the symbolic string [c0, c1, c2, \0],
the loop will generate the expression:

ret = ITE(c0 == \0, 0, ITE(c1 == \0, 1, ITE(c2 == \0, 2, 3)))

signifying that: if the first character (c0) is null, then the return value is 0; if the second
character (c1) is null, then the return value is 1; if the third character (c2) is null, then the
return value is 2; otherwise, the return value is 3. Note that the overlines have no semantic
meaning, being only there to facilitate the reading.

Tool-Independent Summary

Figure 2 shows our equivalent C implementation of Manticore’s summary for strlen.
Although both summaries implement approximately the same logic,1 our summary is
written directly in C using our symbolic reflection API. It uses the following primitives:
(1) is_symbolic(x) to check if variable x denotes a symbolic value; (2) new_sym_var(size)
to create a new symbolic variable to represent a value of size size; (3) _solver_EQ(a, b)
to build a constraint stating that the two given values are equal; (4) assume(c) to add
the constraint c to the path condition of the current symbolic state; and (5) the primitive
_solver_IF(c, a, b) to build an if-then-else symbolic expression of the form ITE(c, a, b).

Why use symbolic summaries?

To better understand the benefits of symbolic summaries, let us consider the symbolic execu-
tion of the concrete implementation of strlen on the symbolic string [c0, c1, c2, \0].
That execution would generate four execution paths, each corresponding to one of the possible
outputs. In contrast, the execution of either of the symbolic summaries described above
generates a single execution path representing all four outputs. Both symbolic summaries

1 The C summary assumes that it is never given a symbolic pointer as input.

F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:5

1 size_t strlen(char* s){
2 int i = 0;
3 char char_zero = '\0';
4

5 //Calculate max string length
6 while(is_symbolic(&s[i]) || s[i] != '\0'){
7 i++;
8 }
9 int len = i;

10 symbolic ret = new_sym_var(INT_SIZE);
11 cnstr_t ret_cnstr = _solver_EQ(&ret, &len, INT_SIZE);
12

13 //Build nested ITE constraint
14 for(i = len-1; i >= 0; i--){
15

16 if(is_symbolic(&s[i])){
17

18 cnstr_t c_eq_zero = _solver_EQ(&s[i], &char_zero, CHAR_SIZE);
19 cnstr_t ret_eq_i = _solver_EQ(&ret, &i, INT_SIZE);
20

21 ret_cnstr = _solver_IF(c_eq_zero, ret_eq_i, ret_cnstr);
22 }
23 }
24 assume(ret_cnstr);
25 return ret;
26 }

Figure 2 Implementation of Manticore’s strlen in C.

achieve this by directly extending the path condition of the calling state with a formula that
constrains the return value appropriately, depending on the symbolic characters appearing
in the given string.

2.2 Bounded Verification of Symbolic Summaries
In this section we show how SumBoundVerify can be used to verify the symbolic sum-
mary of strlen given above. We support two flavours of correctness properties: under-
approximating [40] and over-approximating [5]. A summary is under-approximating if all the
execution paths modelled by the summary are contained in the set of concrete paths of its
corresponding function. In other words, an under-approximating summary guarantees that
all its generated paths have corresponding concrete paths. Conversely, a symbolic summary
is over-approximating if it models all the concrete paths of its corresponding function; that
is, an over-approximating summary must take into account all possible concrete paths. If a
summary is both under- and over-approximating, we say that it is exact, following recent
terminology in the context of separation-logic-based verification [37]. Naturally, the type
of correctness property to be aimed at depends on how the summary is going to be used.
For instance, over-approximating summaries are essential for security applications that must
guarantee the absence of security vulnerabilities; in contrast, under-approximating summaries
may be a better fit for debugging tools that aim at reporting only real bugs.

Bounded Verification

Let us now take a closer look at the inner workings of SumBoundVerify. In a nutshell,
SumBoundVerify requires the developer to provide the summary to be verified, its cor-
responding concrete implementation, and an integer bound on the size of its parameters;
for instance, for inputs of array type, this bound corresponds to the maximum length of

ECOOP 2023

24:6 Toward Tool-Independent Summaries for Symbolic Execution

1 int main(){
2
3 char s[4];
4 for (int i = 0; i < 2; i++){
5 s[i] = new_sym_var_array("c", i, CHAR_SIZE);
6 }
7 s[3] = '\0';
8
9 state_t fresh_state = save_current_state();

10
11 int ret1 = concrete_strlen(s);
12 cnstr_t c1 = get_cnstr(&ret1, INT_SIZE);
13 store_cnstr("cncrt", c1);
14
15 switch_state(fresh_state);
16
17 int ret2 = summ_strlen(s);
18 cnstr_t c2 = get_cnstr(&ret2, INT_SIZE);
19 store_cnstr("summ", c2);
20
21 result_t res = check_implications("summ", "cncrt");
22 print_counterexamples(res);
23 return 0;
24 }

(a) Test code.

Reference Implementation Formula:
(c0 = \0) ∧ (ret = 0) ∨
(c0 ̸= \0) ∧ (c1 = \0) ∧ (ret = 1) ∨
(c0 ̸= \0) ∧ (c1 ̸= \0) ∧ (c2 = \0) ∧ (ret = 2) ∨
(c0 ̸= \0) ∧ (c1 ̸= \0) ∧ (c2 ̸= \0) ∧ (c3 = \0)
∧ (ret = 3)

Symbolic Summary Formula:
IT E(c0 = \0, r = 0,

IT E(c1 = \0, r = 1,
IT E(c2 = \0, r = 2, 3)) ∧ ret = r

(b) Generated formulas.

Figure 3 Bounded Verification of the strlen summary given in Figure 2.

the array. Given the signature of the summarised function, SumBoundVerify synthesises
a set of symbolic tests to check the correctness of the given summary. These tests can be
executed by any symbolic execution tool that implements our reflection API. If the summary
passes all the generated tests, then it is correct up to the pre-established bound. If it does
not, then SumBoundVerify generates a concrete input that is not correctly modelled by
the summary.

Figure 3 illustrates one of the tests generated for the strlen summary discussed in §2.1,
assuming that the developer specified bound 3. The test first creates an array of size 4,
initialises the first 3 characters to new symbolic characters, and sets the fourth element
of the array to be the null character (lines 3-7). Then, the test uses the API function
save_current_state to save the current symbolic state (line 9). Next, the test calls the
concrete strlen function on the created symbolic string and stores the generated return
values and final path conditions for future reference (lines 12-14). Then, the test re-establishes
the symbolic state saved in line 10 by calling the API function switch_state (line 15),
which simply replaces the current symbolic state with the given symbolic state. Having
re-established the original symbolic state, the test calls the summary on the input string and
stores the generated return values and final path conditions (lines 17-19). Finally, the test
compares the return values and path conditions generated by the summary against those
generated by the concrete function.

A summary can be classified as being: under-approximating correct, over-approximating
correct, or incorrect. In a nutshell, the two correct cases are checked as follows:

Under-approximating: the formula describing the final state resulting from the symbolic
execution of the summary implies the formula describing the final state resulting from
the symbolic execution of its reference implementation;
Over-approximating: the formula describing the final state resulting from the symbolic
execution of the reference implementation implies the formula describing the final state
resulting from the symbolic execution of the summary.

The strlen summary given in Figure 2 is exact (i.e., both under- and over-apaproximating).
Figure 3b shows the formulas generated by the execution of both the reference implementation
and the summary. As the summary is exact, the solver can check both implications.

F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:7

3 Symbolic Reflection API

We formally define the semantics of our API for developing symbolic summaries (§3.1) and
use this semantics to characterise the correctness properties that symbolic summaries are
expected to observe (§3.2). Then, we illustrate how our reflection API can be used to develop
symbolic summaries for string-manipulating and number-parsing libc functions (§3.3).

3.1 Formal Semantics
We define the formal semantics of our Symbolic Reflection API on top of a core C-like
language in the style of the core language used in [41], which we extend with our symbolic
reflection primitives. Importantly, and in order not to clutter the formalism with unnecessary
technical details, the formal model is a simplified version of our proposed API. The syntax
of the language is given in the table below.

Syntax

e := n
∣∣ x

∣∣ ⊖ (e) | ⊕ (e1, e2)| ⊗ (e1, e2, e3)

ŝ := x := e
∣∣ skip

∣∣ ŝ1; ŝ2
∣∣ if(e) {ŝ1} else {ŝ2}

∣∣ while(e) {ŝ}
∣∣ return e∣∣ x := e1[e2]

∣∣ e1[e2] := e3
∣∣ x := new(e)

∣∣ rs

rs := assert(e)
∣∣ assume(e)

∣∣ x := is_symbolic(e)
∣∣ x := symb()

∣∣ x := is_sat(e)∣∣ x := maximize(e)
∣∣ x := minimize(e)

∣∣ x := cur_pc()
∣∣ x := eval(e)∣∣ x := block_size(e)

∣∣ x := construop(e)
∣∣ x := constrbop(e1, e2)

bop := or
∣∣ and

∣∣ eq
∣∣ neq

∣∣ lt
∣∣ le uop := not

Expressions e ∈ Expr include integers n, program variables x, unary, binary, and ternary
operators. Statements ŝ ∈ Stmt include: (i) the typical imperative statements, i.e. variable
assignment, skip, sequence, if, while, and return statements; (ii) statements for interaction
with a linear memory, and (iii) symbolic reflection primitives rs ∈ RS. In the following we
use ŝ for statements that may include reflection primitives and s for statements that do not.
Accordingly, we use ŝ for symbolic summaries and s for reference implementations.

The statements for memory interaction are the following: (1) the statement x := e1[e2]
assigns to x the value stored in the memory block denoted by e1 at the offset denoted by e2;
(2) the statement e1[e2] := e3 stores the value denoted by e3 in the memory block denoted
by e1 at the offset denoted by e2; and (3) the statement x := new(e) creates a memory block
with the size denoted by e and assigns the obtained pointer to x.

The symbolic reflection primitives rs ∈ RS are the following: (1) assert(e) to check if
the current path condition implies the constraint denoted by e; (2) assume(e) to extend the
current path condition with the constraint denoted by e; (3) x := is_symbolic(e) to assign
to variable x a boolean value indicating if e denotes a symbolic expression; (4) x := symb()
to assign a fresh symbolic value to x; (5) x := is_sat(e) to check if the constraint denoted
by e is satisfiable when conjoined with the current path condition; (6) x := maximize(e)
to assign the largest possible value that may be denoted by e to x; (7) x := minimize(e)
to assign the smallest possible value that may be denoted by e to x; (8) x := cur_pc() to
assign the formula denoting the current path condition to x; (9) x := eval(e) to assign one
of the concrete values denoted by e to x; (10) x := block_size(e) to assign the size of the
memory block pointed to by e to x; (11) x := construop(e) to assign the constraint resulting
from the application of the logical unary operator uop to the symbolic value denoted by e to
x; and (12) x := constrbop(e1, e2) to assign the constraint resulting from the application of
the logical binary operator bop to the symbolic values denoted by e1 and e2.

ECOOP 2023

24:8 Toward Tool-Independent Summaries for Symbolic Execution

New
JeKρ̂ = n alloc(µ̂, n) = ⟨µ̂′, l⟩

ρ̂′ = ρ̂[x 7→ l]
µ̂, ρ̂, x := new(e)⇝ µ̂′, ρ̂′,C⟨·⟩

Load
Je1Kρ̂ = l Je2Kρ̂ = ô load(µ̂, l, ô)⇝s S⟨v̂, π′⟩

ρ̂′ = ρ̂[x 7→ v̂] π′′ = π ∧ π′

µ̂, ρ̂, π, x := e1[e2]⇝ µ̂, ρ̂′, π′′,C⟨·⟩

Store
Je1Kρ̂ = l Je2Kρ̂ = ô Je3Kρ̂ = v̂

store(µ̂, l, ô, v̂)⇝ S⟨µ̂′, π′⟩
µ̂, ρ̂, π, e1[e2] := e3 ⇝ µ̂′, ρ̂, π ∧ π′,C⟨·⟩

Skip
skip⇝ C⟨·⟩

Return
JeKρ̂ = v̂

ρ̂, return e⇝ ρ̂,R⟨v̂⟩

If-True
JeKρ̂ = v̂ π′ = π ∧ (v̂ = true)

ρ̂, π, if(e) {ŝ1} else {ŝ2}⇝ ρ̂, π′,C⟨ŝ1⟩

If-False
JeKρ̂ = v̂ π′ = π ∧ (v̂ = false)

ρ̂, π, if(e) {ŝ1} else {ŝ2}⇝ ρ̂, π′,C⟨ŝ2⟩

Assignment
JeKρ̂ = v̂

ρ̂, x := e⇝ ρ̂[x 7→ v̂],C⟨·⟩

Sequence - Cont
µ̂, ρ̂, π, ŝ1 ⇝ µ̂′, ρ̂′, π′,C⟨ŝ′

1⟩
µ̂, ρ̂, π, ŝ1; ŝ2 ⇝ µ̂′, ρ̂′, π′, C⟨ŝ′

1; ŝ2⟩

Sequence - Empty
µ̂, ρ̂, π, ŝ1 ⇝ µ̂′, ρ̂′, π′,C⟨·⟩

µ̂, ρ̂, π, ŝ1; ŝ2 ⇝ µ̂′, ρ̂′, π′, C⟨ŝ′
2⟩

While
while(e) {ŝ}⇝ C⟨if(e) {ŝ, while(e) {ŝ}} else {skip}⟩

Figure 4 Core Semantics: Imperative Fragment.

Symbolic Execution – Trace Semantics

The symbolic semantics of our core language operates on symbolic states, which store symbolic
values given by the grammar: v̂ ∈ V̂ ::= n | x̂ | ⊖ (v̂) | ⊕ (v̂, v̂) | ⊗ (v̂, v̂, v̂). Symbolic values
include: integers n, symbolic variables x̂ ∈ X̂ , and unary, binary, and ternary operators,
respectively ranged by ⊖, ⊕, and ⊗. Furthermore, we use π ∈ Π to range over symbolic
values of type Boolean. Symbolic states σ̂ ∈ SymSt are composed of:

a symbolic heap, µ̂ : N ⇀ V̂ × N × N, mapping integer pointers l ∈ N to triples of the
form (v̂, kl, kr), where v̂ denotes the symbolic value stored at location l and kl and kr

respectively denote the number of cells that can be accessed to the left and to the right
of l using l as the accessing pointer;
a symbolic store, ρ̂ : X ⇀ V̂, mapping program variables to symbolic values; and
a path condition, π ∈ Π, keeping track of the constraints on which the current symbolic
execution branched so far.

Note that our symbolic execution model requires heap locations to always be concrete; hence,
we take the domain of symbolic heaps to be the set of naturals, N, rather than that of
symbolic values, V̂. Symbolic heaps, as concrete heaps, are organised in blocks, with each
block being a sequence of memory locations; blocks can be univocally identified by their
first location, which is referred to as the head of the block (i.e., l is the head of a block in µ̂,
if µ̂(l) = (−, 0,−), meaning that one cannot access any location before l within its block).
Furthermore, we assume heaps to be well-formed, meaning that ranges of adjacent locations
are consistent with each other; put formally, a heap µ̂ is said to be well-formed if and only if:

∀l ∈ dom(µ̂). µ̂(l) = (−, 0, kr) =⇒ ∀0 ≤ i < kr. µ̂(l+i) = (−, i, kr−i)
∀l ∈ dom(µ̂). µ̂(l) = (−, kl, kr) =⇒ µ̂(l − kl) = (−, 0, kl + kr)

F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:9

Alloc
l = |dom(µ̂)|

µ̂′ = µ̂[l+i 7→ (0, n−i, i) | 0 ≤ i < n]
alloc(µ̂, n) ≜ ⟨µ̂′, l⟩

Block-size
µ̂(l) = (−, −, kr)
b_size(µ̂, l) ≜ kr

Load - In Bounds
µ̂(l) = (−, kl, kr) − kl ≤ i < kr

π′ = ô = i µ̂(l + i) = (v̂, −, −)
load(µ̂, l, ô)⇝s S⟨v̂, π′⟩

Store - In Bounds
µ̂(l) = (−, kl, kr) − kl ≤ i < kr µ̂(l + i) = (−, k′

l, k′
r) µ̂′ = µ̂[l+i 7→ (v̂, k′

l, k′
r)]

store(µ̂, l, ô, v̂)⇝s S⟨µ̂′, π′⟩

Figure 5 Core Semantics: Memory Actions.

In order to define the symbolic semantics of our core language, we make use of computation
outcomes [21, 36], which capture the flow of execution and are generated by the following
grammar: ô ∈ Ô ::= C⟨ŝ⟩ | C⟨·⟩ | R⟨v̂⟩ | E⟨π⟩. We make use of four types of outcomes: (1) the
non-empty continuation outcome C⟨ŝ⟩, signifying that the execution of the current statement
generated a new statement to be executed next; (2) the empty continuation outcome C⟨·⟩,
signifying that the execution may proceed to the next instruction; (3) the return continuation
outcome R⟨v̂⟩, signifying that the current execution terminated with return value v̂; and (4)
the error outcome E⟨π⟩, signifying that the current execution generates an error.

We define the symbolic semantics of our core language using a semantic judgement
of the form: σ̂, s ⇝ σ̂′, ô, meaning that the symbolic evaluation of statement s in the
state σ̂ generates the state σ̂′ and outcome ô. We splice the components of the state into
the semantic transition, simply writing ⟨µ̂, ρ̂, π, s⟩ ⇝ ⟨µ̂′, ρ̂′, π′, ô⟩ when σ̂ = (µ̂, ρ̂, π) and
σ̂′ = (µ̂′, ρ̂′, π′). The semantic rules are given in Figures 4 and 6, where the former focus on
the core language and the latter on symbolic reflection API. Due to space constraints, we
omit all error-generating transitions with the exception of those describing errors generated
by API primitives. We further omit the elements of the configuration that are neither
updated nor inspected by the current rule, writing, for instance, ρ̂, s ⇝ ρ̂′, ô to mean
⟨µ̂, ρ̂, π, s⟩⇝ ⟨µ̂, ρ̂′, π, ô⟩. Note that the semantics is non-deterministic, meaning the symbolic
execution of a statement on a given state may generate multiple states and continuations.

The symbolic semantics of the imperative fragment is straightforward. It makes use of
the auxiliary function alloc and relations load and store for interacting with the linear
memory; their meanings are as follows:

alloc(µ̂, n) allocates a new memory block of size n;
load(µ̂, l, ô)⇝s S⟨v̂, π′⟩ successfully loads the value v̂ stored at the offset ô of location l

in memory µ̂; as the loading operation may cause the execution to branch, it additionally
generates a new formula π′ with the conditions that must hold for the symbolic value v̂

to be returned;
store(µ̂, l, ô, v̂) ⇝ S⟨µ̂′, π′⟩ successfully stores the symbolic value v̂ at the offset ô of
location l in memory µ̂ under the path condition π, returning a new memory µ̂′; as for
the loading operation, the storing operation may cause the execution to branch, hence
the returned constraint π′.

In the above, we use the symbol S to distinguish the successful transitions of load and store
from their error-leading transitions, which are labelled with E.

The definitions of alloc, load, and store are given in Figure 5. In contrast to load
and store which may cause the current execution to branch, alloc is assumed to be
deterministic. Hence, it is modelled as a function. Load and store operations fail if they
attempt to read/update the contents of a memory cell beyond the bounds of the inspected

ECOOP 2023

24:10 Toward Tool-Independent Summaries for Symbolic Execution

Assert - False
JeKρ̂ = π′ ̸⊢ π ⇒ π′

ρ̂, π, assert(e)⇝ ρ̂, π,E⟨π⟩

Assert - True
JeKρ̂ = π′ ⊢ π ⇒ π′

ρ̂, π, assert(e)⇝ ρ̂, π,C⟨·⟩

Assume
JeKρ̂ = π′

ρ̂, π, assume(e)⇝ ρ̂, π ∧ π′,C⟨·⟩

IsSymbolic - True
JeKρ̂ ̸∈ Consts ρ̂′ = ρ̂[x 7→ true]
ρ̂, x := is_symbolic(e)⇝ ρ̂′,C⟨·⟩

IsSymbolic - False
JeKρ̂ ∈ Consts ρ̂′ = ρ̂[x 7→ false]

ρ̂, x := is_symbolic(e)⇝ ρ̂′,C⟨·⟩

Symb
x̂ fresh

ρ̂, x := symb()⇝ ρ̂[x 7→ x̂],C⟨·⟩

IsSat - True
JeKρ̂ = π′ π ∧ π′ SAT

ρ̂′ = ρ̂[x 7→ true]
ρ̂, π, x := is_sat(e)⇝ ρ̂′, π,C⟨·⟩

IsSat - False
JeKρ̂ = π′ π ∧ π′ UNSAT

ρ̂′ = ρ̂[x 7→ false]
ρ̂, π, x := is_sat(e)⇝ ρ̂′, π,C⟨·⟩

Maximise
JeKρ̂ = ê π ∧ ê ≤ v SAT

π ∧ ê > v UNSAT ρ̂′ = ρ̂[x 7→ v]
ρ̂, π, x := maximize(e)⇝ ρ̂′, π,C⟨·⟩

Minimise
JeKρ̂ = ê π ∧ ê ≥ v SAT

π ∧ ê < v UNSAT ρ̂′ = ρ̂[x 7→ v]
ρ̂, π, x := minimize(e)⇝ ρ̂′, π,C⟨·⟩

Cur-PC
ρ̂′ = ρ̂[x 7→ π]

ρ̂, π, x := cur_pc()⇝ ρ̂′, π,C⟨·⟩

Eval
JeKρ̂ = ê π ∧ ê = v SAT
ρ̂, π, x := eval(e)⇝ ρ̂′, π,C⟨·⟩

BlockSize
JeKρ̂ = l b_size(µ̂, l) = k

ρ̂′ = ρ̂[x 7→ k]
ρ̂, π, x := block_size(e)⇝ ρ̂′, π,C⟨·⟩

Not
JeKρ̂ = ê′ ρ̂′ = ρ̂[x 7→ uop(ê′)]
ρ̂, x := construop(e)⇝ ρ̂′,C⟨·⟩

Bi-Contr
JeiKρ̂ = êi|i=1,2 ρ̂′ = ρ̂[x 7→ bop(ê1, ê2)]

ρ̂, x := constrbop(e1, e2)⇝ ρ̂′,C⟨·⟩

Figure 6 Core Semantics: Symbolic Reflection API.

location (the failing rules are omitted due to space constraints). In the success case, both
load and store operations branch on the value of all legal offsets. This means that these
operations may generate unsatisfiable path conditions (for instance, when the given offset is
concrete), in such cases the symbolic execution path is unfeasible and will be filtered out by
symbolic execution.

Finally, Figure 6 gives the rules that describe the semantics of our proposed API. The
rules are straightforward. Note that constraints are simply symbolic values of boolean type;
hence, various rules either assign constraints to variables (e.g. Cur-Pc) or obtain a constraint
as the result of symbolically evaluating an expression (e.g. Assert, Assume, IsSat).

Symbolic Execution – Collecting Semantics

So far, we have defined the semantics of a single symbolic execution trace. In the following,
we extend this definition to account for multiple traces. We use ϕ̂ and ω̂ to range over input
and output symbolic configurations, respectively.2 We further use Ω̂ to range over sets of

2 Input configurations differ from output configurations in that former are composed of a symbolic state
and a statement whereas the latter are composed of a symbolic state and an outcome.

F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:11

output configurations. We capture the semantics of multiple-trace symbolic execution using
a big-step relation of the form ϕ̂ ⇓ Ω̂, meaning that if we “run” the symbolic semantics on the
input configuration ϕ̂, we obtain the set of output configurations Ω̂. As symbolic execution
often diverges, we additionally introduce a bounded version of the collecting semantics,
writing ϕ̂ ⇓k Ω̂ to mean that if we “run” the symbolic semantics on the input configuration
ϕ̂ and ignore symbolic traces with more than k steps, we end up with the set of output
configurations Ω̂. In order to formalise these relations, we make use of collecting one-step
transitions, writing ϕ̂ ↘ Ω̂ to mean Ω̂ contains all the configurations resulting from the
application of a single symbolic step on the input configuration ϕ̂ and no other; put formally:

Ω̂ = {⟨µ̂′, ρ̂′, π′, ô⟩ | ⟨µ̂, ρ̂, π, ŝ⟩⇝ ⟨µ̂′, ρ̂′, π′, ô⟩}
⟨µ̂, ρ̂, π, ŝ⟩ ↘ Ω̂

Definition 1 formalises the collecting semantics for bounded symbolic execution (the
unbounded version can be easily obtained from the bounded one by dropping the constraints
on k). The definition makes use of the following auxiliary predicates and functions:

The predicates Final(ω̂) and NonFinal(ω̂) respectively hold if the output configuration ω̂

is, respectively, final and non-final, with a configuration being final if it contains either a
return or an error outcome.
The function Next can only be applied to non-final output configurations, turning the
given output configuration into an input configuration by unwrapping the statement
contained in its non-empty continuation output.

We say that Final/NonFinal holds for a set of configurations if it holds for all of them.

▶ Definition 1 (Symbolic Execution – Collecting Semantics).

Bounded - Base
⟨µ̂, ρ̂, π, ŝ⟩ ↘ Ω̂1 ∪ Ω̂2 π SAT Final(Ω̂1) NonFinal(Ω̂2)

⟨µ̂, ρ̂, π, ŝ⟩ ⇓1 Ω̂1

Bounded - False
π UNSAT

⟨µ̂, ρ̂, π, ŝ⟩ ⇓k ∅

Bounded - Rec
⟨µ̂, ρ̂, π, ŝ⟩ ↘ Ω̂ ∪ {ω̂i |ni=1} Final(Ω̂) k > 1 π SAT Next(ω̂i) ⇓k−1 Ω̂i |ni=1

⟨µ̂, ρ̂, π, ŝ⟩ ⇓k ∪n
i=1Ω̂i ∪ Ω̂

3.2 Summary Correctness Properties
In contrast to most works on verification in which a concrete program is proven correct
with respect to a specification [5], here we take the concrete function associated with the
given summary to be the ground truth. Given a summary ŝ and its associated concrete
implementation s, we say that:

ŝ is an over-approximation of s if all the concrete executions of s are contained in the set
of the executions modelled by ŝ;
ŝ is an under-approximation of s if all the executions modelled by ŝ are contained in the
set of concrete executions of s.

When a summary satisfies both properties, we say that it is exact. In the following, we make
use of the concrete and symbolic semantics of our core language to establish the rigorous
definitions underpinning these concepts.

Symbolic State Interpretation

We write σ ∈ Jσ̂K to mean that the concrete state σ is in the interpretation of the symbolic
state σ̂. The interpretation of a symbolic state σ̂ is the set of concrete states that can be
obtained from σ̂ by mapping the symbolic values of σ̂ to concrete values in a way that is

ECOOP 2023

24:12 Toward Tool-Independent Summaries for Symbolic Execution

consistent with its path condition. For instance, if σ̂ = ⟨µ̂, ρ̂, x̂ ̸= 0⟩, then the symbolic
variable x̂ cannot be replaced by 0 in µ̂ and ρ̂. Accordingly, the interpretation function
J.K :: SymSt → ℘(ConcSt) takes as input a symbolic state and returns a set of concrete
states. We define the interpretation function for symbolic states with the help of two auxiliary
interpretation functions, one for symbolic memories and one for symbolic stores. These
interpretation functions require a valuation function, ε : X̂ ⇀ V , that maps symbolic variables
to concrete variables. We write Jµ̂Kε = µ to mean that the interpretation of µ̂ under ε yields
the concrete memory µ (analogously for stores). We interpret symbolic memories and stores
point-wise, applying the valuation function to each memory/store cell. Put formally:

Heap-Interp.
µ̂(l) = (v̂, kl, kr)

Jµ̂Kε(l) ≜ (Jv̂Kε, kl, kr)

Store-Interp.
ρ̂(x) = v̂

Jρ̂Kε(x) ≜ Jv̂Kε

State-Interp.
σ̂ = ⟨µ̂, ρ̂, π⟩

Jσ̂K ≜ { (Jµ̂Kε, JρKε) | JπKε = true}

In the definitions that follow, we characterise the correctness of a given summary with
respect to its corresponding reference implementation. In this context, the contents of
the store are not relevant as they are discarded after the execution of the function. To
account for this, we make use of truncated state interpretations, which ignore the store
component. We use Tσ̂U to refer to the truncated interpretation of the symbolic state
σ̂, which is defined as follows: T⟨µ̂, ρ̂, π⟩U ≜ { Jµ̂Kε | JπKε = true} For convenience, we lift
truncated symbolic state interpretation to pairs of symbolic states and symbolic outcomes as
follows: T(⟨µ̂, ρ̂, π⟩, ô)U ≜ { (Jµ̂Kε, JôKε) | JπKε = true}.

Correctness Properties

We are now at a position to formally define the correctness properties of symbolic summaries.
Definitions 2 and 3 respectively define over- and under-approximating summaries. We omit
the definition of exactness, which is simply the conjunction of the first two. Both definitions
rely on the concrete semantics of our core language, using ⟨µ, ρ, s⟩ →k ⟨µ′, ρ′, o⟩ to state that
the concrete execution of s in the concrete memory µ and store ρ, finishes in k steps and
generates the concrete memory µ′, store ρ′, and outcome o.

▶ Definition 2 (Bounded Over-Approximating Summary). A symbolic summary ŝ is said to
be a k-bound over-approximation of a concrete implementation s with respect to a symbolic
memory µ̂ and symbolic store ρ̂, if and only if it holds that:

⟨µ̂, ρ̂, true, ŝ⟩⇝∗ ⟨µ̂′, ρ̂′, π, ô⟩ ∧ Final(ô)
=⇒ ∀µ, µ′, ρ, ρ′, o, k′. (µ, ρ) ∈ J⟨µ̂, ρ̂, π⟩K ∧ ⟨µ, ρ, s⟩ →k′ ⟨µ′, ρ′, o⟩ ∧ k′ ≤ k ∧ Final(o)

=⇒ (µ′, o) ∈ T⟨µ̂′, ρ̂′, π⟩, ôU

▶ Definition 3 (Under-Approximating Summary). A symbolic summary ŝ is said to be an
under-approximation of a concrete implementation s with respect to a symbolic memory µ̂

and symbolic store ρ̂, if and only if it holds that:

⟨µ̂, ρ̂, true, ŝ⟩⇝∗ ⟨µ̂′, ρ̂′, π, ô⟩ ∧ Final(ô)
=⇒ ∀µ′, o. (µ′, o) ∈ T⟨µ̂′, ρ̂′, π⟩, ôU

=⇒ ∃µ, ρ, ρ′. (µ, ρ) ∈ J⟨µ̂, ρ̂, π⟩K ∧ ⟨µ, ρ, s⟩ →∗ ⟨µ′, ρ′, o⟩

The proposed definitions are unusual in that they relate the symbolic execution of the
summary ŝ with the concrete executions of its reference implementation s. Typical definitions
of this type [21, 36, 48, 47] relate symbolic execution of a given program with its concrete
execution. In our setting, we have two different programs being related: a symbolic summary
and its reference implementation.

F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:13

Table 1 C-Implemented summaries.

Memory Effects Symbolic ReturnClass N Lines of code API calls
✕ ✓ ✕ ✓

Strings 34 1639 194 24 10 18 16
Number Parsing 6 563 56 6 0 0 6
I/O 6 79 16 4 2 5 1
Memory 14 508 71 8 6 9 5
Heap 7 174 29 5 2 7 0

Total 67 2814 344 47 20 39 28

Finally, we note that the proposed definitions require that over/under-approximating
summaries allocate memory in the exact same order of their corresponding reference im-
plementations. This requirement could be relaxed by modifying our definition of symbolic
heap interpretation for it to relate each symbolic heap with all its valid concrete reshufflings
instead of simply those that follow its allocation order. We opted, however, for the more
restrictive definitions in order to simplify the presentation.

3.3 Modelling LIBC Functions

We illustrate how the symbolic reflection API can be used to implement symbolic summaries
for two families of libc functions: string manipulation functions and number-parsing functions.
In total, we have implemented 67 summaries targeting 24 libc functions. Table 1 gives
an overview of the 67 implemented summaries, showcasing for each category of summaries:
(1) the total number of lines of code; (2) the total number of calls to the symbolic reflection
API; (3) the number of summaries that update the heap memory; and (4) the number of
summaries that return symbolic values. In the following, we give an example of a summary
from each category.

Example – String Summaries

Figure 7 shows the implementation of an under-approximating symbolic summary for the
strlen function (recall that the summary given in Figure 2 is exact). This summary iterates
over an input string until it finds a concrete null character. During this process, if it finds a
symbolic character, it tries to prove that the corresponding byte can only be a null character.
If it succeeds, then the summary returns the current length, otherwise it assumes that the
current character is not the null character and continues iterating. More concretely, if a
character s[i] is symbolic, the summary builds the constraint cnstr ≡ (s[i] ̸= \0) and uses
the primitive is_sat to check if s[i] can only be the null character (i.e., !is_sat(cnstr)),
in which case the summary simply returns the value of i. Otherwise, cnstr is added
to the current path condition using the primitive assume, making the summary under-
approximating. For example, given the symbolic string [c0, 'a', c2, \0], where c0 and
c2 denote unconstrained symbolic characters, the summary outputs the value 3 and adds
the constraints c0 ̸= \0 and c2 ̸= \0 to the path condition.

ECOOP 2023

24:14 Toward Tool-Independent Summaries for Symbolic Execution

1 int strlen2(char* s){
2 char charZero = '\0'; int i = 0;
3 while(1){
4 if(is_symbolic(&s[i])){ //s[i] is symbolic
5 cnstr_t cnstr = _solver_NEQ(&s[i], &charZero, CHAR_SIZE); // s[i] ̸= '\0'
6 if(!is_sat(cnstr)) break;
7 else assume(cnstr); //Add cnstr to symbolic state
8 }
9 else if(s[i] == charZero) break;

10 i++;
11 }
12 return i;
13 }

Figure 7 Under-approximating Summary of strlen.

1 int atoi2(char *str){
...

33 else {
34 symbolic retval = new_sym_var(INT_SIZE);
35 int size = strlen(str); //Max possible length
36

37 //Determine bounds
38 int lower_bound = pow(10,size-1) * -1;
39 int upper_bound = pow(10,size);
40

41 //Build interval with constraints
42 cnstr_t val_GT_lower = _solver_SGT(&retval, &lower_bound, INT_SIZE);
43 cnstr_t val_LT_upper = _solver_SLT(&retval, &upper_bound, INT_SIZE);
44 cnstr_t bounds_cnstr = _solver_And(val_GT_lower,val_LT_upper);
45

46 //Add constraints to symbolic state
47 assume(bounds_cnstr);
48 return retval;
49 }
50 }
51 return res * sign;
52 }

Figure 8 Fragment of Over-approximating Summary of atoi.

Example – Number summaries

Figure 8 shows a fragment of an over-approximating summary for atoi. The atoi function
is used to parse strings denoting integer values. The key for guaranteeing that the summary
is over-approximating is to return a fresh symbolic value and constrain this value to be:
(i) greater than or equal to the smallest possible value that may be denoted by the given
string; and (ii) smaller than or equal to the largest possible value that may be denoted by the
given string. To this end, the summary determines the maximum possible length of the given
string and uses it to compute the interval of possible return values. For example, considering
a symbolic string [c0, c1, c2, \0], the summary constrains the returned symbolic value,
retval to lie within the interval retval ∈ [−99, 999].

3.4 Reflection API Implementation
The proposed API can be implemented on top of any symbolic execution tool whose rep-
resentation of symbolic states includes a symbolic memory and a path condition. We have
found this to be the case for all the symbolic execution tools that we have analysed so

F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:15

far [50, 19, 8, 15, 38, 43, 17, 16, 31]. In the formalism we have chosen to include a sym-
bolic store component, to simplify the presentation, but this component is not essential for
implementing the API.

In order to illustrate the effort involved in implementing the API, we have extended
AVD [45] and angr [50], two current symbolic execution tools, with support for it. AVD is
a novel symbolic execution tool developed by the authors, whereas angr is a widely used
binary analysis toolkit. In both cases, the API implementation was straightforward, with the
API code totalling 330 LoC for angr and 529 LoC for AVD. Table 2 shows the number of
LoC of both implementations per type of API primitive. API primitives were implemented
differently in AVD and angr. In AVD, we have implemented each reflection primitive as if it
were a native symbolic summary, interacting directly with our own internal representation of
symbolic states. In angr, we have used an internal API provided by the tool for developers
to implement their own angr summaries directly in Python, associating each API primitive
to an angr simprocedure.

Table 2 Lines of code per type of API primitive implemented in AVD and angr.

Reflection Primitives
Core Memory Symbolic Values Constraints Total

AVD 206 54 56 213 529
angr 100 23 53 154 330

We believe that extending other symbolic execution tools with support for the proposed
API should be as straightforward as extending angr and AVD since most tools already
possess internally, albeit with variations, the reflection mechanisms captured by our API. The
main difficulty in the implementation of the API is that it requires a thorough understanding
of the inner-workings of the targeted tool and therefore should be done by the tools’ own
engineering teams rather than by external users. This effort should, however, pay off as
implementing our API requires considerably less code than implementing a comprehensive
library of symbolic summaries for libc from scratch, while also being conceptually simpler.

4 SumBoundVerify: Bounded Verification of Symbolic Summaries

In this section, we introduce our proposed methodology for the bounded verification of
symbolic summaries. We first introduce our main summary verification algorithm (§4.1) and
then explain how we leverage this algorithm to build SumBoundVerify by automatically
generating symbolic tests for the summaries to be verified (§4.2).

4.1 Bounded Summary Verification Algorithm
Symbolic State Lifting

In order to verify the correctness properties of a summary, we introduce a lifting operator
⌈.⌉ :: P(SymSt×Ô)→ Π that transforms a set of output configurations (i.e. symbolic states
paired up with symbolic outcomes) into a boolean formula. We write ⌈Ω̂⌉ = π to denote that
the lifting of the output configurations in Ω̂ generates the formula π. The lifting operator is
formally defined as follows:

⌈Ω̂⌉ ≜
∨ {
⌈µ̂⌉m ∧ π ∧ (ret = v̂) | (⟨µ̂, ρ̂, π⟩,R⟨v̂⟩) ∈ Ω̂

}

ECOOP 2023

24:16 Toward Tool-Independent Summaries for Symbolic Execution

Essentially, a set of output configurations is transformed into a disjunction of boolean
formulas, each describing its corresponding configuration. The formula created for each
configuration has three components: (i) a memory component ⌈µ̂⌉m describing the content of
the symbolic memory (defined below); (ii) a path condition component π; and (iii) a return
component ret = v̂, describing the return value of the function in the execution path that led
to the given configuration. We use two dedicated variable ret and count to refer to the return
value of a function and the number of cells in the current heap, respectively. Importantly, the
lifting of a set of output configurations is only defined if all configurations are associated with
a return outcome. The lifting operator for symbolic memories ⌈.⌉m :: SymMem→ Π, which
takes a symbolic memory µ̂ and returns a boolean formula ⌈µ̂⌉m describing its contents, is
defined as follows:

Memory Lifting
πblocks = ∧l∈blocks(µ̂)⌈µ̂⌉l

b πcount = count = | dom(µ̂) |
⌈µ̂⌉m ≜ πblocks ∧ πcount

Block Lifting
µ̂(l) = (−, 0, kr)

⌈µ̂⌉l
b ≜ ∧0≤i<kr { cell(l+i, µ̂(l + i))}

A symbolic memory µ̂ is encoded into the conjunction of its blocks, which are, in turn,
encoded using an auxiliary encoding function ⌈.⌉.b : SymMem× N→ Π for lifting memory
blocks to formulas. The memory encoding function makes use of an auxiliary function
blocks : SymMem→ ℘(N) to obtain the locations in the given memory corresponding to
the beginning of blocks. The block-lifting function transforms each memory block into a
formula describing the contents of each cell in the given block. To this end, we make use of an
uninterpreted predicate cell to denote that the cell at a given address has the given content.

Bounded Verification Algorithm

Algorithm 1 describes our procedure for verifying if a summary ŝ is under/over-approximating
with respect to a concrete implementation s, symbolic memory µ̂, and symbolic store ρ̂. In a
nutshell, this algorithm compares the symbolic state(s) resulting from the execution of the
summary, Ω̂sum, against those generated by its reference implementation, Ω̂ref . We do not
bound the symbolic execution of the summary given that summaries should be designed to
be convergent. In contrast, we bound the execution of their reference implementations as
they often diverge. In a nutshell, we conclude that:

a summary is over-approximating if ⌈Ω̂ref ⌉ =⇒ ⌈Ω̂sum⌉, i.e. the set of symbolic
states generated by the reference implementation are contained in those generated by
the summary;
a summary is under-approximating if ⌈Ω̂sum⌉ =⇒ ⌈Ω̂ref ⌉, i.e. the set of symbolic
states generated by the summary are contained in those generated by the corresponding
reference implementation.

These implications are, however, too strong as they do not account for the creation of
new symbolic values within the execution of the summary. To account for these, we have to
existentially quantify the symbolic variables created during the execution of the summary.
Algorithm 1 makes use of an auxiliary function existentials for computing the variables to be
existentially quantified according to the following equation:

existentials(π, µ̂, ρ̂) ≜ lvars(π)\(lvars(µ̂) ∪ lvars(ρ̂))

Essentially, all the symbolic variables created during the execution of the summary must
be existentially quantified; these correspond to the symbolic variables that exist in the final
symbolic states obtained from the summary execution but do not in the initial state.

F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:17

Algorithm 1 Bounded Summary Verification.

1 function VerifySummary(prop, ŝ, s, µ̂, ρ̂, k)
2 ⟨µ̂, ρ̂, true, ŝ⟩ ⇓ Ω̂sum

3 ⟨µ̂, ρ̂, true, s⟩ ⇓k Ω̂ref

4 πsum ← ⌈Ω̂sum⌉
5 πref ← ⌈Ω̂ref ⌉
6 xssum ← existentials(πsum, µ̂, ρ̂)
7 if prop = over then
8 out← isValid(πref =⇒ ∃xssum. πsum)
9 else

10 out← isValid(∃xssum. πsum =⇒ πref)
11 return out

Correctness Result

Theorem 4 is our main correctness result. Essentially, it states that if we apply Veri-
fySummary in over-approximation mode and it returns true, then the given summary is
a bounded over-approximation of the given concrete implementation and analogously for
under-approximation mode.

▶ Theorem 4 (Summary Correctness). Let ŝ be a symbolic summary, s its reference imple-
mentation, µ̂ a symbolic memory, ρ̂ a symbolic store, and k and a positive integer; then, it
holds that:

If VerifySummary(over, ŝ, s, µ̂, ρ̂, k) = true, then ŝ is a k-bound over-approximation
of s with respect to µ̂ and ρ̂;
If VerifySummary(under, ŝ, s, µ̂, ρ̂, k) = true, then ŝ is an under-approximation of s

with respect to µ̂ and ρ̂.

4.2 Automatic Symbolic Test Generation
In §4.1, we introduced a method for checking whether or not a given summary ŝ is correct
with respect to a reference implementation s, a symbolic memory µ̂, and a symbolic store ρ̂.
Naturally, one would like to prove that a summary is correct with respect to all symbolic
memories and stores consistent with the signature of the summarised function instead of only
a particular symbolic memory and store. SumBoundVerify solves this problem partially
by bounding the size of memories and stores to be explored and using the type information
in the signature of the summarised function to generate the initial symbolic states for which
to check the summary up to the pre-established bound. In this section, we explain the
procedure by example, leaving its formalisation for future work.

Instead of directly creating the symbolic states on which to run the summaries to be
evaluated, we generate the initialisation code that creates such states from the signature of
the function to be summarised. In general, the generated initialisation code depends on the
type of the arguments given to the summary:

For non-character arrays, we generate one fully symbolic array for each array size under
the specified bound;
For character arrays, we generate a single fully symbolic array terminated with a concrete
null character with size given by the specified bound (note that this single character array
models all strings of size lower than the specified bound since the intermediate symbolic
characters of the array may denote the null character);

ECOOP 2023

24:18 Toward Tool-Independent Summaries for Symbolic Execution

For non-recursive structures, we generate a single fully symbolic test with the elements of
the structure being mapped to fresh symbolic values;
For recursive structures, we generate one fully symbolic test for each unfolding of the
recursive structure up to the specified bound.

The test generation algorithm has two important limitations. First, it does not cover
cases in which there are mutual dependencies between the parameters of the function to be
summarised (e.g. a function with two array parameters with shared elements). Second, when
it comes to recursive structures, the algorithm does not consider structures with loops, such
as doubly-linked lists. If the arguments of the summarised function may exhibit one of these
features, then the corresponding tests should be created manually.

Examples - Non-Character vs. Character Arrays

We now illustrate the test generation algorithm with two simple examples, covering non-
character and character arrays. Suppose we want to validate a summary for a function with
signature int f(int* arr); in this case, SumBoundVerify would generate a set of tests,
each with an initial section in charge of creating the symbolic integer array associated with
the parameter arr. An example of one such initialisation code is given below.

1 int arr[4];
2 for (int i = 0; i < 4; i++) { arr[i] = new_sym_var_array("i", i, INT_SIZE); }

Essentially, the initialisation code allocates an integer array of size 4 in the stack and fills the
four elements of the array with fresh symbolic integers. Suppose now, we want to validate a
summary for a function with signature int g(char* s); in this case, SumBoundVerify
would generate a single test with the initialisation code given below.

1 char s[BOUND];
2 for (int i = 0; i < BOUND-1; i++) { s[i] = new_sym_var_array("c", i, CHAR_SIZE); }
3 s[BOUND-1] = '\0';

The initialisation code for character arrays has two main differences with respect respect to
the code generated for non-character arrays: (1) the size of the character array allocated
in the stack is always set to the specified bound and (2) the last element of the allocated
character array is always set to the concrete null character.

5 Evaluation

This section answers the following evaluation questions:
EQ1 - Is the proposed symbolic reflection API sufficiently expressive to allow for the imple-

mentation of under/over-approximating summaries?
EQ2 - Can tool independent symbolic summaries be used to contain path explosion in

symbolic execution?
EQ3 - Can SumBoundVerify be used to analyse real-world symbolic summaries developed

in the context of state-of-the-art symbolic execution tools?

5.1 EQ1: API Expressivity
In order to illustrate the expressivity of our symbolic reflection API, we implement a library of
symbolic summaries consisting of 67 summaries covering 26 libc functions from three different
header files: string.h, stdlib.h and stdio.h. For most of these functions, we have implemented

F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:19

at least two summaries, each illustrating a different correctness property. We then used
SumBoundVerify to check the correctness properties of the implemented summaries by
comparing them against their corresponding reference implementations. The fact that we
were able to implement both under/over-approximating summaries for a large number of
libc functions gives us a strong confidence that our library is expressive enough to model a
wide range of behaviours.

Table 3 shows, for each function category, the number of implemented summaries and
their corresponding correctness properties. In the table, N represents the total number of
implemented summaries; N/A represents the number of implemented summaries that do
not satisfy any correctness property; and the remaining columns represent the number of
implemented summaries that satisfy the corresponding property (Under, Over, or Exact).

Table 3 Correctness properties for the C-implemented summaries.

Category N N/A Under-aprox. Over-aprox. Exact

Strings 34 14 7 6 7
Memory 14 6 4 2 2
Number Parsing 6 2 – 4 –
System Calls 13 13 – – –

Total 67 35 11 12 9

Note that the summaries modelling functions that use system calls (e.g., malloc and
fgets) cannot be verified against their respective reference implementations. The reason is
that the symbolic execution of the reference implementations would necessarily step outside
the perimeter of the language and, therefore, of the symbolic execution engine. For instance,
the function fgets uses the read system call to obtain the string with the contents of the
given file. In order to symbolically execute fgets, we always need to have a summary of read
to start with, and this bootstrapping summary cannot be symbolically checked. Additionally,
some summaries are neither over- nor under-approximating for performance reasons. These
summaries assume that the function inputs satisfy certain preconditions, which we explicitly
specify as comments in the summary code. The formal characterisation and verification of
the properties satisfied by these summaries is, however, left for future work.

5.2 EQ2: Performance of Tool Independent Summaries

We measure the performance gains that can be obtained through the use of symbolic
summaries implemented with our API and compare the performance of tool-independent
summaries against that of native summaries. In order to carry out this experiment we set up
a symbolic test suite focusing on libc function usage. To the best of our knowledge, no such
test suite exists in the literature. In particular, we have analysed both the TestComp [11, 12]
and SVComp [10, 13] test suites, counting for each test suite the number of calls to libc
functions. We concluded that both these test suites make scarce use of libc functions, each
calling fewer than 3 functions per test on average. Furthermore, the libc functions used in
these test suites are mostly called with concrete arguments, rendering the use of symbolic
summaries pointless.

ECOOP 2023

24:20 Toward Tool-Independent Summaries for Symbolic Execution

Table 4 Summarized results in angr and AVD for both datasets.

Memory Out
✕

Timeout
✕

Success
✓

Avg.
NP aths

Avg.
NLibc

Avg.
NAP I

Avg.
Time (s)

Hash
Map

angr
Concrete 7 0 3 2.2k 6.3k 3.6k –
C-Summaries 0 0 10 80 419 7.7k 199.66
Native Summ 0 0 10 72 390 222 97.99

AVD
Concrete 0 7 3 6.2k 9.6k 1.7k –
C-Summaries 0 0 10 95 483 8.4k 61.55
Native Summ 0 0 10 96 487 244 26.66

Dynamic
Strings

angr
Concrete 6 2 4 2.3k 1.0k 4.4k –
C-Summaries 1 0 11 431 397 4.0k 235.58
Native Summ 1 0 11 353 237 97 143.96

AVD
Concrete 0 7 5 3.5k 5.0k 105 –
C-Summaries 0 1 11 499 1.9k 1.8k 14.20
Native Summ 0 1 11 564 1.4k 97 18.94

Experimental Set-up and Symbolic Test Suites

As the test bed for this experiment, we used angr [50] and AVD [45] extended with our
symbolic reflection API (see §3.4). All tests were run on a Ubuntu server (18.04.5 LTS) with
an Intel Xeon E5–2620 CPU and 32GB of RAM. Additionally, each test was given 16GB of
RAM with a maximum timeout of 30 minutes (1800 seconds).

We searched GitHub for open source C libraries that make intensive use of libc string-
processing functions. We found two such libraries: (1) the HashMap library [55], which
provides an implementation of a standard array-based hash table, and (2) the Dynamic
Strings library [46], which provides an implementation of heap-allocated strings that extend
the functionality offered by libc strings. Neither of these libraries came with concrete test
suites. We created a symbolic test suite for each library: 10 symbolic tests for HashMap
and 12 symbolic tests for Dynamic Strings. The symbolic test suites cover all the functions
exposed by two libraries that interact with libc functions.

Results

We ran both symbolic test suites on angr and AVD using: (1) our tool-independent sym-
bolic summaries implemented in C (C Summaries); (2) the native symbolic summaries
originally included in each tool (Native Summaries); and (3) the corresponding C reference
implementations. Part of these implementations were obtained from Verifiable C [4], a
toolset for proving the functional correctness of C programs which comes with verified libc
implementations [3]. The remaining functions were obtained from glibc [23] and libiberty [22]
libc implementations.

Results are summarised in Table 4, which shows for each test suite run: (1) the number
of tests that failed due to lack of memory (Memory Out); (2) the number of tests that failed
for exceeding the time limit (Time Out); (3) the number of tests that finished executing
within the given time limit (Success); (4) the average number of explored paths per test
(Avg. NP aths); (5) the average number of calls to libc functions per test (Avg. NLibc);
(6) the average number of calls to API primitives per test (Avg. NAP I); and (7) the average
execution time per test (Avg. Time). Note that we do not include the average execution
time for the concrete summaries as the majority of the corresponding executions do not
finish within the time limit. In contrast, we do include the average execution time for both
C summaries and native summaries given that they execute successfully the exact same
set of tests.

F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:21

Unsurprisingly, results clearly show that symbolic summaries substantially improve the
performance of symbolic execution tools. For the HashMap test suite, we observe that, for
both tools, 7 out of the 10 symbolic tests fail to execute without summaries. Using reference
implementations, all but the three smallest tests, either exhausted all the available memory or
hit the timeout of 30 minutes. The results for the Dynamic Strings test suite are analogous.
When using reference implementations: 8 out of 12 tests fail to execute with angr and 7 out of
12 tests fail to execute with AVD. When it comes to the path explosion problem, we observe
that, for both libraries, the number of execution paths generated by symbolic execution
with reference implementations is always at least one order of magnitude greater than that
generated by symbolic execution with summaries. Table 4 also shows the average number of
calls to libc functions and API functions. The number of calls to libc functions is lower for
symbolic execution with summaries than with reference implementations; this is expected
as symbolic execution with reference implementations generates a much larger number of
paths. Note that, there are calls to the symbolic reflection API even when using reference
implementations; this is due to the fact that we always model system calls with summaries.

Finally, we observe that tool-independent summaries are generally less performant than
native summaries implemented directly within the code base of the corresponding tools. This
slowdown is expected since tool-independent summaries are interpreted, whereas tool-specific
summaries are executed natively. Furthermore, our test suites were specifically created to
make heavy use of libc, making the slowdown more significant than for typical codebases,
which interact less frequently with libc functions. Importantly, the proposed reflection API
was not designed to obtain either performance or expressivity gains with respect to tool-
specific summaries, but rather to allow for the implementation of verified, tool-independent
summaries that can be shared across multiple SE tools. If the performance of a given
tool-independent summary becomes an execution bottleneck for a specific application, then
that summary should be implemented natively for the job at hand. However, we believe that
will not be the case for the majority of summaries.

5.3 EQ3: Bugs in Symbolic Execution tools

In order to test the applicability of SumBoundVerify, we used it to find bugs in summaries
used in three high-profile symbolic execution tools: angr [50], Binsec [19] and Manticore [38].
Additionally, we also used SumBoundVerify to verify the summaries that came with the
AVD tool. In the following, we classify a summary as buggy if it is neither under- nor
over-approximating and if there is no additional information about the expected behaviour of
the summary regarding missing/incorrect paths (for instance, in the form of a code comment
clarifying how the inputs should be constrained). As we implemented our API in both AVD
and angr, we were able to use their summaries directly. In contrast, we had to manually
re-write Binsec’s and Manticore’s summaries using our reflection API, following the original
algorithms line-by-line. Using this methodology, we were able to validate a total of 52 libc
symbolic summaries against their corresponding reference implementations.3

The results for all the validated summaries are shown in Table 5. Out of the analysed
summaries, we found 14 buggy summaries in angr, 9 in Binsec, 1 in Manticore, and 13 in
AVD. These summaries include spurious paths and exclude correct paths, meaning that they
are neither under- nor over-approximating. Importantly, only a few summaries included

3 As in §5.2, we use as reference the libc implementations from the Verifiable C tool chain, and the glibc
and libiberty libraries

ECOOP 2023

24:22 Toward Tool-Independent Summaries for Symbolic Execution

comments restricting the conditions under which they could be soundly applied. However,
even these summaries contained bugs that were not ruled out by their authors’ comments,
which clearly demonstrates that the development of sound symbolic summaries is a difficult
and error prone task that requires automated assistance.

Table 5 Summary bugs found in state-of-the-art symbolic execution tools.

NEvaluated NBugs Bugs Found

angr 24 14
atoi
strncat
strtol

atol
strncmp
strtoul

strcasecmp
strncpy
wcscasecmp

strchr
strstr
wcscmp

strcmp
strtok_r

Binsec 9 9 memcmp
strcpy

memcpy
strncmp

memset
strncpy

strchr
strrchr strcmp

Manticore 4 1 strcmp

Total 37 24

AVD 15 13
atoi
strcat
strtol

memcmp
strchr
tolower

memcpy
strcmp
toupper

memmove
strncmp

memset
strncpy

Total (incl. AVD) 52 37

To illustrate the type of bug uncovered by SumBoundVerify, we present three bugs,
each corresponding to a different tool and all three to the function strcmp. This function is
used to compare two strings lexicographically, returning: (i) a positive integer if the first
string is greater than the second one, (ii) a negative integer if it is lower, and (iii) 0 if the two
strings coincide. Even though the reference implementation of this function is very compact
with less than 10 LoC, its corresponding summaries can be extremely complex (for instance,
angr ’s summary has 160 LoC).

Bug in angr

The possible execution paths for the strcmp function can be divided into two main sets
according to the returned value: the execution paths where the return value is equal to zero
and those where it is different. angr correctly models all the execution paths that return
the value zero, i.e., the cases where the two symbolic input strings are equal. Regarding the
execution paths with a return value different from zero, i.e, the cases where the input strings
are different, angr always constrains the return value to 1. Hence, by returning a fixed
positive integer for all paths where the two strings differ, the summary does not satisfy any of
the correctness properties. Assuming, for example, two symbolic input strings of size 3, str1
and str2, SumBoundVerify produces the following counterexample for angr ’s summary:

Missing Path: [str1 = [A, A, A, \0] ∧ str2 = [B, B, B, \0] ∧ ret = −1]
Wrong Path: [str1 = [A, A, A, \0] ∧ str2 = [B, B, B, \0] ∧ ret = 1]

Essentially, the missing path describes a concrete execution that is not covered by the
summary, whereas the wrong path describes a behaviour covered by the summary that is not
generated by the execution of the concrete function.

F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:23

Bug in Manticore

Manticore’s strcmp summary iterates over the two strings to build a nested if-then-else
formula over pairs of symbolic bytes. This formula means that if two symbolic bytes are
different, then the summary must return the difference of those bytes; if they are equal, the
summary must return the value 0 when they are the last two bytes of the strings or continue
iterating otherwise. For instance, considering two symbolic input strings: str1 = [c1, c2, \0]
and str2 = [c3, c4, \0], this summary will create the following if-then-else formula:

ret = ITE(c1 ̸= c3, c1− c3, ITE(c2 ̸= c4, c2− c4, 0))

Even though it appears to be correct, Manticore’s summary does not take into account the
fact that intermediate symbolic bytes may also be the null character (\0). When validating
this summary on the input strings str1 and str2, SumBoundVerify produces the following
counterexample:

Missing Path: [str1 = [\0, A, \0] ∧ str2 = [\0, B, \0] ∧ ret = 0]
Wrong Path: [str1 = [\0, B, \0] ∧ str2 = [\0, A, \0] ∧ ret = 1]

Bug in Binsec

Unlike the previous summary, Binsec’s strcmp summary takes into account the case where
the intermediate symbolic bytes are null characters, but still gets it wrong. For instance,
given the same two symbolic input strings: str1 = [c1, c2, \0] and str2 = [c3, c4, \0], this
summary generates the following formula:

ret = ITE(c1 = \0,

ITE(c3 = \0, 0, 1),
ITE(c1 = c3,

ITE(c2 = \0,

ITE(c4 = \0, 0, 1),
ITE(c2 = c4, 0, ITE(c2 > c4, 1,−1))),

ITE(c1 > c3, 1, −1)))

Note that, when comparing each pair of symbolic bytes, this formula first checks if the
current byte of str1 (e.g., c1) is equal to the null character, in which case it then checks
if the corresponding byte of str2 (e.g., c3) is also equal to null; if it is, it evaluates to 0;
otherwise, it evaluates to 1 and here lies the problem. When validating this summary on the
input strings str1 and str2, SumBoundVerify produces the following counterexample:

Missing Path: [str1 = [A, \0, \0] ∧ str2 = [A, B, \0] ∧ ret = −1]
Wrong Path: [str1 = [A, \0, \0] ∧ str2 = [A, B, \0] ∧ ret = 1]

When the first string is shorter than the second one, Manticore’s summary assumes that
strcmp returns 1 when it should instead return −1.

Bug in Verifiable C

During our validation experiments we saw unexpected results when using the strcmp imple-
mentation of Verifiable C to validate the corresponding symbolic summaries. In particular,
we observed different results for the same strcmp summaries when using as reference im-
plementation that of Verifiable C and those of the glibc and libiberty libraries. We found

ECOOP 2023

24:24 Toward Tool-Independent Summaries for Symbolic Execution

a bug in the strcmp implementation of Verifiable C [53]: it compares characters as signed
values instead unsigned ones as mandated by the POSIX specification of libc. The code
had been proven correct, but for a specification too weak to bring the bug to light. This
illustrates yet another application of SumBoundVerify: it can be used to validate reference
implementations against each other.

6 Related Work

There is a vast body of work on summaries for different types of program analysis, such as
program logics [30, 44], abstract interpretation [56], and symbolic execution [25, 29]. However,
in contrast to program logics, which are typically designed to be compositional and therefore
place a heavy emphasis on summaries, in the form of function specifications and their usage,
the study of summaries in symbolic execution literature is much more uneven. In particular,
while there is a large number of symbolic execution tools that make use of operational
summaries in the style of those described in this paper [50, 19, 8, 15, 38, 43, 17, 16, 31],
we believe we are the first to address the issue of their formalisation and verification. The
existing work on the use of summaries in symbolic execution can broadly be divided into two
main groups: (1) first-order summaries that either do not reason about the heap memory
or do so in a very limited way; and (2) structural summaries that rely on various types of
representations to model the effects of heap-manipulating functions. In the following, we
give a brief outline of research in both categories of summaries, focusing on the work that is
closest to ours.

Godefroid et al. were the first to explore the use of first-order summaries in symbolic
execution [24, 2, 28]. The first compositional tool in this line of work was SMART [24], a
dynamic symbolic execution tool with support for summaries. SMART analyses functions in
isolation in a bottom-up manner, encoding the testing results of each function as a first-order
summary to be re-used in the analysis of other functions. Then, the authors proposed a
variation of their original algorithm to allow for the lazy exploration of the search space in a
top-down manner [2]. Later, the authors presented SMASH [28], a framework for testing
and verifying C programs. Analogously to SMART, SMASH is incremental, analysing one
function at a time and generating summaries that can be used in the analysis of other
functions. The novelty of SMASH is that it allows for the combined use of both under- and
over-approximating summaries in a demand-driven way. Importantly, the summaries of all
three tools consist only of first-order formulas that cannot describe heap effects.

First-order summaries have also been used in the context of loop-summarisation [27,
51, 35]. These works typically combine symbolic execution with a custom-made static
analysis component for detecting the induction variables of the loops to be summarised
and constructing partial invariants describing their behaviour. Along this line of research,
Kapus et al. [32] have recently proposed a new algorithm for inferring loop invariants for
string-manipulating C programs using counter-example guided synthesis [1, 49]. These
works are, however, complementary to ours since our goal is not to automatically generate
summaries but rather to validate manually-written ones.

When it comes to structural summaries, Qiu et al. [42] proposed a new approach for
compositional symbolic execution where function summaries are expressed as memoization
trees. A memoization tree is a tree-like data structure that describes the various paths taken
by the summarised function, including their effects on the heap. To this end, memoization tree
nodes describe both the variable store as well as the contents of the heap of the summarised
function. The proposed tool is compositional, analysing one function at a time and expanding
the contents of symbolic objects by need, following the lazy initialisation approach [33].

F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:25

Recently, Fragoso Santos et al. [48] proposed JaVerT 2.0, a new compositional symbolic
execution tool for JavaScript. JaVerT 2.0 combines separation-logic-based summaries with
static symbolic execution. More concretely, it allows for the incremental analysis of the
given program, generating separation-logic-based specifications that can later be used during
symbolic execution. The use of separation-logic summaries during symbolic execution has
also been explored in the design of the Gillian framework [21, 36], which resulted from the
generalisation of JaVerT 2.0 to a multi-language setting.

7 Conclusions

Symbolic summaries are a key element of modern symbolic execution engines. They are an
essential tool for both containing the path explosion problem and modelling interactions with
the runtime environment. The implementation of symbolic summaries is time-consuming
and error-prone, but until now there was a lack of mechanisms and methodologies for sharing
symbolic summaries across different tools and for their validation.

This paper proposes a new API for developing and verifying tool-independent summaries.
Using the proposed API, symbolic summaries can be directly implemented in C and shared
across different symbolic execution tools, provided that these tools implement the API. To
demonstrate the expressiveness of our API, we extended the symbolic execution tools angr
and AVD with support for it and developed tool-independent symbolic summaries for 26
different libc functions, comprising string-manipulating functions, number-parsing functions,
input/output functions, and heap functions. Furthermore, we presented SumBoundVerify,
a new tool for the bounded verification of the summaries written with our symbolic reflection
API. We applied SumBoundVerify to 37 symbolic summaries taken from 3 state-of-the-art
symbolic execution tools, angr, Binsec and Manticore, detecting a total of 24 buggy summaries.

As future work, we intend to design a tool for automating the creation of symbolic
summaries by synthesising them from declarative specifications, such as separation logic
triples. To this end, we plan to leverage recent results on code synthesis from separation
logic specifications [41], with the key difference being that our goal is to synthesise symbolic
summaries instead of reference implementations.

References
1 Alessandro Abate, Cristina David, Pascal Kesseli, Daniel Kroening, and Elizabeth Polgreen.

Counterexample guided inductive synthesis modulo theories. In Hana Chockler and Georg
Weissenbacher, editors, Computer Aided Verification, pages 270–288, Cham, 2018. Springer
International Publishing.

2 Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. Demand-driven compositional
symbolic execution. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 367–381, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

3 Andrew Appel. The Verifiable C string library, 2021. Software distribution that accompanies [4].
URL: https://softwarefoundations.cis.upenn.edu/vc-current/index.html.

4 Andrew W. Appel, Lennart Beringer, and Qinxiang Cao. Verifiable C, volume 5 of Software
Foundations. Electronic textbook, 2021. URL: http://softwarefoundations.cis.upenn.edu.

5 Krzysztof R. Apt. Ten Years of Hoare’s Logic: A Survey—Part I. ACM Trans. Program. Lang.
Syst., 3(4):431–483, October 1981. doi:10.1145/357146.357150.

6 Roberto Baldoni, Emilaio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi.
A survey of symbolic execution techniques. ACM Comput. Surv., 51(3), May 2018. doi:
10.1145/3182657.

ECOOP 2023

https://softwarefoundations.cis.upenn.edu/vc-current/index.html
http://softwarefoundations.cis.upenn.edu
https://doi.org/10.1145/357146.357150
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657

24:26 Toward Tool-Independent Summaries for Symbolic Execution

7 Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. Slam and static driver
verifier: Technology transfer of formal methods inside microsoft. In Integrated Formal Methods,
pages 1–20, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

8 Zuzana Baranová, Jiří Barnat, Katarína Kejstová, Tadeáš Kučera, Henrich Lauko, Jan Mrázek,
Petr Ročkai, and Vladimír Štill. Model checking of C and C++ with DIVINE 4. In Automated
Technology for Verification and Analysis, pages 201–207, Cham, 2017. Springer International
Publishing.

9 Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Proceedings of the 23rd Interna-
tional Conference on Computer Aided Verification CAV 2011, volume 6806 of Lecture Notes
in Computer Science, pages 171–177. Springer, 2011.

10 Dirk Beyer. Software Verification: 10th Comparative Evaluation (SV-COMP 2021). In Tools
and Algorithms for the Construction and Analysis of Systems, pages 401–422, Cham, 2021.
Springer International Publishing.

11 Dirk Beyer. Status Report on Software Testing: Test-Comp 2021. In Fundamental Approaches
to Software Engineering, pages 341–357, Cham, 2021. Springer International Publishing.

12 Dirk Beyer. Advances in Automatic Software Testing: Test-Comp 2022. In Fundamental
Approaches to Software Engineering - 25th International Conference, FASE 2022, volume
13241 of Lecture Notes in Computer Science, pages 321–335. Springer, 2022.

13 Dirk Beyer. Progress on software verification: SV-COMP 2022. In Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022,
volume 13244 of Lecture Notes in Computer Science, pages 375–402. Springer, 2022.

14 Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT—a Formal System for Testing
and Debugging Programs by Symbolic Execution. SIGPLAN Not., 10(6):234–245, April 1975.
doi:10.1145/390016.808445.

15 Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation, OSDI’08, pages
209–224, USA, 2008. USENIX Association.

16 Marek Chalupa, Vincent Mihalkovič, Anna Řechtáčková, Lukáš Zaoral, and Jan Strejček.
Symbiotic 9: String analysis and backward symbolic execution with loop folding. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 462–467, Cham, 2022.
Springer International Publishing.

17 Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. The S2E Platform: Design,
Implementation, and Applications. ACM Transactions on Computer Systems - TOCS, 30:1–49,
February 2012. doi:10.1145/2110356.2110358.

18 L. Daniel, S. Bardin, and T. Rezk. Binsec/Rel: Efficient Relational Symbolic Execution
for Constant-Time at Binary-Level. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 1021–1038, Los Alamitos, CA, USA, May 2020. IEEE Computer Society. doi:
10.1109/SP40000.2020.00074.

19 R. David, S. Bardin, T. D. Ta, L. Mounier, J. Feist, M. Potet, and J. Marion. Binsec/se: A
dynamic symbolic execution toolkit for binary-level analysis. In 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), volume 1, pages
653–656, 2016. doi:10.1109/SANER.2016.43.

20 Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

21 José Fragoso Santos, Petar Maksimović, Sacha-Élie Ayoun, and Philippa Gardner. Gillian,
Part I: A multi-language platform for symbolic execution. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2020.
Association for Computing Machinery, 2020.

https://doi.org/10.1145/390016.808445
https://doi.org/10.1145/2110356.2110358
https://doi.org/10.1109/SP40000.2020.00074
https://doi.org/10.1109/SP40000.2020.00074
https://doi.org/10.1109/SANER.2016.43

F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:27

22 GNU. GNU libiberty, 2022. Accessed: 6th July 2023. URL: https://gcc.gnu.org/
onlinedocs/libiberty/.

23 GNU. The GNU C library, 2022. Accessed: 6th July 2023. URL: https://www.gnu.org/
software/libc/.

24 Patrice Godefroid. Compositional Dynamic Test Generation. SIGPLAN Not., 42(1):47–54,
January 2007. doi:10.1145/1190215.1190226.

25 Patrice Godefroid, Shuvendu K. Lahiri, and Cindy Rubio-González. Statically validating
must summaries for incremental compositional dynamic test generation. In Static Analysis -
18th International Symposium, SAS 2011, Venice, Italy, September 14-16, 2011. Proceedings,
volume 6887 of Lecture Notes in Computer Science, pages 112–128. Springer, 2011. doi:
10.1007/978-3-642-23702-7_12.

26 Patrice Godefroid, Michael Y. Levin, and David A Molnar. Automated whitebox fuzz testing.
In Network Distributed Security Symposium (NDSS). Internet Society, 2008.

27 Patrice Godefroid and Daniel Luchaup. Automatic Partial Loop Summarization in Dynamic
Test Generation. In Proceedings of the 2011 International Symposium on Software Testing
and Analysis, ISSTA ’11, pages 23–33, New York, NY, USA, 2011. Association for Computing
Machinery. doi:10.1145/2001420.2001424.

28 Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and SaiDeep Tetali. Compositional
may-must program analysis: unleashing the power of alternation. In Proceedings of the 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010,
pages 43–56. ACM, 2010. doi:10.1145/1706299.1706307.

29 Denis Gopan and Thomas Reps. Low-level library analysis and summarization. In Computer
Aided Verification, pages 68–81, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

30 Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data structures.
In Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, London, UK, pages 14–26. ACM, 2001. doi:10.1145/
360204.375719.

31 Joxan Jaffar, Rasool Maghareh, Sangharatna Godboley, and Xuan-Linh Ha. TracerX: Dy-
namic Symbolic Execution with Interpolation (Competition Contribution). In Fundamental
Approaches to Software Engineering, pages 530–534, Cham, 2020. Springer International
Publishing.

32 Timotej Kapus, Oren Ish-Shalom, Shachar Itzhaky, Noam Rinetzky, and Cristian Cadar.
Computing summaries of string loops in c for better testing and refactoring. In PLDI 2019:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 874–888, New York, NY, USA, 2019. Association for Computing
Machinery.

33 Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized symbolic execution
for model checking and testing. In 9th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS 2003, volume 2619 of Lecture Notes in
Computer Science. Springer, 2003.

34 James C. King. A new approach to program testing. In Proceedings of the International
Conference on Reliable Software, pages 228–233, New York, NY, USA, 1975. Association for
Computing Machinery. doi:10.1145/800027.808444.

35 Yude Lin, Tim Miller, and Harald Søndergaard. Compositional symbolic execution using
fine-grained summaries. In 2015 24th Australasian Software Engineering Conference, pages
213–222, 2015. doi:10.1109/ASWEC.2015.32.

36 Petar Maksimovic, Sacha-Élie Ayoun, José Fragoso Santos, and Philippa Gardner. Gillian,
part II: real-world verification for javascript and C. In Computer Aided Verification - 33rd
International Conference, CAV 2021, volume 12760 of Lecture Notes in Computer Science,
pages 827–850. Springer, 2021.

ECOOP 2023

https://gcc.gnu.org/onlinedocs/libiberty/
https://gcc.gnu.org/onlinedocs/libiberty/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://doi.org/10.1145/1190215.1190226
https://doi.org/10.1007/978-3-642-23702-7_12
https://doi.org/10.1007/978-3-642-23702-7_12
https://doi.org/10.1145/2001420.2001424
https://doi.org/10.1145/1706299.1706307
https://doi.org/10.1145/360204.375719
https://doi.org/10.1145/360204.375719
https://doi.org/10.1145/800027.808444
https://doi.org/10.1109/ASWEC.2015.32

24:28 Toward Tool-Independent Summaries for Symbolic Execution

37 Petar Maksimovic, Caroline Cronjäger, Julian Sutherland, Andreas Lööw, Sacha-Élie Ayoun,
and Philippa Gardner. Exact separation logic. CoRR, abs/2208.07200, 2022. arXiv:2208.
07200.

38 Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco, Josselin
Feist, Trent Brunson, and Artem Dinaburg. Manticore: A user-friendly symbolic execution
framework for binaries and smart contracts. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 1186–1189, 2019. doi:10.1109/ASE.2019.
00133.

39 Manh-Dung Nguyen, S’ebastien Bardin, Richard Bonichon, R. Groz, and Matthieu Lemerre.
Binary-level directed fuzzing for use-after-free vulnerabilities. ArXiv, abs/2002.10751, 2020.
arXiv:2002.10751.

40 Peter O’Hearn. Incorrectness logic. Proceedings of the ACM on Programming Languages,
4:1–32, December 2019. doi:10.1145/3371078.

41 Nadia Polikarpova and Ilya Sergey. Structuring the synthesis of heap-manipulating programs.
Proc. ACM Program. Lang., 3(POPL):72:1–72:30, 2019.

42 Rui Qiu, Guowei Yang, Corina S. Pasareanu, and Sarfraz Khurshid. Compositional symbolic
execution with memoized replay. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 1, pages 632–642, 2015. doi:10.1109/ICSE.2015.79.

43 E. Reisner, C. Song, K. Ma, J. S. Foster, and A. Porter. Using symbolic evaluation to understand
behavior in configurable software systems. In 2010 ACM/IEEE 32nd International Conference
on Software Engineering, volume 1, pages 445–454, 2010. doi:10.1145/1806799.1806864.

44 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th IEEE
Symposium on Logic in Computer Science LICS 2002, pages 55–74. IEEE Computer Society,
2002.

45 Nuno Sabino. Automatic vulnerability detection: Using compressed execution traces to guide
symbolic execution. Master’s thesis, Instituto Superior Técnico, November 2019.

46 Salvatore Sanfilippo. Simple dynamic strings, 2015. Accessed: 6th July 2023. URL: https:
//github.com/antirez/sds.

47 José Fragoso Santos, Petar Maksimovic, Théotime Grohens, Julian Dolby, and Philippa
Gardner. Symbolic Execution for JavaScript. In Proceedings of the 20th International
Symposium on Principles and Practice of Declarative Programming, PPDP 2018, Frankfurt
am Main, Germany, September 03-05, 2018, pages 11:1–11:14. ACM, 2018.

48 José Fragoso Santos, Petar Maksimovic, Gabriela Sampaio, and Philippa Gardner. JaVerT 2.0:
compositional symbolic execution for JavaScript. Proc. ACM Program. Lang., 3(POPL):66:1–
66:31, 2019.

49 Vaibhav Sharma, Kesha Hietala, and Stephen McCamant. Finding substitutable binary code
by synthesizing adapters. IEEE Transactions on Software Engineering, PP:1–1, July 2019.
doi:10.1109/TSE.2019.2931000.

50 Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen, S. Feng,
C. Hauser, C. Kruegel, and G. Vigna. SOK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In 2016 IEEE Symposium on Security and Privacy (SP), pages 138–157,
2016. doi:10.1109/SP.2016.17.

51 Jan Strejček and Marek Trtík. Abstracting Path Conditions. In Proceedings of the 2012
International Symposium on Software Testing and Analysis, ISSTA 2012, pages 155–165, New
York, NY, USA, 2012. Association for Computing Machinery. doi:10.1145/2338965.2336772.

52 Emina Torlak and Rastislav Bodik. Growing solver-aided languages with rosette. In Proceedings
of the 2013 ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, Onward! 2013, pages 135–152, New York, NY, USA, 2013.
Association for Computing Machinery. doi:10.1145/2509578.2509586.

53 Verifiable C – Verif_strlib. Bug in strcmp function. Accessed: 6th July 2023. URL: https:
//softwarefoundations.cis.upenn.edu/vc-current/Verif_strlib.html.

https://arxiv.org/abs/2208.07200
https://arxiv.org/abs/2208.07200
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1109/ASE.2019.00133
https://arxiv.org/abs/2002.10751
https://doi.org/10.1145/3371078
https://doi.org/10.1109/ICSE.2015.79
https://doi.org/10.1145/1806799.1806864
https://github.com/antirez/sds
https://github.com/antirez/sds
https://doi.org/10.1109/TSE.2019.2931000
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1145/2338965.2336772
https://doi.org/10.1145/2509578.2509586
https://softwarefoundations.cis.upenn.edu/vc-current/Verif_strlib.html
https://softwarefoundations.cis.upenn.edu/vc-current/Verif_strlib.html

F. Ramos, N. Sabino, P. Adão, D. A. Naumann, and J. Fragoso Santos 24:29

54 Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio Lerda.
Model checking programs. Autom. Softw. Eng., 10:203–232, April 2003. doi:10.1023/A:
1022920129859.

55 Richard Wiedenhöft. C Hash map, 2014. Accessed: 6th July 2023. URL: https://gist.
github.com/Richard-W/9568649.

56 Greta Yorsh, Eran Yahav, and Satish Chandra. Generating precise and concise procedure
summaries. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008,
pages 221–234. ACM, 2008.

ECOOP 2023

https://doi.org/10.1023/A:1022920129859
https://doi.org/10.1023/A:1022920129859
https://gist.github.com/Richard-W/9568649
https://gist.github.com/Richard-W/9568649

A Direct-Style Effect Notation
for Sequential and Parallel Programs
David Richter #

Technische Universität Damstadt, Germany

Timon Böhler #

Technische Universität Damstadt, Germany

Pascal Weisenburger #

Universität St. Gallen, Switzerland

Mira Mezini #

Technische Universität Damstadt, Germany
hessian.AI, Darmstadt, Germany

Abstract
Modeling sequential and parallel composition of effectful computations has been investigated in a
variety of languages for a long time. In particular, the popular do-notation provides a lightweight
effect embedding for any instance of a monad. Idiom bracket notation, on the other hand, provides
an embedding for applicatives. First, while monads force effects to be executed sequentially, ignoring
potential for parallelism, applicatives do not support sequential effects. Composing sequential with
parallel effects remains an open problem. This is even more of an issue as real programs consist of a
combination of both sequential and parallel segments. Second, common notations do not support
invoking effects in direct-style, instead forcing a rigid structure upon the code.

In this paper, we propose a mixed applicative/monadic notation that retains parallelism where
possible, but allows sequentiality where necessary. We leverage a direct-style notation where
sequentiality or parallelism is derived from the structure of the code. We provide a mechanisation of
our effectful language in Coq and prove that our compilation approach retains the parallelism of the
source program.

2012 ACM Subject Classification Software and its engineering → Domain specific languages;
Software and its engineering → Concurrent programming structures; Software and its engineering
→ Parallel programming languages

Keywords and phrases do-notation, parallelism, concurrency, effects

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.25

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.17
Software: https://github.com/stg-tud/parseq-notation

archived at swh:1:dir:b77c1bb5bff47b79976c4134d1cb143c2a7b8704

Funding David Richter : German Federal Ministry of Education and Research iBlockchain project
(BMBF No. 16KIS0902).
Timon Böhler : Hessian Ministry of Higher Education, Research, Science and the Arts via the project
3rd Wave of AI (3AI).
Pascal Weisenburger : The University of St. Gallen (IPF, No. 1031569); Swiss National Science
Foundation (SNSF, No. 200429).
Mira Mezini: Hessian Ministry of Higher Education, Research, Science and the Arts via the project
3rd Wave of AI (3AI); BMBF and the Hessian Ministry of Higher Education, Research, Science and the
Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE ;
German Federal Ministry of Education and Research iBlockchain project (BMBF No. 16KIS0902).

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 25; pp. 25:1–25:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.richter@tu-darmstadt.de
https://orcid.org/0000-0002-8672-0265
mailto:timon.boehler@stud.tu-darmstadt.de
https://orcid.org/0009-0002-9964-7367
mailto:pascal.weisenburger@unisg.ch
https://orcid.org/0000-0003-1288-1485
mailto:mezini@informatik.tu-darmstadt.de
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.4230/LIPIcs.ECOOP.2023.25
https://doi.org/10.4230/DARTS.9.2.17
https://doi.org/10.4230/DARTS.9.2.17
https://github.com/stg-tud/parseq-notation
https://archive.softwareheritage.org/swh:1:dir:b77c1bb5bff47b79976c4134d1cb143c2a7b8704;origin=https://github.com/stg-tud/parseq-notation;visit=swh:1:snp:c0fa45f003499aefb2ae60f7f6d9392ba934ffa4;anchor=swh:1:rev:095a4493a04571b8bad062fa2e4be433a2f34f84
https://doi.org/10.4230/DARTS.9.2.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 A Direct-Style Effect Notation for Sequential and Parallel Programs

1 Introduction

Programming language designers often select a few common effects (state, IO, network) and
bake them into the language. It is, however, impossible to predict what effects developers
will need in the future (as was the case with integrated queries [32, 30, 4], reactive program-
ming [31], asynchronous programming [51, 5], multitier programming [36, 43], differentiable
programming [23], etc). Thus, we argue that language designs should be equipped with
support for developer-implementable effects.

Modeling effectful computations has long been the subject of investigation in the context
of various languages. As a result, there exist different abstractions and notations with different
properties. A prominent abstraction for modeling effectful computations are monads (e.g.,
known from Haskell) and the do-notation that emerged from monadic comprehensions [55]
providing a lightweight way to embed monads into programs. But monads force effects to be
executed sequentially, ignoring potential for parallelism. Notations for parallelism, such as
idiom bracket notation for applicatives [29], on the other hand, do not support sequential
effects. Yet, programs are rarely only parallel or only sequential; thus it is desirable to
support both sequential and parallel composition of effectful operations.

To the best of our knowledge, there are no approaches that provide such support. The
ApplicativeDo approach by Marlow et al. [27, 28] attempts to retrofit parallelism into the
do-notation, i.e., with ApplicativeDo, developers write code using the do-notation and an
optimising compiler tries to infer which computations are parallelizable. Yet, in the general
case, it is not possible to decide statically whether two monadic operations are actually
parallelizable or whether the result of one operation depends on the execution of the other.
Hence, there is a danger that the compiler either incorrectly decides that two operations can
be executed in parallel, which can lead to race conditions, or conservatively decides to not
parallelize operations that could actually be parallelized, reducing the potential for improved
performance. To counteract race conditions, the ApplicativeDo approach requires developers
to adhere to specific coding conventions such as only using expressions which are either all
read-only or write-only [27].

Another weak point of Haskell’s do-notation (and thus also of the approach by Marlow
et al.) is that it enforces a specific structure upon the code with strict adherence to one
effect per line, which does not allow effects in arbitrary places. The do-notations in Idris [21]
and Lean [25, 52] are less restrictive and support direct-style effect usage. Scala supports
both structuring effectful code in do-notation via for-comprehensions and for in some cases
in direct-style via async-await [44]; but, both are based on monads, thus force sequential
execution. Although async-await was explicitly designed for concurrency, developers must be
careful to start parallel execution before accessing their result to preserve parallelism.

In this paper, we propose a direct-style notation that enables sequential and parallel
composition of effectful operations (using monads and applicatives, respectively) without
forcing a specific structure of the code. We present a one-pass translation from direct-style
to monadic effect combinators. Instead of trying to infer the potential for parallelism on top
of sequential programs, our approach preserves parallelism that is inherent in the structure
of the code thanks to direct style. This makes it easier to reason about the correctness of
the proposed translation process and we present a correctness proof and its mechanization in
Coq [9]. We conceptualize the preservation of parallelism as the span of a term (the length
of the longest path of effectful operations) and the work of a term (the sum of all effectful
operations therein). Our translation is span-preserving leveraging applicatives and monads.
In contrast, notations based on monads alone are not span-preserving, as they have to chain
all effectful operations into a single sequence.

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 25:3

Our compilation has an elegant description as a set of equations forming a structurally
recursive function over the syntax, whose equations are the well-known monadic and applica-
tive laws and free theorems. Implementations for do-notation are essentially compilers for
an effectful language. They can produce efficient code by avoiding administrative redexes
and generating proper tail calls. Including this optimisation in standard effectful languages
modeled by monads can be seen as performing partial evaluation of the code via the semantics,
extended by the monad laws. In our case, we target mixed monadic and applicative code.
Therefore, our optimised translation also combines the use of the monadic laws with the use
of applicative laws.

Contributions. In summary, this paper makes the following contributions:
We present the first mixed applicative/monadic direct-style effect notation.
We formalize an optimised one-pass translation from direct-style to effect combinators.
We prove that our translation preserves typability, semantics, and parallelism.
We mechanize the proof using parametric higher order abstract syntax.
We implement the proposed translation in the Scala programming language using Scala
macros, which enables us to stay close to the formal development.

Structure. The remainder of the paper is structured as follows. Section 2 provides code
examples and an intuitive overview of our approach. Section 3 formally defines the proposed
translation and provides a proof that it preserves typability, semantics, and parallelism,
which is mechanized using parametric higher order abstract syntax. Section 4 presents the
implementation in Scala. Section 5 surveys related work. Section 6 concludes the paper and
presents ideas for future work.

2 Overview

In this section, we (a) briefly discuss the difference between monadic, applicative, and mixed
notations by examples in Scala, and (b) informally present our mixed direct notation and its
implementation by translation to effect combinators.

2.1 Monadic, Applicative, Mixed and Direct Style Notations
Functors, Applicatives and Monads. A functor (in functional programming) for F: Type ✮

Type is a method map that turns a function on values into a function on values wrapped in
the functor. Intuitively, a value of type F A represents an effectful computation of type A.
An applicative for F is a functor and a method pure to wrap a value into the functor, and
a method ap (which we occasionally also write f ⋄ x instead of ap f x) to apply an effectful
computation returning a function, to an effectful computation returning an argument. A
monad for F is an applicative for F and a method bind, which runs an effectful computation and
feeds the resulting value to another effectful computation. Below we show the mathematical
description and an encoding in Scala via traits:

map: (A ✮ B) ✮ (F A ✮ F B)
pure : A ✮ F A
ap: F (A ✮ B) ✮ (F A ✮ F B)
bind : (A ✮ F B) ✮ (F A ✮ F B)

trait Functor[F[_]]:
def map(f: A ⇒ B, a: F[A]): F[B]

trait Applicative[F[_]] extends Functor[F]:
def pure(a: A): F[A]
def ap(f: F[A ⇒ B], a: F[A]): F[B]

trait Monad[F[_]] extends Applicative[F]:
def bind(f: A ⇒ F[B], a: F[A]): F[B]

Scala

ECOOP 2023

25:4 A Direct-Style Effect Notation for Sequential and Parallel Programs

For convenience, we will write pure(x), x.bind(f) and f.ap(x), so we define them in Scala
as a extension methods for every object which has a corresponding instance, and pure(x) as
a top-level function. Note that we swapped arguments for bind as a method x.bind(f) with
regard to its type as a function bind(f)(x).

Monadic Notation. To illustrate monadic notations, consider the two lines of code below
(left side) that use a for-comprehension for ... yield1 The programs execute two effectful
statements fetchX and fetchY and bind the result in variables x and y, respectively, to be
combined by a function call to f. The for-comprehension (monadic notation) is desugared
into explicit use of monadic bind (right side).

for x ← fetchX; y ← fetchY yield f(x)(y)
for y ← fetchY; x ← fetchX yield f(x)(y)

Scala

fetchX.bind(x ⇒ fetchY.bind(y ⇒ pure(f(x)(y))))
fetchY.bind(y ⇒ fetchX.bind(x ⇒ pure(f(x)(y))))

Scala

Applicative Notation. In the programs above, x does not depend on y and vice versa. If all
statements in the program of an applicative are independent from each other – e.g., none
of the variables that are introduced in the for-comprehension are used in the for part, but
only after the yield, which has access to all variables introduced above – we can interpret
the for-comprehension as an applicative notation instead of monadic notation. Then, the
program below on the left side would be translated into the program below on the right
side, using applicative ap to encode actual parallelism, where ap is parallel execution followed
by function application. In the example program, pure(f), x and y are executed in parallel,
followed by the function application of the result of pure(f) to the result of x and the result
of y:

for x ← fetchX; y ← fetchY yield f(x)(y)
Scala

pure(f).ap(fetchX).ap(fetchY)
Scala

Mixed Notation. To illustrate where these notations for effectful computations fall short,
consider the following larger program that fetches four resources from the Internet. The
program first fetches a resource urlXX, which contains another url urlX, and then fetches a
resource from urlX and stores it in x. The program further fetches a resource urlYY, which
contains another url urlY, and then fetches the resource from urlY and stores it in y. Finally,
the program concatenates x and y:

val urlXX = "https :// example. org /configx "
val urlYY = "https :// example. org /configy "
for urlX ← fetch(urlXX)

x ← fetch(urlX)
urlY ← fetch(urlYY)
y ← fetch(urlY)
yield x ++ y

Scala

•

fetch (urlXX) fetch (urlYY)

fetch (urlX) fetch (urlY)

x ++ y

Observe that urlXX needs to be fetched before urlX can be fetched and urlYY needs to be
fetched before urlY can be fetched. But fetching urlXX and urlYY is independent from each
other; and so is urlX and urlY (as illustrated in the diagram above). Thus, the example contains

1 For-comprehensions for ... yield ... are Scala’s equivalent of Haskell’s do-notation do ...; return ... The
main difference besides Scala’s and Haskell’s monadic notation is that every for-comprehension must end
with a yield . Yet, this does not reduce expressive power, as any do-block without a final return can be
expressed with an additional binding, e.g., do ...; e can be represented by for ...; tmp ← e yield tmp.

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 25:5

both parallel and sequential elements. However, if implemented via monadic notation, the
program will run sequentially, fetching urlXX, then urlX, then urlYY, then urlY. The applicative
notation, on the other hand, is not even possible because it would require all effects to be
independent from each other.

Direct-Style Mixed Notation. In our direct-style notation, we combine the syntactic form
for ... yield ... into a single instruction purify. Now, the program can be written to look like the
following snippet, which reads Concatenate (1) the result of fetching the value pointed to
by a URL by fetching urlXX with (2) the result of fetching the value pointed to by a URL by
fetching urlYY:

purify:
fetch(fetch(urlXX).↓).↓ ++ fetch(fetch(urlYY).↓).↓

Scala

The purify operation introduces an operation of type ↓: F[X] ⇒ X used like ↓ into the
local scope, which represents direct-style effect execution. If the enclosed code does not make
use of the ↓, the operation purify works exactly like pure. Otherwise, effect execution ↓ is
translated into proper use of bind and ap.

In direct style, potential for parallelism is implicitly defined by the structure of the code.
In particular, the function arguments of concat ++ naturally have no dependency on each
other, and can therefore be executed in parallel. The corresponding program with explicit
mixed monadic/applicative combinators is:

pure(x ⇒ y ⇒ x ++ y).ap(fetch(urlXX).bind(fetch)).ap(fetch(urlYY).bind(fetch))
Scala

The approach we propose in this paper exploits the information encoded in our direct-
style notation to define a compositional (e.g., structurally recursive) and provably correct
compiler that transforms such direct-style programs into semantically equivalent mixed
applicative/monadic programs.

2.2 Discussion
We discuss the similarities and differences between different notations. For illustration,
consider that monadic code in the for/yield notation can be easily refactored into direct
style, roughly by replacing ← with = ↓. In turn, monadic code is compiled into explicit use
of monadic operators by calling bind on each value and calling map on the last:

for
x ← a
y ← b
z ← c
yield e

Scala

purify :
val x = a.↓
val y = b.↓
val z = c.↓
e

Scala

a. bind { x ⇒
b. bind { y ⇒

c. map { z ⇒
e }}}

Scala

Scaling. A benefit of direct-style code is that it “scales” better for larger programs in the
sense that it integrates well with common language constructs. In particular, direct style
composes better with branching. Consider the following versions of the same program. On
the left, the program is written in monadic notation, implemented in pure Scala, which
requires us to leave and enter monadic notation a second time. The program fetches the time
of the last change and the last caching of a certain request. If the resource has been updated
since the last caching, we count the cache miss for statistics, request the resource freshly,

ECOOP 2023

25:6 A Direct-Style Effect Notation for Sequential and Parallel Programs

pass it to the cache and return it. Otherwise, we count the cache hit for statistics, and return
the answer from the cache. Now, compare the program on the left with a clearer direct-style
representation on the right, which is implemented using our approach (code on the right).

for freshtime ← fetch (freshtimeUrl)
cachetime ← fetch (cachetimeUrl)
result ←

if freshtime > cachetime
then for _ ← countFresh

tmp1 ← fetchFresh
tmp2 ← writeCache (tmp1)
yield tmp2

else for _ ← countCache
tmp ← readCache
yield tmp

yield result
Scala

purify :
if fetch (freshtimeUrl) . ↓ >

fetch (cachetimeUrl) . ↓
then

countFresh . ↓
parseAndCache(fetchFresh . ↓). ↓

else
countCache. ↓
readCache. ↓

Scala

Sub-notations. Direct-style notation subsumes three different explicit effect notations
(Table 1). First, if a purify expression contains exactly one down arrow ↓ as a mark for effect
execution (Row 1), then the notation translates to solely using the Functor interface. This
case corresponds to a standard map operation.

Second, if a purify expression contains multiple such marks, which are “parallel” with
regard to each other (Row 2) – i.e., when they are side-by-side inside different arguments to a
function – then the expression translates to solely using the Applicative interface. Crucially,
in this case, different effect executions cannot depend on each other. We call these effect
executions “parallel” as contrasted with “sequential” code, where a statement can depend on
the previous one. Such parallel composition enables parallel execution of effects at run time.

Third, if the expression makes use of nested marks (Row 3) – or equivalently of marks
which make use of previously bound variables which contained marks (Row 4) – then the
expression translates to using the full Monad interface, which models sequential code.

Direct-style enables to define parallelism naturally by structuring code such that the
execution of effects are independent, which gives rise to parallel execution of code where this
is possible and using sequential execution where necessary.

2.3 From Laws to a Rewrite System

We refresh the laws of functors, applicatives, and monads and give an intuition how they can
be used to optimise effectful programs. Then we state a completion of the laws into a rewrite
system. We use the symbol ◦ for function composition as in f ◦ g, and use the symbol (◦) as
the name of function composition, when not used as an infix operator, i.e., (◦) f g v := f (g v).

Table 1 Subnotations.

Scheme Description Typeclass

purify{ ... ↓ ... } one mark Functor map
purify{ ... ↓ ... ↓ ... } multiple marks Applicative ap
purify{ ... (... ...↓ ...).↓ ... } nested marks Monad bind
purify{ ...; val x = ...↓; ... ↓ ... } consecutive marks Monad bind

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 25:7

Laws. Typically, the coherence laws are formulated as follows [29, 26].
For Functors, map preserves identity and composition, i.e., applying the identity function

to an effectful computation is the same as not doing anything; and applying two function in
sequence to an effectful value is the same as applying the composite once.

identity : map id v = id v
composition : map (f ◦ g) v = map f (map g v)

For Applicatives, pure creates a effect-free, i.e., pure value from a value. The homomorphism
law states that, applying a pure function to a pure argument is pure. The identity law states
that, if the function is just pure, then there is nothing to do. The interchange law states that,
if the argument is pure, then we can swap the pure argument with the effectful function.

homomorphism : pure f ⋄ pure v = pure (f v)
identity : pure id ⋄ v = v
interchange : f ⋄ pure v = pure (λ f ', f ' v) ⋄ f
composition : u ⋄ (v ⋄ w) = pure (◦) ⋄ u ⋄ v ⋄ w

For Monads, the first and second laws state that executing a pure computation amounts
to not having to execute any effect at all, allowing us to eliminate the bind. The third law
states that bind is associative, i.e., applying two effectful functions in sequence is the same as
applying the effectful composite of the two functions once.

leftunit : bind f (pure v) = f v
rightunit : bind pure v = v
associativity : bind g (bind f v) = bind (bind g ◦ f) v

Free theorems. The laws are phrased as an equational theory – to create a compiler from
the laws, we need to rephrase them as a terminating rewrite system. To do so, we first
complete our set of equations with the following free theorems. Free theorems hold in
programming languages with parametric polymorphism by parametricity for free [54, 53],
therefore they are often not stated specifically in the laws, because there is no additional
effort required to make them hold. On the other hand, as we are interested in making use of
laws for optimisation purposes, we are allowed to make use of the free theorems as well.

Consider the function pure: ∀ A, A ✮ F A. Because it must work over all A it cannot change
or create new elements of type A, but only duplicate or forget values of type A. Therefore,
it does not matter whether we apply a function g to change the As into Bs before or after
applying pure. On the left we apply f on the argument of pure, on the right we apply f on the
result:

free_pure : map f (pure v) = pure (f v)

Similarly, consider the function ap: ∀ A B, F (A ✮ B) ✮ F A ✮ F B and bind: ∀ A B, (A ✮ F B) ✮

(F A ✮ F B). On the left we apply f on the argument of ap and bind, on the right we apply f on
the result, where (f ◦) stands for λ g, f ◦ g:

free_ap : ap (map (f◦) g) v = map f (ap g v)
free_bind : bind (map f ◦ g) v = map f (bind g v)

ECOOP 2023

25:8 A Direct-Style Effect Notation for Sequential and Parallel Programs

We instantiate g with pure id in the applicative case and with pure in the monadic case,
then we can extend the equation chain to the left by the free theorem of pure (map f ◦ pure =
pure ◦ f), and to the right by the identity applicative law (ap (pure id) v = v) respectively the
left-unit monad law (bind pure v = v):

*free_ap : ap (pure f) v = ap (map (f◦) (pure id)) v = map f (ap (pure id) v) = map f v
*free_bind : bind (pure ◦ f) v = bind (map f ◦ pure) v = map f (bind pure v) = map f v

In fact, these two equation share a common right-hand side, and thus we can combine
them to get a connection between applicative ap and monadic bind:

ap_bind: ap (pure f) v = bind (pure ◦ f) v

Completion. We can use the free theorems to complete the functor, applicative and monad
laws into a more suitable form. In particular, we replace the identity law of the applicative
with their generalization derived above. Similarily, the right hand side of the interchange law
contained the left hand side of the identity law, therefore we simplify it by composition with
the identity law. Further, observe that the homomorphism law becomes superflous, as it can
be constructed by applying the identity law (or equivalently by the interchange law) followed
by the free theorem of pure; however we will still make use of it in swapped direction, such
that reading the laws from left to righ, it does not overlap with the other applicative laws.
The complete set of equations is now:

identity : map id v = v
composition : map f (map g v) = map (f ◦ g) v

homomorphism : pure (f v) = pure f ⋄ pure v −− swapped
identity : pure f ⋄ v = bind (λ v', pure (f v')) v −− generalised by ap_bind
interchange : f ⋄ pure v = bind (λ f ', pure (f ' v)) f −− combined with identity
composition : u ⋄ (v ⋄ w) = map (◦) u ⋄ v ⋄ w −− combined with identity

leftunit : bind f (pure v) = f v
rightunit : bind pure v = v
associativity : bind g (bind f v) = bind (bind g ◦ f) v

Looking at the equations above, we see that the identity and interchange law show
that a non-pure argument to ap on the left and on the right can each be represented by
a bind, so one might think both laws can be unified by a single law, using two binds like
fs ⋄ xs = bind (λ f, bind (λ x, pure (f x)) xs) fs. However, it is not valid to assume this equation.
Actually, there are at least two possible trivial instances of an applicative for any monad,
the left-to-right applicative above, but also the right-to-left applicative: fs ⋄ xs = bind (λ x,
bind (λ f, pure (f x)) fs) xs. There is no reason to prefer one over the other, and, in general,
the assumption of either of these equations is too strong; committing to one such equation
would allow elimination of all aps into binds, and thus implies full sequentiality. To support
parallelism, we have to make neither assumption and only rely on the equations derived from
the applicative laws.

2.4 Translation
We present a rewrite system based on the laws, and prove its terminating by phrasing it as a
structurally recursive function.

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 25:9

We distinguish between a source language and a target language below. The source
language consists of term formers for variables, function application, and the direct-style
effect execution ↓ represented as Each. The target language consists of term formers for
variables, function application, and effect combinators Pure, Bind and Ap; and parallelism is
explicitly structured by those combinators.

(Src) e, f ::= Var x | App f e | Each e
(Tgt) g, h ::= Var x | App g h | Pure g | Ap g h | Bind g h

The source language uses direct style. In programs written in the source language,
parallelism is implicitly defined by the structure of the code. In particular, function arguments
naturally have no dependency on each other, and can therefore be executed in parallel. Our
compiler translates direct style into monadic and applicative combinators. The essence of
our compilation strategy is to use the monadic and applicative laws directly as the actual
transformation rules.

Basic Translation. The translation starts with the PURE expression, which is implemented
as a structurally recursive function over syntax, expanding the direct-style use of effects ←
into the effect operation Bind, while variables are wrapped in a PURE, and function application
is translated to applicative Ap, realising that function arguments can be executed in parallel.

PURE: Src ✮ Tgt
PURE (Var x) = Pure (Var x)
PURE (Each e) = Bind (PURE e) id
PURE (App f e) = Ap (PURE f) (PURE e)

Optimising Translation. If we only cared about a correct translation from the direct-style
notation to the pure calculus with explicit combinators, then the translation we discussed
so far is sufficient. Yet, we consider an optimising translation (Figure 1), where instead of
term using the constructors Bind and Ap (capitalized) directly, we use the smart constructors
AP and BIND (all capitals) instead. Both the constructor and the smart constructor of a
term do construct terms that are semantically indistinguishable, i.e., AP f x ≈ Ap f x. Smart
constructors, however, internalize the optimisation by reducing to a simpler term if possible.
The translation PURE we have described earlier can be seen as such a smart constructor for
the Pure term constructor. It also preserves the semantics, i.e., PURE x ≈ Pure x.

The only difference between the basic and the optimised translation, is that the optimised
smart constructor PURE calls to the smart constructor AP instead of using the term constructor
Ap directly, which can lead to further optimisations. In this way, we can leverage smart
constructors to integrate the translation with an optimisation into a one-pass optimised
translation. For the optimisation, the smart constructors apply the monadic and applicative
laws, only in the other direction than the translation, i.e., bubbling up Pure in a structurally
recursive way through the term, and thereby removing superflous effect combinators in the
generated code.

In particular, AP (Figure 1) will reduce the applicative application of a pure function to
a pure argument back into the pure function application with only the result wrapped into
Pure (which is simply the reverse rule of the homomorphism law we used above). Similarly, if
either side of AP is pure, there are no two effects to be executed in parallel but just a single
effect. Hence, we can reduce the term to a single monadic bind. Finally, if neither argument
to AP is marked as pure, then we simply return the actual term former Ap and retain the

ECOOP 2023

25:10 A Direct-Style Effect Notation for Sequential and Parallel Programs

(Src) e, f ::= Var x | App f e | Each e
(Tgt) g, h ::= Var x | App g h

| Pure e | Ap g h | Bind g h

PURE: Src ✮ Tgt
AP: Tgt ✮ Tgt ✮ Tgt
BIND: Tgt ✮ Tgt ✮ Tgt

PURE (Var x) = Pure (Var x) −− indistinguishable
PURE (Each e) = BIND id (PURE e) −− effect translation
PURE (App f e) = AP (PURE f) (PURE e) −− homomorphism law

AP (Pure f) e = BIND (λ x, Pure (App f x)) e −− identity law
AP f (Pure e) = BIND (λ x, Pure (App x e)) f −− interchange law
AP f e = Ap f e −− indistinguishable

BIND g (Bind f e) = BIND (Bind g ◦ App f)) e −− associativity law
BIND f (Pure e) = App f e −− left unit law
BIND Pure e = e −− right unit law

Figure 1 Optimised Translation.

parallelism. The optimisation rules that apply to BIND (Figure 1) are similar. If either of its
arguments is marked as pure, we can avoid performing effects at all. If we have nested binds,
we can apply the associativity rule to generate a chain of binds.

Overall, seven of the ten equations above come from our generalized laws; two hold by
semantic indistinguishability, and one is the basis for our effect translation, namely the
translation of the imperative ← to an explicit bind.

In the following section, we extend the language, formalize the language and the translation
using a Coq mechanisation, and prove correctness.

3 Mechanisation

We define the source language that features our effect notation and a translation to a target
language which is the subset of the source language that does not include the effect notation.
We prove that our translation preserves typability, semantics, and parallel execution, which
we measure through the program’s span and work. We have mechanized our language and
proofs in Coq.

3.1 Definitions
We use (parametric) higher-order abstract syntax (PHOAS) [40, 8], which enables us to
reuse the binders of the host language as binders of the guest language. PHOAS avoids the
need to define first-order syntax, an operational semantics and capture-avoiding substitution,
thereby removing intricate lemmas regarding substitution and hundreds of lines of code
from the mechanisation, bringing the proof more in line with a more legible pen-and-paper
formalisation.

Further, we use intrinsically typed terms [11, 3, 1, 2], and a type-theoretic semantics [17].
Using intrinsically typed terms together with dependent pattern matching allows us to define
total evaluation (in contrast to using untyped terms or simple pattern matching where we
could just define partial evaluation). The reason is that such an approach only needs to
consider well-formed terms that don’t go wrong [33].

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 25:11

Listing 1 Lawful Monad.
Class Monad F := {

map {A B}: (A ✮ B) ✮ F A ✮ F B;
pure {A} : A ✮ F A;
ap {A B}: F (A ✮ B) ✮ F A ✮ F B;
bind {A B}: (A ✮ F B) ✮ F A ✮ F B;

}.

Class LawfulMonad F := {
monad :> Monad F;

idl {A B} (f : A ✮ F B) {x}: bind f (pure x) = f x;
idr {A B} (f : A ✮ B) {x}: bind (pure ◦ f) x = map f x;
asc {A B C} (f : A ✮ F B) (g: B ✮ F C) {x}: bind g (bind f x) = bind (bind g ◦ f) x;

apl {A B} (f : A ✮ B) {x}: ap (pure f) x = map (λ x', f x') x;
apr {A B} (f : F (A ✮ B)) {x}: ap f (pure x) = map (λ f ', f ' x) f ;
aplr {A B} (f : A ✮ B) {x}: map f (pure x) = pure (f x);

map_map {A B C} (g: A ✮ B) (f : B ✮ C) {x}: map f (map g x) = map (λ x, f (g x)) x;
}.

Coq

The common strategy behind all these approaches is to carve out a subset of the host
language, that is the language we want to define (the guest language), and then reusing all
the power of the host language to define the guest language, avoiding having to reimplement
tedious implementation details: The guest types simply mirror the host types, the guest
terms mirror the host terms, and the evaluation function maps guest terms to host terms.

Lawful monads. For brevity, we do not define Functor, Applicative and Monad separately.
We define a class Monad and a class LawfulMonad (Listing 1). Monad contains the functions
map, pure, ap, and bind. LawfulMonad extends Monad and further contains idl, idr, asc, apl, apr,
apl, and map_map, corresponding to the left and right unit law, and the associativity law of
the monad, and the identity and interchange law of the applicative, the free theorem of pure,
and the composition law of the functor.

Static semantics. From Coq, we use use units (tt: Unit), products ((a,b): A×B), functions
((λa, b): A ✮B). Mirroring the data types of the host language, we define the types for unit
(T), sums (s ∨ t), products (s ∧ t), functions (s ⇝ t) and effects (M) in the guest language
(Listing 2a). We define a data type ef to label terms with, as belonging to the source
language src, the target language tgt, or the either language com (common) (Listing 2c). Label
denotation EF m: ef ✮ (Type ✮ Type) assigns each functor in the host language. Concretely, the
target and common label is assigned the identity effect functor (e.g. no effect), and the
source language is assigned the effect m given as an argument.

We define a data type tm Γ B t for the syntax of our guest language (Listing 2d). The
terms are parametrized by a type denotation Γ, a language label B and a type t. The common
term formers are abstraction Lam e, application App e f and variables Var v to represent
functions; unit Unt e, tuple Prd (e, f) and projections Fst e and Snd e to represent products.
The source language has an additional term former Each e, which represents the direct-style
effect application ↓ from above. The target language has additional term formers Pure e, Ap e,
Map f e, and Join e representing the effect combinators.

ECOOP 2023

25:12 A Direct-Style Effect Notation for Sequential and Parallel Programs

The term former Lam binds variables. In PHOAS, guest-level bindings are represented
using the host language’s bindings. This is why this constructs takes as an argument a
function which binds a variable, represented as a value of type Γ t.

Example. In our encoding, the terms of the guest language can be written similarly to the
terms of the host language where each term former of the host language is wrapped by a
term former of the guest language.

For example, the identity function (λ x, x) can be encoded in the guest language as Lam
(λ x, Var x). A term (λ x y, add x y) a b – an eta-expanded addition function applied to some
arguments – can be expressed as Lam (λ x, (Lam (λ y, add `App` (Var y) `App` (Var x)))) `App`
(Var a) `App` (Var b), writing application x `App` y infix for convenience. Constructing a term
of unit type tt is written in the guest language as Unt tt. Similarly, projection on a pair (a,b).1
is written in the guest language as Fst (Prd (a,b)).

Dynamic semantics. Next, we define the dynamic semantics corresponding to the static
semantics. The static semantics has three parts: the types, the language labels and the
terms. Therefore, the dynamic semantics also defines three parts.

The denotation of a type EVAL m: ty ✮ Type (Listing 2b) maps each guest type to its
corresponding host type, and is parametrized by a type constructor m, corresponding to the
monad we evaluate in.

The denotation of a term with regard to the previously defined type denotation eval ...

: tm (EVAL m) B t ✮ EF m B (EVAL m t)) (Listing 2d) interprets the terms in a specific monad
depending on which language the terms are labeled from. More concretely it takes a term of
type t and of label B to be evaluated in monad m, and returns a value of the denotation of
the type EVAL m t wrapped in the denotation of the label EF m B. The evaluation for terms
from the source language implicitly have effects and can therefore only be interpreted in a
monadic interpreter. For the common and the target language, we define an evaluation as
simply the mapping of guest term formers to their corresponding host expressions, while
mapping variables to variables.

The decision of which monad to use is governed by the label denotation EF m: ef ✮ ty ✮ ty
(Listing 2c) mapping the target and the common language (whose terms do not have implicitly
any effects) to the identity effect, e.g., no effect, while the src language is mapped to the
effect M.

Note the way we defined the common, source and target terms, we can relable common
terms into source or target terms, e.g., into any other language label relabel: T Γ com t ✮ T Γ e t.

Example. Consider the evaluation of the following term, which constructs and then destructs
a pair of units, which is equal to unit: eval com (Fst (Prd (Unt tt, Unt tt))) = tt.

Translation. The compilation from the target into the source language is performed by the
smart constructor PURE, i.e., we compile from an effectful language into a pure language that
uses monadic effect combinators. We formally define PURE (Listing 3) that performs both
the action of a normal pure, e.g., wraps the argument into an additional effect tm Γ src t ✮

tm Γ tgt (M t), and additionally performs a translation from terms form the source language
with effect application Each to terms of the target language using combinators Pure, Map, Ap
and Bind. This translation makes use of the smart constructors AP and JOIN, that perform
optimisations.

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 25:13

Listing 2 Syntax and semantics.

(a) Types.

Inductive
ty : Type :=
| T: ty
| ∨: ty ✮ ty ✮ ty
| ∧: ty ✮ ty ✮ ty
| ⇝: ty ✮ ty ✮ ty
| M: ty ✮ ty .

Coq

(b) Type denotation.

Equations
EVAL (m: Type ✮ Type): ty ✮ Type :=
| m, T ⇒ Unit
| m, s ∨ t ⇒ EVAL m s + EVAL m t
| m, s ∧ t ⇒ EVAL m s × EVAL m t
| m, s ⇝ t ⇒ EVAL m s ✮ EVAL m t
| m, M t ⇒ m (EVAL m t).

Coq

(c) Labels and denotation.

Inductive
ef := src | tgt | com.
Equations
EF m: ef ✮ Type ✮ Type :=
| m,src , t ⇒ m t
| m,com, t ⇒ t
| m,tgt , t ⇒ t .

Coq

(d) Term and their denotation.

Inductive tm {Γ: ty ✮ Type}: ef ✮ ty ✮ Type :=
| Var {B t}: Γ t ✮ tm B t
| Unt {B}: Unit ✮ tm B T
| Prd {B s t}: tm B s × tm B t ✮ tm B (s ∧ t)
| Fst {B s t}: tm B (s ∧ t) ✮ tm B s
| Snd {B s t}: tm B (s ∧ t) ✮ tm B t
| App {B s t}: tm B (s ⇝ t) ✮ (tm B s ✮ tm B t)
| Lam {B s t}: (Γ s ✮ tm com t) ✮ tm B (s ⇝ t)

| Each {t}: tm src (M t) ✮ tm src t

| Pure {t}: tm com t ✮ tm tgt (M t)
| Join {t}: tm tgt (M (M t)) ✮ tm tgt (M t)
| Map {s t}: tm tgt (s ⇝ t) ✮ (tm tgt (M s) ✮ tm tgt (M t))
| Ap {s t}: tm tgt (M (s ⇝ t)) ✮ (tm tgt (M s) ✮ tm tgt (M t)) .

Equations eval {t m} {M:Monad m} B: tm (EVAL m) B t ✮ EF m B (EVAL m t) :=
| src , Var i ⇒ M.(pure) i (* src *)
| src , Lam k ⇒ M.(pure) (eval ◦ k)
| src , Unt tt ⇒ M.(pure) tt
| src , Fst e ⇒ M.(map) (λ e', e'.1) (eval e)
| src , Snd e ⇒ M.(map) (λ e', e'.2) (eval e)
| src , App e f ⇒ M.(ap) (eval e) (eval f)
| src , Prd (e, f) ⇒ M.(ap) (M.(map) (λ a' b', (a', b')) (eval e)) (eval f)
| src , Each e ⇒ M.(bind) id (eval e)

| _, Var i ⇒ i (* com or tgt *)
| _, Lam k ⇒ eval ◦ k
| _, Fst e ⇒ (eval e) .1
| _, Snd e ⇒ (eval e) .2
| _, App e f ⇒ (eval e) (eval f)
| _, Prd (e, f) ⇒ (eval e, eval f)
| _, Unt tt ⇒ tt
| tgt , Map f e ⇒ M.(map) (eval f) (eval e) (* only tgt *)
| tgt , Ap f e ⇒ M.(ap) (eval f) (eval e)
| tgt , Pure e ⇒ M.(pure) (eval e)
| tgt , Join e ⇒ M.(bind) id (eval e) .

Coq

ECOOP 2023

25:14 A Direct-Style Effect Notation for Sequential and Parallel Programs

Listing 3 Translation.
Notation "f `AP` e" := (AP f e) (at level 20).

Equations PURE {Γ x} (e: tm Γ src x): tm Γ tgt (M x) :=
| Var i ⇒ Pure (Var i)
| Unt tt ⇒ Pure (Unt tt)
| Lam j ⇒ Pure (Lam j)
| Fst e ⇒ Pure (Λ e', Fst (Var e')) `AP` PURE e
| Snd e ⇒ Pure (Λ e', Snd (Var e')) `AP` PURE e
| Prd (e, f) ⇒ Pure (Λ e' f ', Prd (Var e', Var f ')) `AP` PURE e `AP` PURE f
| App e f ⇒ PURE e `AP` PURE f
| Each e ⇒ JOIN (PURE e).

Equations AP {Γ s t} (f : tm Γ tgt (M (s ⇝ t))) (e: tm Γ tgt (M s)) : tm Γ tgt (M t) :=
| Pure f , Pure e ⇒ Pure (App f e)
| Pure f , e ⇒ Map (Lam (λ x, App f (Var x))) e
| f , Pure e ⇒ Map (Lam (λ x, App (Var x) e)) f
| f , e ⇒ Ap f e.

Equations JOIN {Γ t} (e: tm Γ tgt (M (M t))) : tm Γ tgt (M t) :=
| Pure e ⇒ to e
| e ⇒ Join e.

Coq

The Var, App and Each cases were discussed in Section 2.4: The direct-style use of effects
Each is expanded into effect operation Bind, while variables are wrapped in PURE, and function
application is translated to applicative Ap. The lambda and empty terms describe values
and are simply wrapped into a pure as well.

In the case of projections and the case of tuples, we follow the general pattern of the
homomorphism law, e.g., we map both the function (projection, tuple) into a Pure and we
wrap all arguments in a PURE, and we apply them applicatively.

Example. Assume our language contains an effectful operation fetch. Then, translating
the term e := Prd (Each (fetch "foo"), Each (fetch "bar")) yields PURE e = Pure (Lam (λ e', (Lam (λ
f', Prd (Var e', Var f'))))) `AP` (fetch "foo") `AP` (fetch "bar").

Span and Work. We define span and work (Listing 4), which we use to express the degree
of parallelism. Span is the length of the longest chain of unhandled effectful operations, i.e.,
the longer the path, the more operations need to run sequentially. Hence, a shorter span for
the same number of operations means a higher amount of parallelism. Work is the sum of all
unhandled effectful operations. Just like evaluation interprets the value of a term, span and
work are interpretations to a numeric value of a term.

As our syntax is defined from types, label and terms, we define these new interpretations as
a type denotation, an effect denotation and a term denotation as well. The effect denotation
for span and work is the identity function, and the type denotation is the constant function
mapping all guest types to the type of natural numbers (SPAN, WORK).

More formally, we define the span of an expression to be zero for variables and values,
such as empty and lambda, and for pure expressions. The span of Join and direct-style effect
application Each is one more (successor S) than the span of their argument. For assertion
and projection (access to first and second component), the span is simply the span of its

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 25:15

Listing 4 Span and Work.

(a) Span.

Equations SPAN: ty ✮ Type := | _ ⇒ nat .
Equations
span {B x} (e: tm SPAN B x): nat :=
| Var i ⇒ 0 | Lam e ⇒ 0
| Unt tt ⇒ 0 | Pure e ⇒ 0
| Fst e ⇒ span e
| Snd e ⇒ span e
| Prd (e, f) ⇒ max (span e) (span f)
| App e f ⇒ max (span e) (span f)
| Ap e f ⇒ max (span e) (span f)
| Map e f ⇒ max (span e) (span f)
| Join e ⇒ S (span e)
| Each e ⇒ S (span e).

Coq

(b) Work.

Equations WORK: ty ✮ Type := | _ ⇒ nat .
Equations
work {B x} (e: tm WORK B x): nat :=
| Var i ⇒ 0 | Lam e ⇒ 0
| Unt tt ⇒ 0 | Pure e ⇒ 0
| Fst e ⇒ work e
| Snd e ⇒ work e
| Prd (e, f) ⇒ work e + work f
| App e f ⇒ work e + work f
| Ap e f ⇒ work e + work f
| Map e f ⇒ work e + work f
| Join e ⇒ S (work e)
| Each e ⇒ S (work e).

Coq

argument, while the span of a tuple is the maximum of its left or right branch. The span for
function application, applicative application and mapping is the maximum of the span of its
arguments as well, plus the span of the execution of the specified function on the argument.
However, we defined our static semantics such that direct-style effect application cannot be
performed under a lambda, therefore the span of the execution of any function is zero.

Analogously, we define the work of an expression to be zero for variables, values, and
pure expressions. Similar to the span, the work of Join and direct-style effect application
Each is one more (successor S) than the work of their argument. The work of assertion and
projection is the work of its argument. Other than span (which takes the maximum), the
work of a tuple is the sum of both arguments. The work for function application, applicative
application and mapping is the sum of the work of its arguments, plus the work of the
execution of the specified function on the argument, which is zero, because lambdas cannot
contain Join or Each.

Example. Assume our language contains an effectful operation fetch. We calculate the
span and work of a term in the source language e := Prd (Each (fetch "foo"), Each (fetch "bar"))
as follows: span e = 1 and work e = 2. This expresses the fact that the two effects can be
performed in parallel. The corresponding target language term is
e' := Pure (Lam (λ e', (Lam (λ f', Prd (Var e', Var f'))))) `AP` (fetch "foo") `AP` (fetch "bar").
We get the same results for this term: span e' = 1 and work e' = 2.

3.2 Proof
Our translation should only change the encoding from direct-style to effect combinators,
while the semantics, typability and parallelism of the term should be preserved. We prove
that our translation preserves typability, semantics, span and work. Intuitively, the theorems
hold, because our translation performed by PURE, AP, and JOIN are the functor, monad and
applicative laws.

▶ Theorem 3.1 (PURE preserves types). The translation function takes a well-typed term
and produces a well-typed term, i.e., PURE: ∀ t, tm Γ src t ✮ tm Γ tgt (M t)

Proof. Using intrinsically-typed representation of terms, the well-typedness of the translated
term is guaranteed by the fact that the definition of the translation function PURE is itself
well-typed in Coq. ◀

ECOOP 2023

25:16 A Direct-Style Effect Notation for Sequential and Parallel Programs

We now consider the preservation of semantics. First, we show that the semantics of the
smart constructors is equal to that of the normal constructors, so that they merely represent
optimizations of those.

▶ Lemma 3.2 (AP respects semantics). ∀ f e, eval tgt (AP f e) = eval tgt (Ap f e)

▶ Lemma 3.3 (JOIN respects semantics). ∀ f e, eval tgt (JOIN e) = eval tgt (Join e)

Proof. By case distinction on the term structure of the arguments, using the functor, monad
and applicative laws. ◀

Next, we see that embedding the pure com sublanguage in the target language preserves
the semantics:

▶ Lemma 3.4 (relabel preserves semantics). ∀ e, eval tgt (relabel e) = eval com e

Proof. By induction on the structure of e. ◀

From this, we can deduce that the PURE transformation preserves the semantics of the
source program.

▶ Theorem 3.5 (PURE preserves semantics). For all lawful monads M to be evaluated in,
∀ e, eval tgt (PURE e) = eval src e

Proof. By induction on the structure of e, using Lemmas 3.2–3.4. ◀

We now want to show that PURE preserves the work and span of the program. This is
similar to semantics preservation, except that the functions we consider map to a monoid
(the natural numbers with addition and maximum, respectively) rather than a monad.

We show that AP and JOIN do not increase the span and work of a term, compared to the
normal constructors.

▶ Lemma 3.6 (AP respects span and work).
∀ f e, span tgt (AP f e) ≤ span tgt (Ap f e) and work tgt (AP f e) ≤ work tgt (Ap f e)

▶ Lemma 3.7 (JOIN respects span and work).
∀ e, span tgt (JOIN e) ≤ span tgt (Join e) and work tgt (JOIN e) ≤ work tgt (Join e)

Proof. By case distinction on the term structure of the arguments, using the monoid laws. ◀

The pure terms in the com sublanguage are effect-free; therefore, their span and work is
equal to 0.

▶ Lemma 3.8 (com is effect-free). ∀ e, span com e = 0 and work com e = 0

Proof. By induction on the term structure of e. ◀

Embedding pure terms into the targe language produces a term that does not perform
any effects, either.

▶ Lemma 3.9 (relabeled terms remain effect-free).
∀ e, span tgt (relabel e) = 0 and work tgt (relabel e) = 0

Proof. By induction on the term structure of e. ◀

We can then show that the translation PURE does not increase the span or work of the
source program, thereby demonstrating that it is parallelism-preserving.

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 25:17

▶ Theorem 3.10 (PURE preserves span and work).
∀ e, span tgt (PURE e) ≤ span src e and work tgt (PURE e) ≤ work src e

Proof. By induction on the term structure of e, using the monoid laws of addition and
maximum as well as Lemmas 3.6–3.9. ◀

4 Implementation

In this section, we describe the differences and similarities between the mechanisation in Coq
and the implementation in Scala built on a macro-based AST transformation.

Structural Recursion. We keep our implementation in a general-purpose language as close
to the formal model of our core calculus as possible. To this end, our implementation follows
the formal translation as a structurally recursive function over the terms where possible. We
use Scala macros to get access to code as AST data type, similar to the tm data type in the
formalization.

Type-preserving Compilation. In Scala, we process the untyped AST for fine-grained
detailed manipulations. Knowing that the translation is typability-preserving by our Coq
proof, increases confidence in the implementation.

Exhaustiveness Checks. A difference between the Coq and the Scala implementation is
that Bind, Ap and Pure are not syntax forms in Scala but represented by variable and function
application in the embedding. Still, we can treat them as syntax forms to construct and
destruct by defining custom patterns for pattern matching. Further, Scala macros do not
define the Scala syntax as an algebraic data type (to hide compiler internals), and therefore
do not offer exhaustiveness checks. Yet, by the fact that the Coq implementation is total,
the Scala implementation can be expected to be as well.

Custom Effects. In the formalization, we have only a single effect, while, in the implemen-
tation, we allow every use of the notation to be instantiated with a different effect, based on
the type of the expression. Our macro inspects the expression’s type and, based on this type,
picks the corresponding generated combinators bind/ap/pure of the respective effect.

Arity. In Scala, functions may take multiple arguments. Generally, we can model functions
taking multiple arguments as functions taking a single argument of a tuple with multiple
fields with appropriate currying and uncurrying. Functions with multiple arguments make
the compiler no longer structurally recursive over terms because, besides terms, the compiler
additionally needs to mutually recurse over the list of arguments, which would complicate
the proof, but is necessary for our implementation.

5 Related work

Do-Notation. Do-notations have been popular for studying a variety of styles for writing
effectful code: Wadler extends list-comprehension syntax [55] to monadic comprehensions,
from which modern do-notation sprung, and McBride introduced applicatives and idiom
brackets as a notation for applicatives [29]. To the best of our knowledge, the only support for
mixed sequential and parallel programming was introduced as a Haskell extension [27, 28] to
optimise do-notation into mixed monadic/applicative operations (ApplicativeDo). In contrast,
our notation preserves the parallelism inherent in the structure of the program, thereby
allowing sequentiality where necessary and giving parallelism where possible.

ECOOP 2023

25:18 A Direct-Style Effect Notation for Sequential and Parallel Programs

Implementations. Besides theory, implementations for effectful guest language notations are
a popular endeavor, for example: In Scala, we can find projects to supports effectful programs
through compiler plugins such as coroutines [47], Scala async [44], Monadless [7], Effectfull [10],
Scala Workflow [49], Scala ContextWorkflow [22], Scala Computation Expressions [46],
Dsl.scala [57], Dotty CPS [50]. In other languages we have: F# computation expressions [39],
In particular proof-assistants and dependently typed languages have an interest for good
support of notations for guest languages, which we can see in Idris’ [6, 21] Lean’s [52, 25],
and Kind’s [24] notation. None of them support parallelism.

Further, the following approaches are similar to ApplicativeDo: OCaml’s monadic and
applicative let [37], Scala avocADO [45], and Scala parallel-for [48]. But these do not support
direct-style effect usage, and do not preserve parallelism.

CPS Translations. In general, effects are implemented by translating to other already known
effects. In particular, all effects can be represented by the continuation effect [14], and thus,
by translating to continuation passing style (CPS) [42, 15]. However, naive CPS translations
introduce so called administrative redexes, e.g., expressions containing subexpressions which
do not need to be evaluated at run-time, but can already be optimised by a partial evaluation
pass at compile-time. Eventually, Danvy and Nielsen [12] optimised the CPS-translation into
a first-order, one-pass, compositional translation.

Their trick for achieving an optimal result in one pass is to build optimisations into the
definitions of their translation functions. We use a similar approach in our translation through
the definition of smart constructors which simplify terms using monad and applicative laws
when called.

Host supporting effects. Because effects can be implemented by translation to equally
or more powerful effects, besides giving a denotational semantics modelling a compiler,
there is another approach – that we did not follow – by forwarding effects to the host
language as well. Then, compile-time translations like ours can be avoided and effects can be
implemented in languages as a library, given the host languages has sufficient powerful effects.
Filinski [14] studied the implementation of effects in languages with delimited continuations
(e.g. shift and reset). In such an impure language it is possible to implement so called monadic
reflection – a function taking an effectful function and returning a “pure” function. This is of
course only possible by exploiting the impurity of the host language to implement the effect
using delimited continuation. Later, Forster [16] studied the translations between monadic
reflection, effect handlers and delimited control. The approach to extend the underlying
virtual machine by support for delimited continuations, which are sufficiently efficient for
then implementing effects as normal libraries is followed by: the JVM proposal for delimited
continuations [41], the Haskell proposal for continuation marks [18] and multicore-ocaml [35].

We are looking for a more general solution for compiling a language, that works indepen-
dent of whether the runtime already supports delimited continuations or not.

Formalisation Techniques. To focus on the interesting parts of our formalisation, we used
modern techniques to define features of the guest language in terms of features of the host
language: In particular, we use parametric higher order abstract syntax (PHOAS) [40, 19, 8]
to inherit binders and capture-avoiding substitution from the host language, and intrinsically-
typed syntax [11, 3, 1, 2] to inherit type checking. The choice of PHOAS implies a limitation
of our work, namely that we can formally only prove theorems about closed terms. Yet, this
is a common restriction and lifting it is subject to future work.

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 25:19

6 Conclusion

Existing notations for composing effectful computations fall short on providing both sequential
and parallel composition of effects at the same time. In this paper, we proposed a notation
for mixed sequential/parallel code. Our notation allows direct-style effects, a feature that
enables the sequentiality or parallelism of the effects to be determined by the structure of
the code. We proved that our compilation preserves the parallelism of the source program
and mechanized the proof in Coq.

An interesting next step for this line of research on direct-style notations for effects is to
investigate how to cover more programming language features such as loops and branches, to
integrate effects more seamlessly into the language. Besides monad and applicative functors,
other effect functors, such as selectives [34, 56], comonads [38], and the theory behind effectful
recursion [13] and generalizations such as arrows [20, 26] are promising possibilities.

References
1 Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Relative monads formalised.

Journal of Formalized Reasoning, 7(1):1–43, 2014. doi:10.6092/issn.1972-5787/4389.
2 Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be endofunctors.

Logical Methods in Computer Science, 11(1), 2015. doi:10.2168/LMCS-11(1:3)2015.
3 Nick Benton, Chung-Kil Hur, Andrew Kennedy, and Conor McBride. Strongly typed term repre-

sentations in Coq. J. Autom. Reason., 49(2):141–159, 2012. doi:10.1007/s10817-011-9219-0.
4 Gavin M. Bierman, Erik Meijer, and Mads Torgersen. Lost in translation: formalizing proposed

extensions to C#. In Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy
L. Steele Jr., editors, Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2007, October 21-25,
2007, Montreal, Quebec, Canada, pages 479–498. ACM, 2007. doi:10.1145/1297027.1297063.

5 Gavin M. Bierman, Claudio V. Russo, Geoffrey Mainland, Erik Meijer, and Mads Torgersen.
Pause ’n’ play: Formalizing asynchronous C#. In James Noble, editor, ECOOP 2012 -
Object-Oriented Programming - 26th European Conference, Beijing, China, June 11-16, 2012.
Proceedings, volume 7313 of Lecture Notes in Computer Science, pages 233–257. Springer,
2012. doi:10.1007/978-3-642-31057-7_12.

6 Edwin C. Brady. Resource-dependent algebraic effects. In Jurriaan Hage and Jay McCarthy,
editors, Trends in Functional Programming - 15th International Symposium, TFP 2014,
Soesterberg, The Netherlands, May 26-28, 2014. Revised Selected Papers, volume 8843 of Lecture
Notes in Computer Science, pages 18–33. Springer, 2014. doi:10.1007/978-3-319-14675-1_2.

7 Flavio W. Brasil and Sameer Brenn. Monadless - syntactic sugar for monad composition in
Scala. https://github.com/monadless/monadless.

8 Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In James
Hook and Peter Thiemann, editors, Proceeding of the 13th ACM SIGPLAN international
conference on Functional programming, ICFP 2008, Victoria, BC, Canada, September 20-28,
2008, pages 143–156. ACM, 2008. doi:10.1145/1411204.1411226.

9 Coq 8.16 reference manual. https://coq.github.io/doc/v8.16/refman/.
10 Tom Crockett. Effectful: A syntax for typeful effectful computations in Scala. https:

//github.com/pelotom/effectful#effects-within-conditionals. Accessed 20-11-2020.
11 Nils Anders Danielsson. A formalisation of a dependently typed language as an inductive-

recursive family. In Thorsten Altenkirch and Conor McBride, editors, Types for Proofs and
Programs, International Workshop, TYPES 2006, Nottingham, UK, April 18-21, 2006, Revised
Selected Papers, volume 4502 of Lecture Notes in Computer Science, pages 93–109. Springer,
2006. doi:10.1007/978-3-540-74464-1_7.

12 Olivier Danvy and Lasse R. Nielsen. A first-order one-pass CPS transformation. Theor.
Comput. Sci., 308(1-3):239–257, 2003. doi:10.1016/S0304-3975(02)00733-8.

ECOOP 2023

https://doi.org/10.6092/issn.1972-5787/4389
https://doi.org/10.2168/LMCS-11(1:3)2015
https://doi.org/10.1007/s10817-011-9219-0
https://doi.org/10.1145/1297027.1297063
https://doi.org/10.1007/978-3-642-31057-7_12
https://doi.org/10.1007/978-3-319-14675-1_2
https://github.com/monadless/monadless
https://doi.org/10.1145/1411204.1411226
https://coq.github.io/doc/v8.16/refman/
https://github.com/pelotom/effectful#effects-within-conditionals
https://github.com/pelotom/effectful#effects-within-conditionals
https://doi.org/10.1007/978-3-540-74464-1_7
https://doi.org/10.1016/S0304-3975(02)00733-8

25:20 A Direct-Style Effect Notation for Sequential and Parallel Programs

13 Levent Erkök and John Launchbury. A recursive do for Haskell. In Manuel M. T. Chakravarty,
editor, Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell 2002, Pittsburgh,
Pennsylvania, USA, October 3, 2002, pages 29–37. ACM, 2002. doi:10.1145/581690.581693.

14 Andrzej Filinski. Representing monads. In Hans-Juergen Boehm, Bernard Lang, and Daniel M.
Yellin, editors, Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Portland, Oregon, USA, January 17-21, 1994, pages
446–457. ACM Press, 1994. doi:10.1145/174675.178047.

15 Michael J. Fischer. Lambda calculus schemata. In Proceedings of ACM Conference on Proving
Assertions About Programs, Las Cruces, New Mexico, USA, January 6-7, 1972, pages 104–109.
ACM, 1972. doi:10.1145/800235.807077.

16 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. On the expressive power
of user-defined effects: Effect handlers, monadic reflection, delimited control. Journal of
Functional Programming, 29:e15, 2019. doi:10.1017/S0956796819000121.

17 Robert Harper and Christopher A. Stone. A type-theoretic interpretation of Standard ML. In
Gordon D. Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and Interaction,
Essays in Honour of Robin Milner, pages 341–388. The MIT Press, 2000.

18 Haskell Proposals. Delimited continuation primops. https://github.com/ghc-proposals/
ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst.

19 Martin Hofmann. Semantical analysis of higher-order abstract syntax. In 14th Annual IEEE
Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages 204–213. IEEE
Computer Society, 1999. doi:10.1109/LICS.1999.782616.

20 John Hughes. Generalising monads to arrows. Science of Computer Programming, 37(1-3):67–
111, 2000. doi:10.1016/S0167-6423(99)00023-4.

21 The Idris Tutorial. Interfaces. Monads and do-notation. !-notation. http://docs.idris-lang.
org/en/latest/tutorial/interfaces.html#notation. Accessed 14-11-2020.

22 Hiroaki Inoue, Tomoyuki Aotani, and Atsushi Igarashi. Contextworkflow: A monadic DSL
for compensable and interruptible executions. In Todd D. Millstein, editor, 32nd European
Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam,
The Netherlands, volume 109 of LIPIcs, pages 2:1–2:33. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.ECOOP.2018.2.

23 Jerzy Karczmarczuk. Functional differentiation of computer programs. In Matthias Felleisen,
Paul Hudak, and Christian Queinnec, editors, Proceedings of the third ACM SIGPLAN
International Conference on Functional Programming (ICFP ’98), Baltimore, Maryland, USA,
September 27-29, 1998, pages 195–203. ACM, 1998. doi:10.1145/289423.289442.

24 Github. Kind2. A next-gen functional language. https://github.com/Kindelia/Kind2. Ac-
cessed 29-11-2022.

25 Lean Manual. The do notation. Nested actions. https://leanprover.github.io/lean4/doc/
do.html#nested-actions. Accessed 29-11-2022.

26 Sam Lindley, Philip Wadler, and Jeremy Yallop. Idioms are oblivious, arrows are meticulous,
monads are promiscuous. Electronic Notes in Theoretical Computer Science, 229(5):97–117,
2011. doi:10.1016/j.entcs.2011.02.018.

27 Simon Marlow, Louis Brandy, Jonathan Coens, and Jon Purdy. There is no fork: an
abstraction for efficient, concurrent, and concise data access. In Johan Jeuring and Manuel
M. T. Chakravarty, editors, Proceedings of the 19th ACM SIGPLAN international conference
on Functional programming, Gothenburg, Sweden, September 1-3, 2014, pages 325–337. ACM,
2014. doi:10.1145/2628136.2628144.

28 Simon Marlow, Simon Peyton Jones, Edward Kmett, and Andrey Mokhov. Desugaring
Haskell’s do-notation into applicative operations. In Geoffrey Mainland, editor, Proceedings of
the 9th International Symposium on Haskell, Haskell 2016, Nara, Japan, September 22-23,
2016, pages 92–104. ACM, 2016. doi:10.1145/2976002.2976007.

29 Conor McBride and Ross Paterson. Applicative programming with effects. Journal of
Functional Programming, 18(1):1–13, 2008. doi:10.1017/S0956796807006326.

https://doi.org/10.1145/581690.581693
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/800235.807077
https://doi.org/10.1017/S0956796819000121
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0313-delimited-continuation-primops.rst
https://doi.org/10.1109/LICS.1999.782616
https://doi.org/10.1016/S0167-6423(99)00023-4
http://docs.idris-lang.org/en/latest/tutorial/interfaces.html#notation
http://docs.idris-lang.org/en/latest/tutorial/interfaces.html#notation
https://doi.org/10.4230/LIPIcs.ECOOP.2018.2
https://doi.org/10.1145/289423.289442
https://github.com/Kindelia/Kind2
https://leanprover.github.io/lean4/doc/do.html#nested-actions
https://leanprover.github.io/lean4/doc/do.html#nested-actions
https://doi.org/10.1016/j.entcs.2011.02.018
https://doi.org/10.1145/2628136.2628144
https://doi.org/10.1145/2976002.2976007
https://doi.org/10.1017/S0956796807006326

D. Richter, T. Böhler, P. Weisenburger, and M. Mezini 25:21

30 Erik Meijer. Confessions of a used programming language salesman. In Richard P. Gabriel,
David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr., editors, Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada, pages
677–694. ACM, 2007. doi:10.1145/1297027.1297078.

31 Erik Meijer. Your mouse is a database. Communications of the ACM, 55(5):66–73, 2012.
doi:10.1145/2160718.2160735.

32 Erik Meijer, Brian Beckman, and Gavin M. Bierman. LINQ: reconciling object, relations and
XML in the .NET framework. In Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis,
editors, Proceedings of the ACM SIGMOD International Conference on Management of Data,
Chicago, Illinois, USA, June 27-29, 2006, page 706. ACM, 2006. doi:10.1145/1142473.
1142552.

33 Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3):348–375, 1978. doi:10.1016/0022-0000(78)90014-4.

34 Andrey Mokhov, Georgy Lukyanov, Simon Marlow, and Jerémie Dimino. Selective applicative
functors. Proceedings of the ACM on Programming Languages, 3(ICFP):90:1–90:29, 2019.
doi:10.1145/3341694.

35 Multicore OCaml. https://github.com/ocaml-multicore/ocaml-multicore.
36 Matthias Neubauer and Peter Thiemann. From sequential programs to multi-tier applications

by program transformation. In Jens Palsberg and Martín Abadi, editors, Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2005, Long Beach, California, USA, January 12-14, 2005, pages 221–232. ACM, 2005.
doi:10.1145/1040305.1040324.

37 OCaml: Add "monadic" let operators. https://github.com/ocaml/ocaml/pull/1947, 2018.
38 Dominic A. Orchard and Alan Mycroft. A notation for comonads. In Ralf Hinze, editor,

Implementation and Application of Functional Languages - 24th International Symposium,
IFL 2012, Oxford, UK, August 30 - September 1, 2012, Revised Selected Papers, volume
8241 of Lecture Notes in Computer Science, pages 1–17. Springer, 2012. doi:10.1007/
978-3-642-41582-1_1.

39 Tomas Petricek and Don Syme. The F# computation expression zoo. In PADL, volume 8324
of Lecture Notes in Computer Science, pages 33–48. Springer, 2014.

40 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Richard L. Wexelblat,
editor, Proceedings of the ACM SIGPLAN’88 Conference on Programming Language Design
and Implementation (PLDI), Atlanta, Georgia, USA, June 22-24, 1988, pages 199–208. ACM,
1988. doi:10.1145/53990.54010.

41 Project Loom: Fibers and Continuations for the Java Virtual Machine. https://cr.openjdk.
java.net/~rpressler/loom/Loom-Proposal.html.

42 John C. Reynolds. Definitional interpreters for higher-order programming languages. In John J.
Donovan and Rosemary Shields, editors, Proceedings of the ACM annual conference, ACM
1972, 1972, Volume 2, pages 717–740. ACM, 1972. doi:10.1145/800194.805852.

43 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and
Mira Mezini. Prisma: A tierless language for enforcing contract-client protocols in decentralized
applications (extended version). CoRR, abs/2205.07780, 2022. doi:10.48550/arXiv.2205.
07780.

44 Scala async rfc. http://docs.scala-lang.org/sips/pending/async.html.
45 avocADO. Safe compile-time parallelization of for-comprehensions for Scala 3 . https://

github.com/kitlangton/parallel-for.
46 Scala Computation Expressions. An implementation of Computation Expressions in Scala.

https://github.com/jedesah/computation-expressions.
47 Coroutines is a library-level extension for the Scala programming language that introduces

first-class coroutines. https://github.com/storm-enroute/coroutines, 2015.

ECOOP 2023

https://doi.org/10.1145/1297027.1297078
https://doi.org/10.1145/2160718.2160735
https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/3341694
https://github.com/ocaml-multicore/ocaml-multicore
https://doi.org/10.1145/1040305.1040324
https://github.com/ocaml/ocaml/pull/1947
https://doi.org/10.1007/978-3-642-41582-1_1
https://doi.org/10.1007/978-3-642-41582-1_1
https://doi.org/10.1145/53990.54010
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://cr.openjdk.java.net/~rpressler/loom/Loom-Proposal.html
https://doi.org/10.1145/800194.805852
https://doi.org/10.48550/arXiv.2205.07780
https://doi.org/10.48550/arXiv.2205.07780
http://docs.scala-lang.org/sips/pending/async.html
https://github.com/kitlangton/parallel-for
https://github.com/kitlangton/parallel-for
https://github.com/jedesah/computation-expressions
https://github.com/storm-enroute/coroutines

25:22 A Direct-Style Effect Notation for Sequential and Parallel Programs

48 parallel-for. Automatically parallelize your for-comprehensions at compile time. https://
github.com/kitlangton/parallel-for.

49 Scala workflow. Boilerplate-free syntax for computations with effects. https://github.com/
aztek/scala-workflow.

50 Ruslan Shevchenko. dotty-cps-async - experimental CPS transformer for dotty. https:
//github.com/rssh/dotty-cps-async.

51 Don Syme, Tomas Petricek, and Dmitry Lomov. The F# asynchronous programming model. In
Ricardo Rocha and John Launchbury, editors, Practical Aspects of Declarative Languages - 13th
International Symposium, PADL 2011, Austin, TX, USA, January 24-25, 2011. Proceedings,
volume 6539 of Lecture Notes in Computer Science, pages 175–189. Springer, 2011. doi:
10.1007/978-3-642-18378-2_15.

52 Sebastian Ullrich and Leonardo de Moura. ’do’ unchained: embracing local imperativity in
a purely functional language (functional pearl). Proceedings of the ACM on Programming
Languages, 6(ICFP):512–539, 2022. doi:10.1145/3547640.

53 Janis Voigtländer. Free theorems simply, via dinaturality. In Petra Hofstedt, Salvador
Abreu, Ulrich John, Herbert Kuchen, and Dietmar Seipel, editors, Declarative Programming
and Knowledge Management - Conference on Declarative Programming, DECLARE 2019,
Unifying INAP, WLP, and WFLP, Cottbus, Germany, September 9-12, 2019, Revised Selected
Papers, volume 12057 of Lecture Notes in Computer Science, pages 247–267. Springer, 2019.
doi:10.1007/978-3-030-46714-2_16.

54 Philip Wadler. Theorems for free! In Joseph E. Stoy, editor, Proceedings of the fourth
international conference on Functional programming languages and computer architecture,
FPCA 1989, London, UK, September 11-13, 1989, pages 347–359. ACM, 1989. doi:10.1145/
99370.99404.

55 Philip Wadler. Comprehending monads. Mathematical Structures in Computer Science,
2(4):461–493, 1992. doi:10.1017/S0960129500001560.

56 Jamie Willis, Nicolas Wu, and Matthew Pickering. Staged selective parser combinators.
Proceedings of the ACM on Programming Languages, 4(ICFP):120:1–120:30, 2020. doi:
10.1145/3409002.

57 Bo Yang. Dsl.scala – A framework to create embedded domain-specific languages in Scala.
https://github.com/ThoughtWorksInc/Dsl.scala.

https://github.com/kitlangton/parallel-for
https://github.com/kitlangton/parallel-for
https://github.com/aztek/scala-workflow
https://github.com/aztek/scala-workflow
https://github.com/rssh/dotty-cps-async
https://github.com/rssh/dotty-cps-async
https://doi.org/10.1007/978-3-642-18378-2_15
https://doi.org/10.1007/978-3-642-18378-2_15
https://doi.org/10.1145/3547640
https://doi.org/10.1007/978-3-030-46714-2_16
https://doi.org/10.1145/99370.99404
https://doi.org/10.1145/99370.99404
https://doi.org/10.1017/S0960129500001560
https://doi.org/10.1145/3409002
https://doi.org/10.1145/3409002
https://github.com/ThoughtWorksInc/Dsl.scala

Sinatra: Stateful Instantaneous Updates for
Commercial Browsers Through Multi-Version
eXecution
Ugnius Rumsevicius #

University of Illinois at Chicago, IL, USA

Siddhanth Venkateshwaran #

University of Illinois at Chicago, IL, USA

Ellen Kidane #

University of Illinois at Chicago, IL, USA

Luís Pina #

University of Illinois at Chicago, IL, USA

Abstract
Browsers are the main way in which most users experience the internet, which makes them a prime
target for malicious entities. The best defense for the common user is to keep their browser always
up-to-date, installing updates as soon as they are available. Unfortunately, updating a browser is
disruptive as it results in loss of user state. Even though modern browsers reopen all pages (tabs)
after an update to minimize inconvenience, this approach still loses all local user state in each page
(e.g., contents of unsubmitted forms, including associated JavaScript validation state) and assumes
that pages can be refreshed and result in the same contents. We believe this is an important barrier
that keeps users from updating their browsers as frequently as possible.

In this paper, we present the design, implementation, and evaluation of Sinatra, which supports
instantaneous browser updates that do not result in any data loss through a novel Multi-Version
eXecution (MVX) approach for JavaScript programs, combined with a sophisticated proxy. Sinatra
works in pure JavaScript, does not require any browser support, thus works on closed-source browsers,
and requires trivial changes to each target page, that can be automated. First, Sinatra captures
all the non-determinism available to a JavaScript program (e.g., event handlers executed, expired
timers, invocations of Math.random). Our evaluation shows that Sinatra requires 6MB to store
such events, and the memory grows at a modest rate of 253KB/s as the user keeps interacting with
each page. When an update becomes available, Sinatra transfer the state by re-executing the same
set of non-deterministic events on the new browser. During this time, which can be as long as 1.5
seconds, Sinatra uses MVX to allow the user to keep interacting with the old browser. Finally,
Sinatra changes the roles in less than 10ms, and the user starts interacting with the new browser,
effectively performing a browser update with zero downtime and no loss of state.

2012 ACM Subject Classification Computer systems organization → Availability; Software and its
engineering → Maintaining software

Keywords and phrases Internet browsers, dynamic software updating, multi-version execution

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.26

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.3

Funding This work was funded in part by NSF CCF-2227183.

1 Introduction

Browsers are the main way in which most users experience the internet. Browsers are
responsible for the safety of user sensitive data, in the form of cookies, saved passwords,
and credit card information, and other personal information used to auto-complete forms.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Ugnius Rumsevicius, Siddhanth Venkateshwaran, Ellen Kidane, and
Luís Pina;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 26; pp. 26:1–26:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:urumse2@uic.edu
mailto:svenka42@uic.edu
mailto:ekidan2@uic.edu
mailto:luispina@uic.edu
https://orcid.org/0000-0003-4585-5259
https://doi.org/10.4230/LIPIcs.ECOOP.2023.26
https://doi.org/10.4230/DARTS.9.2.3
https://doi.org/10.4230/DARTS.9.2.3
https://doi.org/10.4230/DARTS.9.2.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Sinatra: Instantaneous Updates for Browsers Through Multi-Version eXecution

Browsers are also responsible for ensuring the integrity of the websites that the user visits,
checking certificates and negotiating encrypted HTTPS channels. Given all this, browsers
are prime targets for malicious entities. For the common user, the best way to protect their
browsers (and the personal data they keep) is to keep the browsers as up-to-date as possible.

Unfortunately, users are slow to update their browser to a new version. In terms of
percentage of users, data for Google Chrome [53] and Mozilla Firefox [41] show that a new
browser version takes about 2 weeks to overtake the previous version, and about 4 weeks to
reach its peak. Given the fast pace of browser releases (6 weeks for Google Chrome and 4
weeks for Mozilla Firefox), the amount of users running outdated versions is significant at
any given time.

Browser developers are aware of the problems caused by running outdated versions, and
provide features to entice users to update, from reminding the user that a new update is
available to minimizing the inconvenience by reopening all pages (tabs) after the update.
Even though popular, the latter feature has three main flaws. First, it disrupts the user
interaction by closing the browser, downloading the new version, and then opening it. Second,
it assumes that pages can simply be refreshed after the update. Such an assumption fails if a
login session expires, which causes the page to refresh to the login portal; or if the contents of
the page change with each refresh, as is the case with modern social media. Third, refreshing
a page loses all user state accumulated on that page since it was loaded. Such state includes,
among others, data in HTML forms and JavaScript state.

The result is simple: Browser updates are disruptive for the average user. Dynamic
Software Updating (DSU) techniques can be used for eliminating such disruption, updating
a program in-process. Unfortunately, state-of-the-art DSU tools cannot handle programs as
complex as modern commercial internet browsers (Section 2.1). Also, simply dumping the
old browser memory state to disk and reloading it in the new browser does not work, as the
new browser may change the internal state representation.

In this paper, we present the design and implementation of Sinatra– Stateful
Instantaneous browser updates – a novel MVX technique implemented in pure JavaScript.
Sinatra requires little changes to the target JavaScript application (Section 3), which can
be performed automatically for all the pages accessed through an HTTP proxy (Section 3.1).

To perform an update (Section 3.2), Sinatra captures all sources of non-determinism
accessed by the browser. Then, when an update becomes available, Sinatra launches
the updated browser as a separate process, and feeds it the same non-determinism, thus
synchronizing the JavaScript state between both browsers. During this time, Sinatra allows
the user to keep interacting with the old browser by performing MVX until the updated
browser’s state is up-to-date. Once the update was successful, Sinatra terminates the old
browser and the user can start interacting with the new browser.

Note that simply transferring the JavaScript between browsers is not sufficient for two
reasons. First, the user cannot interact with either browser while transferring the state.
Second, failed updates may still result in loss of user data. Multi-Version eXecution (MVX)
solves both problems by allowing the user to interact with the old browser while the new
browser is receiving the state, and by allowing Sinatra to cancel a failed update simply by
closing the new browser. Unfortunately, state-of-the-art MVX tools cannot handle modern
commercial internet browsers (Section 2.2), and performing MVX at the JavaScript is not as
straightforward due to the event-driven programming paradigm (Section 2.3).

Sinatra captures all sources of non-determinism available to a JavaScript program,
including execution of event handlers (Sections 3.3), and non-deterministic functions such
as Math.random (Section 3.4). We implemented Sinatra in pure JavaScript using an extra

U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:3

coordinator process to enable communication between browsers (Section 4.1) that serializes
JavaScript non-determinism as JSON (Section 4.2). Our implementation also handles all
other sources of state in a JavaScript application (Sections 4.2 and 4.3).

This paper also presents an extensive evaluation of Sinatra using 4 JavaScript applica-
tions and realistic workloads (Section 6.1) and 2 real-world modern websites (Section 6.8).
Our results show that Sinatra runs with very little performance overhead, adding at most
1.896ms to the execution of event handlers (Section 6.2), which is not noticeable by the user.
For realistic user interactions, Sinatra requires less than 6MB of memory to store the events
until a future update happens (Section 6.3). Furthermore, the amount of memory grows
constantly with the length of active user interactions, with a maximum rate of 253KB/s
(Section 6.4), which shows that Sinatra scales well with typical user interactions with
modern websites. For websites that make use of frequent XML HTTP Requests (XHR) in the
background, Sinatra requires a modest 36MB of storage for a 14h run (Section 6.6). Fur-
thermore, Sinatra supports realistic workloads on modern websites as complex as Twitter,
with complex JavaScript that requires over 4500 events to load (Section 6.8).

When performing an update, Sinatra requires at most 1.5 seconds to transfer the state
between browsers (Section 6.5.1). We note that the user can continue to interact with the
browser during this time. To switch to the updated browser, Sinatra imposes a pause in
user interaction of less than 10ms (Section 6.5.2), which is perceived as instantaneous. At its
core, Sinatra is an MVX system that delivers events from one browser to another in 19ms
or less (Section 6.7).

In short, this paper has the following contributions:
1. The design, and implementation of Sinatra, a system for performing MVX on JavaScript

applications.
2. A technique to use Sinatra to perform instantaneous updates to modern commercial

closed-source internet browsers, without any loss of state.
3. An extensive evaluation of Sinatra using 4 realistic JavaScript stateful applications and

2 popular websites (Google and Twitter); including widely used JavaScript frameworks
Angular [21], JsAction [23], and React [38].

Sinatra’s source [1] and research artifact [50] are freely available.

2 Background

Performing Dynamic Software Updating (DSU) on a running browser presents many unique
challenges. First, state-of-the-art DSU tools require source code changes and do not support
programs as complicated as modern internet browsers (Section 2.1). Sinatra circumvents
that problem by using Multi-Version eXecution (MVX) to perform DSU [44]. Unfortunately,
state-of-the-art MVX tools also do not support programs as complicated as modern internet
browsers (Section 2.2). Sinatra moves the level of MVX from low-level system calls to
high-level JavaScript events. However, performing MVX in the traditional sense is not
possible in JavaScript, due to its event-driven paradigm (Section 2.3).

2.1 Dynamic Software Updating (DSU)
Dynamic Software Updating (DSU) allows to install an update on a running program without
terminating it, and without losing any program state (e.g., data in memory, open connections,
open files). DSU has three fundamental problems to solve: (1) when to stop the running
program, (2) how to transform the program state to a representation that is compatible with

ECOOP 2023

26:4 Sinatra: Instantaneous Updates for Browsers Through Multi-Version eXecution

the new version but equivalent to the old state, and (3) how to restart the program in the
new version. Solving these problems requires modifying the source code of the updatable
program [47, 24, 44] adding safe-update points to solve problem 1, state transformation
functions to solve problem 2, and control-flow migration to solve problem 3. This is not
possible for popular modern internet browsers (e.g., Google Chrome, Microsoft Edge, Apple
Safari), as they are closed-source.

Modern DSU approaches focus on in-process updates – the new version of the program
replaces the old version in the same process – which trivially keep outside resources available
between updates (e.g., open network connections and files), but limits existing DSU tools to
programs that execute in a single process. This is not the case of modern internet browsers
(e.g., Google Chrome uses one process per open tab to improve performance and provide
strong isolation between open pages). Finally, modern internet browsers are examples self-
modifying code given their Just-In-Time (JIT) JavaScript compiler, which is a well known
limitation of state-of-the-art DSU tools [24, 44]. Therefore, existing DSU tools cannot update
modern browsers.

2.2 Multi-Version eXecution (MVX)

The main goal of MVX is to ensure that many program versions execute over the same inputs
and generate the same outputs. MVX can be used to perform DSU by launching the updated
program as a separate process, transferring the state between processes (e.g., by forking
the original process), and resuming execution on the updated process after terminating the
outdated process [44].

Unlike DSU, state-of-the-art MVX techniques do not require access to the source code of
the target program. Instead, MVX interposes system-calls through ptrace [35] or binary-code
instrumentation [27, 43]. This way, MVX tools can ensure that all processes read the same
data, by capturing relevant system-calls (e.g., read) and ensuring that they return the same
sequence of bytes.

Unfortunately, existing MVX tools cannot be applied to modern internet browsers. Doing
so results in immediate termination due to benign divergences – equivalent behavior expressed
by different sequences of system calls. For instance, consider how a JIT compiler decides
which code to compile/optimize using performance counters based on CPU time. Interacting
with such counters does not result in system-calls, and causes JIT compilers to optimize
different code, which then results in different system calls. It is possible to tolerate such
benign divergences [46], but doing so requires developer support and significant engineering
effort, which is not practical.

MVX also suffers from some of the same issues as DSU: no support for multi-process
applications, and no support for self-modifying code.

2.3 JavaScript Messages, Event-Loop, and Non-Determinism

JavaScript [16] is an event-driven programming language animated by an event loop, as
depicted in Figure 1, which processes messages from an event queue. The event loop takes
one message from the event queue and executes its handler to completion. If the queue is
empty, the event-loop simply waits for the next event. A handler is a JavaScript closure
associated with each message. Given that the event loop is single-threaded, there is a single
call stack and one program counter (not depicted) to keep the state of processing the current
event.

U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:5

Stack Event Loop Message Queue
function callback() { f1(); }

function f1() { f2(); }

function f2() {
 var ready = false;
 setTimeout(
 function() { ready = true; },
 0);
 while(!ready); // deadlock
}

callback
Frame

f1 Frame

Message

Handler

MessageMessage

Handler
button.onClick()

f2 Frame

123
next next

Handler Handler

next...

Figure 1 JavaScript’s event loop processing 3 messages. Processing Message 1 causes Message 3
to be added to the queue. Message 2 was added when a button was clicked while processing
Message 1. Due to JavaScript’s event-driven model, this example will never process Message 3,
causing a deadlock.

On a browser, events can come from two sources: (1) user interaction with DOM elements
(e.g., onclick on a button element), and (2) browser-generated events, such as expiring
timers (e.g., setTimeout or setInterval) or receiving replies to pending XML HTTP
requests. Each event generates a message that keeps track of the event details: the event
handler (a closure to be executed for that event), the event target (e.g., the DOM element
that generated the message), and other properties. Events handlers in JavaScript are not
executed immediately when the event is triggered. Instead, each event is added to the end
of the event queue as it is triggered. For instance, in Figure 1, a button was clicked while
running function callback, which results in adding Message 2 to the event queue.

Events are processed by a single-threaded event-loop that runs each event handler to
completion before processing any other event, which has two important consequences. First,
the order and types of events processed are a major part of the non-determinism used to
execute a JavaScript program. Apart from asynchronous non-determinism, described below,
rerunning the same events in the same order results in the same execution of the same
JavaScript program [39, 10, 5, 25, 57]. Second, it is not possible for an event handler to
issue an event and wait for its completion. This causes the code in Figure 1 to deadlock when
waiting for the flag ready to become true [6] because the handler that sets the flag never
executes. The handler is associated with a timeout (of zero), which adds a message to the
end of the queue. The event loop never finishes executing the current handler, so it never
processes any more messages on the queue.

Besides the synchronous non-determinism created by events, described above, a JavaScript
program can also call functions that are non-deterministic, which we call asynchronous non-
determinism. The main non-deterministic functions are Math.random, which generates
random numbers between 0 and 1; and methods of the Date object (e.g., Date.getTime),
which access the current time and date. Notably, it is not possible to seed the pseudo random
number generator behind Math.random.

Given JavaScript’s limitations, it is not possible to perform traditional MVX on
the asynchronous non-determinism. For instance, when generating a random number,
typical MVX approaches ensure each version waits for a message with the same random
number (perhaps from a central coordinator process). In JavaScript’s case, this would create
the same deadlock as shown above. Section 3.4 describes how Sinatra overcomes this
limitation.

3 Sinatra Design

Sinatra supports updating internet browsers through a combination of MVX and DSU [44],
both at the JavaScript level. Sinatra requires trivial modifications to web pages, which
are shown in Figure 2 – Lines 3–4 need to be added. The required changes ensure that

ECOOP 2023

26:6 Sinatra: Instantaneous Updates for Browsers Through Multi-Version eXecution

01: <html>
02: <head>
03: + <script src="mvx/sinatra.js" type="text/javascript"></script>

04: + <script src="mvx/sinatra_init.js" type="text/javascript" defer></script>
05: </head>
06: <body>
07: <button id="button" onclick="console.log(’DOM0 inline’)"></button>
08: <input id="input_textbox" type="text" />
09:
10: <script>
11: let button = document.getElementById("button");
12: button.onmouseover = function(event) { console.log("DOM0"); }
13:
14: let textbox = document.getElementById(’input_textbox’);
15: let closure = function(ev) { console.log(’DOM2’); });
16: textbox.addEventListener(’change’, closure);
17: </script>
18: </body>
19: </html>

Figure 2 Sample HTML code. Sinatra requires adding Lines 3–6.

Browser

Updated Browser

During updates

Coordinator Log

Proxy

Internet

(eventType,
elementID,
eventObject)

(eventType,
elementID,
eventObject)

(eventType,
elementID,
eventObject)

Figure 3 Sinatra architecture.

Coordinator

Leader

Follower
1

2 2* 3

1Version 1

Send
events

Send
events

Version 0

X

Figure 4 Sinatra update phases. Most of the
time is spent in Phase 1. Phase 2 transfers state
to an updated browser. Phase 2* is optional, and
allows to validate if the update was successful.
Phase 3 exposes the updated browser to the user.

Sinatra intercepts event handlers immediately (Line 3) and executes its initialization after
the page is loaded but before any other JavaScript code executes (due to the defer attribute
in Line 4). We note that these are simple modifications that can be performed automatically
by a sophisticated proxy [12], as we describe in Section 3.1.

After applying the required changes, Sinatra leverages the first-class nature of functions
in JavaScript, and replaces a number of important functions to intercept all sources of non-
determinism: [HTMLElement,HTMDocument].prototype.addEventListener, Math.random,
setTimeout, setInterval, and others; which we describe in Sections 3.3 through 3.5.

3.1 Sinatra Architecture

Sinatra uses three components at all times, shown in Figure 3: (1) the browser, (2) the
coordinator, and (3) a proxy. When a browser update is available, Sinatra requires the
new version of the browser to be installed at the same time as the old (current) version. The
updated browser becomes, temporarily, Sinatra’s fourth component. We note that modern
browsers can have multiple versions installed side-by-side by performing manual installation
into different folders.

U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:7

Users interact with the browser, which captures JavaScript events and sends them to the
coordinator. The coordinator either saves those events in a log, when there is no update
taking place, or sends them to the updated browser, thus performing MVX. Users only
start interacting with the updated browser after the update is complete, as we describe in
Section 3.2.

The proxy serves three main purposes. First, the proxy ensures that the updated browser
accesses exactly the same resources as the original browser did. Accessing different resources
means that each browser processes different JavaScript events and leads to benign divergences,
as described in Section 2.2. Second, the proxy ensures that outgoing connections remain
open while Sinatra changes the roles of the browsers. This is important to ensure that
responses to XML HTTP requests are not lost, which can result in errors in the JavaScript
application. Third, as Sinatra requires minimal changes to the target page, the proxy
performs those changes automatically for all the pages accessed by the browser. The proxy
must also be able to intercept HTTPS traffic.

There is an off-the-shelf proxy that meets all the requirements: mitmproxy[12] can
intercept HTTPS traffic (through an extra root certificate), is highly configurable with
custom Python code, and can redirect traffic from one connection to another. We validated
the feasibility of using mitmproxy for Sinatra’s purposes through a series of small throw-
away prototypes, and we report that mitmproxy can indeed be used with Sinatra. However,
for the sake of implementation and experimentation simplicity, our current implementation
does not use a proxy, as we perform all the changes manually on static HTML pages that do
not issue XML HTTP requests.

3.2 DSU with Sinatra
Sinatra performs updates over 3 different phases, as shown in Figure 4.

Phase 1 executes for the vast majority of the time, when no update is taking place. This
is the single-version phase, which runs a single browser version in isolation. In this phase,
Sinatra intercepts all JavaScript events and sends them to a Coordinator process, which
simply keeps them in memory until the events are needed by later phases. Of course, the
coordinator needs to have enough memory to store all the events generated on the browser
due to user interaction. Sections 6.3 and 6.4 show that Sinatra’s memory requirements are
modest, well within the capabilities of modern computers. In instances where a webpage
executes network requests in the background, the observed memory requirements remain
modest even with a long-running session. A webpage left open will also record any network
activity that takes place, such as updates to a live Twitter feed. We describe such an
experiment on Section 6.6, which requires 36MB of event storage for a 14h run.

Phase 2 is when updates start, during which the user launches the new browser version.
For each page, Sinatra sends all the events from the coordinator and to the new version.
Note that Sinatra transfers the state in the background, which allows users to continue to
interact with the old browser. Events generated by user interaction during Phase 2 are simply
added to the end of the list of events that the new browser needs to process. Section 6.5.1
shows that Sinatra takes, at most, 1.5 seconds in Phase 2.

Phase 2* is optional, and starts when the new browser has processed all the events in
the coordinator’s log. During Phase 2*, Sinatra performs MVX between the old browser
and the new browser. Phase 2* allows to validate whether an update was successful, by
comparing each page on the leader with its version on the follower (e.g., matching their DOM
tree). If the pages do not match, Phase 2* allows to stop an update that results in loss of
data without any disruption, simply by terminating the follower and reverting to Phase 1.

ECOOP 2023

26:8 Sinatra: Instantaneous Updates for Browsers Through Multi-Version eXecution

1: let originalHandler = element.onclick;
2: if (originalHandler) {
3: closure = function (ev) { id = element.sinatra_id;
4: sendToCoordinator("onclick", id, ev);
5: originalHandler.call(element, ev); }
6: registerHandler(element, "onclick", originalHandler);
7: element.onclick = closure; }

Figure 5 Interception of a DOM0 event in the leader. Functions sendToCoordinator and
registerHandler shown in Figure 8 and discussed in Section 3.5.

Validating the pages can be done manually (asking the user if all pages look the same
to the user) or automatically (fuzzy matching the DOM contents, or using computer vision
algorithms to find differences in screenshots of the rendered pages [25, 67]). Our prototype
supports Phase 2* for benchmarking convenience, allowing us to measure the time to transfer
logs and to swap roles with great accuracy.

Phase 3 effectively finishes the update by switching the browser exposed to the user.
Sinatra demotes the old browser version, which becomes the follower, and promotes the
new browser version, which becomes the leader. At this point, Sinatra can terminate the
old browser and start a new Phase 1, as the browser was successfully updated with zero
downtime and without losing any state. Phase 3 causes the only user-noticeable pause, which
we measured in Section 6.5.2 as less than 10ms. For evaluation convenience, our prototype
keeps executing the old browser as the follower until the user terminates the old browser.

3.3 Intercepting Events
Sinatra establishes the foundation for MVX and browser updates by intercepting events
and sending them from the leader to the follower (through the coordinator). This section
explains how Sinatra captures browser events in pure JavaScript by intercepting handlers
along with their parameters on the leader.

Sinatra intercepts events by replacing the original event handler with a special handler.
This way, when a message causes the event loop to execute a handler, Sinatra’s code
executes instead, which allows Sinatra to intercept the event that triggered the handler
together with the actual handler that is executing. Messages are generated by either DOM0
or DOM2 event listeners:

DOM0 events. DOM0 events can be registered in-line on the HTML page (e.g., Line 7
on Figure 2), and through JavaScript properties on the DOM elements (e.g., Line 12 on
Figure 2).

Intercepting DOM0 events is straightforward, as these handlers can be listed/modified
directly from DOM elements, simply by reading/writing the respective property, respectively
(e.g., Lines 1 and 7 on Figure 5). However, there are two challenges with intercepting DOM0
events. First, DOM0 handlers are only present after the HTML page loads and executes all
in-line scripts. Sinatra’s initialization code runs precisely at the right time, just after the
HTML page loads but before any handler can be triggered, as shown in Line 3 of Figure 2.
At this time, a simple DOM traversal can intercept all inline DOM0 event handlers. Second,
the page can change DOM0 events without Sinatra noticing. Sinatra uses a mutation
listener [60] to register a closure that runs when properties of elements change.

Figure 5 shows how Sinatra uses to intercepts DOM0 events. For each DOM0 handler
(Lines 1), Sinatra captures the original handler (Line 2) and replaces it with its own closure
(Line 8) that captures the current DOM element – element – and the event – ev, sends them
to the coordinator (Line 5), and runs the handler originally registered by the JavaScript
application (Line 6). Note that Sinatra only installs DOM0 events when needed (Line 3).

U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:9

1: const originalAddEventListener = HTMLElement.prototype.addEventListener;
2: HTMLElement.prototype.addEventListener = function(evType, evListener, u) {
3: ownerId = this.sinatra_id;
4: registerHandler(this, evType, evListener);
5: let closure = function (ev) { id = ev.target.sinatra_id;
6: sendToCoordinator(evType, ownerId, id, ev);
7: evListener.call(this, ev, u); }
8: originalAddEventListener.call(this, evType, closure, u); }

Figure 6 Interception of DOM2 events on the leader. Functions sendToCoordinator and
registerHandler shown in Figure 8 and discussed in Section 3.5.

DOM2 events. DOM2 events register handlers by calling method addEventListener
on the target element (e.g., Lines 14–16 on Figure 2). Registering a DOM2 handler re-
quires two arguments: (1) type of event (e.g., change for when the target text input
box changes), and (2) the event handler itself, specified as a JavaScript closure. Unfor-
tunately, it is not possible to list handlers installed via DOM2. Furthermore, DOM2
describes a complicated logic about how events “bubble” and call all registered event handlers
by following the DOM tree and combining DOM0 and DOM2 events. We discuss how
bubbling affects Sinatra in Section 4.2. Sinatra intercepts DOM2 events by replacing
[HTMLElement,HTMLDocument].prototype.addEventListener with its own closure, shown
in Figure 6. Note that it is not possible for the underlying JavaScript program to install a
DOM2 handler before Sinatra installs its own because Sinatra installs the handler before
any other code runs, shown in Line 3 of Figure 2 (scripts without defer are downloaded
and executed immediately). From this point onwards, when the JavaScript application calls
addEventListener, Sinatra’s code executes instead (Lines 3–8). To intercept DOM2 events,
Sinatra installs its own closure using the original addEventListener function (Line 8).
Then, events that trigger the handler execute Sinatra’s closure which starts by sending
the event to the coordinator (Line 4) before calling the original handler that the JavaScript
application registered (Line 5).

Dynamically created elements. Dynamically created elements can also have event listeners,
even before being added to the DOM tree. DOM2 listeners are automatically instrumented,
as they use the prototype HTMLElement which Sinatra already instruments. Sinatra
intercepts DOM0 events through a Mutation Observer [60] for new nodes added to the DOM
tree, which Sinatra instruments as described above in this section.

Timers. Timers register a closure to execute after a specified time interval through functions
setTimeout – a one-off event – and setInterval – a repeating event, as shown in Lines 3–5
of Figure 7. Of course, such timers are yet another source of synchronous non-determinism
that Sinatra must handle. Sinatra uses an approach similar explained above in Section 3.3
and replaces functions setTimeout and setInterval with Sinatra’s own (Line 9). Then,
when the underlying application registers a timer, Sinatra transparently intercepts those
calls to register its own timer (Lines 13). When the timer expires, Sinatra intercepts the
timer event and sends it to the coordinator before executing it (Line 12).

XML HTTP Requests (XHR). XML HTTP Requests (XHR) require an XMLHttpRequest
object, which defines a number of properties with different roles: (1) hold the data obtained
from the remote server (e.g., status, responseText), or (2) hold closures to be invoked
with the XHR changes state (e.g., onload, onreadystatechange). Sinatra intercepts the
function that creates such objects (i.e., new XMLHttpRequest) to return a proxy XHR object

ECOOP 2023

26:10 Sinatra: Instantaneous Updates for Browsers Through Multi-Version eXecution

01: // Sample program
02: buttons = [] // A list of buttons
03: setInterval(30, function() { // Expensive computation
04: r = Math.random(); button[r].enabled = true; });
05: setInterval(300, function() { buttons[...].enabled = false; });
06:
07: // Interception
08: let uniqueID = 0;
09: let realSetInterval = setInterval;
10: setInterval = function(origHandler, delay) {
11: let myID = uniqueID++;
12: registerInterval(delay, myID, origHandler);
13: let closure = function() { intervalToCoordinator(myID); origHandler(); };
14: return realSetInterval(closure, delay); }

Figure 7 Sample JavaScript program that uses timeouts (Lines 1–5) and Math.random (Line
4); and how Sinatra intercepts timer events (Lines 8–14). Function registerInterval and
intervalToCoordinator are explained Figure 8 and on Section 3.5.

that contains a real XHR object internally. Then, Sinatra defines the same properties as
the real XHR object,through Object.defineProperty, and uses them to intercept how the
JavaScript manipulates the proxy XHR object [14].

As with the DOM events described above, the leader issues XHR requests and sends the
returned values to the follower. The follower does not issue any XHR request, it simply gets
the data from the leader. When the leader executes a closure associated with XHR state
change, it sends information to the follower to trigger the execution of the same closure with
the same data. Note that leader and follower issue the same XHR requests by the same order,
so Sinatra identifies each XHR request uniquely by the order in which they are issued.

3.4 Intercepting Asynchronous Non-Determinism
As described in Section 2.3, JavaScript programs can call functions that are non-deterministic.
The most important such function is Math.random, which is used extensively by many
JavaScript applications. Unfortunately, using the same approach described in Section 3.3
does not work due to the asynchronous nature of the call to such non-deterministic functions.

For instance, consider the example shown in Figure 7. In this example, there is a list
of buttons (Line 2), all disabled. Every 30 seconds, the program performs an expensive
computation (Line 3) and enables one button at random (Line 4). Every 5 minutes (300
seconds), the program disables all buttons again (Line 5).

Now consider the following implementation: Sinatra captures the 30 second event, sends
it to the coordinator, then captures the execution of Math.random, and also sends it to the
coordinator. This approach works if all the events are known in-advance (i.e., Phase 2 of
Figure 4 and existing record-replay approaches). However, this approach does not work
for MVX (i.e., Phases 2* and 3 of Figure 4). In this case, it is possible that the follower
receives the timer event and reaches the call to Math.random before the leader, as the time
required to perform the expensive computation may not match in both versions, and the
follower may complete it before the leader. At this point, the follower does not know which
number to return to match the leader. Making matters even worse, the follower cannot
simply wait for the leader, because doing so in JavaScript’s event-loop model results in a
deadlock, as explained in Section 2.3.

Functions that result in asynchronous non-determinism thus need special consideration.
One way to deal with Math.random is to use the same seed for the underlying Pseudo-Random
Number Generator (PRNG). Unfortunately, it is not possible to seed JavaScript’s PRNG.

U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:11

An alternative is to replace calls to Math.random with a custom PRNG that can be seeded,
on all variants, which may result in a lower quality source of randomness. Instead, Sinatra
starts by generating a sequence of N random numbers when the page loads (i.e., in the
script tag on Line 3 of Figure 2). Then, each call to Math.random consumes one number
from the sequence. The leader replenishes the sequence by sending a fresh random number to
the coordinator for each number consumed. This approach allows a fast follower to consume
up to N random numbers asynchronously at its own pace, ensures all random numbers match
between leader and follower, and provides a fresh supply of browser-grade randomness. This
approach also simplifies detecting divergences between leader and follower, as we can check
in the sequence of random numbers how far/behind one variant is. We found that a cautious
value of N = 100 works well in practice.

Methods in the Date object also require special treatment. The leader starts by consulting
the current date/time, saves it in a variable, and sends it to the follower. Then, when the
JavaScript program attempts to consult the date, both leader and follower return the saved
date, and increment it (e.g., by 100). As such, both versions agree on all dates generated. To
ensure fresh and realistic dates/times, every so often, just before sending another message to
the follower, the leader refreshes its saved date with the system’s and adds date information
to the message being sent.

3.5 Multi-Version Execution in JavaScript
So far, this document describes how to capture all the sources of non-determinism used by
a JavaScript program on the leader browser. But this is only one half of the problem. To
transfer the state between browsers, and to keep them synchronized after that, Sinatra
needs to ensure that the follower browser sees exactly the same non-determinism (i.e., the
same events in the same order on the same DOM elements).

Matching elements. Sinatra assigns IDs (monotonically increasing numbers) to each
DOM element by adding a new property sinatra_id, traversing the initial DOM tree after
the page is loaded, and then for each dynamically added element (described in Section 3.3).
Given that Sinatra traverses the same DOM tree in a deterministic way, and executes
createElement in the same order in both browsers, the same element always receives the
same ID in both browsers.

Sinatra keeps a global structure with all the handlers registered, as shown in Figure 8
(Line 2). When registering events, Sinatra keeps a map for each element ID (Lines 6–9). The
map associates event types (e.g., onclick) to the respective handler and the target element
in which the event was registered (Line 9). We note that each browser keeps references to its
own handler and element.

The leader sends events to the coordinator via function sendToCoordinator, which
serializes the event as discussed in Section 4.2. The follower receives deserialized events from
the coordinator via function receiveFromCoordinator, which consults the global structure
to get the target element (Line 19) and the handler (Line 20) registered for the current event
being triggered. Then, the follower calls the handler directly, setting the receiver as the
target element (Line 21).

Ensuring the same causal ordering. Given JavaScript’s event-driven model, is possible to
violate causal ordering in the follower where events are delivered targeting elements that do
not exist (yet). For instance, consider a page with one button (1) that, when pressed, creates
another button dynamically (2). Consider also an execution in which the user presses buttons

ECOOP 2023

26:12 Sinatra: Instantaneous Updates for Browsers Through Multi-Version eXecution

01: // Globals in both leader and follower
02: let globalHandlerTable = {};
03: let intervalHandlerTable = {};
04:
05: // Executed by both leader and follower
06: function registerHandler(el, eventType, handler) {
07: let id = el.getAttribute("sinatra_id");
08: if (!globalHandlerTable[id]) globalHandlerTable[id] = {};
09: globalHandlerTable[id][eventType] = {"handler": handler, "target": el}; }
10: function registerInterval(delay, id, handler) {
11: intervalHandlerTable[id] = { "delay": delay, "handler": handler }; }
12:
13: // Leader calls:
14: function sendToCoordinator(eventType, elementID, eventObject) { ... }
15: function intervalToCoordinator(id) { ... }
16:
17: // Follower calls:
18: function receiveFromCoordinator(eventType, elementID, eventObject) {
19: let targetElement = globalHandlerTable[elementID][eventType]["target"];
20: let handler = globalHandlerTable[elementID][eventType]["handler"];
21: handler.call(targetElement, eventObject); }
22: function intervalFromCoordinator(id) { intervalHandlerTable[id]["handler"](); }

Figure 8 Matching events and timers to handlers and elements in both leader and follower
browsers.

(1) and (2). On the follower, it is possible that both button presses are added to the message
queue (depicted in Figure 1). Creating the hypothetical button (2) generates another event,
which is then added to the message queue after the event for pressing that same button (2).
This execution violates causal ordering and results in pressing an non-existing button.

To keep causal order consistent between variants, Sinatra uses the latest sinatra_id
as a logical clock sent with each event from the leader to the follower. Adding new DOM
elements results in generating a new sinatra_id. When receiving an event, the follower
checks the event’s sinatra_id against the follower’s latest sinatra_id. If the values do not
match, the follower simply postpones processing the event by adding it to the end of the
queue with timeout(0), as explained in Figure 1. Sinatra does the same for all events,
including XHR requests.

Matching timers. The follower never registers timers and XML HTTP Requests with the
browser. Instead, the follower executes the closures registered with each handler in the order
that the leader issues them through the coordinator. However, this creates a problem: How
can the follower distinguish between many different closures? For instance, consider the
example shown in Figure 7. This example installs two closures associated with different
timeouts, one in Line 3 and another in Line 5. When one of these expires and the leader
executes it, how can the follower know which to execute?

Sinatra uses a unique ID to differentiate each closure registered with a timer (Lines 8
and 11 in Figure 7). Given that Sinatra ensures that the follower executes the same event
handlers by the same order as the leader, the IDs always match between variants. Both
variants then keep a table from IDs to closures and delays (Line 3 and Lines 10–11 in
Figure 8). When sending an event about an expired timer, the leader sends the ID of the
closure associated with the timer (Line 12 in Figure 7). The follower then uses the ID to
address its table, get the correct closure, and execute it (Line 22 in Figure 8).

U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:13

Promotion/demotion. When the roles of the browsers switch (Phase 3 in Figure 4), Sinatra
uses the information kept on the global structure (Line 2 on Figure 8) to install all event
handlers on the respective DOM elements on the promoted browser, and removes them on
the demoted browser. Sinatra also cancels all the timers on the demoted browser, and
installs them on the promoted browser (with the original timeout value). Because Sinatra
does not track how much time passed since each timer was installed, this approach may cause
timers to expire after longer than needed (2× in the worst case). However, this is correct as
timers in JavaScript guarantee only a minimum amount of time to wait before triggering
the associated closure. Pending XHR at the time of promotion cause the leader to postpone
the swap until the pending requests are completed. During this time, all new requests are
deferred until the follower is fully promoted and eligible to initiate the requests. This leads
to user observable pauses until the pending XHR requests are resolved, which Section 6.6
measures as 86ms on a realistic workload.

Read-only Follower. In the context of MVX we now have two browsers, as shown in
Figure 4. The user interacts with a leader browser, which sends all the non-determinism to
the coordinator process. Then, a follower browser receives the same non-determinism from
the coordinator. This way, Sinatra ensures both leader and follower are always synchronized.

Users can inspect the state of the follower browser, but they cannot modify it because
the follower intercepts all the handlers as described in Section 3.3, but does not install any
event handlers with the browser. Instead, the follower registers events just with Sinatra
(i.e., Line 7 in Figure 5 sets onclick to null, Line 7 in Figure 6 and Line 13 in Figure 7 are
omitted). Also, this approach ensures that the follower executes timer handlers in sync with
the leader, running them only when the leader sends the respective events.

4 Implementation

In this section, we describe the implementation details of Sinatra. Sinatra is implemented
in pure JavaScript, totaling 2013 lines of code. The web APIs leveraged by Sinatra to
intercept user and system generated events are compatible with the most recent versions
popular browsers, such as Google Chrome, Mozilla Firefox, Apple Safari, and others. Sinatra
works out of the box for most browsers, without requiring external packages, tools, or plugins.

4.1 Coordinator and Protocol
The coordinator process enables communication between both browsers, which is at the core
of Sinatra’s approach to MVX, and keeps a log of JavaScript events during Phase 1, as
shown in Figure 4. We implemented the coordinator process using node.js [3], so it executes
in its own separate (headless) process without a browser. We use the SocketIO [4] JavaScript
library to enable bi-directional communication between the coordinator and each browser.

The initialization protocol for Sinatra is quite simple. First, the coordinator should be
executing before any browser is launched. On browser launch, Sinatra starts by connecting
to the coordinator using a pre-configured address and port, and sends a message. The
coordinator replies with the role of this browser, which is leader for the first browser and
follower for the second.

Upon learning its role, a leader browser generates the list of random numbers mentioned
in Section 3.4, sends it to the coordinator, and starts sending all events from that point
on. A follower browser, conversely, waits for the coordinator to send the list of random

ECOOP 2023

26:14 Sinatra: Instantaneous Updates for Browsers Through Multi-Version eXecution

numbers, followed by the events that were kept during the leader’s execution. At this point,
the coordinator informs the follower that it is synchronized, and MVX starts. During MVX,
the coordinator sends each event, received from the leader, to the follower as it is received.

Given that communication is bidirectional, the coordinator does not have to establish
new channels when promoting the follower/demoting the leader. Instead, each browser
simply changes roles and execution continues in MVX, but in the opposite direction. The
promotion/demotion event starts from the leader (outdated browser), when the user presses
a button that Sinatra injects at the top of the page. Together with a special promotion/de-
motion message, Sinatra also sends the list of pending timers that were cancelled and their
timeouts, as described in Section 3.5.

4.2 Serializing/Deserializing Events and Bubbling
When the underlying JavaScript program executes an event handler on the leader, Sinatra’s
code is first called with the event. First, Sinatra gets the name of the event, (e.g.,
defined as argument evType in Line 2 of Figure 6). Second, Sinatra gets the ID of
the target element – the element that triggered the change (e.g., defined as argument
element.sinatra_id in Line 3 of Figure 6). As explained in Section 3.5, Sinatra ensures
that all elements have a unique ID. Finally, Sinatra creates a JavaScript object to hold a
copy of the event object, and populates it with all the fields in the event object, which
include the coordinates of mouse events, which key was pressed that triggered the event, and
other relevant data.

At this point, Sinatra can send the JavaScript object to the coordinator. The SocketIO
implementation automatically turns the JavaScript object into its JSON representation [15]
through function JSON.stringify on send, and back into a JavaScript object using function
JSON.parse. The coordinator simply keeps a list of tuples (name, element ID, event) received
from the leader. Sending this list to the follower, when it becomes available, requires another
round of serializing to JSON by the coordinator, and deserializing back into JavaScript
objects by the follower.

An important note is that Sinatra feeds the deserialized event directly into each
handler in the follower, as shown in Line 21 of Figure 8. Sinatra does not create/trigger
a new synthetic browser event, as some record-replay systems for JavaScript do through
DOMnode.fireEvent [39]. This design decision simplifies handling event bubbling, when many
handlers trigger for a single event (e.g., when a child DOM element has a different handler
for the same event as its parent). Instead, Sinatra simply captures the order in which the
leader executes the event handlers, and their respective targets; and then calls the same
handlers by the same order in the follower. The alternative of creating synthetic events
has well-known corner-cases that require special consideration. Furthermore, Sinatra can
handle browser updates that change the bubbling behavior.

4.3 Stateful DOM Elements and Text Selection
DOM elements, such as radio buttons, check boxes, and text boxes, keep internal state. For
instance, when the user selects a check box, the state of that check box changes (it is now
selected). Updating the state does not execute any JavaScript handler, which means that
Sinatra cannot intercept it directly. Fortunately, there are only a limited number of such
elements, and Sinatra handles them as a special case by installing its own event handler
associated with the change event, even when there is no application handler. The event
handler simply captures the updated state of the DOM element, which allows the follower to
remain synchronized with the execution on the leader.

U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:15

Another source of state, and non-determinism, is the text selected by the user. JavaScript
can access and manipulate the current text selection, based on a range of characters on a
text element (start and end). To detect when the text selection changes, the leader listens
for left mouse button releases, and SHIFT key releases. At that point, Sinatra can obtain
the current text selection (if any), create a JavaScript object that captures the start and
span of the selection, and send it to the coordinator. On the follower side, Sinatra uses the
information received to select the same text.

5 Practical Considerations and Limitations

The main design goal of Sinatra is to remove all barriers to instantaneous and stateful
browser updates, so that users can enjoy automatic browser updates without even noticing
them. Another important design goal is to be applicable to all browsers by targeting
JavaScript’s execution model. This design choice leaves out of scope state maintained inside
the browser itself, such as Websockets. For instance, the recent WebRTC standard allows
for real-time audio-visual communication, started from JavaScript but implemented inside
the browser [63]. Of course, by its design goals, Sinatra does not support such features
implemented internally by browsers.

We argue that Sinatra is a practical approach in its current form. Sinatra deals
with the browser state that is the most complex and hard to migrate: the JavaScript
engine. State-of-the-art DSU approaches excel at dealing with the remaining state inside the
browser [24, 36], which would require browser modifications. Perhaps browser vendors can
provide an API to migrate open connections and other browser state. Finding such state,
and how to migrate it, is exciting future work that is out-of-scope for Sinatra.

Still, Sinatra can deal with pages that hold internal browser state in three possible ways.
First, simply reload them. In the WebRTC example, this means that the video-conference
connection would drop and reconnect, which is a relatively common event that users tolerate.
Second, wait until all such pages are closed and then update the browser. Third, list the
unsupported pages and ask users if they accept reloading them.

The current prototype of Sinatra requires two external components: the proxy and the
coordinator. We believe that these components can be implemented as plugins to popular
browsers [40, 22], and present them here as separate components to highlight the fact that
Sinatra works on unmodified browsers.

Other limitations. The main design goal of Sinatra is to allow instantaneous and stateful
browser updates. As such, we designed Sinatra under the assumption that only one user
interacts with each JavaScript program, and that each JavaScript program does not execute
for a long time. All these assumptions break for server-side JavaScript applications written
in node.js [3]: many users interact with each JavaScript program, and each program executes
for a long time. Even though Sinatra can be applied to such programs, to update the
node.js virtual machine, this is not feasible, as such applications handler numerous events
within a short time span and result in very large log files. This is outside of the scope of
Sinatra.

The current version of Sinatra does not handle persistent state created through
Window.localStorage [62]. Our evaluation ensures that the persistent state is
empty before each run. Supporting persistent state is straightforward: function
Object.keys(localStorate) can iterate over all the persistent state at the start of ex-
ecution, and Sinatra can send that to the follower to ensure the same initial persistent
state.

ECOOP 2023

26:16 Sinatra: Instantaneous Updates for Browsers Through Multi-Version eXecution

Sinatra does not support the Web Workers (WW) API [61], which introduces multi-
threading. However, each WW thread executes its own event loop (Figure 1 shows one
event loop, each WW has its own event loop), and WWs can only communicate through
sending/receiving messages or through a shared ArrayBuffer object. Supporting WW
requires capturing the total-order of messages sent between different threads, which can be
accomplished through Lamport clocks [33, 27, 43, 58]. We plan to add support for WW in
future versions of Sinatra.

6 Experimental Evaluation

In this section, we evaluate the feasibility of using Sinatra to deploy browser updates in
practice, by measring the overhead it introduces in terms of perceived latency by the user,
and extra memory needed by the user’s computer. We also evaluate Sinatra’s performance
as an MVX tool to enable future research. In that regard, we pose the following research
questions (RQs):

RQ1: Is the latency added by Sinatra noticeable by the user?
RQ2: What is the average size of the log that Sinatra keeps?
RQ3: How does the size of the log that Sinatra keeps grow with user interaction?
RQ4: How long does Sinatra take to perform a browser update?
RQ5: How much resources does Sinatra require to support XHR on realistic pages?
RQ6: What is the latency when Sinatra is used as a JavaScript MVX system?
RQ7: Can Sinatra be realistically used with modern pages that use complex JavaScript?

We used two versions of two popular internet browsers, Mozilla Firefox versions 82.0 and
83.0, and Google Chrome versions 88.0.4323.150 and 89.0.4389.72. Unless when using
updates, both leader and follower used the lowest version of each browser. The experimental
evaluation took place in a modern desktop computer running Ubuntu Linux 20.04 LTS 64bit,
with an Intel(R) Core(TM) i7-9700K CPU 3.60GHz and 32GB of RAM.

6.1 Applications and Workloads
We evaluated Sinatra with the 4 JavaScript applications (describe below). Each application
requires user interaction, using the keyboard and/or mouse. We automated such interaction
using the tool Atbswp [2] to record mouse and keyboard interactions – workloads – for each
application, and then replay them. Atbswp records mouse and keyboard interactions and
writes an executable Python script that replays those events using the library pyautogui [56].
We now describe each program, and the workload we used:

nicEdit [31] uses JavaScript to add a rich-text editing toolbar to an HTML div element.
The toolbar applies styles (e.g., bold, italic, underline, font, color, size) to the text selected
via the document.execCommand JavaScript API [29]. nicEdit creates the toolbar dynamically,
using document.createElement to generate buttons and custom screens (e.g., to input the
URL and text of an hyperlink), and attaches DOM0 event listeners to each generated element
(i.e., buttons on the toolbar). nicEdit also creates a textarea element dynamically, where
the user can input text.

The workload for nicEdit is representative of a user editing text. It starts with a pre-
generated text, selects sections of text, and edits each in a different way: making the text bold,
italic; changing the font size, font family (Arial, Helvetica, etc), and font format (heading
and paragraph). The workload also changes the indentation of a paragraph, increasing it
twice and then returning the paragraph back to its original indentation.

U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:17

DOMTRIS [52] is a dynamic-HTML based Tetris game that uses JavaScript to implement
the game mechanics: generate random pieces of different sizes, shapes, and colors; intercept
user input; and schedule the movement of each piece inside the Tetris board. DOMTRIS uses
setTimeout to schedule the downwards movement of the current piece, and Math.random to
pick the next piece from the available set of pieces. The player interacts with DOMTRIS
solely via the directional arrows on the keyboard, intercepted via DOM2 event listeners.
Each piece is created dynamically with document.createElement.

We automated a Tetris game that drops each piece (without rotating it) on the center,
extreme left, and extreme right of the board. As time goes on, the board fills along the center
and edges until there is no space left, at which point the game ends. We understand that this
is not how people play Tetris, but we cannot use Atbswp to automate a valid Tetris game
because DOMTRIS uses a different random seed for every game. Even though Sinatra
could generate a fixed sequence of random values to ensure deterministic replays, doing so
would not show that Sinatra keeps the random values synchronized between browsers.

Painter [49] allows users to draw pictures using the mouse, with various colors and tools
(free-hand brushes, lines, rectangles and circles). The user interacts with Painter using only
the mouse over 3 HTML5 canvas elements [64]: (1) the tool set, (2) the drawing area, and
(3) the color and line-width picker. Painter tracks the mouse position and button click/drag
using DOM2 events, and reacts to different tool and color selections using DOM0 events.
Painter generates a large number of events as it tracks the mouse movements at all times.

Our workload draws a tic-tac-toe board with the brush and line tools, then draws different
shapes of different colors inside the board. This requires selecting different tools, colors, and
brush strokes; effectively interacting with all parts of Painter. Note that Atbswp records the
mouse with coarse precision between mouse clicks, which results in a low fidelity replay. For
instance, when dragging the mouse along a line, Atbswp only captures the mouse position
on the start of the line when the mouse button is pressed, one or two positions along the
line, and the final position when the mouse button is released. We edited the generated
Python script to ensure that the recording replays mouse movements on a pixel-by-pixel
basis, to ensure high fidelity and accurate event counts. Unfortunately, due to pyautogui’s
low performance when replaying a large number of mouse movements, the Painter workload
takes minutes to execute what took us seconds to draw.

Color Game [28] is a game that tests reaction time via the Stroop Effect [54] (delay
in reaction time between congruent and incongruent stimuli). The game shows players
one color name, and requires players to press the button with the same name (out of 4
buttons), but with a different background color (e.g., press the red button with text “Blue”
when the game specifies the color “Blue”). The game keeps track of the score (+5 for
each correct click, −3 otherwise) during a 30 second round. Color Game is a complex
application due to its use of the Angular JS framework [21]. Internally, Angular uses
document.createElement, a combination of DOM0 and DOM2 event handlers, setTimeout,
setInterval, and Math.random.

The workload consists of one run of the game (30 seconds), clicking each of the four color
buttons in arbitrary order after every one second until the game ends.

Google and Twitter are popular pages representative of realistic workloads. The Google
search page uses the JsAction framework [23] and Twitter uses the React framework [38].
The workload simply allows each page to load and then we interact with each manually.

ECOOP 2023

26:18 Sinatra: Instantaneous Updates for Browsers Through Multi-Version eXecution

Table 1 Time required to run event handlers, average of 5 runs with standard deviation.

Program Browser Vanilla Sinatra Overhead
Relative Absolute

nicEdit Firefox 2.600ms ± 0.144 4.496ms ± 0.371 1.729× +1.896ms

Chrome 3.779ms ± 0.265 4.547ms ± 0.208 1.203× +0.768ms

Painter Firefox 0.102ms ± 0.018 1.570ms ± 0.055 15.361× +1.468ms

Chrome 0.114ms ± 0.004 0.982ms ± 0.080 8.639× +0.869ms

DOMTRIS Firefox 0.495ms ± 0.101 1.497ms ± 0.094 3.025× +1.002ms

Chrome 0.250ms ± 0.021 0.757ms ± 0.027 3.025× +0.507ms

Color Game Firefox 1.457ms ± 0.084 1.797ms ± 0.041 1.233× +0.340ms

Chrome 0.663ms ± 0.035 0.761ms ± 0.026 1.148× +0.098ms

6.2 Sinatra Latency

To measure the extra latency added by Sinatra to each event on the leader, we compared
the execution of each program without Sinatra (vanilla) and with Sinatra. The vanilla
version measures the time taken to execute each original event handler during the workload.
The Sinatra version measures the time taken to also execute Sinatra’s logic together with
the original event handler. We measure the runtime of each event handler triggered during
the workload, and report the average time among all the event handler executions observed.
Table 1 shows the results.

This experiment highlights the extra latency that Sinatra adds to each event. Table 1
shows that Sinatra increases the latency by a maximum of +1.896 (nicEdit on Firefox),
from 2.6ms to 4.496ms. The maximum increase in relative terms is for Painter on Firefox, at
15.361×, which translates to a low absolute increase of +1.468ms, from 0.102ms to 1.570ms.
The results answer RQ1: Users cannot notice the extra latency introduced by
Sinatra.

6.3 Log sizes

Sinatra spends the vast majority of the time executing in single-leader mode, as described
in Section 3.2. In this mode, Sinatra stores a log in the coordinator with all the events and
handlers that the (single) leader executed. In this experiment, we executed the workload for
each application in single-leader mode to measure the size of the log on the coordinator, in
number of events and size of the log. Table 2 shows the results.

We can see that the number of events varies widely between different experiments. nicEdit
has the smallest number of events, as styling text results in a low number of button clicks
and text selections. Color Game has twice as many events as DOMTRIS, which involve
user input, timers expiring, and random number generation. Finally, as expected, Painter
generates the largest number of events due to its fine-grained tracking of mouse events. In
terms of absolute log size, we can see that all logs are below 5.4MB. The results of this
experiment allow to answer RQ2: Sinatra requires a modest amount of memory to
store the log, below 5.4MB per page. This result shows the practical applicability of
Sinatra, given that average modern computers measure memory in tens of GB.

U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:19

Table 2 Log sizes in single-leader mode, average of 5 runs with standard deviation.

Program Browser # of events Log size (bytes)

nicEdit Firefox 278 ± 0.0 142, 717 ± 0
Chrome 286 ± 0.0 122, 197 ± 4

Painter Firefox 2, 077 ± 2.0 5, 305, 731 ± 5, 056
Chrome 2, 049 ± 1.3 4, 201, 712 ± 2, 708

DOMTRIS Firefox 683 ± 0.4 980, 094 ± 46
Chrome 682 ± 0.0 851, 230 ± 9

Color Game Firefox 1, 030 ± 8.7 1, 533, 970 ± 25, 632
Chrome 744 ± 4.9 949, 111 ± 12, 141

6.4 Sinatra scalability

User interactions with websites may differ in length of time and number of events triggered.
To measure how Sinatra behaves with different lengths of interaction, we designed an
experiment that uses 3 workloads for each application – small, medium, and large – modified
as follows.

nicEdit. Repeat the experiment N times, each time performing the same various text changes
that have been described previously. Small: N = 2. Medium: N = 4. Large: N = 6.

DOMTRIS. Move Tetris pieces to one, two, or three sides of the board. Small: Left side
only. Medium: Left and right sides. Large: Left, right, and center.

Painter. Repeat the drawing N times, pressing the “Clear” button (which clears the canvas)
in between. Small: N = 2. Medium: N = 4. Large: N = 6.

Color Game. Play a game N times, restarting it at the end of each 30 second run by pressing
the “Restart” button. Small: N = 1. Medium: N = 3. Large: N = 5.

We repeated the experiment for each size, in single-leader mode, and we measured the
duration (seconds), the total number of events in the log (thousands), the size of the log
(MB), and the bandwidth needed to send all the events (KB/s). The bandwidth is computed
from the duration and the size of the log, and intended to show how much the log grows as
the user keeps interacting with a page over time. Table 3 shows the results.

For most experiments, the bandwidth remains roughly constant even as the length of
interaction increases, which is to be expected. Color Game is the notable exception, in which
the bandwidth increases with the length (and intensity) of user interaction. We believe
this is due to internal AngularJS behavior that: (1) never cancels timers with the browser,
simply executes a test to return from cancelled timers, which results in more timers expiring
as the game is played again and again; and (2) installs hover handlers for all elements,
which call Math.random and result in more handlers executing as the experiment moves the
mouse to the “Replay” button and back to the playing area. Over time, this results in Color
Game generating the largest log files, which is understandable as Color Game is a game that
requires intense user interaction. Painter generates large log files because it targets all the
mouse movements with a fine level of detail (pixel by pixel, as discussed above). Overall, the
bandwidth stays under 253KB/s, which is acceptable.

We note that the original Painter interaction took about 20sec, the runtimes shown in
Table 3 are artificially inflated by the slow speed of pyautogui. The original bandwidth
would be 1MB/s, which is acceptable for applications that track the mouse with fine detail.

ECOOP 2023

26:20 Sinatra: Instantaneous Updates for Browsers Through Multi-Version eXecution

Table 3 Duration, number of events, log size, and bandwidth needed for growing workloads. S
means small, M means medium, and L means large. FF means Firefox, and Chr means Chrome.
Average of 5 runs.

nicEdit DOMTRIS Painter Color Game
S M L S M L S M L S M L

Duration FF 51 85 119 53 73 91 466 914 1, 364 42 122 202
(sec) Chr 51 85 119 53 73 90 464 921 1, 366 43 122 202

of evts FF 0.46 0.82 1.18 0.47 0.64 0.63 4.12 8.36 12.14 1.81 9.24 22.53
×1000 Chr 0.48 0.86 1.24 0.47 0.47 0.66 4.09 8.17 12.24 1.76 8.73 21.01

Size FF 0.26 0.48 0.71 0.67 0.94 1.16 10.56 21.46 31.15 3.05 19.51 50.97
(MB) Chr 0.22 0.42 0.61 0.58 0.83 1.00 8.40 16.78 25.16 2.59 16.15 41.25

Bandwidth FF 5.0 5.7 6.0 12.7 12.8 12.8 22.7 23.5 22.8 71.7 159.6 252.3
(KB/s) Chr 4.3 4.9 5.1 11.0 11.4 11.0 18.1 18.2 18.4 60.9 132.0 204.1

The results of this experiment provide an answer to RQ3: Sinatra logs grow at a rate
of 253KB/s as the user interacts with a page. This result is acceptable, as mouse-
based user interactions are short and the bandwidth is not a bottle-neck for inter-process
communication. We note that the result is much smaller for all the other cases.

6.5 Browser updates with Sinatra
Sinatra can be used to deploy a browser update without incurring any loss of (JavaScript)
state on the pages opened by the running browser. Such updates involve: (1) transferring
the JavaScript state to the updated browser, running as follower, by processing the log it
receives from the coordinator; and (2) promoting the follower to be the new leader. This
section describes two experiments, one for each of the steps.

6.5.1 Log processing time
This experiment measures the time that the updated browser, running as follower, takes to
process all the events in the log sent by the coordinator. We executed the workload for each
program (to completion), and then launched the new browser as a follower. On the follower,
we took two measurements: (1) the time taken since the page is loaded until the follower is
up-to-date with the leader, and (2) the time taken just processing the event log sent by the
coordinator. Note that (1) includes all the Sinatra initialization logic plus (2). Columns
“Process log” and “Start executing” of Table 4 show the results for (2) and (1), respectively.

We can see that processing the log of events is an important portion of the overall time
required to start a follower. Most cases take under 338ms, except Color Game. Color Game
takes much longer to process the events in both browsers. We believe this is due to the
underlying Angular.JS initializing a large number of libraries it uses as dependencies. Color
Game takes longer on Firefox than on Chrome, which we believe is due to Chrome’s higher
performance when executing Angular.JS code.

6.5.2 Time taken to promote follower
This experiment measures how long it takes to promote the follower to be the new leader
(and demote the leader to become a follower) once the follower is up-to-date (i.e., after the
follower processes all events sent by the coordinator). The experiment uses two browsers:
B1 as the initial leader, and B2 as the initial follower. We execute half the workload by

U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:21

Table 4 Time from launching a follower until its state is up-to-date, time to promote, and
round-trip time (RTT) between the leader triggering an event and receiving an acknowledgement
from the follower for that event. Average of 5 runs with standard deviation.

Program Browser Process log Start executing Promote Round-trip-time
(ms) (ms) (ms) (ms)

nicEdit Firefox 75 ± 6 168 ± 7 8.4 ± 2.3 13.56 ± 0.51
Chrome 138 ± 7 277 ± 43 8.0 ± 2.0 19.77 ± 2.50

Painter Firefox 338 ± 56 658 ± 111 6.7 ± 2.4 4.08 ± 0.05
Chrome 491 ± 23 691 ± 13 4.6 ± 1.6 6.47 ± 1.51

DOMTRIS Firefox 147 ± 19 420 ± 50 6.6 ± 2.2 32.61 ± 9.10
Chrome 248 ± 87 438 ± 43 3.8 ± 0.8 26.71 ± 0.09

Color Game Firefox 1, 067 ± 103 1, 435 ± 129 7.2 ± 2.9 19.03 ± 1.29
Chrome 704 ± 52 1, 180 ± 59 4.0 ± 2.0 17.15 ± 0.49

Table 5 Latency observed by Sinatra when contacting a server via XHR with a fixed latency,
and time require to change roles between variants. Average of 5 runs with standard deviation.

XHR Latency (ms) Browser Observed Latency (ms) Promote (ms)
0 Firefox 7.12 ± 0.34 12.75 ± 1.30

Chrome 6.60 ± 0.34 11.00 ± 3.08
50 Firefox 56.42 ± 0.42 52.50 ± 2.69

Chrome 57.27 ± 0.32 56.75 ± 5.07
100 Firefox 107.42 ± 1.13 102.50 ± 1.66

Chrome 108.84 ± 1.14 111.00 ± 6.78
1000 Firefox 1, 008.25 ± 0.92 1, 006.00 ± 6.20

Chrome 1, 009.74 ± 2.18 1, 012.25 ± 9.44

interacting with B1, then switch their roles, then finish the workload by interacting with B2.
We checked visually that the experiment behaves as expected, and measure the time taken
since switching the roles of each browser. Column “Promote” on Table 4 shows the results.
We can see that all promotions happen under 10ms.

6.5.3 Time to perform an update
Putting together Sections 6.5.1 and 6.5.2 allows us to estimate the minimum time required to
perform an update. Even though it may take a follower browser as long as 1.435 seconds to
synchronize its state with the leader, this process takes place in the background and does not
cause the user to stop interacting with the (leader) browser. Then, once the follower’s state
is up-to-date, the promote/demote process takes less than 10ms, which humans perceive
as instantaneous. These two experiments also allow us to answer RQ4: Sinatra requires
an imperceptible pause (10ms) to update a running browser, and requires less
than 1.5 seconds to prepare that update in the background since launching the
updated browser.

6.6 XML HTTP Request support
We evaluate Sinatra’s support for XML HTTP Request (XHR) with two experiments. First,
we designed an experiment in which a leader and a follower perform 100 XHR requests in
sequence to a local server that waits a certain amount of time (0ms, 50ms, 100ms, and 1s)

ECOOP 2023

26:22 Sinatra: Instantaneous Updates for Browsers Through Multi-Version eXecution

before sending back 100 bytes. On the 50th request, we swap the roles immediately after
performing an XHR request, to force Sinatra to postpone the role swap as described in
Section 3.3. We measure two things: (1) the latency observed by the leader, and (2) the time
required to swap the roles. The results, presented on Table 5, show that Sinatra introduces
little extra latency on top of the maximum XHR latency observed. Note that a latency of
100ms is not noticeable by the user.

In our second experiment, we captured all the XHR traffic during a period of 14h on
a page that receive very frequent updates – the twitter feeds the local traffic and weather
channel1 – on both Chrome and Firefox. Then, we replay those requests using Sinatra
and check the total log size needed. In this experiment, we measured an average number of
requests of 5, 676 for (1), 27, 022 for (2); and an average log size under 6MB for (1), and under
36MB for (2). The overall average latency we observed was 86ms. These experiments allow us
to answer RQ5: Sinatra supports realistic XHR with modest storage requirements
(under 36MB/14h), and introduces an imperceptible pause due to pending XHR
(under 100ms).

6.7 Using Sinatra as an MVX system
At its core, Sinatra is an MVX system targeting JavaScript. In this role, we are interested
in measuring the latency between an event being triggered on the leader, and that same event
being visible on the follower. We designed an experiment that measures the Round-Trip Time
(RTT) of each event by sending an acknowledgement from the follower, for each event received,
back to the leader, through the coordinator. The RTT provides a reasonable estimate of the
leader-follower latency. This experiment runs the workloads for all the applications while
measuring the RTT. Table 4 shows the results.

In all cases, the RTT is under 33ms, which indicates a leader-follower latency of half the
RTT, around 17ms. The results from this experiment answer RQ6: Used as an MVX
system, Sinatra delivers events to the follower in 10ms after the leader.

6.8 Using Sinatra on realistic webpages
To test whether Sinatra can be applied to pages that represent a realistic modern workload,
we applied it to the Google search page and the Twitter home page (after login, showing a
feed of tweets). We downloaded all the resources used by each page in advance, including
XHR requests, to be able to observe the same execution reliably. We then modified the
downloaded pages to add the required Sinatra headers, as explained in Section 3 and on
Figure 2. We used Google Chrome for this experiment, and repeated each experiment 10
times. We measure the time to load each page by adding a closure with timeout(0) that
readds itself, and measuring the time between each execution. Initially, the time between
executions is high as the event-loop is busy loading the page. We measured an idle event-loop
imposing a time between executions below 6ms. When we observe 5 executions below 6ms,
we consider the page loaded.

Loading Google and Twitter, takes 267 ± 61ms and 2891 ± 321ms, respectively. Sinatra
processes a total of a total of 163±2 events in 431±85ms and 4583±37 events in 4234±451ms,
respectively. The overhead is 1.61 for Google, adding about 100ms; and 1.46 for Twitter,
adding about 1sec.

1 https://twitter.com/TotalTrafficCHI

https://twitter.com/TotalTrafficCHI

U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:23

Once loaded, the pages are fully functional and allow for user interaction. In MVX
mode, the interaction on the leader is replicated on the follower without any noticeable delay,
confirming that the results in previous experiments generalize to larger pages. Furthermore,
we modified our local HTTP server to allow Google XHR traffic to go through, which enabled
the search autocomplete feature as the user types to work correctly on the leader, being
then replicated on the follower by Sinatra. The results from this experiment answer RQ7:
Sinatra can indeed be used on modern pages with sophisticated JavaScript that
generate thousands of events with no loss of functionality and modest overhead.

Threats to validity. Despite our best efforts, the evaluation in this document still has some
threats to validity: (1) the websites we tested may not be representative of common websites,
(2) the browsers/versions used may not be representative of popular browsers, (3) our results
may be affected by bugs in Sinatra, and (4) using Sinatra on other websites may be
affected by bugs in Sinatra.

7 Related Work

The problem of Dynamic Software Updating (DSU) has been a focus of past research, resulting
in DSU systems for programs written in popular languages such as C [11, 24, 17, 18, 19]
and Java [47, 55, 65, 66, 30, 45]. Sinatra differs from these systems in two important ways.
First, Sinatra updates the execution environment and not the program running on that
environment. For instance, DSU systems for Java do not support updating the underlying
Java Virtual Machine while running the same program, which would be the closest to the
goal of Sinatra. In fact, to the best of our knowledge, Sinatra is the first such DSU system
outside of the Smalltalk community [20, 9] to target the execution environment specifically.
Second, DSU systems typically require modifications to the programs being updated to
support stopping the program in one version and resuming it in the next, and to express how
to transform the state in the old program to an equivalent representation that is compatible
with the updated code. In contrast, Sinatra works on unmodified closed-source commercial
internet browsers. Instead of migrating the state directly, Sinatra launches the new browser
as a separate process and migrates the state for each page individually. The only state kept
outside of Sinatra is persistent HTTP connections, which Sinatra’s proxy keeps open
during updates.

Sinatra uses Multi-Version eXecution (MVX) to synchronize the old and new versions
of the updated browser. MVX has been used mostly in programs written in C/C++ by
intercepting and synchronizing system-calls between processes. The main goal of MVX are:
(1) to increase security [32, 13, 59], detecting divergences in potentially suspect processes;
(2) to increase reliability [27, 8, 34, 37, 51], tolerating faults in one process by using the
other processes; and (3) availability [26, 44, 48], by performing updates on a forked process
and terminating it when updates fail, without any disruption. In fact, Mvedsua [44] is
the most similar MVX system to Sinatra, given that it also combines MVX with DSU
and allows users to build confidence on the validity of the update by executing both old
and new versions for a period of time. However, Mvedsua targets C programs updated via
Kitsune [24], intercepts system calls, requires modifications to the programs being updated
and machine-parseable descriptions of the update-induced divergences. Sinatra requires
much less developer effort, which can be fully automated using an HTTP proxy.

Record-Replay (RR) can be described as “offline Multi-Version eXecution”. It operates
in two phases, typically using two different (automatically generated) programs. First, it
records all non-determinism observed during an execution in a log file. Then, it uses that

ECOOP 2023

26:24 Sinatra: Instantaneous Updates for Browsers Through Multi-Version eXecution

log file to replay the same execution over the same program. By contrast, MVX records
each non-deterministic datum in one process and replays it immediately on another process,
thus keeping the state on both processes perfectly synchronized. MVX also needs to account
for differences in execution speed that may result in a replayer overtaking the recorder and
reaching a program point that requires non-determinism before that data is available. For
this reason, RR approaches require the log to be complete before being able to replay it.
Furthermore, RR approaches do not allow a replayer to become a recorder as they target a
different problem: Accurate replication of bugs observed in production during development.

Techniques for RR target programs written in multiple popular programming languages:
C [42], Java [7], and even web browsers [39, 10, 5, 25, 57]. Most techniques require a modified
web browser. Dolos [10] and Jardis [5] use modified implementations of browser components
(Webkit and ChakraCore) to record bugs in production and replay them in development and
provide developers with time-travel debugging capabilities, respectively. Jardis focuses on
node.js applications [3]. ReJS [57] also provides support for time-travelling debugging, but
for any JavaScript code in general, through a modified version of Microsoft’s ChakraCore
JavaScript engine that performs heap checkpoints via a modified garbage-collector.

Working in pure JavaScript, Mugshot [39] is an RR system that demonstrates the
feasibility of capturing all the needed non-determinism to ensure an accurate replay without
the need for a modified web browser. Mugshot influenced the design of Sinatra by listing all
the sources of non-determinism that need to be handled to capture all interactions between
the environment and a JavaScript program executing in a browser. However, Mugshot
relies on event listeners on the topmost DOM element (i.e., window) to intercept all events,
and replays them through synthetic browser events (i.e., DOMElement.fireEvent). As a
result, Mugshot has to deal with browser-specific behavior that impacts event bubbling
and event ordering. Sinatra’s approach of intercepting each handler individually avoids
such complexity and naturally supports any browser without special handling. Similarly to
Sinatra, X-Check [25] also works in pure JavaScript and works on different browsers (all
other techniques require the same browser and version to replay the recorded logs). X-Check
records logs on one browser and replays them on different browsers, with the goal of detecting
cross-browser differences that developers can then replicate and address.

The closest system to Sinatra is Cocktail [67], an MVX system for web browsers with
the goal of improving the security of internet browsers by feeding input to many different
browsers and voting on the output. Cocktail can thus detect and defeat attacks that target a
particular browser, or a particular browser version. Despite the very different goal, there are
more important differences between Sinatra and Cocktail. First, Cocktail is implemented
as a browser plugin and Sinatra is implemented in pure JavaScript. As such, Sinatra can
be directly applied to any web browser, but Cocktail requires developer effort to write a new
plugin for that browser. Also, Cocktail’s plugin can intercept asynchronous non-determinism,
such as calls to Math.random, and block until all browsers reach the same point. This is not
possible in JavaScript’s execution model, as described in Section 2.3. Second, Cocktail relies
on an UI component to intercept mouse and keyboard events before they reach the browser.
Sinatra captures the events at a finer level of detail, ensuring that all browsers execute the
same JavaScript handlers by the same order, regardless of implementation-specific browser
quirks that may show the same element on different positions in different websites. In fact,
Sinatra can replicate the execution even if the leader and follower have different window
dimensions, which is a limitation of Cocktail.

U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:25

8 Conclusions and Future Work

This paper presented the design of Sinatra, a system that allows to update internet browsers
without losing any state in the process. Sinatra works fully at the JavaScript level, using
first-class function interception to keep track of all events, and then using MVX to perform
updates on the new version of the browser while the old version keeps providing service. As
a result, Sinatra works on popular, closed-source, commercial internet browsers such as
Google Chrome. Sinatra requires a small amount of JavaScript source changes, performed
to each page opened in the target browser. The changes required are easy to automate with
a sophisticated internet proxy.

This paper also presented an extensive experimental evaluation, where Sinatra is applied
to JavaScript applications with different combinations of features. When not performing an
update, Sinatra imposes low overhead on the execution of event handlers (a max increase of
2.107ms). Also, the state that Sinatra keeps to support future updates grows at a modest
rate of 10.8KB/s (at most) during intense user interaction. If a page remains open performing
XML HTTP Request requests, Sinatra requires a modest 36MB of storage for a 14h run.

Sinatra can perform updates in short order, requiring just 1.5s (at most) to transfer
the state from the old browser to the new browser. While Sinatra transfer the state, the
user keeps interacting with the old browser. Then, to finish the update and allow the user to
interact with the new browser version, Sinatra requires a very short pause in user interaction
of less than 10ms, which is barely noticeable for most users.

Besides its role in browser updates, Sinatra doubles as an MVX tool for JavaScript
applications. The experimental evaluation showed that Sinatra can keep two browsers
synchronized, with an action on one browser taking effect on the other almost instantaneously,
within 19ms.

In the modern internet age, an up-to-date internet browser is the first line of user defense.
Sinatra dramatically lowers the barrier to deploy automatic and fully transparent browser
updates by eliminating any data loss or service interruption associated with such updates.
We strongly believe that Sinatra has the potential to improve the average user’s safety by
making disruptive browser updates a thing of the past.

Future Work. It is possible to use Sinatra to move a page from one browser to another
(e.g., from Mozilla Firefox to Google Chrome). This feature can be valuable to security
conscious users, who can switch browsers as a vulnerability is disclosed. We tested this
feature of Sinatra informally to ensure it works, but did not evaluate it or develop it further.

Sinatra is OS and platform agnostic, and we plan to implement Sinatra on popular
platforms (e.g., Microsoft Windows and Apple OSX) and apply Sinatra to the official
browser in each platform (e.g., Microsoft Edge and Apple Safari).

References
1 Sinatra’s github reposiroty. https://github.com/bitslab/sinatra.
2 Automate the boring stuff with python. https://github.com/RMPR/atbswp, 2021. Accessed:

2021-04-14.
3 Node.js. https://nodejs.org/en/, 2021. Accessed: 2021-04-14.
4 Socket.io. https://socket.io/, 2021. Accessed: 2021-04-14.
5 Earl T. Barr, Mark Marron, Ed Maurer, Dan Moseley, and Gaurav Seth. Time-travel

debugging for javascript/node.js. In FSE ’16 Proceedings of the 2016 ACM International
Symposium on the Foundations of Software Engineering. Association for Computing Ma-
chinery, September 2016. URL: https://www.microsoft.com/en-us/research/publication/
time-travel-debugging-javascriptnode-js/.

ECOOP 2023

https://github.com/bitslab/sinatra
https://github.com/RMPR/atbswp
https://nodejs.org/en/
https://socket.io/
https://www.microsoft.com/en-us/research/publication/time-travel-debugging-javascriptnode-js/
https://www.microsoft.com/en-us/research/publication/time-travel-debugging-javascriptnode-js/

26:26 Sinatra: Instantaneous Updates for Browsers Through Multi-Version eXecution

6 Samuel Baxter, Rachit Nigam, Joe Gibbs Politz, Shriram Krishnamurthi, and Arjun Guha.
Putting in all the stops: Execution control for javascript. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018,
pages 30–45, New York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/
3192366.3192370.

7 Jonathan Bell, Nikhil Sarda, and Gail Kaiser. Chronicler: Lightweight recording to reproduce
field failures. In Proceedings of the 2013 International Conference on Software Engineering,
ICSE ’13, pages 362–371. IEEE Press, 2013.

8 Emery Berger and Benjamin Zorn. Diehard: Probabilistic memory safety for unsafe languages.
In Proceedings of the ACM SIGPLAN 2006 Conference on Programming Language Design
and Implementation, Ottawa, Ontario, Canada, June 11-14, 2006, volume 41, pages 158–168,
January 2006. doi:10.1145/1133255.1134000.

9 Andrew Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cassou, and
Marcus Denker. Pharo by Example. Square Bracket Associates, 2009. URL: http:
//pharobyexample.org.

10 Brian Burg, Richard Bailey, Andrew J. Ko, and Michael D. Ernst. Interactive record/replay
for web application debugging. In UIST 2013: Proceedings of the 26th ACM Symposium on
User Interface Software and Technology, pages 473–484, St. Andrews, UK, October 2013.

11 Haibo Chen, Jie Yu, Rong Chen, Binyu Zang, and Pen-Chung Yew. Polus: A powerful live
updating system. In Proceedings of the 29th International Conference on Software Engineering,
ICSE ’07, pages 271–281, USA, 2007. IEEE Computer Society. doi:10.1109/ICSE.2007.65.

12 Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors. mitmproxy: A free
and open source interactive HTTPS proxy, 2010–. [Version 5.3]. URL: https://mitmproxy.
org/.

13 Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack Davidson, John
Knight, Anh Nguyen-Tuong, and Jason Hiser. N-variant systems: A secretless framework
for security through diversity. In Proceedings of the 15th Conference on USENIX Security
Symposium - Volume 15, USENIX-SS’06, USA, 2006. USENIX Association.

14 ECMA (European Association for Standardizing Information and Communication Systems).
Standard ECMA-262 6th Edition – Section 19.1.2.4. https://262.ecma-international.org/
6.0/#sec-object.defineproperty. Accessed: 2022-01-04.

15 ECMA International. Standard ECMA-404 – The JSON data interchange syntax. https://www.
ecma-international.org/publications-and-standards/standards/ecma-404/, December
2017.

16 ECMA International. Standard ECMA-262 – ECMAScript(R) 2020 language specific-
ation. https://www.ecma-international.org/publications-and-standards/standards/
ecma-262/, June 2020.

17 Cristiano Giuffrida, Călin Iorgulescu, Anton Kuijsten, and Andrew S. Tanenbaum. Back to
the future: Fault-tolerant live update with time-traveling state transfer. In Proceedings of
the 27th USENIX Conference on Large Installation System Administration, LISA’13, pages
89–104, USA, 2013. USENIX Association.

18 Cristiano Giuffrida, Călin Iorgulescu, and Andrew S. Tanenbaum. Mutable checkpoint-restart:
Automating live update for generic server programs. In Proceedings of the 15th International
Middleware Conference, Middleware ’14, pages 133–144, New York, NY, USA, 2014. Association
for Computing Machinery. doi:10.1145/2663165.2663328.

19 Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Safe and automatic live
update for operating systems. SIGARCH Comput. Archit. News, 41(1):279–292, March 2013.
doi:10.1145/2490301.2451147.

20 Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983.

21 Google. Angularjs. https://angularjs.org/, 2018. Accessed: 2021-04-14.

https://doi.org/10.1145/3192366.3192370
https://doi.org/10.1145/3192366.3192370
https://doi.org/10.1145/1133255.1134000
http://pharobyexample.org
http://pharobyexample.org
https://doi.org/10.1109/ICSE.2007.65
https://mitmproxy.org/
https://mitmproxy.org/
https://262.ecma-international.org/6.0/#sec-object.defineproperty
https://262.ecma-international.org/6.0/#sec-object.defineproperty
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://doi.org/10.1145/2663165.2663328
https://doi.org/10.1145/2490301.2451147
https://angularjs.org/

U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:27

22 Google Inc. API Reference – Chrome Developers. https://developer.chrome.com/docs/
extensions/reference/. Accessed: 2022-01-04.

23 Google Inc. JsAction repository. https://github.com/google/jsaction. Accessed: 2022-01-
04.

24 Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks, and Jeffrey S.
Foster. Kitsune: Efficient, general-purpose dynamic software updating for C. In Proceedings of
the ACM Conference on Object-Oriented Programming Languages, Systems, and Applications
(OOPSLA), October 2012.

25 M. He, G. Wu, H. Tang, W. Chen, J. Wei, H. Zhong, and T. Huang. X-check: A novel
cross-browser testing service based on record/replay. In 2016 IEEE International Conference
on Web Services (ICWS), pages 123–130, 2016.

26 Petr Hosek and Cristian Cadar. Safe software updates via multi-version execution. In
International Conference on Software Engineering (ICSE 2013), pages 612–621, May 2013.

27 Petr Hosek and Cristian Cadar. Varan the unbelievable: An efficient n-version execution
framework. In International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2015), pages 339–353, March 2015.

28 Linghua Jin. Stroop effect color game build with angularjs. https://github.com/linghuaj/
Angular-ColorGame, 2016. Accessed: 2021-04-14.

29 Aryeh Gregor Johannes Wilm. execcommand – unofficial draft 13 april 2021. https://w3c.
github.io/editing/docs/execCommand/, 2021. Accessed: 2021-04-14.

30 Jevgeni Kabanov and Varmo Vene. A thousand years of productivity: the jrebel story. Software:
Practice and Experience, 44(1):105–127, 2014. doi:10.1002/spe.2158.

31 Brian Kirchoff. Nicedit – wysiwyg content editor, inline rich text application. https://
nicedit.com/, 2008. Accessed: 2021-04-14.

32 Koen Koning, Herbert Bos, and Cristiano Giuffrida. Secure and efficient multi-variant execution
using hardware-assisted process virtualization. In Proceedings - 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2016, pages 431–442.
Institute of Electrical and Electronics Engineers, Inc., September 2016. doi:10.1109/DSN.
2016.46.

33 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, July 1978. doi:10.1145/359545.359563.

34 Liming Chen and A. Avizienis. N-version programminc: A fault-tolerance approach to rellablllty
of software operatlon. In Twenty-Fifth International Symposium on Fault-Tolerant Computing,
1995, ’ Highlights from Twenty-Five Years’., pages 113–, 1995. doi:10.1109/FTCSH.1995.
532621.

35 Linux Foundation. ptrace – linux standard base core specification 4.1. http:
//refspecs.linux-foundation.org/LSB_4.1.0/LSB-Core-generic/LSB-Core-generic/
baselib-ptrace-1.html, 2010. Accessed: 2021-04-14.

36 Kristis Makris and Rida A. Bazzi. Immediate multi-threaded dynamic software updates using
stack reconstruction. In Proceedings of the 2009 Conference on USENIX Annual Technical
Conference, USENIX’09, page 31, USA, 2009. USENIX Association.

37 Matthew Maurer and David Brumley. Tachyon: Tandem execution for efficient live patch
testing. In 21st USENIX Security Symposium (USENIX Security 12), pages 617–630, Bel-
levue, WA, August 2012. USENIX Association. URL: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/maurer.

38 Meta Platforms, Inc. React – A JavaScript Library for building user interfaces. https:
//reactjs.org/. Accessed: 2022-01-04.

39 James Mickens, Jeremy Elson, and Jon Howell. Mugshot: Deterministic cap-
ture and replay for javascript applications. In Proceedings of NSDI. USENIX,
April 2010. URL: https://www.microsoft.com/en-us/research/publication/
mugshot-deterministic-capture-and-replay-for-javascript-applications/.

ECOOP 2023

https://developer.chrome.com/docs/extensions/reference/
https://developer.chrome.com/docs/extensions/reference/
https://github.com/google/jsaction
https://github.com/linghuaj/Angular-ColorGame
https://github.com/linghuaj/Angular-ColorGame
https://w3c.github.io/editing/docs/execCommand/
https://w3c.github.io/editing/docs/execCommand/
https://doi.org/10.1002/spe.2158
https://nicedit.com/
https://nicedit.com/
https://doi.org/10.1109/DSN.2016.46
https://doi.org/10.1109/DSN.2016.46
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/FTCSH.1995.532621
https://doi.org/10.1109/FTCSH.1995.532621
http://refspecs.linux-foundation.org/LSB_4.1.0/LSB-Core-generic/LSB-Core-generic/baselib-ptrace-1.html
http://refspecs.linux-foundation.org/LSB_4.1.0/LSB-Core-generic/LSB-Core-generic/baselib-ptrace-1.html
http://refspecs.linux-foundation.org/LSB_4.1.0/LSB-Core-generic/LSB-Core-generic/baselib-ptrace-1.html
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/maurer
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/maurer
https://reactjs.org/
https://reactjs.org/
https://www.microsoft.com/en-us/research/publication/mugshot-deterministic-capture-and-replay-for-javascript-applications/
https://www.microsoft.com/en-us/research/publication/mugshot-deterministic-capture-and-replay-for-javascript-applications/

26:28 Sinatra: Instantaneous Updates for Browsers Through Multi-Version eXecution

40 Mozilla Inc. Browser Extensions – Mozilla MDN. https://developer.mozilla.org/en-US/
docs/Mozilla/Add-ons/WebExtensions. Accessed: 2022-01-04.

41 Mozilla Inc. Firefox Public Data Report. https://data.firefox.com/dashboard/
user-activity. Accessed: 2022-01-04.

42 Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and Nimrod Partush.
Lightweight user-space record and replay. CoRR, abs/1610.02144, 2016. arXiv:1610.02144.

43 Luís Pina, Anastasios Andronidis, and Cristian Cadar. Freeda: Deploying incompatible stock
dynamic analyses in production via multi-version execution. In Proceedings of the ACM
International Conference on Computing Frontiers, CF ’18. ACM, May 2018.

44 Luís Pina, Anastasios Andronidis, Michael Hicks, and Cristian Cadar. MVEDSUa: Higher
Availability Dynamic Software Updates via Multi-Version Execution. In Proceedings of the
ACM 24th Architectural Support for Programming Languages and Operating Systems, ASPLOS
’19. ACM, April 2019.

45 Luís Pina and João Cachopo. Atomic dynamic upgrades using software transactional memory.
In Proceedings of the 4th International Workshop on Hot Topics in Software Upgrades, Hot-
SWUp. IEEE, June 2012.

46 Luís Pina, Daniel Grumberg, Anastasios Andronidis, and Cristian Cadar. A dsl approach to
reconcile equivalent divergent program executions. In Proceedings of the USENIX Annual
Technical Conference, USENIX ATC ’17. USENIX, July 2017.

47 Luís Pina, Luís Veiga, and Michael Hicks. Rubah: DSU for java on a stock JVM. In
Proceedings of the ACM 2014 International Conference on Object-Oriented Programming
Languages, Systems, and Applications, OOPSLA ’14. ACM, October 2014.

48 Weizhong Qiang, Feng Chen, Laurence T. Yang, and Hai Jin. Muc: Updating cloud applications
dynamically via multi-version execution. Future Generation Computer Systems, 74:254–264,
2017. doi:10.1016/j.future.2015.12.003.

49 Rafael Robayna. Canvas painter. http://caimansys.com/painter/, 2006. Accessed: 2021-
04-14.

50 Ugnius Rumsevicius, Siddhanth Venkateshwaran, Ellen Kidane, and Luís Pina. Artifact for
SINATRA: Stateful Instantaneous Updates for Commercial Browsers through Multi- Version
eXecution, February 2023. doi:10.5281/zenodo.7647070.

51 Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. Orchestra: intrusion
detection using parallel execution and monitoring of program variants in user-space. In
Wolfgang Schröder-Preikschat, John Wilkes, and Rebecca Isaacs, editors, Proceedings of the
2009 EuroSys Conference, Nuremberg, Germany, April 1-3, 2009, pages 33–46. ACM, 2009.
doi:10.1145/1519065.1519071.

52 Jacob Seidelin. DOMTRIS – A DHTML Tetris clone. https://web.archive.org/web/
20140805202021/http://www.nihilogic.dk/labs/tetris/, 2014. Accessed: 2021-04-14.

53 StatCounter GlobalStats. Desktop Browser Version Market Share Worlwide.
https://gs.statcounter.com/browser-version-market-share/desktop/worldwide/
/#daily-20201001-20201201. Accessed: 2022-01-04.

54 J. R. Stroop. Studies of interference in serial verbal reactions. Journal of Experimental
Psychology, 1935. doi:10.1037/h0054651.

55 Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic software updates:
A VM-centric approach. In Proceedings of the ACM Conference on Programming Language
Design and Implementation (PLDI), pages 1–12, June 2009.

56 Al Sweigart. Pyautigui documentation. https://pyautogui.readthedocs.io/en/latest/,
2019. Accessed: 2021-04-14.

57 John Vilk, James Mickens, and Mark Marron. A gray box approach for high-
fidelity, high-speed time-travel debugging. Technical Report MSR-TR-2016-7, Mi-
crosoft, June 2016. URL: https://www.microsoft.com/en-us/research/publication/
gray-box-approach-high-fidelity-high-speed-time-travel-debugging/.

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://data.firefox.com/dashboard/user-activity
https://data.firefox.com/dashboard/user-activity
https://arxiv.org/abs/1610.02144
https://doi.org/10.1016/j.future.2015.12.003
http://caimansys.com/painter/
https://doi.org/10.5281/zenodo.7647070
https://doi.org/10.1145/1519065.1519071
https://web.archive.org/web/20140805202021/http://www.nihilogic.dk/labs/tetris/
https://web.archive.org/web/20140805202021/http://www.nihilogic.dk/labs/tetris/
https://gs.statcounter.com/browser-version-market-share/desktop/worldwide//#daily-20201001-20201201
https://gs.statcounter.com/browser-version-market-share/desktop/worldwide//#daily-20201001-20201201
https://doi.org/10.1037/h0054651
https://pyautogui.readthedocs.io/en/latest/
https://www.microsoft.com/en-us/research/publication/gray-box-approach-high-fidelity-high-speed-time-travel-debugging/
https://www.microsoft.com/en-us/research/publication/gray-box-approach-high-fidelity-high-speed-time-travel-debugging/

U. Rumsevicius, S. Venkateshwaran, E. Kidane, and L. Pina 26:29

58 Stijn Volckaert, Bart Coppens, Bjorn De Sutter, Koen De Bosschere, Per Larsen, and Michael
Franz. Taming parallelism in a multi-variant execution environment. In Proceedings of the
Twelfth European Conference on Computer Systems, EuroSys ’17, pages 270–285, New York,
NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3064176.3064178.

59 Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu, Per Larsen, Bjorn De
Sutter, and Michael Franz. Secure and efficient application monitoring and replication. In
2016 USENIX Annual Technical Conference (USENIX ATC 16), pages 167–179, Denver,
CO, June 2016. USENIX Association. URL: https://www.usenix.org/conference/atc16/
technical-sessions/presentation/volckaert.

60 W3C. DOM – Living Standard – Section 4.3: Mutation Observers. https://dom.spec.whatwg.
org/#mutation-observers. Accessed: 2022-01-04.

61 W3C. HTML – Living Standard – Section 10: Web workers. https://html.spec.whatwg.
org/multipage/workers.html#workers. Accessed: 2022-01-04.

62 W3C. HTML – Living Standard – Section 12: Web storage. https://html.spec.whatwg.
org/multipage/webstorage.html#webstorage. Accessed: 2022-01-04.

63 W3C. WebRTC 1.0: Real-Time Communication Between Broswers. https://w3c.github.
io/webrtc-pc/. Accessed: 2022-01-04.

64 Web Hypertext Application Technology Working Group (WHATWG). Html living stand-
ard – 4.12.5 the canvas element. https://html.spec.whatwg.org/multipage/canvas.html#
the-canvas-element, 2021. Accessed: 2021-04-14.

65 Thomas Würthinger, Danilo Ansaloni, Walter Binder, Christian Wimmer, and Hanspeter
Mössenböck. Safe and atomic run-time code evolution for java and its application to dynamic
aop. SIGPLAN Not., 46(10):825–844, October 2011. doi:10.1145/2076021.2048129.

66 Thomas Würthinger, Christian Wimmer, and Lukas Stadler. Dynamic code evolution for
java. In Proceedings of the 8th International Conference on the Principles and Practice of
Programming in Java, PPPJ ’10, pages 10–19, New York, NY, USA, 2010. Association for
Computing Machinery. doi:10.1145/1852761.1852764.

67 Hui Xue, Nathan Dautenhahn, and Samuel T. King. Using replicated execution for
a more secure and reliable web browser. In 19th Annual Network and Distributed
System Security Symposium, NDSS 2012, San Diego, California, USA, February 5-8,
2012. The Internet Society, 2012. URL: https://www.ndss-symposium.org/ndss2012/
using-replicated-execution-more-secure-and-reliable-web-browser.

ECOOP 2023

https://doi.org/10.1145/3064176.3064178
https://www.usenix.org/conference/atc16/technical-sessions/presentation/volckaert
https://www.usenix.org/conference/atc16/technical-sessions/presentation/volckaert
https://dom.spec.whatwg.org/#mutation-observers
https://dom.spec.whatwg.org/#mutation-observers
https://html.spec.whatwg.org/multipage/workers.html#workers
https://html.spec.whatwg.org/multipage/workers.html#workers
https://html.spec.whatwg.org/multipage/webstorage.html#webstorage
https://html.spec.whatwg.org/multipage/webstorage.html#webstorage
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-pc/
https://html.spec.whatwg.org/multipage/canvas.html#the-canvas-element
https://html.spec.whatwg.org/multipage/canvas.html#the-canvas-element
https://doi.org/10.1145/2076021.2048129
https://doi.org/10.1145/1852761.1852764
https://www.ndss-symposium.org/ndss2012/using-replicated-execution-more-secure-and-reliable-web-browser
https://www.ndss-symposium.org/ndss2012/using-replicated-execution-more-secure-and-reliable-web-browser

An Efficient Vectorized Hash Table for Batch
Computations
Hesam Shahrokhi #

University of Edinburgh, UK

Amir Shaikhha #

University of Edinburgh, UK

Abstract
In recent years, the increasing demand for high-performance analytics on big data has led the
research on batch hash tables. It is shown that this type of hash table can benefit from the
cache locality and multi-threading more than ordinary hash tables. Moreover, the batch design
for hash tables is amenable to using advanced features of modern processors such as prefetching
and SIMD vectorization. While state-of-the-art research and open-source projects on batch hash
tables made efforts to propose improved designs by better usage of mentioned hardware features,
their approaches still do not fully exploit the existing opportunities for performance improvements.
Furthermore, there is a gap for a high-level batch API of such hash tables for wider adoption of these
high-performance data structures. In this paper, we present Vec-HT, a parallel, SIMD-vectorized,
and prefetching-enabled hash table for fast batch processing. To allow developers to fully take
advantage of its performance, we recommend a high-level batch API design. Our experimental
results show the superiority and competitiveness of this approach in comparison with the alternative
implementations and state-of-the-art for the data-intensive workloads of relational join processing,
set operations, and sparse vector processing.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Computer systems organization → Single instruction, multiple data

Keywords and phrases Hash tables, Vectorization, Parallelization, Prefetching

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.27

Acknowledgements The authors would like to thank Huawei for their support of the distributed
data management and processing laboratory at the University of Edinburgh.

1 Introduction

Hash tables are one of the most important data structures in programming. They are
widely used in high-performance analytics workloads including database query processing,
sparse linear algebra, graph processing, and computer networks. Besides the great efforts in
algorithmic improvement of hash tables [10, 18, 20], the recent advances in modern processors,
further motivated the research on high-performance hash tables that leverage the hardware
characteristics including parallelization, prefetching, and vectorization.

Previous research [19] has shown that batch operations (e.g., batch lookups) on a hash
table result in higher performance in comparison with ordinary scalar-parameter operations.
This is because of the improved cache locality and the freedom given to the hash table
designer for hand-tuning the code, which is not available when dealing with ordinary scalar-
parameter operations over hash tables. Thus, hash tables with batch operations have gained
more attention; both research [12, 14, 19, 23, 22, 32] and open-source projects [1, 3, 6] have
proposed hash table designs with the support for batch lookups, insertions, and deletions.

© Hesam Shahrokhi and Amir Shaikhha;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 27; pp. 27:1–27:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hesam.shahrokhi@ed.ac.uk
https://orcid.org/0000-0003-1995-6996
mailto:amir.shaikhha@ed.ac.uk
https://orcid.org/0000-0002-9062-759X
https://doi.org/10.4230/LIPIcs.ECOOP.2023.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 An Efficient Vectorized Hash Table for Batch Computations

Table 1 A summary of state-of-the-art batch lookups in hash tables. H: Horizontal Vectorization.

Approach Parallelization Prefetching SIMD Vectorization

Hirola [3], R hashmap [6] # # #

DPDK [1] G# (H)
Cuckoo++ [23] # G# (H)
Polychroniou et al. [19] #

Vec-HT (this paper)

The current literature on batch hash tables considers the following hardware features:
Parallelization: The batch of inputs is divided into separate partitions that are processed
in parallel [1, 19].
Prefetching: The memory prefetching feature of processors is used to hide the latency of
frequent memory accesses for a group of elements [1, 2, 9, 23].
Vectorization: The Single Instruction, Multiple Data (SIMD) instructions of the processing
unit are used for faster processing of a vector of inputs [1, 2, 9, 19, 23].

Although the existing approaches made noticeable efforts on improving the performance
of batch hash tables, none of them fully exploits all of the three optimization dimensions
mentioned above (cf. Section 2). The existing approaches for vectorization can be categorized
into two classes (cf. Figure 1): (1) Horizontal Vectorization, where the SIMD instructions
are used for the operations on a single input over multiple hash table entries [1, 9, 23], and
(2) Vertical Vectorization, where the SIMD instructions are used for the operations on an
input batch over single hash table entries [19]. The first approach is not inherently batch
based; it can be applied to ordinary hash tables. By conducting intensive benchmarks,
Polychroniou et al. [19] and Shankar et al. [30] have shown that vertical vectorization
is faster than the horizontal approach. However, prefetching has only been considered
for horizontal vectorization [1, 23], and the only existing implementation of the vertically
vectorized approach [19] does not support prefetching.

This paper makes the following contributions:
We present Vec-HT, the first batch hash table that is fully optimized in all three dimensions;
Vec-HT is a multi-threaded, vertically-vectorized, and prefetching-enabled hash table
that can be used for high-performance data analytics. We explain the architecture and
the high-level batch API of Vec-HT in Section 3.
Previous research has shown that in most high-performance use cases, optimizing the
lookup performance is more important than the other operations (Section 2). Thus, the
focus of this research is on batch lookups. We show the design decisions, the applicable
optimizations, and the way we combine them for efficient batch lookups in Section 4.
We consider several data analytics tasks that can benefit from batch hash tables, such as
hash-join in query processing, set processing, and sparse vector operations (Section 5).
We present the implementation challenges we faced (e.g., memory management and
parallel iteration) and how we addressed them in Section 6.
We experimentally evaluate (Section 7) the performance of our hash table on a set of
micro benchmarks across different use case domains. Our results show that Vec-HT
outperforms the state-of-the-art batch and non-batch hash tables.

H. Shahrokhi and A. Shaikhha 27:3

2 Background and Related Work

In this section, we introduce the main concepts and techniques for building high-performance
hash tables while summarizing the previous efforts in this area of research. Table 1 presents
a summary of the state-of-the-art in batch hash tables.1 To position the contributions of
this paper, our approach is also appended to the table.

Batch Hash Tables. Batch Hash Tables accept a vector of keys or key/value pairs as their
API arguments and do the operation on the inputs in batch. By taking batch inputs, the
batch hash tables benefit from the cache locality and are also amenable to the use of Single
Instruction, Multiple Data (SIMD), parallelism, and prefetching. The SIMD is a hardware
feature that allows the simultaneous execution of an operation on a vector of values. On
the other hand, prefetching is a hardware feature that allows the program to request future
memory accesses in advance and asynchronous to the other computations. We will cover the
more-detailed definitions of these two concepts later in this section.

Among the open-source projects [1, 3, 6], Hirola [3] presents a fast batch hash table
written in C which is an alternative for dict/set in Python. Similarly, by considering the
fact that most values in the R language are vectors and matrices, R-hashmap[6] presents a
batch hash table for R, which is built over some existing ordinary hash tables in C. These
two libraries are only using the cache-locality of the batch input as a way of performance
improvement. As a more advanced open-source project, DPDK [1] offers a specific-purpose
batch hash table for networking use cases. It is both SIMD-aware and prefetch-enabled.

There is also state-of-the-art research [9, 12, 14, 19, 22, 23, 32] on batch hash tables.
Some of the approaches [12, 14, 32] are only using batch processing to benefit from the
cache locality and prefetching while others [9, 19, 22, 23] use SIMD techniques on a vector of
inputs. Similar to DPDK [1], Horton [9] and Cuckoo++[23] have focused on improving the
performance of batch hash tables by applying SIMD and prefetching techniques to a specific
type of SIMD-aware batch hash table designs called Bucketized Cuckoo Hash Tables (BCHTs).
On the other hand, Polychroniou et al. [19] present a generic design for SIMD-aware batch
hash tables and compare the performance of different design decisions by doing intensive
benchmarks. To answer some of the open questions in vectorized hash tables, [30] conducted
a survey on state-of-the-art and conducted micro-benchmarks to position each work with
respect to the others.

SIMD-Aware Batch Hash Tables. To use SIMD features of a CPU in an operation (logical,
arithmetic, memory, etc.), we first need to construct a vector of operands that fit the CPU
register size. Then, the prepared register could concurrently process the data by using
SIMD instructions. Modern CPUs offer even more advanced SIMD instructions such as
selective load/store and scatter/gathers. Selective load/store makes the parallel optional
load/store from/to a contiguous memory location possible by accepting a mask register.
The gather/scatter operations provide the ability to load/write from/into different parts of
the memory in parallel. At the time of writing this paper, the SIMD scatter is not widely
adopted, and is only provided by specific hardware (e.g., Intel Xeon Phi).

1 Although in the literature the terms batch and vectorized are used interchangeably, for the sake of
consistency, in this paper, we use the term batch to refer to a collection of elements, and vectorized to
refer to SIMD vectors.

ECOOP 2023

27:4 An Efficient Vectorized Hash Table for Batch Computations

100

Lookup Key

3

Hash of Key

0

1

2

3 250 400 100

4

5

6

7

Index Bucketized Entries

SIMD Comparison

Horizontal Vectorization

0 120

1

2 800

3 100

4 8

5

6 280

7

Index

SIMD Hash Computation

100

Lookup Keys Hash of Keys

55

280

8

3

5

6

3

SIMD Selective Load

SIMD Gather

100

Retrieved Values

280

100

SIMD Comparison

Vertical Vectorization

Found Not
Found

Not
Found

Yet

SIMD Operation

Figure 1 The comparison between horizontal and vertical vectorization.

As mentioned earlier, SIMD techniques can be used to improve the performance of batch
hash tables. In high-level, the usage of SIMD in hash tables could be categorized in two: (1)
Horizontal Vectorization and (2) Vertical Vectorization. A simplified visualization of these
two approaches is depicted in Figure 1.

In horizontal vectorization, each cell of the hash-table entries array is bucketed into N

inner cells. Then, while doing a lookup on the hash table and after computing the hash
value, using the SIMD logical operations, the lookup algorithm can concurrently check the
value of N bucket keys. This is much faster than having only one key per cell. By using
this approach the hash table load factor can be improved without increasing the average
lookup time. Regardless of the mentioned benefits of horizontal vectorization, it is wasteful
if we expect to look up fewer than N buckets on average per probing key [19]. One of the
famous open-addressing collision resolution algorithms in hash tables is Cuckoo Hashing [18].
A BCHT, as defined earlier, is actually the horizontally-vectorized version of cuckoo hashing.
Many of the existing approaches on SIMD-aware batch hash tables [9, 22, 23] are in fact
the improved version of BCHTs. Besides presenting a BCHT approach, Polychroniou et
al. [19] also proposed and compared other horizontally-vectorized hash tables based on double
hashing and linear probing hashing schemes.

Vertical vectorization [19] is a more generalizable but more complex approach to benefit
from SIMD in batch hash tables. It is more generalizable because it does not change the inner
structure of a hash table. However, it is more complex as it needs the collision-resolution
algorithm to be translated into SIMD operations. Contrary to horizontal vectorization, in
this approach, the input of a lookup operation must be a vector of probing keys. In each
vectorized lookup, the vertical approach will pass a vector (of register size) of inputs through
the lookup process and by using mask registers and advanced SIMD features (like SIMD
permutations) probe those keys at the same time. When the status of a key lookup is
determined (found/not-found), its related CPU-register lane will be assigned to the next key

H. Shahrokhi and A. Shaikhha 27:5

in the batch of keys that are waiting to be processed. By conducting different experiments,
Polychroniou et al. [19] and Shankar et al. [30] have shown that vertical vectorization yields
higher performance than the horizontal approach. In vertical vectorization, since the hashing
scheme must be translated into SIMD code, we need to use gathers and scatters to read/write
from/to different entries of a hash table. As mentioned earlier, the scatter instruction is only
available in limited types of processors hence the vertically-vectorized insertions can only be
implemented on specific hardware.

The third category for SIMD-aware batch hash table design is a hybrid approach. However,
the experiments in [30] show that the results of mixing the vectorized and horizontal
vectorization approaches will not further improve the performance.

Besides the SIMD-aware vectorization methods discussed above, SIMD operations can
also be used in the development of hash functions in any hash table [2]. Although this
approach can improve the performance of hashing, it is orthogonal to the scope of this paper.

Prefetching-Enabled Hash Tables. Modern CPUs support hardware and software prefetch-
ing. Prefetching improves the performance of a program by amortizing the costs of memory
access over time (in parallel to running computations).

Hardware prefetching is automatically enabled by the compiler and executed by the CPU
when long and contiguous access to memory (e.g. iteration on a large vector) is requested by
the program. The developer does not have much control over the hardware prefetching. On
the other hand, in software prefetching, the developers can issue on-demand asynchronous
prefetching commands to prefetch their future memory accesses.

In hash tables, regardless of the hashing scheme, accessing entries is based on the value
of the computed hash for each provided key. This is an example of random access to a
non-contiguous memory that can be improved by using the software prefetching. To have an
effective prefetching in hash tables we need (1) a batch of operations and (2) a large hash
table. The batch of operations provides enough computational tasks for the CPU while the
prefetching instructions for future memory accesses are being processed. Also, if the hash
table is not large enough, its content can entirely fit into the CPU cache. This cancels the
benefits of prefetching and only puts its overheads on the CPU.

The effects of using software prefetching in hash tables have been studied in [11, 23, 32].
In the networking community, Scouarnec et al. [23] and Zhou et al. [32] have shown the
effects of using prefetching on network-specific batch hash tables. They proposed different
approaches and improvements in applying prefetching on BCHTs. In the database community,
by proposing two generic techniques of using prefetching, Chen et al. [11] have shown their
impact on the performance of relational hash joins. Among the off-the-shelf open-source hash
tables, we found phmap [5] as the one that provides a prefetch_hash API in its interface.
However, it delegates the responsibility of using this API (and designing a good prefetching
strategy) to the developer who is not necessarily a system-level developer. There exist
challenges in combining software prefetching with vectorization in the context of hash tables.
We cover these challenges and their related design decisions in Section 4.3.

Parallel (Concurrent) Hash Tables. There is a long tail of research and open-source projects
on parallel (i.e., multi-threaded) hash tables. The state-of-the-art systems [5, 7, 13, 15] have
tried to enable concurrent insertion, lookup, and deletion on hash tables. These approaches
can generally be divided into two categories: (1) the approaches that resolve the contentions
using lock-based mechanisms, and (2) the lock-free hash tables that use atomic instructions,
such as Compare-and-Swap (CAS) as their synchronization mechanism. Although these

ECOOP 2023

27:6 An Efficient Vectorized Hash Table for Batch Computations

parallel hash tables offer better performance in comparison with the sequential hash tables,
they are not fully exploiting the advanced features of modern hardware such as SIMD
awareness and prefetching. This is due to the lack of a batch API.

Although most of the batch hash tables offer batch insertions or deletions, previous
research has shown that in most of the high-performance use cases (e.g. join processing
in relational algebra, vector/tensor processing in linear algebra, and packet processing in
computer networks), the amortized cost of insertions is negligible in comparison with the
overall cost of highly frequent (or even endless and continuous) lookups [9]. Thus, in this
paper, we only consider optimizing the lookup performance.

3 Architecture

In this section, we discuss the structure of Vec-HT and its high-level API.

3.1 Hash-Table Structure
The hash table consists of an array of bucket objects each of which contains a key (32 bits)
and its related value (32 bits). As the hashing scheme, we use open addressing with linear
probing (similar to [19]). We also use multiplicative hashing as our hash function.

Generally and without considering any optimization, to look up a key in the hash table,
we first compute the hash of the key and then find its corresponding bucket in the array. If
the key of that bucket is empty (the value of the empty key is defined during hash table
initialization) we return the empty key which means “not found”. Otherwise, we check if the
key in the bucket equals the probing key or not. If it is, we return the value, otherwise, we
continue checking the next buckets to find an equal key or an empty bucket.2

3.2 High-Level API
To make a batch hash table more accessible to developers, we expose an easy-to-understand
API. The Vec-HT namespace consists of three classes. A batch hash table class (lp_map)
that is currently designed by having the open-addressing linear-probing hashing scheme
(Figure 2), a batch-iterator class (iter_batch) that defines the data type containing the
result of batch lookup, which also supports parallel iterations (Figure 3), and the bucket
class (cf. Secion 3.1) that is related to each entry of the hash table.

Batch Hash Table Class. The constructor of lp_map takes three arguments. The first one
(size) is for setting the maximum number of elements that will be inserted into the hash
table. The second parameter sets the group size for the internal prefetching. And the third
parameter (threads), determines the number of threads (cores when the Hyper-Threading
is disabled) to enable concurrent batch processing.

The methods exposed by the API of lp_map are categorized into two sets: non-batch
and batch methods. The non-batch methods include insert, find that are similar to
the standard hash table interfaces such as std::unordered_map. These methods give the
developers the freedom of using Vec-HT without batch processing.

There are five batch-based methods. The method insert_batch inserts an array of keys
and their related values into the hash table. The remaining methods are related to vectorized
lookup which is the main focus of this work (cf. Section 2). The method find_batch accepts

2 Currently, due to the restrictions imposed by SIMD-vectorization, Vec-HT only supports 32-bit integer
keys (similar to [1, 19, 23]).

H. Shahrokhi and A. Shaikhha 27:7

namespace vec_ht
{

using K = uint32_t ;
using V = uint32_t ;
using P = uint32_t ;
// ---- Linear - Probing Batch Hash Table Class -----------
class lp_map
{

// ...
public :

lp_map (size_t size , size_t group_size =64, size_t threads =1);
// ---- Non -Batch APIs ------------------------------
inline bool insert (const K& key , const V& value);
inline bucket * find (const K& key);
// ---- Batch APIs ----------------------------------
inline size_t insert_batch (uint32_t * keys , uint32_t * values ,
size_t size);

inline size_t find_batch (uint32_t * keys , size_t size ,
bool complement , iter_batch * res_it);

inline size_t find_batch_apply (uint32_t * keys , size_t size ,
bool complement ,
std :: function <void(K& key , V& value)> const & f);

inline size_t zip (uint32_t * keys , uint32_t * payloads ,
size_t size , bool complement , iter_batch * res_it);

inline size_t zip_apply (uint32_t * keys , uint32_t * payloads ,
size_t size , bool complement ,
std :: function <void(K& key , V& value , P& payload)> const & f);

};
}

Figure 2 High-level API of Vec-HT in C++.

three arguments: (1) an array of keys to look up, (2) the size of that array, (3) a boolean
flag called complement that is used to request for the not-found elements instead of the
successfully-found ones, and (4) an object of a Vec-HT-specific class called iter_batch. The
iter_batch class is responsible for keeping the results of a vectorized lookup and making
the (parallel) iterations over them possible. The other method in lp_map is zip. Although it
is not a usual API for ordinary hash tables, we found it very useful in the case of batch hash
tables. This method, similar to the find_batch, does a lookup for the provided array of
keys. However, it takes one additional argument; payloads assigns one value to each key in
the keys array. When the method zip is called, the result also contains the related payloads
of the found keys. The iter_batch class can also keep the results of a zip API. We show
how zip can be used in practice in Section 5.

The remaining useful APIs are find_batch_apply and zip_apply. These APIs do the
same job as their related discussed APIs. However, a user can pass their customized lambda
function to be applied on the tuples of key-values (or key-value-payloads) whenever a match
is found. As a result, there is no need to pass a iter_batch object to these APIs since it is

ECOOP 2023

27:8 An Efficient Vectorized Hash Table for Batch Computations

namespace vec_ht
{

// Container and Iterator Class for find_batch /zip Results
class iter_batch
{
// ...
public :

iter_batch (size_t max_size , size_t threads ,
bool for_zip =false)

K** get_keys ();
V** get_values ();
P** get_payloads ();

inline void foreach
(std :: function <void(K& key , V& value)> f);

inline void foreach
(std :: function <void(K& key , V& value , P& payload)> f);

inline void foreach_parallel
(std :: function <void(K& key , V& value)> f);

inline void foreach_parallel
(std :: function <void(K& key , V& value , P& payload)> f);

};
}

Figure 3 High-level API of batched iterator in C++.

the user’s responsibility to handle the output. These two APIs can improve the performance
of pipelined analytical tasks because they eliminate the need for the materialization of
intermediate results (iter_batch). In other words, using these APIs, the user can fuse the
batch lookups with the following operations in the pipeline. This is especially useful in the
context of pipelined analytical query processing [25, 29, 17].

Batch Iterator Class. The iter_batch class can be constructed by passing (1) an upper
bound on the size of the results, (2) the number of threads (it must be the same as the one in
lp_map), and (3) a boolean that shows if we want to pass this object to a zip or a find_batch
API. By receiving these parameters, the memory needed for the storage of parallel-processed
results will be allocated. Then, the class is ready to be sent to the methods find_batch
or zip in a destination-passing style [26, 31]. The destination-passing style improves the
performance of computational workloads by bringing the memory-allocation overheads out of
the performance-critical part of the workload. The iter_batch class has also two overloads of
foreach. After the execution of find_batch or zip, their relevant foreach method can be
used for a sequential iteration over the results. The foreach method takes a lambda function
that will be applied to each of the stored results in the iter_batch. Similar to the foreach
methods, iter_batch also offers foreach_parallel methods that use multiple threads
to apply the provided lambda function on the stored results. In the foreach_parallel

H. Shahrokhi and A. Shaikhha 27:9

Thread 1

...
...

Prefetching

Batch

of keys

Partition

of keys

Vector

of keys

Group

of keys

SIMD

Vector

of keys

Group

of keys

SIMD

Prefetching

Thread N

...
Prefetching

Partition

of keys

Vector

of keys

Group

of keys

SIMD

Vector

of keys

Group

of keys

SIMD

Prefetching

Figure 4 The architecture of batch lookup in Vec-HT.

template < typename FUNC_TYPE >
inline size_t parallel_dispatcher (uint32_t * keys ,

uint32_t * payloads ,
size_t size ,
bool complement ,
FUNC_TYPE func ,
iter_batch * res_iter)

Figure 5 The signature of parallel_dispatcher, a function used internally for parallelization.

methods, since they are internally implemented based on tbb::parallel_for_each [7], the
developer can also use parallel containers such as tbb::enumerable_thread_specific or
any other off-the-shelf parallel container to handle storing/aggregation of lambda outputs.

4 Design

In this section, we discuss the design decisions behind the optimizations in our approach and
show how they relate to each other. Figure 4 shows the architecture of a batch lookup in
Vec-HT. As it is shown in this Figure, the batch input is partitioned into smaller chunks on
different levels and for different optimization purposes. In this section, these levels of input
partitioning and the rationale behind them will be covered.

4.1 Parallel Processing
To make the most out of the multi-core processor, in case of a batch lookup, we partition the in-
put batch of keys and assign each partition to a thread for parallel batch processing. When the
find_batch or zip methods are called, they call the parallel_dispatcher method internally.
This lower-level method is responsible for managing the threads needed for the computation
and passing them the contextual information. The interface of parallel_dispatcher is
shown in Figure 5.

The parallel_dispatcher method takes six arguments:
1. the keys that we want to look up in the hash table,
2. the associated payloads (set to NULL if the caller method is find_batch),
3. the size of the keys,
4. the complement flag (cf. Section 3.2),
5. the lambda function that is passed when the user calls find_bath_apply or zip_apply,
6. the iter_batch which is passed in case of calling find_batch or zip.

ECOOP 2023

27:10 An Efficient Vectorized Hash Table for Batch Computations

4.2 SIMD-Awareness
In this section, we explain the vertical-vectorization approach for batch lookups at a high
level and refer the interested reader to Polychroniou et al. [19] for more details.

Suppose that a number of W keys can be stored in a CPU register. When the batch
lookup starts, W keys of the input vector will be fetched into the keys register. To load
the input keys, we use the selective load SIMD operation. This operation uses a mask to
select which lanes of the target register must be filled with the new values and which of
them must be set to zero. In the beginning, we define a register (invalid) with all lanes
activated and pass it to the selective load as the mask. This means that we plan to read W
new keys from the input. Then using the SIMD operators, the hash value of all the keys in
keys is computed simultaneously and stored in the hash register. In Vec-HT, as we use a
simple multiplicative hash function, the computation of hash values consists of logical and
arithmetic SIMD operations such as vectorized multiplication and shift.

By having the hash values, we use the SIMD gather operation to retrieve the needed
hash table entries. The gather operation reads multiple memory addresses (stored in a
register) at the same time. Since the value of each computed hash shows the possible offset of
each key in the hash table entries, we apply gather on the address of the hash-table entries
array and the hash register. As a result of executing two gather operations, two registers
for the retrieved keys (tab_keys) and values (tab_vals) will be created.

Next, based on the linear probing algorithm, we check the equality of key in keys and
tab_keys. We do this check using SIMD logical operators. This check can have three
different results for each lane: (1) the key is empty which means that the key is not found in
the table (2) the keys are equal which means the key is found (3) the key is not empty or is
not equal to the given input key and thus it needs further probing in the next rounds. For
the not-found keys, we activate their relevant lanes in invalid register. For the found keys,
we define and activate the relevant lanes in a new register called output. Finally, for the
ones that need further probing, we create a new register called offset, initialize it with 0,
and increment its relevant lanes by 1.

In this phase of the algorithm, we first add out to invalid and store the result in
invalid. We do this since we are finished with both found and not-found keys and we want
to fetch the new keys instead of them in the next round of lookups. Then, by using a static
permutation table, we extract the permutation masks needed to align the active lanes of
invalid and output to one side of the register. These permutation masks will be used in the
SIMD permute operation, which changes the order of lanes in the register using a provided
mask. First, we use the permutation mask of out on out itself and on keys. Now, we are
ready to save the found keys to the target memory (reserved memory in iter_batch) using
a selective store SIMD operation that its mask is the permutated out. The total number
of output keys will also be updated at this stage. It is notable that the original vertical
vectorization [19] uses a buffer to store the results temporarily and spills them to the output
whenever the buffer is full.

After the work on the found keys is finished, we count the active lanes in invalid to know
how many new keys are needed to be fetched. Then, we apply the invalid permutation
mask on keys, hash, and offset to make them ready for the next run. By starting the next
round of lookups, again the new keys will be fetched based on the updated invalid register.
It is important to mention that this time all of the hashes are re-computed and the ones
with inactive lanes in invalid will also be incremented by offset to point to the next entry
in the hash table.

H. Shahrokhi and A. Shaikhha 27:11

To return the value of found keys in the table and also their related payloads we need
further considerations. For the hash table values, which are stored in tab_val, we can
permute them using the out permutation mask and store them in their related memory in
batch_iter. Similarly, the payloads can be selectively loaded exactly similar to the new key.
Then they will be passed through the algorithm by similar permutations, and finally will be
stored in the relevant output memory.

If the size of input keys is less than W or in the case of processing the last W keys, the
algorithm switches to a normal scalar (non-SIMD) lookup in the hash table and stores the
result into the batch_iter. This is because there are not enough keys to do a safe and
efficient SIMD lookup.

4.3 Prefetching and Its Adaption Challenges
Vec-HT is a prefetching-enabled vectorized approach; we apply the prefetching on top of
the parallel vertical vectorization. There is a large design space for combining prefetching
and SIMD vectorization. We examined this design space through micro-benchmarking (cf.
Section 7). The important design parameters for this combination are as follows:

Standard vs Group Prefetching: putting the prefetching commands at the beginning
of the main loop of the vertical vectorization is the standard solution for adding prefetching.
We compare it with another approach (Group Prefetching) proposed by Chen et al. [11]
in the context of databases.
Group Size for Group Prefetching: Considering the group prefetching approach, the
selection of the different group sizes might affect the performance of the system.
Optimistic vs Pessimistic Linear Probing: Given that we use linear probing, there
are two choices for prefetching for each key. Optimistic: we consider that the probe hits
the correct location on the first try (or finds the location to be empty) and does not need
to probe further; thus we only prefetch the hashed location. Pessimistic: we consider the
case of not having a hit and thus prefetching the next location(s) as well.
Memoization of Computed Hashes: We need the hash values in two places: (1)
prefetching stage, and (2) vertical vectorization stage. We have the option of memoizing
the hash value in the first stage and reusing/recomputing it in the second stage.
Buffering: In vertical vectorization, we can write the output into an output buffer and
if it is not carefully adapted to the prefetching design, it might result in performance
overheads.

Figure 6 depicts a generic and high-level algorithm for combining prefetching with vertical
vectorization (based on the assumption that we take the group-prefetching approach instead
of standard prefetching, which is a take-away message of micro-benchmarks in Section 7).
In this algorithm, by setting the GROUP_SIZE parameter, we can enable the grouping loop
that partitions the input keys into parts of size GROUP_SIZE and then run the algorithm
on these smaller batches. By having a group of keys as input, before starting the vertical
vectorization, we define a loop over the group keys (prefetching loop). In each iteration of
the prefetching loop, we first compute the hash of W elements using the SIMD approach
mentioned before. By setting the HASH_MEMOIZE parameter to true, we can store the hash
values and reuse them inside the vertical vectorization algorithm. After making a decision
on memoization, we raise W software prefetch commands for the address of target entries
in the hash table. Here we can do the prefetching also for the next bucket by setting the
OPTIMISTIC parameter to false. After finishing the prefetching loop, all the related entries
are prefetched. At this stage, the vertical vectorization algorithm will be executed for the
current group and if the OUT_BUFFER parameter is enabled, the output buffering happens.

ECOOP 2023

27:12 An Efficient Vectorized Hash Table for Batch Computations

foreach group in array by GROUP_SIZE {
// prefetching stage
foreach vector in group {

vector_h <- simd_hash (vector)
if(HASH_MEMOIZE)

mem_h += vector_h
foreach h in vector_h {

prefetch (buckets [h])
if(! OPTIMISTIC)

prefetch (buckets [h+1])
}

}
// vertical vectorization stage using linear probing
while(vec_elems not probed in group) {

if(HASH_MEMOIZE)
vector_h <- mem_h[vec_elems]

else
vector_h <- simd_hash (vec_elems)

res <- vertical_vectorization (vec_elems , vector_h)
if(OUT_BUFFER) {

buffer += res
if(buffer is full)

flush(buffer)
}

}
if(OUT_BUFFER) {

flush(buffer)
}

}

Figure 6 A generic algorithm showing the design space of combining prefetching with vertical
vectorization.

5 Use Cases

In this section, we show the usability of our proposed batch table, by showing several
high-performance data analytics use cases.

5.1 Relational Hash Join
First, the code for a join on two relations (S and R) is shown in Figure 7. We assume that
the relations are stored in columnar format (i.e., struct of arrays) which is a popular design
decision in high-performance query engines [17]. The code is executed using a prefetching
group size of 64 on 4 threads. We keep these settings for all of the use cases covered in
Section 5.

Build Phase. In the beginning, the batch hash table is initialized with the table size, group
size, and the number of threads. The size is set to twice the number of the elements in the
relation on the build side of the hash join (S). We do so to keep the fill ratio of the hash
table less than or equal to 50%. Then, using the insert_batch method, all the key/value
pairs from S are inserted into the hash table in a batch style.

H. Shahrokhi and A. Shaikhha 27:13

// build phase
auto ht = vec_ht :: lp_map (2* S_size , 64, 4);
ht. insert_batch (S_A , S_B , S_size);
// probe phase
auto res_it = vec_ht :: iter_batch (R_Size /3, 4, true);
ht.zip(R_A , R_F , R_size , false , res_it);
// printing the output
res_it . foreach_parallel (
[](auto& key , auto& value , auto& payload){

std :: cout << "S_A/R_A: " << key << " | ";
std :: cout << "S_B: " << value << " | ";
std :: cout << "R_F: " << payload << std :: endl;

});

Figure 7 Implementation of a hash join operator (on S and R relations) using Vec-HT.

auto ht = vec_ht :: lp_map (2* S2_size , 64, 4);
for (int i=0; i< S2_size ; i++) ht. insert (S2[i], 1);
auto res_it = vec_ht :: iter_batch (S1_Size /5, 4, false);
ht. find_batch (S1 , S1_size , true , res_it);
res_it . foreach_parallel ([](auto& key , auto& value){

std :: cout << "Item: " << key << std :: endl;
});

Figure 8 Implementation of a Set-Difference operation (S1\S2) using Vec-HT.

Probe Phase. Before running the batch lookups on the hash table, we first prepare the
iter_batch for the results. This object is initialized by setting three parameters. The first
one is an upper bound for the join result size. The more precise this estimation is, the less
memory allocation time is spent during the batch lookups. The second parameter is the
number of threads that must be equal to the one already passed to the hash table. The last
parameter is a flag that shows if the iter_batch object will be used in a zip or find_batch
API. Next, by having the res_it object, we can run our zip method to join the relations
based on the R_A and S_A columns and by considering the R_F column as the payload.

After the zip execution is finished, we use the foreach_parallel method of res_it to
iterate over the join results and print them. The desired functionality (printing) is passed to
the foreach_parallel using a user-defined lambda function.

5.2 Set Operations

As our second use case, we show the implementation of a set difference operation (S1\S2)
using our approach in Figure 8. The sets S1 and S2 are stored in two arrays. The code is
almost the same as the one in the relational-join example. Its main difference is in using
find_batch instead of zip. It is because there is no payload to be passed into the zip API.
Furthermore, in this example, we see the usage of complement parameter as we need the
elements of S1 that are not found in S2. To implement the set intersection we need to use
the zip method, which is similar to the vector inner product, that is presented next.

ECOOP 2023

27:14 An Efficient Vectorized Hash Table for Batch Computations

auto ht = vec_ht :: lp_map (2* V1_size , 64, 4);
ht. insert_batch (V1_idx , V1_val , V1_size);
auto res_it = vec_ht :: iter_batch (V1_size , 4, true);
ht.zip(V2_idx , V2_val , V2_size , false , res_it);
uint32_t sum = 0;
res_it . foreach ([](auto& key , auto& value , auto& payload){

sum += value * payload ;
});

Figure 9 Implementation of an Inner-Product operation (V1·V2) using Vec-HT.

5.3 Sparse Vector Operations
The last use case that we cover in this section is the inner product of two vectors (V1·V2).
The related code is shown in Figure 9. In this implementation, we again use the zip method,
since there are payloads on the V2 side (values of V2 for each index). After the zip execution
is finished, this time we do a non-parallel iteration (foreach API) over res_it to prevent
contentions on the sum shared memory. As mentioned in Section 3.2, a developer can
easily use the concurrent containers (e.g. tbb::enumerable_thread_specific<uint32_t>
) instead of sum here. However, in this case, we are interested in exhibiting the usage of
non-parallel foreach.

6 Implementation

In this section, we give a more detailed explanation of the implementation behind Vec-HT.

Attributes of lp_map. The attributes of lp_map class are shown in Figure 10. All these
attributes are initialized in the class constructor. The size, threads_, and group_size_
attributes are set to the values that are passed by the constructor. The hash_factor_ is
set to a randomly generated number. The empty_key_ attribute is set to the maximum
possible value for uint32_t type. Lastly, we use an array of bucket structs (entries_) as
the entries of our hash table. It has been shown that using an array of structs instead of
a struct of arrays does not affect the performance of hash tables [21]. The memory of this
array is allocated after the calculation of size_ attribute.

Attributes of iter_batch. The attributes of the iter_batch class are shown in Figure 11.
Here max_size_ is passed by the constructor and shows an upper bound on the number of
results for a find_batch or zip method call. The threads_ and for_zip attributes are given
by the constructor. The next three attributes are the storage for results of a find_batch
or zip method call. In the constructor, we allocate arrays of arrays to these pointers; this
will allocate memory of size max_size for each thread. In the case of a find_batch method
call, we do not allocate and use the payloads_ pointer. As the last attribute, we have
threads_res_size_ that will be extended to the size of threads_. Each element of this
vector is used by a thread to store the size of the results for that thread. By using this
attribute, the iterations over the results will be more efficient (cf. Figure 12).

Implementation of foreach_parallel. In Figure 12, the implementation details of
foreach_parallel are presented. In this method, we create a range of integers from
0 to thread_-1 and assign each number in the range to a thread. Then, by execution of a

H. Shahrokhi and A. Shaikhha 27:15

namespace vec_ht
{

class lp_map
{
private :

size_t size_;
size_t threads_ ;
uint32_t group_size_ ;
uint32_t hash_factor_ ;
uint32_t empty_key_ ;
bucket * entries_ ;

template < typename FUNC_TYPE >
inline size_t parallel_dispatcher (uint32_t * keys ,

uint32_t * payloads , size_t size , bool complement ,
FUNC_TYPE func , iter_batch * res_iter)

template < typename FUNC_TYPE >
inline size_t find_batch_inner (uint32_t * keys ,

uint32_t * payloads , size_t size , bool complement ,
FUNC_TYPE func , iter_batch * res_iter , size_t thread_id)

public :
// ...

};
}

Figure 10 The internal of the lp_map class.

tbb::parallel_for_each and passing the prepared range to it, we run a lambda function
on each thread with thread_id as its single argument. In the lambda function, using the
thread_id argument, the max_size_ attribute of batch_iter class, and the vector of result
sizes for each thread (threads_res_size_), we compute the boundaries of the result vectors
that are assigned to the current thread. By having those boundaries, we can finally apply the
developer-provided lambda (func) on each triple of key, value, and payload in the results
assigned to this thread.

Implementation of zip. The implementation of the zip method is presented in Figure 13.
To bypass the overheads of dispatching in the parallel scenario, this method (and other
performance-critical methods such as find_batch), checks the threads_ attribute of the
current vec_ht. If it detects a sequential setting, then calls the internal method that is
responsible for the vertical vectorization and prefetching (find_batch_inner). Otherwise,
the method calls the parallel_dispatcher (cf. Section 4) to partition and dispatch the
work among the pre-determined number of threads. To call either of these two internal
methods, the zip method provides them with the appropriate arguments or null types
where required.

Implementation of find_batch_inner. Figure 14 shows a simplified implementation for
find_batch_inner. This method is the most complex method in Vec-HT. It operates over a
subset of batch input (the partition that is assigned to each thread) and is responsible to do
the following tasks:

ECOOP 2023

27:16 An Efficient Vectorized Hash Table for Batch Computations

namespace vec_ht
{

class iter_batch
{
private :

size_t max_size_ ;
size_t threads_ ;
bool for_zip_ ;

uint32_t ** keys_;
uint32_t ** values_ ;
uint32_t ** payloads_ ;

std :: vector <size_t > threads_res_size_ ;
public :

// ...
};

}

Figure 11 The internal of the iter_batch class.

inline void foreach_parallel
(std :: function <void(K& key , V& value , P& payload)> f)
{

auto range = std :: vector <size_t >(threads_);
for (size_t i=0; i< threads_ ; i++) range[i] = i;
tbb :: parallel_for_each (range , [&](size_t thread_id)
{

for (size_t j=0; j< threads_res_size_ [thread_id]; j++)
func(keys_[thread_id][j],

values_ [thread_id][j],
payloads_ [thread_id][j]);

});
}

Figure 12 The implementation of foreach_parallel in iter_batch.

To partition the input into group-sized batches.
To compute and memoize the hashes for each group.
To do the group prefetching for each group.
To run the entire vertical vectorization algorithm for each group.
To buffer the found keys and their related values and payloads.
To store the results into the iter_batch or apply func over them.

We present a brief overview of the above-mentioned steps in Figure 14. The sections with
high similarity to the code provided by Polychroniou [19] et al. are removed for the sake of
brevity. We refer the interested reader to see those parts in the referenced work. Note that
in Figure 14, the vector_size is a global constant (8) which is a function of the selected
data-type size (32 bits) and the SIMD vector size (256 bits), computed as vector size divided
by data-type size.

H. Shahrokhi and A. Shaikhha 27:17

inline size_t zip (uint32_t * keys , uint32_t * payloads , size_t size ,
bool complement , iter_batch * res_it)
{

if (threads_ == 1)
return find_batch_inner < no_func_type >(keys , payloads , size ,
complement , nullptr , res_it);

else
return parallel_dispatcher < no_func_type >(keys , payloads ,
size , complement , nullptr , res_it);

}

Figure 13 Implementation of zip in lp_map.

As the last topic in this section, to implement the complement behaviour in Vec-HT,
we have slightly changed the original vertical-vectorization algorithm. In the case of a
complement, we replace the keys with an invalid status with the keys with an output status.
In other words, the found keys are considered invalid and the not-found keys are the valid
ones that must be stored in the output.

7 Evaluation

In this section, we first present our experimental setup for the evaluation. Then, we show
the performance of our approach in different use case scenarios and compare its performance
with various competitors.

7.1 Experimental Setup
All experiments are done on a single machine equipped with 16GB of DDR4 RAM, and an
Intel Core i5-10210U 1.6GHz with 4 cores and 256KB, 1MB, and 6MB of L1, L2, and L3
cache respectively. Hyper-threading is disabled for the experiments. We have used Ubuntu
20.04.3 as OS. Our C++ code is compiled with G++ 9.4.0 using the -O3 flag. To enable
SIMD operations, we use the -march=core-avx2 flag. All of the experiments were executed
with 5 warmup rounds followed by 5 timed iterations. Then, we took the average of the
timed iterations.

Workloads. To run the experiments, we use three different workloads. For the micro-
benchmarks and the join experiments, we use the random data generator from [19]. By
focusing on the notion of inner joins in databases, it generates two random data sets as
inner and outer relations. The elements of the inner data set are inserted into the hash
table creating the build side of the join. The elements of the outer data set shape the probe
side of the join. The data generator accepts arguments for inner_size, outer_size, and
selectivity of the join.

The second workload is used for the set and sparse vector experiments. The set/vector
generator receives size, density, and maximum_value as input parameters. For each set of
size N, it generates N×density unique random numbers from the range of [0, N) as the
value of items in the set. Similar to the sets, for the vectors, it generates unique random
numbers but uses them as vector indexes. Then, using the maximum_value parameter, it
generates random integer numbers in the range of (0, maximum_value] as vector values.

ECOOP 2023

27:18 An Efficient Vectorized Hash Table for Batch Computations

inline size_t find_batch_inner (uint32_t * keys , uint32_t * payloads ,
size_t size , bool complement ,

FUNC_TYPE func , iter_batch * res_iter ,
size_t tid)

{
// Partitioning the input keys into group -sized batches
size_t inner_batch_size = group_size_ ;
for(size_t i=0; i<size; i+= group_size_)
{

if (size -i< group_size_)
inner_batch_size = size% group_size ;

// Hash memoization and Group prefetching
uint32_t hashs[inner_batch_size];
for (size_t j=0; j< inner_batch_size ; j+= vector_size)
{

// Hash computation for keys using SIMD operations
// ...
// Hash memoization and Group prefetching
for (size_t k=0; k< vector_size ; k++)
{

// Storing the hash in hashs[j+k]
// ...
// Prefetching the computed and stored hash
_mm_prefetch (& entries_ [hashs[j+k]], _MM_HINT_T0);

}
}
// Execution of vert. vect. using memoized hash values
// considering the " complement " flag (if enabled) ...

// Buffering the matched keys , values (and payloads) ...

// Flushing the buffer into the iter_batch container or
// Applying the lambda function on the buffered tuples ...

}
}

Figure 14 A simplified representation of the find_batch_task implementation in lp_map.

As the last workload, we use the well-known TPC-H [8] benchmark with a scaling factor
(SF) of 1 (1 GB of data) for the evaluation of our approach in analytical queries. It is
important to note that in all of the benchmarks, we keep the fill ratio of all alternative hash
tables less than or equal to 50%.

Alternatives and Competitors. In the micro-benchmarks, to evaluate our proposed ap-
proach, we compare it with (1) a scalar implementation of Vec-HT without any optimization
(2) a scalar + prefetching version (3) and the vertical-vectorization approach by Polychroniou
et al. [19]. For all alternatives, we consider sequential and parallel versions. As mentioned in
Section 6, we reuse the code from [19] as the base for our implementations. We do not add
the comparison with the approaches such as DPDK [1], as it is previously shown [19] that
the BCHT approach is slower than vertical vectorization which is the basis for Vec-HT.

H. Shahrokhi and A. Shaikhha 27:19

20 21 22 23 24 25 26 27 28 29
0

20

40

60

80

100

120

Group vs Standard Prefetching - Selectivity 0.1

Log of Hash Table Size (Bytes)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

20 21 22 23 24 25 26 27 28 29
0

20

40

60

80

100

120

Group vs Standard Prefetching - Selectivity 0.5

Log of Hash Table Size (Bytes)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

20 21 22 23 24 25 26 27 28 29
0

20

40

60

80

100

120

Group vs Standard Prefetching - Selectivity 1

Log of Hash Table Size (Bytes)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

Figure 15 Comparing the performance of standard vs group prefetching for combining prefetching
with vertical vectorization. The charts show the number of tuples processed per second (higher
is better) for a simplified relational inner-join operation with a probe size of 1,500,000 over an
increasing build-side size.

We also compare our implementations with state-of-the-art hash tables. TBB [7] is a well-
known parallel computation framework. We use its tbb::concurrent_unordered_map as
one of our competitors. Libcuckoo [13] is a research project on fast parallel hash tables and we
use its open-source implementation libcuckoo::cuckoohash_map. As the last competitors,
from the open-source high-performance hash-table project phmap [5], we use its sequential
and parallel data structures phmap::flat_hash_map and phmap::parallel_flat_hash_map.
The implementation of Vec-HT that we use in the benchmarks has a group size of 64, taking
an optimistic approach, with enabled memoization and simple buffering inside each group.

7.2 Benchmarks

In this section, we first consider the design space of combining prefetching with vectorization
and show the best implementation. In addition, we evaluate the effectiveness of our imple-
mentation in comparison with scalar, scalar + prefetching, and pure vertical vectorization in
a holistic micro-benchmark for hash join processing. Then, we show its superiority over the
existing hash table packages in different use cases. We consider benchmarks on set and vector
kernels that are largely used in big data analytics frameworks such as query processors (e.g.,
BigTable, SparkSQL) and linear algebra frameworks (e.g., MLLib, SystemDS, distributed
TensorFlow). We finally cover benchmarks on database query processing over a selected
subset of TPC-H queries, the main benchmark for analytical queries.

Standard vs Group Prefetching Micro-Benchmark. The first micro-benchmark related
to the design space (cf. Section 4.3) is shown in Figure 15. In these experiments, our
focus is to show the performance difference between the standard prefetching and group
prefetching approaches. The results show that even though the standard way of prefetching
offers performance improvements compared to non-prefetched approaches, it cannot beat the
performance and scalability of the group prefetching.

ECOOP 2023

27:20 An Efficient Vectorized Hash Table for Batch Computations

20 21 22 23 24 25 26 27 28 29
0

20

40

60

80

100

120

Prefetching for Future Probes - Selectivity 0.1

Log of Hash Table Size (Bytes)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

20 21 22 23 24 25 26 27 28 29
0

20

40

60

80

100

120

Prefetching for Future Probes - Selectivity 0.5

Log of Hash Table Size (Bytes)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

20 21 22 23 24 25 26 27 28 29
0

20

40

60

80

100

120

Prefetching for Future Probes - Selectivity 1

Log of Hash Table Size (Bytes)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

Figure 16 Comparing the performance of different alternatives by focusing on the optimistic and
pessimistic approaches for prefetching. The workload is similar to Figure 15.

Optimistic vs Pessimistic Prefetching Micro-Benchmark. As mentioned in Section 4.3,
by having a linear probing scheme in the hash table, for a given key, we can prefetch more
than one bucket to improve the chance of a cache hit after an unsuccessful lookup. Although
it seems to be an interesting strategy to take, the limited prefetching capability of CPUs,
the variety in workload characteristics, and the parameters such as the fill ratio of the hash
table can affect the benefits of this strategy. Figure 16 shows the performance results for
prefetching with optimistic and pessimistic approaches. Both optimistic and pessimistic
approaches perform better than the alternatives. However, for the smaller hash tables, the
performance of the pessimistic approach is worse than the optimistic one and sometimes even
worse than pure vertical vectorization. Thus, we decided to take the optimistic approach for
our final implementation of Vec-HT.

Group-Size Micro-Benchmark. Figure 17 depicts the performance of group prefetching
with different group sizes by also altering between the optimistic and pessimistic strategy.
Overall, we see a performance improvement by increasing the group size, however, this
improvement no longer holds after the group size of 64. The results show that selecting a
group size of 64 with the optimistic strategy is a reasonable choice.

Hash Memoization Micro-Benchmark. Our last micro-benchmark investigates the effects
of memoizing the hash values during the prefetching stage. Figure 18 presents the results
of these experiments. In selectivities of 0.1 and 0.5, it is clear that the memorized version
performs better than the non-memoized one. With a selectivity of 1, the non-memoized
version does better (with a narrow improvement compared to memorized version) for larger
hash tables, however, the memoized version is faster for smaller hash tables. Thus, we select
the memoized version for Vec-HT.

Relational Inner Join for State-of-the-Art Hash Tables. In these experiments, using the
first workload described in Section 7.1, we run a simplified relational inner-join operation
using different hash table implementations to measure the performance of each approach.

H. Shahrokhi and A. Shaikhha 27:21

20 21 22 23 24 25 26 27 28 29
0

20

40

60

80

100

120

Group Size Effect on Prefetching - Selectivity 0.1

Log of Hash Table Size (Bytes)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

20 21 22 23 24 25 26 27 28 29
0

20

40

60

80

100

120

Group Size Effect on Prefetching - Selectivity 0.5

Log of Hash Table Size (Bytes)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

20 21 22 23 24 25 26 27 28 29
0

20

40

60

80

100

120

140

Group Size Effect on Prefetching - Selectivity 1

Log of Hash Table Size (Bytes)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

Figure 17 Comparing the performance of different combinations for group size and optimist-
ic/pessimistic approaches for group prefetching. The workload is similar to Figure 15.

20 21 22 23 24 25 26 27 28 29
0

20

40

60

80

100

120

Memoized vs Non-Memoized Prefetching - Selectivity 0.1

Log of Hash Table Size (Bytes)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

20 21 22 23 24 25 26 27 28 29
0

20

40

60

80

100

120

Memoized vs Non-Memoized Prefetching - Selectivity 0.5

Log of Hash Table Size (Bytes)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

20 21 22 23 24 25 26 27 28 29
0

20

40

60

80

100

120

Memoized vs Non-Memoized Prefetching - Selectivity 1

Log of Hash Table Size (Bytes)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

Figure 18 Comparing the performance of different alternatives by focusing on enable/disabled
memoization for group prefetching. The workload is similar to Figure 15.

As it is shown in Figure 19, our approach vec_ht::lp_map outperforms other approaches
irrespective of the build size, join selectivity or concurrency level. It is on average 5× faster
on both 1- and 4-cores.

Set Operations Use Case. To show the performance of our approach in set operations, we
run experiments on the set intersection and set difference. To run the operations, we iterate
over the first set (S1) and look up the values in the other one (S2). Since the hash tables in our
experiments (except tbb::concurrent_unordered_map) do not support parallel iterations,
to have a more comprehensive benchmark, we keep S1 in the vector format and only make
a hash table for S2. For the set-difference operation, we use an implementation similar to
Section 5.2. Figure 20 depicts the results of our set experiments. In these experiments, using
a fixed size for S1 and S2 and a fixed density for S1, we observe the changes in the run time
of each competitor while increasing the density of S2.

ECOOP 2023

27:22 An Efficient Vectorized Hash Table for Batch Computations

20 21 22 23 24 25 26 27 28 29
0

10

20

30

40

50

60

70

80

90

100
Selectivity = 0.1 | 1 Thread

Log Hash Table Size (Byte)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

20 21 22 23 24 25 26 27 28 29
0

50

100

150

200

250

300

350

400
Selectivity = 0.1 | 4 Threads

Log Hash Table Size (Byte)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

20 21 22 23 24 25 26 27 28 29
0

20

40

60

80

100

120
Selectivity = 0.5 | 1 Thread

Log Hash Table Size (Byte)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

20 21 22 23 24 25 26 27 28 29
0

50

100

150

200

250

300

350

400
Selectivity = 0.5 | 4 Threads

Log Hash Table Size (Byte)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

20 21 22 23 24 25 26 27 28 29
0

20

40

60

80

100

120

140
Selectivity = 1 | 1 Thread

Log Hash Table Size (Byte)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

20 21 22 23 24 25 26 27 28 29
0

50

100

150

200

250

300

350

400

450
Selectivity = 1 | 4 Threads

Log Hash Table Size (Byte)

T
u

p
le

s
P

er
 S

ec
o

n
d

 (
M

il
li

o
n

)

Figure 19 The number of tuples processed per second (higher is better) for a simplified relational
inner-join operation with a probe size of 1,500,000 over an increasing build-side size. Charts on each
side, represent the results for the join selectivities of 0.1, 0.5, and 1 on 1 or 4 threads.

In the set-difference experiments, our approach outperforms the others with an average
of 11× speedup on 1 and 4 cores. Similarly, in set intersections, our approach performs
better than the others excluding phmap::flat_hash_map. By excluding phmap, the proposed
approach is on average 6× and 5× faster than the others on 1 and 4 cores, respectively. For
the small S2 sizes, when the log of S2 density is less than or equal to -4, the hash table
can still be fitted into the L3 cache, thus the benefit of using our prefetched approach is
not promising and the overall performance is near to what phmap::flat_hash_map offers.
However, after passing that size limit, phmap::flat_hash_map run time goes higher while
our approach keeps its good performance thanks to software prefetching.

Vector Operations Use Case. In Figure 21, the results of running experiments on vector
inner-product (cf. Section 5.3) and pair-wise multiplication are shown. Similar to the set
operations, here we keep V1 in the vector format and embed V2 into a hash table. The
experiment parameters are also set to the values that we had in the set experiments. In
both vector operations, our approach is still faster than the alternatives. However, since the
scenario of these two vector operations is very similar to the set intersection, we see similar
behaviour in the performance of our approach versus phmap::flat_hash_map. We explained
the reason behind this behaviour in the set experiments. The experiments on set and vector
operations show that our approach is a great choice when we deal with large amounts of
data; while the performance of other approaches degrades with increasing the hash table
size, our approach maintains good performance even for heavier workloads.

H. Shahrokhi and A. Shaikhha 27:23

-7 -6 -5 -4 -3 -2 -1
0

20

40

60

80

100

120

140

160

180

Set Difference | Set Size = 2 ^ 24 | 1 Thread

Log of S2 Density

R
u

n
 T

im
e

(m
s)

-7 -6 -5 -4 -3 -2 -1
0

10

20

30

40

50

60

Set Difference | Set Size = 2 ^ 24 | 4 Threads

Log of S2 Density

R
u

n
 T

im
e

(m
s)

-7 -6 -5 -4 -3 -2 -1
0

10

20

30

40

50

60

70

80

90

100

Set Intersection | Set Size = 2 ^ 24 | 1 Thread

Log of S2 Density

R
u

n
 T

im
e

(m
s)

-7 -6 -5 -4 -3 -2 -1
0

5

10

15

20

25

Set Intersection | Set Size = 2 ^ 24 | 4 Threads

Log of S2 Density

R
u

n
 T

im
e

(m
s)

Figure 20 The run time (lower is better) for the set difference and intersection operations by
varying the density of the second set on 1 and 4 threads. For both operands (S1 and S2), the size is
224. For S1, the density is set to 2−6.

-7 -6 -5 -4 -3 -2 -1
0

10

20

30

40

50

60

70

80

90

Vector Inner Product | Vector Size = 2 ^ 24 | 1 Thread

Log of V2 Density

R
u

n
 T

im
e

(m
s)

-7 -6 -5 -4 -3 -2 -1
0

5

10

15

20

25

Vector Inner Product | Vector Size = 2 ^ 24 | 4 Threads

Log of V2 Density

R
u

n
 T

im
e

(m
s)

-7 -6 -5 -4 -3 -2 -1
0

20

40

60

80

100

120

140

Vector Pair-wise Multiplication| Vector Size = 2 ^ 24 | 1 Thread

Log of V2 Density

R
u

n
 T

im
e

(m
s)

-7 -6 -5 -4 -3 -2 -1
0

5

10

15

20

25

30

35

40

45

Vector Pair-wise Multiplication | Vector Size = 2 ^ 24 | 4 Threads

Log of V2 Density

R
u

n
 T

im
e

(m
s)

Figure 21 The run time (lower is better) for the vector inner-product and pair-wise multiplication
operations by increasing the density of the second vector on 1 and 4 threads. For both operands (V1
and V2), the size is 224. For V1, the density is set to 2−6.

ECOOP 2023

27:24 An Efficient Vectorized Hash Table for Batch Computations

Table 2 Modified TPC-H queries we used in the experiments.

Query SQL Code

Q4
select o_orderpriority , count (*) from orders
where exists (select * from lineitem

where l_orderkey = o_orderkey and l_commitdate < l_receiptdate)
group by o_orderpriority

Q8

select o_year , sum(case when nation = ’BRAZIL ’ then volume
else 0 end) / sum(volume)

from (select extract (year from o_orderdate) as o_year ,
l_extendedprice * (1 - l_discount) as volume ,
n2. n_name as nation

from part , supplier , lineitem , orders ,
customer , nation n1 , nation n2 , region

where p_partkey = l_partkey and s_suppkey = l_suppkey
and l_orderkey = o_orderkey and o_custkey = c_custkey
and c_nationkey = n1. n_nationkey
and n1. n_regionkey = r_regionkey and r_name = ’AMERICA ’
and s_nationkey = n2. n_nationkey and o_orderdate between

date ’1995 -01 -01 ’ and date ’1996 -12 -31 ’
) as all_nations

group by o_year

Q12

select l_shipmode , sum(case when o_orderpriority = ’1- URGENT ’
or o_orderpriority = ’2-HIGH ’ then 1 else 0 end)
, sum(case when o_orderpriority <> ’1- URGENT ’
and o_orderpriority <> ’2-HIGH ’ then 1 else 0 end)

from orders , lineitem
where o_orderkey = l_orderkey
group by l_shipmode

Analytical Queries Use Case. As the last set of experiments, we use the TPC-H benchmark
and dataset. The queries we consider satisfy three criteria. (1) The join-build side of the
query must result in a large hash table. (2) The join-probe part of the query must be a
time-consuming part of it. (3) The build-side hash table can only have integers as keys
and values. Based on these criteria we selected a modified version of Q4, Q8, and Q12
(cf. Table 2). Then, we implemented a manually fine-tuned version of them in C++ by
taking the query plans of HyPer [4] and using the code generator of SDQL.py [24]. We used
phmap::flat_hash_map as the competitor for vec_ht::lp_map, because it is the hash table
of choice behind existing query processing systems that use open source hash tables [24, 28].
We alternate between these two hash tables only in the most time-consuming join operation
in the query.

Table 3 shows the results of this benchmark. Our approach performs better than its
alternative almost in all these queries. However, in the 4-core setup of Q4, it results in an
11% total performance degradation. In this case, the speedup of probing is still very high
(1.33×) but the lack of parallel insertions in Vec-HT resulted in a faster hash table building
by the competitor, which is a promising direction for the future.

Finally, it is worth mentioning that the speedups of using Vec-HT for the original Q8
(without modification on the build side to make the hash table larger) are 0.9× and 0.85×
for 1- and 4-core respectively. This means that Vec-HT is a perfect choice whenever we are
facing a large volume of data resulting in the creation of a large hash table.

H. Shahrokhi and A. Shaikhha 27:25

Table 3 Performance improvements of using vec_ht::lp_map instead of phmap::flat_hash_map
in the probes of the most time-consuming hash-join of TPC-H queries 4, 8, and 14.

TPC-H Query
Q4 Q8 Q12

Total Probe Total Probe Total Probe
1-Core Run Time vec_ht (ms) 246 102 354 321 260 236
1-Core Run Time phmap (ms) 487 261 512 465 718 533
1-Core Total Run Time Speedup 1.98× 2.56× 1.44× 1.45× 2.76× 2.25×

4-Core Run Time vec_ht (ms) 151 29 105 83 102 82
4-Core Run Time phmap (ms) 134 38 140 107 395 149
4-Core Total Run Time Speedup 0.89× 1.33× 1.34× 1.29× 3.86× 1.82×

8 Conclusion and Future Work

In this paper, we presented Vec-HT, a vectorized hash table that offers fast batch lookups
backed by multi-threading, prefetching, and usage of SIMD-vectorization methods. We
presented the design decisions for the structure, API, and the optimizations for high-
performance batch hash table implementations. We showed the usefulness of our approach
by implementing a handful of use cases using Vec-HT. Finally, by running a set of micro-
benchmarks on various use case scenarios, we showed that our proposed design performs
faster than the state-of-the-art approaches.

In the future, we aim to improve this approach by providing the support for complex
keys and values and parallel iterations over such batch hash tables. It is also interesting
to apply the current optimizations (especially vertical vectorization) to the other hashing
schemes such as Cuckoo [18] and Robinhood [10] hashing. Another promising direction is to
use the batch API as a wrapper for traditional hash tables and ordered dictionaries [27] to
allow programmers to benefit from the batch processing offered by this API. Finally, one can
integrate other SIMD query operators (e.g., selection [19, 16]) and use Vec-HT for a wider
range of database analytical queries as well as sparse tensor processing.

References
1 Dpdk. https://dpdk.org/.
2 Highwayhash. arXiv:1612.06257.
3 Hirola. https://github.com/bwoodsend/hirola/.
4 Hyper. https://hyper-db.de/.
5 The parallel hashmap. https://github.com/greg7mdp/parallel-hashmap.
6 R hashmap. https://github.com/nathan-russell/hashmap.
7 Threading building blocks (tbb). https://github.com/jckarter/tbb.
8 TPC-H Benchmark . https://www.tpc.org/tpch.
9 Alex D Breslow, Dong Ping Zhang, Joseph L Greathouse, Nuwan Jayasena, and Dean M

Tullsen. Horton tables: Fast hash tables for {In-Memory}{Data-Intensive} computing. In
2016 USENIX Annual Technical Conference (USENIX ATC 16), pages 281–294, 2016.

10 Pedro Celis, Per-Ake Larson, and J Ian Munro. Robin hood hashing. In 26th Annual Symposium
on Foundations of Computer Science (sfcs 1985), pages 281–288. IEEE, 1985.

11 Shimin Chen, Anastassia Ailamaki, Phillip B Gibbons, and Todd C Mowry. Improving hash
join performance through prefetching. ACM Transactions on Database Systems (TODS),
32(3):17–es, 2007.

ECOOP 2023

https://dpdk.org/
https://arxiv.org/abs/1612.06257
https://github.com/bwoodsend/hirola/
https://hyper-db.de/
https://github.com/greg7mdp/parallel-hashmap
https://github.com/nathan-russell/hashmap
https://github.com/jckarter/tbb
https://www.tpc.org/tpch

27:26 An Efficient Vectorized Hash Table for Batch Computations

12 Bin Fan, David G Andersen, and Michael Kaminsky. {MemC3}: Compact and concurrent
{MemCache} with dumber caching and smarter hashing. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages 371–384, 2013.

13 Xiaozhou Li, David G Andersen, Michael Kaminsky, and Michael J Freedman. Algorithmic
improvements for fast concurrent cuckoo hashing. In Proceedings of the Ninth European
Conference on Computer Systems, EuroSys’14, pages 1–14, 2014.

14 Hyeontaek Lim, Bin Fan, David G Andersen, and Michael Kaminsky. Silt: A memory-efficient,
high-performance key-value store. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 1–13, 2011.

15 Tobias Maier, Peter Sanders, and Roman Dementiev. Concurrent hash tables: Fast and general
(?)! ACM Transactions on Parallel Computing (TOPC), 5(4):1–32, 2019.

16 Prashanth Menon, Todd C Mowry, and Andrew Pavlo. Relaxed operator fusion for in-
memory databases: Making compilation, vectorization, and prefetching work together at last.
Proceedings of the VLDB Endowment, 11(1):1–13, 2017.

17 Thomas Neumann. Efficiently compiling efficient query plans for modern hardware. Proceedings
of the VLDB Endowment, 4(9):539–550, 2011.

18 Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–
144, 2004.

19 Orestis Polychroniou, Arun Raghavan, and Kenneth A Ross. Rethinking simd vectorization
for in-memory databases. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 1493–1508, 2015.

20 Mihai Pǎtraşcu and Mikkel Thorup. The power of simple tabulation hashing. Journal of the
ACM (JACM), 59(3):1–50, 2012.

21 Stefan Richter, Victor Alvarez, and Jens Dittrich. A seven-dimensional analysis of hashing
methods and its implications on query processing. PVLDB, 9(3):96–107, 2015.

22 Kenneth A Ross. Efficient hash probes on modern processors. In 2007 IEEE 23rd International
Conference on Data Engineering, pages 1297–1301. IEEE, 2007.

23 Nicolas Le Scouarnec. Cuckoo++ hash tables: High-performance hash tables for networking
applications. In Proceedings of the 2018 Symposium on Architectures for Networking and
Communications Systems, pages 41–54, 2018.

24 Hesam Shahrokhi and Amir Shaikhha. Building a compiled query engine in python. In
Proceedings of the 32nd ACM SIGPLAN International Conference on Compiler Construction,
CC 2023, pages 180–190, 2023.

25 Amir Shaikhha, Mohammad Dashti, and Christoph Koch. Push versus pull-based loop fusion
in query engines. Journal of Functional Programming, 28:e10, 2018.

26 Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, and Dimitrios Vytiniotis.
Destination-passing style for efficient memory management. In Proceedings of the 6th ACM
SIGPLAN International Workshop on Functional High-Performance Computing, pages 12–23,
2017.

27 Amir Shaikhha, Mahdi Ghorbani, and Hesam Shahrokhi. Hinted dictionaries: Efficient func-
tional ordered sets and maps. In 36th European Conference on Object-Oriented Programming
(ECOOP 2022). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

28 Amir Shaikhha, Mathieu Huot, Jaclyn Smith, and Dan Olteanu. Functional collection
programming with semi-ring dictionaries. Proc. ACM Program. Lang., 6(OOPSLA1):1–33,
2022. doi:10.1145/3527333.

29 Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad Dashti, and
Christoph Koch. How to architect a query compiler. In Proceedings of the 2016 International
Conference on Management of Data, pages 1907–1922, 2016.

30 Dipti Shankar, Xiaoyi Lu, and Dhabaleswar K DK Panda. Simdht-bench: characterizing
simd-aware hash table designs on emerging cpu architectures. In 2019 IEEE International
Symposium on Workload Characterization (IISWC), pages 178–188. IEEE, 2019.

https://doi.org/10.1145/3527333

H. Shahrokhi and A. Shaikhha 27:27

31 Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka, Milind Kulkarni, and
Ryan R Newton. Local: a language for programs operating on serialized data. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 48–62, 2019.

32 Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky, and David G Andersen. Scalable,
high performance ethernet forwarding with cuckooswitch. In Proceedings of the ninth ACM
conference on Emerging networking experiments and technologies, pages 97–108, 2013.

ECOOP 2023

Hinted Dictionaries: Efficient Functional Ordered
Sets and Maps
Amir Shaikhha #

University of Edinburgh, UK

Mahdi Ghorbani #

University of Edinburgh, UK

Hesam Shahrokhi #

University of Edinburgh, UK

Abstract
This paper introduces hinted dictionaries for expressing efficient ordered sets and maps functionally.
As opposed to the traditional ordered dictionaries with logarithmic operations, hinted dictionaries
can achieve better performance by using cursor-like objects referred to as hints. Hinted dictionaries
unify the interfaces of imperative ordered dictionaries (e.g., C++ maps) and functional ones (e.g.,
Adams’ sets). We show that such dictionaries can use sorted arrays, unbalanced trees, and balanced
trees as their underlying representations. Throughout the paper, we use Scala to present the
different components of hinted dictionaries. We also provide a C++ implementation to evaluate
the effectiveness of hinted dictionaries. Hinted dictionaries provide superior performance for set-
set operations in comparison with the standard library of C++. Also, they show a competitive
performance in comparison with the SciPy library for sparse vector operations.

2012 ACM Subject Classification Software and its engineering → Functional languages; Theory of
computation → Data structures design and analysis

Keywords and phrases Functional Collections, Ordered Dictionaries, Sparse Linear Algebra

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.28

Acknowledgements The authors would like to thank Huawei for their support of the distributed
data management and processing laboratory at the University of Edinburgh.

1 Introduction

Sets and maps are two essential collection types for programming used widely in data
analytics [12]. The underlying implementation for both are normally based on 1) hash tables
or 2) ordered data structures. The former provides (average-case) constant-time lookup,
insertion, and deletion operations, while the latter performs these operations in a logarithmic
time. The trade-off between these two approaches has been heavily investigated in systems
communities [7].

An important class of operations are those dealing with two collection types, such as set-set-
union or the merge of two maps. One of the main advantages of hash-based implementations is
a straightforward implementation for such operations with a linear computational complexity.
However, naïvely using ordered dictionaries results in an implementation with a computational
complexity of O(n log(n)).

Motivating Example. The following C++ code computes the intersection of two sets,
implemented by std::unordered_set, a hash-table-based set:

std::unordered_set<K> result;
for(auto& e : set1) {

if(set2.count(e))
result.emplace(e);

}

© Amir Shaikhha, Mahdi Ghorbani, and Hesam Shahrokhi;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 28; pp. 28:1–28:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amir.shaikhha@ed.ac.uk
mailto:mahdi.ghorbani@ed.ac.uk
mailto:hesam.shahrokhi@ed.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2023.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

However, the same fact is not true for ordered data structures; changing the dictionary type
to std::set, an ordered implementation, results in a program with O(n log(n)) computational
complexity. This is because both the count (lookup) and emplace (insertion) methods have
logarithmic computational complexity.

As a partial remedy, the standard library of C++ provides an alternative insertion method
that can take linear time, if used appropriately. The emplace_hint method takes a hint for
the position that the element will be inserted. If the hint correctly specifies the insertion
point, the computational complexity will be amortized to constant time.1

std::set<K> result;
auto hint = result.begin();
for(auto& e : set1) {

if(set2.count(e))
hint = result.emplace_hint(hint, e);

}

However, the above implementation still suffers from an O(n log(n)) computational
complexity, due to the logarithmic computational complexity of the lookup operation (count)
of the second set. Thanks to the orderedness of the second set, one can observe that once
an element is looked up, there is no longer any need to search its preceding elements at the
next iterations. By leveraging this feature, we can provide a hinted lookup method with an
amortized constant run-time.

Hinted Data Structures. The following code, shows an alternative implementation for set
intersection that uses such hinted lookup operations:
hinted_set<K> result;
hinted_set<K>::hint_t hint = result.begin();
for(auto& e : set1) {

hinted_set<K>::hint_t hint2 = set2.seek(e);
if(hint2.found)

hint = result.insert_hint(hint, e);
set2.after(hint2);

}

The above hinted set data-structure enables faster insertion and lookup by providing a
cursor through a hint object (of type hint_t). The seek method returns the hint object
hint2 pointing to element e. Thanks to the invocation of set2.after(hint2), the irrelevant
elements of set2 (which are smaller than e) are no longer considered in the next iterations.
The expression hint2.found specifies if the element exists in set2 or not. Finally, if an
element exists in the second set (specified by hint2.found), it is inserted into its correct
position using insert_hint.

This paper introduces hinted dictionaries, a class of functional ordered data structures.
The essential building block of hinted dictionaries are hint objects, that enable faster operations
(than the traditional O(log n) complexity) by maintaining a pointer into the data structure.

Related Work. The existing work on efficient ordered dictionaries can be divided into
two categories. First, in the imperative world, there are C++ ordered dictionaries (e.g.,
std::map) with limited hinting capabilities only for insertion through emplace_hint, but
not for deletion and lookup, as observed previously.

1 https://www.cplusplus.com/reference/set/set/emplace_hint/

https://www.cplusplus.com/reference/set/set/emplace_hint/

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 28:3

Second, from the functional world, Adams’ sets [1] provide efficient implementations for
set-set operators. Functional languages such as Haskell have implemented ordered sets and
maps based on them for more than twenty years [15]. Furthermore, it has been shown [4] that
Adams’ maps can be used to provide a parallel implementation for balanced trees such as
AVL [2], Red-Black [3], Weight-Balanced [9], and Treaps [11]. However, Adams’ maps do not
expose any hint-based operations to the programmer. At first glance, these two approaches
seem completely irrelevant to each other.

Contributions. The key contribution of this paper is hinted dictionaries, an ordered data
structure that unifies the techniques from both imperative and functional worlds. The underly-
ing representation for hinted dictionaries can be sorted arrays, unbalanced trees, and balanced
trees by sharing the same interface. In our running example, alternative data-structure
implementations can be easily provided by simply changing the type signature of the hinted
set from hinted_set to another implementation, without modifying anything else.

This paper is organized as follows:
We present monoid dictionaries, the most general form of dictionaries without any
orderedness constraint on keys (Section 2). Such dictionaries subsume sets and maps and
provide a restricted form of iterations in the form of map-reduce for computing associative
and commutative aggregations over them (Section 2.4).
Afterwards, we show ordered dictionaries, a more restricted class of dictionaries where
the keys need to be ordered (Section 3). The iterations over these dictionaries are more
general than monoid dictionaries, by relaxing the commutative requirement and providing
associative aggregations. We show two particular interfaces for implementing associative
aggregations in Section 3.3.
We introduce hinted dictionaries, an implementation technique for ordered dictionaries
(Section 4). A key ingredient of hinted dictionaries are the hint objects. In Section 4.2
we show operations over hint objects.
Hinted dictionaries provide both sequential and parallel implementations for associative
aggregations (Section 5).
In order to support binary operations over dictionaries, hinted dictionaries provide a bulk
operation interface (Section 6). The design choice for these bulk operations results in a
completely different instantiation of hinted dictionaries. We present two implementations
in this paper: insert-based (Section 6.1) and join-based (Section 6.2) hinted dictionaries.
We present the implementation for hint objects in Section 7. More specifically, we
present focus-based hints, hint objects focusing on a particular position in the dictionary
(Section 7.1), and the corresponding focus-based hinted dictionaries (Section 7.2).
We present the concrete implementations for hinted dictionaries in Section 8. More
specifically, we show the implementation of ordered dictionaries using sorted arrays
(Section 8.1), unbalanced trees (Section 8.2), and balanced trees (Section 8.3). Then, we
connect all the components together in Section 8.4.
Finally, we provide a C++ prototype for hinted dictionaries and discuss the challenges
for tuning its performance in Section 9.1. We compare its performance with the standard
library of C++ for set-set and sparse vector operations and show its asymptotic improve-
ments in Section 9.2. For the latter workload we show its competitive performance with
SciPy.

Throughout the paper, we use Scala to present the different components. The main
ideas behind hinted dictionaries, however, can be implemented in other object-oriented and
functional languages with support for generic types and lambda expressions (e.g., Haskell,

ECOOP 2023

28:4 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

trait Monoid[V] {
def op(e1: V, e2: V): V
def zero: V

}

trait Equalable[K] {
def equiv(e1: K, e2: K): Boolean

}

Figure 1 The interface for monoid and equalable type classes.

OCaml, Java, Julia, Rust, and C++), as demonstrated in Section 9.1. The former is
required for implementing the structural interfaces (e.g., Monoid[T]) and generic dictionaries
(e.g., Dict[K, V]), while the latter is essential for implementing higher-order functions (e.g.,
mapReduce) in hinted dictionaries.

2 Monoid Dictionary

In this section, we present the most general form of dictionaries that we support; the ones
where the values form a monoid structure, referred to as monoid dictionaries. We start by
defining monoid and equalable values. Afterwards, we introduce the interface for monoid
dictionaries. Finally, we show the class of iterations that can be expressed over them.

2.1 Monoid
A monoid is defined as a set of values V , with a binary operator op and a zero element,
such that the following properties hold:

Associativity: For all elements a, b, c in V : op(op(a, b), c) = op(a, op(b, c))
Identity Element: For all elements a in V : op(a, zero) = op(zero, a) = a

An important class of monoids, supports the following additional axiom:
Commutativity: For all elements a, b in V : op(a, b) = op(b, a)

Such monoids are referred to as commutative monoids. Important examples of commutative
monoids are boolean values under conjunction and disjunction, integer numbers under
multiplication and addition. Matrices of real numbers are commutative monoids under
addition, but are non-commutative monoids under multiplication.

The Scala interface for monoid structures is shown in Figure 1. This interface can be
thought of as a type class, where providing concrete implementations for this interface results
in type class instances.

2.2 Equalable
In order to perform lookups over dictionaries, one requires to check for the equality of keys.
This is achieved by the Equalable type class (Figure 1). Each type class instance provides
the implementation strategy for checking the equivalence between two keys by overriding the
equiv method.

2.3 Dictionary Interface
Given the key type K with an Equalable[K] constraint, and the value type V with a
Monoid[V] constraint, one can define the interface Dict[K, V, D] for a dictionary type D
(Figure 2).

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 28:5

trait Dict[K, V, D] {
implicit val equ: Equalable[K]
implicit val mon: Monoid[V]
def find(dict: D, key: K): V
def insert(dict: D, key: K, value: V): D
def delete(dict: D, key: K): D
def size(dict: D): Int
def count(dict: D): Int
def empty(): D
def isEmpty(dict: D): Boolean
final def single(key: K, value: V): D = insert(empty(), key, value)

}

Figure 2 The interface for (monoid) dictionaries.

The specification of the methods of monoid dictionaries is as follows:
find: performs a look up for the associated value with key in the dictionary dict. If the
key does not exist in the dictionary, the identity element of the monoid structure over V
is returned (mon.zero).
insert: first performs a look up for the associated value with key. If the key does not
exist, the pair of key and value is inserted in the dictionary. If the key already exists,
the associated value, old_value, is updated by applying the binary operator of monoid
to old_value and value (mon.op(old_value, value)). As the result, the updated
dictionary is returned.
delete: returns a new dictionary where key and its associated value is removed.
size: returns the number of key-value pairs in the dictionary.
count: returns the number of key-value pairs with non-zero values in the dictionary.
empty: returns an empty dictionary of type D with keys and values of type K and V.
isEmpty: check if the given dictionary is empty or not.
single: returns a singleton dictionary containing the pair of key and value. This can
be implemented by inserting into an empty dictionary.

By providing appropriate monoid structures for values, one can instantiate different
collections from monoid dictionaries. As an example, using boolean values results in sets,
using natural numbers results in bags, and using Option types results in maps.2

2.4 Iterations over Dictionaries
Next, we introduce the constructs required for performing iterations over dictionaries. As
monoid dictionaries do not enforce any order over the keys, the iterative computation over
them must be order-agnostic. Otherwise, the iterative computation results in different
outcomes depending on the underlying organization of dictionary keys.

We provide the mapReduce method for expressing sound iterations over monoid dictionaries.
This method performs map-reduce operations by starting from the initial element z, computing
a transformation between key-value pairs to element of result type by map, and reducing the
result elements by red. To ensure the soundness of aggregate computations, the red binary
operator must be both commutative and associative.

2 Using Option types incurs boxing and unboxing costs that is avoided by libraries such as
scala-unboxed-option [5] for Scala and unpacked sums in GHC for Haskell [8]

ECOOP 2023

28:6 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

trait DictIteration[K, V, D] { this: Dict[K, V, D] =>
// precond: ‘red‘ must be commutative and associative
def mapReduce[R](dict: D, z: R, map: (K, V) => R, red: (R, R) => R): R
// precond: ‘R‘ must form a commutative monoid
def aggregate[R: Monoid](dict: D, map: (K, V) => R): R = {

val monR = implicitly[Monoid[R]]
mapReduce[R](dict, monR.zero, map, monR.op)

}
def size(dict: D): Int =

aggregate[Int](dict, (k, v) => 1)
def count(dict: D): Int =

aggregate[Int](dict, (k, v) => if(v == mon.zero) 0 else 1)
}

Figure 3 The interface for iterations on dictionaries.

As an alternative interface, we provide aggregate with a monoid constraint over the
result type. This method can be implemented in terms of mapReduce (cf. Figure 3). To
do so, we need to use the zero element and the binary operator of an instance of the type
class Monoid[R]. The Scala type system can provide an instance for type class T by using
implicitly[T] [10]. In this case, implicitly[Monoid[R]] returns an instance of type
Monoid[R], where its zero element (monR.zero) and binary operator (monR.op) are passed
as the initial value and reduction functions of mapReduce, respectively. Note that for sound
aggregations, the result type should form a commutative monoid.

One can easily provide an implementation for size using the aggregate method. As we
are only interested in counting the number of key-value pairs, it is sufficient to transform
them to 1. Note that size returns the number of all pairs in the dictionary, while count
only returns the number of pairs containing non-zero values.

For a cleaner presentation, we use the DictIteration interface to define the iteration-
based methods (cf. Figure 3). This way, we avoid a large interface for Dict. To do
so, we need to make sure that all classes and interfaces that extend DictIteration, also
extend the Dict interface. This is achieved by ascribing the type of this object of the
DictIteration interfaces with Dict[K, V, D]. Such dependency injection technique is
known as cake pattern in the Scala programming language. It is important to note that using
this technique is not essential; we can implement this code in a language without this feature
by removing the interface for DictIteration altogether. Instead, all the method definitions
of DictIteration are added to Dict.

3 Ordered Dictionary

In this section we present ordered dictionaries, the keys of which should follow a total order.
First, we define the required interface for orderable keys in Section 3.1. Then, we introduce
the interface for ordered dictionaries including bulk operations of them in Section 3.2. Finally,
similar to monoid dictionaries, we show the class of iterations expressible over ordered
dictionaries in Section 3.3.

3.1 Orderable
In this section, we introduce the interface required for the keys of ordered dictionaries (cf.
Figure 4). In ordered dictionaries, apart from the need to check for the equality of two keys
(using equiv derived from Equalable), a total order must also be provided.

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 28:7

trait Orderable[K] extends Equalable[K] {
def compare(e1: K, e2: K): Int
def max: K
def min: K
final def lt(e1: K, e2: K): Boolean = compare(e1, e2) < 0
final def gt(e1: K, e2: K): Boolean = compare(e1, e2) > 0
final def lteq(e1: K, e2: K): Boolean = compare(e1, e2) <= 0
final def gteq(e1: K, e2: K): Boolean = compare(e1, e2) >= 0
final def equiv(e1: K, e2: K): Boolean = compare(e1, e2) == 0

}

Figure 4 The interface for orderable.

The compare method is sufficient to provide the total order information. If its return
value is a positive number, the first element is greater than the second value, and for a
negative number, vice versa. Otherwise, if the return value is zero, this means that both
elements are equal. All comparison operators can be implemented using the compare method,
as can be seen in Figure 4.

As we are only interested in finite dictionaries, one can provide an upper bound and lower
bound for keys. These values are specified using max and min in the Orderable interface.
We will see in Section 7.1 how upper bounds can be used for implementing hint objects.

3.2 Ordered Dictionary Interface
The interface of ordered dictionaries is very similar to monoid dictionaries. The Equalable
type class instance is the same as the one used for Orderable. This is because the Orderable
interface subsumes the interface of Equalable by using inheritance.

The additional methods provided for ordered dictionaries are as follows:
toList: this method converts ordered dictionaries into a list of type List[(K, V)].3

append: for two ordered dictionaries left and right, where all the keys of left are
less than the keys of right, this method returns an ordered dictionary containing the
elements of both dictionaries.
join: given two ordered dictionaries left and right and a key-value pair key and value,
this method creates an ordered dictionary containing the elements of left and right as
well as the pair of key and value. In this method, all the keys of left must be less than
key, and all the keys of right must be more than key.

Note that the mentioned preconditions for the last two methods are necessary to pre-
serve the dictionary’s order, and violating any of them makes hinted dictionaries not work.
Furthermore, these two methods are bulk operations and thus are defined in a separate
OrderedDictBulkOps interface (Figure 5) following the cake pattern. These methods are crit-
ical for providing different concrete ordered dictionary implementations, as will be observed
in Section 6.

3.3 Iterations over Ordered Dictionaries
As opposed to monoid dictionaries, ordered dictionaries do not need the reduction function to
be commutative. This is because even with non-commutative reductions, ordered dictionaries
will result in a deterministic order for key-value pairs.

3 Unordered dictionaries cannot implement toList as there is no deterministic order for the key-value
pairs.

ECOOP 2023

28:8 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

trait OrderedDict[K, V, D] extends Dict[K, V, D] {
implicit val ord: Orderable[K]
implicit val equ: Equalable[K] = ord
def toList(dict: D): List[(K, V)]

}

trait OrderedDictBulkOps[K, V, D] { this: OrderedDict[K, V, D] =>
// precond: keys(left) < keys(right)
def append(left: D, right: D): D
// precond: keys(left) < k < keys(right)
def join(left: D, key: K, value: V, right: D): D

}

Figure 5 The interface for ordered dictionaries and bulk operations over them.

The toList method can be implemented by mapReduce and aggregate methods. Figure 6
shows its implementation using aggregate; it is sufficient to map each of the key-value pairs
into a singleton list. This requires the following instance of Monoid[List[T]]:

implicit def MonoidList[T] = new Monoid[List[T]] {
def op(e1: List[T], e2: List[T]): List[T] = e1 ++ e2
def zero: List[T] = Nil

}

Here, the binary operator is list append (++) and the zero element is the empty list (Nil).
The toList method returns the result of appending all these singleton lists.

3.3.1 Sequential Iterations

Similar to functional lists in functional languages, ordered dictionaries also provide a foldLeft
method for performing accumulating computations over their elements from left to right.
This method is provided in the OrderedDictFoldLeft interface (cf. Figure 6).

The mapReduce method can be implemented using foldLeft by passing the initial value
and defining the accumulating function as applying the red function to the previous state s
and the result of map(k, v).

3.3.2 Parallel Iterations

Thanks to the associative nature of reduction functions, there is no need to perform ag-
gregations only sequentially from left to right. Instead, one can perform aggregations in a
tree-structured manner, which is more parallel-friendly.

The foldTree method provided in the OrderedDictFoldTree interface (cf. Figure 6) is
responsible for computing parallel iterations. This is provided by performing a top down
traversal over the logical tree representation. Similar to foldLeft, this method accepts an
initial state (z). At each stage, it computes the stage to be passed to each of the subtrees.
The op method produces a triple of elements when applied to the current key-value pair and
the previous state. The first two elements of this triple are the states to be passed to each of
subtrees. The last element corresponds to a hidden state of type M. This hidden state is used
after the aggregation for subtrees are computed. The comb method applies this hidden state
alongside with the current key-value and the states return by the subtrees and computes the
next state.

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 28:9

trait OrderedDictIteration[K, V, D] extends DictIteration[K, V, D] {
this: OrderedDict[K, V, D] =>
// precond: ‘red‘ should only be associative
def mapReduce[R](dict: D, z: R, map: (K, V) => R, red: (R, R) => R): R
def toList(dict: D): List[(K, V)] =

aggregate[List[(K, V)]](dict, (k, v) => List((k, v)))
}

trait OrderedDictFoldLeft[K, V, D] extends OrderedDictIteration[K, V, D] {
this: OrderedDict[K, V, D] =>
def foldLeft[R](dict: D, z: R, op: (R, K, V) => R): R
override def mapReduce[R](dict: D, z: R, map: (K, V) => R, red: (R, R) => R): R =

foldLeft[R](dict, z, (s, k, v) => red(s, map(k, v)))
}

trait OrderedDictFoldTree[K, V, D] extends OrderedDictIteration[K, V, D] {
this: OrderedDict[K, V, D] =>
def foldTree[R, M](dict: D, z: R, op: (K, V, R) => (R, R, M),

comb: (K, V, M, R, R) => R): R
override def mapReduce[R](dict: D, z: R, map: (K, V) => R, red: (R, R) => R): R =

foldTree[R, Unit](dict, z, (k, v, s) => (s, s, ()),
(k, v, _, s1, s2) => red(red(s1, map(k, v)), s2))

}

Figure 6 The interface for iterations over ordered dictionaries. The foldLeft method corre-
sponds to computing aggregations sequentially and foldTree method is a parallel-friendly aggregate
computation strategy.

The mapReduce method can be implemented using foldTree as well. As the op method,
we return the previous state s to both subtrees. As the comb method, we apply the reduction
method twice. The first application involves the return state of left subtree (s1) and the
mapping of key-value pair map(k, v). The second application is over the result of the
previous reduction and the state of the right subtree (s2).

Note that for implementing mapReduce there was no hidden state required, and thus the
unit value () with unit type Unit was provided. We will see cases where this hidden state
will be required in Section 5.2.1.

By carefully keeping the value of aggregation in the ordered dictionary, one can provide a
more efficient implementation for mapReduce. This is similar to the idea of augmented trees,
and has already been investigated in Augmented Maps [17].

4 Hinted Dictionary

In this section, we introduce hinted dictionaries, an implementation strategy for ordered
dictionaries. First, we present the interface of hinted dictionaries in Section 4.1. Then, we
show the interface for hint objects in Section 4.2.

4.1 Hinted Dictionary Interface
Hinted dictionaries inherit all the methods of both monoid dictionaries and ordered dictio-
naries. Additionally, they provide the following methods:

begin: returns the hint object corresponding to the beginning of dictionary. This method
is useful for accessing the head of an ordered dictionary.

ECOOP 2023

28:10 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

trait HintedDict[K, V, D, H] extends OrderedDict[K, V, D] {
def begin(dict: D): H
def middle(dict: D): H
def end(dict: D): H
def isEnd(dict: D, hint: H): Boolean
def next(dict: D, hint: H): H
def seek(dict: D, key: K): H
// precond: current(hint)._1 == key
def findHint(dict: D, hint: H, key: K): V
// precond: current(hint)._1 == key
def insertHint(dict: D, hint: H, key: K, value: V): D
// precond: current(hint)._1 == key
def deleteHint(dict: D, hint: H, key: K): D
def insert(dict: D, key: K, value: V): D =

insertHint(dict, seek(dict, key), key, value)
def delete(dict: D, key: K): D =

deleteHint(dict, seek(dict, key), key)
def find(dict: D, key: K): V =

findHint(dict, seek(dict, key), key)
}

Figure 7 The interface for hinted dictionaries.

middle: returns the hint object of the middle of the dictionary. This method is useful
for cases that require viewing the dictionary as a tree. For example, it can be used for a
binary search where one needs to access the middle of a collection.
end: returns the hint object specifying the end of dictionaries.
isEnd: checks whether the given hint object corresponds to the end of the dictionary.
This is useful for terminating an iteration over the hinted dictionary.
next: returns the hint object succeeding the given hint object over the input dictionary.
seek: returns the hint object for the position in the array where key would be placed.
This means that the preceding elements have smaller keys and succeeding elements have
larger keys. In the case that the dictionary contains the key, the corresponding hint
object is returned.
findHint: returns the associated value with the given key using the provided hint object.
As the precondition, the hint should point to the correct position.
insertHint: inserts the given key-value pair to the position provided by the hint object.
Similar to the previous method, the hint object assumed to point to the correct position.
deleteHint: deletes the key-value pair corresponding to the input key using the provided
hint object. A similar precondition to the previous two methods hold.

By using the seek method to compute the correct hint object, one can have an imple-
mentation for find, insert, and delete using the corresponding hinted methods. Once
hinted dictionaries are supplied with (amortized) constant-time operations for these hinted
methods, one can better benefit from their efficiency.

4.2 Hint Operations
The hint objects can be thought as pointers to different locations of an ordered dictionary
(cf. Figure 8). Rather than providing a concrete implementation for hint object, we provide
an interface for them in Figure 9. We leave the actual implementation for these operators to
Section 7.

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 28:11

middlebegin end

current {after{before

Operations for middle hint

Hint objects returned from a hinted dictionary

Figure 8 An example hinted dictionary representation showing the hint objects returned by
begin, middle, and end methods and the outcome of before, current, and after over the hint
object returned by middle.

trait HintOps[K, V, D, H] { this: HintedDict[K, V, D, H] =>
def before(hint: H): D
def after(hint: H): D
def current(hint: H): (K, V)

}

Figure 9 The interface for operations on hint objects.

The methods for hint objects are as follows:
before: returns the dictionary of elements located before the hint object.
after: returns the dictionary of elements that are after the hint object.
current: returns the key-value pair of the entry of the dictionary that hint object is
pointing into. If for a given key, there is no associated value, the identity element of
monoid is returned, similar to what was observed for find.

As it was shown in Figure 7 we can use these methods to provide preconditions for the
hinted dictionary methods. In addition, all the implementations of the seek method need to
enforce the following post-condition. Assuming the result hint object is res, the key of this
element should be the same as the input key (current(res)._1 == key).4 Furthermore,
the keys of the dictionary before the result hint object (before(res)) should be less than
key. Similarly, the keys of the dictionary after the result hint object (after(res)) should
be greater than key.

5 Iterations

In this section, we use the methods provided by hinted dictionaries to implement sequential
and parallel iterations over them.

5.1 Sequential Implementation
The interface of HintedDictFoldLeft containing the implementation for foldLeft is pre-
sented in Figure 10. Recall that this method is useful for stateful iterations over dictionaries.
The initial state is specified by z, and the state is updated by applying the function op to
the current state and key-value pairs.

In order to implement foldLeft, we define a recursive function foldLeftTR inside it.
This function has two input parameters hint and res, which specify the current hint object
and the computed state by iterating up to that hint object. We start by passing the initial

4 Note that tuple indexing in Scala starts from 1, and tup._i where i is an integer shows the ith element
of the tuple.

ECOOP 2023

28:12 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

trait HintedDictFoldLeft[K, V, D, H] extends OrderedDictFoldLeft[K, V, D]
with HintedDict[K, V, D, H] with HintOps[K, V, D, H] {
def foldLeft[R](dict: D, z: R, op: (R, K, V) => R): R = {

@tailrec def foldLeftTR(hint: H, res: R): R =
if(!isEnd(dict, hint)){

val (key, value) = current(hint)
val next_res = op(res, key, value)
val next_hint = next(dict, hint)
foldLeftTR(next_hint, next_res)

}
else

res
foldLeftTR(begin(dict), z)

}
}

Figure 10 The implementation of sequential (fold-left-based) iterations over hinted dictionaries.

state z as the value of res, and the beginning of the dictionary as the value of hint. The
function foldLeftTR is recursively called until the hint object does not point to the end of
dictionary (!isEnd(dict, hint)). At each recursive call, we compute the next state value
(next_res) by applying op to the current state (res) and key-value pair and the next hint
object (next_hint) by next(dict, hint).

Note that the definition of foldLeftTR is annotated with @tailrec. This means that
this function is tail recursive – all recursive calls are appearing as the last statement. This
annotation ensures that the Scala compiler can turn this method into imperative while loops,
which results in better performance by removing the need to increase the stack frame size.

5.1.1 Example: Sparse Vector Inner Product
Figure 11 shows the interface for sparse vectors. A sparse vector Vec can be represented as a
dictionary from indices to a scalar value Sca. In order to support operation such as inner
product that involve multiplication over scalar values, we need to define a type class instance
for monoid over scalar values under multiplication (specified by prod).

An efficient sequential implementation of the inner product is provided in Figure 11.
The foldLeft method accepts a pair of states containing the result of inner product as
well as the rest of the second vector to process. The state is initially set to the monoid
identity element (dict.mon.zero) and the second vector (v2). At each iteration, the seek
method for the given key is invoked over the remaining part of the second vector. Then,
the result of inner product is updated by adding the previous result (res) to the outcome
of multiplying (prod.op) the current value (v) with the value specified by the hint object
(current(hint)._2). Note that in the case that the second vector does not have any elements
at index k, the specified value by its hint object would be zero (dict.mon.zero). Finally, the
rest of the second vector is computed by taking only the elements of dictionary happening
after the hint object (after(hint)).

5.2 Parallel Implementation
The foldTree method can also be used for performing stateful iterations over hinted
dictionaries. As opposed to foldLeft, this method can perform the computation in a
divide-and-conquer manner. Figure 12 demonstrates the process of applying foldTree over a

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 28:13

trait SparseVectorOps[Sca, Vec] {
implicit val prod: Monoid[Sca]
def inner(v1: Vec, v2: Vec): Sca

}

trait SparseVectorFoldLeftOps[Sca, Vec, H] extends SparseVectorOps[Sca, Vec] {
val dict: HintedDict[Int, Sca, Vec, H]
val dictFolding: OrderedDictFoldLeft[Int, Sca, Vec]
val hintOps: HintOps[Int, Sca, Vec, H]
import dict._
import dictFolding._
import hintOps._
def inner(v1: Vec, v2: Vec): Sca =

foldLeft[(Sca, Vec)](v1, (dict.mon.zero, v2), (s, k, v) => {
val (res, v2p) = s
val hint = seek(v2p, k)
dict.mon.op(res, prod.op(v, current(hint)._2)) -> after(hint)

})._1
}

Figure 11 The implementation of the inner product of two sparse vectors using sequential
iteration.

z

middle

zLeft zRight

hidden

before after

resRight

hidden

resLeft

result

key,value

key,value

op(key,value,z)
(zLeft, zRight, hidden)

fol
dTr

ee(
…,z

Lef
t,

…)

res
Lef

t

fol
dTr

ee(
…,z

Rig
ht,

 …)

res
Rig

ht

comb(key,value,hidden,resLeft,resRight)
result

Figure 12 The process of executing foldTree on a logical tree view of an ordered dictionary.
The recursive invocations of foldTree on the two sub-trees can be evaluated in parallel.

hinted dictionary viewed as a tree. The divide phase involves recursively applying foldTree
to the left and right subtrees, where the initial state for each recursive call is computed
using the function op. The conquer phase uses the function comb to combine the results of
recursive calls to compute the output state of the entire tree.

The interface of HintedDictFoldTree provides the implementation for foldTree using
hinted dictionaries (cf. Figure 13). If the input dictionary is empty the initial value is
returned. Otherwise, the following steps are performed. First, the hint object returned by
middle is used to retrieve the key-value pairs in the middle of the dictionary. The op function
is applied to this key-value pair and the previous state z. This results in the initial state of
the left and right sub-trees (zLeft and zRight) as well as the hidden state (hidden). The

ECOOP 2023

28:14 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

trait HintedDictFoldTree[K, V, D, H] extends OrderedDictFoldTree[K, V, D]
with HintedDict[K, V, D, H] with HintOps[K, V, D, H] {
def foldTree[R, M](dict: D, z: R, op: (K, V, R) => (R, R, M),

comb: (K, V, M, R, R) => R): R =
if(isEmpty(dict)) z
else {

val hint = middle(dict)
val (key, value) = current(hint)
val (zLeft, zRight, hidden) = op(key, value, z)
val resLeft = foldTree(before(hint), zLeft, op, comb)
val resRight = foldTree(after(hint), zRight, op, comb)
comb(key, value, hidden, resLeft, resRight)

}
}

Figure 13 The implementation of parallel (fold-tree-based) iterations over hinted dictionaries.

foldTree method is recursively invoked for both left and right sub-trees (before(hint) and
after(hint)) using their corresponding initial states. These two invocations are independent
of each other and can be run in parallel. Finally, the key-value pair, the hidden state, and
the results of recursive calls (resLeft and resRight) are combined by applying the comb
function.

Next, we show example usages of these iteration constructs.

5.2.1 Example: Set-Set Union

A set of type S, consisting elements of type K can be expressed as a dictionary with keys
of type K and values of type Boolean. Hence, they can also be expressed using hinted
dictionaries.

Figure 14 provides the interface for set-set operations such as union, intersect, and
difference. For the sake of brevity here we only show the implementation for union using
foldTree. The foldLeft-based implementation and the one for intersect and difference
can be similarly obtained.

The result type of foldTree (cf. Figure 14) is the set type S, and the type of its hidden
state is the hint type H. The iteration is over set1 with the initial state of set2. At each
stage, the seek method looks for the key k in the set specified by its current state s. As the
state for the left and right sub-trees, the dictionaries with preceding and succeeding elements
(before(hint) and after(hint)) are provided, and as the hidden state the hint object
hint is returned. For the combine operation, the state returned by the left sub-tree (s1), the
current key-value pair with update value (k and mon.op(v, current(hidden)._2)), and
the state returned by the right sub-tree (s2) are joined.

6 Bulk Operations

In this section, we provide two design decisions for implementing bulk operations. The first
design is insert-based hinted dictionaries, where the bulk operations are derived from the
implementation for the hinted insertion method (Section 6.1). The second design revolves
around using the join method as the central operator (Section 6.2).

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 28:15

trait SetSetOps[S] {
def union(set1: S, set2: S): S
def intersect(set1: S, set2: S): S
def difference(set1: S, set2: S): S

}

trait SetSetFoldTreeOps[K, S, H] extends SetSetOps[S] {
val dict: HintedDict[K, Boolean, S, H]
val dictFolding: OrderedDictFoldTree[K, Boolean, S]
val hintOps: HintOps[K, Boolean, S, H]
val dictDictOps: OrderedDictBulkOps[K, Boolean, S]
import dict._
import dictFolding._
import hintOps._
import dictDictOps._

def union(set1: S, set2: S): S =
foldTree[S, H](set1, set2, (k, v, s) => {

val hint = seek(s, k)
(before(hint), after(hint), hint)

}, (k, v, hidden, s1, s2) => join(s1, k, mon.op(v, current(hidden)._2), s2))
// ...

}

Figure 14 The implementation of set-set union using fold-tree-based iteration.

6.1 Insert-Based Hinted Dictionaries
The hinted insertion method (insertHint) is an expressive operation. By providing a
concrete implementation for this method, one can guide how an ordered dictionary can be
inductively constructed starting from an empty dictionary.

Figure 15 shows the implementation of insert-based hinted dictionaries. The insertHint
method is left as abstract. Providing different implementations result in a completely different
strategy for maintaining ordered dictionaries.

The append method is implemented by iterating over the second dictionary and adding its
elements one-by-one to the first dictionary. This is achieved by foldLeft over right, with
an initial state of left, and adding the key-value pairs of right to the end of the previously
computed result. This implementation is correct because we know that the keys appearing
in the second dictionary are greater than the keys of the first dictionary. By assuming that
we provide an implementation for insertHint with an amortized constant-time complexity,
the append operation will have an amortized linear run-time complexity.

The join method can be implemented in terms of append and insertHint. First,
we need to insert the given key-value pair to the end of the first dictionary. Afterwards,
this intermediate dictionary is appended by the second dictionary. By making the same
assumptions as append, this operation has also an amortized linear run-time complexity.

6.2 Join-Based Hinted Dictionaries
An alternative way for defining hinted dictionaries is based on the join operator. This is
inspired by Adams’ sets [1] and the follow up parallel implementations [4].

ECOOP 2023

28:16 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

trait InsertBasedDict[K, V, D, H] extends HintedDict[K, V, D, H]
with HintOps[K, V, D, H] with OrderedDictBulkOps[K, V, D]
with HintedDictFoldLeft[K, V, D, H] {
// precond: keys(left) < keys(right)
def append(left: D, right: D): D =

foldLeft[D](right, left, (s, k, v) =>
insertHint(s, end(s), k, v)

)
// precond: keys(left) < key < keys(right)
def join(left: D, key: K, value: V, right: D): D =

append(insertHint(left, end(left), key, value), right)
// precond: current(hint)._1 == key
def insertHint(dict: D, hint: H, key: K, value: V): D

}

Figure 15 The implementation of insert-based hinted dictionaries.

The implementation of join-based hinted dictionaries is shown in Figure 16. The join
method does not have a concrete implementation. It has been shown [4] that different
balanced tree representations such as AVL [2], Red-Black [3], Weight-Balanced [9], and
Treaps [11] can be expressed by providing an appropriate implementation for the join
method.

The append method is expressed as follows. If the second dictionary is empty, the first
dictionary is returned. Otherwise, the hint object for the beginning of the second dictionary
is used to retrieve its first key-value pair. Then, the join method is applied to the first
dictionary, the first key-value pair, and the rest of the second dictionary. If the join method is
an amortized linear operation, the append method also follows the same run-time complexity.

The insertHint method is expressed by joining the dictionary preceding the hint ob-
ject (before(hint)), the key-value pair with updated value (mon.op(current(hint)._2,
value)), and the dictionary succeeding the hint object (after(hint)). Note that this way of
implementing insertHint is suboptimal given that the join is a linear time operator. Thus,
one has to try avoid using insertHint for join-based hinted dictionaries for performance
reasons.

The efficiency of hinted dictionaries is not solely dependent on efficient join and
insertHint operations. Having an efficient hint object implementation is also essential,
which will be presented next.

7 Hint Implementation

This section starts with a concrete representation for hint objects. Using this representation
we provide the implementation for hint operations in Section 7.1. Afterwards, we provide
the implementation of the rest of the methods of hinted dictionaries in Section 7.2.

7.1 Focus-Based Hints
As it was stated in Section 4.2, hint objects can be viewed as pointers to different locations
of an ordered dictionary. In this section, we consider them as objects focusing on a particular
position in the dictionary. The key-value pair that the hint object focuses on, specifies the key
and value fields of the FocusHint class. The lack of a key-value pair is specified by putting
the identity element of the underlying monoid for type V. The sub-dictionary containing the
elements preceding/succeeding the focused key-value pair are stored in left/right.

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 28:17

trait JoinBasedDict[K, V, D, H] extends HintedDict[K, V, D, H]
with HintOps[K, V, D, H] with OrderedDictBulkOps[K, V, D] {
// precond: keys(left) < keys(right)
def append(left: D, right: D): D = {

if (isEmpty(right))
left

else {
val hint = begin(right)
val (key, value) = current(hint)
val rightNew = after(hint)
join(left, key, value, rightNew)

}
}
// precond: keys(left) < key < keys(right)
def join(left: D, key: K, value: V, right: D): D
// precond: current(hint)._1 == key
def insertHint(dict: D, hint: H, key: K, value: V): D =

join(before(hint), key, mon.op(current(hint)._2, value), after(hint))
}

Figure 16 The implementation of join-based hinted dictionaries.

case class FocusHint[K, V, D](left: D, key: K, value: V, right: D)

trait FocusHintOps[K, V, D] extends HintOps[K, V, D, FocusHint[K, V, D]] {
this: HintedDict[K, V, D, FocusHint[K, V, D]] =>
type H = FocusHint[K, V, D]
def before(hint: H): D = hint.left
def after(hint: H): D = hint.right
def current(hint: H): (K, V) = (hint.key, hint.value)

}

Figure 17 The implementation for focus hint and its operations.

The implementation of the hint operations using focus-based hints is very natural: before
and after return left and right fields of the FocusHint object, and current returns the
pair (hint.key, hint.value).

7.2 Focus-Based Hinted Dictionaries
Figure 18 shows the implementation of focus-based hinted dictionaries, where the hint objects
are FocusHints. The following methods are left as abstract: empty, isEmpty, begin, and
middle. Depending on the underlying data structure, the implementation for these methods
can be different.

The methods implemented by focus-based dictionaries are as follows:
seek: If the given dictionary is empty, an empty FocusHint object is returned the key
of which is the same as the input key. Otherwise, it performs a binary search to return
an appropriate hint object. For binary search, the key of the middle of the dictionary
is compared with the input key. If the middle key is the same as the input key, the
middle hint object is returned. If the input key is less than the middle key, the process
is recursively invoked for the preceding dictionary (seek(l, key)), and the result hint
object is computed by substituting its right dictionary by joining it with the rest of the
input dictionary. A similar process is performed when the input key is greater than the
middle key.

ECOOP 2023

28:18 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

trait FocusHintedDict[K, V, D] extends HintedDict[K, V, D, FocusHint[K, V, D]]
with FocusHintOps[K, V, D] with OrderedDictBulkOps[K, V, D] {
// postcond: res.key == key
def seek(dict: D, key: K): H = {

if(isEmpty(dict))
FocusHint(empty(), key, mon.zero, empty())

else {
val hint@FocusHint(l, m, v, r) = middle(dict)
if(ord.equiv(key, m)) {

hint
} else if(ord.lt(key, m)) {

val hint2 = seek(l, key)
hint2.copy(right = join(hint2.right, m, v, r))

} else {
val hint2 = seek(r, key)
hint2.copy(left = join(l, m, v, hint2.left))

} } }
def end(dict: D): H = FocusHint(dict, ord.max, mon.zero, empty())
def isEnd(dict: D, hint: H): Boolean = hint == end(dict)
def next(dict: D, hint: H): H = {

val rightDict = after(hint)
val nextHint = begin(rightDict)
if(isEnd(rightDict, nextHint))

end(dict)
else {

val (k, v) = current(nextHint)
FocusHint(before(hint), k, v, after(nextHint))

} }
def deleteHint(dict: D, hint: H, k: K): D = append(hint.left, hint.right)
def findHint(dict: D, hint: H, k: K): V = hint.value

}

Figure 18 The implementation of focus-based hinted dictionary.

end: Returns an empty FocusHint object with the key set to the upper bound of keys
(ord.max).
isEnd: Check if the given hint is the same as the end hint object.
next: The hint object for the succeeding dictionary is constructed. If this hint object
corresponds to the end of that dictionary, then the end of the input dictionary is returned.
Otherwise, the return hint object is constructed by using this hint object and the preceding
dictionary of the input dictionary.
deleteHint: It is computed by appending the preceding and succeeding dictionaries
together.
findHint: The associated value with the hint object is returned. In the case where the
key does not exist, the hint object stores the identity of the underlying monoid.

8 Concrete Implementations

In this section, provide three categories of concrete implementations for hinted dictionaries.
We start by using sorted arrays as the underlying implementation in Section 8.1. Then, we
show how unbalanced trees can be used for implementing hinted dictionaries in Section 8.2.
Finally, we use balanced trees as the representation for hinted dictionaries in Section 8.3.

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 28:19

import scala.collection.mutable.ArrayBuffer

case class ArrayView[T](buffer: ArrayBuffer[T], lower: Int, upper: Int)

trait ArrayDict[K, V] extends FocusHintedDict[K, V, ArrayView[(K, V)]] {
type D = ArrayView[(K, V)]
def empty(): D = ArrayView(ArrayBuffer(), 0, 0)
def isEmpty(dict: D): Boolean = dict.upper == dict.lower
def begin(dict: D): H =

if(isEmpty(dict)) end(dict)
else {

val (k, v) = dict.buffer(dict.lower)
FocusHint(empty(), k, v, ArrayView(dict.buffer, dict.lower + 1, dict.upper))

}
def middle(dict: D): H = {

if(isEmpty(dict)) end(dict)
else {

val mid = (dict.lower + dict.upper) / 2
val (k, v) = dict.buffer(mid)
val l = ArrayView(dict.buffer, dict.lower, mid)
val r = ArrayView(dict.buffer, mid + 1, dict.upper)
FocusHint(l, k, v, r)

} } }

class CopyingArrayDict[K, V](
implicit override val ord: Orderable[K], val mon: Monoid[V]) extends

ArrayDict[K, V]
with InsertBasedDict[K, V, ArrayView[(K, V)], FocusHint[K, V, ArrayView[(K,

V)]]] {
def insertHint(dict: D, hint: H, key: K, value: V): D = {

val array = dict.buffer.clone() // can be removed if dict is no longer used
val idx = before(hint).upper
val (prevKey, prevValue) = current(hint)
val newUpper =

if(prevValue == mon.zero) {
array.insert(idx, (key, value))
dict.upper + 1

} else {
array(idx) = (key, mon.op(prevValue, value))
dict.upper

}
ArrayView(array, dict.lower, newUpper)

} }

Figure 19 The implementation of hinted dictionaries using an underlying sorted array.

8.1 Sorted Array

Using sorted arrays is one of the main techniques for a sequential implementation of ordered
dictionaries. In the C++ world, the flat_map container provided by the Boost library [14]
uses sorted arrays for representing dictionaries. This data structure is particularly useful for
the workloads where the insertions are applied to the end of the ordered dictionary.

ECOOP 2023

28:20 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

Inspired by these C++ implementations, Figure 19 provides the implementation of
hinted dictionaries using sorted arrays. In order to preserve an underlying array we use
ArrayBuffers, mutable containers similar to std::vectors of C++. The ArrayView data
type represents a subset of an ArrayBuffer bounded by the indices specified by lower and
upper.

The implementations for empty, isEmpty, and begin are straightforward. For the middle
method, we need to first retrieve the index of the middle element (mid). Then, we compute
the preceding dictionary by using the same lower bound, but with the upper bound specified
by mid. Similarly, the succeeding dictionary uses the lower bound specified by mid+1, but
with the same upper bound. Finally, we return the focused hint object based on the key-value
pair of the middle element and the preceding and succeeding dictionaries.

To create the left and right ArrayViews of the hint object, we can share the underlying
buffer of the current ArrayDict without copying it. Since ArrayView is using ArrayBuffer
as the underlying array and the start and end of the ArrayView are determined by lower and
upper, changing these parameters can result in a new dictionary. This sharing opportunity
frees the code from copying elements every time we are using middle. A similar opportunity
is available for before and after.

Because of using arrays as the underlying representation, it would be more efficient to
follow an InsertBasedDict interface. To implement the insertHint method, we need to
check if the hint object points to an actual element. This is achieved by checking if the
associated value is different than the identity element of the underlying monoid. In the case
of the existence of an element with the same key, the size of the underlying ArrayBuffer does
not need to change; it is sufficient to update the value of the existing element by applying
the binary operator of the monoid to the previous value and the new value to be inserted
(mon.op(prevValue, value)). If the hint object does not point to an actual element, we
need to insert the given key-value pair in the specified position. Finally, we adjust the upper
bound and return the updated array.

Note that in the case that there is no more references to the input dictionary in the user
program, one can perform in-place update and there would be no need to copy the original
array. We leave the implementation of the in-place update version for the sake of brevity.

8.2 Unbalanced trees
An alternative implementation for hinted dictionaries is based on a tree-based representation.
We first give a generic implementation for tree-based hinted dictionaries that can be used
for both unbalanced and balanced tree representations. Afterwards, we show a simple
representation where no smart effort is invested for maintaining the tree in balance.

Figure 20 provides the generalized implementation for ordered dictionaries using trees.
The Tree data type is defined as an ADT (Algebraic Data Type), where Leaf corresponds
to a leaf and Bin specifies an intermediate node. As the tree nodes can maintain additional
information (e.g., height for balanced trees), the type member Entity is used for keeping
the type of the information kept by each tree node. The key and value methods are used to
extract keys and values from the elements, respectively.

As opposed to sorted arrays, the tree-based hinted dictionaries have a straightforward
implementation for middle; for leaves the hint object for end is returned, whereas for
intermediate nodes the focused-hint object with 1) the left sub-tree as the preceding dictionary,
2) the right sub-tree as the succeeding dictionary, and 3) the key/value of its element as the key-
value pair is returned. To implement begin, the helper method seekFirst is defined, which
looks for the smallest key-value pair and returns them alongside the succeeding dictionary.
These values are used to return the hint object with an empty preceding dictionary.

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 28:21

sealed trait Tree[T]
case class Bin[T](l: Tree[T], v: T, r: Tree[T]) extends Tree[T]
case class Leaf[T]() extends Tree[T]

trait TreeDict[K, V, E] extends FocusHintedDict[K, V, Tree[E]] {
type Entity = E
type D = Tree[E]
def key(e: Entity): K
def value(e: Entity): V
def empty(): D = Leaf()
def isEmpty(dict: D): Boolean = dict == Leaf()
def seekFirst(dict: D): (D, K, V) = {

val FocusHint(l, k, v, r) = middle(dict)
if(isEmpty(l)) (r, k, v)
else {

val (tp, kp, vp) = seekFirst(l)
(join(tp, k, v, r), kp, vp)

} }
def begin(dict: D): H =

if(isEmpty(dict)) end(dict)
else {

val (r, k, v) = seekFirst(dict)
FocusHint(empty(), k, v, r)

}
def middle(dict: D): H = dict match {

case Leaf() => end(dict)
case Bin(l, e, r) => FocusHint(l, key(e), value(e), r)

}
}

Figure 20 The generalized implementation for tree-based representations of hinted dictionaries.

class UnbalancedDict[K, V](implicit override val ord: Orderable[K], val mon:
Monoid[V])

extends TreeDict[K, V, (K, V)]
with JoinBasedDict[K, V, Tree[(K, V)], FocusHint[K, V, Tree[(K, V)]]]
with HintedDictFoldTree[K, V, Tree[(K, V)], FocusHint[K, V, Tree[(K, V)]]] {
def key(e: Entity): K = e._1
def value(e: Entity): V = e._2
def join(left: D, key: K, value: V, right: D): D = Bin(left, (key, value), right)

}

Figure 21 The implementation of hinted dictionaries using unbalanced binary trees.

Figure 21 shows the implementation for hinted dictionaries that use unbalanced trees.
Because of the tree-based representation, a natural interface for UnbalancedDict is the join-
based hinted dictionary, although one could use the insert-based one with worse performance.
The tree nodes do not need to maintain any additional information. Thus, the entity type
of the tree nodes is the key-value pair ((K, V)). The implementation for the join is to
simply create an intermediate node with the given key-value pair as the content, and first
and section dictionaries as the left and right sub-trees.

ECOOP 2023

28:22 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

trait BalancedDict[K, V, N] extends TreeDict[K, V, (K, V, N)]
with JoinBasedDict[K, V, Tree[(K, V, N)], FocusHint[K, V, Tree[(K, V, N)]]] {
def key(e: Entity): K = e._1
def value(e: Entity): V = e._2
def info(e: Entity): N = e._3
def zeroInfo: N
def info(e: D): N = e match {

case Leaf() => zeroInfo
case Bin(_, entity, _) => info(entity)

}
def newInfo(left: N, right: N): N
def rotateLeft(tree: D): D = tree match {

case Bin(l, e1, Bin(l2, e2, r2)) =>
bin(bin(l, key(e1), value(e1), l2), key(e2), value(e2), r2)

case _ => throw new Exception("Not left rotatable")
}
def rotateRight(tree: D): D = // elided for brevity
def isHeavier(left: D, right: D): Boolean
def isVeryHeavier(left: D, right: D): Boolean
def joinRight(left: D, key: K, value: V, right: D): D =

if(!isHeavier(left, right)) bin(left, key, value, right)
else {

val hint = middle(left)
val (leftLeft, leftRight) = (before(hint), after(hint))
val (k, v) = current(hint)
val newRight = joinRight(leftRight, key, value, right)
if(isHeavier(newRight, leftLeft)) {

val newHint = middle(newRight)
if(isVeryHeavier(before(newHint), after(newHint)))

rotateLeft(bin(leftLeft, k, v, rotateRight(newRight)))
else rotateLeft(bin(leftLeft, k, v, newRight))

} else bin(leftLeft, k, v, newRight)
}

def joinLeft(left: D, key: K, value: V, right: D): D = // elided for brevity
def bin(left: D, key: K, value: V, right: D): D =

Bin(left, (key, value, newInfo(info(left), info(right))), right)
def join(left: D, key: K, value: V, right: D): D =

if(isHeavier(left, right)) joinRight(left, key, value, right)
else if (isHeavier(right, left)) joinLeft(left, key, value, right)
else bin(left, key, value, right)

}

Figure 22 The generalized interface for hinted dictionaries using balanced binary trees.

8.3 Balanced trees
Figure 22 shows the generalized implementation for balanced-tree-based hinted dictionaries.
This interface subsumes AVL trees and WBB trees. It is possible to implement Red-Black
tree and Treaps as hinted dictionaries by appropriately overriding the join method, however,
as it was shown that AVLs and WBBs have superior performance in comparison with them [4],
we only present their implementation in this paper.

The interface of BalancedDict accepts the extra parameter N for the extra information
kept by the tree nodes. For example, AVL trees store the height of the tree in each node and
WBB trees store the size of the tree as the weight information.

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 28:23

class AVLDict[K, V](implicit override val ord: Orderable[K], val mon: Monoid[V])
extends BalancedDict[K, V, Int] {
type N = Int
def zeroInfo: Int = 0
def newInfo(left: N, right: N): N = math.max(left, right) + 1
def isHeavier(left: D, right: D): Boolean = info(left) > info(right) + 1
def isVeryHeavier(left: D, right: D): Boolean = info(left) > info(right)

}
class WBBDict[K, V](implicit override val ord: Orderable[K], val mon: Monoid[V])

extends BalancedDict[K, V, Int] {
type N = Int
val ALPHA = 0.29
val RATIO = ALPHA / (1 - ALPHA)
val BETA = (1 - 2 * ALPHA) / (1 - ALPHA)
def zeroInfo: Int = 1
def newInfo(left: N, right: N): N = left + right - 1
def isHeavier(left: D, right: D): Boolean = RATIO * info(left) > info(right)
def isVeryHeavier(left: D, right: D): Boolean =

info(left) > BETA * newInfo(info(left), info(right))
}

Figure 23 The implementation for hinted dictionaries based on AVL and WBB trees.

In order to preserve correct bookkeeping information, the smart constructor bin is
added. This method invokes the abstract method newInfo in order to compute the updated
information based on the information of the sub-trees. This method needs to be overridden
by concrete balanced tree implementation choices.

The join method starts with checking if the tree is unbalanced towards either of its
sub-trees. If this is not the case, the smart construct bin is invoked to simply construct the
new root node. However, if either of the sides is heavier, an appropriate recursive method is
invoked in order to take care of possible rotations.

In Figure 22 we show the implementation of joinRight, which is invoked when the
left sub-tree is heavier than the right sub-tree. The implementation of isHeavier is again
postponed to the concrete implementation of a balanced tree. The rest of the implementation
of joinRight mirrors a generalized version of what has been reported before in [4]. An
interesting case is when there needs to be a double rotation involved. This is checked by
isVeryHeavier, which needs to be implemented by a concrete balanced tree implementation.

Figure 23 shows the implementation of AVL and WBB trees using the generalized interface
mentioned above. The AVL tree maintains the height of the tree as the extra information.
The height of a new tree is computed by incrementing the maximum height of its sub-trees by
one. A sub-tree is heavier than another sub-tree when its height is more than an increment
of the height of the other sub-tree. And finally, a node needs double rotation only if the
height of its left sub-tree is more than the height of its right sub-tree.

The WBB tree considers the size of the tree (added by one) as the extra information,
referred to as weight [1]. The updated weight is computed by adding the weight of sub-trees
(decremented by one). The RATIO and BETA parameters control whether rotation or double
rotation need to be performed. The values for these parameters specify the trade-off between
the tree being in a perfect balance and the number of re-balancing invocations. There were
follow up research on fixing the balancing issues related to the parameter values originally
suggested by Adams [6, 16]. We use the parameters reported by [4].

ECOOP 2023

28:24 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

Monoid[V]

op: V
zero: V

Equalable[K]

equiv: K

Dict[K,V,D]

find: V
insert: D
delete: D
empty: D
isEmpty: Boolean
mapReduce[R]: R
single: D
aggregate[R]: R
size: Int
count: Int

Orderable[K]

compare: Int
max: K
min: K
lt: Boolean
gt: Boolean
lteq: Boolean
gteq: Boolean
equiv: Boolean

HintedDict[K,V,D,H]

begin: H
middle: H
end: H
isEnd: Boolean
next: H
seek: H
findHint: V
insertHint: D
deleteHint: D
before: D
after: D
current: Tuple[K,V]
find: V
insert: D
delete: D
foldLeft[R]: R
foldTree[R]: R

InsertBasedDict[K,V,D,H]

insertHint: D

append: D
join: D

JoinBasedDict[K,V,D,H]

join: D

append: D
insertHint: D

FocusHintedDict[K,V,D]

before: D
after: D
current: Tuple[K,V]
seek: FocusHint[K,V,D]
end: FocusHint[K,V,D]
isEnd: Boolean
next: FocusHint[K,V,D]
deleteHint: D
findHint: V

ArrayDict[K,V]

empty: ArrayView[K,V]
isEmpty: Boolean
begin: FocusHint[K,V]
middle: FocusHint[K,V]

CopyingArrayDict[K,V]

insertHint: D

TreeDict[K,V,N]

empty: Node[K,V,N]
isEmpty: Boolean
begin: FocusHint[K,V]
middle: FocusHint[K,V]

UnbalancedDict[K,V]

join: Node[K,V,Int]

OrderedDict[K,V,D]

append: D
join: D
foldLeft[R]: R
foldTree[R]: R
toList: List[K,V]
mapReduce[R]: R

BalancedDict[K,V,N]

zeroInfo: N
newInfo: N
isHeavier: Boolean
isVeryHeavier: Boolean
info: N
rotateLeft: Node[K,V,N]
rotateRight: Node[K,V,N]
joinRight: Node[K,V,N]
joinLeft: Node[K,V,N]
join: Node[K,V,N]

WBBTree[K,V]

zeroInfo: Int
newInfo: Int
isHeavier: Boolean
isVeryHeavier: Boolean

FocusHint[K,V,D]

ArrayView[K,V] Node[K,V,N]

Abstract Method
Concrete Method

Inheritance
Association

Abstract Class

Type Class

Concrete Class

AVLTree[K,V]

zeroInfo: Int
newInfo: Int
isHeavier: Boolean
isVeryHeavier: Boolean

Figure 24 The bird’s eye view of all the interfaces.

8.4 Putting It All Together

Finally, we give an overall picture of hinted dictionaries by connecting all the pieces together.
Figure 24 shows the different interfaces defined throughout this paper. To reduce the number
of classes, we merged the definition of several interfaces with each other (e.g., DictIterations
is merged with Dict). Crucially, there is no cake-pattern-based interface in Figure 24, as
this technique is not essential for implementing hinted dictionaries.

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 28:25

template<class K, class V, class Compare, class Mon>
class array_dict {

private:
typedef std::vector<std::pair<K, V>> vector_t;
typedef std::pair<int, bool> hint_t;
int lower; int upper;
vector_t buffer;

public:
void insert(K& key, V& value);
hint_t insert_hint(hint_t& hint_obj, K& key, V& value);
bool is_end(hint_t& hint_obj);
template<SearchMethod search_method>
hint_t seek(K& key);
void after(hint_t& hint_obj);
template<class R, class Func>
void inplace_fold_left(R& z, Func op);
/* Elided for brevity */

}

Figure 25 The interface of sorted-array-based dictionaries in C++.

9 Evaluation

In this section, we evaluate the performance of hinted dictionaries. First, we present an
efficient C++ prototype for them. Then, we show the experimental results by comparing our
C++ implementation with competitors for set-set and sparse vector operations.

9.1 Tuned Implementation in C++

The hinted dictionaries can have an efficient low-level implementation in C++. We provide
the following hinted dictionary implementations: 1) array_dict, an array-based implemen-
tation that uses std::vector<std::pair<K, V>> as the underlying representation, and 2)
wbb_dict, a tree-based implementation based on WBBs [9, 1].

We do not use the hierarchy presented in Figure 24 for performance reasons; we merge the
definitions of all the parent interfaces of hinted dictionaries into array_dict and wbb_dict.
The implementation for wbb_dict stays very similar to the one presented in Section 8.3.
However, we have applied the following performance tuning tricks for array_dict, the
interface of which is shown in Figure 25.

Pointer-Based Hints. In Section 7.1 we presented FocusHint objects that materialize the
entire dictionaries before and after a hint object. However, this design results in unnecessarily
copying of arrays (cf. Section 8.1). The array_dict implementation only maintains a pointer
to the appropriate place by using pointer-based hint objects of type std::pair<int, bool>.
If the hint object points to an actual element of the hinted dictionary, the first element of
the pair specifies its index and the second element is set to true. For keys that do not exist
in the dictionary (i.e., the associate value is the zero element of the underlying monoid),
the first element is the index of an element with the least upper bound key and the second
element is set to false.

ECOOP 2023

28:26 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

Binary Search vs. Linear Search. In Section 7.2 we used binary search (by calling middle)
in order to implement seek. However, as we observe in the next section, in many cases
it could be beneficial to use linear search. We provide a template parameter for the seek
method in order to specify the underlying search method.

In-Place Updates. Finally, we use in-place updates to improve the performance in the
following cases. First, the methods that return a subset of the hinted dictionary (before
and after) can perform an in-place modification of the boundary of the dictionary (lower
and upper). Second, the aggregation-based methods that produce dictionaries can use a
single mutable dictionary and modify it in-place, instead of passing around new dictionaries
(cf. inplace_fold_left in Figure 25).

Constant-time Size. The array_dict implementation can compute the size of the dictionary
by evaluating upper - lower. Similarly, wbb_dict can compute the size using the meta
data (info). However, both dictionaries still require iterations for count (i.e., the number of
elements with a non-zero value). Thanks to the fast size computation, we can make sure
that we always iterate over smaller dictionaries for all binary operations over dictionaries
(e.g., set-set operations).

9.2 Experimental Results

Experimental Setup. We run our experiments on a machine running Ubuntu 20.04.3
equipped with an Intel Core i5 CPU running at 1.6GHz, 16GB of DDR4 RAM. We use G++
9.4.0 for compiling the generated C++ code using the O3 flag. We also use SciPy 1.8.0 (on
Python 3.8.10) as the competitor.

Workloads. We consider the following set-set and sparse vector operations: 1) set-set union,
2) set-set intersection, 3) sparse vector addition, 4) sparse vector element-wise multiplication,
and 5) sparse vector inner product. For all the experiments, we generate randomly synthetic
data by varying the size of sets and the density of vectors. We run all the experiments for
ten times and measure their average run time.

Competitors. We consider the following alternatives of our C++ prototype and other
frameworks:

array_dict (Linear): array-based dictionary with linear-search-based seek.
array_dict (Binary): array-based dictionary with binary-search-based seek.
wbb_dict: tree-based dictionary that uses a WBB-based representation.
Baseline C++: a baseline implementation using the operations provided by std::set
(for the set experiments) or std::map (for the sparse vector experiments).
std::set_intersect, std::set_union: set-set operations provided by the standard
library of C++. As input arguments we use std::set collections.
SciPy: sparse linear algebra operators provided by the SciPy library. A sparse vector is
represented as a row matrix with a CSR (Compressed Sparse Row) or a column matrix
with a CSC (Compressed Sparse Column) format.

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 28:27

2
10

2
12

2
14

2
16

2
18

2
20

Size of S1

10
2

10
1

10
0

10
1

R
un

 T
im

e
(m

s)
Intersect | S2 Size: 210

array_dict (Binary)
array_dict (Linear)
wbb_tree
Baseline C++
std::set_intersect

2
10

2
12

2
14

2
16

2
18

2
20

Size of S1

10
0

10
1

10
2

R
un

 T
im

e
(m

s)

Intersect | S2 Size: 220

array_dict (Binary)
array_dict (Linear)
wbb_tree
Baseline C++
std::set_intersect

2
10

2
12

2
14

2
16

2
18

2
20

Size of S1

10
1

10
0

10
1

10
2

R
un

 T
im

e
(m

s)

Union | S2 Size: 210

array_dict (Binary)
array_dict (Linear)
wbb_tree
Baseline C++
std::set_union

2
10

2
12

2
14

2
16

2
18

2
20

Size of S1

10
1

10
2

R
un

 T
im

e
(m

s)

Union | S2 Size: 220

array_dict (Binary)
array_dict (Linear)
wbb_tree
Baseline C++
std::set_union

Figure 26 Experimental results for set-set operations.

Set-Set Experiments. Figure 26 shows the results for the union and intersection operations
over sets. We make the following observations. First, in most cases, we observe a superior
performance for the array_dict implementations. In most cases, the linear-search-based
approach has better performance. However, as the difference between the size of sets widens,
the binary-search starts showing better performance. This is because of the additional
run-time improvements caused by skipping irrelevant elements.

Furthermore, we observe that the wbb_dict implementation does not show superior
performance in most cases. As shown before [4], one of the advantages of such join-based
implementations is their amenability to parallelism that we leave for the future.

Finally, we observe an asymptotically improved performance over the baseline C++
implementation. This is thanks to turning O(log n) lookup and insertion operations into
amortized constant-time ones. The implementations provided by the standard library of
C++ suffer from a similar issue. In addition, due to a concurrent linear iteration over both
sets, they show worse performance for the sets with a large difference in their sizes.

Sparse Vector Experiments. The implementations for sparse vector addition and element-
wise multiplication are identical to the ones for set union and intersection, respectively. The
sparse vector addition uses real number addition instead of boolean disjunction, and the
element-wise multiplication uses real number multiplication instead of boolean conjunction.
The results for vector inner product are also very similar to the ones for the element-wise
multiplication (cf. Figure 27).

The SciPy framework uses a CSR format for representing all vectors, except for the
second operand of the vector inner product. This is because the second vector needs to be
transposed which makes the CSC format a better representation. Overall, this framework

ECOOP 2023

28:28 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

2
10

2
8

2
6

2
4

2
2

2
0

Density of V1

10
1

10
0

10
1

10
2

R
un

 T
im

e
(m

s)

Vector Addition | V2 Size: 220 | V2 Density: 2 10

array_dict (Binary)
array_dict (Linear)
wbb_tree
Baseline C++
SciPy

2
10

2
8

2
6

2
4

2
2

2
0

Density of V1

10
1

10
2

R
un

 T
im

e
(m

s)

Vector Addition | V2 Size: 220 | V2 Density: 20

array_dict (Binary)
array_dict (Linear)
wbb_tree
Baseline C++
SciPy

2
10

2
8

2
6

2
4

2
2

2
0

Density of V1

10
2

10
1

10
0

10
1

R
un

 T
im

e
(m

s)

Vector Pair-wise Multiplication | V2 Size: 220 | V2 Density: 2 10

array_dict (Binary)
array_dict (Linear)
wbb_tree
Baseline C++
SciPy

2
10

2
8

2
6

2
4

2
2

2
0

Density of V1

10
0

10
1

10
2

R
un

 T
im

e
(m

s)

Vector Pair-wise Multiplication | V2 Size: 220 | V2 Density: 20

array_dict (Binary)
array_dict (Linear)
wbb_tree
Baseline C++
SciPy

2
10

2
8

2
6

2
4

2
2

2
0

Density of V1

10
2

10
1

10
0

10
1

R
un

 T
im

e
(m

s)

Inner Product | V2 Size: 220 | V2 Density: 2 10

array_dict (Binary)
array_dict (Linear)
wbb_tree
Baseline C++
SciPy

2
10

2
8

2
6

2
4

2
2

2
0

Density of V1

10
1

10
0

10
1

10
2

R
un

 T
im

e
(m

s)

Inner Product | V2 Size: 220 | V2 Density: 20

array_dict (Binary)
array_dict (Linear)
wbb_tree
Baseline C++
SciPy

Figure 27 Experimental results for sparse vector operations.

shows superior performance for vectors with a large density. This can be related to their
better storage layout (struct of array instead of array of struct) that leads to improved cache
locality. The array_dict variants show better performance for vectors with a higher degree
of sparsity.

10 Conclusion and Outlook

In this paper, we introduced hinted dictionaries, a unified technique for implementing ordered
dictionaries. We have shown how hinted dictionaries unify the existing techniques from both
imperative and functional languages. These dictionaries can be used as the collection type
for data-intensive workloads. It would be interesting to see the usage of such data structures
for real-world use-cases such as query processing (relying on relations in the form of sets and
bags) as well as sparse linear algebra (relying on sparse vectors and matrices).

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 28:29

The performance improvement offered by hinted dictionaries does not come for free. The
programmers must be careful on how to use hinted dictionaries. As presented in Section 4,
certain preconditions need to be preserved for hint objects. Violating these preconditions by
the programmers destroys the invariants of hinted dictionaries leading to runtime errors or,
even worse, undefined behaviour, which can hinder the productivity of programmers. One
interesting future direction is to statically detect the violation of the hinted dictionaries’
invariants.

Furthermore, we envision the following future directions for hinted dictionaries. First,
we plan to consider real-world applications that require batch processing of sets and maps,
including relational query engines and sparse tensor processing frameworks. Furthermore,
it would be interesting to use code generation and multi-stage programming techniques
to generate low-level code. This way, one can automatically improve the performance by
removing allocation of unnecessary intermediate objects (e.g., FocusHint objects) or to use
in-place updates (cf. Section 9.1) from a purely functional implementation. Finally, for
applications such as query processing the trade-offs between hashing and sorting have been
debated for a long time. We believe hinted dictionaries provide a nice abstraction layer for
DSLs based on dictionaries (e.g., the physical query plan of query engines) to automatically
tune the choice of the underlying dictionary implementation [13].

References
1 Stephen Adams. Efficient sets – a balancing act. JFP, 3(4):553–561, 1993.
2 Georgy Adelson-Velsky and E. M. Landis. An algorithm for the organization of information.

Proc. of the USSR Academy of Sciences, 145:263–266, 1962. In Russian, English translation
by Myron J. Ricci in Soviet Doklady, 3:1259-1263, 1962.

3 Rudolf Bayer. Symmetric Binary B-Trees: Data Structure and Maintenance Algorithms. Acta
Informatica, 1:290–306, 1972.

4 Guy E Blelloch, Daniel Ferizovic, and Yihan Sun. Just join for parallel ordered sets. In
SPAA’16, pages 253–264, 2016.

5 Sébastien Doeraene. A type-parametric unboxed Option type for Scala. https://github.com/
sjrd/scala-unboxed-option, 2019. Accessed: 2021-10-11.

6 Yoichi Hirai and Kazuhiko Yamamoto. Balancing weight-balanced trees. Journal of Functional
Programming, 21(3):287–307, 2011.

7 Changkyu Kim, Tim Kaldewey, Victor W Lee, Eric Sedlar, Anthony D Nguyen, Nadathur
Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. Sort vs. hash revisited: Fast
join implementation on modern multi-core CPUs. PVLDB, 2(2):1378–1389, 2009.

8 Hećate Moonlight. unpacked sum types · Wiki · Glasgow Haskell Compiler / GHC. https:
//gitlab.haskell.org/ghc/ghc/-/wikis/unpacked-sum-types, 2021. Accessed: 2021-10-
11.

9 Jürg Nievergelt and Edward M. Reingold. Binary search trees of bounded balance. SIAM J.
Comput., 2(1):33–43, 1973.

10 Bruno CdS Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and implicits.
ACM Sigplan Notices, 45(10):341–360, 2010.

11 Raimund Seidel and Cecilia R Aragon. Randomized search trees. Algorithmica, 16(4):464–497,
1996.

12 Amir Shaikhha, Mathieu Huot, Jaclyn Smith, and Dan Olteanu. Functional collection
programming with semi-ring dictionaries. PACMPL, 6(OOPSLA1):1–33, 2022.

13 Amir Shaikhha, Marios Kelepeshis, and Mahdi Ghorbani. Fine-tuning data structures for query
processing. In Proceedings of the 21st ACM/IEEE International Symposium on Code Genera-
tion and Optimization, CGO 2023, pages 149–161, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3579990.3580016.

ECOOP 2023

https://github.com/sjrd/scala-unboxed-option
https://github.com/sjrd/scala-unboxed-option
https://gitlab.haskell.org/ghc/ghc/-/wikis/unpacked-sum-types
https://gitlab.haskell.org/ghc/ghc/-/wikis/unpacked-sum-types
https://doi.org/10.1145/3579990.3580016

28:30 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

14 Boost Software. Class template flat_map - 1.79.0. https://www.boost.org/doc/libs/1_79_
0/doc/html/boost/container/flat_map.html, 2018. Accessed: 2021-10-5.

15 Milan Straka. The performance of the haskell containers package. ACM Sigplan Notices,
45(11):13–24, 2010.

16 Milan Straka. Adams’ trees revisited. In International Symposium on Trends in Functional
Programming, pages 130–145. Springer, 2011.

17 Yihan Sun, Daniel Ferizovic, and Guy E Belloch. PAM: parallel augmented maps. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 290–304, 2018.

https://www.boost.org/doc/libs/1_79_0/doc/html/boost/container/flat_map.html
https://www.boost.org/doc/libs/1_79_0/doc/html/boost/container/flat_map.html

Semantics for Noninterference with Interaction
Trees
Lucas Silver #

University of Pennsylvania, Philadelphia, PA, USA

Paul He #

University of Pennsylvania, Philadelphia, PA, USA

Ethan Cecchetti #

University of Maryland, College Park, MD, USA
University of Wisconsin – Madison, WI, USA

Andrew K. Hirsch #

State University of New York at Buffalo, NY, USA

Steve Zdancewic #

University of Pennsylvania, Philadelphia, PA, USA

Abstract
Noninterference is the strong information-security property that a program does not leak secrets
through publicly-visible behavior. In the presence of effects such as nontermination, state, and
exceptions, reasoning about noninterference quickly becomes subtle. We advocate using interaction
trees (ITrees) to provide compositional mechanized proofs of noninterference for multi-language,
effectful, nonterminating programs, while retaining executability of the semantics. We develop
important foundations for security analysis with ITrees: two indistinguishability relations, leading to
two standard notions of noninterference with adversaries of different strength, along with metatheory
libraries for reasoning about each. We demonstrate the utility of our results using a simple imperative
language with embedded assembly, along with a compiler into that assembly language.

2012 ACM Subject Classification Theory of computation → Denotational semantics; Security and
privacy → Logic and verification; Security and privacy → Information flow control

Keywords and phrases verification, information-flow, denotational semantics, monads

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.29

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.6
Software (Source Code): https://github.com/DeepSpec/InteractionTrees/tree/secure

archived at swh:1:dir:5cdf25ba007aa5744f02131d87740ca72493488c

Funding This work was funded in part by the NSF under the award 1521539 (Weirich, Zdancewic,
Pierce).

1 Introduction

Information-flow guarantees state that programs respect the information-security specifica-
tions of their inputs and outputs. The most basic is noninterference, which states that secret
data cannot influence publicly observable behavior. There are many languages designed to
enforce information-flow properties, guaranteeing that programs treat their sensitive inputs
correctly [28, 39, 40]. The importance of information-security properties has increasingly
led to verification efforts for such languages and systems [7, 20]. These efforts, however, are
mostly limited to source-level guarantees for a single language. For security guarantees to be
meaningful, the entire language toolchain must support them.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Lucas Silver, Paul He, Ethan Cecchetti, Andrew K. Hirsch, and
Steve Zdancewic;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 29; pp. 29:1–29:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lucsil@seas.upenn.edu
mailto:paulhe@cis.upenn.edu
https://orcid.org/0000-0002-6305-4335
mailto:cecchetti@wisc.edu
https://orcid.org/0000-0001-7900-8328
mailto:akhirsch@buffalo.edu
https://orcid.org/0000-0003-2518-614X
mailto:stevez@cis.upenn.edu
https://orcid.org/0000-0002-3516-1512
https://doi.org/10.4230/LIPIcs.ECOOP.2023.29
https://doi.org/10.4230/DARTS.9.2.6
https://doi.org/10.4230/DARTS.9.2.6
https://github.com/DeepSpec/InteractionTrees/tree/secure
https://archive.softwareheritage.org/swh:1:dir:5cdf25ba007aa5744f02131d87740ca72493488c;origin=https://github.com/DeepSpec/InteractionTrees;visit=swh:1:snp:b4d6361de692b969d62f589ca1afd1ee000d0156;anchor=swh:1:rev:0bf12b19e9358c3fa7b4bae36714874a9d56c190
https://doi.org/10.4230/DARTS.9.2.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Semantics for Noninterference with Interaction Trees

One of the key decisions when formalizing any effectful, possibly-nonterminating language
is the choice of representation. Much prior work focuses on operational semantics defined
as a relation on syntax, or on trace models defined as a predicate over lists or streams of
observations [21, 25, 36]. However, such definitions often require auxiliary constructs, like
program counters or evaluation contexts, making proofs brittle and hard to compose. These
concerns are particularly pronounced for information-security properties, which often rely on
subtle definitions with delicate correctness proofs. The complexity of multi-language settings
further complicates the already-fraught choice of language representation.

Interaction Trees (ITrees) [57, 59] provide an alternative: a runnable denotational seman-
tics for effectful, potentially-nonterminating programs, with a library implemented in Coq [29].
Intuitively, ITrees represent programs as interactions with the environment. At a technical
level, ITrees are a coinductive data type based on free monads [50]. Programs are either done
and provide a return value, emit an event to the environment and continue once the environ-
ment provides a response, or produce a “silent event,” allowing ITrees to represent (silently)
diverging programs in strongly normalizing metalanguages. By interpreting the events into
a suitable monad [31], ITrees can express the semantics of diverse programming-language
features, and thus many different languages. This versatility makes ITrees well-suited to
cross-language reasoning [57] and reasoning about real-world toolchains [59, 24].

ITrees come equipped with a notion of program equivalence based on weak bisimilarity,
which considers programs equivalent if they differ only by a finite number of silent steps.
Properties like noninterference, however, require more nuanced reasoning because some
program behaviors are visible to an attacker while others are not.

This work introduces two indistinguishability relations for ITrees to capture these intu-
itions: one progress-sensitive and one progress-insensitive. These definitions – motivated by
corresponding notions found in the information-flow security literature [56, 55, 45] – adapt
the notion of bisimilarity to account for what information is available to an adversary. They
require delicate treatment of the interplay between nontermination and the interactions of
a program with its environment. Progress-sensitive noninterference is a very strong guar-
antee, but is overly restrictive for many real-world programming tasks. For instance, it
generally disallows loops that depend on secret data. Progress-insensitive noninterference is
less demanding, but provides considerably less security [6].

While the definitions of ITrees and our indistinguishability relations are coinductive, we
provide metatheoretic results allowing a proof engineer to reason with these relations without
manual coinduction. These results further connect these indistinguishability relations to the
standard ITrees notion of bisimilarity, providing compatability with existing results.

We validate this design with a simple toolchain for cross-language noninterference. The
toolchain consists of a simple imperative language, Imp, and a simple assembly language,
Asm. There are two type systems for Imp and a compiler from Imp to Asm. One type
system enforces progress-sensitive noninterference and the other enforces progress-insensitive
noninterference. In addition to standard information flow typing rules, the type systems
allow for semantic typing: any semantically secure program can be considered well typed.
This flexibility allows Imp to support embedded Asm blocks without giving a type system to
Asm, and it demonstrates the powerful semantic composition of our security reasoning. We
further verify that our Imp-to-Asm compiler preserves both kinds of noninterference. This
preservation relies only on semantic security, not the type system, which is required to allow
for security preservation with semantic typing.

To further demonstrate the utility of our approach, we include exceptions in Imp. Ex-
ceptions show how our indistinguishability semantics interact with effects that may alter
control flow, which are a particular challenge for information-flow reasoning. This inclusion
also requires an extension to the ITrees library that is orthogonal to the security extensions.

L. Silver, P. He, E. Cecchetti, A. K. Hirsch, and S. Zdancewic 29:3

Section 2 reviews background on information-flow control and ITrees, the Imp language,
and its semantics defined with ITrees. The contributions of this paper are as follows.

Section 3 extends the ITrees library with exceptions and exception handlers.
Section 4 adapts ITrees metatheory to reason about security guarantees, defining progress-
sensitive and progress-insensitive notions of indistinguishability and noninterference.
Section 5 uses ITrees and the new relations to prove the security of two standard
information-flow type systems for Imp.
Section 6 extends Xia et al.’s [57] simple compiler from Imp to Asm with exceptions and
print effects. We then show that Xia et al.’s notion of compiler correctness immediately
implies security preservation using only the metatheory of indistinguishability.

Finally, Section 7 discusses related work and Section 8 concludes. All definitions and theorems
described in this paper have been formalized in Coq.

2 Background

We now review background on information-flow control, interaction trees, and Imp.

2.1 Information-Flow Control
We represent information-security policies using a set of information-flow labels L that must
form a preorder. That is, there is a reflexive, transitive relation ⊑ (pronounced “flows to”) on
labels where ℓ ⊑ ℓ′ means that any adversary who can see information with label ℓ′ can also
see information with label ℓ. We also identify adversaries with labels. An adversary at label ℓ

can only see information with labels that flow to ℓ. Information-flow systems use a variety of
orderings, including simply “public” and “secret,” subsets of permissions [62], lattices over
principals making up a system [33, 5, 49], and orderings based on logical implication [39].

The classic information-flow security policy is noninterference: if an adversary cannot
distinguish a program’s inputs, they should not be able to distinguish its outputs or its
interactions with the environment. Because information-flow labels determine which data an
adversary can observe, a semantic version of noninterference requires a semantic model of
information-flow labels. Sabelfeld and Sands [46] suggest modeling labels as partial equivalence
relations (PERs) on terms. PERs are relations that are symmetric and transitive, but not
necessarily reflexive. PERs act like equivalence relations on a subset of their domain. For
information-flow security, such PERs are called “indistinguishability relations.”

This model further asserts that indistinguishable programs take indistinguishable inputs
to indistinguishable outputs. That is, related programs, applied to related inputs, produce
related computations. This closure property allows a semantic version of noninterference to
be defined as self-relation of a program. A program is related to itself – and noninterfering –
if and only if, for every adversary, given any two inputs an adversary cannot distinguish, it
produces two computations that adversary cannot distinguish.

As we will see in Section 4, indistinguishability gives a natural way to reason about
noninterference using ITrees. Requiring every indistinguishability relation to be a PER,
however, corresponds to strong assumptions about the adversary. In particular, it requires that
the adversary be able to distinguish a program that silently diverges from a program that takes
arbitrarily long to produce an observable interaction with its environment. Noninterference
against this strong adversary is known as progress-sensitive noninterference. While this
strength provides more security, enforcing progress-sensitive noninterference results in a
prohibitively expensive programming model [45, 55, Section 5.1]. To allow for enforcement of
progress-insensitive noninterference, the indistinguishability model is often relaxed to not
require transitivity [54, 42, 16].

ECOOP 2023

29:4 Semantics for Noninterference with Interaction Trees

2.2 Basic Definitions for Interaction Trees
Interaction Trees (ITrees) [57] are a coinductive data structure designed to give denotational
semantics to effectful, possibly divergent programs. ITrees model such computations as
branching trees where internal nodes represent events, or interactions with the environment,
with a branch for each different possible response from the environment. The use of coinduction
means that these trees can be infinite, modeling diverging programs. Because ITrees give a
denotational semantics to programs, they are a language-agnostic view of programs. Thus,
we can use ITrees as a common domain for multiple languages, allowing us to reason about
how those languages interact.

The type of an ITree includes an event signature E and a result type R. The result type
simply specifies the output type if the program halts normally. The event signature E defines
the interface by which the environment interacts with the program. E : Type → Type is a
type transformer that takes an answer type A and returns E A, the type of an event that
produces a value of type A. For example, the event signature, stateE, modeling a state effect
might have two constructors: get and set. A get event represents a state access that returns
a number, so it has type stateE(N). A set event represents an assignment that need not
return any useful information, so it has type stateE(unit).

ITrees have the following constructors.

r : R

ret r : itree E R
−−−−−−−−−−−−−−−−−

t : itree E R

τ · t : itree E R
================

e : E A k : A→ itree E R

Vis e k : itree E R
==============================

In this paper, a double line in an inference rule means that it should be interpreted coinduc-
tively, while a single line is interpreted inductively, as usual. This definition, then, is a fully
coinductive definition, since the only single-line definition is a base case.

The ITree ret r represents a program terminating with a value r. The ITree τ ·t represents
a silent internal step of computation, followed by the ITree t. Because ITrees are a coinductive
data structure, we can chain an infinite number of τ ’s together in the ITree tspin = τ · tspin.
Here, tspin models a divergent program that causes no side effects. Finally, the ITree Vis e k

represents a visible event e of type E A for some answer type A, followed by a continuation
k that takes an answer of type A and produces an itree E R. Intuitively, k defines how the
computation proceeds after the environment handles event e. Since k’s behavior may differ
depending on the value returned by e, there is one possible computational “branch” for each
value of type A. In this view, ITrees are potentially infinitely long trees.

For any event signature E, itree E forms a monad [31]. The unit operation is provided
by the ret constructor, and the bind operation, written m≫= k, is defined as a corecursive
function which replaces every ret r in m with k r. We will also use the common monad
notation x ← t1 ; t2 in place of t1 ≫= λx.t2. ITrees satisfy the monad laws up to strong
bisimulation, which we use as an equivalence on ITrees since they are potentially infinite
objects. Two ITrees are strongly bisimilar when they have exactly the same shape (including
the values returned at corresponding leaves).

In combination with the monad operations, another useful operation is trigger, which
lifts an event into an ITree that immediately returns the environment’s response:

trigger e = Vis e ret

ITrees also support an iteration operation:

iter : ∀A, B.(A→ itree E (A⊕B))→ A→ itree E B

Intuitively, iter body a acts as a do-while loop, running body on input a and either continuing
with a new value of type A, or stopping with a final value of type B.

L. Silver, P. He, E. Cecchetti, A. K. Hirsch, and S. Zdancewic 29:5

Expressions e ::= x | n | e + e | e− e | e ∗ e

Commands c ::= skip | x := e | c1 ; c2 | while (e) do {c}
| if (e) then {c1} else {c2} | print(ℓ, e) | inline {a}

Inlined Assembly a ::= (see Section 6)

Figure 1 Imp syntax, where x is a variable, n is a number, and ℓ is an information-flow label.

2.3 Semantics for Imp with Security Labels
To explore how ITrees can help us verify noninterference properties, we will use a simple
imperative language, Imp, as a running example and case study. Conveniently, previous
work on both ITrees [57] and noninterference [45] use Imp as case studies, ensuring that the
connection we make corresponds with existing tools and techniques in both domains. Our
version of Imp, presented in Figure 1, includes features not present in the works cited above:
the ability to print expressions to one of several output streams, and the ability to inline
code from a simple assembly language. Section 3 will further extend Imp to allow throwing
and catching exceptions. The output streams are indexed by information-flow labels, and
we think of stream ℓ as being visible to any adversary at or above ℓ, but no others. Thus,
printing secret information to a public stream leaks data.

The assembly language, Asm, is a simplification of standard assembly language. We allow
an infinite number of registers, and we assume that the heap is addressed by variables, as
in Imp. We also do not allow dynamic jumps, only jumps to fixed addresses. Beyond those
simplifications, we include features similar to those in Imp: we allow printing to streams
indexed by information-flow labels and, as we show later, the Asm semantics can model
uncaught exceptions, both features necessary for correct compilation of Imp code. We discuss
the syntax and semantics of Asm in more detail in Section 6.

As in languages like C, embedding Asm in Imp allows developers more control over the
performance of their code. For instance, the simple compiler in Section 6 would compile the
Imp program y := x + 1 ; z := x + 2 to an Asm program that loads data from x into a register
twice, once for each assignment. Since Loads are relatively expensive, when the Imp code
above appears in a critical loop a developer might replace it with the following Asm code:

Start : load $0 ← x

add $0 ← $0, 1
store y ← $0
add $0 ← $0, 1
store z ← $0
jmp Exit

This program starts from the Start label, and terminates the program by jumping to the
Exit label. Unlike our compiler’s output, this custom Asm only has one load instruction.

Giving semantics to Imp using ITrees requires defining events representing possible
interactions between an Imp program and its environment. Imp has three types of events:
stateE for the heap state, regE for the register state, and printE for output. There are two
constructors for stateE events, one for reading and one for writing.

get : var→ stateE(N) set : var→ N→ stateE(unit)

The regE events require another two constructors, again one for reading and one for writing.

getreg : reg → regE(N) setreg : reg → N→ regE(unit)

ECOOP 2023

29:6 Semantics for Noninterference with Interaction Trees

JeKe : itree progE N

JxKe = trigger get(x)
JnKe = ret n

Je1 + e2Ke = x← Je1Ke ;
y ← Je2Ke ;
ret (x + y)

JcKc : itree progE unit

JskipKc = ret ()
Jx := eKc = n← JeKe ; trigger set(x, n)

Jprint(ℓ, e)Kc = n← JeKe ; trigger print(ℓ, n)
Jc1 ; c2Kc = Jc1Kc ; Jc2Kc

u

v
if e

then {c1}
else {c2}

}

~

c

= n← JeKe ;
if n ̸= 0
then Jc1Kc

else Jc2Kc

Jwhile (e) do {c}Kc = iter

λ_. n← JeKe ;
if n ̸= 0
then

(
JcKc ; ret inl()

)
else ret inr()

 ()

Jinline {a}Kc = JaKasm

Figure 2 Imp denotational semantics.

There is only one constructor for printE events: print : L → N→ printE(unit).
As Imp programs can produce all three types of events, we combine them with disjoint

union. The resulting event type for Imp programs is progE = regE⊕ stateE⊕ printE. For
notational simplicity, we elide the injection operator when using these compound events.

Figure 2 presents the denotation of Imp using these events. Note that there are two
denotation functions: J·Ke for expression and J·Kc for commands. As expressions produce
numbers and commands have no output, J·Ke produces computations of type itree progE N,
while J·Kc produces computations of type itree progE unit. The function J·Kasm gives ITree-
based semantics to Asm. Its full definition can be found in the work of Xia et al. [57]; we
discuss the modifications necessary to accommodate our changes in Section 6.

The denotation for expressions is fairly straightforward, and, importantly for proofs,
completely compositional – an expression’s meaning is constructed from that of its subexpres-
sions. The denotation of a variable is a get event, a literal n becomes ret n, and arithmetic
expressions simply denote each argument and return the resulting value using bind.

Most commands are equally simple and compositional. skip is an immediate ret. Both
assignment and print first denote the argument and then bind the result into the appropriate
event. Sequencing is implemented with bind on a unit value that we elide. Conditionals first
denote the condition, and then return the denotation of either the left or right command
depending on the result.

Loops are more complex and make use of the iter combinator. The combinator expects
a function that returns itree progE (unit ⊕ unit), where a left value indicates “continue”
and a right value indicates that the loop should terminate. The function given to iter first
computes the value of the loop’s guard expression. If the value is not zero, it sequences
a single denotation of the loop body with ret inl(), indicating the loop should continue.
Otherwise, if the value is zero, it signals to halt the iteration with ret inr().

2.4 Handlers and Interpretations
The events in an ITree can be thought of as a kind of syntax. Even though we give them names
that suggest certain behaviors, like get and set, nothing about their structure enforces this
behavior. Consider the ITree trigger set(x, 0) ; trigger get(x): while the names suggest

L. Silver, P. He, E. Cecchetti, A. K. Hirsch, and S. Zdancewic 29:7

that the result of this get should be 0, it actually produces a tree with one branch for
every natural number. Likewise, the ITree JcKc representing an Imp program c does not fully
express the behavior we would expect from c because it has uninterpreted state events.

The behavior of events is determined by a function called an event handler from events
to effectful computations. As is standard, we represent effectful computations as elements
of a monad M , giving an event handler the type ∀A. E A→ M A. For example, consider
hprog which uses the standard monadic interpretation of state to interpret progE events:

hprog(get(x)) = λ(r, h). ret (r, h, h(x))
hprog(set(x, n)) = λ(r, h). ret (r, h[x 7→ n], ())

hprog(getreg(x)) = λ(r, h). ret (r, h, r(x))
hprog(setreg(x, n)) = λ(r, h). ret (r[x 7→ n], h, ())

hprog(print(ℓ, n)) = λ(r, h). trigger print(ℓ, n) ; ret (r, h, ())

Any event handler can be lifted to a function from ITrees to effectful computations
using the interp function, which traverses an ITree, replacing each event with the effectful
computation assigned by the handler. The full semantics of an Imp program is the interpreted
ITree, interp hprog JcKc.

2.5 Inlined Asm and Undefined Behavior
Adding support for inlined Asm code introduces a new complication to the semantics of Imp:
undefined behavior. To analyze the correctness and security of a language toolchain, we need
to define the behavior of source-level programs. The semantics defined in Section 2.3 and
Section 2.4 do that for Imp as long as any inlined Asm has well-defined behavior. However,
consider the following Imp program, which contains inlined Asm.

p = c ; inline { Start : brz $0 A1 A2
A1 : load X ← 0

jmp Exit
A2 : load X ← 1

jmp Exit }

The inlined Asm program looks at the value in register 0 and, if it is zero, jumps to
address A1; otherwise it jumps to address A2. Thus, the value of X after executing program
p depends on the value of register $0 after c is executed. However, it is not clear what the
register’s value will be when this program is compiled and run, since reasonable compilers
could use the register $0 in different ways – or not at all – to compile the Imp command c,
resulting in different register states. We thus consider inlining any Asm program that relies
on the initial values of registers to be undefined behavior. We formalize this property in
Section 5.3. We further take the same approach as CompCert,1 and only verify the correctness
and security of programs that are well-defined.

2.6 Weak Bisimulation
Much of the power of ITrees comes from their equational theory. While it is natural to
reason about coinductive structures like ITrees using bisimulation, the “obvious” bisimulation
relation is too strong for our needs. For example, the more complex operations we have

1 Personal Communication with Xavier Leroy.

ECOOP 2023

29:8 Semantics for Noninterference with Interaction Trees

R(r1, r2)

E ⊢ ret r1 ≈R ret r2

−−−−−−−−−−−−−−−−−−−−−
e : E A ∀(a : A), E ⊢ k1(a) ≈R k2(a)

E ⊢ Vis e k1 ≈R Vis e k2
=======================================

E ⊢ t1 ≈R t2

E ⊢ τ · t1 ≈R τ · t2
==================

E ⊢ t1 ≈R t2

E ⊢ τ · t1 ≈R t2

−−−−−−−−−−−−−−−
E ⊢ t1 ≈R t2

E ⊢ t1 ≈R τ · t2

−−−−−−−−−−−−−−−

Figure 3 Inference rules for weak bisimulation.

introduced, like iter and interp, insert some (finite number of) silent internal τ steps,
which would be convenient to ignore. For this reason, we often prefer to work with a coarser
equivalence called weak bisimulation, or equivalence-up-to-tau (eutt), which ignores finite
numbers of τs when comparing two ITrees.

Weak bisimulation is defined by the inference rules in Figure 3, where the relation
is parameterized by a relation R used to compare return values. Furthermore, the event
signature of the two ITrees is made explicit by the E parameter. The first three inference
rules correspond to the three constructors of an ITree and are exactly the definition of strong
bisimulation. The last two rules allow us to ignore any finite number of τs. The fact that
these rules are inductive rather than coinductive is crucial. If these rules were coinductive,
we could use them to show that a diverging ITree with only τ constructors is equivalent to
any other ITree. Using this technique of mixed induction and coinduction, coinductive rules
may be used infinitely often, while inductive rules can only be used a finite number of times
before either terminating with a base case or applying a coinductive rule.

Xia et al. [57] formalize the ITrees data structure and its metatheory in a Coq library,2
providing a rich equational theory up to this definition of weak bisimulation. This theory allows
users to prove termination-sensitive properties about ITrees without explicitly performing
coinductive proofs, greatly reducing the proof burden.

3 Exceptions with Interaction Trees

As mentioned in Section 1, we include exceptions in Imp since they are an important example
of an effect which can change the control flow. In this section, we show how to model
exceptions with ITrees by adding throw and catch constructs to Imp as follows:

Commands c ::= · · · | throw(ℓ) | try {c1} catch {c2}

Note that the throw command includes an information flow label, specifying who may see
the exception.

3.1 Exceptions as Halting Events
We model exceptions in ITrees as halting events. Recall from Section 2.2 that events create
one branch for every possible response from the system. If an event has an uninhabited
response type, then that continuation can never be run since the answer type has no values.
We call such events halting because they force the computation to stop. We formalize this
with the following lemma:

2 This Coq development, as well as our extension of it, defines coinductive relations using the paco
library [18, 60] for coinductive reasoning.

L. Silver, P. He, E. Cecchetti, A. K. Hirsch, and S. Zdancewic 29:9

▶ Lemma 1. Suppose A is an uninhabited type and e is an event of type E A, then given
any continuations k1 and k2 and any return relation R, E ⊢ Vis e k1 ≈R Vis e k2.

The continuation of a halting event cannot be run and has no effect on the computational
content of the ITree. This allows a programmer to assign such an ITree any desired return type
without changing its computational content. This property makes halting events useful for
modeling (uncaught) exceptions: an exception can have any type and causes computation to
stop. To represent exceptions using this strategy, we use an event type excE with only a single
constructor exc : Err → excE(∅) which takes the exception’s data payload and produces an
event with an empty answer type. This allows us to define Jthrow(ℓ)Kc = trigger exc(ℓ).

3.2 Catching Exceptions

Real-world languages do not just throw exceptions, they also handle them. To implement
exception handling in ITrees, we use a common monadic interpretation of exceptions: we allow
programs to return either a standard return value or an exception. Specifically, we move from
an ITree of type itree (excE Err⊕E) R to one of type itree (excE Err⊕E) (Err⊕R)
using interp to lift the following hexc event handler to the entire ITree, as described in
Section 2.4.

hexc : ∀A, (excE Err ⊕ E) A→ itree (excE Err ⊕ E) (Err ⊕A)
hexc(inl(exc(e))) := ret inl(e)

hexc(inr(e)) := x← trigger inr(e); ret inr(x)

Even though the resulting ITree cannot have exception events, we still assign it a type that
allows them so it can cleanly compose with ITrees that do contain exception events. This
choice allows monadic bind to apply exception handlers – which may themselves contain
exception events – to any left values (exceptions) while leaving right values (normal returns)
unmodified. The result is the following exception-handling combinator, where case k1 k2
chooses the continuation k1 or k2 if the return value is inl or inr, respectively.

trycatch(t, kc) := interp hexc t≫= case kc ret

This trycatch combinator has a straightforward metatheory. In particular, we show
how it interacts with the constructors of ITrees, allowing proof engineers to reason about
trycatch without using manual coinduction.

▶ Theorem 2. The trycatch operator satisfies the following equivalences:

E ⊢ trycatch(ret r, kc) ≈= ret r

E ⊢ trycatch(τ · t, kc) ≈= trycatch(t, kc)
E ⊢ trycatch(Vis inr(a) k, kc) ≈= Vis inr(a) λx.trycatch(k(x), kc)

E ⊢ trycatch(Vis inl(exc(ε)) k, kc) ≈= kc(ε)

Finally, the trycatch operator provides a simple denotation of Imp’s try-catch blocks:

Jtry {c1} catch {c2}Kc = trycatch(Jc1Kc , λ_. Jc2Kc)

ECOOP 2023

29:10 Semantics for Noninterference with Interaction Trees

4 Indistinguishability of Interaction Trees

To leverage the common semantic domain of ITrees to guarantee the security of a toolchain,
we define our indistinguishability relation purely semantically. Intuitively, for programs to
be indistinguishable, they must return indistinguishable results and have indistinguishable
interactions with their environments.

Since return values can be arbitrary types, we follow eutt by parameterizing indistin-
guishability over a return relation R. For indistinguishability, R describes when two values
appear to be the same to the adversary. For example, consider a program that outputs a pair
(a, b) where a is visible to Alice and b is visible to Bob, but not vice versa. The values (1, 1)
and (1, 2) are not equal, but they are indistinguishable from Alice’s perspective, as she can
only see the first element. We can represent Alice’s view of the output with a relation RAlice
defined by RAlice((a, b), (a′, b′)) ⇐⇒ a = a′.

We could simply use eutt with a return relation R modeling indistinguishability. The
resulting relation would model an adversary who can only see some part of the program’s
output, but it would require the two programs to interact with the environment in precisely
the same way. Most settings, however, allow adversaries to see some interactions, but not
others. For example, memory may be partitioned into a protected heap the adversary can
never see, and an unprotected heap that it can see at all times. Reasoning about security
when some events are visible and others are not requires changing eutt to account for what
the adversary can observe.

4.1 Secure Equivalence Up-To Taus
Our indistinguishability relation is called secure equivalence up-to tau or seutt. In addition
to a return relation, seutt is also parameterized by a label ℓ, representing what the adversary
can see, and a sensitivity function ρ that maps events to labels, representing who may observe
which events. Intuitively, two ITrees are related by seutt if the environment interactions
appear the same to an adversary who can see events only at or below label ℓ, and the return
values are related by R. We write the relation as E; ρ ⊢ps t1 ≈ℓ

R t2.
Notably, we base the relation on eutt, which makes it progress sensitive. Recall from

Section 2.1 that progress-sensitive noninterference allows any adversary to determine if a
program silently diverges, and is often prohibitively expensive to enforce. We will also define
pi-seutt, a progress-insensitive version of seutt, in Section 4.3. The judgments take the
same form, so we annotate the turnstile with a subscript ps or pi to distinguish them visually.

For presentation, we separate the rules for seutt into three groups: rules covering returns,
τs, and public events (Figure 4), rules covering secret events that do not halt the program
(Figure 5), and rules covering secret halting events (Figure 6).

Public Events and Returns. When an adversary is able to see an event, indistinguishability
acts just like weak bisimulation. The rules, found in Figure 4, are almost identical to the rules
of eutt, but with the added requirement that any visible event be visible to the adversary.
That is, we require ρ(e) ⊑ ℓ in PubVis.

It might seem mysterious that we require the event to be visible in PubVis. But allowing
this rule to apply no matter the visibility would allow the adversary too much power, since
they would know that the same result is returned on both sides of the equivalence. As we
will see, the rule for invisible events is stricter. We will also see how this strictness, when
proving a program p indistinguishable from itself, corresponds to proving that the behavior

L. Silver, P. He, E. Cecchetti, A. K. Hirsch, and S. Zdancewic 29:11

[Ret]
R(r1, r2)

E; ρ ⊢ps ret r1 ≈ℓ
R ret r2

−−−−−−−−−−−−−−−−−−−−−−−−− [TauTau]
E; ρ ⊢ps t1 ≈ℓ

R t2

E; ρ ⊢ps τ · t1 ≈ℓ
R τ · t2

======================

[PubVis]

∀a, E; ρ ⊢ps k1(a) ≈ℓ
R k2(a)

e : E A ρ(e) ⊑ ℓ

E; ρ ⊢ps Vis e k1 ≈ℓ
R Vis e k2

============================= [TauL]
E; ρ ⊢ps τ · t1 ≈ℓ

R t2

E; ρ ⊢ps t1 ≈ℓ
R t2

−−−−−−−−−−−−−−−−−−−

[TauR]
E; ρ ⊢ps t1 ≈ℓ

R τ · t2

E; ρ ⊢ps t1 ≈ℓ
R t2

−−−−−−−−−−−−−−−−−−−

Figure 4 Inference rules for indistinguishability, where all events are visible.

[PrivVisTau]

∀a, E; ρ ⊢ps k(a) ≈ℓ
R t e : E A

¬empty(A) ρ(e) ̸⊑ ℓ

E; ρ ⊢ps Vis e k ≈ℓ
R τ · t

================================ [PrivVisIndL]

∀a, E; ρ ⊢ps k(a) ≈ℓ
R t e : E A

¬empty(A) ρ(e) ̸⊑ ℓ

E; ρ ⊢ps Vis e k ≈ℓ
R t

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[PrivVisVis]

∀(a :A)(b :B), E; ρ ⊢ps k1(a) ≈ℓ
R k2(b) e1 : E A e2 : E B

ρ(e1) ̸⊑ ℓ ρ(e2) ̸⊑ ℓ ¬empty(A) ¬empty(B)

E; ρ ⊢ps Vis e1 k1 ≈ℓ
R Vis e2 k2

===

Figure 5 Inference rules for indistinguishability, where events are not visible but answer types
are inhabited.

of p does not differ in runs in low-equivalent environments. If we were to allow high events in
PubVis, this would allow our proof to only consider the behavior of p in one environment,
breaking our correspondence with information-flow security.

Private Events With Responses. When the adversary is unable to view an event, seutt
cannot act like eutt. In this case, the rules are designed to formalize two intuitions. If the
computation continues after a secret event, we should treat the event like a τ , since the
adversary cannot observe either. If the event halts the computation, the event should be
equivalent to a silently nonterminating computation.

The rules in Figure 5, along with symmetric analogues of PrivVisTau and PrivVisIndL,
handle the case where the event allows computation to continue – that is, the event’s answer
type is inhabited. The first rule, PrivVisTau, relates a private event Vis e k with a τ · t. In
addition to requiring the event to be secret (ρ(e) ̸⊑ ℓ) and have a non-empty answer type
(¬empty(A)), it also requires the continuation k produce an ITree indistinguishable from t for
every possible response. This requirement ensures that the adversary’s future observations
cannot depend on the response to the private event. Note that the requirement that A be
non-empty does more than just specify when the rule applies. Without it, a private halting
event would trivially satisfy this condition, allowing it to relate to any ITree with a τ in
front. Since the adversary can determine when a program has halted, they should be able to
distinguish, for example, a program that throws a private exception from a program which,
after a τ , prints to a public channel. This rule ensures that this intuition holds.

ECOOP 2023

29:12 Semantics for Noninterference with Interaction Trees

[EmpVisTau]

E; ρ ⊢ps Vis e k ≈ℓ
R t

e : E A empty(A)
ρ(e) ̸⊑ ℓ

E; ρ ⊢ps Vis e k ≈ℓ
R τ · t

======================= [EmpVisVisL]

∀b, E; ρ ⊢ps Vis e1 k1 ≈ℓ
R k2(b)

e1 : E A e2 : E B

empty(A) ρ(e1) ̸⊑ ℓ ρ(e2) ̸⊑ ℓ

E; ρ ⊢ps Vis e1 k1 ≈ℓ
R Vis e2 k2

====================================

Figure 6 Inference rules for indistinguishability, where events are halting and not visible.

PrivVisIndL is analogous to TauL, but for secret events instead of τ nodes. This rule
has the same premises as PrivVisTau for the same reasons. Moreover, it only removes a node
from the head of one ITree, not both. As with the definition of seutt, TauL, and TauR, we
therefore make PrivVisIndL inductive, not coinductive, to avoid relating a infinite stream
of secret events to all other ITrees.

Finally, PrivVisVis removes a private event from the head of both sides of the relation.
As with the previous rules, we require both events to be private and have non-empty answer
types. This time, we require the continuations of the two events to be indistinguishable for
every possible response of both events separately. This requirement formalizes the idea that
the adversary should not be able to distinguish the program’s behavior on any pair of secret
responses.

To see the power of this rule, consider whether an adversary who can see l but not h

would find the following ITrees indistinguishable from themselves:

tsec ≜ x← trigger get(l);
y ← trigger get(h);
trigger set(h, x + y)

tinsec ≜ x← trigger get(l);
y ← trigger get(h);
trigger set(l, x + y)

One would hope that tsec would be indistinguishable from itself, while tinsec would not be,
and indeed that is the case. To (attempt to) prove that either tree is equivalent to itself, we
walk through each ITree. Since l is visible, so is get(l), so PubVis applies and requires only
that each possible value of x produce an ITree that is indistinguishable from itself. Because
h is secret, the adversary should not be able to observe or infer its value, so we must use
PrivVisVis to remove get(h). PrivVisVis requires that, for all possible pairs of values
y1, y2, the continuations be indistinguishable. Thus in tsec, trigger set(h, x + y1) must be
indistinguishable from trigger set(h, x + y2). Since h is secret, so are the set events, so
PrivVisVis can remove them even when they differ. After removing set, the remaining
continuation always produces ret (), so Ret finishes the proof.

However, in tinsec, PrivVisVis does not apply to the set events since l is visible. PubVis
only relates ITrees starting with the same event, but set(l, x + y1) ̸= set(l, x + y2) when
y1 ≠ y2. As a result, no rule applies after removing get(h), so the adversary can distinguish
tinsec from itself. In other words, tinsec is, indeed, insecure.

Private Halting Events. Finally, we turn to the case where an event the adversary cannot
see halts the computation. In this case, the adversary should be unable to tell that the event
took place, and therefore should not be able to distinguish a program with a secret halt from
a program that never terminates. However, the adversary should still be able to distinguish
it from any ITree that contains an event the adversary can see.

This intuition means that a private halting event should not be treated like a τ , as a
private non-halting event is, but rather should be indistinguishable from an infinite stream
of τs. We formalize this approach with the rules presented in Figure 6 along with their
symmetric analogues. EmpVisTau peels a single τ off the right ITree, leaving the private
halting event on the left unmodified. EmpVisVisL does the same for a private event.

L. Silver, P. He, E. Cecchetti, A. K. Hirsch, and S. Zdancewic 29:13

There are two interesting properties about these rules. First, unlike the rules for private
events and τs that leave one side of the equivalence unmodified, these rules are coinductive, not
inductive. This choice allows us to relate a private halting event to an entire nonterminating
program, as long as that program has no public events. Indeed, no rule allows us to remove a
private halting event, as there would be nothing left to compare. Second, EmpVisVisL has
no requirement that B, the answer type of the not-necessarily-halting event, be non-empty.
This choice avoids the need to explicitly handle the case where both ITrees contain private
halts. If B is non-empty, then EmpVisVisL treats the event as a τ . If B is empty, then the
first premise of the rule is trivially satisfied, which is desirable, as in that case both ITrees
begin with a private halt event and should be equivalent.

4.2 The Metatheory of Indistinguishability
The seutt relation captures intuitions about when two ITrees are indistinguishable to
some adversary, but using it requires a delicate mix of induction and coinduction. To both
demonstrate the power of our definition and better support verification, we also develop a
library of metatheory for indistinguishability. This library supports reasoning about cross-
language toolchains without the need for explicit coinduction, as we will see when we verify
the correctness of a security type system and compiler for Imp (Sections 5 and 6, respectively).

Indistinguishability as a PER Model. Recall from Section 2.1 that Sabelfeld and Sands [46]
argue for indistinguishability forming a partial equivalence relation (PER). It would be nice
if seutt always formed a PER, but because it is parameterized on an arbitrary relation
for return values, that is not always the case. Instead, we prove generalized versions of
transitivity and reflexivity. In particular, if we let

↔
R denote the reverse relation of R – that

is,
↔
R(x, y) △⇐⇒ R(y, x) – then the following theorems hold.

▶ Theorem 3. For all R, E, ρ, and ℓ, if E; ρ ⊢ps t1 ≈ℓ
R t2, then E; ρ ⊢ps t2 ≈ℓ

↔
R

t1.

▶ Theorem 4. If E; ρ ⊢ps t1 ≈ℓ
R1

t2 and E; ρ ⊢ps t2 ≈ℓ
R2

t3 then E; ρ ⊢ps t1 ≈ℓ
R1◦R2

t3.

Note that if R is symmetric, then R =
↔
R, and if R is transitive, then R ◦R ⊆ R. These

properties allow us to prove the following corollary.

▶ Corollary 5. If R is a PER, then so is E; ρ ⊢ps − ≈ℓ
R − for any E, ρ, and ℓ.

ITree Combinators. ITrees are often defined using the combinators from Section 2.2, making
it important to understand how indistinguishability interacts with those combinators. The
definition of seutt directly describes how to relate simple programs defined using only ret
and trigger, but they say nothing about larger ITrees built using bind and iteration.

Bind allows for the sequential composition of programs. We would like indistinguishable
programs t1 and t2 followed by indistinguishable continuations k1 and k2 to compose into
larger indistinguishable programs t1≫=k1 and t2≫=k2. The following theorem says that this
result holds whenever the relation R1, securely relating t1 and t2, puts enough constraints
on their possible outputs to ensure that k1 and k2 are always securely related at some
relation R2.

▶ Theorem 6. If E; ρ ⊢ps t1 ≈ℓ
R1

t2 and for all values a, b, R1(a, b) implies E; ρ ⊢ps
k1(a) ≈ℓ

R2
k2(b), then E; ρ ⊢ps t1≫= k1 ≈ℓ

R2
t2≫= k2.

ECOOP 2023

29:14 Semantics for Noninterference with Interaction Trees

Iteration represents loops, which have two parts: an initial value, and a body that produces
a value from the previous value. Indistinguishable initial values paired with indistinguishable
bodies produce indistinguishable loops, as we can see in the following theorem.

▶ Theorem 7. If R1(a1, b1) and, for any a, b, E; ρ ⊢ps k1(a) ≈ℓ
caseR(R1,R2) k2(b) whenever

R1(a, b), then E; ρ ⊢ps iter k1 a1 ≈ℓ
R2

iter k2 b1.

This rule is conceptually similar to a loop invariant from a Hoare-style logic. R1 is a property
that is initially true and is preserved on each iteration except the final one, while the final
iteration guarantees that R2 holds. The caseR(R1,R2) function lifts two relations to a single
relation over sum types such that R1 is applied to two left values, R2 is applied to two right
values, and no other combination is related.

Relationship with Equivalence Up-To Taus. Recall that weak bisimulation of ITrees (eutt)
requires two ITrees to contain the same pattern of interaction with their environment. Our
notion of indistinguishability assumes that adversaries distinguish programs purely based on
their interactions with the environment. One would thus expect that combining eutt with
indistinguishability should result in indistinguishability. The following theorem shows this to
be the case.

▶ Theorem 8 (Mixed Transitivity). If both E; ρ ⊢ps t1 ≈ℓ
R1

t2 and E ⊢ t2 ≈R2 t3 then we can
conclude that E; ρ ⊢ps t1 ≈ℓ

R1◦R2
t3.

This is a very powerful theorem. In particular, many program transformations preserve
equality. That is, they take source programs with equivalent-up-to-taus ITree representations
to target programs with the same property. Mixed transitivity tells us that compilers built from
such transformations also preserve indistinguishability. For instance, since noninterference
– the security property we are ultimately considering – is defined as a program being
indistinguishable from itself, mixed transitivity supports a very simple proof that the compiler
in Section 6 preserves noninterference. While this result might be surprising, it reflects the
utility of ITrees and indistinguishability. By looking at which labels can distinguish an ITree
from itself, we can discover where leaks are possible.

4.3 Progress-Insensitive Indistinguishability
The type systems that enforce progress-sensitive noninterference are extremely restrictive.
Thus, information-flow control literature mostly studies progress-insensitive type systems.
These type systems enforce noninterference against adversaries who cannot see when a
program has begun to silently loop forever. Intuitively, such adversaries believe that silently
looping programs could break out of their loops at any moment, and so do not distinguish
them from programs which have produced visible events.

In order to support such reasoning, we introduce pi-seutt, a progress-insensitive version
of indistinguishability for ITrees. This leads to the following definition:

▶ Definition 9 (pi-seutt). The relation pi-seutt, the progress-insensitive version of in-
distinguishability, is defined by modifying the definition of seutt by completely removing
the rules for halting events (all rules in Figure 6) and making every other rule coinductive
(this modifies TauL and TauR in Figure 4 as well as PrivVisIndL in Figure 5 and its
not-presented symmetric counterpart).

This relation is strictly more permissive than seutt, since it relates every ITree to silently
diverging ITrees and private halts. These facts can be formalized in the following theorems:

L. Silver, P. He, E. Cecchetti, A. K. Hirsch, and S. Zdancewic 29:15

▶ Theorem 10. If E; ρ ⊢ps t1 ≈ℓ
R t2 then E; ρ ⊢pi t1 ≈ℓ

R t2.

▶ Theorem 11. Given any ITree t, E; ρ ⊢pi tspin ≈ℓ
R t.

▶ Theorem 12. Given any ITree t, if e is a halting event, then E; ρ ⊢pi Vis e k ≈ℓ
R t.

Just as with the progress-sensitive version of indistinguishability, we can show that
indistinguishability plays well with the usual ITree combinators. This allows us to prove
ITrees indistinguishable in many cases without resorting to hand-rolled coinduction.

▶ Theorem 13. If E; ρ ⊢pi t1 ≈ℓ
R1

t2 and E; ρ ⊢pi k1(a) ≈ℓ
R2

k2(b) whenever R1(a, b), then
E; ρ ⊢pi t1≫= k1 ≈ℓ

R2
t2≫= k2.

▶ Theorem 14. If R1(a1, a2) and for any a, a′, E; ρ ⊢pi k1(a) ≈ℓ
caseR(R1,R2) k2(a′) whenever

R1(a, a′), then E; ρ ⊢pi iter k1 a1 ≈ℓ
R2

iter k2 a2.

Moreover, mixed transitivity again holds, allowing for simple proofs of compiler safety:

▶ Theorem 15 (Mixed Transitivity). If both E; ρ ⊢pi t1 ≈ℓ
R1

t2 and E ⊢ t2 ≈R2 t3 then we
get E; ρ ⊢pi t1 ≈ℓ

R1◦R2
t3.

Progress-insensitive indistinguishability behaves differently from the progress-sensitive
sibling version in one important way: it does not form a PER. Because it relates a diverging
ITree to every other ITree, pi-seutt is not transitive. This is not surprising, since progress-
insensitive indistinguishability is not a PER [54, 42, 16]. It does, however, retain generalized
symmetry, and a weakened but still-useful version of generalized transitivity:

▶ Theorem 16. If E; ρ ⊢pi t1 ≈ℓ
R t2 then E; ρ ⊢pi t2 ≈ℓ

↔
R

t1.

▶ Theorem 17. If E; ρ ⊢pi t1 ≈ℓ
R1

t2, E; ρ ⊢pi t2 ≈ℓ
R2

t3, and t2 converges along all paths,
then E; ρ ⊢pi t1 ≈ℓ

R1◦R2
t3.

Where an ITree is considered convergent if it is either a ret, a τ followed by a convergent
ITree, or a non-halting event followed by a continuation that converges for any input.

Unlike progress-sensitive indistinguishability, we can easily show that loops produce no
events that are observable to some adversary at ℓ via pi-seutt. Suppose that we want to
show that iter body a0 emits no events that are observable to some adversary at ℓ. We
can do so by showing that iter body a0 and ret b are indistinguishable with some return
relation R. This shows that the body of the loop both emits no observable events and, if
the loop terminates, it returns a value c where R(c, b). Importantly, we have not made any
statement about whether the loop terminates; we have merely said that it will not produce
events, regardless of its termination behavior. We formalize this in the following theorem:

▶ Theorem 18. For any relation Rinv, if

Rinv(a0, b) and ∀a, Rinv(a, b) =⇒ E; ρ ⊢pi body a ≈ℓ
leftcase(Rinv ,R) ret b,

then E; ρ ⊢pi iter body a0 ≈ℓ
R ret b, where the relation leftcase is defined as follows:

leftcase(R1,R2)(inl(a), b) = R1(a, b) leftcase(R1,R2)(inr(a), b) = R2(a, b)

ECOOP 2023

29:16 Semantics for Noninterference with Interaction Trees

4.4 Noninterference and Interpretation
Recall from Section 2.1 that we can define noninterference using an indistinguishability
relation on programs by saying that a program is noninterfering if it is related to itself – given
indistinguishable inputs, it will produce indistinguishable computations. We could define
noninterference on ITrees using seutt (or pi-seutt), as they provide such indistinguishability
relations by design. This approach produces a sensible definition, but one that assumes an
extremely strong adversary.

Consider the following Imp program, where the his have label ℓh and the lis have label ℓl:

if (h1 = 0) then {h2 := l1} else {h2 := l2}

Since the program writes only to secret variables, intuitively this program seems secure.
However, according to seutt, it is not related to itself at ℓl since reading from l1 and l2
produce different get events with label ℓl. All adversaries have the power to observe reads of
public state, not just writes.

The visibility of public read events is not the only problem. Using just seutt also means
a computation cannot publicly depend on the result of reading a secret variable, even if a
public value were written to that variable. For instance, the following program would also be
considered insecure:

h := l ; print(ℓl, h)

If h cannot change between assignments, this program is intuitively secure, but seutt at ℓl

requires print(ℓl, h) to produce the same output regardless of the value of h, which it clearly
does not.

On uninterpreted ITrees, seutt models a system where both reads and writes are visible
to anyone who can see the variable, and the value of a secret variable may silently change
between a read and a write. This model makes perfect sense in some contexts – like distributed
computation [27] – but we usually consider weaker adversaries.

We can remove these assumptions and model a weaker adversary by interpreting state,
as we discussed in Section 2.4. Interpreting these programs would result in two meta-level
functions (i.e., Coq functions) which take a state as input and produce an ITree returning
an output state. For example in Section 2.4, we define the semantics of an Imp program c

as an interpreted ITree– that is, as a function from states to ITrees– not as a single ITree
with state events. We thus adjust our notions of indistinguishability and noninterference to
account for this semantic construct.

Intuitively, we start with a family of relations RS,ℓ that describes when states are
indistinguishable to an adversary at level ℓ and use it to define the following observational
equivalence. For technical reasons, we require RS,ℓ to be an equivalence relation at all labels.
For Imp, we use a relation ∼=ℓ

Γ which only requires states to agree on a variable x if the label
of x flows to ℓ.

▶ Definition 19 (Stateful Indistinguishability). Two stateful computations p1 and p2 are
px-statefully indistinguishable under RS,ℓ and R at label ℓ if, for every pair of states σ1 and
σ2 such that RS,ℓ(σ1, σ2),

E; ρ ⊢px p1 σ1 ≈ℓ
RS,ℓ×R p2 σ2

where RS,ℓ ×R((σ′
1, a1), (σ′

2, a2)) △⇐⇒ RS,ℓ(σ′
1, σ′

2) and R(a1, a2)

L. Silver, P. He, E. Cecchetti, A. K. Hirsch, and S. Zdancewic 29:17

Γ(x) ⊑ ℓ

Γ ⊢ x : ℓ
−−−−−−−−

Γ ⊢ n : ℓ
−−−−−−−

Γ ⊢ e1 : ℓ1 Γ ⊢ e2 : ℓ2

Γ ⊢ e1 ⊙ e2 : ℓ1 ⊔ ℓ2

−−−−−−−−−−−−−−−−−−−−−−−−

Figure 7 Typing rules for expressions in security-typed Imp.

As described above, stateful indistinguishability with ∼=ℓ
Γ defines security against an

adversary who can observe public writes, but not secret writes or secret reads. This indistin-
guishability relation leads to a much more common definition of noninterference, and it is
the one we will use in our case studies in Sections 5 and 6.

▶ Definition 20 (Noninterference). A stateful computation is px-noninterfering with state
relations RS,ℓ and return relation R if, given any label ℓ, it is px-statefully indistinguishable
from itself under state relation family RS,ℓ and return relation R.

5 Security Sensitive Type Systems For Imp

To see how to use this theory of indistinguishability and ITrees, we now provide an information-
security guarantee for an example toolchain for Imp. We begin by verifying two information-
flow type systems, and proceed with a simple compiler in Section 6. The two notions of
noninterference – progress sensitive and progress insensitive – require slightly different type
systems, so we use our ITrees-based semantics to formally verify that both enforce their
respective notions of noninterference. As is common in such type systems, we assume L forms
a join semilattice with a unique least element ⊥ representing “completely public.”

5.1 Two Type Systems
Both type systems have two typing judgments: one for expressions and one for commands.
The typing judgments for expressions take the form Γ ⊢ e : ℓ, where Γ is a map from variables
to information flow labels, and ℓ is a label. The judgment says that e is well-typed and
depends only on information at or below label ℓ. The typing rules for expressions, which are
the same for both type systems, are presented in Figure 7.

The typing rules for commands are presented in Figure 8. As these rules differ between
the progress-sensitive and progress-insensitive type systems, we annotate the turnstyles with
ps for progress-sensitive rules, pi for progress-insensitive rules, and px for rules that are
identical in both type systems.

The typing judgments for commands take the form Γ; pc ⊢px c ⋄ ℓex , where pc and ℓex are
information-flow labels. The pc label is a program-counter label that tracks the sensitivity of
the control flow, while the second label ℓex is an upper bound on the label of any exceptions
c might raise. Note that the rules listed in Figure 8 do not include any way to type check an
inlined Asm program. We address this concern in Section 5.3.

Program-counter labels are a standard technique to control implicit information flows
– that is, information leaked by the control flow [45]. For example, consider the following
program where h has label ℓh and l has label ℓl with ℓh ̸⊑ ℓl:

if (h = 0) then {l := 0} else {l := 1}

While l is only ever explicitly set to constant values, its final value clearly depends on the
secret h. The pc label allows us to detect and eliminate these flows by tracking the sensitivity
of the control flow. Specifically, the If rule requires the condition’s label to flow to the pc in

ECOOP 2023

29:18 Semantics for Noninterference with Interaction Trees

Shared Typing Rules

[Skip]
Γ; pc ⊢px skip ⋄ ⊥
−−−−−−−−−−−−−−−− [If]

Γ ⊢px e : ℓ

Γ; pc ⊔ ℓ ⊢px c1 ⋄ ℓex Γ; pc ⊔ ℓ ⊢px c2 ⋄ ℓ′
ex

Γ; pc ⊢px if (e) then {c1} else {c2} ⋄ ℓex ⊔ ℓ′
ex

−−

[Assign]

Γ ⊢px e : ℓ

pc ⊔ ℓ ⊑ Γ(x)

Γ; pc ⊢px x := e ⋄ ⊥
−−−−−−−−−−−−−−−−−− [Seq]

Γ; pc ⊢px c1 ⋄ ℓex Γ; pc ⊔ ℓex ⊢px c2 ⋄ ℓ′
ex

Γ; pc ⊢px c1 ; c2 ⋄ ℓex ⊔ ℓ′
ex

−−−

[Try]
Γ; pc ⊢px c1 ⋄ ℓex Γ; pc ⊔ ℓex ⊢px c2 ⋄ ℓ′

ex

Γ; pc ⊢px try {c1} catch {c2} ⋄ ℓ′
ex

−−− [Print]
Γ ⊢px e : ℓ pc ⊔ ℓ ⊑ ℓ′

Γ; pc ⊢px print(e, ℓ′) ⋄ ⊥
−−−−−−−−−−−−−−−−−−−−−−−

Progress-Sensitive Typing Rules Progress-Insensitive Typing Rules

[While-PS]
Γ ⊢ps e : ⊥ Γ;⊥ ⊢ps c ⋄ ⊥

Γ;⊥ ⊢ps while (e) do {c} ⋄ ⊥
−−−−−−−−−−−−−−−−−−−−−−−−−−−

[Throw-PS]
Γ;⊥ ⊢ps throw(⊥) ⋄ ⊥
−−−−−−−−−−−−−−−−−−−−−

[While-PI]

Γ ⊢pi e : ℓ

Γ; pc ⊔ ℓ ⊔ ℓex ⊢pi c ⋄ ℓex

Γ; pc ⊢pi while (e) do {c} ⋄ ℓex

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[Throw-PI]
pc ⊑ ℓex

Γ; pc ⊢pi throw(ℓex) ⋄ ℓex

−−−−−−−−−−−−−−−−−−−−−−−

Figure 8 Typing rules for commands in security-typed Imp.

each branch, and the Assign rule requires the pc to flow to the label of the variable being
assigned. In the above example, the label of the condition h = 0 is ℓh, so If requires c1 and c2
to type check with a pc where ℓh ⊑ pc. Since Γ(l) = ℓl, Assign requires pc ⊑ ℓl. Transitivity
of ⊑ thus requires ℓh ⊑ ℓl, which it does not, so the program correctly fails to type check.

Exceptions can affect the control flow of a program, and therefore can also cause implicit
flows of information. Consider the following program.

if (h = 0) then {throw(ℓh)} else {skip} ; l := 1

Much like the previous example, this program only assigns l to a constant, yet it still leaks
the value of h. We use a standard technique [32, 40] that relies on exception labels in the
typing judgment. As previously mentioned, the exception label of a program c is an upper
bound on the labels of any exception c might raise. To eliminate exception-based leaks, the
Seq rule increases the pc label of the second command by the exception label of the first.
The Try rule makes similar use of the exception label, increasing the pc in the catch block,
as that command only executes if an exception is thrown.

The Skip rule is simple, as skip can never have an effect. Print produces a flow of
information to an output channel labeled ℓ′, so it checks that ℓ′ may safely see both the
expression being written and the fact that this command executed.

The rules for while loops and throw statements are different for the progress-sensitive and
progress-insensitive type systems, so we handle them separately.

Progress-Sensitive While and Throw Rules. In a progress-sensitive setting, the adversary
can observe nontermination. As a result, a program’s termination behavior can only safely
depend on completely public information. While-PS enforces this requirement in a standard,

L. Silver, P. He, E. Cecchetti, A. K. Hirsch, and S. Zdancewic 29:19

but highly restrictive way [55]: the loop condition and the pc of the context must both be
the fully public label ⊥. Moreover, any exceptions thrown in the body of the loop could also
influence termination behavior, so those must be fully public as well.

Recall from Section 4 that a low observer cannot distinguish between an uncaught secret
exception and an infinite loop. Thus non-public exceptions create the same implicit flows as
while loops, so Throw-PS restricts exceptions in much the same way as While-PS restricts
loops: everything must be fully public.

Progress-Insensitive While and Throw Rules. In a progress-insensitive setting, the ad-
versary cannot see nontermination, so secrets can safely influence the termination behavior
of a program. The While-PI rule therefore allows loops with any pc. Since both the loop
condition and any exceptions the loop body throws influence whether the body is run,
While-PI increases the pc in the loop body by both the loop guard label and the body’s
exception label.

For the same reason, Throw-PI is more permissive than its progress-sensitive counterpart.
In particular, the label on the exception just needs to be at least as secret as the pc label.

5.2 Proving Security
Both type systems enforce their respective notions of noninterference (Definition 20). Unlike
many existing proofs of noninterference, our proofs using ITrees proceed by simple induction
over the syntax of Imp. This simplicity is made possible by the combination of two facts: our
Imp semantics is given by simple induction using ITrees combinators, and those combinators
interact with indistinguishability in predictable ways, as described by the metatheory of
Section 4.

Type systems are inherently compositional: we are able to conclude that a program is
secure knowing nothing about subprograms other than that they also type check. However,
our semantic definition of noninterference is not fully compositional. To see this, consider
the Imp program p = l := h ; throw(ℓ). This program updates the state in an insecure way,
assigning a high-security value to a low-security variable, and then throws a low-security
exception. In fully interpreted programs, the updated state is part of the return value, but
adversaries cannot observe that return value if an exception is thrown (see Section 3), making
p semantically secure. However, if we catch the exception, the adversary once again can see
the effect of the assignment l := h. Thus, p does not compose securely.

In order for our type system to enforce security compositionally, it enforces two properties
beyond noninterference. Each rules out programs which, like p above, are secure but do not
compose securely. The first describes how state and exceptions interact in a secure setting,
which will rule out the example program above. The second, called confinement, defines how
effects are bound by the type system.

Interaction of Exceptions and State. Our first goal is to semantically rule out programs
like p above, allowing us to reason compositionally about exception handlers. In order to do
so, we need to reason about what state updates are performed before an exception is thrown.
However, since in our semantics of Imp we interpret state events while leaving exceptions as
ITree events, the result state of an Imp program is forgotten when an exception is thrown.

This correctly models our adversary, who cannot distinguish between private exceptions
and silently diverging programs. But in order to achieve compositionality, we need to keep
information about the final state before an exception is raised. We accomplish this with a
condition on an alternative semantics for Imp programs. In this semantics, exceptions are

ECOOP 2023

29:20 Semantics for Noninterference with Interaction Trees

interpreted into the standard sum type representation before state events are interpreted.
This interpretation, interp hprog (interp hexc JcKc), is a stateful function that returns
a final state along with either a result of type unit or the label of an exception. We can
inspect this final state to ensure that the program always takes indistinguishable states to
indistinguishable states.

We formalize this property as follows, where the relation ∼=ℓ
Γ requires that states agree on

a variable x only when Γ(x) ⊑ ℓ, as in Section 4.4.

▶ Definition 21 (Exceptions-and-State Property). A command c satisfies the px–exceptions-
and-state property if interp hprog (interp hexc JcKc) is statefully indistinguishable from
itself under ∼=ℓ

Γ and ⊤ at every label ℓ.

Note the use of ⊤ as the output relation means we ignore whether or not c threw
an exception, while we still ensure that the final states are indistinguishable. Ignoring
this information in this property is acceptable because it is captured by our standard
noninterference condition.

Confinement. Even with the exceptions-and-state property, implicit flows, like the motivat-
ing our use of pc labels, can still break compositionality. Confinement fixes this.

In the typing judgment for commands, the pc and ℓex labels are both designed to constrain
effects. If a command type checks with pc and ℓex , it should have no effects visible below pc
and no (uncaught) exceptions above ℓex . Semantically, a program has no visible effects below
pc if, for any label ℓ where pc ̸⊑ ℓ, it is indistinguishable from skip. For any uncaught
exception terminating a ITree, we simply check that the exception’s label flows to ℓex . We
formalize this idea into the following property called confinement.

▶ Definition 22 (Confinement). A command c is px-confined to pc with ℓex exceptions, if,
for all labels ℓ such that pc ̸⊑ ℓ, the following conditions hold.
1. c is indistinguishable from skip at ℓ: interp hprog JcKc and interp hprog JskipKc are

px-statefully indistinguishable under ∼=ℓ
Γ and = at ℓ.

2. c makes no modifications to the state visible at ℓ: interp hprog (interp hexc JcKc) and
interp hprog (interp hexc JskipKc) are px-statefully indistinguishable under ⊤ and = at ℓ.

3. For all initial state heap states h and register states r where c throws an exception, the
label of that exception flows to ℓex :

E ⊢ (interp hprog (interp hexc JcKc))(r, h) ≈= ret (r′, h′, inr(ℓ′
ex)) =⇒ ℓ′

ex ⊑ ℓex

Together, these definitions restrict programs to those that compose securely, as required
by the type system. With this compositionality property, we can prove that our type system
enforces the conjunction of all three properties.

▶ Theorem 23. If Γ; pc ⊢px c ⋄ ℓex , then c is px-noninterfering (Definition 20), satisfies the
px–exceptions-and-state property, and is px-confined to pc with ℓex exceptions.

5.3 Semantic Typing and Inline Asm
Both type systems above enforce security, but are highly conservative. Many secure programs
fail to type check, notably including any secure program with inlined Asm. To support
our goal of cross-language security reasoning and address this concern without the need to
introduce a type system for Asm, we provide a semantic typing [21] rule.

L. Silver, P. He, E. Cecchetti, A. K. Hirsch, and S. Zdancewic 29:21

One would hope that the three conditions discussed above would be sufficient. However, the
possibility of undefined Asm behavior (see Section 2.5) necessitates an additional condition.
We thus introduce the notion of inline validity, which requires inlined Asm to depend only
on the initial heap state, not the initial register state, thereby ruling out undefined behavior.

▶ Definition 24 (Inline Validity). An Asm program a is inline-valid if, given any two register
states r1 and r2, and any heap states h, then a run with (r1, h) and (r2, h) produces the same
changes to the heap. That is, if p = interp hprog (interp hexc JaKasm), then

printE ⊢ p(r1, h) ≈⊤×= p(r2, h).

Note that any Asm program that only ever reads from a register after it has written to
that register will satisfy this property. We also lift this definition to whole Imp programs by
applying it separately to each inlined Asm block.

▶ Definition 25 (Validity). c is a valid Imp program if any inlined Asm program it contains
is an inline-valid Asm program.

Including validity with our other semantic conditions is sufficient to guarantee security,
so we can safely define the following semantic typing rule.

[Semantic]

c is px-noninterfering
c satisfies the px–exceptions-and-state property

c is px-confined to pc and ℓex
c is valid (Definition 25)

Γ; pc ⊢px c ⋄ ℓex

−−

Adding this new rule to both type systems allows them to reason about multi-language
programs including inline Asm and larger systems, even when the syntactic type system
cannot reason about every component. Importantly, Semantic (??) is sound from a security
perspective. That is, Theorem 23 continues to hold for both extended type systems.

6 Preserving Noninterference Across Compilation

For a compiled language like Imp, noninterference is only part of the story. After all, rather
than run Imp code directly, programmers instead compile Imp to Asm and run the Asm.
Compilation can change programs significantly, and can introduce insecurity in the process.
Thus, we need to ensure that the compiler translates noninterfering Imp programs into
noninterfering Asm programs. We now turn our attention to the proof-engineering effort
involved in providing such an assurance. In particular, we show that (a) adding exceptions
and information-flow labels to Imp does not complicate the proof of compiler correctness,
and (b) turning a proof of correctness into a proof of noninterference preservation is simple
using mixed transitivity (Theorem 8).

Note that, to build our compiler, we had to fix the number of information-flow labels.
We thus specialize our discussion of Imp from Section 5 to the two-point lattice L = {⊤,⊥}.
Using any other finite lattice would require only minimal changes.

6.1 Asm, Its Semantics, and the Compiler
Figure 9 presents the syntax of Asm, the simple assembly language that our compiler targets.
An Asm program is a sequence of blocks, where each block starts at some address A and
consists of a sequence of straight-line instructions followed by a single jump. The first block
must be at the special address Start.

ECOOP 2023

29:22 Semantics for Noninterference with Interaction Trees

Registers r ::= $0 | $1 | . . .

Operands o ::= r | n

Instructions i ::= add r1 ← r2, o | sub r1 ← r2, o | mul r1 ← r2, o

| eq r1 ← r2, o | leq r1 ← r2, o | not r ← o

| mov r1 ← r2 | load r ← x | store x← r | print(ℓ, r)
Branches b ::= jmp A | brz r A1 A2 | raise ℓ

Blocks B ::= A : i1 ; · · · ; in ; b

Programs p ::= Start : i1 ; · · · ; in ; b

B1 ; · · · ; Bm

Figure 9 Secure ASM syntax where x is a variable, A is an address, n is a natural number, and ℓ

is an information-flow label.

Most Asm instructions write to exactly one register, computing the written value from
a combination of other registers and integer constants. For instance, add $0← $1, 1 takes
the value of register $1, adds one, and stores the result in register $0. The mov instruction
copies the value of one register into another, while load and store move information
between registers and the heap. Finally, the print instruction prints information to a stream,
depending on the label ℓ.

Jumps are either direct jumps, conditional jumps, or exceptions. A direct jump jmp A
immediately moves execution to the beginning of the block with address A. A conditional
jump brz r A1 A2 move execution to A1 if register r contains zero and A2 otherwise. The
raise ℓ branch raises an exception. Note that there is no equivalent of catching an exception.
We assume that Asm programs always jump to either the address of one of the program’s
blocks or a special Exit address.

Rather than representing Asm syntax directly in our Coq code, we take a more composi-
tional approach and represent sub–Control-Flow Graphs (sub-CFGs). These represent the
structure of part of an Asm program. While a complete Asm program contains a unique
Start address, sub-CFGs may contain multiple addresses accessible to the outside. We refer
to addresses which are accessible to the outside as input addresses. Likewise, sub-CFGs may
jump to undefined addresses, whereas complete ASM programs always jump either to a
defined address or Exit. We refer to the undefined addresses a sub-CFG may jump to as
its output addresses. Thus, a complete Asm program is a sub-CFG with exactly one input
address (Start) and exactly one output address (Exit).

Intuitively, sub-CFGs execute starting at some input address, potentially jumping inter-
nally several times before they jump to some output address. To represent this pattern, we
give sub-CFGs semantics as functions from an address to an ITree that return an address.
That is, the semantics of a sub-CFG takes as input the input address at which to start
executing, and produces an ITree that returns the output address the program jumps to.
This structure is due to Xia et al. [57], and their semantic needed only minor changes to
accommodate printing and exception-throwing.

In Xia et al.’s original compiler, Imp code always mapped to complete Asm programs.
However, to accommodate exception throwing, our compiler has an extra step of indirection.
We map Imp programs to sub-CFGs with exactly one input address but three output addresses.
The first represents Exit, as in a complete Asm program, while the second two represent
the location of exception handler code. Thus, we compile throw(ℓ) to a jump to the second
address if ℓ = ⊥ and the third address if ℓ = ⊤. To compile a try-catch command, we place
one copy of the handler at the second address and a second copy at the third address. That

L. Silver, P. He, E. Cecchetti, A. K. Hirsch, and S. Zdancewic 29:23

means any exception will jump to the handler code, regardless of the label of the exception,
matching the semantics we gave Imp in Section 3. Note that we still need separate addresses
for each label to properly compile uncaught exceptions.

For inlined Asm code, we would hope to include it in the compiled code directly with no
changes. Unfortunately, if inlined Asm throws an exception with a raise instruction, the
surrounding Imp code can catch it, but embedding the raise unmodified in the compiled
output would render the exception uncatchable. To support catching these exceptions, we
process inlined Asm to replace raise instructions with jumps to the appropriate address.
This change causes the inlined exception to properly jump to the handler code.

While the infrastructure described above translates Imp code into sub-CFGs, the end
goal of our compiler is to translate complete Imp programs into complete Asm programs.
The final step uses the two output addresses for exceptions by linking the sub-CFG of the
complete Imp program with two different handlers. The low-security exception handler raises
a low-security exception, while the high-security exception handler raises a high-security
exception. Thus, any Imp code that raises an exception compiles to a complete Asm program
that raises that same exception, while Imp code that catches an exception compiles to a
complete Asm program with equivalent control flow.

6.2 Compiler Correctness
We adapt Xia et al.’s [57] proof of compiler correctness to account for the modifications we
have made to Imp and Asm. We formalize correctness by comparing the source and the
target programs – after interpretation – using weak bisimilarity. Intuitively, two stateful
programs are weakly bisimilar if, whenever they are given related start states, the resulting
ITrees are weakly bisimilar. We use a return relation Renv. Renv ignores the register files and
compares heaps using a relation ∼=, which ensures that they map equal variables to equal
values. We can now state the correctness theorem for the compile function.

▶ Theorem 26. For any initial heap states h1, h2 such that h1 ∼= h2, any register states
r1, r2, and a valid Imp command c, the following equation holds

excE⊕ printE ⊢ interp himp JcKc (r1, h1) ≈Renv interp hasm Jcompile(c)Kasm (r2, h2)

where Renv((_, h1, _), (_, h2, _)) ⇐⇒ h1 ∼= h2.

Notably, the changes necessary to adapt Xia et al.’s [57] proof of correctness to our
modified compiler are small and isolated. Most cases of the inductive proof, corresponding to
existing language features, needed only cosmetic changes. The new language features required
new, but conceptually uninteresting, cases.

6.3 Compiler Security
We finally turn to our ultimate goal: proving that our compiler preserves security. There are
two important notions of security for our compiler, both of which require cross-language
reasoning. The first is that secure source programs are indistinguishable – by all adversaries –
from target programs. This property directly relates an Imp program to an Asm program.
The second is that the compiler preserves noninterference. While noninterference itself is
a property of a single program, preserving noninterference is a property of a translation
between two languages, which requires cross-language reasoning.

In order to formalize the idea of a secure Imp program being indistinguishable from its
compilation, we need to compare these programs, even though they come from different
languages. Because we defined seutt purely semantically, we can use it as easily as if we

ECOOP 2023

29:24 Semantics for Noninterference with Interaction Trees

were comparing programs in the same language. We use the return relation Rℓ
Γ, which again

ignores the register file and ensures that they map equal visible variables to equal values.
The theorem then takes the following form.

▶ Theorem 27. For any valid Imp program c, if interp hprog JcKc is noninterfering with
state relation Rℓ

Γ and return relation =, and c is a valid Imp program, then the following
seutt equation holds for any label ℓ, arbitrary register states r1, r2 and heap states h1, h2
such that h1 ∼=ℓ

Γ h2.

excE⊕ printE ⊢px interp hprog JcKc (r1, h1) ≈ℓ
Rℓ

Γ
interp hprog Jcompile(c)Kasm (r2, h2)

Our second theorem is simply that our compiler takes noninterfering Imp programs to
noninterfering Asm programs.

▶ Theorem 28 (Noninterference Preservation). For a valid Imp program c, if interp hprog JcKc

is noninterfering with state relations Rℓ
Γ and return relation =, then the same holds for its

compilation. That is, interp hprog Jcompile(c)Kasm is noninterfering with Rℓ
Γ and =. This

result holds for both progress-sensitive and progress-insensitive noninterference.

Notably, the proofs of both theorems follows directly from Theorem 26 and mixed
transitivity, showing the utility of mixed transitivity for cross-language security reasoning.

7 Related Work

Goguen and Meseguer [15] introduced noninterference to formalize confidentiality; that is,
the intuitive notion that secret data does not leak to an adversary. Volpano et al. [56] enforce
progress-insensitive noninterference with a type system, and Volpano and Smith [55] modify
the type system to be progress-sensitive. These results led to a long line of work introducing
noninterference to an increasing complicated settings [40, 32, 45, 64, 33, 61, 41, 30, 53, 4, 44,
51, 1]. Proving the security of these varied type systems led to complicated arguments for
noninterference, but also gave rise to an informal library of proof techniques. This work fits
into a tradition of proof techniques for noninterference via models.

Most models view noninterference either as a trace (hyper)property or as the result of an
indistinguishability relation. These perspectives are not mutually exclusive; we can view two
programs as indistinguishable if they produce equivalent traces. Their focus, however, can be
quite different. Trace-based models view noninterference as a 2-safety hyperproperty [12].
That is, noninterference can be falsified using finite prefixes of two traces. Specifically,
for any interfering program there are two inputs that differ only on secrets but produce
distinguishable events after a finite number of steps.

Indistinguishability models focus more on building compositional relations. Pioneered
by Abadi et al. [1] and Sabelfeld and Sands [46], these models use PERs and define secure
programs as those that are self-related. Two such approaches have yielded recent notable
results. First, logical-relations techniques [43] inductively assign each type a binary relation. By
constructing the relation to reflect the security requirements of the type, logical relations can
reason about information flow control and noninterference [54, 42, 16]. Second, bisimulation
approaches directly match up program executions to define indistinguishability [48, 13].

This work straddles these methods. ITrees intuitively collect all possible traces of a
program into one infinite data structure. Our binary indistinguishability relation on ITrees
is thus combining the hyperproperty model of noninterference with the indistinguishability
model. Moreover, our indistinguishability relation is built on top of weak bisimulation. To
give meaning to a type system, we also build a small logical relation connecting types to our
bisimulation arguments.

L. Silver, P. He, E. Cecchetti, A. K. Hirsch, and S. Zdancewic 29:25

To remain practical, many languages provide only progress-insensitive guarantees [28,
27, 56, 40], despite the fact that termination channels alone can leak arbitrary amounts
of data [6]. Techniques for enforcing progress-sensitive guarantees [55, 45] exist, but have
seen little use. Recent work attempts to unify the two by explicitly considering termination
leaks as declassifications [11]. Like other models of noninterference [16], seutt is naturally
progress-sensitive, giving a strong guarantee. We include the progress-insensitive pi-seutt
to give ITree-based semantics to more-practical systems as well.

A few other works provide machanized proofs of noninterference using different tech-
niques [16, 3, 52]. However, each verifies existing paper proofs [52] or mechanizes an existing
proof technique designed for a single-language setting [16, 3](e.g., parametricity [3] or logical
relations [16]). This work is unique among mechanizations of noninterference in its use
denotational semantics designed to support multi-language settings.

Originally defined by Xia et al. [57], ITrees are based on free monads and their deriva-
tives [22, 23, 50]. This gives rise to a natural interpretation of effects via monad trans-
formers [19, 26] that behave like algebraic-effect handlers [47, 10, 38, 37, 35, 34]. The
information-flow community also studies effects deeply since they can leak information.
Traditionally, information-flow languages use a program-counter label to reason about effects,
as we saw in Section 5. Recent work by Hirsch and Cecchetti [17] connects program-counter
labels with monads, giving the former semantics using the latter.

Secure compilation is a very active research area. For instance, Barthe et al. [8] show
how to securely compile to a low-level Asm-like target language. However, they use a
type system for the target language to enforce security. Other efforts focus on particular
language features, such as cryptographic constant time [9]. Moreover, until recently, most
work on secure compilation focused on fully-abstract compilation [25]. Unfortunately, Abate
et al. [2] recently showed that full abstraction is not sufficient to guarantee preservation of
hyperproperties like noninterference. Our Mixed Transitivity theorems (Theorems 8 and 15)
show that equivalence-preserving compilation does preserve noninterference.

Beyond work on secure compilation, most work on noninterference does not address
multiple interacting languages. In one notable exception, Focardi et al. [14] examine the
relationship between a process-calculus–based notion of security and simple imperative
language with information-flow control, similar to Imp. They translate their version of Imp
into CCS and show that they preserve Imp’s security guarantees. However, their work contains
only pencil-and-paper proofs, rather than formally verifying their translation or its security.

Finally, this work focuses on an approach for verifying language toolchains, but running
any program requires hardware. Most language-based security and verification work assumes
the hardware is predictable and reliable, but cannot enforce security. Hardware enforcement
of information-security properties [63, 58] provides dynamic enforcement of properties like
noninterference at the cost of space and power usage. Combining these mechanisms with our
approach could reduce the overhead of hardware enforcement for verified-secure programs
and provide a means to guarantee that interactions with unverified programs remain safe.

8 Conclusion

This paper uses ITrees to reason semantically about noninterference. Our main technical
contributions are two new indistinguishability relations on ITrees that we use to define
noninterference – one progress sensitive and one progress insensitive – and their metatheory.
While both noninterference definitions are coinductive, our metatheory library supports
verifying properties of a language toolchain with no direct use of coinduction.

ECOOP 2023

29:26 Semantics for Noninterference with Interaction Trees

The two indistinguishability relations describe security in many settings, and we plan to
include them in the ITrees library. Importantly, because they do not place any restrictions
on the events in an ITree, they can be used for reasoning about a variety of language
features. However, we recognize that many variations of noninterference appear in the
literature, depending on the adversarial model and desired language features. For instance,
declassification allows private information to be made public in controlled circumstances,
creating a need for more complicated security conditions. We hope that the relations studied
here both become the basis of verification efforts larger than our case study and that they
serve as a starting point for further exploration of indistinguishability relations for ITrees.

References
1 Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A core calculus of dependency.

In ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), 1999.
doi:10.1145/292540.292555.

2 Carmine Abate, Roberto Blanco, Deepak Garg, Cătălin Hriţcu, Marco Patrignani, and Jérémy
Thibault. Journey beyond full abstraction: Exploring robust property preservation for secure
compilation. In IEEE Computer Security Foundations Symposium (CSF), 2019. doi:10.1109/
CSF.2019.00025.

3 Maximilian Algehed and Jean-Philippe Bernardy. Simple noninterference from parametricity.
Proc. ACM Program. Lang., 3(ICFP), July 2019. doi:10.1145/3341693.

4 Maximilian Algehed and Alejandro Russo. Encoding dcc in haskell. In Workshop on Program-
ming Languages and Analysis for Security (PLAS), 2017. doi:10.1145/3139337.3139338.

5 Owen Arden, Jed Liu, and Andrew C. Myers. Flow-limited authorization. In IEEE Computer
Security Foundations Symposium (CSF), July 2015. doi:10.1109/CSF.2015.42.

6 Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-insensitive
noninterference leaks more than just a bit. In European Symposium on Research in Computer
Security (ESORICS), pages 333–348. Springer, 2008. doi:10.1007/978-3-540-88313-5_22.

7 Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine Demange, Cătălin
Hriţcu, David Pichardie, Benjamin C. Pierce, Randy Pollack, and Andrew Tolmach. A
verified information-flow architecture. SIGPLAN Not., 49(1):165–178, January 2014. doi:
10.1145/2578855.2535839.

8 Gilles Barthe, Amitabh Basu, and Tamara Rezk. Security types preserving compilation.
In Bernhard Steffen and Giorgio Levi, editors, Verification, Model Checking, and Abstract
Interpretation, pages 2–15, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

9 Gilles Barthe, Benjamin Greégoire, and Vincent Laporte. Secure compilation of side-channel
countermeasures: The case of cryptographic “constant time”. In IEEE Computer Security
Foundations Symposium (CSF), 2018. doi:10.1109/CSF.2018.00031.

10 Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. Journal
of Logical and Algebraic Methods in Programming, 84(1):108–123, January 2015.

11 Johan Bay and Aslan Askarov. Reconciling progress-insensitive noninterference and de-
classification. In IEEE Computer Security Foundations Symposium (CSF), June 2020.
doi:10.1109/CSF49147.2020.00015.

12 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security
(JCS), 18(6):1157–1210, 2010. doi:10.3233/JCS-2009-0393.

13 Riccardo Focardi, Carla Piazza, and Sabina Rossi. Proof methods for bisimulation based infor-
mation flow security. In Verification, Model Checking, and Abstract Interpretation (VMCAI),
2002.

14 Riccardo Focardi, Sabrina Rossi, and Andrei Sabelfeld. Bridging language-based and process
calculi security. In FoSSaCS, 2005. doi:10.1007/978-3-540-31982-5_19.

15 Joseph A. Goguen and Jose Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy (S&P), 1982. doi:10.1109/SP.1982.10014.

https://doi.org/10.1145/292540.292555
https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1145/3341693
https://doi.org/10.1145/3139337.3139338
https://doi.org/10.1109/CSF.2015.42
https://doi.org/10.1007/978-3-540-88313-5_22
https://doi.org/10.1145/2578855.2535839
https://doi.org/10.1145/2578855.2535839
https://doi.org/10.1109/CSF.2018.00031
https://doi.org/10.1109/CSF49147.2020.00015
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-540-31982-5_19
https://doi.org/10.1109/SP.1982.10014

L. Silver, P. He, E. Cecchetti, A. K. Hirsch, and S. Zdancewic 29:27

16 Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal. Mechanized logical
relations for termination-insensitive noninterference. Proc. ACM Program. Lang., 5(POPL),
January 2021. doi:10.1145/3434291.

17 Andrew K. Hirsch and Ethan Cecchetti. Giving semantics to program-counter labels via
secure effects. Proceedings of the ACM on Programming Languages, 5(POPL), January 2021.
doi:10.1145/3434316.

18 Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of parameterization
in coinductive proof. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 2013. doi:10.1145/2429069.2429093.

19 Mauro Jaskelioff. Modular monad transformers. In Giuseppe Castagna, editor, Programming
Languages and Systems, pages 64–79, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

20 Limin Jia and Steve Zdancewic. Encoding information flow in Aura. In Proceedings of the
2009 Workshop on Programming Languages and Analysis for Security (PLAS), pages 17–29,
2009.

21 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning.
In ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), January
2015. doi:10.1145/2676726.2676980.

22 Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible effects. In Proceedings of the
8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September
3-4, 2015, pages 94–105, 2015. doi:10.1145/2804302.2804319.

23 Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: an alternative to monad
transformers. ACM SIGPLAN Notices, 48(12):59–70, 2013.

24 Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky,
Benjamin C. Pierce, and Steve Zdancewic. From c to interaction trees: Specifying, verifying,
and testing a networked server. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs, 2019. doi:10.1145/3293880.3294106.

25 Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115, 2009.
doi:10.1145/1538788.1538814.

26 Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpreters. In
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), January 1995.
doi:10.1145/199448.199528.

27 Jed Liu, Owen Arden, Michael D. George, and Andrew C. Myers. Fabric: Building open
distributed systems securely by construction. Journal of Computer Security (JCS), 25(4–
5):319–321, May 2017. doi:10.3233/JCS-0559.

28 Tom Magrino, Jed Liu, Owen Arden, Chin Isradisaikul, and Andrew C. Myers. Jif 3.5: Java
information flow. Software release, 2016. URL: https://www.cs.cornell.edu/jif.

29 Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2018.
Version 8.8.1. URL: http://coq.inria.fr.

30 Mae P. Milano and Andrew C. Myers. MixT: A language for mixing consistency in geodis-
tributed transactions. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2018. doi:10.1145/3192366.3192375.

31 Eugenio Moggi. Computational lambda-calculus and monads. In LICS, pages 14–23, June 1989.
Full version, titled Notions of Computation and Monads, in Information and Computation,
93(1), pp. 55–92, 1991.

32 Andrew C. Myers. JFlow: Practical mostly-static information flow control. In ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL), January 1999. doi:10.1145/
292540.292561.

33 Andrew C. Myers and Barbara Liskov. Complete, safe information flow with decentralized
labels. In IEEE Symposium on Security and Privacy (S&P), 1998. doi:10.1109/SECPRI.1998.
674834.

ECOOP 2023

https://doi.org/10.1145/3434291
https://doi.org/10.1145/3434316
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/199448.199528
https://doi.org/10.3233/JCS-0559
https://www.cs.cornell.edu/jif
http://coq.inria.fr
https://doi.org/10.1145/3192366.3192375
https://doi.org/10.1145/292540.292561
https://doi.org/10.1145/292540.292561
https://doi.org/10.1109/SECPRI.1998.674834
https://doi.org/10.1109/SECPRI.1998.674834

29:28 Semantics for Noninterference with Interaction Trees

34 Gordon Plotkin and John Power. Adequacy for algebraic effects. In Furio Honsell and Marino
Miculan, editors, Foundations of Software Science and Computation Structures, pages 1–24,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

35 Gordon Plotkin and John Power. Notions of computation determine monads. In Mogens Nielsen
and Uffe Engberg, editors, Foundations of Software Science and Computation Structures, pages
342–356, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

36 Gordon D Plotkin. A structural approach to operational semantics. Aarhus university, 1981.
37 Gordon D. Plotkin and John Power. Algebraic operations and generic effects. Applied

Categorical Structures, 11(1):69–94, 2003.
38 Gordon D Plotkin and Matija Pretnar. Handling Algebraic Effects. Logical Methods in

Computer Science, 9(4), December 2013. doi:10.2168/LMCS-9(4:23)2013.
39 Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando

Solar-Lezama. Liquid information flow control. Proceedings of the ACM on Programming
Languages, 4(ICFP), August 2020. doi:10.1145/3408987.

40 François Pottier and Vincent Simonet. Information flow inference for ML. ACM Transactions
on Programming Languages and Systems (TOPLAS), 25(1):117–158, January 2003. doi:
10.1145/596980.596983.

41 Willard Rafnsson and Andrei Sabelfeld. Compositional information-flow security for interactive
systems. In IEEE Computer Security Foundations Symposium (CSF), 2014. doi:10.1109/
CSF.2013.8.

42 Vineet Rajani and Deepak Garg. Types for information flow control: Labeling granularity
and semantic models. In IEEE Computer Security Foundations Symposium (CSF), 2018.
doi:10.1109/CSF.2018.00024.

43 John Reynolds. Types, abstraction and parametric polymorphism. Information Processing,
1983.

44 Alejandro Russo, Koen Claessen, and John Hughes. A library for light-weight information-flow
security in haskell. In ACM SIGPLAN Haskell Symposium, 2008. doi:10.1145/1411286.
1411289.

45 Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, January 2003. doi:10.1109/JSAC.
2002.806121.

46 Andrei Sabelfeld and David Sands. A PER model of secure information flow in sequential
programs. Higher-Order and Symbolic Computation, 14(1):59–91, 2001. doi:10.1023/A:
1011553200337.

47 Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff. Monad transformers and
algebraic effects: What binds them together. Technical Report CW699, Department of
Computer Science, KU Leuven, 2016.

48 Geoffery Smith. Probabilistic noninterference through weak probabilistic bisimulation. In
Computer Security Foundations Workshop (CSFW), 2003. doi:10.1109/CSFW.2003.1212701.

49 Deian Stefan, Alejandro Russo, David Mazières, and John C. Mitchell. Disjunction category
labels. In Nordic Conference on Security IT Systems (NordSec), October 2011. doi:10.1007/
978-3-642-29615-4_16.

50 Wouter Swierstra. Data types à la carte. Journal of Functional Programming, 18(4):423–436,
2008. doi:10.1017/S0956796808006758.

51 Tsa-ching Tsai, Alejandro Russo, and John Hughes. A library for secure multi-threaded
information flow in haskell. In IEEE Computer Security Foundations Symposium (CSF), 2007.
doi:10.1109/CSF.2007.6.

52 Marco Vassena and Alejandro Russo. On formalizing information-flow control libraries. In
Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security,
PLAS ’16, pages 15–28, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2993600.2993608.

https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1145/3408987
https://doi.org/10.1145/596980.596983
https://doi.org/10.1145/596980.596983
https://doi.org/10.1109/CSF.2013.8
https://doi.org/10.1109/CSF.2013.8
https://doi.org/10.1109/CSF.2018.00024
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1145/1411286.1411289
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1023/A:1011553200337
https://doi.org/10.1023/A:1011553200337
https://doi.org/10.1109/CSFW.2003.1212701
https://doi.org/10.1007/978-3-642-29615-4_16
https://doi.org/10.1007/978-3-642-29615-4_16
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1109/CSF.2007.6
https://doi.org/10.1145/2993600.2993608

L. Silver, P. He, E. Cecchetti, A. K. Hirsch, and S. Zdancewic 29:29

53 Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye. MAC: A verified static
information-flow control library. Journal of Logical and Algebraic Methods in Programming
(JLAMP), 95, 2018. doi:10.1016/j.jlamp.2017.12.003.

54 Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan. From fine-
to coarse-grained dynamic information flow control and back. In ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2019. doi:10.1145/3290389.

55 Dennis Volpano and Geoffrey Smith. Eliminating covert flows with minimum typings. In
IEEE Computer Security Foundations Workshop (CSFW), June 1997. doi:10.1109/CSFW.
1997.596807.

56 Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow
analysis. Journal of Computer Security (JCS), 4(3), 1996. doi:10.3233/JCS-1996-42-304.

57 Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce,
and Steve Zdancewic. Interaction trees: Representing recursive and impure programs in
coq. Proceedings of the ACM on Programming Languages, 4(POPL), January 2020. doi:
10.1145/3371119.

58 Drew Zagieboylo, G. Edward Suh, and Andrew C. Myers. Using information flow to design
an ISA that controls timing channels. In IEEE Computer Security Foundations Symposium
(CSF), June 2019. doi:10.1109/CSF.2019.00026.

59 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilya Zaichuk, Vadim Zaliva, and Steve Zdancewic.
Modular, compositional, and executable formal semantics for llvm ir. Proceedings of the ACM
on Programming Languages, 5(ICFP), 2021.

60 Yannick Zakowski, Paul He, Chung-Kil Hur, and Steve Zdancewic. An equational theory for
weak bisimulation via generalized parameterized coinduction. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs (CPP), January 2020.

61 Steve Zdancewic and Andrew C Myers. Secure information flow via linear continuations.
Higher-Order and Symbolic Computation, 15(2-3), 2002. doi:10.1023/A:1020843229247.

62 Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making infor-
mation flow explicit in HiStar. Communications of the ACM, 54(11):93–101, November 2011.
doi:10.1145/2018396.2018419.

63 Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-based control and mitigation
of timing channels. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), June 2012. doi:10.1145/2254064.2254078.

64 Lantian Zheng and Andrew C. Myers. End-to-end availability policies and noninterference. In
IEEE Computer Security Foundations Workshop (CSFW), 2005. doi:10.1109/CSFW.2005.16.

ECOOP 2023

https://doi.org/10.1016/j.jlamp.2017.12.003
https://doi.org/10.1145/3290389
https://doi.org/10.1109/CSFW.1997.596807
https://doi.org/10.1109/CSFW.1997.596807
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1109/CSF.2019.00026
https://doi.org/10.1023/A:1020843229247
https://doi.org/10.1145/2018396.2018419
https://doi.org/10.1145/2254064.2254078
https://doi.org/10.1109/CSFW.2005.16

Interaction Tree Specifications: A Framework for
Specifying Recursive, Effectful Computations That
Supports Auto-Active Verification
Lucas Silver #

University of Pennsylvania, Philadelphia, PA, USA

Eddy Westbrook #

Galois, Inc., Portland, OR, USA

Matthew Yacavone #

Galois, Inc., Portland, OR, USA

Ryan Scott #

Galois, Inc., Portland, OR, USA

Abstract
This paper presents a specification framework for monadic, recursive, interactive programs that
supports auto-active verification, an approach that combines user-provided guidance with automatic
verification techniques. This verification tool is designed to have the flexibility of a manual approach
to verification along with the usability benefits of automatic approaches. We accomplish this by
augmenting Interaction Trees, a Coq datastructure for representing effectful computations, with
logical quantifier events. We show that this yields a language of specifications that are easy to
understand, automatable, and are powerful enough to handle properties that involve non-termination.
Our framework is implemented as a library in Coq. We demonstrate the effectiveness of this framework
by verifying real, low-level code.

2012 ACM Subject Classification Theory of computation → Denotational semantics; Theory of
computation → Programming logic; Theory of computation → Separation logic

Keywords and phrases coinduction, specification, verification, monads

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.30

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.8
Software (Source Code): https://github.com/GaloisInc/entree-specs

archived at swh:1:dir:167704c70f9a14ef7d70a06b5bac5eb44fdb71e1

1 Introduction

Formal verification is starting to see adoption in industry as a tool for ensuring the security
and correctness of software. For instance, the formally verified seL4 microkernel [13] has
established a foundation that is seeing investment from a wide variety of industrial partners.
Block-chain companies are using formal verification to ensure the security of cryptocur-
rency [15]. Amazon has even incorporated formal verification into the CI/CD process of
their s2n cryptographic library [7].

Unfortunately, formal verification still remains expensive, not just in terms of time and
effort but also in terms of the expertise required to formally verify a system. A number of
powerful frameworks have been developed for manual formal verification, including Iris [12],
VST [2], and FCSL [24]. These frameworks can specify a wide array of behaviors on a
wide array of languages, but they require an expert to be used effectively. Other powerful
frameworks have been developed for automatic verification, including approaches such as

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Lucas Silver, Eddy Westbrook, Matthew Yacavone, and Ryan Scott;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 30; pp. 30:1–30:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lucsil@seas.upenn.edu
mailto:westbrook@galois.com
mailto:myac@galois.com
mailto:rscott@galois.com
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30
https://doi.org/10.4230/DARTS.9.2.8
https://doi.org/10.4230/DARTS.9.2.8
https://github.com/GaloisInc/entree-specs
https://archive.softwareheritage.org/swh:1:dir:167704c70f9a14ef7d70a06b5bac5eb44fdb71e1;origin=https://github.com/GaloisInc/entree-specs;visit=swh:1:snp:20bcc5dffa4e7d99c9dd1c549522cb5767a6e033;anchor=swh:1:rev:52c4868f1f65c7ce74e90000214de27e23ba98fb
https://doi.org/10.4230/DARTS.9.2.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Interaction Tree Specifications

bounded model-checking [4] and property-directed reachability [5]. While these approaches
can be operated by non-experts, they are limited in their expressiveness, leaving important
properties unverified.

It is particularly difficult to reason about low-level code that contains complicated
manipulations of pointer structures on the heap, as is common in languages like C, C++,
and LLVM. Recently, researchers have tackled this problem using the observation that
programs that are well-typed in a memory-safe, Rust-like type system are basically functional
programs [9, 17, 18, 3, 10]. That is, there exists a program in a functional language whose
behavior is equivalent to the original, heap-manipulating program. We call this functional
program a functional specification. While many projects rely only implicitly on the functional
specification, some, like the Heapster project [9], reify functional specifications into concrete
code. Engineers can then verify properties about the derived functional code, and ensure
those properties hold on the original program.

The Heapster tool consists of two components: a memory-safe type system for LLVM code,
and a translation tool that produces an equivalent functional program from any well-typed
LLVM program. Heapster uses these components to break verification of heap manipulating
programs into two phases: a memory-safe type-checking phase that generates a monadic,
recursive, interactive program that is equivalent to the original program; and a behavior-
verification phase that ensures that the generated program has the correct behavior. Previous
work has left open major questions about the behavior verification phase, namely, what
should the language of specifications be and how do we actually prove that the programs
satisfy the specifications.

This work answers these questions by developing a logic well-suited to reasoning about
the programs output by Heapster, as well as tools to work with these logical formulae. Taken
together, the Heapster tool and this work form a two-step pipeline for verifying low-level,
heap manipulating programs. Heapster transforms low-level, heap manipulating programs
into equivalent functional programs. The techniques in this paper enable proof engineers to
write and prove specifications over the resulting functional programs.

In this work, we present interaction tree specifications, or ITree specifications. ITree
specifications are an auto-active verification framework for monadic, recursive, interactive
programs based on interaction trees [29], or ITrees. Auto-active verification is a verification
technique that merges user input and automated reasoning to leverage the benefits of each.
Monadic, recursive, interactive programs have the ability to diverge, can interact with
their environment, but otherwise act as pure functional programs. Interactions with the
environment can include making a system call, sending a message from a server, and throwing
an error. ITrees are a model for monadic, recursive, interactive programs formalized in Coq.
ITree specifications are designed to be able to write and verify specifications about the output
programs of the Heapster translation tool, which are written in terms of ITrees.

The main body of work that takes on the task of verifying monadic programs is the
Dijkstra monad literature [16, 28, 1, 27]. However, most of the Dijkstra monad literature
cannot handle the kinds of termination sensitive specifications that we need. These papers
either assume a strongly normalizing language, or handle only partial specifications. The
exception to this is the work of Silver and Zdancewic [25]. However, while that work does
have a rich enough specification language for our goals, it has two significant shortcomings.
First, the work provides no reasoning principles for arbitrary recursive specifications. Second,
the work does not attempt to automate the verification of these specifications. Our work
accomplishes both of these goals.

L. Silver, E. Westbrook, M. Yacavone, and R. Scott 30:3

This work is based on the idea of augmenting ITrees with operations for logical quantifiers.
We show that this idea leads to a language of specifications that is:

easy to read, because the specifications are simply programs annotated with logical
quantifiers,
capable of encoding recursive specifications, because the underlying computational lan-
guage has a powerful recursion operator, and
amenable to auto-active verification, because specifications are syntactic constructs
enabling syntax-directed inference rules.

ITrees represent computations as potentially infinite trees whose nodes are labelled with
events. Events are syntactic representations of computational effects, like raising an error,
or sending data from a server. ITrees can be used to represent the semantics of recursive,
monadic, interactive programs. ITree specifications are ITrees enriched with events for logical
quantifiers. This language of specifications has the capability to express purely executable
computations, fully abstract specifications, and combinations of both. For example, consider
the following executable specification server_impl for a simple server program that sorts lists
which are sent to it:

Definition server_impl : unit → itree_spec E void :=
rec_fix_spec (fun rec _ ⇒

l � trigger rcvE;;
ls � sort l;;
trigger (sendE ls);;
rec tt

).

This specification is defined with rec_fix_spec, a recursion operator (defined in Section 4)
where applications of the rec argument correspond to recursive calls. The body of the recursive
function first calls trigger rcvE, which triggers the use of the receive event rcvE, causing the
program to wait to receive data. The list l that is received is then passed to the sort function,
defined in Section 6, which is a recursive implementation of the merge sort algorithm. Finally,
the sorted list returned by sort is sent as a response with trigger (sendE ls), and the server
program loops back to the beginning by calling rec.

Now, consider the following specification of the behavior of our server using a combination
of executable and abstract features:

Definition server_spec : unit → itree_spec E void :=
rec_fix_spec (fun rec _ ⇒

l � trigger rcvE;;
ls � exists_spec (list nat);;
assert_spec (Permutation l ls);;
assert_spec (sorted ls);;
trigger (sendE ls);;
rec tt).

This function acts mostly like server_impl but, instead of computing a sorted list, it uses the
existential quantification operation exists_spec to introduce the list value ls, which it then
asserts is a sorted permutation of the initial list. By leaving this part of the specification
abstract, it allows the user to express that it is unimportant how the list is sorted, as long as
the response is a sorted permutation of the input list. The send and receive events, however,
are left concrete, allowing the user to specify what monadic events should be triggered in
what order. This specification implicitly defines a liveness property of the server, it will
reject any program that fails to eventually perform the next send or receive. By using a
single language for programs and specifications, our approach provides a natural way for
users to control how concrete or abstract the various portions of their specifications are. Our
approach then provides auto-active tools for proving that programs refine these specifications.

ECOOP 2023

30:4 Interaction Tree Specifications

Class EncodingType (E:Type) : Type :=
response_type : E → Type.

Figure 1 EncodingType typeclass definition.

Necessary background explaining ITrees and Heapster is given in Section 2 and Section 3.
The contributions of this paper are as follows:

ITree specifications, a data structure for representing specifications over monadic, recursive,
interactive programs, presented in Section 4
a specification refinement relation over ITree specifications, along with collection of
verified, syntax-directed proof rules for refinement also presented in Section 4,
tools for encoding and proving refinements involving total correctness specifications in
ITree specifications presented in Section 5,
an auto-active verification technique briefly discussed in Section 6
an evaluation of the presented techniques in the form of verifying a collection of realistic
C functions using ITree specifications and Heapster presented in Section 6.

2 Background

ITrees are a formalization for denotational semantics implemented as a coinductive variant of
the free monad in Coq. ITrees represent programs as potentially infinite trees. The nodes of
these trees are labelled with events. Events can, depending on the context, either represent
algebraic effects or recursive function calls. The ITree type is parameterized by a return
type R and a type family E, where E has an instance of the EncodingType type class defined in
Figure 1. The EncodingType type class consists of function, named response_type, from E to
Type. A value of type itree E R is a potentially infinite tree whose internal nodes are each
labelled with an event e of type E, with one branch for each element of the response_type e
whose leaves are labelled with an element of type R. Such a tree represents an effectful
computation, where the leaves represent termination of the computation with a return value
in R while the nodes represent uses of monadic effects. The event e of type E that labels
a node represents a monadic effect that returns a value of type response_type e, and the
children of that node represent the possible continuations of that computation depending on
the return value of the effect. This is formalized in the following Coq code1.

CoInductive itree (E : Type) {̀EncodingType E} (R : Type) :=
| Ret (r : R)
| Tau (t : itree E R)
| Vis (e : E) (k : response_type e → itree E R).

The ITree datatype has three constructors. The Ret constructor represents a pure computation
that simply returns a value. The Ret constructor forms the leaves of an ITree. The Tau
constructor represents one step of silent internal computation followed by another ITree.
Finally, the Vis constructor contains an event e along with a continuation function k which
defines all the branches of this Vis node.

Because ITrees are defined coinductively, we can construct ITrees with infinitely long
branches. Such ITrees represent divergent computations. For example, the following code
describes an ITree that consists of an infinite stream of Tau constructors with no events.

1 In the actual formalization, we use a negative coinductive types presentation of this data structure.

L. Silver, E. Westbrook, M. Yacavone, and R. Scott 30:5

Class ReSum (E1 : Type) (E2 : Type) {̀EncodingType E1} {̀EncodingType E2} :=
{

resum : E1 → E2;
resum_ret : forall {e : E1}, response_type (resum e) → response_type e;

}.

Notation "E1 -< E2" := (ReSum E1 E2) (at level 10).

Definition trigger {E1 E2} {̀EncodingType E1} {̀EncodingType E2} {̀E1 -< E2} :forall (e1
: E1), (itree E2 (response_type e1)) :=

fun e ⇒ Vis (resum e) (fun x ⇒ Ret (resum_ret x)).

Figure 2 ReSum Definition.

CoFixpoint spin : itree E R := Tau spin.

In practice, ITrees often end up using an event type family E that is a composition of
several smaller type families combined in a large sum. This can easily clutter and complicate
the notation. To avoid this burden, the ITrees library introduces the ReSum typeclass defined
in Figure 2. An instance of ReSum E1 E2, written E1 -< E2, contains two functions: the
resum function that injects an element of E1 into E2, and the resum_ret function that maps
elements from the response type of resum e to the response type of e. It can be thought
of as a kind of subevent typeclass. The ReSum typeclass allows for the definition of the
trigger function in Figure 2. The trigger function takes an event e : E1 and injects it into
itree E (response_type e) by injecting e into E2, placing that in a Vis node, and applying
the resum_ret function to the response.

2.1 Equivalence up to Tau
One of the major advantages of the ITrees library is its rich equational theory. The primary
notion of equivalence used for ITrees is called eutt or equivalence up to tau. Xia et al. [29]
defines eutt as a bisimulation relation that quotients out finite differences in the number
of Tau constructors. We use this relation because Tau constructors are supposed to indicate
silent steps of computation. Ignoring finite numbers of Tau constructors lets us equate two
ITrees that vary only in the number of silent computation steps.

The eutt relation is parameterized by a relation RR over return values. If the relation
RR is heterogeneous, relating values over distinct types R1 and R2, then eutt RR is also a
heterogeneous relation over itree E R1 and itree E R2. Intuitively, if eutt RR t1 t2, then the
Vis nodes of t1 precisely match those of t2, and if equivalent paths in t1 and t2 lead to the
leaves Ret r1 and Ret r2 then the values r1 and r2 are related by RR. Often, we are interested
in eutt eq and denote this relation with the symbol ≈.

The eutt relation is implemented in Coq using both inductive and coinductive techniques.
Observe the following definition of eutt:

Inductive euttF (RR : R1 → R2 → Prop) (sim : itree E R1 → itree E R2 → Prop) :
itree E R1 → itree E R2 → Prop :=

| eutt_Ret (r1 : R1) (r2 : R2) : euttF RR sim (Ret r1) (Ret r2)
| eutt_Tau (t1 : itree E R1) (t2 : itree E R2) :

sim t1 t2 → euttF RR sim (Tau t1) (Tau t2)
| eutt_Vis (e : E) (k1 : response_type e → itree E R1)

(k2 : response_type e → itree E R2) :
(forall a, sim (k1 a) (k2 a)) → euttF RR sim (Vis e k1) (Vis e k2)

| eutt_TauL (t1 : itree E R1) (t2 : itree E R2) :

ECOOP 2023

30:6 Interaction Tree Specifications

Example spin ≈ spin.

Example ∼(spin ≈ Ret 0).

Example Tau (Ret 0) ≈ Ret 0.

Figure 3 eutt Examples.

euttF RR sim t1 t2 → euttF RR sim (Tau t1) t2
| eutt_TauR (t1 : itree E R1) (t2 : itree E R2) :

euttF RR sim t1 t2 → euttF RR sim t1 (Tau t2).

Definition eutt (RR : R1 → R2 → Prop) := gfp (euttF RR).

The euttF relation is an inductively defined relation, defined in terms of the sim argument.
The eutt relation is then defined as the greatest fixpoint of euttF. In this paper, all greatest
fixpoints are defined using the paco library[11] for coinductive proofs. Calls to the sim
argument in the definition of euttF correspond to coinductive calls of eutt. Recursive calls
to euttF correspond to inductive calls of eutt. This method of defining eutt allows the
coinductive constructors to be called infinitely often in sequence, while only a finite number
of calls to inductive constructors can be called without an intervening call to a coinductive
constructor. Specifically, only finitely many eutt_TauL and eutt_TauR steps, that remove a
Tau from only one side, are allowed before one of the remaining rules must be used to relate
the same constructor on both sides.

This definition allows us to achieve our goal of ignoring any finite difference in numbers
of Tau constructors. In particular the equations and inequalities presented in Figure 3 hold.

ITrees form a monad. Monads are type families with a ret combinator that denotes a
pure value, and a bind combinator that sequentially composes two monadic computations
into one. The ret combinator is implemented with the Ret constructor, while the bind t k
combinator is implemented as a coinductive function that traverses the ITree t and replaces
each leaf Ret r with the new subtree k r. This is implemented in the following Coq code:

CoFixpoint bind (t : itree E R) (k : R → itree E S) :=
match t with
| Ret r ⇒ k r
| Tau t ⇒ Tau (bind t k)
| Vis e kvis ⇒ Vis e (fun x ⇒ bind (kvis x) k)
end.

2.2 Mutually Recursive Computations
This section explains the recursion operator introduced by Xia et al. [29]. That work
demonstrated how to use events as a piece of syntax for writing collections of mutually
recursive functions over ITrees. Specifically, it introduced the mrec combinator, which lifts
a collection of function bodies that syntactically reference one another to a collection of
actually recursive functions. A similar recursion combinator is used extensively in Section 4
and Section 6.

When using the mrec combinator, you must first choose an event type D, with an
EncodingType instance, to serve as the type of recursive calls. An element d : D packages
together the choice of the function being called along with the arguments being supplied
to that function. The return type of the function call d is response_type d. In this context,
an ITree with the type itree (D + E) R represents the body of a mutually recursive function
viewing the recursive calls as inert D events. This ITree defines a recursive function in terms of

L. Silver, E. Westbrook, M. Yacavone, and R. Scott 30:7

Variant evenoddE : Type:=
| even (n : nat) : evenoddE
| odd (n : nat) : evenoddE.

Instance EncodingType_evenoddE : EncodingType evenoddE := fun _ ⇒ bool.

Definition evenodd_body : forall eo : evenoddE, (itree (evenoddE + voidE)) (
response_type eo) :=

fun eo ⇒
match eo with
| even n ⇒ if Nat.eqb n 0

then Ret true
else trigger (odd (n -1))

| odd n ⇒ if Nat.eqb n 0
then Ret false
else trigger (even (n -1))

end.
Definition evenodd : evenoddE → itree voidE bool :=

mrec evenodd_body.

Figure 4 evenodd Definition.

syntactic recursive calls. In order to resolve these syntactic recursive calls, we need a mapping
from recursive calls to a single layer of unfolding of the recursive function. This is represented
as a function of type bodies : forall (d:D), itree (D + E) (response_type d). The variable
name bodies refers to the fact that this term represents the body of each function in this
collection of mutually recursive functions. We can then take this ITree, corecursively replace
each d : D event with the unfolded function body bodies d, and then repeat the process with
the resulting ITree. This is formalized in the following interp_mrec function.

CoFixpoint interp_mrec {R : Type}
(bodies : forall (d:D), itree (D + E) (response_type d))
(t : itree (D + E) R) : itree E R :=
match t with
| Ret r ⇒ Ret r
| Tau t ⇒ Tau (interp_mrec bodies t)
| Vis (inr e) k ⇒ Vis e (fun x ⇒ interp_mrec bodies (k x))
| Vis (inl d) k ⇒ Tau (interp_mrec bodies (bind (bodies d) k))
end.

Given this function that can resolve the recursive calls in an ITree, we can define the mrec
function that takes an initial recursive call init : D and computes its result.

Definition mrec (bodies : forall (d:D), itree (D + E) (response_type d)) (init : D)
:=

interp_mrec bodies (bodies init).

Figure 4 provides an example of a mutually recursive function defined with mrec. The
evenoddE type represents calls to compute the parity of a natural number. The evenodd
function computes either the even or the odd function depending on the initial recursive call
event that it is given. The evenodd function defines these computations mutually recursively
using the mrec function.

This section briefly introduces the classes of relations that we will need in order to reason
about specification refinement in the presence of mutually recursive computations. The
definition of eutt is parameterized by a return relation, making it easy to define a relation for
ITrees that have identical tree structures up to Taus, with identical event nodes, but allows
freedom to choose what conditions to enforce on return values. It is natural to consider
generalizing eutt to allow variation not only in the return values but also in the event nodes.

ECOOP 2023

30:8 Interaction Tree Specifications

Definition Rel (A B : Type) : Type := A → B → Prop.
Definition PostRel (D1 D2 : Type) {̀EncodingType D1} {̀EncodingType D2} : Type :=

forall (d1 : D1) (d2 : D2), response_type d1 → response_type d2 → Prop.

Inductive RComposePostRel
(R1 : Rel D1 D2) (R2 : Rel D2 D3) (PR1 : PostRel D1 D2) (PR2 : PostRel D2 D3) :
PostRel D1 D3 :=
| RComposePostRel_intros (d1 : D1) (d3 : D3) (a : response_type d1) (c :

response_type d3) :
(forall (d2 : D2), R1 d1 d2 → R2 d2 d3 →
exists b, PR1 d1 d2 a b ∧ PR2 d2 d3 b c) →

RComposePostRel R1 R2 PR1 PR2 d1 d3 a c.

Figure 5 Heterogeneous Event Relation Types.

This kind of generalization is explored in Silver and Zdancewic [25]2. The generalized relation
analyzes uninterpreted events, typically those representing recursive function calls, with
respect to pre-conditions and post-conditions. We want to relate Vis nodes whose events
satisfy the pre-condition and whose continuations are related given any inputs that satisfy
the post-condition. This corresponds to assuming that two function calls return related
outputs as long as they are given related inputs.

Definitions of pre-condition and post-condition types are presented in Figure 5. Pre-
conditions, Rel, are encoded as two-argument, heterogeneous relations, i.e. functions of type
D→E→Prop, and utilize standard relational combinators like relational sums, sum_rel, and
relational composition, rcompose. Post-conditions, PostRel, are encoded as four-argument, de-
pendent relations. In particular, forall (d:D) (e:E), encoded_by d → encoded_by e → Prop,
where both D and E have an EncodingType instance. Intuitively, post-conditions are a function
from events to relations over their response types. These post-conditions admit a standard
definition of relational sums. For relational composition, in addition to requiring two PostRel
relations, it also requires two standard relations, called coordinating relations. The full
definition is presented in Figure 5.

To relate four values d1:D1, d3:D3, a:encoded_by d1, c:encoded_by d3, we require that
given any d2:D2 that is related by the coordinating relations to d1 and d3, there exists a
b:encoded_by d2 such that both PR3 d1 d2 a b and PR4 d2 d3 b c.

Later in the paper, we recover an eutt-like definition of specification refinement by
specializing the event relations to be an appropriate form of equality. For Rel, this is precisely
the equality relation. For PostRel, we define an inductive datatype that enforces equality on
response values.

Variant PostRelEq : PostRel E E :=
PostRelEq_intro e a : PostRelEq e e a a.

3 Specification Extraction with Heapster

This section introduces the Heapster tool for specification extraction. We present Heapster
in order to provide context for the evaluation of this work in Section 6. In the evaluation, we
demonstrate how effective ITree specifications can be when paired with a tool like Heapster.
We start with a collection of low-level, heap manipulating C programs, use Heapster to
produce equivalent functional programs, and finally use ITree specifications to specify and
verify the output programs.

2 In Silver and Zdancewic [25] this relation is referred to as euttEv. It has since been renamed to rutt in
release branches of the Interaction Trees library.

L. Silver, E. Westbrook, M. Yacavone, and R. Scott 30:9

Value Types T ::= bv n | llvmptr n | · · ·
Expressions e ::= n | llvmword e | · · ·
RW Modality rw ::= W | R
Permissions τ ::= ptr((rw, e) 7→ τ) | τ1 ∗ τ2 | τ1 ∨ τ2 | ∃x :T.τ | eq(e) | µX.τ | X | · · ·

Figure 6 An Abbreviated Grammar of the Heapster Type System.

There is a growing body of work [9, 17, 18, 3] based on the idea that programs that
satisfy memory-safe type systems like Rust can be represented with equivalent functional
programs. Rust’s pointer discipline, which ensures that all pointers in a program are either
shared read or exclusive write, allows us to reason about the effects of pointer updates purely
locally. This locality property can be used to define a pure functional model, referred to as a
functional specification, of the behaviors of a program, which can in turn be used to verify
properties of that program.

Whereas some work uses this notion of a functional model implicitly, specification ex-
traction is the idea that the functional model can be extracted automatically as an artifact
that can be used for verification. Specification extraction separates verification into two
phases: a type-checking phase, where the functions in a program are type-checked against
user-specified memory-safe types; and a behavior verification phase, where the user verifies
the specifications that are extracted from this type-checking process. The Heapster tool [9] is
an implementation of the idea of specification extraction. Heapster provides a memory-safe,
Rust-like type system for LLVM, along with a typechecker. Heapster also provides a transla-
tion from well-typed LLVM programs to monadic, recursive, interactive programs, modeled
with ITrees, that describe a behavioral model of the original program. This translation is
inspired by the Curry-Howard isomorphism. Heapster types are essentially a form of logical
propositions regarding the heap, so, by the Curry-Howard isomorphism, it is natural to view
typing derivations, a form of proof, as a program. We give a brief overview of the Heapster
type system and its specification extraction process in this section and illustrate it with an
example.

The Heapster type system is a permission type system. Typing assertions of the form
x : τ mean that the current function holds permissions to perform actions allowed by τ

on the value contained in variable x. The central permission construct of Heapster is the
permission to read or write a pointer value. Like Rust, Heapster is an affine type system,
meaning that the permissions held by a function can change at different points in the function.
In particular, a command can consume a permission, preventing further commands from
using that permission again. Also like Rust, Heapster allows read-only permissions to be
duplicated, allowing multiple read-only pointers to the same address, but does not allow
write permissions to be duplicated. This enforces the invariant that all pointers are either
shared read or exclusive write, a powerful property for proving memory-safety.

Figure 6 gives an abbreviated grammar for the Heapster type system. The value types T

are inhabited by pieces of first order data. In particular, they contain the type bv n of n-bit
bitvectors (i.e., n-bit binary values) and the type llvmptr n of n-bit LLVM values, among
other value types not discussed here. Heapster uses the CompCert memory model [14],
where LLVM values are either a word value or a pointer value represented as a pair of a
memory region plus an offset in that region. The expressions e include numeric literals n and
applications of the llvmword constructor of the LLVM value type to build an LLVM value
from a word value.

ECOOP 2023

30:10 Interaction Tree Specifications

The first permission type in Figure 6, ptr((rw, e) 7→ τ), represents a permission to read
or write (depending on rw) a pointer at offset e. Write permission always includes read
permission. This permission also gives permission τ to whatever value is currently pointed
to by the pointer with this permission. Permission type τ1 ∗ τ2 is the separating conjunction
of τ1 and τ2, giving all of the permissions granted by τ1 or τ2, where τ1 and τ2 contain no
overlapping permissions. Permission type τ1 ∨ τ2 is the disjunction of τ1 and τ2, which either
grants permissions τ1 or τ2. The existential permission ∃x :T.τ gives permission τ for some
value x of value type T . The equality permission eq(e) states that a value is known to be
equal to an expression e. This can be viewed as a permission to assume the given value
equals e. Finally, µX.τ is the least fixed-point permission, where permission variable X is
bound in τ . This satisfies the fixed-point property, that µX.τ is equivalent to [µX.τ/X]τ .

As a simple example, the user can define the Heapster type

int64 = ∃x :bv 64.eq(llvmword x)

This Heapster type describes an LLVM word value, i.e., an LLVM value that equals llvmword x

for some bitvector x.
As a slightly more involved example, consider the following definition of a linked list

structure in C:

typedef struct list64_t { int64_t data;
struct list64_t *next; } list64_t ;

A C value of type list64_t* represents a list, where a NULL pointer represents the empty list
and a non-NULL pointer to a list64_t struct represents a list whose head is the 64-integer
contained in the data field and whose tail is given by the next field.

The following Heapster type describes this linked list structure:

list64⟨rw⟩ = µX.eq(llvmword 0) ∨ (ptr((rw, 0) 7→ int64) ∗ ptr((rw, 8) 7→ X))

The list64⟨rw⟩ type is parameterized by a read-write modality rw, which says whether it
describes a read-only or read-write pointer to a linked list. The permission states that the
value it applies to either equals the NULL pointer, represented as llvmword 0, or points at
offset 0 to a 64-bit integer and at offset 83 to an LLVM value that itself recursively satisfies
the list64⟨rw⟩ permission. Note that the fact that it is a least fixed-point implicitly requires
the list to be loop-free.

Figure 7 illustrates the process of Heapster type-checking on a simple function is_elem
that checks if 64-bit integer x is in the linked list l. Note that Heapster in fact operates
on the LLVM code that results from compiling this C code, but the type-checking is easier
to visualize on the C code rather than looking at its corresponding LLVM. Ignoring the
Heapster types for the moment, which are displayed with a grey background in the figure,
is_elem first checks if l is NULL, and if so returns 0 to indicate that the check has failed. If
not, it checks if the head of the list in l->data equals x, and if so, returns 1. Otherwise, it
recurses on the tail l->next.

The Heapster permissions for this function are

x : int64, l : list64⟨R⟩ ⊸ r : int64

3 We assume a 64-bit architecture, so offset 8 references the second value of a C struct.

L. Silver, E. Westbrook, M. Yacavone, and R. Scott 30:11

int64_t is_elem (int64_t x, list64_t *l) {
x : int64, l : list64⟨R⟩
x : int64, l :eq(llvmword 0) OR x : int64, l :ptr((R, 0) 7→ int64) ∗ ptr((R, 8) 7→ list64⟨R⟩)
if (l == NULL) {

x : int64, l :eq(llvmword 0)
return 0;

} else {
x : int64, l :ptr((R, 0) 7→ int64) ∗ ptr((R, 8) 7→ list64⟨R⟩)
if (l->data == x) { return 1; }
else {

list64_t *l2 = l->next;
x : int64, l :ptr((R, 0) 7→ int64) ∗ ptr((R, 8) 7→ eq(l2)), l2 : list64⟨R⟩
return is_elem (x, l2);

}}}

Figure 7 Type-checking the is_elem Function Against Type x : int64, l : list64⟨R⟩ ⊸ r : int64.

The lollipop symbol, ⊸, is used to write Heapster function types. This type means that
input x is a 64-bit integer and l is a read-only linked list pointer and the return value r is a
64-bit integer value.

To type-check is_elem, Heapster starts by assuming the input types for the arguments.
This is displayed in the first grey box of Figure 7. In order to type-check the NULL comparison
on l, Heapster must first unfold the recursive permission on l and then eliminate the resulting
disjunctive permission. This latter step results in Heapster type-checking the remaining
code twice, once for each branch of the disjunct. More specifically, the remaining code is
type-checked once under the assumption that l equals NULL and once under the assumption
that it points to a valid list64_t struct. In the first case, the NULL check is guaranteed
to succeed, and so the if branch is taken with those permissions, while in the second, the
NULL check is guaranteed to fail, so the else branch is taken.

In the if branch, the value 0 is returned. Heapster determines that this value satisfies the
required output permission int64. In the else branch, l->data is read, by dereferencing l
at offset 0. This is allowed by the permissions on l at this point in the code. If the resulting
value equals x, then 1 is returned, which also satisfies the output permission int64. Otherwise,
l->next is read, by dereferencing l at offset 0, and the result is assigned to local variable
l2. This assigns list64⟨R⟩ permission to l2. The permission on offset 8 of l is updated to
indicate that the value currently stored there equals l2. The list64⟨R⟩ permission on l2 is
then used to type-check the subsequent recursive call to is_elem.

Once a function is type-checked, Heapster performs specification extraction to extract a
pure functional specification of the function’s behavior. Specification extraction translates
permission types to Coq types and typing derivations to Coq programs. The type translation
is defined as follows:

Jptr((rw, e) 7→ τ)K = JτK Jτ1 ∗ τ2K = Jτ1K ∗ Jτ2K
Jτ1 ∨ τ2K = Jτ1K + Jτ2K J∃x :T.τK = {x : JT K & JτK}

Jeq(e)K = unit JµX.τK = user-specified type A

isomorphic to J[µX.τ/X]τK

Pointer permissions ptr((rw, e) 7→ τ) are translated to the result of translating the permission
τ of the value that is pointed to. This means that specification extraction erases pointer
types, which are no longer needed in the resulting functional code. Conjuctive permissions are

ECOOP 2023

30:12 Interaction Tree Specifications

Definition is_elem_spec : bitvector 64 * list (bitvector 64) →
itree_spec E (bitvector 64) :=

rec_fix_spec (fun rec ’(x,l) ⇒
either

unit (bitvector 64 * list (bitvector 64)) (* input types *)
(itree_spec _ (bitvector 64)) (* output type *)
(fun _ ⇒ Ret (intToBv 64 0)) (* nil case *)
(fun ’(hd,tl) ⇒ (* cons case *)

if bvEq 64 hd x then Ret (intToBv 64 1) (* return 1 *)
else rec (x,tl)) (* recursive call *)

(unfoldList l)). (* unfolded argument *)

Figure 8 Extracted Specification for is_elem.

translated to pairs, disjunctive permissions are translated to sums, and existential permissions
are translated to dependent pairs (using a straightforward translation JT K of value types that
we omit here). The equality type eq(e) is translated to the Coq unit type unit, meaning that
they contain no data in the extracted specifications. We already proved the equality in the
typechecking phase, and we have no use for the particular equality proof the typechecker
provided. To translate a least fixed-point type µX.τ , the user specifies a type that satisfies
the fixed-point equation, meaning a pair of functions

fold : J[µX.τ/X]τK → JµX.τK unfold : JµX.τK → J[µX.τ/X]τK

that form an isomorphism.
As an example, the translation of int64 is the Coq sigma type {x:bitvector 64 & unit}.

Note that Heapster will in fact optimize away the unnecessary unit type, yielding the type
bitvector 64. As a slightly more complex example, in order to translate the list64⟨rw⟩
described above, the user must provide a type T that is isomorphic to the type

unit + (bitvector 64 * T)

The simplest choice for T is the type list (bitvector 64). In this way, the imperative
linked list data structure defined above in C is translated to the pure functional list type.

Rather than defining the translation of Heapster typing derivations into Coq programs
here, we illustrate the high-level concepts with our example and refer the interested reader
to He et al. [9] for more detail. The translation of is_elem is given as a Coq specification
is_elem_spec in Figure 8. At the top level, this specification uses rec_fix_spec to define
a recursive function to match the recursive definition of is_elem. This binds a local variable
rec to be used for recursive calls to the specification.

To understand the rest of the specification, we step through the Heapster type-checking
depicted in Figure 7. The first step of that type assignment unfolds the permission type
list64⟨W ⟩ on l. The corresponding portion of the specification is the call to unfoldList,
which unfolds the input list l to a sum of a unit or the head and tail of the list. The next step
of the Heapster type-checking is to eliminate the resulting disjunctive permission on l. The
corresponding portion of the specification is a call to the either sum elimination function.
In the left-hand case of the disjunctive elimination, the NULL test of the C program succeeds,
and 0 is returned. Similarly, in the Coq specification, the nil case returns the 0 bitvector
value.

In the right-hand case of the disjunctive elimination of the Heapster type-checking, the
NULL test fails, and so l is a valid pointer to a C struct with data and next fields. This is
represented by the pattern-match on the cons case in the Coq specification, yielding variables
hd and tl for the head and tail of the list. The body of this case then tests whether the head

L. Silver, E. Westbrook, M. Yacavone, and R. Scott 30:13

equals the input variable x, corresponding to the x==l->data expression in the C program.
If so, then the bitvector value 1 is returned. Otherwise, the specification performs a recursive
call, passing the same value for x and the tail of the input list for l.

4 ITree Specifications and Refinement

In this paper, we introduce a specialization of the ITree data type that encodes specifications
over ITrees. To do this, we take some base event type family E, and extend it with constructors
for universal and existential quantification. This is formalized in the following definition for
SpecEvent.

Inductive SpecEvent (E : Type) {̀EncodingType E} : Type :=
| Spec_vis (e : E) : SpecEvent E
| Spec_forall (A : type) : SpecEvent E
| Spec_exists (A : type) : SpecEvent E

.

The Spec_vis constructor allows you to embed a base event e : E into the type SpecEvent E.
The Spec_forall constructor signifies universal quantification, and the Spec_exists constructor
signifies existential quantification. For the purposes of specifying Heapster programs, we
only need to quantify over a fixed grammar of first order types4. This includes natural
numbers, bit vectors, functions, products, logical propositions, and sums. We have omitted
the definition of the particular fixed grammar of types used in this work for space.

We define ITree specifications as the type of ITrees with a SpecEvent as the event type.
Definition itree_spec (E : Type) {̀EncodingType E} (R : Type) :=

itree (SpecEvent E) R.

Because ITree specifications are actually a special kind of ITree, they inherit all the
useful metatheory and code defined for ITrees. In particular, we can reason about them
equationally with eutt, and apply the monad functions to them.

4.1 ITree Specification Refinement
The notion that a program adheres to a specification is defined with the notion of refinement.
Refinement is the main judgment involved in using ITree specifications, and is for instance
the primary form of proof goal proved by the provided automation tool. Intuitively, the
logical quantifier events mean that an ITree specification represents a set of computations. A
fully concrete ITree specification, with no logical quantifier events, represents a singleton set,
while a more abstract specification might represent a larger set. The refinement relation is
then defined such that, if one ITree specification refines another, then the former represents a
subset of the latter. So, for instance, if we prove that a concrete specification refines a more
abstract specification, then we have shown that the singleton program in the set represented
by the concrete specification satisfies the specification. Note that refinement is actually a
coarser relation than subset; this is discussed later in Section 4.4.

The ITree specification refinement relation is based on the idea of refinement of logical
formulae with the eutt relation. As in a sequent calculus, we can eliminate quantifiers in our
specification logic using quantifiers in the base logic, in this case Coq. Quantifiers on the
right of a refinement get eliminated to the corresponding Coq quantifiers, while quantifiers on

4 While we could quantify over Type in these definitions, this introduces universe level constraints that
we prefer to avoid

ECOOP 2023

30:14 Interaction Tree Specifications

the left get eliminated to the dual of the corresponding Coq quantifier. This means that both
a Spec_forall on the right and a Spec_exists on the left get eliminated to a Coq forall. And
both a Spec_exists on the right and a Spec_forall on the left get eliminated to a Coq exists.
ITree specifications form a lattice with refinement serving as the preorder, Spec_forall acting
as the complete meet, and Spec_exists acting as the complete join. The portions of ITree
specifications with computational content, including the Ret leaves, Spec_vis nodes, and silent
Tau nodes, get compared as they do in the eutt relation.

The ITree specification refinement relation shares many mechanical details with the
eutt relation. Both are defined by taking the greatest fixed point of an inductively defined
relation to get a mixture of inductive and coinductive properties. Both behave identically
on Tau and Ret nodes. The refinement relation differs in its inductive rules for eliminating
logical quantifiers, and in its usage of heterogeneous event relations to enforce pre- and post-
conditions on Spec_vis events. These pre- and post- conditions are necessary in order to give
the refinement relation the flexibility needed to state the reasoning principle for mrec. The
initial inductively defined relation, refinesF, contains the following header code.

Inductive refinesF
(RPre : Rel E1 E2) (RPost : PostRel E1 E2) (RR : Rel R1 R2)
(sim : itree_spec E1 R1 → itree_spec E2 R2 → Prop)

: itree_spec E1 R1 → itree_spec E2 R2 → Prop :=

Much like in the definition of euttF, the sim argument represents corecursive calls of the
refines relation, and the RR argument is the relation used for return. Unlike in euttF, refinesF
takes in arguments for a PreRel and a PostRel. These arguments are included in order to
represent pre- and post- conditions on mutually recursive function bodies.

The refinesF relation has several constructors that work precisely the same as the
corresponding euttF constructors. These constructors define the relation’s behavior on Ret
and Tau nodes.

| refines_Ret (r1 : R1) (r2 : R2) : RR r1 r2 → refinesF RPre RPost RR sim (Ret r1)
(Ret r2)

| refines_Tau (phi1 : itree_spec E1 R1) (phi2 : itree_spec E2 R2) : sim phi1 phi2
→

refinesF RPre RPost RR sim (Tau phi1) (Tau phi2)
| refines_TauL (t1 : itree_spec E1 R1) (t2 : itree_spec E2 R2) :

refinesF RPre RPost RR sim t1 t2 → refinesF RPre RPost RR sim (Tau t1) t2
| refines_TauR (t1 : itree_spec E1 R1) (t2 : itree_spec E2 R2) :

refinesF RPre RPost RR sim t1 t2 → refinesF RPre RPost RR sim t1 (Tau t2)

The constructor dealing with Spec_vis nodes generalizes the constructor dealing with Vis
nodes in euttF. This constructor relates Spec_vis nodes as long as two conditions hold on
the events, e1 and e2, and the continuations, k1 and k2. The ITree specifications must satisfy
the precondition, by having e1 and e2 satisfy RPre. And the ITree specifications must satisfy
the post condition by having k1 a refine k2 b, whenever a and b are related by RPost e1 e2.

| refines_Spec_vis (e1 : E1) (e2 : E2)
(k1 : response_type e1 → itree_spec E1 R1) (k2 : response_type e2

→ itree_spec E2 R2) :
RPre e1 e2 → (forall a b, RPost e1 e2 a b → sim (k1 a) (k2 b)) →
refinesF RPre RPost RR sim (Vis (Spec_vis e1) k1) (Vis (Spec_vis e2) k2)

The added complications of this rule allow us to reason about mutually recursive functions.
It ensures that related function outputs assume that function calls with arguments related
by the precondition return values related by the post condition when analyzing mutually
recursive functions.

Finally, we need constructors dealing with quantifier events. This definition uses only
inductive constructors to eliminate quantifier events. We made this choice to avoid certain
peculiar issues related to ITree specifications that consist of infinite trees of only quantifiers.
Given coinductive constructors for quantifier events, we would be able to prove that such

L. Silver, E. Westbrook, M. Yacavone, and R. Scott 30:15

Class CoveredType (A : Type) := {
encoding : type; surjection : response_type encoding → A;
surjection_correct : forall a : A, exists x, surjection x = a; }.

Definition forall_spec {E}
`{EncodingType E}
(A:Type) {̀CoveredType A} :

itree_spec E A :=
Vis (Spec_forall encoding)

(fun x ⇒ Ret (surjection x)).

Definition assume_spec {E}
`{EncodingType E} (P : Prop) :
itree_spec E unit :=
forall_spec P;; Ret tt.

Definition exists_spec {E}
`{EncodingType E}
(A:Type) {̀CoveredType A} :

itree_spec E A :=
Vis (Spec_exists encoding)

(fun x ⇒ Ret (surjection x)).

Definition assert_spec {E}
`{EncodingType E} (P : Prop) :
itree_spec E unit :=
exists_spec P;; Ret tt.

Figure 9 Basic Specifications.

ITree specifications both refine and are refined by any other arbitrary ITree specification.
That choice would cause certain ITree specifications to serve as both the top and bottom
elements of the refinement order. This would serve as a counterexample to the transitivity of
refinement, a desired property. So we chose to only use inductive constructors for quantifier
events. This means that ITree specifications that consist of infinite trees of only quantifiers
cannot be related by refinement to any other ITree specifications.

Quantifiers on the right get directly translated into Coq level quantifiers.
| refines_forallR (t : itree_spec E1 R1) (A:type) (k : response_type A →

itree_spec E2 R2) :
(forall a, refinesF RPre RPost RR sim t (k a)) →
refinesF RPre RPost RR sim t (Vis (Spec_forall A) k)

| refines_existsR (t : itree_spec E1 R1) (A : type) (k : response_type A →
itree_spec E2 R2) :

(exists a, refinesF RPre RPost RR sim t (k a)) →
refinesF RPre RPost RR sim t (Vis (Spec_exists A) k)

Quantifiers on the left get translated into their dual quantifier at the Coq level. Eliminating
a Spec_forall on the left gives you an exists. Eliminating a Spec_exists on the left gives you
an forall.

| refines_forallL (A : type) (k : response_type (Spec_forall A) → itree_spec E1 R1)
(t : itree_spec E2 R2) :

(exists a, refinesF RPre RPost RR sim (k a) t) →
refinesF RPre RPost RR sim (Vis (Spec_forall A) k) t

| refines_existsL (A : type) (k : response_type (Spec_exists A) → itree_spec E1 R1)
(t : itree_spec E2 R2) :

(forall a, refinesF RPre RPost RR sim (k a) t) →
refinesF RPre RPost RR sim (Vis (Spec_exists A) k) t

This refinesF relation is used to define the refines relation as follows.
Definition refines RPre RPost RR := gfp (refinesF RPre RPost RR).

4.2 Padded ITrees
Useful refinement relations should respect the eutt relation. When using ITrees as a denota-
tional semantics, eutt is the basis of any program equivalence relation. Equivalent programs
and specifications should not be observationally different according to the refinement relation.
However, the refines relation does not respect eutt

We can easily demonstrate this with the following three ITree specifications.

ECOOP 2023

30:16 Interaction Tree Specifications

CoFixpoint spin : itree_spec E R := Tau spin.
CoFixpoint phi1 : itree_spec E R := Vis (Spec_forall t) (fun _ ⇒ Tau (phi1)).
CoFixpoint phi2 : itree_spec E R := Vis (Spec_forall t) (fun _ ⇒ phi2).

The spin specification represents a silently diverging computation. The phi1 specification
is an infinite stream that alternates between Spec_forall nodes and Tau constructors. The
phi2 specification is a similar ITree to phi1 that just lacks the Tau nodes. As these ITree
specifications all diverge along all paths and lack any Spec_vis nodes, the RPre, RPost, and RR
relations that we choose do not matter. Given any choice for those relations, spin refines
phi1 as we can use the inductive refines_forallL rule to get rid of the Spec_forall nodes,
allowing us to match Tau nodes on both trees and apply the coinductive refines_Tau rule.
This process can be extended coinductively allowing us to construct the refinement proof.
The phi1 ITree specification is eutt to phi2, as the only difference between the specifications
is a single Tau node after every Vis_forall node. However, spin does not refine phi2, as there
is no coinductive constructor that we can apply in order to write a proof for these divergent
ITree specifications. Problems like this arise with any ITree specifications that consist of
infinitely many quantifier nodes with nothing between them.

To fix this problem, we restrict our focus to a subset of ITrees that does not include ones
like phi2. This is the set of padded ITrees, in which every Vis node must be immediately
followed by a Tau. We formalize this with the coinductive padded predicate, whose definition
has been omitted to save space. The refinement relation does not distinguish between different
ITree specifications that are eutt to one another as long as they are padded. This means
that can rewrite one ITree specification into another under a refinement according to eutt as
long as both are padded.

Furthermore, it is easy to take an arbitrary ITree, and turn it into a padded ITree. That
is implemented by the pad function, which corecursively adds a Tau after every Vis node.
From here, we can focus primarily on the following definition of padded_refines which pads
out all ITree specifications before passing them to the refines relation.

Definition padded_refines RPre RPost RR phi1 phi2 :=
refines RPre RPost RR (pad phi1) (pad phi2).

In Figure 9, we introduce several simple ITree specifications that implement quantifi-
cation over some types, and assumption and assertion of propositions. The forall_spec
and exists_spec specifications rely on the CoveredType type class. A CoveredType instance
for a type A contains an element of the restricted type grammar, encoding, whose inter-
pretation corresponds to A. It also contains a valid surjection from the interpreted type
response_type encoding to the original type A. In practice, we always instantiate this sur-
jection with the identity function, but this type class formalization gives us the tools that
we need without needing to do too much dependently typed programming. We can use
forall_spec and exists_spec to define assumption and assertion, respectively, as Prop is part
of the restricted grammar of types that SpecEvent can quantify over.

4.3 Padded Refinement Meta Theory
This subsection introduces some of the useful, verified metatheory we provide for ITree
specifications in terms of padded_refines relation.

We prove that we can compose refinement results with the monadic bind operator.
Theorem padded_refines_bind (phi1 : itree_spec E1 R1) (phi2 : itree_spec E2 R2)

(kphi1 : R1 → itree_spec E1 S1)
(kphi2: R2 → itree_spec E2 S2) :

padded_refines RPre RPost RR phi1 phi2 →
(forall r1 r2, RR r1 r2 → padded_refines RPre RPost RS (kphi1 r1) (kphi2 r2)) →
padded_refines RPre RPost RS (bind phi1 kphi1) (bind phi2 kphi2).

L. Silver, E. Westbrook, M. Yacavone, and R. Scott 30:17

CoFixpoint interp_mrec_spec {R : Type}
(bodies : forall (d:D), (itree_spec (D + E)) (response_type d)) (t : itree_spec (D + E

) R) : itree_spec E R :=
match t with
| Ret r ⇒ Ret r
| Tau t ⇒ Tau (interp_mrec_spec bodies t)
| Vis (Spec_forall A) k ⇒ Vis (@Spec_forall E _ A) (fun x : response_type (Spec_forall

A) ⇒ interp_mrec_spec bodies (k x))
| Vis (Spec_exists A) k ⇒ Vis (@Spec_exists E _ A) (fun x ⇒ interp_mrec_spec bodies (

k x))
| Vis (Spec_vis (inr e)) k ⇒ Vis (Spec_vis e) (fun x ⇒ interp_mrec_spec bodies (k x))
| Vis (Spec_vis (inl d)) k ⇒ Tau (interp_mrec_spec bodies (bind (bodies d) k))
end.

Definition mrec_spec (bodies : forall (d:D), (itree_spec (D + E)) (response_type d)) (
init : D) :=

interp_mrec_spec bodies (bodies init).

Figure 10 mrec_spec Definition.

We prove that the padded_refines relation is transitive. To state the transitivity result in
full generality, we need to use the composition relation introduced in Figure 5.

Theorem padded_refines_trans : forall (phi1 : itree_spec E1 R1) (phi2 : itree_spec E2
R2) (phi3 : itree_spec E3 R3),

padded_refines RPre1 RPost1 RR1 phi1 phi2 →
padded_refines RPre2 RPost2 RR2 phi2 phi3 →
padded_refines (RCompose RPre1 RPre2)

(RComposePostRel RPre1 RPre2 RPost1 RPost2) (RCompose RR1 RR2) phi1 phi3.

We prove a reasoning principle for mutually recursive specifications as well. To do
this, we first provide a slightly different definition of mutual recursion that handles the
quantifier events correctly, defined in Figure 10. The key to proving refinements between
mrec_spec specifications is to use the PreRel and PostRel relations to establish pre- and post-
conditions on recursive calls. This involves choosing a PreRel over recursive call events,
RPreInv, and a PostRel over recursive call events, RPostInv. Just like any form of invariants
in formal verification, correctly choosing RPreInv and RPostInv requires striking a careful
balance between choosing preconditions that are weak enough to hold, but strong enough to
imply post conditions. The rule is expressed in the following code.

Theorem padded_refines_mrec : forall (init1 : D1) (init2 : D2),
RPreInv init1 init2 →
(forall d1 d2, RPreInv d1 d2 →

padded_refines (SumRel RPreInv RPre)
(SumPostRel RPostInv RPost)
(RPostInv d1 d2)
(bodies1 d1) (bodies2 d2)) →

padded_refines RPre RPost (RPostInv init1 init2)
(mrec_spec bodies1 init1)
(mrec_spec bodies2 init2).

The hypotheses in this theorem state that the initial recursive calls, init1 and init2, are in
the precondition RPreInv, and that given any two recursive calls related by the precondition,
d1 and d2, the recursive function bodies refine one another, where recursive calls are related
by RPreInv and RPostInv and any other events are related by RPre and RPost. These reasoning
principles allow us to prove complicated propositions involving the coinductively defined
refinement relation without needing to perform direct coinduction.

While we include several parameter relations with the definition of padded_refines, at the
top level, we are typically interested in the case where all relations are set to equality. We
call this relation strict refinement, and refer to it with the ≤ symbol.

ECOOP 2023

30:18 Interaction Tree Specifications

Notation "phi1 ’≤ ’ phi2" :=
(padded_refines eq PostRelEq eq phi1 phi2).

Strict refinement is a transitive relation, and is strong enough to allow rewrites under the
context of any other application of padded_refines.

4.4 ITree specification Incompleteness
One way to interpret ITree specifications is as sets of ITrees. The following code defines
concrete ITree specifications, which correspond to executable ITrees.

Variant concreteF {E R} {̀EncodingType E} (F : itree_spec E R → Prop) : itree_spec E
R → Prop :=

| concreteRet (r : R) : concreteF F (Ret r)
| concreteTau (t : itree_spec E R) : F t → concreteF F (Tau t)
| concreteVis (e : E) (k : response_type e → itree_spec E R) :

(forall a, F (k a)) → concreteF F (Vis (Spec_vis e) k).
Definition concrete {E R} {̀EncodingType E} : itree_spec E R → Prop := gfp concreteF.

A concrete ITree specification contains no quantifiers along any of its branches. We can map
each ITree specification to the set of concrete ITree specifications that refine it.

However, ITree specifications are not complete with respect to this interpretation. In
particular, there are pairs of ITree specifications that represent equivalent sets of concrete
ITree specifications, but do not refine one another. To see why, consider the following two
ITree specification over an empty event signature voidE.

Definition top1 : itree_spec voidE unit :=
forall_spec void;; Ret tt.

Definition top2 : itree_spec voidE unit :=
or_spec spin (Ret tt).

Both top1 and top2 are refined by all concrete ITree specifications of type
itree_spec voidE unit. We can prove the refinement for top1 by applying the right forall
rule, and reducing to a trivially satisfied proposition. For top2, we know that every concrete
ITree specification of this type is eutt to either spin or Ret tt5. In each case, apply the right
exists rule and choose the corresponding branch. However, given any relations RE, REAns,
RR, we cannot prove padded_refines RE REAns RR top1 top2. This is because the only way to
eliminate the Spec_forall on the left is to provide an element of the void type, which does
not exist. This, along with the transitivity theorem, demonstrates that padded_refines is
strictly weaker than the subset relation on sets of refining concrete ITree specification.

5 Total Correctness Specifications

This section discusses how to encode and prove simple pre- and post- condition specifications
using ITree specifications. We also discuss how these definitions relate to our syntax-directed
proof automation.

Suppose we have a program that takes in values of type A and returns values of type B.
Suppose we want to prove that if given an input that satisfies a precondition Pre : A → Prop,
it will return a value that satisfies a postcondition Post : A → B → Prop without triggering
any other events. The postcondition is a relation over A and B to allow the postcondition to
depend on the initial provided value. We can encode these conditions in the following ITree
specification.

5 Proving this fact requires a nonconstructive axiom like the Law of The Excluded Middle.

L. Silver, E. Westbrook, M. Yacavone, and R. Scott 30:19

Definition call_spec (a : A) : itree_spec (callE A B + E) B := trigger (inl (Call a)).

Definition calling’ {F} {̀EncodingType F} : (A → itree F B) →
(forall (c : callE A B) , itree F (response_type c)) :=

fun f c ⇒ f (unCall c).
Definition rec_spec (body : A → itree_spec (callE A B + E) B) (a : A) :

itree_spec E B :=
mrec_spec (calling’ body) (Call a).

Definition rec_fix_spec
(body : (A → itree_spec (callE A B + E) B) → A →
itree_spec (callE A B + E) B) :

A → itree_spec E B :=
rec_spec (body call_spec).

Figure 11 rec_fix_spec Definition.

Definition total_spec : A → itree_spec E B :=
fun a ⇒ assume_spec (Pre a);;

b � exists_spec B;;
assert_spec (Post a b);;
Ret b.

The specification assumes that the input satisfies the precondition, existentially introduces
an output value, asserts the post condition holds, and finally returns the output.

The total_spec specification can be effectively used compositionally. Consider a merge
sort implementation, named sort, built on top of two recursively defined helper functions,
one for splitting a list in half, named halve, and one for merging sorted lists, named merge.
If we have already proven specializations of total_spec for these sub functions, it becomes
easier to prove a specification for sort. Immediately we can replace these sub functions with
their total correctness specification. Now consider how this total correctness specification
will behave on the left side of a refinement. First, we can eliminate assume_spec (Pre a) as
long as we can prove Pre a. Once we have done that, we get to universally introduce the
output b, along with a proof that it satisfies the post condition. We are finally left with only
Ret b with the assumption Post a b. This is a much simpler specification than our initial
executable specification, which relied on several control flow operators including a recursive
one.

However, this easy to use specification is not easy to directly prove. The
padded_refines_mrec rule gives us a sound reasoning principle for proving that a recur-
sively defined function refines another recursively defined function, but it does not give any
direct insight into how to prove any refinement that does not match that syntactic structure.
To address this, we introduce a recursively defined version of total_spec_fix that we can
apply our recursive reasoning principle on.

First, we introduce a specialization of the mrec_spec combinator called rec_fix_spec,
defined in Figure 11. The rec_fix_spec function has a type similar to that of a standard
fixpoint operator. The first argument, body, is a function that takes in a type of recursive
calls A → itree_spec (callE A B + E) B and an initial argument of type A and produces a
result in terms of an ITree specification. It relies on the calling’ function to transform
this value into a value of type forall (c:callE A B), itree_spec (callE A B + E) B which the
mrec_spec function requires. From there it relies on the call_spec and rec_spec functions to
wrap values of type A into Call events and trigger them.

Given this recursion operator, we introduce an equivalent version of the total correctness
specification, total_spec_fix.

ECOOP 2023

30:20 Interaction Tree Specifications

Definition total_spec_fix : A → itree_spec E B :=
rec_fix_spec (fun rec a ⇒

assume_spec (Pre a);;
n � exists_spec nat;;
trepeat n (

a’ � exists_spec A;;
assert_spec (Pre a’ ∧ Rdec a’ a);;
rec a’

);;
b � exists_spec B;;
assert_spec (Post a b);;
Ret b).

This specification is reliant on the trepeat n t function, with simply binds an ITree, t, onto
the end of itself n times. Note that total_spec_fix is defined recursively, and contains the
elements of total_spec inside the recursive body. This makes it easier to relate to recursively
defined functions. It begins by assuming the precondition and ends by introducing an output,
asserting it satisfies the post condition, and returning the output. What comes between these
familiar parts requires more explanation. Recall the discussion of the padded_refines_mrec
rule. This reasoning principle lets you prove refinement between two recursively defined
ITree specifications when a single layer of unfolding of each specification match up one to
one with recursive calls.

This means that to have a useful, general, and recursively defined version of total
correctness specification we need to allow our recursive definition for total correctness
specification to choose the number of recursive calls the function requires. For this reason,
total_spec_fix existentially introduces a number n that specifies how many recursive calls are
needed for one level of unfolding of the recursive function starting at a. The specification then
includes n copies of a specification that existentially chooses a new argument a’, asserts a
predicate holds on it, and then recursively calls the specification on this new argument. This
asserted predicate contains two parts. First, we assert the precondition. A correct recursively
defined function should not call itself on an invalid input if given a valid input. Second, we
assert that a’ is less than a according to the relation Rdec. In order for total_spec_fix to
actually be equivalent to total_spec, we need to assume that Rdec is well-founded6. The
fact that Rdec is well-founded ensures that this specification contains no infinite chains of
recursive calls. This allows us to prove that total_spec_fix refines total_spec as long as Rdec
is well-founded.

Theorem total_spec_fix_correct :
well_founded Rdec → forall (a : A), total_spec_fix a ≤ total_spec a.

This theorem allows us to initially prove refinement specifications for recursive functions
using the padded_refines_mrec rule with total_spec_fix and then replace it with the easier
to work with total_spec.

Both total_spec and total_spec_fix do not accept any ITree specifications that trigger
any events. As a result, these total correctness specifications do not allow any exceptions to
be raised, as you would expect with total correctness specifications.

5.1 Demonstration
To demonstrate how to work with total_spec, we describe how to verify the merge function,
a key component of the merge sort algorithm. The merge function takes two sorted lists
and combines them into one larger sorted list which contains all the original elements. In

6 We use the Coq standard library’s definition of well-foundedness for this.

L. Silver, E. Westbrook, M. Yacavone, and R. Scott 30:21

Definition merge : (list nat * list nat)
→

itree_spec E (list nat) :=
rec_fix_spec (fun rec ’(l1,l2) ⇒

b1 � is_nil l1;;
b2 � is_nil l2;;
if b1 : bool then

Ret l2
else if b2 : bool then

Ret l1
else

x � head l1;;
tx � tail l1;;
y � head l2;;
ty � tail l2;;
if Nat.leb x y then

l � rec (tx, y::ty);;
Ret (x :: l)

else
l � rec (x::tx, ty);;
Ret (y::l)).

Definition merge_pre p :=
let ’(l1,l2) := p in
sorted l1 ∧ sorted l2.

Definition merge_post ’(l1,l2) l :=
sorted l ∧ Permutation l (l1 ++ l2).

Definition rdec_merge ’(l1,l2) ’(l3,l4) :=
length l1 < length l3 ∧

length l2 = length l4 ∨
length l1 = length l3 ∧

length l2 < length l4.

Theorem merge_correct : forall l1 l2,
merge (l1,l2) ≤ total_spec merge_pre

merge_post (l1,l2).

Figure 12 Merge implementation.

Figure 12, we present a recursively defined implementation of merge along with relevant
relations and the correctness theorem. The merge function is based on the standard list
manipulating functions is_nil, head, and tail. We assume that the event type E contains
some kind of error event which is emitted if head or tail is called on an empty list.7

The merge function relies on its arguments being sorted and guarantees that its output
is a single, sorted list that is a permutation of the concatenation of the original lists. We
formalize these conditions in merge_pre and merge_post. To prove that merge is correct, we
want to show that it refines the total specification built from its pre- and post- conditions.
To accomplish this, it suffices to choose a well founded relation and prove that merge satisfies
the resulting total_spec_fix specification. For this function, we use rdec_merge which ensures
that the pairs of lists that we recursively call merge on either both decrease in length, or one
decreases in length and the other has the same length.

This leaves us with a refinement goal between two recursively defined specifications. We
can then apply the padded_refines_mrec_spec theorem. For the relational precondition, we
require that each pair of Call events is equal, and that Pre holds on the value contained
within the call. For the relational postcondition, we require that equal Call events return
equal values and that Post holds on them. Finally, we can prove that the body merge refines
the body of total_spec_fix given these relation pre- and postconditions. We accomplish this
by setting the existential variables on the right to make a single recursive call and give it the
same argument as the recursive call that the body of merge makes.

With this technique, we can verify the simple server introduced in Section 1. Recall that
the server_impl program executes an infinite loop of receiving a list of numbers, sorting it,
and sending it back as a message. To verify server_impl, we first verify halve, the remaining
sub function of sort, using the same technique we used to prove the correctness of merge. We
can then use these facts to prove the correctness of sort, and use the correctness of sort to
prove the correctness of server_impl.

Theorem server_correct :
(server_impl tt) ≤ (server_spec tt).

7 We manage this assumption with a Coq type class called ReSum. For more information please read the
original ITrees paper [29] or inspect the associated artifact.

ECOOP 2023

30:22 Interaction Tree Specifications

Function Name Description C LoC Proof LoC
mbox_free_chain Deallocate an mbox chain 11 18

mbox_len Compute the length in bytes of an mbox chain 9 40
mbox_concat Concatenates an mbox chain after a single mbox 5 18

mbox_concat_chains Concatenates two mbox chains 14 24
mbox_split_at Split an mbox chain into two chains 25 147

mbox_copy Copy a single mbox 13 74
mbox_copy_chain Copy an mbox chain 18 173

mbox_detach Detach the first mbox from a chain 18 18
mbox_detach_from_end Detach the first N bytes from an mbox chain 3 50

mbox_randomize Randomize the contents of an mbox 9 121
mbox_drop Remove bytes from the start of an mbox 12 23

Figure 13 Verified mbox functions.

6 Automation and Evaluation

6.1 Auto-active Verification
A key goal of this work is to provide auto-active automation for ITree specifications refinement.
To this effect, the current section presents an automated Coq tactic for proving refinement
goals called prove_refinement. The prove_refinement tactic is designed to reduce proof goals
about refinement of programs to proof goals about the data and assertions used in those
programs. In the spirit of auto-active verification, this is done mostly automatically, but
with the user guiding the automation in places where human insight is needed.

The prove_refinement tactic defers to the user in two specific places. The first is in
defining invariants for uses of the mrec recursive function combinator. The tool defers to the
user to provide these invariants because inferring such invariants is undecidable. The second
place where prove_refinement defers to the user is in proving non-refinement goals regarding
first order data. The user can then apply other automated and/or manual proof techniques
for the theories of the resulting proof goals.

The prove_refinement tactic is defined using a collection of syntax-directed inference rules
for proving refinement goals. The tactic proves refinement goals by iteratively choosing and
applying a rule that matches the current goal and then proceeding to prove the antecedents.
The prove_refinement tactic implements this strategy using the Coq hint database mechanism,
which is already a user-extensible mechanism for proof automation using syntax-directed
rules.

We omit further implementation details both for space and because we do not claim the
implementation of the prove_refinement tactic is novel or interesting. What is novel and
interesting is that ITree specifications are designed in such a way that the straightforward
implementation is able to achieve impressive results.

6.2 Evaluation
He et al. [9] discussed using Heapster to verify the interface of mbox, a key datastructure in
the implementation of the Encapsulating Security Payload (ESP) protocol of IPSec. The
mbox datastructure represents a data packet as a linked list of fixed length arrays. He et al. [9]
type checked and extracted functional specifications for several functions that manipulate
mbox. Using ITree specifications, we specified and verified the behavior of these functional

L. Silver, E. Westbrook, M. Yacavone, and R. Scott 30:23

specifications using our auto-active verification tool. These functions are nontrivial, combining
loops, recursion, and pointer manipulations. We present the list of verified functions in
Figure 13.

For each function, we include the function’s name, a description of its behavior, the
number of lines of C code in its definition, and the number of lines of Coq code required
to verify it. Lines of code are, of course, a very coarse metric for judging the complexity of
code and proofs. However, these metrics do demonstrate the viability of this verification
approach, showing that the remaining proof burden after the automation is of a reasonable
size. The primary advantage this approach has over others is that the system reduces the
verification down to facts about first order data. In this case, the data is a variant of the
mbox datastructure written in Coq.

7 Related Work

The most closely related work is the work on Dijkstra monads [16, 28, 1, 27]. Dijkstra
monads are a framework for writing specifications over arbitrary monads. This framework is
the basis for verifying programs with effects in F⋆ [26], a programming language specifically
designed for verification. Dijkstra monads arise from the interaction of three structures,
a monad M, a specification monad W, and an effect observation function obs. The monad
M represents computations to be verified, while the specification monad W is a monad for
writing specifications about those computations. The effect observation function obs is a
monad homomorphism that embeds computations in M to the most precise specification in
W that they satisfy. The specification monad is also equipped with a refinement relation
that expresses when one specification implies or is contained in another. As an example,
Dijkstra monads arose out of generalizing the notion of weakest precondition computations,
by viewing the weakest precondition transformer of a computation as itself being a stateful
computation from postconditions to preconditions. The mapping from a computation to its
weakest precondition transformer is then a monad homomorphism from the computation
monad to the weakest precondition monad.

ITree specifications in fact form a Dijkstra monad, where the type itree_spec E R acts
as the specification monad and the corresponding ITree monad itree E R without logical
quantifier events forms the computation monad. The effect observation homomorphism is then
the natural embedding from the ITree type without quantifiers to the type with quantifiers.
Most Dijkstra monads are specialized to act as either partial specification logics, which
always accept any nonterminating computations, or total specification logics, which always
reject any nonterminating computations. This means that most existing Dijkstra monads
cannot reason about termination-sensitive properties like liveness. ITree specifications have
the advantage of admitting specifications that accept particular divergent computations and
not others. For example, an ITree specification could accept any computation that produces
an infinite pattern of messages and responses from a server, and reject any computation that
silently diverges.

A notable exception is the work of Silver and Zdancewic [25], who also provided a Dijkstra
monad for ITrees. Much like ITree specifications it was capable of expressing specifications
that allow for specifying infinite behavior. However, it did not provide reasoning principles
for general recursion. The fact that ITree specifications represent specifications as syntax
rather than semantics, as an ITree rather than some function relating ITrees to Prop, enabled
us to write reasoning principles for general recursion and to build automation around the
refinement rules.

ECOOP 2023

30:24 Interaction Tree Specifications

A lot of work on verifying monadic computations has been based on notions of equational
reasoning. This was in fact a key part of Moggi’s original work [19]. Pitts [21] and Moggi [20]
extend this approach be building general theories of an evaluation predicate for reasoning
about return values of computations. This approach provides no explicit means to reason
about the effects, however, and also has no direct way of handling non-termination in
specifications such as the specifications needed for a server process. Plotkin and Pretnar [22]
further extend this approach with a general-purpose logic for algebraic effects, allowing it to
reason about the effects themselves and not just return values. This approach cannot handle
general Hoare logic assertions, however, and although there is a high-level discussion about
handling recursion, it is not clear how well it works for those sorts of specifications. Rauch
et al. [23] extends monads with native exceptions and non-termination and provides a logic
for these monads. Much like in our work, monads in Rauch et al. [23] can be annotated with
assertions. However, it restricts the language of assertions, and does not provide assumptions,
or general universal or existential quantification. It also handles only tail recursive programs,
and not general, mutual recursion.

One particularly effective approach in the space of equational reasoning was that of
Gibbons and Hinze [8]. This work showed how to use the specialized monad laws of each
sort of effect in a computation to define rewrite rules for simplifying and reasoning about
effectful computations, and then demonstrated that this approach is both straightforward to
use and powerful enough to verify a number of small but interesting programs.

The ultimate goal of this work is to provide techniques for auto-active verification of
imperative code. Therefore, it is natural to compare this work to semi-automated separation
logic tools like VST-Floyd[2] and CFML[6]. We argue this approach has two major advantages
over these related techniques. First, while VST-Floyd is specialized to C and CFML is
specialized to Caml, ITree specifications can be used to specify any programs with an
ITrees based semantics. When paired with Heapster techniques, ITree specifications can be
used to specify a wide array of imperative, heap-manipulating languages with a memory-safe
type system. In particular, the Heapster type system is closely related to the Rust type
system, meaning these techniques should be adaptable to specify and verify Rust code.
Second, the Heapster types are able to perform all the separation logic specific reasoning,
freeing the verifier to focus on the underlying mathematical structures.

8 Conclusion

This paper introduces ITree specifications along with verified metatheory and proof automa-
tion for reasoning about them. ITree specifications are a specialization of ITrees with a
general notion of specification refinement. Unlike previous work developing specifications
for ITrees, this paper provides techniques for working with the general recursion operator
provided by the ITrees library. Finally, this paper demonstrates the effectiveness of its
techniques by applying them on a collection of realistic C functions.

References
1 Danel Ahman, Catalin Hritcu, Kenji Maillard, Guido Martinez, Gordon Plotkin, Jonathan

Protzenko, Aseem Rastogi, and Nikhil Swamy. Dijkstra monads for free. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL), 2017.

2 Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon
Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for Certified Compilers. Cambridge
University Press, USA, 2014.

L. Silver, E. Westbrook, M. Yacavone, and R. Scott 30:25

3 Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. Leveraging rust
types for modular specification and verification. In Proceedings of the ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2019.

4 Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model checking
without bdds. In Proceedings of the 5th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), 1999.

5 Aaron R. Bradley. Sat-based model checking without unrolling. In Proceedings of the
12th International Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI), 2011.

6 Arthur Charguéraud. Characteristic formulae for the verification of imperative programs. In
Proceedings of the 16th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’11, pages 418–430, New York, NY, USA, 2011. Association for Computing Machinery.
doi:10.1145/2034773.2034828.

7 Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian Huffman, Colm Mac-
Cárthaigh, Stephen Magill, Eric Mertens, Eric Mullen, Serdar Tasiran, Aaron Tomb, and
Eddy Westbrook. Continuous formal verification of amazon s2n. In Proceedings of the 30th
International Conference on Computer Aided Verification (CAV), 2018.

8 Jeremy Gibbons and Ralf Hinze. Just do it: simple monadic equational reasoning. In
Proceedings of the 16th ACM SIGPLAN international conference on Functional programming
(ICFP), 2011.

9 Paul He, Edwin Westbrook, Brent Carmer, Chris Phifer, Valentin Robert, Karl Smeltzer,
Andrei Stefanescu, Aaron Tomb, Adam Wick, Matthew Yacavone, and Steve Zdancewic. A
type system for extracting functional specifications from memory-safe imperative programs. In
Proceedings of the ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2021.

10 Son Ho and Jonathan Protzenko. Aeneas: Rust verification by functional translation. Proc.
ACM Program. Lang., 6(ICFP), August 2022. doi:10.1145/3547647.

11 Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of parameterization
in coinductive proof. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 2013. doi:10.1145/2429069.2429093.

12 Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost state. In
Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, pages 256–269. ACM, 2016. doi:10.1145/2951913.2951943.

13 Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. sel4: Formal verification of an os kernel. In Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09, pages
207–220, New York, NY, USA, 2009. ACM. doi:10.1145/1629575.1629596.

14 Xavier Leroy and Sandrine Blazy. Formal verification of a c-like memory model and its
uses for verifying program transformations. J. Autom. Reason., 41(1):1–31, July 2008. doi:
10.1007/s10817-008-9099-0.

15 Giuliano Losa and Mike Dodds. On the Formal Verification of the Stellar Consensus Protocol.
In 2nd Workshop on Formal Methods for Blockchains (FMBC 2020), 2020.

16 Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Cătălin Hriţcu, Exequiel Rivas,
and Éric Tanter. Dijkstra monads for all. Proc. ACM Program. Lang., 3(ICFP), July 2019.
doi:10.1145/3341708.

17 Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer. Rusthornbelt:
A semantic foundation for functional verification of rust programs with unsafe code. In
Proceedings of the 43rd ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2022.

ECOOP 2023

https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/3547647
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/3341708

30:26 Interaction Tree Specifications

18 Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. Rusthorn: Chc-based verification
for rust programs. In Proceedings of the 29th European Symposium on Programming (ESOP),
2020.

19 Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth
Annual Symposium on Logic in Computer Science (LICS), 1989.

20 Eugenio Moggi. A semantics for evaluation logic. Fundamenta Informaticae, 22(1), 1989.
21 Andrew M. Pitts. Evaluation logic. In Proceedings of the IV Higher Order Workshop, 1990.
22 Gordon Plotkin and Matija Pretnar. A logic for algebraic effects. In Proceedings of the 23rd

Annual IEEE Symposium on Logic in Computer Science (LICS), 2008.
23 Christoph Rauch, Sergey Goncharov, and Lutz Schröder. Generic hoare logic for order-enriched

effects with exceptions. In Phillip James and Markus Roggenbach, editors, Recent Trends
in Algebraic Development Techniques, pages 208–222, Cham, 2017. Springer International
Publishing.

24 Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Mechanized verification of fine-
grained concurrent programs. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’15, pages 77–87, New York, NY,
USA, 2015. Association for Computing Machinery. doi:10.1145/2737924.2737964.

25 Lucas Silver and Steve Zdancewic. Dijkstra monads forever: Termination-sensitive spec-
ifications for interaction trees. Proc. ACM Program. Lang., 5(POPL), January 2021.
doi:10.1145/3434307.

26 Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and
Jean Yang. Secure distributed programming with value-dependent types. In Proceeding of
the 16th ACM SIGPLAN international conference on Functional Programming, ICFP 2011,
Tokyo, Japan, September 19-21, 2011, pages 266–278, 2011. doi:10.1145/2034773.2034811.

27 Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud,
Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss,
Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin. Dependent types and multi-monadic
effects in f*. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’16, pages 256–270, New York, NY, USA, 2016.
Association for Computing Machinery. doi:10.1145/2837614.2837655.

28 Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits. Ver-
ifying higher-order programs with the dijkstra monad. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, pages 387–398, 2013. doi:10.1145/2491956.2491978.

29 Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce,
and Steve Zdancewic. Interaction trees: Representing recursive and impure programs in Coq.
Proc. ACM Program. Lang., 4(POPL), December 2019. doi:10.1145/3371119.

https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/3434307
https://doi.org/10.1145/2034773.2034811
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2491956.2491978
https://doi.org/10.1145/3371119

Breaking the Negative Cycle: Exploring the Design
Space of Stratification for First-Class Datalog
Constraints
Jonathan Lindegaard Starup #

Department of Computer Science, Aarhus University, Denmark

Magnus Madsen #

Department of Computer Science, Aarhus University, Denmark

Ondřej Lhoták #

David R. Cheriton School of Computer Science, University of Waterloo, Canada

Abstract
The λDat calculus brings together the power of functional and declarative logic programming in one
language. In λDat, Datalog constraints are first-class values that can be constructed, passed around
as arguments, returned, composed with other constraints, and solved.

A significant part of the expressive power of Datalog comes from the use of negation. Stratified
negation is a particularly simple and practical form of negation accessible to ordinary programmers.
Stratification requires that Datalog programs must not use recursion through negation.

For a Datalog program, this requirement is straightforward to check, but for a λDat program, it
is not so simple: A λDat program constructs, composes, and solves Datalog programs at runtime.
Hence stratification cannot readily be determined at compile-time.

In this paper, we explore the design space of stratification for λDat. We investigate strategies to
ensure, at compile-time, that programs constructed at runtime are guaranteed to be stratified, and
we argue that previous design choices in the Flix programming language have been suboptimal.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases Datalog, first-class Datalog constraints, negation, stratified negation, type
system, row polymorphism, the Flix programming language

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.31

1 Introduction

Datalog is an expressive and powerful declarative logic programming language. A Datalog
program consists of facts and rules. Facts represent knowledge (e.g. “an owl is a bird”)
whereas rules allow one to infer new facts from existing facts (e.g. “if x is a bird and x is not
a penguin then x can fly.”). The facts and rules imply a minimal model, a unique solution to
every Datalog program [18] (e.g. “an owl is a bird” and “an owl can fly”).

Datalog has been used in a diverse set of applications including big-data analytics [20,
39, 41], social network analysis [39, 40], machine learning [32, 34], bio-informatics [25, 38],
disassembly [15], micro-controller programming [46], networking and distributed systems [1,
10, 29], program analysis [7, 42, 43], and smart contract security [44].

Over the years, a plethora of Datalog extensions have been developed, adding support
for object types [4], logic formulas [6], decidable arithmetic functions [23], disjunctive rule
heads [13], distributed evaluation [24], and more. Many Datalog solvers have also been
developed, including DLV [2], Soufflé [22], LogicBlox [3], QL [4], Formulog [6], and Flix [31].

A significant part of both the theoretical and practical expressive power of Datalog
comes from the use of negation. However, negation also brings challenges: ensuring a
meaningful semantics for logic programming with negation is a historically well-studied
problem [14, 16, 17, 27, 36, 37]. Stratified negation has emerged as a simple and practical

© Jonathan Lindegaard Starup, Magnus Madsen, and Ondřej Lhoták;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 31; pp. 31:1–31:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jls@cs.au.dk
https://orcid.org/0000-0002-0931-7878
mailto:magnusm@cs.au.dk
https://orcid.org/0000-0002-7510-8724
mailto:olhotak@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ECOOP.2023.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Breaking the Negative Cycle

semantics that is accessible to ordinary programmers [48]. Informally, a Datalog program
is stratified when there is no recursion through negation, i.e. no predicate symbol can
negatively depend on itself. Stratification splits a Datalog program D into a sequence of
Datalog programs D1, · · · , Dn where the “output facts” of Di become the “input facts” of
Di+1. Computing whether a Datalog program is stratified, and if so, computing its strata, is
straightforward, e.g. using Ullman’s algorithm [45].

The λDat calculus extends the lambda calculus with first-class Datalog constraints [30].
In λDat, Datalog constraints, or programs, are values that can be constructed, passed as
arguments to functions, returned from functions, composed with other Datalog program
values, and have their minimal model computed. The minimal model is itself a set of
facts, hence a Datalog value. This makes it possible to construct pipelines of Datalog
computations. The type system of λDat is based on Hindley-Milner [12, 47] extended with
row polymorphism [28]. The type system permits Datalog constraints to be polymorphic,
while ensuring type safety [30]. The λDat calculus and its type system has been implemented
in the Flix programming language.

For a λDat program, we cannot readily determine whether the Datalog values constructed
at runtime are stratified. We can defer stratification until runtime, but this has two significant
downsides: (1) we must perform the stratification repeatedly, and worse, (2) we have to
abort execution if a non-stratified Datalog program is ever constructed.

In this paper, we explore the design space of compile-time techniques, which ensure that
λDat programs never construct non-stratified Datalog values at runtime. We also show that
these techniques enable stratification of Datalog programs with lattice semantics.
In summary, the paper makes the following contributions:

(Design Space) We explore the design space of compile-time stratification in the presence
of first-class Datalog constraints.
(Framework) We formulate the design space in a mathematical framework that allows
us to express each design point as a specific instantiation of the framework. We introduce
the notion of a labelled dependency graph and discuss how it can be used to soundly
over-approximate the dependency edges of a Datalog expression.
(Comparison) We identify the current state-of-the-art, i.e. the technique currently used
in the Flix programming language, in the design space and illustrate that some of its
design choices have been sub-optimal.
(Implementation) We extend the Flix programming language with different design
choices that admit more programs (i.e. allow more safe programs to pass the type checker).
In particular, our extension uses rule-level granularity (choice 1c), and uses predicate
arity and predicate term types in the labelled dependency graph (choice 2b and 2c).
(Case Study) We conduct a case study of a graph library that we implement in Flix.
The study shows that use of stratified negation and lattice semantics is prevalent.

This paper is structured as follows: We motivate our work in Section 2. In Section 3 we
present background material on Datalog, on stratified negation, and on the λDat calculus.
We explore the design space of stratification for λDat in Section 4, Section 5, and Section 6.
In Section 7 we discuss the design choices that we have made and our implementation in
the Flix programming language. We use this implementation for a graph library case study
in Section 8. Section 9 presents related work and Section 10 concludes. To ensure that the
paper is self-contained, the background section has to cover a lot of material. Readers who
are already familiar with Datalog, stratified negation, or the λDat calculus are encouraged to
skip the background material.

J. L. Starup, M. Madsen, and O. Lhoták 31:3

1

2

7

5 3

6

4

8

Figure 1 An undirected graph. We want to compute the connected components of the graph and
introduce edges that connect them. The components are indicated by thick gray lines. The edges
we want to compute are indicated by dashed lines. The double circled nodes are the representatives
of each connected component.

2 Motivation

We motivate our work with an example. Consider the following problem:

Given an undirected graph, compute its connected components and introduce an edge
between each component.

Figure 1 illustrates the problem with an example. The graph has nodes numbered one to
eight. The connected components are {1, 2, 7}, {3, 5}, and {4, 6, 8}. We want to compute
the three (undirected) edges: {1, 2, 7} ↔ {3, 5}, {1, 2, 7} ↔ {4, 6, 8}, and {3, 5} ↔ {4, 6, 8},
as shown in Figure 1.

We can use the Flix programming language, with its support for first-class Datalog
constraints, to elegantly solve this problem. Figure 2 shows a Flix program that does so.
The program consists of two functions: connectedComponents and connectGraph.

The connectedComponents function computes the connected components (CCs) of the
given (undirected) graph. The graph is represented as a set of nodes (of type Set[Int32]) and
a set of edges (of type Set[(Int32, Int32)]). First, the function converts the nodes and edges
into Node and Edge facts. Next, the function defines a local variable r which is a Datalog
program value. The Datalog program defines Reachable as the (undirected) transitive closure
of the Edge relation. Using Reachable, it computes the representative of each node in a CC
as follows: Every node in a CC is associated with the lexicographically largest node in the
same CC (ReachUp). The representative of a CC is then the node which is the largest in
each CC, i.e. has no larger parent. Finally, the connectedComponents function composes the
node (ns) and edge (es) facts with the Datalog program (r), computes its minimal model,
and extracts all the ComponentRep facts. The polymorphic row extension in the return type
#{· · · | r} allows the caller to type the returned Datalog program with additional predicates.

The connectGraph function computes a set of edges that connect CCs in a graph. That is,
the function returns a set of edges that connect sets of nodes. The connectGraph function takes
a graph as input (using the same representation as before), and calls the connectedComponents
function to compute the CCs, specifically the ComponentRep relation which holds the
representative of each node in the graph. The function defines the local variable d which
is a Datalog program value. The Datalog program uses the ComponentRep to build a map
Component which maps each representative to the set of nodes it represents. The rule:
1 Component (rep; Set #{n}) :- ComponentRep (n, rep).

states that if there is a ComponentRep(n, rep) fact, for some n and rep, then we infer a
Component(rep; Set#{n}) lattice fact where rep is mapped to the singleton set {n}. The
Component lattice implicitly combines facts using the ordering on Set[Int32], which is subset

ECOOP 2023

31:4 Breaking the Negative Cycle

1 /// Given an undirected graph represented by nodes and edges ,
2 /// computes its connected components and returns a relation
3 /// that maps each node to its representative .
4 def connectedComponents (nodes : Set[Int32], edges : Set [(Int32 , Int32)]):
5 #{ ComponentRep (Int32 , Int32) | r } =
6 let ns = inject nodes into Node;
7 let es = inject edges into Edge;
8 let r = #{
9 // Reachable (n1 , n2) captures that n1 can reach n2.

10 // All nodes can reach themselves .
11 Reachable (n, n) :- Node(n).
12 // n1 can reach n2 directly .
13 Reachable (n1 , n2) :- Edge(n1 , n2).
14 // n2 can reach n1 directly , since the graph is undirected .
15 Reachable (n2 , n1) :- Edge(n1 , n2).
16 // n1 can reach n3 by transitivity .
17 Reachable (n1 , n3) :- Reachable (n1 , n2), Reachable (n2 , n3).
18 // ReachUp contains nodes that can reach at least one other node
19 // with a higher value. That is , ReachUp contains all nodes which
20 // are not a representative of their connected component .
21 ReachUp (n1) :- Reachable (n1 , n2), if n1 < n2.
22 // The representative , rep , of a node , n, in a connected component
23 // is any reachable node that is not contained in ReachUp .
24 ComponentRep (n, rep) :- Reachable (n, rep), not ReachUp (rep).
25 };
26 solve ns , es , r project ComponentRep
27
28 /// Given an undirected graph represented by nodes and edges ,
29 /// connects all connected components . The returned edges are
30 /// between components , i.e. they are edges between *sets* of nodes .
31 def connectGraph (nodes : Set[Int32], edges : Set [(Int32 , Int32)]):
32 #{ Edge(Set[Int32], Set[Int32]) | r } =
33 let d = #{
34 // Component (rep; c) captures that the node rep is the
35 // representative of the component c which is a set of nodes . The
36 // semicolon makes c use lattice semantics which aggregates all
37 // the nodes represented by rep into one set.
38 Component (rep; Set #{n}) :- ComponentRep (n, rep).
39 // Introduce an edge between every pair of components sets.
40 // The fix keyword ensures that the Component relation is fully
41 // materialized before this rule is evaluated , i.e. that a
42 // component contains all its nodes.
43 Edge(c1 , c2) :- fix Component (_; c1), fix Component (_; c2).
44 };
45 solve connectedComponents (nodes , edges), d project Edge
46
47 def main (): Unit \ IO =
48 let connectedGraph = connectGraph (Set.range (1, 9),
49 Set #{ (1, 2), (2, 7), (5, 3), (8, 6), (6, 4), (4, 8)});
50 let result = query connectedGraph select (c1 , c2) from Edge(c1 , c2);
51 println (result)

Figure 2 Flix program that connects an undirected graph using Datalog.

inclusion. In other words, if there are multiple ComponentRep facts with the same rep then
every set is union’ed together. The last rule introduces edges between the components:

1 Edge(c1 , c2) :- fix Component (_; c1), fix Component (_; c2).

The fix keyword ensures that the Component lattice is fully computed before the rule is
evaluated. We will explain the full details in Section 6.

J. L. Starup, M. Madsen, and O. Lhoták 31:5

2.1 Stratified Negation
The Flix program in Figure 2 uses negation in the following rule:

ComponentRep (n, rep) :- Reachable (n, rep), not ReachUp (rep).

where the ReachUp predicate symbol occurs negated.
Datalog has the theoretically interesting and practically useful property that every Datalog

program has a unique solution; the minimal model. However, in the presence of negation, an
additional side condition is necessary to ensure the existence of the minimal model.

To understand why, consider a Datalog program with the two rules:

WinBlack(x)⇐ not WinWhite(x). WinWhite(x)⇐ not WinBlack(x).

The rules try to capture the idea that “if x is not a winning move for white then x is a
winning move for black” and “if x is not a winning move for black then x is a winning move
for white”. The problem is that this Datalog program has two models, neither of which is
minimal: {WinBlack(p)} and {WinWhite(p)} for some p. We want to avoid such situations.

Stratified negation overcomes this problem by imposing a simple restriction: A predicate
symbol cannot negatively depend on itself. This requirement is sometimes expressed as
“no recursion through negation”. It is straightforward to determine if a Datalog program is
stratified: We simply compute the dependency graph of the program and determine if it
contains a cycle with a negative edge.

Returning to Figure 2, if we look at all the rules, we can see the following negative cycle:

Edge←−× Component← ComponentRep←−× ReachUp← Reachable← Edge

But does the Flix program in Figure 2 actually construct a Datalog value with a negative
cycle at runtime? Fortunately this is not the case. The reason is as follows: the Edge,
Reachable, and ReachUp predicates are used to compute the ComponentRep relation. This
Datalog program is fully solved before ComponentRep is used to compute a new set of Edges.

We can now describe the problem this paper aims to solve:

In Flix, in the presence of first-class Datalog values, how can it be statically guaranteed
that every Datalog value that may be constructed at runtime will be stratified?

In the example above, we used very ad-hoc reasoning to justify that a negative cycle cannot
occur. While a very powerful and precise control– and data-flow analysis may be able to
provide similar justification, in this paper we are interested in simpler and more light-weight
techniques. We want to build on the type system of the λDat calculus and of Flix. In the
dependency Edge← ComponentRep, the type of Edge is (Set[Int32], Set[Int32]), whereas in the
dependency Reachable← Edge, the type of Edge is (Int32, Int32). The type system ensures
that predicate symbols with different types cannot occur in the same Datalog program value.
This means that we can exclude the existence of edges based solely on the type information.
Interestingly, we could also use the type system in a different way to exclude the negative
cycle. The rule using negation mentions three predicate symbols: ComponentRep, Reachable,
and ReachUp. The rule which closes the supposed cycle mentions two predicate symbols:
Component and Edge. Since the program has no expression with a type that contains all
these predicate symbols, we know that the cycle cannot occur.

We can now summarize the overall goal of this paper:

We want to explore the design space of type-based techniques that can statically ensure
that Flix programs, in the presence of first-class Datalog constraints, are stratified.

ECOOP 2023

31:6 Breaking the Negative Cycle

3 Background

We begin with an introduction to Datalog and stratified negation before we move on to
describe the λDat calculus [30]. This paper contains a lot of background material. Readers
who are already familiar with Datalog are encouraged to jump to Section 3.3.

3.1 Datalog
We give a brief introduction to Datalog. A comprehensive introduction is available in [9, 18].

3.1.1 Syntax
A Datalog program D is a set of constraints C1, · · · , Cn. A constraint is of the form
A0 ⇐ B1, · · · , Bn where A0 is the head atom and each Bi is a body atom. A head atom
p(t1, · · · , tn) consists of a predicate symbol p and a sequence of terms t1, · · · , tn. A body
atom is similar to a head atom, except that it can be negated, which is written with “not” in
front of the predicate symbol. A constraint without a body is called a fact. A constraint
with a body is called a rule. A term is either a variable x or a literal constant c. An atom
without variables is said to be ground. A fact or rule with only ground atoms is said to be
ground. Figure 3 shows the grammar of Datalog.

D ∈ Programs = C1, · · · , Cn

C ∈ Constraints = A0 ⇐ B1, · · · , Bn.

A ∈ Head Atoms = p(t1, · · · , tn)
B ∈ Body Atoms = p(t1, · · · , tn)

| not p(t1, · · · , tn)

t ∈ Terms = x | c
c ∈ Literals = a set of literal constants.

x, y ∈ VarSym = a set of variable symbols.
p, q ∈ PredSym = a set of predicate symbols.

Figure 3 Syntax of Datalog.

A Datalog program must satisfy three syntactic properties that are not naturally captured
by the grammar in Figure 3: (i) every fact must be ground, (ii) every variable that occurs
in the head of a rule must also occur in its body, and (iii) every variable that occurs in a
negated body atom must also occur in at least one positive body atom of the rule. If a
program satisfies these properties it is said to be well-formed. In addition, every Datalog
program which uses negation must be stratified, as we will explain in Section 3.2.

3.1.2 Semantics
The meaning of a Datalog program is usually defined in terms of the minimal model: the
smallest interpretation (i.e. set of facts) that satisfy all the constraints (i.e. rule instantiations)
of the program [18]. While the semantics of Datalog – and logic programs in general – is an
interesting subject worthy of study, in this paper our focus is on stratification.

3.2 Stratified Negation
A significant part of the expressive power of Datalog comes from the use of negation, but
unrestricted use of negation poses problems. Recall the Datalog program from Section 2:

WinBlack(x)⇐ not WinWhite(x). WinWhite(x)⇐ not WinBlack(x).

J. L. Starup, M. Madsen, and O. Lhoták 31:7

If the program contains the constant 42, then the program has two solutions (models):

M1 = {WinBlack(42)} and M2 = {WinWhite(42)}

Neither model is a subset of the other. Hence neither model is minimal. This breaks one of
the fundamental properties of Datalog: that every program has a unique solution. Defining
a consistent semantics for logic programming languages with negation has long been studied
and many proposals have been made [14, 16, 17, 27, 36, 37]. Stratified negation has emerged
as a particularly simple semantics that can be mastered by ordinary programmers [48].

Informally, a Datalog program is said to be stratified if its predicate symbols can be
partitioned into a sequence of strata such that a predicate symbol in a stratum only depends
on predicate symbols in the same or lower strata. Intuitively, stratification splits a Datalog
program D into a sequence of sub-programs D1, · · · , Dn such that the output of Di becomes
the input of Di+1.

We can determine if a Datalog program is stratified by computing its dependency graph:

▶ Definition 1 (Dependency Graph). The dependency graph (also called the precedence graph)
of a Datalog program D is a directed graph of predicate symbols that contains:

a positive edge a ← b if D contains a rule where a is the predicate symbol of the head
atom and b is a predicate symbol of a positive body atom, and
a negative edge a←−× b if D contains a rule where a is the predicate symbol of the head
and b is a predicate symbol of a negative body atom.

We write dependency edges as a← b and a←−× b since this matches the “direction” of
Datalog rules. We say that a depends on b. If a ←−× b we say that b must be computed
before a. We write DG(D) for the dependency graph of the Datalog program D. Note that
the dependency graph of a Datalog program D is unique.

We can now formally state when a Datalog program is stratified:

▶ Definition 2 (Stratified). A Datalog program D is stratified if its dependency graph contains
no cycles with a negative edge.

▶ Example 3. We will use the following running example. Consider the following Datalog
program and its dependency graph:

Cold(x)⇐ Kettle(x), Off(x).
Warm(x)⇐ Kettle(x), not Cold(x). Warm

Cold

Kettle

Off

which does not contain a cycle with a negative edge. The strata of this program are:

s1 = {Cold, Kettle, Off} s2 = {Warm}

which means that the Cold, Kettle, and Off relations must be computed before we compute
the Warm relation.

▶ Example 4. Consider a modification of the previous Datalog program with its new
dependency graph:

Cold(x)⇐ Kettle(x), not Warm(x).
Warm(x)⇐ Kettle(x), not Cold(x). Warm

Cold

Kettle

ECOOP 2023

31:8 Breaking the Negative Cycle

v ∈ Val = c | λx. e | #{C1, · · · , Cn}
e ∈ Exp = x | v | e e | let x = e in e

| e <+> e | solve e | project p e

c ∈ Literals = a set of literal constants.
x, y ∈ VarSym = a set of variable symbols.

p, q ∈ PredSym = a set of predicate symbols.

C ∈ Constraints = A0 ⇐ B1, · · · , Bn.

A ∈ Head Atoms = p(t1, · · · , tn)
B ∈ Body Atoms = p(t1, · · · , tn)

| not p(t1, · · · , tn)
| fix p(t1, · · · , tn)

t ∈ Terms = x | c

Figure 4 Syntax of λDat.

τ ∈ Type = α | ι | τ1 → τ2 | r
r, s ∈ Row = ρ | { } | { p = (τ1, · · · , τn) | r }

ι = a set of base types.

σ ∈ Scheme = ∀α ∀ρ. τ

α ∈ TypeVar = a set of type variables.
ρ ∈ RowVar = a set of row variables.

Figure 5 Type System of λDat.

The graph contains a negative cycle between the Cold and Warm predicate symbols hence
the program is not stratified and should be rejected. In this case, the negative cycle involves
two predicate symbols and two negative dependencies, but in general a negative cycle consist
of any number of dependency edges with at least one negative dependency edge.

3.3 First-Class Datalog Constraints
We now describe the λDat calculus, a minimal lambda calculus with first-class Datalog
constraints, originally introduced by [30]. We use a slightly simplified version of the calculus
that illustrates the challenges posed by stratified negation.

3.3.1 Syntax
The grammar of λDat is shown in Figure 4. The language includes the usual constructs from
the lambda calculus: constants, variables, lambda abstractions, function applications, and let-
bindings. Let-bindings support Hindley-Milner-style parametric polymorphism [11, 21, 33].
The values of λDat include constants c, lambda abstractions λx. e, and Datalog values
#{C1, · · · , Cn}. A Datalog value is a collection of Datalog facts and rules. The grammar of
Datalog values mirrors that of Figure 3. The fix body atom will be explained in Section 6. The
expressions of λDat include variables x, values v, function applications e e, and let-bindings
let x = e in e. The calculus has three expressions for working with Datalog values:

(i) a composition expression e1 <+> e2 to compute the union of two Datalog values,
(ii) a project expression project p e to extract all p facts from a Datalog value, and
(iii) a solve expression solve e to compute the minimal model of a Datalog value.

The Flix programming language, which implements the λDat calculus, supports a richer
set of operations for working with Datalog values. However, for our purposes, the above
calculus is sufficient to illustrate the challenges. For the full details on the λDat calculus, we
refer the reader to [30].

3.3.2 Type System
The λDat type system is based on Hindley-Milner [12, 47] extended with row polymorph-
ism [28]. Each row type tracks the predicate symbols (and the types of the term parameters
of each predicate) of a Datalog expression. The type system is sound; satisfying the usual
progress and preservation theorems [30].

J. L. Starup, M. Madsen, and O. Lhoták 31:9

The type system splits types into mono- and poly types as shown in Figure 5. The mono
types consist of type variables α, a set of base types denoted by ι (e.g. Bool), function types
τ1 → τ2, and row types r. A row type is either a row type variable ρ, an empty row {}, or a
row extension {p = (τ1, · · · , τn) | r}. A row type describes the type of a Datalog expression.

▶ Example 5. The following Datalog expression is typeable with the shown row type:

#{Bird(“Eagle”)., Flying(x)⇐ Bird(x), not Penguin(x).} :
{Bird = String | {Flying = String | {Penguin = String | ρ}}}

The order of predicate symbols within a row is immaterial. Hence the same row is equivalent
to (written as ∼=):

{Penguin = String | {Flying = String | {Bird = String | ρ}}}

Figure 5 shows the poly types (or type schemes) of λDat. A poly type is of the form
∀α1, · · · , αn ∀ρ1, · · · , ρm. τ . Thus, the λDat calculus separates regular type variables α from
row type variables ρ.

▶ Example 6. The following Datalog expression is typeable with the shown poly type:

#{Path(x, z)⇐ Path(x, y), Edge(y, z).} : ∀α1, α2 ∀ρ. {Path = (α1, α2), Edge = (α2, α2) | ρ}

This expression is polymorphic in the types of the terms of the Edge and Path atoms (α1
and α2) and row polymorphic in the type of the rest of the row (ρ). As can be seen from the
rule, the variables y and z must share the same type (α2) because of their occurrences in
the Path atoms. The two types of polymorphism serve two different purposes: the regular
polymorphism allows the expression to be used with terms of different types (e.g. Edge and
Path facts over integers, strings, etc) whereas the row polymorphism allows the expression to
be composed with other Datalog expressions that may have additional predicate symbols.

The type system of λDat has three mutually inductive typing judgments: one for expressions
(Γ ⊢ e : τ), one for constraints (Γ ⊢c C : r), and one for atoms (Γ ⊢p p(t1, · · · , tn) : r).

3.3.2.1 Type Rules

We briefly describe the (T-Head-Atom) and (T-Constraint) type rules of λDat.
The typing judgement Γ ⊢p p(t1, · · · , tn) : r captures that the head or body atom

p(t1, · · · , tn) can be typed with row type r under the type environment Γ. In particular, the

∀i. Γ ⊢ th
i : τi

Γ ⊢p p(th
1 , · · · , th

n) : {p = (τ1, · · · , τn) | r}
(T-Head-Atom)

rule states that a head atom can be typed as a row type in which the predicate symbol p is
mapped to a tuple type whose elements are the types of the head terms th

1 , · · · , th
n. The type

rules for body atoms are similar. What is important, for our purposes, is that to type a head
or body atom, its predicate symbol and term types must be part of the row type.

The typing judgement Γ ⊢c C : r captures that the constraint C can be typed as r under
the type environment Γ. In particular, the
Γ, x1 : τ1, · · · , xm : τm ⊢p A0 : r ∀i. Γ, x1 : τ1, · · · , xm : τm ⊢p Bi : ri ∀i. r ∼= ri

Γ ⊢c ∀(x1 : τ1, · · · , xm : τm). A0 ⇐ B1, · · · , Bn. : r
(T-Constraint)

ECOOP 2023

31:10 Breaking the Negative Cycle

type rule states that to type an entire constraint, the row type of the head atom and all the
body atoms must be equivalent, i.e. contain the same predicate symbols mapped to the same
term types, modulo the order of predicate symbols. In λDat, the unbound Datalog variables
are explicitly quantified.

We refer the reader to [30] for a complete description of the type system. We will use the
type system when we define soundness of labelled dependency graphs in Section 5.

3.4 The Problem: Stratification and First-Class Constraints
We are now ready to define what it means for a λDat program to be stratified:

▶ Definition 7 (Stratification for λDat). A λDat calculus program P is stratified if every
Datalog value constructed during evaluation of P is stratified.

The challenge is to statically determine when that is the case. Consider the λDat program:

f = λc1. λc2. let r = #{P (x)⇐ A(x), not Q(x).} in c1 <+> c2 <+> r

To determine whether f returns a stratified program we must know at least:
whether the argument c1 is itself stratified,
whether the argument c2 is itself stratified,
whether the composition of c1 and c2 is stratified, and finally,
whether the composition of c1, c2 with the rule r is stratified.

At run time, the values of c1, c2, and r are known and we can use Ullman’s algorithm [45] to
compute their stratification. But again, moving the stratification check to run time would
force the program to crash if it ever encounters a Datalog value that cannot be stratified!

Before we explore the design space of techniques to ensure compile-time stratification of
λDat calculus programs, let us pause and reflect on what makes a design “good”. As discussed,
we are interested in techniques that are fully automatic, hence imposes no additional burden
on the programmer. In addition, we want a system that: (i) has high precision (i.e. few
programs are unfairly rejected), (ii) is fast (i.e. can be run continuously during program
development), (iii) offers understandable error messages (i.e. does not require too much
knowledge from the programmer “when things to wrong”), and (iv) is robust under refactoring
(i.e. harmless refactorings should not break stratification). As is often the case, some of these
goals are conflicting.

4 Dependency Graph Types: A Purely Type-based Approach

We now present a type system that captures the entire dependency graph in the type system
itself. This type system is expressive, precise, and its types can be fully inferred. As we shall
discuss, it is also impractical, since each type may be quadratic in the number of predicates.

We extend the λDat type system to track the entire dependence graph of every Datalog
expression in the type system. The key idea is straightforward: We represent a dependency
edge p← q or p←−× q as a single “label” and then use row polymorphism to track a row of
all these labels. The type system does not concern itself with the types of terms and should
be understood as being in addition to the existing type system.

The new row types are given by the grammar:

r = ρ | { } | { p← q | r } | { p←−× q | r }

J. L. Starup, M. Madsen, and O. Lhoták 31:11

The type rule for a Datalog constraint is straightforward:
A0 = ph(t, · · · , t) E = {ph ← pi

b | Bi = pi
b(t, · · · , t)} ∪ {ph ←−× pi

b | Bi = not pi
b(t, · · · , t)}

Γ ⊢c ∀(x1 : τ1, · · · , xm : τm). A0 ⇐ B1, · · · , Bn. : {E ∥ r}

where {E ∥ r} is the row type with all be labels in the set E, e.g. {{x, y} ∥ r} = {x | {y | r}}.
Intuitively, the type rule states that if we have a constraint A0 ⇐ B1, · · · , Bn where the
head predicate symbol is ph and there is a positive body atom Bi = pi

b(t, · · · , t), then
the row contains the positive edge ph ← pi

b. Similarly, if there is a negative body atom
Bi = not pi

b(t, · · · , t), then the row contains the negative edge ph ←−× pi
b.

For this type system, we conjecture the important property:

▶ Theorem 8 (Soundness). Let Γ ⊢ e : r and define e′ to be e where all the free variables
have been substituted for values of the types given in Γ. If e′ →⋆ v then the dependency graph
of v is a subset of g, i.e. DG(v) ⊆ g, where g is the graph defined by the edges present in the
row type of v.

We now give two examples of how the type system works. We will use the abbreviations
Warm (W), Kettle (K), Cold (C), and Off (O) moving forward:

▶ Example 9. The left expression is typeable with the abbreviated type on the right:
let p = #{

Cold(x) :- Kettle (x), Off(x).
Warm(x) :- Kettle (x), not Cold(x).

}

∀ρ. {C← K, C← O,

W← K, W←−× C, | ρ}

▶ Example 10. Consider the expressions on the left and their abbreviated types on the right:
let p1 = #{

Cold(x) :- Kettle (x), not Warm(x).
};
let p2 = #{

Warm(x) :- Kettle (x), not Cold(x).
};

p1 :∀ρ1. {C← K, C←−× W | ρ1}

p2 :∀ρ2. {W← K, W←−× C, | ρ2}

The composition of p1 and p2 has the following row type which contains a negative cycle
between W and C and is rejected.

∀ρ3. {C← K, C←−× W, W← K, W←−× C, | ρ3}

4.1 Discussion
The type system has several advantages:

it captures the dependency graph of each Datalog expression in its type,
it supports row polymorphism, and
it has complete type inference.

The type system is a simple and straightforward application of row types. But the strength
of the type system is also its weakness: The type of each expression needs to store the whole
dependency graph between all pairs of predicate symbols in the expression. The amount of
information to be stored in each type is quadratic in the number of predicate symbols.

To understand why a type needs to store, for each pair of predicate symbols A and B,
whether or not A is reachable from B in the dependency graph, consider the Datalog value
#{A(x)⇐ not B(x).}. If this value is composed with another Datalog value v, the resulting
Datalog program is stratified if and only if B does not depend on A in v. Since A and B

could be arbitrary predicate symbols, the type of v needs to store, for every possible pair

ECOOP 2023

31:12 Breaking the Negative Cycle

of predicate symbols (A, B), whether or not there is a dependence in v. While we have not
implemented the system, this complexity leads to concerns about efficiency of type inference.
In particular, the rows used to track all dependency edges are now very long. Instead, we
want to explore the design space of a hybrid approach: We keep the original type system of
[30] and we combine it with global information about the constraints in the entire program.

5 Labelled Dependency Graph: A Hybrid Approach

We now describe a hybrid approach that combines local information from the type system with
global information about the λDat program. As it turns out, the choice of what information
to collect about the entire program opens up a large design space.

General Framework
We want to statically ensure that a λDat program is stratified in the sense of Definition 7.
To do so, we take the following overall approach:

For each Datalog expression e in a well-typed λDat program P (i.e. we have Γ ⊢ e :
r), we want to construct a dependency graph D̂G(e : r,LG(P)) that soundly over-
approximates the dependency graph(s) of every Datalog value v that e could evaluate
to at runtime. In other words, define e′ to be e where all the free variables have been
substituted for values of the types given in Γ. These values must be chosen from
compositions of the Datalog literals in the program. If e′ →⋆ v then D̂G(e : r,LG(P))
over-approximates DG(v). The role of the parameter LG(P) will be discussed shortly.

If the dependency graph D̂G(e : r,LG(P)) for the expression e is stratified, then every Datalog
value v that the expression e could evaluate to must also be stratified: if the over-approximate
dependency graph does not contain a negative cycle then any sub-graph cannot contain a
negative cycle. If this is true for every expression e in a program P , then the entire program
must be stratified in the sense of Definition 7.

We construct the over-approximate graph D̂G(e : r,LG(P)) using two types of information:
Local information about the expression e (the e : r part).
Global information about the entire program P (the LG(P) part).

We call the data structure that records the global information the labelled dependency
graph LG(P). The graph records all (positive and negative) dependencies between predicate
symbols in all Datalog rules appearing anywhere in λDat the program. The dependency
edges are annotated with labels that record various constraints about each dependency.
When constructing a specific dependency graph D̂G(e : r,LG(P)) for a specific expression e

of type r, local information about the expression recorded in the type r will be combined
with the constraints recorded in the edge labels to determine that certain edges represent
global dependencies that are incompatible with some characteristics of the local expression e.
These edges from the global dependency graph are removed to construct a more precise local
dependency graph D̂G(e : r,LG(P)) specific to the local expression e.

Formally, we define the labelled dependency graph as:

▶ Definition 11 (Labelled Dependency Graph). The labelled dependency graph LG(P) of a
λDat program P is a directed graph between predicate symbols where each edge is labelled with
information that is used to determine if that edge is possible w.r.t. to a specific row type.

and we require that the LG and D̂G functions satisfy the following important property:

J. L. Starup, M. Madsen, and O. Lhoták 31:13

▶ Definition 12 (Soundness Criterion). Given a well-typed λDat program P , assume that e is a
sub-expression of P and that Γ ⊢ e : r. Define e′ to be e where all the free variables have been
substituted for values of the types given in Γ. These values must be chosen from compositions
of the Datalog literals in P . If e′ →⋆ v then the dependency graph D̂G(e : r,LG(P)) is a
sound over-approximation of the dependency graph of v, i.e. DG(v) ⊆ D̂G(e : r,LG(P)).

The choice of what information to record in the labelled dependency graph opens a large
design space. For example, it could include information about the constraints that occur
in the program, their predicate symbols, and the types of their terms. The design space
contains various choices of possible constraints that can be recorded in the labels of the
global dependency graph.

5.1 Design Choice 1: Granularity of the Labelled Dependence Graph
We now turn to the choice of which labels to use on the labelled dependency graph LG(P).

5.1.1 Degenerate
The simplest choice is to leave the labelled dependency graph unlabelled. This is a degenerate
choice which corresponds to the most pessimistic assumption: that all Datalog values could
be composed into one big Datalog value. We include it for completeness.

▶ Example 13. Consider the Datalog expression on the left:
let p = #{

Cold(x) :- Kettle (x), Off(x).
Warm(x) :- Kettle (x), not Cold(x).

} W

C

K

O

which gives rise to the labelled dependency graph on the right. The dependency edges
carry no additional information and hence any local information about the type of a specific
Datalog expression cannot help narrow down the set of possible edges. We have to consider
all edges as possible.

5.1.2 Source and Destination Granularity
A straightforward improvement is to label each dependency edge with its source and destina-
tion predicate. This is information that is already represented by the graph itself.

▶ Example 14. Consider again the Datalog expression:

let p = #{
Cold(x) :- Kettle (x), Off(x).
Warm(x) :- Kettle (x), not Cold(x).

}
W

C

K

O

{W
,C
}d4

{W, K}
d3

{C,K}

d1
{C, O}

d2

which now has the labelled dependency graph on the right. Each edge is now labelled with
its source and destination predicate symbols. We can use this information as follows.

Suppose we are given an expression e with type r:

r = {· · · | Cold = · · · | Off = · · · |Warm = · · · | · · · }

where r does not contain the Kettle predicate symbol. If so, we know that e cannot evaluate
to a Datalog value v which would give rise to the dependency edges d1 and d3 (because these

ECOOP 2023

31:14 Breaking the Negative Cycle

edges are labelled with the Kettle predicate symbols and the type system guarantees that e

cannot evaluate to a Datalog value with a Kettle predicate). On the other hand, we cannot
exclude the d2 and d4 edges because their labels occur in the type.

5.1.3 Rule-level Granularity
A more interesting design choice is to label each dependency edge with all predicate symbols
that occur in the rule from which the edge originates.

▶ Example 15. Consider again the Datalog expression:

let p = #{
Cold(x) :- Kettle (x), Off(x).
Warm(x) :- Kettle (x), not Cold(x).

}
W

C

K

O

{W
,C

,K
}d4

{W, K, C}
d3

{C,K
,O}

d1
{C, O, K}

d2

which now has the labelled dependency graph on the right. Each dependency edge is now
labelled with all the predicate symbols that occur in the rule from where the edge originates.

For example, the edge C
{C,K,O}← K represents that Cold depends on Kettle but it can only

occur if Cold, Kettle, and Off can occur in the Datalog value.
Suppose, as before, that we are given an expression e with type r:

r = {· · · | Cold = · · · | Off = · · · |Warm = · · · | · · · }

where r does not contain the Kettle predicate. We are now able to exclude all dependency
edges because they are all labelled with Kettle. Intuitively, the Datalog expression on the left
uses the Kettle predicate in both rules. Thus, if a Datalog expression does not contain the
Kettle predicate then neither rule can contribute to its dependency graph.

Suppose, on the other hand, that we are given an expression e2 with type r2:

r2 = {· · · | Cold = · · · | Kettle = · · · |Warm | · · · }

where r2 does not contain the Off predicate. If e2 evaluates to a Datalog value v2, we can
exclude the dependency edges d1 and d2 from its dependency graph, but we cannot exclude
d3 nor d4. This is because we are able to exclude the dependency edges from the first rule,
but not from the second.

5.1.4 Datalog Value-level Granularity
The last and most powerful option is to label each dependency edge with all predicate
symbols that occur within the same Datalog literal.

▶ Example 16. Consider one last time the Datalog expression:

let p = #{
Cold(x) :- Kettle (x), Off(x).
Warm(x) :- Kettle (x), not Cold(x).

}

W

C

K

O

{C
,K

,O
,W
}

d4

{C, K, O, W}
d3

{C,K
,O

,W
}

d1

{C, K, O, W}
d2

which now has the labelled dependency graph on the right. Each dependency edge is labelled
with all the predicate symbols that occur in the same Datalog literal. For example, the edge
C

{C,K,O,W }← K represents that Cold depends on Kettle but only if all the predicates Warm,
Cold, Kettle, and Off can occur in the Datalog value.

J. L. Starup, M. Madsen, and O. Lhoták 31:15

Suppose we are given an expression e with type r:

r = {· · · | Cold = · · · | Kettle = · · · |Warm = · · · | · · · }

which does not contain the Off predicate symbol. If so, we know that e cannot evaluate to a
Datalog value v with any of the four dependency edges. Note, in particular, that we are able
to exclude the dependency edge W ←−× C even though the predicate symbol Off has nothing
to do with Warm or Cold or even the rule from which the edge arises.

While this design choice is very powerful, it suffers from the problem that a simple
refactoring can break stratification. For example, if we take the same program and refactor
it to:

let p1 = #{
Cold(x) :- Kettle (x), Off(x).

};
let p2 = #{

Warm(x) :- Kettle (x), not Cold(x).
};
let pr = p1 <+> p2 W

C

K

O

{W
,C

,K
}d4

{W, K, C}
d3

{C,K
,O}

d1
{C, O, K}

d2

then it is no longer the case that the rule in p1 must occur together with p2. Consequently, if
we have an expression e with the type r (as above), we can no longer exclude the dependency
edges d3 and d4. Thus, while this design choice is powerful, it is also brittle under refactoring.

5.1.5 Summary
In summary, the four design choices are:

Choice 1a: The degenerate case where LG(P) is unlabelled.
Choice 1b: Label the LG(P) with the source and destination predicate symbols from
which the dependency edge arises.
Choice 1c: Label the LG(P) with all the predicate symbols that occur in the same rule
from where the dependency edge originates.
Choice 1d: Label the LG(P) with all the predicate symbols that occur in the same
Datalog literal from where the dependency edge originates.

For the purpose of exposition, we assume choice 1c for the next subsections.

5.2 Design Choice 2: Enriched Labelling and Type Filtering
We can increase precision by including information about the types of the predicate symbols
in the labelled dependency graph.

5.2.1 Predicate Symbol Arity
We can include the arity of the predicate symbols in the labelled dependency graph to add
precision. We define the labels to be a set of pairs (p, n) of predicate symbols and their arity.
We then define D̂G(e : r,LG(P)) to include an edge a

ℓ→b when the arities in ℓ agree with the
arities in the row type r.

▶ Example 17. Consider a λDat program P that contain the two Datalog expressions:
#{ Path(x, y) :- Road(x, l, y).

Path(x, z) :- Path(x, y), Road(y, l, z).}
#{ Unconnected (x, y) :-

..., not Road(x, y).}

In the Datalog expression on the left, the Road predicate symbol has three terms whereas
in the Datalog expression on the right, the Road predicate has two terms. The labelled
dependency graph, LG(P), is:

ECOOP 2023

31:16 Breaking the Negative Cycle

Unconnected

Path

Road

d1

{(Path, 2), (Road, 3)}

d2

{(Path, 2), (Road, 3)}

d3

{(Unconnected, 2), (Road, 2)}

which includes the arity of each predicate in the labels on the edges. Suppose the program
contains an expression e with the row type r:

r = {Road = (Int32, Int32) | Unconnected = (Int32, Int32) | · · · }

If the e evaluates to a Datalog value v, then the type system guarantees that every atom
in v with the predicate symbol Road must have two terms, both of which are of type Int32.
Thus we can exclude the two dependency edges d1 and d2 because the arities on the labels
do not match.

5.2.2 Predicate Term Types
We can increase precision even further by including the term types of predicate symbols in the
labelled dependency graph. We define labels to be pairs (p, τ) of a predicate symbol and the
types of its terms, also written p(τ) on the labelled graphs. We then define D̂G(e : r,LG(P))
to include an edge a

ℓ→b when the term types in ℓ unify with term types in the row r.

▶ Example 18. Consider a λDat program P that contain the two Datalog expressions:
#{ Road("Lyon", 120 , " Paris").

Path(x, z) :- Path(x, y),
Road(y, l, z).}

#{ Road("Lyon", "Icy", "Paris").
Path(x, z) :- Path(x, y),

Road(y, l, z).}

In each Datalog expression, the Road predicate has arity two. In the expression on the
left, the label on a Road fact represents the current weather (type String), whereas in the
expression on the right, the label represents the current speed limit (type Int32).

The labelled dependency graph, omitting the Path predicate in labels, is:

Path Road

{Road(String, Int32, String)}

{Road(String, String, String)}

{Road(String, Int32, String)}

{Road(String, String, String)}

5.2.3 Relational and Lattice Predicate Symbols
In Flix, as we shall discuss further in Section 6, every predicate symbol is given either a
relational or a lattice interpretation. The type system ensures that relational and lattice
predicate symbols cannot be mixed. That is, within a Datalog value every predicate symbol
has exactly one interpretation. Similarly to how we extended the labelled dependency graph
with arity and term types, we can also extend it to account for this information.
In summary, the four options are:

Option 2a: Enrich LG(P) to track the arity of the predicates.
Option 2b: Enrich LG(P) to track term types of the predicates.
Option 2c: Enrich LG(P) to distinguish between relations and lattices.
Option 2d: Do not enrich LG(P).

These options are not mutually exclusive and can be combined.

J. L. Starup, M. Madsen, and O. Lhoták 31:17

5.3 Choice 3: Stratify With or Without Monomorphization
We have shown how local information, i.e. information about the row type of an expression,
enables us to filter the labelled dependency graph. An orthogonal design choice, which affects
precision, is whether to perform stratification with or without monomorphization.

Monomorphization is a compile-time transformation that replaces polymorphic functions
by copies that are specialized to their concrete type arguments. For example, if List.map
is used with both integer and string lists, then monomorphization generates two copies
of List.map: one specialized to integers and one specialized to strings. While the primary
purpose of monomorphization is to avoid boxing, monomorphization can also be used to
improve the precision of stratification.

Monomorphization improves precision in two ways:
(i) by specializing polymorphic Datalog expressions to concrete types, boosting the precision

of type-based filtering, and
(ii) by eliminating unreachable Datalog expressions.

▶ Example 19. Consider the Flix program fragment:
def f(): #{A(t), B(t)} =

#{ A(x) :- B(x). }

def g(): #{A(t), B(t)} =
{ B(x) :- B(x), not A(x). }

def main (): Unit =
let c1 = f() <+> A (123).;
let c2 = g() <+> A("hello").;
solve c1

The functions f and g return Datalog values with row types that contain the predicate symbols
A and B, which are polymorphic in the type parameter t. The two Datalog constraints form
a negative cycle between A and B. Because the types of the two expressions are

∀α1, ∀ρ1. {A = α1 | {B = α1 | ρ1}} and ∀α2, ∀ρ2. {A = α2 | {B = α2 | ρ2}}

we cannot exclude that these two types could occur in the same Datalog value and consequently
we cannot exclude that the overall program might construct a non-stratified Datalog program
at runtime. However, if we monomorphize the program first, i.e. specialize f and g to their
concrete type arguments whenever they are used in the program, then we obtain the program:

def f1 (): #{A(Int32), B(Int32)} =
#{ A(x) :- B(x). }

def g1 (): #{A(String), B(String)} =
{ A(x) :- A(x), not B(x). }

def main (): #{A(Int32), B(Int32)} =
let c1 = f1 () <+> A (123).;
let c2 = g1 () <+> A("hello").;
solve c1

where f1 and g1 are no longer polymorphic and the types of their Datalog expressions are:

{A = Int32 | B = Int32} and {A = String | B = String}

We can now use the types to determine that the two rules cannot occur in the same Datalog
value and consequently the program is stratified.

Monomorphization increases precision, but has two practical downsides: the labelled
dependency graphs are larger and consequently more costly to stratify, and intertwining
monomorphization and stratification may make it difficult for programmers to understand
why or when a program fails to be stratified.
In summary, the two design choices are:

Choice 3a: Stratify without monomorphization.
Choice 3b: Stratify with monomorphization.

ECOOP 2023

31:18 Breaking the Negative Cycle

6 The Fix Modifier, Lattice Semantics, and Stratification

We now explain the role of the fix modifier and its semantics. Intuitively, the fix modifier
enables us to safely use lattice values in relations. Given the rule:

A(x)⇐ fix B(x), C(x).

The use of “fix” in front of the atom B(x) forces the relation B to be fully computed before
the rule is applied. Therefore, A must belong to a stratum strictly greater than B. Thus, the
fix modifier has the same effect on stratification as negation. For a normal Datalog program,
fix does not change the minimal model, only the evaluation order. However, for Datalog
programs with lattice semantics [31], the fix construct solves a long-standing problem.

In Flix, every predicate symbol is associated with a relational or lattice interpretation. We
will write p for a predicate symbol that has a relational interpretation and pℓ for a predicate
symbol that has a lattice interpretation. We syntactically distinguish between relational
and lattice predicates by writing a relational predicate as A(t1, · · · , tn), whereas we write a
lattice predicate as A(t1, · · · , tn; t), with a semi-colon before the last term.

▶ Definition 20 (Key and Lattice Positions). Given an atom p(t1, · · · , tn) where p has
relational interpretation, we say that the terms t1, · · · , tn are in key position. Given atom
pℓ(t1, · · · , tn; t) where pℓ has a lattice interpretation, we say that the terms t1, · · · , tn are in
key position and t is in lattice position.

▶ Definition 21 (Key and Lattice Variables). We split variables into key and lattice variables.
A variable is a key variable if all its occurrences are in key positions. Otherwise it is a lattice
variable.

As the definition states, a variable that occurs in both a key and lattice position is
considered a lattice variable. The original version of Flix disallows such “dual-use” of
variables; enforcing that lattice variables cannot be used in key position.

▶ Example 22. To better understand key and lattice variables, consider the Datalog rules:
A(k1 , k2; l) :- B(kl , k2; l), C(k1 , k2; l). // legal
A(k1 , k2 , l) :- B(kl , k2; l), C(kl , k2; l). // illegal
A(k1 , k2; l) :- B(kl , k2; l), C(k1 , k2 , l). // illegal
A(k1 , l; k2) :- B(kl , k2; l), C(kl , k2; l). // illegal

In each rule, the variable l is a lattice variable because it occurs in at least one lattice position.
The first rule is legal since the lattice variable l only occurs lattice positions. The second rule
is illegal since the lattice variable l occurs in a key position in the head of the rule (where A

has a relational interpretation). The third rule is illegal since the lattice variable l occurs in
a key position in the body of the rule (where C has a relational interpretation). The fourth
rule is illegal since the lattice variable l occurs in a key position in the head of the rule.

Formally, the original version of Flix enforces the lattice range restriction:

▶ Definition 23 (Lattice Range Restriction). Every lattice variable must occur in a lattice
position.

To understand the lattice range restriction, let us revisit the example from Section 2.

▶ Example 24. Figure 2 contains the Datalog rule:
Edge(c1 , c2) :- fix Component (_; c1), fix Component (_; c2).

J. L. Starup, M. Madsen, and O. Lhoták 31:19

Assume that the rule did not use fix and that we ignore the lattice range restriction. Suppose
we have the following lattice facts:

Component(7; {1}). Component(7; {2}). Component(7, {7}).
Component(5, {3}). Component(5, {5}).

The minimal model has two facts: Component(7; {1, 2, 7}) and Component(5; {3, 5}). We
would thus assume that the above rule would compute the undirected edge fact: {1, 2, 7} ↔
{3, 5}. But this is not what the program computes! It derives nonsensical facts such as
{1} ↔ {3}, {1} ↔ {3, 5}, and all other edges between intermediate lattice values. The lattice
range restriction avoids this problem by banning the program. We propose to allow the
program as long as the lattice is fix’ed, i.e. fully computed, before it is used in a relation.

As the example shows, the lattice range restriction is overly strict. We can allow lattice
variables to be used in key positions in head atoms provided that we ensure that the head
predicate symbol occurs in a strictly higher stratum than every body atom in which the
lattice variable occurs. This ensures that the lattice predicates are fully computed before
they are used as keys. We introduce the extended dependency graph to capture this notion:

▶ Definition 25 (Extended Dependency Graph). The extended dependency graph of a Datalog
program D with lattice semantics is a directed graph of predicate symbols that contains:

a weak edge a← b if D contains a rule where a is the predicate symbol of the head atom
and b is a predicate symbol of a positive body atom, and
a strong edge a ←−× b if D contains a rule where a is the predicate symbol of the head
and b is a predicate symbol of a fixed or negative body atom.

We use the word strong to represent either a fixed or a negative dependency.

We also update the range restriction:

▶ Definition 26 (Extended Lattice Range Restriction). If every occurrence of a lattice variable
is under a fix in the body of a rule, then the variable may be treated as a key in the head of
the rule.

Finally, we update our definition of stratification for the λDat calculus and for Flix:

▶ Definition 27 (Extended Stratification). A Datalog program DL, enriched with lattice
semantics, is stratified if the extended dependency graph does not contain a cycle with a
strong edge. A λDat calculus program PL, enriched with lattice semantics, is stratified if
every Datalog value constructed during evaluation of PL is stratified.

▶ Example 28. We conclude with a small example of how the fix construct can be used1:

Degree ("Kevin Bacon "; Down (0)).
Degree (x; n + Down (1)) :- Degree (y; n), StarsWith (y, x).
Layer (n; Set #{x}) :- fix Degree (x; n).
Count (n, Set.size(s)) :- fix Layer (n; s).

This program computes the number of people who are separated by n-degrees from Kevin
Bacon. For example, the 2nd-degree is the number of people who have starred in a movie
where someone in that movie has also starred in another movie with Kevin Bacon.

1 Here, the Down constructor defines a lattice with the reverse ordering of the underlying type.

ECOOP 2023

31:20 Breaking the Negative Cycle

7 Implementation

We now describe where the original version of Flix, and our proposed future version of Flix,
reside in the design space.

7.1 The Original Flix Implementation
The original Flix implementation and its associated paper [30] do not use the terminology of
this paper. Nevertheless, we can recast their design choices in our framework.

Flix uses a labelled dependency graph constructed from the entire program and filtered
based on the type of each Datalog expression, the hybrid approach. The labels are predicate
symbols where each dependency edge is annotated with its source and destination (choice 1b).
No enriched labelling or types are used (choice 2d). Stratification is performed without
monomorphization (choice 3a).

7.2 Our Flix Extension
While all design choices are valid, in our view, choice 1b and choice 2d are sub-optimal.

For choice 1b, by only using the predicate symbols that are the source and destination
of each dependency edge, we lose the important information that most dependency edges
arise from rules where multiple predicate symbols are involved and thus where all of
these predicate symbols must be present for the edge to be relevant. Instead, choice 1c
or choice 1d offer increased precision with little downside.
For choice 2d, ignoring the arity and term types of each predicate symbol loses important
contextual information. In other logic programming languages, such as Prolog, predicate
symbols are often overloaded and use the arity as part of their name, e.g. spawn/2

and spawn/3. Given that λDat and Flix are statically typed, it seems like a missed
opportunity not to use types to distinguish predicate symbols, e.g. Path(Int32, Int32) vs.
Path(String, String).

For these reasons, in our proposed extension, we settled on choice 1c and choice 2b
combined with choice 2c. We chose choice 1c because of its increased precision while still
remaining explainable to the programmer. For choice 2b and choice 2c, we think that
incorporating types and the distinction between relational and lattice predicates into the
dependence graph increases precision significantly while also remaining understandable to
the programmer.

We keep the rest of the design choices the same. We explored the idea of moving
the stratifier after monomorphization choice 3b, which would boost precision. However,
monomorphization is a relatively expensive compiler phase that is traditionally not part of
the Flix compiler frontend. Thus, if stratification depends on monomorphization, then it
becomes part of the frontend and must be run whenever the program is “type checked” by
an IDE. We were worried that this would have unacceptable performance implications2.
In summary, our Flix extension makes the following design choices:

We use the hybrid approach based on the labelled dependency graph.
Choice 1c: We use rule-level granularity.
Choice 2b: We enrich the graph with term types.
Choice 2c: We enrich the graph with relation and lattice information.
Choice 3a: We stratify without monomorphization.

2 This frontend versus backend problem is not unique to stratification. For example, many C or C++
compilers will report additional compilation warnings or errors when expensive backend optimizations
are enabled. This might seem counter-intuitive, but the reason is that expensive program analysis
enables the compiler to know more about the program and thus to report more warnings or errors.

J. L. Starup, M. Madsen, and O. Lhoták 31:21

7.3 Implementation Details
We have implemented the above design choices in an extension of the Flix compiler.

Flix is a functional-first, imperative, and logic programming language that supports
algebraic data types, pattern matching, higher-order functions, parametric polymorphism,
type classes, higher-kinded types, polymorphic effects, extensible records, first-class Datalog
constraints, channel and process-based concurrency, and tail call elimination [30, 31].

The Flix compiler project, including the standard library and tests, consists of 161,000
lines of Flix and Scala code. We re-wrote the Stratifier compiler phase which required ~1,000
lines of code and added support for the “fix” construct which required ~700 lines of code.

Flix, with our extensions, is ready for use, open source, and freely available at:

https://flix.dev and https://github.com/flix/flix

7.4 When a Program Does Not Stratify
When Flix programmers encounter a stratification error, there are essentially two possibilities:

The program contains an actual stratification error.
The type system is too imprecise to rule out the possibility of a stratification error.

We want to support the programmer in both scenarios. First, this means giving the
programmer useful error messages such that they can accurately identify which of the two
cases is applicable. Second, we want to give the programmer the ability to refactor their
program such that it passes the stratification.

If a programmer should encounter a stratification error due to imprecision, they can:
1. Rename a predicate symbol to avoid a clash with a conceptually different predicate

symbol. For example, instead of Node, a more suitable name could be City.
2. Introduce an extra predicate symbol in a rule to exclude the clash.
3. Change the arity of a predicate symbol, for example by recording more or less information.
4. Enrich the types of the terms in a predicate; for example, the programmer could introduce

a new type Celsius instead of Int32 or a new type City instead of String.
We think these are flexible and reasonable strategies that a Flix programmer will be able to
use. Of course these strategies cannot necessarily resolve all stratification issues, but the
space of accepted programs is much larger than in the original version of Flix where only
strategy (1) is available.

7.5 The Motivating Example, Revisited
We now revisit the motivating example from Section 2. Figure 6 shows the labelled dependency
graph for the program in Figure 2. The graph reflects our design choices:

(i) the dependency edges are labelled with all predicate symbols from the rule that gives
rise to the dependency, and

(ii) the labels carry the term types of each predicate symbol.
The braces and commas of the label sets are omitted. Inspecting the graph, we see two
potential negative cycles. However, no expression in the program in Figure 2 has a type
where the cycles cannot be excluded.

As an example, on line 26, the composition of the expressions ns, es, and r has the type:

{ComponentRep = (Int32, Int32), Reachable = (Int32, Int32),
Node = (Int32), Edge = (Int32, Int32), ReachUp = (Int32)}

ECOOP 2023

https://flix.dev
https://github.com/flix/flix

31:22 Breaking the Negative Cycle

ReachUp ComponentRep Component

EdgeReachableNode

ReachUp(Int32)
ComponentRep(Int32, Int32)
Reachable(Int32, Int32)

ComponentRep(Int32, Int32)
Component(Int32; Set[Int32])

Component(Int32;
Set[Int32])

Edge(Set[Int32],
Set[Int32])

Edge(Int32, Int32)
Reachable(Int32, Int32)

Reachable(Int32, Int32)
ComponentRep(Int32, Int32)
ReachUp(Int32)

Reachable(Int32, Int32)
ReachUp(Int32)

Reachable(Int32, Int32)

Node(Int32)
Reachable(Int32, Int32)

Figure 6 The labelled dependency graph of the program in Figure 2 based on the design decisions
of Section 7.2. The gray dashed lines are the edges that are filtered out when looking at the union
of ns, es, r on line 26.

This excludes the dashed dependency edges shown in gray in Figure 6. For example, the
edge between Component and Edge is ruled out since the term types of Edge do not match
and since Component is not present. The resulting graph, shown with solid arrows, does not
contain any negative cycles. Hence the expression is stratified. This is true for all expressions
in the program, hence Flix is able to statically determine that the program is stratified.

8 Case Study: A Small Graph Library in Flix

We have implemented a small open-source graph library for Flix3. The graph library provides
a range of queries on graphs, as shown in Table 1. Each query is implemented as a Flix
function that internally uses Datalog. The purpose of the case study is to explore how a
graph library can be implemented using first-class Datalog constraints in Flix and to check
that the proposed stratification strategy is practical.

Table 1 shows an overview of the functions that we have implemented in the graph library.
In total, we have implemented 24 functions in 450 lines of code. The columns of the table
are as follows: The Function and Lines columns give the name and number of source code
lines for a specific function. The Lattices column indicates whether the Datalog program uses
lattice semantics. The Stratified Negation column indicates whether the Datalog program
uses stratified negation. The Fix Construct column indicates whether the Datalog program
uses the fix construct.

To look at a specific example, the table shows that the stronglyConnectedComponents
function consists of 26 lines of code, it uses lattice semantics and the fix construct, but it
does not use stratified negation. To give an idea of how the library is implemented, the
complete source code for the stronglyConnectedComponents function is shown in Figure 7. As
the code shows, each query is implemented using first-class Datalog constraints and there is
some code-reuse in the form of the nodes and reachability functions which return Datalog
program values.

3 https://github.com/flix/flix/blob/master/main/src/library/Graph.flix

https://github.com/flix/flix/blob/master/main/src/library/Graph.flix

J. L. Starup, M. Madsen, and O. Lhoták 31:23

Table 1 Overview of the Flix Graph Library. The line count includes the number of lines of
helper functions. The features used in a function also include features used in helper functions.

Features Used

Function Lines Lattices Stratified Negation Fix Construct
boundedDistances 20 Y N Y
closure 17 N N N
cutPoints 30 Y Y Y
degrees 19 Y N Y
distance 16 Y N Y
distances 49 Y N Y
distancesFrom 15 Y N Y
flipEdges 10 N N N
frontiersFrom 29 Y N Y
inDegrees 18 Y N Y
invert 12 N Y N
isCyclic 15 N N N
outDegrees 18 Y N Y
reachable 16 N N N
reachableFrom 15 N N N
stronglyConnectedComponents 26 Y N Y
toGraphviz 11 N N N
toGraphvizWeighted 11 N N N
topologicalsort 28 Y Y N
toUndirected 4 N N N
toUndirectedWeighted 4 N N N
unreachableFrom 20 N Y N
withinDistanceOf 14 Y N Y
withinEdgesOf 14 Y N Y

In total, the library contains 31 distinct predicate symbols and 64 rules. The library was
developed using our extended Flix compiler. During development, we never encountered
a spurious stratification error. However, if we compile the library with the original Flix
compiler, it is unfairly rejected due to a spurious negative cycle.

In summary, Table 1 shows that: (i) we have 24 functions that co-exist, using overlapping
predicate names from the same domain, without spurious stratification errors, (ii) the majority
of functions (15/24) require stratification via not, fix, or both, (iii) many functions use lattice
semantics (13/24), (iv) the fix construct is used more often than the not construct, and
(v) the library is accepted by our extended Flix compiler, but is rejected by the original Flix
compiler due to a spurious negative cycle in the dependency graph.

Flix is a whole-program optimizing compiler. When the graph library is compiled together
with the standard library, the stratification is computed in 0.16 seconds whereas the total
compilation time is 7.3 seconds. In particular, compilation time is dominated by the cost of
type inference. In conclusion, we find the stratification does not unfairly reject our library
and that the cost of computing the stratification is low.

ECOOP 2023

31:24 Breaking the Negative Cycle

1 /// Returns the strongly connected components of the directed
2 /// graph ‘g‘. Two nodes are in the same component if and only
3 /// if they can both reach each other.
4 pub def stronglyConnectedComponents (g: m[(t, t)]): Set[Set[t]]
5 with Foldable [m], Boxable [t] = {
6 let edges = inject g into Edge;
7 let connected = #{
8 // If ‘n1 ‘ can reach ‘n2 ‘ and ‘n2 ‘ can reach ‘n1 ‘ then they are
9 // part of the same strongly connected component .

10 Connected (n1; Set #{ n2 }) :- Reachable (n1 , n2), Reachable (n2 , n1).
11 };
12 let components = #{
13 // After the full computation of ‘Connected ‘, duplicates are
14 // removed by checking that ‘n‘ is the minimum in the strongly
15 // connected component .
16 Components (s) :- fix Connected (n; s), if Some(n) == Set. minimum (s).
17 };
18 let res = query edges , nodes (), reachability (), connected , components
19 select x
20 from Components (x);
21 List.toSet (res)
22 }

Figure 7 The stronglyConnectedComponents function from the graph library case study.

9 Related Work

9.1 First-class Datalog

Magnus and Lhoták present the λDat calculus which is the foundation for the current work [30].
The authors briefly discuss stratified negation and propose a simple solution based on type
filtering similar to choice 1b without any information on the labels (choice 2d). As we
have seen, some of these choices are sub-optimal.

9.2 Negation and Aggregation Semantics

There are many proposed semantics for Datalog with negation but stratified negation is
the most prevalent one. Kolaitis and Papadimitriou present inflationary semantics that
produce facts in such a way that a fixpoint exists for all programs using negation. The
fixpoint is not guaranteed to be minimal [26]. There are also variations in the realm of
stratification. Negation can be restricted to guarded negation, which in broad terms means
that all first-order variables in negated atoms exist in a single atom. This makes additional
questions like query containment decidable [5]. Local stratification stratifies the program on
instances of rules instead of the quantified rules. This is a property that is hard to verify,
but in its most expressive form, it allows deducing even(i + 1) from ¬even(i), since this is
not circular reasoning for any instantiations of i [36].

Aggregation is non-monotone like negation, which is why it has been studied using many
of the same ideas. Aggregation can naturally be stratified like negation but another option
is group-stratification based on the standard group-by operation. This means that a group
of the predicate should not depend on itself [35]. Zaniolo et al. studies both negation and
aggregation with a syntactically restricted form of local stratification that essentially tracks
the dynamic strata on the facts [48].

J. L. Starup, M. Madsen, and O. Lhoták 31:25

9.3 Datalog Extensions
There have been many efforts to increase the expressive power and usability of Datalog
while maintaining practical feasibility. One extension is the existential quantification of
variables in the rule head. This was motivated by the ontological reasoning that is needed in
web-standards for databases [19]. Datalog∃ is undecidable, so a family of languages called
Datalog± [8] makes restrictions that reduce the complexity to classes ranging from AC0 to
EXPTIME. One of these is Warded Datalog± [19], which has a syntactic restriction on the
usage of variables that may be bound to non-constant variables in evaluation and flow into
the rule head. They must be within a single predicate, the “ward”. It uses stratified negation
and negative constraints that restrict the inclusion of certain facts.

10 Conclusion

Flix is a functional, imperative, and logic language with support for first-class Datalog
constraints. In Flix, Datalog constraints are values that can be constructed, passed as
arguments to functions, returned from functions, composed with other Datalog values, and
solved. Flix is based on the λDat calculus which itself builds on the Hindley-Milner type
system extended with row polymorphism. A significant part of the expressive power of
Datalog comes from the use of negation. Stratified negation is a particular simple form
of negation that prohibits recursion through negation and is easily accessible to ordinary
programmers. While it is straightforward to determine if a Datalog program is stratified,
it is much more difficult to statically determine if a λDat program is stratified. In this
paper, we have explored the design space of stratification for λDat. We have proposed several
improvements to stratification in Flix and we have implemented these. With our extension,
Flix accepts a much broader range of programs that use stratified negation. Finally, we
have also extended Flix with a new “fix” construct that enables lattice values to be used as
relational values.

References
1 Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David Maier, and

Russell Sears. Dedalus: Datalog in time and space. In Oege de Moor, Georg Gottlob, Tim
Furche, and Andrew Sellers, editors, Datalog Reloaded, pages 262–281, Berlin, 2011. Springer
Berlin Heidelberg.

2 Mario Alviano, Wolfgang Faber, Nicola Leone, Simona Perri, Gerald Pfeifer, and Giorgio
Terracina. The disjunctive Datalog system DLV. In Oege de Moor, Georg Gottlob, Tim
Furche, and Andrew Sellers, editors, Datalog Reloaded, pages 282–301, Berlin, 2011. Springer
Berlin Heidelberg.

3 Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic,
Todd L. Veldhuizen, and Geoffrey Washburn. Design and implementation of the logicblox
system. In Proc. of the 2015 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’15, pages 1371–1382, New York, NY, USA, 2015. Association for Computing
Machinery. doi:10.1145/2723372.2742796.

4 Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. QL: Object-oriented
queries on relational data. In Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th
European Conference on Object-Oriented Programming (ECOOP 2016), volume 56 of Leibniz
International Proc. in Informatics (LIPIcs), pages 2:1–2:25, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECOOP.2016.2.

5 Vince Bárány, Balder ten Cate, and Martin Otto. Queries with guarded negation. Proc. VLDB
Endow., 5(11):1328–1339, July 2012. doi:10.14778/2350229.2350250.

ECOOP 2023

https://doi.org/10.1145/2723372.2742796
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.14778/2350229.2350250

31:26 Breaking the Negative Cycle

6 Aaron Bembenek, Michael Greenberg, and Stephen Chong. Formulog: Datalog for SMT-
based static analysis. Proc. ACM Program. Lang., 4(OOPSLA), November 2020. doi:
10.1145/3428209.

7 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In Proc. of the 24th ACM SIGPLAN Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’09, pages 243–262, New York,
NY, USA, 2009. Association for Computing Machinery. doi:10.1145/1640089.1640108.

8 Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general Datalog-based framework
for tractable query answering over ontologies. In Proc. of the Twenty-Eighth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’09, pages 77–86, New
York, NY, USA, 2009. Association for Computing Machinery. doi:10.1145/1559795.1559809.

9 Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and Databases: An Over-
view, pages 1–15. Springer Berlin Heidelberg, Berlin, 1990. doi:10.1007/978-3-642-83952-8_
1.

10 Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein, and David Maier.
Logic and lattices for distributed programming. In Proc. of the Third ACM Symposium on
Cloud Computing, SoCC ’12, New York, NY, USA, 2012. Association for Computing Machinery.
doi:10.1145/2391229.2391230.

11 Luis Damas. Type assignment in programming languages. PhD thesis, The University of
Edinburgh, 1984.

12 Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proc.
of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’82, pages 207–212, New York, NY, USA, 1982. Association for Computing Machinery.
doi:10.1145/582153.582176.

13 Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog. ACM Trans. Database
Syst., 22(3):364–418, September 1997. doi:10.1145/261124.261126.

14 Melvin Fitting. Fixpoint semantics for logic programming a survey. Theoretical Computer
Science, 278(1):25–51, 2002. Mathematical Foundations of Programming Semantics 1996.
doi:10.1016/S0304-3975(00)00330-3.

15 Antonio Flores-Montoya and Eric Schulte. Datalog disassembly. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1075–1092, Berkeley, California, USA, August 2020.
USENIX Association.

16 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Robert Kowalski, Bowen, and Kenneth, editors, Proc. of International Logic Programming
Conference and Symposium, pages 1070–1080, Cambridge, MA, USA, 1988. MIT Press.

17 Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3):365–385, August 1991. doi:10.1007/BF03037169.

18 G. Gottlob, S. Ceri, and L. Tanca. What you always wanted to know about Datalog (and
never dared to ask). IEEE Transactions on Knowledge and Data Engineering, 1(01):146–166,
1989. doi:10.1109/69.43410.

19 Georg Gottlob and Andreas Pieris. Beyond SPARQL under OWL 2 QL entailment regime:
Rules to the rescue. In Proc. of the 24th International Conference on Artificial Intelligence,
IJCAI’15, pages 2999–3007, Palo Alto, California, USA, 2015. AAAI Press.

20 Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu, Paraschos Koutris,
Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk, Jingjing Wang, Andrew Whitaker,
Shengliang Xu, Magdalena Balazinska, Bill Howe, and Dan Suciu. Demonstration of the Myria
big data management service. In Proc. of the 2014 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’14, pages 881–884, New York, NY, USA, 2014. Association
for Computing Machinery. doi:10.1145/2588555.2594530.

21 R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of the
American Mathematical Society, 146:29–60, 1969. doi:10.2307/1995158.

https://doi.org/10.1145/3428209
https://doi.org/10.1145/3428209
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1559795.1559809
https://doi.org/10.1007/978-3-642-83952-8_1
https://doi.org/10.1007/978-3-642-83952-8_1
https://doi.org/10.1145/2391229.2391230
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/261124.261126
https://doi.org/10.1016/S0304-3975(00)00330-3
https://doi.org/10.1007/BF03037169
https://doi.org/10.1109/69.43410
https://doi.org/10.1145/2588555.2594530
https://doi.org/10.2307/1995158

J. L. Starup, M. Madsen, and O. Lhoták 31:27

22 Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On synthesis of program
analyzers. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification,
pages 422–430, Cham, 2016. Springer International Publishing.

23 Mark Kaminski, Bernardo Cuenca Grau, Egor V. Kostylev, Boris Motik, and Ian Horrocks.
Foundations of declarative data analysis using limit Datalog programs. In Proc. of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pages 1123–
1130, California, USA, 2017. International Joint Conferences on Artificial Intelligence. doi:
10.24963/ijcai.2017/156.

24 Bas Ketsman, Aws Albarghouthi, and Paraschos Koutris. Distribution policies for Datalog. In
Benny Kimelfeld and Yael Amsterdamer, editors, 21st International Conference on Database
Theory (ICDT 2018), volume 98 of Leibniz International Proc. in Informatics (LIPIcs), pages
17:1–17:22, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ICDT.2018.17.

25 Ross D. King. Applying inductive logic programming to predicting gene function. AI Mag.,
25(1):57–68, March 2004.

26 Phokion G. Kolaitis and Christos H. Papadimitriou. Why not negation by fixpoint? In
Proc. of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, PODS ’88, pages 231–239, New York, NY, USA, 1988. Association for Computing
Machinery. doi:10.1145/308386.308446.

27 Kenneth Kunen. Negation in logic programming. The Journal of Logic Programming, 4(4):289–
308, 1987. doi:10.1016/0743-1066(87)90007-0.

28 Daan Leijen. Extensible records with scoped labels. Trends in Functional Programming,
5:297–312, 2005.

29 Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein, Petros
Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declarative networking.
Commun. ACM, 52(11):87–95, November 2009. doi:10.1145/1592761.1592785.

30 Magnus Madsen and Ondřej Lhoták. Fixpoints for the masses: Programming with first-
class Datalog constraints. Proc. ACM Program. Lang., 4(OOPSLA), November 2020. doi:
10.1145/3428193.

31 Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. From Datalog to Flix: A declarative
language for fixed points on lattices. In Proc. of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), PLDI ’16, pages 194–208, New
York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2908080.2908096.

32 Hongyuan Mei, Guanghui Qin, Minjie Xu, and Jason Eisner. Neural Datalog through time:
Informed temporal modeling via logical specification. In International Conference on Machine
Learning, pages 6808–6819, Madison, WI, USA, 2020. PMLR, Omnipress.

33 Robin Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17(3):348–375, December 1978. doi:10.1016/0022-0000(78)90014-4.

34 Raymond J. Mooney. Inductive logic programming for natural language processing. In Stephen
Muggleton, editor, Inductive Logic Programming, pages 1–22, Berlin, 1997. Springer Berlin
Heidelberg.

35 Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The magic of duplicates
and aggregates. In Proc. of the Sixteenth International Conference on Very Large Databases,
pages 264–277, San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

36 Teodor C. Przymusinski. Chapter 5 - on the declarative semantics of deductive databases and
logic programs. In Jack Minker, editor, Foundations of Deductive Databases and Logic Program-
ming, pages 193–216. Morgan Kaufmann, USA, 1988. doi:10.1016/B978-0-934613-40-8.
50009-9.

37 Kenneth A. Ross. Modular stratification and magic sets for DATALOG programs with negation.
In Proc. of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, PODS ’90, pages 161–171, New York, NY, USA, 1990. Association for Computing
Machinery. doi:10.1145/298514.298558.

ECOOP 2023

https://doi.org/10.24963/ijcai.2017/156
https://doi.org/10.24963/ijcai.2017/156
https://doi.org/10.4230/LIPIcs.ICDT.2018.17
https://doi.org/10.1145/308386.308446
https://doi.org/10.1016/0743-1066(87)90007-0
https://doi.org/10.1145/1592761.1592785
https://doi.org/10.1145/3428193
https://doi.org/10.1145/3428193
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/B978-0-934613-40-8.50009-9
https://doi.org/10.1016/B978-0-934613-40-8.50009-9
https://doi.org/10.1145/298514.298558

31:28 Breaking the Negative Cycle

38 Jiwon Seo. Datalog extensions for bioinformatic data analysis. Annu Int Conf IEEE Eng Med
Biol Soc, 2018:1303–1306, July 2018.

39 Jiwon Seo, Stephen Guo, and Monica S. Lam. SociaLite: Datalog extensions for efficient social
network analysis. In 2013 IEEE 29th International Conference on Data Engineering (ICDE),
pages 278–289, Manhattan, New York, USA, 2013. IEEE. doi:10.1109/ICDE.2013.6544832.

40 Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. Distributed Socialite: A Datalog-
based language for large-scale graph analysis. Proc. VLDB Endow., 6(14):1906–1917, September
2013. doi:10.14778/2556549.2556572.

41 Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and Carlo
Zaniolo. Big data analytics with Datalog queries on Spark. In Proc. of the 2016 International
Conference on Management of Data, SIGMOD ’16, pages 1135–1149, New York, NY, USA,
2016. Association for Computing Machinery. doi:10.1145/2882903.2915229.

42 Yannis Smaragdakis and Martin Bravenboer. Using Datalog for fast and easy program analysis.
In Oege de Moor, Georg Gottlob, Tim Furche, and Andrew Sellers, editors, Datalog Reloaded,
pages 245–251, Berlin, 2011. Springer Berlin Heidelberg.

43 Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter. Incrementalizing
lattice-based program analyses in Datalog. Proc. ACM Program. Lang., 2(OOPSLA), October
2018. doi:10.1145/3276509.

44 Petar Tsankov. Security analysis of smart contracts in Datalog. In Tiziana Margaria and
Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification and Valid-
ation. Industrial Practice, pages 316–322, Cham, 2018. Springer International Publishing.

45 Jeffrey D. Ullman. Principles of database and knowledge-base systems, 1988.
46 Mario Wenzel and Stefan Brass. Declarative programming for microcontrollers - Datalog on

Arduino. In Declarative Programming and Knowledge Management: Conference on Declarative
Programming, DECLARE 2019, Unifying INAP, WLP, and WFLP, Cottbus, Germany,
September 9–12, 2019, Revised Selected Papers, pages 119–138, Berlin, 2019. Springer-Verlag.
doi:10.1007/978-3-030-46714-2_9.

47 Andrew K Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and computation, 115(1):38–94, 1994.

48 Carlo Zaniolo, Natraj Arni, and Kayliang Ong. Negation and aggregates in recursive rules:
the LDL++ approach. In Stefano Ceri, Katsumi Tanaka, and Shalom Tsur, editors, Deductive
and Object-Oriented Databases, pages 204–221, Berlin, 1993. Springer Berlin Heidelberg.

https://doi.org/10.1109/ICDE.2013.6544832
https://doi.org/10.14778/2556549.2556572
https://doi.org/10.1145/2882903.2915229
https://doi.org/10.1145/3276509
https://doi.org/10.1007/978-3-030-46714-2_9

Asynchronous Multiparty Session Type
Implementability is Decidable –
Lessons Learned from Message Sequence Charts
Felix Stutz #

MPI-SWS, Kaiserslautern, Germany

Abstract
Multiparty session types (MSTs) provide efficient means to specify and verify asynchronous message-
passing systems. For a global type, which specifies all interactions between roles in a system,
the implementability problem asks whether there are local specifications for all roles such that
their composition is deadlock-free and generates precisely the specified executions. Decidability of
the implementability problem is an open question. We answer it positively for global types with
sender-driven choice, which allow a sender to send to different receivers upon branching and a
receiver to receive from different senders. To achieve this, we generalise results from the domain of
high-level message sequence charts (HMSCs). This connection also allows us to comprehensively
investigate how HMSC techniques can be adapted to the MST setting. This comprises techniques
to make the problem algorithmically more tractable as well as a variant of implementability that
may open new design space for MSTs. Inspired by potential performance benefits, we introduce a
generalisation of the implementability problem that we, unfortunately, prove to be undecidable.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Multiparty session types, Verification, Message sequence charts

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.32

Related Version Extended Version: https://arxiv.org/abs/2302.11272

Funding This research was sponsored in part by the Deutsche Forschungsgemeinschaft project
389792660 TRR 248 – CPEC.

Acknowledgements The author thanks Damien Zufferey, Emanuele D’Osualdo, Ashwani Anand,
Rupak Majumdar, and the anonymous reviewers for their valuable feedback.

1 Introduction

Distributed message-passing systems are omnipresent and, therefore, designing and imple-
menting them correctly is very important. However, this is a very difficult task at the same
time. In fact, it is well-known that verifying such systems is algorithmically undecidable in
general due to the combination of asynchrony (messages are buffered) and concurrency [13].

Multiparty Session Type (MST) frameworks [37, 38] provide efficient means to specify
and verify such distributed message-passing systems (e.g., see the survey [5]). They have also
been applied to various other domains like cyber-physical systems [46], timed systems [9],
web services [65], and smart contracts [27]. In MST frameworks, global types are global
specifications, which comprise all interactions between roles in a protocol. From a design
perspective, it makes sense to start with such a global protocol specification – instead of a
system with arbitrary communication between roles and a specification to satisfy.

Let us consider a variant of the well-known two buyer protocol from the MST literature,
e.g., [54, Fig. 4(2)]. Two buyers a and b purchase a sequence of items from seller s. We
informally describe the protocol and emphasise the interactions. At the start and after
every purchase (attempt), buyer a can decide whether to buy the next item or whether they
are done. For each item, buyer a queries its price and the seller s replies with the price.

© Felix Stutz;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 32; pp. 32:1–32:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fstutz@mpi-sws.org
https://orcid.org/0000-0003-3638-4096
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://arxiv.org/abs/2302.11272
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

ε

a→s :q

s→a :p

a→b :c

a→s :n

a→b :s

b→a :y

a→s :b

b→a :n

a→s :n

a→s :d

a→b :d

(a) State machine for
semantics of G2BP.

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q′
11

ε

s ◁ a?q

s ▷ a!p

ε

s ◁ a?n

ε

ε

s ◁ a?b

ε

s ◁ a?n

s ◁ a?d

(b) Projection of G2BP onto s
without merge.

s

cancel
no

no
no

done
done

split

yes
buy

query
price

a b

(c) HMSC H2BP.

Figure 1 Two Buyer Protocol: the finite state machine for the semantics of G2BP on the left,
the first step of projection in the middle, and as HMSC on the right; a transition label a → s : q

jointly specifies a send event a ▷ s!q for buyer a and a receive event s ◁ a?q for seller s; styles of
states indicate their kind, e.g., recursion states (dashed lines) while final states have double lines.

Subsequently, buyer a decides whether to cancel the purchase process for the current item
or proposes to split to buyer b that can accept or reject. In both cases, buyer a notifies the
seller s if they want to buy the item or not. This protocol is specified with the following
global type:

G2BP := µt. +

{
a→s :query. s→a :price. +

{
a→b :split. (b→a :yes. a→s :buy. t + b→a :no. a→s :no. t)
a→b :cancel. a→s :no. t

a→s :done. a→b :done. 0

The first term µt binds the recursion variable t which is used at the end of the first two lines
and allows the protocol to recurse back to this point. Subsequently, + and the curly bracket
indicate a choice by buyer a as it is the sender for the next interaction, e.g., a→s :query. For
our asynchronous setting, this term jointly specifies the send event a▷s!query for buyer a and
its corresponding receive event s◁a?query for seller s, which may happen with arbitrary delay.
The state machine in Figure 1a illustrates its semantics with abbreviated message labels.

The Implementability Problem for Global Types and the MST Approach

A global type provides a global view of the intended protocol. However, when implementing
a protocol in a distributed setting, one needs a local specification for each role. The
implementability problem for a global type asks whether there are local specifications for all
roles such that, when complying with their local specifications, their composition never gets
stuck and exposes the same executions as specified by the global type. This is a challenging
problem because roles can only partially observe the execution of a system: each role only
knows the messages it sent and received and, in an asynchronous setting, a role does not
know when one of its messages will be received by another role. In contrast, in a synchronous
setting, there are no channels, yielding finite state systems. Still, we could not find a reference
that precisely settles the decidability of synchronous implementability. We sketch a proof in
Section 7. In this work, we solely deal with the asynchronous setting.

In general, one distinguishes between a role in a protocol and the process which implements
the local specification of a role in a system. We use the local specifications directly as
implementations so the difference is not essential and we use the term role instead of process.

F. Stutz 32:3

Classical MST frameworks employ a partial projection operator with an in-built merge
operator to solve the implementability problem. For each role, the projection operator takes
the global type and removes all interactions the role is not involved in. Figure 1a illustrates
the semantics of G2BP while Figure 1b gives the projection onto seller s before the merge
operator is applied – in both, messages are abbreviated with their first letter. It is easy
to see that this procedure introduces non-determinism, e.g., in q3 and q4, which shall be
resolved by the merge operator. Most merge operators can resolve the non-determinism in
Figure 1b. A merge operator checks whether it is safe to merge the states and it might fail
so it is a partial operation. For instance, every kind of state, indicated by a state’s style in
Figure 1b, can only be merged with states of the same kind or states of circular shape. For a
role, the result of the projection, if defined, is a local type. They act as local specifications
and their syntax is similar to the one of global types.

Classical projection operators are a best-effort technique. This yields good (mostly
linear) worst-case complexity but comes at the price of rejecting implementable global types.
Intuitively, classical projection operators consider a limited search space for local types. They
bail out early when encountering difficulties and do not unfold recursion. In addition, most
MST frameworks do effectively not allow a role to send to different receivers or receive from
different senders upon branching. This restriction is called directed choice – in contrast to
sender-driven choice which is more permissive and allows these patterns. Among the classical
projection operators, the one by Majumdar et al. [45] is the only to handle global types with
sender-driven choice but it suffers from the shortcomings of a classical projection approach.
We define different merge operators from the literature and visually explain their supported
features by example. We show that the presented projection/merge operators fail to project
implementable variations of the two buyer protocol, showcasing the sources of incompleteness
for the classical approach. For non-classical approaches, we refer to Section 7.

As a best-effort technique, it is natural to focus on efficiency rather than completeness.
The work by Castagna et al. [16] is a notable exception. Their notion of completeness [16,
Def. 4.1] is not as strict as the one considered in this work and only a restricted version of
their characterisation is algorithmically checkable. In general, it is not known whether the
implementability problem for global types, with directed or sender-driven choice, is decidable.
We answer this open question positively for global types with sender-driven choice. To
this end, we relate the implementability problem for global types with the safe realisability
problem for high-level message sequence charts and generalise results for the latter.

Lessons Learned from Message Sequence Charts

The two buyer protocol G2BP can also be specified as high-level message sequence chart
(HMSC) [47], as illustrated in Figure 1c. Each block is a basic message sequence chart
(BMSC) which intuitively corresponds to straight-line code. In each of those, time flows from
top to bottom and each role is represented by a vertical line. We only give the names in
the initial block, which is marked by an incoming arrow at the top. An arrow between two
role lines specifies sending and receiving a message with its label. The graph structure adds
branching, which corresponds to choice in global types, and control flow. Top branches from
the global type are on the left in the HMSC while bottom branches are on the right.

While research on MSTs and HMSCs has been pursued quite independently, the MST
literature frequently uses HMSC-like visualisations for global types, e.g., [15, Fig. 1] and [38,
Figs. 1 and 2]. The first formal connection was recently established by Stutz and Zufferey [57].

ECOOP 2023

32:4 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

The HMSC approach to the implementability problem, studied as safe realisability, differs
from the MST approach of checking conditions during the projection. For an HMSC, it is
known that there is a candidate implementation [2], which implements the HMSC if it is
implementable. Intuitively, one takes the HMSC and removes all interactions a role is not
involved in and determinises the result. We generalise this result to infinite executions.1

Hence, algorithms and conditions center around checking implementability of HMSCs. In
general, this problem is undecidable [44]. For globally-cooperative HMSCs [31], Lohrey [44]
proved it to be EXPSPACE-complete. We show that any implementable global type belongs
to this class of HMSCs.1 These results give rise to the following algorithm to check implement-
ability of a global type. One can check whether a global type is globally-cooperative (which
is equivalent to checking its HMSC encoding). If it is not globally-cooperative, it cannot be
implementable. If it is globally-cooperative, we apply the algorithm by Lohrey [44] to check
whether its HMSC encoding is implementable. If it is, we use its candidate implementation
and know that it generalises to infinite executions.

While this algorithm shows decidability, the complexity might not be tractable. Based
on our results, we show how more tractable but still permissive approaches to check imple-
mentability of HMSCs can be adapted to the MST setting. In addition, we consider payload
implementability, which allows to add payload to messages of existing interactions and checks
agreement when the additional payload is ignored. We present a sufficient condition for
global types that implies payload implementability. These techniques can be used if the
previous algorithms are not tractable or reject a global type.

Furthermore, we introduce a generalisation of the implementability problem. A network
may reorder messages from different senders for the same receiver but the implementability
problem still requires the receiver to receive them in the specified order. Our generalisation
allows to consider such reorderings of arrival and can yield performance gains. In addition, it
also renders global types implementable that are not implementable in the standard setting.
Unfortunately, we prove this generalisation to be undecidable in general.

Contributions and Outline

We introduce our MST framework in Section 2 while Section 7 covers related work. In the
other sections, we introduce the necessary concepts to establish our main contributions:

We give a visual explanation of the classical projection operator with different merge
operators and exemplify its shortcomings (Section 3).

We prove decidability of the implementability problem for global types with sender-driven
choice (Section 4) – provided that protocols can (but do not need to) terminate.

We comprehensively investigate how MSC techniques can be applied to the MST setting,
including algorithmics with better complexity for subclasses as well as an interesting
variant of the implementability problem (Section 5).

Lastly, we introduce a new variant of the implementability problem with a more relaxed
role message ordering, which is closer to the network ordering, and prove it to be
undecidable in general (Section 6).

1 For this, we impose a mild assumption: all protocols can (but do not need to) terminate.

F. Stutz 32:5

2 Multiparty Session Types

In this section, we formally introduce our Multiparty Session Type (MST) framework. We
define the syntax of global and local types and their semantics. Subsequently, we recall the
implementability problem for global types which asks if there is a deadlock-free communicating
state machine that admits the same language (without additional synchronisation).

Finite and Infinite Words. Let Σ be an alphabet. We denote the set of finite words over Σ
by Σ∗ and the set of infinite words by Σω. Their union is denoted by Σ∞. For two strings
u ∈ Σ∗ and v ∈ Σ∞, we say that u is a prefix of v if there is some w ∈ Σ∞ such that u · w = v

and denote this with u ≤ v while pref(v) denotes all prefixes of v and is lifted to languages
as expected. For a language L ⊆ Σ∞, we distinguish between the language of finite words
Lfin := L ∩ Σ∗ and the language of infinite words Linf := L ∩ Σω.

Message Alphabet. We fix a finite set of messages V and a finite set of roles P, ranged
over with p, q, r, and s. With Σsync = {p → q : m | p, q ∈ P and m ∈ V}, we denote
the set of interactions where sending and receiving a message is specified at the same
time. For our asynchronous setting, we also define individual send and receive events:
Σp = {p ▷ q!m, p ◁ q?m | q ∈ P, m ∈ V} for a role p. For both send events p ▷ q!m and receive
events p ◁ q?m, the first role is active, i.e., the sender in the first event and the receiver in
the second one. The union for all roles yields all (asynchronous) events: Σ =

⋃
p∈P Σp. For

the rest of this work, we fix the set of roles P, the messages V, and both sets Σsync and Σ.
We may also use the term Σasync for Σ. We define an operator that splits events from Σsync,
split(p→q :m) := p ▷ q!m. q ◁ p?m, which is lifted to sequences and languages as expected.
Given a word, we might also project it to all letters of a certain shape. For instance, w⇓p▷q!_
is the subsequence of w with all of its send events where p sends any message to q. If we
want to select all messages of w, we write V(w).

Global and Local Types – Syntax

We give the syntax of global and local types following work by Majumdar et al. [45]. In this
work, we consider global types as specifications for message-passing concurrency and omit
features like delegation.

▶ Definition 2.1 (Syntax of global types). Global types for MSTs are defined by the grammar:

G ::= 0 |
∑
i∈I

p→qi :mi.Gi | µt.G | t

The term 0 explicitly represents termination. A term p → qi : mi indicates an interaction
where p sends message mi to qi. In our asynchronous semantics, it is split into a send event
p ▷ qi!mi and a receive event qi ◁ p?mi. In a choice

∑
i∈I p→qi :mi.Gi, the sender p chooses

the branch. We require choices to be unique, i.e., ∀i, j ∈ I. i ̸= j ⇒ qi ̸= qj ∨ mi ̸= mj.
If |I| = 1, which means there is no actual choice, we omit the sum operator. The operators
µt and t allow to encode loops. We require them to be guarded, i.e., there must be at least
one interaction between the binding µt and the use of the recursion variable t. Without loss
of generality, all occurrences of recursion variables t are bound and distinct.

Our global types admit sender-driven choice as p can send to different receivers upon
branching:

∑
i∈I p→qi :mi.Gi. This is also called generalised choice by Majumdar et al. [45].

In contrast, directed choice requires a sender to send to a single receiver, i.e., ∀i, j ∈ I. qi = qj .

ECOOP 2023

32:6 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

▶ Example 2.2 (Global types). The two buyer protocol G2BP from the introduction is a
global type. Instead of

∑
, we use + with curly brackets.

▶ Definition 2.3 (Syntax of local types). For a role p, the local types are defined as follows:

L ::= 0 | ⊕
i∈I

qi!mi.Li | &
i∈I

qi?mi.Li | µt.L | t

We call ⊕i∈I qi!mi an internal choice while &i∈I qi?mi is an external choice. For both, we
require the choice to be unique, i.e., ∀i, j ∈ I. i ̸= j ⇒ qi ≠ qj ∨ mi ̸= mj . Similarly to global
types, we may omit ⊕ or & if there is no actual choice and we require recursion to be guarded
as well as recursion variables to be bound and distinct.

▶ Example 2.4 (Local type). For the global type G2BP, a local type for seller s is

µt. &
{

a?query. a!price. (a?buy. t & a?no. t)
a?done. 0

.

Implementing in a Distributed Setting

Global types can be thought of as global protocol specifications. Thus, a natural question and
a main concern in MST theory is whether a global type can be implemented in a distributed
setting. We present communicating state machines, which are built from finite state machines,
as the standard implementation model.

▶ Definition 2.5 (State machines). A state machine A = (Q, ∆, δ, q0, F) is a 5-tuple with a
finite set of states Q, an alphabet ∆, a transition relation δ ⊆ Q × (∆ ∪ {ε}) × Q, an initial
state q0 ∈ Q from the set of states, and a set of final states F with F ⊆ Q. If (q, a, q′) ∈ δ,
we also write q

a−→ q′. A sequence q0
w0−−→ q1

w1−−→ . . ., with qi ∈ Q and wi ∈ ∆ ∪ {ε} for i ≥ 0,
such that q0 is the initial state, and for each i ≥ 0, it holds that (qi, wi, qi+1) ∈ δ, is called
a run in A with its trace w0w1 . . . ∈ ∆∞. A run is maximal if it ends in a final state or is
infinite. The language L(A) of A is the set of traces of all maximal runs. If Q is finite, we
say A is a finite state machine (FSM).

▶ Definition 2.6 (Communicating state machines). We call {{Ap}}p∈P a communicating state
machine (CSM) over P and V if Ap is a finite state machine with alphabet Σp for every
p ∈ P. The state machine for p is denoted by (Qp, Σp, δp, q0,p, Fp). Intuitively, a CSM allows
a set of state machines, one for each role in P, to communicate by sending and receiving
messages. For this, each pair of roles p, q ∈ P, p ̸= q, is connected by two directed message
channels. A transition qp

p▷q!m−−−−→ q′
p in the state machine of p denotes that p sends message m

to q if p is in the state qp and changes its local state to q′
p. The channel ⟨p, q⟩ is appended by

message m. For receptions, a transition qq
q◁p?m−−−−→ q′

q in the state machine of q corresponds
to q retrieving the message m from the head of the channel when its local state is qq which is
updated to q′

q. The run of a CSM always starts with empty channels and each finite state
machine is in its respective initial state. A deadlock of {{Ap}}p∈P is a reachable configuration
without outgoing transitions such that there is a non-empty channel or some participant is in
a non-final local state. The formalisation of this intuition is standard and can be found in
the technical report [56].

A global type always specifies send and receive events together. In a CSM execution, there
may be independent events that can occur between a send and its respective receive event.

▶ Example 2.7 (Motivation for indistinguishability relation ∼). Let us consider the following
global type which is a part of the two buyer protocol: a → b : cancel. a → s : no. 0. This is
one of its traces: a ▷ b!cancel. b ◁ a?cancel. a ▷ s!no. s ◁ a?no. Because the active roles in

F. Stutz 32:7

b ◁ a?cancel and a ▷ s!no are different and we do not reorder a receive event in front of its
respective send event, any CSM that accepts the previous trace also accepts the following
trace: a ▷ b!cancel. a ▷ s!no. b ◁ a?cancel. s ◁ a?no.

Majumdar et al. [45] introduced the following relation to capture this phenomenon.

▶Definition 2.8 (Indistinguishability relation ∼ [45]). We define a family of indistinguishability
relations ∼i ⊆ Σ∗ × Σ∗, for i ≥ 0. For w ∈ Σ∗, we have w ∼0 w. For i = 1, we define:
1. If p ̸= r, then w.p ▷ q!m.r ▷ s!m′.u ∼1 w.r ▷ s!m′.p ▷ q!m.u.
2. If q ̸= s, then w.q ◁ p?m.s ◁ r?m′.u ∼1 w.s ◁ r?m′.q ◁ p?m.u.
3. If p ̸= s ∧ (p ̸= r ∨ q ̸= s), then w.p ▷ q!m.s ◁ r?m′.u ∼1 w.s ◁ r?m′.p ▷ q!m.u.
4. If |w⇓p▷q!_| > |w⇓q◁p?_|, then w.p ▷ q!m.q ◁ p?m′.u ∼1 w.q ◁ p?m′.p ▷ q!m.u.
Let w, w′, and w′′ be words s.t. w ∼1 w′ and w′ ∼i w′′ for some i. Then, w ∼i+1 w′′. We
define w ∼ u if w ∼n u for some n. It is straightforward that ∼ is an equivalence relation.
Define u ⪯∼ v if there is w ∈ Σ∗ such that u.w ∼ v. Observe that u ∼ v iff u ⪯∼ v and
v ⪯∼ u. For infinite words u, v ∈ Σω, we define u ⪯ω

∼ v if for each finite prefix u′ of u, there
is a finite prefix v′ of v such that u′ ⪯∼ v′. Define u ∼ v iff u ⪯ω

∼ v and v ⪯ω
∼ u.

We lift the equivalence relation ∼ on words to languages:

For a language L, we define C∼(L) =
{

w′ |
∨ w′ ∈ Σ∗ ∧ ∃w ∈ Σ∗. w ∈ L and w′ ∼ w

w′ ∈ Σω ∧ ∃w ∈ Σω. w ∈ L and w′ ⪯ω
∼ w

}
.

This relation characterises what can be achieved in a distributed setting using CSMs.

▶ Lemma 2.9 (L. 21 [45]). Let {{Ap}}p∈P be a CSM. Then, L({{Ap}}p∈P) = C∼(L({{Ap}}p∈P)).

Global and Local Types – Semantics

Hence, we define the semantics of global types using the indistinguishability relation ∼.

▶ Definition 2.10 (Semantics of global types). We construct a state machine GAut(G) to
obtain the semantics of a global type G. We index every syntactic subterm of G with a unique
index to distinguish common syntactic subterms, denoted with [G, k] for syntactic subterm G

and index k. Without loss of generality, the index for G is 1: [G, 1]. For clarity, we do not
quantify indices. We define GAut(G) = (QGAut(G), Σsync, δGAut(G), q0,GAut(G), FGAut(G)) where

QGAut(G) is the set of all indexed syntactic subterms [G, k] of G
δGAut(G) is the smallest set containing ([

∑
i∈I p → qi : mi.[Gi, ki], k], p → qi : mi, [Gi, ki])

for each i ∈ I, and ([µt.[G′, k′
2], k′

1], ε, [G′, k′
2]) and ([t, k′

3], ε, [µt.[G′, k′
2], k′

1]),
q0,GAut(G) = [G, 1], and FGAut(G) = {[0, k] | k is an index for subterm 0}.

We consider asynchronous communication so each interaction is split into its send and
receive event. In addition, we consider CSMs as implementation model for global types
and, from Lemma 2.9, we know that CSM languages are always closed under the indis-
tinguishability relation ∼. Thus, we also apply its closure to obtain the semantics of G:
L(G) := C∼(split(L(GAut(G)))).

The closure C∼(-) corresponds to similar reordering rules in standard MST developments,
e.g., [38, Def. 3.2 and 5.3].

▶ Example 2.11. Figure 1a (p.2) illustrates the FSM GAut(G2BP). In the following global
type, p sends a list of book titles to q: µt. (p→q : title. t + p→q :done. 0). Its semantics is
the union of two cases: if the list of book titles is infinite, i.e., C∼((p ▷ q!title. q ◁ p?title)ω);
and the one if the list is finite, i.e., C∼((p ▷ q!title. q ◁ p?title)∗. p ▷ q!done. q ◁ p?done). Here,
there are only two roles so C∼(-) can solely delay receive events (Rule 4 of ∼).

ECOOP 2023

32:8 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

We distinguish states depending on which subterm they correspond to: binder states with
their dashed line correspond to a recursion variable binder, while recursion states with their
dash-dotted lines indicate the use of a recursion variable. We omit ε for transitions from
recursion to binder states.

Local Types. For the semantics of local types, we analogously construct a state machine
LAut(-). In constrast, we omit the closure C∼(-) because languages of roles are closed under ∼
(cf. [45, Lm. 22]). For the full definition, we refer to the technical report [56]. Compared to
global types, we distinguish two more kinds of states for local types: a send state (internal
choice) has a diamond shape while a receive state (external choice) has a rectangular shape.
For states with ε as next action, we keep the circular shape and call them neutral states.
Because of the ε-transitions, Figure 1b (p.2) does not represent the state machine for any
local type but illustrates the use of different styles for different kinds of states.

The Implementability Problem for Global Types

The implementability problem for global types asks whether a global type can be implemented
in a distributed setting. The projection operator takes the intermediate representation of
local types as local specifications for roles. We define implementability directly on the
implementation model of CSMs. Intuitively, every collection of local types constitutes a CSM
through their semantics.

▶ Definition 2.12 (Implementability [45]). A global type G is said to be implementable if
there exists a deadlock-free CSM {{Ap}}p∈P such that their languages are the same (protocol
fidelity), i.e., L(G) = L({{Ap}}p∈P). We say that {{Ap}}p∈P implements G.

3 Projection – From Global to Local Types

In this section, we define and visually explain a typical approach to the implementability
problem: the classical projection operator. It tries to translate global types to local types
and, while doing so, checks if this is safe. Behind the scenes, these checks are conducted
by a partial merge operator. We consider different variants of the merge operator from the
literature and exemplify the features they support. We provide visual explanations of the
classical projection operator with these merge operators on the state machines of global
types by example. In the technical report [56], we give general descriptions but they are
not essential for our observations. Lastly, we summarise the shortcomings of the full merge
operator and exemplify them with variants of the two buyer protocol from the introduction.

Classical Projection Operator with Parametric Merge

▶ Definition 3.1 (Projection operator). For a merge operator ⊓, the projection of a global
type G onto a role r ∈ P is a local type that is defined as follows:2 0↾⊓r := 0 t↾⊓r := t(∑

i∈I
p→qi :mi.Gi

)
↾⊓r :=


⊕i∈I qi!mi.(Gi↾⊓r) if r = p

&i∈I p?mi.(Gi↾⊓r) if r = q
⊓i∈I Gi↾⊓r otherwise

(µt.G)↾⊓r :=
{

µt.(G↾⊓r) if G↾⊓r ̸= t

0 otherwise

2 The case split for the recursion binder changes slightly across different definitions. We chose a simple
but also the least restrictive condition. We simply check whether the recursion is vacuous, i.e. µt.t, and
omit it in this case. We also require to omit µt if t is never used in the result.

F. Stutz 32:9

Intuitively, a projection operator takes the state machine GAut(G) for a global type G and
projects each transition label to the respective alphabet of the role, e.g., p→q :m becomes
q ◁ p?m for role q. This can introduce non-determinism that ought to be resolved by a partial
merge operator. Several merge operators have been proposed in the literature.

▶ Definition 3.2 (Merge operators). Let L1 and L2 be local types for a role r, and ⊓ be
a merge operator. We define different cases for the result of L1 ⊓ L2:

(1) L1 if L1 = L2 (2)

 &i∈I\J q?mi.L′
1,i &

&i∈I∩J q?mi.(L′
1,i ⊓ L′

2,i) &
&i∈J\I q?mi.L′

2,i

 if

{
L1 = &i∈I q?mi.L′

1,i,
L2 = &i∈J q?mi.L′

2,i

(3) µt1.(L′
1 ⊓ L′

2[t2/t1]) if L1 = µt1.L′
1 and L2 = µt2.L′

2

Each merge operator is defined by a collection of cases it can apply. If none of the respective
cases applies, the result of the merge is undefined. The plain merge ⊓p [23] can only apply
Case (1). The semi-full merge ⊓s [64] can apply Cases (1) and (2). The full merge ⊓f [54]
can apply all Cases (1), (2), and (3).

We will also consider the availability merge operator ⊓a by Majumdar et al. [45] which
builds on the full merge operator but generalises Case (2) to allow sender-driven choice. We
will explain the main differences in Remark 3.12.
▶ Remark 3.3 (Correctness of projection). This would be the correctness criterion for projection:
Let G be some global type and let plain merge ⊓p , semi full merge ⊓s , full merge ⊓f , or
availability merge ⊓a be the merge operator ⊓. If G↾⊓p is defined for each role p, then the
CSM {{LAut(G↾⊓p)}}p∈P implements G.
We do not actually prove this so we do not state it as lemma. But why does this hold?
The implementability condition is the combination of deadlock freedom and protocol fidelity.
Coppo et al. [23] show that subject reduction entails protocol fidelity and progress while
progress, in turn, entails deadlock freedom. Subject reduction has been proven for the plain
merge operator [23, Thm. 1] and the semi-full operator [64, Thm. 1]. Scalas and Yoshida
pointed out that several versions of classical projection with the full merge are flawed [54,
Sec. 8.1]. Hence, we have chosen a full merge operator whose correctness follows from the
correctness of the more general availability merge operator. For the latter, correctness was
proven by Majumdar et al. [45, Thm. 16].

▶ Example 3.4 (Projection without merge / Collapsing erasure). In the introduction, we
considered G2BP and the FSM for its semantics in Figure 1a. We projected (without merge)
onto seller s to obtain the FSM in Figure 1b. In general, we also collapse neutral states with
a single ε-transition and their only successor. We call this collapsing erasure. We only need
to actually collapse states for the protocol in Figure 4a. In all other illustrations, we indicate
the interactions the role is not involved with the following notation: [p→q : l]⇝ ε.

On the Structure of GAut(GAut(GAut(G)))

We now show that the state machine for every local and global type has a certain shape. This
simplifies the visual explanations of the different merge operators. Intuitively, every such
state machine has a tree-like structure where backward transitions only happen at leaves of
the tree, are always labelled with ε, and only lead to ancestors. The FSM in Figure 1a (p.2)
illustrates this shape where the root of the tree is at the top.

▶ Definition 3.5 (Ancestor-recursive, non-merging, intermediate recursion, etc.). Let A =
(Q, ∆, δ, q0, F) be a finite state machine. We say that A is ancestor-recursive if there is a
function lvl : Q → N such that, for every transition q

x−→ q′ ∈ δ, one of the two holds:

ECOOP 2023

32:10 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

(a) lvl(q) > lvl(q′), or
(b) x = ε and there is a run from the initial state q0 (without going through q) to q′ which

can be completed to reach q: q0
-−→ . . .

-−→ qn is a run with qn = q′ and q ̸= qi for every
0 ≤ i ≤ n, and the run can be extended to q0

-−→ . . .
-−→ qn

-−→ . . .
-−→ qn+m with qn+m = q.

Then, the state q′ is called ancestor of q.
We call the first (a) kind of transition forward transition while the second (b) kind is a
backward transition. The state machine A is said to be free from intermediate recursion if
every state q with more than one outgoing transition, i.e., |{q′ | q

-−→ q′ ∈ δ}| > 1, has only
forward transitions. We say that A is non-merging if every state only has one incoming edge
with greater level, i.e., for every state q′, {q | q

-−→ q′ ∈ δ ∧ lvl(q) > lvl(q′)} ≤ 1. The state
machine A is dense if, for every q

x−→ q′ ∈ δ, the transition label x is ε implies that q has
only one outgoing transition. Last, the cone of q are all states q′ which are reachable from q

and have a smaller level than q, i.e., lvl(q) > lvl(q′).

▶ Proposition 3.6 (Shape of GAut(G) and LAut(L)). Let G be some global type and L be some
local type. Then, both GAut(G) and LAut(L) are ancestor-recursive, free from intermediate
recursion, non-merging, and dense.

For both, the only forward ε-transitions occur precisely from binder states while backward
transitions happen from variable states to binder states. The illustrations for our examples
always have the initial state, which is the state with the greatest level, at the top. This is
why we use greater and higher as well as smaller and lower interchangeably for levels.

Features of Different Merge Operators by Example

In this section, we exemplify which features each of the merge operators supports. We present
a sequence of implementable global types. Despite, some cannot be handled by some (or all)
merge operators. If a global type is not projectable using some merge operator, we say it is
rejected and it constitutes a negative example for this merge operator. We focus on role r
when projecting. Thus, rejected mostly means that there is (at least) no projection onto r.
If a global type is projectable by some merge operator, we call it a positive example. All
examples strive for minimality and follow the idea that roles decide whether to take a left (l)
or right (r) branch of a choice.

▶ Example 3.7 (Positive example for plain merge). The following global type is implementable:

µt. +
{

p→q : l. (q→r : l. 0 + q→r :r. t)
p→q :r. (q→r : l. 0 + q→r :r. t)

.

The state machine for its semantics is given in Figure 2a. After collapsing erasure, there is a
non-deterministic choice from q′

0 leading to q1 and q4 since r is not involved in the initial
choice. The plain merge operator can resolve this non-determinism since both cones of q1
and q4 represent the same subterm. Technically, there is an isomorphism between the states
in both cones which preserves the kind of states as well as the transition labels and the
backward transitions from isomorphic recursion states lead to the same binder state. The
result is illustrated in Figure 2b. It is also the FSM of a local type for r which is the result
of the (syntactic) plain merge: µt. (q?l. 0 & q?r. t) .

Our explanation on FSMs allows to check congruence of cones to merge while the definition
requires syntactic equality. If we swap the order of branches q→r : l and q→r :r in Figure 2a
on the right, the syntactic merge rejects. Still, because both are semantically the same
protocol specification, we expect tools to check for such easy fixes.

F. Stutz 32:11

q0

q′
0

q1

q2 q3

q4

q5 q6

ε

[p→q : l]⇝ ε

q→r : l q→r :r

[p→q :r]⇝ ε

q→r : l q→r :r

(a) Positive example for plain merge.

q0

q1

q2 q3

ε

r ◁ q?l r ◁ q?r

(b) After plain merge.

q0

q1

q2

q4

q6

[p→q : l]⇝ ε

q→r : l

[p→q :r]⇝ ε

q→r :r

(c) Negative example for plain merge.

Figure 2 The FSM on the left represents an implementable global type that is accepted by plain
merge. It implicitly shows the FSM after collapsing erasure: every interaction r is not involved in is
given as [p→q : l]⇝ ε. The FSM in the middle is the result of the plain merge. The FSM on the
right represents an implementable global type that is rejected by plain merge. It is obtained from
the left one by removing one choice option in each branch of the initial choice.

▶ Example 3.8 (Negative example for plain merge). We consider the following simple imple-
mentable global type where the choice by p is propagated by q to r: +

{
p→q : l. q→r : l. 0
p→q :r. q→r :r. 0

.

The corresponding state machine is illustrated in Figure 2c. Here, q0 exhibits non-determinism
but the plain merge fails because q1 and q4 have different outgoing transition labels.

Intuitively, the plain merge operator forbids that any, but the two roles involved in a
choice, can have different behaviour after the choice. It basically forbids propagating a choice.
The semi-full merge overcomes this shortcoming and can handle the previous example. We
present a slightly more complex one to showcase the features it supports.

▶ Example 3.9 (Positive example for semi-full merge). Let us consider this implementable
global type: µt. +

{
p→q : l. (q→r : l. 0 + q→r :m. 0)
p→q :r. (q→r :m. 0 + q→r :r. t)

, illustrated in Figure 3a. After applying
collapsing erasure, there is a non-deterministic choice from q0 leading to q1 and q4 since
r is not involved in the initial choice, We apply the semi-full merge for both states. Both
are receive states so Case (2) applies. First, we observe that r ◁ q?l and r ◁ q?r are unique
to one of the two states so both transitions, with the cones of the states they lead to, can
be kept. Second, there is r ◁ q?m which is common to both states. We recursively apply
the semi-full merge and, with Case (1), observe that the result q3|5 is simply a final state.
Overall, we obtain the state machine in Figure 3b, which is equivalent to the result of the
syntactic projection with semi-full merge: µt. (q?l. 0 & q?m. 0 & q?r. t) .

q0

q′
0

q1

q2 q3

q4

q5 q6

ε

[p→q : l]⇝ ε

q→r : l q→r :m

[p→q :r]⇝ ε

q→r :m q→r :r

(a) Positive example
for semi-full merge.

q0

q1|4

q2

q3|5

q6

ε

r ◁ q?l q→
r:m

r ◁ q?r

(b) After semi-
full merge.

q0

q1

q2

q4

q6

[p→q : l]⇝ ε

p→r : l

[p→q :r]⇝ ε

q→r :r

(c) Negative example
for full merge.

Figure 3 The FSM on the left represents an implementable global type (and implicitly the
collapsing erasure onto r) that is accepted by semi-full merge. The FSM in the middle is the result
of the semi-full merge. The FSM on the right is a negative example for the full merge operator.

ECOOP 2023

32:12 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

q0

q1

q′
1

q2

q′
2

q3

q′
3

q4

q′
4

q5

q′
5

q6

q′
6

p→q : l

ε

q→r : l q→r :m

p→q :r

ε

q→r :m q→r :r

q→p : l q→p :m q→p :m q→p :r

(a) Negative example for semi-full
merge and positive one for full merge.

q0

q1

q′
1

q′′
2 q′′

3

q4

q′
4

q′′
5 q′′

6

ε

ε

r ◁ q?l r ◁ q?m

ε

ε

r ◁ q?m r ◁ q?r

(b) After collapsing erasure.

q1|4

q′
1|4

q′′
2

q′′
3|5

q′′
6

ε

r ◁ q?l r
◁

q?
m

r ◁ q?r

(c) After full merge.

Figure 4 The FSM on the left represents an implementable global type that is rejected by the
semi-full merge. It is accepted by the full merge: collapsing erasure yields the FSM in the middle
and applying the full merge the FSM on the right.

▶ Example 3.10 (Negative example for semi-full merge and positive example for full merge).
The semi-full merge operator rejects the following implementable global type:

+
{

p→q : l. µt1. (q→r : l. q→p : l. t1 + q→r :m. q→p :m. 0)
p→q :r. µt2. (q→r :m. q→p :m. 0 + q→r :r. q→p :r. t2)

.

Its FSM and the FSM after collapsing erasure is given in Figures 4a and 4b. Intuitively, it
would need to recursively merge the parts after both recursion binders in order to merge
the branches with receive event r ◁ q?m but it cannot do so. The full merge can handle this
global type. It can descend beyond q1 and q4 and is able to merge q′

1 and q′
4. To obtain q′′

3|5,
it applies Case (1) while q′

1|4 is only feasible with Case (2). The result is embedded into the
recursive structure to obtain the FSM in Figure 4c. It is equivalent to the (syntactic) result,
which renames the recursion variable for one branch: µt1. (q?l. t1 & q?m. 0 & q?r. t1).

▶ Example 3.11 (Negative example for full merge). We consider a simple implementable
global type where p propagates its decision to r in the top branch while q propagates it in the
bottom branch: +

{
p→q : l. p→r : l. 0
p→q :r. q→r :r. 0

. It is illustrated in Figure 3c. This cannot be projected
onto r by the full merge operator for which all receive events need to have the same sender.

▶ Remark 3.12 (On sender-driven choice). Majumdar et al. [45] proposed a classical projection
operator that overcomes this shortcoming. It can project the previous example. In general,
allowing to receive from different senders has subtle consequences. Intuitively, messages from
different senders could overtake each other in a distributed setting and one cannot rely on the
FIFO order provided by the channel of a single sender. Majumdar et al. employ a message
availability analysis to ensure that there cannot be any confusion about which branch shall
be taken. Except for the possibility to merge cases where a receiver receives from multiple
senders, their merge operator suffers from the same shortcomings as all classical projection
operators. For details, we refer to their work [45].

Shortcomings of Classical Projection/Merge Operators

We present slight variations of the two buyer protocol that are implementable but rejected
by all of the presented projection/merge operators.

▶ Example 3.13. We obtain an implementable variant by omitting both message interactions
a→s :no with which buyer a notifies seller s that they will not buy the item:

µt. +

{
a→s :query. s→a :price.

(
a→b :split. (b→a :yes. a→s :buy. t + b→a :no. t) + a→b :cancel. t

)
a→s :done. a→b :done. 0

.

F. Stutz 32:13

This global type cannot be projected onto seller s. The merge operator would need to merge
a recursion variable with an external choice. Visually, the merge operator does not allow to
unfold the variable t and try to merge again. However, there is a local type for seller s:

µt1. &
{

a?query. µt2. a!price. (a?buy. t1 & a?query. t2 & a?done. 0)
a?done. 0

.

The local type has two recursion variable binders while the global type only has one. Classical
projection operators can never yield such a structural change: the merge operator can only
merge states but not introduce new ones or introduce new backward transitions.

▶ Example 3.14 (Two Buyer Protocol with Subscription). In this variant, buyer a first decides
whether to subscribe to a yearly discount offer or not – before purchasing the sequence of
items – and notifies buyer b if it does so: G2BPWS := +

{
a→s : login. G2BP
a→s :subscribe. a→b :subscribed. G2BP

.

The merge operator needs to merge a recursion variable binder µt with the external choice
b ◁ a?subscribed. Still, there is a local type Lb for b such that L(Lb) = L(G2BPWS)⇓Σb

:

Lb := &


a?split. (a!yes. L(t1) ⊕ a!no. L(t2))
a?cancel. L(t3)
a?done. 0
a?subscribed. L(t4)

where L(t) := µt. &

{
a?split. (a!yes. t ⊕ a!no. t)
a?cancel. t

a?done. 0
.

In fact, one can also rely on the fact that buyer a will comply with the intended protocol.
Then, it suffices to introduce one recursion variable t in the beginning and substitute every
L(-) with t, yielding a local type L′

b with L(Lb) ⊆ L(L′
b).

Similarly, classical projection operator cannot handle global types where choices can
be disambiguated with semantic properties, e.g., counting modulo a constant. Scalas and
Yoshida [54] also identified another shortcoming: most classical projection operators require
all branches of a loop to contain the same set of active roles. Thus, they cannot project
the following global type. It is implementable and if it was projectable, the result would be
equivalent to the local types given in their example [54, Fig. 4 (2)].

▶ Example 3.15 (Two Buyer Protocol with Inner Recursion). This variant allows to recursively
negotiate how to split the price (and omits the outer recursion):

G2BPIR := a→s :query. s→a :price. µt. +
{

a→b :split. (b→a :yes. a→s :buy. 0 + b→a :no. t)
a→b :cancel. a→s :no. 0

.

These shortcomings have been addressed by some non-classical approaches. For example,
Scalas and Yoshida [54] employ model checking while Castagna et al. [16] characterise
implementable global types with an undecidable well-formedness condition and give a sound
algorithmically checkable approximation. It is not known whether the implementability
problem for global types, neither with directed or sender-driven choice, is decidable. We
answer this question positively for the more general case of sender-driven choice.

4 Implementability for Global Types from MSTs is Decidable

In this section, we show decidability of the implementability problem for global types with
sender-driven choice, using results from the domain of message sequence charts. We introduce
high-level message sequence charts (HMSCs) and recall an HMSC encoding for global types.
In general, implementability for HMSCs is undecidable but we show that global types, when
encoded as HMSCs, belong to a class of HMSCs for which implementability is decidable.

ECOOP 2023

32:14 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

p ▷ q!m

q ◁ p?m

p q

Figure 5 Highlighting the elements of an MSC (N, p, f, l, (≤p)p∈P) [57, Fig. 3].

4.1 High-level Message Sequence Charts
Our definitions of (high-level) message sequence charts follow work by Genest et al. [30] and
Stutz and Zufferey [57]. If reasonable, we adapt terminology to the MST setting.

▶ Definition 4.1 (Message Sequence Charts). A message sequence chart (MSC) is a 5-tuple
M = (N, p, f, l, (≤p)p∈P) where

N is a set of send (S) and receive (R) event nodes such that N = S ⊎ R (where ⊎ denotes
disjoint union),
p : N → P maps each event node to the role acting on it,
f : S → R is an injective function linking
corresponding send and receive event nodes,
l : N → Σ labels every event node with an event, and
(≤p)p∈P is a family of total orders for the
event nodes of each role: ≤p ⊆ p−1(p) × p−1(p).

We visually highlight the elements of an MSC in Figure 5.
An MSC M induces a partial order ≤M on N that is defined co-inductively:

e ≤p e
′

e ≤M e
′ proc s ∈ S

s ≤M f(s)
snd-rcv

e ≤M e
refl

e ≤M e
′

e
′ ≤M e

′′

e ≤M e
′′ trans

The labelling function l respects the function f : for every send event node e, we have that
l(e) = p(e) ▷ p(f(e))!m and l(f(e)) = p(f(e)) ◁ p(e)?m for some m ∈ V.

All MSCs in our work respect FIFO, i.e., there are no p and q such that there are
e1, e2 ∈ p−1(p) with e1 ≠ e2, l(e1) = l(e2), e1 ≤p e2 and f(e2) ≤q f(e1) (also called
degenerate) and for every pair of roles p, q, and for every two event nodes e1 ≤M e2 with
l(ei) = p ▷ q!_ for i ∈ {1, 2}, it holds that V(wp) = V(f(wp)) where wp is the (unique)
linearisation of p−1(p). A basic MSC (BMSC) has a finite number of nodes N and M denotes
the set of all BMSCs. When unambiguous, we omit the index M for ≤M and write ≤. We
define ⪇ as expected. The language L(M) of an MSC M collects all words l(w) for which w

is a linearisation of N that is compliant with ≤M .
If one thinks of a BMSC as straight-line code, a high-level message sequence chart adds

control flow. It embeds BMSCs into a graph structure which allows for choice and recursion.

▶ Definition 4.2 (High-level Message Sequence Charts). A high-level message sequence chart
(HMSC) is a 5-tuple (V, E, vI, V T, µ) where V is a finite set of vertices, E ⊆ V × V is a set
of directed edges, vI ∈ V is an initial vertex, V T ⊆ V is a set of terminal vertices, and
µ : V → M is a function mapping every vertex to a BMSC. A path in an HMSC is a sequence
of vertices v1, . . . from V that is connected by edges, i.e., (vi, vi+1) ∈ E for every i. A path
is maximal if it is infinite or ends in a vertex from V T.

F. Stutz 32:15

Intuitively, the language of an HMSC is the union of all languages of the finite and infinite
MSCs generated from maximal paths in the HMSC and is formally defined in the technical
report [56]. Like global types, an HMSC specifies a protocol. The implementability question
was also posed for HMSCs and studied as safe realisability. If the CSM is not required to be
deadlock-free, it is called weak realisability.

▶ Definition 4.3 (Safe realisability of HMSCs [3]). An HMSC H is said to be safely realisable
if there exists a deadlock-free CSM {{Ap}}p∈P such that L(H) = L({{Ap}}p∈P).

Encoding Global Types from MSTs as HMSCs

Stutz and Zufferey [57, Sec. 5.2] provide a formal encoding H(-) from global types to HMSCs.
We refer to the technical report [56] for the definition. We adapt their correctness result
to our setting. In particular, our semantics of G use the closure operator C∼(-) while they
distinguish between a type and execution language. We also omit the closure operator on
the right-hand side because HMSCs are closed with regard to this operator [57, Lm. 5].

▶ Theorem 4.4. Let G be a global type. Then, the following holds: L(G) = L(H(G)).

4.2 Implementability is Decidable
We introduce a mild assumption for global types. Intuitively, we require that every run
of the protocol can always terminate but does not need to. Basically, this solely rules out
global types that have loops without exit (cf. Example 4.20). In practice, it is reasonable to
assume a mechanism to terminate a protocol for maintenance for instance. Note that this
assumption constitutes a structural property of a protocol and no fairness condition on runs
of the protocol.

▶ Assumption (0-Reachable). We say a global type G is 0-reachable if every prefix of a word
in its language can be completed to a finite word in its language. Equivalently, we require
that the vertex for the syntactic subterm 0 is reachable from any vertex in H(G).

The MSC approach to safe realisability for HMSCs is different from the classical projection
approach to implementability. Given an HMSC, there is a canonical candidate implementation
which always implements the HMSC if an implementation exists [2, Thm. 13]. Therefore,
approaches center around checking safe realisability of HMSC languages and establishing
conditions on HMSCs that entail safe realisability.

▶ Definition 4.5 (Canonical candidate implementation [2]). Given an HMSC H and a role p,
let A′

p = (Q′, Σp, δ′, q′
0, F ′) be a state machine with Q′ := {qw | w ∈ pref(L(H)⇓Σp

)},
F ′ := {qw | w ∈ Lfin(H)⇓Σp

}, and δ′(qw, x, qwx) for x ∈ Σasync. The resulting state
machine A′

p is not necessarily finite so A′
p is determinised and minimised which yields the

FSM Ap. We call {{Ap}}p∈P the canonical candidate implementation of H.

Intuitively, the intermediate state machine A′
p constitutes a tree whose maximal finite

paths give L(H)⇓Σp
∩ Σ∗

p . This set can be infinite and, thus, the construction might not be
effective. We give an effective construction of a deterministic FSM for the same language
which was very briefly hinted at by Alur et al. [3, Proof of Thm. 3].

▶ Definition 4.6 (Projection by Erasure). Let p be a role and M = (N, p, f, l, (≤p)p∈P) be
an MSC. We denote the set of nodes of p with Np := {n | p(n) = p} and define a two-ary
next-relation on Np: next(n1, n2) iff n1 ⪇ n2 and there is no n′ with n1 ⪇ n′ ⪇ n2. We
define the projection by erasure of M on to p: M⇓p = (QM , Σp, δM , qM,0, {qM,f }) with

ECOOP 2023

32:16 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

QM := {qn | n ∈ Np} ⊎ {qM,0} ⊎ {qM,f } and

δM := {qM,0
ε−→ qn1 | ∀n2. n1 ≤ n2} ⊎ {qn1

l(n1)
−−−−→ qn2 | next(n1, n2)} ⊎ {qn2

l(n2)
−−−−→ qM,f | ∀n1. n1 ≤ n2}

where ⊎ denotes disjoint union. Let H = (V, E, vI, V T, µ) be an HMSC. We construct the
projection by erasure for every vertex and identify them with the vertex, e.g., Qv instead
of Qµ(v). We construct an auxiliary FSM (Q′

H , Σp, δ′
H , q′

H,0, F ′
H) with Q′

H =
⊎

v∈V Qv,
δ′

H =
⊎

v∈V δv ⊎ {qv1,f
ε−→ qv2,0 | (v1, v2) ∈ E}, q′

H,0 = qvI,0, and F ′
H =

⊎
v∈V F qv,f . We

determinise and minimise (Q′
H , Σp, δ′

H , q′
H,0, F ′

H) to obtain H⇓p := (QH , Σp, δH , qH,0, FH),
which we define to be the projection by erasure of H onto p. The CSM formed from the
projections by erasure {{H⇓p}}p∈P is called erasure candidate implementation.

▶ Lemma 4.7 (Correctness of Projection by Erasure). Let H be an HMSC, p be a role, and H⇓p
be its projection by erasure. Then, the following language equality holds: L(H⇓p) = L(H)⇓Σp

.

The proof is straightforward and can be found in the technical report [56]. From this
result and the construction of the canonical candidate implementation, it follows that the
projection by erasure admits the same finite language.

▶ Corollary 4.8. Let H be an HMSC, p be a role, H⇓p be its projection by erasure, and Ap

be the canonical candidate implementation. Then, it holds that Lfin(H⇓p) = Lfin(Ap).

The projection by erasure can be computed effectively and is deterministic. Thus, we
use it in place of the canonical candidate implementation. Given a global type, the erasure
candidate implementation for its HMSC encoding implements it if it is implementable.

▶ Theorem 4.9. Let G be a global type and {{H(G)⇓p}}p∈P be its erasure candidate
implementation. If Lfin(G) is implementable3, then {{H(G)⇓p}}p∈P is deadlock-free and
Lfin({{H(G)⇓p}}p∈P) = Lfin(G).

This result does only account for finite languages so we extend it for infinite sequences.
For both, the proof can be found in the technical report [56].

▶ Lemma 4.10 (”Finite implementation“ generalises to infinite language for 0-reachable
global types). Let G be a 0-reachable global type and {{Ap}}p∈P be an implementation
for Lfin(G).Then, it holds that Linf({{Ap}}p∈P) = Linf(G), and, thus, L({{Ap}}p∈P) = L(G).

▶ Corollary 4.11. Let G be a 0-reachable implementable global type. Then, the erasure
candidate implementation {{H(G)⇓p}}p∈P implements G.

So far, we have shown that, if G is implementable, the erasure candidate implementation
for its HMSC encoding H(G) implements G. For HMSCs, this is undecidable in general [44].
We show that, because of their syntactic restrictions on choice, global types fall into the class
of globally-cooperative HMSCs for which implementability is decidable.

▶ Definition 4.12 (Communication graph [31]). Let M = (N, p, f, l, (≤p)p∈P) be an MSC.
The communication graph of M is a directed graph with node p for every role p that sends
or receives a message in M and edges p → q if M contains a message from p to q, i.e., there
is e ∈ N such that p(e) = p and p(f(e)) = q.

It is important that the communication graph of M does not have a node for every role
but only the active ones, i.e., the ones that send or receive in M .

3 Implementability is lifted to languages as expected.

F. Stutz 32:17

p q r s
m

m

m

m

(a) HMSC Hing.

q0,p

q1,p

q2,p

p ▷ q!m

p ▷ q!m

p ▷ q!m

q0,q

q1,q

q2,q

q ◁ p?m

q ◁ p?m

q ◁ p?m

q0,r

q1,r

r ▷ s!m

r ▷ s!m

q0,s

q1,s

s ◁ r?m

s ◁ r?m

(b) An implementation for Hing.

Figure 6 An implementable HMSC which is not globally-cooperative with its implementation.

▶ Definition 4.13 (Globally-cooperative HMSCs [31]). An HMSC H = (V, E, vI , V T, µ) is
called globally-cooperative if for every loop, i.e., v1, . . . , vn with (vi, vi+1) ∈ E for every
1 ≤ i < n and (vn, v1) ∈ E, the communication graph of µ(v1) . . . µ(vn) is weakly connected,
i.e., all nodes are connected if every edge is considered undirected.

We can check this directly for a global type G. It is straightforward to define a communication
graph for words from Σ∗

sync. We check it on GAut(G): for each binder state, we check the
communication graph for the shortest trace to every corresponding recursion state.

▶ Theorem 4.14 (Thm. 3.7 [44]). Let H be a globally-cooperative HMSC. Restricted to its
finite language Lfin(H), safe realisability is EXPSPACE-complete.

▶ Lemma 4.15. Let G be an implementable 0-reachable global type. Then, its HMSC
encoding H(G) is globally-cooperative.

The proof can be found in the technical report [56] and is far from trivial. We explain
the main intuition for the proof with the following example where we exemplify why the
same result does not hold for HMSCs in general.

▶ Example 4.16 (Implementable HMSC but not globally cooperative). HMSC Hing in Figure 6a
is implementable but neither globally-cooperative nor representable with a global type. In
the first loop, p sends a message m to q while r sends a message m to s so the communication
graph is not weakly connected. In the second loop, only the interaction between p and q
is specified, while, in the third one, it is only the one between r and s. For a variant of
the protocol without the second loop, any candidate implementation can always expose an
execution with more interactions between p and q than the ones between r and s, due to
the lack of synchronisation. Here, the second loop can make up for such executions so any
execution has a path in Hing. The CSM in Figure 6b implements Hing. In the technical
report [56], we explain in detail why there is a path in Hing for any trace of the CSM and
how to modify the example not to have final states with outgoing transitions.

▶ Theorem 4.17. Checking implementability of 0-reachable global types with sender-driven
choice is in EXPSPACE.

Proof. Let G be a 0-reachable global type with sender-driven choice. We construct H(G)
from G and check if it is globally-cooperative. For this, we apply the coNP-algorithm by
Genest et al. [31] which is based on guessing a subgraph and checking its communication
graph. If H(G) is not globally cooperative, we know from Lemma 4.15 that G is not
implementable. If H(G) is globally cooperative, we check safe realisability for H(G). By
Theorem 4.14, this is in EXPSPACE. If H(G) is not safely realisable, it trivially follows
that G is not implementable. If H(G) is safely realisable, G is implemented by the erasure
candidate implementation with Theorem 4.9 and Lemma 4.10. ◀

ECOOP 2023

32:18 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

Thus, the implementability problem for global types with sender-driven choice is decidable.

▶ Corollary 4.18. Let G be a 0-reachable global type with sender-driven choice. It is decidable
whether G is implementable and there is an algorithm to obtain its implementation.

▶ Remark 4.19 (Progress). The property deadlock freedom is sometimes also studied as
progress – in the sense that a system should never get stuck. For infinite executions, however,
a role could starve in a non-final state by waiting for a message that is never sent [16, Sec. 3.2].
Thus, Castagna et al. [16] consider a stronger notion of progress (Def. 3.3: live session) which
requires that every role could eventually reach a final state. Our results also apply to this
stronger notion of progress, which entails that any sent message can eventually be received.
The notion only requires it to be possible but we can ensure that no role starves in a non-final
state in two ways. First, we can impose a (strong) fairness assumption – as Castagna et
al. [16]. Second, we can require that every loop branch contains at least all roles that occur
in interactions of any path with which the protocol can finish.

The Odd Case of Infinite Loops Without Exits. In theory, one can think of protocols
for which the 0-Reachability-Assumption (p.15) does not hold. They would simply recurse
indefinitely and can never terminate. This allows interesting behaviour like two sets of roles
that do not interact with each other as the following example shows.

▶ Example 4.20. Consider the following global type: G = µt. p→q :m. r→s :m. t. This is
basically the protocol that consists only of the first loop of Hing (Example 4.16). It describes
an infinite execution with two pairs of roles that independently send and receive messages.
This can be implemented in an infinite setting but the loop can never be exited due to the
lack of synchronisation, breaking protocol fidelity upon termination.

Expressiveness of Local Types. Local types also have a distinct expression for termination: 0.
Thus, if one considers the FSM of a local type, every final state has no outgoing transition.
Our proposed algorithm might yield FSMs for which this is not the case. However, the
language of such an FSM cannot be represented as local type since both our construction
and FSMs for local types are deterministic. The latter are also ancestor-recursive, free
of intermediate recursion, non-merging and dense (Proposition 3.6). For FSMs from our
procedure, this is not the case but the ones without final states with outgoing transitions
could possibly be transformed to local types, making subtyping techniques applicable. One
could also study subtyping for FSMs as local specifications. We leave both for future work.

On Lower Bounds for Implementability. For general globally-cooperative HMSCs, i.e., that
are not necessary the encoding of a global type, safe realisability is EXPSPACE-hard [44].
This hardness result does not carry over for the HMSC encoding H(G) of a global type G.
The construction exploits that HMSCs do not impose any restrictions on choice. Global
types, however, require every branch to be chosen by a single sender.

5 MSC Techniques for MST Verification

In the previous section, we generalised results from the MSC literature to show decidability of
the implementability problem for global types from MSTs, yielding an EXPSPACE-algorithm.
In this section, we consider further restrictions on HMSCs to obtain algorithms with better
complexity for global types. First, we transfer the algorithms for I-closed HMSCs, which
requires an HMSC not to exhibit certain anti-patterns of communication, to global types.

F. Stutz 32:19

Second, we explain approaches for HMSCs that introduced the idea of choice to HMSCs
and a characterisation of implementable MSC languages. Third, we present a variant of the
implementability problem. It can make unimplementable global types implementable without
changing a protocol’s structure. From now on, we may use the term implementability for
HMSCs instead of safe realisability.

III-closed Global Types

For globally-cooperative HMSCs, the implementability problem is EXPSPACE-complete.
The membership in EXPSPACE was shown by reducing the problem to implementability of
I-closed HMSCs [44, Thm. 3.7]. These require the language of an HMSC to be closed with
regard to an independence relation I, where, intuitively, two interactions are independent if
there is no role which is involved in both. Implementability for I-closed HMSCs is PSPACE-
complete [44, Thm. 3.6]. As for the EXPSPACE-hardness for globally-cooperative HMSCs,
the PSPACE-hardness exploits features that cannot be modelled with global types and there
might be algorithms with better worst-case complexity.

We adapt the definitions [44] to the MST setting. These consider atomic BMSCs, which
are BMSCs that cannot be split further. With the HMSC encoding for global types, it is
straightforward that atomic BMSCs correspond to individual interactions for global types.
Thus, we define the independence relation I on the alphabet Σsync.

▶ Definition 5.1 (Independence relation I). We define the independence relation I on Σsync:

I := {(p→q :m, r→s :m′) | {p, q} ∩ {r, s} = ∅)}.

We lift this to an equivalence relation ≡I on words as its transitive and reflexive closure:

≡I := {(u. x1. x2. w, u. x2. x1. w) | u, w ∈ Σ∗
sync and (x1, x2) ∈ I}.

We define its closure for language L ⊆ Σ∗
sync: C≡I (L) := {u ∈ Σ∗

sync | ∃w ∈ L with u ≡I w}.

▶ Definition 5.2 (I-closed global types). Let G be a global type G. We say G is I-closed if
Lfin(GAut(G)) = C≡I (Lfin(GAut(G))).

Note that I-closedness is defined on the state machine GAut(G) of G with alphabet Σsync
and not on its semantics L(G) with alphabet Σasync.

▶ Example 5.3. The global type G2BP is I-closed. Buyer a is involved in every interaction.
Thus, for every two consecutive interactions, there is a role that is involved in both.

▶ Algorithm 1 (Checking if G is I-closed). Let G be a global type. We construct the state
machine GAut(G). We need to check every consecutive occurrence of elements from Σsync
for words from L(GAut(G)). For binder states, incoming and outgoing transition labels are
always ε. This is why we slightly modify the state machine but preserve its language. We
remove all variable states and rebend their only incoming transition to the state their only
outgoing transition leads to. In addition, we merge binder states with their only successor.
For every state q of this modified state machine, we consider the labels x, y ∈ Σsync of every
combination of incoming and outgoing transition of q. We check if x ≡I y. If this is true for
all x and y, we return true. If not, we return false.

▶ Lemma 5.4. A global type G is I-closed iff Algorithm 1 returns true.

ECOOP 2023

32:20 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

The proof can be found in the technical report [56]. This shows that the presented
algorithm can be used to check I-closedness. The algorithm considers every state and all
combinations of transitions leading to and from it.

▶ Proposition 5.5. For global type G, checking if G is I-closed is in O(|G|2).

The tree-like shape of GAut(G) might suggest that this check can be done in linear time.
However, this example shows that recursion can lead to a quadratic number of checks.

▶ Example 5.6. Let us consider the following global type for some n ∈ N.

µt. +


p→q0 :m0. q0 →r0 :m0. r0 →s0 :m0. 0
p→q1 :m1. q1 →r1 :m1. r1 →s1 :m1. t

...
p→qn :mn. qn →rn :mn. rn →sn :mn. t

It is obvious that (p → qi : mi, qi → ri : mi) /∈ I and (qi → ri : mi, ri → si : mi) /∈ I for
every i. Because of the recursion, we need to check if (ri →si :mi, p→qj :mj) is in I for
every 0 ̸= i ̸= j. This might lead to a quadratic number of checks.

If a global type G is I-closed, we can apply the results for its I-closed HMSC encoding H(G),
for which checking implementability is in PSPACE. With Corollary 4.11, the projection by
erasure implements G.

▶ Corollary 5.7. Checking implementability of 0-reachable, I-closed global types with sender-
driven choice is in PSPACE.

▶ Example 5.8. This implementable global type is not I-closed: p→q :m. r→s :m. 0 .

Detecting Non-local Choice in HMSCs

For HMSCs, there are no restrictions on branching. Similar to choice for global types, the idea
of imposing restrictions on choice was studied for HMSCs [8, 50, 48, 34, 31]. We refer to [45]
for an overview. Here, we focus on results that seem most promising for developing algorithms
to check implementability of global types with better worst-case complexity. The work by
Dan et al. [26] centers around the idea of non-local choice. Intuitively, non-local choice yields
scenarios that make it impossible to implement the language. In fact, if a language is not
implementable, there is some non-local choice. Thus, checking implementability amounts to
checking non-local choice freedom. For this definition, they showed insufficiency of Baker’s
condition [6] and reformulated the closure conditions for safe realisability by Alur et al. [2].
In particular, they provide a definition that is based on projected words of a language in
contrast to explicit choice. While it is straightforward to check their definition for finite
collections of k BMSCs with n events in O(k2 · |P| + n · |P|), it is unclear how to check their
condition for languages with infinitely many elements. The design of such a check is far from
trivial as their definition does not give any insight about local behaviour and their algorithm
heavily relies on the finite nature of finite collections of BMSCs.

Payload Implementability

A deadlock-free CSM implements a global type if their languages are precisely the same. In
the HMSC domain, a variant of the implementability problem has been studied. Intuitively,
it allows to add fresh data to the payload of an existing message and protocol fidelity allows
to omit the additional payload data. This allows to add synchronisation messages to existing

F. Stutz 32:21

interactions and can make unimplementable global types implementable while preserving
the structure of the protocol. It can also be used if a global type is rejected by a projection
operator or the run time of the previous algorithms is not acceptable.

▶ Definition 5.9 (Payload implementability). Let L be a language with message alphabet V1.
We say that L is payload implementable if there is a message alphabet V2 for a deadlock-free
CSM {{Ap}}p∈P with Ap over {p ▷ q!m, p ◁ q?m | q ∈ P , m ∈ V1 × V2} such that its language
is the same when projecting onto the message alphabet V1, i.e., C∼(L) = L({{Ap}}p∈P)⇓V1

,
where (p ▷ q!(m1, m2))⇓V1

:= p ▷ q!m1 and (q ◁ p?(m1, m2))⇓V1
:= q ◁ p?m1 and is lifted to

words and languages as expected.

The finite language Lfin(H) of a local HMSC H is always payload implementable with a
deadlock-free CSM of linear size.

▶ Definition 5.10 (Local HMSCs [31]). Let H = (V, E, vI, V T, µ) be an HMSC. We call H

local if µ(vI) has a unique minimal event and there is a function root : V → P such that for
every (v, u) ∈ E, it holds that µ(u) has a unique minimal event e and e belongs to root(v),
i.e., for µ(u) = (N, p, f, l, (≤p)p∈P), we have that p(e) = root(v) and e ≤ e′ for every e′ ∈ N .

▶ Proposition 5.11 (Prop. 21 [31]). For any local HMSC H, Lfin(H) is payload implementable.

With Lemma 4.10, we can use the implementation of a local H(G) for a 0-reachable
global type G.

▶ Corollary 5.12. Let G be a 0-reachable for which H(G) is local. Then, G can be
implemented with a CSM of linear size.

The algorithm to construct a deadlock-free CSM [31, Sec. 5.2] suggests that the BMSCs
for such HMSCs need to be maximal – in the sense that any vertex with a single successor is
collapsed with its successor. If this was not the case, the result would claim that the language
of the following global type is payload implementable: µt. +

{
p→q :m1. r→s :m2. t

p→q :m3. 0
. However,

is is easy to see that it is not payload implementable since there is no interaction between p,
which decides whether to stay in the loop or not, and r. Thus, we cannot simply check
whether H(G) is local. In fact, it would always be. Instead, we first need to minimise it and
then check whether it is local. If we collapse the two consecutive vertices with independent
pairs of roles in this example, the HMSC is not local. The representation of the HMSC
matters which shows that local as property is rather a syntactic than a semantic notion.

▶ Algorithm 2 (Checking if H(G) is local – directly on GAut(G)). Let G be a global type
G. We consider the finite trace w′ of every longest branch-free, loop-free and non-initial run
in the state machine GAut(G). We split the (synchronous) interactions into asynchronous
events: w = split(w′) = w1 . . . wn. We need to check if there is u ∼ w with u = u1 . . . un such
that u1 ̸= w1. For this, we can construct an MSC for w [30, Sec. 3.1] and check if there is a
single minimal event. This works because MSCs are closed under ∼ [57, Lm. 5]. If the MSC
of every trace w′ has a single minimal event, we return true. If not, we return false.

It is straightforward that this mimics the corresponding check for the HMSC H(G) and,
with similar modifications as for Algorithm 1, the check can be done in O(|G|).

▶ Proposition 5.13. For a global type G, Algorithm 2 returns true iff H(G) is local.

Ben-Abdallah and Leue [8] introduced local-choice HMSCs, which are as expressive as
local HMSCs. Their condition also uses a root-function and minimal events but quantifies
over paths. Every local HMSC is a local-choice HMSC and every local-choice HMSC can be
translated to a local HMSC that accepts the same language with a quadratic blow-up [31].
It is straightforward to adapt the Algorithm 2 to check if a global type is local-choice. If this
is the case, we translate the protocol and use the implementation for the translated protocol.

ECOOP 2023

32:22 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

6 Implementability with Intra-role Reordering

In this section, we introduce a generalisation of the implementability problem that relaxes the
total event order for each role. We prove that this generalisation is undecidable in general.

A Case for More Reordering

From the perspective of a single role, each word in its language consists of a sequence of
send and receive events. Choice in global types happens by sending (and not by receiving).
Because of this, one can argue that a role should be able to receive messages from different
senders in any order between sending two messages. In practice, receiving a message can
induce a task with non-trivial computation that our model does not account for. Therefore,
such a reordering for a sequence of receive events can have outsized performance benefits.
In addition, there are global types that can be implemented with regard to this generalised
relation even if no (standard) implementation exists.

▶ Example 6.1 (Example for intra-role reordering). Let us consider a global type where a
central coordinator p distributes independent tasks to different roles in rounds:

GTC := µt.

{
p→q1 : task p→qn : task . q1 →p : result qn →p : result . t

p→q1 :done p→qn :done . 0
.

Since all tasks in each round are independent, p can benefit from receiving the results in the
order they arrive instead of busy-waiting.

We generalise the indistinguishability relation ∼ accordingly.

▶ Definition 6.2 (Intra-role indistinguishability relation ≈). We define a family of intra-role
indistinguishability relations ≈i ⊆ Σ∗ × Σ∗, for i ≥ 0 as follows. For all w, u ∈ Σ∗, w ∼i u

entails w ≈i u. For i = 1, we define: if q ̸= r, then w.p◁q?m.p◁r?m′.u ∼1 w.p◁r?m′.p◁q?m.u.

Based on this, we define ≈ analogously to ∼. Let w, w′, w′′ be words s.t. w ≈1 w′ and
w′ ≈i w′′ for some i. Then w ≈i+1 w′′. We define w ≈ u if w ≈n u for some n. It is
straightforward that ≈ is an equivalence relation. Define u ⪯≈ v if there is w ∈ Σ∗ such that
u.w ≈ v. Observe that u ∼ v iff u ⪯≈ v and v ⪯≈ u. We extend ≈ to infinite words and
languages as for ∼.

▶ Definition 6.3 (Implementability w.r.t. ≈). A global type G is implementable with regard
to ≈ if there exists a deadlock-free CSM {{Ap}}p∈P such that (i) L(G) ⊆ C≈(L({{Ap}}p∈P))
and (ii) C≈(L(G)) = C≈(L({{Ap}}p∈P)). We say that {{Ap}}p∈P ≈-implements G.

In this section, we emphasise the indistinguishability relation, e.g., ≈-implementable.
We could have also followed the definition of ∼-implementability and required C≈(L(G)) =
L({{Ap}}p∈P). This, however, requires the CSM to be closed under ≈. In general, this might
not be possible with finitely many states. In particular, if there is a loop without any send
events for a role, the labels in the loop would introduce an infinite closure if we require that
C≈(L(G))⇓Σp

= L(Ap).

▶ Example 6.4. We consider a variant of GTC from Example 6.1 with n = 2 where q1 and q2
send a log message to r after receiving the task and before sending the result back:

GTCLog := µt.

{
p→q1 : task . p→q2 : task . q1 →r : log . q2 →r : log . q1 →p : result . q2 →p : result . t

p→q1 :done . p→q2 :done . 0
.

There is no FSM for r that precisely accepts C≈(L(GTCLog))⇓Σr
. If we rely on the fact that

q1 and q2 send the same number of log-messages to r, we can use an FSM Ar with a single
state (both initial and final) with two transitions: one for the log-message from q1 and q2

F. Stutz 32:23

each, that lead back to the only state. For this, it holds that C≈(L(GTCLog))⇓Σr
⊆ L(Ar).

If we cannot rely on this, the FSM would need to keep track of the difference, which can be
unbounded and thus not recognisable by an FSM.

This is why we chose a more permissive definition which is required to cover at least as
much as specified in the global type (i) and the ≈-closure of both are the same (ii).

It is trivial that any ∼-implementation for a global type does also ≈-implement it.

▶ Proposition 6.5. Let G be a global type that is ∼-implemented by the CSM {{Ap}}p∈P .
Then, {{Ap}}p∈P also ≈-implements G.

For instance, the erasure candidate implementation is a ∼-implementation as well as
a ≈-implementation for the task coordination protocol GTC from Example 6.1. Still,
≈-implementability gives more freedom and allows to consider all possible combinations of
arrivals of results. In addition, ≈-implementability renders some global types implementable
which would not be otherwise. For instance, those with a role that would need to receive
different sequences, related by ≈ though, in different branches it cannot distinguish (yet).

▶ Example 6.6 (≈-implementable but not ∼-implementable). Let us consider the following
global type: (p → q : l. p → r : m. q → r : m. 0) + (p → q : r. q → r : m. p → r : m. 0). This cannot
be ∼-implemented because r would need to know about the choice to receive the messages
from p and q in the correct order. However, it is ≈-implementable. The FSMs for p and q
can be obtained with projection by erasure. For r, we can have an FSM that only accepts
r ◁ p?m. r ◁ q?m but also an FSM which accepts r ◁ q?m. r ◁ p?m in addition. Note that r
does not learn the choice in the second FSM even if it branches. Hence, it would not be
implementable if it sent different messages in both branches later on. However, it could still
learn by receiving and, afterwards, send different messages.

Implementability with Intra-role Reordering is Undecidable

Unfortunately, checking implementability with regard to ≈ for global types (with directed
choice) is undecidable. Intuitively, the reordering allows roles to drift arbitrarily far apart as
the execution progresses which makes it hard to learn which choices were made.

We reduce the Post Correspondence Problem (PCP) [53] to the problem of checking
implementability with regard to ≈. An instance of PCP over an alphabet ∆, |∆| > 1, is given
by two finite lists (u1, u2, . . . , un) and (v1, v2, . . . , vn) of finite words over ∆, also called tile
sets. A solution to the instance is a sequence of indices (ij)1≤j≤k with k ≥ 1 and 1 ≤ ij ≤ n

for all 1 ≤ j ≤ k, such that ui1 . . . uik
= vi1 . . . vik

. To be precise, we present a reduction from
the modified PCP (MPCP) [55, Sec. 5.2], which is also undecidable. It simply requires that a
match starts with a specific pair – in our case we choose the pair with index 1. It is possible
to directly reduce from PCP but the reduction from MPCP is more concise. Intuitively,
we require that the solution starts with the first pair so there exists no trivial solution and
choosing a single pair is more concise than all possible ones. Our encoding is the following
global type where x ∈ {u, v}, [xi] denotes a sequence of message interactions with message
xi[1], . . . , xi[k] each for xi of length k, message c-x indicates choosing tile set x, and message
ack-x indicates acknowledging the tile set x:

GMPCP := +
{

G(u, r→p :ack-u. 0)
G(v, r→p :ack-v. 0)

with

G(x, X) := p→q :c-x. p→q :1. p→r :1. q→r : [x1]. µt. +


p→q :1. p→r :1. q→r : [x1]. t

...
p→q :n. p→r :n. q→r : [xn]. t

p→q :d. p→r :d. q→r :d. X

.

ECOOP 2023

32:24 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

p
c-u

[u1]

1
1

[u1]

1
1

d

ack-u

[un]

n... n

q r
c-v

[v1]

1
1

[vn]

n
n

[v1]

1 ...1

d

d
d

ack-v

d

d

Figure 7 HMSC encoding H(GMPCP) of the MPCP encoding.

The HMSC encoding H(GMPCP) is illustrated in Figure 7. Intuitively, r eventually needs to
know which branch was taken in order to match ack-x with c-x from the beginning. However,
it can only know if there is no solution to the MPCP instance. In the full proof in technical
report [56], we show that GMPCP is ≈-implementable iff the MPCP instance has no solution.

▶ Theorem 6.7. Checking implementability with regard to ≈ for 0-reachable global types with
directed choice is undecidable.

This result carries over to HMSCs if we consider safe realisability with regard to ≈.

▶ Definition 6.8 (Safe realisability with regard to ≈). An HMSC H is said to be safely
realisable with regard to ≈ if there exists a deadlock-free CSM {{Ap}}p∈P such that the
following holds: (i) L(H) ⊆ C≈(L({{Ap}}p∈P)) and (ii) C≈(L(H)) = C≈(L({{Ap}}p∈P)).

▶ Corollary 6.9. Checking safe realisability with regard to ≈ for HMSCs is undecidable.

It is obvious that a terminal vertex is reachable from every vertex in H(GMPCP). In fact,
the HMSC encoding for GMPCP also satisfies a number of channel restrictions. The HMSC
H(GMPCP) is existentially 1-bounded, 1-synchronisable and half-duplex [57]. For details on
these channel restrictions, we refer to work by Stutz and Zufferey [57, Sec. 3.1].

The MPCP encoding only works since receive events can be reordered unboundedly in
an execution. If we amended the definition of ≈ to give each receive event a budget that
depletes with every reordering, this encoding would not be possible. We leave a detailed
analysis for future work.

7 Related Work

In this section, we solely cover related work which was not discussed before.

Multiparty Session Types. Session types originate in process algebra and were first intro-
duced by Honda et al. [35] for binary sessions. For systems with more than two roles, they
have been extended to multiparty session types [37]. We explained MST frameworks with
classical projection operators. Other approaches do not focus on projection but only apply
ideas from MST without the need for global types [54, 43].

Completeness and Sender-driven Choice. Our decidability result applies to global types
with sender-driven choice. To the best of our knowledge, the work by Castagna et al. [16] is
the only one to attempt completeness for global types with sender-driven choice. However,
their definition of completeness is ”less demanding then other ones“ [16, Abs.]. For one

F. Stutz 32:25

global type, they accept different implementations that generate different sets of traces [16,
Def. 4.1 and Sec. 5.3]. Their conditions, given as inference rules, are not effective and their
algorithmically checkable conditions can only exploit local information to disambiguate
choices. In contrast, Majumdar et al. [45] employ a global availability analysis but, as
classical projection operator, it suffers from the shortcomings presented in this work. For a
detailed overview of MST frameworks with sender-driven choice, we refer to their work [45].
The global types by Castellani et al. [17] specify send and receive events independently and
allow to receive from different senders. Dagnino et al. [25] consider similar global types but
each term requires to send to a single receiver and to receive from a single sender upon
branching though.

On the Synchronous Implementability Problem. We could not find a reference that
shows decidability of the implementability problem in a synchronous setting, i.e., without
channels. Before giving a proof sketch, let us remark that there are global types that can be
implemented synchronously but not asynchronously, e.g., p → q : l. r → q : l. 0 + p → q : r. r → q : r. 0

because q can force the right choice by r. We sketch how to prove decidability of the
synchronous implementability problem for global types (with sender-driven choice). One
defines the synchronous semantics of CSMs and HMSCs as expected. For global types,
one uses the independence relation I (Def. 5.1), which defines reasonable reorderings for
synchronous events in a distributed setting, similar to the indistinguishability relation ∼.
It is straightforward that the HMSC encoding H(-) for global types [57] also works for
the synchronous setting (cf. Thm. 4.4). Thus, every implementation for H(G) is also an
implementation for G. For the asynchronous setting, we used [2, Thm. 13], which shows that
the canonical candidate implementation implements an HMSC if it is implementable. Alur
et al. [2, Sec. 8] also considered the synchronous setting. They observe that both Theorem 5
and 8, basis for Theorem 13, stay valid under these modified conditions. Together with our
results, the erasure candidate implementation implements a global type if it is implementable.
Because of the synchronous semantics, its state space is finite and can be model-checked
against the global type, yielding a PSPACE-procedure for the synchronous implementability
problem, and thus decidability. Closest are works by Jongmans and Yoshida [40] and
Glabbeek et al. [62]. Jongmans and Yoshida consider quite restrictive synchronous semantics
for global types [40, Ex. 3] that does not allow the natural reorderings in a distributed setting,
as enabled by I, e.g., p→q :m. r→s :m. 0 (Ex. 5.8) is considered unimplementable. Glabbeek
et al. [62] present a projection operator that is complete for various notions of lock-freedom,
a typical liveness property, and investigate how much fairness is required for those.

Subtyping and MST Extensions. In this work, we do not distinguish between local types
and implementations but use local types directly as implementations. Intuitively, subtyping
studies how to give freedom in the implementation while preserving the correctness properties.
The intra-role indistinguishability relation ≈, which allows to reorder receive events for a
role, resembles subtyping to some extent, e.g., the work by Cutner et al. [24]. A detailed
investigation of this relation is beyond the scope of this work. For details on subtyping,
we refer to work by Chen et al. [22, 21], Lange and Yoshida [42], and Bravetti et al. [14].
Various extensions to make MST verification applicable to more scenarios were studied: for
instance delegation [36, 37, 18], dependent session types [59, 29, 60], parametrised session
types [20, 29], gradual session types [39], or dynamic self-adaption [33]. Context-free session
types [58, 41] provide a more expressive way to specify protocols. Research on fault-tolerant
MSTs [63, 7] investigates ways to weaken the strict assumptions about reliable channels.

ECOOP 2023

32:26 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

Communicating State Machines. The connection of MSTs and CSMs was studied soon
after MSTs had been proposed [28]. CSMs are known to be Turing-powerful [13]. Decidable
classes have been obtained for different semantics, e.g., half-duplex communication for two
roles [19], input-bounded [10], and unreliable/lossy channels [1], as well for restricted com-
munication topology [52, 61]. Similar restrictions for CSMs are existential boundedness [30]
and synchronisability [12, 32]. It was shown that global types can only express existentially
1-bounded, 1-synchronisable and half-duplex communication [57] while Bollig et al. [11]
established a connection between synchronisability and MSO logic.

High-level Message Sequence Charts. Globally-cooperative HMSCs were independently
introduced by Morin [49] as c-HMSCs. Their communication graph is weakly connected.
The class of bounded HMSCs [4] requires it to be strongly connected. Historically, it
was introduced before the class of globally-cooperative HMSCs and, after the latter has
been introduced, safe realisability for bounded HMSCs was also shown to be EXPSPACE-
complete [44]. This class was independently introduced as regular HMSCs by Muscholl and
Peled [51]. Both terms are justified: the language generated by a regular HMSC is regular
and every bounded HMSC can be implemented with universally bounded channels. In fact, a
HMSC is bounded if and only if it is a globally-cooperative and it has universally bounded
channels [31, Prop. 4].

8 Conclusion

We have proven decidability of the implementability problem for global types with generalised
choice from MSTs – under the mild assumption that protocols can (but do not need to)
terminate. To point at the origin for incompleteness of classical projection operators, we gave
a visual explanation of the projection with various merge operators on finite state machines,
which define the semantics of global and local types. To prove decidability, we formally
related the implementability problem for global types with the safe realisability problem for
HMSCs. While safe realisability is undecidable in general, we showed that implementable
global types do always belong to the class of globally-cooperative HMSCs. There are global
types that are outside of this class but the syntax of global types allowed us to prove that
those cannot be implemented. Another key was the extension of the HMSC results to infinite
executions. We also gave a comprehensive overview of MSC techniques and adapted some to
the MST setting. Furthermore, we introduced a performance-oriented generalisation of the
implementability problem which, however, we proved to be undecidable in general.

References
1 Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly analysis of systems

with unbounded, lossy FIFO channels. In Alan J. Hu and Moshe Y. Vardi, editors, Computer
Aided Verification, 10th International Conference, CAV’98, Vancouver, BC, Canada, June 28
– July 2, 1998, Proceedings, volume 1427 of Lecture Notes in Computer Science, pages 305–318.
Springer, 1998. doi:10.1007/BFb0028754.

2 Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of message sequence charts.
IEEE Trans. Software Eng., 29(7):623–633, 2003. doi:10.1109/TSE.2003.1214326.

3 Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Realizability and verification of MSC
graphs. Theor. Comput. Sci., 331(1):97–114, 2005. doi:10.1016/j.tcs.2004.09.034.

4 Rajeev Alur and Mihalis Yannakakis. Model checking of message sequence charts. In
Jos C. M. Baeten and Sjouke Mauw, editors, CONCUR ’99: Concurrency Theory, 10th
International Conference, Eindhoven, The Netherlands, August 24-27, 1999, Proceedings,
volume 1664 of Lecture Notes in Computer Science, pages 114–129. Springer, 1999. doi:
10.1007/3-540-48320-9_10.

https://doi.org/10.1007/BFb0028754
https://doi.org/10.1109/TSE.2003.1214326
https://doi.org/10.1016/j.tcs.2004.09.034
https://doi.org/10.1007/3-540-48320-9_10
https://doi.org/10.1007/3-540-48320-9_10

F. Stutz 32:27

5 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-
Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nich-
olas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral types
in programming languages. Found. Trends Program. Lang., 3(2-3):95–230, 2016. doi:
10.1561/2500000031.

6 Paul Baker, Paul Bristow, Clive Jervis, David J. King, Robert Thomson, Bill Mitchell, and
Simon Burton. Detecting and resolving semantic pathologies in UML sequence diagrams. In
Michel Wermelinger and Harald C. Gall, editors, Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2005, Lisbon, Portugal, September 5-9, 2005, pages
50–59. ACM, 2005. doi:10.1145/1081706.1081716.

7 Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhou. Generalised multiparty
session types with crash-stop failures. In Bartek Klin, Slawomir Lasota, and Anca Muscholl,
editors, 33rd International Conference on Concurrency Theory, CONCUR 2022, September
12-16, 2022, Warsaw, Poland, volume 243 of LIPIcs, pages 35:1–35:25. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CONCUR.2022.35.

8 Hanêne Ben-Abdallah and Stefan Leue. Syntactic detection of process divergence and non-
local choice inmessage sequence charts. In Ed Brinksma, editor, Tools and Algorithms for
Construction and Analysis of Systems, Third International Workshop, TACAS ’97, Enschede,
The Netherlands, April 2-4, 1997, Proceedings, volume 1217 of Lecture Notes in Computer
Science, pages 259–274. Springer, 1997. doi:10.1007/BFb0035393.

9 Laura Bocchi, Maurizio Murgia, Vasco Thudichum Vasconcelos, and Nobuko Yoshida.
Asynchronous timed session types – from duality to time-sensitive processes. In Luís
Caires, editor, Programming Languages and Systems – 28th European Symposium on Pro-
gramming, ESOP 2019, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceed-
ings, volume 11423 of Lecture Notes in Computer Science, pages 583–610. Springer, 2019.
doi:10.1007/978-3-030-17184-1_21.

10 Benedikt Bollig, Alain Finkel, and Amrita Suresh. Bounded reachability problems are decidable
in FIFO machines. In Igor Konnov and Laura Kovács, editors, 31st International Conference
on Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual
Conference), volume 171 of LIPIcs, pages 49:1–49:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.49.

11 Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Étienne Lozes, and Amrita
Suresh. A unifying framework for deciding synchronizability. In Serge Haddad and Daniele
Varacca, editors, 32nd International Conference on Concurrency Theory, CONCUR 2021,
August 24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 14:1–14:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CONCUR.2021.14.

12 Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. On the completeness of
verifying message passing programs under bounded asynchrony. In Hana Chockler and Georg
Weissenbacher, editors, Computer Aided Verification – 30th International Conference, CAV
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part II, volume 10982 of Lecture Notes in Computer Science, pages 372–391.
Springer, 2018. doi:10.1007/978-3-319-96142-2_23.

13 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983. doi:10.1145/322374.322380.

14 Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. On the boundary between decidab-
ility and undecidability of asynchronous session subtyping. Theor. Comput. Sci., 722:19–51,
2018. doi:10.1016/j.tcs.2018.02.010.

15 Marco Carbone, Kohei Honda, Nobuko Yoshida, Robin Milner, Gary Brown, and Stephen
Ross-Talbot. A theoretical basis of communication-centred concurrent programming, 2005.

16 Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global types and
multi-party session. Log. Methods Comput. Sci., 8(1), 2012. doi:10.2168/LMCS-8(1:24)2012.

ECOOP 2023

https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.1145/1081706.1081716
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.1007/BFb0035393
https://doi.org/10.1007/978-3-030-17184-1_21
https://doi.org/10.4230/LIPIcs.CONCUR.2020.49
https://doi.org/10.4230/LIPIcs.CONCUR.2021.14
https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1145/322374.322380
https://doi.org/10.1016/j.tcs.2018.02.010
https://doi.org/10.2168/LMCS-8(1:24)2012

32:28 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

17 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. Asynchronous sessions
with input races. In Marco Carbone and Rumyana Neykova, editors, Proceedings of the
13th International Workshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software, PLACES@ETAPS 2022, Munich, Germany, 3rd April 2022,
volume 356 of EPTCS, pages 12–23, 2022. doi:10.4204/EPTCS.356.2.

18 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Ross Horne. Global
types with internal delegation. Theor. Comput. Sci., 807:128–153, 2020. doi:10.1016/j.tcs.
2019.09.027.

19 Gérard Cécé and Alain Finkel. Verification of programs with half-duplex communication. Inf.
Comput., 202(2):166–190, 2005. doi:10.1016/j.ic.2005.05.006.

20 Minas Charalambides, Peter Dinges, and Gul A. Agha. Parameterized, concurrent session
types for asynchronous multi-actor interactions. Sci. Comput. Program., 115-116:100–126,
2016. doi:10.1016/j.scico.2015.10.006.

21 Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. On
the preciseness of subtyping in session types. Log. Methods Comput. Sci., 13(2), 2017.
doi:10.23638/LMCS-13(2:12)2017.

22 Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. On the preciseness of
subtyping in session types. In Olaf Chitil, Andy King, and Olivier Danvy, editors, Proceedings
of the 16th International Symposium on Principles and Practice of Declarative Programming,
Kent, Canterbury, United Kingdom, September 8-10, 2014, pages 135–146. ACM, 2014. doi:
10.1145/2643135.2643138.

23 Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. A gentle
introduction to multiparty asynchronous session types. In Marco Bernardo and Einar Broch
Johnsen, editors, Formal Methods for Multicore Programming – 15th International School on
Formal Methods for the Design of Computer, Communication, and Software Systems, SFM
2015, Bertinoro, Italy, June 15-19, 2015, Advanced Lectures, volume 9104 of Lecture Notes in
Computer Science, pages 146–178. Springer, 2015. doi:10.1007/978-3-319-18941-3_4.

24 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-free asynchronous message
reordering in rust with multiparty session types. In Jaejin Lee, Kunal Agrawal, and Michael F.
Spear, editors, PPoPP ’22: 27th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Seoul, Republic of Korea, April 2–6, 2022, pages 246–261. ACM, 2022.
doi:10.1145/3503221.3508404.

25 Francesco Dagnino, Paola Giannini, and Mariangiola Dezani-Ciancaglini. Deconfined global
types for asynchronous sessions. In Ferruccio Damiani and Ornela Dardha, editors, Coordination
Models and Languages – 23rd IFIP WG 6.1 International Conference, COORDINATION 2021,
Held as Part of the 16th International Federated Conference on Distributed Computing Tech-
niques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings, volume 12717 of Lecture
Notes in Computer Science, pages 41–60. Springer, 2021. doi:10.1007/978-3-030-78142-2_3.

26 Haitao Dan, Robert M. Hierons, and Steve Counsell. Non-local choice and implied scenarios.
In José Luiz Fiadeiro, Stefania Gnesi, and Andrea Maggiolo-Schettini, editors, 8th IEEE
International Conference on Software Engineering and Formal Methods, SEFM 2010, Pisa,
Italy, 13-18 September 2010, pages 53–62. IEEE Computer Society, 2010. doi:10.1109/SEFM.
2010.14.

27 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar. Resource-
aware session types for digital contracts. In 34th IEEE Computer Security Foundations
Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021, pages 1–16. IEEE, 2021.
doi:10.1109/CSF51468.2021.00004.

28 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating
automata. In Helmut Seidl, editor, Programming Languages and Systems – 21st European
Symposium on Programming, ESOP 2012, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 – April 1, 2012.
Proceedings, volume 7211 of Lecture Notes in Computer Science, pages 194–213. Springer,
2012. doi:10.1007/978-3-642-28869-2_10.

https://doi.org/10.4204/EPTCS.356.2
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1145/2643135.2643138
https://doi.org/10.1145/2643135.2643138
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1007/978-3-030-78142-2_3
https://doi.org/10.1109/SEFM.2010.14
https://doi.org/10.1109/SEFM.2010.14
https://doi.org/10.1109/CSF51468.2021.00004
https://doi.org/10.1007/978-3-642-28869-2_10

F. Stutz 32:29

29 Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. Log. Methods Comput. Sci., 8(4), 2012. doi:10.2168/LMCS-8(4:
6)2012.

30 Blaise Genest, Dietrich Kuske, and Anca Muscholl. On communicating automata with bounded
channels. Fundam. Inform., 80(1-3):147–167, 2007. URL: http://content.iospress.com/
articles/fundamenta-informaticae/fi80-1-3-09.

31 Blaise Genest, Anca Muscholl, Helmut Seidl, and Marc Zeitoun. Infinite-state high-level
mscs: Model-checking and realizability. J. Comput. Syst. Sci., 72(4):617–647, 2006. doi:
10.1016/j.jcss.2005.09.007.

32 Cinzia Di Giusto, Laetitia Laversa, and Étienne Lozes. On the k-synchronizability of systems.
In Jean Goubault-Larrecq and Barbara König, editors, Foundations of Software Science and
Computation Structures – 23rd International Conference, FOSSACS 2020, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin,
Ireland, April 25-30, 2020, Proceedings, volume 12077 of Lecture Notes in Computer Science,
pages 157–176. Springer, 2020. doi:10.1007/978-3-030-45231-5_9.

33 Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty session types for
safe runtime adaptation in an actor language. In Anders Møller and Manu Sridharan, editors,
35th European Conference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021,
Aarhus, Denmark (Virtual Conference), volume 194 of LIPIcs, pages 10:1–10:30. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ECOOP.2021.10.

34 Loïc Hélouët. Some pathological message sequence charts, and how to detect them. In
Rick Reed and Jeanne Reed, editors, SDL 2001: Meeting UML, 10th International SDL
Forum Copenhagen, Denmark, June 27-29, 2001, Proceedings, volume 2078 of Lecture Notes
in Computer Science, pages 348–364. Springer, 2001. doi:10.1007/3-540-48213-X_22.

35 Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, 4th In-
ternational Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,
Proceedings, volume 715 of Lecture Notes in Computer Science, pages 509–523. Springer, 1993.
doi:10.1007/3-540-57208-2_35.

36 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Chris Hankin, editor,
Programming Languages and Systems – ESOP’98, 7th European Symposium on Programming,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 – April 4, 1998, Proceedings, volume 1381 of Lecture
Notes in Computer Science, pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

37 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, pages 273–284. ACM, 2008. doi:10.1145/1328438.1328472.

38 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

39 Atsushi Igarashi, Peter Thiemann, Yuya Tsuda, Vasco T. Vasconcelos, and Philip Wadler.
Gradual session types. J. Funct. Program., 29:e17, 2019. doi:10.1017/S0956796819000169.

40 Sung-Shik Jongmans and Nobuko Yoshida. Exploring type-level bisimilarity towards more
expressive multiparty session types. In Peter Müller, editor, Programming Languages and
Systems – 29th European Symposium on Programming, ESOP 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin,
Ireland, April 25-30, 2020, Proceedings, volume 12075 of Lecture Notes in Computer Science,
pages 251–279. Springer, 2020. doi:10.1007/978-3-030-44914-8_10.

41 Alex C. Keizer, Henning Basold, and Jorge A. Pérez. Session coalgebras: A coalgebraic view
on regular and context-free session types. ACM Trans. Program. Lang. Syst., 44(3):18:1–18:45,
2022. doi:10.1145/3527633.

ECOOP 2023

https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.2168/LMCS-8(4:6)2012
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
https://doi.org/10.1016/j.jcss.2005.09.007
https://doi.org/10.1016/j.jcss.2005.09.007
https://doi.org/10.1007/978-3-030-45231-5_9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.1007/3-540-48213-X_22
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1017/S0956796819000169
https://doi.org/10.1007/978-3-030-44914-8_10
https://doi.org/10.1145/3527633

32:30 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

42 Julien Lange and Nobuko Yoshida. On the undecidability of asynchronous session subtyping.
In Javier Esparza and Andrzej S. Murawski, editors, Foundations of Software Science and
Computation Structures – 20th International Conference, FOSSACS 2017, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, volume 10203 of Lecture Notes in Computer Science,
pages 441–457, 2017. doi:10.1007/978-3-662-54458-7_26.

43 Julien Lange and Nobuko Yoshida. Verifying asynchronous interactions via communicating
session automata. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification – 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part I, volume 11561 of Lecture Notes in Computer Science, pages 97–117. Springer, 2019.
doi:10.1007/978-3-030-25540-4_6.

44 Markus Lohrey. Realizability of high-level message sequence charts: closing the gaps. Theor.
Comput. Sci., 309(1-3):529–554, 2003. doi:10.1016/j.tcs.2003.08.002.

45 Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey. Generalising
projection in asynchronous multiparty session types. In Serge Haddad and Daniele Varacca,
editors, 32nd International Conference on Concurrency Theory, CONCUR 2021, August
24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 35:1–35:24. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CONCUR.2021.35.

46 Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey. Motion session types
for robotic interactions (brave new idea paper). In Alastair F. Donaldson, editor, 33rd European
Conference on Object-Oriented Programming, ECOOP 2019, July 15-19, 2019, London, United
Kingdom, volume 134 of LIPIcs, pages 28:1–28:27. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.ECOOP.2019.28.

47 Sjouke Mauw and Michel A. Reniers. High-level message sequence charts. In Ana R. Cavalli and
Amardeo Sarma, editors, SDL ’97 Time for Testing, SDL, MSC and Trends – 8th International
SDL Forum, Evry, France, 23-29 September 1997, Proceedings, pages 291–306. Elsevier, 1997.

48 Arjan J. Mooij, Nicolae Goga, and Judi Romijn. Non-local choice and beyond: Intricacies of
MSC choice nodes. In Maura Cerioli, editor, Fundamental Approaches to Software Engineering,
8th International Conference, FASE 2005, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings,
volume 3442 of Lecture Notes in Computer Science, pages 273–288. Springer, 2005. doi:
10.1007/978-3-540-31984-9_21.

49 Rémi Morin. Recognizable sets of message sequence charts. In Helmut Alt and Afonso Ferreira,
editors, STACS 2002, 19th Annual Symposium on Theoretical Aspects of Computer Science,
Antibes – Juan les Pins, France, March 14-16, 2002, Proceedings, volume 2285 of Lecture
Notes in Computer Science, pages 523–534. Springer, 2002. doi:10.1007/3-540-45841-7_43.

50 Henry Muccini. Detecting implied scenarios analyzing non-local branching choices. In Mauro
Pezzè, editor, Fundamental Approaches to Software Engineering, 6th International Conference,
FASE 2003, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings, volume 2621 of Lecture Notes
in Computer Science, pages 372–386. Springer, 2003. doi:10.1007/3-540-36578-8_26.

51 Anca Muscholl and Doron A. Peled. Message sequence graphs and decision problems on
mazurkiewicz traces. In Miroslaw Kutylowski, Leszek Pacholski, and Tomasz Wierzbicki,
editors, Mathematical Foundations of Computer Science 1999, 24th International Symposium,
MFCS’99, Szklarska Poreba, Poland, September 6-10, 1999, Proceedings, volume 1672 of Lecture
Notes in Computer Science, pages 81–91. Springer, 1999. doi:10.1007/3-540-48340-3_8.

52 Wuxu Peng and S. Purushothaman. Analysis of a class of communicating finite state machines.
Acta Informatica, 29(6/7):499–522, 1992. doi:10.1007/BF01185558.

53 Emil L. Post. A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society, 52:264–268, 1946.

54 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc.
ACM Program. Lang., 3(POPL):30:1–30:29, 2019. doi:10.1145/3290343.

https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1016/j.tcs.2003.08.002
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.4230/LIPIcs.ECOOP.2019.28
https://doi.org/10.1007/978-3-540-31984-9_21
https://doi.org/10.1007/978-3-540-31984-9_21
https://doi.org/10.1007/3-540-45841-7_43
https://doi.org/10.1007/3-540-36578-8_26
https://doi.org/10.1007/3-540-48340-3_8
https://doi.org/10.1007/BF01185558
https://doi.org/10.1145/3290343

F. Stutz 32:31

55 Michael Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997.
56 Felix Stutz. Asynchronous multiparty session type implementability is decidable – lessons

learned from message sequence charts, 2023. doi:10.48550/ARXIV.2302.11272.
57 Felix Stutz and Damien Zufferey. Comparing channel restrictions of communicating state

machines, high-level message sequence charts, and multiparty session types. In Pierre Ganty
and Dario Della Monica, editors, Proceedings of the 13th International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2022, Madrid, Spain, September 21-23,
2022, volume 370 of EPTCS, pages 194–212, 2022. doi:10.4204/EPTCS.370.13.

58 Peter Thiemann and Vasco T. Vasconcelos. Context-free session types. In Jacques Garrigue,
Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016,
pages 462–475. ACM, 2016. doi:10.1145/2951913.2951926.

59 Bernardo Toninho, Luís Caires, and Frank Pfenning. Dependent session types via intuitionistic
linear type theory. In Peter Schneider-Kamp and Michael Hanus, editors, Proceedings of
the 13th International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, July 20-22, 2011, Odense, Denmark, pages 161–172. ACM, 2011. doi:10.1145/
2003476.2003499.

60 Bernardo Toninho and Nobuko Yoshida. Depending on session-typed processes. In Christel
Baier and Ugo Dal Lago, editors, Foundations of Software Science and Computation Structures –
21st International Conference, FOSSACS 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, volume 10803 of Lecture Notes in Computer Science, pages 128–145. Springer,
2018. doi:10.1007/978-3-319-89366-2_7.

61 Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Context-bounded analysis of
concurrent queue systems. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume
4963 of Lecture Notes in Computer Science, pages 299–314. Springer, 2008. doi:10.1007/
978-3-540-78800-3_21.

62 Rob van Glabbeek, Peter Höfner, and Ross Horne. Assuming just enough fairness to make
session types complete for lock-freedom. In 36th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2021, Rome, Italy, June 29 – July 2, 2021, pages 1–13. IEEE, 2021.
doi:10.1109/LICS52264.2021.9470531.

63 Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. A multiparty session typing
discipline for fault-tolerant event-driven distributed programming. Proc. ACM Program. Lang.,
5(OOPSLA):1–30, 2021. doi:10.1145/3485501.

64 Nobuko Yoshida and Lorenzo Gheri. A very gentle introduction to multiparty session types.
In Dang Van Hung and Meenakshi D’Souza, editors, Distributed Computing and Internet
Technology – 16th International Conference, ICDCIT 2020, Bhubaneswar, India, January 9-12,
2020, Proceedings, volume 11969 of Lecture Notes in Computer Science, pages 73–93. Springer,
2020. doi:10.1007/978-3-030-36987-3_5.

65 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In Martín Abadi and Alberto Lluch-Lafuente, editors, Trustworthy Global Computing
– 8th International Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013,
Revised Selected Papers, volume 8358 of Lecture Notes in Computer Science, pages 22–41.
Springer, 2013. doi:10.1007/978-3-319-05119-2_3.

ECOOP 2023

https://doi.org/10.48550/ARXIV.2302.11272
https://doi.org/10.4204/EPTCS.370.13
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1007/978-3-319-89366-2_7
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1109/LICS52264.2021.9470531
https://doi.org/10.1145/3485501
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.1007/978-3-319-05119-2_3

ConDRust: Scalable Deterministic Concurrency
from Verifiable Rust Programs
Felix Suchert #

TU Dresden, Germany

Lisza Zeidler #

Barkhausen Institut, Dresden, Germany

Jeronimo Castrillon #

TU Dresden, Germany

Sebastian Ertel1 #

Barkhausen Institut, Dresden, Germany

Abstract
SAT/SMT-solvers and model checkers automate formal verification of sequential programs. Formal
reasoning about scalable concurrent programs is still manual and requires expert knowledge. But
scalability is a fundamental requirement of current and future programs.

Sequential imperative programs compose statements, function/method calls and control flow
constructs. Concurrent programming models provide constructs for concurrent composition. Con-
currency abstractions such as threads and synchronization primitives such as locks compose the
individual parts of a concurrent program that are meant to execute in parallel. We propose to
rather compose the individual parts again using sequential composition and compile this sequential
composition into a concurrent one. The developer can use existing tools to formally verify the
sequential program while the translated concurrent program provides the dearly requested scalability.

Following this insight, we present ConDRust, a new programming model and compiler for Rust
programs. The ConDRust compiler translates sequential composition into a concurrent composition
based on threads and message-passing channels. During compilation, the compiler preserves the
semantics of the sequential program along with much desired properties such as determinism.

Our evaluation shows that our ConDRust compiler generates concurrent deterministic code that
can outperform even non-deterministic programs by up to a factor of three for irregular algorithms
that are particularly hard to parallelize.

2012 ACM Subject Classification Theory of computation → Parallel computing models; Software
and its engineering → Parallel programming languages

Keywords and phrases concurrent programming, verification, scalability

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.33

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.16

Funding Felix Suchert: was funded by the EU Horizon 2020 Programme under grant agreement No
957269 (EVEREST).
Lisza Zeidler : was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – 469256231.

Acknowledgements The authors would like to thank the anonymous reviewers for their invaluable
feedback in the submission process.

1 Corresponding author

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Felix Suchert, Lisza Zeidler, Jeronimo Castrillon, and Sebastian Ertel;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 33; pp. 33:1–33:39

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:felix.suchert@tu-dresden.de
https://orcid.org/0000-0001-7011-9945
mailto:lisza.zeidler@barkhauseninstitut.org
mailto:jeronimo.castrillon@tu-dresden.de
https://orcid.org/0000-0002-5007-445X
mailto:sebastian.ertel@barkhauseninstitut.org
https://orcid.org/0009-0000-3953-9810
https://doi.org/10.4230/LIPIcs.ECOOP.2023.33
https://doi.org/10.4230/DARTS.9.2.16
https://doi.org/10.4230/DARTS.9.2.16
https://doi.org/10.4230/DARTS.9.2.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

⊃
s

Imperative
Program Static Dataflow Graph

Sec. 5: Transformations
⟲

Dynamic Data
Parallelism

⟲
Amorphous Data

Parallelism

Dataflow
Program p

⊂

Deterministic
Parallel

Deterministic
Sequential

Sec. 4 Sec. 6

Figure 1 The ConDRust compiler translates imperative programs written in s, a subset of Rust
for sequential composition, into dataflow programs in p, a subset of Rust for parallel composition.

1 Introduction

Formal verification of sequential programs can be automated to a large extent which makes
it ready for widespread adoption. Verification of concurrent multi-core shared-memory
programs, instead, can only be automated to some extent and requires expert knowledge.
This is a major hurdle for safe systems which must rely on scalable parallelism to overcome
the physical boundary in current and future processors.

A formally verified program carries mathematical proof that certain properties of the
program hold. Determinism is such an interesting property. Deterministic programs are
straightforward to debug [12]. A deterministic execution increases the time predictability
of IoT systems [50] and establishes latency boundaries of service-level agreements in the
cloud [20, 4]. In recent database management systems with transaction support, determinism
removes costly synchronization and challenging distributed failure scenarios [52, 40].

Formal verification of program properties, such as determinism, proceeds along two
directions. Proof assistants such as Coq allow expressing properties in higher-order logic but
require a manual proof from the developer. SAT/SMT-based verifiers such as Prusti and
model checkers such as Kani for Rust programs are restricted to properties formulated in
first-order logic but calculate the proof automatically [3, 54]. That is, the hard part of formal
verification is automated which makes them particularly interesting for widespread adoption.
But concurrent programs require separation logic to state and prove their properties [51, 43].
Encoding separation logic into first-order logic is still ongoing research [15, 14, 44, 43] and
needs to sacrifice important (higher-order) parts. Expert knowledge in Coq is required to
take full advantage of separation logic [30]. At the time of this writing, none of the formal
verification tools for Rust programmers supports reasoning about concurrent programs.

Our insight is that two main steps are needed to translate a sequential program into a
concurrent one. We call these steps Decompose and Recompose. The Decompose step breaks
the sequential composition of a program to create independent parts that can execute in
parallel. The Recompose step composes these parts again using concurrency abstractions
such as threads and synchronization primitives such as locks or message-passing. We refer
to this as concurrent composition. In programming models such as threads with locks,
message-passing or software transactional memory (STM), the developer has to perform
both steps manually. Automatic approaches to tackle both steps require a precise points-to
analysis to create a concurrent program without concurrency hazards such as data races or
deadlocks. This analysis is known to be undecidable in general [48]. Hence, researchers resort
to speculative approaches [17] or language constraints for a precise dependence analysis [6].

The ConDRust approach

In this paper, we propose ConDRust, a new sequential programming model for the concurrent
composition in the Recompose phase. Our ConDRust compiler translates a sequential com-
position into a concurrent one automatically. This allows for testing and formal verification to
be performed on the sequential program, with guarantees that are carried into the concurrent

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:3

one. More specifically, our current prototype compiler supports a well-defined subset of
safe Rust for sequential composition and generates concurrent dataflow composition in a
well-defined subset of safe Rust with threads and message-passing. The dataflow execution
model is the runtime representation for scalable parallelism in many domains such as em-
bedded systems, database systems and machine learning frameworks [38, 23, 27, 58]. Our
compiler design is based on rewriting steps that preserve the semantics of the sequential
input program. This includes the semantics of control flow constructs such as loops but
also properties such as determinism. Formally verifying the compiler is a larger effort [39]
that is beyond the scope of this paper. This paper, instead, investigates to what extent
the programming model is applicable to real-world programs and whether the compiler can
generate scalable concurrent composition that is at least on par with existing concurrent
programming models. Throughout the paper, we point to novel and interesting research
directions that our approach introduces.

Concretely, we make the following contributions:
The main contribution of this paper is a new programming model and compiler for the
compositional fragment, i.e., subset, of safe Rust (Sections 2 and 3).
We define s, a subset of Rust for sequential imperative composition with abstractions,
calls, variables but without references, and formally specify its type system and operational
semantics (in Section 4 and the Appendix).
We formally specify p, the subset of Rust for concurrent composition that the ConDRust
compiler targets in Section 6. The appendix contains the operational semantics, type
system and a proof sketch for the deterministic execution.
The key part of our compiler, visualized in Figure 1, is a transformation of sequential
imperative s composition into a functional representation based on the well-defined
concept of state threads [35]. Our compiler lowers this functional representation into
dataflow, a well-established abstraction for parallel execution [5, 2, 37, 29] (Section 5.1).
Key to scalable concurrent composition are two transformations to exploit data parallelism
even in stateful applications with (tail) recursion (Sections 5.2 and 5.3).
Our current ConDRust prototype compiler consists of ca. 20K lines of Haskell code that
can be lifted to Coq in future work to formally-verify semantic preservation (Section 7).
To provide a fair baseline with the same guarantees, we re-implemented a deterministic
STM (DSTM) algorithm [49] for an existing STM implementation in Rust. We ported 7
benchmarks from 3 different benchmark suites and provide implementations for sequential,
threads/DSTM, threads/STM and ConDRust (ca. 12K lines of Rust code). Our evaluation
in Section 8 shows that ConDRust produces programs that outperform all threads/DSTM
and even some of the non-deterministic threads/STM programs by up to a factor of 3.
We highlight directions for future work whenever ConDRust programs do not scale.

We review related work in Section 9 and conclude in Section 10.

2 Programming for Scalability: Decompose and Recompose

Before we introduce our programming model in more detail, we reflect on concurrent
programming. We argue that concurrent programming and our ConDRust programming
model contain the same Decompose–Recompose steps. That is, the reasoning for the developer
to prepare a scalable concurrent program is the same as for writing a ConDRust program.
But the implications are different. Figure 2 uses an inarguably contrived but easy to follow
example for a side-by-side comparison. The left column shows the sequential program. The
middle column lists the program with threads and atomics, i.e., transactions on a single
variable. And the right column shows the sequential ConDRust program.

ECOOP 2023

33:4 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

Sequential Threads/Atomics ConDRust (This paper)
Seq. imperative composition Concurrent composition Seq. imperative composition

fn seq(xs: Vec<u32>)
-> u32 {
let mut z = 0;
for x in xs {

let y = x + 1;
z = y;

}
z

}

fn threads(xs: Vec<u32>)
-> u32 {
let z = Arc::new(State::new());
let mut handles = Vec::new();
for x in xs {

let zc = z.clone();
let handle =

thread::spawn(move || {
let y = x + 1;
zc.store(y)

});
handles.push(handle);

}

for handle in handles {
handle.join().unwrap()

}

Arc::try_unwrap(z)
.unwrap()
.get()

}

fn condrust(xs: Vec<u32>)
-> u32 {
let mut z = State::new();
for x in xs {

let y = x + 1;
z.store(y);

}
z.get()

}

mod gen {
fn condrust(xs: Vec<u32>)
-> u32 {

}
}

Concurrent composition
struct State { z: AtomicU32 }
impl State {

fn new() -> Self {
State { z: AtomicU32::new(0) }

}

fn store(&self, x: u32) {
self

.z.store(x, Ordering::SeqCst)
}

fn get(self) -> u32 {
self.z.into_inner()

}
}

struct State { z: u32 }
impl State {

fn new() -> Self {
State { z : 0 }

}

fn store(&mut self,
x:u32) {

self.z = x;
}

fn get(self) -> u32 {
self.z

}
}

#[test]
fn check() {

let xs = vec![1, 2];
let z = seq(xs);
assert!(z == 3)

}

#[test]
fn check() {

let xs = vec![1, 2];
let z = threads(xs);
assert!(z == 3)

}

#[test]
fn check() {

let xs = vec![1, 2];
let z = condrust(xs);
assert!(z == 3);
let zp =

gen::condrust(vec![1, 2]);
assert!(z == zp);

}

#[kani::proof]
fn verify() {

let x0 = kani::any();
let x1 = kani::any();
assert!(

seq(vec![x0,x1])
==
seq(vec![x0,x1]))

}

#[kani::proof]
fn verify() {

let x0 = kani::any();
let x1 = kani::any();
assert!(

threads(vec![x0,x1])
==
threads(vec![x0,x1]))

}

#[kani::proof]
fn verify() {

let x0 = kani::any();
let x1 = kani::any();
assert!(

condrust(vec![x0,x1])
==
condrust(vec![x0,x1]))

}

St
at

e
Verification of Determinism:

T
es

ti
ng

F o
rm

al

✓ ✗

✓

✓

✓ ✗ ✓

Concurrency

Synchronization

Semantic Preservation

forState::new

. . .+ 1 + 1

store

rofget

x

z

compile

Figure 2 Comparison between sequential, concurrent and ConDRust programs and their properties.
The sequential program executes deterministically and is amenable to verification. The concurrent
program offers parallel speedup but compromises determinism and verifiability. The ConDRust
approach preserves determinism and verifiability and compiles the program into a concurrent dataflow
for scalable parallel execution.

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:5

The sequential program on the left iterates over a vector of numbers xs. For each number,
the program computes its increment and assigns it to a shared state z. The resulting value
of z is always the increment of the last number in xs. This is by definition of the sequential
execution order of statements and loop iterations in Rust. As such, we can check deterministic
execution with a simple test case for a vector with 2 elements and let Kani formally verify
this property in a simple proof harness (see bottom of left column in Figure 2). Apart from
detecting potential overflow, which is inconsequent for this example, Kani succeeds.

To arrive at a scalable concurrent version of the program, the developer needs two steps.
In the Decompose step, the developer identifies the parts of the program that can/should be
executed in parallel and the state that needs to be shared. In our example, the developer
selected the body of the loop for parallel execution. Any approach, that seeks to automate
this step, needs to solve the thread granularity problem [47, 1]. Tools now assist in identifying
the state [21]. The focus of this paper is on the second step. In the Recompose step, the
developer replaces the sequential composition with a concurrent composition, e.g., for the
loop iterations. Prevalent concurrent programming models for imperative programs consist of
two parts for composition: concurrency abstractions and synchronization primitives to access
(shared) state. The concurrent version of the program spawns a thread for each computation
on the elements of the input vector xs. Thereby, it removes the sequential execution order
of the for loop. Accesses to the state variable z now need to be protected with atomic
operations (or transactions) to prevent data races. But this protection cannot recover the
deterministic update order on z, even when opting for the strongest and least performing
memory ordering: sequential consistency (SeqCst). The test’s post-condition now may see
z == 2. That is, the determinism property of the program is lost. Even worse, Kani cannot
even help to detect this flaw because verification of concurrent programs needs a higher-order
(separation) logic which is (currently) out of reach for model checkers like Kani2.

To construct a ConDRust version of the program, the developer has to follow the same
two steps. The Decompose step is the same as in the construction of the concurrent version.
The developer identifies independent parts and shared state. In the Recompose step, the
developer uses the sequential composition constructs of the host language such as for example
statements, for loops, function calls and (imperative) method calls. The ConDRust program
defines the update to the state z with a method rather than an assignment. Assignments
are not supported in this paper because we tried to keep s minimal but can be added
easily. The program is free of concurrency abstractions and synchronization primitives. The
deterministic property on the result of the program can be tested and formally verified in
the same way as for the sequential version. Note that formal verification is performed on
the sequential condrust program. The ConDRust compiler is aware of the semantics of the
composition constructs and preserves them during compilation. The generated dataflow graph
(in gen::condrust) exhibits data parallelism for the computation of the increments and
pipeline-parallelizes this with the update of the state z. The state update order is preserved.
We can then dynamically verify that the generated concurrent program gen::condrust
preserves the semantics, including the determinism property.

Concurrency vs. Parallelism. Throughout the paper, we use the words concurrent and par-
allel in the following well-established sense [53]. Concurrency means interleaved execution of
computations. Parallelism exploits additional (multi-core) hardware to execute computations
simultaneously. That is, concurrency does not necessarily imply parallelism. But in this

2 https://model-checking.github.io/kani/rust-feature-support.html#concurrency

ECOOP 2023

https://model-checking.github.io/kani/rust-feature-support.html#concurrency

33:6 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

struct Grid(
Vec<Vec<GridCell>>);

struct GridCell {
status: Status

}
enum Status {

Wall,
Vacant,
Occupied

}

type Point = (u64,u64);
type Pair = (Point,Point);
type Path = Vec<Point>;

1 impl Grid {
2 fn fill(&mut self,
3 pairs: Vec<Pair>) {
4 for pair in pairs {
5 self.map_path(&pair);
6 }
7 }

1 fn map_path(&mut self,
2 pair: &Pair) {
3 let path: Option<Path> =
4 self.find_path(pair);
5 self.update(path);
6 }
7 }

maze.map_path(((1,1),(3,3)));

1
1

x y

Figure 3 Illustration of the labyrinth benchmark on a 2D grid in imperative sequential Rust.

paper, we focus on scalable concurrency. Scalable concurrency assumes multi-core hardware
to turn explicit concurrency in the program into implicit parallelism. Hence, whenever we
refer to parallelism, we mean independent concurrent computations in the program. ◀

3 The ConDRust programming model

In this section, we present the ConDRust programming model that we formally specify and
embed into the Rust programming language (see Section 4). We compare programming
in ConDRust to concurrent programming with threads and software transactional memory
(STM). As a running example, we use Labyrinth, an irregular application from the STAMP
benchmark suite [41]. Irregular programs contain algorithms where concurrent programming
models particularly shine because such algorithms are notoriously hard to parallelize at
compile-time. We start from the sequential version of the labyrinth algorithm and then
develop a version based on threads and STM to compare it against programming in ConDRust.

3.1 The Labyrinth benchmark

The labyrinth benchmark implements Lee’s algorithm to find wire-paths between points on a
multi-layer printed circuit board [36]. The challenge consists in finding paths that do not
overlap across layers. The original STAMP implementation and our re-implementation in
Rust execute on a 3D board (or 3D grid). In this section, we restrict ourselves to a 2D grid
because it is easier to visualize while retaining the core principles required by our exposition.

Figure 3 illustrates the problem and shows a sequential imperative Rust implementation.
The left-hand side defines a grid as a vector of vectors where a grid cell holds one of the
three states: wall (in dark grey), vacant (in white) or occupied (in yellow). A point in the
grid is a tuple of an x- and a y-coordinate. A pair is a tuple of two points and a path is
a sequence of points represented as a vector. The algorithm to fill a given grid is given
on the right-hand side of the figure. For each pair, the function map_path finds a path
and declares the corresponding grid cells as occupied. Note that both steps find_path and
update require access to the grid. That is what makes introducing concurrency particularly
challenging for the developer.

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:7

3.2 Concurrent Labyrinth

Concurrently mapping paths onto the grid requires changes to the algorithm. Two candidate
paths computed concurrently may overlap and thus one of them has to be re-computed.
We visualize this effect in the middle column of Figure 4 and compare the threads/STM
version in the left column with the ConDRust version in the right column. These alternative
implementations are discussed in the following.

3.2.1 Threads/STM

We use threads for concurrency and synchronize grid access via STM. We chose STM over
locks for two reasons. First, STM guarantees data-race freedom without creating deadlocks.
Second, deterministic STM algorithms exist that provide the same deterministic execution
properties as ConDRust. For this paper, we used rust-stm3, an STM implementation in
Rust, that follows the design of the STM in Haskell [28].

The threads/STM implementation in the left-hand column of Figure 4 starts with a
re-definition of the grid data structure. Cells hold the state of the grid that the algorithm
mutates and hence must be protected to prevent data races. Wrapping the cells into
transactional variables (TVars) means that all grid methods need to be redefined for two
reasons: First, accesses are now through the TVar. Second, each access needs a transaction
which is an additional parameter to every grid method. That is the reason why all benchmarks
in STAMP are implemented twice: with and without STM.

Concurrency is introduced in Line 7 of the Threads/STM implementation. We deliberately
assume a higher-order function spawn_join to abstract from the verbose spawn-join pattern
given in Figure 2. For every pair, the closure from Line 7–10 tries to map a path on the grid.
The combination of the loop over the pairs and the closure’s move semantics for threads
demand a clone of the grid for every loop iteration. The update method of the new StmGrid
then tries to occupy the corresponding cells on the grid for a computed path. When a path
cell is already occupied, a retry error (Line 30) aborts the transaction and triggers a retry.

For this particular example, the map_path method is particularly important for scalability
reasons. The general structure of map_path is straightforward. It consists of a closure with
the two steps of the algorithm (Lines 39–46): finding a path (Line 44) and updating the
grid (Line 45). Line 39 places the closure onto a transaction. The key to scalability lies
in the updates to the shared state. A naive implementation for find_path, as shown in
the comment on Line 42, would operate directly on the grid (StmGrid) through the TVar
(see Line 24). As a result, the transaction’s read set increases dramatically which leads to
a much higher probability for collisions in update. A common pattern is thus to have the
path-finding operate on a non-transactional clone of the grid (local). To illustrate the effect,
the bar plot below the map_path function compares the scalability of the naive version to
that of the optimized one.

The function map_path is representative of a common pattern found in irregular applica-
tions. The optimization described above requires the developer to find the maximal set of
accesses that still preserves data-race freedom. This, in turn, requires carefully distinguishing
the parts of the program that have side-effects on the state from the ones that are pure.
Making this distinction explicit is a core idea behind the ConDRust programming model.

3 https://github.com/Marthog/rust-stm

ECOOP 2023

https://github.com/Marthog/rust-stm

33:8 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

threads/STM

1 struct StmGrid(
2 Vec<Vec<TVar<GridCell>>>);

3 fn fill(grid : StmGrid,
4 pairs: Vec<Pair>
5) -> StmGrid {
6 spawn_join(
7 | grid_clone,
8 pair | {
9 grid_clone.map_path(pair)

10 },
11 &grid,
12 pairs
13);
14 grid
15 }

16 impl StmGrid {
17 fn update(&self,
18 path: Option<Path>,
19 tx: &mut Transaction
20) -> StmResult<()> {
21 if let Some(p) = path {
22 for (x,y) in p {
23 let gc =
24 self.0[x][y].read(tx)?;
25 if gc = Status::Vacant {
26 self.0[x][y]
27 .write(
28 tx,
29 Status::Occupied)?;
30 } else {
31 return Err(StmError::Retry);
32 }
33 }
34 Ok(())
35 } else {
36 Ok(())
37 }
38 }
39 fn map_path(&self, pair: Pair) {
40 atomically(| tx | {
41 /* naive:
42 let path = self.find_path(&pair, tx); */
43 let local: Grid = self.local_clone();
44 let path = local.find_path(&pair);
45 self.update(path, tx)
46 })
47 }
48 }

retries

ConDRust

fn fill(grid : Grid,
pairs: Vec<Pair>) {

let retries = Vec::new();
let shared =

Arc::new(grid.clone());
for pair in pairs {

// map_path:
let local = shared.clone();
let path =

find_path(local, pair);
let retry =

grid.update_c(path);
retries.push(retry);

}
let not_empty =

retries.filter_some();
if not_empty {

fill(grid, retries)
} else {

grid
}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

fn find_path(
grid : Arc<Grid>, pair: Pair

) -> Option<Path> {
grid.find_path(&pair)

}

23

24

25

26

27

impl Grid {
fn update_c(&mut self,

paths: &Vec<Option<Path>>
) -> Option<Pair> {

for path in paths {
if self.is_vacant(path) {

self.update(path);
None // success

} else {
Some(// retry

(path[0]
, path[path.len() - 1]
))

}
}

}
}

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Sequential imperative composition

Stateful Function

Stateless Function

Concurrency

Synchronization

0

2

4

2 4 6 8 10
threads

sp
ee

du
p

naive
local

Figure 4 Introducing concurrency into the labyrinth benchmark adds collisions. The left column
shows the implementation with threads and STM. The right column shows the imperative sequential
ConDRust program.

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:9

3.2.2 ConDRust
The right-hand column in Figure 4 presents the ConDRust version of the labyrinth benchmark.
We start with an informal introduction to the ConDRust programming model. We then
explain how concurrency and synchronization arise naturally from a ConDRust program
while preserving determinism and verifiability.

3.2.2.1 Programming model

A ConDRust program consists of three abstractions: functions, stateless function calls and
stateful function calls.

▶ Definition 1 (ConDRust Functions). A ConDRust function is a top-level function or an
anonymous (lambda) function definition in the host language that the ConDRust compiler
translates into a concurrent dataflow graph.

We highlight the ConDRust function for fill and map_path with a gray background. In the
actual code base, the two functions would be located in a dedicated Rust module that is
input to the ConDRust compiler. A ConDRust function may use control flow constructs of
the host language, call other ConDRust functions or call stateless/stateful functions. We
focus on loops because conditionals are rather unimportant when it comes to concurrency.

▶ Definition 2 (Stateless Function Call). A stateless function call is a (host language) term
of the form f(t1, . . . , tn) where t1, . . . , tn are terms and f is a function symbol.

▶ Definition 3 (Stateful Function Call). A stateful function is a (host language) term of the
form ts.f(t1, . . . , tn) where ts, t1, . . . , tn are terms and f is a function symbol.

Stateless functions such as find_path (Lines 23–27) represent pure computations to the
ConDRust compiler. Stateful functions such as update_c (Lines 29–43) represent computa-
tions with side-effects to a particular state. The implementation of the stateless and stateful
functions are outside the realm of the ConDRust compiler. That is, the developer may
use the full set of the host language’s, i.e., Rust’s, features inside these functions without
violating the stateless/stateful semantics.

The ConDRust programming model is general enough for embedding it into other
languages such as Java or Python. But Rust is particularly well-suited because it allows
to enforce state encapsulation via its type system. That is, the ConDRust compiler can
reject programs with stateful function calls that return references to their state. Our Rust
embedding does not support references as of now. Moving forward, we are interested in
ConDRust in the context of share-nothing software architectures (e.g., serverless computing),
where references do not exist. In the shared-memory context of this paper, the developer
can either pass data by value or by reference using Rust’s Arc’s. In Section 4, we present the
details of the type system for ConDRust.

3.2.2.2 Concurrency and synchronization

The ConDRust compiler translates the input program into a concurrent dataflow graph.
In this graph, pipeline and task-level parallelism arise naturally from the data and control
flow dependencies in the program. Our transformation, defined in Section 5, introduces
data parallelism for stateless function calls inside loops. In the labyrinth benchmark, the
find_path computation is a good candidate. It is located inside the loop of fill function
and actually does not have side effects on the grid. But in the sequential version of Figure 3,

ECOOP 2023

33:10 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

find_path is a method on the grid. To tell the ConDRust compiler that this computation is
stateless, the developer turns the method into a stateless function (Lines 23–27). At Line 26,
the stateless find_path function just wraps the find_path method on the Grid data type.

Note that the ConDRust version of map_path (right column, Lines 7–12) is almost
identical to the STM/threads version (left column, Lines 38–46). At Line 8, the ConDRust
compiler requires the developer to create a clone of the grid. State, in this case the grid,
may only be used once inside a loop, i.e., the loop in fill at Lines 6–11. The ConDRust
compiler forces the developer into the optimization that the STM/threads version needed to
scale. As a consequence, the new update_c method on the Grid now needs to take collisions
and retries into account. This is almost identical to the StmGrid::update method but is
not based on a transaction for retrying. Instead, it returns the colliding pair at Lines 37–40.

After the loop, the remaining code in fill first filters the successfully mapped paths
(Line 16) and then uses a (tail) recursion to retry the collisions. That is, the fill function
explicitly defines the recursion that is implicit in the concept of a transaction. But the
execution semantics is different.

3.2.2.3 Determinism

Transaction execution order in STM is non-deterministic but the generated dataflow program
executes deterministically. The ConDRust program presented in the right-hand column of
Figure 4 is a valid, i.e., well-typed, sequential Rust program. The Rust compiler translates this
into a deterministically executing binary. The ConDRust compiler preserves the semantics
of the program including the deterministic execution property. For the labyrinth benchmark,
this boils down to the sequential order in which the stateful function update_c is called
within the loop in fill. The ConDRust compiler preserves this order even though the paths
are computed concurrently (in a data-parallel fashion).

In Section 5, we define a transformation to take advantage of amorphous data parallelism
in irregular algorithms. This transformation produces code that limits the number of collisions,
and thereby re-computations, for a single recursion round. To activate this transformation, the
developer has to change the type of the input pairs from an ordered vector Vec<Pair> into
a HashSet with deterministic iteration order. All of the transformations that we introduce
in this paper preserve determinism and the semantics of the input program.

3.2.2.4 Verification

Semantic preservation allows the developer to apply and even formally verify further op-
timizations to the algorithm. The ConDRust version of the labyrinth benchmark is free of
concurrency constructs. Kani fully supports Arc’s4. As such, the developer can formally
verify properties of the ConDRust labyrinth implementation.

Zero-clone concurrent labyrinth. Note that both the threads/STM and the previously
discussed ConDRust versions required cloning the state for scalability reasons. By cleverly
using ConDRust and the underlying Rust semantics it is possible to avoid having to clone in
the first place, while retaining determinism and verifiability. This is again a pattern that
extends to other irregular applications.

The zero-clone implementation for concurrent path-finding is shown in Figure 5. For
the reader’s reference, the comments in the code contain the previous implementation from
Figure 4. On the left-hand side, we restate the ConDRust version of the fill function from

4 https://model-checking.github.io/kani/rust-feature-support.html

https://model-checking.github.io/kani/rust-feature-support.html

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:11

1 fn fill(grid : Grid, pairs: Vec<Pair>) {
2 let /* retries */ paths = Vec::new();
3 let shared =
4 Arc::new(grid/*.clone()*/);
5 for pair in pairs {
6 let local = shared.clone();
7 let path = find_path(local, pair);
8 /* let retry =
9 grid.update_c(path);

10 retries.push(retry); */
11 paths.push(path);
12 }
13 /* let not_empty =
14 retries.filter_some(); */
15 let (paths, grid) = unarc(paths, shared);
16 let (not_empty, retries) =
17 grid.updates(paths);
18 if not_empty {
19 fill(grid, retries)
20 } else {
21 grid
22 }
23 }

impl Grid {
fn updates(

&mut self,
paths: Vec<Option<Path>>

) -> (bool, Vec<Pair>) {
let mut retries = Vec::new();
for path in paths {

let r = self.update_c(path);
retries.push(r)

}
let not_empty =

retries.filter_some();
(not_empty, retries)

}
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

fn unarc<S,T>(
s:S, t: Arc<T>

) -> (S,T) {
match Arc::<T>::try_unwrap(t) {

Ok(t) => (s,t),
_ => panic!("Failed to unarc.")

}
}

16

17

18

19

20

21

22

23

Figure 5 The unarc optimization provides a ConDRust version of the labyrinth benchmark that
does not have to clone the grid.

Figure 4. We extracted the updates to the grid from Lines 8–9 to Lines 16–17 after the
loop. This requires defining a new method (/stateful function) updates on the Grid that
performs the loop over the computed paths. The corresponding code in the upper right part
of Figure 5 also directly filters the retries. At this point, the key observation is that we can
safely reuse the grid after the loop. At Line 4, Arc::new takes ownership of the grid. We had
to clone the grid to use it inside the loop for updates and after the loop for the recursion.
In the new version, the updates happen after the loop and the find_path actually takes
ownership of the cloned Arc from Line 6. That is, when all path computations are done, we
can safely take the grid out of the Arc again. This is what we specify at Line 15 and in the
ConDRust version of Figure 4 at Line 24.

Figure 5 defines the stateless function unarc in the lower right part. The unarc function
unpacks the Arc, its first argument, but leaves the second unchanged. We have to add a
panic for the case where the Arc is still held elsewhere. But this is impossible by definition
of Line 15. We verified this property and among the 422 reachable checks Kani reports:

Check 321: <std::vec::Vec<std::option::Option<benchs::Path>>
as benchs::Unarc>::unarc.assertion.1

- Status: SUCCESS
- Description: "Failed to unarc."
- Location: src/benchs.rs:269:18

in function <std::vec::Vec<std::option::Option<benchs::Path>>
as benchs::Unarc>::unarc

Due to the semantic preserving transformations in ConDRust, this property also holds for
the generated concurrent dataflow code.

ECOOP 2023

33:12 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

Terms t ::= x | v | |x : T |-> T { t } | t(t) | let x : T = t; t | let mut x : T = t; t |
fSL(t1) | ts.fSF(t1) | for x in t { t } | trfix t t

Values v ::= l | v | |x : T |-> T { t }

Figure 6 Syntactical constructs of s.

Note that this unarc optimization is only necessary because the compiler presented in
this paper does not support references. Support for references is future work but will remove
such optimizations from the code and move them into the compiler. In the meantime, the
developer can formally verify such optimizations with existing tools such as Kani.

4 s– A subset of Rust for sequential composition

In this section, we formally specify s, the subset of the Rust language that embeds the
ConDRust programming model. Since s is a subset of Rust, the operational semantics are
the same as for Rust. Therefore, we restrict the presentation to the syntactical constructs.
The appendix defines the type system and the operational semantics for the interested reader.

ConDRust supports the subset of Rust’s syntax that is necessary to compose calls to
stateless and stateful functions (also called methods). We define this subset in Figure 6 as

s– a subset of Rust for sequential composition. For this paper, we restrict the terms of
the language to variables x, abstractions (closures in Rust) |x : T|-> T { t }, algorithm
application t(t), immutable and mutable bindings, for-loops and tail-recursion (trfix). We
restrict the definition of s in the following (common) ways:
1. Abstractions and calls may only have a single parameter. The extension to support

multiple parameters is straightforward.
2. We desugar top-level algorithm definitions into let-bound closures such that a top-level

defined function can be used in multiple locations of succeeding function definitions.
The key ingredient in ConDRust’s programming model are stateless function calls fSL(t1)
and stateful function calls ts.fSF(t1).5 The definition of stateless and stateful functions is not
part of s, as discussed before. Inside these functions, developers re-gain the full features of
Rust. We further restrict control flow to loops and tail recursion leaving out other forms
such as conditionals that play only a minor role in the parallel execution of a program. In
Section 5 and in our implementation, loops may in fact iterate over all data types that
implement Rust’s Iterator trait which for instance includes HashSet. This allows the
developer to specify that the loop does not depend on a particular order and enables our
second transformation that extracts amorphous data parallelism. To model this in s, we
assume a stateless function that uses the iterator to collect the items into a list before looping
over them. In fact, collect is a standard function of Rust’s Iterator. We allow loops
with an unknown iteration count via tail recursion. Tail recursion is a derived form. Precise
definitions with their restrictions on variable usage are in the appendix. In the context of
this paper, we are particularly interested in the case where the arguments to the recursion
are a state to be updated and a worklist that triggers these updates.

5 We allow ConDRust algorithms to be called from anywhere in a Rust program. Such a call may have
arguments.

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:13

trfix
(fill)

Vec::new

clone Arc::new

for

reuse

reuse

reuse

clone

find_path update_c push

filter_some
grid

pairs

shared

pair path

grid

()

not_empty

retries

grid

grid

pairs

grid

loop scope

Figure 7 ConDRust dataflow graph for the (unoptimized) labyrinth code listed in Figure 4. The
graph contains state arcs that transfer state into and out of the loop scope. The for and reuse nodes
make sure that processing inside the loop is well-balanced, i.e., does not get stuck.

↓ST let x = xs.f(x1); t := let (x′
s, x) = xs.f(x1); ↓ST [xs 7→ x′

s]t
↓ST let x = f(x1); t := let x = f(x1); ↓ST t

↓ST let _ = for x1 in x2 { t3 }; t4 := let _ = for x1 in x2 { ↓ST t3}; ↓ST t4
↓ST |x : T |-> T { t } := |x : T |-> T { ↓ST t }
↓ST t := t

let _ = for x1 in x2 {↑STL let (x′
s) = for⋆ x1 in x2 {↑STL

↑STL t3; let (x′
s, x3) = xs.f(x1); t4 := t3; let (x′

s, x3) = xs.f(x1); t4; (x′
s)

}; ↑STL t }; [xs 7→ x′
s](↑STL t)

↑STL (↑STL t) := (↑STL t)

Figure 8 Transformation of an imperative program into a functional one based on state threads.

Limitations. Currently, s does not include include references and in particular borrowing.
The support for references and their translation into dataflow is interesting future work.

5 Compiling ConDRust algorithms to dataflow

In this section, we describe the main steps in ConDRust compilation from an imperative
algorithm to a dataflow graph. The dataflow representation of the program is not the usual
program dependence graph that is used in classic compilers such as LLVM for dataflow
analyses. The dataflow graph that ConDRust targets is a runtime representation and parallel
execution model of a program. Dataflow runtimes are the foundation for scalable database
engines, data streaming for embedded systems and data analytics [38, 23, 27, 58]. This
dataflow model is a perfect fit for such systems because it makes parallelism explicit in
the graph. In this section, we focus primarily on the 3 forms: task-level, pipeline and
data parallelism. We start with the translation of algorithms into dataflow and present the
dataflow representation informally to define our transformations for data parallelism. In
Section 6, we formally specify the semantics of the dataflow graph construction and execution
as part of ConDRust’s code generation process.

5.1 From sequential-imperative to parallel-functional dataflow
ConDRust’s programming model with its restrictions on variable usage enable the compiler to
translate a s program into a dataflow graph that exposes pipeline and task-level parallelism
while preserving the program’s semantics. This translation encompasses two steps that we

ECOOP 2023

33:14 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

define in Figure 8. In the first step, ConDRust translates an algorithm in s into applicative
normal (ANF) form. In ↓ST, every call to a stateful function becomes a state thread (ST):
let (x′

s, x) = xs.f(x1). The state x′
s is the updated state after the call. To make sure that

succeeding stateful function calls on xs operate on the new state x′
s, we substitute xs with

x′
s in t. In the second step, the compiler removes the global notion of imperative state

and effectively transforms the program into a functional one. This transformation relies on
the notion of state threads [35, 56, 25]. ↑STL turns every loop into a state thread, i.e., a
state-threading loop (STL). The resulting states of a loop are all states of the state threads
inside the loop. We restrict the definition to a single state x′

s for brevity. ↓ST rewrites the
term before recursing into the subterms. To handle nested loops, ↑STL recurses into the
subterms first and rewrites the current term with the already rewritten subterms.

From this functional program representation, the ConDRust compiler translates stateless
and stateful calls into nodes. Data dependencies become arcs that transfer data values in
FIFO order. We denote the different types of nodes in a ConDRust dataflow graph as follows:

n ::= fSL | fSF | for | reuse | trfix

The first two node types execute calls to stateless and stateful functions respectively. In
order to perform a call, a node needs to retrieve a data value from each of its incoming
arcs and emits the result of the call to its outgoing arc before the next call is constructed.
Stateful nodes additionally emit their updated state via a dedicated outgoing arc.

ConDRust translates loops and tail recursions directly into dedicated dataflow nodes.
The for node streams the elements of the vector into its outgoing arc. The trfix node ties
the knot of the recursion. Both language constructs, loops and tail recursion, open a new
contextual scope, i.e., a subgraph. For tail recursion, this subgraph is closed such that the
only way for data to enter and leave the graph is the trfix node. For loops, data enters the
subgraph via for and reuse nodes and leaves it via a stateful function call node.

The dataflow construction is best explained on the dataflow graph for the labyrinth
benchmark, shown in Figure 7. ConDRust generated this graph from the s specification
on the right of Figure 4. Data that enters the loop subgraph via the for node drives
the computation. State variables entering the loop body are retries and grid. The
corresponding arcs are gated by reuse nodes that receive the data entering the loop. The
reuse node attaches a reuse count n where n is the number of loop iterations, i.e., elements
in the vector of pairs. Function call nodes with such a reuse count as input reuse the data
values for n calls.

Task-level and pipeline parallelism

Task-parallelism automatically arises whenever nodes are (data) independent of each other,
such as for example the clone node and the Vec::new node. The for node introduces
pipeline parallelism between all data dependent nodes in the loop scope subgraph. As such
the computation of the path for the third pair can already start while at the same time, the
grid is updated with the found path for the second pair and the result of the first computed
path is pushed onto retries, the result vector.

Task-level and pipeline parallelism fall out naturally from a dataflow representation
of a program, but they are insufficient to compete with a threads/STM-based program.
This is because exploiting data parallelism is key for scalability. Almost all programs in
shared memory benchmark suites such as STAMP and PARSEC contain some data-parallel
part [41, 8]. Apart from data parallelism, scalability in threads/STM implementations also
depends on the retry overhead introduced by the STM in case of collisions.

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:15

f 1
SL
...

f n
SL

dispatch collect

(a) Static.

spawn
<fSL> get

. . .

(b) Dynamic.

Figure 9 Data parallelism inside a dataflow graph.

5.2 Dynamic data parallelism in a static dataflow
Data parallelism arises from an implicit (in-)dependence between the same stateless function
call across loop iterations. As such, every stateless function call inside a loop is an opportunity
for data parallelism. The find_path call in the labyrinth algorithm is an example of this.
But introducing data parallelism into a static dataflow graph as shown in Figure 9a may lead
to suboptimal performance. This is especially the case when the n nodes f1

SL . . . fn
SL feature

different computation times for different input values. For example, find_path executes the
same code but some pairs are more difficult to connect than others. As such the deterministic
merge in the collect node stalls, waiting for straggling work [26]. This stalling does not
occur in the threads/STM execution because STM does not enforce a deterministic order.

The performance problems of static work assignments are well known. This motivated
Cilk’s dynamic dataflow model (fork/join) and its work-stealing runtime scheduler [11]. To
mitigate these problems without sacrificing determinism, we integrate dynamic dataflow into
our static dataflow graph. In a dynamic dataflow graph, nodes are created at runtime. A
node executes a task, i.e., a stateless function call, that gets spawned(/forked) on demand
and executes once. Spawning a task creates a handle to its future value, i.e., the result of
the stateless function call. This handle provides a get method to join the forked task with
the spawning task by blocking until the call completed and the result is available. In Rust,
the API for futures is equivalent to thread spawn and join as presented in the thread/STM
version in Section 3. Tasks are processed by a pool of threads, as in Cilk. Whenever a
thread is idling, it may steal tasks from other threads to reduce idle time. In the case of the
labyrinth benchmark, a thread that already finished its path computation may steal queued
path computations from a thread with a long-running path computation.

Determinism. The transformation in Figure 9b integrates dynamic dataflow to data-
parallelize nodes with stateless function calls and uses the static dataflow to preserve the data
value order, i.e, determinism and the semantics of the algorithm. Instead of replicating the
stateless function call fSL node, we lift it into a spawn<fSL> node. For every received input,
when normally a stateless function call would be executed, the spawn<fSL> node submits this
computation as a task to a work-stealing runtime system and emits the corresponding future.
The downstream get node retrieves the value from the future. No reordering takes place
because both spawn<fSL> and get are stateless function call nodes in the static datalfow
graph connected via a FIFO channel.

5.3 Amorphous data parallelism
The (data) parallelism in threads/STM-based programs is implicitly affected by two aspects:
the available compute cores of the system and the operating system scheduler. Both impact
the number of collisions. Our amorphous data parallelism transformation makes these implicit

ECOOP 2023

33:16 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

effects explicit in the dataflow graph and exposes a knob to fine-tune runtime performance
at compile-time. We first explain how the implicit effects influence the performance of
threads/STM vs. ConDRust programs. Then we describe our transformation.

The implicit cap in threads/STM

In the ConDRust-based version of the labyrinth algorithm, the number of collisions per
round is capped by n, the number of input pairs. In the worst case, n − 1 paths need to
be recomputed. This is independent of whether the algorithm executes sequentially or is
compiled into a dataflow graph for concurrent and parallel execution. Although the STM-
based version spawns the same n threads/computations, it is unlikely for this implementation
to hit this upper bound. For example, when we input 256 pairs then 256 threads race for
updating the grid. In a system with 24 cores, the operating system scheduler will delay the
execution of most of the threads. Putting concurrency aside for easier analysis, the first
“round” would consist of 24 threads, of which at most 23 would collide. We refer to this
bound as collision limit. The limit defines how many computations will see an outdated grid,
i.e., shared data structure, and could thus lead to collisions. In the case of the ConDRust
version, the algorithm defines the limit to be 256, i.e., all pairs, (for the first round) which
translates into the worst case collision count of 255.

Setting a cap into irregular ConDRust algorithms

To compete with STM implementations, the ConDRust programming model makes the cap
on the collision limit explicit in the algorithm. We do so by automatically transforming the
algorithmic skeleton used across irregular applications to update state. As exemplified by
the labyrinth benchmark, irregular applications (tail-)recurse over a worklist wl to evolve a
complex data structure, i.e., a state s. In the benchmark, the worklist updates the grid.

The transformation is shown in Figure 10. To make sure it preserves the semantics, the
worklist wl must be of type Set, i.e., the developer has to explicitly specify that there is
no particular order for the elements of the worklist. The transformation distinguishes two
different structures. In the in-loop version, the state s is updated inside the loop. The
unoptimized ConDRust version of the labyrinth benchmark from Figure 4 is an example of
this. In the out-of-loop version, the state update occurs at some point after the loop. This
structure occurs in the unarc version of the ConDRust labyrinth implementation presented in
Figure 5. In both cases, the take_n-node extracts the first N data items from the worklist wl

and concatenates the rest with the recomputations after s was updated. Now, the compiler
can optimize the parameter N , something that is not possible for threads/STM programs.
N is an interesting target for further research in compiler optimization.

Determinism. Even though this transformation relies on the developer specifying that
the worklist is a set, it preserves a deterministic execution. This holds as long as the
set implements a deterministic iteration order when the same elements are inserted. For
example, in Rust, several libraries exist that provide this property to hash set and hash map
implementations.6 Intuitively speaking, when the worklist is a set then the algorithm is
independent of a particular iteration order. Our transformation essentially picks one of these
orders at compile time. But when the generated program is executed then it will always be
the same deterministic order that the worklist is being processed.

6 https://crates.io/crates/deterministic-hash
https://docs.rs/hash_hasher/latest/hash_hasher/

https://crates.io/crates/deterministic-hash
https://docs.rs/hash_hasher/latest/hash_hasher/

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:17

for . . .
wl wl′

s

wl′

for . . .
wl wl′

xs

s

for . . .take_n concat
wl wl′

s

wl′

N

rest

for . . .take_n concat
wl wl′

xs

s

N

rest

in-loop out-of-loop

c-limit transform c-limit transform

Figure 10 Transformation for amorphous data parallelism.

Terms t ::= x | v | n | c; t | run(t, t)
Nodes n ::= nSL(fSL, t, t) | nSF(fSF, t, t, t, t) | for(t, t, t) | reuse(t, t, t) | trfix(t, t, t, t)

Channels c ::= let x = chan(t) | let (x, x) = chan()
Values v ::= l | v

Figure 11 Syntactical constructs for terms and values of p.

6 p– A subset of Rust for parallel composition

With the transformations in place, we now formally specify the backend of the ConDRust
compiler. We present the syntactic constructs for p– a subset of Rust for parallel composition,
that the ConDRust compiler targets in Figure 11. p terms basically consist of two parts:
Graph construction An arc is a channel (c) in Rust’s message-passing terminology and we

define n, i.e., a term for each type of node in the dataflow graph.
Graph execution We abstract over an explicit implementation of a scheduler for a dataflow

graph with a single run construct.
For the construction, we abstract over a concrete channel implementation. All we rely upon
is the FIFO ordering property. Composition of nodes via arcs works solely via variable
bindings. For example, the term in Figure 12 constructs a graph with a single (stateless)
identity function (idSL) call node. For execution, we pass the receiving endpoint result and
the list of nodes to run which executes the graph and reduces to the final result.

let src : Recv<i32> = chan(5);
let (result : Recv<i32>,

out : Send<i32>) = chan();
run(result, (nSL(idSL, src, out) ∼: []))

idSL
src out result

Figure 12 A p program with a single
identity node and the corresponding data-
flow graph.

let (out, result) = std::sync::mpsc::channel();
let mut nodes = Vec::new();
nodes.push(Box::new(move || -> _ {

let x = id(5);
out.send(x)?;
Ok(())

}));
run(nodes);
result.recv()?

Figure 13 The generated code for the graph of
Figure 12.

ECOOP 2023

33:18 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

We assume a type Node for nodes and align our specification for channels closely with
std::mpsc::channel from Rust’s standard library where Receiver<T> and Sender<T>
represent the receiving and the sending endpoint of a channel, respectively. In our encoding,
the types Recv<T> and Send<T> are reference types (in T) for locations l in the store µ,
i.e., channels are values in the store. The types T , the context Γ (without usage tracking),
the store µ, the store typing Σ and the environment ∆ follow the specification in s. The
appendix has the complete definition of the syntax, the operational semantics of p and a
sketch of the proof for determinism. Informally, dataflow graphs in p are essentially Kahn
Process Networks (KPN) [31]. KPNs execute deterministically because incoming arcs have
blocking semantics7 and the executed code of the node is scott-continuous. Our evaluation
relation adheres to both of these properties.

7 Implementation

The current prototype of ConDRust comes with batteries included. No need for the developer
to provide any specific implementations for channels, nodes or even a scheduler. ConDRust is
currently implemented in 20K lines of Haskell code and takes advantage of existing language
parsers with defined abstract syntax tree data structures for Rust 8. Our implementation
slightly diverges from the formal description of p in terms of the reuse nodes. The
ConDRust compiler implementation contains additional transformations in the backend to
fuse reuse nodes with their downstream neighbours into a single node. That way we do
not have to define reuse and non-reuse versions of all the nodes. Otherwise, our backend
generates code that closely aligns with the formalization in Section 6. Figure 13 presents
the generated code for the sinlge-id-node graph of Figure 12. The ConDRust compiler does
not create source channels but inlines values directly into the corresponding nodes. The
generated Rust code uses Rust’s channels from the standard library and creates a closure for
each of the nodes in the dataflow graph. The code generator moves the channels into the
closure of the node such as for example out, the sending endpoint of the channel for the final
result. The run function just spawns a thread for each of the nodes and rejoins them, just as
in the threads/STM code of Figure 2. For the dynamic dataflow part, the compiler generates
code that uses the tokio runtime which provides a work-stealing scheduler.9 Our compiler
generates safe Rust code and as such the Rust compiler verifies the absence of data races.

Limitations. Our current implementation does not yet fully implement the type system
that we formally specified in Section 4. In particular, we did not yet rigorously implement
the guard for amorphous data parallelism transformation that checks whether the worklist
is indeed a (hash) set. This is not due to a fundamental restriction. We believe that
implementing this is straightforward and thus focused on more challenging aspects, such as
implementing the transformations and code generation.

8 Evaluation

We evaluate ConDRust on benchmarks from 3 different benchmark suites. Our selected
benchmarks cover a broad spectrum ranging from stateless to irregular algorithms. In our
evaluation, we seek to answer the following questions:

7 Blocking semantics prevent the construction of a non-deterministic merge node, the explicit notion of
non-determinism in dataflow [2].

8 https://github.com/harpocrates/language-rust
9 https://github.com/tokio-rs/tokio

https://github.com/harpocrates/language-rust
https://github.com/tokio-rs/tokio

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:19

Algorithm Data
Name Benchmark Suite State Type Parallelism I/O

BlackScholes PARSEC [8] – Regular Dynamic –
K-Means STAMP [41] Point-cluster assignment Regular Dynamic –
Labyrinth STAMP [41] 3D grid of coordinates Irregular Amorphous –
Canneal PARSEC [8] Interconnected Mesh Irregular Amorphous –
Intruder STAMP [41] Hash map Regular State local –
Genome STAMP [41] Hash map Regular State local –

Key-value store YCSB [19] Nested hash map Regular Dynamic/ ✓
State local

Figure 14 Benchmark description.

1. Is the ConDRust programming model expressive enough for a broad range of applications?
2. What is the effort to translate the sequential benchmark code to ConDRust code?

(Appendix Section A.2 has a first comparison of the effort to convert sequential programs
into threads/STM programs and ConDRust programs.)

3. Can the deterministic code, that the ConDRust compiler generates, deliver performance
that is on par with the non-deterministic threads/STM-based code?

4. What is the effect of the amorphous data parallelism transformation from Section 5.3?

Benchmarks. Figure 14 summarizes the benchmarks used in our evaluation. We selected 7
benchmarks from 3 different benchmark suites: STAMP [41], PARSEC [8], and YCSB [19].
STAMP is a benchmark suite intended to investigate the performance of software and
hardware transactional memory implementations. Benchmarks in STAMP basically fall into
two categories: (1) Algorithms where most of the execution time is spent inside transactions
and (2) algorithms with very small transactions. Transaction size directly correlates to the
amount of computation that depends on the global state structure. We selected several
benchmarks from both categories. Labyrinth, Intruder and Genome fall into the first category,
K-Means is located in the second. K-Means clustering spends only 7% of the execution time
inside transactions. No other STAMP benchmark spends fewer cycles inside transactions.
Labyrinth is one of the 3 benchmarks in STAMP that spend nearly 100% of their execution
time inside lengthy transactions. It is also one of 2 STAMP benchmarks with an irregular
algorithmic structure. The other benchmarks in STAMP have similar characteristics to
the ones that we selected [41]. SSCA2 has characteristics similar to K-Means while Yada
(Delaunay Mesh Refinement) and Bayes are similar to Labyrinth. Vacation is similar to
Genome. Vacation simulates database transactions with STM which is not possible in real-
world database systems where transactions involve network I/O between the client and the
database server. For a more realistic setting with I/O, we chose YCSB, the state-of-the-art
benchmark for key-value stores. We selected 2 more benchmarks, Canneal and BlackScholes,
from PARSEC that both fall into the second category with small transactions. Canneal
performs simulated annealing and is also irregular. Transactions in Canneal are short but the
overall time spent inside transactions is about 70%. BlackScholes is the baseline for linear
scalability. Overall our benchmark set consists of ca. 12k lines of Rust code.

Setup. Our experiments ran on an Intel Core i9-10900K CPU with 3.70 GHz, 32 GB RAM
and 20 hardware threads, i.e., 10 cores and 10 hyperthreads. The operating system was
Ubuntu version 20.04. We used the latest rust-stm version 0.4.0 and extended it to support
deterministic transactions [49]. We executed each experiment 30 times and report the mean.

ECOOP 2023

33:20 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

X X X X XX X X X X

BlackScholes K−Means Labyrinth Canneal Intruder Genome

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
0.0

0.5

1.0

1.5

0.0

0.2

0.4

0.6

0

1

2

3

0

1

2

3

4

0

2

4

6

0
1
2
3
4

data parallel cores

sp
ee

du
p

Framework threads/DSTM threads/STM ConDRust

Figure 15 Speedup comparison of threads/DSTM, threads/STM and ConDRust across different
benchmarks. Baseline is the sequential version.

Whenever possible, we used the data sets of the original benchmarks. Otherwise, we ported
the data generation too. Appendix Section A has the input configurations.

Metrics. For our experiments, we ported the C/C++ reference implementations from
STAMP and PARSEC to safe Rust. For each benchmark, we created 4 versions:
sequential a sequential baseline implementation,
threads/DSTM a concurrent version based on threads and DSTM, and
threads/STM a concurrent version based on threads and STM,
ConDRust a ConDRust version.
Benchmarks in STAMP, PARSEC and other benchmark suites (such as Lonestar for Galois
programs [32]) for concurrent programming do not address the problem of finding the best
granularity of work to place onto a thread. The benchmark code explicitly splits work into
chunks and the size of these chunks is determined by the number of parallel threads. We
follow this principle because ConDRust does not address the thread granularity problem
either. For the STAMP and PARSEC benchmarks, we report the speedup over the sequential
baseline. For the YCSB benchmark, we measure throughput.

Since we are particularly interested in the exploitation of data parallelism, we vary
the number of data parallel cores. This is the natural metric for these applications and
their respective threads/STM implementations. For the ConDRust versions, there are more
threads because every dataflow node is assigned its own thread and we vary the number
available threads for the dynamic part of the dataflow graph. Although ConDRust executes
deterministically, we expect ConDRust programs to have performance that is on par with
the threads/STM version if the collision-limit is tuned properly. For this reason, we explore
different values of the limit and compare with the threads/STM performance. Auto-tuning
approaches or heuristics can be used in the future to automatically tune the collision-limit.

8.1 Benchmark study

Figure 15 shows the overview of our benchmark study. For BlackScholes, K-means clus-
tering, Labyrinth, and Canneal, the deterministic ConDRust programs outperform even
the non-deterministic threads/STM counterparts. Benchmarks for genome sequencing and
intrusion detection exploit data parallelism that ConDRust cannot yet exploit. In all of these
benchmarks, DSTM synchronization delivers poor performance. In the following, we analyze
the benchmark results from left to right and present further details. We add features one at
a time. We start with dynamic data parallelism, then investigate irregular algorithms and
then turn to ConDRust’s limitations. Afterwards, we case study a key-value store.

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:21

Dynamic data parallelism

The first benchmark is BlackScholes, a bulk data parallel workload. We present two versions.
The first version is most intuitive. It creates vectors for the results on-demand and joins
these vectors into a single result vector. That is, memory allocation is interspersed with the
computation of stock options that does not require a shared data structure. This final result
vector is shared state that requires synchronization. The second version pre-allocates all
memory. This is the version that is most commonly used in the literature [16].

In the experiment of Figure 15, we used the intuitive benchmark version and naively
opted for DSTM and STM to do the synchronization. The single-threaded ConDRust version
completed the calculation of 40M stock options in 650 ms. The DSTM/STM versions timed
out after 10 minutes. This shows that protecting a data structure blindly with STM is not
really a practical solution. Efficient transactions have to be fine-grained and as such require
a re-implementation of the data structure. That is why STAMP includes several dedicated
STM-based data structure implementations.

To be fair, we also compared the ConDRust version against 3 more versions. The first
version (T+lock) uses a lock instead of a transaction to protect the data structure. Figure 16
shows that this version does finish but features poor performance. Protecting large data
structures with locks is no option either, and thus fine-grained locking is required. To explore
this, we use an available implementation of a concurrent queue. But even this T+ConcQueue
version does not scale well either. Finally, in Rust, threads are implemented as futures, i.e.,
when joined, they return a result of the computation on the thread. Figure 16 shows that
only futures deliver performance comparable with the dataflows that ConDRust generates.

We also evaluated the second version of the benchmark that pre-allocates the memory.
The ConDRust and futures versions both pre-allocate the individual result vectors for the
parallel computations. To avoid the memory-allocations and copies to produce a single flat
result vector, these version return a vector with the nested individual result vectors, i.e.,
a vector of vectors. We also created a futures (unsafe) version that mimics exactly the
C version of PARSEC. That is, it pre-allocates the result vector and passes ranges to the
individual computations where the results can be written to. In safe Rust, we did not find
a way to tell the borrow checker that these ranges do not overlap and data races cannot
occur. Hence, we had to introduce unsafe code. The results in Figure 17 show that the
ConDRust version benefits from pre-allocating memory but is not yet on par with the futures
versions. This is due to the fact that the computations are rather small such that additional
runtime overhead of the concurrent ConDRust code becomes visible. We are certain that
optimizations are possible that reduce this runtime overhead further.

K-means clustering is the first recursive algorithm with state. The K-means plot in
Figure 15 shows that scalability of deterministic ConDRust programs is on par with the
non-deterministic threads/STM counterparts.

Amorphous data parallelism

Labyrinth and Canneal are irregular applications. The plots in Figure 15 show that ConDRust
generates programs that even outperform the threads/STM versions. This is because
costly synchronization overhead is not present in the generated dataflow programs. In
both benchmarks, we used the unarc optimization from Section 3 to avoid state cloning.
ConDRust performed both transformations from Section 5, for dynamic data parallelism and
amorphous data parallelism. To gain insights into the algorithm structure and the effects of
these transformations, we perform further analyses.

ECOOP 2023

33:22 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

0.0

2.5

5.0

7.5

10.0

2 4 6 8 10
data parallel cores

sp
ee

du
p

T+lock T+ConcQueue futures ConDRust

with allocation

Figure 16 BlackScholes
with memory allocation.

2 4 6 8 10
data parallel cores

futures futures (unsafe) ConDRust

without allocation

Figure 17 BlackScholes
without memory allocation.

labyrinth canneal

2 4 6 8 10 2 4 6 8 10
0

1

2

3

0

1

2

3

data parallel cores

sp
ee

du
p

Updates happen... in loop outside loop

Figure 18 In-loop vs. out-of-
loop state updates.

State update placement. We study the effect of placing the update to the state inside or
outside the loop that iterates the worklist (Section 5.3), with results shown in Figure 18.
The in-loop version has the update to the state inside the loop. Respectively, the generated
dataflow combines data parallel computations with pipeline parallel state update. The
outside-loop version performs the state update only after the loop when all computations
have been computed. Pipeline parallelism does not arise but the algorithm can leverage the
unarc optimization from Section 3 for a zero-clone version. The results show that pipeline
parallelism does not really lead to speedups on either of the two benchmarks. In the case of
labyrinth, both versions have the same performance and for canneal, the in-loop version does
not scale at all. Pipeline parallelism only pays off when pipeline stages are balanced. This
is not the case for both benchmarks where the first stage computes while the second stage
only updates. The results also show that the performance of the Labyrinth benchmark is not
sensitive to the update placement. This is mainly because of the low overhead incurred in
cloning the state of the labyrinth. Canneal has a much larger state which explains the bad
scalability of the in-loop update.

Collision-limit. To study the effect of the amorphous data parallelism transformation in
ConDRust, we compiled both benchmarks once with and once without this transformation.
Figure 19 shows that the amorphous data parallelism has no effect on the performance of
Canneal but has a big impact on the performance of Labyrinth. The plots in Figure 20
vary the collision-limit (c-limit) as a multiple of the thread count such that work distributes
evenly across the data parallel workers (i.e., threads). The right-most bars in the plots show
the performance without amorphous data parallelism. In Canneal (re-)computation is cheap
and the state large. Setting a low collision limit just prevents data parallelism to take full
effect. In Labyrinth, finding a path is expensive and so are re-computations. As such, the
collision-limit for optimal performance is only a small multiple of the thread count. With
our optimization, the compiler can tune performance along these complexity coordinates:
state size and (re-)computation complexity.

Threads/STM. For the Canneal benchmark, the ConDRust version in Figure 15 even
greatly outperforms the threads/STM version. In fact, the threads/STM version for Canneal
does not scale at all. This is due to the characteristics of the algorithm. The workload issues
tens to hundreds of thousands of rather short transactions which makes the STM overheads
a dominating factor. This is not the case in the Labyrinth benchmark where long-running
transactions outweigh their overhead.

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:23

labyrinth canneal

2 4 6 8 10 2 4 6 8 10
0

1

2

3

0

1

2

3

data parallel cores

sp
ee

du
p

data par data par + amorphous

Figure 19 Amorphous.

amorphous par

1 1.4 1.8 2 2.2 2.4 3 4 5 6 Inf
0

1

2

3

4

x times # threads

sp
ee

du
p

Threads 4 10

amorphous par

1 1.4 1.8 2 2.2 2.4 3 4 5 6 Inf
0

1

2

3

4

x times # threads

Threads 4 10

Figure 20 Collision-limit effects.

50/50 read/write 95/5 read/write 100% read

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
0

10000

20000

30000

Threads

m
ea

n
th

ro
ug

hp
ut

 (o
ps

/s
ec

)

Framework Sequential
ConDRust

threads/DSTM
threads/DSTM++

threads/STM
threads/STM++

Figure 21 Throughput comparison for the key-value store implementations.

8.2 Beyond data parallelism
For Intruder and Genome, ConDRust fails to extract the data parallelism. Both benchmarks
operate on a partitionable state structure. Intruder uses a hash map to reassemble network
packets. Similarly, Genome uses a hash map to assemble and deduplicate genome sequences.
The computation is stateful but operates only on a local part of the structure, for example,
a bucket in the hash map. Deriving parallelism from extended knowledge about the state
type and its structure is an interesting future research direction.

Conclusions. Overall, from the results in Figure 15 and our detailed analysis in Figures 16–
20, we conclude that ConDRust generates dataflow programs that scale for certain application
classes. The generated code executes deterministically while the sequential input programs
remain verifiable. We managed to implement several benchmarks which establishes confidence
that the programming model is expressive for a broad range of applications. Stateful functions
with local effects on the state, as well as platforms with heterogeneous hardware [45] are an
interesting future research direction.

8.3 Case study: Key-value store
For the YCSB benchmark, we populated the key-value store with 10,000 entries and configured
a load of 30,000 operations, executed by 8 threads in parallel. We ran 3 configurations: (1) a
write-heavy configuration with 50% reads and 50% writes, (2) a cloud-typical configuration

ECOOP 2023

33:24 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

with mostly reads (95%) and (3) a read-only configuration. Figure 21 presents the throughput
results for the key-value store implementations. In addition to the threads/(D)STM versions,
we add another version called threads/(D)STM++. The threads/(D)STM++ version uses
additional atomic-read instructions for read operations. We provide this implementation for
fairness reasons because the threads/(D)STM version does not scale at all. This is due to
the fact that the benchmark essentially just queries the data structure or updates it, with
no substantial computation. Hence, the load creates a lot of accesses to the data structure,
similar to Canneal. Even worse, STM clones the read value to provide an isolated private
view on the read data. In the case of the key-value store, that data is essentially the entire
underlying hash map. The atomic-read operations prevent this effect.

Even compared against the threads/(D)STM++ optimized version, the ConDRust gener-
ated code scales better in the write-heavy configuration and is almost on par with thread-
s/STM++ in the cloud-typical configuration. Naturally, threads/(D)STM++ performs
better when there are only reads. The ConDRust key-value store implementation cannot
extract the parallelism from partitioning the hash map of the key-value store, similar to the
Intruder and Genome benchmarks. The takeaway of this experiment is that the developer
can write simple sequential code and the ConDRust compiler provides speedups that are on
par with fine-tuned threads/STM implementations, while preserving determinism.

9 Related work

Various approaches exist to make concurrent programming deterministic but they either
are not expressive enough or target functional rather than imperative programs. Language
extensions such as the effect (type) system proposed by the Deterministic Parallel Java (DPJ)
project primarily focus on proving the deterministic guarantees and providing these to the
developer in the most non invasive way [13]. The DPJ authors conclude: “[. . .] studying a
wide range of realistic parallel algorithms has shown us that some significantly more powerful
capabilities are needed for such algorithms. ” NESL is a functional language with the
well-known higher-order functions map and reduce to parallelize stateless applications [9].
MapReduce is the programming model that has seen popularity for the very same reasons
but has fallen from grace due to its limited expressivity, i.e., no states, no variables, no
loops etc. None of the approaches derives scalable concurrency straight from imperative
sequential programs that can be formally verified. The closest in spirit is MOLD, a tool that
translates sequential imperative Java programs into MapReduce programs [46]. But MOLD
does neither define a precise subset that it can translate nor reasons about verifiability or
determinism of the compiled program.

Deterministic parallelism is a well-studied area but so far no approach could provide
on-par performance with non-deterministic executions. To provide deterministic parallelism
in MapReduce, the developer has to make sure that the function passed as an argument to
reduce is associative and commutative. Commutativity also plays a key role in revisions,
an extension to NESL’s programming model to support shared state [10]. In this case, the
developer has to provide a commutative function that is used at runtime to acquire a lock
on a data value. Programming-wise, this shares similarities to programming lattice-based
data structures [33]. Semantic-wise, the execution of revisions is the same as for software
transactions which underpin most of the runtime approaches for deterministic parallelism
in one form or the other. Notable examples include deterministic Galois [42], DeSTM [49]
and LiTM [57]. Even CoreDet, the only fully compiler-based approach, uses the notion
of a transaction and a barrier to synchronize threads and enforce a deterministic commit

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:25

order [7]. DMP, CoreDet’s predecessor, fully relied on software transactions which did not
scale because the transactions became too large [22]. CoreDet relied on hardware transactions,
but implementations of these turned out to support only very small transactions and were
even disabled again from Intel processors because their inherent complexity allowed various
side-channel attacks [24, 18, 34]. ConDRust requires no additional commutativity properties
nor specialized hardware. Nevertheless, we do acknowledge that performance could certainly
benefit from properties such as associativity and commutativity.

We are not the first to recognize the benefits of dynamic task scheduling and the collision
limit for irregular applications. However, we are the first to build atop a dataflow runtime
and are not aware of a compiler with explicit transformations for these key performance
concepts. Higher-level abstractions for data parallelism often build upon dynamic dataflow
constructs such as Cilk’s fork/join primitives [11]. Examples include Galois collections
and the parallel loops in the style of NESL in the revisions programming framework. All
other approaches, use threads to let the operating system schedule operations. Similar to
our collision limit, the authors of revisions perform rounds of computations in batches to
bound the number of computations per round [10]. LiTM implements revisions as simple
transactions and the internal algorithm that executes these transactions is almost identical
to the result of the in-loop state update transformation to limit the collisions per round in
Figure 10 [57]. But LiTM again inherits all the overhead that is connected with an STM
implementation such as maintaining read/write sets and lock tables. ConDRust does not
incur such overheads because there are no data races in the generated dataflow programs
and as such no synchronization is required.

10 Conclusion and Future Work

We presented ConDRust, a new programming model and compiler to translate verifiable
sequential imperative Rust programs into scalable concurrent ones. The developer can
use existing tools such as Kani to formally verify the sequential program. For scalable
concurrency, the ConDRust compiler translates the sequential composition into a concurrent
one based on threads and message-passing channels. Our compiler design fosters semantic-
preserving transformations that preserve interesting properties such as determinism. In our
evaluation, the ConDRust compiler generated code that even outperformed non-deterministic
concurrent programs. Our compiler is aware of stateful calls and serializes them without
costly synchronization. This benefit is big enough to outweigh the cost of enforcing a
particular deterministic order even for stateful irregular applications that are notoriously
hard to parallelize. Our results motivate the following interesting directions for future work:
Semantic preservation In this paper, we argued only informally that our compiler trans-

formations preserve the semantics of the input program. Nevertheless, the described
transformations can serve as the foundation for a formally-verified version of our compiler.

References s, the subset for sequential imperative composition, presented in this paper,
does not include references. The developer has to use runtime-checked reference im-
plementations (Arcs) and according optimizations such as the unarc optimization from
Section 3. Adding references to s is certainly an interesting future research direction.

Partitioned state A limitation of our programmming model so far is the missing notion
of functions that operate on disjoint parts of a state structure. Performance for such
algorithms is not on par with their concurrent counterparts. What is a sufficient encoding
of partitioned state in s?

ECOOP 2023

33:26 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

References
1 Jatin Arora, Sam Westrick, and Umut A. Acar. Provably space-efficient parallel functional

programming. Proc. ACM Program. Lang., 5(POPL), January 2021. doi:10.1145/3434299.
2 Arvind, Kim P. Gostelow, and Wil Plouffe. Indeterminacy, monitors, and dataflow. In

Proceedings of the Sixth ACM Symposium on Operating Systems Principles, SOSP ’77, pages
159–169, New York, NY, USA, 1977. Association for Computing Machinery. doi:10.1145/
800214.806559.

3 Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. Leveraging rust
types for modular specification and verification. Proc. ACM Program. Lang., 3(OOPSLA),
October 2019. doi:10.1145/3360573.

4 Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan. Attack of the
killer microseconds. Commun. ACM, 60(4):48–54, March 2017. doi:10.1145/3015146.

5 Micah Beck, Richard Johnson, and Keshav Pingali. From control flow to dataflow. Journal of
Parallel and Distributed Computing, 12(2):118–129, 1991.

6 Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric Bastoul.
The polyhedral model is more widely applicable than you think. In Compiler Construction:
19th International Conference, CC 2010, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings 19, pages 283–303. Springer, 2010.

7 Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. Coredet: A
compiler and runtime system for deterministic multithreaded execution. In Proceedings of the
fifteenth International Conference on Architectural support for programming languages and
operating systems, pages 53–64, 2010.

8 Christian Bienia and Kai Li. Parsec 2.0: A new benchmark suite for chip-multiprocessors. In
Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation, volume
2011, page 37, 2009.

9 Guy E. Blelloch. NESL: a nested data parallel language. Carnegie Mellon Univ., 1992.
10 Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. Internally

deterministic parallel algorithms can be fast. In Proceedings of the 17th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, pages 181–192, 2012.

11 Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H.
Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. In Proceedings of
the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP ’95, pages 207–216, New York, NY, USA, 1995. Association for Computing Machinery.
doi:10.1145/209936.209958.

12 Robert L. Bocchino, Vikram S. Adve, Sarita V. Adve, and Marc Snir. Parallel programming
must be deterministic by default. In Proceedings of the First USENIX Conference on Hot
Topics in Parallelism, HotPar’09, page 4, USA, 2009. USENIX Association.

13 Robert L. Bocchino Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann,
Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vakilian.
A type and effect system for deterministic parallel java. In Proceedings of the 24th ACM
SIGPLAN conference on Object oriented programming systems languages and applications,
pages 97–116, 2009.

14 Cristiano Calcagno, Philippa Gardner, and Matthew Hague. From separation logic to first-order
logic. In Foundations of Software Science and Computational Structures: 8th International
Conference, FOSSACS 2005, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005. Proceedings 8, pages
395–409. Springer, 2005.

15 Cristiano Calcagno, Hongseok Yang, and Peter W. O’hearn. Computability and complexity
results for a spatial assertion language for data structures. In FST TCS 2001: Foundations of
Software Technology and Theoretical Computer Science: 21st Conference Bangalore, India,
December 13–15, 2001 Proceedings 21, pages 108–119. Springer, 2001.

https://doi.org/10.1145/3434299
https://doi.org/10.1145/800214.806559
https://doi.org/10.1145/800214.806559
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3015146
https://doi.org/10.1145/209936.209958

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:27

16 Dimitrios Chasapis, Marc Casas, Miquel Moretó, Raul Vidal, Eduard Ayguadé, Jesús Labarta,
and Mateo Valero. Parsecss: Evaluating the impact of task parallelism in the parsec benchmark
suite. ACM Trans. Archit. Code Optim., 12(4), December 2015. doi:10.1145/2829952.

17 Peng-Sheng Chen, Ming-Yu Hung, Yuan-Shin Hwang, Roy Dz-Ching Ju, and Jenq Kuen
Lee. Compiler support for speculative multithreading architecture with probabilistic points-to
analysis. In Proceedings of the ninth ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 25–36, 2003.

18 Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael Hohmuth, Martin Pohlack,
Christof Fetzer, Martin Nowack, Torvald Riegel, Pascal Felber, Patrick Marlier, et al. Eval-
uation of amd’s advanced synchronization facility within a complete transactional memory
stack. In Proceedings of the 5th European conference on Computer systems, pages 27–40, 2010.

19 Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM symposium on
Cloud computing, pages 143–154, 2010.

20 Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: Amazon’s highly available key-value store. ACM SIGOPS operating systems review,
41(6):205–220, 2007.

21 Enrico Armenio Deiana, Brian Suchy, Michael Wilkins, Brian Homerding, Tommy McMichen,
Katarzyna Dunajewski, Peter Dinda, Nikos Hardavellas, and Simone Campanoni. Program
state element characterization. In Proceedings of the 21st ACM/IEEE International Symposium
on Code Generation and Optimization, CGO 2023, pages 199–211, New York, NY, USA, 2023.
Association for Computing Machinery. doi:10.1145/3579990.3580011.

22 Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. Dmp: Deterministic shared
memory multiprocessing. In Proceedings of the 14th international conference on Architectural
support for programming languages and operating systems, pages 85–96, 2009.

23 David J. DeWitt, Robert Gerber, Goetz Graefe, Michael Heytens, Krishna Kumar, and Murali
Muralikrishna. Gamma-a high performance dataflow database machine. Technical report,
University of Wisconsin-Madison Department of Computer Sciences, 1986.

24 Nuno Diegues, Paolo Romano, and Luís Rodrigues. Virtues and limitations of commodity
hardware transactional memory. In Proceedings of the 23rd international conference on Parallel
architectures and compilation, pages 3–14, 2014.

25 Sebastian Ertel, Justus Adam, Norman A Rink, Andrés Goens, and Jeronimo Castrillon.
Stclang: State thread composition as a foundation for monadic dataflow parallelism. In
Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell, pages 146–161,
2019.

26 Kim P. Gostelow and Wil Plouffe. Indeterminacy, monitors, and dataflow. In Proceedings of
the sixth ACM symposium on Operating systems principles, pages 159–169, 1977.

27 Goetz Graefe. Encapsulation of parallelism in the volcano query processing system. ACM
SIGMOD Record, 19(2):102–111, 1990.

28 Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable memory
transactions. In Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 48–60, 2005.

29 Wesley M. Johnston, JR. Paul Hanna, and Richard J. Millar. Advances in dataflow program-
ming languages. ACM computing surveys (CSUR), 36(1):1–34, 2004.

30 Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation
logic. Journal of Functional Programming, 28:e20, 2018.

31 Gilles Kahn. The semantics of a simple language for parallel programming. Information
processing, 74:471–475, 1974.

ECOOP 2023

https://doi.org/10.1145/2829952
https://doi.org/10.1145/3579990.3580011

33:28 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

32 Milind Kulkarni, Martin Burtscher, Calin Casçaval, and Keshav Pingali. Lonestar: A suite of
parallel irregular programs. In 2009 IEEE International Symposium on Performance Analysis
of Systems and Software, pages 65–76. IEEE, 2009.

33 Lindsey Kuper and Ryan R. Newton. Lvars: lattice-based data structures for deterministic par-
allelism. In Proceedings of the 2nd ACM SIGPLAN workshop on Functional high-performance
computing, pages 71–84, 2013.

34 Michael Larabel. Intel to disable tsx by default on more cpus with new microcode. https:
//www.phoronix.com/scan.php?page=news_item&px=Intel-TSX-Off-New-Microcode, 2021.
[Online; accessed 02-March-2022].

35 John Launchbury and Simon L. Peyton Jones. Lazy functional state threads. In Proceedings of
the ACM SIGPLAN 1994 Conference on Programming Language Design and Implementation,
PLDI ’94, pages 24–35, New York, NY, USA, 1994. ACM. doi:10.1145/178243.178246.

36 Chin Yang Lee. An algorithm for path connections and its applications. IRE transactions on
electronic computers, pages 346–365, 1961.

37 E.A. Lee. The problem with threads. Computer, 39(5):33–42, 2006. doi:10.1109/MC.2006.180.
38 Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,

75(9):1235–1245, 1987.
39 Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115, July

2009. doi:10.1145/1538788.1538814.
40 Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. Aria: A fast and practical deterministic

oltp database. Proc. VLDB Endow., 13(12):2047–2060, September 2020. doi:10.14778/
3407790.3407808.

41 Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. Stamp: Stanford
transactional applications for multi-processing. In 2008 IEEE International Symposium on
Workload Characterization, pages 35–46. IEEE, 2008.

42 Donald Nguyen, Andrew Lenharth, and Keshav Pingali. Deterministic galois: On-demand,
portable and parameterless. ACM SIGPLAN Notices, 49(4):499–512, 2014.

43 Peter O’Hearn. Separation logic. Communications of the ACM, 62(2):86–95, 2019.
44 Matthew J. Parkinson and Alexander J. Summers. The relationship between separation logic

and implicit dynamic frames. In ESOP, volume 6602, pages 439–458. Springer, 2011.
45 Christian Pilato, Stanislav Bohm, Fabien Brocheton, Jeronimo Castrillon, Riccardo Cevasco,

Vojtech Cima, Radim Cmar, Dionysios Diamantopoulos, Fabrizio Ferrandi, Jan Martinovic,
et al. Everest: A design environment for extreme-scale big data analytics on heterogeneous
platforms. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 1320–1325. IEEE, 2021.

46 Cosmin Radoi, Stephen J. Fink, Rodric Rabbah, and Manu Sridharan. Translating imperative
code to mapreduce. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA ’14, pages 909–927, New
York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2660193.2660228.

47 Mike Rainey, Ryan R. Newton, Kyle Hale, Nikos Hardavellas, Simone Campanoni, Peter
Dinda, and Umut A. Acar. Task parallel assembly language for uncompromising parallelism.
In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation, PLDI 2021, pages 1064–1079, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3453483.3460969.

48 Ganesan Ramalingam. The undecidability of aliasing. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16(5):1467–1471, 1994.

49 Kaushik Ravichandran, Ada Gavrilovska, and Santosh Pande. Destm: Harnessing determinism
in stms for application development. In Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, PACT ’14, pages 213–224, New York, NY, USA, 2014.
Association for Computing Machinery. doi:10.1145/2628071.2628094.

https://www.phoronix.com/scan.php?page=news_item&px=Intel-TSX-Off-New-Microcode
https://www.phoronix.com/scan.php?page=news_item&px=Intel-TSX-Off-New-Microcode
https://doi.org/10.1145/178243.178246
https://doi.org/10.1109/MC.2006.180
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.1145/2660193.2660228
https://doi.org/10.1145/3453483.3460969
https://doi.org/10.1145/2628071.2628094

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:29

50 Federico Reghenzani, Giuseppe Massari, and William Fornaciari. Timing predictability in
high-performance computing with probabilistic real-time. IEEE Access, 8:208566–208582,
2020.

51 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings
17th Annual IEEE Symposium on Logic in Computer Science, pages 55–74. IEEE, 2002.

52 Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

53 Aaron Turon. Understanding and expressing scalable concurrency. PhD thesis, Northeastern
University, 2013.

54 Alexa VanHattum, Daniel Schwartz-Narbonne, Nathan Chong, and Adrian Sampson. Verifying
dynamic trait objects in rust. In Proceedings of the 44th International Conference on Software
Engineering: Software Engineering in Practice, ICSE-SEIP ’22, pages 321–330, New York, NY,
USA, 2022. Association for Computing Machinery. doi:10.1145/3510457.3513031.

55 Philip Wadler. Linear types can change the world! In Programming concepts and methods,
volume 3, page 5. Citeseer, 1990.

56 Philip Wadler. The essence of functional programming. In Proceedings of the 19th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 1–14, 1992.

57 Yu Xia, Xiangyao Yu, William Moses, Julian Shun, and Srinivas Devadas. Litm: A lightweight
deterministic software transactional memory system. In Proceedings of the 10th International
Workshop on Programming Models and Applications for Multicores and Manycores, pages 1–10,
2019.

58 Yuan Yu, Martín Abadi, Paul Barham, Eugene Brevdo, Mike Burrows, Andy Davis, Jeff Dean,
Sanjay Ghemawat, Tim Harley, Peter Hawkins, et al. Dynamic control flow in large-scale
machine learning. In Proceedings of the Thirteenth EuroSys Conference, pages 1–15, 2018.

A Evaluation

This section provides the details for our evaluation. We list configuration parameters and
afterwards show code metrics to compare the threads/STM programs with the ConDRust
programs.

A.1 Configurations

Benchmark Arguments
BlackScholes in_40M.txt
K-Means -n 40 -t 0.00001 random-n65536-d32-c16.txt
Labyrinth random-x512-y512-z7-n512.txt
Canneal –swaps 15000 -t 2000 -m 128 400000.nets
Intruder -a 10 -l 16 -n 4096 -s 1
Genome -g 16384 -s 64 -n 16777216
YCSB kv-store size = 10, 000 records, operation count: 30, 000

Figure 22 Benchmark parameters and inputs.

Figure 22 lists the configurations that we used in our experiments. Whenever possible,
we used the data sets from the original benchmarks. When this was not possible, we ported
the data generation too.

A.2 Programmability Comparison
Table 1 compares ConDRust and threads/STM in terms of the programming effort required
to derive the respective implementation from a sequential one. Of course effort in itself is
hard to measure, as different abstractions and frameworks require different thought processes

ECOOP 2023

https://doi.org/10.1145/3510457.3513031

33:30 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

Table 1 Comparison of the programming effort required to adapt a sequential program to
ConDRust (ConDrs) and threads/STM.

Benchmark State Function Synchronization Concurrency
Modifications Recompositions Primitives Code
ConDrs STM ConDrs STM ConDrs STM ConDrs STM

K-Means 0 2 7 7 0 11 0 2
Labyrinth 1 1 10 6 0 4 0 2
Canneal 12 3 12 8 0 31 0 2
Intruder 0 1 4 4 0 12 0 2
Genome 3 8 11 5 0 15 0 4

when used. Therefore, the table compares how a number of key properties of the applications
in question changed. State modifications denote changes to fields of the program state and
are a direct result of adapting an application to another framework. In order to derive a
concurrent composition and accomodate state modifications, functions must be changed.
These changes are denoted as function recompositions. Furthermore, the derivation of a
concurrent application requires in case of the threads/STM approach the introduction of
concurrency and synchronization code. Of course, some modifications prompt further changes
affecting categories. A state change may require adjusting multiple function signatures and
bodies, while added concurrency requires synchronization. Hence, fewer modifications are
always better, as they require less effort. Note that this comparison is potentially biased, as
the original STAMP suite did not include sequential versions. We derived these manually
from the parallel code, which may result in the sequential versions being easier to port to
the threads/STM framework.

The first difference is that ConDRust programs are free of concurrency abstractions
and synchronization primitives. This does not only enable verification but prevents the
introduction of concurrency hazards such as data races or deadlocks. We observe that
increased use of synchronization primitives results in more transaction conflicts and degraded
performance. As synchronization in threads/STM works on the type level, the framework
requires generally more state modifications, but fewer individual function recompositions.
This means that while a smaller percentage of the code base is changed, the changes are
more substantial. A single recomposition here may include incorporating synchronization
or concurrency, such that functions or parts thereof can be run in a transaction. Since
transactions may fail, failure models have to be considered while altering the code. Also,
since transactions can not be nested, special care must be taken to avoid that. Finally,
transaction size plays an important role in the overall performance and must therefore be
carefully chosen.

ConDRust on the other hand for the most part only needs few state changes. These
are mostly done to remove types that are not thread-safe and could hence not be used in a
concurrent environment. In the case of Canneal, a large struct had to be used to replace
a non type safe state sharing approach. The main work required to derive a ConDRust
implementation indeed lies in the decomposition and recomposition of functions. In contrast
to threads/STM this often only entails breaking up bigger functions into several smaller ones
(which are counted individually) and removing references from function definitions. As a
result, the code bases became more fine-grained and compartimented, with each function
only handling a single task.

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:31

Terms t ::= x | v | |x : T |-> T { t } | t(t) | let x : T = t; t | let mut x : T = t; t |
fSL(t1) | ts.fSF(t1) | for x in t { t } | trfix t t

Evaluation context E ::= □ | E(t) | v(E) | let x : T = E; t | let mut x : T = E; t |
fSL(E) | E.fSF(t) | vs.fSF(E) |
| for x in E { t } | for x in v { E } | trfix E t | trfix v E

Values v ::= l | v | |x : T |-> T { t }
Types T ::= Ref<T > | T | mut T

Typing context Γ ::= ∅ | x : (n, T)
Store µ ::= ∅ | µ, l = v

Store typing Σ ::= ∅ | Σ, l : T

Environment ∆ ::= ∅ | fSL : T ->T | fSF : mut T ->T ->T

t | µ −→ t′ | µ′

E[t] | µ −→ E[t′] | µ′ E-CTXT

Figure 23 Syntactical constructs and evaluation context of s.

Overall, we observe that ConDRust requires less severe changes to the code base. The
changes that are required are merely the breaking up of functions to expose parallelism and
the removal of state sharing.

B s– A subset of Rust for sequential composition

In this section, we formally specify s, the subset of the Rust language that encompasses
the ConDRust programming model. We start with the synatx and the operational semantics
with focus on the integration of stateless and stateful function calls. Afterwards, we specify
the type system that guards the usage of state. A clear specification of state is important
for the compiler to reason about the various forms of parallelism in the derived dataflow
representation of the program.

B.1 Syntax
ConDRust supports the subset of Rust’s syntax that is necessary to compose calls to stateless
and stateful functions (also called methods). We define this subset in Figure 23 as s– a
subset of Rust for sequential composition. The semantics of s are the same as for Rust.
For this paper, we restrict the terms of the language to variables x, abstractions (closures
in Rust) |x : T|-> T { t }, algorithm application t(t), immutable and mutable bindings,
for-loops and tail-recursion (trfix). We restrict the presentation of s in the following
(common) ways:
1. Abstractions and calls may only have a single parameter. The extension to support

multiple parameter is straightforward.
2. We desugar top-level algorithm definitions into let-bound closures such that a top-level

defined function can be used in multiple locations of succeeding function definitions.
The evaluation context E specifies that terms evaluate from left to right in a call-by-value
fashion. s and Rust are imperative languages such that require a store µ to model the
state of the program. Store locations l are part of the syntactical constructs. The small-step
operational semantics t | µ −→ t′ | µ′ relates a term t and a store µ to a term t′ and a
store µ′. The store µ maps labels to values where µ, l 7→ v denotes the usual conjuction of
store mappings µ and the mapping from label l to value v. Values are store locations, (tail
recursion) abstractions and the values defined in the Rust language itself. In the specification
of s’s operational semantics, we assume general types and values for booleans, tuples and
lists with constructors [] for the empty list and v ∼: vs (cons) where v is the head with the
tail vs. In Rust, the corresponding data structure to a list is a vector (Vec).

ECOOP 2023

33:32 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

B.2 Operational Semantics
The usual way for values to enter the evaluation is via the key ingredient in ConDRust’s
programming model: stateless functon calls fSL(t1) and stateful function calls ts.fSF(t1). 10

The definition of stateless and stateful functions themselves are not part of s. We define ∆
as an environment in the typing relation that holds the typing information for the stateless
and stateful functions used in the term to be evaluated. As such, the operational semantics
for calls to stateless and stateful functions rely upon the evaluation relation of Rust (⇓):

t | µ −→ t′ | µ′

fSL(v) | ∅ ⇓ vr | ∅

fSL(v) | µ −→ vr | µ
E-FSL

ls.fSF(v1) | ls 7→ vs ⇓ vr | ls 7→ v′
s

ls.fSF(v1) | µ, ls 7→ vs −→ vr | µ, ls 7→ v′
s

E-FSF

Inside these functions, developers re-gain the full feature set of Rust. Stateless calls do not
have side-effects. Side-effects for stateful calls are restricted to a particular state location ls
in the store µ. These are the only rules that leverage Rust’s evaluation relation (⇓). In
fact, calls are the only places where computation takes place while the rest of the language is
for composition. Our operational semantics are based on the standard beta-reduction such
that [x 7→ t1]t2 with x ∈ FV (t2) replaces all occurences of the free variable x in t2 with t1.
The usual rule then covers application of simple abstractions:

|x : T |-> T { t2 }(v1) | µ −→ [x 7→ v1]t2 | µ (E-ABSAPP)

Stateless bindings solely rely on beta-reduction. Mutable bindings register values in the
store.

let x : T = v1; t2 | µ −→ [x 7→ v1]t2 | µ (E-LET)
let mut x : T = v1; t2 | µ −→ [x 7→ l1]t2 | µ, l1 = v1 where l1 ̸∈ dom(µ) (E-LETMUT)

As such, the only values in the store refer to mutable state references. We further restrict
control flow to loops and tail recursion leaving out other forms such as conditionals that play
only a minor role in the parallel execution of a program. Loops iterate over a list of values.

for x in [] { t2 } | µ −→ () | µ (E-LOOPDONE)
for x in v ∼: vs { t2 } | µ −→ let x1 = [x 7→ v1]t2; for x in vs { t2 } | µ (E-LOOPSTEP)

where x1 ̸∈ F V (t2)

In Section 5 and in our implementation, loops may in fact iterate over all data types that
implement Rust’s Iterator trait which for instance includes HashSet. This allows the
developer to specify that the loop does not depend on a particular order and enables our
second transformation that extracts amorphous data parallelism. To model this in s, we
assume a stateless function that uses the iterator to collect the items into a list before looping
over them. In fact, collect is a standard function of Rust’s Iterator. We allow loops with
an unknown iteration count via tail recursion. Tail recursion is a derived form:

10 We allow ConDRust algorithms to be called from anywhere in a Rust program. Such a call may have
arguments. The assumptions would be stated in Γ and require another context to acces them during
evaluation. We omit this detail at this point in favor of a concise presentation.

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:33

Σ(l) = T

Γ | Σ ⊢ l : Ref<T >
T-LOC ∆, x : (1, T) | Σ ⊢ x : T

T-VAR

∆, Γ1 | Σ ⊢ t1 : T1
∆, Γ2 | Σ ⊢ t2 : T1 -> T2

∆, Γ1 ⊕ Γ2 | Σ ⊢ t2(t1) : T2
T-APPABS

x ̸∈ Γ Γ, x : (n, T1) | Σ ⊢ t : T2

∆, Γ | Σ ⊢ | x : T1 | -> T2 { t } : T1-> T2
T-ABS

∆, Γ1 | Σ1 ⊢ t1 : T1 ∆, Γ2, x : (1, T1) | Σ2 ⊢ t2 : T2

∆, Γ1 ⊕ Γ2 | Σ1, Σ2 ⊢ let x : T1 = t1; t2 : T2
T-LET

∆, Γ1 | Σ1 ⊢ t1 : T1 ∆, Γ2, x : (n, Ref<mut T1>) | Σ1 ⊢ t2 : T2

∆, Γ1 ⊕ Γ2 | Σ1, Σ2 ⊢ let mut x : T1 = t1; t2 : T2
T-LETMUT

∆, Γ | Σ ⊢ t1 : T1
∆(fSL) = T1 -> T2

∆, Γ | Σ ⊢ fSL(t1) : T2
T-FSL

∆, Γ1 | Σ1 ⊢ t1 : Ref<mut T1> ∆, Γ2 | Σ2 ⊢ t2 : T2
∆(fSF) = mut T1 -> T2 -> ⃝ T3

∆, Γ1 ⊕ Γ2 | Σ1, Σ2 ⊢ t1.fSF (t2) : T3
T-FSF

∆, Γ2 | Σ ⊢ t2 : Vec<T1> ∆, Γ3, s : (1, Ref<mut Ts>) , x1 : (n, T1) | Σ ⊢ t3 : ()

∆, Γ2 ⊕ Γ3, s : (1, Ref<mut Ts>) | Σ ⊢ for x1 in t2 { t3 } : ()
T-LOOP

where ∀s ∈ F V (t) ∧ s ̸= x1

∆,∅ | Σ ⊢ t1 : (bool, T2, T1) ∆,∅ | Σ ⊢ t2 : T1 -> (bool, T2, T1)
∆,∅ | Σ ⊢ trfix t1 t2 : T2

T-FIX

∆, Γ | Σ ⊢ t : T

Figure 24 ConDRust’s type system tracks and restricts variable usage.

let f = |x : T1| -> T2 {
let (x1, x2, x3) = tb;
if x1 { x2 }
else { f(x3) }

};

def=

let f = |x0 : T1| -> T2 {
let f ′ = |x : T1| -> (bool, T2, T1) { tb };
trfix f ′(x0) f ′

};

Desugaring captures tb, the computation of the recursion, as f ′. Our tail-recursive combinator
trfix takes two arguments. Argument 1 is an application f ′ to x0, the initial parameter of a
recusive call. This application reduces to a triple (x1, x2, x3) with the boolean descriminator
x1, the final term x2 and x3, the argument to the tail-recursive call. Argument 2 is f ′

for recursion. We encode the conditional that guards this tail recursive call into trfix’s
semantics:

trfix (true, v2, v3) v4 | µ −→ v2 | µ (E-FIXDONE)
trfix (false, v2, v3) v4 | µ −→ trfix v4(v3) v4 | µ (E-FIXRECUR)

In case the descriminee is true, we return the final result v2. Otherwise, we apply the
recursive argument v3 to the abstraction that is always the second argument of trfix. Again,
we restrict the presentation to a single recursive argument and argue that the extension
to multiple arguments is straightforward. In the context of this paper, we are particularly
interested in the case where the arguments to the recursion are a state to be updated and a
worklist that triggers these updates.

ECOOP 2023

33:34 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

B.3 Type system
The ConDRust programming model carefully distinguishes between stateless and stateful
computations. This enables the compiler to perform the translation of an algorithm into a
dataflow representation and extract data parallelism while preserving the algorithm semantics.

The type system enforces the following programming discipline:
1. A variable may either be used as state or as input to a function call.
2. A variable that is input to a function call may only be used once.
3. A state variable may be used more than once except for a loop term where it may only

be used once.
These somewhat restrictive rules are key enablers of our approach.

Data often needs to be shared across the concurrent parts of the program. A good
example of this is the grid in the STM implementation that required a deep clone to make
the concurrent execution scale. Often, introducing parallelism into a program represents
a trade-off between speedup and memory efficiency. To make sophisticated decisions that
strike a good balance for this trade-off, data structure knowledge is required by the compiler.
We leave this to future work and enable the developer to explicitly make that decision by
cloneing or sharing cloned Arcs. These techniques are already common practice for sharing
data in Rust.

In ConDRust’s type system, presented in Figure 24, we use concepts from linear types to
track and restrict variable usage [55]. The typing context Γ (defined in Figure 23) captures
not only the types of variables but also their usage count (see rule T-VAR). The types T

are the types of the Rust programming language. With the rules T-LET and T-LETMUT,
we distinguish between variables that are input to functions and state. In T-LET, input
variables have a non-referential type and require a usage count of 1, i.e., they can only be
used exactly once.11 In T-LETMUT, state variables reference locations in the store µ and
are marked with Rust’s annotation for mutable types. Rules T-FSL and T-FSF specify the
use of input and state variables in the type of the stateless and stateful function. Values in
input position t1 are of type T1 while the state position ts is required to be of type mutable
reference Ref<Ts>. We define the state encapsulation property of a stateful function on the
output type as ⃝T3. A type T has this property if it does not contain borrowed references.

The type information of the values behind the references is captured in the store typing
Σ. As such, a typing judgement ∆, Γ | Σ ⊢ t : T reads as follows:

▶ Definition 4 (Well-typed). Given an environment ∆ and a (local variable) context Γ with
type assumptions on store locations Σ; a term t is well-typed if there exists a type T such
that ∆, Γ | Σ ⊢ t : T .

The rule T-LOOP restricts state variables to a single usage in the loop term t3. Only due
to this restriction, the ConDRust compiler can derive pipeline parallelism. Rule T-FIX
prevents tail recursive functions from accessing contextual variables at all by requiring Γ = ∅.
Accessing captured variables in a recursive closure is also uncommon in Rust because the
closure needs to explicitly communicate the lifetime of such variables. That is particularly
challenging, for a closure that performs an unknown number of iterations.12 In the spirit of

11 We treat unused variables as an undesirable property of a program that would benefit from a similar
error message. Rust actually has similar warnings/errors for unused variables.

12 Recursive closures need to be captured in structs to explicitly communicate lifetime information for the
captured variables to the borrow checker. For more details see: https://stevedonovan.github.io/
rustifications/2018/08/18/rust-closures-are-hard.html

https://stevedonovan.github.io/rustifications/2018/08/18/rust-closures-are-hard.html
https://stevedonovan.github.io/rustifications/2018/08/18/rust-closures-are-hard.html

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:35

Γ ⊕ ∅ = ∅
∅ ⊕ Γ = ∅

Γ1, x : (n : T) ⊕ Γ2, x : (m : T) = Γ1 ⊕ Γ2, x : (n + m, T)

Figure 25 Conjunction of typing contexts.

Terms t ::= x | v | n | c; t | run(t, t)
Nodes n ::= nSL(fSL, t, t) | nSF(fSF, t, t, t, t) | for(t, t, t) | reuse(t, t, t) | trfix(t, t, t, t)

Channels c ::= let x = chan(t) | let (x, x) = chan()
Values v ::= l | v

Types T ::= Ref<T > | T | mut T

Typing context Γ ::= ∅ | x : T

Store µ ::= ∅ | µ, l = v

Store typing Σ ::= ∅ | Σ, l : T

Environment ∆ ::= ∅ | fSL : T ->T | fSF : mut T ->T ->T

Figure 26 Syntactical constructs of p.

linear types, we merge store typings via logical conjunction and define the conjunction for
contexts in Figure 25. Based on this Rust subset, the ConDRust compiler can translate a
sequential algorithm into a dataflow graph that makes all inherent parallelism explicit.

C p– A subset of Rust for parallel composition

With the transformations in place, we now formally specify the backend of the ConDRust
compiler to show that the generated code executes deterministically. We present the syntactic
constructs for p– a subset of Rust for parallel composition, that the ConDRust compiler
targets in Figure 26. Terms in this subset basically consist of two parts:
Graph construction An arc is a channel (c) in Rust’s message-passing terminology and we

define n, i.e., a term for each type of node in the dataflow graph.
Graph execution We abstract over an explicit implementation of a scheduler for a dataflow

graph with a single run construct.
We abstract over a concrete channel implementation. All we rely upon is the FIFO ordering
property which we specify via the usual list constructors: [] empty list, v ∼: v′ (cons) where
v is the head with the tail v′ and the dual v′ :∼ v (snoc) where v is the last element in the
list and v′ the list of the preceding elements. Additionally, we assume the presence of tuples
in the Rust values v and types T . Composition of nodes via arcs works solely via variable
bindings. For example, the following term constructs a graph with a single (stateless) identity
function (idSL) call node:

let src : Recv<i32> = chan(5);
let (result : Recv<i32>, out : Send<i32>)= chan();
run(result, (nSL(idSL, src, out) ∼: []))

idSL
src out result

For execution, we pass the receiving endpoint result and the list of nodes to run which
executes the graph and reduces to the final result. We assume a type Node for nodes and
align our specification for channels closely with std::mpsc::channel from Rust’s standard
library where Receiver<T> and Sender<T> represent the receiving and the sending endpoint

ECOOP 2023

33:36 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

Σ(l) = T

Γ | Σ ⊢ l : Ref<T >
T-LOC

∆, x : T | Σ ⊢ x : T
T-VAR

∆, Γ1 | Σ1 ⊢ t1 : T1 ∆, Γ2, x : Recv<T1> | Σ2 ⊢ t2 : T2

∆, Γ1, Γ2 | Σ1, Σ2 ⊢ let x = chan(t1); t2 : T2
T-LETSRC

∆, Γ,
x11 : Recv<T11>,
x12 : Send<T12> | Σ1 ⊢ t2 : T2

∆, Γ | Σ1, Σ2 ⊢ let (x11, x12) = chan(); t2 : T2
T-LETCHAN

∆(fSL) = T1 -> T2

∆, x1 : Recv<T1>,
x2 : Send<T2>

| Σ ⊢
nSL(fSL,
x1,
x2)

: Node

T-NSL

∆,
x1 : Recv<Vec<T >>,
x2 : Send<T >,
x3 : Send<N>,

| Σ ⊢
for(
x1,
x2,
x3)

: Node

T-NLP

∆(fSF) = mut T4-> T1 -> T2

∆,
x1 : Recv<T1>,
x2 : Send<T2>,
x3 : Recv<(N, T3)>,
x4 : Send<T3>

| Σ ⊢

nSF(fSF,
x1,
x2,
x3,
x4)

: Node

T-NSF

∆,
x1 : Recv<T >,
x2 : Recv<N>,
x3 : Send<(N, T)>

| Σ ⊢
reuse(
x1,
x2,
x3)

: Node

T-NRU

∆,

x1 : Recv<T1>
x2 : Send<T1>,
x3 : Recv<bool>,
x4 : Recv<T2>,
x5 : Recv<T1>,
x6 : Send<T2>

| Σ ⊢

trfix(
x1,
x2,
x3,
x4,
x5,
x6)

: Node

T-NFIX

∆, Γ | Σ ⊢ t2 : Vec<Node>

∆, Γ, x1 : Recv<T > | Σ ⊢ run(x1, t2) : T
T-RUN

∆, Γ | Σ ⊢ t : T

Figure 27 The linear type system of p for the construction and execution of the dataflow graph.

of a channel, respectively. In our encoding, the types Recv<T> and Send<T> are reference
types (in T) for locations l in the store µ, i.e., channels are values in the store. In fact,
channels and their respective elements are the only values in the store. This simplication
is possible because in ConDRust every state arrives along an arc, i.e., channel, where we
preserve it across loop iterations. The context Γ (without usage tracking), the store µ, the
store typing Σ and the environment ∆ follow the specification in s.

In the following, we first define the specifics of graph construction via the typing rules
and afterwards present the operational semantics for graph execution to finally present our
proof (sketch) for determinism.

C.1 Linear dataflow construction
Figure 27 defines the type system of p. A dataflow graph consists of channels and nodes.
In a dataflow graph each arc has exactly one sending node and one receiving node. To
encode this invariant, we again resort to a linear type system approach and highlight linear
aspects accordingly. The rules T-LOC and T-VAR type locations and variables. Channel
construction is typed in rules T-LETSRC and T-LETCHAN. Source channels (chan(t)) bind
only a sending endpoint to pipe parameters from the surrounding Rust program into the
dataflow graph. All other channels (chan()) bind a receiving and a sending endpoint. In
both cases, the usual conjunction of typing contexts (Γ1, Γ2) asures that each endpoint is

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:37

used exactly once. The rest of the rules (T-NSL, T-NSF, T-NLP, T-NRU, T-NFIX) concern
the construction of nodes and the execution of the graph (T-RUN). We increase readability of
the inference rules in the typing and evaluation relation in two ways. First, to make the flow
of the different types of data more pbvious, we highlight receiving and sending endpoints,
value reuse and state. Second, to better align the type assumptions, we deliberately present
the terms for nodes and run with variables instead of subterms, i.e., nSL(x1, x2) instead of
nSL(t1, t2). This is not a restriction because we defined that channel endpoints have to be
bound such that (node and run) terms requiring endpoint types can only be variables.

To keep the formal specification concise, only the T-NSF rules enables the reuse of data –
in this case state. In the full formal specification and in our implementation, there are at
least two versions for all nodes: one where the received input is of type T and another where
it has an attached resuse count (N, T). Without loss of generality, we shows this only for the
state input of the stateful function call node nSF.

C.2 Operational semantics

In the small-step operational semantics, we use the store µ to define the relation of nodes
that can be executed. Evaluation is again from left to right as in s following the E-CTXT
rule from Figure 23. The construction of channels allocates dedicated locations in the store
and the types Send and Recv are effectively references to a store location l.

t | µ −→ t′ | µ′

let x1 : Recv<_> = chan v; t | µ −→ [x1 7→ l]t | µ, l 7→ (v ∼: []) (E-LETSRC)
where l ̸∈ dom(µ)

let (x1 : Recv<_>, x2 : Send<_>) = chan; t | µ −→ [x1 7→ l, x2 7→ l]t | µ, l 7→ [] (E-LETCHAN)
where l ̸∈ dom(µ)

For a source channel, the corresponding value is stored directly into the list and only the
receiving end is emitted. Hence, the channel emits exactly one data value and remains empty
for the rest of the computation. The receiving end x1 and the sending end x2 for all other
channels, point to the same location l in the store. A channel is initially an empty list. For
both types of channels, the evaluation makes a step using beta reduction.

The interesting part is the execution of the dataflow graph. Computation is complete
when there is a value in the channel of the final endpoint.

run(v, l) | µ, l 7→ (v ∼: []) −→ v | µ
E-DONE

∃vn ∈ vg. vn | µ −→ vn | µ′

run(vg, l) | µ, l 7→ [] −→ run(vg, l) | µ′ E-RUN

Otherwise, there must a node vn in the list of nodes vg that can take a step that updates
the store µ. This property holds because our linear typed construction does not allow for
dangling channels and the following rules for the nodes in the graph always send data in
every step. A stateless call node can make a step if its incoming channel referenced by label
l1 has data available:

fSL(v1) | ∅ ⇓ v′
1 | ∅

nSL(fSL, l1, l2 | µ,
l1 7→ (v1 ∼: v12),
l2 7→ v2

−→ nSL(fSL, l1, l2 | µ,
l1 7→ v12,
l2 7→ (v2 :∼ v′

1)

E-NSL

ECOOP 2023

33:38 ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

The node retrieves the head vi of the channel’s list, performs the call and appends the
resulting data value v′

1 to the list of the outgoing channel (l2). The execution of the stateless
function itself is the same as defined in the operational semantics for stateless calls (E-FSL)
in s defind in Section 4. Loop nodes follow the same execution pattern:

v1.size() | ∅ ⇓ n | ∅

for(l1, l2, l3) | µ,
l1 7→ (v1 ∼: v12),
l2 7→ v2,
l3 7→ v3

−→ for(l1, l2, l3) | µ,
l1 7→ v12,
l2 7→ (v2 :∼: v1),
l3 7→ (v3 :∼ n)

E-NLOOP

A loop node streams the incoming list v1 by concatenating (:∼:) it with the outgoing channel’s
list v2. We define list concatenation as usual:

xs :∼: (y1 ∼: (y2 ∼: . . . (yn ∼:)) . . .)) = (. . . ((xs :∼ y1) :∼ y2) . . . :∼ yn)

The loop node additionally emits the number of streamed elements n to a reuse node that
pairs it with the gated value:

reuse(l1, l2, l3) | µ,
l1 7→ (v1 ∼: v12),
l2 7→ (v2 ∼: v22),
l3 7→ v3

−→ reuse(l1, l2, l3) | µ,
l1 7→ v12,
l2 7→ v22,
l3 7→ (v3 :∼ (n, v1))

(E-NREUSE)

In our presentation, only state is reused. To do so, the stateful function node receives the
state value v2 with the attached reuse count n on its state channel l3.

ls.fSF (v1) | ls 7→ v3 ⇓ v22 | ls 7→ v′
3

nSF (fSF ,

l1,
l2,
l3,
l4

) | µ,

l1 7→ (v1 ∼: v12),
l2 7→ v2,
l3 7→ ((n, v3) ∼: v31),
l4 7→ v4

−→ nSF (fSF ,

l1,
l2,
l3,
l4

) | µ,

l1 7→ v12,
l2 7→ (v2 :∼ v22),
l3 7→ ((n − 1, v′

3) ∼: v31),
l4 7→ v4

E-NSFREUSE

ls.fSF (v1) | ls 7→ v3 ⇓ v22 | ls 7→ v′
3

nSF (fSF ,

l1,
l2,
l3,
l4

) | µ,

l1 7→ (v1 ∼: v12),
l2 7→ v2,
l3 7→ ((1, v3) ∼: v31),
l4 7→ v4

−→ nSF (fSF ,

l1,
l2,
l3,
l4

) | µ,

l1 7→ v12,
l2 7→ (v2 :∼ v22),
l3 7→ v31,
l4 7→ v4 :∼ v′

3

E-NSFEMIT

Rule E-NSFREUSE preserves the computed state v′
3 with a decremented reuse count in the

incoming state channel l3. When the reuse count is 1 then Rule E-NSFEMIT emits v′
3 to

the outgoing state channel. Both rules rely on ⇓ which requires the state value v3 to be
behind a reference ls. But ls exists solely to satisfy this requirements. It is not contained
anymore in our store µ. That is the result of the translation from an imperative into a
functional program in the ConDRust compiler. The trfix node (which we omit at this
point for brevity) follows the same principle to wait for a single recursive call to complete: It
enqueues a ⊥ data value into its incoming arc x1 that is dequeued only when a recursion is
finished and the resulting value was sent along the respective channel x6 (see T-NFIX).

C.3 Determinism
With the operational semantics and typing relation defined, we can prove that evaluation in

p and as such execution in ConDRust is deterministic. The evaluation relation keeps the
selection of the next node abstract. It just states the particular data availability requirements

F. Suchert, L. Zeidler, J. Castrillon, and S. Ertel 33:39

for the nodes to be evaluated. Stateful call nodes have more than one outgoing channel
effectively creating subgraphs, i.e., task-level parallelism, and potentially adding more than a
single successor into the evaluation relation. Additionally, a for-node emits a whole stream
of data values allowing the downstream nodes to be executed repeatedly, i.e., in a pipeline
parallel fashion. As such, there may be more than one node ready to be evaluated. The
evaluation relation does not specify a concrete evaluation order and applies to any scheduler
that follows the defined evaluation rules. As such, we show that evaluation in t | µ −→ t′ | µ′

is deterministic.

▶ Lemma 5 (Single-step Determinism). If t : T is a well-typed term in p then

t | µ, l 7→ vs −→ t′ | µ′, l 7→ (v ∼: vs) ∧
t | µ, l 7→ vs −→ t′′ | µ′,′, l 7→ (v ∼: vs) ⇒ t′ = t′′ ∧ µ′ = µ′′.

Proof Sketch. The proof is by induction on a derivation of t and the store µ. Assume a
term t′ whose activation into the evaluation relation requires data value v available at store
location l. For a term t whose evaluation places v into store location l, we distinguish the
following two cases:
1. t is the construction of a source channel or
2. t is the evaluation of an upstream node.
The first case is immediate. In the second case, we also know that by the induction hypothesis
the activations of this (upstream) node is deterministic. Now assume that t evaluates to t′′

by storing a value at location l. By the linear construction of the channels in the dataflow
graph, store location l only has a single receiver that is owned by exactly one node. Hence,
t′ = t′′ and consequently µ′ = µ′′. ◀

Dataflow graphs in p are essentially Kahn Process Networks (KPN) [31]. KPNs execute
deterministically because incoming arcs have blocking semantics13 and the executed code of
the node is scott-continuous. Our evaluation relation essentially adheres to both of these
properties.

However, lemma 5 is insufficient to prove determinism for the whole computation, i.e.,
for the multi-step evaluation t | µ −→∗ v | µ′:

▶ Theorem 6 (Determinism). If t : T is a well-typed term with ts
ConDRust−−−−−−→ t then

t | µ
c−−→

∗
v ∧ t | µ

c−−→
∗

v′ ⇒ v = v′.

The proof of this thereom needs a proof of termination which in turn requires two things:
well-founded recursion and cycle freedom. Cycle freedom is based on a formal specification
of the transformations in ConDRust to prove that the dataflow graph does not have cycles
other than the ones guarded by trfix nodes. This formalization is outside the scope of this
paper and left for future work.

13 Blocking semantics prevent the construction of a non-deterministic merge node, the explicit notion of
non-determinism in dataflow [2].

ECOOP 2023

Dependent Merges and First-Class Environments
Jinhao Tan #

The University of Hong Kong, China

Bruno C. d. S. Oliveira #

The University of Hong Kong, China

Abstract
In most programming languages a (runtime) environment stores all the definitions that are available
to programmers. Typically, environments are a meta-level notion, used only conceptually or
internally in the implementation of programming languages. Only a few programming languages
allow environments to be first-class values, which can be manipulated directly in programs. Although
there is some research on calculi with first-class environments for statically typed programming
languages, these calculi typically have significant restrictions.

In this paper we propose a statically typed calculus, called Ei, with first-class environments.
The main novelty of the Ei calculus is its support for first-class environments, together with an
expressive set of operators that manipulate them. Such operators include: reification of the current
environment, environment concatenation, environment restriction, and reflection mechanisms for
running computations under a given environment. In Ei any type can act as a context (i.e. an
environment type) and contexts are simply types. Furthermore, because Ei supports subtyping,
there is a natural notion of context subtyping. There are two important ideas in Ei that generalize
and are inspired by existing notions in the literature. The Ei calculus borrows disjoint intersection
types and a merge operator, used in Ei to model contexts and environments, from the λi calculus.
However, unlike the merges in λi, the merges in Ei can depend on previous components of a merge.
From implicit calculi, the Ei calculus borrows the notion of a query, which allows type-based lookups
on environments. In particular, queries are key to the ability of Ei to reify the current environment,
or some parts of it. We prove the determinism and type soundness of Ei, and show that Ei can
encode all well-typed λi programs.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases First-class Environments, Disjointness, Intersection Types

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.34

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.2

Funding Hong Kong Research Grant Council projects number 17209520 and 17209821 sponsored
this work.

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

In most programming languages, (runtime) environments are used to store all the available
definitions at a given point in a program. Typically, an environment is a dictionary that maps
variable names to values. However, environments are normally a meta-level concept, which
does not have any syntactic representation in source programs. Environments may be used
internally in the implementation of programming languages. For example, in implementing
functional languages, closures are often used to keep the lexical environment of a function
around. However, it is impossible for programmers to write directly a closure or manipulate
environments explicitly.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Jinhao Tan and Bruno C. d. S. Oliveira;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 34; pp. 34:1–34:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jhtan@cs.hku.hk
mailto:bruno@cs.hku.hk
https://doi.org/10.4230/LIPIcs.ECOOP.2023.34
https://doi.org/10.4230/DARTS.9.2.2
https://doi.org/10.4230/DARTS.9.2.2
https://doi.org/10.4230/DARTS.9.2.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Dependent Merges and First-Class Environments

First-class environments [18,23,24,29,36], are environments that can be created, com-
posed, and manipulated at runtime. In programming languages with first-class environments,
programs have an explicit syntactic representation for environments that enables them to
be first-class values. As argued by Gelernter et al. [18], with first-class environments, the
distinction between declarations and expressions can be eliminated. Furthermore many
programming language constructs – including closures, modules, records and object-oriented
constructs – can be modelled with first-class environments. However, only a few programming
languages allow environments to be first-class values. These languages are mainly dynamically
typed languages such as dialects of Lisp [18] and the R language [17]. Typically, operations
on environments include: reification (transforming environments into data objects), reflection
(treating data objects as environments), environment restriction (returning part of an envir-
onment), and environment composition/concatenation. While dynamically typed languages
with first-class environments give users high flexibility in manipulating environments, several
runtime type errors are unavoidable due to the absence of static typing.

Compared with work on dynamically typed languages, there is much less research
on statically typed languages with first-class environments [44, 45, 47]. In these works,
environments as first-class values have a special kind of type which is called an environment
type. Although static typing prevents some of the runtime errors, subtyping is not included
in existing type systems with environment types. At the term level, there are two constructs
for environments: one is an evaluation operation eJaK that evaluates the expression a under
an environment e, and the other is an operator returning the current environment. While
these two constructs model importing and exporting of environments respectively, there are
no facilities for concatenation or restriction of environments in these calculi.

In this paper we propose a statically typed calculus, called Ei, with first-class environments.
The main novelty of the Ei calculus is its support for first-class environments with an
expressive set of operators that manipulate first-class environments. In Ei, both reflection
mechanisms for running computations under a given environment and reification of the
current environment are supported. Moreover, compared with previous work on typed calculi
with first-class environments, environment concatenation and environment restriction are
allowed. In Ei, types and contexts (i.e. environment types) are completely unified. That is,
any type can act as a context and contexts are simply types. Unlike previous calculi, Ei also
supports subtyping and has a natural notion of subtyping of environments. In Ei, users can
benefit from static typing for handling type errors at compile-time, while still having various
flexible mechanisms to manipulate environments.

In order to model environments, the Ei calculus borrows disjoint intersection types and
the merge operator from the λi calculus [32]. The novelty in Ei is to additionally use
intersection types to model environment types (or contexts), and disjointness to model
disjointness/uniqueness of variables in an environment. Correspondingly, in Ei, the merge
operator enables constructing and concatenating environments. Moreover, unlike λi, the
merges in Ei can depend on previous components of a merge. In other words, merges in Ei are
dependent (note that the dependency in a merge is term-level dependency, and it should not
be confused with dependent types). Unifying contexts and types enables type information
flowing from the left branch to the right branch in a merge, such that the type of the left
branch becomes part of the context of the right branch. Consequently, with reification, the
right branch of a merge can construct an expression based on the left branch of a merge. For
example, the following program (with syntactic sugar)

{x = 1} # {y = x}

J. Tan and B. C. d. S. Oliveira 34:3

is well-typed in Ei. Here y in the right branch can access x and build a value under the
environment {x = 1}. The merge will be evaluated to {x = 1} # {y = 1}. Dependent merges
are useful for modelling dependent declarations, which are not expressible in λi since a field
in a single record cannot access the field in a previous record in a merge.

Instead of looking up values by names as in traditional lambda calculi, the Ei calculus
borrows the notion of a query, which enables type-based lookups on environments, from
implicit calculi [12,31,46]. In implicit calculi, queries are used to query implicit environments
by type. However, in Ei, queries are applied directly to runtime environments instead,
and they are key to the ability of Ei to reify the current environment, or some parts of it.
Effectively, a query can synthesize the current context (in typing) and the current environment
(during reduction). With type annotations, queries can choose part of the environment based
on those annotations, modelling environment restriction.

In our work, we prove the determinism and type soundness of Ei, and show that Ei can
encode all λi programs. The Ei calculus and all the proofs presented in this paper have been
formalized in the Coq theorem prover [9]. In summary, the contributions of this paper are:

Dependent merges as first-class environments: We propose the novel notion of
dependent merges, which allow dependencies appearing in merges. With dependent
merges, dependent declarations and first-class environments can be modelled easily in a
natural way.
The Ei calculus: We present a statically typed calculus called Ei with support for
creation, reification, reflection, concatenation and restriction of first-class environments.
In addition, we study an extension with fixpoints (shown in the appendix). Both calculi
are deterministic and type sound.
Encoding of the λi calculus: We show that Ei can encode the type system of the λi [32]
via a type-directed translation. In other words, standard variables, lambda abstractions,
and non-dependent merges can be fully encoded in Ei.
Coq formalization: All the results presented in this paper have been formalized in the
Coq theorem prover and they are available in the artifact associated to this paper:
https://github.com/tjhao/ecoop2023

2 Overview

This section gives an overview of our work. We start with some background on the merge
operator, first-class environments and program fragments. Then we discuss challenges of
modelling first-class environments as merges and finally we discuss the key ideas in our work.

2.1 Background
The merge operator and disjoint intersection types. The original non-dependent merge
operator (denoted here by , ,) was firstly introduced by Reynolds [38] and later refined by
Dunfield [15]. Merges add expressiveness to terms, enabling constructing values that inhabit
intersection types. Essentially, with the merge operator, values are allowed to have multiple
types. For example, the following program is valid:

let x : Bool & Int = true ,, 1 in (not x, succ x)

In the program above, the variable x has types Bool and Int, encoded by the intersection type
Bool & Int. At the term level, x is created with the merge operator and can be regarded as
either a boolean or an integer when used. For instance, in the program above there are two
uses of x , one as a boolean (as the argument to not) and one as an integer (as the argument
to succ). A language with the merge operator is able to extract the value of the right type

ECOOP 2023

https://github.com/tjhao/ecoop2023

34:4 Dependent Merges and First-Class Environments

Table 1 Summary of common operators on environments. E denotes an environment, I denotes
a set of identifiers, and T1 and T2 denote terms in the language.

Operator Description
export Exports/reifies the full current environment.

E\I
Returns a new restricted environment that only contains the
identifiers in I from the environment E.

import(T1, T2) Evaluates T1 to be an environment E1, and uses E1 to evaluate T2.

import(I, T1, T2)
Evaluates T1 to be an environment E1, checks that a set of
identifiers I are defined in E1, then uses E1 to evaluate T2.

E1, E2 Composes/concatenates two environments.

from merges. In many classical systems with intersection types, but without the presence of
the merge operator, the type Bool & Int cannot be inhabited and the program above is not
expressible [34].

An important issue that the merge operator introduces is ambiguity. What happens if
merges contain multiple values of the same type? For example, we could have (1,,2):Int,
but if this is allowed, then it could result in either 1 or 2. To address the ambiguity problem,
Oliveira et al. [32] presented the λi calculus, which imposed a restriction where only merges
of values that have disjoint types are accepted (we use A ∗ B to represent that A is disjoint
with B). In this way, ambiguous programs such as 1,,2 are rejected since Int is not disjoint
with itself. However, Bool and Int are disjoint, and thus true,,1 is a well-typed expression.

As Dunfield [15] argued, with the merge operator, many language features such as dynamic
typing, multi-field records, and operator overloading can be easily encoded. After that, several
non-trivial programming language features, including dynamic mixins [2], first-class traits [5],
nested composition [6,22] have been enabled with the help of the merge operator and disjoint
intersection types. These features provide the foundations for compositional programming [51],
which is a programming paradigm that enables a simple and natural solution to the Expression
Problem [49] and other modularity problems. Compositional programming is realized in the
CP language [51], which has been used to demonstrate the expressive power of the paradigm.

First-class environments. Normally, environments are not a syntactic entity of a pro-
gramming language. Instead, environments exist implicitly at the meta-level for defining
formal semantics and implementing languages. However, some dynamically typed languages,
including dialects of Lisp [18] or the R language [17], include support for first-class environ-
ments. There is a line of research work on first-class environments for dynamically typed
languages [18,23,24,29,36]. First-class environments provide a lot of expressive power, and
they are used to model many other language constructs. With first-class environments, it is
possible to model closures, modules, records or object-oriented constructs [18]. Moreover, it
is also possible to model declarations directly, eliminating the need to distinguish between
declarations and expressions.

To allow environments manipulated by not only compilers or interpreters but also
programmers, a form of reification and reflection of environments is needed. Reification
transforms environments into data objects and reflection enables data objects to be treated
as environments [23,24]. While formalizations differ, generally speaking, environments are
formalized as a mapping from variables to data objects, which can be manipulated at runtime.
We summarize typical supported operators to manipulate environments [36] in Table 1 (with
notations slightly changed).

J. Tan and B. C. d. S. Oliveira 34:5

Work on first-class environments for typed languages [44,45,47] comes with significant
restrictions compared to what is supported in dynamically typed languages. In these calculi,
types and environment types are defined such that environment types are a special kind of
type. The definition of types is A, B ::= A → B | . . . | E, and each environment type E

has the form of {x1 : A1, . . . , xm : Am} where Ai (1 ≤ i ≤ m) is a type and each variable xi

must be distinct (or disjoint) with each other. Environment types encode exactly the normal
typing context, which is a set that consists of typing assumptions xi : Ai. Correspondingly,
an environment has the form of {a1/x1, . . . , am/xm} that binds variables xi with terms
ai [44, 47]. There are two constructs related to environments:

The first construct returns the current environment which acts similarly to export.

The second construct is an evaluation operation eJaK that evaluates the expression a

under an environment e. Note that, this operation is similar to import(T1, T2) in Table 1
(where T1 corresponds to e and T2 corresponds to a).

With these two constructs, one can create an environment at run-time and use it for
evaluation. However, types are not totally unified with environment types in this setting,
which results in special treatment of environments. For example, the expression e in eJaK
can only be an environment. To avoid runtime errors, the typing rule for eJaK restricts the
type that e has to be an environment type. Existing type systems with environment types
do not consider subtyping. At the term level, though environments can be computed by
evaluation under other environments and function applications, concatenation or restriction
of environments are not supported. Therefore, an environment with a larger/smaller width
cannot be constructed on the fly either. In short, there is no subtyping and the operations
that are supported in dynamically typed languages in Table 1 are not fully supported in
typed calculi with first-class environments.

Program fragments and separate compilation. To motivate our work we will show how
first-class environments can be helpful to model a simple form of modules. Our form of
modules is inspired by Cardelli’s [7] program fragments. Here we first introduce the notion of
program fragments, and in Section 2.3 we will see how we can model program fragments
in Ei.

A program fragment, or module, is a syntactically well-formed expression where free
variables may occur [7]. Separate compilation decomposes a program into program fragments
that can be typechecked and compiled separately. A program fragment may contain free vari-
ables. However, if the required interface that contains adequate type information is specified,
then the types of the free variables can be found (without any concrete implementation).
Thus, the typechecking of a program fragment can still be carried out separately.

In a conventional calculus, such as the simply typed lambda calculus (STLC), we express
abstractions over a variable annotated with a type. However, there are no facilities for
abstracting over an interface that may consist of multiple (nested) type assumptions. In
other words, the STLC is not powerful enough to model separate compilation.

Cardelli [7] proposed a calculus of program fragments for the STLC, and specified
high-level abstractions for modules and interfaces. In Cardelli’s framework, interfaces are
interpreted as typing contexts that are external to the language. A module that may require
an interface/context is represented as a binding judgment E ⊢ d ∴ S, where E is a context,
d a list of definitions, S a list of type declarations. Take the following modules from Cardelli
as an example:

ECOOP 2023

34:6 Dependent Merges and First-Class Environments

module
import nothing
export x:Int
begin

x : Int = 3
end.

module
import x:Int
export f:Int → Int, z:Int
begin

f : Int → Int = λ(y:Int).y+x
z : Int = f(x)

end.

These two modules can be modelled as two binding judgments:

∅ ⊢ (x : Int = 3) ∴ (x : Int)
x : Int ⊢ (f : Int → Int = λ(y : Int).y + x, z : Int = f(x)) ∴ (f : Int → Int, z : Int)

A module is encoded as a list of definitions d, with an import list modelled as a context
E and an export list as type declarations S. In the second module, z relies on f. To
model such dependency, the binding judgment E ⊢ d ∴ S is designed to be dependent: each
component depends on its previous components in d, in the sense that every free variable
in this component can refer to its corresponding type. To check whether z : Int = f(x) is
matched by z : Int, the type declaration f : Int → Int is appended to the original context
x : Int to be a type assumption. In this way, the second binding judgment can be checked
separately since each variable can access sufficient type information.

Though each binding judgment can be separately compiled to a self-contained entity
called a linkset, user-defined abstractions cannot be expressed in Cardelli’s work, since a
binding judgment itself is a meta-level notion that cannot be created by programmers. In
our work, we also regard interfaces as typing contexts. However, we unify typing contexts
and types, and there are first-class constructs that abstract over a type/interface. We will
discuss our ideas in detail in Section 2.3.

2.2 Limitations of Non-Dependent Merges
As Section 2.1 argued, both the (non-dependent) merge operator and first-class environments
are useful to model a variety of other language constructs. Some of these language constructs
can even be modelled by both merges or first-class environments. Given the overlap between
merges and first-class environments it is reasonable to try to unify them, to obtain a more
powerful model of statically typed languages with first-class environments. Our goal is to
use merges to model first-class environments. However, non-dependent merges in existing
calculi such as λi are inadequate for this purpose. This section discusses the limitations of
non-dependent merges that are addressed by us.

No support for reification and reflection of environments. Intersection types and the
merge operator are powerful tools that enable many language features, one of which is
multi-field records [40]. In fact, multi-field record types can be turned into an intersection of
single-field record types:

{l1 : A1, . . . , ln : An} ≡ {l1 : A1} & · · · & {ln : An}

Recall the syntax of conventional typing contexts: Γ ::= · | Γ, x : A. A typing context is a list
of pairs that bind variables with types. If we view variables as labels, typing contexts can be
encoded as multi-field records, which are further desugared to intersections of single-field
record types. Similarly, at the term level, a multi-field record is expressed as a merge of
single-field ones:

J. Tan and B. C. d. S. Oliveira 34:7

{l1 = e1, . . . , ln = en} ≡ {l1 = e1} , , . . . , , {ln = en}

For example, {x = 2, y = 4} is encoded as {x = 2} , , {y = 4}. In calculi with a merge
operator, merges are always first-class expressions and thus they can be passed to functions.

However, in previous calculi with the merge operator [15, 32, 38], merges are not used
to model environments. Therefore, there are no reification and reflection facilities for
environments in those calculi. Furthermore, intersection types are not used to model
contexts, and there is no construct that enables running some computation under a local
environment. In short, previous calculi with the merge operator support concatenation, but
they do not support other operations in Table 1.

No dependent merges. An important limitation of merges in previous work with respect
to environments is that they cannot be dependent. Many programming languages, as well as
Cardelli’s program fragments, support declarations such as:

let x = 2
let y = 4

which allows several declarations to be associated with expressions. For the declarations
above, we can easily model them as a (non-dependent) merge of two single field records:

{x = 2},,{y = 4}

where variables x and y are encoded as field names (or labels), and the values assigned to
variables are modelled as record fields.

The previous declarations are non-dependent, in the sense that the expression assigned
to y does not refer to x. However, in practice many declarations are dependent, where the
current declaration relies on previous ones. For instance, fairly often we may have a program:

let x = 2
let y = x + x
let main = x + y

where y depends on x and main depends on both y and x. The traditional non-dependent
merge operator cannot capture such cases. To be concrete, consider the typing rule for
merges from λi [32]:

Γ ⊢ e1 ⇒ A Γ ⊢ e2 ⇒ B A ∗ B

Γ ⊢ e1 , , e2 ⇒ A & B
Typ-merge

Here A ∗ B expresses that A and B are disjoint types. For typing a merge e1 , , e2, the typing
context for the right branch e2 is Γ and does not contain any type information about the
left branch e1. When typing e2, the type of e1 is never used during the typing procedure.
As a result, e2 cannot be built by referring to e1. Moreover, to cooperate with the static
semantics, the two branches of e1 , , e2 are evaluated separately without dependency involved
in the dynamic semantics of λi. That is, the environment for evaluating e2 does not contain
the evaluation result of e1.

The incapacity of encoding dependent declarations as first-class expressions exposes
that λi is not able to fully model module-related language features. Since dependent
definitions/declarations often occur in a module, as shown in our discussion on program
fragments in Section 2.1.

ECOOP 2023

34:8 Dependent Merges and First-Class Environments

2.3 Key Ideas
In this work, we utilize the merge operator together with new constructs to enable dependent
merges and first-class environments. We concretize these ideas in a new calculus called Ei.
The key ideas of our work are discussed next.

Typing contexts as types. In Ei the typing context in the typing judgment is a type instead
of an association list. Our grammar for both types and contexts is:

A, B, Γ ::= Int | Top | A → B | A & B | {l : A}

A typing assumption x : A in conventional calculi is modelled as a record type, and the
intersection of two types plays a similar role to the concatenation of two association lists.
However, the contexts in our work are not restricted to intersections of record types. In
fact, any type (e.g., Int) defined in the syntax of Ei can be a typing context. If a context
consists only of Top (the top type), then there is no type information in this context, which
corresponds to an empty association list. As we will see, viewing typing contexts as types
opens up the possibility of creating interesting language features.

Unifying environments and expressions. Just as typing contexts are types in Ei, envir-
onments in the reduction semantics are just values instead of association lists which bind
variable names to values. Hence, environments are first-class in our setting. The top value ⊤
is used to model the empty environment. A merge of two values can be viewed as concatena-
tion of two environments. For example, the merge {x = 1} # {y = 2} is a valid environment
that binds 1 and 2 to x and y respectively. In Ei, we denote the merge operator by a single
comma (#) to follow the notation conventionally used in programming languages to denote
the concatenation of two environments. With record projection, the value bound to a label
can be accessed. Note that unifying environments and values and viewing variables as labels
means that extra syntax (or data structures) for environments is not needed. This is different
from previous work on typed calculi with first-class environments where an explicit notion of
environments is introduced [44,45,47].

In Ei, we have two constructs to support reification (or exporting) and reflection (or
importing) of environments. For reification, we employ the query construct ?. The query
construct is inspired by the implicit calculus [12], where queries are used to query implicit
environments by type. In Ei we apply queries directly to runtime environments instead,
whereas in the implicit calculus, access to the regular environments is done conventionally
using named variables. The typing rule for ? is simply:

Γ ⊢ ? ⇒ Γ

i.e. the query ? synthesizes the current context. For example, {x : Int} ⊢ ?.x ⇒ Int is valid.
Here ? obtains the current environment and accesses the field x.

Regarding the reflection of environments, there is a construct e1 ▷ e2 that is called box in
Ei. In a box, e2 is assigned an expression e1, which is evaluated to be a value that acts as an
environment for evaluating e2. Take {x = 1 + 1} ▷ ?.x + 1 as an example. The expression
{x = 1 + 1} is given as the environment to ?.x + 1. Then {x = 1 + 1} is evaluated to {x = 2},
under which ?.x + 1 is evaluated to 3. The box construct can be seen as the inverse operator
of the query, since ? ▷ e is equivalent to e in the sense that ? exports the full environment by
default. Allowing e1 in the box e1 ▷ e2 to be any well-typed expression instead of a value
adds expressiveness to reflection. For example, environment injection can be encoded as
(? # v) ▷ e where v is added to the original environment for e locally.

J. Tan and B. C. d. S. Oliveira 34:9

In Ei, type annotations play a role in information hiding. For example, for a merge with an
annotation ({x = 1} # {y = 2}) : {x : Int}, only {x = 1} is visible. Type annotations provide
a mechanism to enable restriction, since they are able to prevent visibility of certain values.
Since environments are values in our setting, type annotations can seal the environment, such
that only components named in the type are accessible. Therefore, reification and reflection
are type-directed in Ei. With type annotations, users can choose part of the environment
that they desire. In summary, Ei can essentially model all the operations on environments in
Table 1 with the following expressions:

? reifies the entire environment;
? : A obtains part of the environment that has type A;
e1 ▷e2 evaluates e1 to an environment and uses that to evaluate e2 under that environment;
(e1 : A) ▷ e2 evaluates e1, but restricts the resulting environment to A and uses that to
evaluate e2;
e1 # e2 concatenates two environments e1 and e2.

Dependent merges. To model dependent declarations, the merges in our work are dependent.
The right branch can refer to the type of the left branch. The typing rule for dependent
merges is:

Γ ⊢ e1 ⇒ A Γ & A ⊢ e2 ⇒ B A ∗ Γ A ∗ B

Γ ⊢ e1 # e2 ⇒ A & B
Typ-dmerge

Modelling typing contexts as types enables type information flowing from the left branch to
the right branch in a merge. Specifically, for e1 # e2, the type of e1 is added into the current
context such that e2 synthesizes a type under the intersection type Γ & A.

Suppose that the current context Γ is a subtype of some type B, with type annotation,
? : B exports B from Γ. With the query construct, a dependent declaration can be encoded
as a dependent merge:

{x = 2} # {y = (?:{x:Int}).x + (?:{x:Int}).x}

which has type {x : Int} & {y : Int}. The annotated query ? : {x : Int} exports {x : Int} from
the context, and projection (? : {x : Int}).x infers the type Int. Note that Ei is meant as a
minimal core calculus and it is not built with convenience in mind. So the expression above
is more cumbersome than what a programmer would expect to write in a source language.
With some basic support for type inference and syntactic sugar in a source language, we
could write instead:

{x = 2} # {y = ?.x + ?.x}

or even:
{x = 2} # {y = x + x}

In Section 5 we show how some of this syntactic sugar and inference can be achieved. For
readability purposes, in the following examples, we will take the liberty to use a more
lightweight syntax for the examples written in Ei as well.

In general, dependent declarations can be modelled as a merge of expressions e1 # · · · # en,
where the type information accumulates from e1 to en. Modelling declarations as merges
means that while we can benefit from the expressiveness of the merge operator, we do not
need to introduce an additional syntax for declarations. Besides the condition A ∗ B that
avoids conflicts between two branches in a merge, in the typing rule for dependent merges
there is an extra disjointness condition A ∗ Γ to ensure that the new environment has no
conflicts. This extra disjointness condition is needed to ensure that reduction is deterministic
in Ei.

ECOOP 2023

34:10 Dependent Merges and First-Class Environments

TDOS environment-based semantics. In Ei, an environment-based semantics, expressed
by a reduction relation of the form v ⊢ e1 ↪→ e2, is employed to capture the dynamic behavior
of expressions. In contrast to more conventional small-step reduction relations, which are
typically based on substitution and beta reduction, here v plays the role of the runtime
environment and no substitution is needed during reduction. Basically, an environment
is stored during evaluation and the expression being evaluated can access it. During the
reduction procedure, the environment can be changed locally. For example, suppose that
the current environment is v, to evaluate a dependent merge e1 # e2. The left branch e1 is
evaluated to a value v1 first. After that, v1 is merged with v such that e2 is evaluated under
v # v1. As a result, e2 is able to access and fetch v1. For instance, the dependent merge

{x = 2} # {y = ?.x + ?.x}

is evaluated to {x = 2} # {y = 4} under ⊤, since

{y = ?.x + ?.x}

is evaluated to {y = 4} under the environment ⊤ # {x = 2}.
The reduction semantics is based on a type-directed operational semantics (TDOS),

following the semantics of calculi with the merge operator [21]. As we have seen, type
annotations can be used to remove information from values. Thus, unlike many other calculi,
the semantics of Ei is type-dependent. That is, types affect the runtime behavior. To
deal with such type-dependent semantics based on giving an operational behavior to type
annotations we use a TDOS. In the TDOS there is a casting relation v ↪→A v′, where types
are used to guide reduction. Since an environment can be selected by a type annotation,
casting also acts as a tool for synthesizing values in Ei. During the reduction of an annotated
query ? : A under environment v, casting is triggered, and v′ is synthesized as the result.
Take the program above as an example, to evaluate ? : {x : Int}, which is needed in the
projection ?.x , the following cast is triggered:

⊤ # {x = 2} ↪→{x:Int} {x = 2}

In essence, the cast extracts the value {x = 2} matching the type being cast. With this
value, we can further build an expression for the right part of the merge.

Abstractions in Ei. In Ei, an abstraction has the form {e}m where m denotes a mode.
There are two modes for abstractions: • and ◦. Here we focus on {e}•. Compared with a
normal lambda abstraction λx.e, there is no variable binding in {e}•, since values in the
environment are looked up by types via the query construct instead of by variable names. For
example, after {?}• : Int → Int is applied with integer 1, the input 1 is put in the environment
for evaluating ? : Int, and then the query construct looks up a value of type Int, which is 1.
We require that a well-typed abstraction {e}• has a type annotation. The (slightly simplified)
typing rule for abstractions is:

Γ ∗ A Γ & A ⊢ e ⇐ B

Γ ⊢ {e}• : A → B ⇒ A → B
Typ-abs

Similarly to typing normal lambda abstractions, where a typing assumption x : A is added
to the typing context, for typing {e}• in Ei, the input type of {e}• is added into the context
to type check the body e. For example, Top ⊢ {?}• : Int → Int ⇒ Int → Int is valid, since
under Top & Int, ? can check against Int. Besides, there is also a disjointness condition in
this rule, which ensures that there are no conflicts between the context and the input type.

J. Tan and B. C. d. S. Oliveira 34:11

Ambiguity would happen without such a condition since, if the body e contains a ?, there
would be different answers to the query ?, as shown in the following example (Γ ⊢ e is used
to denote the situation that the current context for e is Γ):

Int ⊢ ({?}• : Int → Int) 2

Suppose that the current environment contains only the value 1, which is of type Int. After
the function is applied to 2, both 1 and 2 appear in the environment, and they have the
same type Int. If ? desires a value of type Int, then there are two candidates, which results
in ambiguity. Thus the condition Γ ∗ A prevents such programs. On the other hand, the
following program is safe in the context Int, since there is only one value, which is 1, having
type Int in the environment.

Int ⊢ ({?}• : Bool → Int) true

In general, conventional calculi where variables are involved normally ensure that a typing
context is unique, i.e., all variables in it are distinct. In our calculus, disjointness plays
a similar role as uniqueness. A function cannot accept expressions that have overlapping
types with the current context. For record types, {x : Int} is not disjoint with itself, so the
following is not allowed:

{x : Int} ⊢ ({?.x}• : {x : Int} → Int) {x = 1}

In contrast, the following expression is well-typed in the context {x : Int}, since two record
types are disjoint if they have distinct labels:

{x : Int} ⊢ ({?.x}• : {y : Int} → Int) {y = 1}

Note that the use of records and distinct label names is how we can model conventional
functions that take several arguments of the same type. That is, we can use labels to
unambiguously distinguish between arguments of the same type, similarly to the use of
distinct variable names in conventional lambda abstractions.

The abstractions in Ei essentially abstract over an interface if we view interfaces as types.
The example from Cardelli in Section 2.1 can be encoded in our calculus:

{M = {x = 3}}

{N = {{f = {?.y + ?.x}◦ : {y : Int} → Int} # {z = (?.f) (?.x)}}• : {x : Int} → {f : Int → Int} & {z : Int}}

Each module is modelled as a record (if the module does not import anything) or a function
that returns a record (if the module imports something). A group of related definitions is
expressed as a dependent merge of some other records. An interface, such as the interface of
N , that contains typing assumption(s) is encoded as input type(s) of an abstraction, and the
export list is the output type. Since merges are dependent in Ei, in the second module z

is able to call f . With the ◦ mode abstraction, standard lambda abstractions can also be
encoded (we will discuss this in Section 5). Both modules are typeable separately (in the
empty context). Moreover, we can apply N with M , since (?.N) (?.M) is typeable in the
context containing N and M . Note that such an application is not expressible in Cardelli’s
work, since modules are not first-class in his setting.

Closures as a special case of boxes. As in usual environment-based semantics, closures
are used in Ei to keep lexical environments around. However, given that we have the box
construct in Ei, we do not need to invent a separate construct for closures. In fact, closures

ECOOP 2023

34:12 Dependent Merges and First-Class Environments

have the form of v ▷ {e}• : A → B, which is just a special case of a box. In a box closure, the
environment is a value and the expression under the environment is an annotated abstraction.
Note that closures are values and the abstraction inside is not evaluated. Instead, when a
closure is applied with a value, the value is put in the environment of the closure, and the
body of the abstraction is going to be evaluated under the extended environment. Take the
following evaluation as an example:

({{?}• : Int → Bool}• : Bool → Int → Bool) true 1
↪→ (⊤ ▷ {{?}• : Int → Bool}• : Bool → Int → Bool) true 1
↪→∗ (⊤ # true ▷ {?}• : Int → Bool) 1

↪→ ⊤ # true # 1 ▷ ? : Bool

↪→∗ true

The abstraction takes a boolean and an integer as input and returns the boolean. At first, it
is packed up with the empty environment to form a closure. Then the two values true and 1
are merged with the environment to evaluate the body ? : Bool. With casting, the annotated
query is evaluated to true.

Encoding λi. To demonstrate the expressiveness of Ei we show that it can encode all
well-typed programs in the λi calculus [32]: an existing calculus with non-dependent merges
and without first-class environments. There are two non-obvious obstacles in the encoding.
Firstly, unlike Ei, the λi calculus is a conventional lambda calculus with conventional lambda
abstractions and variables. Our encoding of λi shows that queries and abstractions in Ei can
encode conventional variables and lambda abstractions. The second obstacle in the encoding
is that dependent merges have more disjointness constraints than non-dependent merges.
Therefore, it is not clear how some non-dependent merges may be encoded. However, a
combination of dependent merges and other constructs in the Ei calculus enables an encoding
of all non-dependent merges. Section 5 details the encoding and proves that all typeable
programs in λi are encodable and typeable in Ei.

3 The Ei Calculus

In this section we present the Ei calculus, which is a calculus with dependent merges and
first-class environments. In Ei, type contexts are types, and run-time environments can be
assembled, composed, manipulated explicitly, and used to run computations under such
environments.

3.1 Syntax
The syntax of Ei is as follows:

Labels l, x, y, z, . . .
Types and Contexts A, B, Γ ::= Int | Top | A → B | A & B | {l : A}
Function modes m ::= • | ◦
Expressions e ::= ? | i | ⊤ | {e}m | e1 ▷ e2 | e1 e2 | e1 # e2 | e : A | {l = e} | e.l
Values v ::= i | ⊤ | v ▷ ({e}• : A → B) | v ▷ ({e}◦ : {l : A} → B) | {l = v} | v1 # v2

Types and contexts. In Ei there is no syntactic distinction between types and contexts:
contexts are types and any type can be a context. In standard calculi typing contexts are
lists of typing assumptions of the form x : A that associates variable x with type A. This

J. Tan and B. C. d. S. Oliveira 34:13

particular case is encoded in Ei with a single-field record type {x : A}. For clarity, we use
different meta-variables to denote different uses of types (A, B, C, etc.) and contexts (Γ).
Two basic types are included: the integer type Int and the top type Top. Function types and
intersection types are created with A → B and A & B respectively. {l : A} denotes a record
type in which A is the type of the field. Multi-field record types can be desugared to an
intersection of single-field record types [32,40].

Expressions. Meta-variable e ranges over expressions. Expressions include some constructs
in standard calculi with a merge operator: integers (i); a canonical top value ⊤, which can
be seen as a merge of zero elements; annotated expressions (e : A); application of a term e1
to term e2 (denoted by e1 e2); and merge of expressions e1 and e2 (e1 # e2). The expression
{l = e} denotes a single-field record where l is the label and e is its field. Similarly to record
types, a multi-field record can be viewed as a merge of single-field records. Projection e.l
selects the field from e via the label l.

Besides these standard constructs, there are some novel constructs in our system. Unlike
standard calculi, where variables are used to lookup values, we borrow the query construct ?
from implicit calculi [12] to synthesize values by types. However, unlike implicit calculi, in
Ei we can completely eliminate the need for variables, since a combination of queries and
other constructs can encode traditional uses of variables. Such encoding will be discussed
in detail in Section 5. The absence of variables simplifies binding in comparison to other
calculi. {e}m stands for abstractions in which m is the mode of an abstraction and can be
either • or ◦. Abstractions play the same role as lambda abstractions, but they abstract over
the input type of the function, instead of abstracting over a variable. The ◦ mode denotes a
special form of abstraction that is useful to encode lambda abstractions. The term e1 ▷ e2 is
called a box. A box assigns a local environment e1 for e2, and e2 is not affected by the global
context or environment. In other words, boxes allow the computation of e2 to be performed
under the runtime environment resulting from e1.

Values. The meta-variable v ranges over values. Values include integers, the canonical ⊤
value, closures, merges of values and records in which the field is a value. Closures are a
special kind of box, in which the local environment e1 is a value and e2 is an annotated
abstraction. For closures, the type annotation for {e}• can be any arrow type, whereas the
input type of the type annotation for {e}◦ can only be a record type.

3.2 Subtyping and Disjointness
Subtyping. The subtyping rules, shown in Figure 1, are standard for a calculus with
intersection types [13], but they include an additional rule S-rcd for subtyping record types.
Note that the combination of the subtyping rules for intersection types and record types
enables us to express both depth and width subtyping for multi-field record types (which are
just encoded as intersections of single-field record types). This extended subtyping relation
is reflexive and transitive [22].

Disjointness. Compared to λi, disjointness is defined in a slightly different way, inspired
by an approach suggested by Rehman et al. [37]. To make two functions or two records
mergeable, we define disjointness based on ordinary types whose definition is shown in
Figure 1. There are two variants of ordinary types in Ei. The one for defining disjointness
contains premises marked in gray. In this variant, ordinary types are inductively defined to
be types where the top type and intersection types can never appear (except as input types
of functions). With the help of ordinary types, we define disjointness as:

ECOOP 2023

34:14 Dependent Merges and First-Class Environments

A <: B (Subtyping)

S-z

Int <: Int

S-top

A <: Top

S-arr
B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2

S-andl
A1 <: A3

A1 & A2 <: A3

S-andr
A2 <: A3

A1 & A2 <: A3

S-and
A1 <: A2 A1 <: A3

A1 <: A2 & A3

S-rcd
A <: B

{l : A} <: {l : B}

Ordinary A (Ordinary Types)

O-int

Ordinary Int

O-arrow
Ordinary B

Ordinary A → B

O-rcd
Ordinary B

Ordinary {l : B}

Figure 1 Subtyping and ordinary types.

▶ Definition 1 (Disjointness). A ∗ B ≡ ¬(∃C, Ordinary C ∧ A <: C ∧ B <: C)

Two types are disjoint if and only if the two types do not share any common ordinary
supertype. We have proved that our definition of disjointness is equivalent to the one
employed by Huang et. al [22] in their formulation of λi. This definition states that atomic
values, which can inhabit the two types, cannot have overlapping types. Importantly, our
definition allows two arrow types or two record types to be disjoint. For example, Int → Bool
is disjoint with Int → Char as the two types do not share a common ordinary supertype.
Note that there is also an equivalent algorithmic definition of disjointness, which is shown in
the appendix. Some of the fundamental properties of disjointness are shown next:

▶ Lemma 2 (Disjointness Properties). Disjointness satisfies:
1. If A ∗ B, then B ∗ A.
2. A ∗ (B & C) if and only if A ∗ B and A ∗ C.
3. If A ∗ (B1 → C), then A ∗ (B2 → C).
4. A ∗ B if and only if {l : A} ∗ {l : B}.
5. C ∗ D if and only if (A → C) ∗ (B → D).
6. If A <: B and A ∗ C, then B ∗ C.

3.3 Bidirectional Typing
The type system of Ei shown in Figure 2 is bidirectional. There are two modes of typing,
where ⇒ and ⇐ denote the synthesis and checking modes respectively. The notation ⇔ is a
metavariable for typing modes. The meaning of typing judgment Γ ⊢ e ⇔ A is standard:
under the context Γ (which is a type), expression e can synthesize (with ⇒) or check against
(with ⇐) A.

Typing the query construct. Rule Typ-ctx states that ? can synthesize the context. With
rule Typ-sub, ? checks against any type that is a supertype of the context. In addition, with
rule Typ-anno, under a context Γ, for any supertype A of Γ, ? : A can synthesize A. Since

J. Tan and B. C. d. S. Oliveira 34:15

Γ ⊢ e ⇔ A (Bidirectional Typing)

Typ-lit

Γ ⊢ i ⇒ Int

Typ-ctx

Γ ⊢ ? ⇒ Γ

Typ-top

Γ ⊢ ⊤ ⇒ Top

Typ-anno
Γ ⊢ e ⇐ A

Γ ⊢ e : A ⇒ A

Typ-abs
Γ ∗ A C <: Am Γ & A ⊢ e ⇐ B

Γ ⊢ {e}m : A → B ⇒ C → B

Typ-app
Γ ⊢ e1 ⇒ A → B Γ ⊢ e2 ⇐ A

Γ ⊢ e1 e2 ⇒ B

Typ-box
Γ ⊢ e1 ⇒ Γ1 Γ1 ⊢ e2 ⇒ A

Γ ⊢ e1 ▷ e2 ⇒ A

Typ-rcd
Γ ⊢ e ⇒ A

Γ ⊢ {l = e} ⇒ {l : A}

Typ-proj
Γ ⊢ e ⇒ {l : A}

Γ ⊢ e.l ⇒ A

Typ-sub
Γ ⊢ e ⇒ A A <: B

Γ ⊢ e ⇐ B

Typ-mergev
Γ ⊢ v1 ⇒ A Γ ⊢ v2 ⇒ B v1 ≈ v2

Γ ⊢ v1 # v2 ⇒ A & B

Typ-dmerge
Γ ⊢ e1 ⇒ A Γ & A ⊢ e2 ⇒ B A ∗ Γ A ∗ B

Γ ⊢ e1 # e2 ⇒ A & B

Type Extraction Am

A• = A

{l : A}◦ = A

Figure 2 Bidirectional type system of Ei. The syntax for the bidirectional modes is defined as
⇔ ::= ⇒ | ⇐.

contexts are types in our system, a supertype of a type means a portion of a typing context.
By annotating ? with a supertype of the context, we can proactively pick the desired type
information (or equivalently, hide part of type information) from the context. For example,
Int & Bool ⊢ ? : Int ⇒ Int is valid, and allows us to pick Int from a typing context with
Int & Bool.

Typ-anno

Typ-sub
Int & Bool ⊢ ? ⇒ Int & Bool Int & Bool <: Int

Int & Bool ⊢ ? ⇐ Int
Int & Bool ⊢ ? : Int ⇒ Int

Typing abstractions. Rule Typ-abs is the typing rule for abstractions. An abstraction can
synthesize an arrow type, in which the shape of the input type is determined by the mode.
For {e}• : A → B we simply synthesize the type A → B. For {e}◦ with an annotation, {e}◦ is
well-typed only if the input type is a record type. Furthermore {e}◦ : {l : A} → B synthesizes
A → B where A is extracted from {l : A}. This peculiar treatment of {e}◦ : {l : A} → B

is because we wish to be able to model conventional lambda abstractions of the form
λl. e : A → B faithfully. In conventional lambda abstractions, the labels or variable names
are only used internally, but they are not reflected on the type. The {e}◦ abstractions model
this behavior and also hide the label information on the type. While an abstraction with the
• mode accepts an expression of a type which is the exact input type of its annotation, a
well-typed abstraction with the ◦ mode can only have an annotation of form {l : A} → B.
The label information for the input type is forgotten for the overall type of the abstraction.

Note also that, for obtaining type preservation, there is a subtyping condition in rule Typ-
abs, similarly to the approach employed by Huang and Oliveira [21]. In an implementation
of Ei, this subtyping condition can be omitted and we can let {e}m : A → B infer Am → B

directly, since the condition is only used in Ei to ensure that closures, which are used during

ECOOP 2023

34:16 Dependent Merges and First-Class Environments

reduction at runtime, are type-preserving. In addition to avoiding ambiguity of the type-based
lookups, when we introduce assumptions into the context, we need to ensure that the new
assumptions are disjoint to the existing assumptions in the environment. Thus rule Typ-abs
also has a disjointness premise to ensure this.

Typing dependent merges. Rule Typ-dmerge is the typing rule for merges. Unlike
previous work for intersection types and the merge operator [22], the merges are dependent
in our work. For a specific merge e1 # e2, the right branch e2 may depend on the left branch
e1. The typing context for e2 in the premises is the intersection type Γ & A, which means
that e2 is affected by not only the global context Γ but also the synthesized type of e1. In
this way, e2 can be constructed with the information of e1, as illustrated by the following
example:

{z : Int} ⊢ {x = 1} # {y = (? : {x : Int}).x + 1} ⇒ {x : Int} & {y : Int}

The right branch {y = (? : {x : Int}).x + 1} makes use of the type information of the left
branch, by using ? to pick {x : Int} from {z : Int} & {x : Int}. Then it will be able to utilize
the value information from {x = 1} to evaluate the expression in the right branch of the
merge.

There are two disjointness conditions in rule Typ-dmerge. One is A ∗ B, which makes
two branches e1 and e2 be merged safely without ambiguities as in previous work [22].
However, this condition is not sufficient to prevent all the conflicts between values when the
merges are dependent. An additional disjointness condition A ∗ Γ is needed to ensure that
the synthesized type of the left branch e1 is disjoint with the context. Without this extra
condition, there can be conflicts between e1 and the current environment. Take the following
as an example:

(Int → String) & Int ⊢ 2 # ((? : Int → String) (? : Int))

The context contains type Int → String and Int, and the left branch, 2, has type Int which
clashes with the Int that is already in the context. The right branch is an application, which
picks a closure and another integer value, say 1, from the current environment. Suppose
that the closure returns the string representation of the input integer. Then ? : Int in the
right branch can choose either 1 from the environment or 2 from the left branch, and the
merge above can be non-deterministically evaluated to either 2 # “1” or 2 # “2”. Since we
wish to have deterministic evaluation, we prevent such cases with the additional disjointness
condition A ∗ Γ.

Consistency, boxes and closures. Rule Typ-mergev is the typing rule for consistent
merges. This rule is identical to the rule in previous work using non-dependent merges [21].
Like in previous work, rule Typ-mergev is a special run-time typing rule for merges of
values and can be omitted in a programming language implementation. If two consistent
values are well-typed then it is safe to merge them together. One may wonder why in this
rule the context is not extended with A to type-check v2. The reason is that values are
closed, so they cannot depend on the information that is present in the context. During the
reduction process, such information has been already filled in into the values. Consistency is
defined in terms of casting (whose definition is shown in Figure 3):

▶ Definition 3 (Consistency). Two values v1 and v2 are said to be consistent (written as
v1 ≈ v2) if for any type A, the result of casting for the two values is identical.

v1 ≈ v2 ≡ ∀ A, if v1 ↪→A v′
1 and v2 ↪→A v′

2 then v′
1 = v′

2

J. Tan and B. C. d. S. Oliveira 34:17

v ↪→A v′ (Casting)

Casting-int

i ↪→Int i

Casting-top

v ↪→Top ⊤

Casting-arrow
¬⌉D⌈ C <: Am B <: D

v ▷ ({e}m : A → B) ↪→C→D v ▷ ({e}m : A → D)

Casting-arrowtl
⌉D⌈ C <: Am B <: D

v ▷ ({e}m : A → B) ↪→C→D (C → D)↑

Casting-mergevl
v1 ↪→A v′

1 Ordinary A

v1 # v2 ↪→A v′
1

Casting-mergevr
v2 ↪→A v′

2 Ordinary A

v1 # v2 ↪→A v′
2

Casting-and
v ↪→A v1 v ↪→B v2

v ↪→A & B v1 # v2

Casting-rcd
v ↪→A v′

{l = v} ↪→{l:A} {l = v′}

Figure 3 Casting of Ei.

Given two values, if they have disjoint types, then they are consistent:

▶ Lemma 4 (Disjointness implies consistency). If A ∗ B, Γ1 ⊢ v1 ⇒ A, and Γ2 ⊢ v2 ⇒ B,
then v1 ≈ v2.

Rule Typ-box is the rule for boxes. To make a box e1 ▷ e2 well-typed, the global context
Γ is replaced for e2 with type Γ1, which is the synthesized type of the local environment
e1. In other words, the expression e2 in the box is only affected by the local context. As a
special kind of box, closures are closed since the local environment for them is a value and
this information is stored for the abstraction. Thus, it is always safe to change the context
for closures to any other context. However, we cannot do that for abstractions. For example,
if the context for {?}• : Int → Int is changed from Top to Int, then the disjointness condition
in rule Typ-abs is broken.

Generally speaking, changing the typing context may introduce more type information
such that disjointness does not hold anymore. For example, suppose that the current context
is Int, which is disjoint with Char & Bool. If we replace Int with Int & Bool, then the new type
information Bool is introduced in the context and it conflicts with Char & Bool. For disjoint
values, Lemma 4 ensures that the values are also consistent, so they can be merged together.
Therefore, typing two disjoint values does not rely on rule Typ-dmerge, which restricts the
type of the left branch to be disjoint with the context. In fact, another way to describe the
closedness of values is to show that the typing context for values can be replaced arbitrarily:

▶ Lemma 5 (Value closedness). If Γ1 ⊢ v ⇔ A, then Γ2 ⊢ v ⇔ A.

3.4 Semantics

We now introduce the call-by-value semantics of Ei using an environment-based operational
semantics. The semantics employs a type-directed operational semantics (TDOS) [21]. In
TDOS, in addition to a reduction relation, there is also a casting relation, which is introduced
to reduce values based on the type of a given value.

ECOOP 2023

34:18 Dependent Merges and First-Class Environments

Frames F ::= [] : A | [] # e | {l = []} | [].l | [] e | v [] | [] ▷ e

v ⊢ e ↪→ e′ (Reduction)

Step-ctx

v ⊢ ? ↪→ v

Step-annov
v1 ↪→A v′

1

v ⊢ v1 : A ↪→ v′
1

Step-merger
v # v1 ⊢ e ↪→ e′

v ⊢ v1 # e ↪→ v1 # e′

Step-closure

v ⊢ {e}m : A → B ↪→ v ▷ ({e}m : A → B)

Step-box
v1 ⊢ e ↪→ e′ ¬ Closure (v1 ▷ e)

v ⊢ v1 ▷ e ↪→ v1 ▷ e′

Step-boxv

v ⊢ v1 ▷ v2 ↪→ v2

Step-projv

v ⊢ {l = v1}.l ↪→ v1

Step-eval
v ⊢ e ↪→ e′

v ⊢ F [e] ↪→ F [e′]
Step-beta

v1 ↪→Am v′
1

v ⊢ (v2 ▷ ({e}m : A → B)) v1 ↪→ (v2 # A
v′

1
m) ▷ (e : B)

Value Construction Av
m

Av
• = v

{l : A}v
◦ = {l = v}

v ⊢ e ↪→∗ e′ (Multistep Reduction)

Multi-refl

v ⊢ e ↪→∗ e

Multi-step
v ⊢ e ↪→ e′ v ⊢ e′ ↪→∗ e′′

v ⊢ e ↪→∗ e′′

Figure 4 Call-by-value reduction and multistep reduction of Ei.

Casting. The casting relation, shown in Figure 3, is defined on values. The casting relation
is essentially the same as the relation in Huang et al.’s work [22]. The only difference is
that, instead of having lambda abstractions as values, we now have closures as values. So
the rules Casting-arrow and Casting-arrowtl change correspondingly to adapt to
the new form of values. Rule Casting-int casts any integer value to itself under type Int.
Rule Casting-top casts any value to a ⊤ under the top type. For merges, rule Casting-
mergevl and rule Casting-mergevr cast one of the two branches under an ordinary type.
These two rules can be viewed as value selectors for merges. The definition of ordinary types
is the variant without the conditions marked in gray shown in Figure 1. In other words,
ordinary types used in casting are those types that are not the top type or intersection
types. With rule Casting-and, a value is cast under two parts of an intersection type
respectively, and a merge is returned by combining the two results via the merge operator.
Rule Casting-rcd casts a record value under a record type with the same label, and the
result is a new record that is constructed from the result of casting the inner value under the
inner type of the record type.

A closure v ▷ {e}m : A → B can be cast under an arrow type C → D to be a new value.
If D is not top-like, then rule Casting-arrow casts the closure such that the return type
is changed to D. Rule Casting-arrowtl ensures the determinism of casting by casting
a closure to be a value generated by the value generator function (A↑) for top-like types.
Without this rule, casting a merge of two closures via a top-like type can lead to different
results. The definition of top-like types and the value generator are shown in the appendix.

J. Tan and B. C. d. S. Oliveira 34:19

Reduction. Reduction is shown in Figure 4. In the reduction relation v ⊢ e1 ↪→ e2, the
environment v is a value. Since environments are involved in reduction, the definition of multi-
step reduction is changed accordingly as shown in Figure 4. Briefly speaking, v ⊢ e1 ↪→∗ e2
means that e1 can be reduced to e2 by multiple steps under the same environment v, though
the environment is possibly changed locally, during single-step reductions.

Synthesizing values by types. Rule Step-ctx reduces a query ? to the current environment.
Rule Step-annov is the rule for annotated values, which triggers casting. In TDOS, casting
uses type information from type annotations to guide the reduction to ensure determinism.
Moreover, in Ei, casting also allows values to be fetched by types from the environment.

Multi-step

Step-eval

Step-ctx
v ⊢ ? ↪→ v

v ⊢ ? : A ↪→ v : A

v ↪→A v′

v ⊢ v : A ↪→ v′ Step-annov

v ⊢ ? : A ↪→∗ v′

As shown in the derivation tree above, with v ↪→A v′, we can conclude that ? : A will be
evaluated to v′ eventually. That is, the answer to a query that is equipped with a specific
type, is the result of casting the current environment under that type. For example, suppose
that the environment is 1 # true. Then the answer to the query ? : Int is 1 while the answer
to the query ? : Bool is true.

Evaluating dependent merges. Similarly to the reduction strategy in calculi with intersec-
tion types and a merge operator, merges are evaluated from left to right in Ei. That is, for a
merge e1 # e2, the right branch e2 is evaluated only if the left branch e1 is a value. However,
since merges are dependent in Ei, the evaluation of e2 relies on e1. Specifically, for a merge
v1 # e in which v1 is already a value, rule Step-merger evaluates the right branch e under
a new environment v # v1 such that e can access not only the original environment v but
also v1. The following is an example of evaluating dependent merges, assuming an initial
environment ⊤:

{x = 1} # {y = (? : {x : Int}).x + 1}

↪→ {x = 1} # {y = ((⊤ # {x = 1}) : {x : Int}).x + 1}

↪→ {x = 1} # {y = ({x = 1}).x + 1}

↪→ {x = 1} # {y = 1 + 1}

↪→ {x = 1} # {y = 2}

The initial merge is evaluated to {x = 1} # {y = 2}. In every single step of the evaluation
above, rule Step-merger is triggered and the right branch {y = . . . } is evaluated under
⊤ # {x = 1}.

Closures and the beta rule. In our call-by-value semantics, when a function, which is not
a value, is applied with a value, rule Step-closure transforms the function to a closure by
assigning the current environment to it. Then rule Step-beta reduces the application, where
the argument is cast first with the input type of the annotation of the closure. After that,
the casting result is merged with the environment in the closure, and this merge becomes
the local environment of a box. The body of the box is the body of the abstraction inside
the applied closure. Thus, the body of the abstraction will be evaluated further under the
new environment, which is a merge carrying the information from both the argument and
the environment of the closure.

ECOOP 2023

34:20 Dependent Merges and First-Class Environments

In rule Step-beta, the value A
v′

1
m that is added to the environment is different according

to the mode of the abstraction. For v2 ▷ ({e}• : A → B), A• = A and A
v′

1
• = v′

1, which is the
result of casting v1 with type A. If the mode is ◦, then the input type for the abstraction
can only be a record type, say {l : A}. Thus for v2 ▷ ({e}◦ : {l : A} → B), {l : A}◦ = A and
{l : A}v′

1
◦ = {l = v′

1}. That is, v2 ▷ ({e}◦ : {l : A} → B) can accept a value of type A as input,
and the value is given the name l such that it becomes a record during runtime. In this way,
the body of the abstraction e can use the label to access the information in the record. When
the evaluation context is the body of a box, rule Step-eval evaluates the local environment
under the global environment until it is a value. After that, rule Step-box evaluates the
body of the box under the local environment. A condition is set in rule Step-box to prevent
closures from being reduced further. When the body is evaluated to a value, rule Step-boxv
returns that value.

4 Determinism and Type Soundness

In this section, we show that the operational semantics of Ei is deterministic and type-
sound. Unlike previous work on calculi with the merge operator, the typing contexts and the
environments appearing in the theorems are generalized to arbitrary ones, since environments
are first-class and can be manipulated explicitly in our system.

4.1 Determinism

To obtain the determinism of reduction, the determinism of casting is needed. With the help
of consistency, any well-typed value that is cast under the same type results in a unique
value.

▶ Lemma 6 (Determinism of casting). If Γ ⊢ v ⇒ B, v ↪→A v1, and v ↪→A v2, then v1 = v2.

With determinism of casting, we can prove the following generalized version of determinism,
which states that if an expression e is well-typed under the type of the environment v, then
the reduction result is the same.

▶ Theorem 7 (Generalized determinism). If Γ ⊢ e ⇔ A, Top ⊢ v ⇒ Γ, v ⊢ e ↪→ e1, and
v ⊢ e ↪→ e2, then e1 = e2.

We cannot prove the standard theorem (where the typing context for e is Top and the
environment v is ⊤) directly. The reason is that the environment is changed in rule Step-
merger (from v to v # v1) and rule Step-box (from v to v1). If we prove the standard
theorem directly, then the premises in the inductive hypothesis restrict the environment to
be ⊤, which is not strong enough. Therefore, we generalize the theorem. Also note that the
typing context for v can be any type in the theorem, since from Lemma 5 we know that
the context for a well-typed value can be arbitrary. This fact is important for the proofs
of metatheory. When a value is well-typed, we want it also to be well-typed under the
context (say Top) appearing in the formalization of the theorem. Consider rule Step-box
for example. The environment v1 in the box is well-typed under the type of v, and it is also
well-typed under Top, which meets the condition in the inductive hypothesis.

The standard determinism theorem can then be obtained as a corollary:

▶ Corollary 8 (Determinism). If Top ⊢ e ⇔ A, ⊤ ⊢ e ↪→ e1, and ⊤ ⊢ e ↪→ e2, then e1 = e2.

J. Tan and B. C. d. S. Oliveira 34:21

4.2 Progress and Preservation

For progress and preservation, we need the following properties of casting:

▶ Lemma 9 (Progress of casting). If Γ ⊢ v ⇔ A then there exists v′ such that v ↪→A v′.

▶ Lemma 10 (Transitivity of casting). If v ↪→A v1 and v1 ↪→B v2 then v ↪→B v2.

▶ Lemma 11 (Consistency after casting). If Γ ⊢ v ⇒ C, v ↪→A v1 and v ↪→B v2, then
v1 ≈ v2.

▶ Lemma 12 (Preservation of casting). If v ↪→A v′ and Γ ⊢ v ⇒ B then Γ ⊢ v′ ⇒ A.

These lemmas follow the logic of proving type soundness by Huang and Oliveira [21]. Lemma 9
states that a well-typed value can always be cast with its type. Lemma 10 ensures that
casting results in the same value whether a value is cast directly or not. With this property
and the determinism of casting, we can prove that the casting results of a value are consistent
(Lemma 11), which ensures that casting preserves types (Lemma 12).

Progress and preservation. Similarly to generalized determinism, we have generalized
progress and preservation lemmas. Both theorems are proved by induction on the typing
judgment.

▶ Theorem 13 (Generalized progress). If Γ ⊢ e ⇔ A, then
e is a value, or
for any value v, if Top ⊢ v ⇒ Γ, then there exists e′ s.t. v ⊢ e ↪→ e′.

▶ Theorem 14 (Generalized preservation). If Γ ⊢ e ⇔ A, Top ⊢ v ⇒ Γ, and v ⊢ e ↪→ e′,
then Γ ⊢ e′ ⇔ A.

With the generalized theorems above, the standard progress and preservation theorem
can then be obtained as corollaries:

▶ Corollary 15 (Progress). If Top ⊢ e ⇔ A, then e is a value, or there exists e′ s.t.
⊤ ⊢ e ↪→ e′.

▶ Corollary 16 (Preservation). If Top ⊢ e ⇔ A and ⊤ ⊢ e ↪→ e′, then Top ⊢ e′ ⇔ A.

Type-safety. Combining generalized progress and preservation, we have generalized type
safety where the multistep relation is involved. Basically, this generalized result indicates
that under a well-typed environment, a well-typed expression will never get stuck.

▶ Corollary 17 (Generalized type safety). If Γ ⊢ e ⇔ A, Top ⊢ v ⇒ Γ, v is a value, and
v ⊢ e ↪→∗ e′, then either e′ is a value or there exists e′′ s.t. v ⊢ e′ ↪→ e′′.

Thus, the standard type safety is an immediate corollary where the environment is instantiated
to be the top value.

▶ Corollary 18 (Type safety). If Top ⊢ e ⇔ A and ⊤ ⊢ e ↪→∗ e′, then either e′ is a value or
there exists e′′ s.t. ⊤ ⊢ e′ ↪→ e′′.

ECOOP 2023

34:22 Dependent Merges and First-Class Environments

5 Encoding of λi

In this section, we show that Ei can encode the type system of the λi [32] via a type-directed
translation. In other words, every well-typed expression in λi can be translated into a
well-typed expression in Ei. We do not prove the operational correspondence because of the
significant differences between the formulations of the semantics of λi and the environment-
based semantics of Ei. However, as we discussed in Section 2, the Ei calculus enables first-class
environments and dependent merges, which cannot be modelled by λi. The translation of λi

to Ei demonstrates a few different things:
1. Variables and lambda abstractions are encodable. The first purpose of this

translation is to show that standard variables and lambda abstractions can be fully
encoded in Ei. Since λi has conventional lambda abstractions, the translation from λi to
Ei demonstrates that lambdas are encoded in a general way.

2. Non-dependent merges are encodable. The second purpose of the translation is to
show that non-dependent merges are also encodable. This encoding is not obvious since
dependent merges introduce new disjointness restrictions that are not present in calculi
such as λi. We show that a combination of Ei constructs can express all non-dependent
merges without loss of generality.

3. The Ei calculus subsumes λi. Finally, with the two previous points, we can generally
conclude that all typeable programs in λi can be encoded in Ei. So Ei is more powerful
than λi. This is a desirable property since Ei is designed as a potential replacement for
λi. Therefore, we should be able to express all the programs that are expressible in λi.

5.1 Syntax
The definitions of types, expressions, and typing contexts of λi are shown as follows:

Types A, B ::= Int | Top | A → B | A & B

Expressions E ::= x | i | ⊤ | λx . E | E1 E2 | E1 , , E2

Contexts Γ ::= · | Γ, x : A

Note that λi is a conventional lambda calculus with standard lambda abstractions and a
standard context definition. Moreover, in λi contexts are not types, and environments are
not first class.

5.2 Type-Directed Translation of λi to Ei

To utilize the information from λi contexts to construct expressions of Ei, we need to
transform λi contexts to Ei contexts which are types. The translation function for contexts
is defined as follows.

▶ Definition 19 (Context translation). |Γ| transforms contexts of λi to types of Ei.

| · | = Top
|Γ, x : A| = |Γ| & {x : A}

Figure 5 shows the typing rules of λi with an elaboration into Ei. Four of the rules are
straightforward. Rule Styp-lit simply translates an integer to itself. Similarly, Rule Styp-
top translates the top value to itself. Rule Styp-sub produces an expression by adding
a type annotation, which is a super type of the type of the expression in the premise.
Rule Styp-app simply combines the two elaborated expressions into an application in Ei.

J. Tan and B. C. d. S. Oliveira 34:23

Γ ⊢ E : A⇝ e (Typing with elaboration)

Styp-lit

Γ ⊢ i : Int ⇝ i

Styp-top

Γ ⊢ ⊤ : Top ⇝ ⊤

Styp-var
x : A ∈ Γ

Γ ⊢ x : A⇝ (? : {x : A}).x

Styp-sub
Γ ⊢ E : A⇝ e A <: B

Γ ⊢ E : B ⇝ e : B

Styp-abs
Γ, x : A ⊢ E : B ⇝ e

Γ ⊢ λx . E : A → B ⇝ {e}◦ : {x : A} → B

Styp-app
Γ ⊢ E1 : A → B ⇝ e1 Γ ⊢ E2 : A⇝ e2

Γ ⊢ E1 E2 : B ⇝ e1 e2

Styp-merge
Γ ⊢ E1 : A⇝ e1 Γ ⊢ E2 : B ⇝ e2 A ∗ B fresh x

Γ ⊢ E1 , , E2 : A & B ⇝ {x = ?} ▷ (?.x ▷ e1) # ((? : {x : |Γ|}).x ▷ e2)

Figure 5 Type system of λi and its type-directed translation into Ei.

Encoding variables. Rule Styp-var uses labels to model variables. If a variable x has type
A, then x : A must appear in the context. This information from contexts is encoded as a
record type {x : A} in Ei. Thus, it becomes safe to annotate the query ? with {x : A}. To get
the type of x, a record projection is performed to extract the value of type A from {x : A}.

Encoding lambda abstractions. Similarly, the type information of the bound variable x in a
λi lambda abstraction is also translated to {x : A}. For any λx . E of type A → B, rule Styp-
abs encodes it as {e}◦ : {x : A} → B, which has type A → B instead of {x : A} → B. In
this way, it can accept values of type A instead of {x : A}. For example, λx. x with type
Int → Int is translated to {(? : {x : Int}).x}◦ : {x : Int} → Int, which can accept the integer 1
as input in an application.

Encoding non-dependent merges. Merges in λi are non-dependent and are encoded in
an interesting way in Ei. For dependent merges, the global context should be disjoint with
the type of the left branch. To prevent overlapping between |Γ| and A, a fresh label x that
does not appear in the existing types is picked to create a record {x : |Γ|} that holds the
current environment. This record becomes the context for the merge and is disjoint with A,
since x is fresh and consequently A cannot contain a record with a field x. With the box
construct, the merge is assigned the local environment {x = ?}. For the left branch of the
merge, projection ?.x unwraps the context to take back the original context |Γ|. Similarly,
unwrapping is needed for the right branch. However, since A appears in the typing scope for
the right branch in a dependent merge, the annotation {x : |Γ|} is needed for hiding A. In
this way, only |Γ| appears in the typing context of e2.

ECOOP 2023

34:24 Dependent Merges and First-Class Environments

Example. In λi, the merge x , , λy. y can have type Int & (Int → Int) in the context x : Int.
This expression is translated to the following expression in Ei:

{z = ?} ▷ (?.z ▷ (? : {x : Int}).x) # ((? : {z : {x : Int}}).z ▷ {(? : {y : Int}).y}◦ : {y : Int} → Int)

where z is the fresh label that wraps the environment. This Ei expression infers Int & (Int →
Int) in the context {x : Int}.

Type safety of the translation. The following result shows the type-safety of the translation,
and that the type system of λi can be translated into Ei without loss of expressivity.
Importantly, normal lambda abstractions and non-dependent merges are expressible in Ei.

▶ Theorem 20 (Well-typed encoding of λi). If Γ ⊢ E : A⇝ e , then |Γ| ⊢ e ⇒ A.

6 Related Work

First-class environments. First-class environments enable environments to be manipulated
by programmers. Gelernter et al. [18] invented a programming language called Symmetric
Lisp that enriches Lisp with a kind of first-class environment, which can be used to evaluate
expressions. They argued using several examples that the first-class environments they
defined generalize a variety of constructs including modules, records, closures, and classes.
However, the formal semantics of the language is not included in their work. Miller and
Rozas [29] also proposed an extension to the Scheme programming language. In their work,
environments are created with make-environment, and a binary eval function is used to
perform computations under a first-class environment. Jagannathan [23,24] defined a dialect
of Scheme called Rascal, in which two key operators related to first-class environments are
introduced: reify that returns the current environment as a data object, and reflect which
transforms data objects to an environment.

Queinnec and de Roure [36] present a form of first-class environments as an approach
to share data objects for the Scheme programming language. Operators on environments,
such as composition, importing, and exporting, are supported in their setting. Moreover,
the first-class environments they proposed obey the quasi-static discipline [26] such that
variables are either static or quasi-static during importing and exporting. Note that our
treatment of variable names is similar to the quasi-static scoping approach [26] in some sense.
To solve the issue of name capturing, in quasi-static scoping, a free variable has an internal
name and an external name. The external name is for sharing variable bindings and is not
α-convertible. The programmer has to resolve it before dereferencing. In our setting, the
label x in the abstraction {?.x}• : {x : Int} → Int acts as an external name. In order to avoid
ambiguities, the external names in quasi-static scoping must be different in their setting,
which is similar to our approach where names are ensured to be different via disjointness.

All the work above is done in a dynamically typed setting. Regarding typed languages,
there is little work on first-class environments, which are basically based on explicit substitu-
tions [1]. Sato et al. [44, 45] introduced a simply typed calculus called λε with environments
as first-class values. In their work, full reduction is supported, and lambda abstractions
allow local renaming of bounded variables to fresh names. Sato et al. proved some desirable
properties, such as subject reduction, confluence and strong normalizability, for this calculus.
First-class environments are called explicit environments in λε, which are sets of variable-
value pairs. Moreover, there is an evaluation operation eJaK that evaluates the expression
a under an environment e. This construct is similar to the box construct in Ei. However,
reification and environment concatenation are not supported in his work. Nishizaki [47]

J. Tan and B. C. d. S. Oliveira 34:25

proposed a similar calculus with first-class environments, in which a construct called id

is introduced to return the current environment. This construct acts as reification and is
similar to our queries, but Nishizaki’s calculus does not support restriction. In Ei queries
together with type annotations can retrieve parts of an environment, and model environment
restriction. While there is an operator called extension, which can be viewed as a special case
of concatenation in Nishizaki’s work, the types do not accumulate. In contrast, environment
concatenation in Ei is modelled via dependent merges with type information flowing from
left to right. Subtyping is not included in existing type systems with environment types. In
contrast, Ei supports subtyping and has a natural notion of subtyping of environments. As a
result, it enables more applications. For instance, objects and inheritance can be modelled in
Ei [5].

Module systems. Module systems [27] are a key structuring mechanism to build reusable
components in modular programming. In ML-style languages, module systems serve as a
powerful tool for data abstraction. Generally speaking, a module is a named collection of
(dependent) declarations that aim to define an environment. Since dependent merges are
supported in Ei, a simple form of modules is allowed by using records and merges in our
work. For example, the record {M = {x = 1} # {y = ?.x}} in Ei defines a module named
M that contains dependent declarations. Conventionally, ML-style languages are stratified
into two parts: a core language, which is associated with ordinary values and types; and
a module language consisting of modules and module types (or signatures). In this way,
modules are second-class since a module cannot be passed as an argument to a function. In
Ei, a simple form of first-class modules is enabled via first-class environments. Therefore in
our setting, modules can be created and manipulated on the fly. For instance, the above
module M encoded as a record can be passed to a function, such that the values bound with
x and y could be updated.

There is much work on getting around this stratification to enable first-class modules.
One approach is to utilize dependent types. Harper and Mitchell proposed XML calculus [20]
which is a dependent type system to formalize modules as Σ and Π types. After that,
translucent sums [19] and singleton types [48] were present as extensions and refinement of
the XML calculus. On the other hand, Rossberg et al. proposed the F-ing method [42] to
encode the ML module system using System Fω [3] rather than dependent types. Following
the F-ing method, 1ML was proposed by Rossberg [41] in which core ML and modules are
collapsed into one language. Compared with Ei, the calculi in this kind of work are more
expressive due to the use of powerful type systems, where type declarations and abstract types
are typically supported. However, expressions, declarations, and modules are separate in the
syntax. In contrast, we demonstrate a new approach to enable a simple form of first-class
modules via a unified syntax in our work. A variety of entities, including environments,
records, declarations, and modules, are simply expressions in Ei.

Implicit calculi. Implicits are a mechanism for implicitly passing arguments based on
their types, which are supported in Scala as a generic programming mechanism to reduce
boilerplate code. Oliveira et al. [11] investigated the connection between Haskell type classes
and Scala implicits. They showed that many extensions of the Haskell type class system
can be encoded using implicits. After that, Oliveira et al. [12] synthesized the key ideas
of implicits formally in a general core calculus that is called the implicit calculus. The
implicit calculus supports a number of source language features that are not supported by
type classes. In implicit calculi there are two kinds of contexts and/or environments: there
are regular contexts (and environments) tracking variable bindings; and there is also an
implicit environment, which tracks values that can be used to provide implicit arguments

ECOOP 2023

34:26 Dependent Merges and First-Class Environments

automatically. In Ei, we borrow the notion of a query, which enables type-based lookups on
implicit environments, from the implicit calculus. While queries are used to query implicit
environments by type in the implicit calculus, queries in Ei are applied directly to runtime
environments and there is no distinction between implicit and regular environments.

Rouvoet [43] extended the work of Oliveira et al. and showed that the ambiguous
resolution from the implicit calculus is undecidable. Following up on the earlier work on the
implicit calculus [12], Schrijvers et al. [46] reformalized the ideas of implicits and presented a
coherent and type-safe formal model, which supports first-class overlapping implicits and
higher-order rules. Moreover, a more expressive unification-based algorithmic resolution,
which is closely related to the idea of propositions as types [50], is described. While a highly
complex mechanism is imposed to ensure coherence and the semantics is given by elaboration
in their work, in Ei we adopt a TDOS to utilize the type information for guiding reduction
and to enable determinism in a natural way. Odersky et al. [31] proposed the SI calculus.
The SI calculus generalizes implicit parameters in Scala to implicit function types that have
the form of T?→ T, which provides a way to abstract over the contexts consisting of running
code. The idea of this generalization was inspired by an early draft of Schrijvers et al.’s
work. Unlike the work of Schrijvers et al. and our work, SI lacks unambiguity. Thus a
disambiguation scheme is needed in the implementation. While forms of implicit contextual
abstraction are offered in the implicit calculi above, a form of contextual abstraction is
also supported in Ei. Indeed, since environments are first-class values in Ei, one can easily
abstract over the contexts by using abstractions. More recently, Marntirosian et al. [28]
added modus ponens to subtyping to make resolution a special case of subtyping and to
enable implicit first-class environments. Unlike Ei, the runtime environments in their work
are still second class.

The merge operator. The merge operator was firstly proposed by Reynolds in the Forsythe
language [38] to add the expressiveness for calculi with intersection types. Reynolds’ merge
operator is quite restrictive and does not allow, for instance, overloaded functions. Since then,
several other researchers [8,15,32,33] have removed restrictions and shown more applications
of the merge operator. Dunfield [15] presents a powerful calculus with an unrestricted merge
operator and an elaboration semantics that can encode various language features. While
the elaboration semantics is type-safe, determinism or coherence [39] cannot be ensured.
To enable determinism, a disjointness restriction on merges has been proposed in the work
of Oliveira et al. [32]. In this work we borrow the idea of merges, intersection types and
disjointness from previous work on the merge operator. Unlike previous work, our merges are
dependent and Ei has operators to manipulate first-class environments that are not available
in earlier calculi with the merge operator. In previous calculi, environments are not first
class and the only operators supported on merges are concatenation and restriction.

Staged calculi and modal logic. Staging is a technique to separate the computations
of a program, such that abstraction can be realized without loss of efficiency. Davies
and Pfenning [14] proposed a type system that captures staged computation based on
the intuitionistic variant of the modal logic S4 [35]. The modal necessity operator □ is
introduced, and □A represents the type of code that will be evaluated in an upcoming stage.
At the term level, expressions of type □A have the form box(e). Corresponding to the modal
rule of necessitation, box(e) has type □A if e has type A in the empty context. Later, after
this work, the box construct is generalized by Nanevski et al. in the work of contextual
modal type theory [30]. In this work, the box construct has the form box(Ψ.e) where Ψ is a
context and e can utilize the information in Ψ. The construct box(Ψ.e) is similar to e1 ▷ e2 in

J. Tan and B. C. d. S. Oliveira 34:27

Ei in the sense that the context Ψ shadows the current context. Both constructs capture the
dependence of expressions on contexts, in effect modelling data injection. However, since Ψ
is a context, e in box(Ψ.e) can only utilize type information, whereas in e1 ▷ e2, e2 relies on
the concrete environment information from the expression e1 directly. Furthermore, in modal
type theory contexts Ψ are defined in the usual way and are not types, nor are first class in
the language. In contrast, contexts are types in Ei, and environments are first class values.

Abstract machines. Abstract machines, such as the SECD machine [25], Krivine’s machine,
the categorical abstract machine [10], and the CEK machine [16], are state transition systems
that serve as a basis for the implementation of functional languages. Typically, a state in
abstract machines is a tuple that contains an expression, an environment, and some other
entities (such as stack and continuation) for reduction. Similarly, in Ei the semantics is an
environment-based semantics, and closures are used to keep environments around during the
reduction. However, abstract machines are models for lambda calculus, and thus they are
not aimed at providing languages with first-class environments. In contrast, the Ei calculus
supports first-class environments and operators that manipulate environments.

7 Conclusion

In this paper, we have presented a statically typed calculus called Ei, that supports the
creation, reification, reflection, concatenation and restriction of first-class environments. The
Ei calculus borrows disjoint intersection types and a merge operator from the λi [32] calculus,
but employs them to model environments. In Ei, intersection types are used to model
contexts, and disjointness is imposed to model (and generalize) the uniqueness of variables in
an environment. However, unlike previous work, merges in Ei are dependent, which enables
modelling dependent declarations. From implicit calculi [12,31,46], Ei borrows queries to
synthesize the full current context (at the type level) and the entire current environment
(at the term level), and to enable type-based lookups. We prove the determinism and
type-soundness of Ei. Furthermore, we show that the type system of λi can be encoded by
Ei via a type-directed translation. In other words, standard variables, lambda abstractions,
and non-dependent merges are all encodable in Ei, enabling the Ei calculus to subsume λi.
We also study an extension of the calculus with fixpoints. The Ei calculus, as well as the
extension, and all the proofs presented in this paper have been formalized using Coq theorem
prover.

As for future work, we are interested in extensions with more features. For example, we
plan to investigate how to incorporate BCD subtyping [4]. With the merge operator and
BCD subtyping, a powerful form of composition called nested composition [6] can be enabled.
We would also like to extend the current calculus with polymorphism and show that abstract
types can be encoded with the extended calculus. In this setting, since type variables could
occur in contexts, we plan to use labels to model type variables, just like what we have done
for term variables.

References
1 Martin Abadi, Luca Cardelli, P-L Curien, and J-J Lévy. Explicit substitutions. In Proceedings

of the 17th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 31–46, 1989.

2 João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. Disjoint polymorphism. In European
Symposium on Programming (ESOP), 2017.

ECOOP 2023

34:28 Dependent Merges and First-Class Environments

3 Henk Barendregt. Introduction to generalized type systems. J. Funct. Program., 1(2):125–154,
1991. doi:10.1017/s0956796800020025.

4 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. The journal of symbolic logic, 48(04):931–940, 1983.

5 Xuan Bi and Bruno C. d. S. Oliveira. Typed First-Class Traits. In European Conference on
Object-Oriented Programming (ECOOP), 2018.

6 Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. The Essence of Nested Composition.
In European Conference on Object-Oriented Programming (ECOOP), 2018.

7 Luca Cardelli. Program fragments, linking, and modularization. In Peter Lee, Fritz Henglein,
and Neil D. Jones, editors, Conference Record of POPL’97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Papers Presented at the
Symposium, Paris, France, 15-17 January 1997, pages 266–277. ACM Press, 1997. doi:
10.1145/263699.263735.

8 Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functions
with subtyping. In Conference on LISP and Functional Programming, 1992.

9 Coq development team. The coq proof assistant. http://coq.inria.fr/.
10 Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. The categorical abstract machine.

Sci. Comput. Program., 8(2):173–202, 1987. doi:10.1016/0167-6423(87)90020-7.
11 Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and

implicits. In William R. Cook, Siobhán Clarke, and Martin C. Rinard, editors, Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada,
USA, pages 341–360. ACM, 2010. doi:10.1145/1869459.1869489.

12 Bruno C. d. S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee, and Kwangkeun Yi.
The implicit calculus: a new foundation for generic programming. In Jan Vitek, Haibo Lin,
and Frank Tip, editors, ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, pages 35–44. ACM, 2012.
doi:10.1145/2254064.2254070.

13 Rowan Davies and Frank Pfenning. Intersection types and computational effects. In Interna-
tional Conference on Functional Programming (ICFP), 2000.

14 Rowan Davies and Frank Pfenning. A modal analysis of staged computation. J. ACM,
48(3):555–604, 2001. doi:10.1145/382780.382785.

15 Jana Dunfield. Elaborating intersection and union types. Journal of Functional Programming
(JFP), 24(2-3):133–165, 2014.

16 Matthias Felleisen and Daniel P. Friedman. A calculus for assignments in higher-order
languages. In Conference Record of the Fourteenth Annual ACM Symposium on Principles
of Programming Languages, Munich, Germany, January 21-23, 1987, pages 314–325. ACM
Press, 1987. doi:10.1145/41625.41654.

17 Olivier Flückiger, Guido Chari, Jan Ječmen, Ming-Ho Yee, Jakob Hain, and Jan Vitek. R
melts brains: An ir for first-class environments and lazy effectful arguments. In Proceedings of
the 15th ACM SIGPLAN International Symposium on Dynamic Languages, DLS 2019, pages
55–66. Association for Computing Machinery, 2019.

18 David Gelernter, Suresh Jagannathan, and Thomas London. Environments as first class
objects. In Conference Record of the Fourteenth Annual ACM Symposium on Principles of
Programming Languages, Munich, Germany, January 21-23, 1987, pages 98–110. ACM Press,
1987. doi:10.1145/41625.41634.

19 Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order modules with
sharing. In Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 123–137, 1994.

20 Robert Harper and John C. Mitchell. On the type structure of standard ML. ACM Trans.
Program. Lang. Syst., 15(2):211–252, 1993. doi:10.1145/169701.169696.

https://doi.org/10.1017/s0956796800020025
https://doi.org/10.1145/263699.263735
https://doi.org/10.1145/263699.263735
http://coq.inria.fr/
https://doi.org/10.1016/0167-6423(87)90020-7
https://doi.org/10.1145/1869459.1869489
https://doi.org/10.1145/2254064.2254070
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/41625.41654
https://doi.org/10.1145/41625.41634
https://doi.org/10.1145/169701.169696

J. Tan and B. C. d. S. Oliveira 34:29

21 Xuejing Huang and Bruno C. d. S. Oliveira. A type-directed operational semantics for
a calculus with a merge operator. In Robert Hirschfeld and Tobias Pape, editors, 34th
European Conference on Object-Oriented Programming (ECOOP 2020), volume 166 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 26:1–26:32, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2020.26.

22 Xuejing Huang, Jinxu Zhao, and Bruno C. d. S. Oliveira. Taming the merge operator. Journal
of Functional Programming, 31:e28, 2021. doi:10.1017/S0956796821000186.

23 Suresh Jagannathan. Dynamic modules in higher-order languages. In Henri E. Bal, editor,
Proceedings of the IEEE Computer Society 1994 International Conference on Computer
Languages, May 16-19, 1994, Toulouse, France, pages 74–87. IEEE Computer Society, 1994.
doi:10.1109/ICCL.1994.288391.

24 Suresh Jagannathan. Metalevel building blocks for modular systems. ACM Trans. Program.
Lang. Syst., 16(3):456–492, 1994. doi:10.1145/177492.177578.

25 P. J. Landin. The mechanical evaluation of expressions. Comput. J., 6(4):308–320, 1964.
doi:10.1093/comjnl/6.4.308.

26 Shinn-Der Lee and Daniel P. Friedman. Quasi-static scoping: Sharing variable bindings across
multiple lexical scopes. In Mary S. Van Deusen and Bernard Lang, editors, Conference Record
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Charleston, South Carolina, USA, January 1993, pages 479–492. ACM Press, 1993.
doi:10.1145/158511.158706.

27 David B. MacQueen. Modules for standard ML. In Robert S. Boyer, Edward S. Schneider, and
Guy L. Steele Jr., editors, Proceedings of the 1984 ACM Conference on LISP and Functional
Programming, LFP 1984, Austin, Texas, USA, August 5-8, 1984, pages 198–207. ACM, 1984.
doi:10.1145/800055.802036.

28 Koar Marntirosian, Tom Schrijvers, Bruno C. d. S. Oliveira, and Georgios Karachalias.
Resolution as intersection subtyping via modus ponens. Proc. ACM Program. Lang.,
4(OOPSLA):206:1–206:30, 2020. doi:10.1145/3428274.

29 James S. Miller and Guillermo Juan Rozas. Free variables and first-class environments. LISP
Symb. Comput., 4(2):107–141, 1991.

30 Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
ACM Transactions on Computational Logic (TOCL), 9(3):1–49, 2008.

31 Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather Miller, and
Sandro Stucki. Simplicitly: foundations and applications of implicit function types. Proc.
ACM Program. Lang., 2(POPL), 2017.

32 Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. Disjoint intersection types. In
International Conference on Functional Programming (ICFP), 2016.

33 Benjamin C Pierce. Programming with intersection types and bounded polymorphism. PhD
thesis, University of Pennsylvania, 1991.

34 Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, pages 561–577, 1980.

35 Dag Prawitz. Natural deduction: A proof-theoretical study. Courier Dover Publications, 2006.
36 Christian Queinnec and David De Roure. Sharing code through first-class environments. In

Robert Harper and Richard L. Wexelblat, editors, Proceedings of the 1996 ACM SIGPLAN
International Conference on Functional Programming, ICFP 1996, Philadelphia, Pennsylvania,
USA, May 24-26, 1996, pages 251–261. ACM, 1996. doi:10.1145/232627.232653.

37 Baber Rehman, Xuejing Huang, Ningning Xie, and Bruno C. d. S. Oliveira. Union Types with
Disjoint Switches. In 36th European Conference on Object-Oriented Programming (ECOOP
2022), Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:31, 2022.

38 John C Reynolds. Preliminary design of the programming language forsythe. Technical report,
Carnegie Mellon University, 1988.

39 John C. Reynolds. The coherence of languages with intersection types. In Lecture Notes in
Computer Science (LNCS), pages 675–700. Springer Berlin Heidelberg, 1991.

ECOOP 2023

https://doi.org/10.4230/LIPIcs.ECOOP.2020.26
https://doi.org/10.1017/S0956796821000186
https://doi.org/10.1109/ICCL.1994.288391
https://doi.org/10.1145/177492.177578
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1145/158511.158706
https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/3428274
https://doi.org/10.1145/232627.232653

34:30 Dependent Merges and First-Class Environments

40 John C Reynolds. Design of the programming language forsythe. In ALGOL-like languages,
pages 173–233. Birkhauser Boston Inc., 1997.

41 Andreas Rossberg. 1ml - core and modules united. J. Funct. Program., 28:e22, 2018. doi:
10.1017/S0956796818000205.

42 Andreas Rossberg, Claudio Russo, and Derek Dreyer. F-ing modules. Journal of functional
programming, 24(5):529–607, 2014.

43 Arjen Rouvoet. Programs for free: Towards the formalization of implicit resolution in scala.
Master’s thesis, TU Delft, 2016.

44 Masahiko Sato, Takafumi Sakurai, and Rod M. Burstall. Explicit environments. Fun-
dam. Informaticae, 45(1-2):79–115, 2001. URL: http://content.iospress.com/articles/
fundamenta-informaticae/fi45-1-2-05.

45 Masahiko Sato, Takafumi Sakurai, and Yukiyoshi Kameyama. A simply typed context
calculus with first-class environments. J. Funct. Log. Program., 2002, 2002. URL: http:
//danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2002/S02-01/JFLP-A02-04.pdf.

46 Tom Schrijvers, Bruno C. d. S. Oliveira, Philip Wadler, and Koar Marntirosian. COCHIS: stable
and coherent implicits. J. Funct. Program., 29:e3, 2019. doi:10.1017/S0956796818000242.

47 Shin-ya Nishizaki. Simply typed lambda calculus with first-class environments. Publications
of the Research Institute for Mathematical Sciences, 30(6):1055–1121, 1994.

48 Christopher A Stone and Robert Harper. Extensional equivalence and singleton types. ACM
Transactions on Computational Logic (TOCL), 7(4):676–722, 2006.

49 Philip Wadler. The expression problem. Java-genericity mailing list, 1998.
50 Philip Wadler. Propositions as types. Commun. ACM, 58(12):75–84, 2015. doi:10.1145/

2699407.
51 Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. Compositional programming. ACM

Transactions on Programming Languages and Systems (TOPLAS), 43(3):1–61, 2021.

A Some Relations

A.1 Algorithmic Disjointness

A ⊓ B (COSTs)

Cost-int

Int ⊓ Int

Cost-andl
A ⊓ C

A & B ⊓ C

Cost-andr
B ⊓ C

A & B ⊓ C

Cost-randl
A ⊓ B

A ⊓ B & C

Cost-randr
A ⊓ C

A ⊓ B & C

Cost-arr
B ⊓ D

A → B ⊓ C → D

Cost-rcd
A ⊓ B

{l : A} ⊓ {l : B}

Here we define a relation called COSTs (Common Ordinary Super Types), which is used to
define algorithmic disjointness as following:

▶ Definition 21 (Algorithmic Disjointness). A ∗a B ≡ ¬(A ⊓ B)

The algorithmic disjointness is equivalent to the specification of disjointness (Definition 1).

▶ Theorem 22 (Disjointness Equivalence). A ∗a B if and only if A ∗ B.

https://doi.org/10.1017/S0956796818000205
https://doi.org/10.1017/S0956796818000205
http://content.iospress.com/articles/fundamenta-informaticae/fi45-1-2-05
http://content.iospress.com/articles/fundamenta-informaticae/fi45-1-2-05
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2002/S02-01/JFLP-A02-04.pdf
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/2002/S02-01/JFLP-A02-04.pdf
https://doi.org/10.1017/S0956796818000242
https://doi.org/10.1145/2699407
https://doi.org/10.1145/2699407

J. Tan and B. C. d. S. Oliveira 34:31

A.2 Top-like Types
⌉A⌈ (Top-like Types)

TL-top

⌉Top⌈

TL-and
⌉A⌈ ⌉B⌈

⌉A & B⌈

TL-arr
⌉B⌈

⌉A → B⌈

TL-rcd
⌉B⌈

⌉{l : B}⌈

A.3 Value Generator
▶ Definition 23 (Value Generator). A↑ generates a value for top-like type A.

Top↑ = ⊤
(A → B)↑ = ⊤ ▷ ({B↑}• : A → B)
(A & B)↑ = A↑ # B↑

{l : A}↑ = {l = A↑}

B Fixpoints

In this section, we discuss an extension of Ei with fixpoints.

Expressions e ::= . . . | fix A.e
Values v ::= . . . | v ▷ (fix A.e : B)

Syntax and typing. Expressions are extended with fixpoint fix A.e in which A is the type
annotation. For values, closures are extended with boxes containing a fixpoint. Note that for
fix A.e in a closure, an additional type annotation B is required. Rule Typ-fix is the typing
rule for fixpoints, which is shown at the top of Figure 6. To make fix A.e well-typed, the
body e needs to be checked under the context extended with A. Similarly to the typing rule
for abstractions, there is also a disjointness condition Γ ∗ A to prevent ambiguities.

Casting and reduction. The extended casting and reduction rules for fixpoints are shown
in Figure 6. Basically, v ▷ (fix A.e : B) is cast with a supertype C and the result depends on
whether C is top-like or not. If C is not a top-like type, then the casting result is v▷(fix A.e : C).
Otherwise, v ▷ (fix A.e : B) is cast to a value generated by the value generator for C. This
is similar to the treatment of casting abstractions for ensuring determinism. Note that C

is required to be ordinary in rule Casting-fix and rule Casting-fixtl. This is to avoid
overlapping with rule Casting-and when C is an intersection type.

For reduction, there are three rules for fixpoints. Rule Step-fix transforms fix A.e to
a closure by assigning the current environment and giving an additional annotation to it.
When v2 ▷ fix C.e : A → B is applied to value v1, rule Step-fixbeta “unwinds” the closure
in the sense that the closure is put into the environment. In this way, when the application
(e : A → B) v1 is evaluated, it can access and utilize the closure containing the fixpoint again.
Note that the closure put in the environment is v2 ▷fix C.e : C instead of v2 ▷fix C.e : A → B.
This is to ensure that the body e of the fixpoint is well-typed under the same context Γ & C

for type preservation. Similarly, when a record projection is required, rule Step-fixproj
“unwinds” the closure, and evaluates (e : {l : B}).l under the environment that contains the
fixpoint information.

ECOOP 2023

34:32 Dependent Merges and First-Class Environments

Γ ⊢ e ⇔ A (Extended Bidirectional Typing)

Typ-fix
Γ ∗ A Γ & A ⊢ e ⇐ A

Γ ⊢ fix A.e ⇒ A

v ↪→A v′ (Extended Casting)

Casting-fix
B <: C ¬⌉C⌈ Ordinary C

v ▷ (fix A.e : B) ↪→C v ▷ (fix A.e : C)

Casting-fixtl
B <: C ⌉C⌈ Ordinary C

v ▷ (fix A.e : B) ↪→C C↑

v ⊢ e ↪→ e′ (Extended Reduction)

Step-fix

v ⊢ fix A.e ↪→ v ▷ (fix A.e : A)

Step-fixbeta

v ⊢ (v2 ▷ fix C.e : A → B) v1 ↪→ (v2 # (v2 ▷ fix C.e : C)) ▷ (e : A → B) v1

Step-fixproj

v ⊢ (v2 ▷ fix A.e : {l : B}).l ↪→ (v2 # (v2 ▷ fix A.e : A)) ▷ (e : {l : B}).l

Figure 6 Extended typing, casting, and reduction rules for Ei with fixpoints.

Determinism and type-soundness. The extension with fixpoints retains the properties of
determinism and type-soundness. All the metatheory does not require significant changes for
this extension and is formalized in the Coq theorem prover.

Synthesis-Aided Crash Consistency for Storage
Systems
Jacob Van Geffen #

University of Washington, Seattle, WA, USA

Xi Wang #

University of Washington, Seattle, WA, USA
Amazon Web Services, Seattle, WA, USA

Emina Torlak #

University of Washington, Seattle, WA, USA
Amazon Web Services, Seattle, WA, USA

James Bornholt #

The University of Texas at Austin, TX, USA
Amazon Web Services, Seattle, WA, USA

Abstract
Reliable storage systems must be crash consistent – guaranteed to recover to a consistent state after a
crash. Crash consistency is non-trivial as it requires maintaining complex invariants about persistent
data structures in the presence of caching, reordering, and system failures. Current programming
models offer little support for implementing crash consistency, forcing storage system developers to
roll their own consistency mechanisms. Bugs in these mechanisms can lead to severe data loss for
applications that rely on persistent storage.

This paper presents a new synthesis-aided programming model for building crash-consistent
storage systems. In this approach, storage systems can assume an angelic crash-consistency model,
where the underlying storage stack promises to resolve crashes in favor of consistency whenever
possible. To realize this model, we introduce a new labeled writes interface for developers to identify
their writes to disk, and develop a program synthesis tool, DepSynth, that generates dependency
rules to enforce crash consistency over these labeled writes. We evaluate our model in a case study
on a production storage system at Amazon Web Services. We find that DepSynth can automate
crash consistency for this complex storage system, with similar results to existing expert-written
code, and can automatically identify and correct consistency and performance issues.

2012 ACM Subject Classification Software and its engineering → Search-based software engineering;
Computer systems organization → Secondary storage organization

Keywords and phrases program synthesis, crash consistency, file systems

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.35

Funding This material is based upon work supported by the National Science Foundation under
Grant No. 2124044.

1 Introduction

Many applications build on storage systems such as file systems and key-value stores to reliably
persist user data even in the face of full-system crashes (e.g., power failures). Guaranteeing
this reliability requires the storage system to be crash consistent: after a crash, the system
should recover to a consistent state without losing previously persisted data. The state of
a storage system is consistent if it satisfies the representation invariants of the underlying
persistent data structures (e.g., a free data block must not be linked by any file’s inode). Crash
consistency is notoriously difficult to get right [34, 22, 35], due to performance optimizations

© Jacob Van Geffen, Xi Wang, Emina Torlak, and James Bornholt;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 35; pp. 35:1–35:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jsvg@cs.washington.edu
https://orcid.org/0009-0007-7468-4205
mailto:emina@cs.washington.edu
mailto:xi@cs.washington.edu
mailto:bornholt@cs.utexas.edu
https://orcid.org/0000-0002-3258-3226
https://doi.org/10.4230/LIPIcs.ECOOP.2023.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Synthesis-Aided Crash Consistency for Storage Systems

in modern software and hardware that can reorder writes to disk or hold pending disk writes
in a volatile cache. In normal operation, these optimizations are invisible to the user, but a
crash can expose their partial effects, leading to inconsistent states.

A number of general-purpose approaches exist to implement crash consistency, including
journaling [23], copy-on-write data structures [24], and soft updates [11]. However, imple-
menting a storage system using these approaches is still challenging for two reasons. First,
practical storage systems combine crash consistency techniques with optimizations such as
log-bypass writes and transaction batching to improve performance [30]. These optimizations
and their interactions are subtle, and have led to severe crash-consistency bugs in well-tested
storage systems [17, 7]. Second, developers must implement their system using low-level
APIs provided by storage hardware and kernel I/O stacks, which offer no direct support
for enforcing consistency properties. Instead they provide only durability primitives such
as flushes, and require the developer to roll their own consistency mechanisms on top of
them. While prior work offers testing [18, 34] and verification [8, 27] tools for validating
crash consistency, these tools do not alleviate the burden of implementing crash-consistent
systems.

This paper presents a new synthesis-aided programming model for building crash-
consistent storage systems. The programming model consists of three parts: a high-level
storage interface based on labeled writes; a synthesis engine for turning labeled writes and a
desired crash consistency property into a set of dependency rules that writes to disk must
respect; and a dependency-aware buffer cache that enforces the synthesized rules at run
time. Together, these three components let developers keep their implementation free of
hardcoded optimizations and mechanisms for enforcing consistency. Instead, developers can
focus on the key aspects of their storage system – functional correctness, crash consistency,
and performance – one at a time. Their development workflow consists of three steps.

First, developers implement their system against a higher-level storage interface by
providing labels for each write their system makes to disk. Labels provide information about
the data structure the write targets and the context for the write (e.g., the transaction it is
part of). For example, a simple journaling file system might require two writes to append to
the journal: one to append the data block to the tail of the journal (labeled data) and one to
update a superblock that records a pointer to that tail (labeled superblock). This higher-level
interface allows the developer to assume a stronger angelic nondeterminism model for crashes
– the system promises that crash states will always satisfy the developer’s crash consistency
property if possible – simplifying the implementation effort.

Second, to make their implementation crash consistent even on relaxed storage stacks, the
developer uses a new program synthesizer, DepSynth, to automatically generate dependency
rules that writes to disk must respect. A dependency rule uses labels to define an ordering
requirement between two writes: writes with one label must be persisted on disk before
corresponding writes with the second label. The DepSynth synthesizer takes three inputs:
the storage system implementation, a desired crash consistency predicate for disk states
of the storage system (i.e., a representation invariant for on-disk data structures), and a
collection of small litmus test programs [2, 5] that exercise the storage system. Given these
inputs, DepSynth searches a space of happens-before graphs to automatically generate a
set of dependency rules that guarantee the crash-consistency predicate for every litmus test.
Although this approach is example-guided and so only guarantees crash consistency on the
supplied tests, the dependency rule language is constrained to make it difficult to overfit to
the tests, and so in practice the rules generalize to arbitrary executions of the storage system.

J. Van Geffen, X. Wang, E. Torlak, and J. Bornholt 35:3

Third, developers run their storage system on top of a dependency-aware buffer cache
that enforces the synthesized dependency rules. For example, in a journaling file system, the
superblock pointer to the tail of the journal must never refer to uninitialized data. DepSynth
will synthesize a dependency rule enforcing this consistency predicate by saying that data
writes must happen before superblock writes. At run time, the dependency-aware buffer cache
enforces this rule by delaying sending writes labeled superblock to disk until the corresponding
data write has persisted. The dependency-aware buffer cache is free to reorder writes in any
way to achieve good performance on the underlying hardware (e.g., by scheduling around
disk head movement or SSD garbage collection) as long as it respects the dependency rules.

We evaluate the effectiveness and utility of DepSynth in a case study that applies it to
ShardStore [4], a production key-value store used by the Amazon S3 object storage service.
We show that DepSynth can rapidly synthesize dependency rules for this storage system. By
comparing those rules to the key-value store’s existing crash-consistency behavior, we find
that DepSynth achieves similar results to rules hand-written by experts, and even corrects an
existing crash-consistency issue in the system automatically. We also show that dependency
rules synthesized by DepSynth generalize beyond the example litmus tests used for synthesis,
and that DepSynth can be used for storage systems beyond key-value stores.

In summary, this paper makes three contributions:
A new programming model for building storage systems that automates the implementa-
tion of crash consistency guarantees;
DepSynth, a synthesis tool that can infer the dependency rules sufficient for a storage
system to be crash consistent; and
An evaluation showing that DepSynth supports different storage system designs and
scales to production-quality systems.

The remainder of this paper is organized as follows. Section 2 gives a walk-through of building
a simple storage system with DepSynth. Section 3 defines the DepSynth programming model,
including labeled writes and dependency rules. Section 4 describes the DepSynth synthesis
algorithm for inferring dependency rules, and Section 5 details DepSynth’s implementation
in Rosette. Section 6 evaluates the effectiveness of DepSynth. Section 7 discusses related
work, and Section 8 concludes.

2 Overview

This section illustrates the DepSynth development workflow by walking through the imple-
mentation of a simple storage system. We show how a developer can build a storage system
with labeled writes while assuming a strong crash consistency model, and use DepSynth to
automatically make that system crash consistent on real storage stacks.

2.1 Log-structured storage systems
A log-structured storage system persists user data in a sequential log on disk [25]. This
design forsakes complex on-disk data structures in favor of one with simple invariants and, as
a result, simpler crash consistency requirements. However, although log-structured storage
systems are well studied, their precise consistency requirements can be subtle in the face of
the caching and reordering optimizations used by the modern storage stack.

Consider implementing a simple key-value store as a log-structured storage system. The
on-disk data structure comprises two parts as shown in Figure 2a: a log that stores key-value
pairs (with one pair per block), and a superblock that holds pointers to the head and tail
of the log. We will assume that single-block writes (disk.write) are atomic, that each

ECOOP 2023

35:4 Synthesis-Aided Crash Consistency for Storage Systems

class KeyValueStore(DepSynth):
def __init__(self):

self.superblock = disk.read(0)
if self.superblock.empty(): # initialize an empty disk

self.superblock_head, self.superblock_tail = 1, 1
else:

self.superblock_head, self.superblock_tail = from_block(superblock)
self.epoch = 0

def put(self, key: int, value: int):
address = self.superblock_tail
self.superblock_tail += 1

new_block = to_block(key, value)
disk.write(address, new_block, ("log", self.epoch))

new_superblock = to_block(self.superblock_head, self.superblock_tail)
disk.write(0, new_superblock, ("superblock", self.epoch))

self.epoch += 1

def get(self, key: int) -> Optional[int]:
address = self.superblock_tail - 1
while address >= self.superblock_head:

block = disk.read(address)
current_key, current_value = from_block(block)
if current_key == key:

return current_value
address -= 1

return None

Figure 1 Implementation of a simple log-structured key-value store.

key-value pair fits in one block, and that the log does not run out of space. To implement
this system, the developer writes put and get methods that interact with the disk as shown
in Figure 1.

Calls to disk.read and disk.write illustrate our new higher-level storage interface:
disk.read is unchanged from the usual system call, taking as input an address on the disk
to read from; and disk.write takes as input an address on the disk to write to, the block
data to write to that address, and a third label argument. A label is a pair of a string name
and an integer epoch. Labels serve as identities for writes: the name describes the data
structure the write targets, while the epoch relates writes across different data structures.
This implementation uses the name part of the label to distinguish writes of new log blocks
and writes to the superblock,1 and uses the epoch part as a logical clock that relates the two
writes generated by a single put call. Labels exist only in memory while a write is in-flight,
and are never persisted to disk.

1 For this system we could distinguish the two data structures without labels – superblock writes are to
address 0 while log writes are to non-zero addresses – but in general, storage systems reuse addresses
over time and so this mapping is not static.

J. Van Geffen, X. Wang, E. Torlak, and J. Bornholt 35:5

(1, 3) (0, 42) (1, 81)

b0 b1 b2 b3 b4 …

head

tail

(a) On-disk layout of a simple log-structured key-
value store. Each block holds a (key, value) pair.
The first block is a superblock that holds pointers
to the head and tail of the log.

(1, 4) (0, 42) (1, 81) ∅

b0 b1 b2 b3 b4 …

head

tail

(b) Possible on-disk state after a crash, leaving the
superblock pointing to a range that includes an
invalid block.

Figure 2 The on-disk layout of a simple key-value store. Arrows denote pointers and boxes are
blocks.

While this implementation is functionally correct, it would not be crash consistent if
implemented on a classical storage stack. The issue is with the ordering of log and superblock
writes: even though the code suggests that the superblock write comes after the log write,
optimizations in the storage stack could reorder the two writes and lead to a crash state
where the superblock is updated but its corresponding new log block is not, as Figure 2b
shows. This would leave the superblock_tail pointer referring to an uninitialized disk
block. What we need for consistency is a way to preclude this reordering. One solution in
the DepSynth programming model would be for the developer to manually implement a
dependency rule that prevents this reordering:

def __init__(self):
self.rule("superblock", "log", eq)

A dependency rule rule("a", "b", eq) specifies an ordering constraint: a write labeled with
name "a" must not be sent to disk until after a write labeled with name "b". We say that
such a rule means write "a" depends on write "b", or equivalently that write "b" must happen
before write "a". The third argument to rule is an epoch predicate that scopes the rule using
the epoch in each label. Here, the eq predicate restricts the rule to only apply to pairs of
writes whose labels have equal epochs. This rule means that superblock updates cannot be
persisted on disk until a log block write with the same epoch is persisted first, ruling out the
reordering behavior that could make the log inconsistent.

2.2 Dependency rule synthesis
While the developer could specify the above dependency rule manually, our programming
model does not require them to, and distilling the correct set of rules for a complex storage
system is difficult to do by hand. The challenge is a semantic gap: the developer’s desired
high-level consistency property is about the on-disk data structure as a whole, but the
implementation of consistency can only refer to individual block-sized writes. We bridge this
gap with DepSynth, a program synthesis tool that can automatically infer the dependency
rules sufficent to make a storage system crash consistent.

DepSynth takes three inputs. First, it takes as input the implementation of the storage
system. Second, it takes as input a crash consistency predicate, written as an executable
checker over a disk state. The crash consistency predicate defines the property that should be
true of every state of the disk, including after crashes. For our log-structured key-value store,
our desired consistency property is that the superblock_tail pointer never gets ahead of
the blocks that have been written to the log. We can implement this property by checking
that all blocks in the log are valid log blocks (we omit an implementation of valid for brevity,
but it could validate a checksum of the block):

ECOOP 2023

35:6 Synthesis-Aided Crash Consistency for Storage Systems

def consistent(self) -> bool:
ret = True
for address in range(self.superblock_head, self.superblock_tail):

block = disk.read(address)
ret = ret and valid(block)

return ret

Finally, DepSynth takes as input a collection of litmus tests, small programs that exercise
the storage system. Litmus tests are widely used to communicate the semantics of memory
consistency models [2, 32], and have also been used to communicate crash consistency
models [5]. A DepSynth litmus test comprises two executable programs initial and main.
Both programs take as input a reference to the storage system. The initial program sets
up some initial state in the system, and cannot crash. The main program manipulates the
system state, and can crash at any point. For example, this is a simple litmus test that starts
from a single log entry and appends two more:

class SingleEntry_TwoAppend(LitmusTest):
def initial(self, store: KeyValueStore):

store.put(0, 42)

def main(self, store: KeyValueStore):
store.put(1, 81)
store.put(2, 37)

As with previous work on memory consistency models [2, 6], the developer can draw litmus
tests from a number of sources: they may be hand-written by the developer, drawn from a
common set of tests for important properties, generated automatically by a fuzzer or program
enumerator, or intelligently generated by analyzing the on-disk data structures used by the
storage system [1].

Given these three inputs, DepSynth automatically synthesizes a set of dependency rules
that suffice to guarantee the crash-consistency predicate holds on all crash states generated
by all litmus tests. For our example log-structured key-value store, DepSynth synthesizes
two dependency rules:

def __init__(self):
self.rule("superblock", "log", eq)
self.rule("superblock", "superblock", gt)

The first rule is the same rule we hand-wrote earlier. The second rule fixes a subtle crash-
consistency bug in our hand-written implementation: while the first rule ensures consistency
for a single put operation, it still allows superblock_tail to get ahead of the log if writes
from multiple puts are reordered with each other (for example, reordering writes from the
first and second puts in the litmus test above). The second rule prevents this reordering
using the gt epoch predicate, which specifies that a superblock write with epoch i cannot
be persisted to disk until all superblock writes with lower epochs j < i are persisted first.
The combination of these rules precludes the problematic reordering and guarantees that the
superblock always refers to a valid range of log blocks, rather than only requiring the block
at superblock_tail to be valid.

J. Van Geffen, X. Wang, E. Torlak, and J. Bornholt 35:7

3 Reasoning About Crash Consistency

The DepSynth workflow includes a new high-level interface for building storage systems
and a synthesis tool for automatically making those systems crash consistent. This section
describes the high-level interface, including labeled writes and dependency rules, and presents
a logical encoding for reasoning about crashes of systems that use this interface. Section 4
then presents the DepSynth synthesis algorithm for inferring sufficient dependency rules to
make a storage system crash consistent.

3.1 Disk Model and Dependency Rules
In the DepSynth programming model, storage systems run on top of a disk model d that
provides two operations:

d.write(a, v, l): write a data block v to disk address a with label l

d.read(a): read a data block at disk address a

We assume that single-block write operations are atomic, as in previous work [27, 8]. These
interfaces are similar to the standard POSIX pwrite and pread APIs, except that the write
operation additionally takes as input a label for the write. A label l = ⟨n, t⟩ is a pair of a
name string n and an epoch integer t. Labels allow the developer to provide identities for
each write their system performs, which dependency rules (described below) can inspect to
enforce ordering requirements. Although the two components of a label together identify a
write, developers use them for separate purposes: the name indicates which on-disk data
structure the write targets, while the epoch associates related writes with different names.
Names are strings but are not interpreted by our workflow other than to check equality
between them. Epochs are integers that dependency rules use as logical clocks to impose
orderings on related writes.

3.1.1 Dependency rules
DepSynth synthesizes declarative dependency rules to enforce consistency requirements for a
storage system that uses labeled writes.

▶ Definition 1 (Dependency rule). A dependency rule n1 ⇝p n2 comprises two names n1
and n2 and an epoch predicate p(t1, t2) over pairs of epochs. Given two labels la = ⟨na, ta⟩
and lb = ⟨nb, tb⟩, we say that a dependency rule n1 ⇝p n2 matches la and lb if na = n1,
nb = n2, and p(ta, tb) is true.

Dependency rules define ordering requirements over all writes with labels that match them,
and the dependency-aware buffer cache enforces these rules at run time. More precisely, the
dependency-aware buffer cache enforces dependency safety for all writes it sends to disk:

▶ Definition 2 (Dependency safety). A dependency-aware buffer cache maintains dependency
safety for a set of dependency rules R if, whenever a storage system issues two writes
d.write(a1, s1, l1) and d.write(a2, s2, l2), and a rule na ⇝p nb ∈ R matches l1 and l2, then
the cache ensures the write to a1 does not persist until the write to a2 is persisted on disk.

In other words, all crash states of the disk that include the effect of the first write must
also include the effect of the second write. Section 3.3 will specify dependency safety more
formally by defining the crash behavior of a disk in first-order logic.

The epoch predicate of a dependency rule reduces the scope of the rule to only apply to
some writes labeled with the relevant names. Given two labels l1 = ⟨n1, t1⟩ and l2 = ⟨n2, t2⟩, a
dependency rule n1 ⇝p n2 can use one of three epoch predicates: =, >, and <, which restrict

ECOOP 2023

35:8 Synthesis-Aided Crash Consistency for Storage Systems

the rule to apply only when t1 = t2, t1 > t2, and t1 < t2, respectively. These variations allow
dependency rules to specify ordering requirements over unbounded executions of the storage
system without adding unnecessary dependencies between all operations with certain names.

Together, the name and epoch components of labels allow dependency rules to define a
variety of important consistency requirements, depending on how the developer chooses to
label their writes. For example, if all writes generated by a related operation (e.g., a top-level
API operation like put in a key-value store) share the same epoch t, then rules using the
= epoch predicate can impose consistency requirements on individual operations, such as
providing transactional semantics. As another example, rules using the > epoch predicate
can be used as barriers for all previous writes, and so can help to implement operations like
garbage collection that manipulate an entire data structure.

3.1.2 Dependency-aware buffer cache
At run time, storage systems implemented with the DepSynth programming model execute
on top of a dependency-aware buffer cache. This buffer cache is configured with a set of
dependency rules at initialization time, and enforces those rules on all writes executed by
the storage system.

The dependency-aware buffer cache is inspired by previous higher-level storage APIs
such as those used by Featherstitch [10] and ShardStore [4], which also provide interfaces for
specifying ordering requirements for writes. Both of these interfaces are imperative: they
require the developer to manually construct a dependency graph for each write they execute,
and so closely intertwine the ordering requirements with the implementation, as constructing
these graphs requires sharing graph nodes (patchgroups in Featherstitch and dependencies in
ShardStore) across threads and operations. In contrast, the dependency-aware buffer cache
interface is declarative: the dependency rules are configured once, and then automatically
applied to all relevant writes without requiring the developer to manually construct graphs
or invoke consistency primitives like fsync.

The implementation details of the dependency-aware buffer cache are outside the scope
of this paper and follow the examples of Featherstitch and ShardStore. An implementation
could use a variety of consistency and durability primitives provided by disks, including
force-unit-access writes, cache flush commands, or ordering barriers. We trust the correctness
of the dependency-aware buffer cache, and specifically we assume it enforces dependency
safety (Definition 2).

3.2 Storage Systems and Litmus Tests
To apply DepSynth, developers provide three inputs: a storage system implementation, a
collection of litmus tests that exercise the storage system, and a crash consistency predicate
for the system.

3.2.1 Storage system implementations
Developers implement a storage system for DepSynth by defining a collection of API operations
O and an implementation function for each operation:

▶ Definition 3 (Storage system implementation). A storage system implementation O =
{Oa, Ob, . . . } is a set of API operations Oi and, for each Oi, an implementation function
IOi(d, x) that takes as input a disk state d and a vector of other inputs x and issues write
operations to mutate disk d.

J. Van Geffen, X. Wang, E. Torlak, and J. Bornholt 35:9

DepSynth requires implementation functions to support being symbolically evaluated with
respect to a symbolic disk state d. In this paper, we use Rosette [28] as our symbolic
evaluator; this requires implementation functions to be written in Racket and allows them
to be automatically lifted to support the necessary symbolic evaluation, so long as their
executions are deterministic and bounded.

We say that a program P is a sequence of calls [O1(x1), . . . , On(xn)] to API operations
Oi ∈ O. Given a program P , we write EvaluateO(P) for the function that symbolically
evaluates each IOi

(d, xi) in turn, starting from a symbolic disk d, and returns a trace of
labeled write operations [w1, . . . , wn] that the program performed. The trace does not need
to include read operations as they cannot participate in ordering requirements.

3.2.2 Litmus tests

DepSynth synthesizes dependency rules from a set of example litmus tests, which are small
programs that exercise the storage system and demonstrate its desired consistency behavior.
A litmus test T = ⟨Pinitial, Pmain⟩ is a pair of programs that each invoke operations of the
storage system. The initial program Pinitial sets up an initial state of the storage system
by, for example, prepopulating the disk with files or objects. It will be executed starting
from an empty disk, and cannot crash. The main program Pmain then tests the behavior of
the storage system starting from that initial state. DepSynth will exercise all possible crash
states of the main program.

Litmus tests are widely used to communicate the semantics of memory consistency models
to developers [2, 32], and have also been used to communicate crash consistency [5] and to
search for crash consistency bugs in storage systems [18]. DepSynth is agnostic to the source
of the litmus tests it uses so long as they fit the definition of a program (i.e., are straight-line
and deterministic).

3.2.3 Crash consistency predicates

To define crash consistency for their system, developers also provide a crash-consistency
predicate Consistent(d) that takes a disk state d and returns whether the disk state should
be considered consistent. The crash-consistency predicate should include representation
invariants for the storage system’s on-disk data structures. For example, a file system like
ext2 might require that all block pointers in inodes refer to blocks that are allocated (i.e., no
dangling pointers). These properties correspond to those that can be checked by an fsck-like
checker [12]. The crash-consistency predicate can also include stronger properties such as
checking the atomic-replace-via-rename property for POSIX file systems [5, 22].

3.3 Reasoning About Crashes

To reason about the crash behaviors of a storage system, we encode the semantics of
dependency rules and litmus tests in first-order logic based on existing work on storage
verification [27]. We first encode the behavior of a single write operation, and then extend
that encoding to executions of entire programs.

ECOOP 2023

35:10 Synthesis-Aided Crash Consistency for Storage Systems

3.3.1 Write operations

We model the behavior of a disk write operation as a transition function fwrite(d, a, v, s),
that takes four inputs: the current disk state d, the disk address a to write to, the new block
value v to write, and a crash flag s, a boolean that is used to encode the effect of a crash
on the resulting disk state. Given these inputs, fwrite returns the resulting disk state after
applying the operation. The effect of a write operation is visible on the disk only if s is true:

fwrite(d, a, v, s) = d[a 7→ if s then v else d(a)].

3.3.2 Program executions

Given the trace of write operations [w1, . . . , wn] = EvaluateO(P) executed by a program P

against storage system O, and for each write its corresponding crash flag si, we can define
the final disk state of the program by just applying the transition function in sequence:

Run ([write(a1, v1, l1), w2, . . . , wn], [s1, . . . , sn], d)
= Run ([w2, . . . , wn], [s2, . . . , sn], fwrite(d, a1, v1, s1))

Run ([], [], d) = d

We call the vector s = [s1, . . . , sn] of crash flags for each operation in the trace a crash
schedule.

Not all crash schedules are possible. At run time, the dependency-aware buffer cache
constrains the set of valid crash schedules by applying the dependency rules it is configured
with:

▶ Definition 4 (Valid crash schedule). Let [w1, . . . , wn] = EvaluateO(P) be the trace of
operations executed by a program P on storage system O, R be a set of dependency rules,
and s = [s1, . . . , sn] the crash schedule for the trace. The crash schedule s is valid for the
program P and set of rules R, written ValidR(s, P), if for all operations wi = write(ai, vi, li)
and wj = write(aj , vj , lj), whenever there exists a rule na ⇝p nb ∈ R that matches li and
lj, then si → sj.

This definition is a logical encoding of dependency safety (Definition 2): if si → sj , then
write wj is guaranteed to be persisted on disk whenever write wi is.

Finally, we can define crash consistency for a litmus test T = ⟨Pinitial, Pmain⟩ as a function
of a set of dependency rules R:

▶ Definition 5 (Single-test crash consistency). Let T = ⟨Pinitial, Pmain⟩ be a litmus test. Let
dinitial = Run (EvaluateO(Pinitial), ⊤, d0) be the disk state reached by running the program
Pinitial against storage system O on the all-true (i.e., crash-free) crash schedule ⊤ starting
from the empty disk d0. A set of dependency rules R makes T crash consistent if, for all crash
schedules s such that ValidR(s, Pmain) is true, Consistent(Run (EvaluateO(Pmain), s, dinitial))
holds.

▶ Example 6. Consider the SingleEntry_TwoAppend litmus test from Section 2. Interpreting
the initial and main programs gives two traces:

J. Van Geffen, X. Wang, E. Torlak, and J. Bornholt 35:11

Interpret(Pinitial) = [write(1, to_block((0, 42)), ⟨log, 0⟩),
write(0, to_block((1, 2)), ⟨superblock, 0⟩)]

Interpret(Pmain) = [write(2, to_block((1, 81)), ⟨log, 1⟩),
write(0, to_block((1, 3)), ⟨superblock, 1⟩),
write(3, to_block((2, 37)), ⟨log, 2⟩),
write(0, to_block((1, 4)), ⟨superblock, 2⟩)]

Let s = [s1, s2, s3, s4] be a crash schedule for Pmain. Applying the two synthesized rules from
Section 2 restricts the valid crash schedules (Definition 4):

superblock⇝= log requires s2 → s1 and s4 → s3.
superblock⇝> superblock requires s4 → s2.

Combined, these constraints yield seven valid crash schedules. Besides the two trivial
crash schedules s = ⊤ and s = ⊥, the other five crash schedules yield five distinct disk
states:

(1)
[s1 = ⊤, s2 = ⊥, s3 = ⊥, s4 = ⊥]
(only the first log block is on disk)

(1, 2) (0, 42)

b0 b1 b2 b3 b4 …

(1, 81)

(2)
[s1 = ⊥, s2 = ⊥, s3 = ⊤, s4 = ⊥]
(only the second log block is on disk)

(1, 2) (2, 37)

b0 b1 b2 b3 b4 …

(0, 42)

(3)
[s1 = ⊤, s2 = ⊥, s3 = ⊤, s4 = ⊥]
(both log blocks are on disk)

(1, 2) (0, 42) (1, 81)

b0 b1 b2 b3 b4 …

(2, 37)

(4)
[s1 = ⊤, s2 = ⊤, s3 = ⊥, s4 = ⊥]
(the first log block and first superblock write
are on disk)

(1, 3) (0, 42)

b0 b1 b2 b3 b4 …

(1, 81)

(5)
[s1 = ⊤, s2 = ⊤, s3 = ⊤, s4 = ⊥]
(the first log block, first superblock write, and
second log block are on disk)

(1, 3) (0, 42) (1, 81)

b0 b1 b2 b3 b4 …

(2, 37)

Each of these states satisfies the key-value store’s crash-consistency predicate Consistent(d)
defined in Section 2, as in each case the superblock’s head and tail pointers refer only to
log blocks that are also on disk. Some states result in data loss after the crash – for example,
neither key can be retrieved from crash state 1 above, as the superblock is empty – but these
states are still consistent (i.e., they satisfy the log’s representation invariant). This set of two
rules therefore makes the SingleEntry_TwoAppend litmus test crash consistent according to
Definition 5.

If the second rule superblock⇝> superblock was excluded, the rule set with one remaining
rule allows 2 additional crash states:

(6)

[s1 = ⊤, s2 = ⊥, s3 = ⊤, s4 = ⊤]
(the first log block, second log block, and
second superblock write are on disk)

(1, 4) (0, 42) (1, 81)

b0 b1 b2 b3 b4 …

(2, 37)

ECOOP 2023

35:12 Synthesis-Aided Crash Consistency for Storage Systems

(7)

[s1 = ⊥, s2 = ⊥, s3 = ⊤, s4 = ⊤]
(the second log block and second superblock
write are on disk)

(1, 4)

b0 b1 b2 b3 b4 …

(0, 42) (2, 37)

State 6 satisfies the crash-consistency predicate despite losing the first superblock write, as
the second superblock write already contains the effects of the first one. However, state 7
violates the crash-consistency predicate: the first log block is invalid, but is included in the
range between the superblock’s head and tail pointers. The set containing only the first
rule therefore does not make SingleEntry_TwoAppend crash consistent.

4 Dependency Rule Synthesis

This section describes the DepSynth synthesis algorithm, which automatically generates a
set of dependency rules that are sufficient to guarantee crash consistency for a set of litmus
tests. It formalizes the dependency rule synthesis problem, gives an overview of DepSynth’s
approach to synthesizing dependency rules, and then presents the core DepSynth algorithm
(Figure 3).

4.1 Problem Statement
DepSynth solves the problem of finding a single set of dependency rules R that makes
every litmus test T in a set of tests T crash consistent (Definition 5). While Definition 5
suffices to find a set of rules R that guarantees crash consistency, it does not rule out cyclic
solutions that cannot be executed on real hardware. For example, consider a program
P where EvaluateO(P) = [write(a1, v1, ⟨n1, t1⟩), write(a2, v2, ⟨n2, t2⟩)]. The set of rules
R = {n1 ⇝= n2, n2 ⇝= n1} makes P crash consistent. These two rules do not admit any
valid crash schedules other than the trivial s = ⊤ and s = ⊥ schedules, as Definition 4
forces s1 = s2. In effect, crash consistency for P requires both writes to happen “at the same
time”. But on real disks the level of write atomicity is only a single data block, so there is no
way for both writes to happen at the same time. To rule out cyclic solutions, we follow the
example of happens-before graphs [14] from distributed systems and memory consistency,
and require the set of synthesized dependency rules R to be acyclic.

4.2 The DepSynth Algorithm
The DepSynth algorithm (Figure 3) takes as input a storage system implementation O, a
set of litmus tests T , and a crash-consistency predicate Consistent. Given these inputs, it
synthesizes a set of dependency rules that is acyclic and sufficient to make all tests T crash
consistent.

DepSynth does not try to generate a sufficient set of dependency rules for all tests in T
at once, since this would require a prohibitively expensive search over large happens-before
graphs. Instead, it works incrementally: at each iteration of its top-level loop, DepSynth
chooses a single test T that is not made crash consistent by the current candidate set of
dependency rules (line 4 in Figure 3), invokes the procedure RulesForTest (Section 4.3)
to synthesize dependency rules that make T crash consistent, and adds the new rules to
the candidate set (line 11). Working incrementally reduces the number of litmus tests for
which DepSynth needs to synthesize rules; for example, in Section 6.1 we show that only 10
of 16,250 tests were passed to RulesForTest to synthesize a sufficient set of dependency
rules for a production key-value store. This reduction relieves developers from being selective
about the set of litmus tests they supply to DepSynth, and makes it possible to, for example,
use the output of a fuzzer or random test generator as input.

J. Van Geffen, X. Wang, E. Torlak, and J. Bornholt 35:13

1 function DepSynth(O, T , Consistent)
2 R← {}
3 loop
4 T ← NextTest(T , R,O, Consistent)
5 if T = ⊥ then ▷ R makes all tests in T crash consistent
6 return R
7 T ← T \ T
8 R′ ← RulesForTest(T,O, Consistent)
9 if R′ = ⊥ then

10 return UNSAT ▷ No rules can make T crash consistent
11 R← R ∪R′

12 if ¬Acyclic(R) then ▷ Fail if new rules create a cycle in the rule set
13 return UNKNOWN

14 function NextTest(T , R, O, Consistent)
15 for T ∈ T do
16 if ¬CrashConsistent(T, R,O, Consistent) then
17 return T
18 return ⊥

▷ Check Def. 5 with an SMT solver
19 function CrashConsistent(T = ⟨Pinitial, Pmain⟩, R, O, Consistent)
20 dinitial ← Run (EvaluateO(Pinitial), ⊤, d0)
21 return ∀s. ValidR(s, Pmain)⇒ Consistent(Run (EvaluateO(Pmain), s, dinitial))

Figure 3 The DepSynth algorithm takes as input a storage system implementation O, a set of
litmus tests T , and a crash-consistency predicate Consistent, and returns an acyclic set of dependency
rules that make all tests in T crash consistent (Definition 5). The search synthesizes dependency
rules for one litmus test at a time. If the rules generated for two or more tests result in a cycle, this
algorithm fails; Section 4.4 discusses an extension for continuing the search for an acyclic solution.

However, because the rules for each test are generated independently, it is possible for
the union of the generated rules to contain a cycle – even if the rules for each individual
test do not – and so be an invalid solution (Section 4.1). The algorithm in Figure 3 returns
UNKNOWN if such a cycle is found. We have not seen this failure mode occur for the
storage systems we evaluated (Section 6), but it is possible in principle. In Section 4.4, we
explain how to extend DepSynth to recover from cycles by generalizing RulesForTest to
synthesize rules for multiple tests at once.

DepSynth delegates checking for crash consistency to the procedure CrashConsistent
(line 19), which takes as input a single litmus test and a set of dependency rules, and checks
whether the rules make the test crash consistent according to Definition 5. This procedure
uses symbolic evaluation of the storage system implementation O to generate the logical
encoding described in Section 3.3, and solves the resulting formulas using an off-the-shelf
SMT solver [20].

4.3 Synthesizing Dependency Rules with Happens-Before Graphs

The core of the DepSynth algorithm is the RulesForTest procedure in Figure 4, which
takes as input a litmus test T , a storage system implementation O, and a crash-consistency
predicate Consistent, and synthesizes a set of dependency rules that makes T crash consistent.
RulesForTest frames the rule synthesis problem as a search over happens-before graphs [14]
on the writes performed by the test. An edge (w1, w2) between two writes in a happens-before
graph says that write w1 must persist to disk before write w2. Happens-before graphs and

ECOOP 2023

35:14 Synthesis-Aided Crash Consistency for Storage Systems

22 function RulesForTest(T = ⟨Pinitial, Pmain⟩, O, Consistent)
23 W ← {w | w ∈ EvaluateO(Pmain)}
24 return Phase1(T , [], W,O, Consistent)

25 function Phase1(T , order, W , O, Consistent) ▷ Search for total orders over writes
26 if W = ∅ then
27 G← {(order[i], order[j]) | 0 ≤ i < j < |order|}
28 return Phase2(T , G, O, Consistent) ▷ G is a total order; minimize it in Phase 2
29 for w ∈W do
30 order′ ← order + [w]
31 W ′ ←W \ {w}
32 G← {(order[i], order[j]) | 0 ≤ i < j < |order|} ∪

{(w1, w2) | w1 ∈ order ∧ w2 ∈W}∪
{(w1, w2) | w1, w2 ∈W}

33 if ¬CrashConsistent(T, RulesForGraph(G),O, Consistent) then
34 continue
35 R← Phase1(T, order′, W ′,O, Consistent)
36 if R ̸= ⊥ then
37 return R
38 return ⊥

39 function Phase2(T , G, O, Consistent) ▷ Minimize graph G by removing individual edges
40 R← RulesForGraph(G)
41 if ¬CrashConsistent(T, R,O, Consistent) then
42 return ⊥
43 for (w1, w2) ∈ G do ▷ Try removing each edge from G
44 G′ ← G \ {(w1, w2)}
45 R′ ← Phase2(T, G′,O, Consistent)
46 if R′ ̸= ⊥ then
47 return R’
48 if Acyclic(R) then
49 return R ▷ G makes T crash consistent and no subgraph of G suffices
50 else
51 return ⊥

52 function RulesForGraph(G) ▷ Generalize a happens-before graph into dependency rules
53 R← {}
54 for (w1, w2) ∈ G do
55 ⟨n1, t1⟩ ← Label(w1) ▷ Get label l1 = ⟨n1, t1⟩ for write w1 = write(a1, s1, l1)
56 ⟨n2, t2⟩ ← Label(w2)
57 if t1 < t2 then
58 R← R ∪ {n2 ⇝> n1} ▷ Invert order, as a rule na ⇝p nb says na happens after nb

59 else if t1 = t2 then
60 R← R ∪ {n2 ⇝= n1}
61 else
62 R← R ∪ {n2 ⇝< n1}
63 return R

Figure 4 The algorithm for generating sufficient dependency rules for a litmus test T searches
the space of happens-before graphs over the writes performed by T . The first phase searches for
total orders over the writes that are sufficient for crash consistency. Once such a total order is found,
the second phase removes edges from it until the happens-before graph is minimal.

J. Van Geffen, X. Wang, E. Torlak, and J. Bornholt 35:15

dependency rules have a natural correspondence: if a happens-before graph includes an edge
(w1, w2), a dependency rule n2 ⇝p n1 that matches the writes’ labels is sufficient to enforce
the required ordering. RulesForTest searches for a minimal, acyclic happens-before graph
that is sufficient to ensure crash consistency for T , and then syntactically generalizes that
happens-before graph into a set of dependency rules.

RulesForTest searches for a happens-before graph by first finding a total order on the
writes that makes T crash consistent (Phase1), and then searching for a minimal partial
order within this total order that is both sufficient for crash consistency and yields an acyclic
set of dependency rules (Phase2). The algorithm is exhaustive: it tries all total orders and
all minimal partial orders within a total order, until it finds a solution or fails because a
solution does not exist.

RulesForTest builds on the observation that crash consistency (Definition 5) is mono-
tonic with respect to the subset relation on dependency rules – if a set of dependency rules
R is not sufficient for crash consistency, then no subset of R is sufficient either:

▶ Theorem 7 (Monotonicity of crash consistency). Let T be a litmus test and R a set of
dependency rules for a storage system O. If R does not make T crash consistent (according
to Definition 5), then no subset R′ ⊂ R can make T crash consistent.

Proof sketch. If R does not make T crash consistent, there exists a valid crash schedule s

(Definition 4) that does not satisfy the crash consistency predicate Consistent. By Definition 4,
each rule in R only adds additional constraints on the possible valid crash schedules. Removing
a rule from R therefore only allows more valid crash schedules, and so if s was a valid crash
schedule for R, it is also a valid crash schedule for any subset of R. ◀

RulesForTest applies this property by checking crash consistency for a happens-before
graph G before exploring any subgraphs of G; if G is not sufficient, then neither is any
subgraph of G, and so that branch of the search can be skipped.

4.3.1 Total order search
Phase1 (line 25) explores all possible total orders over the writes in T that are sufficient for
crash consistency. At each recursive call, the list order represents a total order over some of
T ’s writes, and the set W contains all writes not yet added to that order. Phase1 tries to
add each write in W to the end of the total order. Each time, it checks whether the new
total order leads to a crash consistency violation (line 33) and if so, prunes this branch of
the search. For Phase1 to be complete, this check must behave angellically for the writes in
W that have not yet been added to the order – if there is any possible set of dependency
rules for the remaining writes that would succeed, the check must succeed. We make the
check angelic by including every possible dependency rule for the remaining writes (line 32).
If the test cannot be made crash consistent even with every possible rule included, then by
Theorem 7 no subset of those rules (i.e., formed by completing the rest of the total order) can
succeed either, so the prefix is safe to prune. Phase1 continues until every write has been
added to the total order and then moves to Phase2 to further reduce the happens-before
graph.

4.3.2 Partial order search
Starting from a happens-before graph G that reflects a total order over all writes in T ,
Phase2 (line 39) removes edges from the graph until it is minimal, i.e., removing any further
edges would violate crash consistency. Phase2 removes one edge at a time from the graph

ECOOP 2023

35:16 Synthesis-Aided Crash Consistency for Storage Systems

G (line 44), checks if the graph remains sufficient for crash consistency (line 41), and if
so, recurses to remove more edges. By greedily removing one edge at a time, Phase2 is
guaranteed to find a minimal result, and because Phase2 considers removing every possible
edge from G (except those that cannot lead by solutions by Theorem 7), it is complete – if
an acyclic solution exists, Phase2 will reach it.

4.3.3 Generating rules from happens-before graphs

The RulesForTest search operates on happens-before graphs, but its goal is to synthesize
dependency rules (Definition 1). The RulesForGraph procedure (line 52) bridges this gap
by taking as input a happens-before graph G and returning a set of dependency rules R that
are sufficient to enforce the ordering requirements that G dictates. RulesForGraph uses
a simple syntactic approach to generate a rule for each edge in G: if (w1, w2) ∈ G, where
writes w1 and w2 have labels l1 = ⟨n1, t1⟩ and l2 = ⟨n2, t2⟩, respectively, then it generates
a rule of the form n2 ⇝ n1 (reversing the order because G is a happens-before graph but
dependency rules are happens-after edges). To choose an epoch predicate for the generated
rule, we compare the two epochs t1 and t2 and select the predicate that would make the rule
match the labels l1 and l2.

This approach can lead to rules that are too general, as some rules it generates may only
need to apply to certain individual epochs but will instead apply to all epochs that match
the predicate. Overly general rules risk sacrificing performance by preventing reordering
or caching optimizations that would be safe. However, this same generality also allows
RulesForTests to avoid overfitting to the input litmus tests. In Section 6.1 we show that
generated rules generalize well in practice (i.e., are not overfit), and that they filter out few
additional schedules compared to expert-written rules.

4.3.4 Properties of RulesForTest

The RulesForTest algorithm is sound: all paths that return a solution are guarded by
checks of crash consistency and of acyclicity, and so satisfy the requirements of Section 4.1.
RulesForTest is also complete: each of Phase1 and Phase2 are complete, as discussed
above, and so together form a complete search over the space of total orders. Every possible
acyclic solution must be a subgraph of some total order, since the transitive closure of edges
in any happens-before graph is a (strict) partial order, and so exploring all total orders
suffices to reach any possible acyclic solution. Finally, RulesForTest is minimal, in the
sense that removing any rule from a returned set R would violate crash consistency. Phase2
continues removing edges from a candidate graph G until Theorem 7 says it cannot be made
smaller, and is therefore guaranteed to find a minimal happens-before graph. Every rule
in R is justified by (at least) one edge in that graph, and since dependency rules cannot
overlap (in Definition 1, the possible epoch predicates are disjoint), removing any rule would
incorrectly allow reordering of its corresponding edge(s).

▶ Example 8. Consider running RulesForTest for the simple log-structured key-value
store and SingleEntry_TwoAppend litmus test from Section 2. From Example 6 we know
that this test produces a set W of four writes:

J. Van Geffen, X. Wang, E. Torlak, and J. Bornholt 35:17

w1 = write(2, to_block((1, 81)), ⟨log, 1⟩),
w2 = write(0, to_block((1, 3)), ⟨superblock, 1⟩),
w3 = write(3, to_block((2, 37)), ⟨log, 2⟩),
w4 = write(0, to_block((1, 4)), ⟨superblock, 2⟩)

Phase1 first chooses the first write to add to the total order. Suppose it chooses w2. This
choice results in the following graph G at line 32 (shaded nodes are in order; white nodes
are in W):

w2 w1 w3 w4

The check at line 33 finds that this graph is not crash consistent: it allows a crash schedule
where w2 is on disk but no other writes are, which violates the crash-consistency predicate
as w2 is a superblock write pointing to a log block that is not on disk. Phase1 therefore
continues (line 34), which prunes any total order that starts with [w2] from the search, and
chooses a next write to consider, say w3. The total order starting with [w3] does pass the
crash consistency check, so Phase1 recurses with order = [w3] and W = {w1, w2, w4}. In
this recursive call, suppose we again first choose w2 to add to the total order. This choice
results in the following graph G:

w3 w2 w1 w4

Again, line 33 finds that this graph is not crash consistent, for the same reason as before
(superblock write w2 can be on disk when log write w1 is not), and so the search continues,
pruning any total order that starts with [w3, w2]. Suppose it next chooses w1 to add to
the total order. This choice succeeds, making the recursive call with order = [w3, w1] and
W = {w2, w4}. From here, any choice Phase1 makes will succeed. Supposing it choses w2
first, Phase1 eventually reaches line 28 and continues to Phase2 with the following initial
graph G:

w3 w1 w2 w4

Phase2 proceeds by trying to remove one edge at a time from G. Suppose it first chooses
to remove edge (w3, w1), and so recurses at line 45 on the graph G′ = G \ {(w3, w1)}. This
graph still ensures crash consistency at line 41, as writing w1 before w3 does not affect
consistency. The recursion can continue twice more by choosing and successfully removing
edges (w3, w2) and then (w1, w4) as well, eventually reaching line 43 with the following graph
G (now with write labels shown):

w3 w1 w2 w4

〈log, 2〉 〈log, 1〉 〈superblock, 1〉 〈superblock, 2〉

ECOOP 2023

35:18 Synthesis-Aided Crash Consistency for Storage Systems

From here, the loop in Phase2 now tries to remove each of the three remaining edges, but
each attempted G′ violates crash consistency and so returns ⊥ from the next recursive call.
Phase2 therefore exits the loop with the above graph G, which we now know is minimal
as no further edges can be removed. Applying RulesForGraph to G yields the two rules
from Section 2:

superblock⇝= log from edges (w3, w4) and (w1, w2)
superblock⇝> superblock from edge (w2, w4).

4.4 Resolving Cycles in Dependency Rules
The top-level DepSynth algorithm generates rules for each litmus test independently. Even
though the rules generated for each test are guaranteed to be acyclic, it is possible for the
union of those rules to contain a cycle, and so violate the requirements of Section 4.1. In
practice, we have not seen this happen for the storage systems we evaluate in Section 6, and
so the version of DepSynth presented in Figure 3 fails if the synthesized rules contain a
cycle.

To handle cyclic rules, RulesForTest can be extended to support synthesizing rules for
multiple litmus tests at once. This extension adds the writes from all the tests into the set
of writes W , searches for a total order over that entire set in Phase1, and then searches for
a minimal happens-before graph over the entire set in Phase2. Edges between writes from
different tests cannot influence the crash consistency of individual tests (in Definition 4 they
will just lead to spurious additional implications), and they will eventually be removed by
Phase2, creating a forest of disjoint happens-before graphs. Phase2 is therefore guaranteed
to return an acyclic set of dependency rules for all the tests it was provided.

In the limit, DepSynth could just invoke RulesForTest with its entire input set
T , but this would be prohibitively expensive for any non-trivial set of tests. Instead, our
implementation resolves cycles in DepSynth by identifying which individual litmus tests
caused the cycle (i.e., which tests the rules in the cycle were generated from), and passes
only that subset of tests to the extended RulesForTest.

5 Implementation

We implement both the DepSynth algorithm and the storage systems we study in Section 6
in Rosette [28], an extension of Racket [9] with support for verification and synthesis.
Using Rosette as our host language gives us symbolic evaluation of the storage system
implementation for free, and simplifies implementing the CrashConsistent query in
Figure 3. The choice of Rosette and Racket is not fundamental; recent work has shown how
to extend the symbolic evaluation approach to languages such as Python [27] or C [19] in
which storage systems are more commonly implemented.

5.1 Ordering
The DepSynth algorithm in Figure 3 is sensitive to the order in which NextTest chooses
tests to generate dependency rules for. Our implementation chooses tests in increasing order
of size, minimizing the number of happens-before graphs for RulesForTest to explore.
Similarly, RulesForTest is sensitive to the order it considers writes (Phase1) and edges
(Phase2). In both cases, we exploit the following observation: while an execution that
persists writes in program order is not required to be crash consistent (e.g., because storage

J. Van Geffen, X. Wang, E. Torlak, and J. Bornholt 35:19

systems might selectively buffer or coalesce writes), it is often so in practice. RulesForTest
therefore prefers to choose writes in Phase1 in program order, and prefers to remove edges
in Phase2 that contradict program order.

5.2 Reducing solver queries
Both Phase1 and Phase2 in Figure 4 have symmetry in their search space: for a fixed pair
of writes w1 and w2, there are many different branches of Phase1 that try to order w2 after
w1, and many different branches of Phase2 that try to remove the edge (w1, w2) from a
happens-before graph. If we can determine ahead of time that such a choice for those writes
is always doomed to fail, we can avoid considering these choices at all and so save the cost of
an SMT solver query by CrashConsistent. Our implementation of RulesForTest uses
an SMT solver to pre-compute a set of necessary ordering edges – edges which must be in
the happens-before graph – and uses that set to short-circuit CrashConsistent.

6 Evaluation

This section answers three questions to demonstrate the effectiveness of DepSynth:
1. Can storage system developers use DepSynth to synthesize dependency rules for a realistic

storage system rather than implementing their own crash-consistency approach by hand?
(§6.1)

2. Can DepSynth help storage system developers avoid crash-consistency bugs? (§6.2)
3. Does DepSynth’s approach support a variety of storage system designs? (§6.3)

6.1 ShardStore Case Study
To show that developers can use DepSynth to build realistic storage systems, we implemented
a key-value store that follows the design of ShardStore [4], the exabyte-scale production
storage node for the Amazon S3 object storage service.

6.1.1 Implementation
The first step in using DepSynth is to implement the storage system itself. ShardStore’s
on-disk representation is a log-structured merge tree (LSM tree) [21], but with values stored
outside the tree in a collection of extents. Our ShardStore-like storage system implementation
consists of 1,200 lines of Racket code, including five operations: the usual put, get, and
delete operations on single keys, as well as a garbage collection clean operation that
evacuates all live objects in one extent to another extent, and a flush operation that persists
the LSM tree memtable to disk. Our implementation does not handle boundary conditions
such as running out of disk space or objects too large to fit in one extent, but is otherwise
faithful to the published ShardStore design. As a crash consistency predicate, we wrote a
checker that validates all expected objects are accessible by get after a crash, and that the
on-disk LSM tree contains only valid pointers to objects in extents.

6.1.2 Synthesis
With a storage system implementation in hand, a developer can use DepSynth to synthesize
dependency rules that make the system crash consistent. DepSynth takes as input a set of
litmus tests – we randomly generated 16,250 litmus tests for the ShardStore-like system,
ranging in length from 1 to 16 operations. Executing these tests against the system led to

ECOOP 2023

35:20 Synthesis-Aided Crash Consistency for Storage Systems

Table 1 Valid schedules allowed by the production ShardStore service versus the dependency
rules we synthesized for our ShardStore-like reimplementation. A schedule allowed only by one
implementation means either that implementation is not crash consistent (it allows a schedule it
should forbid) or it admits more reordering opportunities (it allows a schedule it should allow).
“Fixed” results are after fixing two issues in ShardStore (one consistency, one performance) that we
identified by manually inspecting the “original” schedules.

Allowed
by both

Allowed only
by DepSynth

Allowed only
by ShardStore

Test Test Length Writes Original Fixed Original Fixed Original Fixed

T1 1 2 3 3 0 0 0 0
T2 2 6 7 14 7 0 3 3
T3 5 1 2 2 0 0 0 0
T4 5 7 8 15 7 0 3 3
T5 4 7 11 29 9 0 9 0
T6 5 5 6 12 2 0 4 0
T7 7 5 5 11 2 0 5 1
T8 10 5 6 12 2 0 4 0
T9 16 6 8 22 2 0 12 0
T10 13 9 21 41 20 0 9 9

an average of 7.2 and a maximum of 20 disk writes per test. Given these inputs, DepSynth
synthesized a set of 20 dependency rules for ShardStore in 49 minutes. To find a correct
solution for all 16,250 litmus tests, the DepSynth algorithm invoked the RulesForTest
procedure (line 8 in Figure 3) only 10 times, showing that DepSynth’s incremental approach
is effective at reducing the search space.

6.1.3 Comparison to an existing implementation
ShardStore is an existing production system and already supports crash consistency. Its
implementation does not use a dependency-rule language like in DepSynth. Instead, it
implements a soft-updates approach [11] by constructing dependency graphs (i.e, happens-
before graphs) at run time and sequencing writes to disk based on those graphs, similar
to patchgroups in Featherstitch [10]. We therefore compare our synthesized rules against
ShardStore’s dependency graphs to see how well DepSynth may replace an expert-written
crash consistency implementation.

For each of the 10 tests that DepSynth used while synthesizing dependency rules for
ShardStore, we used an SMT solver to compute the set of valid crash schedules (Definition 4)
according to those synthesized dependency rules. We then executed the same test using
the production ShardStore implementation, collected the run-time dependency graph it
generated, and used an SMT solver to compute the set of valid crash schedules according to
that graph. Given these two sets of crash schedules, we computed the set intersection and
difference to classify them into three groups: schedules allowed by both implementations (i.e.,
both implementations agree), and schedules allowed only by one or the other implementation
(i.e., the two implementations disagree).

Table 1 shows the results of this classification across the 10 litmus tests. Overall, the
two implementations agree on the validity of an average of 87% of crash schedules. The
remaining crash schedules are in two categories:
1. Schedules allowed only by DepSynth mean either DepSynth’s rules allow some schedules

that are not crash consistent (a correctness issue in the synthesized rules) or ShardStore
precludes some schedules that are crash consistent (a performance issue in ShardStore).

J. Van Geffen, X. Wang, E. Torlak, and J. Bornholt 35:21

We found that every schedule allowed by DepSynth is crash consistent, and that ShardStore
inserts unnecessary edges in its dependency graphs, ruling out some reorderings that
would be safe. These edges are not necessary to guarantee crash consistency of the
overall storage system, and so DepSynth is correct to allow them. However, ShardStore
engineers intentionally include these edges as they make the representation invariant for
an on-disk data structure simpler, even though a more complex invariant that did not
require these edges would still be sufficient for consistency. In other words, ShardStore
engineers favored a stronger, simpler invariant in these cases, where DepSynth is able to
identify opportunities for performance improvements.

2. Schedules allowed only by ShardStore mean either DepSynth’s rules preclude some
schedules that are crash consistent (meaning DepSynth’s output is not optimal) or
ShardStore allows some schedules that are not crash consistent (a correctness issue in
ShardStore). 67% of these schedules are incorrectly allowed by ShardStore due to a
rare crash-consistency issue that was independently discovered concurrently with this
work. We have confirmed with ShardStore engineers that the issue was an unlikely edge
case that could not lead to data loss, but could lead to “ghost” objects – resurrected
pointers to deleted objects, where the object data has been (correctly) deleted, but the
pointer still exists – which result in an inconsistent state. After fixing this issue in
ShardStore, we manually inspected the remaining schedules it allowed and confirmed
they are all cases where DepSynth’s rules generate extraneous edges (i.e., the synthesized
rules are not optimal), and the crash-consistency predicate we wrote for our ShardStore
reimplementation agrees that all the resulting states are consistent.

After fixing the two ShardStore issues discussed above, the synthesized dependency rules agree
with ShardStore on the validity of an average of 99% of crash schedules. The few remaining
schedules are ones that DepSynth’s synthesized dependency rules conservatively forbid due
to the coarse granularity of the dependency rule language. Overall, this study shows that
DepSynth achieves similar results to an expert-written crash consistency implementation,
and can help identify correctness and performance issues in existing storage systems.

6.1.4 Generalization
One risk for example-guided synthesis techniques like DepSynth is that they can overfit
to the examples (litmus tests) and not actually ensure crash consistency on unseen test
cases. DepSynth’s design reduces this risk by using a simple dependency rule language
(Definition 1) that cannot identify individual write operations. To test generalization, we
randomly generated an additional 136,000 litmus tests for our ShardStore-like system. We
also allowed these tests to be significantly longer than those used during synthesis – up to a
maximum of 40 writes rather than the 20 in the input set of litmus tests. For each new test,
we used the synthesized dependency rules to compute all valid crash schedules for the test,
and found that every crash schedule resulted in a consistent disk state according to our crash
consistency predicate. In other words, by limiting the expressivity of our dependency rule
language, the rules we synthesize can generalize well beyond the tests they were generated
from.

6.2 Crash-Consistency Bugs
To understand how effective DepSynth can be in preventing crash-consistency bugs, we
surveyed all bugs reported by two recent papers [4, 18] in three production storage systems
for which a known fix is available. We manually analyze each bug and determine whether
DepSynth could discover and prevent them.

ECOOP 2023

35:22 Synthesis-Aided Crash Consistency for Storage Systems

Table 2 Sample crash-consistency bugs in three storage systems reported by two recent papers [4,
18]. Each bug includes its identifier (bug number for ShardStore, kernel Git commit for btrfs and
f2fs). Most of these bugs could have been prevented by using DepSynth to automatically identify
missing ordering requirements, but some crash-consistency issues are either not ordering related or
are unlikely to be detected by DepSynth’s litmus-test-driven approach.

Storage system Crash-consistency bug Preventable by DepSynth?

ShardStore Inconsistency in extent allocation (#6) Yes
ShardStore Mismatch between soft and hard write pointers (#7) Yes
ShardStore Index entries persisted before target data (#8) Yes
ShardStore Crash consistency predicate too strong (#9) No – specification bug
ShardStore Data loss after UUID collision (#10) No – unlikely to detect
btrfs Extents deallocated too early in recovery (bf50411) Yes
btrfs Inode rename commits out of order (d4682ba) Yes
f2fs fsync failed after directory rename (ade990f) Yes
f2fs Wrong file size when zeroing file beyond EOF (17cd07a) No – not reordering

Table 2 shows the results of our survey. In six cases, DepSynth could have prevented the
bug by synthesizing a dependency rule to preclude a problematic reordering optimization.
Each of these bugs had small triggering test cases, suggesting they would be reachable by
a litmus-test-based approach like ours. In the other three cases, our analysis shows that
DepSynth would not prevent the bug. One bug in ShardStore was a specification bug in
which the crash consistency predicate was too strong. DepSynth assumes that the crash
consistency predicate is correct, and will miss specification bugs. Another bug in ShardStore
involved a collision between two randomly generated UUIDs. While such a bug would be
possible to find in principle using litmus tests, it would be very unlikely, and without a test
that triggers the issue DepSynth cannot preclude it. One bug in f2fs involved an incorrect
file size being computed when zero-filling a file beyond its existing endpoint. This bug was
a logic issue rather than a reordering one (i.e., occurring even without a crash), and so no
dependency rule would suffice to prevent it. Overall, our analysis indicates that DepSynth
can prevent a range of ordering-related crash-consistency bugs, but other bugs would require
a different approach.

6.3 Other Storage Systems
Beyond ShardStore, we expect DepSynth to effectively generate rules for any storage systems
whose crash consistency properties can be ensured by correctly ordering writes. As Frost et
al. describe in [10], write-before relationships underlie every crash consistency mechanism,
including journaling, synchronous writes, copy-on write data structures, and soft updates.
Though storage systems vary greatly in their mechanisms for storing and retreiving data,
each must enable crash consistency by enforcing write-before relationships. Since DepSynth
is a tool for automatically developing write-before relationships, this leads us to believe that
DepSynth can be a useful tool for automating crash consistency in all such systems.

To demonstrate this point, we have also used DepSynth to implement a log-structured
file system [25]. The file system supports five standard POSIX operations: open, creat,
write, close, and mkdir. While our implementation is simple (300 lines of Racket code)
compared to production file systems, it has metadata structures for files and directories, and
so has its own subtle crash consistency requirements. For example, updates to data and
inode blocks must reach the disk before the pointer to the tail of the log is updated. To
synthesize dependency rules for this file system, we randomly generated 235 litmus tests
with at most 6 operations. DepSynth synthesized a set of 18 dependency rules in 12 minutes

J. Van Geffen, X. Wang, E. Torlak, and J. Bornholt 35:23

to make the file system crash consistent, and during the search, invokes RulesForTest for
only 13 tests. This result shows that DepSynth can automate crash consistency for storage
systems other than key-value stores.

7 Related Work

7.1 Verified storage systems
Inspired by successes in other systems verification problems [16, 13], recent work has brought
the power of automated and interactive verification to bear on storage systems as well.
One of the main challenges in verifying storage systems is crash consistency, as it combines
concurrency-like nondeterminism with persistent state. Yggdrasil [27] is a verified file
system whose correctness theorem is a crash refinement – a simulation between a crash-free
specification and the nondeterministic, crashing implementation. This formalization allows
clients of Yggdrasil to program against a strong specification free from crashes, similar to
our angelic crash consistency model. FSCQ [8] is a verified crash-safe file system with
specifications stated in crash Hoare logic, which explicitly states the recovery behavior of the
system after a crash. DFSCQ [7] extends FSCQ and its verification with support for crash-
consistency optimizations such as log-bypass writes and the metadata-only fdatasync system
call. The DepSynth programming model separates crash consistency of these optimizations
from the storage system itself, and so can simplify their implementation.

Another approach to verified storage systems is at the language level. Cogent [3] is a
language for building storage systems with a strong type system that precludes some common
systems bugs. A language-level approach like Cogent is complementary to DepSynth: Cogent
provides a high-level language for implementing storage systems, while DepSynth provides a
synthesizer for making those implementations crash consistent.

7.2 Crash-consistency bug-finding tools
Ferrite [5] is a framework for specifying crash-consistency models, which formally define
the behavior of a storage system across crashes, and for automatically finding violations of
such models in a storage system implementation. One way to specify these models is with
litmus tests that demonstrate unintuitive behaviors; DepSynth builds on this approach by
automatically synthesizing rules from such litmus tests. DepSynth also takes inspiration
from Ferrite’s synthesis tool for inserting fsync calls into litmus tests to make them crash
consistent, but instead focuses on making the storage system itself crash consistent rather
than the user code running on top of it. CrashMonkey [18] is a tool for finding crash-
consistency bugs in Linux file systems. CrashMonkey exhaustively enumerates all litmus
tests with a given set of system calls, runs them against the target file system, and then tests
each possible crash state for consistency. Chipmunk [15] extends the CrashMonkey approach
to persistent-memory file systems by exploring finer-grained crash states to account for the
byte-addressable nature of non-volatile memory. Connecting CrashMonkey-like litmus test
generation with DepSynth could provide developers with a comprehensive set of litmus tests
for their system for free, lowering the burden of applying DepSynth. To give stronger coverage
guarantees that do not depend on enumerating litmus tests, FiSC [33] and eXplode [34] use
model checking to find bugs in storage systems.

One advantage of bug-finding tools is that they are significantly easier to apply to
production systems than heavyweight verification tools. Bornholt et al. [4] describe the use
of lightweight formal methods to validate the crash consistency (and other properties) of

ECOOP 2023

35:24 Synthesis-Aided Crash Consistency for Storage Systems

ShardStore, the Amazon S3 storage node that we study in Section 6.1. Their approach applies
property-based testing to automatically find and minimize litmus tests that demonstrate
crash-consistency issues. DepSynth takes this idea one step further by automatically fixing
such issues once they are found.

7.3 Program synthesis for systems code

Transit [31] is a tool for automatically inferring distributed protocols such as those used
for cache coherence. It guides the search using concolic snippets [26] – effectively litmus
tests that can be partially symbolic – and finds a protocol that satisfies those snippets
for any ordering of messages. MemSynth [6] is a program synthesis tool for automatically
constructing specifications of memory consistency models. MemSynth takes similar inputs to
DepSynth– a set of litmus tests and a target language – and its synthesizer generates and
checks happens-before graphs for those tests. Adopting MemSynth’s aggressive inference
of partial interpretations [29] to shrink the search space of happens-before graphs would be
promising future work.

8 Conclusion

DepSynth offers a new programming model for building crash-consistent storage systems.
By offering a high-level angelic programming model for crash consistency, and automatically
synthesizing low-level dependency rules to realize that model, DepSynth lowers the burden of
building reliable storage systems. We believe that this work presents a promising direction for
building systems software with the aid of automatic programming tools to resolve challenging
nondeterminism and persistence problems.

References

1 Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences in weak memory models.
In Proceedings of the 22nd International Conference on Computer Aided Verification (CAV),
pages 258–272, Edinburgh, United Kingdom, July 2010.

2 Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Litmus: Running tests against
hardware. In Proceedings of the 17th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), Saarbrücken, Germany, March–April 2011.

3 Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam O’Connor,
Joel Beeren, Yutaka Nagashima, Japheth Lim, Thomas Sewell, Joseph Tuong, Gabriele Keller,
Toby Murray, Gerwin Klein, and Gernot Heiser. Cogent: Verifying high-assurance file system
implementations. In Proceedings of the 21st International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 175–188, Atlanta, GA,
April 2016.

4 James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard Kragl, Seth
Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob Van Geffen, and Andrew
Warfield. Using lightweight formal methods to validate a key-value storage node in Amazon
S3. In Proceedings of the 28th ACM Symposium on Operating Systems Principles (SOSP),
Virtual conference, October 2021.

5 James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy, Emina Torlak, and
Xi Wang. Specifying and checking file system crash-consistency models. In Proceedings of
the 21st International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 83–98, Atlanta, GA, April 2016.

J. Van Geffen, X. Wang, E. Torlak, and J. Bornholt 35:25

6 James Bornholt and Emina Torlak. Synthesizing memory models from framework sketches
and litmus tests. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 467–481, Barcelona, Spain, June 2017.

7 Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay İleri, Adam Chlipala,
M. Frans Kaashoek, and Nickolai Zeldovich. Verifying a high-performance crash-safe file
system using a tree specification. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP), pages 270–286, Shanghai, China, October 2017.

8 Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai
Zeldovich. Using Crash Hoare Logic for certifying the FSCQ file system. In Proceedings of the
25th ACM Symposium on Operating Systems Principles (SOSP), pages 18–37, Monterey, CA,
October 2015.

9 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Bar-
zilay, Jay McCarthy, and Sam Tobin-Hochstadt. A programmable programming language.
Communications of the ACM, 61(3):62–71, March 2018.

10 Christopher Frost, Mike Mammarella, Eddie Kohler, Andrew de los Reyes, Shant Hovsepian,
Andrew Matsuoka, and Lei Zhang. Generalized file system dependencies. In Proceedings of the
21st ACM Symposium on Operating Systems Principles (SOSP), pages 307–320, Stevenson,
WA, October 2007.

11 Gregory R. Ganger and Yale N. Patt. Metadata update performance in file systems. In Proceed-
ings of the 1st USENIX Symposium on Operating Systems Design and Implementation (OSDI),
pages 49–60, Monterey, CA, November 1994.

12 Valerie Henson. The many faces of fsck, September 2007. URL: https://lwn.net/Articles/
248180/.

13 Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Michael Norrish, Rafal Kolanski, Thomas Sewell,
Harvey Tuch, and Simon Winwood. seL4: Formal verification of an OS kernel. In Proceedings
of the 22nd ACM Symposium on Operating Systems Principles (SOSP), pages 207–220, Big
Sky, MT, October 2009.

14 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7), 1978.

15 Hayley LeBlanc, Shankara Pailoor, Om Saran K R E, Isil Dillig, James Bornholt, and Vijay
Chidambaram. Chipmunk: Investigating crash-consistency in persistent-memory file systems.
In Proceedings of the 18th ACM EuroSys Conference, Rome, Italy, May 2023.

16 Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, July 2009.

17 Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Shan Lu. A study
of Linux file system evolution. In Proceedings of the 11th USENIX Conference on File and
Storage Technologies (FAST), pages 31–44, San Jose, CA, February 2013.

18 Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and Vijay Chidam-
baram. Finding crash-consistency bugs with bounded black-box crash testing. In Proceedings
of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI),
pages 33–50, Carlsbad, CA, October 2018.

19 Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and Xi Wang.
Scaling symbolic evaluation for automated verification of systems code with Serval. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP), pages
225–242, Huntsville, Ontario, Canada, October 2019.

20 Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0. Journal on Satisfiability,
Boolean Modeling and Computation (JSAT), 9:53–58, 2015.

21 Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-structured
merge-tree (lsm-tree). Acta Informatica, 33(4):351–385, June 1996.

ECOOP 2023

https://lwn.net/Articles/248180/
https://lwn.net/Articles/248180/

35:26 Synthesis-Aided Crash Consistency for Storage Systems

22 Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Alagappan, Samer
Al-Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. All file systems are
not created equal: On the complexity of crafting crash-consistent applications. In Proceedings
of the 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI),
pages 433–448, Broomfield, CO, October 2014.

23 Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Analysis
and evolution of journaling file systems. In Proceedings of the 2005 USENIX Annual Technical
Conference, pages 105–120, Anaheim, CA, April 2005.

24 Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-tree filesystem. ACM
Transactions on Storage, 9(3):9:1–32, August 2013.

25 M. Rosenblum and J. Ousterhout. The design and implementation of a log-structured file
system. In Proceedings of the 13th ACM Symposium on Operating Systems Principles (SOSP),
pages 1–15, Pacific Grove, CA, October 1991.

26 Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine for c. In
Proceedings of the 13th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
Lisbon, Portugal, September 2005.

27 Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. Push-button verification
of file systems via crash refinement. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 1–16, Savannah, GA, November
2016.

28 Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual machine for solver-aided
host languages. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 530–541, Edinburgh, United Kingdom,
June 2014.

29 Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In Proceedings of the
13th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), Braga, Portugal, March–April 2007.

30 Stephen C. Tweedie. Journaling the Linux ext2fs filesystem. In Proceedings of the 4th Annual
LinuxExpo, Durham, NC, May 1998.

31 Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M.K.
Martin, and Rajeev Alur. TRANSIT: Specifying protocols with concolic snippets. In Pro-
ceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 287–296, Seattle, WA, June 2013.

32 John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. Automatically
comparing memory consistency models. In Proceedings of the 44th ACM Symposium on
Principles of Programming Languages (POPL), Paris, France, January 2017.

33 Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. Using model checking
to find serious file system errors. In Proceedings of the 6th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 273–287, San Francisco, CA, December
2004.

34 Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. eXplode: A light-
weight, general system for finding serious storage system errors. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages 131–146,
Seattle, WA, November 2006.

35 Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lillibridge, Elizabeth S. Yang,
Bill W. Zhao, and Shashank Singh. Torturing databases for fun and profit. In Proceedings
of the 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI),
pages 449–464, Broomfield, CO, October 2014.

Synthesizing Conjunctive Queries for Code Search
Chengpeng Wang #

The Hong Kong University of Science and Technology, China

Peisen Yao #

Zhejiang University, Hangzhou, China

Wensheng Tang #

The Hong Kong University of Science and Technology, China

Gang Fan #

Ant Group, Shenzhen, China

Charles Zhang #

The Hong Kong University of Science and Technology, China

Abstract
This paper presents Squid, a new conjunctive query synthesis algorithm for searching code with
target patterns. Given positive and negative examples along with a natural language description,
Squid analyzes the relations derived from the examples by a Datalog-based program analyzer and
synthesizes a conjunctive query expressing the search intent. The synthesized query can be further
used to search for desired grammatical constructs in the editor. To achieve high efficiency, we prune
the huge search space by removing unnecessary relations and enumerating query candidates via
refinement. We also introduce two quantitative metrics for query prioritization to select the queries
from multiple candidates, yielding desired queries for code search. We have evaluated Squid on over
thirty code search tasks. It is shown that Squid successfully synthesizes the conjunctive queries for
all the tasks, taking only 2.56 seconds on average.

2012 ACM Subject Classification Software and its engineering → Automatic programming; Human-
centered computing → User interface programming

Keywords and phrases Query Synthesis, Multi-modal Program Synthesis, Code Search

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.36

Related Version Full Version: https://arxiv.org/abs/2305.04316

Funding The authors are supported by the RGC16206517, ITS/440/18FP and PRP/004/21FX
grants from the Hong Kong Research Grant Council and the Innovation and Technology Commission,
Ant Group, and the donations from Microsoft and Huawei.

Acknowledgements We thank the anonymous reviewers, Xiao Xiao, and Xiaoheng Xie for their
helpful comments. Peisen Yao is the corresponding author.

1 Introduction

Developers often need to search their code for target patterns in various scenarios, such
as API understanding [29], code refactoring [56], and program repair [47]. According to
recent studies [34, 30], existing efforts have to compromise between ease of use and capability.
Most mainstream IDEs [23] only support string match or structural search of restrictive
grammatical constructs although complex user interactions are not required. Besides, static
program analyzers, such as Datalog-based program analyzers [44, 35, 3], provide deep program
facts for users to explore advanced patterns, while users have to customize the analyzers
to meet their needs [12]. For example, if users want to explore code patterns with the
Datalog-based program analyzer CodeQL [3], they have to learn the query language to
access the derived relational representation. However, there always exists a non-trivial gap

© Chengpeng Wang, Peisen Yao, Wensheng Tang, Gang Fan, and Charles Zhang;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 36; pp. 36:1–36:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cwangch@cse.ust.hk
https://orcid.org/0000-0003-0617-5322
mailto:pyaoaa@zju.edu.cn
https://orcid.org/0000-0003-0342-9518
mailto:wtangae@cse.ust.hk
https://orcid.org/0000-0002-4259-3321
mailto:fangang@antgroup.com
https://orcid.org/0000-0002-8633-6036
mailto:charlesz@cse.ust.hk
https://orcid.org/0000-0001-6417-1034
https://doi.org/10.4230/LIPIcs.ECOOP.2023.36
https://arxiv.org/abs/2305.04316
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Synthesizing Conjunctive Queries for Code Search

id idf_id ret_type_id mdf_id
M1 I1 T3 MDF1
M2 I2 T3 MDF1
M3 I3 T2 MDF1

id idf_id type_id method_id
P1 I4 T1 M1
P2 I5 T2 M2
P3 I6 T1 M3

Parameter

id name
T1 Log4jUtils
T2 int
T3 CacheConfig

Type

id name
MDF1 public

Modifier

id name
I1 foo
I2 goo
I3 hoo
I4 a1
I5 a2
I6 a3

Identifier

(a) Synthesis specification

public CacheConfig foo(Log4jUtils a1) {
…
return null;

}

public CacheConfig goo(int a2) {
…
return null;

}

public int hoo(Log4jUtils a3) {
…
return 0;

}

Target(id, idf1, retTypeId, mdf) :-
Method(id, idf1, retTypeId, mdf), Type(retTypeId, name1), equal(name1, “CacheConfig”),
Parameter(pId, idf2, pTypeId, id), Type(pTypeId, name2), equal(name2, “Log4jUtils”)

(b) Relational representation

(c) Conjunctive query

MethodDescription: Find all the methods receiving
a parameter with Log4jUtils type and giving
a return with CacheConfig type.

Figure 1 A motivating example1.

between a user’s search intent and a customized query. A large number of complex relations
make query writing involve strenuous efforts, especially in formalizing search intents and
debugging queries, which hinders the usability of CodeQL for code search.

Our Goal. We aim to propose a query synthesizer to unleash the power of a Datalog-based
program analyzer for code search. To show the search intent, a user can specify a synthesis
specification consisting of positive examples, negative examples, and a natural language
description. Specifically, positive and negative examples indicate desired and non-desired
grammatical constructs, respectively, while the natural language description shows the search
intent by a sentence. Our synthesizer is expected to generate a query separating positive
examples from negative ones, which can support code search in the editor. In this work, we
focus on conjunctive queries, which have been recognized as queries of an important form to
support search tasks [17].

Consider a usage scenario: Find all the methods receiving a parameter with Log4jUtils type
and giving a return with CacheConfig type. The user can provide the synthesis specification
shown in Figure 1(a). With the relational representation in Figure 1(b) derived from the
examples, our synthesizer would synthesize the conjunctive query in Figure 1(c) to express
the search intent. In particular, our synthesis specification is easy to provide. The users can
often copy desired grammatical constructs from an editor as positive examples [34] and then
mutate them to form negative ones. Meanwhile, they can express their need to search code
with a brief sentence as the description. Thus, an effective and efficient synthesizer enables
the users to express the search intent from a high-level perspective, serving as a user-friendly
interface for code search.

1 We show five relations as examples, while a Datalog-based analyzer can derive over a hundred relations.

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:3

Challenges. Nevertheless, it is far from trivial to synthesize a conjunctive query for code
search. First, a Datalog-based program analyzer can generate many relations with multiple
attributes as the relational representation. For example, CodeQL exposes over a hundred
relations to users for query writing [45]. The various choices of selecting relations and
enforcing conditions on attributes induce a dramatically huge search space in the synthesis,
which can involve both the comparisons between attributes and string constraints, posing a
significant challenge to achieving high efficiency. Second, there often exist multiple query
candidates that separate positive examples from negative ones, while several candidates can
suffer from the over-fitting problem, failing to express the search intent with no bias [53].
An ineffective query candidate selection would mislead the synthesizer into returning wrong
queries and further cause the failure of code search.

Existing Effort. There are three major lines of existing effort. The first line of the studies
utilizes input-output examples to synthesize queries in various forms, such as analytic SQL
queries [58, 13] and relational queries [42, 46]. Although the queries often have expressive
syntax, the synthesizers only take a few relations as input, not facing hundreds of relations
as ours. The second line of approaches is the component-based synthesis technique [14, 38],
which leverages type signatures to enumerate well-typed programs. However, a significant
number of comparable attribute pairs still induce an explosively huge search space even if we
adopt the techniques by guiding the search with the schema. The third line of the studies
derives program sketches from natural language descriptions via semantic parsing [28] and
prioritizes feasible solutions with probability models [54, 4]. Unfortunately, the ambiguity of
natural languages and the inadequacy of the training process can make a semantic parser
ineffective and eventually miss optimal solutions [40]. It is also worth noting that existing
techniques do not attempt to select a feasible solution that maximizes or minimizes a
specific metric. Although several inductive logic learning-based techniques adopt heuristic
priority functions to accelerate the synthesis [46], they do not guarantee the optimality of the
synthesized queries, and thus can not resolve the query candidate selection in our problem.

Our Solution. Our key idea comes from three critical observations. First, only a few
relations contribute to separating positive examples from negative ones. For example, the
methods in Figure 1(a) have the same modifier, indicating that the relation Modifier is
unnecessary. Second, adding an attribute comparison expression or a string constraint to the
condition of a conjunctive query yields a stronger restriction on grammatical constructs. If a
query misses a positive example, we cannot obtain a query candidate by strengthening the
query. Third, a desired query tends to constrain grammatical constructs mentioned in the
natural language description sufficiently. For the instance in Figure 1, the query extracting
the methods with the return type CacheConfig is a query candidate but not a desired one, as
it does not pose any restriction on parameters.

Based on the observations, we realize that it is possible to narrow down necessary relations
and avoid their infeasible compositions to prune the search space, and meanwhile, select
query candidates with the guidance of the natural language description. According to the
insight, we present a multi-modal synthesis algorithm Squid with three stages:

To narrow down the relations, we introduce the notion of the dummy relations to depict
the relations unnecessary for the synthesis and propose the representation reduction to
exclude dummy relations, which prunes the search space effectively.
To avoid infeasible compositions of relations, we perform the bounded refinement to
enumerate the queries, skipping the unnecessary search for the queries that exclude a
positive example. Particularly, the string constraints are synthesized by computing the
longest common substrings, which is achieved efficiently in the refinement.

ECOOP 2023

36:4 Synthesizing Conjunctive Queries for Code Search

To select desired queries, we establish the dual quantitative metrics, namely named entity
coverage and structural complexity, and select query candidates by optimizing them as
the objectives, which creates more opportunities for returning desired queries.

We implement Squid and evaluate it on 31 code search tasks. It successfully synthesizes
desired queries for each task in 2.56 seconds on average. Besides, the representation reduction
and the bounded refinement are crucial to its efficiency. Skipping either of them would
increase the average time cost to around 8 seconds, and several tasks cannot be finished
within one minute. Meanwhile, dual quantitative metrics play critical roles in the selection.
Applying only one metric would make 12 or 7 tasks fail due to the synthesized non-desired
queries. We also state and prove the soundness, completeness, and optimality of Squid. If
there exist query candidates for a given synthesis specification, Squid always returns query
candidates optimizing two proposed metrics to express the search intent. To summarize, our
work makes the following key contributions:

We propose a multi-modal conjunctive query synthesis problem. An effective and efficient
solution can serve as a user-friendly interface of a Datalog-based analyzer for code search.
We design an efficient algorithm Squid for an instance of our synthesis problem, which
automates the code search tasks in real-world scenarios.
We implement Squid as a tool and evaluate it upon 31 code search tasks, showing that
Squid synthesizes the desired queries successfully and efficiently.

2 Overview

This section demonstrates a motivating example and briefs the key idea of our approach.

2.1 Motivating Example
Suppose a developer wants to avoid the security issue caused by log4j library [41]. He or
she may examine the methods that receive a Log4jUtils object as a parameter and return
a CacheConfig object. One choice is to leverage the built-in search tools of the IDEs to
search the code lines containing Log4jUtils or CacheConfig, while the string matching-based
search cannot filter grammatical constructs according to their kinds. Although several IDEs
enable the structural search [23], their non-extensible templates only support searching
for grammatical constructs of restrictive kinds. Another alternative is to write a query
depicting the target pattern and evaluate it with a Datalog-based program analyzer, such as
CodeQL [3]. However, it not only involves great laborious efforts in query language learning
but also creates the burden of query writing and debugging.

To improve the usability and capability of code search, we aim to synthesize a query for
a Datalog-based program analyzer. As shown in Figure 1(a), a user can specify the synthesis
specification to indicate the search intent. Specifically, the positive and negative examples
show the desired and undesired grammatical constructs, respectively, while the natural
language description demonstrates the search intent in a sentence. Based on a Datalog-
based program analyzer, we can convert the examples to a set of relations as the relational
representation along with positive and negative tuples, which are shown in Figure 1(b). For
example, the first tuple in the relation Method is the positive tuple indicating the method foo
in Figure 1(a), which is a positive example. If we automatically synthesize the conjunctive
query in Figure 1(c), the user does not need to delve into the relations and, instead specifies
the synthesis specification from a high-level perspective.

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:5

Relations with
Pos/Neg Tuples

Representation
Reduction

Bounded
Refinement

Candidate
Selection

Description

Datalog-based
Analyzer

Example
Program

Desired
Queries

Figure 2 The overview of Squid.

2.2 Synthesizing Conjunctive Queries
The query synthesizer should effectively generate the desired queries that express the search
intent correctly. However, it is stunningly challenging to obtain an effective and efficient
synthesizer. First, we have to tackle a great number of the relations and their attributes when
we choose relevant relations and enforce correct constraints upon them, which can involve
both comparisons over attributes and string constraints. Second, the non-uniqueness of query
candidates creates the obstacle of selecting proper candidates. Any improper selection would
return a non-desired query, leading to code search failure. To address the challenges, we
propose a new multi-modal synthesis algorithm Squid. As shown in Figure 2, Squid consists
of three phases, which come from the following three ideas.

Idea 1: Removing dummy relations. Although there are many relations potentially used
in the synthesis, we can identify a class of relations, named dummy relations, as unnecessary
ones and then discard them safely. Specifically, a relation is dummy if it cannot separate
a positive tuple from a negative one. As an example, the methods in Figure 1(a) have the
same modifier, which is shown by the same values of the foreign keys mdf_id of the relation
Method in Figure 1(b). This indicates that the relation Modifier has no impact on excluding
negative tuples and thus can be discarded to prune the search space. Based on this insight,
we propose the representation reduction to remove the dummy relations, narrowing down
the necessary relations for the synthesis.

Idea 2: Enumerating query candidates via refinement. According to the query syntax,
the constraints, including attribute comparisons and string constraints, pose restrictions on
grammatical constructs. This implies that we cannot obtain a query candidate by refining the
query that excludes a positive tuple. In Figure 1, we may obtain a query that enforces both
the parameter and the return value of a method have the same type. Obviously, the query
excludes the method foo, which is a positive tuple, and thus, we should stop strengthening
the restrictions on grammatical constructs. Based on this insight, we introduce the technique
of the bounded refinement, which adds conditions for the query enumeration and discards
the queries that exclude any positive tuples. Thus, we can avoid enumerating infeasible
compositions of relations, which further prunes the search space effectively.

Idea 3: Dual quantitative metrics for selection. Desired queries not only separate positive
tuples from negative ones but also tend to cover as many program-related named entities
as possible. In Figure 1, we may obtain a query candidate that restricts the return type to
be a CacheConfig object. However, it does not pose any restriction on the parameters and
leaves the named entity “parameter” uncovered, showing that it does not express the intent
sufficiently. Meanwhile, Occam’s razor [5] implies that desired queries should be as simple
as possible. Hence, we introduce the named entity coverage and the structural complexity

ECOOP 2023

36:6 Synthesizing Conjunctive Queries for Code Search

as the dual quantitative metrics, and perform the candidate selection to identify desired
queries by optimizing the metrics. Finally, we blend the selection with the refinement and
terminate the enumeration when unexplored candidates cannot be better than the current
ones, further avoiding the unnecessary enumerative search.

3 Problem Formulation

This section first presents the program relational representation (§ 3.1) and then introduces
the conjunctive queries for code search (§ 3.2). Lastly, we state the multi-modal conjunctive
query synthesis problem and brief the roadmap of technical sections (§ 3.3).

3.1 Program Relational Representation
First of all, we formally define the concept of the relation as the preliminary.

▶ Definition 3.1 (Relation). A relation R(a1, · · · , an) is a set of tuples (t1, · · · , tn), where n

is the arity of R. For each 1 ≤ i ≤ n, ai is the attribute of the relation.

A relation is structured data that stores the details of different aspects of an entity.
Concretely, a Datalog-based program analyzer encodes the program properties with a set
of relations in a specific schema [3, 34, 37]. In what follows, we define the relational
representation of a program.

▶ Definition 3.2 (Relational Representation). Given a program, its relational representation
R is a set of relations over the following schema Γ. Specifically, Γ maps a relation symbol R

to an n-tuple of pairs, where each element in the tuple Γ(R) has one of the following form:
(id, R): The attribute id is the primary key of the relation R.
(a, R′): The foreign key a in the relation R, referencing the primary key of R′ ∈ dom(Γ).
(a, STR): The attribute a has a string value indicating the textual information.

Particularly, we say Γ as the language schema. Without introducing the ambiguity, we use
(a, ·) ∈ Γ(R) to indicate that (a, ·) is an element of the tuple Γ(R).

▶ Example 3.1. Figure 1(b) shows five relations as examples, where the values of the primary
keys are italic and underlined, and the foreign keys are italic. Based on the first tuple in the
relation Method, we can track the identifier, the return type, and the modifier of the method
foo based on the foreign keys. Similarly, we can identify the identifier and the type of each
parameter based on the relation Parameter.

Essentially, the relational representation of a program encodes the program properties
with relations, which depicts the relationship of grammatical constructs in the program.
In reality, various relations can be derived with Datalog-based program analyzers, such as
ReferenceType and VarPointsTo provided by Doop [44], depicting the type information and
points-to facts, respectively. Due to the space limit, we only show five relations in Figure 1(b).

3.2 Conjunctive Queries
To simplify the presentation, we formulate the conjunctive queries as the relational algebra
expressions [1] in the rest of the paper. In what follows, we first brief several relational
algebra operations and then introduce the conjunctive queries for code search.

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:7

▶ Definition 3.3 (Relational Algebra Operations). In a relational algebra, the selection,
projection, Cartesian product, and rename operations are defined as follows:

σΘ(R) := {(t1, . . . , tn) ∈ R | [ai 7→ ti | 1 ≤ i ≤ n] |= Θ} is the selection of a relation R

with the selection condition Θ over its attributes.
Πa′(R) := {(t.a′

1, . . . , t.a′
k) | t ∈ R} is the projection of a relation R upon a tuple of

attributes a′, denoted by Πa′(R). Here a′ = (a′
1, . . . , a′

k). t.a is the value of the attribute
a in the tuple t.
R1 × R2 := {(t1

1, . . . , t1
n1

, t2
1, . . . , t2

n2
) | (t1

1, . . . , t1
n1

) ∈ R1, (t2
1, . . . , t2

n2
) ∈ R2} is the

Cartesian product of two relations R1 and R2.
The rename of a relation R, denoted by ρA(R), yields the same relation named A.

The relational algebra operations enable us to manipulate the relational representation
to search desired grammatical constructs. Specifically, we often need to search specific
grammatical constructs via string match and enforce them to satisfy several constraints
simultaneously. Now we formalize the conjunctive queries to express the code search intent.

▶ Definition 3.4 (Conjunctive Query). Given the relational representation R, a conjunctive
query RQ is a relational algebra expression of the form Π(Ai.∗)(σΘ(ρA1(R1)×. . .×ρAm

(Rm))),
where Ri ∈ R, Θ := ϕ1 ∧ · · · ∧ ϕn, and each ϕi(1 ≤ i ≤ n) occurring in the selection condition
Θ is an atomic condition in the following two forms:

An atomic equality formula Aj .id = Ak.a, where a is the foreign key and (a, Rj) ∈ Γ(Rk).
A string constraint p(Ak.a, ℓ) over the string attribute Ak.a, where ℓ is a string literal,
and p ∈ {equal, suffix, prefix, contain}.

In particular, Π(Ai.∗) indicates the projection upon all the attributes of the relation Ai.

The form of the conjunctive queries in Definition 3.4 depicts the user intent from two
aspects. First, the atomic equality formulas encode the relationship between the grammatical
constructs. Second, the four string predicates support the common scenarios of string
matching-based code search. We do not focus on synthesizing more expressive string
constraints, which is the orthogonal direction of program synthesis [10, 27, 36]. Based on the
conjunctive queries, we can simultaneously perform the string matching-based search and
filter the constructs with various relations in the program relational representation.

▶ Example 3.2. We can formalize the query in Figure 1(c) as the relational algebra expression:

Π(A1.∗)(σΘ(ρA1(Method) × ρA2(Type) × ρA3(Parameter) × ρA4(Type)))

where the selection condition Θ in the selection operation is as follows:

Θ :=(A1.id = A3.method_id) ∧ (A1.ret_type_id = A2.id) ∧ (A3.type_id = A4.id)∧
equal(A2.name, “CacheConfig”) ∧ equal(A4.name, “Log4jUtils”)

The conjunctive queries can be instantiated with various flavors [17, 1, 7]. The select-
from-where queries are the instantiations of the conjunctive queries in SQL. Besides, a
simple Datalog program can also express the conjunctive query with a single Datalog rule.
In our paper, we formulate a conjunctive query as a relational algebra expression. Our
implementation actually synthesize the conjunctive queries as Datalog programs, which are
evaluated by a Datalog solver over the program relational representation for code search.

ECOOP 2023

36:8 Synthesizing Conjunctive Queries for Code Search

3.3 Multi-modal Conjunctive Query Synthesis Problem
To generate the conjunctive query for code search, the users need to specify their intent
as the specification. In our work, we follow the premise of the recent studies on the multi-
modal program synthesis [10, 4] that multiple modalities of information can go arm in arm
with each other, serving as the informative specification for the synthesis. Specifically, the
users provide a natural language sentence to describe the target code pattern and provide
several grammatical constructs as positive and negative examples. Notably, the multi-modal
synthesis specification is easy to provide. When the users want to explore a specific code
pattern, they can describe the pattern briefly in a natural language and provide several
examples from their editors instead of delving into the details of the underlying relations and
their attributes, enabling users to generate a query for code search in a declarative manner.

Based on the multi-modal synthesis specification, the positive and negative examples are
converted to the tuples in a specific relation. For example, Figure 1 shows a set of relations
as the relational representation of the examples. To formalize our problem better, we define
the notion of the relation partition as follows.

▶ Definition 3.5 (Relation Partition). The relation partition of R∗ ∈ R is a pair of two
relations (R∗

p, R∗
n) satisfying R∗ = R∗

p ∪ R∗
n and R∗

p ∩ R∗
n = ∅. The relation partition is

non-trivial if and only if R∗
p ≠ ∅ and R∗

n ̸= ∅. We say the tuples in R∗
p and R∗

n are positive
and negative tuples, respectively.

▶ Example 3.3. As shown in Figure 1, we can construct the relation partition (R∗
p, R∗

n),
where R∗

p = {(M1, I1, T3, MDF1)} and R∗
n = {(M2, I2, T3, MDF1), (M3, I3, T2, MDF1)}.

Obviously, R∗
p and R∗

n are disjoint, and R∗
p ∪ R∗

n is exactly the relation Method.

The positive and negative tuples essentially depict the positive and negative examples,
respectively. Based on the program’s relational representation, the examples specified by
the users can determine the positive and negative tuples, which can be achieved in various
manners. Specifically, users can select a grammatical construct in the IDEs or use a code
sample in a specific coding standard [51] as a positive example and remove several sub-
patterns from a positive example by mutation to construct negative ones. Such positive and
negative examples further constitute a sample code snippet, from which a Datalog-based
analyzer derives a set of relations as the relational representation. In this paper, we omit the
details of positive/negative tuple generation and formulate a multi-modal conjunctive query
synthesis (MMCQS) problem as follows.

Given a relational representation R, a relation partition (R∗
p, R∗

n) of R∗ ∈ R, and a
natural language description s, we aim to synthesize a conjunctive query RQ containing
the positive tuples in R∗

p and excluding the negative tuples in R∗
n.

▶ Example 3.4. Figure 1(a) shows the multi-modal synthesis specification, which consists of
a positive example, two negative examples, and a natural language description s as “Find all
the methods receiving a Log4jUtils-type parameter and giving a CacheConfig-type return”.
Leveraging a Datalog-based analyzer, we obtain the relational representation and the relation
partition of Method, which are shown in Figure 1(b). To automate the code search, we expect
to synthesize the query in Fig 1(c) or Example 3.2 according to the relational representation,
the relation partition, and the natural language sentence.

To promote the code search, we propose an efficient synthesis algorithm Squid for the
MMCQS problem, which is our main technical contribution. As explained in § 1, it is
challenging to solve the MMCQS problem efficiently, which involves mitigating the huge

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:9

search space and selecting queries from multiple candidates. In the following two sections,
we formalize the conjunctive query synthesis from a graph perspective (§ 4), and illustrate
the technical details of our synthesis algorithm Squid (§ 5), which prunes the search space
and selects desired queries effectively.

4 Conjunctive Query Synthesis: A Graph Perspective

This section presents a graph perspective of our conjunctive query synthesis problem. Spe-
cifically, we introduce two graph representations of the language schema and the conjunctive
queries, named the schema graph (§ 4.1) and the query graph (§ 4.2), respectively, which re-
duces the conjunctive query synthesis to the query graph enumeration. Lastly, we summarize
the section and highlight the technical challenges from a graph perspective (§ 4.3).

4.1 Schema Graph
According to Definition 3.2, a relation in the language schema has three kinds of attributes,
namely a unique primary key, foreign keys, and string attributes. Obviously, the selection
condition Θ in RQ should only compare the foreign key of a relation with its referenced
primary key or constrain the string attributes with string predicates. To depict the possible
ways of constraining the attributes, we define the concept of the schema graph as follows.

▶ Definition 4.1 (Schema Graph). The schema graph GΓ of a language schema Γ is (NΓ, EΓ):
The set NΓ contains the relation symbols in the schema or the string type STR as the
nodes of the schema graph, i.e., NΓ := dom(Γ) ∪ {STR}.
The set EΓ contains an edge (n1, n2, a) if and only if either of the conditions holds:

n1, n2 ∈ dom(Γ) and (a, n2) ∈ Γ(n1): The relation n1 has a foreign key named a

referencing the primary key of the relation n2.
n1 ∈ dom(Γ) and (a, STR) ∈ Γ(n1): a is the string attribute of the relation n1.

▶ Example 4.1. Consider the relations in the relational representation shown in Figure 1(b).
We can construct the schema graph in Figure 3(a). The edge from Method to Modifier labeled
with mdf_id shows that the attribute mdf_id of Method is a foreign key referencing the
primary key of Modifier. Similarly, the edge from Type to STR labeled with name shows that
the attribute name in Type is a string attribute.

Noting that there can exist multiple edges with different labels between two nodes in
the schema graph, which indicate that a relation take multiple foreign keys referencing the
same relation or string attributes as the attributes. Essentially, the schema graph encodes
the available relations with its node set and depicts the valid forms of the atomic formulas
appearing in the selection condition with its edge set. Although we can compare the attributes
of any relations flexibly, a solution to our problem must take the valid form of the atomic
formulas as its selection condition, comparing the foreign keys with the referenced primary
keys or examining the string attributes of the relations appearing in a Cartesian product.

4.2 Query Graph
As formulated in Definition 3.4, there are two key components in the conjunctive query,
namely the Cartesian product and the selection condition. Leveraging the schema graph, we
can represent the components with nodes and edges on the graph, which uniquely determines
a conjunctive query. Formally, we introduce the notion of the query graph as follows.

ECOOP 2023

36:10 Synthesizing Conjunctive Queries for Code Search

Method

ParameterType Identifier

Modifier
mdf_id

re
t_
ty
pe
_i
d method_id

type_id idf_id

idf_id

name

name

name

(a) Schema Graph (b) Query Graph

STR

name

(equal, “Log4jUtils”)

type_id(Parameter, 𝐴!)

method_id

(Type, 𝐴") (equal, “CacheConfig”)
name

(Method, 𝐴#)

(Type, 𝐴$)

ret_type_id

Figure 3 The examples of the schema graph and the query graph.

▶ Definition 4.2 (Query Graph). Given a conjunctive query Q, its query graph GQ is
(NQ, EQ, ΦQ):

The set NQ contains (Ri, Ai) or (p, ℓ) as a node in the query graph. Ri ∈ R is a relation
and Ai is the unique relation identifier. p and ℓ are the string predicate and literal,
respectively.
The set EQ contains (n1, n2, a) as an edge, corresponding to the equality atomic formula
Aj .a = Ak.id in the selection condition, where n1 = (Rj , Aj) and n2 = (Rk, Ak).
The mapping ΦQ maps a 3-tuple (Rj , Aj , a) to a node (p, ℓ), indicating the edge from
(Rj , Aj) to (p, ℓ) with the label a, which corresponds to the string constraint p(Aj .a, ℓ).

▶ Example 4.2. Figure 3(b) shows an query graph of RQ in Example 3.2. The white nodes
show the four relations appearing in the Cartesian product, while the gray nodes indicate
the string predicates and literals in the selection condition. The edges depict two kinds
of atomic conditions. For example, the edge from (Parameter, A3) to (Method, A1) labeled
with method_id indicates the equality constraint A3.method_id = A1.id. Meanwhile, the
edge induced by ΦQ(Type, A4, name) = (equal, “Log4jUtils”) indicates the string constraint
equal(A4.name, “Log4jUtils”).

Essentially, a conjunctive query and a query graph are allotropes. That is, there exists a
bijection κ mapping a conjunctive query RQ to a query graph GQ such that GQ = κ(RQ)
and RQ = κ−1(GQ). Thus, we can enumerate the conjunctive queries by enumerating the
query graphs. Besides, the schema graph restricts the form of the selection condition over the
attributes. If an edge with the label a connects (Rj , Aj) and (Rk, Ak) in a query graph, there
should exist an edge labeled with a connecting the relations Rj and Rk in the schema graph.
A similar argument also holds for the edge of the query graph indicated by the mapping ΦQ.
Therefore, we can reduce our conjunctive query synthesis to a search problem, of which the
search space is characterized as the set of query graphs.

4.3 Summary
Leveraging the schema graph, we have reduced the conjunctive query synthesis process to
query graph enumeration. To obtain the desired queries, we only need to select the nodes
and edges from the schema graph and create the node (p, ℓ) with proper string predicates
and literals for constructing a query graph GQ, which should satisfy that the induced query
κ−1(GQ) separates positive tuples from negative ones.

Obtaining the desired queries with high efficiency is a non-trivial problem. The schema
graph can be overwhelming, containing over a hundred nodes and edges, which leads to an
enormous number of choices for relations occurring in the query graph. Even for a given set of

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:11

relations, the flexibility of instantiating equality constraints and string constraints over their
attributes can induce a large number of selection choices of edges in a query graph, which
exacerbates the search space explosion problem. Additionally, the existence of multiple query
candidates necessitates the effective selection of candidates, which is crucial for conducting a
code search task. In the next section, we will detail our synthesis algorithm that addresses
these challenges, resulting in high efficiency and effectiveness for code search.

5 Synthesis Algorithm

This section presents our synthesis algorithm Squid to solve the MMCQS problem. Squid
takes as input the relational representation R of an example program, a relation partition
(R∗

p, R∗
n) of R∗ ∈ R, and a natural language description s. It generates the query candidates

separating positive tuples tp ∈ R∗
p from negative ones tn ∈ R∗

n , which can be further selected
and then used for code search. To address the challenges in § 4.3, Squid works with the
following three stages:

To tackle a large number of relations, Squid relies on the notion of dummy relations and
conducts the representation reduction based on the positive and negative tuples, which
effectively narrow down the relations that can appear in the query graph (§ 5.1).
To avoid unnecessary enumeration of edges in query graphs, we propose the bounded
refinement by enumerating the query graphs based on the schema graph, which essentially
appends equality constraints and string constraints inductively (§ 5.2).
To select query candidates, Squid identifies the named entities in the natural language
description s for the prioritization, and blends the selection with the refinement to collect
the desired queries (§ 5.3).

We also formulate the soundness, completeness, and optimality of our algorithm (§ 5.4). For
better illustration, we use the synthesis instance shown in Figure 1 throughout this section.

5.1 Representation Reduction
To tackle the large search space, we first propose the representation reduction to narrow down
the relations possibly used in the query. Specifically, we introduce the notion of the dummy
relations to determine the characteristics of unnecessary relations (§ 5.1.1) and propose the
algorithm of removing dummy relations for the representation reduction (§ 5.1.2).

5.1.1 Dummy Relations
There exists a class of relations, named dummy relations, which cannot involve in distinguish-
ing positive and negative tuples, such as the relation Modifier in Figure 1. Before defining
them, we first introduce the undirected relation path and the activated relation.

▶ Definition 5.1 (Undirected Relation Path). An undirected relation path from R0 to Rk+1 in
the schema graph GΓ = (NΓ, EΓ) is p : R0 ↪→(a0,d0) · · · ↪→(ak,dk) Rk+1, where Ri ∈ dom(Γ).
Here, di = 1 if and only if (Ri, Ri+1, ai) ∈ EΓ, and di = −1 if and only if (Ri+1, Ri, ai) ∈ EΓ.

▶ Definition 5.2 (Activated Relation). Given a tuple t0 ∈ R0 and an undirected relation path
p : R0 ↪→(a0,d0) · · · ↪→(ak,dk) Rk+1, the activated relation of t0 along p is

I(t0, p) = {tk+1 | ti+1 ∈ Ri+1, ite(di = 1, ti.ai = ti+1.id, ti.id = ti+1.ai), 0 ≤ i ≤ k}

▶ Example 5.1. In in Figure 1, the path p1 : Method ↪→(method_id,−1) Parameter ↪→(type_id, 1)
Type, and tp = (M1, I1, T3, MDF1) ∈ R∗

p. We have t1 = (P1, I4, T1, M1) ∈ Parameter,
and t2 = (T1, Log4jUtils) ∈ Type, By inspecting other tuples, we have I(tp, p1) =
{(T1, Log4jUtils)}.

ECOOP 2023

36:12 Synthesizing Conjunctive Queries for Code Search

Intuitively, an undirected relation path can depict the restriction upon the relations in the
Cartesian product of the query. The activated relation actually contains the tuples enforcing
the primary key of t0 to appear in a selected tuple. Therefore, it is possible to narrow down
the relations for the synthesis by inspecting the activated relations of positive and negative
tuples along each undirected relation path. According to the intuition, we formally introduce
and define the notion of the dummy relations as follows.

▶ Definition 5.3 (Dummy Relation). Given a relation partition (R∗
p, R∗

n) of R∗ ∈ R, a relation
R ∈ R is dummy if for every undirected relation path p from R∗ to R, either of the conditions
is satisfied: (1) There exists tp ∈ R∗

p such that I(tp, p) = ∅; (2) I(tp, p) = I(tn, p) for any
tp ∈ R∗

p and tn ∈ R∗
n.

Definition 5.3 formalizes two characteristics of relations unnecessary the synthesis. First,
the empty activated relation of a positive tuple tp indicates the absence of the tuples in
the relation R, making the tuple tp appear. Second, the relation R cannot contribute to
separating positive tuples from negative ones if several tuples in R make all the positive and
negative tuples appear simultaneously. Thus, such relations can be discarded safely.

▶ Example 5.2. Example 5.1 shows that I(tp, p1) ̸= ∅. Similarly, I(tn, p1) = {(T2, int)} ≠
I(tp, p1) when tn = (M2, I2, T4, MDF1) ∈ R∗

n. Hence, Type is not dummy. Besides, any
undirected relation path p2 from Method to Modifier has the form

Method[↪→(mdf_id,+1) Modifier ↪→(mdf_id,−1) Method]∗ ↪→(mdf_id,+1) Modifier

where [·]∗ indicates the repeated subpath. We find that I(tp, p2) = I(tn, p2) =
{MDF1, public} for any tp ∈ R∗

p and tn ∈ R∗
n. Thus, the relation Modifier is a dummy

relation.

5.1.2 Removing Dummy Relations
Based on Definition 5.3, identifying dummy relations involves two technical parts. First, we
should collect all the undirected relation paths from R∗ to each relation. Second, we need
to compute I(tp, p) and I(tn, p) for each undirected relation path p and positive/negative
tuple. However, the schema graph can contain a large and even infinite number of undirected
relation paths from R∗. Any cycle induces the infinity of the path number, making it tricky
to examine the conditions in Definition 5.3. Fortunately, we realize that the number of cycles
in a path does not affect the activated relation, which is stated in the following property.

▶ Property 5.1. Given any t0 ∈ R0, we have I(t0, p) = I(t0, p′) for p and p′ as follows:

p : R0 ↪→(a0,d0) · · · Rl [↪→(a′
l
,d′

l
) · · · Rl+t ↪→(a′

l+t
,d′

l+t
) Rl]+ ↪→(al,dl) · · · Rk ↪→(ak,dk) Rk+1

p′ : R0 ↪→(a0,d0) · · · Rl ↪→(a′
l
,d′

l
) · · · Rl+t ↪→(a′

l+t
,d′

l+t
) Rl ↪→(al,dl) · · · Rk ↪→(ak,dk) Rk+1

Here, [·]+ indicates the cycle occurring at least one time.

Property 5.1 holds trivially according to Definition 5.2. For each undirected relation path
p containing a cycle, the constraints over the tuples in I(t0, p) are the same as the ones over
the tuples in I(t0, p′). Thus, we can just examine the finite number of undirected relation
paths in which a cycle appears at most one time.

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:13

Algorithm 1 Removing dummy relations for representation reduction.

1 Procedure reduce(Γ, R, R∗
p, R∗

n):
2 R′ ← ∅;
3 GΓ ← SchemaGraph(Γ) ;
4 foreach R ∈ R :
5 P ← augmentPathWithCycle(AcyclicPath(R∗, R, GΓ));
6 foreach p ∈ P, tp ∈ R∗

p, tn ∈ R∗
n :

7 if I(tp, p) ̸= I(tn, p) :
8 R′ ←R′ ∪ {R}; break ;
9 foreach p ∈ P, tp ∈ R∗

p :
10 if I(tp, p) = ∅ :
11 R′ ←R′ \ {R}; break ;
12 return R′;

Establish upon the above concepts and property, Algorithm 1 shows the details of the
representation reduction by removing dummy relations. Initially, we construct the schema
graph GΓ according to Definition 4.1 (line 3). Then we compute the undirected relation
paths from R∗ to R in GΓ, where any cycle repeats at most once (lines 4–5). Specifically,
the function AcyclicPath collects all the acyclic undirected relation paths from R∗ to R in
the schema graph GΓ, while the function augmentPathWithCycle augments each acyclic path
by appending each cycle at most one time. For each undirected relation path p, we compute
I(tp, p) and I(tn, p) according to Definition 5.2 for each tp ∈ R∗

p and tn ∈ R∗
n, respectively.

Therefore, we can identify R as a non-dummy relation if both the conditions in Definition 5.3
are violated (lines 6–11). Finally, we obtain the reduced relational representation R′ that
excludes all the dummy relations (line 12).

▶ Example 5.3. Consider the undirected relation paths from Method to Modifier in Figure 3(a).
Algorithm 1 collects the acyclic path p3 : Method ↪→(mdf_id,+1) Modifier and augments it to
form the path p4 : Method ↪→(mdf_id,+1) Modifier ↪→(mdf_id,−1) Method ↪→(mdf_id,+1) Modifier.
Based on the activated relations I(t, p3) and I(t, p4) for each tuple t in Method, we can find
that I(tp, p) = I(tn, p) for every tp ∈ R∗

p and tn ∈ R∗
n. Thus, Modifier is a dummy relation.

Essentially, our representation reduction analyzes the example program upon its relational
representation. The activated relations provide sufficient clues to identifying unnecessary
relations, i.e., the dummy ones. As the first step of the synthesis, the representation reduction
narrows down the relations used in the conjunctive query. Furthermore, in the enumeration of
the edges of a query graph, i.e., the sets EQ and ΦQ, we only need to focus on the attributes
in the non-dummy relations in the reduced relational representation, which prunes the search
space significantly. Lastly, we formulate the soundness of the representation reduction as
follows, which can further ensure the completeness of our synthesis algorithm in § 5.4. We
provide a detailed proof in [49].

▶ Theorem 5.1. (Soundness of Representation Reduction) If an instance of the MMCQS
problem has a solution, there must be a conjunctive query RQ, of which the Cartesian
product only consists of non-dummy relations, such that RQ is also a solution.

5.2 Bounded Refinement
Based on the reduced relational representation R′, we can enumerate query candidates by
selecting proper nodes corresponding to non-dummy relations in R′ and edges connecting
such nodes. However, the search space is potentially unbounded. The relations can occur in

ECOOP 2023

36:14 Synthesizing Conjunctive Queries for Code Search

a query multiple times, i.e., a node in the schema graph can be selected more than one time.
Meanwhile, the literal in a string constraint can be instantiated flexibly, which increases
the difficulty of enumerating a query graph with proper instantiation of ΦQ. To achieve
high efficiency, we propose the bounded refinement to expand query graphs on demand and
strengthen the query with the strongest string constraints. Specifically, we first introduce
the notions of the bounded query and the refinable query (§ 5.2.1), and then present the
details of enumerating the query graphs (§ 5.2.2).

5.2.1 Bounded Query and Refinable Query
As shown in Example 3.2, a relation can appear multiple times in the Cartesian product of a
conjunctive query, inducing an unbounded search space in the synthesis. The unboundedness
of the search space poses the great challenge of enumerating the query candidates efficiently.
However, we realize that the conjunctive query for a code search task often involves only
a few relations, each of which appears quite a few times. Thus, it is feasible to bound the
maximal multiplicity of the relation in the query and conduct the bounded enumeration.
Formally, we introduce the notion of the (m,k)-bounded query as follows.

▶ Definition 5.4 ((m, k)-Bounded Query). An (m, k)-bounded query is a conjunctive query
with m relations such that (1) each relation appears at most k times; (2) there is a relation
appearing exactly k times.

▶ Example 5.4. The conjunctive query Π(A1.∗)(σtrue(ρA1(Method))) is a (1, 1)-bounded
query. Similarly, the conjunctive query in Example 3.2 is a (4, 2)-bounded query.

Intuitively, we can enumerate the (m, k)-bounded queries by selecting non-dummy rela-
tions at most k times, forming a query graph with m nodes. When constructing the sets EQ

and ΦQ for the query graph enumeration, we only need to concentration on the attributes
of the selected relations. However, not all the query graphs are worth enumerating. If RQ

excludes a positive tuple, there is no need to add more nodes and edges to its query graph,
as it would induce a stronger selection condition, making the new query still exclude the
positive tuple. Formally, we formulate the notion of the refinable query as follows.

▶ Definition 5.5 (Refinable Query). A conjunctive query RQ is a refinable query if and only
if for any tp ∈ R∗

p we have tp ∈ RQ, i.e., R∗
p ⊆ RQ.

▶ Example 5.5. Consider RQ := Π(A1.∗)(σΘ(ρA1(Method) × ρA2(Type) × ρA3(Parameter))),
where the selection condition Θ in the selection operation is as follows:

Θ := (A1.id = A3.method_id) ∧ (A1.ret_type_id = A2.id) ∧ equal(A2.name, “CacheConfig”)

It is a refinable query as R∗
p ⊆ RQ = {(M1, I1, T3, MDF1), (M2, I2, T3, MDF1)}.

Essentially, a refinable query is the over-approximation of the positive tuples. When it
excludes all the negative tuples, the query is exactly a query candidate. Thus, we can collect
the query candidates by refining the refinable queries in the bounded enumeration.

5.2.2 Enumerating Query Candidates via Refinement
We denote the sets of (m, k)-bounded refinable queries and query candidates by SR(m, k)
and SC(m, k), respectively, and set a multiplicity bound K to bound the multiplicity of a
relation. To conduct a bounded enumeration, we have to compute the set SC(m, k) for k ≤ K,

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:15

Algorithm 2 Enumerating query candidates via refinement.

1 Procedure refine(SR, SC , R∗
p, R∗

n, m, k, R′):
2 if m = 1 and k = 1 :
3 W ← {(∅, ∅,⊥)} ;
4 if m > 1 :
5 W ← {κ(RQ) | RQ ∈ SR(m− 1, k)};
6 if k > 1 :
7 W ←W ∪ {κ(RQ) | RQ ∈ SR(m− 1, k − 1)};
8

9 SR(m, k)← ∅;
10 while W is not empty do
11 GQ ← pop(W); V ← ∅;
12 foreach R ∈ R′ :
13 if multiplicity(GQ, R) < k and κ−1(GQ) ∈ SR(m− 1, k) :
14 V ← V ∪ expand(GQ, R);
15 if multiplicity(GQ, R) = (k − 1) and κ−1(GQ) ∈ SR(m− 1, k − 1) :
16 V ← V ∪ expand(GQ, R) ;
17

18 foreach GQ : (NQ, EQ, ΦQ) ∈ V and R∗
p ⊆ κ−1(GQ) :

19 SR(m, k)← SR(m, k) ∪ κ−1(GQ) ;
20 foreach (Ri, Ai) ∈ NQ and (a, STR) ∈ Γ(Ri) :
21 (p, ℓ)← synLCS(GQ, Ri, Ai, a, R∗

p);
22 G′

Q ← (NQ, EQ, ΦQ[(Ri, Ai, a) 7→ (p, ℓ)]) ;
23 SR(m, k)← SR(m, k) ∪ κ−1(G′

Q);
24

25 SC(m, k)← {RQ | RQ ∈ SR(m, k), R∗
p = RQ};

which can be achieved by examining whether the queries in SR(m, k) are query candidates.
Obviously, exhaustive enumeration is impossible as the search space of (m, k)-bounded queries
is exponential to m and k. To avoid unnecessary enumeration, we leverage the structure of
SC(m, k), which is formulated in the following property.

▶ Property 5.2. For every refinable query RQ ∈ SC(m, k) and κ(RQ) := (NQ, EQ, ΦQ),
there exists a query graph G1

Q or G2
Q such that

NQ = N1
Q ∪ {(R, Ai)}, E1

Q ⊆ EQ, and Φ1
Q ⊆ ΦQ, where R appears in G1

Q exactly (k − 1)
times. Here, G1

Q = (N1
Q, E1

Q, Φ1
Q) and κ−1(G1

Q) ∈ SR(m − 1, k − 1).
NQ = N2

Q ∪ {(R, Ai)}, E2
Q ⊆ EQ, and Φ2

Q ⊆ ΦQ, where R appears in G2
Q fewer than k

times. Here, G2
Q = (N2

Q, E2
Q, Φ2

Q) and κ−1(G2
Q) ∈ SR(m − 1, k).

Property 5.2 shows that the sets of the nodes and edges in a query graph of a refinable
query are subsumed by the ones of a refinable query with fewer relations, which permit
us to enumerate the query candidates by computing SR(m, k) and SC(m, k) inductively.
Technically, we achieve the enumerative search via the bounded refinement. Assuming that
we have SR(m′, k′) and SC(m′, k′) for all m′ < m and k′ ≤ k. Algorithm 2 computes the
sets SR(m, k) and SC(m, k). The technical details of the refinement are as follows:

For the base case, where m = 1 and k = 1, we construct an empty query graph (line 3).
For a general case, we merge the sets of the query graphs induced by the refinable queries
in SR(m − 1, k) and SR(m − 1, k − 1) (lines 4–7). Hence, we obtain a set of query graphs
W to maintain all the refinable queries with m relations.

ECOOP 2023

36:16 Synthesizing Conjunctive Queries for Code Search

(Method, 𝐴!)G!" :

G!# :	G!$:
(Method, 𝐴!)

(equal, “CacheConfig”)

(Type, 𝐴") ret_type_id

name

G!% :	

𝜅#! 𝐺$! ∈	SR(1,1)

𝜅#! 𝐺$" ∈	SR(2,1) 𝜅#! 𝐺$% ∈	SR(3,1) 𝜅#! 𝐺$& ∈	SC 4,2

name

(equal, “Log4jUtils”)

type_id(Parameter, 𝐴%)

method_id

(Type, 𝐴")

(equal, “CacheConfig”)

name

(Method, 𝐴!)

(Type, 𝐴&)

ret_type_id

(Parameter, 𝐴%)

method_id

(Type, 𝐴")

(equal, “CacheConfig”)

name

(Method, 𝐴!)

ret_type_id

Figure 4 The example of the bounded refinement.

For each query graph GQ ∈ W , we leverage the function expand wraps a specific relation
R as a new node and add new edges, producing a set of query graphs containing the
relation R (lines 12–16). Such query graphs are maintained in the set V .
For each query graph GQ ∈ V that induces a refinable query, we add the induced
refinable query to the set SR(m, k) (line 19) and attempt to synthesize a string constraint
(lines 20–23). Specifically, the function synLCS examines the values of a string attribute
a in the positive tuples to compute the longest common substring ℓ and the strongest
string predicate p (line 21), where all the values of a in the positive tuples satisfy the
string constraints induced by p and ℓ. By updating ΦQ, we add a new edge to GQ and
produce a new query graph inducing a refinable query (lines 22–23).
Finally, we check whether a (m, k)-bounded refinable query is a query candidate or not,
which yields the set SC(m, k) (line 25). The sets SR(m, k) and SC(m, k) are exactly the
sets of (m, k)-bounded refinable queries and query candidates.

Notably, we construct the string constraints on demands to strengthen the selection
condition of refinable queries, which is achieved by the function synLCS at line 21. The
reduction from string constraint synthesis to the LCS computation enable us to leverage
existing algorithms, such as general suffix automaton [33], to compute the string literal ℓ

and select a string predicate p efficiently, which promote the efficiency of query refinement.

▶ Example 5.6. Figure 4 shows the part of the refinement for the instance in Example 3.4.
G1

Q only contains the relation Method. After adding the nodes and edges, we construct the
query graphs of refinable queries with more relations and atomic constraints, such as G2

Q, G3
Q,

and G4
Q. Particularly, we identify the query candidate κ−1(G4

Q), i.e., RQ in Example 3.2.

5.3 Candidate Selection
Based on the bounded refinement, we collect the query candidates in which each relation
appears no more than K times, where K is the multiplicity bound. However, not all the
query candidates are the desired ones. In this section, we introduce dual quantitative metrics
to prioritize queries (§ 5.3.1) and select query candidates during the refinement (§ 5.3.2).

5.3.1 Dual Quantitative Metrics
Desired queries are expected to express the search intent correctly, covering as many gram-
matical concepts in the natural language as possible. Also, they should be as simple as
possible according to Occam’s razor. Based on the intuitions, we formalize the following two
metrics and then define the total order to prioritize the query candidates.

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:17

▶ Definition 5.6. (Named-Entity Coverage) Given a function h mapping an attribute of a
relation to a set of words in natural language, the named entity coverage of a conjunctive
query RQ with respect to a natural language description s is

αh(RQ, s) = 1
|N(s)| ·

∣∣ ⋃
(Ri,aj)∈A(Θ)

h(Ri, aj) ∩ N(s)
∣∣

Here, A(Θ) contains the relations and their attributes appearing in the selection condition Θ
while N(s) is the set of the named entities in the description s.

▶ Definition 5.7. (Structural Complexity) Let δ(Θ) be the number of the atomic formulas
in the selection condition Θ. The structural complexity of a conjunctive query RQ is

β(Q) = m + δ(Θ)

To compute the named entity coverage, we instantiate the function h manually and
obtain the set N(s) from the natural language description s based on the named entity
recognition techniques [31]. The computation does not introduce much overhead, as the
natural language description exhibits a fairly small length in our scenarios. Meanwhile,
measuring the structural complexity is quite straightforward. The quantities m and δ(Θ)
can be totally determined by the sizes of the sets NQ, EQ and ΦQ in a query graph. Thus,
computing the two quantities does not introduce much overhead during the enumeration.

▶ Example 5.7. Assume that we instantiate the function h as follows:

h(Parameter, id) = {parameter}, h(Method, id) = {method}, h(Method, idf_id) = {identifier}

h(Method, ret_type_id) = {return, type}, h(Method, mdf_id) = {modifier}

Consider the natural language description s in Example 3.4 and the conjunctive query RQ

in Example 3.2, of which the query graph is shown in Figure 3(b). We can obtain a set of
named entities N(s) = {method, type, parameter, return}. Therefore, we have αh(RQ, s) = 1.
According to m = 4 and δ(Θ) = 5, its structural complexity is β(RQ) = 4 + δ(Θ) = 9.

Intuitively, the selection condition of a query is more likely to conform to the user intent
if the query has a higher named entity coverage. Besides, the simpler form query can have
better generalization power among the query candidates covering the same number of named
entities. Based on Occam’s razor, we should choose the simplest query from the candidates
that maximizes the named entity coverage. Thus, we propose the total order of conjunctive
queries as follows.

▶ Definition 5.8 (Total Order). Given the function h in Definition 5.6, we have R2
Q ⪯s R1

Q if
and only if they satisfy one of the following conditions:

αh(R1
Q, s) ≥ αh(R2

Q, s) or

αh(R1
Q, s) = αh(R2

Q, s), β(R1
Q) ≤ β(R2

Q)

▶ Example 5.8. Consider the following query candidates for the instance in Example 3.4.

Rc1
Q := Π(A1.∗)(σA1.name = “foo”(ρA1(Method)))

Rc2
Q := Π(A1.∗)(σΘ2(ρA1(Method) × ρA2(Type) × ρA3(Parameter) × ρA4(Type)))

Here, Θ2 := Θ ∧ (A1.name = “foo”) and Θ is shown in Example 3.2. Given the function h

shown in Example 5.7, we can obtain that αh(Rc1
Q , s) = 1

4 , αh(Rc2
Q , s) = 1, β(Rc1

Q) = 2, and
β(Rc2

Q) = 10. According to Example 5.7, we have Rc1
Q ⪯s Rc2

Q ⪯s RQ.

ECOOP 2023

36:18 Synthesizing Conjunctive Queries for Code Search

Algorithm 3 Blending selection with refinement.

1 Procedure synthesize(Γ, R, R∗
p, R∗

n, s, K):
2 R′ ← reduce(Γ,R, R∗

p, R∗
n) ;

3 α̃← 1
|N(s)| |{w ∈ h(R, a) ∩N(s) | ∃R ∈ R′, T ∈ R′ ∪ {STR} : (a, T) ∈ Γ(R)}|;

4 αmax ← MIN_INT; βmin ← MAX_INT; SQ ← ∅;
5 foreach 1 ≤ m ≤ K · |R′| :
6 if SR(m− 1, k − 1) = ∅ and SR(m− 1, k) = ∅ :
7 continue ;
8 foreach 1 ≤ k ≤ min(K, m) :
9 refine(SR,SC , R∗

p, R∗
n, m, k,R′);

10 foreach RQ ∈ SC(m, k) :
11 (αmax, βmin, SQ) ← update (RQ, αmax, βmin, SQ);
12 β̃ = min({β(RQ) | RQ ∈ SR(m, k) ∪ SR(m, k − 1)});
13 if αmax = α̃ and βmin ≤ β̃ :
14 return SQ;
15 return SQ;

The total order is an adaption of Occam’s razor for our synthesis problem. Without
the named entity coverage, we would select the query candidates with the lowest structural
complexity, such as Rc1

Q in Example 5.8, even if they do not constrain the relationship of
several grammatical constructs as expected. Based on the total order, we can select the
query candidates by solving the dual-objective optimization problem, which finally yields the
desired queries for code search.

5.3.2 Blending Selection with Refinement
Based on Definition 5.8, we propose Algorithm 3 that blends the candidate selection with the
bounded refinement, which is more likely to obtain the desired queries for a code search task.
First, we obtain the schema graph and remove the dummy relations via the representation
reduction (line 2). We then compute the upper bound of the named entity coverage, which is
denoted by α̃ (line 3). After the initialization of αmax, βmin, and SQ (line 4), we conduct the
bounded refinement and select the query candidates in each round (lines 5–14). Obviously,
there are at most K · |R′| relations in a query for a given multiplicity bound K (line 5), and
a relation can only appear at most min(K, m) times in a query with m relations (line 8). In
each round, we fuse the refinement and selection as follows:

Enumerate (m, k)-bounded refinable queries and query candidates with Algorithm 2,
strengthening the selection conditions of the refinable queries in previous rounds (line 9).
Compute αh(RQ, s) and β(RQ) for each (m, k)-bounded query candidate RQ and update
the selected candidate set SQ, αmax, and βmin (lines 10–11). Particularly, αmax and
βmin are updated to identify the largest candidates with respect to the total order.
Terminate the iteration in advance and return the set SQ if αmax reaches the upper
bound of the named entity coverage, i.e., α̃, and the queries to be refined in the next
round do not have lower structural complexities than βmin (lines 13–14).

The refinement strengthens the selection conditions to exclude all the negative tuples.
Specifically, we explore the bounded search space containing the query graphs of refinable
queries, avoiding the unnecessary enumerative search effectively. In real-world code search

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:19

tasks, the selection condition is often involved different kinds of grammatical constructs,
making each relation appear often appear in the conjunction query one or two times. Therefore,
we set the multiplicity bound K to 2 for real-world code search tasks in practice, of which
the effectiveness will be evidenced by our evaluation.

The natural language description benefits our synthesis process from two aspects. First,
the selected queries in SQ are the largest queries under the total order, and thus they are
more likely to conform to the user’s search intent than other query candidates. Second, we
terminate the enumerative search if the named entity coverage cannot increase with a smaller
structural complexity, avoiding unnecessary enumerative search of bounded query candidates
for the efficiency improvement.

▶ Example 5.9. Consider Rc1
Q , Rc2

Q and RQ in Example 5.8. We obtain the query candidate
Rc1

Q when (m, k) = (1, 1), and discover the candidates RQ and Rc2
Q when (m, k) = (4, 2).

Based on Definition 5.8, we select and maintain the query candidate RQ in SQ. Also, we find
αmax = αh(RQ, s) = 1 reaches α̃, indicating that the candidates in the subsequent rounds
cannot yield a larger named entity coverage with lower structural complexity. Algorithm 3
terminates and returns the set SQ = {RQ}.

5.4 Summary
Our synthesis algorithm Squid is an instantiation of a new synthesis paradigm of the multi-
modal synthesis, which reduces the synthesis problem to a multi-target optimization problem.
We now formulate and prove the soundness, completeness, and optimality of Squid with
three theorems as follows, which are proved in [49].

▶ Theorem 5.2 (Soundness). For any RQ ∈ SQ, where SQ is returned by Algorithm 3, RQ

must contain all the positive tuples in R∗
p and exclude the negative tuples in R∗

n.

▶ Theorem 5.3 (Completeness). If an MMCQS problem instance has an (m, k)-bounded
query as its solution and k ≤ K, the set SQ returned by Algorithm 3 is not empty.

▶ Theorem 5.4 (Optimality). Denote I = {(m, k) | 1 ≤ m ≤ K · |R′|, 1 ≤ k ≤ min(K, m)}
and S̃ =

⋃
(m,k)∈I SC(m, k). The returned query set SQ of Algorithm 3 satisfies:

R′
Q ⪯s RQ for every RQ ∈ SQ and R′

Q ∈ S̃.
There do not exist RQ ∈ S̃ \ SQ and R′

Q ∈ S̃ such that R′
Q ⪯s RQ and RQ ⪯̸s R′

Q.

6 Implementation

Established upon the industrial Datalog-based Java program analyzer in Ant Group, Squid
synthesizes conjunctive queries to support code search tasks in Java programs. Noting
that our approach is general enough to support the conjunctive query synthesis for any
Datalog-based analyzer as long as the generated relations can be formulated by Definition 3.2.
In what follows, we provide more implementation details of Squid.

Synthesis Input Configuration. We design a user interface to convenience the users to
specify examples in a code snippet. Specifically, the users can copy a desired grammatical
construct from their workspace as a positive example or write a positive example manually.
By mutating a positive example, the users can create more positive and negative examples,
eventually forming an example program. Then we convert the program to the relational
representation, which consists of 173 relations with 1,093 attributes in total, and partitions a

ECOOP 2023

36:20 Synthesizing Conjunctive Queries for Code Search

relation into two parts to induce positive and negative tuples. To extract the named entities
from the natural language description, we leverage the named entity recognition [31] and
construct the dictionary of entities to filter unnecessary named entities in the post-processing.
Specifically, the dictionary contains 205 words, which are the keywords describing grammatical
constructs in Java programs, such as “method”, “parameter”, and “return”. Furthermore, we
also instantiate the function h in Definition 5.6 to bridge the program relational representation
with natural language words. We publish all the synthesis specifications and dictionary of
entities online [48].

Synthesis Algorithm Design. Based on the language schema of Java, we construct the
schema graph offline and persist it for synthesizing queries for a given synthesis specification.
Instead of invoking the Datalog-based analyzer, we implement a query evaluator for con-
junctive queries upon the relational representation to identify the refinable queries and query
candidates, which can improve the efficiency of the query evaluation during the synthesis. In
the bounded refinement, we set the multiplicity bound K to 2 by default to support code
search tasks. To efficiently synthesize string constraints, we leverage the generalized suffix
automaton [33] to identify the longest common substrings of a set of string values, which
returns the string predicate p and the string literal ℓ with low time overhead. Currently,
Squid utilizes four predicates for string match, while we can further extend it to support
regex match by adopting existing regex synthesis techniques [27, 10] to Algorithm 2.

7 Evaluation

To quantify the effectiveness and efficiency of Squid, we conduct a comprehensive empirical
evaluation and answer the following four research questions:

RQ1: How effective is Squid in the conjunctive query synthesis for code search tasks?
RQ2: How big are the benefits of the representation reduction and the bounded refinement
in terms of efficiency?
RQ3: Is the query candidate selection effective and necessary for the synthesis?
RQ4: How does Squid compare to other approaches that could be used in our problem?

Benchmark. There are no existing studies targeting our multi-modal synthesis problem, so
we construct a new benchmark for evaluation, which consists of 31 code search tasks. As
shown in Table 1, the tasks cover five kinds of grammatical constructs, namely variables,
expressions, statements, methods, and classes. Specifically, 14 tasks are the variants of C++
search tasks in [34] or the query synthesis tasks in [46]. We also consider more advanced
tasks deriving from real demands. For example, Task 2 originates from the coding standard
of a technical unit in Ant Group, while Task 21 is often conducted when the developers check
the usage of the log4j library to improve reliability. For each task, we specify examples in
a program and a sentence as the natural language description. The program is fed to the
commercial Datalog-based analyzer in Ant Group to generate the relational representation
and the relation partition, while the natural language description is processed via the named
entity recognition technique [31]. The columns L and (P, N) in Table 1 indicate the line
numbers of the programs and the numbers of positive/negative tuples, respectively.

Experimental Setup. We conduct all the experiments on a Macbook Pro with a 2.6 GHz
Intel® Core™ i7-9750H CPU and 16 GB physical memory.

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:21

Table 1 Experiment results of synthesizing conjunctive queries for code search tasks.

ID Description L (P, N) |GQ| k |G′
Γ| T0(s)

1 Local variables with double type 10 (2, 2) (2, 1, 1) 1 (10, 19) 2.36
2 Float variables of which the identifier contains “cash” 10 (3, 1) (3, 2, 2) 1 (9, 17) 2.37
3 Public field variables of a class 6 (2, 1) (2, 1, 1) 1 (10, 21) 2.30
4 Public field variables whose names use “cash” as suffixes 8 (3, 2) (2, 2, 2) 1 (10, 23) 2.49

5 Arithmetic expressions using double-type operands 9 (2, 2) (3, 2, 2) 1 (9, 29) 2.62
6 Cast expressions from double-type to float-type [46] 11 (1, 2) (3, 2, 2) 2 (9, 23) 2.31
7 Arithmetic expressions only using literals as operands 19 (2, 3) (3, 2, 1) 2 (9, 29) 2.76
8 Expressions comparing a variable and a boolean literal [34] 16 (2, 1) (2, 1, 1) 1 (8, 29) 2.36
9 New expressions of ArrayList 8 (2, 1) (2, 1, 1) 1 (10, 25) 2.20
10 Logical conjunctions with a boolean literal [34] 11 (3, 1) (2, 1, 2) 1 (9, 29) 2.31
11 Float increment expression [46] 11 (1, 2) (3, 2, 2) 1 (9, 23) 2.55
12 Expressions comparing two strings with “==” [34] 14 (2, 1) (3, 2, 3) 1 (11, 46) 3.01
13 Expressions performing downcasting [46] 25 (2, 1) (3, 2, 0) 1 (11, 39) 2.63

14 The import of LocalTime 7 (1, 1) (1, 0, 2) 1 (9, 23) 2.17
15 The import of the classes in log4j 9 (3, 1) (1, 0, 1) 1 (9, 22) 2.22
16 Labeled statements using “err” as the label [34] 17 (1, 1) (1, 0, 1) 1 (10, 21) 2.18
17 If-statements with a boolean literal as a condition [34] 16 (2, 1) (2, 1, 0) 1 (9, 17) 2.24
18 For-statements with a boolean literal as the condition [34] 15 (2, 1) (2, 1, 0) 1 (10, 25) 2.31
19 Invocation of unsafe time function “localtime” [34] 9 (2, 1) (2, 1, 1) 1 (10, 23) 2.23

20 Public methods with void return type [34] 10 (2, 1) (3, 2, 2) 1 (11, 26) 2.36
21 Methods receiving a parameter with Log4jUtils type 11 (2, 1) (3, 2, 1) 1 (9, 20) 2.45
22 Methods using a boolean parameter as a if-condition [46] 29 (2, 2) (4, 3, 0) 1 (11, 26) 3.23
23 Methods creating a File object 14 (2, 1) (3, 2, 1) 1 (12, 30) 2.38
24 Mutually recursive methods [34, 46] 20 (2, 2) (2, 2, 0) 2 (11, 27) 2.42
25 Overriding methods of classes [46] 25 (2, 4) (5, 5, 0) 2 (8, 22) 5.89

26 User classes with “login” methods 15 (2, 1) (2, 1, 2) 1 (11, 28) 2.53
27 Classes containing a field with Log4jUtils type 20 (2, 1) (3, 2, 1) 1 (12, 35) 2.42
28 Classes having a subclass 25 (3, 3) (2, 1, 0) 2 (13, 33) 2.21
29 Classes implementing Comparable interface 16 (2, 1) (2, 1, 1) 1 (13, 35) 2.58
30 Classes containing a static method 17 (2, 1) (3, 2, 1) 1 (11, 28) 2.46
31 Java classes with main functions 16 (2, 1) (2, 1, 1) 1 (10, 28) 2.35

7.1 Overall Effectiveness
To evaluate the effectiveness of Squid, we run it upon the synthesis specification for each
code search task, examining whether the synthesized queries express the intent correctly, and
meanwhile, measure the time cost of synthesizing queries in each task.

In Table 1, the column |GQ| indicates the numbers of the relations, equality constraints,
and string constraints. The column k shows the maximal multiplicity of a relation in a
synthesized query, while the column |G′

Γ| indicates the numbers of nodes and edges in the
subgraph of the schema graph induced by R′ ∪ {STR}. The time cost of Squid is shown in
the column T0. According to the statistics, we can obtain two main findings. First, Squid
synthesizes the queries for all the tasks successfully. It manipulates more than three relations
in Tasks 22 and 25, which are even non-trivial for a human to achieve. Second, Squid
synthesizes the queries with a quite low time cost. The average time cost is 2.56 seconds,
while most of the tasks are finished in three seconds.

As mentioned in § 6, Squid performs the bounded refinement with the multiplicity bound
K = 2. In our benchmark, five code search tasks demand several relations appear two times.
In practice, the searching condition can hardly relate to more than two grammatical constructs
of the same kind, so our setting of the multiplicity bound K enables Squid to synthesize

ECOOP 2023

36:22 Synthesizing Conjunctive Queries for Code Search

Task ID

Ti
m

e
(s

ec
)

Figure 5 The time cost comparison of Squid, SquidNrr, and SquidNbr.

queries for code search tasks in real-world scenarios. Meanwhile, we quantify the time cost
of the synthesis in the cases of K = 3 and K = 4. Averagely, Squid takes 2.71 seconds and
3.98 seconds under the two settings, respectively. Thus, the overhead increases gracefully
when K increases, demonstrating the great potential of Squid in efficiently synthesizing
more sophisticated queries with a larger multiplicity bound.

7.2 Ablation Study on Efficiency
We evaluate two ablations of Squid, namely SquidNrr and SquidNbr, to quantify the
impact of the representation reduction and the bounded refinement on the efficiency.

SquidNrr: This ablation of Squid does not perform the representation reduction but
still leverages Algorithm 2 to conduct the bounded refinement.
SquidNbr: The ablation performs the representation reduction as Squid does, while it
enumerates all the query graphs and permits each relation to appear at most K times.

We measure the time cost of two ablations to quantify their efficiency. Specifically, we set the
time budget for synthesizing queries for a single task to 30 seconds, as a synthesizer would
have little practical value for the real-world code search if it ran out of the time budget.

Figure 5 shows the comparison of the time cost of Squid and the two ablations. First, the
representation reduction can effectively reduce the time cost. Specifically, the average time
cost of SquidNrr is 8.98 seconds, indicating that the representation reduction introduces a
71.49% reduction over the time cost. Second, the bounded refinement has a critical impact
on the efficiency of Squid. Without the refinement, SquidNbr has to explore the huge
search space induced by the non-dummy relations, making 14 out of 31 tasks cannot be
finished within the time budget, such as Task 4, Task 5, etc. For the failed tasks, we do not
show the time cost of SquidNbr in Figure 5. SquidNbr also takes much more time than
Squid, consuming 7.89 seconds on average, even if it successfully synthesizes the queries.

To investigate how the efficiency is improved, we further measure the size of the subgraph
of the schema graph induced by R′ ∪ {STR}. Initially, the schema graph contains 174 nodes
(including the node depicting STR) and 1,093 edges. As shown in the column |G′

Γ| of Table 1,
the induced subgraph only contains around ten nodes and no more than fifty edges. Although
SquidNrr prunes unnecessary relations by enumerating several bounded queries at the
beginning of the refinement, it has to spend more time on the query enumeration than Squid,
which demonstrates the critical role of the bounded refinement in our synthesis. Besides, the
running time of SquidNbr is similar to Squid on several benchmarks, such as Task 1, Task
2, Task 3, Task 9, etc., while it takes much longer time than Squid in other benchmarks.

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:23

Task ID

Q
ue
ry
N
um
be
r

Task ID

Q
ue
ry
N
um
be
r

(a) structural complexity (b) named-entity coverage

Figure 6 The numbers of synthesized queries prioritized with different metrics.

Although SquidNbr does not discard infeasible queries, it still benefits from representation
reduction. When a desired query is of small size and the reduced program representation
induces a small schema graph G′

Γ, SquidNbr can terminate to find an optimal query by
enumerating a few candidates. However, if GQ and G′

Γ are large, SquidNbr enumerates a
large number of infeasible queries, which introduces significant overhead.

7.3 Impact of Selection
To measure the impact of the query candidate selection, we adapt each metric separately for
candidate prioritization. Specifically, we alter Algorithm 3 and select the queries minimizing
the structural complexity and maximizing the named entity coverage, respectively. We then
count the returned queries and inspect whether they are desired ones or not.

Figure 6(a) shows the numbers of the synthesized queries with the structural complexity as
the metric. As we can see, Squid produces non-desired queries in 12 tasks, while the returned
set of synthesized queries in 10 tasks do not contain any desired query. For Task 3 and
Task 30, it provides the desired queries along with non-desired ones, which makes the users
confused about how to select a proper one. Similar to Rc1

Q in Example 5.8, the non-desired
queries are caused by the over-fitting of positive and negative examples. Although they have
the simplest form of the selection conditions, the relationship of grammatical constructs
mentioned in the natural language description is not constrained, making synthesized queries
not express the users’ intent correctly.

Figure 6(b) shows the numbers of the queries maximizing the named entity coverage.
Squid returns at least one non-desired query for seven tasks. Similar to Rc2

Q in Example 5.8,
non-desired queries come from over-complicated selection conditions. Although the selected
queries have the same named entity coverage, several queries contain more atomic formulas
than the desired ones, posing stronger restrictions upon the code. Besides, the synthesized
queries in several tasks, e.g., Task 11 and Task 26, have complex selection conditions although
they are equivalent under the context of code search. However, such queries exhibit higher
structural complexity, posing more difficulty in understanding them.

7.4 Comparison with Existing Techniques
To the best of our knowledge, no existing technique or implemented tool targets the same
problem as Squid. To compare Squid with existing effort, we adapt the state-of-the-art
Datalog synthesizer EGS [46] as our baseline. Originally, it synthesizes a conjunctive query
to separate a positive tuple from all the negative ones and then group all the conjunctive
queries as the final synthesis result, which can be theoretically a disjunctive query. However,

ECOOP 2023

36:24 Synthesizing Conjunctive Queries for Code Search

Ti
m

e
(s

ec
)

Task ID

#
Pa

ss

(a) (b)

Figure 7 The time cost and the numbers of passed tasks of Squid, EGS-Str, and EGS-StrDual.

EGS does not synthesize string constraints and only prioritizes feasible solutions based on
their sizes, i.e., the structural complexity in our work. Thus, we construct two adaptions,
namely EGS-Str and EGS-StrDual, to synthesize the queries under our problem setting.

EGS-Str computes the longest substring of each string attribute in the positive tuple
such that the string values of the attributes in negative ones do not contain it as the
substring. We follow the priority function in EGS, which consists of the number of
undesirable tuples eliminated per atomic constraint and the size of a query, to accelerate
searching a query candidate with a small size. Finally, it obtains a query candidate for
each positive tuple and groups the candidates as a result.
EGS-StrDual further extends EGS-Str by considering the named entity coverage.
Specifically, it prioritizes the refinable queries according to the three metrics, including
the number of undesirable tuples eliminated per atomic constraint, the named entity
coverage, and the size of a query. Other settings are the same as the ones of EGS-Str.

Figure 7 shows the results of the comparison. On average, EGS-Str and EGS-StrDual
spend 2.85 and 3.18 seconds on a synthesis instance, respectively, while the average time cost
of Squid is 2.56 seconds. Although EGS-Str and EGS-StrDual accelerate the searching
process with priority functions as the heuristic metrics, they have to process the positive
tuples in each round, and thus, the number of positive tuples can increase the overhead.

Meanwhile, the two baselines only succeed synthesizing queries for 9 and 14 tasks,
respectively. There are two root causes of their failures in synthesizing desired queries. First,
they synthesize the query candidates for each positive query separately and, thus, are more
prone to over-fitting problems than Squid. Second, the core algorithms of EGS and the two
adaptions, which are the instantiations of inductive logic programming, can not guarantee the
obtained solutions are optimal under the given metrics. As reported in [46], the query may
not be of the minimal size if EGS leverages the number of undesirable tuples eliminated per
atomic constraint to accelerate the searching process of a query candidate. In our problem,
our dual quantitative metrics increase the difficulty of achieving the optimal solutions with
the two adaptions, which causes the failures of the code search tasks.

7.5 Discussion

In what follows, we demonstrate the discussions on the limitations of Squid and several
future works, which can further improve the practicality of our techniques.

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:25

Limitations. Although Squid is demonstrated to be effective for code search, it has two
major limitations. First, Squid cannot synthesize the query where the multiplicity of a
relation is larger than the multiplicity bound K. In other words, Theorem 5.3 actually ensures
partial completeness. Although we may achieve completeness for all realizable instances by
enumerating queries until obtaining a query candidate in Algorithm 3, Squid would fail
to terminate for unrealizable instances. Second, Squid does not support synthesizing the
queries with logical disjunctions. However, when a code search task involves the matching of
multiple patterns, Squid would not discover the correct queries, which are out of the scope
of the conjunctive queries.

Future Works. In the future, we will attempt to propose an efficient decision procedure
to identify unrealizable instances. Equipped with the decision procedure, we can only
enumerate queries for realizable instances and generalize the query refinement by discarding
the multiplicity bound. Besides, it would be promising to generalize Squid for disjunctive
query synthesis. One possible adaption is to divide positive tuples into proper clusters
and synthesize a conjunctive part for each cluster separately, following existing studies
such as EGS [46] and RhoSynth [15]. In addition, we aim to expand Squid to diverse
program domains, such as serverless functions [50] and programs running on networking
devices [57]. These use cases have gained significant attention in recent years, which can
pose new challenges on code search where new approaches may be needed. Lastly, it would
be meaningful to combine Squid with the techniques in the community of human-computer
interaction [8] to unleash its benefit for practice use.

8 Related Work

Multi-modal Program Synthesis. There has been a vast amount of literature on the
multi-modal synthesis [11, 4, 9, 10, 40, 16, 34]. For example, the LTL formula synthesizer
LtlTalk [16] maximizes the objective function that measures the similarity between the
natural language description and the LTL formula, and searches for the optimal solution that
distinguishes the positive and negative examples. Squid bears similarities to LtlTalk in
terms of the prioritization, while we use the named entities to avoid the failure of semantic
parsing of a sentence. Another closely related work is a query synthesizer named Sporq [34].
Based on code examples and user feedback, Sporq iterates its PBE-based synthesis engine
to refine the queries, which demands verbose user interactions and a long time period. In
contrast, Squid automates the code search by solving a new multi-modal synthesis problem,
which only requires the users to specify code examples and a natural language description.
effectively relieving the user’s burden in the searching process.

Component-based Synthesis. Several recent studies aim to compose several components
(e.g., the classes and methods in the libraries) into programs that achieve target functionalit-
ies [25, 18, 24, 38, 20, 21]. Typically, SyPet [14] and APIphany [19] both use the Petri net
to encode the type signature of each function, and collect the reachable paths to enumerate
the well-typed sketches of the programs, which prunes the search space at the start of the
synthesis. In our work, Squid leverages the schema graph to guide the enumerative search,
which share the similarity with existing studies. However, our enumerative search space
does not consist of the reachable paths in the schema graph, and instead, contains different
choices of selecting its nodes and edges. Besides, unlike prior efforts [14, 24, 20, 19], Squid
computes the activated relations and then discards unnecessary components, i.e., dummy
relations, which distinguishes Squid significantly from other component-based synthesizers.

ECOOP 2023

36:26 Synthesizing Conjunctive Queries for Code Search

Datalog Program Synthesis. There have been many existing efforts of synthesizing Datalog
programs [2, 42, 39, 43, 32]. For example, Zaatar [2] encodes the input-output examples
and Datalog programs with SMT formulas, and synthesizes the candidate solution via
constraint solving. Unlike constraint-based approaches, ALPS [42] and GENSYNTH [32]
synthesize target Datalog programs via the enumerative search, which is similar to our
synthesis algorithm. However, existing studies do not tackle a large number of relations in
the synthesis [2, 42, 32] or pursue an optimal solution with respect to a natural language
description. Meanwhile, they do not support the synthesis of string constraints, making
their approaches incapable of string matching-based code search. In contrast, Squid ensures
soundness, completeness, and optimality simultaneously and synthesizes string constraints
for string matching, showing its potential in assisting real-world code search tasks.

Datalog-based Program Analysis. The past few decades have witnessed the increasing
popularity of Datalog-based program analysis [22, 52, 55, 3, 44]. For example, CodeQL
encodes a program with a relational representation and exposes a query language for query
writing [3]. Several analyzers target more advanced semantic reasoning. For example, the
points-to and alias facts are depicted by two kinds of relations in Doop [6], and meanwhile,
pointer analysis algorithms are instantiated as Datalog rules [44]. Other properties, such as
def-use relation and type information, can also be analyzed by existing analyzers [26, 37].
Our effort has shown the opportunity of unleashing the power of Datalog-based program
analyzers seamlessly to support the code search automatically.

9 Conclusion

We propose an efficient synthesis algorithm Squid for a multi-modal conjunctive query
synthesis problem, which enables automatic code search using a Datalog-based program
analyzer. Squid reduces the search space via the representation reduction and the bounded
refinement, and meanwhile, conducts the query candidate selection with dual quantitative
metrics. It efficiently synthesizes the queries for 31 code search tasks with the guarantees of
soundness, completeness, and optimality. Its theoretical and empirical results offer strong
evidence of its practical value in assisting code search in real-world scenarios.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995. URL: http://webdam.inria.fr/Alice/.
2 Aws Albarghouthi, Paraschos Koutris, Mayur Naik, and Calvin Smith. Constraint-based

synthesis of datalog programs. In J. Christopher Beck, editor, Principles and Practice of
Constraint Programming - 23rd International Conference, CP 2017, Melbourne, VIC, Australia,
August 28 - September 1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer
Science, pages 689–706. Springer, 2017. doi:10.1007/978-3-319-66158-2_44.

3 Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. QL: object-oriented
queries on relational data. In Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th
European Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome,
Italy, volume 56 of LIPIcs, pages 2:1–2:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.ECOOP.2016.2.

4 Christopher Baik, Zhongjun Jin, Michael J. Cafarella, and H. V. Jagadish. Duoquest: A
dual-specification system for expressive SQL queries. In David Maier, Rachel Pottinger,
AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo, editors, Proceedings
of the 2020 International Conference on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19, 2020, pages 2319–2329. ACM, 2020.
doi:10.1145/3318464.3389776.

http://webdam.inria.fr/Alice/
https://doi.org/10.1007/978-3-319-66158-2_44
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.1145/3318464.3389776

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:27

5 Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Occam’s
razor. Inf. Process. Lett., 24(6):377–380, 1987. doi:10.1016/0020-0190(87)90114-1.

6 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In Shail Arora and Gary T. Leavens, editors, Proceedings of the 24th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, pages 243–262.
ACM, 2009. doi:10.1145/1640089.1640108.

7 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In John E. Hopcroft, Emily P. Friedman, and Michael A. Harrison,
editors, Proceedings of the 9th Annual ACM Symposium on Theory of Computing, May 4-6,
1977, Boulder, Colorado, USA, pages 77–90. ACM, 1977. doi:10.1145/800105.803397.

8 Sarah E. Chasins, Elena L. Glassman, and Joshua Sunshine. PL and HCI: better together.
Commun. ACM, 64(8):98–106, 2021. doi:10.1145/3469279.

9 Qiaochu Chen, Aaron Lamoreaux, Xinyu Wang, Greg Durrett, Osbert Bastani, and Isil
Dillig. Web question answering with neurosymbolic program synthesis. In Stephen N. Freund
and Eran Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021,
pages 328–343. ACM, 2021. doi:10.1145/3453483.3454047.

10 Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. Multi-modal synthesis of
regular expressions. In Proceedings of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20,
2020, pages 487–502. ACM, 2020. doi:10.1145/3385412.3385988.

11 Yanju Chen, Ruben Martins, and Yu Feng. Maximal multi-layer specification synthesis. In
Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo, editors, Proceedings of the
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August
26-30, 2019, pages 602–612. ACM, 2019. doi:10.1145/3338906.3338951.

12 Maria Christakis and Christian Bird. What developers want and need from program analysis:
an empirical study. In David Lo, Sven Apel, and Sarfraz Khurshid, editors, Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016,
Singapore, September 3-7, 2016, pages 332–343. ACM, 2016. doi:10.1145/2970276.2970347.

13 Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. Component-
based synthesis of table consolidation and transformation tasks from examples. In Albert
Cohen and Martin T. Vechev, editors, Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June
18-23, 2017, pages 422–436. ACM, 2017. doi:10.1145/3062341.3062351.

14 Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. Component-based
synthesis for complex apis. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, pages 599–612. ACM, 2017. doi:10.1145/3009837.
3009851.

15 Pranav Garg and Srinivasan H. Sengamedu. Synthesizing code quality rules from examples.
Proc. ACM Program. Lang., 6(OOPSLA2), October 2022. doi:10.1145/3563350.

16 Ivan Gavran, Eva Darulova, and Rupak Majumdar. Interactive synthesis of temporal specific-
ations from examples and natural language. Proc. ACM Program. Lang., 4(OOPSLA):201:1–
201:26, 2020. doi:10.1145/3428269.

17 Georg Gottlob, Christoph Koch, and Klaus U. Schulz. Conjunctive queries over trees. J. ACM,
53(2):238–272, 2006. doi:10.1145/1131342.1131345.

18 Sumit Gulwani, Vijay Anand Korthikanti, and Ashish Tiwari. Synthesizing geometry construc-
tions. In Mary W. Hall and David A. Padua, editors, Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2011, San Jose,
CA, USA, June 4-8, 2011, pages 50–61. ACM, 2011. doi:10.1145/1993498.1993505.

ECOOP 2023

https://doi.org/10.1016/0020-0190(87)90114-1
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/3469279
https://doi.org/10.1145/3453483.3454047
https://doi.org/10.1145/3385412.3385988
https://doi.org/10.1145/3338906.3338951
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3009837.3009851
https://doi.org/10.1145/3563350
https://doi.org/10.1145/3428269
https://doi.org/10.1145/1131342.1131345
https://doi.org/10.1145/1993498.1993505

36:28 Synthesizing Conjunctive Queries for Code Search

19 Zheng Guo, David Cao, Davin Tjong, Jean Yang, Cole Schlesinger, and Nadia Polikarpova.
Type-directed program synthesis for restful apis. In PLDI ’22: 43rd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation, San Diego, CA,
USA, June 13 - 17, 2022, pages 122–136. ACM, 2022. doi:10.1145/3519939.3523450.

20 Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and Nadia
Polikarpova. Program synthesis by type-guided abstraction refinement. Proc. ACM Program.
Lang., 4(POPL):12:1–12:28, 2020. doi:10.1145/3371080.

21 Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion using
types and weights. In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA,
USA, June 16-19, 2013, pages 27–38. ACM, 2013. doi:10.1145/2491956.2462192.

22 Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. codeQuest: scalable source code queries
with datalog. In Dave Thomas, editor, ECOOP 2006 - Object-Oriented Programming, 20th
European Conference, Nantes, France, July 3-7, 2006, Proceedings, volume 4067 of Lecture
Notes in Computer Science, pages 2–27. Springer, 2006. doi:10.1007/11785477_2.

23 IntelliJ IDEA. Structural search and replace, https://www.jetbrains.com/help/idea/
structural-search-and-replace.html, 2022. [Online; accessed 10-Nov-2022]. URL: https:
//www.jetbrains.com/help/idea/structural-search-and-replace.html.

24 Michael B. James, Zheng Guo, Ziteng Wang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and
Nadia Polikarpova. Digging for fold: synthesis-aided API discovery for haskell. Proc. ACM
Program. Lang., 4(OOPSLA):205:1–205:27, 2020. doi:10.1145/3428273.

25 Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided component-
based program synthesis. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pages
215–224. ACM, 2010. doi:10.1145/1806799.1806833.

26 Monica S Lam, John Whaley, V Benjamin Livshits, Michael C Martin, Dzintars Avots, Michael
Carbin, and Christopher Unkel. Context-sensitive program analysis as database queries. In
Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 1–12, 2005.

27 Mina Lee, Sunbeom So, and Hakjoo Oh. Synthesizing regular expressions from examples for
introductory automata assignments. In Bernd Fischer and Ina Schaefer, editors, Proceedings
of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences, GPCE 2016, Amsterdam, The Netherlands, October 31 - November 1, 2016,
pages 70–80. ACM, 2016. doi:10.1145/2993236.2993244.

28 Tao Lei, Fan Long, Regina Barzilay, and Martin C. Rinard. From natural language specifications
to program input parsers. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1:
Long Papers, pages 1294–1303. The Association for Computer Linguistics, 2013. URL:
https://aclanthology.org/P13-1127/.

29 Xuan Li, Zerui Wang, Qianxiang Wang, Shoumeng Yan, Tao Xie, and Hong Mei. Relationship-
aware code search for javascript frameworks. In Thomas Zimmermann, Jane Cleland-Huang,
and Zhendong Su, editors, Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016,
pages 690–701. ACM, 2016. doi:10.1145/2950290.2950341.

30 Chao Liu, Xin Xia, David Lo, Cuiyun Gao, Xiaohu Yang, and John C. Grundy. Opportunities
and challenges in code search tools. ACM Comput. Surv., 54(9):196:1–196:40, 2022. doi:
10.1145/3480027.

31 Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Bethard,
and David McClosky. The stanford corenlp natural language processing toolkit. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014, June
22-27, 2014, Baltimore, MD, USA, System Demonstrations, pages 55–60. The Association for
Computer Linguistics, 2014. doi:10.3115/v1/p14-5010.

https://doi.org/10.1145/3519939.3523450
https://doi.org/10.1145/3371080
https://doi.org/10.1145/2491956.2462192
https://doi.org/10.1007/11785477_2
https://www.jetbrains.com/help/idea/structural-search-and-replace.html
https://www.jetbrains.com/help/idea/structural-search-and-replace.html
https://www.jetbrains.com/help/idea/structural-search-and-replace.html
https://www.jetbrains.com/help/idea/structural-search-and-replace.html
https://doi.org/10.1145/3428273
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/2993236.2993244
https://aclanthology.org/P13-1127/
https://doi.org/10.1145/2950290.2950341
https://doi.org/10.1145/3480027
https://doi.org/10.1145/3480027
https://doi.org/10.3115/v1/p14-5010

C. Wang, P. Yao, W. Tang, G. Fan, and C. Zhang 36:29

32 Jonathan Mendelson, Aaditya Naik, Mukund Raghothaman, and Mayur Naik. GENSYNTH:
synthesizing datalog programs without language bias. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in
Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 6444–6453. AAAI
Press, 2021. URL: https://ojs.aaai.org/index.php/AAAI/article/view/16799.

33 Mehryar Mohri, Pedro J. Moreno, and Eugene Weinstein. General suffix automaton con-
struction algorithm and space bounds. Theor. Comput. Sci., 410(37):3553–3562, 2009.
doi:10.1016/j.tcs.2009.03.034.

34 Aaditya Naik, Jonathan Mendelson, Nathaniel Sands, Yuepeng Wang, Mayur Naik, and
Mukund Raghothaman. Sporq: An interactive environment for exploring code using query-
by-example. In Jeffrey Nichols, Ranjitha Kumar, and Michael Nebeling, editors, UIST ’21:
The 34th Annual ACM Symposium on User Interface Software and Technology, Virtual Event,
USA, October 10-14, 2021, pages 84–99. ACM, 2021. doi:10.1145/3472749.3474737.

35 Mayur Naik. Chord: A versatile platform for program analysis. In Tutorial at ACM Conference
on Programming Language Design and Implementation, 2011.

36 Rong Pan, Qinheping Hu, Gaowei Xu, and Loris D’Antoni. Automatic repair of regular
expressions. Proc. ACM Program. Lang., 3(OOPSLA):139:1–139:29, 2019. doi:10.1145/
3360565.

37 Pardis Pashakhanloo, Aaditya Naik, Yuepeng Wang, Hanjun Dai, Petros Maniatis, and Mayur
Naik. Codetrek: Flexible modeling of code using an extensible relational representation. In The
Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. URL: https://openreview.net/forum?id=WQc075jmBmf.

38 Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. Type-directed completion
of partial expressions. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, pages 275–286. ACM, 2012.
doi:10.1145/2254064.2254098.

39 Mukund Raghothaman, Jonathan Mendelson, David Zhao, Mayur Naik, and Bernhard Scholz.
Provenance-guided synthesis of datalog programs. Proc. ACM Program. Lang., 4(POPL):62:1–
62:27, 2020. doi:10.1145/3371130.

40 Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. Compositional program synthesis
from natural language and examples. In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
pages 792–800. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/117.

41 Logging Services. Apache log4j security vulnerabilities , https://logging.apache.org/log4j/
2.x/security.html, 2021. [Online; accessed 10-Nov-2022]. URL: https://logging.apache.
org/log4j/2.x/security.html.

42 Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos Koutris, and Mayur
Naik. Syntax-guided synthesis of datalog programs. In Gary T. Leavens, Alessandro Garcia,
and Corina S. Pasareanu, editors, Proceedings of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, pages
515–527. ACM, 2018. doi:10.1145/3236024.3236034.

43 Xujie Si, Mukund Raghothaman, Kihong Heo, and Mayur Naik. Synthesizing datalog pro-
grams using numerical relaxation. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August
10-16, 2019, pages 6117–6124. ijcai.org, 2019. doi:10.24963/ijcai.2019/847.

44 Yannis Smaragdakis and Martin Bravenboer. Using datalog for fast and easy program analysis.
In Oege de Moor, Georg Gottlob, Tim Furche, and Andrew Jon Sellers, editors, Datalog
Reloaded - First International Workshop, Datalog 2010, Oxford, UK, March 16-19, 2010.
Revised Selected Papers, volume 6702 of Lecture Notes in Computer Science, pages 245–251.
Springer, 2010. doi:10.1007/978-3-642-24206-9_14.

ECOOP 2023

https://ojs.aaai.org/index.php/AAAI/article/view/16799
https://doi.org/10.1016/j.tcs.2009.03.034
https://doi.org/10.1145/3472749.3474737
https://doi.org/10.1145/3360565
https://doi.org/10.1145/3360565
https://openreview.net/forum?id=WQc075jmBmf
https://doi.org/10.1145/2254064.2254098
https://doi.org/10.1145/3371130
http://ijcai.org/Abstract/15/117
https://logging.apache.org/log4j/2.x/security.html
https://logging.apache.org/log4j/2.x/security.html
https://logging.apache.org/log4j/2.x/security.html
https://logging.apache.org/log4j/2.x/security.html
https://doi.org/10.1145/3236024.3236034
https://doi.org/10.24963/ijcai.2019/847
https://doi.org/10.1007/978-3-642-24206-9_14

36:30 Synthesizing Conjunctive Queries for Code Search

45 CodeQL. CodeQL for Java. https://codeql.github.com/docs/codeql-language-guides/
codeql-for-java/, 2022. [Online; accessed 10-Nov-2022].

46 Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and Mukund
Raghothaman. Example-guided synthesis of relational queries. In Stephen N. Freund and Eran
Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021, pages
1110–1125. ACM, 2021. doi:10.1145/3453483.3454098.

47 Yuchi Tian and Baishakhi Ray. Automatically diagnosing and repairing error handling bugs in C.
In Eric Bodden, Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman, editors, Proceedings
of the 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, pages 752–762. ACM, 2017. doi:10.1145/3106237.3106300.

48 Squid. SquidData. https://github.com/SquidData/SquidData, 2022. [Online; accessed
10-Nov-2022].

49 Chengpeng Wang, Peisen Yao, Wensheng Tang, Gang Fan, and Charles Zhang. Synthesizing
conjunctive queries for code search. CoRR, abs/2305.04316, 2023. doi:arXiv.2305.04316.

50 Jianfeng Wang, Tamás Lévai, Zhuojin Li, Marcos A. M. Vieira, Ramesh Govindan, and Barath
Raghavan. Quadrant: A cloud-deployable nf virtualization platform. In Proceedings of the
13th Symposium on Cloud Computing, SoCC ’22, pages 493–509, New York, NY, USA, 2022.
Association for Computing Machinery. doi:10.1145/3542929.3563471.

51 Brendon J Wilson. Java coding convention, 2000.
52 Xiuheng Wu, Chenguang Zhu, and Yi Li. DIFFBASE: a differential factbase for effective

software evolution management. In Diomidis Spinellis, Georgios Gousios, Marsha Chechik,
and Massimiliano Di Penta, editors, ESEC/FSE ’21: 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, Athens,
Greece, August 23-28, 2021, pages 503–515. ACM, 2021. doi:10.1145/3468264.3468605.

53 Yingfei Xiong and Bo Wang. L2S: A framework for synthesizing the most probable program
under a specification. ACM Trans. Softw. Eng. Methodol., 31(3):34:1–34:45, 2022. doi:
10.1145/3487570.

54 Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. Sqlizer: query synthesis
from natural language. Proc. ACM Program. Lang., 1(OOPSLA):63:1–63:26, 2017. doi:
10.1145/3133887.

55 Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and discovering
vulnerabilities with code property graphs. In 2014 IEEE Symposium on Security and Privacy,
SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 590–604. IEEE Computer Society, 2014.
doi:10.1109/SP.2014.44.

56 Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin Cheung. How not to
structure your database-backed web applications: a study of performance bugs in the wild. In
Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman, editors, Proceedings of
the 40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, pages 800–810. ACM, 2018. doi:10.1145/3180155.3180194.

57 Jane Yen, Jianfeng Wang, Sucha Supittayapornpong, Marcos A. M. Vieira, Ramesh Govindan,
and Barath Raghavan. Meeting slos in cross-platform nfv. In Proceedings of the 16th
International Conference on Emerging Networking EXperiments and Technologies, CoNEXT
’20, pages 509–523, New York, NY, USA, 2020. Association for Computing Machinery. doi:
10.1145/3386367.3431292.

58 Xiangyu Zhou, Rastislav Bodík, Alvin Cheung, and Chenglong Wang. Synthesizing analytical
SQL queries from computation demonstration. In PLDI ’22: 43rd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation, San Diego, CA,
USA, June 13 - 17, 2022, pages 168–182. ACM, 2022. doi:10.1145/3519939.3523712.

https://codeql.github.com/docs/codeql-language-guides/codeql-for-java/
https://codeql.github.com/docs/codeql-language-guides/codeql-for-java/
https://doi.org/10.1145/3453483.3454098
https://doi.org/10.1145/3106237.3106300
https://github.com/SquidData/SquidData
https://doi.org/arXiv.2305.04316
https://doi.org/10.1145/3542929.3563471
https://doi.org/10.1145/3468264.3468605
https://doi.org/10.1145/3487570
https://doi.org/10.1145/3487570
https://doi.org/10.1145/3133887
https://doi.org/10.1145/3133887
https://doi.org/10.1109/SP.2014.44
https://doi.org/10.1145/3180155.3180194
https://doi.org/10.1145/3386367.3431292
https://doi.org/10.1145/3386367.3431292
https://doi.org/10.1145/3519939.3523712

Do Machine Learning Models Produce TypeScript
Types That Type Check?
Ming-Ho Yee #

Northeastern University, Boston, MA, USA

Arjun Guha #

Northeastern University, Boston, MA, USA
Roblox Research, San Mateo, CA, USA

Abstract

Type migration is the process of adding types to untyped code to gain assurance at compile time.
TypeScript and other gradual type systems facilitate type migration by allowing programmers to
start with imprecise types and gradually strengthen them. However, adding types is a manual effort
and several migrations on large, industry codebases have been reported to have taken several years.
In the research community, there has been significant interest in using machine learning to automate
TypeScript type migration. Existing machine learning models report a high degree of accuracy in
predicting individual TypeScript type annotations. However, in this paper we argue that accuracy
can be misleading, and we should address a different question: can an automatic type migration
tool produce code that passes the TypeScript type checker?

We present TypeWeaver, a TypeScript type migration tool that can be used with an arbitrary
type prediction model. We evaluate TypeWeaver with three models from the literature: DeepTyper,
a recurrent neural network; LambdaNet, a graph neural network; and InCoder, a general-purpose,
multi-language transformer that supports fill-in-the-middle tasks. Our tool automates several steps
that are necessary for using a type prediction model, including (1) importing types for a project’s
dependencies; (2) migrating JavaScript modules to TypeScript notation; (3) inserting predicted
type annotations into the program to produce TypeScript when needed; and (4) rejecting non-type
predictions when needed.

We evaluate TypeWeaver on a dataset of 513 JavaScript packages, including packages that
have never been typed before. With the best type prediction model, we find that only 21% of
packages type check, but more encouragingly, 69% of files type check successfully.

2012 ACM Subject Classification Software and its engineering → Source code generation; General
and reference → Evaluation; Theory of computation → Type structures

Keywords and phrases Type migration, deep learning

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.37

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.5
Software (Artifact Evaluation approved artifact): https://doi.org/10.5281/zenodo.7662708
Software (code repository): https://github.com/nuprl/TypeWeaver

archived at swh:1:dir:34399ede560aa59cfe736bf9994185d54b8c2e7e

Funding This work is partially supported by the National Science Foundation grant CCF-2102291.

Acknowledgements We thank Northeastern Research Computing and the New England Research
Cloud for providing computing resources; and Leif Andersen, Luna Phipps-Costin, Donald Pinckney,
and the anonymous reviewers for their feedback.

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Ming-Ho Yee and Arjun Guha;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 37; pp. 37:1–37:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mh@mhyee.com
https://orcid.org/0000-0002-8008-8481
mailto:a.guha@northeastern.edu
https://orcid.org/0000-0002-7493-3271
https://doi.org/10.4230/LIPIcs.ECOOP.2023.37
https://doi.org/10.4230/DARTS.9.2.5
https://doi.org/10.4230/DARTS.9.2.5
https://doi.org/10.5281/zenodo.7662708
https://github.com/nuprl/TypeWeaver
https://archive.softwareheritage.org/swh:1:dir:34399ede560aa59cfe736bf9994185d54b8c2e7e;origin=https://github.com/nuprl/TypeWeaver;visit=swh:1:snp:4a7a6a8efedaefb20b8678af76feceed8a25eb25;anchor=swh:1:rev:a0edcd84e044f3f5d4ee76e648c0f09b3dc2b71e
https://doi.org/10.4230/DARTS.9.2.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Do Machine Learning Models Produce TypeScript Types That Type Check?

1 Introduction

Gradual typing allows programmers to freely mix statically and dynamically typed code.
This makes it possible to add static types to a large program incrementally, and slowly reap
the benefits of static typing without requiring a complete rewrite of an existing codebase at
once [22, 46, 48]. Over the past decade, gradual typing has proliferated, and there are now
gradually typed versions of several mainstream languages [6, 7, 11, 14, 31, 33, 37, 48, 52].

TypeScript is a widely used gradually typed language, and a syntactic superset of
JavaScript. Programmers can write their code in TypeScript, benefit from static typing, and
then compile to JavaScript. However, the process of migrating an untyped JavaScript program
to TypeScript has remained a labor-intensive manual effort in practice. For example, Airbnb
engineers took more than two years to add TypeScript type annotations to 6 million lines
of JavaScript [44], and there are several other accounts of multi-year TypeScript migration
efforts [3, 8, 36, 39, 43].

To address this problem, there has been significant research interest in using machine
learning to predict TypeScript types. Machine learning seems attractive because TypeScript
has language features (e.g., eval) that are very difficult to accommodate with traditional,
constraint-based approaches. Moreover, there is a significant quantity of open-source Type-
Script that is available to serve as training data for a machine learning model. Over the last
few years, advances in model architectures and high-quality training data have led to type
annotation prediction with high accuracy on individual type annotations [23, 24, 25, 38, 50].

However, in this paper we argue that accuracy can be misleading, and that predicting
individual type annotations is just the first step of migrating a codebase from JavaScript to
TypeScript. We should address a different question: can an automatic type migration tool
produce code that type checks? If so, we prefer type annotations that are non-trivial and
useful (i.e., annotations that are not just any). On the other hand, if the code does not type
check, it may have too many errors, which can overwhelm a user who may just turn off the
tool. Moreover, it may not be feasible to fix the type errors automatically, since type errors
refer to code locations whose typed terms are used, and not necessarily to faulty annotations.

To answer the type checking question, we present TypeWeaver, a TypeScript type
migration tool that can be used with an arbitrary type prediction model. Our evaluation
employs three models from the literature: DeepTyper [23], a recurrent neural network;
LambdaNet [50], a graph neural network; and InCoder [18], a general-purpose, multi-language
transformer that supports fill-in-the-middle tasks. Our tool automates several steps that are
necessary for using a type prediction model, including:
Importing type dependencies Before migrating a JavaScript project, we must ensure that

its dependencies are typed. This means transitively migrating dependencies, or ensuring
that the dependencies have TypeScript interface declaration (.d.ts) files available.

Module conversion JavaScript code written for Node.js may use either the CommonJS or
ECMAScript module system. However, when migrated to TypeScript, only ECMAScript
modules preserve type information. Thus, to fully benefit from static type checking, code
written with CommonJS modules should be refactored to use ECMAScript modules.

Type weaving Models that assign type labels to variables do not update the JavaScript
source to include type annotations. Therefore, to ask if a program type checks, we must
“weave” the predicted type annotations with the original JavaScript source to produce
TypeScript.

Rejecting non-type predictions Models that predict type annotations as in-filled sequences
of tokens can easily produce token sequences that are not syntactic types. These predic-
tions need to be rejected or cleaned for type prediction to work.

M.-H. Yee and A. Guha 37:3

1 function f(x) { return x+x; }
2 f(1) // returns 2
3 f("a") // returns "aa"

(a) JavaScript function that adds or concate-
nates its argument to itself.

4 var point = {};
5 point.x = 42;
6 point.y = 54;

(b) JavaScript that creates a “point” object.

Figure 1 JavaScript code that cannot be easily typed in TypeScript.

After completing these tasks, it is then possible to type check the resulting TypeScript
program and evaluate the effectiveness of TypeWeaver.

Our contributions are the following:
We describe TypeWeaver, a TypeScript type migration tool for evaluating type predic-
tion models, which automates several prerequisite steps (Section 3).
We provide a dataset of 513 JavaScript packages, which are a subset of the top 1,000 most
downloaded packages from the npm Registry. Our dataset includes packages without
known type annotations, i.e., code that has never been used before to evaluate type
prediction models (Section 4.1).
We report the success rate of type checking. We answer the questions of how many
packages type check, how many files type check, how many type annotations are trivial,
and whether the predicted types match human-written types (Section 4.2).
We discuss the common kinds of errors that result from a type migration (Section 4.3).
We compare the results of a type migration before and after converting to the ECMAScript
module system (Section 4.4).
Finally, we examine four packages as case studies, to showcase other difficulties that arise
during type migration (Section 4.5).

2 Background

In this section, we first provide background on the type migration problem and contrast it to
type inference. We then discuss deep-learning-based type annotation prediction, focusing on
the tools that we have used with TypeWeaver.

2.1 Type Migration vs. Type Inference
Type inference is related to, but distinct from, type migration. The goal of type inference

is to reconstruct the types of variables, expressions, and functions, where some or all the
type annotations are missing. In other words, the language is statically typed and the types
exist implicitly within the program, so the type inference algorithm computes the missing
annotations. Furthermore, inference can frequently compute the principal type of a variable,
expression, or function, i.e., the most general type. As a result, there is a single answer for
the type of a variable, expression, or function. Additionally, in languages that support type
inference, the inferred type annotations are well defined and not added to the program text.

In this paper, we use type migration to describe the problem of migrating a program from
an untyped language to a typed language, e.g., from JavaScript to TypeScript, a process that
may require refactoring in addition to type inference. The type migration process starts from
an untyped program without type annotations: there is no type information available, beyond
the basic information available from literal values, operators, and control-flow statements,
so type definitions may need to be inserted into the program. Furthermore, multiple type

ECOOP 2023

37:4 Do Machine Learning Models Produce TypeScript Types That Type Check?

annotations may be valid, rather than having a single principal type. For example, Figure 1a
shows a JavaScript function where the parameter x on Line 1 could be annotated as number
or string; without additional context, both annotations are valid. The example illustrates
another challenge of type migration: f is called on Line 2 with a number and Line 3 with a
string, so the only valid type annotation for x is any.1 This satisfies the TypeScript compiler’s
type checker, but may not be a helpful annotation in terms of documentation.

The type migration problem for TypeScript has several additional challenges and we
highlight some of them here. TypeScript has a structural type system, which makes it even
harder to determine the right annotation. Furthermore, structural types are often verbose,
making it difficult for a programmer to understand the code, which defeats one of the benefits
of a static type system. Another difficulty is that JavaScript code can be too dynamic to fit
within TypeScript’s type system, e.g., there is no good way to handle eval, other than using
the any annotation as an escape hatch. Finally, certain idioms and patterns in JavaScript
code do not fit TypeScript and need to be refactored. For instance, consider Figure 1b, which
initializes a “point” object in JavaScript. Line 4 initializes point to an empty object, and
Lines 5 and 6 set the x and y properties. However, this cannot be easily typed in TypeScript,2
and it is more appropriate to rewrite the code to use TypeScript classes.

In this landscape of challenges, recent work has focused on the narrower problem of
assigning type annotations to TypeScript code, in particular, using deep learning approaches.
We examine some of these approaches in the next subsection.

2.2 Deep-Learning-Based Type Annotation Prediction

We focus on JavaScript and TypeScript, since there have been a variety of proposed type
prediction models for those languages. We evaluate three of them here: DeepTyper [23],
LambdaNet [50], and InCoder [18].

DeepTyper was the first deep neural network for TypeScript type prediction, and uses a
bidirectional recurrent neural network architecture. LambdaNet was another early approach,
and it uses a graph neural network architecture. InCoder is a recent large language model
that predicts arbitrary code completions, and while not trained specifically to predict type
annotations, its “fill in the middle” capability makes it ideal for that task. All three models
use training data from public code repositories.

We require a system that takes a JavaScript project as input and outputs a type-annotated
TypeScript project. DeepTyper and LambdaNet output a probability distribution of types
for each identifier, which we must then “weave” into the original JavaScript source to
produce TypeScript; we describe this technique in Section 3.3. InCoder is a general-purpose,
multi-language transformer, so we implemented a front end to use InCoder to predict type
annotations and output TypeScript. Currently, our front end only supports type predictions
for function parameters; we describe our implementation in Section 3.2.1.

Our approach can be adapted to work with any type prediction model. Older models may
require some work to adapt their outputs, but our InCoder front end can easily be extended
to support other fill-in-the-middle models, such as OpenAI’s model [4] and SantaCoder [5].

1 The union type number | string produces a type error in the function.
2 The correct, but awkward, type annotation is {x?: number, y?: number}, which declares x and

y as optional properties. If x or y were required, the assignment on Line 4 would be a type error.
Alternatively, any is valid, but unhelpful.

M.-H. Yee and A. Guha 37:5

2.2.1 DeepTyper
DeepTyper [23] predicts types for variables, function parameters, and function results using
a fixed vocabulary of types, i.e., it cannot predict types declared by the program under
analysis unless those types were observed during training. DeepTyper treats type inference
as a machine translation problem from one language (unannotated TypeScript) to another
(annotated TypeScript). Specifically, it uses a model based on a bidirectional recurrent neural
network architecture to translate a sequence of tokens into a sequence of types: for each
identifier in the source program, DeepTyper returns a probability distribution of predicted
types. Because the input token sequence is perfectly aligned with the output type sequence,
this task can also be considered a sequence annotation task, where an output type is expected
for every input token.3 However, this approach treats each input token as independent from
the others, i.e., a source variable may be referenced multiple times and each occurrence may
have a different type. To mitigate this, DeepTyper adds a consistency layer to the neural
network, which encourages – but cannot enforce – the model to treat multiple occurrences of
the same identifier as related.

DeepTyper’s dataset is based on the top 1,000 most starred TypeScript projects on
GitHub, as of February 2018. After cleaning to remove large files (those with more than
5,000 tokens) and projects that contained only TypeScript declaration files, the dataset
was left with 776 TypeScript projects (containing about 62,000 files and about 24 million
tokens), which were randomly split into 80% (620 projects) training data, 10% (78 projects)
validation data, and 10% (78 projects) test data. Further processing and cleaning of rare
tokens resulted in a final vocabulary of 40,195 source tokens and 11,830 types.

The final training dataset contains both identifiers and types, where each identifier has
an associated type annotation; this includes annotations inferred by the TypeScript compiler
that were not manually annotated by a programmer. The testing dataset contains type
annotations and no identifiers; specifically, the type annotations added by programmers are
associated with their declaration sites, and all other sites are associated with “no-type.” As
a result, DeepTyper’s predictions are evaluated against the handwritten type annotations,
rather than all types in a project.

2.2.2 LambdaNet
Like DeepTyper, LambdaNet [50] predicts type annotations for variables, function parameters,
and function returns: it takes an unannotated TypeScript program and outputs a probability
distribution of predicted types for each declaration site. LambdaNet improves upon two
limitations of DeepTyper. First, it predicts from an open vocabulary, beyond the types that
were observed during training; i.e., it can predict user-defined types from within a project.
Second, it only produces type predictions at declaration sites, rather than at every variable
occurrence; in other words, multiple uses of the same variable will have a consistent type.

LambdaNet uses a graph neural network architecture and represents a source program as
a so-called type dependency graph, which is computed from an intermediate representation of
TypeScript that names each subexpression. The type dependency graph is a hypergraph that
encodes program type variables as nodes, and relationships between those variables as labeled
edges. By encoding type variables, LambdaNet makes a single prediction over all occurrences

3 The DeepTyper architecture must classify every input token, including ones where an output type does
not make sense, such as if, (,), and even whitespace. DeepTyper filters out these predictions, so a
user will never observe these meaningless types.

ECOOP 2023

37:6 Do Machine Learning Models Produce TypeScript Types That Type Check?

of a variable, rather than a prediction for each instance of a variable. Furthermore, the edges
encode logical constraints and contextual hints. Logical constraints include subtyping and
assignment relations, functions and calls, objects, and field accesses, while contextual hints
include variable names and usages. Finally, LambdaNet uses a pointer network to predict
type annotations.

LambdaNet’s dataset takes a similar approach to DeepTyper: they selected the 300 most
popular TypeScript projects from GitHub that contained 500–10,000 lines of code, and had
at least 10% of type annotations that referred to user-defined types. The dataset has about
1.2 million lines of code, and only 2.7% of the code is duplicated. The 300 projects were
split into three sets: 200 (67%) for training data, 40 (13%) for validation data, and 60 (20%)
for test data. The vocabulary was split into library types, which consist of the top 100
most common types in the training set, and user-defined types, which are all the classes and
interfaces defined in source projects. Similar to DeepTyper, LambdaNet’s predictions are
evaluated against the handwritten annotations that were added by programmers.

2.2.3 InCoder
InCoder [18] is a large language model (LLM) for generating arbitrary code that is trained
with a fill-in-the-middle (FIM) objective on a corpus of several programming languages,
including TypeScript.

InCoder’s corpus consists of permissively licensed, open-source code from GitHub and
GitLab, as well as Q&A and comments from Stack Overflow. This raw data is filtered to
exclude: (1) code that is duplicated; (2) code that is not written in one of 28 languages;
(3) files that that are extremely large or contain very few alphanumeric characters; (4) code
that is likely to be compiler generated; and (5) certain code generation benchmarks. The
result is about 159 GB of code, which is dominated by Python and JavaScript. TypeScript
is approximately 4.5 GB of the training data.

We describe InCoder in more depth in Section 3.2.1, where we present what is necessary
to use it as a type annotation prediction tool for TypeScript.

2.2.4 Evaluating on Accuracy
The main evaluation criteria for the type annotation prediction task is accuracy: what is
the likelihood that a predicted type annotation is correct? Correct means the prediction
exactly matches the ground truth, which is the handwritten type annotation at that location.
Accuracy is typically measured as top-k accuracy, where a prediction is deemed correct if
any of the top k most probable predictions is correct. For our evaluation, we would like a
result that “just works,” i.e., a program that type checks. Therefore, we are only interested
in top-1 accuracy, since we take the top guess as the only prediction.

DeepTyper’s test dataset makes up 10% (78 projects) of its original corpus and contains
only the annotations that were manually added by programmers. Predictions are compared
against this ground truth dataset, and DeepTyper reports a top-1 accuracy of 56.9%. Because
DeepTyper may predict different types for multiple occurrences of the same variable, the
authors also report an inconsistency metric: 15.4% of variables had multiple type predictions.

LambdaNet also compares its predictions against a ground truth of handwritten type
annotations, but they use a different corpus and split 20% (60 projects) for the test dataset.
LambdaNet can predict user-defined types, so the evaluation reports two sets of results: a
top-1 accuracy of 75.6% when predicting only common library types, and a top-1 accuracy
of 64.2% when predicting both library and user-defined types.

M.-H. Yee and A. Guha 37:7

InCoder was not designed specifically to predict TypeScript type annotations, but the
authors report an experiment to predict only the result types for Python functions. For this
task, InCoder was evaluated on a test dataset of 469 functions, which was constructed from
the CodeXGLUE dataset; InCoder achieved an accuracy of 58.1%.

However, we argue that accuracy is not the right metric for evaluating a type prediction
model. As a first step, we would like to type check the TypeScript project. Additionally,
when migrating a JavaScript project to TypeScript, there is frequently no ground truth of
handwritten type annotations; instead, the ground truth is what the compiler accepts. This
condition is much stronger than accuracy, as even a single, incorrect type annotation causes
a package to fail to type check. On the other hand, less precise type annotations (e.g., any)
and equivalent annotations (e.g., number | string vs. string | number) may be accepted,
despite not matching the ground truth exactly.

In the next section, we describe our approach for type migration and evaluating type
prediction models.

3 Approach

We take an end-to-end approach to type migration, starting from an untyped JavaScript
project and finishing with a type-annotated TypeScript project that we try to type check. The
first step, which is optional, is to convert from CommonJS modules to ECMAScript modules.
Next, we invoke one of the type prediction models: DeepTyper and LambdaNet produce
type predictions, while InCoder, with a front end we implemented, produces TypeScript.
Because DeepTyper and LambdaNet do not produce TypeScript, we perform a step that
we call type weaving, which combines type predictions with the original JavaScript source
and outputs TypeScript. Finally, we run the TypeScript compiler to type check the now
migrated TypeScript project.

3.1 CommonJS to ECMAScript Module Conversion
The first step is to convert projects from CommonJS module notation to ECMAScript
module notation. This step is not necessary for type prediction, but is important for the
type checking evaluation, as only ECMAScript modules preserve type information across
module boundaries. Because we treat this step as optional, our dataset has two versions: the
original projects, which may use CommonJS or ECMAScript modules, and a final version
that only uses ECMAScript modules.

Most Node.js packages use the CommonJS module system, which was the original module
system for Node.js and remains the default. Figures 2a and 2b show an example of the
CommonJS module system, where files a.js and b.js implement separate modules. In this
example, a.js sets the foo and f properties of the special module.exports object. Local
variables like x are private and not exported. On Line 13, b.js uses the Node.js function
require to load module a.js into the local variable a. As a result, a takes on the value of
the module.exports object set by a.js, and both foo and f are available as properties of a.

ECMAScript 6 introduced a new module system, referred to as ECMAScript modules.
Node.js supports ECMAScript modules when using the .mjs extension or setting a project-
wide configuration in the package.json file. Figures 2c and 2d show the same program as
before, but rewritten to use ECMAScript modules. In this example, a.mjs directly exports
foo and f, rather than writing to a special module.exports object. Then, b.mjs directly
imports the names with the import statement instead of loading an object.

ECOOP 2023

37:8 Do Machine Learning Models Produce TypeScript Types That Type Check?

7 // a.js
8 var x = 2; // private
9

10 module . exports .foo = 42;
11 module . exports .f = (i) => i+x;

(a) CommonJS: a.js exports foo and f.

12 // b.js
13 var a = require (’./a.js’);
14
15 console .log(a.foo); // 42
16 console .log(a.f(1)); // 3

(b) CommonJS: b.js imports the module a.js.

17 // a.mjs
18 var x = 2; // private
19
20 export var foo = 42;
21 export var f = (i) => i+x;

(c) ECMAScript: a.mjs exports foo and f.

22 // b.mjs
23 import {foo ,f} from ’./a.mjs ’;
24
25 console .log(foo); // 42
26 console .log(f(1)); // 3

(d) ECMAScript: b.mjs imports foo and f.

Figure 2 An example comparing the CommonJS and ECMAScript module systems.

TypeScript supports both CommonJS and ECMAScript modules, depending on the
project configuration. However, CommonJS modules in TypeScript are untyped; specifically,
require is typed as a function that returns any. Therefore, even if a module has type
annotations for the variables and functions it exports, those annotations are lost when the
module is imported. On the other hand, with ECMAScript modules, the import statement
preserves the type annotations of names it imports.

In order to make use of the most type information available, we would like to use ECMA-
Script modules in our evaluation. Therefore, we use the cjs-to-es6 tool4 to transform our
dataset to use ECMAScript modules. The conversion tool is not perfect, and in particular
has difficulty when require is used to dynamically load a module. Some of these cases could
be fixed manually, but many are genuine uses of dynamic loading in JavaScript.

3.2 Type Annotation Prediction
The next step is to invoke a deep learning model to predict type annotations for a JavaScript
project. DeepTyper and LambdaNet require an additional step, which we call type weaving,
to produce TypeScript, while InCoder, with our front end, outputs TypeScript directly.

We use the pretrained DeepTyper model available from its GitHub repository,5 which is
not identical to the model used in the DeepTyper paper. DeepTyper reads in a JavaScript
file, and for each identifier, predicts the top five most likely types, outputting the result in
comma-separated values (CSV) format.

We use the pretrained LambdaNet model available from its GitHub repository,6 specifically
the model that supports user-defined types. LambdaNet reads in a directory containing a
JavaScript project, and predicts the top five most likely types for each variable and function
declaration. We modify LambdaNet to output in CSV format.

DeepTyper predicts types for all identifiers in the program, including program locations
that do not allow type annotations. Therefore, type weaving must also ensure that type
annotations are applied correctly, i.e., only to variable declarations, function parameters, and
function results. LambdaNet predicts types for variable and function declarations, and in

4 https://github.com/nolanlawson/cjs-to-es6
5 https://github.com/DeepTyper/DeepTyper/tree/master/pretrained
6 https://github.com/MrVPlusOne/LambdaNet/tree/ICLR20

https://github.com/nolanlawson/cjs-to-es6
https://github.com/DeepTyper/DeepTyper/tree/master/pretrained
https://github.com/MrVPlusOne/LambdaNet/tree/ICLR20

M.-H. Yee and A. Guha 37:9

27 function f(x) {
28 return x + 1;
29 }

(a) An example program.

30 function f(x: <|mask:0|>) {
31 return x + 1;
32 }<|mask:1|><|mask:0|>

(b) Preparing code for generation.

33 function f(x: <|mask :0| >) {
34 return x + 1;
35 }<| mask :1|> <| mask :0|>
36 number, y: number<|endofmask|>

(c) InCoder often produces extra tokens after
the type. Here it produces a new parameter
that is not in the original program.

37 function f(x: number) {
38 return x + 1;
39 }

(d) We select a prefix of the generated program
that is a syntactically valid TypeScript type.

Figure 3 Generating types with InCoder.

the correct locations; however, type weaving is still required to produce TypeScript code.
Our InCoder front end does not require type weaving, but only supports type predictions for
function parameters. We use the pretrained InCoder model available from Hugging Face.7

3.2.1 InCoder

InCoder is trained to generate code in the middle of a program, conditioned on the
surrounding code. To train on a single example (a file of code), the training procedure
replaces a randomly selected contiguous span of tokens with a mask sentinel token. It appends
the mask sentinel to the end of the example, followed by the tokens that were replaced and
a special end-of-mask token. The model is then trained as a left-to-right language model.
This approach generalizes to support several, non-overlapping masked spans, and its training
examples have up to 256 randomly selected masked spans, though the majority have just a
single masked span.

In principle one could give InCoder a program with up to 256 types to generate at once.
However, we found that InCoder is more successful generating a single type at a time, and
with a limited amount of context. To generate a type annotation with InCoder we (1) insert
the mask sentinel token at the insertion point; (2) add the mask sentinel to the end of the file;
(3) generate at the end of the file until the model produces the end-of-mask token; (4) move
the generated text to the insertion point; and (5) remove all sentinels.

Figure 3 shows an example of generating a type annotation. However, a problem that we
frequently encountered is that InCoder sometimes generates more than just a single type.
For instance, Figure 3c shows an example where InCoder generates a new parameter that is
not in the original program. The simplest approach is to reject this result and get InCoder
to re-generate completions until it produces a type. However, we found that it is far more
efficient to accept a prefix of the generated code if it is a syntactically valid type, which we
check with a TypeScript parser in the generation loop.

7 https://huggingface.co/facebook/incoder-6B

ECOOP 2023

https://huggingface.co/facebook/incoder-6B

37:10 Do Machine Learning Models Produce TypeScript Types That Type Check?

3.3 Type Weaving
To produce type-annotated TypeScript code, we use a process we call type weaving to
combine type predictions with the original JavaScript code. Type weaving takes two files as
input: a JavaScript source file and an associated CSV file with type predictions. The type
weaving program parses the JavaScript source into an abstract syntax tree (AST), and then
traverses the AST and CSV files simultaneously, using the TypeScript compiler to insert type
annotations into the program AST. Both DeepTyper and LambdaNet require type weaving,
but their CSV files are in different formats. Our type weaving program can be extended to
support custom CSV formats.

3.3.1 DeepTyper
Each row of a DeepTyper CSV file represents a lexical token from the source program. Rows
with non-identifier tokens, such as keywords and symbols, contain two columns: the token
text and the token type. Rows with identifiers contain columns for the token text, token
type, as well as the top five most likely types and their probabilities.

The DeepTyper implementation has a few limitations that we handle during type weaving.
First, the implementation uses regular expressions instead of a parser to tokenize JavaScript
code. This results in some tokens that are missing or incorrectly classified as identifiers.
Second, DeepTyper provides type predictions for every occurrence of an identifier, so we
must use only the predictions for declarations. Finally, DeepTyper often predicts complex
as a type; we do not believe it refers to a complex number type, so we replace it with any.

Our type weaving algorithm works as follows: as it traverses the program AST, if it
encounters a declaration node, it queries the CSV file for a type prediction. However, the
DeepTyper format does not record source location information, and the token classification is
brittle, so it is not straightforward to identify which rows are actually declarations and which
rows should be skipped. Our algorithm searches the CSV file for a short sequence of rows
that corresponds to the declaration node in the AST. This algorithm works well in practice,
but does not handle optional parameters or statements that declare multiple variables.

3.3.2 LambdaNet
For each declaration, LambdaNet prints the source location of the identifier (start line, start
column, end line, and end column), followed by the top five most likely types and their
probabilities. We modified LambdaNet to output in CSV format.

We observed that LambdaNet frequently predicts the following types: Number, Boolean,
String, Object, and Void. The first four are valid TypeScript types, but are non-primitive
boxed types distinct from number, boolean, string, and object. The TypeScript documen-
tation strongly recommends using the lowercase type names,8 so we normalize those types
during type weaving. Furthermore, Void is not a valid type, so we instead use void. Finally,
LambdaNet does not support generic types, but will predict them without type arguments,
which is not valid in TypeScript. While we cannot fix every generic type, we normalize Array
to any[], which is shorthand for Array<any>.

As our type weaving program traverses the program AST, if it encounters a declaration
node, it computes the node’s source location information, and uses that to query the CSV
file for a type prediction. However, the type annotation cannot be applied directly to the

8 https://www.typescriptlang.org/docs/handbook/declaration-files/do-s-and-don-ts.html#
number-string-boolean-symbol-and-object

https://www.typescriptlang.org/docs/handbook/declaration-files/do-s-and-don-ts.html#number-string-boolean-symbol-and-object
https://www.typescriptlang.org/docs/handbook/declaration-files/do-s-and-don-ts.html#number-string-boolean-symbol-and-object

M.-H. Yee and A. Guha 37:11

Table 1 Summary of dataset categories: number of packages, files, and lines of code.

Dataset category Packages Files Lines of code
DefinitelyTyped, no deps 286 2,692 123,157
DefinitelyTyped, with deps 85 671 63,057
Never typed, no deps 102 255 20,729
Never typed, with deps 40 544 19,189
Overall 513 4,162 226,132

declaration node, as this modifies the AST and invalidates source location information.
Therefore, type weaving for LambdaNet occurs in two phases. In the first phase, the traversal
does not modify the AST, but saves the declaration node and type prediction in a map.
Then, in the second phase, type weaving iterates over the map and updates the AST.

3.4 Type Checking
In the final step, we run the TypeScript compiler to type check the migrated projects. We
run the compiler on each project, providing all the TypeScript input files as arguments, and
setting the following compiler flags:
--noEmit Type check only, do not emit JavaScript
--esModuleInterop Improve handling of CommonJS and ECMAScript modules
--moduleResolution node Explicitly set the module resolution strategy to Node.js
--target es6 Enable ECMAScript 6 features, which are used by some packages
--lib es2021,dom Include ECMAScript 2021 library definitions and browser DOM defini-

tions
We do not set the --strict flag, allowing the type checker to be more lenient in certain
situations, which we expect to already be a significant challenge for automated type migration.
Furthermore, we ensure that package dependencies are properly included in our dataset so
that the compiler can resolve them.

4 Evaluation

4.1 Dataset
Our dataset for evaluation consists of 513 JavaScript packages. To build this dataset, we
start from the top 1,000 most downloaded packages from the npm Registry (as of August
2021) and narrow and clean as follows:
1. We add any transitive dependencies that are not in the original set of packages, to ensure

that the dataset is closed.
2. We try to fetch the original source code of every package, and eliminate any package

where this is not possible (e.g., the package did not provide a repository URL or was
deleted from GitHub). Fetching the source helps ensure we are working with original
code, and not compiled or “minified” JavaScript.

3. We remove packages that were built from a “monorepo,” i.e., a single repository containing
multiple packages that are published separately. For example, the Babel JavaScript
compiler has over 100 separate packages, but all share the same monorepo; fetching each
source package meant downloading the entire monorepo multiple times and including
unnecessary packages.

ECOOP 2023

37:12 Do Machine Learning Models Produce TypeScript Types That Type Check?

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

Lines of code

P
a
ck

a
g
es

Figure 4 Empirical cumulative distribution function of lines of code per package, over all datasets.
The x-axis shows lines of code and the y-axis shows the proportion of packages with fewer than x

lines of code.

4. We remove packages that were not implemented in JavaScript, do not contain code, or
have more than 10,000 lines of code. The size limit helps us avoid timeouts, and mostly
excludes large toolchains and standard libraries, such as the TypeScript compiler and
core-js standard library.

5. We remove testing code from every package. Tests frequently require extra dependencies,
and different frameworks set up the test environment in different ways, which makes
large-scale evaluation harder. To remove testing code, we deleted directories named test,
tests, __tests__, or spec, and files named test.js, tests.js, test-*.js, *-test.js,
*.test.js, or *.spec.js.

6. Finally, we ensure that every package has no dependencies, or that all its dependencies are
typed, meaning the dependencies have TypeScript type declaration (.d.ts) files available.
(We do not require that packages are typed, but only that their dependencies are.) This
requirement is necessary because a JavaScript package can only be imported into a
TypeScript project if its interface has TypeScript type declarations. The DefinitelyTyped
repository9 contains interface type declarations for many popular JavaScript packages,
and a handful of packages include their own. We download type declarations of project
dependencies and include them in our dataset for evaluation purposes – they are not used
for type prediction.

After filtering and cleaning our dataset, we classify every package with two criteria:
(1) whether the package has type declarations available; and (2) whether the package has
dependencies.

If a package has type declarations available, we say it is “DefinitelyTyped” and we can
use its type annotations as ground truth in our evaluation. (However, there is evidence that
some of these type annotations are incorrect [16, 28, 29, 51].) Otherwise, we use the term
“never typed”: these packages have never been type annotated and thus no ground truth
exists, so machine learning models have never been evaluated on these packages before. If a
package has dependencies, we classify it as “with deps” (and from our filtering, we know that
every dependency is typed); otherwise, we classify the package as “no deps.” Thus, there are
four dataset categories; we list them in Table 1 along with the number of packages, files, and
lines of code for each category.

9 https://github.com/DefinitelyTyped/DefinitelyTyped/

https://github.com/DefinitelyTyped/DefinitelyTyped/

M.-H. Yee and A. Guha 37:13

Table 2 Number and percentage of packages that type check.

DeepTyper LambdaNet InCoder
Dataset category ✓ Total % ✓ Total % ✓ Total %
DefinitelyTyped, no deps 54 257 21.0 24 247 9.7 55 277 19.9
DefinitelyTyped, with deps 5 69 7.2 1 70 1.4 10 77 13.0
Never typed, no deps 31 95 32.6 11 87 12.6 25 100 25.0
Never typed, with deps 5 39 12.8 3 35 8.6 4 39 10.3
Overall 95 460 20.7 39 439 8.9 94 493 19.1

0%

20%

40%

60%

80%

100%

DeepTyper LambdaNet InCoder

P
a
ck

a
g
es

DefinitelyTyped, no deps

DefinitelyTyped, with deps

Never typed, no deps

Never typed, with deps

Overall

Figure 5 Percentage of packages that type check.

Figure 4 is an empirical cumulative distribution function of the lines of code per package:
the x-axis shows lines of code in a package and the y-axis shows the proportion of packages
with fewer than x lines of codes. From the graph, we observe that approximately 90% of
packages have fewer than 1,000 lines of code, and approximately 95% of packages have fewer
than 2,000 lines of code.

4.2 Success Rate of Type Checking
Do Migrated Packages Type Check?

We first ask if entire packages type check after automated migration from JavaScript to
TypeScript. However, not all packages successfully translate to TypeScript with every type
migration tool; some packages cause the type migration tool to time out or error. Thus,
we report the success rate of type checking as a fraction of the packages that successfully
translate to TypeScript.

Table 2 and Figure 5 show the fraction of packages that type check with each tool. We
observe that DeepTyper and InCoder perform similarly (20% success rate), and LambdaNet
performs worse (9% success rate). Across all tools, packages without dependencies type check
at a higher rate than packages with dependencies.

ECOOP 2023

37:14 Do Machine Learning Models Produce TypeScript Types That Type Check?

These package-level type checking results are disappointing – but this is a very high
standard to meet. Even a single incorrect type annotation causes the entire package to fail.
Therefore, we next consider a finer-grained metric that is still useful.

How Many Files are Error Free?

As an alternate measure, we look at the percentage of files with no compilation errors. Instead
of a binary pass/fail outcome, this gives us a more fine-grained result for a package. We
motivate this metric by observing that TypeScript files are modules with explicit imports and
exports. If a file type checks without errors, then it is using all of its internal and imported
types consistently. Thus, when triaging type errors, a programmer may (temporarily) set
these files aside and focus on the files with compilation errors. However, the programmer
may later need to return to a file with no type errors and adjust its type annotations, for
example, if a consumer of that file expects a different interface. We give examples of this in
our case studies, specifically Section 4.5.2 and Section 4.5.3.

Table 3 and Figure 6 present the fraction of files with no compilation errors. The results
are more encouraging: using InCoder, 69% of files are error free. With these results, it is not
clear that packages without dependencies outperform packages with dependencies. Finally, in
Figure 7 we calculate the percentage of error-free files for each package, and plot histograms
of the distribution. Across all tools, most packages have type errors in most or all files.

What Percentage of Type Annotations Are Trivial?

Next, we examine what percentage of type annotations, within the error-free files, are trivial,
i.e., what percentage are any, any[] (array of anys), or Function (function that accepts any
arguments and returns anything). These annotations can hide type errors and allow more
code to type check; however, they provide little value to the programmer.

Figure 8 shows the percentage of trivial type annotations within error-free files. Deep-
Typer produces the most (about 60%), LambdaNet produces the least (about 25%), while
InCoder is in between (about 40%).

Comparing to the percentage of files with no compilation errors (Figure 6), DeepTyper
produces more type-correct code than LambdaNet, but it also generates more trivial type
annotations. InCoder produces the most type-correct code, while generating a moderate
percentage of trivial type annotations.

Do Migrated Types Match Human-Written Types (When Available)?

Since our dataset is constructed from JavaScript packages instead of TypeScript packages, we
do not have fully type-annotated files as our ground truth; instead, we use declaration files
provided by the DefinitelyTyped repository or package author. We configure the TypeScript
compiler to emit declarations during type checking, which it can do even if the whole package
does not type check. Thus, we can compare handwritten, ground truth declarations against
declarations generated from migrated packages.

We extract function signatures from declaration files and only compare a signature if it is in
both the ground truth and generated declaration. We compare the function parameter types
and return types one-to-one, ignoring modifiers (e.g., readonly), and we require an exact
string match (i.e. string | number and number | string are considered different types).
Following the literature, we skip a comparison if the ground truth is the any annotation.

Our results are presented in Table 4 and Figure 9. We observe that accuracy is better for
packages without dependencies. Additionally, our results follow the same pattern in prior
work, where LambdaNet has better accuracy than DeepTyper, despite performing worse in
our other metrics.

M.-H. Yee and A. Guha 37:15

Table 3 Number and percentage of files with no compilation errors.

DeepTyper LambdaNet InCoder
Dataset category ✓ Total % ✓ Total % ✓ Total %
DefinitelyTyped, no deps 414 1,010 41.0 474 1,638 28.9 1,689 2,401 70.3
DefinitelyTyped, with deps 195 384 50.8 169 504 33.5 312 547 57.0
Never typed, no deps 95 205 46.3 63 229 27.5 101 235 43.0
Never typed, with deps 42 121 34.7 25 534 4.7 467 527 88.6
Overall 746 1,720 43.4 731 2,905 25.2 2,569 3,710 69.2

0%

20%

40%

60%

80%

100%

DeepTyper LambdaNet InCoder

F
il

es

DefinitelyTyped, no deps

DefinitelyTyped, with deps

Never typed, no deps

Never typed, with deps

Overall

Figure 6 Percentage of files with no compilation errors.

DeepTyper LambdaNet InCoder

0% 40% 80% 0% 40% 80% 0% 40% 80%

0

100

200

Error­free files per package

P
a
ck

a
g
es

Figure 7 Number of packages vs. percentage of error-free files per package.

ECOOP 2023

37:16 Do Machine Learning Models Produce TypeScript Types That Type Check?

0%

20%

40%

60%

80%

100%

DeepTyper LambdaNet InCoder

A
n

n
o
ta

ti
o
n

s

DefinitelyTyped, no deps

DefinitelyTyped, with deps

Never typed, no deps

Never typed, with deps

Overall

Figure 8 Percentage of annotations that are any, any[], or Function, in files with no errors.

Table 4 Accuracy of type annotations, compared to non-any ground truth.

DeepTyper LambdaNet InCoder
Dataset category ✓ Total % ✓ Total % ✓ Total %
DefinitelyTyped, no deps 90 241 37.3 116 259 44.8 40 123 32.5
DefinitelyTyped, with deps 27 123 22.0 41 119 34.5 11 64 17.2
Overall 117 364 32.1 157 378 41.5 51 187 27.3

How Many Errors Occur in Each Package?

Figure 10 shows an empirical cumulative distribution function of errors: the x-axis shows
the number of errors and the y-axis shows the proportion of packages with fewer than x

errors. For example, when migrating the “DefinitelyTyped, with deps” dataset with Lambda-
Net, approximately 80% of packages have fewer than 250 errors each. Additionally, all of
DeepTyper’s packages and almost all of InCoder’s packages have fewer than 500 errors each.

4.3 Error Analysis
We now consider the kinds of errors that arise during migration. Every TypeScript compiler
error has an associated code,10 making categorization straightforward. Figure 11 summarizes
the top 10 most common errors and Table 5 provides the corresponding messages.

Most of the errors relate to types. These errors are the following: a property not existing
on a type (TS2339 and TS2551); an assignment with mismatched types (TS2322); a function
call with mismatched parameter and argument types (TS2345); calling a function that was
assigned a non-function type annotation (TS2349); and a conditional that compares values
from different types (TS2367). TS2314 refers to a generic type that was not provided type
arguments; this is caused by DeepTyper and LambdaNet not fully supporting generic types.

10 https://github.com/Microsoft/TypeScript/blob/v4.9.3/src/compiler/diagnosticMessages.
json

https://github.com/Microsoft/TypeScript/blob/v4.9.3/src/compiler/diagnosticMessages.json
https://github.com/Microsoft/TypeScript/blob/v4.9.3/src/compiler/diagnosticMessages.json

M.-H. Yee and A. Guha 37:17

0%

20%

40%

60%

80%

100%

DeepTyper LambdaNet InCoder

A
cc

u
ra

cy

DefinitelyTyped, no deps DefinitelyTyped, with deps Overall

Figure 9 Accuracy of type annotations, compared to non-any ground truth.

The remaining errors are not directly related to types. TS2304 refers to an unknown
name, which may not necessarily be a type. TS2554 is emitted because TypeScript requires
the number of call arguments to match the number of function parameters, but JavaScript
does not. TS2339 includes cases where an empty object is initialized by setting its properties,
but TypeScript requires that the object’s properties are declared in its type. Finally, TS2307
indicates that the ECMAScript module conversion produced incorrect code.

4.4 ECMAScript Module Conversion

Recall that we described an optional step before running the evaluation: converting packages
to use ECMAScript modules. In this section, we re-run our evaluation – generating types,
weaving types, and type checking – to compare the results before and after the conversion
step. Specifically, we examine the percentage of packages that type check (Table 6), the
percentage of files with no errors (Table 7), and accuracy (Table 8). However, this is not a
direct comparison between CommonJS and ECMAScript modules, as some of the original
packages were already using ECMAScript modules. Furthermore, the conversion affected
a small handful of packages: some packages successfully migrated to TypeScript after the
conversion but failed before, and the inverse was true for other packages.

From Table 6, we observe that the ECMAScript module conversion makes fewer packages
type check for DeepTyper and InCoder, but slightly improves the results for LambdaNet. In
Figure 12, we examine packages that type checked before or after the ECMAScript module
conversion; packages that never type checked were excluded. In general, if a package type
checked before the conversion, it likely type checked after the conversion. However, if a
package failed to type check before the conversion, it was unlikely to type check afterwards;
in fact, this never happened for a package with dependencies.

Table 7 compares the percentage of files with no compilation errors. The conversion
improves the results for LambdaNet and InCoder, but makes the results worse for DeepTyper.
One dramatic result is the change for InCoder and the “never typed, with deps” dataset, where
the ECMAScript module conversion results in 89% of files type checking, when it was only

ECOOP 2023

37:18 Do Machine Learning Models Produce TypeScript Types That Type Check?

Never typed, no deps Never typed, with deps

DefinitelyTyped, no deps DefinitelyTyped, with deps

0 500 1000 1500 2000 0 500 1000 1500 2000

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

Errors

P
a
ck

a
g
es

DeepTyper LambdaNet InCoder

Figure 10 Empirical cumulative distribution function of errors. The x-axis shows the number of
errors and the y-axis shows the proportion of packages with fewer than x errors.

11% before. The difference is caused by a single package, regenerate-unicode-properties,
which has over 400 files. With CommonJS modules, each file produces an error; however,
with ECMAScript modules, those files type check successfully.

Finally, Table 8 compares the accuracy of type annotations, before and after the ECMA-
Script module conversion. Recall that for accuracy, we compare type annotations against the
ground truth of handwritten TypeScript declaration files; these are the “DefinitelyTyped”
datasets. Accuracy improves for DeepTyper and LambdaNet, but worsens slightly for
InCoder.

4.5 Case Studies
In this section, we examine how the models performed on four packages, whether the packages
type check, and what steps are left to migrate the packages to TypeScript.

4.5.1 Error Message Does Not Refer to Incorrect Type Annotation
decamelize is a package for converting strings in camel case to lowercase.11 It is in

the “DefinitelyTyped, no deps” dataset, as it ships with a .d.ts declaration file and has
no dependencies. Figure 13 shows a simplified version of the function handlePreserve-
ConsecutiveUppercase. This function is not exported, thus there are no programmer-written
type annotations. Line 42 uses JavaScript’s arrow function notation to define a function that
takes two arguments, and assigns it to the constant on Line 41. Elsewhere in the package
(Line 51 in the listing), the helper function is called with str and sep string arguments.

A programmer inspecting the function can reason that Line 44 is a call to a string method
that uses a regular expression on Line 45 to replace text in decamelized with the result on
Line 46, where separator is concatenated with the regular expression match. Therefore,
both the decamelized and separator parameters on Line 42 should be annotated as string.

11 https://www.npmjs.com/package/decamelize

https://www.npmjs.com/package/decamelize

M.-H. Yee and A. Guha 37:19

DeepTyper LambdaNet InCoder

T
S23

39

T
S23

22

T
S23

45

T
S23

04

T
S25

54

T
S23

49

T
S23

67

T
S23

07

T
S25

51

T
S23

14

O
th

er

T
S23

39

T
S23

22

T
S23

45

T
S23

04

T
S25

54

T
S23

49

T
S23

67

T
S23

07

T
S25

51

T
S23

14

O
th

er

T
S23

39

T
S23

22

T
S23

45

T
S23

04

T
S25

54

T
S23

49

T
S23

67

T
S23

07

T
S25

51

T
S23

14

O
th

er

0

5,000

10,000

15,000

20,000

25,000

Error codes

C
o
u

n
t

Figure 11 Distribution of the top 10 most common error codes, over all datasets.

The DeepTyper solution is listed on Line 54: it correctly annotates both function
parameters as string, but incorrectly annotates handlePreserveConsecutiveUppercase
as string. The compiler emits errors for Lines 51 and 55, because Line 51 is attempting to
call a non-function, and Line 55 is attempting to assign a function to a non-function variable.
However, the fix must be applied to the annotation on line Line 54.

4.5.2 Incorrect Type Annotation Can Type Check Successfully
The LambdaNet solution on Line 58 correctly annotates handlePreserveConsecutive-

Uppercase as Function, but it incorrectly annotates the separator parameter on Line 59 as
number. We would expect the compiler to emit a type error, since Line 51 calls the function
with string arguments. However, the code type checks successfully, because the generic
Function type on Line 58 accepts any number of arguments of any type. The Function
type annotation is similar to any, in that it enables more code to type check, but at the cost
of fewer type guarantees.

Another example of this problem is the ieee754 package, which reads and writes floating
point numbers to and from buffers.12 It is categorized as “DefinitelyTyped, no deps,” since
it provides a .d.ts declaration file and has no dependencies. Figure 14 shows the original
declaration for the write function on Line 61, and the handwritten, ground truth signature
on Line 65.

Consider the DeepTyper solution: the compiler emits an error on Line 70, because a
function is being assigned to a variable of type void. However, even if that error is fixed,
there is another, more subtle error not detected by the compiler: the isLE parameter on
Line 71 is incorrectly annotated as number, not boolean. Because this is compatible with
the body of the function, there is no error. (The Buffer annotation is valid, despite not
matching the ground truth Uint8Array, because Buffer is defined by the Node.js standard
library as a subtype of Uint8Array.)

The InCoder solution on Line 75 type checks successfully. It also uses the Buffer type
for buffer, and it uses any instead of number for the value parameter on Line 76. The any
annotation may cause run-time errors if the function is called with arguments of the wrong
type.

12 https://www.npmjs.com/package/ieee754

ECOOP 2023

https://www.npmjs.com/package/ieee754

37:20 Do Machine Learning Models Produce TypeScript Types That Type Check?

Table 5 The top 10 most common error codes.

Error code Message DeepTyper LambdaNet InCoder
TS2339 Property ’{0}’ does not exist on type ’{1}.’ 2,510 24,123 6,742
TS2322 Type ’{0}’ is not assignable to type ’{1}’. 1,429 4,709 176
TS2345 Argument of type ’{0}’ is not assignable to

parameter of type ’{1}’.
304 3,930 828

TS2304 Cannot find name ’{0}’. 217 598 2,094
TS2554 Expected {0} arguments, but got {1}. 330 1,234 1,200
TS2349 This expression is not callable. 977 529 26
TS2367 This condition will always return ’{0}’ since

the types ’{1}’ and ’{2}’ have no overlap.
145 1,046 110

TS2307 Cannot find module ’{0}’ or its correspond-
ing type declarations.

375 432 371

TS2551 Property ’{0}’ does not exist on type ’{1}’.
Did you mean ’{2}’?

187 389 296

TS2314 Generic type ’{0}’ requires {1} type argu-
ment(s).

1 630 95

Other 1,089 3,528 2,557
Total 7,564 41,148 14,495

4.5.3 Run-Time Type Assertions
The @gar/promisify package,13 simplified and shown in Figure 15, is another example

where a program type checks, but is incorrect. The example exports a function that takes an
argument thingToPromisify, type annotated as string by LambdaNet. Line 80 performs
a run-time type check with the typeof operator. This ensures that thingToPromisify is a
function on Line 81, which is what the promisify function, defined by Node.js, expects. If
thingToPromisify is not a function, the exception on Line 83 is thrown.

The example type checks successfully, because the TypeScript compiler treats the typeof
check as a type guard, and reasons that on Line 81, the thingToPromisify variable has
been narrowed14 to a more specific type. However, because thingToPromisify is annotated
as string, the type guard always returns false. Therefore, Line 81 is actually unreachable,
so the exception on Line 83 is always thrown.

4.5.4 Variable Used as Two Different Types
The example in Figure 16 is adapted from the array-unique package.15 The example

contains two for loops: a traditional, counter-based for loop on Line 90, and a for...in
loop on Line 92 that iterates over all enumerable string properties of an object. Both loops
share the same loop variable, i, defined on Line 88 and annotated as number by LambdaNet.

The use of i on Line 92 causes a type error, as for...in loops require the loop variable
to be string. However, changing the annotation on Line 88 to string causes a type error on
Line 90, as counter-based for loops require the loop variable to be number. One solution is to

13 https://www.npmjs.com/package/@gar/promisify
14 https://www.typescriptlang.org/docs/handbook/2/narrowing.html
15 https://www.npmjs.com/package/array-unique

https://www.npmjs.com/package/@gar/promisify
https://www.typescriptlang.org/docs/handbook/2/narrowing.html
https://www.npmjs.com/package/array-unique

M.-H. Yee and A. Guha 37:21

Table 6 Percentage of packages that type check, before and after ECMAScript module conversion.

DeepTyper LambdaNet InCoder
Dataset category Before After Before After Before After
DefinitelyTyped, no deps 25.3 21.0 8.8 9.7 21.3 19.9
DefinitelyTyped, with deps 11.6 7.2 2.9 1.4 14.3 13.0
Never typed, no deps 34.7 32.6 11.5 12.6 26.0 25.0
Never typed, with deps 28.2 12.8 8.8 8.6 23.1 10.3
Overall 25.4 20.7 8.4 8.9 21.3 19.1

Table 7 Percentage of files with no compilation errors, before and after ECMAScript module
conversion.

DeepTyper LambdaNet InCoder
Dataset category Before After Before After Before After
DefinitelyTyped, no deps 45.3 41.0 27.9 28.9 68.3 70.3
DefinitelyTyped, with deps 50.0 50.8 24.3 33.5 51.6 57.0
Never typed, no deps 48.8 46.3 24.9 27.5 42.6 43.0
Never typed, with deps 64.5 34.7 8.6 4.7 11.2 88.6
Overall 48.1 43.4 23.5 25.2 56.1 69.2

Table 8 Accuracy of type annotations, before and after ECMAScript module conversion.

DeepTyper LambdaNet InCoder
Dataset category Before After Before After Before After
DefinitelyTyped, no deps 35.2 37.3 44.4 44.8 34.0 32.5
DefinitelyTyped, with deps 19.8 22.0 27.0 34.5 19.2 17.2
Overall 28.7 32.1 38.9 41.5 29.1 27.3

Never typed, no deps Never typed, with deps

DefinitelyTyped, no deps DefinitelyTyped, with deps

DeepTyper LambdaNet InCoder DeepTyper LambdaNet InCoder

0

10

20

30

40

50

0

10

20

30

40

50P
a
ck

a
g
es

Both type check Type checks after Type checks before

Figure 12 Packages that type check before or after ECMAScript module conversion.

ECOOP 2023

37:22 Do Machine Learning Models Produce TypeScript Types That Type Check?

40 // Original
41 const handlePreserveConsecutiveUppercase =
42 (decamelized , separator) => {
43 // code omitted and simplified ...
44 return decamelized . replace (
45 /([A-Z]+)([A-Z][a-z]+)/gu ,
46 (_, $1, $2) => $1 + separator + $2. toLowerCase (),
47);
48 }
49
50 // Elsewhere in the package ; str and sep are both strings
51 return handlePreserveConsecutiveUppercase (str , sep);
52
53 // DeepTyper solution
54 const handlePreserveConsecutiveUppercase : string =
55 (decamelized : string , separator : string) => { ... }
56
57 // LambdaNet solution
58 const handlePreserveConsecutiveUppercase : Function =
59 (decamelized : string , separator : number) => { ... }

Figure 13 The handlePreserveConsecutiveUppercase function adapted from the decamelize
package. The DeepTyper and LambdaNet solutions are also shown.

use the any annotation, and another is to use the union type number | string. Ultimately,
the correct solution is to define separate loop variables; this example highlights that code
written in JavaScript may need to be refactored for TypeScript.

5 Discussion

How should type prediction models be evaluated? Prior work has used accuracy to
evaluate type prediction models, but in this paper, we argue that we should instead type
check the generated code. However, we acknowledge that our proposed metric also has
limitations: code may type check with trivial annotations (e.g., any or Function) that
provide little benefit to the programmer. Furthermore, type correctness does not necessarily
mean the type annotations are correct: any can hide type errors that are only encountered
at run time.

We do not claim that our metric is the final word on evaluating type prediction models,
but we believe it is an improvement over accuracy. We hope this paper can spark a discussion
on how machine learning for type migration should be evaluated.

Can slightly wrong type annotations be useful? A type prediction model may suggest
types that are slightly wrong and easily fixable by a programmer, but fail to type check.
However, a tool that produces hundreds or thousands of slightly wrong type annotations
would overwhelm the programmer, and we believe it is important to build tools that try to
produce fewer errors. On the other hand, slightly wrong type annotations may still provide
value, but we would need to define what “slightly wrong” means and how to measure it.
Without a tool like TypeWeaver, which weaves type annotations into code and type checks
the result, it would not be possible to ask these questions.

Should we evaluate on JavaScript or TypeScript programs? We choose to evaluate
on JavaScript programs, so our dataset deviates from prior work, which only considered
TypeScript. Our motivating problem is not to recover type annotations for TypeScript

M.-H. Yee and A. Guha 37:23

60 // Original
61 export const write =
62 function (buffer , value , offset , isLE , mLen , nBytes) { ... }
63
64 // Ground truth signature
65 export function write(
66 buffer : Uint8Array , value: number , offset : number , isLE: boolean ,
67 mLen: number , nBytes : number): void;
68
69 // DeepTyper solution
70 export const write: void = function (
71 buffer : Buffer , value : number , offset : number , isLE: number ,
72 mLen: number , nBytes : number) { ... }
73
74 // InCoder solution
75 export const write = function (
76 buffer : Buffer , value : any , offset : number , isLE: boolean ,
77 mLen: number , nBytes : number) { ... }

Figure 14 The write function adapted from the ieee754 package. The ground truth signature
is also shown, along with the DeepTyper and InCoder solutions.

78 // LambdaNet solution
79 export default function (thingToPromisify : string) {
80 if (typeof thingToPromisify === ’function ’) {
81 return promisify (thingToPromisify)
82 }
83 throw new TypeError (’Can only promisify functions or objects ’)
84 };

Figure 15 The LambdaNet solution for a function adapted from the @gar/promisify package.

programs that already type check, but to migrate untyped JavaScript programs to type-
annotated TypeScript. For this problem, type prediction on its own is not enough, and other
steps and further refactoring may be required.

Our methodology makes it possible to evaluate performance on code without known type
annotations, i.e., code that has never been typed before. In contrast, prior work required the
benchmarks to have ground truth type annotations. Our approach also reduces the likelihood
of training data leaking into the test set.

However, there may be scenarios where a type prediction model is used to generate type
annotations for a partially annotated TypeScript project. In these situations, type migration
would likely not require additional refactoring steps.

Can we fully automate type migration? Our results show that automatically predicting
type annotations is a challenging task and much work remains to be done. Furthermore,
migrating JavaScript to TypeScript involves more than just adding type annotations: the
two languages are different and some refactoring may be required. The models we evaluate
in this paper do not refactor code, and we believe it is unlikely for automated type migration
to be perfect. Thus, some manual refactoring will always be necessary for certain kinds of
code, but we hope that tools can reduce the overall burden on programmers.

ECOOP 2023

37:24 Do Machine Learning Models Produce TypeScript Types That Type Check?

85 export default function (arr: any []) {
86 var len: number = arr. length ;
87 var o: object = {};
88 var i: number ;
89
90 for (i = 0; i < len; i += 1) { ... }
91
92 for (i in o) { ... }
93 };

Figure 16 The LambdaNet solution for a function adapted from the array-unique package.

6 Related Work

There are many constraint-based approaches to type migration for the gradually typed lambda
calculus (GTLC) and some modest extensions. The earliest approach was a variation of
unification-based type inference [47], and more recent work uses a wide range of techniques [9,
12, 21, 34, 35, 40]. Since these approaches are based on programming language semantics,
they produce sound results, which is their key advantage over learning-based approaches.
However, these would require significant work to scale to complex programming languages
such as JavaScript.

There are also several constraint-based approaches to type inference for larger languages.
Anderson et al. [2] presents type inference for a small fragment of JavaScript, but is not
designed for gradual typing. Rastogi et al. [42] infer gradual types for ActionScript to improve
performance. More recently, Chandra et al. [13] infer types for JavaScript programs with
the goal of compiling them to run efficiently on low-powered devices; their approach is not
gradual by design and deliberately rejects certain programs. DRuby [20] infers types for
Ruby and treats type annotations in a novel way: inference assumes that annotations are
correct, and defers checking them to runtime.

Although this paper focuses on type migration for TypeScript, there are several other
gradual type systems for JavaScript [15, 22, 30, 49]. These languages do not have support for
type inference and do not provide tools for type migration. Instead, like Typed Racket [48],
they require programmers to manually migrate their code to add types. However, there are
tools that use dynamic profiles to infer types for these type systems [1, 19, 45].

Even when constraint-based type inference succeeds in a gradually typed language, it can
fail to produce the kinds of types that programmers write, e.g., named types, instead of the
most general structural type for every annotation. Soft Scheme [10] infers types for Scheme
programs, but Flanagan [17, p. 41] reports that it produces unintuitive types. For Ruby,
InferDL [27] uses hand-coded heuristics to infer more natural types, and SimTyper [26] uses
machine learning to predict equalities between structural types and more natural types.

LambdaNet [50] and DeepTyper [23] are two different approaches for predicting types for
TypeScript and JavaScript programs. This paper evaluates using both of them in its type
migration pipeline. We discuss them at length in Sections 2.2.1 and 2.2.2. NL2Type [32] is
another system for predicting JavaScript types that improves on DeepTyper.

There are also type prediction systems for Python. TypeWriter [41] is notable because it
also asks if the resulting Python program type checks. If it does not, it searches its solution
space for an alternative typing. A distinction between Python type systems and TypeScript
is that Python code is predominantly nominally typed: the type of a variable is either a
builtin type or a class, whereas TypeScript uses structural types.

M.-H. Yee and A. Guha 37:25

DiverseTyper [24] is a recently published work that predicts both built-in and user-defined
types for TypeScript and achieves state-of-the-art accuracy on type prediction. DiverseTyper
builds on TypeBert [25], which trains a BERT-based model to predict types. Although this
paper does not evaluate these models, they are most closely related to InCoder [18], which is
a general-purpose code generation model that we do evaluate.

7 Conclusion

In this paper, we set out to answer the question: do deep-learning-based type annotation
prediction models produce TypeScript types that type check? To answer this question, we
build TypeWeaver, a type migration tool that automatically converts JavaScript projects
into TypeScript. TypeWeaver uses a type annotation prediction model, but does the work
of “weaving” predicted types into JavaScript code. It also automates other steps, such as
converting JavaScript projects to ECMAScript module notation. Finally, TypeWeaver
runs the TypeScript compiler to type check the generated code. TypeWeaver is designed
so that any type prediction model can be plugged in, and we use three very different models:
DeepTyper, LambdaNet, and InCoder.

In addition to building TypeWeaver, we also present a dataset of 513 widely used
JavaScript packages that are suitable for type migration. Every package in our dataset has
typed dependencies and many of them have never been typed before. With this dataset, we
evaluate TypeWeaver with all three type prediction models.

The results are mixed. If we ask, “How many packages type check when migrated to
TypeScript?” we find that most packages have some type errors. However, we also ask, “How
many files are error free?” and the result is more promising. We find that most files have
no type errors, which means that programmers performing type migration can focus their
attention on a smaller number of files.

Our case studies highlight two insights: (1) certain patterns in JavaScript do not make
sense in TypeScript, so a migration may require manual rewriting of the code; and (2) there
are cases where programs successfully type check but still have run-time errors.

We believe that currently, while type prediction cannot always reliably migrate JavaScript
to TypeScript, it can still be a powerful tool.

Future Work. There are several directions we would like to explore in future work. First,
we would like to improve dataset quality. We observed projects that were trivially typable:
there were few declarations to annotate, or the annotations were mostly primitive types, so
those projects often type checked successfully. Second, we are interested in exploring different
evaluation criteria for type prediction models. We believe that type checking the output of
these models is only the first step, and that it may be necessary to evaluate the run-time
behavior of migrated programs. Additionally, there may be utility in permitting “slightly
wrong” type annotations. Finally, we would like to examine other deep learning models and
type migration tasks beyond type annotation prediction.

References

1 Jong-hoon (David) An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks. Dynamic
Inference of Static Types for Ruby. In Principles of Programming Languages (POPL), 2011.
doi:10.1145/1926385.1926437.

2 Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards Type Inference
for JavaScript. In European Conference on Object-Oriented Programming (ECOOP), 2005.
doi:10.1007/11531142_19.

ECOOP 2023

https://doi.org/10.1145/1926385.1926437
https://doi.org/10.1007/11531142_19

37:26 Do Machine Learning Models Produce TypeScript Types That Type Check?

3 Luke Autry. How we failed, then succeeded, at migrating to TypeScript. https://heap.io/
blog/migrating-to-typescript, 2019. Accessed: 2022-12-01.

4 Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient Training of Language Models to Fill in the Middle, 2022.
doi:10.48550/arXiv.2207.14255.

5 Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Car-
los Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Ku-
mar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf,
Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni,
Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo,
Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish
Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried,
Arjun Guha, Harm de Vries, and Leandro von Werra. SantaCoder: don’t reach for the stars!,
2023. doi:10.48550/arXiv.2301.03988.

6 Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding TypeScript. In
European Conference on Object-Oriented Programming (ECOOP), 2014. doi:10.1007/
978-3-662-44202-9_11.

7 Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-Hochstadt. Practical Optional
Types for Clojure. In European Symposium on Programming (ESOP), 2016. doi:10.1007/
978-3-662-49498-1_4.

8 Ryan Burgess, Joe King, Stacy London, Sumana Mohan, and Jem Young. Type-
Script migration - Strict type of cocktails. https://frontendhappyhour.com/episodes/
typescript-migration-strict-type-of-cocktails, 2022. Accessed: 2022-12-01.

9 John Peter Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. Migrating Gradual
Types. Proc. ACM Program. Lang., 2(POPL), 2018. doi:10.1145/3158103.

10 Robert Cartwright and Mike Fagan. Soft Typing. In Programming Language Design and
Implementation (PLDI), 1991. doi:10.1145/113445.113469.

11 Mauricio Cassola, Agustín Talagorria, Alberto Pardo, and Marcos Viera. A Gradual Type
System for Elixir. In Brazilian Symposium on Context-Oriented Programming and Advanced
Modularity (SBLP), 2020. doi:10.1145/3427081.3427084.

12 Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek. Gradual Typing:
A New Perspective. Proc. ACM Program. Lang., 3(POPL), 2019. doi:10.1145/3290329.

13 Satish Chandra, Colin S. Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu Sridharan,
Frank Tip, and Youngil Choi. Type Inference for Static Compilation of JavaScript. In
Object-Oriented Programming Systems Languages and Applications (OOPSLA), 2016. doi:
10.1145/2983990.2984017.

14 Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi. Fast
and Precise Type Checking for JavaScript. Proc. ACM Program. Lang., 1(OOPSLA), 2017.
doi:10.1145/3133872.

15 Ravi Chugh, David Herman, and Ranjit Jhala. Dependent Types for JavaScript. In Object-
Oriented Programming Systems Languages and Applications (OOPSLA), 2012. doi:10.1145/
2384616.2384659.

16 Asger Feldthaus and Anders Møller. Checking Correctness of TypeScript Interfaces for
JavaScript Libraries. In Object-Oriented Programming Systems Languages and Applications
(OOPSLA), 2014. doi:10.1145/2660193.2660215.

17 Cormac Flanagan. Effective Static Debugging via Componential Set-based Analysis. PhD thesis,
Rice University, 1997. URL: https://users.soe.ucsc.edu/~cormac/papers/thesis.pdf.

18 Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi
Zhong, Scott Yih, Luke Zettlemoyer, and Mike Lewis. InCoder: A Generative Model for Code
Infilling and Synthesis. In International Conference on Learning Representations (ICLR),
2023. doi:10.48550/arXiv.2204.05999.

https://heap.io/blog/migrating-to-typescript
https://heap.io/blog/migrating-to-typescript
https://doi.org/10.48550/arXiv.2207.14255
https://doi.org/10.48550/arXiv.2301.03988
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-49498-1_4
https://doi.org/10.1007/978-3-662-49498-1_4
https://frontendhappyhour.com/episodes/typescript-migration-strict-type-of-cocktails
https://frontendhappyhour.com/episodes/typescript-migration-strict-type-of-cocktails
https://doi.org/10.1145/3158103
https://doi.org/10.1145/113445.113469
https://doi.org/10.1145/3427081.3427084
https://doi.org/10.1145/3290329
https://doi.org/10.1145/2983990.2984017
https://doi.org/10.1145/2983990.2984017
https://doi.org/10.1145/3133872
https://doi.org/10.1145/2384616.2384659
https://doi.org/10.1145/2384616.2384659
https://doi.org/10.1145/2660193.2660215
https://users.soe.ucsc.edu/~cormac/papers/thesis.pdf
https://doi.org/10.48550/arXiv.2204.05999

M.-H. Yee and A. Guha 37:27

19 Michael Furr, Jong-hoon (David) An, and Jeffrey S. Foster. Profile-Guided Static Typing
for Dynamic Scripting Languages. In Object-Oriented Programming Systems Languages and
Applications (OOPSLA), 2009. doi:10.1145/1640089.1640110.

20 Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks. Static Type Inference
for Ruby. In Symposium on Applied Computing (SAC), 2009. doi:10.1145/1529282.1529700.

21 Ronald Garcia and Matteo Cimini. Principal Type Schemes for Gradual Programs. In
Principles of Programming Languages (POPL), 2015. doi:10.1145/2676726.2676992.

22 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. Typing Local Control and
State Using Flow Analysis. In European Symposium on Programming (ESOP), 2011. doi:
10.1007/978-3-642-19718-5_14.

23 Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. Deep Learning
Type Inference. In European Software Engineering Conference/Foundations of Software
Engineering (ESEC/FSE), 2018. doi:10.1145/3236024.3236051.

24 Kevin Jesse, Premkumar Devanbu, and Anand Ashok Sawant. Learning To Predict User-
Defined Types. IEEE Transactions on Software Engineering (TSE), 2022. doi:10.1109/TSE.
2022.3178945.

25 Kevin Jesse, Premkumar T. Devanbu, and Toufique Ahmed. Learning Type Annotation: Is
Big Data Enough? In European Software Engineering Conference/Foundations of Software
Engineering (ESEC/FSE), 2021. doi:10.1145/3468264.3473135.

26 Milod Kazerounian, Jeffrey S. Foster, and Bonan Min. SimTyper: Sound Type Inference
for Ruby Using Type Equality Prediction. Proc. ACM Program. Lang., 5(OOPSLA), 2021.
doi:10.1145/3485483.

27 Milod Kazerounian, Brianna M. Ren, and Jeffrey S. Foster. Sound, Heuristic Type Annotation
Inference for Ruby. In Dynamic Languages Symposium (DLS), 2020. doi:10.1145/3426422.
3426985.

28 Erik Krogh Kristensen and Anders Møller. Inference and Evolution of TypeScript Declaration
Files. In Fundamental Approaches to Software Engineering (FASE), 2017. doi:10.1007/
978-3-662-54494-5_6.

29 Erik Krogh Kristensen and Anders Møller. Type Test Scripts for TypeScript Testing. Proc.
ACM Program. Lang., 1(OOPSLA), 2017. doi:10.1145/3133914.

30 Benjamin S. Lerner, Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi. TeJaS:
Retrofitting Type Systems for JavaScript. In Dynamic Languages Symposium (DLS), 2013.
doi:10.1145/2578856.2508170.

31 Kuang-Chen Lu, Ben Greenman, Carl Meyer, Dino Viehland, Aniket Panse, and Shriram
Krishnamurthi. Gradual Soundness: Lessons from Static Python. The Art, Science, and
Engineering of Programming, 7(1), 2022. doi:10.22152/programming-journal.org/2023/7/
2.

32 Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. NL2Type: Inferring JavaScript
Function Types from Natural Language Information. In International Conference on Software
Engineering (ICSE), 2019. doi:10.1109/ICSE.2019.00045.

33 Meta Platforms, Inc. Pyre: A performant type-checker for Python 3. https://pyre-check.
org/. Accessed: 2022-12-01.

34 Zeina Migeed and Jens Palsberg. What Is Decidable about Gradual Types? Proc. ACM
Program. Lang., 4(POPL), 2020. doi:10.1145/3371097.

35 Yusuke Miyazaki, Taro Sekiyama, and Atsushi Igarashi. Dynamic Type Inference for Gradual
Hindley–Milner Typing. Proc. ACM Program. Lang., 3(POPL), 2019. doi:10.1145/3290331.

36 Thomas Moore. How We Completed a (Partial) TypeScript Migration In Six
Months. https://blog.abacus.com/how-we-completed-a-partial-typescript-migration
-in-six-months/, 2019. Accessed: 2022-12-01.

37 Guilherme Ottoni. HHVM JIT: A Profile-Guided, Region-Based Compiler for PHP and Hack.
In Programming Language Design and Implementation (PLDI), 2018. doi:10.1145/3192366.
3192374.

ECOOP 2023

https://doi.org/10.1145/1640089.1640110
https://doi.org/10.1145/1529282.1529700
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1007/978-3-642-19718-5_14
https://doi.org/10.1007/978-3-642-19718-5_14
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1109/TSE.2022.3178945
https://doi.org/10.1109/TSE.2022.3178945
https://doi.org/10.1145/3468264.3473135
https://doi.org/10.1145/3485483
https://doi.org/10.1145/3426422.3426985
https://doi.org/10.1145/3426422.3426985
https://doi.org/10.1007/978-3-662-54494-5_6
https://doi.org/10.1007/978-3-662-54494-5_6
https://doi.org/10.1145/3133914
https://doi.org/10.1145/2578856.2508170
https://doi.org/10.22152/programming-journal.org/2023/7/2
https://doi.org/10.22152/programming-journal.org/2023/7/2
https://doi.org/10.1109/ICSE.2019.00045
https://pyre-check.org/
https://pyre-check.org/
https://doi.org/10.1145/3371097
https://doi.org/10.1145/3290331
https://blog.abacus.com/how-we-completed-a-partial-typescript-migration-in-six-months/
https://blog.abacus.com/how-we-completed-a-partial-typescript-migration-in-six-months/
https://doi.org/10.1145/3192366.3192374
https://doi.org/10.1145/3192366.3192374

37:28 Do Machine Learning Models Produce TypeScript Types That Type Check?

38 Irene Vlassi Pandi, Earl T. Barr, Andrew D. Gordon, and Charles Sutton. OptTyper:
Probabilistic Type Inference by Optimising Logical and Natural Constraints, 2021. doi:
10.48550/arXiv.2004.00348.

39 Mihai Parparita. The Road to TypeScript at Quip, Part Two. https://quip.com/blog/
the-road-to-typescript-at-quip-part-two, 2020. Accessed: 2022-12-01.

40 Luna Phipps-Costin, Carolyn Jane Anderson, Michael Greenberg, and Arjun Guha. Solver-
Based Gradual Type Migration. Proc. ACM Program. Lang., 5(OOPSLA), 2021. doi:
10.1145/3485488.

41 Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. TypeWriter: Neural Type
Prediction with Search-Based Validation. In European Software Engineering Conference/Foun-
dations of Software Engineering (ESEC/FSE), 2020. doi:10.1145/3368089.3409715.

42 Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The Ins and Outs of Gradual Type
Inference. In Principles of Programming Languages (POPL), 2012. doi:10.1145/2103656.
2103714.

43 Felix Rieseberg. TypeScript at Slack. https://slack.engineering/typescript-at-slack/,
2017. Accessed: 2022-12-01.

44 Sergii Rudenko. ts-migrate: A Tool for Migrating to TypeScript at Scale.
https://medium.com/airbnb-engineering/ts-migrate-a-tool-for-migrating-to-type
script-at-scale-cd23bfeb5cc, 2020. Accessed: 2022-12-01.

45 Claudiu Saftoiu. JSTrace: Run-time Type Discovery for JavaScript. Master’s thesis, Brown Uni-
versity, 2010. URL: https://cs.brown.edu/research/pubs/theses/ugrad/2010/saftoiu.
pdf.

46 Jeremy G. Siek and Walid Taha. Gradual Typing for Functional Languages. In Scheme and
Functional Programming Workshop, 2006. URL: http://schemeworkshop.org/2006/13-siek.
pdf.

47 Jeremy G. Siek and Manish Vachharajani. Gradual Typing with Unification-Based Inference.
In Dynamic Languages Symposium (DLS), 2008. doi:10.1145/1408681.1408688.

48 Sam Tobin-Hochstadt and Matthias Felleisen. The Design and Implementation of Typed
Scheme. In Principles of Programming Languages (POPL), 2008. doi:10.1145/1328438.
1328486.

49 Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Trust, but Verify: Two-Phase Typing
for Dynamic Languages. In European Conference on Object-Oriented Programming (ECOOP),
2015. doi:10.4230/LIPIcs.ECOOP.2015.52.

50 Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. LambdaNet: Probabilistic Type Infer-
ence using Graph Neural Networks. In International Conference on Learning Representations
(ICLR), 2020. doi:10.48550/arXiv.2005.02161.

51 Jack Williams, J. Garrett Morris, Philip Wadler, and Jakub Zalewski. Mixed Messages:
Measuring Conformance and Non-Interference in TypeScript. In European Conference on
Object-Oriented Programming (ECOOP), 2017. doi:10.4230/LIPIcs.ECOOP.2017.28.

52 Jake Zimmerman. Sorbet: Stripe’s type checker for Ruby. https://stripe.com/blog/
sorbet-stripes-type-checker-for-ruby, 2022. Accessed: 2022-12-01.

https://doi.org/10.48550/arXiv.2004.00348
https://doi.org/10.48550/arXiv.2004.00348
https://quip.com/blog/the-road-to-typescript-at-quip-part-two
https://quip.com/blog/the-road-to-typescript-at-quip-part-two
https://doi.org/10.1145/3485488
https://doi.org/10.1145/3485488
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/2103656.2103714
https://doi.org/10.1145/2103656.2103714
https://slack.engineering/typescript-at-slack/
https://medium.com/airbnb-engineering/ts-migrate-a-tool-for-migrating-to-typescript-at-scale-cd23bfeb5cc
https://medium.com/airbnb-engineering/ts-migrate-a-tool-for-migrating-to-typescript-at-scale-cd23bfeb5cc
https://cs.brown.edu/research/pubs/theses/ugrad/2010/saftoiu.pdf
https://cs.brown.edu/research/pubs/theses/ugrad/2010/saftoiu.pdf
http://schemeworkshop.org/2006/13-siek.pdf
http://schemeworkshop.org/2006/13-siek.pdf
https://doi.org/10.1145/1408681.1408688
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.4230/LIPIcs.ECOOP.2015.52
https://doi.org/10.48550/arXiv.2005.02161
https://doi.org/10.4230/LIPIcs.ECOOP.2017.28
https://stripe.com/blog/sorbet-stripes-type-checker-for-ruby
https://stripe.com/blog/sorbet-stripes-type-checker-for-ruby

Building Code Transpilers for Domain-Specific
Languages Using Program Synthesis
Sahil Bhatia #

University of California, Berkeley, CA, USA

Sumer Kohli #

University of California, Berkeley, CA, USA

Sanjit A. Seshia #

University of California, Berkeley, CA, USA

Alvin Cheung #

University of California, Berkeley, CA, USA

Abstract
Domain-specific languages (DSLs) are prevalent across many application domains. Such languages
let developers easily express computations using high-level abstractions that result in performant
implementations. To leverage DSLs, however, application developers need to master the DSL’s
syntax and manually rewrite existing code. Compilers can aid in this effort, but part of building a
compiler requires transpiling code from the source code to the target DSL. Such transpilation is
typically done via pattern-matching rules on the source code. Sadly, developing such rules is often a
painstaking and error-prone process.

In this paper, we describe our experience in using program synthesis to build code transpilers.
To do so, we developed MetaLift, a new framework for building transpilers that transform general-
purpose code into DSLs using program synthesis. To use MetaLift, transpiler developers first define
the target DSL’s semantics using MetaLift’s specification language, and specify the search space
for each input code fragment to be transpiled using MetaLift’s API. MetaLift then leverages
program synthesizers and theorem provers to automatically find transpilations expressed in the
target DSL that is provably semantic equivalent to the input code. We have used MetaLift to
build three DSL transpilers targeting different programming models and application domains. Our
results show that the MetaLift-based compilers can translate many benchmarks used in prior work
created by specialized implementations, but can be built using orders-of-magnitude fewer lines of
code as compared to prior work.

2012 ACM Subject Classification Software and its engineering → Compilers

Keywords and phrases Program Synthesis, Code Transpilation, DSLs, Verification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.38

Category Experience Paper

Supplementary Material Software: https://github.com/metalift/metalift

Funding This work was supported in part by a Google BAIR Commons project, by the DARPA
LOGiCS project, by the NSF FMitF-1837132, IIS-1955488, IIS-2027575, CCF-1723352, ARO
W911NF2110339, ONR N00014-21-1-2724, and DOE award DE-SC0016260.

Acknowledgements We would like to thank Shadaj Laddad, Maaz Ahmad and anonymous reviewers
for their insightful feedback.

1 Introduction

Domain-specific languages (DSLs) are now popular means to develop applications across
many domains. Besides improving programmability, modern DSLs often expose domain-
specific optimizations via their interfaces for applications to leverage specialized hardware
accelerators [16, 32, 6, 21], or domain-specific code transformation [15, 43, 12].

© Sahil Bhatia, Sumer Kohli, Sanjit A. Seshia, and Alvin Cheung;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 38; pp. 38:1–38:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sahilbhatia@berkeley.edu
mailto:sumer.kohli@berkeley.edu
mailto:sseshia@berkeley.edu
mailto:akcheung@berkeley.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2023.38
https://github.com/metalift/metalift
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

Yet, to capitalize on the benefits provided by DSLs, developers must learn the interfaces
provided by the target DSL. For existing applications, developers need to painfully reverse-
engineer legacy code, potentially convolved with optimizations, before rewriting it, only
to realize that newly emerging frameworks can turn freshly rewritten code into legacy
applications. Needless to say, each rewrite is another opportunity to introduce bugs into the
application.

The classical mechanism to alleviate this problem is for DSL designers to build pattern-
driven transpilers that translate programs, say written in general-purpose languages, into their
DSLs [4]. While such transpilers are essentially part of all modern optimizing compilers, they
often require developing a complex network of inter-connected translation rules [22, 31, 39],
which is a highly tedious and error-prone task.

Instead of transpilation rules, researchers have leveraged advances in program synthesis [11,
17] for code transpilation, where the idea is to replace the rule-matching machinery with a
code synthesizer that finds programs written in the target language that are semantically
equivalent to the input code fragment [23, 14, 27, 20, 3]. However, using such techniques
involves encoding the semantics of the input program as a synthesis problem. Furthermore,
building such transpilers requires implementing specialized synthesis procedures, which relies
on specialized knowledge of synthesis algorithms that most transpiler designers do not possess.

In this paper, we describe our experience in building code transpilers using program
synthesis. To do so in a systematic manner, we designed a new framework called MetaLift.
Our goal in building MetaLift is to free transpiler developers from designing a myriad of
pattern matching rules for transpilation, while making synthesis technology easily accessible
for code translation. Given input code written in the source language (MetaLift currently
supports LLVM), developers can use MetaLift to implement a code transpiler that uses
program synthesis to search for code in the target language that is provably semantically
equivalent to the input. To use MetaLift, developers first define the semantics of their
target DSL using MTL, i.e., MetaLift’s Specification Language. Then, using MetaLift’s
search space API, developers specifies the search space of DSL programs for each input. The
search space can be constructed programmatically by analyzing each input code to transpile.
Given the DSL definition and search space description, developers then write a transpiler
driver that orchestrates the transpilation process.

MetaLift is designed with developer usability in mind in constructing transpilers. As we
will discuss in detail, MTL is designed as a specification language embedded within Python
for ease of use. As MetaLift focuses on ensuring semantic equivalency between the source
and transpiled code, MTL consists of a small number of constructs, and is designed to be
high-level so that developers can easily use it to express the semantics of each construct
in their target DSL, and yet simple enough for MetaLift to compile down as the input
to different synthesizers and verifiers. Likewise, the MetaLift’s API is also designed to
abstract away the details of synthesis and verification from the developer.

To evaluate MetaLift, we have used the framework to reproduce three different trans-
pilers described in prior work spanning multiple application domains and programming
models. Our evaluation shows that they require order-of-magnitude fewer lines of code to
build as compared to prior work, with the resulting transpiler generating the same (or very
similar) code as the original implementations.

In summary, this paper makes the following contributions:
We design MTL for developers to specify the semantics of different constructs in their
DSLs. The design of MTL is general enough to support many real-world DSLs, yet simple
enough to be translated as the input to various program synthesizers and verification
engines.

S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung 38:3

Code
Analysis

Post-
Condition
Synthesis

Post-
Condition

Verification

Code
Translator

Input DSL
code

Target Semantics Search Space Codegen Rules

Figure 1 An overview of the MetaLift architecture.

We describe MetaLift, a unified framework for developing transpilers for DSLs. Rather
than designing pattern matching rules, MetaLift enables designers to use program
synthesis to easily translate input code to their DSLs without requiring any program
synthesis expertise. Furthermore, the translations generated by MetaLift are formally
verified for semantic equivalence to the source code, so developers are assured of an
accurate translation.
We show how MetaLift generalizes previous work on building transpilers using program
synthesis by creating two DSL transpilers that translate from general-purpose code
to these DSLs. These three DSLs are aimed at different application domains. Our
evaluations demonstrate how MetaLift dramatically reduces the effort required to build
these compilers.

We organize the rest of the paper as follows. We provide an overview of MetaLift
(Section 2). We describe MetaLift in more detail (Section 3) using a representative example.
We evaluate MetaLift in Section 4 and review the prior approaches for building transpilers
in Section 5. Finally, we conclude (Section 6) with directions for future work.

2 Overview

In this section, we provide an overview of the MetaLift framework. The high-level
architecture of MetaLift is shown in Figure 1. For the majority of the paper, we use the
example in Figure 2 as our running example and describe how to build a transpiler using
MetaLift that translates sequential Java code to the Spark DSL. Spark [43] provides users
with an interface to efficiently process large-scale distributed computations in a parallel and
fault-tolerant manner.

Concretely, the example in Figure 2a takes as input a list of words and counts the
frequency of each word in input list. Figure 2b shows the equivalent implementation using
map reduce operators in the Spark DSL. The map operator returns (word,1) for each word
in the input list, and the reducebykey operator then uses the reducer function (v1 + v2) to
aggregate each unique key in the map operator’s output.

The Mold compiler [31] has implemented a syntax-driven compiler that automatically
translates sequential Java code to Spark. To perform this translation, Mold uses rewrite
rules that pattern match on the input source code. However, these rules can be hard to
implement as
1) they must be expressive in order to capture all of the different coding patterns,
2) they must ensure semantic equivalence to the source code, and
3) they must be maintained as the DSLs change.
For instance, as described in their paper, Mold requires 22 different rules to generate the
corresponding Spark program for the same word count program shown in Figure 2a.

ECOOP 2023

38:4 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

1 map<string, int> countWords(vector<string> words) {

2 map<string, int> counts;

3 for (int j = 0; j < words.size(); j++) {

4 string word = words[j];

5 int prev = 0;

6 if (counts.find(word) != counts.end())

7 prev = counts[word];

8 counts[word] = prev + 1;

9 }

10 return counts;

11 }

(a) Input Source Code: Sequential C++ Code (Java benchmarks are converted to C++ since the MetaLift
front-end currently supports C++).

1 Map<String, Integer> countWords(List<String> words) {

2 Map<String, Integer> counts = new HashMap<String, Integer>();

3 counts = words.mapToPair(v -> new Tuple2<String,Integer>(v, 1))

4 .reduceByKey((v1,v2) -> v2 + v1).collectAsMap();

5 return counts;

6 }

(b) Output: Apache Spark Code.

Figure 2 Translation from sequential C++ code to Apache Spark DSL.

1 # target DSL definition, see Figure 11
2 # grammar description, see Figure 13
3 # code generation rules, see Figure 18
4

5 def transpiler(source): # driver program
6 liveVars, modVars, VC = analyze(source)
7 verifiedSummaries = synthesize(VC, targetLang(), grammar(liveVars, modVars))
8 transpiledCode = codeGen(verifiedSummaries)
9 return transpiledCode

Figure 3 Example of the MetaLift driver code to transpile the running example shown
in Figure 2.

Instead of designing syntax-driven rules, developers can use MetaLift to build this
transpiler. MetaLift leverages program synthesis to search for transformations that are
semantically equivalent to the source code. Figure 3 shows the driver code developers will
write to implement a compiler using MetaLift, where they provide the following inputs to
MetaLift:

1. Target DSL Definition. First, using MTL and the programming interface provided by
MetaLift, developers define the semantics of the operators in their target DSL . Each
operator represents a program construct in the target language. For instance, for our
Spark compiler, we define the semantics of the map and reduce operators as shown in
Figure 11. In Section 3.3, we discuss how MTL can be used to define the semantics for
each construct in the target language.

2. Search Space Definition. Besides the target language, developers also define the
search space description to guide MetaLift’s synthesis engine (Figure 13). The search
space provides the space of possible programs in which the synthesis engine can look for

S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung 38:5

equivalent program transformations. Using the variable information returned during the
analysis phase performed by MetaLift, developers can use MTL to describe the search
space. This will be discussed further in Section 3.6.

3. Code Generation Rules. The final input that developers provide is the syntax-driven
rules to translate the summaries synthesized by MetaLift into executable target DSL
code. Note that translating from summaries is much easier than translating directly
from source code as the summaries are already encoded using the target DSL’s operators.
Section 3.9 provides more details about how these rules can be implemented.

Developers then write a transpiler driver that invokes the inputs mentioned above (as
shown in Figure 3), using MetaLift’s API as follows:
1. Code Analysis. MetaLift’s Analysis API takes as input the source code to be

translated and compiles it into LLVM intermediate representation (IR), as shown in Line
6 in Figure 3. We use LLVM IR because it allows for the compilation of multiple general-
purpose languages (e.g., C, C++, Fortran) using various front ends, giving MetaLift
the flexibility to support multiple languages on the source side. The goal of the analysis
phase is to compute verification conditions from the LLVM IR. Verification conditions
(VCs) are logical statements that assert that the program is correct with respect to the
given pre-condition and post-condition if they hold. The VCs serve as the specification for
the synthesizer. The analysis phase also returns information about the output variables
and the variables being modified in the source code. We describe MetaLift’s analysis
phase in more detail in Section 3.1.

2. Synthesis and Verification. Once the analysis phase returns the VCs, developers
then invoke MetaLift’s synthesis API, as shown in Line 7 in Figure 3. The VCs
generated during the analysis phase form the synthesizer’s specification. MetaLift
then synthesizes program summaries that meet these specifications. To make the search
tractable, MetaLift’s synthesizer uses the search space description provided by the
developers. These summaries are restricted to be expressed using only the operators in the
target DSL defined by the developers. Logically, a program summary is the post-condition
that captures the program’s final states after execution. Finally, MetaLift formally
verifies that the generated program summary is semantically equivalent to the input
source code using an automated theorem prover. Synthesis and verification phases of
MetaLift are discussed in Section 3.7 and Section 3.8, respectively.

3. Code Generator. In the final step as shown in Line 8 in Figure 3, MetaLift invokes
the user-defined code generation rules to convert the verified summaries into executable
DSL code. The compiled code is then returned back to the user.

3 Framework

In this section, we discuss each component of MetaLift in detail by building a transpiler
for our example in Figure 2.

3.1 Analysis
The front-end of MetaLift takes as input the source code written in a general-purpose
languages which the developers want to transpile to their DSLs. As mentioned, our current
prototype supports languages that can be compiled to LLVM IR. Once compiled to the
LLVM IR, the next step in the analysis phase is to augment the generated LLVM IR to
enable computation of verification conditions.

ECOOP 2023

38:6 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

BB_Start

BB_Loop_Head

BB_Loop_Exit

BB_Loop_Body

(a) LLVM code structure with loops.

BB_Start

BB_Loop_Head

Havoc(vars)

BB_Loop_Exit

BB_Loop_Body

(b) LLVM code structure modified to re-
move the loops.

Figure 4 Transformations performed on loop constructs during analysis phase.

Prior work [18, 24] has recently introduced frameworks for automated verification of
software systems. These frameworks takes as input the description of the system to be
verified, the specification that the system must satisfy, and internally reduces the problem to
symbolic constraints that are then discharged to a theorem prover for verification. However,
MetaLift cannot reuse any of these front-ends for generating VCs as they rely on the source
code already having annotated with invariants and post-conditions. MetaLift instead
models invariants and post-conditions as predicates that take in all live variables at the point
when they are declared, and leave the body of the predicates to be synthesized later on, to
be explained in Section 3.7.

Verification Conditions. In Floyd-Hoare logic (FHL) [19], the verification problem is
abbreviated using the Hoare Triple {A} S {P}. To establish the validity of a Hoare triple,
we need to prove that for all executions starting from states that satisfy A (pre-condition),
after executing statement S, should satisfy P (post-condition). An example of a valid Hoare
triple is {y ≤ x} z := x ; z := z + 1 {y < z}. This problem can be further simplified as
finding a Boolean predicate which characterizes the set of pre-conditions from which every
execution of S would lead a to state that satisfies P. These Boolean predicates are known
as verification conditions. Formally, we can represent this as proving the following logical
statement as A → VC(S, P).

An additional predicate called loop invariant is required for programs with loop constructs
to prove that the post-condition is valid regardless of the number of iterations of the loop.
Thanks to the efficient theorem provers [42, 7], such inference rules provided by FHL can be
encoded in solvers such that any Hoare triple can be mechanically checked for its validity.

In MetaLift, S corresponds to the program statements in the input code to be transpiled,
while A and P correspond to expressions written using MTL to be discussed in Section 3.3.
Our goal is to synthesize a post-condition for each input code that are expressed using the
target language constructs provided by the user, while ensuring that it forms a valid Hoare
triple together with the input code S and pre-condition A.

Transformations for Loop Constructs. For programs that do not have any loop constructs,
generating VCs is straightforward. However, programs with looping constructs requires more
processing. In Figure 4a, we show a simplified control-flow graph of LLVM basic blocks for
a program with loops. For such programs, we first identify the back edges, i.e, the edge
from the loop body to the loop head, and remove that edge to transform the bitcode into
an acyclic graph. To preserve the semantics of the loop after removing the back edge, we
annotate the start of the loop head block with havoc statement as shown in Figure 4b. The

S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung 38:7

havoc statement is introduced for all variables modified in the loop to update their contents
to fresh symbolic variables. Doing so allow us to mimic the effect of executing an arbitrary
iteration of the loop, which will be crucial in generating the correct verification condition.

The acyclic graph now represents any arbitrary iteration of the loop. To prove the validity
of the Hoare triple {A} while G do S {P}, we must identify a loop invariant that holds at
the beginning of the loop, at every iteration of the loop, and at the end of the loop terminates.
As the input code is not annotated with loop variants, to generate VCs which can prove the
validity of the described Hoare triple, we add the following annotations (shown in bold in
Figure 6) to the LLVM code to be transpiled:
1. assert that invariant holds before the entry to the loop (Line 9)
2. havoc the variables being modified inside the loop (Line 13)
3. assume invariant holds before the execution the body (Line 15) and assume loop guard is

true (Line 23)
4. assert invariant holds after the execution of the loop body (Line 35)
5. assert invariant holds after the loop exits (Line 38)
6. assume loop guard is false and assert that the post-condition holds before the program

exits (Line 40)

3.2 Verification Condition Generation

There are several ways to prove functional equivalence of the source and target program.
We adopt VCs as the specification for checking the functional equivalence. VCs enable us
to prove complete functional equivalence between the source and generated target code,
meaning that we can generate a proof of equivalence for all possible inputs. While there
are other potential means to provide specifications, such as using the inputs and outputs
from test cases or relying on the equivalence between a general-purpose program and its
corresponding DSL program, these approaches have serious drawbacks:
1. Using testing as the specification only guarantees correctness for a finite set of inputs

since it’s not feasible to generate all possible test cases. Automating test case generation
is also not always reliable, as it may not cover all paths of the program, and running
these programs might not always be feasible. As a result, the synthesized program will
only be semantically equivalent modulo the inputs and outputs from the test cases that
were used as specification.

2. Checking equivalence between the source and target programs directly would require
encoding the semantics of different constructs appearing in the source, and the most
popular symbolic synthesizers [37, 41] or verifiers [42, 7] do not support semantic reasoning
of loops. These symbolic synthesizers only reason about loops after they have been unrolled
for a finite amount of iterations, effectively converting the loop into straight-line code.
Because of this, it is challenging to check equivalence for programs with loops without
generating VCs and loop invariants, as doing so only provides guarantees up to a certain
bound.

Our VC generation algorithm is inspired from [8]. The LLVM compilation process
generates LLVM bitcode which is represented using the LLVM IR. Figure 6 shows the
abridged LLVM bitcode for the source code in Figure 2a. LLVM bitcode contains multiple
basic blocks, i.e, contiguous sequence of LLVM IR instructions with just one entry and one
exit point. A basic block after the transformation in the analysis phase has the general
structure shown in Figure 5a.

ECOOP 2023

38:8 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

1 blk: bbid
2 assume ea;
3 %i = ...;
4 %i1 = ...;
5 assert eb
6 br label %bbid′

(a) Basic Block structure after the analysis
phase.

1 blk: bbid
2 assume ea;
3 assume %i = ...;
4 assume %i1 = ...;
5 assert eb
6 br label %bbid′

(b) Basic Block structure after converting
instructions to assumes.

Figure 5 Basic block structure of the LLVM bitcode.

1 blk: bb_start
2 %i = alloca %list* ;i = input variable words
3 %i1 = alloca %dict* ;i1 = output variable counts
4 %i2 = alloca i32 ;i2 = loop counter j
5 store %list* %arg, %list** %i
6 store call %dict* newMap(), %dict** %i1
7 store i32 0, i32* %i2
8 ;invariant is true before the exectution of the loop
9 (assert call inv (load i1) (load i2) arg)

10 br label %bb_head
11

12 blk: bb_head
13 (havoc i1 i2)
14 ;invariant is true at the start of the loop body
15 (assume call inv ((load i1) (load i2) arg))
16 %i7 = load i32, i32* %i2
17 %i8 = load %list*, %list** %i
18 %i9 = call i32 length(%list* %i8)
19 %i10 = icmp slt i32 %i7, %i9 ;j < words.size()
20 br i1 %i10, label %bb_body1, label %bb_exit
21

22 blk: bb_body1
23 (assume i10) ;loop guard is true
24 ;instructions to update the counts in the output map (not shown for brevity)
25 %i11 = ...
26 %i12 = ...
27 br label %bb_body2
28

29 ;instructions to update the counts in the output map
30 blk: bb_body2
31 %i28 = load i32, i32* %i2, align 4
32 %i29 = add nsw i32 %i28, 1
33 store i32 %i29, i32* %i2, align 4
34 ;invariant is true after executing the body of the loop
35 (assert call inv ((load i1) (load i2) arg))
36

37 blk: bb_exit
38 (assume not(i10)) ;loop guard is false
39 %i31 = load %dict*, %dict** %i1
40 (assert call ps (i31 arg)) ;post-condition is true

Figure 6 LLVM bitcode for the source code in Figure 2a. Bitcode is annotated with assumes,
asserts and calls to inv and ps for generating the verification conditions.

S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung 38:9

Our VC generation algorithm computes an assertion for each of the basic blocks. For
each basic block BB in our bitcode we introduce a new Boolean variable BBok and the VC
for that block is expressed as:

BBok = VC(S,
∧

B∈Succ(A)

Bok) (1)

where S represents all the instructions of the block and Succ(A) represents the set of successor
basic blocks of block BB.

In addition to the transformations during the analysis phase, we convert all the instructions
in the block to assume statements, as illustrated in Figure 5b.

We then symbolically execute all the instructions in the block to generate the VCs. For
symbolic execution, we maintain two dictionaries to model the memory (m) and registers (r).
m maps memory cells to their values, while r keeps track of the results of the instructions’
execution. The state of the symbolic executor is maintained as a quadruple < m, r , a, b >

that represents the state of the memory, registers, assumptions encountered, and assertions
encountered thus far during symbolic execution, respectively. a then represents the final VC
for the input code fragment after symbolic execution terminates.

store
m′ = m[r [i] 7→ v]

Jstore v iK(< m, r , a, b >) ⇒ < m′, r , a, b >

memory allocation
fresh l r ′ = r [i 7→ l] m′ = m[l 7→ ⊥]

Ji = alloca tK(< m, r , a, b >) ⇒ < m′, r ′, a, b >

load
r ′ = r [i 7→ m[ia]]

Ji = load iaK(< m, r , a, b >) ⇒ < m, r ′, a ∧ (i = m[ia]), b >

havoc
fresh v ′ m′ = m[v 7→ v ′]

Jhavoc vK(< m, r , a, b >) ⇒ < m′, r , a, b >

arithmetic operators (aop)
v = aop(r [ia], r [ib]) r ′ = r [i 7→ v]

Ji = aop ia ibK(< m, r , a, b >) ⇒ < m, r ′, a, b >

binary comparisons (bop)
v = bop(r [ia], r [ib]) r ′ = r [i 7→ v]

Jicmp bop ia ibK(< m, r , a, b >) ⇒ < m, r ′, a ∧ (i = v), b >

assume

Jassume eK(< m, r , a, b >) ⇒ < m, r , a ∧ JeK, b >

assert

Jassert eK(< m, r , a, b >) ⇒ < m, r , a, a → b ∧ JeK >

Figure 7 Computing the VC via symbolic execution on LLVM instructions. The symbol ∧ and
→ denotes logical And and Implies operator respectively.

ECOOP 2023

38:10 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

In Figure 7, we describe how we compute the VC for each type of LLVM opcode, while
Table 1 shows our symbolic executor in action using these rules. To illustrate, the store
rule in Figure 7 states that if the current state of the symbolic executor is < m, r , a, b >,
to symbolically execute a store instruction that stores value v to the cell location stored
at register i , we create a new memory m′ where the cell r [i] is mapped to the value v ,
with all other cells and their mappings remain unchanged from m. Similarly, the memory
allocation rule states that given the current symbolic executor state < m, r , a, b >, to
symbolically execute an alloca instruction that allocates new memory pointing to a value of
type t at cell l with l to be stored in register i , we create a fresh symbolic cell l representing
the pointer to the newly allocated memory, update the register state r to map register i to l
instead, and update the memory state m where cell l points to uninitialized value ⊥. The
new symbolic state < m′, r ′, a, b > is then returned.

As a concrete example, we show the state of the memory, registers and assumes expression
after the execution of each instruction in the block bb_head in Figure 6. For this block,
asserts = null and Succ(A) = {bb_body1, bb_exit}. The computed VC according to the
Equation (1) and rules in Figure 7 would then be:

BB_headok = (assumes → bb_body1 ∧ bb_exit)
assumes = inv(i1_0, i2_1, arg) ∧ (i7 = i2_1) ∧ (i8 = arg) ∧(i9 = length(arg))

∧ (i10 = i21 < length(arg)) (2)

Table 1 Symbolic Execution for the block BB_head in Figure 6 using the inference rules defined
in Figure 7. Each row depicts an LLVM instruction as well as the resulting memory (m) and registers
(r) state after the instruction is symbolically executed. Due to space constraints, we do not show inv
(and True) in all the execution steps.

havoc i1 i2
m= [i1 7→ i1_0, i 7→ arg, i2 7→i2_1] r= []

assumes = True
assume inv ((load i1) (load i2) arg))

m= [i1 7→ i1_0, i2 7→ i2_1, i 7→ arg] r= []
assumes = True ∧ inv(i1_0, i2_1, arg)
assume %i7 = load i32, i32* %i2

m= [i1 7→ i1_0, i2 7→ i2_1, i 7→ arg] r= [i7 7→ i2_1]
assumes = True ∧ (i7 = i2_1)

assume %i8 = load %list*, %list** %i
m= [i1 7→ i1_0, i2 7→ i2_1, i 7→ arg] r= [i7 7→ i2_1, i8 7→ arg]

assumes = (i7 = i2_1) ∧ (i8 = arg)
assume %i9 = call i32 length(%list* %i8)

m= [i1 7→ i1_0, i2 7→ i2_1, i 7→ arg] r= [i7 7→ i2_1, i8 7→ arg, i9 7→ length(arg)]
assumes = (i7 = i2_1) ∧ (i8 = arg) ∧ (i9 = length(arg))

assume %i10 = icmp slt i32 %i7, %i9
m= [i1 7→ i1_0, i2 7→ i2_1, i 7→ arg]

r= [i7 7→ i2_1, i8 7→ arg, i9 7→ length(arg), i10 7→ (i2_1 < length(arg))]
assumes = (i7 = i2_1) ∧ (i8 = arg) ∧ (i9 = length(arg)) ∧ (i10 = i2_1 < length(arg))

Similarly, the VCs for other basic blocks can be constructed. Once the VCs have been
generated for the all basic blocks, the VC for the entire program can be expressed as
R → BB_startok where R is the conjunction of VCs for each block and BB_startok is the
Boolean variable introduce for the first block in the LLVM bitcode.

S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung 38:11

Note that the calls to invariant and post-conditions are just placeholders and they are
synthesized during the synthesis phase of MetaLift. At the end of the analysis phase
MetaLift would generate the following verification conditions:
1. ∀σ. Pre(σ) → Inv(σ)
2. ∀σ, σ′.Inv(σ) ∧ Body(σ, σ′) → Inv(σ′)
3. ∀σ. Inv(σ) → Post(σ)

For simplicity, we do not show the verification conditions using LLVM basic block structure.
The verification conditions logically state that
1) invariant must hold before the loop
2) invariant must be inductive i.e. it should be true at every iteration of the loop and
3) invariant must assert the post-condition upon exiting the loop.

Internally, MetaLift represents the VCs using MTL which we describe in the next
section.

3.3 MTL
We now describe MTL in detail. MetaLift provides developers with an API to use the
constructs in the MTL to define the operators of their target DSL. This is in contrast to the
prior standalone transpilers [3, 35, 20] where the semantics of the target DSL are embedded
within the transpiler and are not reusable. In Section 3.5, we show how developers can use
MTL to describe the semantics of the operators in their target DSL.

e ∈ expr := l | var | e1 bop e2 | if e1 then e2 else e3 | ¬e |
f (e1, e2, ..., en) | fu(e1, e2, ..., en) | elist | emap | etup

elist ∈ listExpr := empty | length(e) | get(e, i) | append(e, i) |
prepend(i , e) | concat(e1, e2) | tail(e, i) | take(e, i)

emap ∈ mapExpr := empty | get(emap, i) | insert(emap, e1, e2)
etup ∈ tupExpr := make(e1, e2, ..., en) | get(etup, i)

l ∈ literal := True | False | Integer Constant
bop ∈ binaryOp := and | or | implies | = | + | − | ∗ | / | > | <

Figure 8 Grammar definition of MTL.

MTL is a strongly-typed functional language that consists of three dialects: one for
MetaLift to represent VCs internally, one for users to define their target language operators,
and another for users to describe the search space. Figure 8 shows the core grammar of
MTL that is shared between the three dialects. Even though MTL is a small language, it is
expressive enough that can be used to specify the semantics of real-world DSLs, as we will
discuss in Section 4.

As shown in Figure 8, the core expressions can be literals, variables passed in as arguments
to the function, conditional expressions, expressions combined using Boolean operators (MTL
supports all arithmetic, logical and relational operators). MTL also supports operations over
list, tuples, and associative maps. It also supports uninterpreted functions (represented as fu
in Figure 8). Uninterpreted functions have no definition; their defining characteristic is simply

ECOOP 2023

38:12 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

that they are deterministic, i.e., for the same input, they always return the same output.
They are useful in modeling certain operators (for example, complex math functions that are
used in both the source and target languages) for which we only care about determinism.

MTL also provides support for three native data structures: lists, tuples and associative
maps, along with some common operations over these data structures. For lists, in addition
to standard list operations such as length, append, and value retrieval, MTL supports list
comprehension functions, tail(lst, index), which returns all the elements after the first index
elements of the list, and take(lst, index), which returns the first index elements of the list.
For associative maps and tuples, MTL provides functions for inserting and retrieving values.
Developers can also combine these data structures to construct nested data structures such
as a list of tuples, a list of lists and a list of maps.

In summary, the different dialects of MTL are used for the following purposes during
program transpilation:
1. To represent the VCs generated during the analysis phase.
2. To specify the semantics of the target DSL.
3. To describe the search space for valid program transformations.

3.4 Expressing Verification Conditions in MTL

v ∈ vcExpr := assert(e) | assume(e) | havoc(var)

Figure 9 Additional constructs in MTL for verification condition generation.

Verification conditions generated during the analysis phase are encoded using the con-
structs in the MTL. As described in the Section 3.1, VC generation requires some additional
constructs. We show these constructs in Figure 9 as vcExpr . These constructs include
assume, assert, and havoc, which takes core expressions as arguments. Their semantics
are defined earlier in Figure 7. vcExpr includes these constructs in addition to all the core
constructs described in Figure 8. These constructs are useful for annotating the LLVM
bitcode with invariant and post-condition placeholders. These are utilized by MetaLift
internally and are not accessible to the developers via MTL API.

3.5 Expressing Target DSLs in MTL
As discussed in Section 2, MetaLift builds transpilers by leveraging program synthesis.
MetaLift searches for program summaries that are semantically equivalent to the source
code. Program summaries capture all the changes to the outputs of the source code and
are expressed using the operators in the target DSLs. Once the program summaries are
synthesized developers can write simple syntax-driven rules to translate them to the concrete
syntax of the target DSL.

In order to synthesize the program summaries, the synthesizer requires the semantics of
the DSL operators. Developers can implement their domain-specific operators using MTL
as defined in Section 3.3. In Figure 11, we describe how map and reduce functions from the
Spark DSL can be defined using MTL.

In MetaLift, each construct in the target language is defined using a dialect of MTL.
In Figure 10, we show the two constructs, function declaration (fnDecl) and axioms (axiom),
that are added to the core language described in Figure 8 to form this dialect for defining

S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung 38:13

f ∈ fnDecl := name(arg1 : t1, arg2 : t2, ..., argn : tn) : tr → e
a ∈ axiom := name(arg1 : t1, arg2 : t2, ..., argn : tn) → e

Figure 10 Additional constructs in MTL for defining the operators in the target language.

the operators in the target language. MTL supports recursive and higher-order functions.
The target language definition is a collection of function declarations and axioms, where the
body of both constructs are defined using expr ’s in the core MTL.

In addition to the definitions of the operators in the target DSL, developers can provide
properties specific to the operators in the DSL. Some of the properties that developers can
define for the map and reduce operations are shown in Figure 11. These properties are
helpful during the verification phase of MetaLift. We give more details about how these
properties are used in Section 3.8.

Modern DSLs contain hundreds of functions and therefore searching for program sum-
maries directly in the DSL APIs is not feasible. To make the synthesis algorithm tractable,
MetaLift searches for summaries only using the operators defined by the developers. The
high-level nature of MTL enables the developers to succinctly define the operators and
abstract out the details of these operators in the DSL API. For example, the map definition
in Figure 11 can represent the different variations of the map functions (map, flatMap,
mapToPair) available in the Spark DSL.

3.6 Describing Search Space for Synthesis
Developers additionally provide the search space description for the synthesizer. Developers
provide this description for program summaries as well as any invariant or functions to be
synthesized (for example, in Spark, users can ask the synthesizer to generate the bodies of
the λm and λr functions). In MetaLift, the search space is encoded using a context-free
grammar (CFG), with the expression that needs to be synthesized at the top level, and the
production rules specifying the possible values that the expression can take.

We use a different dialect of MTL for users to describe the search space. Built on top of
the core language and as shown in Figure 12, MTL provides one non-deterministic construct,
Choose, which the developers can use to describe the search space for the synthesis phase.
The search space description is used to guide the synthesis process. Semantically, Choose lets
the synthesizer return any of expressions in its argument list. It can be recursively nested or
evaluate to one of the core expressions.

The search space description impacts the synthesizer’s performance. If the grammar is
too expressive, the synthesizer may take a long time to synthesize the correct expressions;
conversely, if the grammar is too restrictive, the synthesizer may fail to find the correct
expressions that satisfy the specification. Prior work [20, 2, 3, 14] specialized the grammar
descriptions for the target domains and embedded them in the tools. Unfortunately, developers
had no way of controlling the expressiveness of these grammars. MetaLift instead allows
developers to programmatically control the grammars and even tune grammars for each
benchmark separately.

The Choose function in Figure 12 is the basic construct that developers can use to
describe the search space. Choose(ec , ec) allows the users to specify the set of candidate
values for a particular expression. The candidate values (e in Figure 12) are described using
the constructs in MTL (Figure 8). The synthesizer then selects from this set of possible

ECOOP 2023

38:14 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

1 def targetLang():
2 fnDecl("map", lst, λm) =
3 if length(lst) == 0 then empty
4 else concat(λm(get(ls, 0)), map(tail(lst, 1)))
5

6 fnDecl("reduce", lst, λr) =
7 if length(lst) == 0 then 0
8 else λr(get(lst, 0), reduce(tail(lst ,1)))
9

10 fnDecl("reduceByKey", lst, λr) =
11 reduceByKeyHelper(lst, getkeys(lst), {}, λr)
12

13 fnDecl("redcueByKeyHelper",lst, keys, outMap, λr) =
14 if length(lst) == 0 then outMap
15 else reduceByKeyHelper(lst, tail(keys, 1),
16 insert(outMap, get(keys, 0), reduce(getVals(outMap, get(keys,0)), λr)), λr)
17

18 fnDecl(getKeys, lst): ...
19

20 fnDecl(getVals, lst): ...
21

22 # operator specific properties
23 axiom("distributiveMapLemma", lst1, lst2) =
24 map(concat(lst1, lst2), λm) = concat(map(lst1, λm), map(lst2, λm))
25

26 axiom("distributiveReduceLemma", lst1, lst2, key) =
27 get(reduceByKey(concat(lst1, lst2), λr), key) =
28 get(reduceByKey(lst1, λr), key) +
29 get(reduceByKey(lst2, λr), key)
30

31 axiom("inductiveMapLemma", lst, index) =
32 implies(and((index ≥ 0), (index < length(lst))),
33 map(tail(lst, index), λm) = concat(λm(get(lst,index)),
34 map(tail(lst, index + 1), λm)))
35

36 axiom("inductiveMapReduceLemma", lst, index) =
37 implies(and((index ≥ 0), (index < length(lst))),
38 reduce(map(take(lst, index + 1), λm), λr) =
39 λr(reduce(map(take(lst, index), λm), λr), λm(get(lst, index))))

Figure 11 Semantics of the operators in Spark DSL defined using constructs in MTL.

ec ∈ chooseExpr := Choose(ec , ec) | e

Figure 12 Additional constructs in MTL for description of the search space.

candidates, an expression that meets the specification. In terms of the CFG, Choose describes
the production rules, i.e., the expansion rules for a non-terminal in the grammar. These
grammars can potentially be recursive in nature. We provide a “bound” parameter in our API
to control the depth of these grammar. This provides additional flexibility to the developers
to programmatically define the depth of unrolling of their search space.

The VCs mentioned in Section 3.1 can be trivially satisfied by setting the invariant and
post-condition to be True. The search space description helps prevents the synthesizer from
generating such trivial solutions. At a high-level, MetaLift requires the post-condition
search space to have the following structure:

S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung 38:15

∀vo ∈ outputVars . vo = ec ∈ chooseExpr

where outputVars is the set of all output variables in the source code. e in chooseExpr are
expressions described using the core constructs in MTL using set of all the input arguments
and the variables modified in the program. For the example in Figure 2, outputVars = {count}
and modVars = {j , word}. Logically, it states that the output variables in the program should
be expressed as an expression over the operators in the target DSL. MetaLift uses standard
static analysis techniques to infer these variables during the analysis phase. In addition to
restricting the synthesizer from generating trivial solutions, the search space description
helps in scaling the synthesis problem.

Figure 13 shows one possible grammar description for the post-condition, invariant,
mapper, and the reducer function for the translation problem described in Figure 2. The
grammar for the program summary asserts that the output variable equals some MapReduce
expression over the input data. The grammar for the invariant reasons about the bounds of
the loop counter and how the count variable is modified in each iteration of the loop. The
mapper function can return an empty list or a list of key-value pair and the reducer function
can choose to reduce the input values using one of the arithmetic operators. In this grammar
we have restricted the output to be a map, reduce or map followed by a reduce operation.

As mentioned earlier, developers can programmatically control the grammar structure.
In the Spark transpiler, a few possible search strategies include incrementally increasing
the number of map reduce operations that can be used to express the output variable or
incrementally increasing the number of emit statements that the mapper function can use.
Figure 14 shows how the driver code in Figure 3 can be modified (less than 20 LOC) to
implement the incremental search for number of emit statements. In Figure 14, each iteration
of loop increments the number of emits by 1 until the synthesizer finds the semantically
equivalent program summaries. This programmatic definition of grammar allows developers
to experiment with the synthesis engine without needing to be synthesis experts. Some of
these strategies were encoded in the previous tools [3] to make the search tractable.

MetaLift automatically generates the program summaries once the developers have
provided the semantics of their operators and the search space description.

3.7 Synthesis
We now discuss the synthesis phase of MetaLift. A typical program synthesis problem
is characterized by three parameters: the specification, space of possible programs and the
search techniques used by the synthesizer to search for candidate solutions. In MetaLift,
the specification are the VCs generated from the source code during the analysis phase and
the space of possible programs is represented by the operators and search space specified by
the developer. During the synthesis phase, MetaLift uses this information to synthesize the
program summaries and any necessary invariants. Essentially, program summaries are logical
statements asserting what should be true if the program terminates and it should hold for
all possible executions of the program starting from a state that satisfies the pre-condition.

Formally, the synthesis problem can be stated as

∃ps, inv1, inv2, ..., invn. ∀σ. VC(S, ps, inv1, inv2, ..., invn, σ) (3)

The goal of the synthesizer is to infer the definitions of ps and inv (in case of programs with
loops) such that for all program states σ, the verification conditions (generated during the
analysis phase) for a given input source code S is true.

ECOOP 2023

38:16 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

1 def grammar(j, counts, words):
2 def psGrammar(counts, words):
3 MR = Choose(map(words, λm), reduce(words, λr), reduceByKey(map(words, λm), λr))
4 ps = Choose(counts = MR)
5 return ps
6

7 def invGrammar(j, counts, words):
8 intConst = Choose(0,1)
9 listChoice = Choose(words, take(words,j), tail(words,j)

10 counterExp1 = Choose((j ≤ intConst), (j ≥ intConst),
11 (j < intConst), (j > intConst))
12 counterExp2 = Choose((j ≤ length(words)), (j ≥ length(words)),
13 (j < length(words)), (j > length(words)))
14 outExp = Choose(counts = MR)
15 MR = Choose(map(listChoice, λm), reduce(listChoice, λr),
16 reduceByKey(map(listChoice, λm), λr))
17 inv = Choose(And(counterExp1, counterExp2, outExp))
18 return inv
19

20 def mapperGrammar(v):
21 litChoice = Choose(0,1,v)
22 Emit = Choose(Tuple(litChoice,litChoice),litChoice)
23 λm = Choose(append(empty, Emit))
24 return λm
25

26 def reducerGrammar(v1, v2):
27 λr = Choose((v1 + v2), (v1 - v2), (v1 * v2), (v1 / v2))
28 return λr

Figure 13 Search space description for the example in Figure 2 using MTL.

1 def searchSpace(liveVars, modVars, numEmits):
2 def generateEmits(numEmits):
3 if numEmits == 1: return append([], Emit)
4 else:
5 return append(Emit, generateEmits(numEmits-1))
6

7 def mapperGrammar(v, numEdits):
8 litChoice = Choose(0,1,v)
9 Emit = Choose(Tuple(litChoice,litChoice),litChoice)

10 λm = Choose(generateEmits(numEmits))
11 return λm
12

13 def transpiler(source): # incremental search driver program
14 liveVars, modVars, VC = analyze(source)
15 numEmits = 1
16 isSynthesized = False
17 while(isSynthesized == False):
18 grammar = searchSpace(liveVars, modVars, numEmits)
19 verifiedSummaries = synthesize(VC, targetLang(), grammar)
20 if verifiedSummaries != None:
21 isSynthesized = True
22 else:
23 numEmits += 1
24 transpiledCode = codeGen(verifiedSummaries)
25 return transpiledCode

Figure 14 Modified driver code to implement incremental grammar search for controlling the
number of emits in the λm function.

S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung 38:17

Many search techniques have been proposed to solve the problem stated in Equation (3).
These include enumerative search [5], deductive search [30], constraint solving [38], statist-
ical [34] and neural approaches [26]. Currently, MetaLift relies on Rosette, an off-the shelf
synthesis solver [41] to perform this search; in principle, it could use any synthesis solver
supporting the needed theories. To leverage Rosette as the synthesizer, we need to translate
the MTL descriptions in the Rosette language. Due to the highly-syntactic nature of the
Rosette language, this translation is straightforward. Synthesizer enumerates candidates for
ps (and invs) from the search space described by the developer until it finds one that satisfies
the specification.

Currently available synthesizers have limited support for handling recursive functions
in the search space. Internally, synthesizers use theorem provers to determine whether a
candidate is valid, i.e., whether it meets the specification. However, while MTL supports
list and other data structures, the theory of lists in theorem provers is incomplete and thus
insufficient to verify all possible summaries the synthesizer might generate. As a result, the
synthesizers struggle to solve the synthesis problem described in Equation (3). To make
synthesis tractable, we simplify the problem by first performing bounded synthesis, and
subsequently sending candidate summaries that pass bounded synthesis to a general theorem
prover to validate. In Equation (3), rather than searching for program summaries that
satisfy the VCs for all program states (σ), we search only for a finite set of program states.
For example, we limit all list data structures to lengths of up to size 2, and all integers
to bit-widths of up to 7 bits. These parameters can be changed by the developers using
MetaLift’s API. Note that we bound the program states only during the synthesis phase,
and during verification we check if the synthesis phase output is true for all program states.

The summaries returned by the synthesizer using the target language and search space
defined in Figure 11 and Figure 13, respectively, are shown in Figure 15. The output variable
count is synthesized as a series of map and reduce operations. In the mapper phase, λm maps
each word w in the input list to the key-value pair (w , 1). In the reducer phase, reduceByKey
groups all the unique keys in the map output, reduces each group using the add operator
and returns a map containing the key-value pairs (w , frequency).

After bounded synthesizer generates the summaries, they are parsed and represented
using the constructs in MTL. Note that the generated summaries are not in the concrete
syntax of Spark yet but it is expressed in the operators defined by the developers. Developers
can easily convert these summaries using simple syntax-driven rules which we describe in
Section 3.9. In the next section, we provide details about the verification of the synthesized
summaries and invariants, as well as proving that the inferred invariant is indeed sound.

3.8 Verification

Given candidate summaries that are generated by the bounded synthesizer, MetaLift next
automatically performs the full verification of the synthesized summaries and invariants. As
previously stated, the synthesized summaries and invariants generated during the synthesis
phase satisfy the verification conditions only for a finite set of program inputs. For instance,
in our running example, the synthesis phase returns a solution that is only verified for lists
with lengths up to 2 and, integers with bit-width up to 7. The goal of the verifier is to
prove that the program summaries are valid for all the program states (all integers and
lists sizes). MetaLift uses satisfiability modulo theories (SMT) solvers [10, 42, 7] to solve
this verification problem. Formally, the theorem prover checks for the satisfiability of the
following problem

∀σ . ¬VC(S, ps, inv1, inv2, ..., invn, σ) (4)

ECOOP 2023

38:18 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

def ps(counts, words):
counts = reduceByKey(map(words, λm)), λr))
return counts

def inv(j, count, words):
return And((j ≥ 0), (j ≤ length(words)),

(count = reduceByKey(map(take(words, j) λm), λr)))

def λm(v):
return append(empty, Tuple(v,1)))

def λr(v1, v2):
return (v1 + v2)

Figure 15 Program summaries and invariants generated by the synthesizer for the source code in
Figure 2a.

where the definitions inferred during the synthesis phase are substituted for the placeholders
for ps and inv ’s in the VCs. Negating the assertion and checking if there exists some program
state that satisfies the assertions is standard practice in program verification: if the theorem
prover discovers a program state that satisfies the negated assertion then the generated
program summaries or the invariants are incorrect. However, if there exists no such state then
the inferred summaries and the invariants prove the validity of the verification conditions
and thus the semantic equivalence of the summaries to the source code.

As mentioned in Section 3.3, MTL supports various data structures. MetaLift models
list and tuples in MTL using the SMT solver’s built-in functionality of algebraic data types.
Algebraic data type definition requires the user to declare the data type and associate a sort
(type) with the declaration. Following that, users declare the accessors and constructors
for data retrieval and creation of new data structures, respectively. Associative maps in
MTL are modeled using the the SMT solvers built-in theory of arrays. MetaLift generates
the verification problem automatically by translating MTL to SMT-Lib format [9]. As the
SMT-Lib format does not support higher order functions, we inline them while converting.

Figure 16 shows the simplified version of the verification condition generated during the
analysis phase for the source code in Figure 2a. We now show that the invariant described
in Figure 15 is necessary and sufficient to prove the verification conditions.

Initial Condition. The initial condition asserts that the loop invariant holds immediately
before the loop. Before the loop executes, j = 0 and counts is an empty map. The invariant
expresses counts as a series of map and reduce operation applied to the first j elements of
the input words list. Since j = 0, the map reduce operation will be applied to an empty list,
returning an empty map according to the definitions in Figure 11. Hence, the invariant holds
in the initial state.

Preservation. The loop preservation VC asserts that if the loop invariant hold at any
arbitrary iteration, j, of the loop then it should also hold in the next iteration, j + 1, of
the loop. The notation counts[w 7→ e] denotes the assignments statement, i.e., the key w
in counts gets assigned the value e. This is proved by induction. We first prove that the
invariant holds at the initial condition, we assume that the invariant holds at iteration j,
i.e., the map reduce operation has already computed the frequency of first j words in the
list. We need to show that the invariant holds after one more execution of the loop. This is

S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung 38:19

true since in the j + 1th iteration of the loop, the map reduce operation would compute the
frequency of the first j + 1 words from the input list, thereby incrementing the count of the
j + 1th word in the output map counts by 1.

Termination. Finally, the termination condition states that if the loop terminates, the
invariant should imply the post condition. This is true because at the end of the loop
j = size(words) and the map reduce operation would have computed the frequencies for all
the words in the list which is the same expression as the program summary.

Initial Condition Inv(j = 0, counts = {}, words)

Preservation Inv(j , counts, words) ∧ (j < size(words)) →
Inv((j + 1) , counts[words[j] 7→ words[j] + 1] , words)

Termination Inv(j , counts, words) ∧ ¬ (j < size(words)) → PS(count , words)

Figure 16 Verification conditions for the source code in Figure 2a.

3.8.1 Leveraging Additional Axioms

Verifying loop invariants in general is undecidable, as MTL supports recursion and higher-
order functions. To aid in verification, developer can provide additional axioms to the
theorem prover to prove the validity of loop invariants and program summaries for VCs such
as in Figure 16. Figure 11 shows how developers can use MTL to provide operator specific
axioms to MetaLift. These axioms are translated from MTL to SMT-Lib format and
included in the verification problem by MetaLift. These axioms from our experience are
simple properties like associativity, commutativity, and distributivity of the operators in the
target language. If developers only need to ensure bounded correctness for the translation,
they don’t need to define these axioms.

Figure 17 shows the SMT-Lib translation of the map operator axioms described in
Figure 11, where map_λm is the inlined definition of the map operator. The first axiom
states that the map operators is distributive over two input lists. While the second one
asserts the inductive property of the map operator. Other properties described in Figure 11
can be similarly translated to SMT-Lib format.

1 ;distributive map lemma

2 (assert (forall ((lst1 (List T)) (lst2 (List T)))

3 (= (map_λm (concat lst1 lst2)) (concat (map_λm lst1) (map_λm lst2)))))

4

5 ;inductive map lemma

6 (assert (forall ((lst (List T)) (index U))

7 (=> (and (>= index 0) (< index (length lst)))

8 (= (map_λm (tail lst index)) (concat (λm (get lst index))

9 (map_λm (tail lst (+ index 1))))))))

Figure 17 Translation of the axioms defined using MTL to SMT-Lib format.

ECOOP 2023

38:20 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

3.9 Code Generation
The program summaries verified by MetaLift are expressed using the high-level operators
defined by the developers. The final step is to implement syntax-driven rules to translate
these summaries to the concrete syntax of the target DSL. This translation is much easier
than the general translation from source language to target DSL API because the developers
1) only need to write rules for the operator they defined in the target language and
2) do not need to worry about semantic equivalence to the source code as MetaLift

automatically verifies the program summaries.
In MetaLift, we conduct synthesis in the high-level MTL rather than searching through the
concrete syntax of the DSL. This approach is used to make the search process more tractable
during synthesis. A DSL may include multiple variations of the same operator, with each
having minor differences while they are functionally equivalent. For instance, the Spark DSL
contains multiple variations of the map operator (map, flatMap, mapToPair). Rather than
searching through these different concrete implementations, we conduct the search using a
single implementation that captures the different operators’ high-level semantics. Once a
solution is synthesized in the MTL, converting it to concrete syntax becomes straightforward.
The developer can decide which variation to use on basis of the return value of the λm function.
For example, if the λm function returns a key-value pair or list with single key-value pair, the
developers can use mapToPair from the DSL. If the λm function returns a list containing
multiple key-value pairs, the developers can then use flatMapToPair. Table 2 shows an excerpt
of the translation rules for the Spark DSL. Applying the translation rules to the summary
generated in Figure 15 would result in words.mapToPair(v -> (v,1)).reduceByKey((v1,v2)

-> v1 + v2). Another advantage is that if the same operator can exists in multiple DSL
(e.g. convolution in tensor processing libraries), we only need to perform the search once and
then code generation rules can translate the summary into concrete syntax of any library. In
Figure 18, we show the implementation for some of these rules for the Spark DSL.

Table 2 Translation rules for converting program summaries in MTL to Spark DSL.

Pattern Translation Rule
Jmap(l , λm → list(Pairs)K l.flatMapToPair(JλmK)

Jmap(l , λm → (Pair or list(Pair))K l.mapToPair(JλmK)
Jmap(l , λm → T)K l.map(JλmK)

Jreduce(l , λr)K l.reduce(Jλr K)
JreduceByKey(l , λr)K l.reduceByKey(Jλr K)

Jλm(v) → e)K (v -> JeK)
Jλr (v1, v2) → e)K ((v1,v2) -> JeK)

Je1 aop e2K Je1K aop Je1K

4 Evaluation

We now describe our experience in building synthesis-driven transpilers using MetaLift. We
have implemented the core of MetaLift in Python. We provide developers with a Python
API for using the constructs in our MTL for defining the semantics of their DSL operators
and search space description. MetaLift uses Rosette [41] as its synthesis back-end engine,
and supports Z3 [42] and CVC5 [7] for verification.

In this section, we show that our MTL is general enough to be used to create compilers
for different DSLs. We demonstrate this by creating compilers using our framework for two
DSLS that target very different applications:

S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung 38:21

1 def codeGen(verifiedSummaries):
2 ps = verifiedSummaries['ps']
3 def eval(expr):
4 if expr[0] == "reducebykey":
5 return "%s.reducebykey(%s)"%(eval(expr[1]), eval(expr[2]))
6 elif expr[0] == "map":
7 if len(lm) == 1: map_func = "mapToPair"
8 else: map_func = "flatMaptoPair"
9 return "%s.%s(%s)"%(expr[1],map_func,eval(expr[2]))

10 ...
11 return eval(ps)

Figure 18 Implementation of syntax-driven rules for translating summaries to executable code in
target DSL.

1. Distributed Computing DSL. In this case study, we build a compiler that translates
sequential Java code to Spark DSL [43]. Spark provides users with APIs to perform
large-scale data processing efficiently by distributing the computations across multiple
clusters.

2. Hardware DSL. In this case study, we build a compiler that translates Domino [35],
which allows users to implement data-plane algorithms (such as congestion control and
load balancing) for network switches to Banzai atoms, which represent atomic operations
typically available in network switches. By combining these atoms, users can implement
various programmable network switches with Banzai.

3. Vector Operation DSL. In this case study, we build a compiler that translates sequential
C++ code to vector operations. For loops are generally slower compared to their vectorized
operations on large datasets and libraries such as Scipy, Pytorch and Tensorflow provide
efficient implementations of these vectorized operators.

These case studies differ in the program structure of the source code, in addition to
targeting different domains. The Spark and vector case study contains programs with loops,
whereas Domino contains only straight line programs with no looping constructs. Prior work
[3, 35] implemented these case studies as two separate specialized compilers. We demonstrate
that MetaLift can be used to create all these compilers, and that MetaLift simplifies the
process of building DSL compilers that leverage program synthesis.

4.1 Case Study: Spark
MapReduce [15] is a popular programming paradigm which enables users to write compute
intensive-applications capable of processing massive datasets by distributing the computations
across multiple clusters. Mapreduce programming model decomposes the processing into
two primitives map and reduce. MapReduce first breaks down the dataset into multiple
independent chunks and then uses the following three stages to process the data:
1. map phase: each node in the cluster receives a small chunk of the data. Each node

then locally processes the data by applying the mapper function and produces a set of
key-value pairs.

2. shuffle phase: all the key-value pairs from different mapper functions are then sorted,
grouped together by key and then redistributed to different nodes such that each node
receives values belonging to the same key.

3. reduce phase: each node then aggregates the values using the reducer function.

ECOOP 2023

38:22 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

Spark [43] is an open-source analytics framework. Spark provides users with highly-efficient
implementations of map and reduce operations via its APIs in high-level languages such as
Python and Java.

To leverage the optimizations provided by the MapReduce paradigm, Casper [3] and
Mold [31] are two compilers that automatically translate legacy code written in Java to
sequence of map and reduce operations. Casper used program synthesis to perform the
transformations, whereas Mold used a syntax-driven rule based approach. We demonstrate
that using MetaLift developers can build the core capabilities of the Casper toolchain by
easily defining the semantics of the map and reduce using our MTL.

MetaLift’s implementation of Casper. We manually rewrote the Casper benchmarks from
Java to C++, as MetaLift’s frontend currently do not support Java. We then define the
semantics of the map and reduce operations using our MTL, as illustrated in Figure 11. We
also provide additional axioms to assist the verifier in proving validity of the synthesized
program summaries and loop invariants (Lines 23-39 in Figure 11). As shown in Figure 13,
using MTL we provide the description of the search space for the program summaries,
invariant, mapper and reducer functions. Casper implemented incremental grammar search
to make the search tractable, and a cost-based evaluation model to select from different
semantically equivalent program summaries. In our MetaLift implementation, we use
incremental search and in Figure 14 we describe how developers can easily modify the driver
code to implement such search strategies.

Results. We evaluate our implementation on the benchmarks [1] that were successfully
translated by Casper. Our implementation translates 44 benchmarks of the 49 benchmarks
that Casper translated. Synthesizer times out on the five benchmarks which our implementa-
tion failed to translate. We believe the reason for these failures is that MetaLift uses LLVM
to generate verification conditions, whereas Casper implemented a specialized verification
condition generator for Java source code directly, resulting in considerably more optimized
VCs that synthesizers can easily solve. We use a timeout (synthesis + verification) of 60
minutes for all the benchmarks. The average running time for our implementation of the
Casper benchmarks was ≈ 3mins. We observed that MetaLift-generated code had the
same structure to the ones which Casper synthesized (i.e., same number of map reduce stages
and same implementation of the mapper and reducer functions), so we expect the output
code to have similar performance as that generated by Casper. In contrast to Casper, which
required 25578 lines of code, our implementation requires less than 1000 lines.

4.2 Case Study: Domino
Domino [35] is a domain-specific language for data-plane algorithms that run on programmable
line-rate switches. The Domino DSL provides a C-like interface to define a “packet transaction”
on a stream of network packets. While the syntax of Domino is a subset of C, there are a
number of restrictions on memory allocation, loops, and control flow structure to prevent
writing Domino programs which cannot be executed at “line-rate” (the speed with which
packets arrive on a programmable switch). A particularly relevant restriction is that Domino
is loopless, obviating the need to synthesize loop invariants as required in Spark. Figure 21
contains an example of a packet transaction written in Domino which implements a simple
Rate-Control Protocol (RCP) [40] by accumulating the sum of packet round-trip-times
(RTTs) for which the RTT is under the maximum allowable value.

S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung 38:23

1 StateResult atom_template(int state_1, int state_2, int pkt_1, int pkt_2) {

2 if (rel_op(Opt(state_1), Mux3(pkt_1, pkt_2, C()))) {

3 state_1 = Opt(state_1) + Mux3(pkt_1, pkt_2, C());

4 }

5 StateResult ret = new StateResult();

6 ret.result_state_1 = state_1;

7 ret.result_state_2 = state_2;

8 return ret;

9 }

Figure 19 An example of a Banzai atom used in the Domino compiler [36].

Domino compiles to Banzai, a machine model for programmable line-rate switches. The
Banzai target encodes hardware constraints fundamental to these switches, the most important
of which is atomicity, thereby guaranteeing that packet operations occur transactionally.
Banzai provides an abstraction over programmable switch architectures with the notion of
an atom, a stateful processing unit that contains atomic operations which can be used to
implement data-plane algorithms. An example of a Banzai atom is given in Figure 19.

Compilation to Banzai. The Domino compiler [35] has a three-stage pipeline to compile a
feasible Domino program to Banzai. In the first stage, the compiler preprocesses the code by
1) recursively transforming branches into conditional assignments
2) rewriting operations on state variables to occur on temporary packet fields instead
3) converting to static single-assignment (SSA) form and
4) flattening to a three-address code representation.

In the second stage, the Domino compiler decomposes the input code into a sequence of
“codelets”, a smaller block containing three-address code. To do so, the compiler executes
dependency analysis on the input code to form a dependency graph. The compiler splits the
input code into strongly-connected component blocks (“codelets”), and forms a meta-directed
acyclic graph of these codelets, thereby capturing block-scale dependencies. The compiler
then schedules the codelets in topological order to ensure that all dependencies are satisfied.

Finally, the Domino compiler performs code generation by
1) distributing work throughout codelets to ensure that no block takes too long (the “pipeline

width” constraint) and
2) using the SKETCH [37] program synthesizer to map each codelet to one of a set of Banzai

atoms which are feasible in hardware.

MetaLift implementation of Domino. We demonstrate how MetaLift can be used to
significantly simplify the synthesis of Domino benchmarks to Banzai atoms. First, we
encode the Banzai target language and grammar as a set of stateless operations, specified in
Figure 20. By ensuring our target language and grammar contains only stateless operations,
we guarantee atomicity. We then decompose the Domino benchmarks into codelets – which
we represent as C++ functions – as in the second stage of Domino compiler. However, we
make two key assumptions:
1) we assume that array reads and writes happen in between codelets to ensure our target

language and grammar does not need stateful operations

ECOOP 2023

38:24 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

1 def targetLang():
2 ## Variable and Constant Getters
3 def const(): return Choose(*CONSTANTS) # CONSTANTS is a list of allowed constants
4 def var(): return Choose(*VARS) # VARS contains the input to the codelet
5 def var_or_const(): return Choose(var(), const())
6 def opt(n): return Choose(n, 0)
7

8 ## Banzai Atoms
9 def arith_op(a, b): return Choose(a + b, a - b, a * b)

10 def rel_op(a, b): return Choose(a == b, a != b, a <= b, a < b, a > b, a >= b)
11 def raw(): return opt(var()) + var_or_const()
12 def rw(): return var_or_const()
13 def mul_acc(): return opt(var()) * var_or_const() + var() + var()
14

15 def pred_raw():
16 if rel_op(opt(var()), var_or_const()): return opt(var()) + var_or_const()
17 else: return var()
18

19 def if_else_raw():
20 if rel_op(opt(var()), var_or_const()): return opt(var()) + var_or_const()
21 else: return opt(var()) + var_or_const()
22

23 def sub(): ...
24

25 def nested_ifs(): ...

Figure 20 The semantics of the target Banzai atoms defined using MTL.

Figure 21 End-to-end synthesis of Domino DSL to Banzai via MetaLift.

2) and we assume that each codelet has up to three outputs, all stored in temporary packet
fields, and that each later codelet in a “pipeline” receives the set of all relevant outputs
from prior codelets.

Finally, we compile the decomposed Domino benchmark to LLVM IR using Clang, and then
programmatically synthesize each codelet to the target language and grammar.

We show an end-to-end example of synthesizing a Domino benchmark in Figure 21. The
MetaLift synthesized summary contains three atoms, two of which are pred_raw (see
Figure 20 for atom definitions) and one is a stateless arithmetic operation. AddStateRet3 is
not an atom, but rather the language primitive to output three return values (the new state
and packet variables) due to how it is represented the C++ Domino benchmark.

S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung 38:25

Table 3 Comparison of maximum atoms per stage used in the synthesized output of the Domino
compiler and MetaLift. The maximum atoms per stage for each benchmark are taken from the
Domino paper [35].

Benchmark name MetaLift atoms/stage Domino atoms/stage
Bloom filter 3 3
Heavy Hitters 3 9
Flowlets 2 2
RCP 2 3
Sampled NetFlow 2 2
HULL 3 1
Adaptive Virtual Queue 3 3
Queueing priority computa-
tion 2 2

DNS TTL change tracking 2 3
CONGA 2 2

Results. We successfully synthesized all ten Domino benchmarks with our solution described
above, which took a total of 1052 un-minified lines of code. For domino, the evaluation
metric stated in the prior work [35] was not performance but rather feasibility, i.e., if we
could transpile a program to a banzai atom then these are feasible to run on a programmable
switch device. The average compilation time for these 10 benchmarks was ≈ 6secs. The
Domino compiler, measuring all C++ source files and headers, totals 4036 lines of code,
so our solution leveraging MetaLift requires 74% fewer lines of code. Table 3 shows
that the synthesized output maximum atom count per stage from MetaLift is under the
maximum number of atoms per stage that the Domino compiler used for all but one of the ten
benchmarks. Differences can be partially attributed to different benchmark decompositions
(and therefore, different numbers of stages): for example, in the “HULL” benchmark, the
Domino compiler output had 7 stages with maximum 1 atom/stage while MetaLift had
5 stages with maximum 3 atoms/stage. The other primary source of variance is that the
Domino compiler optimized for surface area and speed at the hardware level, while MetaLift
only optimized for the number of atoms. As a result, certain benchmarks like “Heavy Hitters”
were synthesized in far fewer atoms by MetaLift, but those atoms were slower at a hardware
level. Nonetheless, the success of this case study further demonstrates the capability of
MetaLift to decrease the complexity of verified lifting solutions while simultaneously raising
the level of abstraction.

4.3 Case Study: Vector Operations

In machine learning worflows, one crucial step is to pre-process datasets, but writing processing
pipelines using loops can be computationally expensive due to the large size of the datasets.
To improve efficiency, libraries like Pytorch, Tensorflow, and Scipy offer highly optimized
vector or matrix operations for performing these operations faster. To take advantage of
the optimizations, we build a transpiler with MetaLift to translate loopy array processing
programs to vectorized operations. For example, consider the program in Figure 23 that
computes the sum of consecutive elements in an array. This sequential program can be
implemented using a convolution operation with a kernel of [1, 1] and a stride of 1. For this
transpiler, we encode the semantics of the operators such as 1D convolution, element-wise
vector (matrix) multiplication and dot-product using MTL. In Figure 23, we show the

ECOOP 2023

38:26 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

definition of the 1D convolution operation in our MTL. Note that if we were to search for an
equivalent convolution program using the concrete syntax of tensor libraries we will have to
search and verify for each individual library. Instead, by lifting the semantics to our MTL,
we need to perform this search only once and then using simple syntax-driven rules we can
translate this to any of the tensor libraries such as Tensorflow or Pytorch.

Results. We evaluate our implementation on 5 array processing benchmarks which can
represented using the vector operations described above. These benchmarks are a combination
of the stencil kernels introduced in prior work [20] and C++ kernels scraped from the web.
We use the same 60 minutes timeout as the previous case studies. Since all these are
loopy programs, MetaLift synthesizes any additional invariants also required to prove the
functional equivalence. We can translate all the benchmarks with an average running time
of ≈ 2mins. Once we have the summaries synthesized in our MTL, we write code generation
rules to translate them to PyTorch, Tensorflow and Scipy. Our implementation requires less
than 500 lines of code.

1 vector<int> program(vector<int> data){

2 vector<int> result;

3 for (int i = 0; i < data.size() - 1; i++)

4 result.push_back(data[i] + data[i + 1]);

5 return result;

6 }

Figure 22 Sequential C++ array processing program.

1 def conv(data, kernel, stride):
2 if length(lst) == 0 then empty
3 return prepend(dot_product(data, kernel), conv(tail(data,stride), kernel, stride))

Figure 23 Semantics of the convolution operator using MTL.

5 Related Work

Program Synthesis-Based Compilers. Many tools have been developed previously which
leverage program synthesis to translate code written in general-purpose programming lan-
guages to DSLs while preserving semantics. Examples of such compilers include STNG [20],
which converts Fortran stencil computations to the Halide [32] DSL; QBS [14], which trans-
lates sequential Java database processing queries to SQL; Casper [3], which converts sequential
Java code to map-reduce operations; and Domino [35], a compiler that translates network
packet processing algorithms for programmable switches. All of these compilers are fully
automated, but they are tailored to a specific DSL and cannot be reused to build a compiler
for a new DSL. Implementing these tools required extensive knowledge of program synthesis
and verification, making it difficult for developers to leverage the underlying approach of
synthesis-based transformation for their own DSLs. MetaLift, on the other hand, uses MTL
to provide a very high-level abstraction for developers to specify the semantics of their DSLs
and automatically build compilers that can perform semantic preserving transformations.
Other prior work [34] leverages program synthesis to perform superoptimization for the x86

S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung 38:27

instruction set and [23] employs a data-driven approach for verifying peephole optimization
in LLVM. These tools perform transformations for low-level languages while MetaLift
builds compilers for DSLs.

Syntax-Driven Transpilation. The traditional solution to the translation problem is to
create a syntax-driven compiler. These rule-based systems rely on users to create rules that
pattern match in order to perform the required translation. An example of one such compiler
is [31], which translates sequential Java code to into MapReduce operations. As such, these
rule-based systems tend to be difficult to design and are vulnerable to translation errors.
Perhaps even more problematic is that such approach is brittle to changes in DSL semantics.

Neural Approaches for Transpiling. Recently, there has been lot of interest in using neural
machine translation to perform source-to-source translations. A number of approaches,
including supervised [25, 13] and unsupervised [33] learning based techniques have been
proposed for translating between general-purpose programming languages. These models do
not require any input from developers, but require massive amounts of data for training. For
instance, [33] required over 100 million functions from C++, Python and Java to train their
model. MetaLift targets DSLs for which such huge amounts of data may not be available
always. Furthermore, the transformations performed by these neural models are not verified,
which may provide an opportunity to introduce bugs in the code.

6 Conclusion and Future Work

In this paper we described MetaLift, a unified platform for building DSL compilers.
MetaLift allows developers to build compilers for their own DSLs by utilizing the synthesis-
based program transformation approach that has been the underlying technique for many
previous DSL compilers [2, 20, 35]. MetaLift achieves this with its design of a specification
language called MTL. Using MTL developers can express the semantics of their target DSL
and search space description to guide the synthesis engine. This programmatic approach
to describing DSLs allows MetaLift to build compilers for various DSLs. We described
our experience in building synthesis-driven transpilers by using MetaLift to build three
transpilers targeting very different application domains. We demonstrate that MetaLift
significantly reduces the effort required to create specialized implementations of these three
compilers. With a unified framework, MetaLift opens up new research directions for
automated transpilation, such as leveraging dynamic execution traces to automatically
infer loop invariants, and improving synthesis with neuro-symbolic methods, which can
learn effectively search strategies from similar programs, as well as oracle-guided synthesis
methods [28, 29], which integrate verification with synthesis and extend the expressive
power of synthesis queries beyond SMT. MetaLift is modular to easily add any of these
optimizations. As a framework, MetaLift has the potential of dramatically lowering the
barrier for both research into synthesis driven transpilation and adoption of new specialized
high performance hardware and DSLs.

References
1 Automatically Leveraging MapReduce Frameworks for Data-Intensive Applications. https:

//github.com/uwplse/Casper/tree/master/bin/benchmarks, Accessed: 2022-03-14.
2 Maaz Bin Safeer Ahmad and Alvin Cheung. Leveraging parallel data processing frameworks

with verified lifting. In Proceedings Fifth Workshop on Synthesis, SYNT@CAV 2016, Toronto,
Canada, July 17-18, 2016., pages 67–83, 2016.

ECOOP 2023

https://github.com/uwplse/Casper/tree/master/bin/benchmarks
https://github.com/uwplse/Casper/tree/master/bin/benchmarks

38:28 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

3 Maaz Bin Safeer Ahmad and Alvin Cheung. Automatically leveraging mapreduce frameworks
for data-intensive applications. In Gautam Das, Christopher M. Jermaine, and Philip A.
Bernstein, editors, Proceedings of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 1205–1220. ACM,
2018.

4 Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Pearson Education, Inc, 2006.

5 Takuya Akiba, Kentaro Imajo, Hiroaki Iwami, Yoichi Iwata, Toshiki Kataoka, Naohiro
Takahashi, Michal Moskal, and Nikhil Swamy. Calibrating research in program synthesis using
72,000 hours of programmer time, 2013.

6 Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis,
John Wawrzynek, and Krste Asanović. Chisel: Constructing hardware in a scala embedded
language. In Proceedings of the 49th Annual Design Automation Conference, DAC ’12, pages
1216–1225, New York, NY, USA, 2012. ACM. doi:10.1145/2228360.2228584.

7 Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,
Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir,
Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A
versatile and industrial-strength smt solver. In Dana Fisman and Grigore Rosu, editors, Tools
and Algorithms for the Construction and Analysis of Systems, pages 415–442, Cham, 2022.
Springer International Publishing.

8 Mike Barnett and Rustan Leino. Weakest-precondition of unstructured programs. In PASTE
’05: The 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, pages 82–87. ACM Press, September 2005. URL: https://www.microsoft.com/
en-us/research/publication/weakest-precondition-of-unstructured-programs/.

9 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.6.
Technical report, Department of Computer Science, The University of Iowa, 2017. Available
at www.SMT-LIB.org.

10 Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability modulo
theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook
of Satisfiability, chapter 33, pages 1267–1329. IOS Press, second edition, 2021.

11 Rastislav Bodík and Barbara Jobstmann. Algorithmic program synthesis: introduction. STTT,
15(5-6):397–411, 2013.

12 Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry, Robert
Bradshaw, and Nathan Weizenbaum. Flumejava: easy, efficient data-parallel pipelines. In
Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, pages 363–375,
2010.

13 Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, pages 2552–2562, Red Hook, NY, USA, 2018. Curran Associates Inc.

14 Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Optimizing database-backed
applications with query synthesis. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, pages 3–14, New York, NY,
USA, 2013. ACM. doi:10.1145/2491956.2462180.

15 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008. doi:10.1145/1327452.1327492.

16 Michael Garland, Scott Le Grand, John Nickolls, Joshua Anderson, Jim Hardwick, Scott
Morton, Everett Phillips, Yao Zhang, and Vasily Volkov. Parallel computing experiences with
cuda. IEEE Micro, 28(4):13–27, July 2008. doi:10.1109/MM.2008.57.

17 Sumit Gulwani. Dimensions in program synthesis. In Proceedings of the 12th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, July
26-28, 2010, Hagenberg, Austria, pages 13–24, 2010.

https://doi.org/10.1145/2228360.2228584
https://www.microsoft.com/en-us/research/publication/weakest-precondition-of-unstructured-programs/
https://www.microsoft.com/en-us/research/publication/weakest-precondition-of-unstructured-programs/
https://doi.org/10.1145/2491956.2462180
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/MM.2008.57

S. Bhatia, S. Kohli, S. A. Seshia, and A. Cheung 38:29

18 Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. The seahorn
verification framework. In Daniel Kroening and Corina S. Păsăreanu, editors, Computer Aided
Verification, pages 343–361, Cham, 2015. Springer International Publishing.

19 C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580, October 1969. doi:10.1145/363235.363259.

20 Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. Verified lifting of
stencil computations. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’16, pages 711–726, New York, NY, USA, 2016.
ACM. doi:10.1145/2908080.2908117.

21 David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis, Ruben
Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun.
Spatial: A language and compiler for application accelerators, 2018.

22 Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the International Symposium on Code Gener-
ation and Optimization: Feedback-directed and Runtime Optimization, CGO ’04, pages 75–,
Washington, DC, USA, 2004. IEEE Computer Society. URL: http://dl.acm.org/citation.
cfm?id=977395.977673.

23 David Menendez and Santosh Nagarakatte. Alive-Infer: Data-driven Precondition Inference
for Peephole Optimizations in LLVM. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2017, pages 49–63, New York,
NY, USA, 2017. ACM. doi:10.1145/3062341.3062372.

24 Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and Xi Wang.
Scaling symbolic evaluation for automated verification of systems code with serval. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP ’19, pages
225–242, New York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/
3341301.3359641.

25 Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N. Nguyen. Lexical statistical machine
translation for language migration. In Proceedings of the 2013 9th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2013, pages 651–654, New York, NY, USA, 2013.
Association for Computing Machinery. doi:10.1145/2491411.2494584.

26 Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and
Pushmeet Kohli. Neuro-symbolic program synthesis. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL: https://openreview.net/forum?id=rJ0JwFcex.

27 Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant Totla, Sarah Chasins,
and Rastislav Bodik. Chlorophyll: Synthesis-aided compiler for low-power spatial architectures.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, pages 396–407, New York, NY, USA, 2014. ACM. doi:
10.1145/2594291.2594339.

28 Elizabeth Polgreen, Kevin Cheang, Pranav Gaddamadugu, Adwait Godbole, Kevin Laeufer,
Shaokai Lin, Yatin A. Manerkar, Federico Mora, and Sanjit A. Seshia. UCLID5: multi-modal
formal modeling, verification, and synthesis. In 34th International Conference on Computer
Aided Verification (CAV), volume 13371 of Lecture Notes in Computer Science, pages 538–551.
Springer, 2022.

29 Elizabeth Polgreen, Andrew Reynolds, and Sanjit A. Seshia. Satisfiability and synthesis
modulo oracles. In Proceedings of the 23rd International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI), January 2022.

30 Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program
synthesis. In OOPSLA 2015 Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications, pages
107–126, October 2015. URL: https://www.microsoft.com/en-us/research/publication/
flashmeta-framework-inductive-program-synthesis/.

ECOOP 2023

https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/2908080.2908117
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1145/3062341.3062372
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/2491411.2494584
https://openreview.net/forum?id=rJ0JwFcex
https://doi.org/10.1145/2594291.2594339
https://doi.org/10.1145/2594291.2594339
https://www.microsoft.com/en-us/research/publication/flashmeta-framework-inductive-program-synthesis/
https://www.microsoft.com/en-us/research/publication/flashmeta-framework-inductive-program-synthesis/

38:30 Building Code Transpilers for Domain-Specific Languages Using Program Synthesis

31 Cosmin Radoi, Stephen J. Fink, Rodric Rabbah, and Manu Sridharan. Translating imperative
code to mapreduce. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA ’14, pages 909–927, New
York, NY, USA, 2014. ACM. doi:10.1145/2660193.2660228.

32 Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and
Saman Amarasinghe. Halide: A language and compiler for optimizing parallelism, locality,
and recomputation in image processing pipelines. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, pages 519–530,
New York, NY, USA, 2013. ACM. doi:10.1145/2491956.2462176.

33 Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsuper-
vised translation of programming languages. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL: https://proceedings.neurips.cc/
paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html.

34 Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’13, Houston, TX, USA
– March 16 – 20, 2013, pages 305–316, 2013.

35 Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh,
Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Licking. Packet transactions:
High-level programming for line-rate switches. In Proceedings of the ACM SIGCOMM 2016
Conference, Florianopolis, Brazil, August 22-26, 2016, pages 15–28, 2016.

36 Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh,
Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Licking. Domino examples,
October 2018. URL: https://github.com/packet-transactions/domino-examples/blob/
master/banzai_atoms/pred_raw.sk.

37 Sketch. https://people.csail.mit.edu/asolar/, 2016. Accessed: 2016-05-01.
38 Armando Solar-Lezama. Program Synthesis by Sketching. PhD thesis, University of California

at Berkeley, Berkeley, CA, USA, 2008. AAI3353225.
39 Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Chafi, Martin

Odersky, and Kunle Olukotun. Delite: A compiler architecture for performance-oriented
embedded domain-specific languages. ACM Trans. Embed. Comput. Syst., 13(4s):134:1–134:25,
April 2014. doi:10.1145/2584665.

40 C.-H. Tai, J. Zhu, and N. Dukkipati. Making large scale deployment of rcp practical for real
networks. In IEEE INFOCOM 2008 – The 27th Conference on Computer Communications,
pages 2180–2188, 2008. doi:10.1109/INFOCOM.2008.285.

41 Emina Torlak and Rastislav Bodik. Growing solver-aided languages with rosette. In Proceedings
of the 2013 ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013, pages 135–152, New York, NY, USA, 2013. ACM.
doi:10.1145/2509578.2509586.

42 The z3 theorem prover. https://github.com/Z3Prover/z3, 2017.
43 Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy

McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation, NSDI’12, 2012.

https://doi.org/10.1145/2660193.2660228
https://doi.org/10.1145/2491956.2462176
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://github.com/packet-transactions/domino-examples/blob/master/banzai_atoms/pred_raw.sk
https://github.com/packet-transactions/domino-examples/blob/master/banzai_atoms/pred_raw.sk
https://people.csail.mit.edu/asolar/
https://doi.org/10.1145/2584665
https://doi.org/10.1109/INFOCOM.2008.285
https://doi.org/10.1145/2509578.2509586
https://github.com/Z3Prover/z3

Rust for Morello: Always-On Memory Safety, Even
in Unsafe Code
Sarah Harris #

University of Kent, Canterbury, UK

Simon Cooksey # Ñ

University of Kent, Canterbury, UK

Michael Vollmer # Ñ

University of Kent, Canterbury, UK

Mark Batty # Ñ

University of Kent, Canterbury, UK

Abstract
Memory safety issues are a serious concern in systems programming. Rust is a systems language
that provides memory safety through a combination of a static checks embodied in the type system
and ad hoc dynamic checks inserted where this analysis becomes impractical. The Morello prototype
architecture from ARM uses capabilities, fat pointers augmented with object bounds information,
to catch failures of memory safety. This paper presents a compiler from Rust to the Morello
architecture, together with a comparison of the performance of Rust’s runtime safety checks and the
hardware-supported checks of Morello. The cost of Morello’s always-on memory safety guarantees is
39% in our 19 benchmark suites from the Rust crates repository (comprising 870 total benchmarks).
For this cost, Morello’s capabilities ensure that even unsafe Rust code benefits from memory safety
guarantees.

2012 ACM Subject Classification Software and its engineering → Compilers; Software and its
engineering → Software safety; Software and its engineering → Object oriented languages

Keywords and phrases Compilers, Rust, Memory Safety, CHERI

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.39

Category Experience Paper

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.25
Software (Source Code): https://github.com/kent-weak-memory/rust

archived at swh:1:dir:966327cc0ecb3fb4d2196b6f0912d775392fafa5

Funding This work has been supported by the EPSRC under the DSbD Software Ecosystem grant
programme EP/X021173/1.

Acknowledgements This paper was greatly improved thanks to the responses of anonymous reviewers.
We extend our thanks to Jessica Clarke for her invaluable help with CHERI LLVM.

1 Introduction

Low-level programming entails delicate use of memory in a setting where common mistakes
can lead to serious bugs and security vulnerabilities in critical code. Memory safety is the
absence of these errors – where only correctly allocated regions of memory are accessed and
freed. Unsafe uses of memory are the most critical software flaws today, they create security
vulnerabilities, and they are widespread: out-of-bounds writes are the most dangerous
security flaw in the Mitacs Common Weakness Enumeration [8]; Microsoft found that 70%

V1.1

A
rt
ifa

cts Available

ECOOP

© Sarah Harris, Simon Cooksey, Michael Vollmer, and Mark Batty;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 39; pp. 39:1–39:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:S.E.Harris@kent.ac.uk
mailto:simon@graymalk.in
https://graymalk.in
https://orcid.org/0000-0001-9365-9717
mailto:M.Vollmer@kent.ac.uk
http://recurial.com
https://orcid.org/0000-0002-0496-8268
mailto:M.J.Batty@kent.ac.uk
https://www.kent.ac.uk/computing/people/3126/batty-mark
https://doi.org/10.4230/LIPIcs.ECOOP.2023.39
https://doi.org/10.4230/DARTS.9.2.25
https://doi.org/10.4230/DARTS.9.2.25
https://github.com/kent-weak-memory/rust
https://archive.softwareheritage.org/swh:1:dir:966327cc0ecb3fb4d2196b6f0912d775392fafa5;origin=https://github.com/kent-weak-memory/rust;visit=swh:1:snp:3be4a2043eedb892938587ca34b33825fa21a854;anchor=swh:1:rev:40cea16d006ab860815ca582910b778074648c0b
https://doi.org/10.4230/DARTS.9.2.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

of the security bugs in Windows were as a result of unsafe use of memory [23]; and in the
Chromium browser 36% of bugs are caused by use-after-free errors [33], with a further 33%
stemming from other unsafe uses of memory [33].

It is possible to automatically enforce memory safety, avoiding all the attendant bugs and
security flaws. This enforcement comes at a cost, however, and how exactly the cost is levied
is a design choice. In this paper we compare the runtime performance of the mechanisms
that enforce memory safety in Rust and in the Morello architecture, and ultimately combine
them, improving the coverage of Rust’s memory safety guarantee.

Rust provides a guarantee of memory safety to all well-typed code. Much of the cost of
this guarantee is handled by a static analysis in the type system, but it also uses runtime
checks when proving safety statically would be costly or impossible. One can forgo the
safety guarantee and its checks by designating a block of code as unsafe: memory accesses
within this block are not required to pass the full rigour of the type system. Unsafe code is
used sparingly for interoperability with non-Rust components and for performance. unsafe
annotations highlight code where memory errors can survive.

Rust alleviates memory errors in common code while remaining flexible enough to support
systems programming through the provision of unsafe blocks. Rust imposes two costs:
programmers must adhere to a more restrictive type system, and there are runtime costs to
support the safety guarantee. The combination of safety, pragmatism, and performance is
why Rust is now the official second language of the Linux kernel alongside C [24].

Morello is a prototype ARM processor that provides capabilities: fat pointers, augmented
with permissions and bounds information. Morello processors use this metadata to enforce
memory safety at run time, halting programs when safety is violated – for example if a
program makes an out-of-bounds memory access. Programs that protect every memory
access are described as Purecap, but one can forgo the safety checks by accessing memory in
Hybrid mode. In contrast with Rust, full-scale systems programming is possible in Purecap
mode: there are Purecap Morello ports of BSD, Linux and Android [34, 4, 3]. Programming
in Purecap mode ensures memory safety from the first, albeit with the possibility of runtime
errors where safety would otherwise be violated. Further development effort improves the
stability of the system.

The safety guarantees provided by Rust and Morello are subtly different. Morello’s capabilities
track only approximate bounds information (see §2.3), recording the size of objects as a
floating-point number; Rust applies compiler optimizations to the runtime checks that it
emits, removing unnecessary checks and improving performance. Even so, Rust and Morello
provide similar guarantees that may be used in a complementary way. Purecap-Morello will
check pointers are used safely even in unsafe blocks, for example. This is where Rust and
capability hardware mesh neatly, where Rust cannot validate the safety of memory use the
underlying Morello hardware can.

In this paper we will explore the interplay between the Morello prototype hardware and the
Rust programming language with a focus on runtime performance. We find the performance
cost of always-on hardware memory safety checks to be quite high but not prohibitively so,
and the design philosophies of Rust’s static memory safety guarantees and Morello’s dynamic
memory safety to be well-matched. This comparison will also serve as a way to benchmark
the real-world performance of improvements to the Morello architecture in the context of
cutting edge memory-safe programming practices. We present the following contributions:

S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:3

1. A Rust compiler that targets the Purecap- and Hybrid-mode Morello prototype capability
hardware (§3).

This includes a reasoned choice for the semantics of usize on a machine where pointers
are not just integers (§3.1).

2. A ported Rust standard library with fixes to incorporate capabilities (§3.6).
3. A performance analysis of Rust on Morello (§4, §5):

Our benchmark suite of 19 crates from the Rust crates repository (§4.6, Appendix A).
Analysis of the benefits of bounds checking elision on capability hardware (§5.1).
Comparison of Rust on Hybrid-Morello to Rust on Purecap-Morello (§5.2).

4. Our artefacts which will be made public upon publication.

2 Background

For a language to provide practical memory safety, it must present a usable interface to
the programmer and have acceptable performance. Memory safety comes with a number of
requirements:
1 values must be initialized before reading, especially pointers,
2 values must not be accessed after deallocation,
3 reads and writes must be within the bounds of an object’s memory allocation,
4 values must be deallocated exactly once.

There are a number of approaches to enforcing these requirements: from garbage collection
as used by Java, Go, OCaml and many others; assorted static and dynamic validators – Rust
is one such system, using linear types, lifetimes and dynamic bounds checking; and now
hardware schemes like Morello.

2.1 Rust
Rust [21] is a relatively young programming language, version 0.1 was released in 2012 [27],
and is notable for incorporating a number of features geared to providing memory safety,
covering the desiderata above. Minimising runtime cost while providing powerful features to
programmers is a central design aim for current Rust [35], so the majority of these features
are applied statically during compilation. There are however still some cases where it is
regarded as impractical to infer bounds statically.

The most relevant features to Rust’s memory safety are [18, 28]:
uninitialised values are not normally1 allowed 1 ;
move semantics, the Drop trait, and references prevent access to deallocated values 2 ;
array and slice indices are the only pointer arithmetic normally1 available, and these are
bounds checked at runtime 3 ;
move semantics, the Drop trait, and careful API design protects against double free 4 ;
move semantics and the Drop trait provide some protection against memory leaks by
making the default behaviour that objects are freed when their lifetime ends 4 , but
can be defeated by functions like std::mem::forget() and Box::leak() and by other
issues2;

The most important of these safety features is the combination of move semantics, the
Drop trait, references, and lifetimes, which together provide much of Rust’s memory safety
guarantees.

1 In unsafe it is possible to break these conditions, but this is not the default.
2 Reference counted pointers can leak if used improperly, and some edge cases in exception handling can

cause Drop not to execute.

ECOOP 2023

39:4 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

2.1.1 Move and Drop

The simplest way to allocate memory in Rust is to use the stack. This works much like C,
with a value being allocated memory on entry to a block, and deallocated on exit when the
stack frame is popped:

struct Data { a: i32, b: i32 }
fn automatic_memory() {

// data automatically allocated on the stack here:
let data = Data{a: 1, b: 2};
// ...
// data falls off stack here

}

Large values and data with a lifetime that doesn’t match that of a scope require dynamic
memory allocation, which in C would be provided via malloc() and free(). In Rust this is
provided using a combination of move semantics and the Drop trait. Drop allows a type to
provide a method that will be called automatically when an instance of it leaves scope, which
means that memory allocations can be managed semi-automatically by so-called “smart
pointers”. The simplest implementation of this in Rust is the standard library type Box,
which allocates memory on the heap when instantiated and uses Drop to ensure that it will
be deallocated when the Box leaves scope. The Box value itself acts as a handle, tracking the
lifetime of the allocation and providing access to the allocated memory while remaining a
technically separate value.

fn heap_memory() {
// data allocated on the heap here:
let data = Box::new(Data{a: 1, b: 2});
// ...
// Box falls out of scope here, heap allocation automatically freed

}

Move semantics expand the utility of this approach by allowing the Box to be moved to
a different name or out of scope, while preventing it from being duplicated or deallocated,
which might otherwise cause the allocation to be freed twice or left to leak 4 .

fn inner_scope() -> Box<Data> {
// data allocated on the heap here:
let data = Box::new(Data{a: 1, b: 2});
// ...
data // data is moved out of the function here

}
fn moved_box() {

// data moved to outer scope here:
let data = inner_scope();
// ...
let new_name = data; // data moved to new_name here
assert!(data.a == 1); // compiler error: use of moved value: `data`
assert!(new_name.a == 1); // ok
// data falls out of scope here, heap allocation automatically freed

}

S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:5

Box covers a wide range of use cases, and the same general design can be used to build
more complex, more powerful tools to cover more demanding problems. The standard library
provides a number of options, including dynamically resizeable arrays via Vec, and reference
counted allocations via Rc using the same mechanism.

2.1.2 References and lifetimes
While move semantics and Drop cover many uses of dynamic memory allocation, values
can only be in one place at a time, and the resulting passing around can quickly become
inconvenient. The solution to this problem is Rust’s reference types. These behave similarly
to ordinary pointers, but enforce extra rules that are checked by the compiler 1:

a reference must point to a value, i.e. there are no null references 1 ,
values pointed to must be currently allocated and correctly aligned 1 ,
a value can either be referenced once mutably, or multiple times immutably,
values can only be mutated via a mutable reference 2, and
values cannot be moved or deallocated while referenced 2 .

The compiler statically checks these rules using a system of inferred lifetimes, which allow
references to be moved around and copied in non-trivial ways while maintaining safety. This
concept has its roots in region-based memory management [14, 11], and it prevents access to
values after deallocation while still providing power and flexibility 2 .

In the example below, the two &mut data references are not permitted to have overlapping
lifetimes. Rust infers that an object’s lifetime ends when the last reference to it goes out of
scope – in this example, at the end of referenced_box().

fn referenced_box() {
// data allocated on the heap here:
let mut data = Box::new(Data{a: 1, b: 2});
// two immutable references exist during this call:
use_data(&data, &data);
// and two mutable references, which causes a compiler error:
// cannot borrow `data` as mutable more than once at a time
use_data(&mut data, &mut data);
// reference only exists for duration of expression:
*get_field(&mut data) = 3;
// no references exist by here, so data freed without errors

}
fn get_field(data: &mut Data) -> &mut i32 {

// compiler infers lifetime of return from argument
&mut data.a

}
fn use_data(a: &Data, b: &Data) {

assert!(a.a == b.a);
}

Dangling references, i.e. references to values which would be de-allocated at the end of a
scope, are forbidden in Rust.

1 Rust doesn’t currently have a formal specification, so the best sources for this information (besides the
compiler source code) are the Rust Book [18] and the Rust Reference [28]

2 Though this can be circumvented via a mechanism called “interior mutability”.

ECOOP 2023

39:6 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

fn dangle() -> &u32 {
let value = 0;
&value

}
// this function's return type contains a borrowed value, but there is no
// value for it to be borrowed from
// help: consider using the `'static` lifetime

Rust instead provides a mechanism for overriding the point at which a lifetime ends by
explicit annotation:

fn dangle2<'a>() -> &'a u32 {
let value = 0;
&value

}

The borrow checker is the name of the machinery in Rust which statically detects invalid
uses of references and keeps track of when objects’ lifetimes end.

2.1.3 unsafe

Rust includes a mechanism that allows programmers to choose to break the rules described
above. This is useful for performance-critical hand optimisation and working around the
limitations of the compiler’s static checking. Use of unsafe indicates that something odd is
afoot, it should be used sparingly and serves as an explicit marker to signal to programmers
and auditing tools alike that these pieces of code require additional scrutiny.

unsafe isn’t a free pass to do anything – only a very specific set of extra privileges are
available within these sections (see the Rust Book [18, §19.1]):

ordinary C-like pointers called raw pointers, which don’t have the limitations of references,
can be dereferenced 1 2 3 ;
functions and types marked unsafe can be used, allowing access to additional library
APIs 1 3 2 4 3 5 4 6;
static variables can be accessed (which come with thread safety issues);
traits marked unsafe can be implemented, automatically creating more unsafe code;
unions can be accessed, which can be used to bypass type checking 1 3 ;
external C/C++ functions may be called, importing the memory safety concerns of those
languages 1 2 3 4 .

In return, the programmer promises not to break any of the language’s invariants.
The most important of these are the ability to use raw pointers and to call unsafe

interfaces. Raw pointers are the most significant hole in the safety guarantees that Rust
can provide, but they are the primary point of compromise between full safety and a usable
systems programming language. Raw pointers are motivated by interoperability with non-Rust
components, either through the operating system ABI or through linking C components
into Rust programs, or Rust components into C programs. Raw pointers allow all the usual
trickery, including creating them from integers, arbitrary arithmetic, null pointers, dangling

3 std::mem::MaybeUninit
4 std::slice::from_raw_parts()
5 slice::get_unchecked()
6 Box::from_raw()

S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:7

Tag
129

Capability

063
64-bit address

perms object type bounds

Figure 1 The structure of a 128-bit capability.

pointers, freedom to cast between types, and so on. Access to unsafe interfaces enables use
of a number of standard library features, notably std::mem::transmute(), which allows
casting between any pair of types with the same size, and std::mem::MaybeUninit, which
allows the creation of uninitialised values 1 .

2.2 The Rust Compiler
The Rust compiler is mostly self-hosting, i.e. Rust is implemented in Rust. The front-
end, type checking, middle intermediate representation (MIR), and an increasing number
of optimisations are implemented in Rust. LLVM provides the backend and remaining
optimisations, consuming LLVM IR and compiling to a range of targets including ARM and
x86_64. This is all very convenient for porting Rust to Morello, as there is an existing LLVM
implementation for Morello [20]. A sketch of the compiler’s structure is drawn below.

Parser High-level IR Middle IR LLVM IR ARM

x86_64

. . .

Morello

Rust Compiler Morello LLVM

The majority of the compiler changes outlined in §3 are over the Middle IR portion of the
compiler.

2.3 Capability hardware
CHERI is a generic instruction set extension to introduce capabilities, an extended pointer
representation designed to add hardware security to memory accesses [36]. Capabilities
add validity and permission information to pointers, expanding them to 128-bits on 64-bit
platforms. Each capability is attached to a 1-bit validity tag, and this is required to be set
to successfully perform memory accesses via the capability. Further, valid capabilities can
only be constructed from other valid capabilities, and only in ways which don’t exceed the
permissions of the parent capability. This property allows software to be separated into
compartments which have limited, controlled access to one another.

Capabilities add four pieces of metadata to plain pointers: bounds, permissions, flags,
and object type. An example of the structure of a 128-bit capability can be seen in Figure 1.

Bounds detail the range of memory which a capability is allowed to address; the hardware
uses this information to perform automatic bounds checking. To be effective, the bounds
of capabilities must be appropriately restricted to the object or buffer they point to. The

ECOOP 2023

39:8 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

CHERI LLVM project extends the LLVM compiler infrastructure to do exactly this [20].
Most C and C++ programs, as well as a number of other languages with an LLVM backend,
benefit because they automatically gain bounds checking with minimal to no modifications. It
is worth noting, however, that CHERI’s bounds checking has a limitation: to keep capability
sizes reasonable, bounds information uses a floating point encoding. This means that bounds
for larger regions become increasingly approximate, and marginally out of bounds accesses
may succeed if regions are not padded to fill the extra space.

Permissions can be used to provide fine-grained read, write, execute, and capability
manipulation protections for each capability.

Flags provide space for architecture-specific controls for each capability.
Object types are used as part of a mechanism to seal capabilities, such that they can

only be dereferenced by specifically and deliberately chosen pieces of code. This opens up
possibilities for compartmentalising programs and moving data and permissions through
untrusted compartments without degrading security properties.

As a result of the requirement for capabilities to be derived from other valid capabilities,
the provenance of each capability must be well-defined. This is a critical part of controlling
the access rights of different parts of programs. For these limitations to hold, validity bits in
uninitialised memory must be cleared before access is granted. This is expected to be provided
by hardware or low level system software [37, §3.6.2]. This ensures that any uninitialised
pointer will be invalid, and therefore impossible to dereference accidentally. The downside of
the provenance property is that integer-to-pointer casts in existing code are likely to become
invalid, though the changes needed to fix this are often minor. This is unsurprising given that
integer-to-pointer casts are something of a headache for provenance analyses already [22].

Interpreted generously, bounds checking and provenance guarantees cover points 1 (no
use of uninitialised pointers) and 3 (bounds checking) of §2. Research into ways that
CHERI might be used to provide temporal safety guarantees is ongoing [39]. There is research
investigating implementations of free() that can sweep the memory and invalidate any
pointers into the free’d memory region [41] 2 . Even with temporal safety, memory leak
bugs remain a problem to be solved by other tools 4 .

2.3.1 Morello prototype

Morello is a prototype platform for exploring capabilities, and is based on an application-class
ARM SOC, the same sort that is found in modern smartphones and ARM-based personal
computers. It is supported by a suite of open source software, including a C/C++ compiler
based on LLVM [20], a FreeBSD port [34], and custom build automation tooling [9]. Software
for Morello can be compiled in two different modes, both of which are supported by the
CHERI BSD operating system we use [34].

Hybrid mode

In this mode of compilation, pointers are stored using a plain integer representation instead
of capabilities, and normal ARM load and store operations are used to dereference them.
Pointers are transparently restricted by the bounds of a single default capability provided
by the operating system, with software running as if it were using normal ARM hardware.
Rust code compiled with the non-CHERI compiler target triple aarch64-unknown-freebsd
will run on CHERI BSD in this mode. While this mode is defined by the use of capability
unaware load and store operations it is still possible to explicitly use capabilities, if the
programmer desires and the facility is exposed by the language.

S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:9

Purecap mode

In pure capability (Purecap) mode, all pointers are represented using capabilities, and
capability instructions are used to access memory. Our modified compiler adds a new
target triple to support this mode called aarch64-unknown-freebsd-purecap. This target
configures the LLVM backend to emit capabilities instead of plain pointers, and the Rust
compiler to use data layouts appropriate for capabilities. The details of the changes necessary
to enable Rust for Purecap Morello are outlined in the next section.

Morello uses 128-bit capabilities, throws hardware exceptions if an invalid capability is
dereferenced, and the maximum bounds size precisely representable is 4 KiB [1].

3 Adjustments to the Rust compiler and standard library

We describe the changes to accommodate capabilities in the Rust compiler. Recall that
capabilities are 128-bit with one invisible tag bit which is maintained transparently by the
hardware. To be able to use capabilities to represent pointers, a number of modifications to
the compiler and standard library are necessary. Our port of Rust is based on release 1.56.0
(Edition 2021 Rust).

3.1 Rust semantics open question: usize

usize is an integer type, ambiguously defined by the documentation as the “[...] pointer-sized
unsigned integer type.” [26] This is a straightforward definition on conventional architectures
with integer pointer representations, but on Morello the meaning becomes unclear. There
are two obvious interpretations for the semantics of usize:

usize should be an integer and contain only an address, i.e. the lower word of a capability
– a 64-bit number, or
usize should behave like an integer and contain a whole capability, i.e. a Morello
double-word sized 128-bit number.

We chose to explore the 64-bit approach for a number of reasons. First, the Rust
community have sought to resolve this, and there are ongoing discussions that are leaning
towards word-sized usize [31, 25]. Secondly, the previous work by Sim [32] explored 128-bit
usize and was left with a handful of technical limitations which would be side-stepped by
using machine-word-sized usize. Finally, there are several technical benefits to 64-bit usize,
which we describe below.

Efficiency

usize is the only type of integer that can be used in array indexing, and is also used
to represent lengths of arrays and sizes of types. These uses are very common, and only
require that usize be able to represent the full range of addressable memory locations.
In comparison, pointer-integer casts that would only function if usize stored a complete
capability are rare. Making usize large enough to hold a capability would leave extra space
that would be wasted in the vast majority of uses.

Robustness

While allowing usize to hold a valid capability would let simple pointer-integer-pointer
round-trip casts work unmodified, it would also introduce inconsistent behaviour in many
other cases. The tighter provenance model applied by CHERI invalidates capabilities derived
only from integers, and also those produced by many arithmetic operations, including bitwise

ECOOP 2023

39:10 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

logic. Given that bitwise logic is a common use case for integer-pointer casting, this would
likely cause many unexpected capability faults. Ensuring instead that no usize can hold a
valid capability guarantees that the compiler will always flag these cases, saving confusion and
debugging time. This is traded against the cost of needing to make minor changes to simpler
cases that might otherwise have worked unmodified, which we believe to be an acceptable
sacrifice. Making this choice negates the major advantage of a 128-bit representation: being
able to hold a valid capability.

Data compatibility

Under architectures currently supported by Rust, a cast from pointer to usize is expected
to yield an integer containing the address being pointed to. Capabilities contain more
information than this. Making usize a 64-bit integer containing only the address portion of
the capability retains the expected behaviour.

3.2 Target specification
The Rust compiler has records of the size of various types for each platform it supports.
This includes the size of pointers, which also decides the size of usize. To support Morello
Purecap mode, the compiler needs more fine-grained information about the layout of pointers,
and the size of usize needs to be decoupled from the in-memory size of pointers.

To do this, we have implemented pointer width and pointer range, where the compiler
previously only had a single pointer size. Under mainstream architectures, these two values
are all equal and redundant, but on Morello they are differentiated. Pointer width describes
the in-memory size of pointers. Under Purecap, this will be the total size of a capability
(128-bit), excluding the validity tag which is stored separately by the hardware. Pointer
range describes the size of the address portion of pointers. Under Purecap, this will be the
size of a plain pointer (64-bit), and the subset of a capability that contains the target address.
Pointer range will also be the size of usize.

1 pub fn target() -> Target {
2 Target {
3 llvm_target: "aarch64-unknown-freebsd".to_string(),
4 pointer_range: 64,
5 pointer_width: 128,
6 data_layout: /* ... */ ,
7 arch: "aarch64".to_string(),
8 options: TargetOptions {
9 features: "+morello,+c64".to_string(),

10 llvm_abiname: "purecap".to_string(),
11 max_atomic_width: Some(128),
12 atomic_pointers_via_integers: false,
13 merge_functions: MergeFunctions::Disabled,
14 ..super::freebsd_base::opts()
15 },
16 }
17 }

compiler/rustc_target/src/spec/aarch64_unknown_freebsd_purecap.rs:3

Figure 2 The Rust target options for the target triple aarch64-unknown-freebsd-purecap.

S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:11

Information about a target is stored within the compiler using the structure shown in
Figure 2. The target specification defines fundamental properties of the architecture and
operating system. Morello inherits its base properties from the Aarch64 FreeBSD target, and
then overrides some specifics. The new pointer entries can be seen on lines 4 and 5. Line
6 gives the standard data layout string describing the Morello architecture to LLVM, for
brevity we do not expand on the details of this. For Purecap, this uses an extension specific
to Morello LLVM [20] to specify that pointers be stored in address space 200, meaning that
they should be represented using capabilities. Lines 9 and 10 specify the Purecap ABI, and
are required to enable relevant features in Morello LLVM. Lines 12 and 13 disable some
optimisations that are not yet compatible with Morello.

3.3 Constant evaluation
An unexpected source of problems for our changes to the compiler was Rust’s constant
evaluation feature. Constant evaluation allows a subset of Rust expressions to be interpreted
during compilation, as is demonstrated by the snippet below.

1 const MAGIC: u32 = long_multiply(3, 5)*7;
2 const fn long_multiply(a: u32, b: u32) -> u32 {
3 let mut a_shifted = a;
4 let mut b_shifted = b;
5 let mut result = 0;
6 while a_shifted != 0 {
7 if a_shifted & 1 == 1 {
8 result |= b_shifted;
9 }

10 a_shifted >>= 1;
11 b_shifted <<= 1;
12 }
13 result
14 }

This snippet contains only consts, and the compiler will fully evaluate the value of MAGIC
at compile time. long_multiply(3,5) will be evaluated to 15, and then MAGIC will be
evaluated to 105. The constant evaluator has an internal representation of memory so that
it can run constant code even when it contains mutable values, as on lines 3, 4, and 5 of
this example. Constant evaluation uses the same data layout as the rest of the compiler,
and the subset of the language allowed includes support for pointers. Capabilities add extra
non-address components to pointers, so constant evaluation must be modified to take these
into account. While it might be possible to enforce the full set of capability rules during
interpretation, we currently believe that Rust’s semantics already enforces them. For the
time being we simply leave the unused space uninitialised, but the changes needed to the
interpreter are still wide-reaching.

Values during interpretation can be represented either as large contiguous allocations, or
single values represented directly 7. Memory allocations are represented as arrays of data
bytes, with auxiliary information about which bytes have been initialised. The compiler
relies on type information to describe the structure of the data contained in the allocation.

7 Single values are handled separately as a performance optimisation.

ECOOP 2023

39:12 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

Memory allocations themselves remain unchanged, the unused metadata bytes of capabil-
ities are left uninitialised. References to subsets of memory allocations are passed around
inside the compiler as the AllocRange type, so this must be extended to include width and
range information. Without the extra information, the compiler does not know which bytes
will be uninitialised metadata when operating on a referenced value. The extra information
is also needed to allow conversion to types representing numeric values, which will need
somewhere to inherit width and range information from. The modification to AllocRange is
shown below.

pub struct AllocRange {
pub start: Size,
// Replacing: pub size: Size,
pub range: Option<Size>,
pub width: Size,

}

compiler/rustc_middle/src/mir/interpret/allocation.rs:75
Single numeric values are passed around as the types Scalar and ScalarInt. Because

pointers are in some cases stored using these types, they must also carry width and range
information. These changes are shown below.

pub enum Scalar<Tag = AllocId> {
Int(ScalarInt),
// Replacing: Ptr(Pointer<Tag>, u8),
Ptr(Pointer<Tag>, u8, u8),

}

compiler/rustc_middle/src/mir/interpret/value.rs:124

pub struct ScalarInt {
data: u128,
// Replacing: size: u8,
range: u8,
width: u8,

}
compiler/rustc_middle/src/ty/consts/int.rs:122

The changes to the compiler to propagate and update the extra information on these three
types are fairly simple, but very widespread, including changes to object layout, constant
evaluation, and vtable construction.

3.4 Pointer code generation
Code generation for atomic pointers makes some unsound assumptions about pointers for
the Morello platform. To work around the limitations of pointer operations on some targets,
Rust generates code which casts the pointer to an integer – this is not permissible on Morello
and yields capability faults at runtime. Thankfully, the fix here is simple: we have added an
option to the target settings to disable this cast on the Morello target, which is shown in line
12 of Figure 2. The new option is then checked in the code generation pass, as shown below.
On Morello, which supports 128-bit atomics, this avoids down-casting pointers to a pair of
isize (64-bit) integers.

S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:13

// Replacing: if ty.is_unsafe_ptr() {
if ty.is_unsafe_ptr() && bx.target_spec().atomic_pointers_via_integers {

let ptr_llty = bx.type_ptr_to(bx.type_isize());
ptr = bx.pointercast(ptr, ptr_llty);
val = bx.ptrtoint(val, bx.type_isize());

}
compiler/rustc_codegen_ssa/src/mir/intrinsic.rs:471

3.5 Tweaks to LLVM
The port of LLVM for Morello [20] is mature, and we have encountered few bugs.

Some LLVM optimisations currently cause incorrect code generation when compiling Rust
for Morello, so we have disabled them until they can be debugged. The optimisations currently
disabled are function merging, visible in line 13 of Figure 2; and the Scalar Replacement Of
Aggregates optimisation, which requires minor changes inside LLVM.

We also encountered an edge case in LLVM code generation that caused 6 byte structures
to be emitted as 96 bit integers, which then triggered a miscompilation. This ultimately
lead to spurious capability faults during execution of affected parts of programs. While the
underlying bug has now been fixed in upstream Morello LLVM [6], we found it could be
worked around by padding affected structures to larger sizes.

The remaining adjustments that were needed were to the Rust standard library.

3.6 MPSC
Rust includes a large suite of tests for the compiler and libraries. Running the standard
library tests on Morello has been our primary means of detecting code generation bugs and
standard library compatibility issues. We had initially anticipated that the standard library
would need many changes, given its size, low level nature, and need for performance. In
actuality, we have so far only needed to make minor changes, and the modifications to the
MPSC component are by far the most involved.

The Multi-Producer Single Consumer primitive in Rust (MPSC) is part of the standard
library’s concurrency module, std::sync. It provides communication channel types that
can pass objects between threads. The implementation of MPSC demonstrates exactly the
sort of problem one might expect to see on Morello: pointers are passed between threads,
but converted to integers and back as part of the trip. The same storage is also used to
hold non-pointer signalling values. The problem stems from the code below which directly
converts a usize into a pointer type (the type of inner).

This isn’t compatible with our changes to the compiler because the usize used by MPSC
can no longer be used to carry a valid pointer, and the usize type is no longer the same size
as a pointer. This causes casting to fail during compilation, but would still cause run time
errors if it did compile. In CHERI C, one might use uintptr_t, but as no equivalent type is
currently defined in Rust we have simply replaced the integer types with pointers. MPSC
has no need to perform complex arithmetic or any other integer-specific operations, so this
doesn’t create any problems. The signalling values can simply be cast into pointers before
use, and because they should never be dereferenced it doesn’t matter that the resulting
capabilities are invalid.

#[inline]
pub unsafe fn cast_to_ptr(self) -> *mut () {

ECOOP 2023

39:14 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

// Replacing: pub unsafe fn cast_to_usize(self) -> usize {
mem::transmute(self.inner)

}

#[inline]
pub unsafe fn cast_from_ptr(signal_ptr: *mut ()) -> SignalToken {
// Replacing: pub unsafe fn cast_from_usize(signal_ptr: usize) -> SignalToken {

SignalToken { inner: mem::transmute(signal_ptr) }
}
library/std/src/sync/mpsc/blocking.rs:53

It is interesting to note that since our changes to MPSC for the port to Morello, very
similar changes have happened upstream. The upstream changes are the product of work on
pointer provenance in the MIR interpreter project (MIRI) [17].

3.7 FFI types
Rust’s standard library makes use of the C standard library via a wrapper called libc. All
use of C APIs from Rust requires a wrapper or Foreign Function Interface. In testing on
Morello we found a number of incompatible type definitions, where the original API expected
a pointer or pointer sized value, and the Rust wrapper declared the value to be usize. This
is easy to fix by simply replacing the types appropriately. An example is drawn below, where
we have replaced integer types with Rust pointer types.

pub type off_t = i64;
pub type useconds_t = u32;
pub type blkcnt_t = i64;
pub type socklen_t = u32;
pub type sa_family_t = u8;
// Replacing: pub type pthread_t = ::uintptr_t;
pub type pthread_t = *mut PThread;
pub type nfds_t = ::c_uint;
pub type regoff_t = off_t;

#[allow(missing_copy_implementations)]
pub struct PThread { _opaque: [u8; 0] }
library/libc-0.2.93/src/unix/bsd/mod.rs:1

There are likely to be interfaces not covered by tests that will require further work, we
have taken a conservative approach to all the changes we have made in the compiler making
the minimal alterations to get correct compilation of the tests we have. A different approach
might be sensible here, where all ptr_t types should natively be Rust pointer types for
Morello targets. It is not clear how significant the knock-on effects of this change would be
on external libraries which expect integer semantics for C pointer types.

pub type size_t = usize;
pub type ptrdiff_t = isize;
pub type intptr_t = isize;
// TODO: Perhaps on Morello this should be `* ::c_void'
pub type uintptr_t = usize;
pub type ssize_t = isize;

S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:15

pub type pid_t = i32;
pub type uid_t = u32;
pub type gid_t = u32;
pub type in_addr_t = u32;
pub type in_port_t = u16;
// Replacing: pub type sighandler_t = ::size_t;
pub type sighandler_t = *const ();
pub type cc_t = ::c_uchar;

library/libc-0.2.93/src/unix/mod.rs:19

4 Performance analysis methodology

We outline our method for measuring Rust programs running on the prototype Morello
platform.

4.1 Test hardware
We are using the Morello Prototype hardware [2]. The Morello CPU is a 7nm quad-core
“Neoverse N1” based Armv8-A processor clocked at 2.5 GHz, connected to 16 GiB of 2933
MT/s DDR4 memory. The firmware is updated to Release 1.3 [2]. The prototype is packaged
as an ATX-style motherboard in a standard ATX computer case.

4.2 Operating system
As described earlier, we use the port of FreeBSD to Morello, called CHERI BSD [34]. CHERI
BSD is very stripped back, with minimal system utilities running for network connectivity
and multi-user support, making it ideal as a benchmarking platform. The operating system
was compiled with the CTSRD port of LLVM for Morello [20] using the cheribuild.py
utility [9].

4.3 Disabling bounds checking
Rust provides automatic checking of array accesses, ensuring that subscripting will be in-
bounds. This covers a subset of the bounds checking provided by Morello, which checks
the bounds of all pointer accesses. To compare Morello hardware bounds checking to the
software bounds checking emitted by rustc, we added a code generation flag to the compiler
which disables software bounds checking: -C drop_bounds_checks. This has the effect of
making all array accesses the same as Rust’s unsafe fn slice::get_unsafe(). Enabling
this option on normal hardware makes the compiler unsound, while on Purecap Morello
soundness is mostly, though not entirely, restored by hardware bounds checking. Bounds
checks on Morello are precise up to 4 KiB blocks of memory, becoming imprecise beyond
that as a result of the floating point representation used to store bounds information. For
the sake of the performance comparisons made in this paper, we think that this approach is
reasonable to give some indication of the cost of bounds checks relative to the cost of CHERI
extensions.

This method of disabling software bounds checking is similar to previous work on
measuring the runtime cost of Rust’s safety checks by Zhang et al., although not identical [42].

ECOOP 2023

39:16 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

fn bounds_check(
&mut self,
block: BasicBlock,
slice: PlaceBuilder<'tcx>,
index: Local,
expr_span: Span,
source_info: SourceInfo,

) -> BasicBlock {
// We do return an un-modified access when the -C drop_bounds_check
// flag is enabled
let gcx = *self.tcx;
if gcx.sess.opts.cg.drop_bounds_checks {

return block
}

// Otherwise, generate MIR code to check the bounds of an access
/* ... */

}

compiler/rustc_mir_build/src/build/expr/as_place.rs:666

Our modification adds an early return to the code generation of bounds checking assertions,
which would normally be inserted when array subscripting. In Zhang’s work they modify a
later stage of code generation to disable the lowering of these assertions to LLVM IR, as well
as assertions that check for integer-overflow. We ran benchmarks with both approaches and
found similar results, but we present the results for tests with the modification listed above
only, as we are not investigating the cost of integer-overflow checks on Morello.

4.4 cargo bench

We ported the standard Rust benchmarking infrastructure to Morello. Programs are cross-
compiled on a normal Apple M1 or x86_64 system. Rust’s infrastructure includes a remote
test harness which sends binaries to a remote system under test using network sockets.
We built a port of the receiving part of this software, called remote-test-server in C,
which runs on the Morello prototype. We can then use the standard cargo bench com-
mand to orchestrate building and running tests, which runs benchmarks repeatedly and
reports a time per iteration in nanoseconds, and the variance between runs in ± nano-
seconds. For each benchmark in the suite we produce four results to complete a com-
parison matrix by varying two parameters. The first parameter is the hardware mode
which can be one of two values: Hybrid or Purecap, as described in §2.3.1, this is var-
ied using the --target option and can be either aarch64-unknown-freebsd for Hybrid,
or aarch64-unknown-freebsd-purecap for Purecap mode. The second parameter is the
bounds checking mode, using our -C drop_bounds_checks compiler flag, which can be either:
bounds checking disabled (RustDBC), or enabled (Rust).

For example the results below are produced by a test from the crate hashbrown. Time is
in nanoseconds (ns).

S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:17

hashbrown-0.11.2/clone_from_large

Rust RustDBC

Time/iter ± Time/iter ±

Purecap 15,779 8 15,818 59
Hybrid 15,557 53 15,601 16

Before each run in the test matrix, Rust and the Rust standard library is also recompiled
with flags to enable/disable software bounds checking appropriately for Rust/RustDBC.

From this data, we calculate Relative Error (RE) for each test using the formula below,
and count the variance into several bins in Table 1.

RE = ±time/iter (ns)
Mean benchmark time/iter (ns)

For example, the RE of Hybrid with bounds checking for hashbrown-0.11.2/clone_from_-
large is 0.34%. The benchmarks with high relative error are tests which are very fast
running, and are limited by the measurement precision of cargo bench in nanoseconds.

4.5 Line counts
We include a count of the number of lines of code with the table of benchmarked projects in
Appendix A. This is intended as a rough guide to the scale of the benchmarks. The table
also includes a count of lines of unsafe code, as an indication of how much Morello’s safety
guarantees might add to the soundness of the specimen code. Both counts are gathered
using the cargo count tool [19]. In total across the 19 projects, there are 108k lines of Rust
source of which 1041 are unsafe.

The lines of code count gives the number of non-blank, non-comment lines of Rust source
code in the repository of each project, for every project we use a benchmark suite from.
The lines of unsafe count gives the number of non-blank, non-comment lines inside unsafe
blocks and unsafe functions.

It should be noted that both of these measures are approximate and meant as a guide
only. The number of lines of code is given for the whole of each project repository, and
will include the library code under test, the benchmark suite, and any additional tests and
Rust build scripts present, but will exclude any code in dependencies (of which each project
generally has several). The number of lines of unsafe is particularly approximate, for two
reasons. Firstly, the effects of unsafe are not well quantified by counting lines of code; the
impact of a single line in a frequently and widely called function may be much higher than
a large unsafe block that executes only once during the lifetime of the program. Further,
a single line of unsafe can call an arbitrary amount of external unsafe code through the
foreign function interface. Secondly, there are some known edge cases in the counting tool
that may cause slightly inaccurate counts [19].

4.6 Test suites
A full list of test suites is available in Appendix A. These were picked for having low-level
implementations of fast data structures, and having a small set of external dependencies.
The suites cover arithmetic, array computations, cryptography, data-structures, Fourier
analysis, hashing, and graph algorithms. Each test was taken directly from the standard Rust
package repository (https://crates.io) and checked out to a version which is compatible
with our Rust compiler. Cargo will satisfy dependencies with the latest available package
which meets the requirements, but frustratingly that doesn’t include the Rust edition, so

ECOOP 2023

https://crates.io

39:18 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

for several packages we had to pin dependencies at older compatible versions too. Our test
script automatically collects repositories from Git, and applies the minor patches to the
Config.toml to pin dependencies where necessary. In total there is a little over 108k lines
of Rust source code in these suites, and plenty more in the dependencies. There are
870 individual benchmarks which are run for each of the four modes described above.

5 Results

 0

 0.5

 1

 1.5

 2

 2.5

matrixmultiply ndarray num-bigint priority-queue petgraph rust-decimal smawk strsim-rs uuid-rs

 0

 0.5

 1

 1.5

 2

 2.5

aes arrayvec fixedbitset hashbrown sha2 sha3 indexmap itoa lebe ryu

purecap-bounds purecap-nobounds hybrid-nobounds

Figure 3 Performance analysis of Rust programs in each of the modes described in §4, normalised
to Hybrid-mode.

We present the aggregate execution times of each mode of Rust on Morello in the table
below. They are normalised to Hybrid mode with software bounds checking enabled. Lower
numbers indicate higher average performance.

S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:19

Table 1 Count of benchmark relative error into categories.

Relative error Count

0 – 1% 3300
1 – 5% 142
≥ 5% 38

Rust RustDBC

Purecap 1.39 1.38
Hybrid 1.00 0.99

Individual benchmark suite results are shown in Figure 3. Again, for each of our benchmark
results, we normalise against Hybrid-mode Rust with the Rust compiler’s software bounds
checks enabled. We then take the geometric mean of each mode to aggregate the normalised
performance change of the benchmarks within a benchmark suite, i.e. hashbrown, which
internally contains 41 benchmarks. Bars above 1.0 are slower than Hybrid Rust with software
bounds checks enabled, bars below are faster. These numbers represent the change in
performance versus Rust on a modern Aarch64 machine today. Rust on Purecap Morello is
approximately 39% slower than Rust on the equivalent Aarch64 machine.

In this section we will contrast the cost of bounds checking on the software and hardware,
and consider the types of workload whose performance is affected the most by hardware
bounds checking.

5.1 The cost of software bounds checking

Toggling software bounds checks (RustDBC vs. Rust) makes minimal difference in the
performance we observe in our benchmark suites. The performance is similar because
compiler optimisations remove most unnecessary bounds checks from code before runtime,
and the performance cost of what remains is extremely low. Note that we are dropping
bounds checks as aggressively as possible, even dropping them where Morello would provide
imprecise bounds (as discussed in §4.3) – so we have here an upper-bound on the performance
gain achievable in a sound implementation of Rust. We therefore conclude that re-engineering
the Rust compiler to drop bounds checks on Morello is without merit.

5.2 The cost of hardware bounds checking

By-and-large the cost of hardware bounds checking is very significant, with only lebe showing
a negligible difference. The performance hit, though large, is still relatively small compared
to other techniques for always-on bounds checking for arbitrary binaries – such as running a
program under valgrind or purify [13, 10]. For many applications this 39% cost for running
on Morello is acceptable, and will likely only improve with any future hardware designs.
This does open an interesting point for future work: off-loading as much bounds-checking to
software, ideally statically enforced, and maintaining hardware bounds-checks where these
guarantees cannot be enforced by software alone, could provide performance and strong
safety guarantees.

ECOOP 2023

39:20 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

5.3 Benchmarks
We present the results aggregated by benchmark suite in Figure 3. This shows consistent
slowdowns in Purecap modes, but reveals some variation depending on the workload. The
worst slowdowns are in arrayvec and smawk which perform a substantial number of array
accesses, maximally exercising the capability protections afforded by Purecap Morello. lebe,
which does endianness conversions for integers, is unaffected by differences under Purecap
Morello, or whether bounds checks are enabled or not. The story is similar for other arithmetic
heavy crates, like fixedbitset; code that leans less heavily on memory access suffers the
lowest performance hit when running on Purecap Morello.

5.4 Validity of results
We address potential concerns for the validity of our results, and how we believe we have
mitigated these.

5.4.1 Prototype hardware
The Morello prototype is just that, a prototype. There are known issues with real-world
performance characteristics of the first prototype when operating in Purecap mode, which
are reflected in our performance analysis. When the details of these limitations are released,
or when a future revision of the hardware is released (to which ARM have not committed
themselves), re-running our performance analysis to see if the overhead of capabilities can be
brought in-line with normal performance of Aarch64 would be of significant interest. The
comparison to Hybrid-bounds in this section gives the clearest picture of the behaviour of
a comparable Aarch64 machine with no hardware bounds checking: in Hybrid mode the
Morello prototype allows regular loads and stores using 64-bit pointers. That being said,
the implementation is still customised compared to normal Aarch64 and micro-architectural
quirks might be present which mean this comparison is invalid compared to “wild” Aarch64
implementations. Table 1 shows that our measurements are precise and run-to-run variance
is very small in the vast majority of benchmarks.

5.4.2 Choice of benchmark suite
We have used benchmark suites included with large popular projects from the Rust package
repository crates.io, spanning a range of different applications: hashing and cryptography
(arithmetic heavy); tree and graph like data structures (indirection heavy); and big integer
and matrix operations (array heavy). This is different to previous approaches to measuring
Rust runtime performance, notably in recent work by Zhang et al., where synthetic micro-
benchmarks were used [42]. We have chosen to use benchmarks that test real world Rust
code as this is more likely to give a representative picture of how the cost of bounds checking
will be felt in regular Rust programs. We found some benchmarks (for example, RustFFT
and itertools) would compile for Morello, but not run correctly on Purecap modes because
of assumptions about pointers which are invalid in Purecap mode.

6 Related Work

In this section we discuss the context for Morello and the necessary related work that enabled
us to build the Rust for Morello compiler.

crates.io

S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:21

6.1 Rust and type-safe systems programming
Rust itself has been a subject of significant academic research. On the topic of formally
specifying Rust, notable work includes Rust Belt [16] and Oxide [38]. We are interested in
the formal treatment of Rust, especially in the context of the formal specification of Morello,
but for this paper we consider this to be future work.

Additionally, there has been a history of other attempts at designing safe systems
programming languages which, like Rust, use some notion of lifetimes to manage memory
allocation and prevent memory errors. Cyclone [14] is one such language, which uses type-level
regions among other type-system machinery to ensure safety while still admitting low-level
systems code. The specifics of preventing memory errors in safe systems programming
languages is discussed more in §6.3.

6.2 Prior work porting Rust to CHERI
There is existing work that explores extending the Rust compiler to target CHERI MIPS
hardware. Nicholas Sim’s MSc thesis [32] describes the initial steps of targeting CHERI
in the Rust compiler. Crucially, Sim chose the 128-bit representation of usize, whereas
we opted for 64-bit usize (discussed in §3.1). This has cascading effects on the rest of the
compiler and leads to various issues.

A major concern of Sim was divergence from upstream, which we agree is a real consider-
ation. The wording of the documentation does not make it totally clear how large usize
should be on Morello, it states [29]:

usize
The pointer-sized unsigned integer type.
The size of this primitive is how many bytes it takes to reference any location in
memory. For example, on a 32 bit target, this is 4 bytes and on a 64 bit target, this is
8 bytes.

There is clearly room for argument one way or the other. We are of the opinion that 64-bit
usize on Morello is compatible with the spirit of this definition, Morello is a 64-bit platform
with 64-bit addresses, so in order to range over all memory addresses it suffices for usize to
be 64-bit. Conversely, supporting Sim’s initial choice, to reference a location in memory on
Morello it is necessary to use a capability which is 128-bit.

Sim also reported a number of technical issues resulting from 128-bit usize, including
performance problems, and the need for inserting integer-truncate and integer-extend opera-
tions when calling LLVM intrinsics like memcpy and inttoptr. We have not had to contend
with these issues in our implementation, and agree with Sim’s assessment that 64-bit usize
is preferable for this reason.

6.3 Bounds checking
There has been significant prior research on enforcing memory safety by preventing out-of-
bounds accesses, either by statically proving accesses will be in-bounds, or by augmenting
programs with dynamic bounds checking (or a combination of both).

A key result on statically eliminating bounds violations comes from Xi and Pfenning,
who demonstrate that, with a dependent type system, array accesses may be accompanied by
proofs that the computed index is within the array bounds [40]. This gives a compile-time
guarantee that no bounds violations will occur on any array access, and thus safety can
be maintained without the need for any dynamic checks. This was done in the context
of a high-level, ML-like language, so there was no need to deal with gnarly C-like pointer
arithmetic.

ECOOP 2023

39:22 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

Prior work also explores static elimination of some bounds checking as a compiler
optimisation. An optimising compiler or just-in-time compiler may seek to reduce the number
of required bounds checks in a program by proving that some subset of accesses will always
succeed. Early work demonstrated how this may be done with dataflow analysis [12]. This
has been of particular interest to implementors working with the Java programming language,
as the specification states that out-of-bounds array accesses must be caught at runtime,
but bounds checks are not expressible in standard Java bytecode. To address this problem,
lightweight techniques for eliminating some bounds checks at runtime within a Just-in-Time
compiler have been developed [7].

In addition to minimising or eliminating bounds checks when compiling high-level lan-
guages like Java, there has been interest in enforcing memory safety in existing C and C++
programs. Doing automatic bounds checking in C or C++ is difficult because of the need
to track, at run-time, what object each pointer value is intended to point to [15]. Unlike
languages like Java, C and C++ allow programmers to do pointer arithmetic in order to
compute (for example) an index into the middle of an array. These pointers into the interiors
of objects may be written to a data structure or passed to a function within the application;
in order to check the latter dereferencing of such pointers, it is necessary to keep track of the
intended referent of the pointer as the pointer value flows through the program. There have
been several approaches to solving this problem and preventing or catching out-of-bounds
errors in existing systems code.

One heavyweight approach is binary instrumentation. Binary instrumentation tools like
purify and valgrind are able to arbitrarily add metadata to pointers and detect a wide
range of memory referencing errors [13]. Of course, as these tools are designed for debugging,
they impose a significant runtime overhead that makes them impractical for use in production
software. Additionally, purify can end up missing some memory safety violations if pointer
arithmetic happens to yield a pointer to a different but still valid object.

Another approach involves changing pointer representations. Systems like SafeC [5] and
Cyclone [14] use an extended pointer representation (“fat pointers”) to record information
about the intended referent. These fat pointers work similarly to Morello’s capabilities, but
their enforcement mechanisms are implemented in software rather than in hardware. SafeC
and Cyclone allow for dynamic checking, but also produce code that is incompatible with
external, unchecked code. A different approach, which maintains backwards compatibility
with legacy C code, was proposed by Jones and Kelly: store the address ranges of live objects
and ensure that pointer arithmetic never crosses out of the one object and into another valid
object [15]. In this approach, address ranges are stored in a global table, and the table is
referenced before every pointer arithmetic operation. Unsurprisingly, this introduces a large
amount of overhead at run-time – over 5x overhead on many programs and, in subsequent
work that extended this approach to cover a larger class of C programs, over 11x overhead [30].
Later work by Dhurjati and Adve demonstrated that the overhead of backwards-compatible
array bounds checks in C could be drastically reduced by exploiting a fine-grain partitioning
of memory called Automatic Pool Allocation [10].

7 Future work

The relationship between Rust and Morello seems clear, both aim to provide a programmer
with guarantees that memory safety violations cannot happen in their programs. Rust
achieves this through linear types, and runtime bounds checks, and Morello achieves this

S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:23

through hardware pointer provenance and hardware bounds checking. It would be interesting
to show a formal relationship between the semantics of Rust and the guarantees provided by
Morello.

With the Morello prototype running in Hybrid mode it is possible to mix the use of
capability instructions, where the hardware enforces bounds checking at run time, with
normal load/store instructions. Through static analysis it might be possible to find the
pointers in Rust which require runtime bounds checks and to promote those to capabilities on
a per-pointer basis: thereby pushing bounds checks into hardware, rather than by emitting
additional code. This could also be used to martial code in/out of unsafe components or
through the FFI. Using capabilities to compartmentalise each unsafe block and each FFI
call could bring new safety guarantees to Rust code which interacts with components that
could introduce memory safety violations.

If ARM later commits to incorporating CHERI extensions into the ARM ISA at large,
then incorporating the changes from our prototype Rust compiler into upstream Rust would
be a natural extension of this work.

8 Conclusions

Morello provides a costly, but not impractical, means for achieving always-on memory safety.
Like Rust, Morello has been built with the benefit of hindsight: memory safety is the most
significant problem for building bug-free code. We have found that the overhead for Morello
in this first prototype is around 39%, and elimination of Rust’s bounds checks might yield a
1% speed up.

There is a two-way benefit for a programmer using Rust on Morello. When using safe
Rust, a programmer knows that for all their safe code they cannot get a CHERI protection
error which would cause their code to fault at runtime – unlike if they were to program in
C. When using unsafe Rust, the programmer knows that if things do go terribly wrong,
the Morello platform will protect them from memory errors which could cause security
vulnerabilities.

The Rust for Morello compiler presented in this paper is fully featured. We have demon-
strated the compiler works for a significant chunk of wild Rust code, without modification.
In-all, the code we’ve compiled and run for Morello is around 108k lines of Rust, all from the
Rust Crates repository, and all without modification to the Rust code.

This compiler forms the groundwork for future research into safe systems programming on
hardware designed from the ground up to provide memory safety.

References
1 Arm. Arm® Architecture Reference Manual Supplement Morello for A-profile Architecture.

Arm, 2020.
2 ARM. Morello project – release notes, January 2022. last accessed: July 25,

2022. URL: https://git.morello-project.org/morello/docs/-/blob/morello/mainline/
release-notes.rst.

3 ARM and contributors. The android/morello release, April 2022. last accessed: September 28,
2022. URL: https://git.morello-project.org/morello/docs/-/blob/morello/mainline/
android-readme.rst.

4 ARM and contributors. Morello project – linux, August 2022. last accessed: September 28,
2022. URL: https://git.morello-project.org/morello/kernel/linux.

ECOOP 2023

https://git.morello-project.org/morello/docs/-/blob/morello/mainline/release-notes.rst
https://git.morello-project.org/morello/docs/-/blob/morello/mainline/release-notes.rst
https://git.morello-project.org/morello/docs/-/blob/morello/mainline/android-readme.rst
https://git.morello-project.org/morello/docs/-/blob/morello/mainline/android-readme.rst
https://git.morello-project.org/morello/kernel/linux

39:24 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

5 Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all pointer and
array access errors. In Proceedings of the ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation, PLDI ’94, pages 290–301, New York, NY, USA, 1994.
Association for Computing Machinery. doi:10.1145/178243.178446.

6 Silviu Baranga. Don’t replace a 96-bit memcpy with a capability load/store, September 2022.
URL: https://git.morello-project.org/morello/llvm-project/-/merge_requests/205.

7 Rastislav Bodík, Rajiv Gupta, and Vivek Sarkar. Abcd: Eliminating array bounds checks on
demand. SIGPLAN Not., 35(5):321–333, May 2000. doi:10.1145/358438.349342.

8 Common Weakness Enumeration. 2022 CWE Top 25 Most Dangerous Software Weaknesses.
Technical report, MITRE, August 2022. URL: https://cwe.mitre.org/top25/archive/
2022/2022_cwe_top25.html.

9 CTSRD CHERI. cheribuild, 2022. last accessed: July 25, 2022. URL: https://github.com/
CTSRD-CHERI/cheribuild.

10 Dinakar Dhurjati and Vikram Adve. Backwards-Compatible Array Bounds Checking for
C with Very Low Overhead. In Proceedings of the 2006 International Conference on Soft-
ware Engineering (ICSE’06), Shanghai, China, May 2006. URL: http://llvm.org/pubs/
2006-05-24-SAFECode-BoundsCheck.html.

11 Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney.
Region-based memory management in cyclone. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation, PLDI ’02, pages 282–293,
New York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/512529.
512563.

12 Rajiv Gupta. Optimizing array bound checks using flow analysis. ACM Lett. Program. Lang.
Syst., 2(1–4):135–150, March 1993. doi:10.1145/176454.176507.

13 Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and access errors. In
In Proc. of the Winter 1992 USENIX Conference, pages 125–138, 1991.

14 Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience with safe manual
memory-management in cyclone. In Proceedings of the 4th International Symposium on
Memory Management, ISMM ’04, pages 73–84, New York, NY, USA, 2004. Association for
Computing Machinery. doi:10.1145/1029873.1029883.

15 Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible bounds checking for arrays
and pointers in c programs. In Proceedings of the Third International Workshop on Automated
Debugging, AADEBUG 1997, 1997.

16 Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt: Securing
the foundations of the Rust programming language. Proc. ACM Program. Lang., 2(POPL),
2017. doi:10.1145/3158154.

17 Ben Kimock. Remove ptr-int transmute in std::sync::mpsc, April 2022. URL: https://github.
com/rust-lang/rust/commit/dec73f5.

18 Steve Klabnik, Carol Nichols, et al. The Rust Programming Language. The Rust Project
Developers, 2021. URL: https://doc.rust-lang.org/1.55.0/book/.

19 Kevin Knapp. cargo-count, November 2017. URL: https://github.com/kbknapp/
cargo-count.

20 LLVM Project and CTSRD CHERI. CTSRD llvm-project, 2022. last accessed: July 25, 2022.
URL: https://github.com/CTSRD-CHERI/llvm-project.

21 Nicholas D. Matsakis and Felix S. Klock. The rust language. Ada Lett., 34(3):103–104, October
2014. doi:10.1145/2692956.2663188.

22 Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson,
Robert N. M. Watson, and Peter Sewell. Exploring c semantics and pointer provenance. Proc.
ACM Program. Lang., 3(POPL), January 2019. doi:10.1145/3290380.

23 Matt Miller. Trends, challenges, and strategic shifts in the software vulnerability mit-
igation landscape. last accessed: July 25, 2022. URL: https://github.com/microsoft/
MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%
20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%
20vulnerability%20mitigation.pdf.

https://doi.org/10.1145/178243.178446
https://git.morello-project.org/morello/llvm-project/-/merge_requests/205
https://doi.org/10.1145/358438.349342
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://github.com/CTSRD-CHERI/cheribuild
https://github.com/CTSRD-CHERI/cheribuild
http://llvm.org/pubs/2006-05-24-SAFECode-BoundsCheck.html
http://llvm.org/pubs/2006-05-24-SAFECode-BoundsCheck.html
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/176454.176507
https://doi.org/10.1145/1029873.1029883
https://doi.org/10.1145/3158154
https://github.com/rust-lang/rust/commit/dec73f5
https://github.com/rust-lang/rust/commit/dec73f5
https://doc.rust-lang.org/1.55.0/book/
https://github.com/kbknapp/cargo-count
https://github.com/kbknapp/cargo-count
https://github.com/CTSRD-CHERI/llvm-project
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/3290380
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf

S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:25

24 Miguel Ojeda. [PATCH 00/13] [RFC] Rust support, April 2021. URL: https://lore.kernel.
org/lkml/20210414184604.23473-1-ojeda@kernel.org/.

25 Rust project contributors. [Pre-RFC] usize is not size_t, September 2021. URL: https:
//internals.rust-lang.org/t/pre-rfc-usize-is-not-size-t/15369.

26 Rust project contributors. The Rust Standard Library - Primitive Type usize, 2021. URL:
https://doc.rust-lang.org/1.55.0/std/primitive.usize.html.

27 Rust project developers. Rust 0.1, 2012. URL: https://github.com/rust-lang/rust/
releases/tag/0.1.

28 Rust project developers. The Rust Reference. The Rust Project Developers, 2021. URL:
https://doc.rust-lang.org/1.55.0/reference/.

29 Rust project developers. usize – Rust. The Rust Project Developers, 2021. URL: https:
//doc.rust-lang.org/std/primitive.usize.html.

30 Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer overflow detector. In In
Proceedings of the 11th Annual Network and Distributed System Security Symposium, pages
159–169, 2004.

31 Nicholas Sim. Support index size != pointer width. https://github.com/rust-lang/rust/
issues/65473, October 2019. last accessed: November 28, 2022.

32 Nicholas Sim. Strengthening memory safety in Rust: exploring CHERI capabilities for
a safe language. Master’s thesis, University of Cambridge, August 2020. URL: https:
//nw0.github.io/cheri-rust.pdf.

33 The Chromium Projects. Memory Safety. https://www.chromium.org/Home/
chromium-security/memory-safety/. last accessed: July 25, 2022. URL: https://www.
chromium.org/Home/chromium-security/memory-safety/.

34 The FreeBSD Projet and CTSRD CHERI. CTSRD-CHERI cheribsd, 2022. last accessed:
March 4, 2021. URL: https://github.com/CTSRD-CHERI/cheribsd.

35 Aaron Turon. Rust blog: Abstraction without overhead: Traits in rust, May 2015. URL:
https://blog.rust-lang.org/2015/05/11/traits.html.

36 Robert N. M. Watson, Simon W. Moore, Peter Sewell, and Peter G. Neumann. An Introduc-
tion to CHERI. Technical Report UCAM-CL-TR-941, University of Cambridge, Computer
Laboratory, September 2019. doi:10.48456/tr-941.

37 Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Hesham Almatary,
Jonathan Anderson, John Baldwin, Graeme Barnes, David Chisnall, Jessica Clarke, Brooks
Davis, Lee Eisen, Nathaniel Wesley Filardo, Richard Grisenthwaite, Alexandre Joannou, Ben
Laurie, A. Theodore Markettos, Simon W. Moore, Steven J. Murdoch, Kyndylan Nienhuis,
Robert Norton, Alexander Richardson, Peter Rugg, Peter Sewell, Stacey Son, and Hongyan
Xia. Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture
(Version 8). Technical Report UCAM-CL-TR-951, University of Cambridge, Computer
Laboratory, October 2020. doi:10.48456/tr-951.

38 Aaron Weiss, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed. Oxide: The essence
of Rust. CoRR, 2019. arXiv:1903.00982.

39 Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Sam Ainsworth, Lucian
Paul-Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz Napierala, Alexander Richard-
son, John Baldwin, David Chisnall, Jessica Clarke, Khilan Gudka, Alexandre Joannou,
A. Theodore Markettos, Alfredo Mazzinghi, Robert M. Norton, Michael Roe, Peter Sewell,
Stacey Son, Timothy M. Jones, Simon W. Moore, Peter G. Neumann, and Robert N. M.
Watson. Cornucopia: Temporal Safety for CHERI Heaps. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 608–625, May 2020. doi:10.1109/SP40000.2020.00098.

40 Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent types.
In Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language Design
and Implementation, PLDI ’98, pages 249–257, New York, NY, USA, 1998. Association for
Computing Machinery. doi:10.1145/277650.277732.

ECOOP 2023

https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/
https://lore.kernel.org/lkml/20210414184604.23473-1-ojeda@kernel.org/
https://internals.rust-lang.org/t/pre-rfc-usize-is-not-size-t/15369
https://internals.rust-lang.org/t/pre-rfc-usize-is-not-size-t/15369
https://doc.rust-lang.org/1.55.0/std/primitive.usize.html
https://github.com/rust-lang/rust/releases/tag/0.1
https://github.com/rust-lang/rust/releases/tag/0.1
https://doc.rust-lang.org/1.55.0/reference/
https://doc.rust-lang.org/std/primitive.usize.html
https://doc.rust-lang.org/std/primitive.usize.html
https://github.com/rust-lang/rust/issues/65473
https://github.com/rust-lang/rust/issues/65473
https://nw0.github.io/cheri-rust.pdf
https://nw0.github.io/cheri-rust.pdf
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://github.com/CTSRD-CHERI/cheribsd
https://blog.rust-lang.org/2015/05/11/traits.html
https://doi.org/10.48456/tr-941
https://doi.org/10.48456/tr-951
https://arxiv.org/abs/1903.00982
https://doi.org/10.1109/SP40000.2020.00098
https://doi.org/10.1145/277650.277732

39:26 Rust for Morello: Always-On Memory Safety, Even in Unsafe Code

41 Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W. Filardo, Michael Roe,
Alexander Richardson, Peter Rugg, Peter G. Neumann, Simon W. Moore, Robert N. M.
Watson, and Timothy M. Jones. Cherivoke: Characterising pointer revocation using cheri
capabilities for temporal memory safety. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO ’52, pages 545–557, New York, NY,
USA, 2019. Association for Computing Machinery. doi:10.1145/3352460.3358288.

42 Yuchen Zhang, Yunhang Zhang, Georgios Portokalidis, and Jun Xu. Towards understanding the
runtime performance of rust. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’22, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3551349.3559494.

https://doi.org/10.1145/3352460.3358288
https://doi.org/10.1145/3551349.3559494

S. Harris, S. Cooksey, M. Vollmer, and M. Batty 39:27

A Test suite

Benchmark Version Description SLOC Unsafe

arrayvec 0.7.2 A vector with fixed capacity, backed by an
array.

2,059 26

block-ciphers/aes 0.7.2 Pure Rust implementation of the Advanced
Encryption Standard.

4,218 25

fixedbitset 0.3.1 A simple bitset collection. 1,431 4

hashbrown† 0.11.2 Google’s SwissTable hash map. 8,454 182

hashes/sha2 0.10.2 Pure Rust implementation of the SHA-2
hash function family.

1,086 2

hashes/sha3 0.10.1 SHA-3 (Keccak) hash function 320 0

indexmap† 1.0.0 A hash table with consistent order and fast
iteration.

6,092 3

itoa 1.0.3 Fast integer primitive to string conversion. 324 5

lebe 0.5.0 Tiny, dead simple, high performance endi-
anness conversions with a generic API.

527 40

matrixmultiply 0.3.2 General matrix multiplication for f32 and
f64 matrices.

3,898 22

ndarray 0.15.6 An n-dimensional array for general ele-
ments and for numerics.

25,508 340

num-bigint 0.4.3 Big integer implementation for Rust. 12,541 0

petgraph† 0.6.0 Graph data structure library. 19,559 5

priority-queue† 1.3.1 A Priority Queue implemented as a heap
with a function to efficiently change the
priority of an item.

3472 68

rust-decimal 1.23.1 Decimal number implementation written in
pure Rust suitable for financial and fixed-
precision calculations.

11,469 0

ryu 1.0.12 Fast floating point to string conversion. 2,930 317

smawk 0.2.0 Functions for finding row-minima in a
totally monotone matrix.

740 0

strsim 0.10.0 Implementations of string similarity met-
rics.

837 0

uuid-rs 1.3.0 A library to generate and parse UUIDs. 3,505 2

Total 108,970 1,041

Tests marked with †required patches to their Config.toml to pin compatible versions of
dependencies.

ECOOP 2023

On Using VeriFast, VerCors, Plural, and KeY
to Check Object Usage
João Mota #

NOVA LINCS and NOVA School of Science and Technology, Caparica, Portugal

Marco Giunti
NOVA LINCS and NOVA School of Science and Technology, Caparica, Portugal
School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, UK

António Ravara
NOVA LINCS and NOVA School of Science and Technology, Caparica, Portugal

Abstract

Typestates are a notion of behavioral types that describe protocols for stateful objects, specifying
the available methods for each state. Ensuring methods are called in the correct order (protocol
compliance), and that, if and when the program terminates, all objects are in the final state (protocol
completion) is crucial to write better and safer programs. Objects of this kind are commonly shared
among different clients or stored in collections, which may also be shared. However, statically
checking protocol compliance and completion when objects are shared is challenging. To evaluate
the support given by state of the art verification tools in checking the correct use of shared objects
with protocol, we present a survey on four tools for Java: VeriFast, VerCors, Plural, and KeY. We
describe the implementation of a file reader, linked-list, and iterator, check for each tool its ability to
statically guarantee protocol compliance and completion, even when objects are shared in collections,
and evaluate the programmer’s effort in making the code acceptable to these tools. With this study,
we motivate the need for lightweight methods to verify the presented kinds of programs.

2012 ACM Subject Classification Theory of computation → Program reasoning; Theory of compu-
tation → Logic and verification; Theory of computation → Separation logic

Keywords and phrases Java, Typestates, VeriFast, VerCors, Plural, KeY

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.40

Category Experience Paper

Related Version Extended Version: https://arxiv.org/abs/2209.05136

Supplementary Material
Software: https://github.com/jdmota/tools-examples/tree/ecoop-2023

archived at swh:1:dir:9b9f9f7a269c44c04c57d5f66ff27884de02d4bc

Funding Partially supported by the EU H2020 RISE programme under the Marie Skłodowska-Curie
grant agreement No. 778233 (BehAPI) and NOVA LINCS (UIDB/04516/2020).
João Mota: Partially supported by FCT.IP (2021.05297.BD).
Marco Giunti: Partially supported by Dstl, reference: ACC2028868.

Acknowledgements We would like to thank several members of the developer teams for the detailed
responses and enlightening discussions, in particular, Bart Jacobs (VeriFast), Marieke Huisman
(VerCors), Lukas Armborst (VerCors), Reiner Hähnle (KeY), Eduard Kamburjan (KeY), and Richard
Bubel (KeY). Their feedback was indispensable for the development of this study.

© João Mota, Marco Giunti, and António Ravara;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 40; pp. 40:1–40:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jd.mota@campus.fct.unl.pt
https://orcid.org/0000-0003-3182-2245
https://orcid.org/0000-0002-7582-0308
https://orcid.org/0000-0001-8074-0380
https://doi.org/10.4230/LIPIcs.ECOOP.2023.40
https://arxiv.org/abs/2209.05136
https://github.com/jdmota/tools-examples/tree/ecoop-2023
https://archive.softwareheritage.org/swh:1:dir:9b9f9f7a269c44c04c57d5f66ff27884de02d4bc;origin=https://github.com/jdmota/tools-examples;visit=swh:1:snp:496bcb990b5b3592def261926ec4ffbe7c2d580e;anchor=swh:1:rev:8d8afc0f93ecb2effd2ed3566fd5e0873fac7e2a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

1 Introduction

In object-oriented programming, one naturally defines objects where their methods’ availabil-
ity depends on their internal state [49]. For example, the next method of an iterator can
only be called if there are items to be retrieved, otherwise it throws an exception. One might
represent their intended usage protocol with an automaton or a state machine [60, 61, 25].
Behavioral types [34, 3], when used for object-oriented languages, allow us to statically
check if all code of a program respects the protocol of each object, helping us to write
safer programs with fewer errors. The crucial properties verified are protocol compliance,
ensuring methods are called in the correct order, and protocol completion, guaranteeing
that if and when the program terminates, all the objects are in their final states, ensuring
required method calls are not forgotten, and that resources are freed, for example, that we
close all sockets. Bravetti et al. present a formal treatment of these properties [19].

In session types approaches, objects with protocols are usually forced to be used in a linear
way to avoid race conditions, which reduces concurrency and restricts what a programmer can
do [32, 34]. Given that sharing of objects is very common, it should be naturally supported,
without putting too much burden on the programmer. For example, pointer-based data
structures, like linked-lists, usually rely on internal sharing (i.e. aliasing). Such collections
may also be used to store an arbitrary number of objects in different states which need to
be tracked. Developing these data-types, and applications using them, is often challenging.
To our knowledge, there is no typestate-oriented support for tracking the states of objects
in collections, while ensuring protocol compliance and completion. Given this, the present
study has the objective of answering the following research question (in Section 3.4)

RQ: Are current static verification tools capable of verifying protocol compliance and
completion even when objects are shared in collections?

To study the contributions and limitations of the state of the art, we report our experience
in verifying protocol compliance and completion with four tools for Java: VeriFast [39, 38],
VerCors [33, 13], Plural [10], and KeY [1]. We picked these because of their rich features for
verification, and because they are actively maintained (with the exception of Plural). We
believe these cover the most used static analysis techniques which can be instructed to perform
typestate verification. VeriFast checks programs annotated with method contracts written
in separation logic [51, 55]. VerCors, however, uses permission-based concurrent
separation logic to check programs, inspired by Chalice [44, 45]. Plural verifies that the
protocols of objects are respected with typestates [59]. It introduces access permissions
which combine typestate and object aliasing information, allowing state to be tracked and
modified even when objects are shared, allowing for more uses beyond the “single writer
vs multiple readers” model of fractional permissions [17]. KeY verifies sequential Java
programs with specifications written in JML [43], based on first-order Java dynamic logic
(JavaDL) [27]. It supports a great number of Java features and provides an interactive theorem
prover with a high degree of automation and useful tactics to guide proofs. OpenJML is
another verification tool based on JML [22]. Given that the differences [16] are not significant
for our use case, and since KeY has an interactive prover, we focus our study on KeY.

To our knowledge, no such comparison study was previously done that focused on protocol
compliance and completion. As we will observe, the running examples may look simple but
constitute real challenges to these tools, especially since three of them are based on contracts,
not behavioral types. Our conclusions support advocating for lightweight verification methods
directed at these protocol related properties. The contributions of this paper are:

J. Mota, M. Giunti, and A. Ravara 40:3

Code implementations and examples of using file readers, linked-lists, and iterators
(when possible), similar in all four tools, and specifications appropriate to each tool to
verify the desired properties;
An assessment if the tools can check protocol compliance, and if they can guarantee
protocol completion, even with objects shared in collections;
An evaluation of the programmer’s effort in making the code examples acceptable to
each tool, justifying the need for lightweight methods to verify these kinds of programs.

With regards to our level of experience, we are knowledgeable in the concepts used, having
applied them in different settings, and have had practical experience with VeriFast before
conducting this study. Regarding the other tools, we report our experience in using them for
the first time. To validate this study, our assessments were shared with the development
teams. From the responses we got, they found the examples to be interesting and challenging.
All the received feedback was very valuable in helping us to refine and confirm our conclusions.

This paper is structured as follows: Section 2 provides an overview of each tool; Section 3
presents code implementations and specifications, and if they were accepted, thus
reporting our experience and answering the RQ (Section 3.4); Section 4 discusses our
assessments; Section 5 discusses relevant work; finally, Section 6 presents our conclusions.

2 Background

2.1 VeriFast
VeriFast is a modular verifier for (subsets of) C and Java programs annotated with method
contracts (pre- and post-conditions) written in separation logic [39, 38, 51, 55]. Besides the
points-to assertions from separation logic, specifications support the definition of inductive
data types, predicates, and fixpoint functions. Additionally, deductive reasoning [5] is
supported via the definition of lemmas and the insertion of assertions in key program points
to guide verification. Furthermore, it comes with an IDE allowing one to observe each
step of a proof when an error is encountered. VeriFast is then able to statically check that
contracts are respected during execution and that programs will not raise errors such as null
pointer exceptions or perform incorrect actions such as accessing illegal memory. Nonetheless,
VeriFast’s support for generics is still limited.1

When declaring predicates, one may also specify output parameters. These appear
after input parameters separated with a semicolon. Output parameters need to be precisely
defined in the predicate definition and allow its user to “extract” them. In Listing 1, the
parameter b is defined as an output parameter of the account predicate (line 1). It is
precisely defined to be the value of the balance field of the account object. The |-> symbol
represents the points-to assertion while &*& represents the separating conjunction binary
operator. This balance can then be “extracted” using the ? symbol in a pre-condition (line
5), existentially quantifying the name b, which can then be mentioned in the post-condition
(line 6), indicating the effect of a deposit given the current balance b.

Listing 1 Output parameters example.
1 //@ predicate account (Account a; int b) = a. balance |-> b &*& b >= 0;
2 class Account {
3 int balance ;
4 void deposit (int value)

1 https://github.com/verifast/verifast/issues/271

ECOOP 2023

https://github.com/verifast/verifast/issues/271

40:4 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

5 //@ requires account (this , ?b) &*& 0 < value ;
6 //@ ensures account (this , b + value);
7 {
8 balance += value;
9 }

10 }

For the sharing of memory locations, VeriFast has built-in support for fractional per-
missions, associating a number coefficient between 0 (exclusive) and 1 (inclusive) to each
heap chunk [17]. By default, the coefficient is 1, which allows reads from and writes to a
memory location. A number less than 1 allows only for reads. The programmer may provide
coefficient patterns in the form of expressions, such as literal numbers or variables, or in
the form of existentially quantified names (like f in line 2 of Listing 2). These patterns
may be applied to points-to assertions but also to predicates. Applying a coefficient to a
predicate is equivalent to multiplying it by each coefficient of each heap chunk mentioned in
the predicate’s body. Additionally, VeriFast supports the automatic splitting and merging of
fractional permissions. Counting permissions are also supported via a trusted library [17].

Listing 2 Coefficient pattern example.
1 int getBalance ()
2 //@ requires [?f] account (this , _);
3 //@ ensures [f] account (this , result);
4 { return balance ; }

For C programs, VeriFast also supports leak checking: after consuming post-conditions,
the heap must be empty. However, the programmer can leak certain resources with the leak
command. For Java programs, leaking is always allowed.

2.2 VerCors
VerCors is a verifier for concurrent programs written in Java, C, OpenCL and PVL (Prototypal
Verification Language), and annotated with method contracts [33, 13]. The specifications
employ a logic based on permission-based concurrent separation logic [50]. The
verification procedure is modular, checking each method in isolation given a contract with
pre- and post-conditions. As in VeriFast, lemmas can be defined and assertions introduced
to guide verification. Although there are other tools that perform static verification on
annotated programs, VerCors focuses on supporting different concurrency patterns of high-
level languages, and is designed to be language-independent. Support for inheritance and
exceptions is still being worked upon based on theoretical work by Rubbens [56].2 Internally,
VerCors uses the Viper backend [48], which in turn uses Z3 [23].

VerCors supports two styles for specifying access to memory locations: permission
annotations, following the approach of Chalice [44, 45]; and points-to assertions of
separation logic, as in VeriFast. Both styles of specification have been shown to be equivalent
by Parkinson and Summers [53]. The equivalence is presented in Figure 1. On the left-hand-
side it is shown the use of a permission annotation, Perm, to request access to variable var,
with fractional permission p, and storing a value equal to val. The ** symbol represents the
separating conjunction operator. On the right-hand-side it is shown the equivalent PointsTo
assertion. Permission annotations are very useful because they allow us to refer to values in
variables without the need to use new names for them.

2 https://vercors.ewi.utwente.nl/wiki/#inheritance-1

https://vercors.ewi.utwente.nl/wiki/#inheritance-1

J. Mota, M. Giunti, and A. Ravara 40:5

Perm(var, p) ** var == val ≡ PointsTo(var, p, val)

Figure 1 Permission annotations equivalent to points-to assertions.

As an example, List. 3 shows a method contract which requires exclusive permission to
write in field val (line 2), and ensures that the new value is equal to the old one incremented
by one (line 3).

Listing 3 Permissions example.
1 /*@
2 requires Perm(val , 1);
3 ensures Perm(val , 1) ** val == \old(val) + 1;
4 @*/
5 void increment (){
6 val = val + 1;
7 }

VerCors also has support for ghost code, including ghost parameters and results in
methods. These are declared in methods’ contracts with the given and yields keywords,
respectively. When calling a method, one uses the with and then keywords to assign ghost
parameters and retrieve return values, respectively. These features are exemplified in Listing 4
where a sum method yields a ghost result given two ghost parameters, x and y. Line 13
shows how this method may be used. Ghost code is useful to keep track of intermediate
results, which only exist for the purpose of verification.

Listing 4 Ghost code example.
1 /*@
2 given int x;
3 given int y;
4 yields int res;
5 ensures res == x + y;
6 @*/
7 void sum () {
8 //@ ghost res = x + y;
9 }

10
11 void main () {
12 //@ ghost int result ;
13 sum () /*@ with {x=3; y=2;} then { result =res ;} @*/;
14 }

2.3 Plural
Bierhoff and Aldrich addressed the problem of substitutability of subtypes while guaranteeing
behavioral subtyping in a object-oriented language [9]. The specification technique models
protocols using abstract states, incorporating state refinements (allowing the definition of
substates, thus supporting substitutability of subtypes), state dimensions (which define
orthogonal states corresponding to AND-states in Statecharts [28]), and method refinements
(allowing methods in subclasses to accept more inputs and return more specific results). The
approach is similar to pre- and post-condition based ones but provides better information
hiding thanks to the typestate abstraction [59].

Bierhoff and Aldrich then built on previous work and developed a sound modular protocol
checking approach, based on typestates, to ensure at compile-time that clients follow the
usage protocols of objects even in the presence of aliasing [10]. For that, they developed the

ECOOP 2023

40:6 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

notion of access permissions which combine typestate and object aliasing information.
The approach was realized in Plural, a static verifier they developed for Java, as a plugin for
Eclipse. As far as we know, not all Java’s features are supported, such as exceptions. Although
it is not maintained any longer, one can install it in Eclipse Juno (an old version from 2012)
from its source. Given its support for rich access permissions, and direct application of the
typestate abstraction, we believe its study is still very relevant.

An access permission tracks how a reference is allowed to read and/or modify the
referenced object, how the object might be accessed through other references, and what is
currently known about the object’s typestate. To increase the precision of access permissions,
Bierhoff and Aldrich introduced weak permissions (such as share and pure), where an object
can be modified through other permissions. The proposed permissions include a state
guarantee which ensures that an object remains in that state even in the face of interference.
Additionally, they track temporary state assumptions which are discarded when they become
outdated. All kinds of permissions are described in Table 1. A comprehensive survey on
permission-based specifications was presented by Sadiq et al. [57].

Table 1 Permissions in Plural.

Kind Access to the referenced object Access other aliases may have
Full read and write read-only
Pure read-only read and write
Immutable read-only read-only
Unique read and write none
Shared read and write read and write

In Listing 5 is an example of an iterator. In lines 1-3, it is stated that this object may be
in two distinct states, available or end. These are defined as refinements, or subtypes, of
the root state alive, a state common to all objects. Then it is specified that the hasNext
method may be called in the alive state with just pure permission (line 5). If the method
returns true, we further know that the iterator is in the available state, allowing us to
refine our knowledge (line 6). Otherwise, the iterator is in the end state (line 7). The next
method requires full permission and that the object be in the available state, and then it
can only ensure it is in the alive state (line 10).

Listing 5 Iterator example.
1 @Refine ({
2 @States (value ={" available ", "end"}, refined =" alive")
3 })
4 interface Iterator <E> {
5 @Pure("alive ")
6 @TrueIndicates (" available ")
7 @FalseIndicates ("end")
8 boolean hasNext ();
9

10 @Full(requires =" available ", ensures =" alive ")
11 E next ();
12 }

These kinds of permissions may be split to allow sharing of an object, and joined back
together to allow one to potentially restore unique permission. Fractional permissions
are used to track how much a permission was split [18]. Furthermore, different fractions can
be mapped to different state guarantees through a fraction function, thus tracking for each
state guarantee separately how many other permissions rely on it.

https://www.eclipse.org/downloads/packages/release/juno
https://code.google.com/archive/p/pluralism/

J. Mota, M. Giunti, and A. Ravara 40:7

Beckman et al. extended the approach to verify the correctness of usage protocols in
concurrent programs, statically preventing races on the abstract state of an object as well
as preventing violations of state invariants [7]. This approach uses atomic blocks and was
also realized in Plural. In this solution, access permissions are used as an approximation
of the thread-sharedness of objects. For example, if pure or share permissions are used, it
means that other references can modify the object, and it is assumed that this includes
concurrent modifications. In this scenario, temporary state assumptions are discarded, unless
the access is synchronized. Furthermore, accessing fields of an object with share, pure, or
full permissions, must be performed inside atomic blocks.

Beckman later presented a similar approach which uses synchronization blocks instead
of atomic blocks as the mutual exclusion primitive, given that the former are in more wide
use [6]. Since programmers are required to synchronize on the receiver object, it becomes
implicit to the analysis which parts of the memory are exclusively available, so programmers
are not required to specify which parts of the memory are protected by which locks. However,
this also implies that private objects cannot be used for the purposes of mutual exclusion.

2.4 KeY
KeY is a verifier for sequential Java programs [1]. Specifications are provided in Java
comments in JML*, an extension of the Java Modeling Language (JML) [43]. JML is based
on the design by contract paradigm with class invariants and method contracts [46]. Class
invariants describe properties that must be preserved by all methods. Method contracts
are composed by pre-conditions, post-conditions, and frame conditions, indicating the heap
locations which a method may modify. With this, KeY can employ modular verification.

The example in Listing 6 uses a specification technique based on dynamic frames [40]
and is adapted from the Cell example by Smans et al. [58]. The cell’s specification starts by
declaring a set of locations called footprint (line 4) composed only by the x field (line 6).
The accessible annotation (line 5) specifies that the set footprint will only change if a
location in the set mentioned on the right-side of the colon changes. In this case, footprint
is constant. Then an invariant is stated (line 9) and it is specified that it only depends on
locations in footprint. The setX method will not throw exceptions (indicated with the
normal_behavior annotation in line 12), it assigns only to locations in the footprint (line
13), requires the parameter to be positive (line 14), and ensures the next call to getX will
return the given value (line 15). Since it does not perform reads from heap locations, the
accessible annotation is omitted.

Listing 6 JML specification example.
1 class Cell {
2 private int x;
3
4 /*@ model \ locset footprint ;
5 @ accessible footprint : \ nothing ;
6 @ represents footprint = x;
7 @*/
8
9 //@ invariant x > 0;

10 //@ accessible \inv: footprint ;
11
12 /*@ normal_behavior
13 @ assignable footprint ;
14 @ requires value > 0;
15 @ ensures getX () == value ;
16 @*/

ECOOP 2023

40:8 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

17 void setX(int value) {
18 x = value ;
19 }
20 }

As far as we know, KeY is the verification tool that supports the greatest number of Java
features among the other static verification tools for Java, allowing one to verify real programs
considering the actual Java runtime semantics. This includes reasoning about inheritance,
dynamic method lookup, runtime exceptions, and static initialization. A consequence of
this is that, as the members of the KeY team point out, KeY is not overly suitable for the
verification of algorithms that require abstracting away from the code since KeY’s main goal
is the verification of Java programs [20].

KeY’s is based on an interactive theorem prover for first-order Java dynamic logic
(JavaDL) [27], which can be seen as a generalization of Hoare logic [30]. An important part
in the construction of proofs in KeY is symbolic execution. This process takes every possible
execution branch and transforms the program leading to a set of constraints, which can then
be verified against the specification. KeY provides a semi-automated environment where the
user may choose to apply every step of the proof, apply a strategy macro, combining several
deductive steps, or execute an automated proof search strategy. As well as offering a high
degree of automation, KeY supports SMT solvers, such as Z3 [23], which are often useful to
solve arithmetical problems [20]. More details on how to use KeY may be found online.3

The most common strategy macros, which we have significantly used in our experiments,
are: propositional expansion (to apply propositional rules); finish symbolic execution (to apply
only rules for modal operators of dynamic logic, thus executing Java programs symbolically);
close provable goals (automatically close all goals that are provable, but do not apply any
rules to goals which cannot be closed).

3 Experiments

In this section, we start by giving an overview of the examples that are going to be used,
showing the object usage protocols and their implementations, as well as, client code using
the presented objects (in Section 3.1). The code is in Java, a language supported by all
the aforementioned tools, which given its object-oriented nature, is well-suited for building
objects with protocol where method calls act like transitions of a state-machine.

Then in Sections 3.2 and 3.3, the common Java code for the classes is annotated with the
appropriate specification for each tool capturing the intended object protocols.

Finally, in Section 3.4, we present annotated client code which uses the object code
defined before, and answer the RQ: can the tools check protocol compliance and completion,
even when objects are shared in a collection?

All code implemented is available online. Throughout the text, hyperlinks in blue point
directly to the lines of code relevant to what is being discussed in order to help the reader
and to avoid the need to download code. Nonetheless, crucial code parts are presented in
listings and discussed in detail. Additionally, a thorough discussion of the implementation is
also online for the interested reader.

3 https://www.key-project.org/docs/UsingKeyBook/

https://github.com/jdmota/tools-examples/tree/ecoop-2023
https://arxiv.org/abs/2209.05136
https://www.key-project.org/docs/UsingKeyBook/

J. Mota, M. Giunti, and A. Ravara 40:9

3.1 Running examples
In this study, the main objects with protocol we consider are file readers. Their usage protocol
is shown in Figure 2. Circles represent states, arrows denote transitions performed by method
calls, and diamonds represent a decision based on the return value of the preceding call. The
initial state is marked with an incoming arrow without an outgoing state. The final state is
marked with a thicker border. We refer the reader to [60, 61] for more information about
this kind of automata, called Deterministic Object Automata, and a tool generating those.

Figure 2 File reader’s protocol.

According to the file reader’s protocol, the open method must be initially called. Then,
one must call the eof method to check if the end of the file was reached. While it returns
false, read calls are allowed. Otherwise, the whole file was read and the close method
needs to be called to terminate the protocol. A usage example of a file reader exhibiting
protocol compliance and completion is shown in Listing 7.

Listing 7 FileReader’s usage example.
1 FileReader f = new FileReader ("file.txt");
2 f.open ();
3 while (!f.eof ()) {
4 f.read ();
5 }
6 f.close ();

To track the number of bytes still available to be read, the reader has an internal
remaining field. Additionally, we may use a state field to track the current state of the
object. This may be seen as unnatural and superfluous, but when there is no primitive notion
of typestates in the language, it is unavoidable. One example of this encoding of protocols
being employed is in the Casino contract presented in the VerifyThis event.4 Exemplifying
code is presented in Listing 8. Assume that methods prefixed with file_ perform actions on
the file system. Please note that in the tool specific implementations, files are not actually
read, so as to simplify the code for demonstration purposes.

Listing 8 FileReader’s code.
1 class FileReader {
2 String filename ; State state; int remaining ;
3
4 FileReader (String name) {
5 filename = name;
6 state = INIT;
7 }

4 https://verifythis.github.io/casino/

ECOOP 2023

https://verifythis.github.io/casino/

40:10 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

8
9 void open () {

10 assert (state == INIT);
11 remaining = file_size (filename);
12 state = OPENED ;
13 }
14
15 boolean eof () {
16 assert (state == OPENED);
17 return remaining == 0;
18 }
19
20 byte read () {
21 assert (state == OPENED && remaining > 0);
22 remaining --;
23 return file_byte_read (filename);
24 }
25
26 void close () {
27 assert (state == OPENED && remaining == 0);
28 file_close (filename);
29 state = CLOSED ;
30 }
31 }

After implementing and specifying the file readers, we implement a collection to store
these. The challenge is then to verify the collection and statically track the different states
of the stored file readers, while ensuring protocol compliance and completion.

For our collection, we implement a singly-linked-list, meaning that each node has a
reference only to the next node. This list has two fields: head and tail. The former points
to the first node, the latter points to the last node, as it is commonly implemented in
imperative languages. Items are added to the tail and removed from the head, following a
FIFO discipline. Having a tail field is crucial for efficiency, avoiding the need to iterate all
the nodes before adding a new node to the end. Code for it is presented in Listing 9.

Listing 9 Linked-list’s code.
1 class Node <T> {
2 T value; Node next = null; Node(T v) { value = v; }
3 }
4
5 class LinkedList <T> {
6 Node <T> head = null; Node <T> tail = null;
7
8 void add(T value) {
9 if (head == null) {

10 head = tail = new Node(value);
11 } else {
12 tail.next = new Node(value);
13 tail = tail.next;
14 }
15 }
16
17 T remove () {
18 assert (head != null);
19 T value = head.value;
20 if (head == tail) {
21 head = tail = null;
22 } else {
23 head = head.next;
24 }
25 return value;
26 }

J. Mota, M. Giunti, and A. Ravara 40:11

27
28 boolean isEmpty () { return head == null; }
29
30 LinkedListIterator <T> iterator () {
31 return new LinkedListIterator (head);
32 }
33 }

We believe implementing a linked-list is particularly relevant for a number of reasons.
Besides being a very common data structure, and quite simple in nature, its use of pointers
often creates challenges for type systems without support for deductive reasoning. For
example, in a type system with a strict ownership discipline, it is difficult to deal with
the aliasing between the tail field and the second to last node’s next field.5 Additionally,
matching the concrete structure of the collection (i.e. the linked nodes) with the abstract
representation, to be able to track the states of the stored objects, usually requires ghost
code and (again) deductive reasoning, as we will observe.

Although the number of values stored in the linked-list is arbitrary, we can define a finite
protocol (Figure 3) that over-approximates the possible states: the list may be empty, which
means that we are only allowed to add new values; or the list may be not empty, which
means that we can also remove at least one value.6 With just these two states it is unknown
if the list becomes empty or not after removing a value, so we need to encode this uncertainty
with an additional state and use the isEmpty method to check the emptiness of the list.

Figure 3 List’s protocol.

Similarly, we can define a protocol for an iterator over the linked-list (Figure 4) with
three states: one indicating that there are values to retrieve with the next method, another
to specify that we reached the end of the list, and finally, a state to encode the uncertainty
between the previous two, where the hasNext method may be used to check if there are still
values to return. Code for the iterator is presented in Listing 10.

Listing 10 Iterator’s code.
1 class LinkedListIterator <T> {
2 Node <T> curr;
3 LinkedListIterator (Node head) { curr = head; }

5 For instance, in Rust, the ownership discipline prevents one from creating linked-lists, unless unsafe
code is used. GhostCell, a recent solution to deal with this, allows for internal sharing but the collection
itself still has to respect the discipline [62]. It uses unsafe code for its implementation but was proven
safe with separation logic.

6 Context-free session types can be used to describe protocols which are not limited by the expressiveness
of regular languages [2].

ECOOP 2023

40:12 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

Figure 4 Iterator’s protocol.

4
5 boolean hasNext () {
6 return curr != null;
7 }
8
9 T next () {

10 assert (curr != null);
11 T value = curr.value;
12 curr = curr.next;
13 return value;
14 }
15 }

An example combining the three classes is shown in Listing 11. In this example, a number
of file readers in their initial state is added to the list (line 6). This collection is then passed
to the auxiliary method useFiles (line 7) which iterates through all the readers and, for each
one, follows their protocol to the end. The properties of protocol compliance and completion
hold for this program example.

Listing 11 Usage example in code.
1 void main () {
2 LinkedList list = new LinkedList ();
3 FileReader f1 = new FileReader ("a");
4 FileReader f2 = new FileReader ("b");
5 FileReader f3 = new FileReader ("c");
6 list.add(f1); list.add(f2); list.add(f3);
7 useFiles (list);
8 }
9

10 void useFiles (LinkedList <FileReader > list) {
11 LinkedListIterator it = list. iterator ();
12 while (it. hasNext ()) {
13 FileReader f = it.next ();
14 f.open ();
15 while (!f.eof ()) f.read ();
16 f.close ();
17 }
18 }

We will now report on our experience with each tool detailing the specification and
proof effort required, keeping the issues of protocol compliance and completion in mind. In
summary, we successfully verify the file reader class (Listing 8) and its use (Listing 7) in
all four tools. The linked-list and iterator implementations (Listing 9 and 10), as well as
their usages (Listing 11), are accepted by all except Plural. Protocol completion can be
guaranteed with workarounds in all tools except Plural.

J. Mota, M. Giunti, and A. Ravara 40:13

3.2 File reader specification
VeriFast

To implement the file reader, we use pre- and post-conditions in all public methods indicating
the required and the ensured states after the call (example in List. 12). The fields of this
object are state (to keep track of the current state), and remaining (to keep track of the
number of bytes still to read). Every time the state needs to change, we assign to the state
field. We use constants to identify different states, thus avoiding the use of literal numbers
in specifications. To request access to the fields of the object, and to enforce that remaining
is equal to or greater than zero, we define the filereader predicate.

Listing 12 close method in VeriFast.
1 public void close ()
2 //@ requires filereader (this , STATE_OPENED , 0);
3 //@ ensures filereader (this , STATE_CLOSED , 0);
4 {
5 this. state = STATE_CLOSED ;
6 }

VerCors

The implementation in VerCors is very similar to the one in VeriFast, except for these
differences: we do not define a predicate to abstract the contents of the object (instead we
keep access to the fields exposed for practical reasons); and since VerCors supports ghost
fields, we use one to track the state, using numbers to represent each state.

Plural

Given the support for typestates, we directly define three states, init, opened, and closed,
which refine (i.e. define a substate of) the root state alive, a state in which all objects
are in. Additionally, we define two states, eof and notEof, refining opened, indicating if we
have reached or not the end of the file, respectively. The file reader has a boolean field,
remaining, indicating if there is something to read. To enforce the relation between the
states eof and notEof, and the remaining field, we define invariants for these states. Due to
a limitation, we had to simplify the read method, making it read the file all at once.7 To
enforce the protocol, we declare for each method the required and ensured states as well as
the permissions needed to perform each call. The open, read, and close methods require
unique permission to the receiver object. Full permissions would be enough except for the
possibility of concurrent accesses, which would require methods to be synchronized. The
eof method only needs an immutable permission guaranteeing that we are in the opened
state, and returns a boolean value indicating if the end of the file was reached.

KeY

We also model the protocol with pre- and post-conditions in methods. The state is tracked
using an integer ghost field. As in VeriFast and VerCors, remaining stores the number
of bytes left to read, and we enforce the value to be equal or greater than zero with an

7 Ideally, remaining would store an integer, but the syntax remaining == 0 does not seem to be supported
in the invariants. In consequence, we cannot model the arbitrary number of bytes to read.

ECOOP 2023

https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/FileReader.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/FileReader.java#L11-L12
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/FileReader.java#L11-L12
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/FileReader.java#L7-L9
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/FileReader.java#L2-L3
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/FileReader.java#L44-L49
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/FileReader.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/FileReader.java#L2
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L4
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L5
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L15
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L10-L11
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L24-L28
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L30-L34
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L46-L49
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L36-L44
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/FileReader.java#L6
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/FileReader.java#L7

40:14 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

invariant. The file reader has a footprint, composed by the state and remaining fields, and
each of its methods specifies which fields may be modified, according to the dynamic frames
technique [40]. To verify this class, we have to prove each method correct, according to each
specification, and the fact that nothing changes the footprint. Given its simplicity, all proofs
were automatically done using KeY’s default strategy.

Evaluation

As expected, we successfully modelled a protocol for a file reader in all four tools: in
Plural, the implementation was mostly straightforward given the support for typestates, but
annotations were required in all methods; in VeriFast, VerCors, and KeY, we used method
contracts, which also required some annotation burden. Thus, we motivate the need for more
natural ways to specify protocols, for example, via automata, which helps the programmer
visualize and design the protocol.

3.3 Linked-list and iterator specifications
VeriFast

The linked-list implementation is adapted and extended from a C implementation available
online. One key difference from the aforementioned C code is that when the linked-list is
empty, the head and tail fields have null values, instead of pointing to a dummy node.
This matches common implementations and makes verification more challenging because we
have to avoid null pointer errors.

To model the structure of the list, we define a predicate that holds access to the head
and tail fields and of all the nodes in the list (List. 13). The only input parameter is the
reference to the linked-list. The output parameters are the references to the head and tail,
and a ghost list to reason about the values in the list in an abstract way (line 1). This ghost
collection will be crucial to track the different states of the file readers stored in the list. Lines
3 and 4 ensure that if one of the fields is null, the other is also null, and the list is empty.
To ease the addition of new elements to the list, we request access to the sequence of nodes
between the head (inclusive) and the tail (exclusive), through the lseg predicate, and then
keep access to the tail node separately (line 5). The node predicate holds the permissions to
the next and value fields of a given node. Note that we do not hold permission to the fields
of the values stored. This is to allow them to change independently of the linked-list.

Listing 13 llist predicate in VeriFast.
1 predicate llist (LinkedList obj; Node h, Node t, list <FileReader > list) =
2 obj.head |-> h &*& obj.tail |-> t &*&
3 h == null ? t == null &*& list == nil :
4 t == null ? h == null &*& list == nil :
5 lseg(h, t, ?l) &*& node(t, null , ? value) &*&
6 list == append (l, cons(value , nil)) &*& list != nil;

The implementation of the remove and isEmpty methods is straightforward requiring only
the unfolding and folding of the llist and lseg predicates a few times. The add method
requires an auxiliary lemma (List. 14) stating that if we have a sequence of nodes plus the
final node, and we append another node in the end, we get a new sequence with all the nodes
from the previous sequence, the previous final node, and then the newly appended node.

Listing 14 add_lemma lemma in VeriFast.
1 lemma void add_lemma (Node n1 , Node n2 , Node n3)
2 requires lseg(n1 ,n2 ,?l) &*& node(n2 ,n3 ,? value) &*& node(n3 ,?n4 ,?v);
3 ensures lseg(n1 ,n3 , append (l,cons(value ,nil))) &*& node(n3 ,n4 ,v);

https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/FileReader.java#L14
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/FileReader.java#L9-L12
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java
https://people.cs.kuleuven.be/~bart.jacobs/verifast/examples/iter.c
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java#L22-L26
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java#L19-L20
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java#L14-L15
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java#L22-L26
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java#L60-L78
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java#L80-L87
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedList.java#L42-L58
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedListIterator.java#L7-L9

J. Mota, M. Giunti, and A. Ravara 40:15

To implement the iterator, we define a iterator predicate which holds access to the
current node field and all the nodes in the linked-list. Then, we split the permissions to
the nodes in two parts (List. 15): half of the permissions preserves the structure of the list
(line 4), and the other half holds the view of the iterator (line 5): a sequence of nodes from
the head (inclusive) to the current node (exclusive); and a sequence from the current node
(inclusive) to the final one. Both parts allow us to reason on the values already seen, and the
values still to be seen. This split occurs when the iterator is created. After iterating all the
nodes, the full permission to the nodes needs to be restored to the list, which is done via an
auxiliary lemma.

Listing 15 iterator_base predicate in VeriFast.
1 predicate iterator_base (LinkedList javalist , Node n;
2 list <FileReader > list , list < FileReader > a, list < FileReader > b) =
3 [1/2] javalist .head |-> ?h &*& [1/2] javalist .tail |-> ?t &*&
4 [1/2] llist(javalist , h, t, list) &*&
5 [1/2] lseg(h, n, a) &*& [1/2] nodes (n, b) &*& list == append (a, b);

The implementation of the hasNext method is straightforward. The implementation
of the next method requires unfolding and folding predicates, the use of a lemma showing
that the append function is associative (result already available in VeriFast), and the
iterator_advance lemma, which helps us advance the state of the iterator, moving the just
retrieved value from the “to see” list to the “seen” list (List. 16).

Listing 16 iterator_advance lemma in VeriFast.
1 lemma void iterator_advance (Node h, Node n, Node t)
2 requires [1/2] lseg(h, n, ?a) &*& [1/2] node(n, ?next , ?val1) &*&
3 [1/2] nodes(next , ?b) &*& [1/2] lseg(h, t, ?list) &*&
4 [1/2] node(t, null , ?val2);
5 ensures [1/2] lseg(h, next , append (a, cons(val1 , nil))) &*&
6 [1/2] nodes(next , b) &*& [1/2] lseg(h, t, list) &*&
7 [1/2] node(t, null , val2);

VerCors

The implementations of the linked-list and iterator closely follow the VeriFast’s ones, with
just some differences. Given that predicates in VerCors do not support output parameters,
we have predicates to request access to the needed memory locations, and then methods
to build the ghost lists that allow us to track the values. Additionally, we use given and
yields clauses in the methods to receive and return the necessary lists (lines 1-2 of List. 17).
Instead of using these clauses in methods, we would have preferred to rely on ghost fields
storing those lists. Unfortunately, it seems one cannot reason about the old value of a field if
its permission is inside a predicate. Using inline unfolding does not seem to work.

Listing 17 remove method’s contract in VerCors.
1 given seq <FileReader > oldList ;
2 yields seq <FileReader > newList ;
3 requires state (oldList) ** | oldList | > 0;
4 ensures state(newList) ** newList == tail(oldList);

Linked-lists and iterators have been implemented before for VerCors [14] but, to our
knowledge, there is no list implementation that uses a tail field, preferring instead a recursive
approach, with the “head” being the first value, and the “tail” being the rest of the list.

ECOOP 2023

https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedListIterator.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedListIterator.java#L7-L12
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedListIterator.java#L24
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/Lemmas.java#L154-L166
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedListIterator.java#L7-L9
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedListIterator.java#L28-L38
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/LinkedListIterator.java#L40-L59
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/Lemmas.java#L42-L92
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/LinkedList.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/LinkedListIterator.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/unfold-old
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/LinkedList.java#L183-L186

40:16 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

Plural

For the linked-list, we adapt a stack example from Plural’s repository.8 Naturally, we make
the appropriate changes since our linked-list follows a FIFO discipline, while a stack follows
a LIFO one. Since objects in Plural should be associated with typestates, both our Node and
LinkedList classes have protocols.

In the Node class, we define two orthogonal state dimensions, dimValue and dimNext,
which handle the value and next fields, respectively. In dimValue there are two states,
withValue and withoutValue, which indicate if the node has permission to the stored value
or not. In dimNext we have states withNext and withoutNext, which say if the node has
permission to the next node or if next is null. State dimensions avoid the need to reason
about all the combinations of having (or not) a value and having (or not) a next node. Since
direct field accesses are disallowed, we define getter and setter methods for both fields.

In the LinkedList class, we define two states: the empty and the non-empty. When it is
empty, the head and tail fields are null. When it is not empty, head and tail are not null
and there is unique permission to the first node, which is pointed by head. Since the head
points to the next node, and so on, we should have the required chain of nodes that builds
the linked-list. Adding and removing values from the list require unique permission to it.

Unfortunately, Plural did not accept either implementation. With regards to the Node
class, we had errors in all the methods indicating that the receiver could not be packed (i.e.
coerce from the concrete field view of the class to the abstract typestate view [24]) to match
the state specified by the ensures annotation parameter. Additionally, the invariant for the
withValue state had an error stating that the parametric permission kind we specified was
unknown, even though that was introduced with the appropriate annotation. In fact, we did
the same for the LinkedList class and we did not get these kinds of errors.

With regards to LinkedList, the only errors reported were in the add method. To
understand why, consider the case in which the list is not empty. In this case, the tail is
non-null, and we must call setNext on it to append a new node (line 8 of List. 18). However,
we do not have permission to do that. For this to work, we would need to have permission to
the last node that is owned by the second to last node. Unfortunately, we could not perform
such transferring of permissions. An alternative solution could be to use share permissions
instead of unique ones in the nodes. But this would require locking when accessing them,
because of the possibility of thread concurrency. Furthermore, we would lose track of the
memory footprint used by the list (since share permissions allow for unrestricted aliasing).
This can be an issue if we want to track all the references and ensure statically that all
resources are freed at end. Given this, we did not attempt to implement the iterator.

Listing 18 LinkedList’s add method in Plural.
1 @Unique (requires ="alive", ensures =" notEmpty ", use=Use. FIELDS)
2 public void add(@PolyVar (value="p", returned = false) T value) {
3 @Apply ("p") Node <T> n = new Node <T >(value);
4 if (head == null) {
5 head = n;
6 tail = n;
7 } else {
8 tail. setNext (n);
9 tail = n;

10 }
11 }

8 File pluralism/trunk/PluralTestsAndExamples/src/edu/cmu/cs/plural/polymorphism/ecoop/Stack.java

https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/Node.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/Node.java#L5-L6
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/LinkedList.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/LinkedList.java#L5
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/LinkedList.java#L26-L49
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/LinkedList.java#L33
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/LinkedList.java#L26-L36

J. Mota, M. Giunti, and A. Ravara 40:17

KeY

The linked-list implementation is heavily inspired in a tutorial by Hiep et al. which implements
a doubly-linked-list [29]. We declare several fields: head and tail; size, to count the number
of values; nodeList, containing a sequence of nodes; and values, containing a sequence of
values. The nodeList and values fields are ghost fields. As for the file reader, we define
the linked-list’s footprint, composed by its fields and the fields of all the nodes (line 5 of
List. 19). We also specify that the footprint itself only changes if the nodes sequence changes
(line 2), and that the list’s invariant only depends on the locations in the footprint (line 3).
The proof of the former was generated automatically by KeY using the default strategy. The
proof of the latter required some interactivity to guide the proof. Note that the footprints of
the values are not part of list’s footprint.

Listing 19 List’s footprint in KeY.
1 public model \ locset footprint ;
2 accessible footprint : nodeList ;
3 accessible \inv: footprint ;
4 represents footprint = size , head , tail , nodeList , values ,
5 (\ infinite_union \ bigint i; 0 <= i < nodeList . length ; ((Node) nodeList [i

]) .*);

The list’s invariant is the most verbose part of the specification. First, we specify that
size is equal to the number of nodes, which is then equal to the number of values. Then
we enforce that the values in the list are not null. We also use an existential quantifier,
indicating that in each position of the sequences, elements exist (lines 1-2 of List. 20). This
is necessary because KeY treats sequences in a way where they may occasionally contain
not-yet-created objects. Additionally, since the sequence declarations do not enforce the type
of their elements, we need to do it explicitly, either using an instanceof operator, or using
an existential quantifier. Furthermore, we need to cast the result of accessing a position in a
given sequence. Following that, we have to take into account that the list may be empty. So,
we define that either the nodes sequence is empty, and the head and tail fields are null, or
the nodes sequence is not empty, and the head points to the first node, and tail points to
the last one (lines 3-6). To ensure we have a linked-list, we enforce that the next field of
each node points to the following node in the sequence (lines 7-8). We also enforce that all
the nodes are distinct (lines 9-12). Finally, we specify that each value in the values sequence
corresponds to the value stored in each node in the same position.

Listing 20 List’s invariant in KeY.
1 (\ forall \ bigint i; 0 <= i < values . length ;
2 (\ exists FileReader f; f == values [i] && f != null)) &&
3 ((nodeList == \ seq_empty && head == null && tail == null)
4 || (nodeList != \ seq_empty && head != null && tail != null &&
5 tail.next == null && head == (Node) nodeList [0] &&
6 tail == (Node) nodeList [nodeList .length -1])) &&
7 (\ forall \ bigint i; 0 <= i < nodeList .length -1;
8 ((Node) nodeList [i]).next == (Node) nodeList [i+1]) &&
9 (\ forall \ bigint i; 0 <= i < nodeList . length ;

10 (\ forall \ bigint j; 0 <= j < nodeList . length ;
11 (Node) nodeList [i] == (Node) nodeList [j] ==> i == j
12)) && ...

The iterator has several fields: list, a reference to the list; curr, the current node;
index, the position of the current node in the nodes sequence; seen, the sequence of values
already iterated; and to_see, the sequence of values still to be iterated. The index, seen,
and to_see fields are ghost fields. As usual, we define the iterator’s footprint, composed only

ECOOP 2023

https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedList.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedList.java#L2-L6
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedList.java#L8-L13
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedList.java#L8-L13
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedList.java#L15-L35
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedList.java#L21-L31
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedListIterator.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedListIterator.java#L2-L6
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedListIterator.java#L8-L12

40:18 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

by its fields (line 4 of List. 21). We also specify that the footprint itself does not change (line
2), and that the iterator’s invariant depends on its footprint and on the list’s footprint (line
3). The proof of the former was done automatically. For the proof of the latter, KeY’s default
strategy was not enough. The reason for this was that KeY was applying multiple “cut”
tactics to try to close the proof for each possible value of size. Nonetheless, it was mostly
straightforward to guide the proof. We just had to use the “observerDependency” tactic to
establish that the iterator’s invariant does not change in the presence of heap updates on
locations that do not belong to its footprint or the list’s footprint.

Listing 21 Iterator’s footprint in KeY.
1 public model \ locset footprint ;
2 accessible footprint : \ nothing ;
3 accessible \inv: footprint , list. footprint ;
4 represents footprint = list , curr , index , seen , to_see ;

In the iterator’s invariant we first specify that index is a value between zero and the
number of values. This number may be equal to the number of values if and only if we have
already iterated through all values. Then we enforce that the values in both sequences are
not null. Following that, we define that the seen sequence corresponds to the values already
seen, from position zero (inclusive) to index (exclusive), and that to_see corresponds to the
values to see, from position index (inclusive) to the end. Since curr points to the current
node, we map it to position index in the nodes sequence, or we specify that it is null, when
iteration is done. Finally, we assert that the list’s invariant holds.

Regarding the linked-list, verifying the constructor, add, and iterator methods required
only the default strategy, but for the remove method, some interactivity was need, namely
to show that the first value was the value of the head. Regarding the iterator, we had to
guide the proof of the constructor, mostly to establish the invariants of the iterator and list,
since KeY was applying “cut” multiple times, as before. The hasNext method was verified
automatically with the default strategy. To verify the next method, we had to prove that:
1. only the list’s and iterator’s footprints are accessible; 2. the post-condition holds after
execution; 3. and that only the iterator’s footprint is modified. These proof requirements
required a lot of work, likely because of the relation between index and curr, which was
probably not obvious to the default strategy. Examples of goals which required some effort
to prove were: showing that the value of the current node was the first value in the “to see”
sequence, proving that such a value was a file reader, and that the new sequences respected
the invariant (after the current value was moved to the “seen” sequence).

Evaluation

In VeriFast, as well as in VerCors, the expressiveness of the logic allowed us to specify
a linked-list and an iterator. However, deductive reasoning was often required. In our
experience, we spent more time in proving results than in writing code, having to unfold and
fold predicates very often, revealing their definitions, having to define multiple lemmas, and
insert assertions to guide proofs. In VeriFast, we had to write about 160 lines of lemmas. In
VerCors, we wrote about 100 lines. Some of the time spent in VerCors with the proofs was
reduced because we could reuse the experience we had with VeriFast.

In Plural, we were not able to implement a linked-list. We believe the support for logical
predicates would be necessary to be able to specify structures with recursive properties.
Furthermore, as far as we can tell, there is no support for parametric typestates, even though
there is for fractional permissions, which could potentially allow one to model a list with
objects in different states that evolve.

https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedListIterator.java#L8-L12
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/LinkedListIterator.java#L14-L24
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/Lemmas.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/LinkedList.java#L31-L142

J. Mota, M. Giunti, and A. Ravara 40:19

In KeY, we were able to implement and verify a linked-list and an iterator. Although
KeY supports interactivity, together with useful macros and a high degree of automation, we
spent some time proving properties about the heap. For example, we often had to prove that
the footprints of two objects were disjoint, which means we also had to account for possible
changes in the footprints themselves, which became very cumbersome. To do this, we had to
make the footprints public so that they could be opened in proofs, otherwise we are not sure
if we would have been able to finish the proofs. We believe this motivates the need to be
able to prove heap and functional properties separately.

Given the differences between the approaches presented, we believe simply comparing lines
of specification would not provide a meaningful comparison. Thus, we provide a qualitative
evaluation. In summary, we observe that these methods require an important effort especially
when one is learning the approaches. Not surprisingly, in VeriFast, VerCors, and KeY, the
specification took more space than the code, and was usually verbose. VeriFast and VerCors
also required a substantial amount of annotations to guide the proofs. With KeY, the space,
usually needed for proofs in the other two tools, was replaced by the time spent proving
results interactivity. Even if it turns out that with training, it is not that hard to specify,
implement, and verify the examples, it is certainly time consuming. We believe this motivates
further study on what we can delegate to static analysis to ease this effort. Plural has less
expressive power than the other tools, so it makes sense that the annotation effort was low.

3.4 RQ evaluation
We are able to produce examples of file readers usage, as presented in Section 3.1, where
we successfully ensure that the protocol is followed (i.e. only the allowed methods in each
state can be called), in all four tools: in VeriFast, VerCors, and KeY, thanks to the pre- and
post-conditions; and in Plural, thanks to the typestate abstraction directly supported. We
can also ensure protocol compliance when different file readers are stored within a linked-list,
in VeriFast (List. 22), VerCors, and KeY, but with significant annotation and proof effort, as
observed in the examples produced.

Listing 22 useFiles specification in VeriFast.
1 requires list != null &*& llist(list , _, _, ?l) &*& tracker (length (l))

&*& foreachp (l, INV(FileReader . STATE_INIT));
2 ensures list != null &*& llist(list , _, _, l) &*& tracker (0) &*& foreachp

(l, INV(FileReader . STATE_CLOSED));

In the rest of this section, we focus our presentation on the crucial property of protocol
completion, which guarantees that if and when the program terminates, all the objects are
in the final states of their protocols.

VeriFast

To ensure that all file readers created through the lifetime of the program reach the end
of their protocol, we define a tracker predicate in a .javaspec file which keeps hold of the
number of open file readers (List. 23). This proposed solution is based on a private exchange
with Jacobs [37]. Then, we augment the file reader’s specification to increment this counter
in the constructor, and decrement the counter in the close method. Finally, since we want
to guarantee protocol completion for all created objects, we assert in the pre-condition and
post-condition of the main method that the counter should be zero, given that main is the
starting (and ending) point of Java programs.

ECOOP 2023

https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/basic/FileReader.java#L51-L66
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/FileReader.java#L49-L64
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/Main.java#L79-L98
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L51-L67
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/protocol-completion-2/Main.java#L25-L56
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/Main.java#L38-L68
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/Main.java#L33-L36
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/protocol-completion-2/Main.java#L26-L27
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/rt/tracker.javaspec
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/protocol-completion-2/FileReader.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/protocol-completion-2/Main.java#L8-L9
https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/protocol-completion-2/Main.java#L8-L9

40:20 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

Listing 23 tracker.javaspec file.
1 predicate tracker (int count);
2
3 lemma void increment_tracker ();
4 requires tracker (?n);
5 ensures tracker (n + 1);
6
7 lemma void decrement_tracker ();
8 requires tracker (?n);
9 ensures tracker (n - 1);

Unfortunately, it is possible to fail to ensure protocol completion if the programmer is
not careful. Firstly, one could forget to increment and decrement the counter when the
typestated-object is initialized and when its protocol finishes, respectively. Secondly, if one
forgets to include the post-condition in the main method, protocol completion will not be
actually enforced. So, we can guarantee protocol completion but only if the programmer
does not fall for these “traps”. Here we see that ghost code is useful to check properties, but
if such code is not correctly connected with the “real” code, then the property we desired to
establish is not actually guaranteed.

VerCors

To ensure protocol completion, we follow the previous idea, but instead of a “global counter”
defined through a predicate written in a specification file, we create a FileTracker object
which keeps hold of the number of open file readers using ghost code. When we augment
the file reader’s implementation to increment and decrement the counter in the appropriate
methods, we also have to pass the tracker using the given directive. Again, it is possible to
fall for the same “traps”: forgetting to increment and decrement the counter, and forgetting
to add the post-condition to the main method.

Since VerCors supports quantifiers, one could think of quantifying over all file readers
and ensuring they are all closed. Unfortunately, we would be quantifying over all possible
file readers, not just the ones actually allocated on the heap.

Plural

Although the typestate abstraction is directly supported, protocol completion is not guaran-
teed since permissions may be “dropped”, as seen in List. 24, where a unique permission for
an object is received but not used, without any error being reported. This was not an issue
in other tools, even though leaking resources is permitted, because the support for deductive
reasoning allowed us to count the number of active objects.

Listing 24 Dropping file reader in Plural.
1 void droppingObject (
2 @Unique (requires =" opened ", returned = false) FileReader f) {}

As far as we can tell, Plural’s specification language is based on linear logic, which would
imply that this would not be permitted. However, we understand why this is the case in
Java, since it is common for one to stop using an object and letting the garbage collector
reclaim memory. Nonetheless, we believe that ensuring protocol completion is crucial for
typestated-objects, to ensure that important method calls are not omitted and resources are
freed (e.g. closing a socket).

https://github.com/jdmota/tools-examples/blob/ecoop-2023/verifast/rt/tracker.javaspec
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/FileTracker.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/FileReader.java
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/Main.java#L5
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L69-L71
https://github.com/jdmota/tools-examples/blob/ecoop-2023/plural/FileReader.java#L69-L71

J. Mota, M. Giunti, and A. Ravara 40:21

KeY

To ensure that all file readers reach the end of their protocol, we define a contract for the
main method such that for all file readers created at some point in the program, they are
in the final state (line 2 of List. 25). Since KeY is not aware of the objects created or not
before, we define as pre-condition that no file readers exist when main is called (line 1). This
works because quantifiers in KeY only reason over objects in the heap. Given that main is
the first method called in a Java program, this requirement is actually an assumption.

Listing 25 main method’s contract with protocol completion in KeY.
1 requires !(\ exists FileReader f; true);
2 ensures (\ forall FileReader f; f. state == FileReader . STATE_CLOSED);

Thanks to first-order dynamic logic, we can use quantifiers to specify that all existing
file readers should have their protocol completed. Although this seems powerful, we have
to adapt all other methods to specify that no new file readers are created inside. This is
necessary because it would be possible for methods to create file readers only available in
the scope of their execution, which would exist in the heap as created objects, but for which
we would know nothing about. This post-condition, written as !(\exists FileReader f;
\fresh(f)), was added in all needed methods. In the file reader’s constructor, we also had
to say that f was different from this, since the newly created reference is fresh.

Evaluation

In the context of typestates, checking for protocol completion is crucial to ensure that
necessary method calls are not forgotten and that resources are freed, thus avoiding memory
leaks. Unfortunately, that concept is not built-in in any of the logics employed by all four
tools. We believe that protocol completion should be provided directly by the type system and
the programmer should not be required to remember to add this property to the specification.

One workaround we found for VeriFast and VerCors was to have a counter that keeps
track of all typestated-objects which are not in the final state. This requires keeping hold of
the aforementioned tracker in specifications, which can be a huge burden in bigger programs.
Ensuring protocol completion could be embedded in separation logic and such a feature
could even be possible in VeriFast. Given that VeriFast supports leak checking, one would
just need to incorporate notions of typestates and ensure that leaking would only be allowed
when objects are in their final states. In C, one would also need to enforce that claimed
memory is freed. In Java, leak checking would need to be enabled for typestated-objects.

For Plural, we did not find a way to ensure protocol completion. This could be supported
by asking the programmer to indicate which state of a given object is the final one and only
allowing permissions for ended objects to be “dropped”.

In KeY, we made use of the support for universal quantifiers and reasoning on heap-
dependent expressions. However, verifying the code against that specification can be cumber-
some, and requires augmenting the specifications of all other methods, ensuring no untracked
objects are added to the heap.

4 General assessment of the tools

In this section, we summarize our views about the tools, using the knowledge gained from
our experiments, and provide suggestions of what could be improved.

ECOOP 2023

https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/protocol-completion/Main.java#L4-L5
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/protocol-completion/Main.java#L4-L5
https://github.com/jdmota/tools-examples/blob/ecoop-2023/key/protocol-completion/FileReader.java#L21

40:22 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

VeriFast

Separation logic, fractional permissions, and predicates, allow for rich and expressive specific-
ations that make it possible to verify complex programs. However, deductive reasoning is
often required when the specifications are more elaborate, as we have seen when implementing
the linked-list (Section 3.3). This is tedious and can be a barrier to less experienced users.
Although VeriFast’s IDE provides a way for one to look at each step of a proof when an error
is discovered, we believe that, at least in part, having a way to guide proofs (like one can do
with proof assistants such as Coq), would improve the user experience even more by: (1)
avoiding having to insert proof guiding assertions in the code implementation itself (allowing
for more separation of concerns); and (2) avoiding the need to rerun the tool every time
that occurs. In other words, when guiding the proofs, one would get immediate feedback.
Nonetheless, the IDE experience was still very useful in helping us prove several results.

Checking for protocol completion is crucial to ensure that essential method calls are
not omitted and that resources are freed. Unfortunately, that concept is not built-in in
separation logic (Section 3.4). Given that VeriFast supports leak checking, one would just
need to ensure that leaking would only be allowed when objects are in their final states.

VerCors

As in VeriFast, rich and expressive specifications are supported, but deductive reasoning is
(again) required. As we noted before, this can be tedious, as highlighted by the time and lines
of code we needed to prove results. Unfortunately, VerCors has no interactive experience so
we had to practice “trial and error” more often, guessing what could be wrong and rerunning
the tool every time we changed the code.

In terms of user experience, we think allowing for more separation between lemma and
predicate functions from code, instead of forcing these to belong to classes as static methods,
would help improve readability, as others have also noted [31]. We also believe the tool could
be more efficient: since specifications are self-framing (i.e. only depend on memory locations
that they themselves require to be accessible) and the checking process is modular, VerCors
could cache some results to avoid re-checking parts of the code that were not modified. We
also noticed that if we unfolded a predicate on which some truth depends on, that knowledge
would be lost. For example, the knowledge of the values stored in a sequence of nodes depends
on the permissions to those nodes, available in the nodes_until predicate. In principle,
unfolding this predicate should not invalidate the available information, but it does. To
workaround this, we had to use fractional permissions to keep hold of some fraction of the
original predicate, and only unfold the other fractional part.

Comparison between VeriFast and VerCors

Given the similarities between VeriFast and VerCors, we believe it is very relevant to provide
a comparison between both.

With respect to specifying access to memory locations, VeriFast only supports the points-
to assertions of separation logic, while VerCors also supports permission annotations, inspired
by Chalice [44, 45], allowing us to refer to values in variables without the need to use new
names for them, which was very useful when writing the specifications. Furthermore, VerCors
has built-in support for quantifiers, many different abstract data structures, and ghost code,
which VeriFast does not. We used a fair amount of ghost code in VerCors. Nonetheless,
VeriFast supports the definition of new inductive data types, fixpoint functions, higher-order
predicates, and counting permissions, which VerCors does not. Unfortunately, VerCors does

https://coq.inria.fr/
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/LinkedList.java#L14-L17
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/LinkedList.java#L132

J. Mota, M. Giunti, and A. Ravara 40:23

not support generics in Java. Regarding VeriFast, as Bart Jacobs points out, at the time of
writing, “support for Java generics in VeriFast is in its infancy”.

Both provide support for fractional permissions, which we have used. However, this
model only allows for read-only access when data is shared. In consequence, either locks
are required to mutate shared data (even in single-threaded code, where they are not really
necessary, resulting in inefficient code), or a complex specification workaround is needed. We
believe that the specifications and code should focus on the application’s logic, and the need
to modify them to help the verifier should be avoided as much as possible. VerCors lacks
support for counting permissions, which would allow permissions to be split in other ways.

Finally, we missed the support for output parameters which VeriFast has. To reproduce
the same concept in VerCors, we had to add ghost parameters in many methods and explicitly
pass values for those parameters when calling such methods. For example, when working
with the linked-list, we kept track of the sequence of values in the list through ghost code,
and always had to pass that sequence to each called method.

Plural

The rich set of access permissions allows objects’ state to be tracked even in the presence
of aliasing, and permits read/write and write/write operations, thanks to state guarantees.
Nonetheless, we could not specify structures such as the linked-list with double handle
(i.e. with head and tail fields), likely because of the lack of support for logical predicates.
Furthermore, to our knowledge, there is no support for parametric typestates.

The use of share permissions allows for unrestricted aliasing. Nonetheless, state assump-
tions need to be discarded because of the possibility that there might be other threads
attempting to modify the same reference. Although this thread-sharedness approximation
is sound, it forces the use of synchronization primitives even if a reference is only available
in one thread. Beckman et al. discuss the possibility of distinguishing permissions for
references that are only aliased locally from references that are shared between multiple
threads, allowing access to thread-local ones without the need for synchronization [7]. But
as far as we know, the idea was not realized.

Furthermore, there is no built-in guarantee of protocol completion. This could be provided
by only permitting permissions for ended objects to be “dropped” (Section 3.4).

KeY

The use of JML for specifications, a language for formally specifying behavior of Java
code, used by various tools, reduces the learning curve for those that already know JML.
Furthermore, KeY supports a great number of Java features, allowing one to verify real
programs considering the actual Java runtime semantics. Nonetheless, generics are not
supported, although there is an automated tool to remove generics from Java programs,
which can then be verified with KeY. Because of its focus on Java, KeY is not overly suitable
for the verification of algorithms that require abstracting away from the code [20].

One important aspect that makes KeY stand out from other tools is the support for
interactivity, which allows the programmer to guide the proofs. This is an aspect that we
missed when experimenting with other tools. Additionally, KeY provides useful macros and
a high degree of automation, as well as support for SMT solvers, such as Z3. We used Z3
often to more quickly close provable goals, specially those involving universal quantifiers.

Since KeY’s core is based on first-order dynamic logic, one can express heap-dependent
expressions: the heap is an explicitly object in the logic. Although this allows for much
expressiveness, it often becomes very difficult to verify programs, as our experience has shown

ECOOP 2023

https://github.com/verifast/verifast/issues/271#issuecomment-1134814121
https://github.com/jdmota/tools-examples/blob/ecoop-2023/vercors/Main.java#L16-L18
https://www.key-project.org/docs/user/RemoveGenerics/

40:24 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

(Section 3.3). We think that a variant of KeY that would instead use separation logic, to
abstract away the heaps and the notion of disjointness, would be very helpful, improving
readability and reducing verbosity.

Nonetheless, there are probably other alternatives to separation logic that would help in
solving the aforementioned issues. In a private conversation with KeY’s group leaders, they
point out that the connectives of separation logic “would get in the way of automation”,
a crucial feature of KeY. For example, it seems that “the heap separation rule tends to
split proofs too early” [35]. Furthermore, they mention that the problems we encountered
could be summarized in two main points: (1) insufficient abstract specification primitives;
(2) inability to prove heap and functional properties separately, in a modular fashion. KeY’s
team is aware of these issues and will address them in the future (at the time of writing).

As we pointed out above, we believe separation logic together with resource leaking
prevention (except for objects with completed protocol), could be used to ensure protocol
completion without the need for adding extraneous specifications. This would be another
reason why we believe separation logic would be preferable over first-order dynamic logic,
but it is possible there are other alternatives.

Finally, we enjoyed the user experience and appreciated that KeY comes with examples
to experiment with. Nonetheless, at the moment of writing, we believe there is room for
improvement. For more details, we refer the reader to a thorough discussion of the issues we
found and suggestions for improvements, which we shared with KeY’s team.

5 Related work

Penninckx et al. develop an approach to verify input/output properties of programs [54].
They encode I/O behavior using abstract permission-based predicates implemented in
VeriFast. The technique ensures that a program only performs the allowed I/O operations.
Additionally, it guarantees a terminated program has performed all desired operations with
a post-condition specifying the final state a program should be found in. Later, Jacobs
presented an approach to verify liveness properties [36]. Blom et al. verify the functional
behavior of concurrent software using histories, which record the actions taken by a concurrent
program [15]. The technique has been integrated in VerCors and experimentally added to
VeriFast. Similarly, Oortwijn integrated process algebra models [8] in VerCors to reason about
functional properties of shared-memory concurrent programs, including non-terminating
ones [52]. More recently, work has been developed to support the deductive verification of
JavaBIP models in VerCors [12]. In these models, Java classes are considered as components
where their behavior is described by finite state machines, and component interactions are
specified with synchronization annotations [11]. Kim et al. propose a technique to specify
protocols of Java classes by incorporating typestates into JML [41]. When translating their
extension to pure JML, multiple boolean fields for each state are declared which, when
true, indicate the object is in that given state. Multiple fields are needed to support
state refinements [9]. Cheon and Perumandla extend JML with a new specification clause
containing a regular expression-like notation to specify the sequences of method calls allowed
for a given class [21].

In this study, we focus on sequential examples and only present a simple protocol, which
does not require a complex encoding, so the aforementioned techniques would either not be
applicable or would introduce unnecessary verification overhead.

With respect to comparison studies, there are several that have been conducted. However,
as far as we know, no study was previously done that focused on the verification of protocol
compliance and completion. Nonetheless, we reference some works we found relevant to

https://arxiv.org/abs/2209.05136

J. Mota, M. Giunti, and A. Ravara 40:25

us. Lathouwers and Huisman examine the annotation effort in several tools, including
VeriFast and VerCors [42]. Hollander briefly discusses the differences between VeriFast
and VerCors [31]. Boerman et al. study the way in which KeY and OpenJML treat JML
specifications differently and the effort in switching between both tools [16].

6 Conclusions

In this paper, we address the RQ (Page 2) by reviewing four verification tools for Java.
In particular, we evaluated their ability to check the correct use of objects with protocol,
and if they were able to guarantee protocol completion, even when these were shared in
collections (Section 3.4). Additionally, we evaluated the programmer’s effort in making the
code acceptable to each, and provide suggestions for improvements (Section 4).

We were able to reach a general conclusion: stateful objects usually have protocols
representing their intended usage. In the tools we have studied, protocols are not first-class
entities; instead they need to be encoded with method contracts (even in Plural, annotations
on methods are required). In contrast, approaches based on behavioral types, where protocols
can be defined via automata [4, 47, 60], treat protocols as central, and provide a global view
of the intended usage of each object. By having this model, reasoning on relevant properties
becomes easier than on lower level encodings.

Now we summarize key points gathered from our experiments with each tool. Both
VeriFast and VerCors support rich and expressive specifications based on separation logic: this
allowed us to successfully address the RQ. However, deductive reasoning was often required.
This is very demanding and can be a barrier to less experienced users. We believe improved
interactive experiences for programmers are key to make these tools more approachable.
Furthermore, fractional permissions only allow for read-only access when data is shared.

Plural is different from these tools in two major ways: it does not support logical predicates
and so, specifications are less expressive in that regard, which prevented us from implementing
a linked-list. Nevertheless, access permissions support more kinds of sharing, but access to
thread-local shared data might require an unnatural use of locks.

KeY supports interactivity, automation, and the ability to reuse proofs. Nonetheless, the
fact that heaps are mentioned explicitly in assertions made it difficult to read the hypothesis
and proof goals. Additionally, we often had to show that certain footprints were disjoint.
So, although we successfully answered the RQ, again the effort was substantial. To fully
automate some proofs, KeY depends on finding the right specifications and proof search
settings, which is not easy. More abstract specification primitives, and the ability to separate
proofs of heap and functional properties, are crucial features to improve both readability
and ease of proving results.

So, we proved protocol compliance with some effort, but protocol completion, crucial
to ensure that necessary method calls are not forgotten and that resources are freed, is
not directly supported by any of these tools. Although there are workarounds in some, we
believe such guarantee should be supplied directly. This could be done by ensuring that no
permission to an object is “dropped” unless it is in the final state.

In conclusion, this study motivates the need for lightweight methods to statically guarantee
protocol compliance and completion in the presence of several patterns of sharing, like objects
with protocol stored in collections, including the following features: usage protocols as the
central entity defining objects’ behavior, more kinds of sharing beyond fractional permissions
also avoiding the need for locks in sequential code, and better techniques to reason about
permissions to heap locations.

For completion, this study could be complemented with OpenJML [22], and LiquidJava,
a recent tool that integrates liquid types in Java [26].

ECOOP 2023

40:26 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

References
1 Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt,

and Mattias Ulbrich, editors. Deductive Software Verification – The KeY Book – From
Theory to Practice, volume 10001 of Lecture Notes in Computer Science. Springer, 2016.
doi:10.1007/978-3-319-49812-6.

2 Bernardo Almeida, Andreia Mordido, Peter Thiemann, and Vasco T. Vasconcelos. Polymorphic
lambda calculus with context-free session types. Inf. Comput., 289(Part A), 2022. doi:
10.1016/j.ic.2022.104948.

3 Davide Ancona et al. Behavioral types in programming languages. Foundations and Trends in
Programming Languages, 3(2-3):95–230, 2016. doi:10.1561/2500000031.

4 Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and António Ravara. A
Java typestate checker supporting inheritance. Sci. Comput. Program., 221, 2022. doi:
10.1016/j.scico.2022.102844.

5 Bernhard Beckert and Reiner Hähnle. Reasoning and Verification: State of the Art and
Current Trends. IEEE Intell. Syst., 29(1):20–29, 2014. doi:10.1109/MIS.2014.3.

6 Nels E. Beckman. Modular typestate checking in concurrent Java programs. In Companion
to the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 737–738. ACM, 2009. doi:10.1145/1639950.1639990.

7 Nels E. Beckman, Kevin Bierhoff, and Jonathan Aldrich. Verifying correct usage of atomic
blocks and typestate. In Proceedings of the 23rd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pages 227–244. ACM,
2008. doi:10.1145/1449764.1449783.

8 Jan A. Bergstra and Jan Willem Klop. Process Algebra for Synchronous Communication. Inf.
Control., 60(1-3):109–137, 1984. doi:10.1016/S0019-9958(84)80025-X.

9 Kevin Bierhoff and Jonathan Aldrich. Lightweight object specification with typestates. In
Proceedings of the 10th European Software Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages 217–226.
ACM, 2005. doi:10.1145/1081706.1081741.

10 Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 301–320. ACM, 2007. doi:10.1145/1297027.
1297050.

11 Simon Bliudze, Anastasia Mavridou, Radoslaw Szymanek, and Alina Zolotukhina. Exogenous
coordination of concurrent software components with JavaBIP. Softw. Pract. Exp., 47(11):1801–
1836, 2017. doi:10.1002/spe.2495.

12 Simon Bliudze, Petra van Den Bos, Marieke Huisman, Robert Rubbens, and Larisa Safina.
JavaBIP meets VerCors: Towards the Safety of Concurrent Software Systems in Java. In 26th
International Conference on Fundamental Approaches to Software Engineering, 2023.

13 Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. The VerCors Tool
Set: Verification of Parallel and Concurrent Software. In Proceedings of Integrated Formal
Methods, volume 10510 of Lecture Notes in Computer Science, pages 102–110. Springer, 2017.
doi:10.1007/978-3-319-66845-1_7.

14 Stefan Blom and Marieke Huisman. Witnessing the elimination of magic wands. Int. J. Softw.
Tools Technol. Transf., 17(6):757–781, 2015. doi:10.1007/s10009-015-0372-3.

15 Stefan Blom, Marieke Huisman, and Marina Zaharieva-Stojanovski. History-Based Verific-
ation of Functional Behaviour of Concurrent Programs. In Radu Calinescu and Bernhard
Rumpe, editors, Software Engineering and Formal Methods – 13th International Conference,
Proceedings, volume 9276 of Lecture Notes in Computer Science, pages 84–98. Springer, 2015.
doi:10.1007/978-3-319-22969-0_6.

16 Jan Boerman, Marieke Huisman, and Sebastiaan J. C. Joosten. Reasoning About JML:
Differences Between KeY and OpenJML. In Integrated Formal Methods – 14th International
Conference, Proceedings, volume 11023 of Lecture Notes in Computer Science, pages 30–46.
Springer, 2018. doi:10.1007/978-3-319-98938-9_3.

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1016/j.ic.2022.104948
https://doi.org/10.1016/j.ic.2022.104948
https://doi.org/10.1561/2500000031
https://doi.org/10.1016/j.scico.2022.102844
https://doi.org/10.1016/j.scico.2022.102844
https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1145/1639950.1639990
https://doi.org/10.1145/1449764.1449783
https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1145/1081706.1081741
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1002/spe.2495
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/s10009-015-0372-3
https://doi.org/10.1007/978-3-319-22969-0_6
https://doi.org/10.1007/978-3-319-98938-9_3

J. Mota, M. Giunti, and A. Ravara 40:27

17 Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Permission
accounting in separation logic. In The 32nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 259–270, 2005. doi:10.1145/1040305.1040327.

18 John Boyland. Checking Interference with Fractional Permissions. In Static Analysis, 10th
International Symposium, Proceedings, volume 2694 of Lecture Notes in Computer Science,
pages 55–72. Springer, 2003. doi:10.1007/3-540-44898-5_4.

19 Mario Bravetti, Adrian Francalanza, Iaroslav Golovanov, Hans Hüttel, Mathias Jakobsen,
Mikkel Kettunen, and António Ravara. Behavioural Types for Memory and Method Safety
in a Core Object-Oriented Language. In Asian Symposium on Programming Languages and
Systems, volume 12470 of Lecture Notes in Computer Science, pages 105–124. Springer, 2020.
doi:10.1007/978-3-030-64437-6_6.

20 Daniel Bruns, Wojciech Mostowski, and Mattias Ulbrich. Implementation-level verification
of algorithms with KeY. Int. J. Softw. Tools Technol. Transf., 17(6):729–744, 2015. doi:
10.1007/s10009-013-0293-y.

21 Yoonsik Cheon and Ashaveena Perumandla. Specifying and Checking Method Call Sequences
in JML. In Hamid R. Arabnia and Hassan Reza, editors, Proceedings of the International
Conference on Software Engineering Research and Practice, volume 2, pages 511–516. CSREA
Press, 2005.

22 David R. Cok. JML and OpenJML for Java 16. In FTfJP 2021: 23rd ACM International
Workshop on Formal Techniques for Java-like Programs, 2021, Proceedings, pages 65–67. ACM,
2021. doi:10.1145/3464971.3468417.

23 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

24 Robert DeLine and Manuel Fähndrich. Typestates for Objects. In 18th European Conference
on Object-Oriented Programming, Proceedings, volume 3086 of Lecture Notes in Computer
Science, pages 465–490. Springer, 2004. doi:10.1007/978-3-540-24851-4_21.

25 José Duarte and António Ravara. Retrofitting Typestates into Rust. In 25th Brazilian
Symposium on Programming Languages, pages 83–91. ACM, 2021. doi:10.1145/3475061.
3475082.

26 Catarina Gamboa, Paulo Alexandre Santos, Christopher Steven Timperley, and Alcides
Fonseca. User-driven Design and Evaluation of Liquid Types in Java. CoRR, abs/2110.05444,
2021. arXiv:2110.05444.

27 David Harel. Dynamic logic. In Handbook of philosophical logic, pages 497–604. Springer, 1984.
28 David Harel. Statecharts: A Visual Formalism for Complex Systems. Sci. Comput. Program.,

8(3):231–274, 1987. doi:10.1016/0167-6423(87)90035-9.
29 Hans-Dieter A. Hiep, Jinting Bian, Frank S. de Boer, and Stijn de Gouw. A Tutorial on

Verifying LinkedList Using KeY. In Deductive Software Verification: Future Perspectives –
Reflections on the Occasion of 20 Years of KeY, volume 12345 of Lecture Notes in Computer
Science, pages 221–245. Springer, 2020. doi:10.1007/978-3-030-64354-6_9.

30 Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12(10):576–580, 1969. doi:10.1145/363235.363259.

31 J.P. Hollander. Verification of a model checking algorithm in VerCors, August 2021. URL:
http://essay.utwente.nl/88268/.

32 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language Primitives
and Type Discipline for Structured Communication-Based Programming. In Proceedings of
Programming Languages and Systems, volume 1381 of Lecture Notes in Computer Science,
pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

33 Marieke Huisman and Raúl E. Monti. On the Industrial Application of Critical Software
Verification with VerCors. In Proceedings of Leveraging Applications of Formal Methods,
volume 12478 of Lecture Notes in Computer Science, pages 273–292. Springer, 2020. doi:
10.1007/978-3-030-61467-6_18.

ECOOP 2023

https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-030-64437-6_6
https://doi.org/10.1007/s10009-013-0293-y
https://doi.org/10.1007/s10009-013-0293-y
https://doi.org/10.1145/3464971.3468417
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1145/3475061.3475082
https://doi.org/10.1145/3475061.3475082
https://arxiv.org/abs/2110.05444
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1007/978-3-030-64354-6_9
https://doi.org/10.1145/363235.363259
http://essay.utwente.nl/88268/
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-030-61467-6_18
https://doi.org/10.1007/978-3-030-61467-6_18

40:28 On Using VeriFast, VerCors, Plural, and KeY to Check Object Usage

34 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of Session Types and Behavioural Contracts.
ACM Comput. Surv., 49(1):3:1–3:36, 2016. doi:10.1145/2873052.

35 Reiner Hähnle. Private communication, July 2022.
36 Bart Jacobs. Modular Verification of Liveness Properties of the I/O Behavior of Imperative

Programs. In Leveraging Applications of Formal Methods, Verification and Validation: Veri-
fication Principles, Proceedings, volume 12476 of Lecture Notes in Computer Science, pages
509–524. Springer, 2020. doi:10.1007/978-3-030-61362-4_29.

37 Bart Jacobs. Private communication, March 2022.
38 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank

Piessens. VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA
Formal Methods – Third International Symposium, Proceedings, volume 6617 of Lecture Notes
in Computer Science, pages 41–55. Springer, 2011. doi:10.1007/978-3-642-20398-5_4.

39 Bart Jacobs, Jan Smans, and Frank Piessens. A Quick Tour of the VeriFast Program
Verifier. In Programming Languages and Systems – 8th Asian Symposium, Proceedings,
volume 6461 of Lecture Notes in Computer Science, pages 304–311. Springer, 2010. doi:
10.1007/978-3-642-17164-2_21.

40 Ioannis T. Kassios. Dynamic Frames: Support for Framing, Dependencies and Sharing Without
Restrictions. In Formal Methods, 14th International Symposium on Formal Methods, Hamilton,
Proceedings, volume 4085 of Lecture Notes in Computer Science, pages 268–283. Springer,
2006. doi:10.1007/11813040_19.

41 Taekgoo Kim, Kevin Bierhoff, Jonathan Aldrich, and Sungwon Kang. Typestate protocol
specification in JML. In Proceedings of the 8th International Workshop on Specification and
Verification of Component-Based Systems, pages 11–18. ACM, 2009. doi:10.1145/1596486.
1596490.

42 Sophie Lathouwers and Marieke Huisman. Formal Specifications Investigated: A Classification
and Analysis of Annotations for Deductive Verifiers. In 10th IEEE/ACM International
Conference on Formal Methods in Software Engineering, FormaliSE@ICSE 2022, pages 69–79.
ACM, 2022. doi:10.1145/3524482.3527652.

43 Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Softw. Eng. Notes, 31(3):1–38, 2006.
doi:10.1145/1127878.1127884.

44 K Rustan M Leino and Peter Müller. A basis for verifying multi-threaded programs.
In European Symposium on Programming, pages 378–393. Springer, 2009. doi:10.1007/
978-3-642-00590-9_27.

45 K Rustan M Leino, Peter Müller, and Jan Smans. Verification of concurrent programs with
Chalice. In Foundations of Security Analysis and Design V, pages 195–222. Springer, 2009.
doi:10.1007/978-3-642-03829-7_7.

46 Bertrand Meyer. Applying ’design by contract’. Computer, 25(10):40–51, 1992. doi:10.1109/
2.161279.

47 João Mota, Marco Giunti, and António Ravara. Java Typestate Checker. In Proc. of
Coordination Models and Languages (COORDINATION), volume 12717 of Lecture Notes in
Computer Science, pages 121–133. Springer, 2021. doi:10.1007/978-3-030-78142-2_8.

48 Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A Verification Infra-
structure for Permission-Based Reasoning. In Proceedings of Verification, Model Checking,
and Abstract Interpretation, volume 9583 of Lecture Notes in Computer Science, pages 41–62.
Springer, 2016. doi:10.1007/978-3-662-49122-5_2.

49 Oscar Nierstrasz. Regular types for active objects. ACM sigplan Notices, 28(10):1–15, 1993.
50 Peter O’Hearn. Resources, concurrency, and local reasoning. Theoretical computer science,

375(1-3):271–307, 2007. doi:10.1016/j.tcs.2006.12.035.

https://doi.org/10.1145/2873052
https://doi.org/10.1007/978-3-030-61362-4_29
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1007/978-3-642-17164-2_21
https://doi.org/10.1007/11813040_19
https://doi.org/10.1145/1596486.1596490
https://doi.org/10.1145/1596486.1596490
https://doi.org/10.1145/3524482.3527652
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1007/978-3-030-78142-2_8
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1016/j.tcs.2006.12.035

J. Mota, M. Giunti, and A. Ravara 40:29

51 Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about programs that
alter data structures. In International Workshop on Computer Science Logic, pages 1–19.
Springer, 2001. doi:10.1007/3-540-44802-0_1.

52 Wytse Hendrikus Marinus Oortwijn. Deductive techniques for model-based concurrency verific-
ation. PhD thesis, University of Twente, 2019.

53 Matthew J. Parkinson and Alexander J. Summers. The Relationship between Separation
Logic and Implicit Dynamic Frames. In Proceedings of Programming Languages and Systems,
volume 6602 of Lecture Notes in Computer Science, pages 439–458. Springer, 2011. doi:
10.1007/978-3-642-19718-5_23.

54 Willem Penninckx, Bart Jacobs, and Frank Piessens. Sound, Modular and Compositional
Verification of the Input/Output Behavior of Programs. In Programming Languages and
Systems, Proceedings, volume 9032 of Lecture Notes in Computer Science, pages 158–182.
Springer, 2015. doi:10.1007/978-3-662-46669-8_7.

55 John C Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings
17th Annual IEEE Symposium on Logic in Computer Science, pages 55–74. IEEE, 2002.
doi:10.1109/lics.2002.1029817.

56 R.B. Rubbens. Improving Support for Java Exceptions and Inheritance in VerCors. Master’s
thesis, University of Twente, 2020. URL: http://essay.utwente.nl/81338/.

57 Ayesha Sadiq, Yuan-Fang Li, and Sea Ling. A survey on the use of access permission-
based specifications for program verification. Journal of Systems and Software, 159, 2020.
doi:10.1016/j.jss.2019.110450.

58 Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. An Automatic Verifier for
Java-Like Programs Based on Dynamic Frames. In Fundamental Approaches to Software
Engineering, 11th International Conference, Held as Part of the Joint European Conferences
on Theory and Practice of Software, Proceedings, volume 4961 of Lecture Notes in Computer
Science, pages 261–275. Springer, 2008. doi:10.1007/978-3-540-78743-3_19.

59 Robert E. Strom and Shaula Yemini. Typestate: A Programming Language Concept for
Enhancing Software Reliability. IEEE Trans. Software Eng., 12(1):157–171, 1986. doi:
10.1109/TSE.1986.6312929.

60 André Trindade, João Mota, and António Ravara. Typestates to Automata and back: a
tool. In Proceedings 13th Interaction and Concurrency Experience, ICE 2020, volume 324 of
EPTCS, pages 25–42, 2020. doi:10.4204/EPTCS.324.4.

61 André Trindade, João Mota, and António Ravara. Typestate Editor. https://
typestate-editor.github.io/, 2022.

62 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. GhostCell: Separating
Permissions from Data in Rust. Proc. ACM Program. Lang., 5(ICFP):1–30, 2021. doi:
10.1145/3473597.

ECOOP 2023

https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1007/978-3-662-46669-8_7
https://doi.org/10.1109/lics.2002.1029817
http://essay.utwente.nl/81338/
https://doi.org/10.1016/j.jss.2019.110450
https://doi.org/10.1007/978-3-540-78743-3_19
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.4204/EPTCS.324.4
https://typestate-editor.github.io/
https://typestate-editor.github.io/
https://doi.org/10.1145/3473597
https://doi.org/10.1145/3473597

The Dolorem Pattern: Growing a Language
Through Compile-Time Function Execution
Simon Henniger #

Technische Universität München, Germany

Nada Amin #

Harvard University, Cambridge, MA, USA

Abstract
Programming languages are often designed as static, monolithic units. As a result, they are inflexible.
We show a new mechanism of programming language design that allows to more flexible languages:
by using compile-time function execution and metaprogramming, we implement a language mostly
in itself. Our approach is usable for creating feature-rich, yet low-overhead system programming
languages. We illustrate it on two systems, one that lowers to C and one that lowers to LLVM.

2012 ACM Subject Classification Software and its engineering → Compilers; Software and its
engineering → Language features

Keywords and phrases extensible languages, meta programming, macros, program generation,
compilation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.41

Category Pearl/Brave New Idea

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.13
Software: https://zenodo.org/record/7720029

Acknowledgements We thank Michael Ballantyne, Will Byrd, Anastasiya Kravchuk-Kirilyuk, and
Cameron Wong for discussions about this work and feedback on drafts. We also thank anonymous
reviewers for the insights and feedback.

1 Introduction

1.1 Motivation

Traditional macros serve mostly to create new syntax forms, expanding into a pre-defined
core language. This means that the expressive power of macros is ultimately limited by the
core language. For example, traditional macro systems could not add a “plus” macro to a
language that does not have a concept of arithmetics.

This means that a language could never be fully built up from scratch with one of these
macro systems. It also imposes a limit on the flexibility of macro systems: for example, they
typically could not allow for supporting new features of a CPU chipset or a target language
that are unsupported in the compiler.

We show a new pattern to design languages that can grow beyond their original definition.
Our macros do not expand into a pre-defined core language, but rather into the target language
itself. This allows us to build up a language of flexible zero- and low-cost abstractions in the
form of macros.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Simon Henniger and Nada Amin;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 41; pp. 41:1–41:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.henniger@tum.de
mailto:namin@seas.harvard.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2023.41
https://doi.org/10.4230/DARTS.9.2.13
https://doi.org/10.4230/DARTS.9.2.13
https://zenodo.org/record/7720029
https://doi.org/10.4230/DARTS.9.2.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 The Dolorem Pattern

1.2 Idea
We start with a low-level system (the target system), think the C environment. Using this
system, we create a minimal programming language that compiles to the target system and
allows for compile-time function execution. This language (which we will later call the base
language), is barely any more high-level than the target system and just big enough to call
and define functions.

We then give this language access to its own code generation functions. We also allow for
certain functions defined in the language to be executed as part of the compilation.

As a result, we can define entirely new language features in the language and immediately
use them after defining them, thereby bootstrapping a language from a low-level system.

This has a number of implications. First, we no longer implement a compiler as a
monolithic unit. Rather, ours is an extensible system that consists of the implementation of
the base language and any additional language features implemented in the base language.

Second, we effectively have heterogeneous staging from the high-level that targets the
low-level system. The staging is realized by executing compiled functions at compile-time.

Our pattern provides abstractions within the high-level system to define new language
features. Those are based on traditional macros, which allow adding commands to the
language. In addition to macros, we allow for layers. A layer is a set of changes to the
behavior of a set of existing macros, i.e. a change to the language semantics. Layers give rise
to a language tower.

We show that our language provides facilities for very flexible metaprogramming and
exhibits minimal overhead in many cases.

1.3 Structure
In this paper:

We describe our design principles (Section 2).
We describe the related concepts of heterogeneous staging and compile-time function
execution (Section 3).
Based on these design principles, we implement a small demonstration system that targets
C, called dolorem-c (Section 4).
We evaluate and demonstrate the flexibility by showing that we can implement examples
(Section 5).
Based on the result of our evaluation, we design, implement and evaluate a larger system
called dolorem-llvm (Section 6), which we also evaluate (Section 7).

We discuss related work (Section 8) and conclude (Section 9).

2 Design

2.1 Definition
A language uses the Dolorem pattern if:
1. It provides the lower form to lower high-level source code to a low-level target language.
2. It provides the language user with the ability to define macros, which change the behavior

of the lower form.
3. It exposes internal code generation functionality of the compiler to macros. Macro code

can therefore explicitly control code generation, as though it were part of the compiler.

S. Henniger and N. Amin 41:3

4. Its macros are defined in exactly the same language as any other code, rather than in
a special language only available at compile-time. In particular, macros can call into
regular code, allowing for compile-time function execution.

5. It is constructed through bootstrapping and staging.

We call a language a Dolorem language if it uses the Dolorem pattern.
Finally, we call a system that reads and interprets or compiles programs written in a

Dolorem language a Dolorem system.

2.2 Two languages
This paper shows the design of two Dolorem languages. One of them, dolorem-c, lowers to C
code, while the other lowers to LLVM IR.

2.3 Design Goals
The five parts of the Dolorem pattern definition will become primary design goals of the
languages we will show. We now further elaborate on them and will then describe a set of
secondary design goals that follow from the definition and help us reach our primary design
goals.

2.3.1 Lower, don’t evaluate
eval is commonly a function that takes an expression, evaluates it immediately, and returns
another expression: the result of the evaluation. For example, the result of evaluating (+ 1 1)
would be 2, and the result of evaluating (car ’(a b c)) would be ’a.

Dolorem systems call lower instead of eval.
lower takes an S-expression, parses it, lowers it into the system’s target language, and

returns a reference to the lowered code. The reference could be a pointer to an SSA in LLVM’s
Intermediate Representation, or just a string with C code. Calling lower on a function call,
a variable name or an integer never actually calls the function, loads the variable content, or
returns the value of that integer – with one exception: macros.

2.3.2 Macros are special cases of lowering
When the lower form is called on something that looks like a function call, it checks if the
called function is marked as a macro.

If it is, it delegates to the macro which means it immediately (i.e. during compile time)
calls it on its own argument and returns its result. This makes macros an example of
compile-time function execution (see 3.1).

Hence, macro usages are one (and the only) instance in which the lower form behaves
similar to the eval form.

Because macros have access to the entire language, the calling behavior is the only
difference between macros and functions. Apart from it, they are both treated the same.
This includes being compiled the same way.

2.3.3 Give macros explicit control over code generation
In Dolorem, macros can generate their own code. In order to do this, we give them explicit
access to the code generation facilities in the compiler, so they can explicitly emit the target
language.

ECOOP 2023

41:4 The Dolorem Pattern

2.3.4 Give macros access to the entire language
Unlike in other systems like C++’s “constexpr” functions, macros should not be restricted
in which other functions they can call and what they can do.

First, this allows us to use macros in traditional metaprogramming cases, for example
those where a metaprogram accesses and parses a file to use it as a basis for generating code.
Second, since we use macros to directly generate backend code, it also improves the overall
flexibility of the language.

Note that this requires us to consider each individual function to be its own translation
unit. If we delayed compilation of a function, there could be a macro usage between the
definition and compilation of it and then the function could not be used by the macro.

2.3.5 Keep the base language as small as possible
Because the Dolorem pattern uses staging, a Dolorem language is implemented in two parts:
One part is implemented in some other language like C, while the rest is implemented in the
Dolorem language itself (on top of the base language).

We refer to the first part as the base language. This part of the system should be kept
minimal, i.e. just big enough to allow to bootstrap the rest of the language.

First, the Dolorem pattern aims for low overhead, so there is usually no reason not to
implement something in a Dolorem language if we can.

Second, while we work to minimize it (see below), there is and will always be a barrier
between a Dolorem language and its target language. So the behavior of any code that is
written in a target language is a bit harder to change from within the Dolorem language.

2.4 Secondary principles
Based on this definition of the Dolorem pattern, we define a few secondary design goals that
help us reach our primary goals:

2.4.1 Limit barriers
There should be as few barriers between the Dolorem language and the target environment
as possible. For example, we should allow one to call the other directly, without using a
foreign function interface or worrying too much about name mangling.

This not only makes it easier to interface Dolorem programs with existing programs
written in the target environment, e.g. C (thereby increasing Dolorem’s value as a systems
programming language), but also allows to access the compiler’s backend as seamlessly as
possible.

2.4.2 Do not prescribe a model of execution
We let the language user decide about when to write code to disk/execute it rather than
prescribing one model of execution. Unlike traditional language processors, Dolorem systems
do not have a preferred mode of translation. Although we like to refer to them as compilers,
they are neither compilers nor interpreters in the traditional sense.

Rather, a language user can decide to write and use a macro to execute code at compile-
time, thereby using the Dolorem system as an interpreter, or write and use a macro to write
generated code to disk, thereby using it as a compiler.

S. Henniger and N. Amin 41:5

2.4.3 Layers are sets of overridden macros
We want to be able to change the behavior of macros even after their definition.

That is why we allow macros to be overridden. When we override a macro, we provide a
new macro that replaces it. This new macro may call into the original macro (or an older
override) as a fallback.

Since it is usually more useful to override several macros at once, Dolorem systems
support layers – sets of macros that are overridden together. Layers are often used to provide
new language features. For example, we will later show a “function overloading” layer that
overrides the lower macro and the defun macro to allow for several functions with the same
name and different numbers of arguments.

Since most macro overrides fall back on the last override, layers can stack to form a tower.

2.4.4 At global scope, everything is a macro
Similar to Lisp, there are no operators or keywords that are not also macros. This means
that, at global scope, a Dolorem program is only a sequence of macros that are executed by
the compiler in order of appearance.

Having nothing but macros is useful because it allows us to change every aspect of the
language by overriding macros.

2.4.5 Use S-expressions
This paper is not about syntax. That said, the Dolorem pattern does place some unusual
constraints on the syntax of the language it is used in:
1. The language itself is defined to be as flexible as possible and we do not want syntax to

be a limiting factor.
2. We want macros to be able to read the syntax tree. Hence, the base language must

provide facilities to do so. Any complexities in the syntax will therefore bloat the base
language.

S-expressions are both flexible, and very easy to read and manipulate programmatically
(using the famous car, cdr, cons), making them an ideal fit.

3 Concepts

3.1 Compile-time function execution
Compile-time function execution refers to a compiler’s ability to execute functions written in
its target language at compile time.

Often, this is done to compute constant expressions at compile-time. An example is
C++’s constexpr [2].

Depending on the language, functions that can be executed at compile time may only
have access to a subset of the language. In C++, for example, constexpr functions are
relatively limited: they can only call other functions marked constexpr and can not access
the environment.

As explained above, languages with the Dolorem pattern use compile-time function
execution to bootstrap the language. Macros, the functions executed at compile time, have
access to the entire language. This includes the ability to call non-macro functions (principle
(2.3.4)).

ECOOP 2023

41:6 The Dolorem Pattern

3.2 Heterogeneous staging
Multi-stage programming offers a principled way of generating code by working in a language
with two stages: the first stage is a program generator which when executed yields the
second-stage program. Whether a program belongs to the first stage (code generator) or
second stage (generated code) can be determined by syntax quotations (MetaML [10]) or
types (LMS [9]). Some multi-stage programming systems like LMS (Lightweight Modular
Staging) support heterogeneous staging, where the code generator and the generated code
can be in different languages.

Dolorem can be seen as a form of heterogeneous staging, where the lower facility acts as
staging. Which stage a function belongs to is determined by whether it is marked as macro.
Macros, being executed during code generation, form the code generator stage, while regular
functions are the second stage.

4 dolorem-c: Implementation with C Target

dolorem-c is our first attempt at an implementation of the Dolorem pattern for a system.
dolorem-c is intended as a proof of concept and simple demonstration. We want to distill the
essence of the Dolorem pattern, rather than present a fully viable language1.

To keep it as simple as possible, we target C and leave out some aspects of the language
for now – for example, we rely on C for the type system and do not implement any type
checks ourselves.

Since the dolorem-c system has no dependencies except for a working C compiler, it is
easy to try it out2.

4.1 The lower macro
After reading a file, dolorem-c calls lower on its content. lower takes a list and returns
generated code. In our case, this means it has the following function signature:

struct cexp* lower(struct val* e);, where struct cexp* is a type that contains a piece
of generated C code and struct val* is an S-expression.

Any C transpiler needs to implement its own representation of C code. The primary
constraint for ours is that we want the resulting interface to be as simple as possible to use.
That is why we keep our representation of a value in C code to only four syntactic categories
(each stored as a separate string) that we use to track whether a statement should be at
global or local scope, and to be able to differentiate between expressions and full statements
that precede them. These are the four strings:

expression, which stores the expression itself, e.g. a+b. It is later inserted into a statement.
context, which stores a list of statements that need to precede whatever statement
expression will be inserted into, e.g. int a;. If it is non-empty, this always ends in a
closing curly parenthesis or a semicolon.
global, which is a list of statements on global scope that should precede whatever function
this cexp will be inserted into.
header, which is a list of headers at global scope that need to be added to the environment
after cexp has been compiled, e.g. #include <stdio.h> or a cexp that contains printf.

1 The entire dolorem-c source code can be found in this GitHub repository: https://github.com/
metareflection/dolorem-c

2 A version that runs in the browser can be found here: https://shenniger.github.io/try-dolorem-c

https://github.com/metareflection/dolorem-c
https://github.com/metareflection/dolorem-c
https://shenniger.github.io/try-dolorem-c

S. Henniger and N. Amin 41:7

In the following, we will write cexps as tuples of strings in square braces separated by
vertical lines, e.g. [a+sqrt(b)|||#include <math.h>].

For illustration, this is the behavior of lower:
If lower is called on a number or string literal, it can directly lower that literal to C and
prints that number or string literal as a cexp with empty local and global context (i.e. 4
evaluates to [4|||]).
If lower is called on an identifier, it assumes it has found a reference to a variable and
returns that as a cexp with empty local and global context (i.e. myvariable evaluates to
[myvariable|||]). A more advanced Dolorem system (like dolorem-llvm which will be
shown later) would try to find the variable in the current scope. dolorem-c leaves this to
the C compiler.
If lower finds a function call, it checks if the called function is a macro. If not, all the
arguments to the call are recursively lowered, and code for the call is generated. If the
called function is a macro, lower resolves the address of the macro function, and calls it.

4.2 Macros in the base language
We want to bootstrap as much of the language as possible. In order to be able to do that,
we need to add a few more macros, just enough for the user to be able to define their own
functions and macros:

progn calls lower on each of a list of expressions and returns the result of the last (similar
to progn in Lisp).
include reads another file, and calls progn on its content.
funproto creates a function prototype for a given function signature.
function creates a function (including body).
mark-as-macro marks a given function name as a macro.
compile lowers its argument, then compiles the resulting C code to machine code, and
stores the C headers. See below for more.

Note that mark-as-macro and compile are the only two macros in this list to have side
effects. The others do not modify global state at all – for example, function only returns C
code with a function definition, but does not register that function anywhere yet.

We need progn and include in the base language because, without them, we could not
read any files of source code (but only individual macro calls), and we need the others to be
able to define functions and macros.

In addition to those macros, there are a few functions that help with reading and
processing S-expressions like car, cdr, val-is-string, expect-ident, or make-int-val.

The base language contains nothing else – most notably absent are any kind of control
structures, local or global variable definitions, and arithmetic expressions.

In order to reduce barriers, the base language also does not introduce any new calling
conventions. One example of that is that dolorem-c’s calling convention is the same as that
of C and all dolorem-c symbols need to exist within the C environment. This is even true for
macros: When a macro is called within lower, the address of the macro is being resolved by
using a simple dlsym(RTLD_DEFAULT, "macroname"), i.e. we use the system’s dynamic linker
to resolve the symbol.

4.3 Marking a function as a macro
Any function that has the macro signature (struct cexp* myfunction(struct val* e);) can
be marked as a macro. This does not change anything about the function’s code or calling
convention on the C side, however it has implications on how calls to the function are handled
in dolorem-c code.

ECOOP 2023

41:8 The Dolorem Pattern

If myfunction is not marked as a macro, (myfunction myarg) generates code to call the
function and evaluate its argument myarg. Since we are assuming myfunction to take only one
argument, a struct val*, myarg would thus be expected to be a pointer to a list argument.

If myfunction is marked as a macro, (myfunction myarg) resolves the macro myfunction
and calls it on the unevaluated S-expression form of the argument (i.e. a list of only one
element: the string myarg).

Note that macros can be overridden, functions cannot. Thus, a call to a function is
resolved by the C environment, while a call to a macro is resolved first by Dolorem’s own
macro table (which might say that the macro myfunction was overridden by the macro
myfunction2, so that macro would be called instead).

The lower function has the same signature as macros, and we also mark it as a macro.
This may seem counterintuitive at first, because there is no point to ever calling it as a macro
(as anything in dolorem-c is evaluated by lower anyway). Marking lower as a macro is still
necessary, because that way, we can override it.

It is, however, useful to be able to call lower as a function from within dolorem-c code.
For that, we define a function lower-now, which acts as an adaptor and calls the current
lower override.

4.4 Implementing base language macros

Base language macros are implemented as simple C functions. As an example for how C
code interfaces with S-expressions and macros, here is progn:

struct cexp *progn(struct val *e) {
struct cexp *r = make_cexp ("", "", "", "");
// iterate through list
for (struct val *args = e; ! is_nil (args); args = cdr(args)) {

// call lower on each element
struct cexp *a = call_macro (" lower", car(args));
add_cexp (r, a);
// if not the last element , add
// expression to context
if (a->E && *a->E && ! is_nil (cdr(args))) {

appendString (&r->Context , print_to_mem ("%s;\n", a->E));
}
r->E = a->E;

}
return r;

}

We begin by calling make_cexp to create an empty C expression. Note that the four empty
strings we pass to it correspond to the four syntactic categories described above.

Then we iterate through the list we were passed, lowering each element, and adding its
context, global, and header to our cexp. The expression of the cexp we return will be that
of the last element of the list (because that is the return value of the block); any expressions
of the preceding elements will be appended to context.

Note that we do not directly call lower, but rather write call_macro("lower", ...).
While there is a C function called lower that we could use, the macro lower might have been
overridden by Dolorem code by this point, so we need to look up the current version of lower.

S. Henniger and N. Amin 41:9

4.5 Writing functions in the base language
In the base language, simply writing (function ...) is not enough to define a new function.
That is because function merely generates the cexp for a function, but never actually invokes
a C compiler.

Actually, we need to wrap any function definition into a compile, for example: (compile
(function hello-world ()void (puts "hello, world!")))

The compile macro first lowers its argument, then appends the header portion of it to
a global header store, and invokes a C compiler3 to compile it to a shared library4. The
compile macro also loads this shared library.

4.6 Example macro 1: defun

To reduce this boilerplate, we first define defun, which provides us with a nicer function
definition syntax and makes compilation implicit. defun is a good example for a simple
macro that does not explicitly generate C code, but rather uses existing compiler facilities,
for which it generates new input Dolorem code.

We call this kind of macro (that transforms Dolorem code to Dolorem code and then
calls the lower macro on it for code generation) a homogeneuous transformation (see 4.9).

In order to define a macro, we define a function that takes an S-expression and returns a
cexp. The dolorem-c type system cannot handle either at this early stage of bootstrapping,
so the actual function signature is void* defun(void* args);. We compile the resulting
function, and then mark it as a macro.

defun should be just like function, except that it automatically compiles for us. Since
all we want is this small syntactic change, it makes sense to implement the macro as a
homogeneous transformation (from Dolorem code to Dolorem code):
(compile (function defun ((void* args)) void*

(call -macro "lower" (cons
(make -ident -val " compile ")
(cons (cons (make -ident -val " function ") args) (make -nil -val))))

))
(mark -as -macro defun)

To define a macro, we first create a function, then explicitly compile it, and finally mark
our function as a macro. Within the function, we create a new list (using standard Lisp
macros like cons) composed of a call to compile and function on our argument.

We then lower this list. Note that, rather than directly calling lower in the macro, we
need to call-macro "lower". We need to do so because lower is a macro, but in this case,
we do not want to call it during code generation of defun, but rather want to add a call to
lower. We could also call lower-now (see 4.3) and will do so in later code examples.

After defun, we bootstrap a defmacro in a similar way, such that we no longer need
to write down the function signature and explicitly mark-as-macro every time. Note that,
because of the way in which we define defmacro, it automatically creates a parameter called
args that contains the list the macro was called on.

3 Currently, both tcc and gcc have been tested. tcc is preferred on Linux because of its much faster
compilation speed.

4 We use a shared library to make sure libdl can find all new symbols, and that newly compiled code
can find and access all the symbols defined before. This is why the C compiler is asked to link the new
code into a shared library (with dynamic symbol lookup enabled), which is then immediately loaded.
dolorem-llvm uses a more complicated JIT-based approach for this, which we will discuss later.

ECOOP 2023

41:10 The Dolorem Pattern

4.7 Example macro 2: var

We will now show var as an example of a macro that generates its own C code.
These macros, which we will refer to as lowering transformations lower their Dolorem

input to C code.
In the case of the var macro, we tap into C’s ability to define local variables. We want

to be able to write (var int x) to create a new int variable called x. For this, we define a
primitive macro called var:

(defmacro var
(make -cexp (expect -ident (car args))

(print -to -mem
"%s %s;\n"
(expect -type (car (cdr args)))
(expect -ident (car args)))

""
""))

We use the newly defined defmacro to define the macro in only one step (rather than
defining a function, compiling it, and then marking it as a macro). Within the macro’s body,
we call make-cexp, whose four arguments correspond to the four syntactic categories defined
above. Two of them (header, global) are empty, while the first one is simply the name of
the variable, and the second is C syntax for its definition.

The base language gives us a range of functions like char* expect_ident(struct val* e);
and long long expect_int(struct val* e); that check whether a given list expression is of
a certain type and, if so, unpack and return its value (otherwise, the function outputs an
appropriate error).

The macro uses print_to_mem5, a C function defined in the compiler that acts like asprintf
(i.e. it formats a string and automatically allocates memory for it) to transform the dolorem-c
code into C code and creates a cexp with the variable definition as context, only the variable
name as expression, and empty global and header values.

In a similar way, we bootstrap (among others) cond, a Go-like :=, and, equals, loop, add,
sub, and assign.

4.8 Language usage example: Hello, world in a loop
With the very primitive base language and our macros, we can now implement this example
that prints “Hello, world!” ten times:

(include "def.dlr ")
(defun main () void (progn

(:= count 0)
(while (sub count 10) (progn

(puts "Hello , world !")
(assign count (add count 1))))

We assume that the file "def.dlr" contains all those macros and a function prototype for
puts.

5 As a purely cosmetic improvement, any time an underscore appears in the C code, we can write a dash
in dolorem-c. All dashes in function names are replaced by underscores when they are read.

S. Henniger and N. Amin 41:11

Note that, while our program defines a main function, it currently does not do anything.
As explained above, in order to execute code, we need to write a macro that either directly
calls into the code, or writes it to disk.

We will show how to use Dolorem systems as compilers later. For now, let’s execute our
code directly:

(defmacro run (progn
(main)
(make -cexp "" "" "" "")))

(run)

We create a macro called run that calls into main and returns an empty cexp. Then,
immediately after defining the macro, we call it.

4.9 Different types of transformations
As discussed above, there are two archetypes of Dolorem macros:

Homogeneous transformations: These macros transform the S-expression they are given
and then (at their very end) call lower to generate code for the transformed expression.
Lisp can only work with this kind of macro.
Lowering transformations: These macros parse the S-expression they are given and then
call into the backend to generate code for it.

To demonstrate the difference, we will show two different implementations of the quote
macro.

Most Lisps include a quote macro that, rather than evaluating an expression, passes its
original S-expression along. Quoting is equally useful in Dolorem, but must be implemented
differently. Rather than simply returning the original S-expression, we must generate code
to create a given S-expression.

First, we will implement quote as a homogeneous transformation. We start with
a function that, given a list, returns, as a list expression, a sequence of func-
tion calls to generate that list. For example, for (1 2 3 test), our function should
return (cons (make-int-val 1)(cons (make-int-val 2)(cons (make-int-val 3)(cons (make-
string-val "test")(make-nil-val))))). We call this function lower-quote. We can define
the actual macro as simply (defmacro quote (call-macro "lower" (lower-quote args))) (i.e.
call lower-quote, lower the result and return it).

lower-quote is defined as a series of cond statements6 that call a number of simple helper
functions like make-make-funcall or make-cons-funcall that generate the actual calls. This
is what the statements for lists and integers look like:

(defmacro quote (progn
(var res void *)
(cond (val -is -int args)

(assign res (cons (make -ident -val "make -int -val ") (cons args (
make -nil -val)))))

...
(call -macro "lower" res)))

6 dolorem-llvm allows the implementation of a proper three-way if. In dolorem-c, this is hard due to the
missing type system.

ECOOP 2023

41:12 The Dolorem Pattern

This has several advantages. First, it is relatively easy to read (and, in fact, after quote
has been defined, such functions are even more readable). It also does not require much
advanced knowledge on the inner workings of the compiler or C. Furthermore, this macro
is relatively forward-compatible and will continue to work with updated code generators,
although future Dolorem syntax changes may break its compatibility.

Its primary issue is that it is not particularly fast. Creating a list expression that is then
immediately parsed by the lower macro called in the last line is wasteful. We can write a
faster version of it as a lowering transformation that directly generates C code:

(defmacro quote (progn
(var res char *)
(cond (val -is -int args)

(assign res
(make -cexp (print -to -mem " make_int_val (%i)" (expect -int args))

"" "" ""))
r))

While it is lower overhead, this way of implementation is also much more error-prone as
we have to directly manipulate strings of C code.

There is no universal rule for when to use which of the two types of transformations.
Both of them have their own advantages and disadvantages: lowering transformations are
faster and more flexible, but error-prone, while homogeneous transformations are simpler,
yet slower.

4.10 Example macro 3: Arithmetic operators
One of the traditionally more repetitive tasks within writing a compiler is to write the code
for all the arithmetic operators. It is almost always the same code for each operator, which
leads to code duplication within the compiler. We will show how to leverage dolorem-c’s
metaprogramming abilities to help us with bootstrapping the language and avoid having to
write each operator separately.

An arithmetic operator needs to read the left-hand side and the right-hand side expression,
then append the context of one to the other, and finally set the expression to something like
“a+b”. In order to save memory, we do not create a new expression value and instead reuse
one of the arguments. Here is an example for add:

(defmacro add (progn
(:= left (lower -now (car args)))
(:= right (lower -now (car (cdr args))))
(add -cexp left right)
(set - expression left (print -to -mem "(%s) + (%s)" (get - expression

left) (get - expression right)))
left))

We see that almost all of this will be the same for all operators, apart from the name of
the macro and the format string ("(%s) + (%s)").

Using a quasiquote implementation based on the quote macro shown above, we quote
the entire macro, adding in the two changing parts via quasiunquote:

(quasiquote (defmacro (quasiunquote (car args)) (progn
(:= left (lower -now (car args)))
(:= right (lower -now (car (cdr args))))
(add -cexp left right)

S. Henniger and N. Amin 41:13

(set - expression left (print -to -mem (quasiunquote (car (cdr args)))
(get - expression left) (get - expression right)))

left)))

Finally, we wrap this into a call to lower and add it into a macro:

(defmacro generate -arithmetic - operator
(call -macro "lower" (quasiquote defmacro (quasiunquote (car args)) (

progn
(:= left (lower -now (car args)))
(:= right (lower -now (car (cdr args))))
(add -cexp left right)
(set - expression left (print -to -mem (quasiunquote (car (cdr args))

) (get - expression left) (get - expression right)))
left))))

We have now defined a macro that defines macros.
To use it, we write the following (at global scope):

(generate -arithmetic - operator add "(%s) + (%s)")
(generate -arithmetic - operator sub "(%s) - (%s)")
(generate -arithmetic - operator mul "(%s) * (%s)")
(generate -arithmetic - operator divi "(%s) / (%s)")

4.11 Macro Overriding
With what we have shown so far, plenty of macros can be implemented into dolorem-c.
However, there is currently no way to change a macro once it is defined.

Macro overriding changes that. We add a virtual table of macros to the base language.
Now, whenever a function is marked as a macro, its address is stored in the virtual table,
and whenever we call a macro, we take the address from the table rather than asking the
dynamic linker for it.

We also define a new function macrofunptr override_macro(const char* name, const
char* newfun); that overrides the macro name by the replacement function newfun and
returns a pointer to the old entry in the table.

With this, we can use the standard C pattern to change the behavior of existing macros:
1. We store the old function pointer from the virtual table in a global variable.
2. Then, we override the virtual table entry with a new function.
3. In the new function, we use the old pointer in the global variable as fallback.

4.12 Overriding Example: Location hints
A useful easy example is this overridding of lower that adds location hints to the C code
so that the C compiler can emit correct debug information7. Any dolorem-c code compiled
after a call to the function we are about to define (load-csrchints) can be stepped through
line-by-line in GDB.

We start by creating a global variable to store the current lower function: (compile (
global-var csrchints_old_lower macrofunptr))

7 gcc supports reading hint lines in the format of “# <filename> <line number>” to be able to tell where
a piece of source code is originally from. We add these to the ‘context‘ of the cexp.

ECOOP 2023

41:14 The Dolorem Pattern

After this, we define a macro called load-csrchints that loads the C source hints override.
This is where the overloading happens. The macro is supposed to be used at global scope, so
we make it return an empty cexp:
(defmacro load - csrchints (progn

(assign csrchints -old -lower
(override -macro "lower" "lower - csrchints "))

(make -cexp "" "" "" "")))

Finally, we define the new macro lower-csrchints that will replace lower:
(defmacro lower - csrchints (progn

Call lower -level ‘lower ‘.
(:= r (csrchints -old -lower args))
(var filename char *)
(var line long)
(get -loc -info args (ptr -to filename) (ptr -to line) 0 0)
(append -cexp r

(get - expression r)
(print -to -mem "# %li \"%s\"\n" line filename) "" "")

r))

Note that this implementation prints duplicated hint lines whenever many subexpressions
are on the same C source line. It also currently does not handle blocks correctly, often giving
only the number of the first line of a multi-line block. Although it is not entirely correct, it
is good enough to be useful in many debugging scenarios.

4.13 Layers
As explained above, we want to be able to override multiple macros at once and use a
convenient syntax that abstracts all the details (global variables, calls to the override-macro
function, etc).

For example, we want to be able to write (new-layer foo (lower (new-lower-code...)
)) to override lower and to have all overrides, variables, and a function load-layer-foo
automatically generated.

In dolorem-c, this higher-level layer syntax is defined as a homegeneous transformation
macro, and it is not part of the base language, but rather defined in the language itself.

4.14 Layer Example: Function overloading
To demonstrate layers, we will add a very basic version of function overloading to dolorem-c.

dolorem-c does not have a type system, therefore function overloading by type is not
possible. Hence, this example only overloads on the number of arguments, not the type.

To implement function overloading, we need to do two things. First, we need to change
the defun macro such that it mangles the name of any newly created function name by
adding the amount of arguments to the name. Second, we change lower such that it correctly
resolves any overloaded function calls.

Note that one of the rather unusual features of this overloading layer is that we want
mangled and non-mangled functions to coexist as seamlessly as possible. This is necessary
because, otherwise, loading the layer would interfer with calling any functions defined before
it was loaded. In order to achieve this goal, we add a hashmap that contains the names of
any mangled functions. Whenever we find a function whose name is not in the hashmap, we
do not change the call.

S. Henniger and N. Amin 41:15

We will only change defun, not function. This means any functions that are defined
using other means will not be mangled. This is useful because it avoids breaking macros or
any other mechanism that might be defined and needs more low-level control over functions.

This is the entire source code of the layer:

(compile (global -var overloaded -fun void *)) # hashmap for names of
mangled functions

(new -layer funoverload
(init (assign overloaded -fun (hashmap -new)))
(defun (progn

(:= name (car args))
(:= n-args (count -len (car (cdr args))))
(hashmap -put overloaded -fun (expect -ident name) "")
(val -set - string name (print -to -mem "% s__fo_ %i" (expect -ident name

) n-args))
(fallback args)))

(lower (progn
(cond (val -is -list args) (progn

(var dummy char *)
(cond (not

(hashmap -get overloaded -fun
(expect -ident (car args))
(ptr -to dummy)))

(val -set - string
(car args)
(print -to -mem "% s__fo_ %i"

(expect -ident (car args))
(count -len (cdr args)))))))

(fallback args))))

We can now load the layer with (load-layer-funoverload).
Within the layer implementation, we first add some initialization code for the hashmap,

and then override the defun macro. Our new defun looks for the name of the function to be
defined, saves it in the hashmap, and then mangles it by appending "__fo_X" (where X is
the amount of parameters). Finally, it calls whichever defun implementation is in the tower
before this layer on the newly changed definition.

We also override lower. If it finds a function call, our new implementation checks if the
function name is in the hashmap. If it is, it mangles it based on the amount of arguments
supplied. Finally, it delegates to the next layer.

4.15 Implementing optimizations
We want to be able to write code that transforms and optimizes already-generated code. To
do so, we implement a transformation layer, similar in principle to the one implemented in
section 4.12 (which adds location hints), except that our new layer will change the code.

As we implement our optimization, we will run into one major limitation, which is not
related to the concept of the Dolorem pattern, but rather to a specific design decision we
made for dolorem-c. Our representation of C code is purely textual, as opposed to using a
syntax tree that is easier to change, making it a pain to read and transform once it has been
generated. Using another representation for C code (such as some kind of syntax tree) would
have made this easier. Unfortunately our textual representation will make our optimization
more inelegant and inflexible than necessary.

ECOOP 2023

41:16 The Dolorem Pattern

In section 4.10, we added a division operator to dolorem-c. It is common for compilers
to transform integer divisions of a variable and a constant to a bit shift if the constant is
a power of two. We will implement this optimatization (except, since we are only showing
this as an example and try to simplify as much as possible, we will only transform a division
with two to a bitshift and ignore the other powers of two)8.

If we want to transform division code, we can either (1) change the divi macro by
overriding it in a layer, or (2) look for divisions in the code after it has been fully generated,
and then change the code. Only (2) is a transformation in the narrow sense, as (1) does not
technically transform generated code, but rather changes the code generator. In the Dolorem
context, both have a similar effect.

We will first implement a layer for (1):

(new -layer bitshift -instead -of - division
(divi (progn

(:= first - operand (car args))
(:= second - operand (car (cdr args)))
(:= result NULL)
(cond (and

(val -is -int second - operand)
(equals (expect -int second - operand) 2)) (progn

(:= c (lower -now first - operand))
(assign result (make -cexp

(print -to -mem "(%s) >> 1" (get - expression c))
(get - context c)
(get - global c)
(get - header c)))))

(cond (not result)
(assign result (fallback args)))

result)))

This overrides the divi macro itself, and adds a check for whether one of the operands is
the number two.

Alternatively, we can implement option (2) and search and replace existing code for any
divisions with two. Due to the limitations with the C code representation, we do this on a
textual level.

All divisions will be within functions, so the easiest way to catch all of them is to override
the function macro (used within defun as described above) and work with its output:

(new -layer bitshift -instead -of -divisions -2
(function (progn

(:= code (fallback args))
(:= global -ptr (get - global code))
(:= pointer global -ptr)
(:= modified 0)
(loop (assign pointer (strstr pointer "/ (2) ")) (progn

(memcpy pointer ">> 1" 5)
(assign modified 1)))

(cond modified
(set - global code global -ptr))

code)))

8 Since all code is compiled (and optimized) by a C compiler which will most certainly do this optimization,
our code does not actually yield a speed boost, but merely serves to illustrate how code transformations
are implemented with the Dolorem pattern.

S. Henniger and N. Amin 41:17

First, we call the overridden macro to generate the function code and then we search the
global of its result (which is where the function body will be).

Note that this second implementation does not refer to the divi macro at all. In fact,
it does not matter whether the division was created by that macro, some other macro, or
even a combination of several macros. All that matters is that the generated code eventually
shows up in a function, and once it does show up in the function, we have access to all other
code in the function and can use this contextual information for our optimization. That is
how we can also implement more complex optimizations that touch multiple macros.

As we discussed, the transformations themselves are implemented in a rather inelegant
way, but still, this experiment shows the principles of how source code transformations can
be implemented in Dolorem:
1. For simple optimizations, it often makes sense to change how the code is being created,

as opposed to transforming it after it was already created.
2. To transform code, create a layer around a macro like function (or compile) that all code

will pass through, and modify it there. Then, our optimization can even touch multiple
macros and operate on an entire function (or even several functions).

3. The specific range of practical transformations depends on the design of the data structure
generated code is stored in. The Dolorem pattern itself is not a limiting factor.

4. If an optimization is impractical to do, that does not mean it is impossible entirely.
Dolorem systems use a target language and target compiler outside of Dolorem. Sometimes,
it can make sense to optimize there.

More experimentation is needed to see whether this approach scales to more complex
optimizations.

5 Discussion of the C implementation

We have successfully implemented a Dolorem system that targets C.

5.1 Code size
Minus header files, the hashmap implementation, the driver and the reader/parser, the entire
compiler only has 377 lines of code. This shows that we were able to keep the base language
very small. In an additional 284 lines of Dolorem code, we were able to bootstrap a relatively
usable language. This confirms our original plan to keep the base language minimal and
bootstrap the rest.

5.2 Scope
We have left out some important aspects of a language, most importantly the type system.
This is certainly a major reason for why the implementation is so small in terms of code size.
In the rest of the paper, we will show that the Dolorem pattern can scale and work for a
more complicated language.

5.3 Generated code
When we output C code generated by dolorem-c and change the formatting a bit, it looks

very similar to human-written C code (see Figure 1). Of course, this depends on the macros
used. Macros may introduce additional complexities, and thus, additional overhead, if the
abstraction they provide is costly or if they are badly written and introduce unnecessary
cost – but none of the macros we have shown or used in examples do.

ECOOP 2023

41:18 The Dolorem Pattern

Figure 1 left: dolorem-c code for a non-recursive Fibonacci function, middle: generated C code
(indentations added for readability), right: hand-written C code.

(defun
fib ((int x)) int
(progn

(var i int)
(var n1 int)
(var n2 int)
(var n3 int)
(loop

(less i x)
(progn

(assign n3 (add
n1 n2))

(assign n1 n2)
(assign n2 n3)
(assign i (add i

1))
))
n3

))

int fib__fo_1 (int x) {
int i = 2;
i;
int n1 = 0;
n1;
int n2 = 1;
n2;
int n3 = 0;
n3;
while ((i) < (x)) {

(n3) = ((n1) + (n2));
(n1) = (n2);
(n2) = (n3);
(i) = ((i) + (1));

}
return n3;

}

int fib(int x) {
int i = 2;
int n1 = 0;
int n2 = 1;
int n3 = 0;
while (i < x) {

n3 = (n1 + n2);
n1 = n2;
n2 = n3;
++i;

}
return n3;

}

This also means we can compile it with a traditional C compiler, and the binary will be
basically indistinguishable from that created from an equivalent program originally written
in C.

5.4 Run-time overhead

The above already gives us a first indication that dolorem-c has no or very low overhead. Since
the implementation is more of a proof-of-concept, we have not measured its performance,
but have rather, in many cases including the one shown in Figure 1, seen that its C code is
essentially equivalent to what we would have written by hand. We will later show a more
detailed run-time analysis for dolorem-llvm.

5.5 Compile speed

Since dolorem-c can be used to directly execute code (rather than as a transpiler which code
is exported from), compile speed is essential.

We expect most of the overall compile time to be spent in the C compiler. In order
to verify, we implement a command line flag (-M) that instructs the compiler to measure
the overall run-time and the time spent waiting for calls to the compiler, and output a
percentage.

We test this while compiling several programs examples, including the definitions of the
macros presented here (and more). None of our test cases does anything, they all compile
and then terminate.

S. Henniger and N. Amin 41:19

As expected, measurements show that 95-97 % (tcc) or more than 99 %9 of overall compile
time is spent in the C compiler. The discrepancy is due to the fact that gcc is about 20
times slower than tcc, likely because its code generation is generally slower and also because
it is not optimized to be invoked for each function separately.

Subtracting the time spent in the C compiler, dolorem-c takes between 5 and 10 mil-
liseconds to compile the entire collection of standard macros (around 500 lines of dolorem-c
code)10.

These measurements show that, while the dolorem-c compiler is comparatively fast given
its flexibility, C compilation drastically slows it down. To improve speed, the implementation
should implement some form of caching for the compilation. We will later show an example
of this for dolorem-llvm.

6 Implementation with LLVM Target

We are now ready to implement the Dolorem pattern in an LLVM-based [7] system. While
dolorem-c was intended as a proof of concept and simple demonstration, dolorem-llvm is
intended to include more complex features like static typing, even if this makes it more
complex11.

The design of dolorem-llvm is similar to dolorem-c in many ways. We will not provide a
full outline of the design, but rather describe the differences to dolorem-c, with a focus on
providing some general discussion on how to apply the Dolorem pattern to a more complete
compiler system.

Rather than generating code as a string, dolorem-llvm calls into LLVM directly to build
LLVM IR.

LLVM’s main interface is template-heavy C++ code. Since interfacing with that would
drastically increase the size of the base language, we instead mostly interface with the C
bindings (llvm-c).

6.1 The lower macro

Obviously, the most important difference is that there are no cexps anymore, because the
new system does not translate to C.

Instead, lower returns a pointer to an rtv (run-time value) rather than a pointer to a
cexp. An rtv wraps an LLVMValue, i.e. a reference to a value computed by a program. It also
contains the type information the new type system needs.

6.2 Functions

LLVMValue works differently from a cexp in one key way: Because a dolorem-llvm rtv can
hold only a value within a function, rather than an arbitrary piece of code, a dolorem-llvm
macro can not return a full uncompiled function.

9 The results are very similar for all test cases and, while there is quite some variance between runs, it
seems random and unrelated to the length or any other property of the test case. That is why we do
not provide a detailed list of measurement values.

10 Measured on an Intel Xeon E3-1505M v5, when compiling the base language with gcc 12.2.
11 The entire dolorem-llvm source code can be found in this GitHub repository: https://github.com/

shenniger/dolorem

ECOOP 2023

https://github.com/shenniger/dolorem
https://github.com/shenniger/dolorem

41:20 The Dolorem Pattern

Therefore, the function macro can not be implemented like in dolorem-c, and dolorem-
llvm does not define one, but rather implements defun, and defmacro in its base language.
There are separate macros to define lambdas.

In dolorem-c, the defun macro is essentially composed of two different macros, namely
the function macro which generates C code for the function, and the compile macro which
hands the generated code to a C compiler.

This shows that, while dolorem-llvm and dolorem-c both try to keep their base language
minimal (principle (2.3.5)), LLVM’s more complex API often causes macros to be moved
into the base language.

6.3 Language usage: Compiling code
Above, we already showed how to execute Dolorem code directly during compile-time (see 4.8).
However, principle (2.4.2) says that it should also be possible to compile Dolorem code.

In order to do that, we need to write LLVM IR code to disk, and then compile it:
1. LLVM only supports to write modules to disk, so by directly calling LLVM’s

LLVMModuleCreateWithName, we create a new LLVM module.
2. For each single function that is to be written to disk, we call dolorem-llvm’s copy-symbol

-to-module. This function looks up a symbol in an array that dolorem-llvm copies all
function modules to before they are JIT-compiled and copies it to the new module. Note
that this works because, like dolorem-c, dolorem-llvm compiles each function separately
and in its own LLVMModule (see principle (2.3.4)).

3. Call an LLVM function that exports a module, e.g. LLVMWriteBitcodeToFile.
4. Finally, we compile this module to machine code. The easiest way to do this is to invoke

clang on the command line, but this could also be done using the LLVM library.

Here is a simple example that compiles a “Hello, world!” program to a Linux executable12:

(defun main () i32 (progn
(puts "Hello , world !")

0))
(defmacro compile (progn

(:= mod (LLVMModuleCreateWithName "test "))
(copy_symbol_to_module "main" mod)
(LLVMWriteBitcodeToFile mod "tmp.bc")
(system "clang tmp.bc -o hello -world ";

(empty -rtv)
))
(compile)

A program compiled in this way does not depend on the compiler in any way; it is a
freestanding executable, quite similar to an executable a C compiler would have created for
the same program.

6.4 Precompilation
We can use this mechanism for precompilation.

We compile all functions of a file (including macros) to a shared object. Next time we
compile the same file, we still read it entirely and execute all macros, but do not compile any

12 (empty-rtv), like dolorem-c’s (make-cexp "" "" "" ""), creates an empty macro return value.

S. Henniger and N. Amin 41:21

functions within the file if it is unchanged. Instead, we simply load the shared object from
last time. This way, we continue to populate all internal data structures like function lists,
but avoid calling into LLVM, which is the most time-consuming step.

We would typically use this on macros that define the language. Not having to recompile
them every time we compile any dolorem-llvm code reduces compilation time.

This mechanism is important because it means that, unlike other staged languages,
dolorem-llvm does not need to recompile the entire language with every translation unit.

6.5 Optimizations
In section 4.15, we discussed the implementation of code transformations and optimizations
in the Dolorem system. We also already explained four basic principles of Dolorem source
code transformations.

We will now attempt to use LLVM to optimize dolorem-llvm code. To do so, we use
the four principles. Our attempt here differs from the attempt in section 4.15 in two main
respects: First, since dolorem-llvm does not generate code as text, but instead constructs
LLVM’s data structure which is powerful and easy to modify, we will modify this data
structure rather than text. Second, LLVM provides a number of facilities to implement
and run optimizations which we can access because we have full access to LLVM (as part
of 2.4.1).

That is why, unlike in dolorem-c, we will not implement our own layer for optimizing a
function, but will instead show how to apply LLVM’s PassManager to a dolorem-llvm function.
To do so, we add a macro optimize that first lowers its argument, then calls into LLVM to
run an optimization13:

(defmacro optimize (progn
(:= result (lower (car args)))
(LLVMBuildRetVoid bldr)
(LLVMRunPasses mod # the current module

" instcombine " # the pass name
(GetThisMachineStdTargetRef) # a convenience function

defined before
(LLVMCreatePassBuilderOptions))

result))

Note that we do not directly change the result of (lower (car args)) before we return it.
That is because it merely contains a pointer to an LLVMValue of the function return value
(and the pointer will not change as part of the optimizations), while the actual sequence
of commands is saved in the current LLVMModule as a side effect of lowering. This current
LLVMModule is exposed to macros by the compiler through global variable mod and is guaranteed
to only contain the currently compiled function (and any nested functions).

The idea of optimize is that we can wrap any function body in it to optimize that function,
for example:

defun do -some -math () void (optimize (progn
(:= i 10)
(printf "10 * 16 = %i\n" (* i 16))

));

13 At the time when optimize is called, the final ret instruction is likely not yet generated, so we add it
to the function before optimization by calling LLVMBuildRetVoid.

ECOOP 2023

41:22 The Dolorem Pattern

Since we chose "instcombine" above, LLVM will optimize arithmetic instructions, and
thus (similar to the toy optimization we implemented for dolorem-c, but much more powerful)
transform our multiplication into a bit shift.

Typically, optimization passes would be added by a flag or some other global compiler
setting. Our solution is different: It is only applied to the specific function we want it applied
on and also allows us more flexible control in other ways. Finally, our solution allows us to
implement our own LLVM optimizer pass and then apply it using the method shown above.
We do not show a full example for how, because there is nothing Dolorem-specific about the
implementation. It is enough to write the LLVM optimizer function as a normal Dolorem
function, then register it in LLVM’s PassManager in the macro and use it (as shown above).
The macro will be able to see the function definition because of principle 2.3.4 and get a
pointer to the function, which LLVM can then call.

7 Discussion of the LLVM implementation

We will now evaluate four key factors of our implementation: more complex/powerful
language, low code size, minimal/no run-time overhead, and fast compilation times.

7.1 More powerful language
dolorem-llvm is a more powerful and complete language than dolorem-c. It includes its own
type system, can interface with C and enables a macro writer to access the full power of
LLVM.

To show that we can implement nontrivial example programs in dolorem-llvm, we
implemented a graphical Pong. The 192-line-long program uses the game library SDL2 to
render graphics and receive inputs.

7.2 Code size
Using our own type system rather than piggybacking on C and emitting the more complex
LLVM IR requires slightly more complexity in dolorem-llvm.

Minus header files, the hashmap implementation, the driver and the reader/parser, the
entire compiler has about 1980 lines of code. Most of the increase compared to dolorem-c is
due to the bigger base language, and also due to the higher complexity of LLVM code.

This shows that, while more complex targets do increase the size of the base language,
the basic principle of bootstrapping most of the language still works.

7.3 Run-time overhead
Dolorem’s design attempts to impose minimal inherent run-time overhead on programs.

It is challenging to evaluate this goal in general. Primarily, that is because the performance
of a Dolorem program depends on the macros used to compile it more than on anything
else. In C++, if someone writes a template that is wasteful, that leads to a slower program
– just like a Dolorem macro that is badly written or implements a highly ambitious and
high-overhead language feature will lead to a slower program.

While it is possible to write programs without complex templates in C++, it is not
possible to write non-trivial Dolorem programs without using many macros (that is because
we keep the base language minimal, see 2.3.5).

S. Henniger and N. Amin 41:23

Figure 2 Performance of a Fibonacci function (executed 10,000 times, milliseconds) implemented
in C (black) and dolorem-llvm (yellow).

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106

0

1,000

2,000

3,000

N (Fibonacci argument)

t
in

se
co

nd
s

Therefore, in this section, we do not show that all Dolorem environments will be zero-
overhead. We consider this to be not only impossible to show given the level afforded to
macros, but also to be an undesirable goal: sometimes, using a macro that imposes a little
bit of overhead might be a desirable choice, and that is fine, as long as it is a conscious,
voluntary decision on the part of the developer.

Instead, we will show that, for our test cases, dolorem-llvm imposes no inherent run-time
overhead, i.e. that dolorem-llvm allows the creation of a zero-overhead environment using
macros and that it is possible to write non-trivial programs in it.

We will show this for two programs written using the default set of macros (i.e. the set
of macros we have talked about in this paper). As part of our benchmark, we compile the
generated code for a fibonacci function and compare it to an equivalent C implementation,
using maximum LLVM optimization for both languages, i.e. -O3 for C.

We see that the speed is exactly the same (Figure 2).
Another test shows the same result: When we compile the graphical Pong we implemented

using the mechanism above and measure against an identical program written in C, we see
that both are equally fast (in terms of frames per second).

Therefore, we conclude that, while additional tests are necessary to check this promise in
the general case, we see that Dolorem exhibits no run-time overhead on the generated code
in the cases we tested.

7.4 Compile speed
Many staged languages suffer from compile time problems, because the entire language needs
to be recompiled with every translation unit. Dolorem has a unique strength that becomes
relevant here: All language macros (like if, add etc.), after having been compiled, become
part of the Dolorem environment, and, like any part of the Dolorem environment, can not
only be JIT-compiled, but also exported as machine code (see “Do not prescribe a model of
execution”, section 2.4.2). Therefore, unlike in other staged programming languages, it is
trivial to precompile any part of the environment (see section 6.4) – including any macros
that define the language. Once precompiled, all of those language macros are only a single
dlopen away.

ECOOP 2023

41:24 The Dolorem Pattern

Figure 3 Performance of dolorem-llvm’s compiler (seconds) for a program of size N lines of code.

1,000 100,000 300,000 600,000 800,000 1,000,000

0

5

10

lines of code

t
in

se
co

nd
s

That is why we do not include benchmarks on loading the basic environment: basic
language macros only need to be compiled once when Dolorem is first installed and then the
precompiled versions can be used.

However, we are still interested in the speed of dolorem-llvm’s compiler for new user code.
In order to benchmark this, we need a way of creating large amounts of code that is similar

in structure to real-world dolorem-llvm code. We write a macro that duplicates existing code
from a number of sources (including the standard library, the Pong implementation and a
few other smaller test cases) while changing all names to avoid name clashes.

This way, we simulate how fast dolorem-llvm compiles large, real-world programs of a
certain size (Figure 3).

In the case of the Pong example (which contains about 500 lines of Dolorem code in
total), the compilation takes about 300 ms. Note that, because we do not use precompilation
for this experiment, much of this is LLVM’s start-up time, so, unlike with dolorem-c, total
start-up time does not scale proportionally to the amount of code.

We can see from Figure 3 that compilation/start-up times scale linearly with code size.
Taking into account that general initialization takes about 200ms, every additional 1000 lines
of code take about 12ms. This is competitive with modern C++ compilers.

Precompilation massively helps additionally reduce compile speed. With precompilation
enabled, even mid-size examples like Pong start instantly (< 50 ms start-up time) in direct
execution mode.

8 Related Work

We discuss various approaches to achieving extensible languages. Dolorem is distinct in that
it is a heterogeneous metaprogramming system which gives its macros access to the entire
language. Other approaches differ:

Ziggurat [3] is a language tower system to use Scheme-like macros for languages like C.
While Ziggurat has a similar aim, namely to add layer-based metaprogramming to low-level
languages, Ziggurat’s macros are different: they don’t have access to calling functions, and
act more like a preprocessor, limited to generating code. In contrast, Dolorem adheres to
the principle (2.3.4) that each macro has access to the full language: a macro can call into
functions, for example.

S. Henniger and N. Amin 41:25

McMicMac [6] is a macro-based system for generative programming in Scheme. It provides
a standard way for writing syntax transformations. Dolorem is about expanding the scope of
what macros can do, while McMicMac is about putting macros to use.

Converge [12] is a system to embed DSLs in a programming language with a compile-time
meta-programming facility. Compared to Dolorem, the setting is homogeneous. The system
can guarantee that these embedding are safe and hygienic (in the sense of LISP macros [5]).

Like Dolorem, MetaOCaml [4] allows a developer to ask the run-time system to compile
a piece of code, and link it back to the running program. However, unlike Dolorem, it
is a homogeneous system. In practice, MetaOCaml can be seen as a two-stage language,
where code is manually marked by quotations to ask the runtime system to compile it. The
markings are not essential: inside and outside the markings, code is in the same language.
They could even technically be erased yielding the same meaning with a different performance.
In contrast, Dolorem is more of a metaprogramming system, where not only what is compiled
can be controlled from within the language, but also how it is compiled.

Terra [1] and Dolorem share their aim to allow for generative low-level programming using
staging. To do so, Terra is staged from within the popular scripting language Lua. Users
can generate Terra code from within Lua. Terra and Dolorem also have similar mechanisms
to export finished binaries programmatically. However, unlike Terra, Dolorem uses only one
language and is mostly bootstrapped from within itself. Most importantly, this means that
Dolorem macros have access to the entire language, while Terra and Lua are still separate,
although they share the same lexical environment.

Racket [11], like Dolorem, allows macros to change the semantics of the language. Unlike
Dolorem macros, Racket macros translate to standard Racket rather than directly generating
code.

Metaphor [8] is an object-oriented multi-staging system that targets the .NET Runtime.
Metaphor’s primary design goal is to allow for type safety. While Metaphor’s higher order
functions have access to much of the .NET API, they mostly use it for reflection, rather than
explicitly generating code.

9 Conclusion

We have described the Dolorem pattern for very flexible metaprogramming and have seen
that it exhibits low overhead. Furthermore, we have shown and implemented two languages
that make use of the pattern, one that lowers to C and one that lowers to LLVM.

We have discussed the design constraints that the pattern imposes on a language and
presented a number of considerations, such as using S-expressions, allowing macros to call
into the code generator, and compiling each function separately. We have explained the
importance of the lower macro and how it compares to traditional eval-based approaches.

While dolorem-c mostly served as a proof of concept of the pattern, it could already
show that our pattern can deliver on its promises of allowing easy language extensions. Its
metaprogramming facilities were shown to be powerful enough to implement all arithmetic
operators in less than twenty lines of code.

With dolorem-llvm, we have shown that the Dolorem pattern can work on a larger scale
without losing its core advantages. To show that dolorem-llvm is fast and can interface well
with existing libraries, we implemented a graphical Pong game.

ECOOP 2023

41:26 The Dolorem Pattern

Next steps

This paper showed a number of macro examples, but most of them were bootstrapping
relatively standard language features. It would be interesting to create more complex layers
and macros that leverage Dolorem systems to implement more advanced functionality, like
instrumentation, data serialization, and borrow checking.

While we have seen in our experiments that Dolorem systems can exhibit low overhead,
it would be interesting to conduct more and more methodical experiments on performance,
especially those that help better understand how design choices made in macros impact
overhead.

It could also be insightful to implement a Dolorem language that targets a more low-level
language. For example, there could be a dolorem-x86 that translates to x86 machine code
(or x86 assembly). That would create a new use-case for macros: adding support for new
instruction set extensions. It would also invite more experimentation with implementing
custom optimization passes as macros.

Furthermore, an interesting topic of future research is to implement cross-compilation
within a Dolorem system. dolorem-c particularly could be extended by a cross-compile form
that acts similar to compile, except that it compiles for a different architecture. It might
also be possible to stage an entirely new language from within a Dolorem language, e.g. to
compile OpenGL shaders.

It should also be investigated whether compile speeds can be further improved by changing
how the C compiler is invoked or by optimizing LLVM’s JIT compiler.

Finally, neither dolorem-c and dolorem-llvm currently have a clearly defined memory
model convention. There should be a design contract on where memory is allocated and
freed within the compiler (and, by extension, within macros). By creating a design contract,
more optimizations and more safety checks would be made possible.

References

1 Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek. Terra: A multi-
stage language for high-performance computing. SIGPLAN Not., 48(6):105–116, June 2013.
doi:10.1145/2499370.2462166.

2 Gabriel Dos Reis and Bjarne Stroustrup. General constant expressions for system programming
languages. In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10,
pages 2131–2136, New York, NY, USA, 2010. Association for Computing Machinery. doi:
10.1145/1774088.1774537.

3 David Fisher and Olin Shivers. Building language towers with ziggurat. Journal of Functional
Programming, 18(5-6):707–780, September 2008. doi:10.1017/S0956796808006928.

4 Oleg Kiselyov. The design and implementation of ber metaocaml. In Michael Codish and
Eijiro Sumii, editors, Functional and Logic Programming, pages 86–102, Cham, 2014. Springer
International Publishing.

5 Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba. Hygienic macro
expansion. In Proceedings of the 1986 ACM Conference on LISP and Functional Programming,
LFP ’86, pages 151–161, New York, NY, USA, 1986. Association for Computing Machinery.
doi:10.1145/319838.319859.

6 Shriram Krishnamurthi, Matthias Felleisen, and Bruce F. Duba. From macros to reusable
generative programming. In Krzysztof Czarnecki and Ulrich W. Eisenecker, editors, Generative
and Component-Based Software Engineering, pages 105–120, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

https://doi.org/10.1145/2499370.2462166
https://doi.org/10.1145/1774088.1774537
https://doi.org/10.1145/1774088.1774537
https://doi.org/10.1017/S0956796808006928
https://doi.org/10.1145/319838.319859

S. Henniger and N. Amin 41:27

7 Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the 2004 International Symposium on Code
Generation and Optimization (CGO’04), Palo Alto, California, March 2004.

8 Gregory Neverov and Paul Roe. Metaphor: A multi-stage, object-oriented programming
language. In Gabor Karsai and Eelco Visser, editors, Generative Programming and Component
Engineering, pages 168–185, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

9 Tiark Rompf and Martin Odersky. Lightweight modular staging: A pragmatic approach to
runtime code generation and compiled DSLs. Commun. ACM, 55(6):121–130, June 2012.
doi:10.1145/2184319.2184345.

10 Walid Taha and Tim Sheard. MetaML and multi-stage programming with explicit annotations.
Theoretical computer science, 248(1-2):211–242, October 2000. doi:10.1016/S0304-3975(00)
00053-0.

11 Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and Matthias
Felleisen. Languages as libraries. SIGPLAN Not., 46(6):132–141, June 2011. doi:10.1145/
1993316.1993514.

12 Laurence Tratt. Domain specific language implementation via compile-time meta-programming.
ACM Trans. Program. Lang. Syst., 30(6), October 2008. doi:10.1145/1391956.1391958.

ECOOP 2023

https://doi.org/10.1145/2184319.2184345
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1145/1993316.1993514
https://doi.org/10.1145/1993316.1993514
https://doi.org/10.1145/1391956.1391958

Synthetic Behavioural Typing: Sound, Regular
Multiparty Sessions via Implicit Local Types
Sung-Shik Jongmans #

Department of Computer Science, Open University, Heerlen, The Netherlands
Centrum Wiskunde & Informatica (CWI), NWO-I, Amsterdam, The Netherlands

Francisco Ferreira #

Department of Computer Science, Royal Holloway, University of London, UK

Abstract
Programming distributed systems is difficult. Multiparty session typing (MPST) is a method to
automatically prove safety and liveness of protocol implementations relative to protocol specifications.

In this paper, we introduce two new techniques to significantly improve the expressiveness of the
MPST method: projection is based on implicit local types instead of explicit; type checking is based
on the operational semantics of implicit local types instead of on the syntax. That is, the reduction
relation on implicit local types is used not only “a posteriori” to prove type soundness (as usual),
but also “a priori” to define the typing rules – synthetically.

Classes of protocols that can now be specified/implemented/verified for the first time using the
MPST method include: recursive protocols in which different roles participate in different branches;
protocols in which a receiver chooses the sender of the first communication; protocols in which
multiple roles synchronously choose both the sender and the receiver of a next communication,
implemented as mixed input/output processes. We present the theory of the new techniques, as well
as their future potential, and we demonstrate their present capabilities to effectively support regular
expressions as global types (not possible before).

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases behavioural types, multiparty session types, choreographies

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.42

Category Pearl/Brave New Idea

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.18

Funding Sung-Shik Jongmans: Netherlands Organisation of Scientific Research: 016.Veni.192.103.

1 Introduction

Programming distributed systems is difficult. One of the challenges is to prove that the
implementation of protocols (message passing) is safe and live relative to the specification.
Safety means that “bad” communications never happen: if a communication happens in
the implementation, then it is allowed to happen by the specification. Liveness means that
“good” communications eventually happen. Multiparty session typing (MPST), proposed
by Honda et al. [39,40], is a method to automatically prove safety and liveness of protocol
implementations relative to protocol specifications. Figure 1 visualises the idea:

1. First, a global type G specifies a protocol among roles/participants r1, . . . , rn, while
processes P1, . . . , Pn implement it. A global type models the behaviour of all processes
together (e.g., “first, a number from Alice to Bob; next, a boolean from Bob to Carol”).

2. Next, local types L1, . . . , Ln are extracted from global type G by projecting G onto every
role ri. Each local type models the behaviour of one process alone (e.g., for Bob, “first,
he receives a number from Alice; next, he sends a boolean to Carol”).

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Sung-Shik Jongmans and Francisco Ferreira;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 42; pp. 42:1–42:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ssj@ou.nl
mailto:Francisco.FerreiraRuiz@rhul.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2023.42
https://doi.org/10.4230/DARTS.9.2.18
https://doi.org/10.4230/DARTS.9.2.18
https://doi.org/10.4230/DARTS.9.2.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Sound, Regular Multiparty Sessions via Implicit Local Types

G

L1 L2 · · · Ln

P1 P2 · · · Pn

global type
projection
local types
type check
processes

Figure 1 MPST method.

aaa bbb ccc
unit

0

(a) Sum of zero numbers

aaa bbb ccc
5
6

unit
11

(b) Sum of two numbers

Figure 2 Two executions of the protocol in Example 1.

3. Last, the processes are verified by type checking every process Pi against its local type Li.
Well-typedness at compile-time implies safety and liveness at run-time.

The following simple example further demonstrates the MPST method.

▶ Example 1. The Summation protocol consists of roles Alice (aaa), Bob (bbb), and Carol (ccc).
First, zero or more numbers are communicated from Alice to Bob. Next, a token (unit) is
communicated from Alice to Bob. Last, the sum of the numbers is communicated from Bob
to Carol. Figure 2 visualises two executions of this protocol.

The following recursive global type specifies the protocol:

G = µX.aaa_bbb:
{

Nat.X

Unit.bbb_ccc:Nat.✓

Informally, global type p_q :{ti .Gi}1≤i≤n specifies the communication of a value of data
type ti from role p to role q, for some 1 ≤ i ≤ n; we omit braces when n = 1.

The following recursive local types, projected from the global type, specify Alice and Bob:

Laaa = µX.bbb⊕

{
Nat.X

Unit.✓
Lbbb = µX.aaa&

{
Nat.X

Unit.ccc⊕Nat.✓

Informally, local types q⊕{ti .Li}1≤i≤n and p&{ti .Li}1≤i≤n specify the send and the receive
of a value of data type ti from role p to role q, for some 1 ≤ i ≤ n; we omit braces when n = 1.

The following processes, well-typed against the local types, implement Alice and Bob:

Paaa = bbb⟨5⟩.bbb⟨6⟩.bbb⟨unit⟩.0︸ ︷︷ ︸
specifically, Figure 1b

Pbbb = loop(sum:Nat = 0)
∑{

aaa(x:Nat).recur(sum+x)
aaa(_:Unit).ccc⟨sum⟩.0

Informally, process q⟨e⟩.P implements the send of the value of expression e to role q, while
process

∑
{p(xi :ti).Pi}1≤i≤n implements the receive of a value of data type ti from role p

into variable xi, for some 1 ≤ i ≤ n; we omit
∑

and braces when n = 1. Well-typedness means
that every action implemented in Paaa (resp. Pbbb) is also specified in Laaa (resp. Lbbb). ⌟

Over the past 10–15 years, substantial progress has been made both in MPST theory
(e.g., extensions with advanced features, including time [10, 57], security [15–17, 24], and
parametrisation [25,33,59]) and in MPST practice (e.g., tools for F# [58], F⋆ [71], Go [25],
Java [41,42], OCaml [70], PureScript [46], Rust [48,49], Scala [26,61], and TypeScript [56]).

1.1 Open Question: Regular Expressions as Global/Local Types
The expressiveness of the grammar of global/local types determines which protocols can be
specified. In turn, this determines which protocols can be implemented in a provably safe
and live fashion: the higher the expressiveness, the higher the applicability of the MPST

S.-S. Jongmans and F. Ferreira 42:3

method to program real(istic) distributed systems. For this reason, substantial research in
the community has aimed to increase expressiveness. Doing so is not as simple as just adding
new operators to the grammars; to be effective, these operators need to be supported by
projection and type checking as well, which is actually complicated. As a result, regarding
basic features, grammars of global types have effectively evolved as follows:

In the original paper [39]:

G ::= p_q :{ti .Gi}1≤i≤n

∣∣ µX.G
∣∣ X

∣∣ ✓
Thus, global types can specify that a sender chooses the data type but not the receiver.

In recent papers [21–23,54,65]:

G ::= p_{qi :ti .Gi}1≤i≤n

∣∣ µX.G
∣∣ X

∣∣ ✓
Thus, global types can specify that a sender chooses the data type and also the receiver.

However, it remains an open question how to effectively generalise these sub-regular grammars
to regular ones (e.g., global types that can specify that a receiver initially chooses the sender).
This generalisation would enable the MPST-based verification of significantly more processes.

The notion of using regular expressions as global/local types, or choreographies, to specify
protocols is intuitive, well-known, and actively studied. Early papers include those by Busi
et al. [14], Bravetti–Zavattaro [12, 13], Lanese et al. [50], and Castagna et al. [20]; later
papers include those by Guanciale–Tuosto et al. [27, 35, 64], Jongmans et al. [36, 37, 44], and
De’Liguoro et al. [29]. Most of these many papers focus on projection, though, while none of
them focus on type checking: typing rules to verify processes using regular expressions do
not yet exist in the MPST literature. However, type checking is just as vital as projection in
the MPST method (Figure 1). Thus, beyond the non-trivial achievements to only project
regular expressions, the next elusive milestone is to also type-check processes against them.

In summary, the evolution of sub-regular grammars of global/local types has been hard and
relatively slow; it also seems to remain relatively far from reaching an effective generalisation
to regularity, despite considerable interest in the community. In contrast, for binary session
typing, the state-of-the-art went beyond regularity already (including mixed choice [19]) and
has started to explore context-freeness [2, 3, 45,60,63]. These observations suggest that the
open question for multiparty must be significant, too, but apparently very hard to answer.
In this paper, we rebuild the foundations of the MPST method using new techniques and
answer the open question in the affirmative. For the first time, we effectively generalise the
sub-regular grammar of global types to the following “open-ended” regular grammar:

G ::= p_q :t
∣∣ G1 + G2

∣∣ G1 · G2
∣∣ G∗ ∣∣ ✓ ∣∣ · · ·

1.2 Contributions of This Paper
In existing papers in the MPST literature, there is a tight correspondence between the
structure of global/local types and the structure of processes, instrumental to define projection
and type checking. For instance, the global/local types and the processes in Example 1 have
essentially the same structure: cosmetics aside, the processes are just syntactic refinements
of the global/local types (choices resolved; loops unrolled; values instead of data types).

However, the usage of regular expressions as global/local types breaks the tight correspond-
ence. Generally speaking – deliberately unspecific to regular expressions – the foundational
challenge is to define projection and type checking when the grammars are so far apart that
structurally matching processes to global/local types is prohibitively complicated. The idea
of this paper is to abandon such structural matching and use two new techniques instead:

ECOOP 2023

42:4 Sound, Regular Multiparty Sessions via Implicit Local Types

Local types and projection: Projection is based on implicit local types instead of explicit.
To clarify the difference, consider the following projections of global type G in Example 1:

Lold = µX.aaa&{Nat.X, Unit.ccc⊕Nat.✓} Lnew = G↾bbb

Explicit local type Lold is representative of existing techniques (same as Lbbb in Example 1):
it has the same structure as G. In contrast, implicit local type Lnew is representative of
this paper’s new technique; essentially, it is just a role-indexed global type.
Notably, the concept of merging, shown to be problematic for session types [62] (i.e.,
published results based on merging turned out to be defective), is no longer needed.

Type checking: Type checking is based on the operational semantics of implicit local
types instead of on the syntax. That is, the reduction relation on implicit local types is
used not only “a posteriori” to prove type soundness (as usual), but also “a priori” to
define the typing rules. To clarify the difference, consider the following typing rules:

Ξ ⊢ e : tk Ξ ⊢ P : Lk

Ξ ⊢ qk⟨e⟩.P :
∑

{qi !ti .Li}1≤i≤n
[Old]

Ξ ⊢ e : t Ξ ⊢ P : L′ L
q !t−−→ L′

Ξ ⊢ q⟨e⟩.P : L
[New]

Rule [Old] is representative of existing techniques: it states that an output process is
well-typed by an explicit local type if it matches the structure. In contrast, rule [New] is
representative of this paper’s new technique: it states that an output process is well-typed
by an implicit local type if it matches the behaviour.1 As every local type is of the form
G↾r, its reduction relation is derivable from the reduction relation of G. The applicability
of rule [New] is decidable as the reduction relations constitute finite state machines.
The programmer does not write implicit local types directly, but only global types; implicit
local types are automatically extracted as role-indexed global types.

Our aim is to present the theory of the new techniques, as well as their future potential, and
to demonstrate their present capabilities:

X. Protocols that could already be specified/implemented using sub-regular grammars, but
not yet verified (i.e., the MPST method is sound but incomplete), can now be verified.
This includes recursive protocols in which different roles participate in different branches.

Y. Protocols that could already be specified using sub-regular grammars, can now be specified
exponentially more succinct using regular grammars.

Z. Protocols that could not yet be specified/implemented/verified using sub-regular gram-
mars, can now be specified/implemented/verified using regular grammars. This includes
protocols in which a receiver chooses the sender of the first communication, and also
protocols in which multiple roles synchronously choose both the sender and the receiver of
a next communication (implemented as mixed input/output processes, similar to select
for Go channels and POSIX sockets).

We note that the idea of this paper also improves the effectiveness of sub-regular grammars
(item X). This is because the new techniques are deliberately unspecific to regular expressions,
but general: the theory readily supports any model of behaviour directly as a global type –
be it state-based (e.g., finite automata or labelled transition systems), or event-based (e.g.,

1 Rule [Old] is “analytic”: every process/type term that occurs in the premise of a rule must also occur as
a subterm in the conclusion. In contrast, rule [New] is “synthetic” (the dual of “analytic”; e.g., [7, 38]):
every process/type term that occurs in the premise of a rule may – but does not have to – occur as
a subterm in the conclusion. That is, meta-variable L′ occurs only in the premise, but not in the
conclusion, so it needs to be synthesised to prove well-typedness (by computing the reduction relation).

S.-S. Jongmans and F. Ferreira 42:5

pomsets or event structures), or logic-based (e.g., CTL or Hennessy–Milner logic) – so long
as that model can be interpreted in our general format of operational semantics. Whether or
not the usage of such models directly as global types is useful, or preferable over existing
algebraic notation, is another research question. But, the future potential seems valuable.

In §2, we further detail the contributions of this paper. In §3, we apply the new techniques
to sub-regular grammars. Thus, we introduce the main concepts and complications in a
familiar setting. In §4, we apply the new techniques to regular grammars. This section
is surprisingly short, which is evidence of the generality of the idea: all complications are
addressed in the familiar setting of sub-regular grammars in §3, and those results are almost
directly applicable to regular grammars in §4. A separate technical report contains proofs [43].

2 Overview of the Techniques

In this section, using several examples, we further detail the contributions of this paper. The
examples follow the three steps of the MPST method (§1), adapted to the new techniques:

1a. The programmer writes a global type G and processes P1, . . . , Pn for roles r1, . . . , rn.
1b. A tool computes the operational semantics of G and of the implicit local types G↾r1, . . . ,

G↾rn in the form of a termination predicate and a reduction relation for every role. Every
G↾ri is an implicit local type; it does not compute an explicit one. That is, in this paper,
projection is an operator for implicit local types instead of a function on global types.

2. A tool checks if every G↾ri is well-behaved. If so, then G is operationally equivalent to
G↾r1, . . . , G↾rn. That is, G mimics G↾r1, . . . , G↾rn, and vice versa. Well-behavedness of
implicit local types is a new alternative to well-formedness of global types. Importantly,
well-behavedness is fully compositional: it can be checked separately for every role.

3. A tool checks if every Pi is well-typed by G↾ri. If so, then G↾r1, . . . , G↾rn is operationally
refined by P1, . . . , Pn. That is, G↾r1, . . . , G↾rn mimics P1, . . . , Pn, but not necessarily
vice versa: G↾r1, . . . , G↾rn may specify more behaviour than P1, . . . , Pn must implement.

2.1 Sub-Regular Grammars
In §3, we apply the new techniques of this paper to the following sub-regular grammars of
global types and processes; they are representative of existing ones in the MPST literature:

G ::= p_q :{ti .Gi}1≤i≤n

∣∣ µX.G
∣∣ X

∣∣ ✓
P ::=

∑
{O1, . . . , On}

∣∣ ∑
{I1, . . . , Im}

∣∣ · · · O ::=

output process︷ ︸︸ ︷
q⟨e⟩.P I ::=

input process︷ ︸︸ ︷
p(x:t).P

The informal meanings and notational conventions are the same as in Example 1 and further
clarified in the examples in this subsection. The examples serve two purposes: to introduce
the main concepts, and to demonstrate that the idea of this paper offers distinct expressive
power, even in the familiar setting of sub-regular grammars (item X in §1.2).

▶ Example 2. We apply steps 1a, 1b, 2, and 3 to the Summation protocol in Example 1:

1a. The following global type and processes specifies and implement the protocol (same as in
Example 1, except the process for Carol, which is new here):

G = µX.aaa_bbb:
{

Nat.X

Unit.bbb_ccc:Nat.✓

Paaa = bbb⟨5⟩.bbb⟨6⟩.bbb⟨unit⟩.0
Pbbb = loop(sum:Nat=0)

∑{
aaa(x:Nat).recur(sum+x)
aaa(_:Unit).ccc⟨x⟩.0

Pccc = bbb(_:Nat).0

ECOOP 2023

42:6 Sound, Regular Multiparty Sessions via Implicit Local Types

1b. In the style of process algebra, we define a termination predicate and a reduction relation
on global/local types to formalise their operational semantics. The following graph
visualises the operational semantics of G:

aaabbb‽Unit

bbbccc‽Nat

aaabbb‽Nat Legend:
– Nodes () represent global/local types.
– Circled nodes (), if any, represent termination.
– Edges represent reduction.

Every reduction is labelled with a global action of the form pq‽t; it models a synchronous
communication of a value of data type t from role p to role q. The following graphs
visualise the operational semantics of G↾aaa, G↾bbb, and G↾ccc (the projections of G):

bbb !Unit

τ

bbb !Nat

︸ ︷︷ ︸
G↾aaa

aaa?Unit

ccc !Nat

aaa?Nat

︸ ︷︷ ︸
G↾bbb

τ

bbb?Nat

τ

︸ ︷︷ ︸
G↾ccc

Every reduction is labelled with a local action of the form q !t, p?t, or τ; they model a send,
a receive, or “idling” (passage of time in which a role internally waits). The operational
semantics of G↾r is straightforwardly derived from the operational semantics of G, by
replacing every global action pq‽t with the corresponding local action: q !t when p = r ̸= q

(i.e., r is the sender), or p?t when p ̸= r ̸= p (i.e., r is the receiver), or τ when p ̸= r ̸= q

(i.e., r does not participate in the communication). We note that two τ-reductions are
superimposed in the visualisation for Carol; the details do not matter yet (see §3.2).

2. To assure that a global type is operationally equivalent to the family of projections, we
define a predicate that analyses the operational semantics of implicit local types, called
well-behavedness. An implicit local type is well-behaved when:

idling is neutral: the same reductions are possible before and after a τ-reduction;
sending is causal: a !-reduction is possible initially, or after a !-reduction, or after a
?-reduction, or after a τ-reduction when it was possible already before that τ-reduction;
receiving is deterministic: multiple ?-reductions from the same source to different
destinations must have different labels.

Thus: every send must have at least one cause; every receive must have at most one effect.
Our first main result is that if every projection is well-behaved, then the global type is
operationally equivalent to the family of projections (Theorem 23). It can be checked that
G↾aaa, G↾bbb, and G↾ccc are well-behaved, so G is operationally equivalent to {G↾aaa, G↾bbb, G↾ccc}.

3. To assure that a family of projections is operationally refined by a family of processes,
we define a typing relation that compares the syntax of processes with the operational
semantics of implicit local types. Roughly, P =

∑
{O1, . . . , On} is well-typed by L when:

for every Oi, if Oi = q⟨e⟩, then L has a q !t-reduction to L′ (modulo τ-reductions);
for every q !t-reduction of L (modulo τ-reductions), P has a subprocess Oi.

Furthermore, roughly, P =
∑

{I1, . . . , Im} is well-typed by L when:

for every Ij , if Ij = p(x:t), then L has a p?t-reduction to L′ (modulo τ-reductions);
for every p?t-reduction of L (modulo τ-reductions), P has a subprocess Ij = p(x:t).

S.-S. Jongmans and F. Ferreira 42:7

We note that, as usual in the MPST literature, there is asymmetry between well-typedness
of selections of output processes and selections of input processes (see §3.6).
Our second main result is that if every process is well-typed by its projection, then the
family of projections is operationally refined by the family of processes (Theorem 39).
It can be checked that Paaa is well-typed by G↾aaa (traverse the cycle in G↾aaa twice), Pbbb is
well-typed by G↾bbb, and Pccc is well-typed by G↾ccc (traverse the downwards τ-reduction in
G↾ccc; this is sound), so {G↾aaa, G↾bbb, G↾ccc} is operationally refined by {Paaa, Pbbb, Pccc}.

Together, operational equivalence (step 2) and operational refinement (step 3) imply that
{Paaa, Pbbb, Pccc} is safe and live relative to G (Corollary 41). ⌟

The Summation protocol is simple. However, it is not yet supported by existing techniques
based on global types and projection in the MPST literature. For instance, G in Example 2
is grammatical in the state-of-the-art papers of Majumdar et al. [54] and Van Glabbeek et
al. [65], but the projection onto Carol is undefined by Majumdar et al. and ill-formed due to
unguarded recursion by Van Glabbeek et al.; as a result, in those papers, G cannot be used
to verify processes. The following example further demonstrates the expressive power of our
development.

▶ Example 3. The Recursive Two Buyer protocol [62] (extension of the Two Buyer protocol
[39]) consists of roles Alice (aaa), Bob (bbb), and Seller (sss). Sequentially, it has three subprotocols:

Alice and Seller (part 1): First, the name of an item (String) is communicated from
Alice to Seller. Next, the price (Nat) is communicated from Seller to Alice.
Alice and Bob: When Alice wants to negotiate with Bob to split the price, an offer (Nat)
is communicated from her to him. Next, an acceptance (Acc) is communicated from Bob
to Alice and the subprotocol ends, or a rejection (Rej) and the subprotocol loops. When
Alice wants not to negotiate, a rejection of the sale is communicated from her to him.
Alice and Seller (part 2): When the negotiation between Alice and Bob succeeded (resp.
failed), an acceptance (resp. rejection) of the sale is communicated from Alice to Seller.

We apply steps 1a, 1b, 2, and 3 to the Recursive Two Buyer protocol:

1a. The following global type specifies the protocol:

G = aaa_sss:String.sss_aaa:Nat.µX.aaa_bbb:
{

Nat.bbb_aaa:{Acc.aaa_sss:Acc.✓, Rej.X}
Rej.aaa_sss:Rej.✓

The following processes implement Alice, Bob, and Seller:

Paaa = sss⟨"foo"⟩.sss(x:Nat).bbb⟨x/2⟩.
∑{

bbb(_:Acc).sss⟨acc⟩.0
bbb(_:Rej).bbb⟨x/3⟩.

∑{
bbb(_:Acc).sss⟨acc⟩.0
bbb(_:Rej).bbb⟨rej⟩.sss⟨rej⟩.0

Pbbb = loop
∑

{aaa(y:Nat).if y<=10 (aaa⟨acc⟩.0) (aaa⟨rej⟩.recur),aaa(_:Rej).0}
Psss = aaa(z:String).aaa⟨price(z)⟩.

∑
{aaa(_:Acc).0,aaa(_:Rej).0}

Paaa implements that Alice offers Bob to contribute half the price; when Bob rejects, Alice
offers Bob to contribute a third of the price; when Bob rejects again, Alice rejects the
sale. Pbbb implements that Bob is wiling to contribute at most ten units of currency.

ECOOP 2023

42:8 Sound, Regular Multiparty Sessions via Implicit Local Types

1b. The following graphs visualise the operational semantics of G, G↾bbb, and G↾sss:

aaasss‽String

sssaaa‽Nat

aaabbb‽Nat bbbaaa‽Rej

bbbaaa‽Acc

aaasss‽Acc

aaabbb‽Rej

aaasss‽Rej︸ ︷︷ ︸
G

τ

τ

aaa?Nat aaa !Rej

aaa !Acc

τ

aaa?Rej

τ︸ ︷︷ ︸
G↾bbb

aaa?String

aaa !Nat

τ τ

τ

aaa?Acc

τ

aaa?Rej︸ ︷︷ ︸
G↾sss

2. It can be checked that G ↾ bbb and G ↾ sss are well-behaved, in the same way as in Example 2.
Furthermore, G ↾ aaa is trivially well-behaved, as Alice participates in every communication,
so the operational semantics of G ↾ aaa has no τ-reductions. Thus, G is operationally
equivalent to {G↾aaa, G↾bbb, G↾sss} (Theorem 23).

3. It can be checked that Paaa is well-typed by G↾aaa (by twice traversing the cycle in G↾aaa), Pbbb is
well-typed by G↾bbb, and Psss is well-typed by G↾sss. Thus, {G↾aaa, G↾bbb, G↾sss} is operationally
refined by {Paaa, Pbbb, Psss} (Theorem 39).

Together, operational equivalence (step 2) and operational refinement (step 3) imply that
{Paaa, Pbbb, Psss} is safe and live relative to G (Corollary 41). ⌟

The Recursive Two Buyer protocol was introduced by Scalas–Yoshida to demonstrate the
limitations of previous papers based on global types and projection [62]: existing techniques
do not support recursive protocols in which different roles participate in different branches.
The solution proposed by Scalas–Yoshida is to remove global types and projection from the
MPST method altogether and, instead, manually write explicit local types for Alice, Bob,
and Seller (i.e., they effectively avoid the problem instead of solving it). In contrast, using
the new techniques of this paper, we can specify such recursive protocols as global types, and
automatically extract implicit local types from them, and automatically verify processes.

2.2 Regular Grammars

In §4, we apply the new techniques of this paper to the following regular grammars:

G ::= p_q :t
∣∣ G1 + G2

∣∣ G1 · G2
∣∣ G∗ ∣∣ ✓ P ::=

∑
{O1, . . . , On, I1, . . . , Im}

∣∣ · · ·

The informal meanings are further clarified in the examples in this subsection. The examples
serve two purposes: to evidence generality (i.e., no extra main concepts need to be introduced),
and to demonstrate that the idea of this paper offers distinct expressive power. This power
arises both in the “soft” sense (i.e., protocols that could already be specified, can now be
specified exponentially more succinct; item Y in §1.2) and in the “hard” sense (i.e., protocols
that could not yet be specified/implemented/verified, can now be; item Z in §1.2).

▶ Example 4. The Binomialk protocol consists of roles Alice (aaa) and Bob (bbb). A choice
between red (Red) and blue (Blu) is communicated from Alice to Bob, k times, independently.
The following global types, which are equivalent, specify the protocol for k = 3:

S.-S. Jongmans and F. Ferreira 42:9

G = aaa_bbb:


Red.aaa_bbb:


Red.aaa_bbb:

{
Red.✓

Blu.✓

Blu.aaa_bbb:
{

Red.✓

Blu.✓

. . . (similar to the subtree above)

G = (aaa_bbb:Red + aaa_bbb:Blu) ·
(aaa_bbb:Red + aaa_bbb:Blu) ·
(aaa_bbb:Red + aaa_bbb:Blu)

Informally, global types G1 + G2 and G1 · G2 specify choice and sequencing. ⌟

The Binomialk protocol could already be specified using existing sub-regular grammars
of global types in the MPST literature. However, due to the usage of a prefixing operator,
the size of G1 in Example 4 is exponential in k. In contrast, due to the usage of a sequencing
operator, the size of G2 in Example 4 is linear in k. Thus, the Binomialk protocol can now
be specified exponentially more succinct. The following example demonstrates that another
version of Binomialk, which could not yet be specified/implemented/verified, can now be.

▶ Example 5. The Role-based Binomialk protocol consists of roles Alice (aaa) and Bob (bbb). A
unit is communicated from Alice to Bob, or from Bob to Alice, k times, independently. We
apply steps 1a, 1b, 2, and 3 to the Role-based Binomialk protocol:

1a. The following global type specifies the protocol for k = 3:

G = (aaa_bbb:Unit + bbb_aaa:Unit) · (aaa_bbb:Unit + bbb_aaa:Unit) · (aaa_bbb:Unit + bbb_aaa:Unit)

The following processes implement Alice and Bob:

Paaa =
∑


bbb⟨unit⟩.

∑


bbb⟨unit⟩.
∑{

bbb⟨unit⟩.0
bbb(_:Unit).0

bbb(_:Unit).
∑{

bbb⟨unit⟩.0
bbb(_:Unit).0

. . . (similar to the subtree above)

Pbbb = . . . (similar to Paaa)

1b. The following graphs visualise the operational semantics of G and G↾aaa:

aaabbb‽Unit

bbbaaa‽Unit

aaabbb‽Unit

bbbaaa‽Unit

aaabbb‽Unit

bbbaaa‽Unit︸ ︷︷ ︸
G

bbb !Unit

bbb?Unit

bbb !Unit

bbb?Unit

bbb !Unit

bbb?Unit︸ ︷︷ ︸
G↾aaa

2. It can be checked that G ↾ aaa is well-behaved, in the same way as in Example 2. Similarly,
G ↾ bbb is well-behaved. Thus, G is operationally equivalent to {G↾aaa, G↾bbb} (Theorem 23).
We note that we can use the same definition of well-behavedness as in §2.1, whereas the
grammar differs: well-behavedness is independent of structure, so directly re-applicable.

3. Process P =
∑

{O1, . . . , On, I1, . . . , Im} is well-typed by L when:∑
{O1, . . . , On} is well-typed by L, in the same way as in Example 2;∑
{I1, . . . , Im} is well-typed by L, in the same way as in Example 2.

ECOOP 2023

42:10 Sound, Regular Multiparty Sessions via Implicit Local Types

It can be checked that Paaa is well-typed by G↾aaa. In particular, as Paaa consists of only three
unique subprocesses, no other subprocesses (duplicates) need to be type-checked when
memoization is used. The three unique subprocesses are well-typed by the three non-final
nodes in the visualisation of G↾aaa. Similarly, Pbbb is well-typed by G↾bbb. Thus, {G↾aaa, G↾bbb}
is operationally refined by {Paaa, Pbbb} (Theorem 39).

Together, operational equivalence (step 2) and operational refinement (step 3) imply that
{Paaa, Pbbb} is safe and live relative to G (Corollary 41). ⌟

The Role-based Binomialk protocol could not yet be specified/implemented/verified in
previous papers in the MPST literature: existing techniques do not support protocols in which
multiple roles synchronously choose both the sender and the receiver of a next communication.
In contrast, using the new techniques of this paper, we can specify such protocols (e.g., G in
Example 5), implement them as mixed input/output processes (e.g., Paaa and Pbbb in Example 5),
and verify. The following example further demonstrates mixed input/output, and more.

▶ Example 6. The Acquire–Use–Release protocol consists of roles Alice (aaa), Bob (bbb), and
Server (sss). Concurrently, it has three subprotocols:

Alice and Server (AS): First, an “acquire” message (Acq) is communicated from Alice
to Server. Next, a “permission” message (Perm) is communicated from Server to Alice.
Next, zero or more “usage” messages (Use) are communicated from Alice to Server. Last,
a “release” message (Rel) is communicated from Alice to Server.
Bob and Server (BS): Similar to AS.
Mutual Exclusion (ME): Between sending “permission” and receiving “release”, Server
cannot send another “permission”, thereby constraining the interleaving of AS and BS.

We apply steps 1a, 1b, 2, and 3 to the Acquire–Use–Release protocol:

1a. The following global type specifies the protocol:

G = +


aaa_sss:Acq · +


sss_aaa:Perm · aaa_sss:Use∗ · +

{
aaa_sss:Rel · bbb_sss:Acq · G′

2

bbb_sss:Acq · aaa_sss:Use∗ · aaa_sss:Rel · G′
2

bbb_sss:Acq · +
{

G′
1 · G′

2

G′
2 · G′

1

bbb_sss:Acq · . . . (similar to the subtree above)

G′
1 = sss_aaa:Perm · aaa_sss:Use∗ · aaa_sss:Rel G′

2 = sss_bbb:Perm · bbb_sss:Use∗ · bbb_sss:Rel

The following processes implement Alice, Bob, and Server:

Paaa = sss⟨acq⟩.sss(_:Perm).sss⟨use⟩.sss⟨use⟩.sss⟨use⟩.sss⟨rel⟩.0
Pbbb = sss⟨acq⟩.sss(_:Perm).sss⟨use⟩.sss⟨rel⟩.0

Psss =
∑{

aaa(acq1:Acq).
∑

bbb(_:Acq).(· · ·)

{
aaa⟨perm⟩.loop

∑
bbb(acq2:Acq).P ′′

sss


aaa(_:Use).recur
aaa(_:Rel).bbb(_:Acq).(· · ·)
bbb(_:Acq).(· · ·)

(version 1) P ′′
sss =

∑
{aaa⟨perm⟩.(· · ·),bbb⟨perm⟩.(· · ·)}

(version 2) P ′′
sss = if alice_goes_first(acq1,acq2) (aaa⟨perm⟩.(· · ·)) (bbb⟨perm⟩.(· · ·))

(version 3) P ′′
sss = aaa⟨perm⟩.(· · ·)

Version 1 of P ′′
sss implements that, after receiving an “acquire” message from both Alice

and Bob, Server chooses non-deterministically between sending a “permission” message to
Alice or Bob. Versions 2 and 3 of P ′′

sss implement that Server chooses deterministically. We
note that the second choice in Psss is between a send and a receive (mixed input/output).

S.-S. Jongmans and F. Ferreira 42:11

1b. The following graphs visualise the operational semantics of G and G↾aaa:

aaasss‽Acq sssaaa‽Perm aaasss‽Rel

aaasss‽Acq sssaaa‽Perm aaasss‽Rel

aaasss‽Acq

aaasss‽Acq sssaaa‽Perm aaasss‽Rel

aaasss‽Use

aaasss‽Use

aaasss‽Use

bbbs ss‽Acq
s ssb bb‽Perm

b bbs ss‽Rel

b bbs ss‽Acq
s ssb bb‽Perm

b bbs ss‽Rel

b bbs ss‽Acq

b bbs ss‽Acq
s ssb bb‽Perm

b bbs ss‽Rel

b bbs ss‽Use

b bbs ss‽Use bb bss s
‽U

se

︸ ︷︷ ︸
G

sss !Acq sss?Perm sss !Rel

sss !Acq sss?Perm sss !Rel

sss !Acq

sss !Acq sss?Perm sss !Rel

sss !Use

sss !Use

sss !Use

τ
τ

τ

τ
τ

τ

τ τ
τ

τ

τ τ

τ

︸ ︷︷ ︸
G↾aaa

The dash pattern on the vertical edges is unimportant at this point (see Example 9).

2. It can be checked that G ↾ aaa is well-behaved, in the same way as in Example 2. Similarly,
G ↾ bbb is well-behaved. Furthermore, G ↾ sss is trivially well-behaved, as Server participates
in every communication, so the operational semantics of G ↾ sss has no τ-reductions. Thus,
G is operationally equivalent to {G↾aaa, G↾bbb, G↾sss} (Theorem 23).

3. It can be checked that Paaa is well-typed by G↾aaa, Pbbb is well-typed by G↾bbb, and Psss

is well-typed by G↾sss. Thus, {G↾aaa, G↾bbb, G↾sss} is operationally refined by {Paaa, Pbbb, Psss}
(Theorem 39).

Together, operational equivalence (step 2) and operational refinement (step 3) imply that
{Paaa, Pbbb, Psss} is safe and live relative to G (Corollary 41). ⌟

The Role-based Acquire–Use–Release protocol could not yet be specified/implemented/
verified in previous papers in the MPST literature: existing techniques do not support
protocols in which a receiver chooses the sender of the first communication. In contrast,
using the new techniques of this paper, we can specify such protocols (e.g., G in Example 6),
implement them as processes (e.g., Paaa, Pbbb, and Psss in Example 5), and verify.

In this paper, projection (including well-behavedness) and type checking are independent
of the syntax of global types; they are dependent only on the operational semantics. The
formulations and proofs of our main results are similarly independent. As a result of this
independence, our regular grammar of global types is actually “open ended”: it can be
readily extended with additional global type operators (closed under regularity), intended
to serve as higher-level abstractions to make the specification of protocols easier. As a first
demonstration of this extensibility, we freely add the following operators:

G ::= · · ·
∣∣ G1 ; G2

∣∣ G1 ∥ G2
∣∣ G1 ⋊⋉ G2

∣∣ [G]γ1
γ2

∣∣ · · ·

▶ Example 7. The following global type specifies that units are communicated first between
Alice, Bob1, and Carol1, and second between Alice, Bob2, and Carol2, in that order; the
communication from Bob1 to Carol1, and the communication from Bob2 to Carol2, may
happen out-of-order, though.

G = (aaa_b1b1b1:Unit · b1b1b1_c1c1c1:Unit) ;
(aaa_b2b2b2:Unit · b2b2b2_c2c2c2:Unit)

ECOOP 2023

42:12 Sound, Regular Multiparty Sessions via Implicit Local Types

Informally G1 ;G2 specifies a “weak” sequence: it is similar to G1 ·G2, except that independent
communications in G1 and G2 (when disjoint roles participate) can happen out-of-order. ⌟

▶ Example 8. We re-apply steps 1a, 1b, 2, and 3 to the Acquire–Use–Release protocol:

1a. The following global type, which is equivalent to G in Example 6, specifies the protocol:

G = (GAS ∥ GBS) ⋊⋉ GME

GAS = aaa_sss:Acq · sss_aaa:Perm · aaa_sss:Use∗ · aaa_sss:Rel

GBS = bbb_sss:Acq · sss_bbb:Perm · bbb_sss:Use∗ · bbb_sss:Rel

GME = +
{

sss_aaa:Perm · aaa_sss:Rel · sss_bbb:Perm

sss_bbb:Perm · bbb_sss:Rel · sss_aaa:Perm

Informally, global types G1 ∥ G2 and G1 ⋊⋉ G2 specify interleaving and join. In general,
join demands that every role complies with both of its operands. In this example, join
specifies that subprotocol ME in Example 6 constrains the interleaving of subprotocols
AS and BS. That is, the three subprotocols are modularly specified as global types GAS,
GBS, and GME, and composed as intended using ∥ and ⋊⋉; the result is an exponentially
more succinct – and arguably easier to write – specification than in Example 6.
The same processes Paaa, Pbbb, and Psss, with any version of P ′′

sss , as in Example 6 are used.

1b. The same graphs as in Example 6 visualise the operational semantics of G and G↾aaa.
2. As in Example 6, G is operationally equivalent to {G↾aaa, G↾bbb, G↾sss}.
3. As in Example 6, {G↾aaa, G↾bbb, G↾sss} is operationally refined by {Paaa, Pbbb, Psss}. ⌟

▶ Example 9. We apply steps 1a, 1b, 2, and 3 to a restricted version of the Acquire–Use–
Release protocol in which, after receiving an “acquire” message from both Alice and Bob,
Server must send a “permission” message first to Alice and second to Bob (static order):

1a. The following global type specifies the protocol:

G = [(GAS ∥ GBS) ⋊⋉ GME]aaasss‽Perm
bbbsss‽Perm GAS, GBS, GME = . . . (same as in Example 8)

Informally, global type [G]γ1
γ2 specifies the prioritisation of global action γ1 (superscript

indicates “high” priority) over global action γ2 (subscript indicates “low” priority) in G.
The same processes Paaa, Pbbb, and Psss, with version 3 of P ′′

sss , as in Example 6 are used.

1b. The same graphs as in Example 6 visualise the operational semantics of G and G↾aaa, but
without the dashed edges.

2. As in Example 6, G is operationally equivalent to {G↾aaa, G↾bbb, G↾sss}.
3. As in Example 6, {G↾aaa, G↾bbb, G↾sss} is operationally refined by {Paaa, Pbbb, Psss}. ⌟

▶ Remark 10. Merging has historically been crucial to support sufficiently expressive kinds
of choice in the MPST literature, but it is not needed in this paper. Instead, the issues
that merging-based well-formedness of global types address, are covered by well-behavedness
of implicit local types. Example 2 and Example 3 already demonstrated this point. To
further illustrate it, Table 1 lists global types for examples of Van Glabbeek et al. [65] and
Scalas–Yoshida [62]: the examples of van Glabbeek et al. require merging; the examples of
Scalas–Yoshida require a more advanced concept (i.e., they use these examples to demonstrate
limitations of merging). Every projection of every global type in Table 1 is well-behaved. ⌟

S.-S. Jongmans and F. Ferreira 42:13

Table 1 Example protocols of Van Glabbeek et al. [65] and Scalas–Yoshida [62].

name global type
Example 9 [vG21] G = (bbb_sesese:Talk)∗ · bbb_sesese:Buy · sesese_shshsh:Order
Example 13 [vG21] G = ((b1b1b1_s1s1s1:Wait)∗ · b1b1b1_s1s1s1:Order) ∥ ((b2b2b2_s2s2s2:Wait)∗ · b2b2b2_s2s2s2:Order)
Example 15 [vG21] G = (bbb_s1s1s1:Order1 · bbb_s2s2s2:Wait)∗ · bbb_s2s2s2:Order2 · bbb_s1s1s1:Done
OAuth2 [SY19] G = (sss_ccc:Login · ccc_aaa:Passwd · aaa_sss:Auth) + (sss_ccc:Cancel · ccc_aaa:Quit)
Rec. map/reduce [SY19] G = G1 · (rrr_mmm:Continue · G1)∗ · rrr_mmm:Stop · mmm_w1w1w1:Stop

G1 = mmm_w1w1w1:Datum · w1w1w1_rrr:Result
MP workers [SY19] G = sss_wa1wa1wa1:Datum · (G1 ∥ (sss_wa2wa2wa2:Datum · G2))

G1 = (wa1wa1wa1_wb1wb1wb1_wc1wc1wc1:Datum · wc1wc1wc1_wa1wa1wa1:Result)∗ · wa1wa1wa1_wb1wb1wb1_wc1wc1wc1:Stop
G2 = (wa2wa2wa2_wb2wb2wb2_wc2wc2wc2:Datum · wc2wc2wc2_wa2wa2wa2:Result)∗ · wa2wa2wa2_wb2wb2wb2_wc2wc2wc2:Stop

3 Sub-Regular Grammars

In this section, we apply the new techniques for projection and type checking to sub-regular
grammars of global types and processes; they are representative of existing ones in the MPST
literature. Thus, we introduce the main concepts and complications in a familiar setting.

As this paper is about “processes that communicate” instead of “data that are commu-
nicated”, we leave the data language largely unspecified, except for some notation:

Syntax: Let X denote a set of variables, ranged over by x. Let V = {true, false, 0, 1,

2, . . .} denote a set of values, ranged over by v. Let E = X ∪ V ∪ {!false, 2+3, . . .} denote
a set of expressions, ranged over by e. Let e[v/x] denote substitution of v for x in e.
Static semantics: Let T = {Bool, Nat, . . .} denote a set of data types, ranged over by
t. Let (X × T)∗ denote the set of data typing contexts (i.e., lists of variable–type pairs),
ranged over by Ξ. Let Ξ ⊢ e : t denote well-typedness of e by t in Ξ.
Dynamic semantics: Let eval(e) denote evaluation of e; it can be undefined. For instance,
eval(2+3) = 5, but eval(2+true) is undefined. Undefinedness of eval(e) is a form of “going
wrong” [55]; it can give rise to deadlock (Remark 33), prevented by well-typedness (§3.7).

3.1 Global Types – Syntax
Below, we define the grammar of global/local types and abstract global/local actions.

▶ Definition 11. Let R denote a set of roles, ranged over by p, q, r. Let G and L denote the
sets of global types and (implicit) local types, ranged over by G and L; they are induced by
the following grammar:

G ::= p_q :{ti .Gi}1≤i≤n

∣∣ µX.G
∣∣ X

∣∣ ✓ L ::= G↾r

Let R ⇀ L denote the set of role-indexed families of local types (partial functions), ranged
over by L. Let S = G ∪ L ∪ (R ⇀ L) denote the set of specifications, ranged over by S. ⌟

Global type p_q :{ti .Gi}1≤i≤n specifies the synchronous communication of a value of
data type ti from role p to role q, for some 1 ≤ i ≤ n. Global types µX.G and X specify
a recursive protocol. Global type ✓ specifies the empty protocol. Local type G↾r specifies
the projection of G onto r. Thus, projection is a local type operator instead of a function
on global types: G↾r does not compute an explicit local type; it is an implicit one. The
programmer does not write implicit local types directly, but only global types.

▶ Definition 12. Let Γ = {(pq !t, pq?t) | p ̸= q} and Λ =
⋃

{{pq !t, pq?t} | p ̸= q} ∪ {τ}
denote the sets of (abstract) global actions and (abstract) local actions, ranged over by γ and
λ. Let A = Γ ∪ Λ denote the set of (abstract) actions, ranged over by α. ⌟

ECOOP 2023

42:14 Sound, Regular Multiparty Sessions via Implicit Local Types

✓ ↓ [↓G-End]

G ↓
G↾r ↓ [↓L-At]

Lr ↓ for every r

{Lr}r∈R ↓ [↓L]

(a) Termination

1 ≤ i ≤ n

p_q :{ti .Gi}1≤i≤n
pq‽ti−−−→ Gi

[→G-Com]
G[µX.G/X] γ−→ G′

µX.G
γ−→ G′

[→G-Rec]

G
γ−→ G′

G↾r
γ↾r−−→ G′↾r

[→L-At] pq‽t↾r =

pq !t if: p = r ̸= q

pq?t if: q ̸= r = q

τ if: p ̸= r ̸= q

L
τ−→ L′ ̸ ↓

L′ τ−→ L
[→L-Rev]

Lp
pq !t−−−→ L′

p Lq
pq?t−−−→ L′

q

Lr = L′
r for every r /∈ {p, q}

{Lr}r∈R
pq‽t−−−→ {L′

r}r∈R

[→L1]

Lr̄
τ−→ L′

r̄

Lr = L′
r for every r /∈ {r̄}

{Lr}r∈R
τ−→ {L′

r}r∈R

[→L2]

(b) Reduction. Let G[µX.G/X] denote unfolding of X into µX.G in G.

Figure 3 Operational semantics of sub-regular global/local types.

Local actions pq !t and pq?t model the send and the receive of a value of data type t from
role p to role q; we omit p or q when it is clear from the context. Local action τ models
internal idling. Global action (pq !t, pq?t) models a communication; we often write pq‽t.

3.2 Global Types – Operational Semantics
Below, we define the termination predicate and reduction relation on global/local types.

▶ Definition 13. Let G ↓, L ↓, and L ↓ denote termination of G, L, and L. Formally, ↓ is
the predicate induced by the rules in Figure 3a, while ̸ ↓ is its complement (not derivable). ⌟

▶ Definition 14. Let G
γ−→ G′, L

λ−→ L′, and L λp,λq−−−→ L′ denote reduction from G to G′ with
γ, from L to L′ with λ alone, and from L to L′ with λp and λq together (synchronously); we
omit the label and/or the destination of a reduction if it does not matter. Formally, → is the
relation induced by the rules in Figure 3b, while ↛ is its complement (not derivable). ⌟

Rule [→G-Com] states that a communication can reduce with a global action chosen from
the alternatives. Following the recent paper of Gheri et al. [34], and for the same reason
as them, we omit a reduction rule for out-of-order execution of independent global actions;
its interplay with recursion may give rise to infinite reduction relations (e.g., [34, Exmp.
5.1]). We recover out-of-order execution in §4, as already demonstrated in Example 7.
Rule [→G-Rec] states that a recursive protocol can reduce when its body can.
Rule [→L-At] states that a projection can reduce when the global type can.
Rule [→L-Rev] states that a τ-reduction into a non-terminated branch can be reversed:
after “doing nothing” (the τ-reduction from L to L′), a role is always permitted to
backtrack by “doing more nothing” (the reverse). This rule ensures that a role r cannot
commit – unilaterally and irrevocably – to a future communication with another role
r′ by internally “doing nothing” (i.e., morally, the decision to communicate cannot be
made by r alone, but only together with r′, so r should not be able to make a premature
commitment and get stuck). Conversely, it can commit to local termination by internally
“doing nothing” (i.e., morally, the decision to locally terminate can be made by r alone).
▶ Example 15. The following global type specifies that either a number is communicated
from Alice to Bob, and from Bob to Carol, or a boolean:

G = aaa_bbb:{Nat.bbb_ccc:Nat.✓, Bool.bbb_ccc:Bool.✓}

The following graph visualises the operational semantics of G and G↾ccc:

S.-S. Jongmans and F. Ferreira 42:15

bbbccc‽Nat aaabbb‽Nat aaabbb‽Bool bbbccc‽Bool︸ ︷︷ ︸
G

bbbccc?Nat
τ τ

bbbccc?Bool︸ ︷︷ ︸
G↾ccc

Dashed edges represent reductions induced by rule [→L-Rev].
Without the τ-reductions of rule [→L-Rev], for instance, Carol can commit to the receive
of a number by internally “doing nothing” (τ-reduction leftwards). Morally, however, this
decision cannot be made by Carol alone, but only together with Bob (depending, in turn,
on his previous communication with Alice). With the τ-reductions of rule [→L-Rev], in
contrast, Carol cannot commit: after the τ-reduction leftwards, there is still a sequence
of τ-reductions rightwards (which Carol can freely make, because they are internal to her,
unobservable to Alice and Bob) to receive a boolean. ⌟

Rules [→L1] and [→L2] state that a family can reduce, when two local types can reduce
with a matching send/receive pair (synchronously), or when one can reduce by idling.

The following propositions state basic properties of the operational semantics.

▶ Proposition 16 (type-level progress). G ↓, or G −→ (for every G). ⌟

▶ Proposition 17 (type-level finiteness). |{G† | G −→ · · · −→ G†}| ∈ N (for every G). ⌟

Type-level progress and finiteness, which follow straightforwardly from Figure 3, will be used
to assure liveness of families of well-typed processes and decidability of type checking.

Recall that S ranges over global types, local types, and families of local types (Defini-
tion 11), and α over global actions and local actions (Definition 12):

Let S =⇒ S† denote τ-reachability from S to S†: either S = S†, or S
τ−→ · · · τ−→ S†.

Let S ⇓ denote weak termination of S: S =⇒ S† ↓, for some S†.
Let S

α=⇒ S¶ denote weak reduction from S to S¶ with α: either α = τ and S =⇒ S¶, or
S =⇒ S† α−→ S‡ =⇒ S¶, for some S†, S‡.

As a notational convention, we use “′” to indicate destinations after 1 reduction, while we
use “†”, “‡”, “§”, and “¶” to indicate destinations after 0-or-more reductions.

3.3 Main Result 1: Well-Behavedness Implies Operational Equivalence
Intuition. The following global type specifies that a unit is communicated first from Alice to
Bob, and second from Carol to Dave, in-order: aaa_bbb:Unit.ccc_ddd:Unit.✓ (i.e., the independent
actions of Alice–Bob and Carol–Dave cannot be executed out-of-order according to the
operational semantics in Figure 3; we recover out-of-order execution in §4). However, this
protocol is unrealisable: fundamentally, it cannot be implemented as a family of processes
without additional covert synchronisation between Bob–Carol. This makes the global type
effectively useless. Thus, we need a decision procedure to distinguish “bad” global types
from “good” global types, to be able to rule out the bad ones from usage. To achieve this,
we define sufficient conditions to ensure that a global type is operationally equivalent to the
family of projections. That is, operational equivalence formalises protocol realisability.

Instead of defining the conditions on the syntax of global types in terms of well-formedness
(as usual), we define the conditions on the operational semantics of implicit local types in
terms of well-behavedness. If the operational semantics of every projection of a global type
satisfies every condition, then operational equivalence is guaranteed. Conversely, if the
operational semantics of any projection violates any condition, then the global type is ruled
out. Well-behavedness is fully compositional: it can be checked separately for every role.

ECOOP 2023

42:16 Sound, Regular Multiparty Sessions via Implicit Local Types

▶ Remark 18. A key advantage of well-behavedness of implicit local types over well-formedness
of global types is that it allows us to prove the main results independently of the set of global
type operators. Thus, the grammar can be extended with new global type operators (such
that Propositions 16–17 continue to be valid) without reproving the theorems (§4). ⌟

Before defining them formally, we informally introduce the main well-behavedness conditions:

C1. Idling is neutral: A local type must always have the same weak termination/reductions
before τ-reductions as after them. This means that a role can neither increase nor
decrease its behavioural alternatives by idling.

C2. Sending is causal: A local type must always have the same strong !-reductions before
τ-reductions as after them. This means that if a role can send after idling (later in the
future), then it can also send immediately (already in the present). That is, the ability
to send cannot arise out of “doing nothing”; there must be an observable cause.

C3. Receiving is deterministic: A local type must never have multiple weak ?-reductions
with the same label but different destinations. This means that if a role receives, then its
continuation is uniquely determined. Conditions C2 and C3 yield the following duality:
every send must have at least one cause; every receive must have at most one effect.

▶ Example 19. We illustrate the conditions with three problematic cases, each of which
demonstrates a different reason for operational inequivalence. In each case: first, we define a
bad global type that specifies an unrealisable protocol; next, we visualise the operational
semantics of it and the projections; next, we argue that they are indeed inequivalent; last,
we state the well-behavedness condition that is violated by at least one projection.

C1. If G1 = aaa_bbb:{Nat.bbb_ccc:Nat.✓, Unit.✓}, then:

aaabbb‽Nat
bbbccc‽Nat

aaabbb‽Unit

︸ ︷︷ ︸
G1

bbb !Nat
τ

bbb !Unit

︸ ︷︷ ︸
G1↾aaa

aaa?Nat
ccc !Nat

aaa?Unit

︸ ︷︷ ︸
G1↾bbb

τ

bbb?Nat
τ

︸ ︷︷ ︸
G1↾ccc

The global type cannot be stuck after weak reduction aaabbb‽Nat====⇒: it can always reduce
onwards. In contrast, the family of projections can be stuck after weak reduction
aaabbb‽Nat====⇒, namely when G1↾ccc weakly reduced rightwards instead of leftwards. In that
case, G1↾bbb neither can terminate, nor can reduce onwards (i.e., it needs to synchronise
its ! -reduction with a ?-reduction of G1↾ccc, but G1↾ccc has become unable to reciprocate).
Thus, G1 and {G1↾r}r∈{aaa,bbb,ccc} are inequivalent. This is caught by C1: G1↾ccc has a weak
?-reduction before the rightwards τ-reduction, but not after it, which violates C1 (i.e.,
idling is non-neutral), so G1 is ruled out from usage.

C2. If G2 = aaa_bbb:Unit.ccc_ddd:Unit.✓, then:

aaabbb‽Unit

cccddd‽Unit︸ ︷︷ ︸
G2

bbb !Unit

τ︸ ︷︷ ︸
G2↾aaa

aaa?Unit

τ︸ ︷︷ ︸
G2↾bbb

τ

ddd !Unit︸ ︷︷ ︸
G2↾ccc

τ

ccc?Unit︸ ︷︷ ︸
G2↾ddd

The global type can terminate only after weak reductions aaabbb‽Unit=====⇒ cccddd‽Unit=====⇒. In contrast,
the family of projections can terminate also after weak reductions cccddd‽Unit=====⇒ aaabbb‽Unit=====⇒, when

S.-S. Jongmans and F. Ferreira 42:17

G2↾ccc and G2↾ddd begin with τ−→ ddd !Unit−−−−→ and τ−→ ccc?Unit−−−−→, and when G2↾aaa and G2↾bbb end with
bbb !Unit−−−−→ τ−→ and aaa?Unit−−−−→ τ−→. Thus, G2 and {G2↾r}r∈{aaa,bbb,ccc,ddd} are inequivalent. This is caught
by C2: G2↾ccc does not have a !-reduction before its τ-reduction, but it does have one
after it, which violates C2 (i.e., sending is non-causal), so G2 is ruled out from usage.
We note that if we allowed out-of-order execution of independent global actions, then
G2 would satisfy C2. We recover out-of-order execution in §4. The corresponding global
type will be aaa_bbb:Unit ; ccc_ddd:Unit, each of whose projections will be well-behaved.

C3. If G3 = aaa_bbb:{Bool.bbb_ccc:Unit.ccc_bbb:Bool.✓, Nat.bbb_ccc:Unit.ccc_bbb:Nat.✓}, then:

aaabbb‽Bool

bbbccc‽Unit

cccbbb‽Bool

aaabbb‽Nat

bbbccc‽Unit

cccbbb‽Nat︸ ︷︷ ︸
G3

bbb !Bool

τ

τ

bbb !Nat

τ

τ︸ ︷︷ ︸
G1↾aaa

aaa?Bool

ccc !Unit

ccc?Bool

aaa?Nat

ccc !Unit

ccc?Nat︸ ︷︷ ︸
G1↾bbb

τ

bbb?Unit

bbb !Bool

τ

bbb?Unit

bbb !Nat︸ ︷︷ ︸
G1↾ccc

The global type cannot be stuck after weak reductions aaabbb‽Bool=====⇒ bbbccc‽Unit=====⇒: it can always
reduce onwards. In contrast, the family of projections can be stuck after weak reductions
aaabbb‽Bool=====⇒ bbbccc‽Unit=====⇒, namely when G1↾ccc weakly reduced rightwards instead of leftwards.
In that case, G3↾bbb neither can terminate, nor can reduce onwards (i.e., it needs to
synchronise its ccc?Bool-reduction with a bbb !Bool-reduction of G3↾ccc, but G3↾ccc has become
unable to reciprocate). Thus, G3 and {G3↾r}r∈{aaa,bbb,ccc} are inequivalent. This is caught
by condition C3: G3↾ccc has two weak ?-reductions with the same label, but to different
destinations, which violates C3 (i.e., receiving is non-deterministic), so G3 is ruled out
from usage. ⌟

We relate the well-behavedness conditions on implicit local types in this paper to well-
formedness conditions on global types in the MPST literature in the terminology of Castagna
et al. [20]. Condition C1 is usually enforced through projection (i.e., projection determinises
explicit local types as they are computed, without using τ-based operators). Condition C2 is
the sequentiality principle of Castagna et al.; it is usually enforced by allowing out-of-order
execution of independent global actions. Condition C3 is the knowledge for choice principle
of Castagna et al. (i.e., a receiver must always be able to uniquely determine which branch
the sender was in); it is usually enforced through merging. We note that well-behavedness is
relatively permissive regarding branching (some non-directed and non-located choice patterns
are allowed), whereas well-formedness is relatively restrictive (all such patterns are forbidden).

Technicalities. First, we define operational equivalence as a relation ≈ on specifications
(global types, local types, and families of local types). We derive the following requirements
from Example 19: (a) ≈ must be insensitive to idling (i.e., we argued in terms of weak
reductions); (b) ≈ must be sensitive to deadlock (i.e., we distinguished between termination
and “being stuck”). Out of many candidates [66,67], we adopt weak bisimilarity (e.g., [68]):
it meets both requirements a and b; additionally, it is sensitive to branching, which is not
a requirement, but which makes our proofs easier. Intuitively, two specifications are weak
bisimilar when they can mimick each other’s termination/reductions modulo τ-reductions.

▶ Definition 20. Recall that S denotes the set of all global types, local types, and families of
local types, ranged over by S. A weak bisimulation ♡ ⊆ S × S is a relation that satisfies the
following conditions, for every (S1, S2) ∈ ♡, (and for every S¶

1 , S¶
2 , α):

ECOOP 2023

42:18 Sound, Regular Multiparty Sessions via Implicit Local Types

If S1 ⇓, then S2 ⇓.
If S2 ⇓, then S1 ⇓.

If S1
α=⇒ S¶

1 , then S¶
1 ♡ S¶

2 and S2
α=⇒ S¶

2 , for some S¶
2 .

If S2
α=⇒ S¶

2 , then S¶
1 ♡ S¶

2 and S1
α=⇒ S¶

1 , for some S¶
1 .

Let S1 ≈ S2 denote weak bisimilarity. Formally, ≈ is the largest weak bisimulation. ⌟

Next, we define well-behavedness by formalising the main conditions (plus two more).

▶ Definition 21. Let wb(L) denote well-behavedness of L. Formally, it is the largest predicate
that satisfies the following conditions, for every L ∈ wb (and for every L′, L†, L†

1, L†
2, p, q, t):

C1. If L =⇒ L†, then L ≈ L†. [If L† is τ-reachable, then L and L† are weak
bisimilar.]

C2. If L
pq !t===⇒ L†, then L

pq !t−−−→≈ L†.[If L has a weak !-reduction to L†, then it has the
same strong !-reduction to a weak bisimilar
destination.]

C3. If L
pq?t===⇒ L†

1 and L
pq?t===⇒ L†

2,
then L†

1 ≈ L†
2.

[If L has the same weak ?-reductions to L†
1 and L†

2,
then L†

1 and L†
2 are weak bisimilar.]

C4. If L −→, then L ̸ ↓. [If L can reduce, then it cannot terminate.]
C5. If L −→ L′, then wb(L′). [Reduction preserves well-behavedness.] ⌟

Last, we prove that the conditions of well-behavedness are sufficient to ensure operational
equivalence. The idea is to define a correspondence relation between global types and families
of well-behaved local types. We can then show that correspondence is a weak bisimulation.

▶ Definition 22. Let G - {Lr}r∈R denote correspondence of G and {Lr}r∈R. Formally:[
wb(G↾r) and wb(Lr) and G↾r ≈ Lr

]
for every r ∈ R

G - {Lr}r∈R
⌟

▶ Theorem 23 (equivalence). If wb(G↾r), for every r ∈ R, then G ≈ {G↾r}r∈R. ⌟

The proof of this main result is based on two auxiliary lemmas. They state that well-
behavedness implies correspondence, and that correspondence implies weak bisimilarity.

▶ Lemma 24. If wb(G↾r), for every r ∈ R, then G - {G↾r}r∈R. ⌟

▶ Lemma 25. If G - {Lr}r∈R, then G ≈ {Lr}r∈R. ⌟

The first lemma follows directly from the definition of correspondence and the reflexivity of
weak bisimilarity. The proof of the second lemma relies on the definition of well-behavedness.

▶ Remark 26. Theorem 23 depends on premise wb(G↾r). To see that checking this premise
is decidable, observe that the reduction relation of G is finite by Proposition 17. As the
reduction relation of G↾r has exactly the same structure by rules [↓L-At] and [→L-At], and
at most linearly many extra τ-transition by rule [→L-Rev], it is finite as well. Consequently,
checking well-behavedness (including weak bisimilarity [1]) of G↾r is trivially decidable. ⌟

▶ Remark 27. As an alternative to Theorem 23, of course, it is also possible to check weak
bisimilarity between G and {G↾r}r∈R directly. However, this would require one to compute
the reduction relation of {G↾r}r∈R, which is exponentially large in the worst case. In contrast,
as well-behavedness is fully compositional, such a computation is avoided. Thus, direct weak
bisimilarity is of exponential complexity (in the size of the reduction relations), whereas
well-behavedness is of linear complexity and, as a result, better scalable to many roles. ⌟

S.-S. Jongmans and F. Ferreira 42:19

0 ↓ [↓P-End]

Peval(e) ↓
if e Ptrue Pfalse ↓ [↓P-If]

P [loop P/recur] ↓
loop P ↓ [↓P-Loop]

Pr ↓ for every r

{Pr}r∈R ↓ [↓P]

(a) Termination.

pq⟨e⟩.P ∈ {O1, . . . , On}∑
{O1, . . . , On} pq !eval(e)−−−−−−→ P

[→P-Sum1]

pq(x:t).P ∈ {I1, . . . , Im} ⊢ v : t∑
{I1, . . . , Im} pq?v−−−→ P [v/x]

[→P-Sum2]

Peval(e)
π−→ P ′

if e Ptrue Pfalse
π−→ P ′

[→P-If]
P [loop P/recur] π−→ P ′

loop P
π−→ P ′

[→P-Loop]

Pp
pq !v−−−→ P ′

p Pq
pq?v−−−→ P ′

q Pr = P ′
r for every r /∈ {p, q}

{Pr}r∈R
pq‽v−−−→ {P ′

r}r∈R

[→P]

(b) Reduction.

Figure 4 Operational semantics of sub-regular processes. Let P [v/x] denote capture-avoiding
substitution of v for x in P . Let P [loop P/recur] denote unfolding of recur into loop P in P .

3.4 Processes – Syntax
Below, we define the grammar of processes and concrete local actions.

▶ Definition 28. Let O, I, and P denote the sets of output processes, input processes, and
processes, ranged over by O, I, and P ; they are induced by the following grammar:

P ::=
∑

{O1, . . . , On}
∣∣ ∑

{I1, . . . , Im}
∣∣

if e P1 P2
∣∣ loop P

∣∣ recur
∣∣ 0

O ::= q⟨e⟩.P I ::= p(x:t).P

Let R ⇀ P denote the set of role-indexed families of processes, ranged over by P. ⌟

Output process pq⟨e⟩.P implements the send of the value of expression e from role p to
role q; we omit p when it is clear from the context. Input process pq(x:t).P implements the
receive of a value of data type t into variable x from role p to role q; we omit q when it is clear
from the context; we omit “:t” when the data type does not matter. Processes

∑
{O1, . . . , On}

and
∑

{I1, . . . , Im} implement non-deterministic selections of n output processes (sends) and
m input processes (receives); we omit “

∑
” and braces when n = m = 1. Process if e P1 P2

implements a conditional choice. Processes loop P and recur implement a loop. Process
0 implements the empty process. We note that data parameters can be added to loops in
the standard way (e.g., [62]). Process creation and session creation are orthogonal to the
contributions of this paper and thus we omit them.
▶ Remark 29. We stipulate that every process is guarded (i.e., recur occurs only inside∑

-processes) and closed (i.e., recur occurs only inside loop-processes), while every family
{Pr}r∈R is well-formed (i.e., for every r ∈ R, every output process that occurs in Pr is of
the form rq⟨e⟩.P ′, while every input process is of the form pr(x:t).P ′). ⌟

▶ Definition 30. Let Π =
⋃

{{pq !v, pq?v} | p ̸= q} denote the set of (concrete) local actions,
ranged over by π. ⌟

3.5 Processes – Operational Semantics
Below, we define the termination predicate and reduction relation on processes.

▶ Definition 31. Let P ↓ and P ↓ denote termination of P and P. Formally, ↓ is the
predicate induced by the rules in Figure 4a. ⌟

ECOOP 2023

42:20 Sound, Regular Multiparty Sessions via Implicit Local Types

Ξ ⊢ e : t Ξ, Υ ⊢ P : L¶ L
pq !t===⇒ L¶

Ξ, Υ ⊢ pq⟨e⟩.P : L
[⊢-Out]

Ξ, x : t, Υ ⊢ P : L¶ L
pq?t===⇒ L¶

Ξ, Υ ⊢ pq(x:t).P : L
[⊢-In]

Ξ, Υ ⊢ Oi : L for every 1 ≤ i ≤ n [Oi = p-⟨-⟩.- for some 1 ≤ i ≤ n] for every L
pq !t===⇒

Ξ, Υ ⊢
∑

{O1, . . . , On} : L
[⊢-Sum1]

Ξ, Υ ⊢ Ij : L for every 1 ≤ j ≤ m [Ij = pq(-:t).- for some 1 ≤ j ≤ m] for every L
pq?t===⇒

Ξ, Υ ⊢
∑

{I1, . . . , Im} : L
[⊢-Sum2]

L ⇓
Ξ, Υ ⊢ 0 : L

[⊢-End]
Ξ, Υ, recur : L ⊢ P : L

Ξ, Υ ⊢ loop P : L
[⊢-Loop]

L1 ≈ L2
Ξ, Υ, recur : L1 ⊢ recur : L2

[⊢-Recur]

Ξ ⊢ e : Bool Ξ, Υ ⊢ P1 : L Ξ, Υ ⊢ P2 : L

Ξ, Υ ⊢ if e P1 P2 : L
[⊢-If]

[⊢ Pr : Lr and wb(Lr)] for every r

⊢ {Pr}r∈R : {Lr}r∈R
[⊢]

Figure 5 Well-typedness (“-” is a meta-variable to indicate that the object does not matter).

▶ Definition 32. Let P
π−→ P ′ and P πp,πq−−−→ P ′ denote reduction from P to P ′ with π alone,

and from P to P ′ with πp and πq together (synchronously). Formally, → is the relation
induced by the rules in Figure 4b. ⌟

Rule [→P-Sum1] (resp. [→P-Sum2]) states that a selection can reduce with a send
(resp. receive) when there is a corresponding output process (resp. input process) among
the alternatives and eval(e) is defined (resp. v is well-typed by t and bound to x). Rule
[→P-If] states that a conditional choice can reduce when eval(e) ∈ {true, false} and the
corresponding branch can reduce. Rule [→P-Loop] states that a recursive loop can reduce
when its body can. Rule [→P] states that a family can reduce when two processes can reduce
with a matching send/receive pair (synchronously).

▶ Remark 33. Figure 4 contains no rules for communication errors: “going wrong” manifests
as deadlock. There are three situations in which this can happen for a process P or family P :

If P = if eP1 P2, but eval(e) /∈ {true, false}, then rules [↓P-If]/[→P-If] are inapplicable.
If P =

∑
{p1q1⟨e1⟩.P1, . . . , pnqn⟨en⟩.Pn} and n > 1, but eval(ei) is undefined for every

1 ≤ i ≤ n, then rule [→P-Sum1] is inapplicable.
If not all processes in P can terminate, while no two processes in P can reduce with a
matching send and receive, then rules [↓P]/[→P] are inapplicable.

In each situation, P or P cannot terminate/reduce. Well-typedness will prevent this. ⌟

3.6 Main Result 2: Well-Typedness Implies Operational Refinement

Now comes the pivotal concept among our contributions: the typing rules are based on
the operational semantics of implicit local types instead of on their syntax. That is, the
termination predicate and the reduction relation on local types are used not only “a posteriori”
to prove type soundness (as usual), but also “a priori” to define the typing rules. This allows
us to break the historically tight correspondence between the structure of global/local types
and the structure of processes (§1.2).

▶ Definition 34. Recall that (X × T)∗ denotes the set of data typing contexts, ranged over
by Ξ. Let (recur × L)∗ denote the set of process typing contexts, ranged over by Υ . Let
Ξ, Υ ⊢ O : L, Ξ, Υ ⊢ I : L, Ξ, Υ ⊢ P : L and ⊢ P : L denote well-typedness of O, I, P by L

in Ξ, Υ , and of P by L. Formally, ⊢ is the relation induced by the rules in Figure 5. ⌟

S.-S. Jongmans and F. Ferreira 42:21

Rule [⊢-End] states that the empty process is well-typed when the local type can weakly
terminate. Rule [⊢-If] states that a conditional choice is well-typed when the condition and
the branches are well-typed. Rules [⊢-Loop]/[⊢-Recur] state that a loop is well-typed when
the body and the recursive calls are well-typed. Rule [⊢] states that a family of processes is
well-typed when every process is well-typed by a well-behaved local type.

Rule [⊢-Out] states that an output process is well-typed when the local type has an
analogous weak !-reduction such that the expression and the continuation are well-typed;
“analogous” means “same sender, same receiver, same data type”. Rule [⊢-In] states that
an input process is well-typed when the local type has an analogous weak ?-transition, and
the continuation is well-typed. Rule [⊢-Sum1] states that a selection of output processes
is well-typed when every subprocess is well-typed, and there is a possibly non-analogous
subprocess for every weak !-reduction of the local type. Rule [⊢-Sum2] states that a selection
of input processes is well-typed when every subprocess is well-typed, and there is an analogous
subprocess for every weak ?-reduction of the local type.
▶ Remark 35. As usual in the MPST literature, there is asymmetry between well-typedness of
selections of output processes and selections of input processes: if the local type specifies ≥1
sends, then the process may implement one of them (i.e., the programmer statically chooses
what/whereto the process sends); if it specifies ≥1 receives, then it must implement all of
them (i.e., the environment dynamically chooses what/wherefrom the process receives). ⌟

▶ Example 36. Let G = aaa_bbb:{Nat.bbb_ccc:Nat.✓, Bool.bbb_ccc:Bool.✓}; the operational se-
mantics of this global type was previously visualised in Example 15.

Alice: Process bbb⟨5⟩.0, process bbb⟨true⟩.0, and process if cond() (bbb⟨5⟩.0) (bbb⟨true⟩.0) are
all well-typed by G↾aaa, because rule [⊢-Sum1] requires only one send specified to be
implemented. Process bbb⟨"foo"⟩.0 is ill-typed, because rule [⊢-Sum1] requires every send
implemented to be specified. Process loop (bbb⟨5⟩.recur) is ill-typed by G↾aaa as well,
because rule [⊢-Loop] adds recur : G↾aaa to the process typing context at the root of the
derivation tree, but rule [⊢-Recur] requires recur : ✓ at the leaf, and G↾aaa ̸≈ ✓.

Carol: Process bbb(x:Nat).0 and process if cond() (bbb(x:Nat).0) (bbb(x:Bool).0) are both ill-
typed by G↾ccc, because rule [⊢-Sum2] requires every receive specified to be implemented.
Process

∑
{bbb(x:Nat).0,bbb(x:Bool).0} is well-typed by G↾ccc. ⌟

The asymmetry between the right-sided premises of rules [⊢-Sum1]/[⊢-Sum2] ensure
that if a family of well-typed local types can reduce, then the family of well-typed processes
can reduce, too, but possibly with a non-analogous communication. This is progress:

▶ Lemma 37. If G - L and ⊢ P : L, then P ↓ or P −→. ⌟

Complementary, the symmetry between the left-sided premises of rules [⊢-Sum1]/[⊢-Sum2]
(i.e., every subprocess of every selection needs to be well-typed) ensure that if a family of
well-typed processes can reduce, then the family of well-behaved local types can reduce, too,
and necessarily with an analogous communication. This is preservation:

▶ Lemma 38. If G - L and ⊢ P : L, then (for every P ′, p, q, v):

If P ↓, then G ↓ and L ⇓.
If P pq‽v−−−→ P ′, then G′ - L¶ and ⊢ P ′ : L¶ and ⊢ v : t and G

pq‽t−−−→ G′ and L pq‽t===⇒ L¶,
for some t, G′, L¶. ⌟

Progress and preservation entail operational refinement: every trace of the family of processes
(with concrete actions) is also a trace of the family of projections (with analogous abstract
actions); moreover, if the family of processes can terminate or deadlock, then also the family
of projections can. We formalise this concept directly in the following theorem.

ECOOP 2023

42:22 Sound, Regular Multiparty Sessions via Implicit Local Types

▶ Theorem 39 (refinement). If ⊢ P : {G↾r}r∈R, and P p1q1‽v1−−−−−→ · · · pnqn‽vn−−−−−→ P†, then:

{G↾r}r∈R
p1q1‽t1=====⇒ · · · pnqn‽tn=====⇒, and ⊢ v1 : t1, and · · ·, and ⊢ vn : tn, for some t1, . . . , tn.

If P† ↓, then L† ↓.
If P† ̸ ↓ and P† −̸→, then L† ̸ ↓ and L† −̸→. ⌟

▶ Remark 40. Theorem 39 depends on premise ⊢ P : {G↾r}r∈R. To see that checking this
premise is decidable, observe that we need to check two sets of properties by rule [⊢]: (1)
well-typedness of the processes in P by the local types in {G↾r}r∈R; (2) well-behavedness of
the local types in {G↾r}r∈R. Regarding the first set, the typing rules for processes are defined
inductively on the structure of processes. Consequently, the number of applications is finite.
Furthermore, checking the premise of rule [⊢-In]/[⊢-Out]/[⊢-Sum1]/[⊢-Sum2] is decidable
because the reduction relation of every local type in {G↾r}r∈R is finite (Remark 26). Thus,
checking the first set of properties is decidable. Regarding the second set, see Remark 26. ⌟

3.7 Safety and Liveness
We proved operational equivalence for projection (Theorem 23) and operational refinement
for type checking (Theorem 39). Together, these main results entail type soundness.

▶ Corollary 41 (type soundness). If ⊢ P : {G↾r}r∈R and P p1q1‽v1−−−−−→ · · · pnqn‽vn−−−−−→ P†, then:

Safety: G
p1q1‽t1−−−−−→ · · · pnqn‽tn−−−−−→, and ⊢ v1 : t1, and · · ·, and ⊢ vn : tn, for some t1, . . . , tn.

Liveness: P† ↓, or P† −→. ⌟
All communication errors that can give rise to deadlock (Remark 33) are ruled out when
⊢ P : {G↾r}r∈R holds. Moreover, checking if ⊢ P : {G↾r}r∈R holds, is decidable (Remark 40).

4 Regular Grammars

In this section, we apply the new techniques for projection and type checking to regular
grammars of global types and processes for the first time. To achieve this, we need to revise
and extend the definitions of the grammars in §3, termination/reduction rules, and typing
rules. In contrast, the definitions of implicit local types, projection, and well-behavedness –
as well as the main result of operational equivalence (Theorem 23) – can stay exactly the
same as in §3: they were all formulated in general terms of termination and reduction, but
not in specific terms of the rules that define them. Thus, only the following changes are
needed:

▶ Definition 42 (revision of Definition 11). G ::= p_q :t
∣∣ G1 + G2

∣∣ G1 · G2
∣∣ G∗

∣∣ ✓ ⌟

Global type p_q :t specifies a synchronous communication. Global types G1 + G2 and
G1 · G2 specify the choice between, and the sequence of, G1 and G2. Global type G∗ specifies
the finite repetition of G. Global type ✓ specifies the empty protocol.

▶ Definition 43 (revision of Definition 13 and Definition 14). See Figure 6. ⌟

▶ Definition 44 (extension of Definition 28). P ::= · · ·
∣∣ ∑

{O1, . . . , On, I1, . . . , Im} ⌟

Process
∑

{O1, . . . , On, I1, . . . , Im} implements a non-deterministic selection of n output
processes and m input processes, simultaneously (i.e., it is a mixed input/output process).

▶ Definition 45 (extension of Definition 32). See Figure 7. ⌟

S.-S. Jongmans and F. Ferreira 42:23

✓ ↓
Gi ↓

G1 + G2 ↓

G1 ↓ G2 ↓
G1 · G2 ↓ G∗ ↓

(a) Termination

p_q :t pq‽t−−−→ ✓

Gi
γ−→ G′

G1 + G2
γ−→ G′

G1
γ−→ G′

1

G1 · G2
γ−→ G′

1 · G2

G1 ↓ G2
γ−→ G′

G1 · G2
γ−→ G′

G
γ−→ G′

G∗ γ−→ G′ · G∗

(b) Reduction

Figure 6 Operational semantics of regular global types (standard for regular expressions; e.g., [4]).

· · · (same as in Figure 4b)
∑

{O1, . . . , On} π−→ P ′∑
{O1, . . . , On, I1, . . . , Im} π−→ P ′

∑
{I1, . . . , Im} π−→ P ′∑

{O1, . . . , On, I1, . . . , Im} π−→ P ′

Figure 7 Operational semantics of regular processes – Reduction rules.

▶ Definition 46 (extension of Definition 34). See Figure 8. ⌟

While Theorem 23 of operational equivalence is directly applicable to the regular grammar
of global types in this section, Theorem 39 of operational refinement requires minor effort:
we need to prove a new, yet simple, inductive case for the new typing rule in Figure 8. Then:

▶ Corollary 47. Corollary 41 is applicable to the revisions and extensions in this section. ⌟

Extending the regular grammar of processes with new process operators (including typing
rules) requires one to prove additional inductive cases. In contrast, extending the regular
grammar of global types with new global type operators (such that Propositions 16–17
continue to be valid) is completely free. That is, in this paper, projection (including well-
behavedness) and type checking are independent of the syntax of global types; they are
dependent only on the operational semantics. The formulations and proofs of our main
results are similarly independent. As a result of this independence, our regular grammar of
global types is actually “open ended”. As a first demonstration of this extensibility, we freely
add a few global type operators; they are intended to serve as higher-level abstractions to
make the specification of protocols easier. See also Example 8 and Example 9 in §2.2.

▶ Definition 48 (extension of Definition 42). G ::= · · ·
∣∣ G1 ;G2

∣∣ G1∥G2
∣∣ G1⋊⋉G2

∣∣ [G]γ1
γ2 ⌟

Global type G1 ;G2 specifies the weak sequence of G1 and G2. It is similar to G1 ·G2, except
that independent communications in G1 and G2 can happen out-of-order. Communications
are independent when they have disjoint sets of participating roles. By using G∗ instead
of µX.G for loops (wlog for regularity), weak sequencing yields finite reduction relations.
Global type G1 ∥ G2 specifies the interleaving of G1 and G2. We note that interleaving
was already present in the original paper on MPST [39], as well as in later papers
(e.g., [20, 30, 31, 51]). However, in these papers, G1 and G2 need to have disjoint roles
or disjoint channels, whereas in this paper, G1 and G2 need to have disjoint actions (as
a result of well-behavedness); this is a weaker requirement. Interleaving allows us, for
instance, to support the global types on rows “Example 13” and “MP workers” in Table 1.
Global type G1⋊⋉G2 specifies the join of G1 and G2: every “unconstrained” communication
that occurs only in G1 or only in G2 is enabled in G1 ⋊⋉ G2 if, and only if, it is enabled
in G1 or G2; every “constrained” communication that occurs both in G1 and in G2 is
enabled if, and only if, it is enabled in G1 and G2. See also Example 49, below.
Global type [G]γ1

γ2 specifies the prioritisation of high-priority γ1 over low-priority γ2 in G.

ECOOP 2023

42:24 Sound, Regular Multiparty Sessions via Implicit Local Types

· · · (same as in Figure 5)
Ξ, Υ ⊢

∑
{O1, . . . , On} : L Ξ, Υ ⊢

∑
{I1, . . . , Im} : L

Ξ, Υ ⊢
∑

{O1, . . . , On, I1, . . . , Im} : L

Figure 8 Well-typedness.

· · · (same as in Figure 6a)

G1 ↓ G2 ↓
G1 ; G2 ↓

G1 ↓ G2 ↓
G1 ∥ G2 ↓

G1 ⋊⋉ G2 −̸→
G1 ⋊⋉ G2 ↓

[G]γ1
γ2 −̸→

[G]γ1γ2 ↓

(a) Termination

· · · (same as in Figure 6b)

G1
γ−→ G′

1

G1 ; G2
γ−→ G′

1 · G2

r(G1) ∩ {p, q} = ∅ G2
pq‽t−−−→ G′

2

G1 ; G2
pq‽t−−−→ G1 ; G′

2

G1
γ−→ G′

1

G1 ∥ G2
γ−→ G′

1 ∥ G2

G2
γ−→ G′

2

G1 ∥ G2
γ−→ G1 ∥ G′

2

G1
γ−→ G′

1 γ /∈ a(G2)
G1 ⋊⋉ G2

γ−→ G′
1 ⋊⋉ G2

G2
γ−→ G′

2 γ /∈ a(G1)
G1 ⋊⋉ G2

γ−→ G1 ⋊⋉ G′
2

G1
γ−→ G′

1 G2
γ−→ G′

2

G1 ⋊⋉ G2
γ−→ G′

1 ⋊⋉ G′
2

G
γ1−→ G′

[G]γ1
γ2

γ−→ [G′]γ1
γ2

G
γ2−→ G′ G ̸γ1−→

[G]γ1
γ2

γ−→ [G′]γ1
γ2

G
γ−→ G′ γ /∈ {γ1, γ2}

[G]γ1
γ2

γ−→ [G′]γ1
γ2

(b) Reduction. Let a(G) = {γ | G −→ · · · γ−→} and r(G) = {p, q | pq‽t ∈ a(G)}.

Figure 9 Operational semantics of regular global types, extended.

▶ Example 49. To exemplify join and prioritisation, let G1 = aaa_bbb·bbb_ccc and G2 = aaa_bbb·bbb_ddd
(data types omitted). Unconstrained are bbb_ccc (only in G1) and bbb_ddd (only in G2); constrained
is aaa_bbb (both in G1 and in G2). Thus, G1 ⋊⋉ G2 is equivalent to aaa_bbb · (bbb_ccc ∥ bbb_ddd): after
the constrained communication, the unconstrained communications are interleaved. Thus,
[G1 ⋊⋉G2]bbbccc‽

bbbddd‽ is equivalent to [aaa_bbb · (bbb_ccc∥bbb_ddd)]bbbccc‽
bbbddd‽, which is equivalent to aaa_bbb · bbb_ccc · bbb_ddd:

after aaa_bbb (no priority), bbb_ccc (high priority) must precede bbb_ddd (low priority). ⌟

▶ Definition 50 (extension of Definition 43). See Figure 9. ⌟

The termination rules for join and prioritisation state that they can terminate when
they cannot reduce. This formalises the design decision that operators that constrain
the behaviour of operands should be liberal: they should permit as much behaviour as
possible within the constraints they impose (avoid premature termination when reductions
are still possible); if less behaviour is required, more constraints can always be imposed.
The second reduction rule for weak sequencing states that G2 can start reducing before G1
has finished reducing, when the roles that participate in the reduction of G2 are disjoint
from those that participate in reductions of G1 (i.e., these reductions are independent).
The first reduction rule (resp. second) for join states that it can γ-reduce when G1
(resp. G2) can, now, but G2 (resp. G1) cannot, ever (i.e., γ is unconstrained). The third
reduction rule states that it can γ-reduce when G1 and G2 can (i.e., γ is constrained).
The first reduction rule for prioritisation states that it can γ1-reduce (high priority) when
G can. The second reduction rule states that it can γ2-reduce (low priority) when it
cannot γ1-reduce. The third reduction rule states that it can γ-reduce when G can.

▶ Example 51. The following graphs visualise the operational semantics for Example 49:

aaabbb‽ bbbccc‽

bbbddd‽︸ ︷︷ ︸
G1

aaabbb‽
bbbddd‽︸ ︷︷ ︸

G2

aaabbb‽ bbbccc‽

bbbddd‽

bbbddd‽

bbbccc‽︸ ︷︷ ︸
G1 ⋊⋉ G2

aaabbb‽ bbbccc‽

bbbddd‽

bbbddd‽

bbbccc‽︸ ︷︷ ︸
[G1 ⋊⋉ G2]bbbccc‽

bbbddd‽

⌟

S.-S. Jongmans and F. Ferreira 42:25

We note that an evaluation of the usefulness of the added operators, as practical language
primitives, is not really part of the present scope; here, our only aim was to give an impression
of the future potential of the new techniques. Other possible global type primitives that
may deserve future consideration include delayed choice [5], roles-as-ports composition [47],
stateful global types (cf. stateful choreographies [28]), operators for higher-order protocols,
and syntax for general models of behaviour (as mentioned towards the end of §1.2).

5 Related Work

This paper contributes to a line of research to increase the expressiveness of MPST [39].
Regarding basic features, previous works have focussed on two limitations of directed choice
of the form

∑
{p_q :ti .Gi}1≤i≤n: (1) every branch must start with the same sender and

the same receiver as every other branch; (2) every “third role” that does not participate in
the first communication of every branch must have the same behaviour in every branch.

Merging: Honda et al. address limitation 2 by allowing “third roles” to have different
behaviour in different branches when they are timely informed of the chosen branch [18].
The approach relies on a function to syntactically merge local types; it is adopted by
many (e.g., [25,33,57]), but shown to be brittle [62]. In contrast, using our new projection
and type checking techniques, we address limitation 2 without merging (Remark 10).
Another approach that addresses limitation 2 without merging was developed by Scalas–
Yoshida [62]. It works in three steps: first, every local type is interpreted as an automaton
that specifies one role alone (similar to our operational semantics of implicit local types);
next, the automata are composed into a product automaton – exponentially sized in the
worse case – that specifies all roles together; last, the product automaton is checked for
satisfaction of a special temporal logic formula φ, which entails type soundness. However,
this method is non-compositional: the premise of the typing rule for families of processes
(which depends on satisfaction of φ) cannot be checked separately for every role. Such
non-compositional approaches to MPST have already been shown to have scalability
issues [44]. Conversely, our typing rule for families is fully compositional (Remark 27).

Located/mixed choice: Several teams of authors address limitation 1 by allowing every
branch to start with a different receiver than every other branch. In earlier works that
support such located choice of the form

∑
{p_qi :ti .Gi}1≤i≤n, communication races in the

continuations are forbidden [9,20,31,42,51]; in later works, they are allowed [21–23,54,65].
We support them, too. However, the authors of these papers prove theorems for a closed
set of global type operators, including

∑
{p_qi :ti .Gi}1≤i≤n. Instead, we prove theorems

for an open set of global type operators, as demonstrated in §2.2 and §4.
Verification of mixed input/output processes using session typing is a long-standing open
problem. Progress was made by Casal et al. [19] (binary), Kouzapas–Yoshida (multiparty,
but unpublished so far [69, ref. 24]), and Jongmans–Yoshida [44] (multiparty, but no type
checking). We can verify multiparty non-deterministic mixed input/output processes for
the first time (but not yet deterministic mixed choice), as demonstrated in §2.2.

The usage of the operational semantics of local types was first studied in the context of
multiparty compatibility [32] and extensions [8, 51,52]. The idea is to interpret local types
as communicating finite state machines (CFSM) [11]. Multiparty compatibility, then, is a
predicate on the joint state space of the CFSMs to ensure safety and liveness. As such, a key
difference between multiparty compatibility (MC) and this paper’s well-behavedness (WB) is
that MC is non-compositional (i.e., the joint state space must be computed, so MC cannot

ECOOP 2023

42:26 Sound, Regular Multiparty Sessions via Implicit Local Types

be checked separately for every role), whereas WB is fully compositional (Remark 27). A
rudimentary version of WB was studied by Jongmans–Yoshida [44], but it is less expressive
(e.g., they do not support Example 15) and limited to projection (no type checking). A
version of WB for global types was studied by Gheri et al. [34], in the context of choreography
automata [6], but it is limit to projection (no type checking).

There are several non-traditional techniques for projection in the MPST literature. Lopez
et al. [53] capture projection in a decidable type equivalence. Castellani et al. [22] and
Hamers et al. [37] do not use projection at all, but type-check families of processes against
global types (non-compositional). Last, the concept of implicit local types in this paper
generalises an idea by Van Glabbeek et al. [65], who define merging as a local type operator.

6 Conclusion

We introduced two new techniques to significantly improve the expressiveness of the MPST
method: projection is based on implicit local types instead of explicit; type checking is
based on the operational semantics of implicit local types instead of on the syntax. Classes
of protocols that can now be specified/implemented/verified for the first time using the
MPST method include: recursive protocols in which different roles participate in different
branches (Example 2, Example 3); protocols in which a receiver chooses the sender of the
first communication (Example 6, Example 8, Example 9); protocols in which multiple roles
synchronously choose both the sender and the receiver of a next communication (Example 5,
Example 6), implemented as mixed input/output processes. We presented the theory of
the new techniques, as well as their future potential, and we demonstrated their present
capabilities to effectively support regular expressions as global types (not possible before).

As evidence that the new techniques are implementable, we implemented them; this
implementation is available as a companion artefact (published in DARTS).

We aim to push the new techniques of this paper forward towards a new branch of research
in MPST, centred around operational semantics of local types in typing rules; incidentally, it
could be a natural path to explore for behavioural typing in general, too. In particular, we
are keen to apply the new techniques for projection and type checking also to asynchronous
communication and parametrised protocols/indexed roles [25, 33]. In both cases, the main
challenge is how to ensure decidability (keep the reduction relations finite).

References
1 Luca Aceto, Anna Ingólfsdóttir, and Jirí Srba. The algorithmics of bisimilarity. In Advanced

Topics in Bisimulation and Coinduction, volume 52 of Cambridge tracts in theoretical computer
science, pages 100–172. Cambridge University Press, 2012.

2 Bernardo Almeida, Andreia Mordido, Peter Thiemann, and Vasco T. Vasconcelos. Polymorphic
lambda calculus with context-free session types. Inf. Comput., 289(Part):104948, 2022.

3 Bernardo Almeida, Andreia Mordido, and Vasco T. Vasconcelos. Deciding the bisimilarity
of context-free session types. In TACAS (2), volume 12079 of Lecture Notes in Computer
Science, pages 39–56. Springer, 2020.

4 Jos C. M. Baeten, Flavio Corradini, and Clemens Grabmayer. A characterization of regular
expressions under bisimulation. J. ACM, 54(2):6, 2007.

5 Jos C. M. Baeten and Sjouke Mauw. Delayed choice: an operator for joining message sequence
charts. In FORTE, volume 6 of IFIP Conference Proceedings, pages 340–354. Chapman &
Hall, 1994.

6 Franco Barbanera, Ivan Lanese, and Emilio Tuosto. Choreography automata. In COORDIN-
ATION, volume 12134 of Lecture Notes in Computer Science, pages 86–106. Springer, 2020.

S.-S. Jongmans and F. Ferreira 42:27

7 J. F. A. K. Van Benthem. Hintikka on analyticity. Journal of Philosophical Logic, 3(4):419–431,
1974. doi:10.1007/bf00257484.

8 Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting deadlines together. In CONCUR,
volume 42 of LIPIcs, pages 283–296. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015.

9 Laura Bocchi, Hernán C. Melgratti, and Emilio Tuosto. Resolving non-determinism in
choreographies. In ESOP, volume 8410 of Lecture Notes in Computer Science, pages 493–512.
Springer, 2014.

10 Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed multiparty session types. In
CONCUR, volume 8704 of Lecture Notes in Computer Science, pages 419–434. Springer, 2014.

11 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

12 Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for choreography conform-
ance and contract compliance. In SC@ETAPS, volume 4829 of Lecture Notes in Computer
Science, pages 34–50. Springer, 2007.

13 Mario Bravetti and Gianluigi Zavattaro. Contract compliance and choreography conformance
in the presence of message queues. In WS-FM, volume 5387 of Lecture Notes in Computer
Science, pages 37–54. Springer, 2008.

14 Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro.
Choreography and orchestration conformance for system design. In COORDINATION, volume
4038 of Lecture Notes in Computer Science, pages 63–81. Springer, 2006.

15 Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Typing access control
and secure information flow in sessions. Inf. Comput., 238:68–105, 2014.

16 Sara Capecchi, Ilaria Castellani, and Mariangiola Dezani-Ciancaglini. Information flow safety
in multiparty sessions. Mathematical Structures in Computer Science, 26(8):1352–1394, 2016.

17 Sara Capecchi, Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Tamara Rezk. Session
types for access and information flow control. In CONCUR, volume 6269 of Lecture Notes in
Computer Science, pages 237–252. Springer, 2010.

18 Marco Carbone, Nobuko Yoshida, and Kohei Honda. Asynchronous session types: Exceptions
and multiparty interactions. In SFM, volume 5569 of Lecture Notes in Computer Science,
pages 187–212. Springer, 2009.

19 Filipe Casal, Andreia Mordido, and Vasco T. Vasconcelos. Mixed sessions. Theor. Comput.
Sci., 897:23–48, 2022.

20 Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global types and
multi-party session. Logical Methods in Computer Science, 8(1), 2012.

21 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. Reversible sessions
with flexible choices. Acta Informatica, 56(7-8):553–583, 2019.

22 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. Asynchronous sessions
with input races. CoRR, abs/2203.12876, 2022.

23 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Ross Horne. Global
types with internal delegation. Theor. Comput. Sci., 807:128–153, 2020.

24 Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Jorge A. Pérez. Self-adaptation and
secure information flow in multiparty communications. Formal Asp. Comput., 28(4):669–696,
2016.

25 David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida. Distrib-
uted programming using role-parametric session types in go: statically-typed endpoint apis
for dynamically-instantiated communication structures. PACMPL, 3(POPL):29:1–29:30, 2019.

26 Guillermina Cledou, Luc Edixhoven, Sung-Shik Jongmans, and José Proença. API generation
for multiparty session types, revisited and revised using scala 3. In ECOOP, volume 222 of
LIPIcs, pages 27:1–27:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

27 Alex Coto, Roberto Guanciale, and Emilio Tuosto. An abstract framework for choreographic
testing. J. Log. Algebraic Methods Program., 123:100712, 2021.

ECOOP 2023

https://doi.org/10.1007/bf00257484

42:28 Sound, Regular Multiparty Sessions via Implicit Local Types

28 Luís Cruz-Filipe, Kim S. Larsen, and Fabrizio Montesi. The paths to choreography extraction.
In FoSSaCS, volume 10203 of Lecture Notes in Computer Science, pages 424–440, 2017.

29 Ugo de’Liguoro, Hernán C. Melgratti, and Emilio Tuosto. Towards refinable choreographies.
J. Log. Algebraic Methods Program., 127:100776, 2022.

30 Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In POPL, pages
435–446. ACM, 2011.

31 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating
automata. In ESOP, volume 7211 of Lecture Notes in Computer Science, pages 194–213.
Springer, 2012.

32 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating
automata: Characterisation and synthesis of global session types. In ICALP (2), volume 7966
of Lecture Notes in Computer Science, pages 174–186. Springer, 2013.

33 Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised
multiparty session types. Logical Methods in Computer Science, 8(4), 2012.

34 Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida. Design-by-
contract for flexible multiparty session protocols. In ECOOP, volume 222 of LIPIcs, pages
8:1–8:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

35 Roberto Guanciale and Emilio Tuosto. Realisability of pomsets. J. Log. Algebraic Methods
Program., 108:69–89, 2019.

36 Ruben Hamers, Erik Horlings, and Sung-Shik Jongmans. The discourje project: run-time
verification of communication protocols in clojure. Int. J. Softw. Tools Technol. Transf.,
24(5):757–782, 2022.

37 Ruben Hamers and Sung-Shik Jongmans. Discourje: Runtime verification of communication
protocols in clojure. In TACAS (1), volume 12078 of Lecture Notes in Computer Science,
pages 266–284. Springer, 2020.

38 Jaakko Hintikka. Logic, Language-Games and Information: Kantian Themes in the Philosophy
of Logic. Oxford, England: Oxford, Clarendon Press, 1973.

39 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In POPL, pages 273–284. ACM, 2008.

40 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016.

41 Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API genera-
tion. In FASE, volume 9633 of Lecture Notes in Computer Science, pages 401–418. Springer,
2016.

42 Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types.
In FASE, volume 10202 of Lecture Notes in Computer Science, pages 116–133. Springer, 2017.

43 Sung-Shik Jongmans and Francisco Ferreira. Synthetic Behavioural Typing: Sound, Regular
Multiparty Sessions via Implicit Local Types (Technical Report). Technical Report OUNL-
CS-2023-01, Open University of the Netherlands, 2023.

44 Sung-Shik Jongmans and Nobuko Yoshida. Exploring type-level bisimilarity towards more
expressive multiparty session types. In ESOP, volume 12075 of Lecture Notes in Computer
Science, pages 251–279. Springer, 2020.

45 Alex C. Keizer, Henning Basold, and Jorge A. Pérez. Session coalgebras: A coalgebraic view
on regular and context-free session types. ACM Trans. Program. Lang. Syst., 44(3):18:1–18:45,
2022.

46 Jonathan King, Nicholas Ng, and Nobuko Yoshida. Multiparty session type-safe web de-
velopment with static linearity. In PLACES@ETAPS, volume 291 of EPTCS, pages 35–46,
2019.

47 Christian Koehler and Dave Clarke. Decomposing port automata. In SAC, pages 1369–1373.
ACM, 2009.

S.-S. Jongmans and F. Ferreira 42:29

48 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Implementing multiparty
session types in rust. In COORDINATION, volume 12134 of Lecture Notes in Computer
Science, pages 127–136. Springer, 2020.

49 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay safe under panic: Affine
rust programming with multiparty session types. In ECOOP, volume 222 of LIPIcs, pages
4:1–4:29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

50 Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. Bridging the gap
between interaction- and process-oriented choreographies. In SEFM, pages 323–332. IEEE
Computer Society, 2008.

51 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical
choreographies. In POPL, pages 221–232. ACM, 2015.

52 Julien Lange and Nobuko Yoshida. Verifying asynchronous interactions via communicating
session automata. In CAV (1), volume 11561 of Lecture Notes in Computer Science, pages
97–117. Springer, 2019.

53 Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César Santos,
Vasco Thudichum Vasconcelos, and Nobuko Yoshida. Protocol-based verification of message-
passing parallel programs. In OOPSLA, pages 280–298. ACM, 2015.

54 Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey. Generalising
projection in asynchronous multiparty session types. In CONCUR, volume 203 of LIPIcs,
pages 35:1–35:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

55 Robin Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci.,
17(3):348–375, 1978.

56 Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. Communication-safe web
programming in typescript with routed multiparty session types. In CC, pages 94–106. ACM,
2021.

57 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for
multiparty conversations. Formal Asp. Comput., 29(5):877–910, 2017.

58 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: compile-time API generation of distributed protocols with refinements in f#. In CC,
pages 128–138. ACM, 2018.

59 Nicholas Ng and Nobuko Yoshida. Pabble: parameterised scribble. Service Oriented Computing
and Applications, 9(3-4):269–284, 2015.

60 Luca Padovani. Context-free session type inference. ACM Trans. Program. Lang. Syst.,
41(2):9:1–9:37, 2019.

61 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition of
multiparty sessions for safe distributed programming. In ECOOP, volume 74 of LIPIcs, pages
24:1–24:31. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

62 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc.
ACM Program. Lang., 3(POPL):30:1–30:29, 2019.

63 Peter Thiemann and Vasco T. Vasconcelos. Context-free session types. In ICFP, pages 462–475.
ACM, 2016.

64 Emilio Tuosto and Roberto Guanciale. Semantics of global view of choreographies. J. Log.
Algebraic Methods Program., 95:17–40, 2018.

65 Rob van Glabbeek, Peter Höfner, and Ross Horne. Assuming just enough fairness to make
session types complete for lock-freedom. In LICS, pages 1–13. IEEE, 2021.

66 Rob J. van Glabbeek. The linear time-branching time spectrum (extended abstract). In
CONCUR, volume 458 of Lecture Notes in Computer Science, pages 278–297. Springer, 1990.

67 Rob J. van Glabbeek. The linear time - branching time spectrum II. In CONCUR, volume
715 of Lecture Notes in Computer Science, pages 66–81. Springer, 1993.

68 Rob J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisimulation
semantics. J. ACM, 43(3):555–600, 1996.

ECOOP 2023

42:30 Sound, Regular Multiparty Sessions via Implicit Local Types

69 Vasco T. Vasconcelos, Filipe Casal, Bernardo Almeida, and Andreia Mordido. Mixed sessions.
In ESOP, volume 12075 of Lecture Notes in Computer Science, pages 715–742. Springer, 2020.

70 Nobuko Yoshida, Fangyi Zhou, and Francisco Ferreira. Communicating finite state machines
and an extensible toolchain for multiparty session types. In FCT, volume 12867 of Lecture
Notes in Computer Science, pages 18–35. Springer, 2021.

71 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Statically verified refinements for multiparty protocols. Proc. ACM Program. Lang.,
4(OOPSLA):148:1–148:30, 2020.

On the Rise of Modern Software Documentation
Marco Raglianti #

REVEAL @ Software Institute – USI, Lugano, Switzerland

Csaba Nagy #

REVEAL @ Software Institute – USI, Lugano, Switzerland

Roberto Minelli #

REVEAL @ Software Institute – USI, Lugano, Switzerland

Bin Lin #

Radboud University, Nijmegen, The Netherlands

Michele Lanza #

REVEAL @ Software Institute – USI, Lugano, Switzerland

Abstract
Classical software documentation, as it was conceived and intended decades ago, is not the only
reality anymore. Official documentation from authoritative and official sources is being replaced by
real-time collaborative platforms and ecosystems that have seen a surge, influenced by changes in
society, technology, and best practices. These modern tools influence the way developers document
the conception, design, and implementation of software. As a by-product of these shifts, developers
are changing their way of communicating about software. Where once official documentation stood as
the only truth about a project, we now find a multitude of volatile and heterogeneous documentation
sources, forming a complex and ever-changing documentation landscape.

Software projects often include a top-level README file with important information, which
we leverage to identify their documentation landscape. Starting from ∼12K GitHub repositories,
we mine their README files to extract links to additional documentation sources. We present a
qualitative analysis, revealing multiple dimensions of the documentation landscape (e.g., content
type, source type), highlighting important insights. By analyzing instant messaging application
links (e.g., Gitter, Slack, Discord) in the histories of README files, we show how this part of the
landscape has grown and evolved in the last decade.

Our findings show that modern documentation encompasses communication platforms, which
are exploding in popularity. This is not a passing phenomenon: On the contrary, it entails a number
of unknowns and socio-technical problems the research community is currently ill-prepared to tackle.

2012 ACM Subject Classification Software and its engineering → Collaboration in software devel-
opment; Human-centered computing → Collaborative and social computing

Keywords and phrases software documentation landscape, GitHub README, instant messaging

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.43

Category Pearl/Brave New Idea

Supplementary Material Software: https://figshare.com/s/33c8af534dba61d72c41

Funding This work is supported by the Swiss National Science Foundation (SNSF) through the
project “INSTINCT” (SNF Project No. 190113).

Acknowledgements Marco Raglianti would also like to thank the Swiss Group for Original and
Outside-the-box Software Engineering (CHOOSE) for sponsoring the trip to the conference.

1 Introduction

Times are changing. This is even more true for software engineering. Major shifts have
occurred, induced by the emergence of platforms like GitHub and StackOverflow, fundament-
ally changing how developers (and users) communicate about software projects: Mailing lists
and forums are declining in favor of multi-media instant messaging platforms, such as Gitter,
Slack, Discord, and GitHub Discussions, e.g., [9, 18,27,30,33,45,46,49,50,56,58,66,67].

© Marco Raglianti, Csaba Nagy, Roberto Minelli, Bin Lin, and Michele Lanza;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 43; pp. 43:1–43:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marco.raglianti@usi.ch
https://orcid.org/0000-0002-6878-5604
mailto:csaba.nagy@usi.ch
https://orcid.org/0000-0001-8109-3293
mailto:roberto.minelli@usi.ch
https://orcid.org/0000-0002-1549-6489
mailto:bin.lin@ru.nl
https://orcid.org/0000-0001-6307-8460
mailto:michele.lanza@usi.ch
https://orcid.org/0000-0003-4391-0197
https://doi.org/10.4230/LIPIcs.ECOOP.2023.43
https://figshare.com/s/33c8af534dba61d72c41
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 On the Rise of Modern Software Documentation

Software documentation, a critical asset for developers [3], has been studied extensively
with respect to its quality and usefulness [4, 10,14,19,21,54,61,79]. Nevertheless, the impact
of the subtle but constant drift induced by new platforms is still to be evaluated. What are
the implications for program comprehension if a tweet can influence how developers treat a
bug [38]? Can the tweets on the usage of an API also serve as documentation? Classical
software documentation, as we have known it, is being replaced by “communication”.

Documentation went from a clunky, and rather unloved, endeavor to becoming a fast-paced
and volatile side dish. The utopia of “on-demand documentation” by Robillard et al. [55], is
being replaced by a dystopia of an ever-changing landscape; documentation is waved away
with sentences like “check Discord” or “it’s in the pull request comments.”

This change is more than just cosmetic, it is considerably affected by the richness of
new media, influencing the cognitive processes that underlie communication [53]. Modern
media-rich platforms offer vastly different mechanisms which are simply not there in classical
electronic communication means. Moreover, developers do not only hold ephemeral discussions
that they must be able to access now. They share knowledge (e.g., code examples, screenshots,
howtos) that is important for them in the future, and they do not have (or rather: take) the
time to persist it in a classical software documentation form (e.g., Wiki). Instant messaging
is just too enticing for that. But, they will need long-term access to this knowledge and want
to keep it searchable1 [20] and organizable2 [44]. They choose their platforms accordingly,
for example, avoiding limitations in retrievable history [2], and are willing to pay significant
sums for such services [12].

As the cards on documentation are being reshuffled, things seem murky: What happens
to the body of knowledge contained in the repositories of classical communication platforms?
What is the impact on standard software documentation? How do developers use modern
platforms, and what does this imply?

The Spectrum Example. Spectrum, a multi-forum community hosting platform, was hosting
dozens of software related communities about frameworks (e.g., React, Laravel), UI design (e.g.,
Figma), front-end coding (e.g., CodePen), and developers’ networks in general (e.g., SpecFM).
On Aug 24, 2021, to preserve history while pushing forward the adoption of new communication
infrastructures, it was announced that “the time has come for the planned archival of Spectrum
to focus our efforts on GitHub Discussions” [36]. Spectrum has become “read-only – no 404s
or lost internet history.” The Spectrum team acknowledged the importance of conversations
held on the platform and tried to avoid the limitations of relying on the Internet Archive for
preservation [71]. Many Spectrum communities had already moved to GitHub Discussions, for
reliability and flexibility reasons: Having code and the community in the same place outweighed
other factors in the decision to change.

We present an overview of the documentation landscape (i.e., a map of potential doc-
umentation sources) emerging from the analysis of ∼12K GitHub projects. We explore
current trends in documentation platforms and the relationship between documentation and
communication platforms, exemplified by the tendency in a project’s README to include
the latter as an indirect source of the former.

We show the most representative values in different dimensions characterizing the land-
scape. We then proceed more in-depth with the history of modern communication platforms.
We show how some platforms have seen increasing adoption, reached a plateau, and finally
started their decline. Our analysis provides insights into the many implications of this

1 Especially for large communities, without limitations, as reported in this blog post.
2 As demonstrated by the presence of an ecosystem built on top of instant messaging applications.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:3

ongoing phenomenon for software documentation. Finally, we discuss possible features that
future platforms should have to mitigate some of the perils introduced by these continuous
shifts. We use the following icons to highlight salient points:

Û Insight � Idea/Future Work . Threat

DwarvenMail

Miner

Annotator

History Extractor

Community Extractor

README Communication Platforms
Extractor

README HistoriesSEART
GHS

Manually
Annotated

Dataset

GitHub

GitHub

Slack Discord

Sec.
6.1–6.2

Link Analysis

Communication
Platforms Analysis

Instant Messaging
Analysis

Community Size
Analysis

Sec. 2.1

Sec. 2.3

Sec.
3

Sec. 2.4

Sec. 2.6

Sec.
4–5

Sec.
6.3–6.4

Sec. 2.5

Sec. 2.2

Figure 1 DwarvenMail and Analyses Overview.

2 Dataset Creation and DwarvenMail

This section details the procedure and tool support (DwarvenMail) we implemented to
collect the data for our analyses (Figure 1). We present the initial dataset, the mining
procedure, our manual annotation, and details about the individual analyses we performed.

2.1 Project Mining
Starting from all repositories currently hosted on GitHub we used SEART-GHS [13] to
compose a relevant dataset, applying the following filtering criteria: at least 2,000 commits
(i.e., to eliminate toy projects), more than 10 contributors (i.e., to ensure that a certain
number of people need to interact with each other to tackle the development effort), and
more than 100 stars (i.e., to ensure that the projects are relevant to at least a handful of
people). We only considered projects created before July 1, 2022 and excluded forks [22].
SEART-GHS currently monitors about 1.2M GitHub repositories. Projects excluded in
SEART-GHS for having less than 10 stars [13] would have been excluded by the more
restrictive criterion we applied, removing projects with less than 100 stars.

ECOOP 2023

43:4 On the Rise of Modern Software Documentation

. Filtering based on the number of stars might not be sufficient to select relevant projects.
Nevertheless, starring can be important for project developers and mangers [8]. We used
this criterion as a common method for filtering out toy projects in GitHub (e.g., see [80]).

We performed the filtering on July 14, 2022, resulting in 12,461 projects exported as
JSON input for DwarvenMail. After removing 374 aliases and 6 renamed forks, the final
scraped dataset consists of 12,081 projects.

Table 1 presents an overview of the projects according to their languages. The All column
shows the total number of projects, the CP column the projects where we could identify
communication platforms (see Section 2.4), and the IM column the projects with instant
messaging platforms. Percentages are derived with respect to the All column, while ∆
percentages are relative to the Total row percentages.

Overall, 57.3% of the projects we analyzed feature at least one communication platform.
An interesting observation is that systems written in “lower level / traditional” languages (C,
PHP, Shell) tend to be below the overall average, while systems written in more “modern”
languages (C#, Go, Rust, TypeScript) are more inclined to feature communication platforms.
The difference is even more evident for recently popularized languages if we consider projects
with instant messaging platforms (e.g., Go and Rust increase from +8.1% to +11.6% and
from +9.5% to +16.7% respectively).

We performed multiple One Proportion Z-Tests (one for each language) and the difference
in the proportion of projects using communication platforms for each language (r) and
the overall dataset (r0) is statistically significant for C, C#, Go, PHP, Rust, Shell, and
TypeScript (H0 : r = r0, two-tailed Bonferroni corrected p-value < 0.0038). The same results
hold for projects with instant messaging platforms.

Table 1 Projects and Represented Languages.

Language Projects
All CP CP % ∆CP% IM IM % ∆IM%

C 1,240 548 44.2% -13.1% 248 20.0% -9.2%
C# 543 378 69.6% +12.3% 214 39.4% +10.2%
C++ 1,707 926 54.2% -3.1% 469 27.5% -1.7%
Go 677 443 65.4% +8.1% 276 40.8% +11.6%
Java 1,510 860 57.0% -0.4% 432 28.6% -0.6%
JavaScript 1,528 899 58.8% +1.5% 440 28.8% -0.4%
PHP 733 379 51.7% -5.6% 165 22.5% -6.7%
Python 1,806 1,094 60.6% +3.3% 557 30.8% +1.7%
Ruby 406 238 58.6% +1.3% 103 25.4% -3.8%
Rust 244 163 66.8% +9.5% 112 45.9% +16.7%
Shell 205 93 45.4% -11.9% 35 17.1% -12.1%
TypeScript 895 575 64.2% +6.9% 314 35.1% +5.9%
Other / Unspecified 587 328 55.9% -1.4% 160 27.3% -1.9%
Total 12,081 6,924 57.3% 3,525 29.2%

2.2 Tool Support: DwarvenMail
To support our analyses, we developed DwarvenMail, a Python application to scrape
GitHub and extract information about projects’ README files and their history. It features
an object-oriented domain model to facilitate the extraction of insights from exploration.

DwarvenMail also supports manual inspection, link extraction, and classification from
README files (see Section 2.3). DwarvenMail takes the list of projects in the dataset
and uses the REST API of GitHub and web scraping [81] to extract the information needed
to build its internal domain model. It is implemented as a multiprocess application to speed
up the scraping. Each process uses a different API key to access GitHub in parallel through

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:5

PyGitHub [23]. Parallelization is handled at project level: Each process gets a project from
a queue and starts to fetch the data. Processes are also responsible for not exceeding GitHub
rate limits associated with their API keys.

2.3 Manual Annotation
To examine the documentation sources and communication platforms of the projects, we
performed a qualitative analysis of their README files. We relied on open card sorting,
a well-established method for knowledge elicitation and classification [7, 41, 63, 76, 77], to
incrementally refine the list of possible sources with flexible categories.

We manually reviewed the README files of the projects, extracted their links to
documentation sources and organized them into categories. Given the considerable effort
needed to annotate README files manually, we opted for a saturation approach [57]. We
started with a sample set of 35 projects selected through stratified sampling, ensuring a
balanced distribution among programming languages.

Two authors independently annotated each project README. Then we repeated the
process in subsequent batches with 5 projects per batch until no new labels were added in
two consecutive batches. We reached saturation after annotating 60 projects. In the end,
we discussed conflicts and merged categories where needed. The process resulted in 2,349
links with 282 link types, which we discuss in Section 3. The creation of manually annotated
datasets was supported by the Annotator module of DwarvenMail (Figure 2).

Figure 2 DwarvenMail Annotator – Project Annotation Page.

An annotator ran the Flask application locally, pulled from Git the latest updates by
other annotators, started a batch of annotations, committed, and pushed the modified files.

The Annotator’s homepage shows a list of projects to annotate and the annotation status
(i.e., who annotated what). Selecting a project opens the project annotation page (Figure 2)
where one can browse the README of the selected project.

The project annotation page uses two side-by-side panes to present the README. The
left one represents the raw Markdown version of the README. The right pane shows a
partially rendered version (i.e., similar to what a user sees on GitHub).

ECOOP 2023

43:6 On the Rise of Modern Software Documentation

2.4 Parsing Links: Strategy & Heuristics
We performed a quantitative analysis of communication platforms in README files (Sec-
tions 4 and 5). To support automatic platform extraction in such a large number of projects
we used an approach based on Regular Expressions (RE).

For each communication platform that we discovered, we devised REs that would match
the link as closely as possible, while retaining sufficient generality to abstract specific aspects
(e.g., project name, internet domain, optional protocol). Possibly more than one RE has been
associated with each platform. To fine-tune the REs, DwarvenMail features a detailed log
generation for manual inspection of candidate and invalid links during the refinement.

DwarvenMail parses all the links in a README according to the set of identified REs.
When a link is found, specific exclusion criteria are applied. A set of rules removes links
to images, badge icons, platforms’ generic homepages, and partial or invalid URLs (e.g.,
shorthands for Markdown sections captured by the REs).

The remaining links are normalized in a standard format and duplicates are removed.
Platforms not directly linked in the README (e.g., collected in a list on the Community
page of the project website) are omitted by the employed scraping algorithm. To reduce the
false positive rate, DwarvenMail also verifies that links point to valid web pages (i.e., the
server does not respond with an HTTP 404 Not Found). After this refinement, we obtain the
final set of communication platforms referenced by the project READMEs.

2.5 Parsing README Histories
For projects referencing Gitter, Slack, and Discord as communication platforms, we analyzed
the history of their READMEs to discover when those platforms appeared for the first time.
In this case, the approach outlined above to exclude invalid links (Section 2.4) would not
produce the desired results, because a link that is not valid today could have been valid in
the past. This cannot be checked without an archive, or historical information. Hence, in
our approach we assume that links with proper format were valid in the past. To reduce
false positives, we used the most specific format able to capture the link.

2.6 Community Size
We include the Discord and Slack community size (i.e., number of members) in our domain
model. The most popular way to add people to a Discord server is through an invite link [15].
Clicking on an invite link, brings the user to a page with metadata about the server (e.g.,
number of total members, number of online members). We gathered Discord community
sizes by scraping the data from these invite pages. In the case of Slack, only 15% of the
projects in our dataset have information about the community size on the invite page.

� More effort is needed to explore communities that do not conform to a standard
and/or customize their invite link to pursue specific goals (e.g., authorization workflow,
authentication, spam prevention, analytics).

Extending the percentage of projects whose community size is correctly scraped could
improve the reliability of results discussed in Sections 6.3 and 6.4.

2.7 Data Availability and Replication Package
We provide a replication package, publicly available on Figshare [51], containing the source
code of DwarvenMail, the input dataset, the manually annotated projects, the serialized
domain model of the scraped dataset, charts and tables exported from DwarvenMail.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:7

3 Documentation Landscape

We define the documentation landscape of a software system as all the possible sources
of information able to support design, implementation, comprehension, maintenance, and
evolution of the system. Software documentation is a fundamental asset for developers and
practitioners [3], when it is correct and up-to-date [10,14,19,21,54,61], with its costs and
benefits [79]. Modern software documentation is an ever expanding field. New sources include
blogs [43], Twitter [72], StackOverflow [47], instant messaging applications [9, 18,30,33,45,
46,49,50,56,58,66,67], news aggregators [6], and forums [27].

GitHub README files in Markdown (.md) format are a good starting point for a project
from where all relevant documentation should be reachable.

Documentation sources in README files can either be directly referred to or behind
multiple steps of indirection. An example of the former case is an invitation link that can
be copy/pasted directly in Discord to access the community server of the project. In the
latter case, the README could point to a community web page which in turn contains
links to the mailing list, a Slack channel for Q&A, and potentially other communication and
documentation sources.

The manual annotation presented in Section 2.3 produced 282 single type link tags. The
links can come in many flavors thanks to the markdown format, ranging from pure textual
hyperlinks to badges and images that link to external resources. We inspected them and
identified three key dimensions of the documentation landscape: content type, source type,
and source instance. We split single type tags into these three dimensions. We analyzed
examples of each link type to disambiguate or enrich the classification when the original
annotation had missing information.

Table 2 shows the top-15 most representative values for each dimension. The complete
list of tags is available in the replication package [51].

Û The three key dimensions we propose to describe the documentation landscape of a
software system are content type, source type, and source instance, exemplified as links
in GitHub READMEs.

Source type, source instance, and content type could describe a link like: “This link is in
the form of a Badge, it points to a Wiki on Travis.com, and contains information related
to CI / CD.” Each dimension is instantiated with one of the possible tags for that category,
forming a signature of the documentation source pointed by the link.

� Exploring these dimensions could improve the automatic extraction of links and their
features, to characterize and understand the (evolution of the) documentation landscape.

Link format. Link formats come in many flavors, also due to the fact that markdown
files, while being textual, are usually inspected using a (multimedia capable) web browser.
Badges, for example, are very common in GitHub README files, used to convey imminent
information through iconic representation of a summary of the pointed resource (e.g., build
status passing) where the link itself allows, if followed, to reach more extensive information
(e.g., build process report). Masked links are another common practice to add links (not
exclusively) to markdown documents.

. Not all links in a raw README file are human readable links in the rendered README.

Content type. This is the primary dimension of the documentation landscape, denoting
what kind of information is present in the landscape. There is a smooth gradient in content
types regarding the number of links, but it is worth noting that there is no “standard”, but

ECOOP 2023

43:8 On the Rise of Modern Software Documentation

Table 2 Top-15 Most Relevant Tags, Number of Projects, and Links for Each Dimension. The
percentage indicates the ratio of projects containing at least one link with the specified tag.

(a) Content Type.

Projects Content Type Links
36 (60%) General Community Hub 141
29 (48%) Official Documentation 97
28 (47%) License 68
25 (42%) Contributing 56
23 (38%) Issues 52
23 (38%) CI/CD 50
21 (35%) Project Repository 76
20 (33%) Relevant Projects 132
20 (33%) Dependency/Environment 84
19 (32%) Releases 60
16 (27%) In-Repository Resource 67
16 (27%) Package Repository 47
14 (23%) CI/CD > Testing 24
13 (22%) Installation Instructions 24
11 (18%) Code Coverage 22

(b) Source Type.

Projects Source Type Links
55 (92%) Homepage/Website 436
41 (68%) Collaborative Platform 188
36 (60%) Third Party Service 169
34 (57%) Wiki 125
32 (53%) Repository 166
28 (47%) Sourcefile/Sourcefolder 151
25 (42%) Instant Messaging 84
11 (18%) Auxiliary README 21
10 (17%) Readme Section/Anchor 44
9 (15%) Mailing List 27
9 (15%) Forum 20
8 (13%) Image/GIF 21
8 (13%) Blog 20
7 (12%) Email Address 12
6 (10%) Video 13

(c) Source Instance.

Projects Source Instance Links
33 (55%) GitHub 179
16 (27%) GitHub Workflows 50
13 (22%) GitHub Releases 27
12 (20%) Travis 22
11 (18%) Gitter 34
9 (15%) Google Groups 24
7 (12%) Discord 18
7 (12%) Codecov 14
7 (12%) Python Package Index 13
6 (10%) Twitter 12
6 (10%) StackOverflow 9
5 (8%) Slack 18
5 (8%) Maven 11
5 (8%) Read the Docs 5
4 (7%) GitHub Profile 108

rather project-specific landscapes. Most relevant are general community hubs: Discord servers,
Slack workspaces, Gitter rooms, IRC channels, mailing lists, and forums, with their internal
structure for different topics, dedicated to a general community of users and practitioners.

Û Content type is relevant to interpret what a piece of documentation is about. There is
no standard to the documentation landscape, each project develops its own. Even the
top content types (community hubs, official documentation) are present in only half of
the projects.

Source type. The source type dimension refers to the format of the content at the link’s
destination. This dimension is relevant for automatically extracting the documentation
landscape since it determines how the content can be retrieved and parsed. Homepage /
websites, the most relevant source type by a large margin, can be scraped with traditional web
scraping techniques. Collaborative platforms like GitHub and Bugzilla could be addressed
via their custom APIs. Image / GIF > Screenshots, further down in terms of relevance,
would benefit from image segmentation and analysis approaches to extract, for example,
documented user interface features. We also notice that links to mailing lists are fewer than
those to IM applications, a trend we analyze in more detail in Section 4.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:9

Û Source type captures how documentation is presented and how it can be accessed.
Almost all projects feature a head quarters website, i.e., the go-to place to learn about
a project. These starting points are then often complemented by a plethora of other
sources, ranging from Wikis to forums and instant messaging platforms.

When analyzing the evolution through time of a README file we detect in many cases
that the source types come and go, inducing “tectonic movements” in the landscape, as we
can observe in the example depicted in Figure 3.

Figure 3 Evolution of Communication Platforms in the “Scikit-learn” Project.

The Scikit-learn project, born in 2010, sees a mailing list as its initial documentation
landscape, complemented shortly after by an IRC channel (which stopped existing a decade
later). GitHub Issues is added within the project’s first year, while StackOverflow becomes
part of the landscape in 2017. It is within the past 2 years that the landscape experiences
an earthquake, with many new sources appearing, while the IRC channel is removed (it is
worth noting that IRC and its successor, Gitter, co-exist for a year). At the time of writing
the project in question features 11 different sources.

Û The documentation landscape of projects evolves together with the project. Especially
in the past few years the source types have exploded in number, rendering the landscape
highly dispersive.

. The fact that there are more sources does not imply that the overall documentation of
the system is better, on the contrary: We have observed an overall trend toward more
volatile sources, mostly due to the rise of instant multimedia messaging platforms.

Source instance. The third dimension is a derivate of source type. For each type we
can have multiple possible source instances, usually of a competing nature (see Section 5)
with a similar purpose. Rather unsurprisingly for GitHub projects, GitHub itself with
related instances of profiles, workflows, releases, and instant messaging (i.e., Gitter) takes top
three, the 5th, and the 15th places. Services for package repositories (e.g., Python Package
Index [48], Maven [62]) and CI/CD (e.g., Travis CI [73], Codecov [11]), messaging applications
like Slack [60]/Discord [16], and also articles on the Medium platform [1] represent interesting
research avenues.

Û Source instance can be seen as where (or by whom) documentation is “hosted.”

. Source instances vary wildly, and new players constantly enter the stage. For example,
recent changes in the pricing model of Slack might have influenced the ongoing mass
migration toward other instant messaging platforms, of which there are dozens, with
Discord quickly becoming the preferred alternative.

ECOOP 2023

43:10 On the Rise of Modern Software Documentation

� Tags in the three dimensions appear in different combinations, not all equally likely.
Further research on the most common patterns could shed light on form and content
interplay in software documentation.

4 Modern Communication Platforms

One of the recent major shifts in software development has been the emergence of various
multimedia instant messaging platforms, such as Slack [60], Discord [16], and Gitter [39].

They not only experienced an increase in popularity but also seem to be a major suspect
for the decline of other classical communication means, such as mailing lists and forums.
We start by analyzing the platforms actually used by projects in our dataset. The scraping,
based on regular expressions (see Section 2.4), took place between Aug 28 2022 at 21:01 and
Aug 30 2022 at 02:12, leading to 12,081 scraped projects. Of those, 6,924 (57.3%) mention at
least one such modern communication platform in their README files: 2,897 had 1 platform
link, while 4,027 had 2 or more platform links. The remaining 5,157 projects had no platform
links. The percentage is higher than the one reported by Käfer et al. [31] (57.3% vs. 46.7%),
which can be explained by the fact that their analysis dates back 4 years.

We grouped communication platforms into three main categories: asynchronous, instant
messaging, and social media.

Figure 4 summarizes number of links in READMEs (Links) and number of projects with
at least one link (Projects) for each type of platform.

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

Asynchronous
Instant

Messaging
Social
Media

Projects

Links

Figure 4 Platform types.

Platform

3,500

3,000

2,500

2,000

1,500

1,000

500

0

Pr

oj
ec

ts

G
ith

ub

Tw
itt

er

D
is

co
rd

G
itt

er

Fo
ru

m

M
ai

lin
g

Li
st

S
la

ck

Yo
uT

ub
e

IR
C

S
ta

ck
O

ve
rfl

ow

M
ed

iu
m

Te
le

gr
am

R
ed

di
t

M
at

rix

Yo
uT

ub
e

C
ha

nn
el

Fa
ce

bo
ok

Li
nk

ed
In

S
pe

ct
ru

m

M
ai

lto

Figure 5 Number of projects linking at least one platform.

There are Instant Messaging platforms (e.g., IRC, Slack, Discord), where communication
can happen in real-time. In Asynchronous platforms (e.g., forum, mailing list, GitHub issues
or discussions), communication usually takes some time to be processed and made available
to other community members. The boundary between the two types has been blurred in
the recent years by the technological improvements to the supporting infrastructure. We
also considered Social Media platforms (e.g., Facebook, Twitter, Youtube). While their
technical features can overlap with the other types, their huge user-base and ease of forming
social connections make them stand out. Table 3 shows a complete list of the platforms we
considered with a short description.

A project README can have multiple links to a single platform. This is particularly
true for Social Media links where Twitter accounts of the main contributors or maintainers
are all referenced.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:11

Table 3 Communication Platforms.

Platform Description
Discord [16] Voice, video, text messaging multimedia platform
Facebook [37] Social media and social networking service
Forum General category for web based discussion sites
GitHub [24] GitHub infrastructure for project development
Gitter [39] Voice, video, text messaging multimedia platform
IRC Text-based instant messaging chat system
Linkedin [35] Business social media & professional networking
Mailing List E-mail based communication among recipients
Matrix [70] Communication protocol implemented by clients
Medium [1] Online publishing platform and social journalism
Reddit [52] Social news aggregation, rating, discussion, and multimedia sharing
Slack [60] Voice, video, text messaging multimedia platform
Spectrum [36] Text-based web instant messaging chat system
StackOverflow [64] Question and Answer website
Telegram [69] Voice, video, text messaging multimedia platform
Twitter [75] Social media and social networking service
Youtube [25] Video hosting and sharing platform

In Figure 4, we see that the number of projects that use a specific platform is significantly
lower than the number of links. For example, project OpenAPITools/openapi-generator [42]
mentions 20 different Twitter accounts and 17 YouTube resources.

The identified categories are only a rough means to group similar platforms. In Figure 5
we show the number of projects having at least one reference to a specific platform.

Given our initial input set, it is not surprising to find GitHub to be the most referenced:
The infrastructure is integrated enough to warrant support for the community with its own
Issues and Discussions systems. This uniform consensus is followed by a more fragmented
mix of Twitter, Discord, Gitter, Forums, Mailing Lists, and others in decreasing order of
“popularity.” Far from being irrelevant, these platforms are used by hundreds of projects
exclusively or in synergy. The next section sheds light on these synergies, complementarities,
and on the competition between similar platforms.

5 Coexistence and Competition

Communication platforms can have different features and cater to different audiences. To
cover development or users’ needs, projects can opt for using multiple media at the same
time. What choices are made by core developers in terms of number and variety of platforms
to include in a README?

Figure 6 depicts a non-exhaustive list of examples of overlaps between communication
platforms (extracted with the REs presented in Section 2.4) used exclusively and side-by-side.

Around 38% of projects that use either Discord or Slack also include GitHub Issues in
their READMEs (Figure 6a).

. GitHub Issues can also be used without an explicit link in the README, as just a tab
of the project, if enabled. Some platforms may be implicitly assumed to be available
even if not present in the README.

Overall, 2,105 out of 3,208 projects (66%) using GitHub Issues, also have other commu-
nication platforms referenced in the README. Similar ratios are found, for example, for
Discord with 801 out of 1,187 projects (67%).

Û Multiple communication platforms of different types can and do coexist.

ECOOP 2023

43:12 On the Rise of Modern Software Documentation

Discord
Slack

GitHub Issues

(a)

Instant Messaging

GitHub Issues

Stack Overflow

(b)

Social Media

Instant MessagingAsynchronous

(c)

Discord
Slack

Gitter

(d)

Figure 6 Communication Platforms Overlaps.

GitHub has significant overlaps with the whole category of instant messaging, and with
specific asynchronous platforms (e.g., StackOverflow, see Figure 6b). However, 1,270 projects
rely only on the integrated support provided by GitHub.

In general, if we consider the three main categories, we find that asynchronous platforms
are used exclusively in 48% of projects, instant messaging follows with 35%, and social
platforms seem the most frequently used as a complementary option (76%, see Figure 6c).

. It is not clear if different categories are mutually exclusive and why in a considerable
amount of projects they tend to be used in conjunction.

� This analysis should be complemented by how the user-base is distributed over these
platforms.

6 Instant Messaging: A Deep Dive

What makes instant messaging platforms appealing to developers? The steady growth in
the number of projects including at least one platform of this kind is a piece of evidence
supporting the need for fast and rich communication.

Instant messaging platforms fulfill a very specific role: Providing communication in
real-time, possibly with rich media sharing capabilities (e.g., links, videos, files), and Voice
over IP conferencing (i.e., VoIP). Two instances of these platforms are seldom found together.
Similar characteristics, audiences, and usages make competition the prevailing paradigm.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:13

Figure 6d shows that 97% of projects opting for these platforms choose between one of the
three alternatives. Three projects include links (see Section 2.4) to all the platforms and also
other instant messaging (e.g., Spectrum), but only PowerShell/PowerShell has a significant
Discord community (more than 10k members).

Û Gitter, Discord, and Slack are selected by projects as alternatives, very seldom coexisting.
This can be a possible strategy for successful projects not to spread their community too
thin over multiple platforms with similar capabilities.

6.1 Gitter, Discord, and Slack: A Timeline

Based on README history and mining links for each version of the README as detailed
in Section 2.5, for each project, we look for the first appearance date of Gitter, Discord, and
Slack (Figure 7).

Date (Year)

1,200

1,000

800

600

400

200

0

N
um

be
r o

f P
ro

je
ct

s

Figure 7 Timeline of cumulative adoption date of Slack, Discord, and Gitter.

Gitter appeared for the first time at the end of 2013, followed one year later by Slack,
and then Discord after 8 months. All three platforms show a “ramp-up” period of slightly
more than one year after their first appearance, followed by a steady growth at different
rates. Both Gitter (in mid-2020) and Slack (in 2022) reached a plateau where just a handful
of projects added them to their communication platforms in the last year. Discord, on the
other hand, is still growing significantly.

Since the beginning of 2020, Discord consistently outperformed Slack in terms of number
of new projects adopting the platform for their community (Figure 8). The monthly growth
rate has been higher than the highest for Slack in the previous years. It has also been at
higher levels more consistently and for a longer period.

The comparison between additions of Gitter and Discord (Figure 9) shows a similar or
even more evident tendency. The decline of the former and the growth of the latter are
almost perfectly mirroring each other.

Û While one platform stops being added to projects, another is on the rise. This happened
in the past and is bound to happen again in the future.

There is no guarantee that the example of the Spectrum platform we highlighted in
Section 1 will be followed when Gitter goes out of fashion. It is also possible that the entire
history of discussions, bug fixing sessions, and design decisions will just disappear.

ECOOP 2023

43:14 On the Rise of Modern Software Documentation

2015 2016 2017 2018 2019 2020 2021 2022
Date (Year)

N
um

be
r o

f n
ew

 p
ro

je
ct

s

Figure 8 Monthly new projects adopting Discord and Slack.

2014 2015 2016 2017 2018 2019 2020 2021 2022
Date (Year)

N
um

be
r o

f n
ew

 p
ro

je
ct

s

Figure 9 Monthly new projects adopting Gitter and Discord.

6.2 Throughput and Volatility
We investigated four Discord communities. Reactiflux, Vue Land, and Angular.js are
respectively tied to React, Vue, and Angular (web development frameworks). We compared
them with each other and with the Discord.js community (Discord bot development).

In Figure 10, we show how the average number of messages per member in a sample
period of three months (i.e., May–July, 2022) has high variability. While this might be due
to a number of factors, we are interested in the sheer scale of the messages exchanged on
those platforms every day.

Around 550 messages are exchanged per day in Vue Land and Angular.js. In Discord.js,
instead, users exchange 305 messages each hour, totaling more than 7k messages a day.

The throughput of these servers means information is lost if one does not pay attention to
notifications. Only a few messages are visible at a time and they scroll up quickly, putting full
conversations behind the event horizon in a matter of minutes. Alert filters and community
policies (e.g., forbidden mentioning of server wide tags) can only partially mitigate this
problem. The trade-off between losing potentially interesting discussions and being constantly
interrupted by notifications is the choice many modern developers face when dealing with
these kinds of communities.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:15

Figure 10 Messages per day and average messages per day per member from May to July 2022
for four example Discord servers.

� Application of summarization, visualization, and information retrieval techniques is
fundamental to deal with scalability problems of these platforms.

6.3 Community Sizes

Discord communities in our dataset vary in size between 2 and 500,000 members. Figure 11
depicts Discord community size with respect to project age (i.e., days since creation).

Project Pairs
Sharing Community

Project Age (days)

Di
sc

or
d

C
om

m
un

ity
 S

ize

0 1,000 2,000 3,000 4,000 5,000

Figure 11 Discord community size with respect to project age (days from creation).

� This should be investigated more in-depth to see if it is a breakpoint at which particular
actions should be taken to keep the community growing.

ECOOP 2023

43:16 On the Rise of Modern Software Documentation

. Extraction of Slack community sizes has proven more difficult due to the high variance
in invite page formats. Gitter does not even have an invite page to scrape, and, to the
best of our knowledge, the community size cannot be automatically retrieved.

6.4 Different Projects, Same Community

Being in the same Discord community means sharing the same server (i.e., each project has
a link in the README, possibly with different formats, but pointing to the same Discord
server). We consider this a case of “different projects, same community”.

Figure 11 shows horizontal pairs in the top part of the scatterplot, suggesting that different
projects might share the same community: Our initial hypothesis that “same size of the
community means same community” might not apply, especially for smaller communities.
Nevertheless, it is unlikely for two different large communities to have the same number of
members at the same time. We manually inspected the projects in those pairs and they
are indeed different projects referring to the same wider community. For Discord we could
reliably use the community name to confirm our hypothesis, as parsed from the invitation
metadata (Section 2.4).

Figure 12 shows how many projects share a community with respect to community size.

Members

Pr
oj
ec
ts

Figure 12 Projects referencing the same community.

� Further analysis can show if projects are tightly coupled (e.g., different projects from
the same organization, new major versions of the same project) or if different projects
have an underlying reason to cater to the same audience.

6.5 Technical, Social, and Ethical Challenges

Some community platforms are public, some allow anonymous access, some require a form
of registration or access permission. We found communities with (automatic) procedures
to accept new members but, in general, it is hard to devise a general automatic “agent” to
explore all of them.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:17

The sheer amount of customization that is possible, even in a simple invite landing page
of Slack, has been an obstacle to getting reliable data about communities lying behind those
pages. Exploring a larger and more varied sample could shed light on platform dependent
similarities and differences.

� Machine readable APIs for communities can greatly benefit not only research in this
field, but also open new possibilities, e.g., the automatic migration of community-
generated content to preserve the history of projects when the underlying technologies
evolve.

Socio-ethical challenges. Communities usually are digital aggregations of people’s thoughts,
ideas, rants, strengths, and weaknesses. Collecting such information can be seen as poking
inside someone’s house. One can do it if having legitimate reasons to do so. One can be
welcome if providing benefits for the community. But one can also be faced with concerns
about privacy and legitimate use of collected information.

Companies owning the platform sometimes are more keen to share their data than
administrators of communities they host. While Slack has a monetization policy tied to its
history retrievability, Discord allows unlimited access to a wealth of historical information
via its API.

A big role in the extensibility of our study is played by the attitude of administrators of
interesting communities. While information might be public (i.e., anyone with a Discord
account can automatically join a server and browse its entire content), to comply with
Discord’s Terms of Service we need to ask for permission to add a bot to extract useful
information for DwarvenMail. In this crucial step a fundamental role is played by personal
beliefs and perceptions of the benefits of such a bot by the administrators and the community
itself.

. Accessibility of information is ever more beyond the fence of what is technically possible,
towards the barrier of what is ethically and socially accepted.

7 Threats to Validity

Our analyses are based on a dataset of public GitHub projects as the only source. This poses
a threat to the generalizability of our results with respect to the type of projects hosted on
GitHub. Open source projects developed in this social coding style might differ significantly
from closed source projects developed by a small team of hired developers. There are also no
guarantees that the results presented can be generalized to projects hosted on other similar
repositories (e.g., SourceForge).

The current study presents a limited generalizability with respect to the format of
README files. Although our sampling procedure (Section 2.3) ensures generalizability with
respect to the project’s main programming language, different README file formats could
provide different link types and formats not fully captured by our analysis.

Û We found evidence of more than 15 different README formats. While most share a
similar structure for external links, systematic analysis of these formats could improve
the generalizability of the results.

Limiting the extraction of the documentation landscape to what is reachable from the
main README file (i.e., ignoring links to other READMEs in submodules of a project) poses
a threat to construct validity. This threat is partially mitigated by the magnitude of the
phenomenon we highlighted, emerging despite the limited scope, and calling for discussion
and further investigation (i.e., also considering auxiliary documentation sources as a starting
point to map the landscape).

ECOOP 2023

43:18 On the Rise of Modern Software Documentation

Our analysis benefits from verifying the validity of links whenever possible (i.e., if the
resource referred by the link is still available we expect an HTTP 200 OK response). When
mining GitHub we verified the links we found in a two step process. The time interval
between the first pass for scraping and the second pass for verification was short enough to
guarantee that most links were in their intended state. Obsolete links may be possible and
are part of the present study.

. The analysis lacks accuracy when links are redirected or reused. Moreover, in the effort
to reconstruct link patterns for previous standard link formats of some platforms (e.g.,
Slack) we adopt a conservative approach where if the format follows reasonable patterns
it is accepted as a valid link in the history of a README file. We have no guarantee
nor a way to discover if the link was valid in the past.

The only possibility to study the evolution and validity of such links is to constantly
monitor README files and their evolution over a period of time. Link validity can be
checked as soon as the change in the README is triggered. This kind of study is outside of
the scope of the presented work.

� Semantic analysis of the pointed links could improve relatedness, reducing false positives
in link validity. Automatic link validity and relatedness to the source topic should be
investigated.

Links that are not visually represented in the rendered README are currently part of
the analyses. This threat to the validity of our conclusions is partially mitigated by the low
frequency of such occurrences. We found only 3 non-rendered links in 2 manually annotated
projects (0.1% of links, 3.3% of projects).

� We did not perform an analysis based on project types. Relationships between project
type, intended audience, and the resulting documentation landscape could provide
insights on how to leverage the landscape for projects of different natures and at
different maturity stages.

8 Related Work

Communication channels, especially those tightly coupled with collaborative development
platforms (e.g., GitHub), are fundamental for successful software development.

Hoegl et al. [29] and Lindsjørn et al. [34] found communication to be an essential
subcontract of teamwork quality. Tantisuwankul et al. analyzed the communication channels
of GitHub projects [68]. Studying 70k library projects in 7 ecosystems, they identified
13 communication channels as “a form of knowledge transfer or sharing” (e.g., licenses,
change logs). They found that GitHub projects adopt multiple channels, which change
over time, to capture new and update existing knowledge. Storey et al. [65] conducted
a large-scale survey with 1,449 GitHub users to understand the communication channels
developers find essential to their work. On average, developers indicated they use 11.7
channels across all their activities (e.g., email, chat, microblogging, Q&A websites). They
concluded that “communication channels shape and challenge the participatory culture in
software development.” Hata et al. [27] studied early adopters of GitHub Discussions, finding
that developers considered them useful and important. Lima et al. [32] used NLP to detect
related discussions of OSS communities in GitHub Discussions.

Treude and Storey [74] interviewed users of a community portal, finding that clients,
developers, and end-users are involved in the process of externalizing developer knowledge.

Nugroho et al. [40] studied how Eclipse developers utilize project forums, concluding that
forums are essential platforms for linking various resources in the Eclipse ecosystem besides
representing an important source of expert knowledge.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:19

Modern social media are becoming another information source for development activities.
Mezouar et al. [38] studied how tweets can improve the bug fixing process. They observed how
issues for Firefox and Chrome are usually reported earlier through Twitter than on tracking
systems. This can potentially decrease the lifespan of a bug. Guzman et al. [26] analyzed
the usage characteristics, content, and automatic classification of tweets about software
applications. They found that tweets contain useful information for software companies but
stressed the need for automatic filtering of irrelevant information.

Instant messaging platforms, from Internet Relay Chat (IRC) to Discord, went from
simple text messages to rich multimedia support with integrated DevOps workflows (i.e., Slack
integrations). Yu et al. [78] learned how real-time (i.e., IRC) and asynchronous (i.e., mailing
lists) communications were used and balanced across the GNOME GTK+ project. Shihab
et al. [59] analyzed IRC meeting logs and found that developers actively contributed through
meeting channels.

Lin et al. [33] argued Slack played an increasingly significant role, sometimes replacing
emails. They found various benefits of Slack over mailing lists. Developers use it for team-wide
purposes (e.g., communicating with teammates, file and code sharing), community support
(e.g., special interest groups), and personal benefits (e.g., networking, social activities). They
also observed that developers commonly used bots to support their work. Chatterjee et al. [9]
analyzed the conversations of developers from five Slack programming communities and
developers’ StackOverflow posts. They found prevalent useful information, including API
mentions and code snippets with descriptions in both sources.

Alkadhi et al. [5] examined “rationale” elements (i.e., discussed issues, alternatives, pro-
/con-arguments, decisions) in Atlassian HipChat messages of three software development
teams. They found frequent, valuable discussions with elements of rationale. However, they
also emphasized the need for automated tools due to the high volume of chat messages.

Shi et al. [58] conducted an empirical study on developers’ Gitter chats. They manually
analyzed 749 dialogs and performed an automated analysis of over 173K dialogs of OSS
communities. Interestingly, developers tend to converse more on Wednesdays and Thursdays.
They also found interaction patterns among conversations and noticed that developers tend
to discuss topics such as API usage and errors. They argue the need for better utilization
and mining of knowledge embedded in the massive chat history of OSS communities.

Hata et al. analyzed links in source code comments [28] in a large-scale study (∼10
million links) extracted from files of the main language of the project. We focus on README
file links, which are independent of the project language.

Ebert et al. [17] conducted an empirical study to understand which communication
channels are used in GitHub projects and how they are presented to the audience, finding
that the most common were chats, mail-related, social media, and GitHub channels. Käfer
et al. [31] analyzed GitHub communication channels, finding that “Mailing lists are being
replaced by modern enterprise chat systems in OSS development.” Our work broadens the
scope beyond communication channels and adds details needed to identify the current status,
understand how it has evolved, and obtain meaningful insights on why this is happening.

Each of the previously discussed studies focuses on a specific part of the documentation
landscape, recognizing the importance of the sources for knowledge management and doc-
umentation. What is still missing is a higher level understanding of the phenomenon that
shifts the relative importance of these sources over time, intra- and inter-project.

ECOOP 2023

43:20 On the Rise of Modern Software Documentation

9 Conclusions and Future Work

Classical software documentation is being replaced by “communication”. At least in open
source software on GitHub, it is supported by a plethora of platforms characterized by
high throughput, volatility, and heterogeneity. The original vision of on-demand developer
documentation [55] advocated for a paradigm shift. A shift did happen, but it was not in the
direction foreseen by Robillard et al. five years ago. The new communication platforms bring
new challenges and opportunities for modern software documentation. It is time to shed
light on new forms of documentation. A comparison with classical documentation and where
it survives, unscathed by the new media and the needs of modern software development,
might help rethink the role of documentation itself. Research efforts in this direction can
help maintain documentation useful for software comprehension, maintenance, and evolution,
independently of the form it will take.

To achieve this we need a better understanding of the phenomenon occurring to software
documentation sources. We regard the present work as scratching the surface of what
has turned into an emerging heterogeneous, complex, and ever-changing documentation
landscape, a terra incognita full of possibilities and threats.

References
1 A Medium Corporation. Medium. URL: https://medium.com/.
2 Tim Abbott. Why Slack’s free plan change is causing an exodus. URL: https://blog.zulip.

com/2022/08/26/why-slacks-free-plan-change-is-causing-an-exodus/.
3 Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele Bavota, Michele

Lanza, and David C. Shepherd. Software documentation: The practitioners’ perspective. In
Proceedings of ICSE 2020 (International Conference on Software Engineering), pages 590–601.
ACM, 2020.

4 Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez, Laura
Moreno, Gabriele Bavota, and Michele Lanza. Software documentation issues unveiled. In
Proceedings of ICSE 2019 (International Conference on Software Engineering), pages 1199–
1210. IEEE/ACM, 2019.

5 Rana Alkadhi, Teodora Lata, Emitza Guzmany, and Bernd Bruegge. Rationale in development
chat messages: An exploratory study. In Proceedings of MSR 2017 (International Conference
on Mining Software Repositories), pages 436–446. IEEE/ACM, 2017.

6 Maurício Aniche, Christoph Treude, Igor Steinmacher, Igor Wiese, Gustavo Pinto, Margaret-
Anne Storey, and Marco Aurélio Gerosa. How modern news aggregators help development
communities shape and share knowledge. In Proceedings of ICSE 2018 (International Confer-
ence on Software Engineering), pages 499–510. ACM, 2018.

7 Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of modern code
review. In Proceedings of ICSE 2013 (International Conference on Software Engineering),
pages 712–721. IEEE, 2013.

8 Hudson Borges and Marco Tulio Valente. What’s in a GitHub star? Understanding repository
starring practices in a social coding platform. Journal of Systems and Software, 146:112–129,
2018.

9 Preetha Chatterjee, Kostadin Damevski, Lori Pollock, Vinay Augustine, and Nicholas A Kraft.
Exploratory study of Slack Q&A chats as a mining source for software engineering tools. In
Proceedings of MSR 2019 (International Conference on Mining Software Repositories), pages
490–501. IEEE/ACM, 2019.

10 Jie-Cherng Chen and Sun-Jen Huang. An empirical analysis of the impact of software
development problem factors on software maintainability. Journal of Systems and Software,
82(6):981–992, 2009.

https://medium.com/
https://blog.zulip.com/2022/08/26/why-slacks-free-plan-change-is-causing-an-exodus/
https://blog.zulip.com/2022/08/26/why-slacks-free-plan-change-is-causing-an-exodus/

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:21

11 Codecov. Codecov. URL: https://about.codecov.io/.
12 David Curry. Slack revenue and usage statistics (2022). URL: https://www.businessofapps.

com/data/slack-statistics/.
13 Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling projects in GitHub for MSR stud-

ies. In Proceedings of MSR 2021 (International Conference on Mining Software Repositories),
pages 560–564. IEEE/ACM, 2021.

14 Barthélémy Dagenais and Martin P Robillard. Creating and evolving developer documenta-
tion: Understanding the decisions of open source contributors. In Proceedings of FSE 2010
(International Symposium on Foundations of Software Engineering), pages 127–136. ACM,
2010.

15 Discord. Invites 101. URL: https://support.discord.com/hc/en-us/articles/
208866998-Invites-101.

16 Discord, Inc. Discord. URL: https://discord.com/.
17 Verena Ebert, Daniel Graziotin, and Stefan Wagner. How are communication channels on

GitHub presented to their intended audience? – A thematic analysis. In Proceedings of EASE
2022 (International Conference on Evaluation and Assessment in Software Engineering), pages
40–49. ACM, 2022.

18 Osama Ehsan, Safwat Hassan, Mariam El Mezouar, and Ying Zou. An empirical study of
developer discussions in the Gitter platform. Transactions on Software Engineering and
Methodology, 30(1):1–39, 2020.

19 Andrew Forward and Timothy C Lethbridge. The relevance of software documentation,
tools and technologies: A survey. In Proceedings of DocEng 2002 (Symposium on Document
Engineering), pages 26–33. ACM, 2002.

20 freeCodeCamp. Our experience with Slack. URL: https://www.freecodecamp.org/news/
so-yeah-we-tried-slack-and-we-deeply-regretted-it-391bcc714c81.

21 Golara Garousi, Vahid Garousi-Yusifoğlu, Guenther Ruhe, Junji Zhi, Mahmoud Moussavi,
and Brian Smith. Usage and usefulness of technical software documentation: An industrial
case study. Information and Software Technology, 57:664–682, 2015.

22 GitHub. Fork a repo. URL: https://docs.github.com/en/get-started/quickstart/
fork-a-repo.

23 GitHub. PyGithub. URL: https://github.com/PyGithub/PyGithub.
24 GitHub, Inc. GitHub. URL: https://github.com/.
25 Google, LLC. YouTube. URL: https://www.youtube.com/.
26 Emitza Guzman, Rana Alkadhi, and Norbert Seyff. A needle in a haystack: What do Twitter

users say about software? In Proceedings of RE 2016 (International Requirements Engineering
Conference), pages 96–105. IEEE, 2016.

27 Hideaki Hata, Nicole Novielli, Sebastian Baltes, Raula Gaikovina Kula, and Christoph Treude.
GitHub Discussions: An exploratory study of early adoption. Empirical Software Engineering,
27(1):1–32, 2022.

28 Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio. 9.6 million
links in source code comments: Purpose, evolution, and decay. In Proceedings of ICSE 2019
(International Conference on Software Engineering), pages 1211–1221. IEEE, 2019.

29 Martin Hoegl and Hans Gemuenden. Teamwork quality and the success of innovative projects:
A theoretical concept and empirical evidence. Organization Science, 12(4):435–449, 2001.

30 Jialun Aaron Jiang, Charles Kiene, Skyler Middler, Jed R. Brubaker, and Casey Fiesler.
Moderation challenges in voice-based online communities on Discord. Proceedings of HCI 2019
(Human-Computer Interaction), 3(CSCW):1–23, 2019.

31 Verena Käfer, Daniel Graziotin, Ivan Bogicevic, Stefan Wagner, and Jasmin Ramadani.
Communication in Open-Source projects – End of the e-mail era? In Proceedings of ICSE
2018 (International Conference on Software Engineering), pages 242–243. ACM, 2018.

32 Marcia Lima, Igor Steinmacher, Denae Ford, Evangeline Liu, Grace Vorreuter, Tayana Conte,
and Bruno Gadelha. Looking for related discussions on GitHub Discussions. In arXiv, 2022.

ECOOP 2023

https://about.codecov.io/
https://www.businessofapps.com/data/slack-statistics/
https://www.businessofapps.com/data/slack-statistics/
https://support.discord.com/hc/en-us/articles/208866998-Invites-101
https://support.discord.com/hc/en-us/articles/208866998-Invites-101
https://discord.com/
https://www.freecodecamp.org/news/so-yeah-we-tried-slack-and-we-deeply-regretted-it-391bcc714c81
https://www.freecodecamp.org/news/so-yeah-we-tried-slack-and-we-deeply-regretted-it-391bcc714c81
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://github.com/PyGithub/PyGithub
https://github.com/
https://www.youtube.com/

43:22 On the Rise of Modern Software Documentation

33 Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. Why developers
are slacking off: Understanding how software teams use Slack. In Proceedings of CSCW/SCC
2016, pages 333–336. ACM, 2016.

34 Yngve Lindsjørn, Dag I.K. Sjøberg, Torgeir Dingsøyr, Gunnar R. Bergersen, and Tore Dybå.
Teamwork quality and project success in software development: A survey of agile development
teams. Journal of Systems and Software, 122:274–286, 2016.

35 LinkedIn Corporation. LinkedIn. URL: https://www.linkedin.com.
36 Brian Lovin. Join us on our new journey. URL: https://web.archive.org/web/

20220927203327/https://spectrum.chat/spectrum/general/join-us-on-our-new-
journey e4ca0386-f15c-4ba8-8184-21cf5fa39cf5.

37 Meta. Facebook. URL: https://www.facebook.com/.
38 Mariam El Mezouar, Feng Zhang, and Ying Zou. Are tweets useful in the bug fixing process?

An empirical study on Firefox and Chrome. Empirical Software Engineering, 23(3):1704–1742,
2018.

39 New Vector, Ltd. Gitter. URL: https://gitter.im/.
40 Yusuf Sulistyo Nugroho, Syful Islam, Keitaro Nakasai, Ifraz Rehman, Hideaki Hata,

Raula Gaikovina Kula, Meiyappan Nagappan, and Kenichi Matsumoto. How are project-
specific forums utilized? A study of participation, content, and sentiment in the Eclipse
ecosystem. Empirical Software Engineering, 26(6):132, 2021.

41 N. Nurmuliani, D. Zowghi, and S. P. Williams. Using card sorting technique to classify
requirements change. In Proceedings of IREC 2004 (International Requirements Engineering
Conference), pages 240–248. IEEE, 2004.

42 OpenAPI Tools. OpenAPI Generator. URL: https://github.com/OpenAPITools/
openapi-generator.

43 Dennis Pagano and Walid Maalej. How do developers blog? An exploratory study. In
Proceedings of MSR 2011 (Working Conference on Mining Software Repositories), pages
123–132. ACM, 2011.

44 Papyrs. Easy company intranet & internal team wiki for Slack. URL: https://papyrs.com/
slack-wiki-intranet/.

45 Esteban Parra, Mohammad Alahmadi, Ashley Ellis, and Sonia Haiduc. A comparative study
and analysis of developer communications on Slack and Gitter. Empirical Software Engineering,
27(2):1–33, 2022.

46 Esteban Parra, Ashley Ellis, and Sonia Haiduc. GitterCom: A dataset of Open Source
developer communications in Gitter. In Proceedings of MSR 2020 (International Conference
on Mining Software Repositories), pages 563–567. ACM, 2020.

47 Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele Lanza.
Mining StackOverflow to turn the IDE into a self-confident programming prompter. In
Proceedings of MSR 2014 (Working Conference on Mining Software Repositories), pages
102–111. IEEE/ACM, 2014.

48 Python Software Foundation. Python Package Index. URL: https://pypi.org/.
49 Marco Raglianti, Roberto Minelli, Csaba Nagy, and Michele Lanza. Visualizing Discord servers.

In Proceedings of VISSOFT 2021 (Working Conference on Software Visualization), pages
150–154. IEEE, 2021.

50 Marco Raglianti, Csaba Nagy, Roberto Minelli, and Michele Lanza. Using Discord conversations
as program comprehension aid. In Proceedings of ICPC 2022 (International Conference on
Program Comprehension), pages 597–601. ACM, 2022.

51 Marco Raglianti, Csaba Nagy, Roberto Minelli, Bin Lin, and Michele Lanza. Replication
package. URL: https://figshare.com/s/33c8af534dba61d72c41.

52 Reddit. Reddit. URL: https://www.reddit.com/.
53 Lionel P Robert and Alan R Dennis. Paradox of richness: A cognitive model of media choice.

IEEE Transactions on Professional Communication, 48(1):10–21, 2005.

https://www.linkedin.com
https://web.archive.org/web/20220927203327/https://spectrum.chat/spectrum/general/join-us-on-our-new-journey~e4ca0386-f15c-4ba8-8184-21cf5fa39cf5
https://web.archive.org/web/20220927203327/https://spectrum.chat/spectrum/general/join-us-on-our-new-journey~e4ca0386-f15c-4ba8-8184-21cf5fa39cf5
https://web.archive.org/web/20220927203327/https://spectrum.chat/spectrum/general/join-us-on-our-new-journey~e4ca0386-f15c-4ba8-8184-21cf5fa39cf5
https://www.facebook.com/
https://gitter.im/
https://github.com/OpenAPITools/openapi-generator
https://github.com/OpenAPITools/openapi-generator
https://papyrs.com/slack-wiki-intranet/
https://papyrs.com/slack-wiki-intranet/
https://pypi.org/
https://figshare.com/s/33c8af534dba61d72c41
https://www.reddit.com/

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 43:23

54 Martin P Robillard and Robert DeLine. A field study of API learning obstacles. Empirical
Software Engineering, 16(6):703–732, 2011.

55 Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar Chaparro,
Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza, Mario Linares-Vásquez,
Gail C. Murphy, Laura Moreno, David Shepherd, and Edmund Wong. On-demand developer
documentation. In Proceedings of ICSME 2017 (International Conference on Software Main-
tenance and Evolution), pages 479–483. IEEE, 2017.

56 Hareem Sahar, Abram Hindle, and Cor-Paul Bezemer. How are issue reports discussed in
Gitter chat rooms? Journal of Systems and Software, 172:110852, 2021.

57 Benjamin Saunders, Julius Sim, Tom Kingstone, Shula Baker, Jackie Waterfield, Bernadette
Bartlam, Heather Burroughs, and Clare Jinks. Saturation in qualitative research: Exploring
its conceptualization and operationalization. Quality & Quantity, 52(4):1893–1907, 2018.

58 Lin Shi, Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing Wang. A first
look at developers’ live chat on Gitter. In Proceedings of ESEC/FSE 2021 (European Software
Engineering Conference and Symposium on the Foundations of Software Engineering), pages
391–403. ACM, 2021.

59 Emad Shihab, Zhen Ming Jiang, and Ahmed E Hassan. On the use of internet relay chat
(IRC) meetings by developers of the GNOME GTK+ project. In Proceedings of MSR 2009
(Working Conference on Mining Software Repositories), pages 107–110. IEEE, 2009.

60 Slack Technologies. Slack. URL: https://slack.com/.
61 Ian Sommerville. Software Engineering. Pearson, 10th edition, 2015.
62 Sonatype. Maven Central Repository. URL: https://central.sonatype.dev/.
63 Donna Spencer. Card Sorting: Designing Usable Categories. Rosenfeld Media, 2009.
64 Stack Exchange, Inc. Stack Overflow. URL: https://stackoverflow.com/.
65 Margaret-Anne Storey, Alexey Zagalsky, Fernando Figueira Filho, Leif Singer, and Daniel M.

German. How social and communication channels shape and challenge a participatory culture
in software development. IEEE Transactions on Software Engineering, 43(2):185–204, 2017.

66 Viktoria Stray and Nils Brede Moe. Understanding coordination in global software engineering:
A mixed-methods study on the use of meetings and Slack. Journal of Systems and Software,
170:110717, 2020.

67 Keerthana Muthu Subash, Lakshmi Prasanna Kumar, Sri Lakshmi Vadlamani, Preetha
Chatterjee, and Olga Baysal. DISCO: A dataset of Discord chat conversations for software
engineering research. In Proceedings of MSR 2022 (International Conference on Mining
Software Repositories), pages 227–231. IEEE/ACM, 2022.

68 Jirateep Tantisuwankul, Yusuf Sulistyo Nugroho, Raula Gaikovina Kula, Hideaki Hata, Arnon
Rungsawang, Pattara Leelaprute, and Kenichi Matsumoto. A topological analysis of commu-
nication channels for knowledge sharing in contemporary GitHub projects. Journal of Systems
and Software, 158:110416, 2019.

69 Telegram. Telegram. URL: https://telegram.org/.
70 The Matrix.org Foundation C.I.C. Matrix. URL: https://matrix.org/.
71 Mike Thelwall and Liwen Vaughan. A fair history of the web? Examining country balance in

the Internet Archive. Library & Information Science Research, 26(2):162–176, 2004.
72 Yuan Tian, Palakorn Achananuparp, Ibrahim Nelman Lubis, David Lo, and Ee-Peng Lim.

What does software engineering community microblog about? In Proceedings of MSR 2012
(Working Conference on Mining Software Repositories), pages 247–250. IEEE, 2012.

73 Travis CI. Travis CI. URL: https://www.travis-ci.com/.
74 Christoph Treude and Margaret-Anne Storey. Effective communication of software development

knowledge through community portals. In Proceedings of ESEC/FSE 2011 (European Software
Engineering Conference and Symposium on the Foundations of Software Engineering), pages
91–101. ACM, 2011.

75 Twitter, Inc. Twitter. URL: https://twitter.com/.

ECOOP 2023

https://slack.com/
https://central.sonatype.dev/
https://stackoverflow.com/
https://telegram.org/
https://matrix.org/
https://www.travis-ci.com/
https://twitter.com/

43:24 On the Rise of Modern Software Documentation

76 Jed R Wood and Larry E Wood. Card sorting: Current practices and beyond. Journal of
Usability Studies, 4(1):1–6, 2008.

77 Zhou Yang, Chenyu Wang, Jieke Shi, Thong Hoang, Pavneet Kochhar, Qinghua Lu, Zhenchang
Xing, and David Lo. What do users ask in open-source AI repositories? An empirical study of
GitHub issues. arXiv preprint arXiv:2303.09795, 2023.

78 Liguo Yu, Srini Ramaswamy, Alok Mishra, and Deepti Mishra. Communications in global
software development: An empirical study using GTK+ OSS repository. In Proceedings of
OTM 2011 (On the Move to Meaningful Internet Systems), pages 218–227. Springer, 2011.

79 Junji Zhi, Vahid Garousi-Yusifoğlu, Bo Sun, Golara Garousi, Shawn Shahnewaz, and Guenther
Ruhe. Cost, benefits and quality of software development documentation: A systematic
mapping. Journal of Systems and Software, 99:175–198, 2015.

80 Carlos Zimmerle, Kiev Gama, Fernando Castor, and José Murilo Mota Filho. Mining the
usage of reactive programming APIs: A study on GitHub and Stack Overflow. In Proceedings
of MSR 2022 (International Conference on Mining Software Repositories), pages 203–214.
ACM, 2022.

81 Zyte. Scrapy. URL: https://scrapy.org.

https://scrapy.org

Python Type Hints Are Turing Complete
Ori Roth # Ñ

Department of Computer Science, Technion, Haifa, Israel

Abstract
Grigore proved that Java generics are Turing complete by describing a reduction from Turing
machines to Java subtyping. Furthermore, he demonstrated that his “subtyping machines” could
have metaprogramming applications if not for their extremely high compilation times. The current
work reexamines Grigore’s study in the context of another prominent programming language –
Python. We show that the undecidable Java fragment used in Grigore’s construction is included
in Python’s type system, making it Turing complete. In contrast to Java, Python type hints are
checked by third-party static analyzers and run-time type checkers. The new undecidability result
means that both kinds of type checkers cannot fully incorporate Python’s type system and guarantee
termination. The paper includes a survey of infinite subtyping cycles in various type checkers and
type reification in different Python distributions. In addition, we present an alternative reduction in
which the Turing machines are simulated in real time, resulting in a significantly faster compilation.
Our work is accompanied by a Python implementation of both reductions that compiles Turing
machines into Python subtyping machines.

2012 ACM Subject Classification Software and its engineering → General programming languages

Keywords and phrases nominal Subtyping with Variance, Python

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.44

Category Pearl/Brave New Idea

Related Version Previous Version: https://doi.org/10.48550/arxiv.2208.14755

Supplementary Material Software (ECOOP 2023 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.1

Acknowledgements The author would like to thank to Yossi Gil for inspiring them to study the
topic of nominal subtyping with variance.

1 Introduction

Python enhancement proposal (PEP) 484 introduced optional type hints to the Python
programming language, together with a full-blown gradual type system [16]. Tools such as
Mypy [9] use type hints to type-check Python programs. Certain programs, however, cause
Mypy to enter an infinite loop (we show an example below). We argue that the reason behind
these failures is not a Mypy bug, but a deeper issue in the PEP 484 type system. We use
Grigore’s reduction from Turing machines (TMs) to nominal subtyping with variance [6] to
prove that Python type hints are, in fact, Turing complete. In other words, checking whether
a Python program is correctly typed is as hard as the halting problem.

1.1 Nominal Subtyping With Variance
Subtyping is a type system decision problem. Given types t and s, the type system should
decide whether type t is a subtype of s, t <: s, meaning that every t object is also a member
of s. For example, every string is an object, str <: object, but not every object is a string,
object ≮: str. Subtyping is needed, for example, for checking variable assignments:

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

V1.1

A
rt
ifa

cts Available

ECOOP

© Ori Roth;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 44; pp. 44:1–44:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:soriroth@cs.technion.ac.il
https://oriroth.github.io/
https://orcid.org/0009-0002-1025-6707
https://doi.org/10.4230/LIPIcs.ECOOP.2023.44
https://doi.org/10.48550/arxiv.2208.14755
https://doi.org/10.4230/DARTS.9.2.1
https://doi.org/10.4230/DARTS.9.2.1
https://doi.org/10.4230/DARTS.9.2.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Python Type Hints Are Turing Complete

x: t = ...
y: s = x # t<:s

The second assignment compiles if and only if t <: s.
Object-oriented languages such as Scala, C#, and Python use nominal subtyping with

variance [7]. Nominal means that subtyping is guided by inheritance. Type t is a subtype of
type s if class t is a descendant of s:

class s: ...
class t(s): ...
x: t = ...
y: s = x # ✓

Variance enables variability in type arguments. By default, type t[u] is a subtype of t[v]
if and only if u = v. If t’s type parameter is covariant, u can be any subtype of v, u <: v;
if it is contravariant, then u :> v. In Python, variance is specified in an argument to
TypeVar, the constructor of type parameters. For example, the following Python program
uses contravariance and is correctly typed:

x = TypeVar ("x", contravariant =True)
class t(Generic [x]): ... # t has a contravariant type parameter x
x: t[str] = t[object]() # ✓ (str<:object)

Using a reduction from the Post correspondence problem (PCP) [13], Kennedy and Pierce
showed that nominal subtyping with variance is undecidable [7]. Their work focused on three
subtyping features (characteristics):
1. Contravariance: The presence of contravariant type parameters, as described above.
2. Expansive-recursive inheritance: The closure of types under the inheritance relation and

type decomposition (t[v]→ v) is unbounded. Intuitively, expansive inheritance requires
class t to recur in one of its supertypes:

class t(Generic [x], s[s["t[t[x]]"]]): ...
note: forward refrences are put in string literals

A formal definition of expansive-recursive inheritance is provided in Section 2.
3. Multiple instantiation inheritance: Class t is allowed to derive class s[·] multiple times

using different type arguments:

class t(s[object], s[str]): ... # not legal in Python

Kennedy and Pierce proved that subtyping becomes decidable when contravariance or
expansive inheritance are removed, but they were uncertain about the contribution of
multiple instantiation inheritance to undecidability.

1.2 Subtyping Machines
Ten years after them, Grigore showed that Java subtyping is Turing complete using a direct
reduction from TMs [6]. This reduction uses a subset of Java that conforms to Kennedy and
Pierce’s nominal subtyping with variance. Grigore’s result settled Kennedy and Pierce’s open
problem since Java does not support multiple instantiation inheritance [12, §8.1.5]. Intuitively,
multiple instantiation inheritance corresponds to non-deterministic subtyping [7, 14], so while
it was useful in the PCP reduction, it is redundant in the TM reduction because deterministic
TMs are as expressive as non-deterministic TMs.

O. Roth 44:3

Grigore’s reduction can be described as a function

e(M, w) = ∆ · q (1)

that encodes TM M and input word w as program P = ∆ · q consisting of class table ∆
and subtyping query q. The encoding ensures that TM M accepts w if and only if query q

type-checks against ∆.
The idea behind the reduction is to encode the TM configuration (instantaneous descrip-

tion) in the subtyping query q. Recall that the configuration of TM M comprises (i) the
content of the memory tape, (ii) the location of the machine head on the tape, and (iii) the
current state of the machine’s finite control. Figure 1 illustrates the initial configuration of
M : The input word w = a1a2 . . . am is written on the tape, the machine head points to the
first letter a1, and the current state is the initial state qI .

· · · ⊥ ⊥ a1 a2 · · · am ⊥ ⊥ · · ·

qI

Figure 1 The initial configuration of a Turing machine.

To explain how configurations are encoded as subtyping queries, let us first introduce
some syntax (adopted from Grigore’s paper). We write a generic type A[B[C]] as ABC for
short. The use of ◀ instead of <: in a subtyping query means that the type on the left-hand
side should be read in reverse (the same goes for ▶ and :>), e.g., ABC ◀ DE is equivalent
to CBA <: DE.

The initial TM configuration, depicted in Figure 1, is encoded by the following subtyping
query:

ZEEL⊥NMLNLa1NLa2N · · ·NLam
NL⊥QwR

I ◀ EEZ (2)

Observe that the types in Equation (2) have the same colors as the machine configuration
elements in Figure 1 that they encode. For example, the type La1 encodes the tape symbol
a1, and both are purple. As the type on the left-hand side is written in reverse, the content
of the encoded tape can be obtained by reading the L types from the left to the right. The
full legend in listed in Table 1.

Table 1 The components of Grigore’s subtyping machine. All types use a single contravariant
type parameter x, except Z, which is monomorphic. The superscripts vary.

Type Corresponding TM component / purpose
L⊥x an infinite blank tail of the tape
Lσx a tape cell containing the symbol σ

MLx the location of the machine head
QwR

I x the current TM state qI

Z, Ex, Nx utility types without corresponding TM components

Grigore referred to the subtyping query in Equation (2) as a subtyping machine because
when the subtyping algorithm tries to resolve it, it simulates the computation steps of the
original TM. The subtyping deduction preserves the general structure of the query, except
that it steadily pushes the state type QI along the tape. When QI reaches the head type
ML, the subtyping algorithm simulates a single TM transition: It overwrites the current tape

ECOOP 2023

44:4 Python Type Hints Are Turing Complete

cell (La1 ⇒ Lσ), moves the machine head (by repositioning ML), and changes the machine
state (QI ⇒ QJ). The resulting subtyping query correctly encodes the next configuration in
the TM run. This process continues until the machine accepts and the query is resolved, or
the machine aborts and a compilation error is raised. If the machine runs indefinitely, the
subtyping algorithm does not terminate.

While TMs move the machine head to the left or right freely, subtyping machines can
change direction only when reaching the end of the type, EEZ. After simulating a TM
transition, the subtyping machine must reach the end(s) of the tape, rotate, and then reach
the location of the machine head M in the right orientation, before it can simulate the next
transition. In general, Grigore’s subtyping machines can make O(m) operations for every
computation step of the TM they simulate, where m is the number of symbols on the tape,
resulting in a substantial slowdown. For example, Grigore’s simulation of the CYK algorithm,
which usually runs in O(n3), takes O(n9) subtyping deduction steps to be completed.

1.3 Subtyping Metaprogramming
Beyond the undecidability result, Grigore demonstrated metaprogramming applications for
their subtyping machines. Although the computational power of subtyping machines is
unlimited, harnessing this power for conducting meaningful type-level metaprogramming as
done in, e.g., C++ [18], is not easy. To integrate subtyping machines into programs, Grigore
proposed to wrap them in fluent APIs [2]. Fluent API methods are called in a stream (chain)
of consecutive invocations, as demonstrated in Listing 1.

Listing 1 Running a subtyping machine with a fluent API.
p: Palindrome = a().b().b().a().b().b().a()

In Grigore’s design, the fluent chain produces the tape of the subtyping machine. For example,
the chain in Listing 1 produces a types tape containing the input word abbabba. We run the
subtyping machine by assigning the chain to a variable, invoking a the subtyping query in
Equation (2).

The purpose of the subtyping machine is to validate a property of the chain at compile
time. For example, a subtyping machine that recognizes palindromes forces the fluent chain
to encode a palindrome word, or else it would not compile. Since the chain in Listing 1
encodes a palindrome, the subtyping machine accepts and the assignment type-checks. This
sort of type-level metaprogramming in fluent APIs is employed for embedding domain-
specific languages (DSLs) and enforcing higher-level API protocols [3, 10, 4, 19, 14]. In
theory, Grigore’s subtyping machines can encode any computable DSL or API protocol.
Unfortunately, the slowdown ingrained into the design of the subtyping machines results in
extremely high compilation times, making the technique impractical.

1.4 Contributions
This work revisits Grigore’s study of subtyping machines in the context of Python. We
show that Python’s type system includes the Java fragment used in Grigore’s construction
and is, therefore, Turing complete. We review the impact of undecidable subtyping on the
Python ecosystem, covering compile-time and run-type type checkers and different Python
distributions. Finally, we present a new subtyping machine design that avoids the inherent
slowdown imposed by Grigore’s construction – an essential step towards practical subtyping
machine applications. Our subtyping machines simulate TMs in real time, i.e., make O(1)
operations for each TM transition. The paper is accompanied by a Python implementation
of Grigore’s and our reductions, producing subtyping machines on top of Python type hints.

O. Roth 44:5

Outline

The rest of the paper is organized as follows. In Section 2, we show that Python type hints
are Turing complete and discuss possible ways to make them more tractable. Section 3
includes the survey of infinite subtyping and type reification in Python. Section 4 introduces
our alternative design for subtyping machines that simulate TMs in real time. Section 5
presents our Python implementations of Grigore’s original reduction and the new reduction,
and compares their performances. Section 6 concludes.

2 Python Subtyping is Undecidable

Type hints were introduced into the Python programming language with PEP 484 [16].
PEP 484 defines the syntax of type hints but only provides an informal description of their
semantics, referring the reader to the supplementary PEP 483 [17] for an in-depth discussion.
Type hints are used as annotations and are entirely optional:

def positive (x: int) -> bool:
return x > 0

Static analysis on type hints is not performed by the Python interpreter but by third-party
tools. For instance, Mypy [9] is a type checker for Python type hints; in fact, PEP 484 was
originally inspired by Mypy [16].

The type system described in PEP 484 supports declaration-site nominal subtyping with
variance, similar to the abstract type system studied by Kennedy and Pierce [7]. Although
originally designed for Java, Grigore’s subtyping machines conform to Kennedy and Pierce’s
type system. To implement subtyping machines with Python type hints, we need to show that
Python’s type system includes the two subtyping features essential for Grigore’s construction:
contravariance and expansive-recursive inheritance.

In Python, type variables are specified using a special constructor, TypeVar. Making a
contravariant (or covariant) type variable is as simple as passing an argument to TypeVar:

z = TypeVar ("z", contravariant =True)
class N(Generic [z]): ... # class N has a contravariant parameter z

Expansive-recursive inheritance is a more elusive aspect of nominal subtyping. Kennedy
and Pierce [7] defined expansive inheritance using the inheritance and decomposition closure
cl(t) of type t. Here we provide a brief description of the closure; the full definition can be
found in Kennedy and Pierce’s paper. Recall that we use a shorthand notation for generic
types, Cs = C[s]. If cl(t) contains the type Cs, then by decomposition it also contains s:

(Decomposition)
Cs ∈ cl(t)
s ∈ cl(t)

(3)

If, in addition, class C[x] inherits from type u, denoted Cx : u, then cl(t) also contains the
type u[x← s], in which every occurrence of type parameter x is substituted by s:

(Inheritance)
Cs ∈ cl(t) Cx : u

u[x← s] ∈ cl(t)
(4)

Kennedy and Pierce proved that a class table is expansive-recursive if and only if the set
cl(t) is infinite for some type t. For example, consider the following class declaration:

x = TypeVar ("x")
class C(Generic [x], N[N["C[C[x]]"]]): ... # Cx:NNCCx

ECOOP 2023

44:6 Python Type Hints Are Turing Complete

The inheritance of class C is expansive-recursive since the set cl(Ct) is infinite for any type t:

1. Ct ∈ cl(Ct)
2. NNCCt ∈ cl(Ct) (Inheritance)
3. NCCt ∈ cl(Ct) (Decomposition)
4. CCt ∈ cl(Ct) (Decomposition)
5. NNCCCt ∈ cl(Ct) (Inheritance)
and so on. . .

(5)

Between steps 1 and 4 the type Ct was transformed to CCt, increasing the size of the type
by a single C. By continuing the deduction we get that the set cl(Ct) contains the type Cnt

for any n ≥ 1 and is, therefore, infinite.
As PEP 484 and the accompanying PEP 483 do not mention any restrictions on expansive-

recursive inheritance (at least, that the author could find), we conclude that Python implicitly
supports expansive inheritance. As evidence, the example above correctly compiles in Python
and Mypy.

By enabling both contravariance and expansive-recursive inheritance, the designers of
PEP 484 opened up Python type hints to the same pitfalls of nominal subtyping with variance
studied by Kennedy, Pierce, and Grigore. For example, the code in Listing 2, adapted from
Kennedy and Pierce [7], shows how contravariance and expansive inheritance can be combined
to induce an infinite subtyping cycle.

Listing 2 Contravariance, expansive inheritance, and infinite subtyping with Python type hints.
from typing import TypeVar , Generic , Any
z = TypeVar ("z", contravariant =True)
class N(Generic [z]): ...
x = TypeVar ("x")
class C(Generic [x], N[N["C[C[x]]"]]): ...
class T: ...
class U: ...
_: N[C[U]] = C[T]() # CT <: NCU ✗ infinite subtyping

The last line of Listing 2 contains a variable assignment that invokes the subtyping query
CT <: NCU . The query is resolved using two subtyping rules [7]: Super, allowing us to
replace a type with its supertype using an inheritance rule:

(Super) Cx : u u[x← s] <: t

Cs <: t
(6)

And Var, allowing us to remove a single type from both sides of the query:

(Var) C’s type parameter x is contravariant t <: s

Cs <: Ct
(7)

We use the rules Super and Var to resolve the query as follows:

1. CT <: NCU

2. NNCCT <: NCU (Super)
3. CU <: NCCT (Var)
4. NNCCU <: NCCT (Super)
5. CCT <: NCCU (Var)
and so on. . .

(8)

O. Roth 44:7

Between steps 1 and 5, the subtyping query was not reduced but increased in size. This
deductive process continues indefinitely. When Mypy checks this program, it throws a
segmentation fault. In Section 5, we show that Mypy crashes because it gets stuck in an
infinite recursion during the subtyping algorithm.

Since contravariance and expansive inheritance are enough to implement Grigore’s sub-
typing machines, we get that Python type hints are Turing complete. Section 5 presents
our implementation of Grigore’s reduction with Python type hints. The resulting subtyping
machines correctly run with Mypy.

2.1 Taming Python’s Type System
The source of undecidability in PEP 484 is the hazardous combination of contravariance
and expansive-recursive inheritance, whose presence enables the construction of Grigore’s
subtyping machines. Kennedy and Pierce proved that nominal subtyping with variance
becomes decidable once either contravariance or expansive inheritance are removed [7].
Restrictions to expansive inheritance are implemented, for example, in the Scala programming
language [11, §5.1.5] and the .NET framework [1, §II.9.2]. Removing expansive inheritance,
however, might not be enough to make Python type hints decidable. A more thorough
inspection of the various features of Python’s type system is required to determine this.

Greenman et al. [5] and Tate et al. [15] presented alternative subtyping algorithms for
Java that are decidable. Besides the theoretical work, they surveyed extensive corpora of
Java projects to show that their new algorithms do not break existing code and are thus
backward compatible. Future attempts at making Python’s type hints decidable may follow
a similar line.

3 Type Reification and Infinite Subtyping in the Wild

A remote code execution vulnerability allows an attacker to run arbitrary code on a remote
machine. Python type hints, on the other hand, can be used to run arbitrary computations.
The distinction between code and computation is critical in the context of security: we
can use type hints to compute prime numbers but not to access the file system or to open
an SSH connection. Nevertheless, the fact that Python type hints are Turing complete
does raise a few practical concerns. Type hints can induce infinite subtyping cycles, as
demonstrated in Listing 2. These cycles cannot be detected by a “smart” type checker due
to the undecidability of the halting problem. Thus, we can use infinite subtyping to attack
Python type checkers and cause them to loop indefinitely or crash. For example, we managed
to use infinite subtyping to crash the online playground of the Pyre Python type checker, as
depicted in Figure 2. The playground in available at https://pyre-check.org/play/.

In Java, the compiler eliminates type arguments to generic types in a process called type
erasure, making infinite subtyping a compile-time-only issue. Although PEP 484 mentions
type erasure, it does not explicitly prohibit run-time type reification. The later PEP 585 [8]
settles the matter, stating:

“The generic parameters are not preserved in instances created with parameterized
types, in other words generic types erase type parameters during object creation.”

In practice, Python implementations ignore type erasure and keep records of generic types in
run-time objects. Listing 3 demonstrates how to obtain information about type parameters
and generic arguments at run time.

ECOOP 2023

https://pyre-check.org/play/

44:8 Python Type Hints Are Turing Complete

Figure 2 Crashing the Pyre playground with an infinite subtyping cycle.

Listing 3 Obtaining reified generic types in Python at run time.
from typing import TypeVar , Generic
x = TypeVar ("x", contravariant =True)
class C(Generic [x]): ...
print (C. __parameters__) # (-x,)
y = C[int]()
print (y. __orig_class__) # __main__ .C[int]

The field __parameters__ of the generic class C reveals that the class uses a single con-
travariant type parameter x. The generic type of the parameterized instantiation C[int]() is
retrieved using the __orig_class__ field. We tested the code in Listing 3 on several Python
distributions. The results are presented in Table 2.

Table 2 Type reification in different Python distributions.

Python
Distribution Version

Type
Reification Notes

CPython 3.9.13
PyPy 7.3.11
RustPython 3.5.0alpha
WinPython 3.0.20
Brython 3.11.1 __orig_class__ is bugged

Table 2 shows that all the Python implementations tested practice type reification. As
an exception, Brython fails to retrieve the field __orig_class__. After inspecting the source
code, the author believes it to be a bug. At the moment of writing these lines, an open issue1

on CPython’s GitHub project calls for a proper API wrapper for the __orig_class__ field.
This development indicates that the Python community sees type reification not as a mere
implementation detail but as a desired feature that should be established further.

Although Python reifies generic types, it does not mean that run-time type checkers
use them in subtyping checks. And while static analyzers have all the type hints available,
there is no guarantee that they implement the complete Python type system described in

1 https://github.com/python/cpython/issues/101688

https://github.com/python/cpython/issues/101688

O. Roth 44:9

PEP 484. Whether or not a type checker gets stuck on infinite subtyping or successfully runs
a subtyping machine is determined by its support of type parameter variance. In particular,
both cases depend on contravariant type parameters. We reviewed various static and dynamic
Python type checkers and checked whether they support variance as described in PEP 484.
The results are presented in Table 3.

Table 3 Variance support in Python type checkers.

Type
Checker Version

Typing
Discipline

Variance
Support Notes

Mypy 0.991 static
Pyre 0.9.17 static
Pyright 1.1.279 static Pyright is unsound
Pytype 2022.11.10 static
Pyanalyze 0.8.0 static
Pydantic 1.10.2 dynamic
Typeguard 2.13.3 dynamic
Pytypes 1.0b10 dynamic Delegates to isinstance (sometimes)
Typical 2.8.0 dynamic Delegates to isinstance

We found that Mypy and Pyre are the only type checkers to fully support subtyping
with variance. Pyright also acknowledges variant type parameters, but reports errors for
correctly-typed programs, meaning that it is unsound. We showed this by running one of
our (accepting) subtyping machines: Mypy and Pyre reported no errors while Pyright did
report one. The code is found in the supplementary material. Pytype reported that it
does not support contravariant parameters. For the rest of the type checkers, we had to
search the source code for any mention of variance to conclude that they do not support it.
Typical seems to delegate subtyping checks to isinstance or equivalent methods that reject
generic types altogether. We observed similar behavior in Pytypes when using type forward
references, i.e., types in string literals.

To fully support PEP 484, Python type checkers must support covariant and contravariant
type parameters. Variance, however, introduces a security vulnerability in the form of
unavoidable infinite subtyping cycles. Crashes of static type checkers may be forgiven, but
for dynamic checkers, infinite subtyping poses a major concern. This also holds for Python’s
isinstance check, if the designers of Python or one of its implementations ever consider
adding run-time subtyping checks against generic types.

4 Real-Time Subtyping Machines

Grigore’s subtyping machines must scan the entire tape memory before they can simulate
a single TM transition. This is because the subtyping machines can change their direction
(from ◀ to ▶ and vice versa) only when reaching the end of the tape. We now present an
alternative design for subtyping machines that simulate TMs in real time, i.e., where a single
TM computation step is simulated by O(1) subtyping deductions.

Let M = ⟨Q, Σ, qI , qh, δ⟩ be a TM where Q is the set of machine states, Σ is the set of
tape symbols, qI is the initial state, qh is the termination state, and

δ : Q× (Σ ∪ {⊥})→ Q× Σ× {L, R}

is the transition function. In each computation step, the TM changes its state, overwrites
the current tape cell, and moves the machine head to the left (L) or right (R). The TM
accepts its input if and only if it reaches the termination state qh. We use the symbol ⊥ ̸∈ Σ
to denote blank tape cells.

ECOOP 2023

44:10 Python Type Hints Are Turing Complete

The new encoding of subtyping machines is shown in Table 4. The encoding comprises
ten inheritance rules (i) to (x) (recall that we use a colon to denote inheritance). To encode
a TM M as a subtyping machine, fill in the inheritance rules’ missing values using elements
from M that satisfy the conditions on the right-hand side. For example, if M contains state
q4 ∈ Q and tape symbol p ∈ Σ, then by rule (v),

QLL
4 x : LpNQL

4 LpNx.

When multiple rules apply to the same type, multiple inheritance is used. Symbol x is a
contravariant type parameter and symbol ? denotes the wildcard type, i.e., the type that is
consistent with (can be substituted by) any type. In Python, this is the Any type [16]. All
the type parameters used in the encoding are contravariant. There are ten more inheritance
rules in addition to those in Table 4, obtained by swapping L and R in each rule in the table.

Table 4 Real-time subtyping machines. For each inheritance rule, swap L and R to get the
symmetrical rule. The type parameter x is contravariant.

(i) QL
s x : LaNQL

s′LbNx δ(qs, a) = ⟨qs′ , b, L⟩
(ii) QL

s x : LaQLRR
s′ NLbNx δ(qs, a) = ⟨qs′ , b, R⟩

(iii) QL
s x : L⊥QL⊥L

s′ NLbNx δ(qs,⊥) = ⟨qs′ , b, L⟩
(iv) QL

s x : L⊥QL⊥R
s′ NLbNx δ(qs,⊥) = ⟨qs′ , b, R⟩

(v) QLL
s x : LaNQL

s LaNx ∀qs ∈ Q, ∀a ∈ Σ
(vi) Nx : QLRR

s NQRR
s x ∀qs ∈ Q

(vii) Nx : QL⊥L
s QRL

s NL⊥Nx ∀qs ∈ Q

(viii) Nx : QL⊥R
s NQRR

s L⊥Nx ∀qs ∈ Q

(ix) Nx : QLR
s NQR

s x ∀qs ∈ Q

(x) QL
h x : La? ∀a ∈ Σ ∪ {⊥}

The roles of the types in Table 4 are mostly the same as in Grigore’s encoding (Table 1),
i.e., La is a tape cell containing the symbol a, N is a buffer type, and Qs is a state type. The
new encoding, however, does not use a type for the machine head (M in Grigore’s encoding)
because the state type Q also indicates the location of the machine head. The superscripts
of Q imply the head’s movement direction; e.g., QLL

s means that the head is about to go two
cells to the left, QL⊥R

s means that the head is about to move left into a blank cell and then
rotate, and so on.

The initial TM configuration is encoded by the following subtyping query:

ZNL⊥QR
IQR
I ◀La1NLa2N · · ·Lam−1NLamNL⊥NZ (9)

The content of the tape is encoded by the L types, read from the left to the right. The
current state and the position of the machine head are encoded by the type QR

I – the current
cell is on the right (R) of the type, which is also the direction of the query (◀). The infinite
blank ends of the tape are encoded by the type L⊥. Observe that the colors of the types in
Equation (9) match the colors of the corresponding TM components in Figure 1. Type QR

s is
half red and half orange because it represents both the current state and the head location.

To prove the correctness of the simulation, we show that the subtyping query in Equa-
tion (9) simulates the TM transitions while preserving the encoding of the machine tape,
head, and state comprising the TM configuration. There are three variables to be considered:

O. Roth 44:11

the initial orientation of the head, whether or not the current cell is blank, and whether or
not the machine head changes direction. For example, the machine head QR

I in Equation (9)
points to the right (R) and reads a non-blank cell La1 . The next cell could be either La2 , if
the head continues right, or blank L⊥, if it rotates.

We now cover four cases, assuming that the initial orientation is left (this is the orientation
used in Table 4). The other four cases are symmetrical. Next to each subtyping deduction
step, we mention the subtyping rule used in this step. Recall that there are two subtyping
rules, Super and Var (Equations (6) and (7)). As all the type parameters are contravariant,
the query changes direction (from ◀ to ▶ and vice versa) after applying Var a single time.

Case I. The head points to a non-blank cell a, replaces it with symbol b, and continues left.
The relevant TM transition is

δ(qs, a) = ⟨qs′ , b, L⟩

and the resulting subtyping query is

· · ·NLa ▶ QL
s · · ·

· · ·NLa ▶ LaNQL
s′LbN · · · (i) + (Super)

· · · ▶ QL
s′LbN · · · (Var)× 2

“(i)+Super” means applying rule Super with inheritance rule (i) from Table 4. “(Var)×2”
means applying rule Var twice. Observe that the subtyping query simulates the TM
transition while preserving the encoding: symbol La is replaced by Lb, state Qs is replaced
by Qs′ (the next machine state), and the head moves to the cell on the left.

Case II. The head points to a non-blank cell a, replaces it with symbol b, and continues
right. The relevant TM transition is

δ(qs, a) = ⟨qs′ , b, R⟩

and the resulting subtyping query is

· · ·NLa ▶ QL
s · · ·

· · ·NLa ▶ LaQLRR
s′ NLbN · · · (ii) + (Super)

· · ·N ◀ QLRR
s′ NLbN · · · (Var)

· · ·QRR
s′ NQLRR

s′ ◀ QLRR
s′ NLbN · · · (vi) + (Super)

· · ·QRR
s′ ◀ LbN · · · (Var)× 2

· · ·NLbQR
s′NLb ◀ LbN · · · (v) + (Super)

· · ·NLbQR
s′ ◀ · · · (Var)× 2

Case III. The head points to a blank cell (the end of the tape), replaces it with symbol b,
and continues left. The relevant TM transition is

δ(qs,⊥) = ⟨qs′ , b, L⟩

and the resulting subtyping query is

ZNL⊥ ▶ QL
s · · ·

ZNL⊥ ▶ L⊥QL⊥L
s′ NLbN · · · (iii) + (Super)

ZN ◀ QL⊥L
s′ NLbN · · · (Var)

ZNL⊥NQRL
s′ QL⊥L

s′ ◀ QL⊥L
s′ NLbN · · · (vii) + (Super)

ZNL⊥NQRL
s′ ▶ NLbN · · · (Var)

ZNL⊥NQRL
s′ ▶ QRL

s′ NQL
s′LbN · · · (ix) + (Super)

ZNL⊥ ▶ QL
s′LbN · · · (Var)× 2

ECOOP 2023

44:12 Python Type Hints Are Turing Complete

Case IV. The head points to a blank cell, replaces it with symbol b, and continues right.
The relevant TM transition is

δ(qs,⊥) = ⟨qs′ , b, R⟩

and the resulting subtyping query is

ZNL⊥ ▶ QL
s · · ·

ZNL⊥ ▶ L⊥QL⊥R
s′ NLbN · · · (iv) + (Super)

ZN ◀ QL⊥R
s′ NLbN · · · (Var)

ZNL⊥QRR
s′ NQL⊥R

s′ ◀ QL⊥R
s′ NLbN · · · (viii) + (Super)

ZNL⊥QRR
s′ ◀ LbN · · · (Var)× 2

ZNL⊥NLbQR
s′NLb ◀ LbN · · · (v) + (Super)

ZNL⊥NLbQR
s′ ◀ · · · (Var)× 2

The TM rejects its input when its current state is qs, the current tape symbol is a, and
the transition δ(qs, a) is not defined. In this case, the subtyping query La ▶ QL

s also rejects
since there is no inheritance rule in Table 4 with which rule Super can be applied. On the
other hand, if the TM reaches state qh and accepts its input, the subtyping query La ▶ QL

h

is resolved by applying rule (x).
Note that our simulation is clearly real-time. To simulate a single TM transition, the

subtyping machine performs at most eight subtyping deductions (in cases II and IV).
The wildcard type used in rule (x) is not a part of Kennedy and Pierce’s system of

nominal subtyping with variance. Instead of using the wildcard, the subtyping machine
could go to either side of the tape before resolving the query, as done in Grigore’s simulation.
This makes the subtyping machine design a bit more complicated, and its simulation of the
TM returns to be non-real-time, but the computational complexity of the simulation is not
increased.

5 Implementation and Performance Experiment

We present our Python implementation of Grigore’s original reduction and our new real-time
simulation introduced in Section 4 in the supplementary material. Our implementation
compiles TMs into Python subtyping machines that use the type hints and generics described
in PEP 484 [16]. Each subtyping machine comprises a class table (Table 4) and a variable
assignment that invokes a subtyping query (Equation (9)). To run the subtyping machine,
we use Mypy to type-check the generated Python code.

If the subtyping machine accepts its input, Mypy terminates successfully, and if the input
is rejected, Mypy reports a typing error. But what happens when the subtyping machine runs
indefinitely? When running Mypy on the code in Listing 2, containing an infinite subtyping
cycle, Mypy crashes with a segmentation fault. To uncover the reason for the segmentation
fault, we remove a call to sys.setrecursionlimit from Mypy’s source code and run it again
with the flag --show-traceback. Mypy reports the following error:

. . .

File "mypy/types.py", line 1283 , in accept
File "mypy/ subtypes .py", line 585, in visit_instance
File "mypy/ subtypes .py", line 345, in check_type_parameter
File "mypy/ subtypes .py", line 339, in check
File "mypy/ subtypes .py", line 179, in is_subtype
File "mypy/ subtypes .py", line 329, in _is_subtype

O. Roth 44:13

File "mypy/types.py", line 1283 , in accept
File "mypy/ subtypes .py", line 585, in visit_instance
File "mypy/ subtypes .py", line 345, in check_type_parameter
File "mypy/ subtypes .py", line 339, in check
File "mypy/ subtypes .py", line 147, in is_subtype

RecursionError: maximum recursion depth exceeded while calling a Python object

The stack trace confirms that Mypy’s subtyping algorithm is implemented using recursion,
causing it to crash with a segmentation fault on infinite subtyping. This observation makes
it possible to measure the run time of the subtyping machine, i.e., the number of subtyping
deductions it performs, by calculating the minimal size of the call stack required for Mypy
to type-check the machine.

Figure 3 describes the results of our experiment, in which we measured the run times of
subtyping machines accepting input words of various lengths. The TM used in the experiment
recognizes palindromes over {a, b} and runs in O(n2). We compiled the TM together with
random palindromes of increasing lengths into subtyping machines, once using Grigore’s
method and once with our construction. Then, binary search was used to find the minimal
call stack size (in megabytes (MB)) required for Mypy to type-check the machine without
getting a segmentation fault.

10 20 30 40 50 60 70 80 90
5

10

15

20

25

30

35

Input length

C
al

ls
ta

ck
si

ze
[M

B
]

Grigore [6]
Current work

Figure 3 Run times of the palindrome subtyping machines: Grigore’s reduction vs. the new
reduction.

In theory, Grigore’s subtyping machines should run in O(n3) due to their inherent slow-
down, while our machines are expected to run in O(n2) since they simulate the palindromes
TM in real time. In practice, we see that our subtyping machines are much faster than
Grigore’s and require significantly fewer resources to be type-checked.

6 Conclusions

Python type hints are Turing complete because PEP 484 supports nominal subtyping with
variance, including contravariance and expansive-recursive inheritance. These two subtyping
features are sufficient to implement Grigore’s subtyping machines that simulate TMs at
compile time.

ECOOP 2023

44:14 Python Type Hints Are Turing Complete

We demonstrated that infinite subtyping cause Python type checkers to crash with a stack
overflow error. Due to the undecidability of the halting problem, fixing this problem requires
changing the Python type system described in PEP 484. Even run-time type checkers are in
danger because existing Python distributions reify generic types – in spite of the language
specifications. In practice, we found that only two static analyzers (Mypy and Pyre) are
vulnerable to infinite subtyping since they provide the most complete implementations of
Python’s type system.

We described an alternative subtyping machine design that simulates TMs in real time,
removing the inherent slowdown introduced in Grigore’s original design. Our experiment
shows that the new subtyping machines compile significantly faster. Our design is an essential
step towards practical subtyping machine applications. Nevertheless, such applications would
most likely depend on the type checker’s implementation of the subtyping algorithm –
specifically, that it is not recursive.

References
1 ECMA International. ECMA Standard 335: Common Language Infrastructure, 3 edition,

June 2005. Available at http://www.ecma-international.org/publications/standards/
Ecma-335.htm (accessed Aug. 2022).

2 Martin Fowler. Fluentinterface, 2005. URL: https://www.martinfowler.com/bliki/
FluentInterface.html.

3 Yossi Gil and Tomer Levy. Formal language recognition with the Java type checker. In Shriram
Krishnamurthi and Benjamin S. Lerner, editors, 30th Europ. Conf OO Prog. (ECOOP 2016),
volume 56 of Leibniz International Proceedings in Inf. (LIPIcs), pages 10:1–10:27, Dagstuhl,
Germany, 2016. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
ECOOP.2016.10.

4 Yossi Gil and Ori Roth. Fling – A fluent API generator. In Alastair F. Donaldson, editor, 33rd
Europ. Conf OO Prog. (ECOOP 2019), volume 134 of Leibniz International Proceedings in Inf.
(LIPIcs), pages 13:1–13:25, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ECOOP.2019.13.

5 Ben Greenman, Fabian Muehlboeck, and Ross Tate. Getting f-bounded polymorphism into
shape. SIGPLAN Not., 49(6):89–99, June 2014. doi:10.1145/2666356.2594308.

6 Radu Grigore. Java generics are turing complete. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, pages 73–85, New York,
NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3009837.3009871.

7 Andrew Kennedy and Benjamin Pierce. On decidability of nominal subtyping with variance.
In Int. Work. Found. & Devel. OO Lang., FOOL/WOOD‘07, Nice, France, January 2007.
ACM. URL: http://foolwood07.cs.uchicago.edu/program/kennedy-abstract.html.

8 Łukasz Langa. PEP 585 – Type Hinting Generics In Standard Collections. Available at
https://peps.python.org/pep-0585/ (accessed Nov. 2022).

9 Jukka Lehtosalo, Guido van Rossum, Ivan Levkivskyi, and Michael J. Sullivan. mypy. Available
at http://mypy-lang.org/ (accessed Aug. 2022).

10 Tomoki Nakamaru, Kazuhiro Ichikawa, Tetsuro Yamazaki, and Shigeru Chiba. Silverchain: a
fluent API generator. In Proc. 16th ACM SIGPLAN Int. Conf Generative Prog., GPCE’17,
pages 199–211, Vancouver, BC, Canada, 2017. ACM.

11 Martin Odersky, Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir, Philipp
Haller, Stéphane Micheloud, Nikolay Mihaylov, Adriaan Moors, Lukas Rytz, Michel Schinz,
Erik Stenman, and Matthias Zenger. Scala language specification version 2.13. Available on:
https://scala-lang.org/files/archive/spec/2.13/ (accessed Aug. 2022).

12 Oracle. The Java Language Specification, Java SE 8 Edition, February 2015. Available at
https://docs.oracle.com/javase/specs/.

http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
https://www.martinfowler.com/bliki/FluentInterface.html
https://www.martinfowler.com/bliki/FluentInterface.html
https://doi.org/10.4230/LIPIcs.ECOOP.2016.10
https://doi.org/10.4230/LIPIcs.ECOOP.2016.10
https://doi.org/10.4230/LIPIcs.ECOOP.2019.13
https://doi.org/10.1145/2666356.2594308
https://doi.org/10.1145/3009837.3009871
http://foolwood07.cs.uchicago.edu/program/kennedy-abstract.html
https://peps.python.org/pep-0585/
http://mypy-lang.org/
https://scala-lang.org/files/archive/spec/2.13/
https://docs.oracle.com/javase/specs/

O. Roth 44:15

13 Emil Post. A variant of a recursively unsolvable problem. Bulletin of the American Mathematical
Society, 52:264–268, 1946.

14 Ori Roth. Study of the subtyping machine of nominal subtyping with variance. Proc. ACM
Program. Lang., 5(OOPSLA), October 2021. doi:10.1145/3485514.

15 Ross Tate, Alan Leung, and Sorin Lerner. Taming wildcards in java’s type system. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’11, pages 614–627, New York, NY, USA, 2011. Association for
Computing Machinery. doi:10.1145/1993498.1993570.

16 Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. PEP 484 – Type Hints. Available at
https://peps.python.org/pep-0484/ (accessed Nov. 2022).

17 Guido van Rossum and Ivan Levkivskyi. PEP 483 – The Theory of Type Hints. Available at
https://peps.python.org/pep-0483/ (accessed Nov. 2022).

18 Todd Veldhuizen. Using C++ Template Metaprograms, pages 459–473. SIGS Publications,
Inc., USA, 1996.

19 Tetsuro Yamazaki, Tomoki Nakamaru, Kazuhiro Ichikawa, and Shigeru Chiba. Generating a
fluent api with syntax checking from an LR grammar. Proc. ACM Program. Lang., 3(OOPSLA),
October 2019. doi:10.1145/3360560.

ECOOP 2023

https://doi.org/10.1145/3485514
https://doi.org/10.1145/1993498.1993570
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0483/
https://doi.org/10.1145/3360560

	p000-Frontmatter
	Message from the Program Chairs
	Message from the Artifact Evaluation Chairs
	Foreword by the President of AITO

	p001-Barwell
	1 Introduction
	2 Overview
	3 Crash-Stop Asynchronous Multiparty Session Calculus
	4 Asynchronous Multiparty Session Types with Crash-Stop Semantics
	4.1 Global and Local Types with Crash-Stop Failures
	4.2 Crash-Stop Semantics of Global Types
	4.3 Crash-Stop Semantics of Configurations
	4.4 Alternative Modellings for Crash-Stop Failures
	4.5 Relating Global Type and Configuration Semantics
	4.6 Properties Guaranteed by Projection

	5 Typing System with Crash-Stop Semantics
	5.1 Typing Rules
	5.2 Properties of Typed Sessions

	6 Teatrino: Generating Scala Programs from Protocols
	6.1 Specifying a Multiparty Protocol in Scribble
	6.2 Generating Scala Code from Scribble Protocols
	6.3 Generating Effpi Channels from Scribble Protocols

	7 Evaluation
	8 Related Work
	9 Conclusion and Future Work

	p002-Bauwens
	1 Introduction
	2 Background
	3 Nesting Pure Operation-Based CRDTs
	3.1 Extending the Pure Operation-Based Framework
	3.1.1 Keeping Track of Nested Data Structures
	3.1.2 Updating Individual Nested CRDTs
	3.1.3 Maintaining Consistency of Children by Targeted Causal Resets

	3.2 Formalised Semantics for Extended Functionality
	3.3 Nested Pure Operation-Based Maps
	3.4 Discussion

	4 Implementation
	4.1 Nesting in Flec
	4.2 Implementing Nested CRDTs in Flec

	5 Validation
	5.1 Verification with VeriFx
	5.2 Portfolio of Nested CRDTs in Flec
	5.3 Use-Case: A Mixed CRDT-Based Distributed Filesystem
	5.4 Evaluation of Network Traffic in Comparison With Automerge
	5.4.1 Experiment A: File Creation and Writing
	5.4.2 Experiment B: User, Group, and File Creation, and Configuration
	5.4.3 Experimental Evaluation: Conclusion

	6 Related Work
	7 Conclusion
	A DFS Code Listings

	p003-Bianchini
	1 Introduction
	2 Algebraic preliminaries
	3 Resource-aware semantics
	4 Graded Featherweight Java
	5 Combining grades
	6 Grades as Java expressions
	7 Related work
	8 Conclusion

	p004-BotelhoGuerra
	1 Introduction
	2 Background
	2.1 Petri nets
	2.2 SyPet, Hoogle+ and Synthesis via Petri-net reachability

	3 Unification via Symbolic Execution
	3.1 Syntax
	3.2 Inference rules
	3.2.1 Unifying symbolic variables with expressions
	3.2.2 Unifying data constructors
	3.2.3 Unifying case expressions with expressions
	3.2.4 Unifying lambda-abstractions applications with expressions
	3.2.5 Unifying applications of symbols with expressions
	3.2.6 Unifying applications of polymorphic abstractions with expressions

	3.3 Lazyness
	3.4 Implementation

	4 Extension to Hoogle+: Hoogle*
	4.1 The wildcard component
	4.2 Replacing occurrences of the wildcard component
	4.2.1 The Complete function
	4.2.2 The synthesizer for lambda-abstractions

	5 Evaluation
	5.1 Evaluation Design
	5.2 Results
	5.3 Answers to Research Questions

	6 Related Work
	6.1 Program Synthesis
	6.2 Unification and Symbolic Execution

	7 Limitations
	8 Conclusion

	p005-Brandl
	1 Introduction
	2 Introduction to WebAssembly and Problem Statement
	3 Modular Wasm Analyses in a Nutshell
	4 Decomposing Language Concerns of WebAssembly
	4.1 Values
	4.2 Effects
	4.3 Summary

	5 Modularly Defined Analyses for Wasm
	5.1 Type Analysis
	5.2 Constant Propagation Analysis
	5.3 Taint Analysis
	5.4 Most General Client for Wasm Modules

	6 A Scalable Framework for Abstract Definitional Interpretation
	7 Evaluation
	8 Related Work
	9 Conclusion

	p006-Castro-Perez
	1 Introduction
	2 Overview of GoScr
	3 Dynamically Updatable Unbounded Multiparty Session Protocols
	3.1 Global Types of DMst
	3.2 Asynchronous Semantics of DMst Global Types
	3.3 Local Types
	3.4 Semantics of DMst Local Types and Correctness

	4 GoScr Code Generation
	4.1 Linearity and CFSM Code Generation
	4.2 Example of Generated Go Code

	5 Evaluation
	5.1 Runtime Overhead of GoScr
	5.2 Use Cases
	5.3 Expressiveness

	6 Related Work
	7 Conclusion and Future Work

	p007-Cruz-Filipe
	1 Introduction
	2 Background
	3 Endpoint Projection (EPP) for finite Chorlambda
	3.1 Process Language
	3.2 Endpoint Projection (EPP)

	4 Recursion
	4.1 Definitions
	4.2 Out-of-order execution
	4.3 Properties

	5 EAP
	6 Related Work
	7 Conclusion and Future Work
	A Full definitions and proofs
	A.1 Proof of Theorem 25
	A.2 Proof of Theorem 26

	p008-DeMuijnck-Hughes
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 A Syntax for Netlists
	3 A Structural Type-System
	3.1 Types and Contexts
	3.2 Typing Rules
	3.3 Wire-(Un)Safety
	3.3.1 Graphs for Hardware
	3.3.2 Well-Typed Circuits are Valid Hardware Graphs
	3.3.3 Proof Sketch

	3.4 Towards True Wire-Safety

	4 A Sub-Structural Type-System
	4.1 Types and Usages
	4.2 New Syntax for Indexing
	4.3 Typing Rules
	4.4 Wire-Safety

	5 Weakening Linearity for Free with new Gates
	6 Mechanisation and Realisation in a Dependently-Typed Language
	7 Evaluation
	8 Related Work
	8.1 Formal Models of Verilog
	8.2 BlueSpecVerilog
	8.3 High-Level Synthesis
	8.4 Cava
	8.5 Formal Models for High-Level Synthesis

	9 Conclusion

	p009-DePorre
	1 Introduction
	2 Motivation
	2.1 Design and Implementation
	2.2 Verification
	2.3 Deployment

	3 The VeriFx Language
	3.1 Overall Architecture
	3.2 Syntax
	3.3 Functional Collections

	4 Automated Verification
	4.1 Core SMT
	4.2 Compiling VeriFx to SMT
	4.3 Deriving Proof Obligations
	4.4 Encoding Functional Collections Efficiently in SMT

	5 Implementing and Verifying Replicated Data Types
	5.1 CRDT Library
	5.1.1 State-based CRDTs
	5.1.2 Delta state-based CRDTs
	5.1.3 Op-based CRDTs
	5.1.4 Pure op-based CRDTs

	5.2 OT Library
	5.3 Encoding RDT-Specific Assumptions

	6 Evaluation
	6.1 Verifying Conflict-free Replicated Data Types
	6.1.1 Map CRDTs
	6.1.2 Conclusion

	6.2 Verifying Operational Transformation

	7 Discussion
	8 Related Work
	9 Conclusion
	A VeriFx's Type System
	B Core SMT Expressions
	C Compiler Semantics
	C.1 Compiling Expressions
	C.2 Compiling Sets
	C.3 Compiling Maps
	C.4 Compilation Example

	D Verification of the Buggy Map CRDT
	D.1 Original Specification
	D.2 Implementation in VeriFx
	D.3 Verification in VeriFx

	E Verification of the MWS Set

	p010-Dietrich
	1 Introduction
	2 Approach
	3 Capture
	3.1 Driver Selection
	3.2 Instrumentation
	3.3 Capturing Context
	3.4 Example
	3.5 Deduplication
	3.6 Limitations

	4 Sanitisation
	4.1 Scope Sanitisation
	4.2 Negative Test Sanitisation
	4.3 Shaded Dependency Sanitisation
	4.4 Deprecation Sanitisation

	5 Propagation
	5.1 Limitations
	5.2 Sanitisation vs Propagation Fixpoint

	6 Annotation Injection
	7 Evaluation
	7.1 Dataset
	7.2 Capture
	7.3 Research Questions
	7.4 How does nullability observed during test execution compare to existing @Nullable annotations ? [RQ1]
	7.5 Can sanitisation techniques improve the precision of @Nullable annotation inference ? [RQ2]
	7.6 Can propagation improve the recall of @Nullable annotation inference ? [RQ3]
	7.7 Does the repeated application of sanitisation and propagation reach a fixpoint ? [RQ4]
	7.8 False False Positives
	7.9 Comparison with Purely Static Inference

	8 Related Work
	8.1 Migration
	8.2 Static Checking

	9 Conclusion

	p011-Fan
	1 Introduction
	2 Motivation
	3 A Core Language for SuperOOP
	3.1 SuperOOP Core Concepts
	3.2 Formal Syntax
	3.3 Static Semantics
	3.4 Dynamic Semantics
	3.5 Metatheory

	4 Discussion and Related Work
	4.1 Expressiveness and Limitations
	4.2 Implementation of SuperOOP in MLscript
	4.3 Solutions to the Expression Problem
	4.4 Modeling Inheritance and Reuse

	5 Conclusion and Future Work

	p012-Haas
	1 Introduction
	2 LoRe in a Nutshell
	2.1 Reactives
	2.2 Interactions
	2.3 Invariants and Conflicts

	3 Implementation
	3.1 Graph Analysis
	3.2 Automated Verification
	3.3 Synchronization at Runtime

	4 Evaluation
	4.1 Does LoRe facilitate the development of safe local-first software?
	4.1.1 Local-first TPC-C
	4.1.2 Yjs-based Calendar

	4.2 Does LoRe enable efficient and modular verification of safety properties?

	5 Related Work
	5.1 Consistency Through Distributed Data Types
	5.2 Automated Reasoning about Consistency Levels
	5.3 Language Abstractions for Data Consistency

	6 Conclusion and Future Work

	p013-Jin
	1 Introduction
	2 A Featherweight Language for Task-Parallel Programs with Promises
	2.1 Language Syntax
	2.2 Runtime State
	2.3 Small-step Operational Semantics

	3 Proof of Determinism
	4 DRDP Race Detection Algorithm
	4.1 DRDP Reachability Data Structures
	4.2 DRDP Task Scheduling and Shadow Memory
	4.3 Algorithm
	4.4 Optimizations
	4.4.1 Adaptive Selection of Graph Traversal Order
	4.4.2 Redundant Check Elimination

	5 Evaluation
	5.1 DRDP Implementation
	5.2 Correctness Evaluation
	5.3 Performance Evaluation Benchmarks and Setup
	5.4 Performance Evaluation Results
	5.5 Performance Optimization: Graph Traversal Order
	5.6 Performance Optimization: Redundant Check Elimination
	5.7 Comparison with ThreadSanitizer

	6 Related Work
	7 Conclusions
	A Proof

	p014-Kuessner
	1 Introduction
	2 State of the Art and Problem Statement
	2.1 Systems for Distributed Workflows
	2.2 Replicated Data Types in Geo-replicated Data Stores
	2.3 Building Blocks for Algebraic Replicated Data Types

	3 Algebraic Replicated Data Types
	3.1 Programming and Replicating ARDTs
	3.2 Lattice Composition
	3.2.1 Provided and Custom Lattice Instances
	3.2.2 Derived Lattice Instances

	3.3 Qualitative Assessment of Design Features

	4 Encrypting ARDTs
	4.1 Pruning Subsumed States
	4.2 Pruning Encrypted Deltas
	4.3 Security Assessment

	5 Coordination-free Encrypted ARDTs
	5.1 The Study Setup
	5.2 Coordination-free Generation of Nonces for AEAD
	5.2.1 Selecting Nonces by Space Partitioning
	5.2.2 Selecting Fully Random Nonces
	5.2.3 Nonce Misuse-resistant AEAD Schemes

	6 Evaluation
	6.1 Case Study
	6.2 Microbenchmarks

	7 Related Work
	8 Conclusions and Future Work
	A Appendix
	A.1 Map Merge is Correct
	A.2 Derived Product Merge Implementation
	A.3 Derived Product Merge is Correct
	A.4 Naive encARDT is Transparent
	A.5 Subsuming encARDT is Transparent
	A.6 Case Study with Trusted Intermediary

	p015-Kuhn
	1 Introduction
	2 Asymmetric Replicated State Machines
	2.1 From TypeScript to automata
	2.2 Commands execution and events consumption
	2.3 Swarms and log-shipping
	2.4 Formalisation

	3 Tool support
	3.1 Execution of compiled machines
	3.2 Enforcing typing at run-time
	3.3 Type-checking, simulation and more

	4 Swarm protocols
	5 Projection
	6 Well-formedness
	6.1 On causality and propagation
	6.2 On distributed choices
	6.3 On interference
	6.4 Putting the pieces together

	7 Correct Realisations of swarm protocols
	7.1 Eventual fidelity
	7.2 Implementation correctness by projection
	7.2.1 Projections and effective types
	7.2.2 Characterisation of the logs admitted by a protocol
	7.2.3 Realisations are faithful

	7.3 Implementation completeness

	8 Related work
	9 Final Remarks

	p016-Li
	1 Introduction
	2 Background
	2.1 The Hardware Platform
	2.2 The Software Program
	2.2.1 The Original Program
	2.2.2 Dividing into Two Parts
	2.2.3 Challenges in Optimization
	2.2.4 The Optimized Program

	3 Overview of Our Method
	3.1 The Top-Level Procedure
	3.2 The Technical Challenges

	4 Identifying the Precomputation Set
	4.1 Inter-Procedural Dependencies
	4.2 Iteratively Computing preSet
	4.2.1 Handling Loops

	5 Optimizing the Precomputation Set
	5.1 The Motivation
	5.2 The Problem Statement
	5.3 Defining the Value and Cost Functions
	5.3.1 Value
	5.3.2 Cost

	5.4 Symbolic Encoding of the Constraints
	5.4.1 Dependency Constraint
	5.4.2 Value Constraint
	5.4.3 Cost Constraint

	5.5 Solving the Constraints

	6 Transforming the Program
	6.1 The Terminology
	6.2 The Problem
	6.3 The Baseline Method
	6.4 The Optimized Method
	6.5 The Transformation Algorithm

	7 Experiments
	7.1 Benchmarks
	7.2 Performance of the Optimization Tool
	7.3 Performance of the Optimized Programs
	7.4 Impact of the Precomputation Policy

	8 Related Work
	9 Conclusion

	p017-Madsen
	1 Introduction
	2 Motivation
	2.1 Summary

	3 Restrictable Variants
	3.1 Syntax and Semantics
	3.2 Type System
	3.3 Uninhabited Types
	3.4 Meta Theory
	3.5 Type Inference
	3.6 Subtyping
	3.7 A Few Practical Aspects

	4 Implementation
	5 Expressiveness and Comparison to Other Systems
	5.1 Row Polymorphism à la Wand, Gaster and Jones, and Leijen
	5.2 Occurrence Typing à la Castagna
	5.3 Relational Nullable Types à la Madsen et al.
	5.4 Summary

	6 Case Studies
	6.1 Case Study: Boolean Expressions
	6.2 Case Study: Option, List, and NonEmptyList
	6.3 Case Study: Restrictable Variants, Extensible Records
	6.4 Pretty Printing Types with Lower– and Upper Bounds

	7 Related Work
	8 Conclusion

	p018-Madsen
	1 Introduction
	2 Motivation
	2.1 A Word & Line Count Program
	2.2 Streams: An Unsound Solution
	2.2.1 Java
	2.2.2 Scala

	2.3 Proposed Solution

	3 Purity Reflection
	3.1 A Minimal Calculus
	3.2 Type and Effect System
	3.3 Effect Polymorphism
	3.4 Purity Reflection with ReifyEff
	3.4.1 Correctness

	3.5 Fine-Grained Purity and the Poisoning Problem
	3.6 Purity Reflection: A Sweet Spot

	4 Four New Data Structures
	4.1 From List to LazyList to DelayList
	4.1.1 From List to LazyList
	4.1.2 From LazyList to DelayList

	4.2 From Set to Parallel Set
	4.3 From Map to Parallel Map
	4.4 From Map and ParallelMap to DelayMap
	4.4.1 Example I
	4.4.2 Example II

	4.5 Summary

	5 Compilation Strategies
	5.1 Runtime Dispatch
	5.2 Effect-Aware Monomorphization
	5.3 Discussion

	6 Implementation
	6.1 The Flix Programming Language
	6.2 Integration with Type Classes

	7 Evaluation
	7.1 RQ1 and RQ2: Impact on compilation time and code size
	7.2 RQ3: How common are un-instantiated effect variables in practice?

	8 Related Work
	8.1 Type and Effect Systems
	8.2 Type Case and Effect Reflection
	8.3 Streams

	9 Conclusion

	p019-Maksimovic
	1 Introduction
	2 Exact Separation Logic by Example
	3 The Programming Language
	4 Exact Separation Logic
	4.1 Assertion Language
	4.2 Specifications
	4.3 Program Logic
	4.4 Soundness

	5 Examples: ESL in Practice
	5.1 List Predicates
	5.2 Writing UX/EX Abstract Specifications
	5.3 More ESL Proofs: Iterative list-length
	5.4 Beyond List Examples: Binary Search Trees

	6 Related Work
	7 Conclusions

	p020-Mishra
	1 Introduction
	2 Motivation and Morpheus Overview
	2.1 Morpheus Surface Language
	2.2 Specifying Data-dependent Parser Properties
	2.2.1 Specifying effectful safety properties
	2.2.2 Verification using Morpheus

	3 Morpheus Syntax and Semantics
	3.1 Morpheus Syntax
	3.2 Semantics

	4 Typing lambda_{sp} Expressions
	4.1 Specification Language
	4.2 Typing Base Expressions
	4.3 Typing Parser Expressions
	4.4 Properties of the Type System

	5 Evaluation
	5.1 Implementation
	5.2 Results and Discussions
	5.2.1 Annotation overhead vs inference

	5.3 Case Study: Indentation Sensitive Parsers
	5.3.1 Revisiting the Bug in the Example

	6 Related Work
	7 Conclusions

	p021-Moeller
	1 Introduction
	2 The MAT framework
	2.1 Strings, Languages, and Automata
	2.2 L^{*}: Data Structures
	2.3 L* learner
	2.4 L^{*} Example

	3 The iMAT Framework
	4 L^{*}_Box: an iterative iMAT Learner
	4.1 L^{*}_Box Example

	5 Correctness of L^{*}_Box
	6 Weakening the Teacher: iMAT with Distinguish
	7 Correctness of L^{*}_Box with Distinguish
	7.1 A Landscape of Teacher Queries

	8 Implementation
	8.1 Optimizations

	9 Evaluation
	9.1 Evaluation of optimizations

	10 Related Work
	11 Discussion
	A Another L^{*}_Box Example

	p022-Nieto
	1 Introduction
	1.1 Denotational Specifications
	1.2 Verifying with Denotations
	1.3 Contributions

	2 Aneris Primer
	3 Main Ideas
	4 Background: CRDTs in Separation Logic
	4.1 Time, Events, and Denotations
	4.2 Separation Logic Resources

	5 StateLib : a Library for Implementing State-Based CRDTs
	6 Specifying StateLib
	6.1 Internal Interface
	6.2 External Interface

	7 Verifying StateLib
	7.1 State-Transition System Model
	7.2 Safety Invariants
	7.3 Separation Logic Encoding
	7.4 Safety Proof

	8 Verified CRDTs
	9 Related Work
	10 Conclusions

	p023-Olivieri
	1 Introduction
	2 Preliminaries: Go and Blockchain
	2.1 Blockchain Environments
	2.2 Blockchain Consensus

	3 Non-Deterministic Behaviors in Blockchain Software: Sources and Sinks
	3.1 Sources of Non-Determinism
	3.2 Sinks of Non-Determinism
	3.2.1 Hyperledger Fabric APIs for Go
	3.2.2 Tendermint Core APIs for Go
	3.2.3 Cosmos SDK APIs

	4 Information Flow Analysis for Non-Determinism Detection
	4.1 An Overview on Information Flow
	4.1.1 Non-Interference
	4.1.2 Taint Analysis

	4.2 The GoLiSA Static Analyzer
	4.3 GoLiSA for Non-Deterministic Behaviors Detection
	4.4 Detection of Sources and Sinks in GoLiSA

	5 Experimental Evaluation
	5.1 Quantitative Evaluation
	5.1.1 Comparison

	5.2 Qualitative Evaluation
	5.2.1 Explicit Flow: the Boleto Contract
	5.2.2 Implicit Flow: Cosmos SDK v.43

	5.3 Limits

	6 Related Work
	7 Conclusion

	p024-Ramos
	1 Introduction
	2 Overview
	2.1 Tool-Specific vs. Tool-Independent Symbolic Summaries
	2.2 Bounded Verification of Symbolic Summaries

	3 Symbolic Reflection API
	3.1 Formal Semantics
	3.2 Summary Correctness Properties
	3.3 Modelling LIBC Functions
	3.4 Reflection API Implementation

	4 SumBoundVerify: Bounded Verification of Symbolic Summaries
	4.1 Bounded Summary Verification Algorithm
	4.2 Automatic Symbolic Test Generation

	5 Evaluation
	5.1 EQ1: API Expressivity
	5.2 EQ2: Performance of Tool Independent Summaries
	5.3 EQ3: Bugs in Symbolic Execution tools

	6 Related Work
	7 Conclusions

	p025-Richter
	1 Introduction
	2 Overview
	2.1 Monadic, Applicative, Mixed and Direct Style Notations
	2.2 Discussion
	2.3 From Laws to a Rewrite System
	2.4 Translation

	3 Mechanisation
	3.1 Definitions
	3.2 Proof

	4 Implementation
	5 Related work
	6 Conclusion

	p026-Rumsevicius
	1 Introduction
	2 Background
	2.1 Dynamic Software Updating (DSU)
	2.2 Multi-Version eXecution (MVX)
	2.3 JavaScript Messages, Event-Loop, and Non-Determinism

	3 Sinatra Design
	3.1 Sinatra Architecture
	3.2 DSU with Sinatra
	3.3 Intercepting Events
	3.4 Intercepting Asynchronous Non-Determinism
	3.5 Multi-Version Execution in JavaScript

	4 Implementation
	4.1 Coordinator and Protocol
	4.2 Serializing/Deserializing Events and Bubbling
	4.3 Stateful DOM Elements and Text Selection

	5 Practical Considerations and Limitations
	6 Experimental Evaluation
	6.1 Applications and Workloads
	6.2 Sinatra Latency
	6.3 Log sizes
	6.4 Sinatra scalability
	6.5 Browser updates with Sinatra
	6.5.1 Log processing time
	6.5.2 Time taken to promote follower
	6.5.3 Time to perform an update

	6.6 XML HTTP Request support
	6.7 Using Sinatra as an MVX system
	6.8 Using Sinatra on realistic webpages

	7 Related Work
	8 Conclusions and Future Work

	p027-Shahrokhi
	1 Introduction
	2 Background and Related Work
	3 Architecture
	3.1 Hash-Table Structure
	3.2 High-Level API

	4 Design
	4.1 Parallel Processing
	4.2 SIMD-Awareness
	4.3 Prefetching and Its Adaption Challenges

	5 Use Cases
	5.1 Relational Hash Join
	5.2 Set Operations
	5.3 Sparse Vector Operations

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 Benchmarks

	8 Conclusion and Future Work

	p028-Shaikhha
	1 Introduction
	2 Monoid Dictionary
	2.1 Monoid
	2.2 Equalable
	2.3 Dictionary Interface
	2.4 Iterations over Dictionaries

	3 Ordered Dictionary
	3.1 Orderable
	3.2 Ordered Dictionary Interface
	3.3 Iterations over Ordered Dictionaries
	3.3.1 Sequential Iterations
	3.3.2 Parallel Iterations

	4 Hinted Dictionary
	4.1 Hinted Dictionary Interface
	4.2 Hint Operations

	5 Iterations
	5.1 Sequential Implementation
	5.1.1 Example: Sparse Vector Inner Product

	5.2 Parallel Implementation
	5.2.1 Example: Set-Set Union

	6 Bulk Operations
	6.1 Insert-Based Hinted Dictionaries
	6.2 Join-Based Hinted Dictionaries

	7 Hint Implementation
	7.1 Focus-Based Hints
	7.2 Focus-Based Hinted Dictionaries

	8 Concrete Implementations
	8.1 Sorted Array
	8.2 Unbalanced trees
	8.3 Balanced trees
	8.4 Putting It All Together

	9 Evaluation
	9.1 Tuned Implementation in C++
	9.2 Experimental Results

	10 Conclusion and Outlook

	p029-Silver
	1 Introduction
	2 Background
	2.1 Information-Flow Control
	2.2 Basic Definitions for Interaction Trees
	2.3 Semantics for Imp with Security Labels
	2.4 Handlers and Interpretations
	2.5 Inlined Asm and Undefined Behavior
	2.6 Weak Bisimulation

	3 Exceptions with Interaction Trees
	3.1 Exceptions as Halting Events
	3.2 Catching Exceptions

	4 Indistinguishability of Interaction Trees
	4.1 Secure Equivalence Up-To Taus
	4.2 The Metatheory of Indistinguishability
	4.3 Progress-Insensitive Indistinguishability
	4.4 Noninterference and Interpretation

	5 Security Sensitive Type Systems For Imp
	5.1 Two Type Systems
	5.2 Proving Security
	5.3 Semantic Typing and Inline Asm

	6 Preserving Noninterference Across Compilation
	6.1 Asm, Its Semantics, and the Compiler
	6.2 Compiler Correctness
	6.3 Compiler Security

	7 Related Work
	8 Conclusion

	p030-Silver
	1 Introduction
	2 Background
	2.1 Equivalence up to Tau
	2.2 Mutually Recursive Computations

	3 Specification Extraction with Heapster
	4 ITree Specifications and Refinement
	4.1 ITree Specification Refinement
	4.2 Padded ITrees
	4.3 Padded Refinement Meta Theory
	4.4 ITree specification Incompleteness

	5 Total Correctness Specifications
	5.1 Demonstration

	6 Automation and Evaluation
	6.1 Auto-active Verification
	6.2 Evaluation

	7 Related Work
	8 Conclusion

	p031-Starup
	1 Introduction
	2 Motivation
	2.1 Stratified Negation

	3 Background
	3.1 Datalog
	3.1.1 Syntax
	3.1.2 Semantics

	3.2 Stratified Negation
	3.3 First-Class Datalog Constraints
	3.3.1 Syntax
	3.3.2 Type System

	3.4 The Problem: Stratification and First-Class Constraints

	4 Dependency Graph Types: A Purely Type-based Approach
	4.1 Discussion

	5 Labelled Dependency Graph: A Hybrid Approach
	5.1 Design Choice 1: Granularity of the Labelled Dependence Graph
	5.1.1 Degenerate
	5.1.2 Source and Destination Granularity
	5.1.3 Rule-level Granularity
	5.1.4 Datalog Value-level Granularity
	5.1.5 Summary

	5.2 Design Choice 2: Enriched Labelling and Type Filtering
	5.2.1 Predicate Symbol Arity
	5.2.2 Predicate Term Types
	5.2.3 Relational and Lattice Predicate Symbols

	5.3 Choice 3: Stratify With or Without Monomorphization

	6 The Fix Modifier, Lattice Semantics, and Stratification
	7 Implementation
	7.1 The Original Flix Implementation
	7.2 Our Flix Extension
	7.3 Implementation Details
	7.4 When a Program Does Not Stratify
	7.5 The Motivating Example, Revisited

	8 Case Study: A Small Graph Library in Flix
	9 Related Work
	9.1 First-class Datalog
	9.2 Negation and Aggregation Semantics
	9.3 Datalog Extensions

	10 Conclusion

	p032-Stutz
	1 Introduction
	2 Multiparty Session Types
	3 Projection – From Global to Local Types
	4 Implementability for Global Types from MSTs is Decidable
	4.1 High-level Message Sequence Charts
	4.2 Implementability is Decidable

	5 MSC Techniques for MST Verification
	6 Implementability with Intra-role Reordering
	7 Related Work
	8 Conclusion

	p033-Suchert
	1 Introduction
	2 Programming for Scalability: Decompose and Recompose
	3 The ConDRust programming model
	3.1 The Labyrinth benchmark
	3.2 Concurrent Labyrinth
	3.2.1 Threads/STM
	3.2.2 ConDRust

	4 [width = 0.03width]{figures/rust.png}_{s}– A subset of Rust for sequential composition
	5 Compiling ConDRust algorithms to dataflow
	5.1 From sequential-imperative to parallel-functional dataflow
	5.2 Dynamic data parallelism in a static dataflow
	5.3 Amorphous data parallelism

	6 [width = 0.03width]{figures/rust.png}_{p}– A subset of Rust for parallel composition
	7 Implementation
	8 Evaluation
	8.1 Benchmark study
	8.2 Beyond data parallelism
	8.3 Case study: Key-value store

	9 Related work
	10 Conclusion and Future Work
	A Evaluation
	A.1 Configurations
	A.2 Programmability Comparison

	B [width = 0.03width]{figures/rust.png}_{s}– A subset of Rust for sequential composition
	B.1 Syntax
	B.2 Operational Semantics
	B.3 Type system

	C [width = 0.03width]{figures/rust.png}_{p}– A subset of Rust for parallel composition
	C.1 Linear dataflow construction
	C.2 Operational semantics
	C.3 Determinism

	p034-Tan
	1 Introduction
	2 Overview
	2.1 Background
	2.2 Limitations of Non-Dependent Merges
	2.3 Key Ideas

	3 The E-i Calculus
	3.1 Syntax
	3.2 Subtyping and Disjointness
	3.3 Bidirectional Typing
	3.4 Semantics

	4 Determinism and Type Soundness
	4.1 Determinism
	4.2 Progress and Preservation

	5 Encoding of Lambda-i
	5.1 Syntax
	5.2 Type-Directed Translation of Lambda-i to E-i

	6 Related Work
	7 Conclusion
	A Some Relations
	A.1 Algorithmic Disjointness
	A.2 Top-like Types
	A.3 Value Generator

	B Fixpoints

	p035-VanGeffen
	1 Introduction
	2 Overview
	2.1 Log-structured storage systems
	2.2 Dependency rule synthesis

	3 Reasoning About Crash Consistency
	3.1 Disk Model and Dependency Rules
	3.1.1 Dependency rules
	3.1.2 Dependency-aware buffer cache

	3.2 Storage Systems and Litmus Tests
	3.2.1 Storage system implementations
	3.2.2 Litmus tests
	3.2.3 Crash consistency predicates

	3.3 Reasoning About Crashes
	3.3.1 Write operations
	3.3.2 Program executions

	4 Dependency Rule Synthesis
	4.1 Problem Statement
	4.2 The DepSynth Algorithm
	4.3 Synthesizing Dependency Rules with Happens-Before Graphs
	4.3.1 Total order search
	4.3.2 Partial order search
	4.3.3 Generating rules from happens-before graphs
	4.3.4 Properties of RulesForTest

	4.4 Resolving Cycles in Dependency Rules

	5 Implementation
	5.1 Ordering
	5.2 Reducing solver queries

	6 Evaluation
	6.1 ShardStore Case Study
	6.1.1 Implementation
	6.1.2 Synthesis
	6.1.3 Comparison to an existing implementation
	6.1.4 Generalization

	6.2 Crash-Consistency Bugs
	6.3 Other Storage Systems

	7 Related Work
	7.1 Verified storage systems
	7.2 Crash-consistency bug-finding tools
	7.3 Program synthesis for systems code

	8 Conclusion

	p036-Wang
	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 Synthesizing Conjunctive Queries

	3 Problem Formulation
	3.1 Program Relational Representation
	3.2 Conjunctive Queries
	3.3 Multi-modal Conjunctive Query Synthesis Problem

	4 Conjunctive Query Synthesis: A Graph Perspective
	4.1 Schema Graph
	4.2 Query Graph
	4.3 Summary

	5 Synthesis Algorithm
	5.1 Representation Reduction
	5.1.1 Dummy Relations
	5.1.2 Removing Dummy Relations

	5.2 Bounded Refinement
	5.2.1 Bounded Query and Refinable Query
	5.2.2 Enumerating Query Candidates via Refinement

	5.3 Candidate Selection
	5.3.1 Dual Quantitative Metrics
	5.3.2 Blending Selection with Refinement

	5.4 Summary

	6 Implementation
	7 Evaluation
	7.1 Overall Effectiveness
	7.2 Ablation Study on Efficiency
	7.3 Impact of Selection
	7.4 Comparison with Existing Techniques
	7.5 Discussion

	8 Related Work
	9 Conclusion

	p037-Yee
	1 Introduction
	2 Background
	2.1 Type Migration vs. Type Inference
	2.2 Deep-Learning-Based Type Annotation Prediction
	2.2.1 DeepTyper
	2.2.2 LambdaNet
	2.2.3 InCoder
	2.2.4 Evaluating on Accuracy

	3 Approach
	3.1 CommonJS to ECMAScript Module Conversion
	3.2 Type Annotation Prediction
	3.2.1 InCoder

	3.3 Type Weaving
	3.3.1 DeepTyper
	3.3.2 LambdaNet

	3.4 Type Checking

	4 Evaluation
	4.1 Dataset
	4.2 Success Rate of Type Checking
	4.3 Error Analysis
	4.4 ECMAScript Module Conversion
	4.5 Case Studies
	4.5.1 Error Message Does Not Refer to Incorrect Type Annotation
	4.5.2 Incorrect Type Annotation Can Type Check Successfully
	4.5.3 Run-Time Type Assertions
	4.5.4 Variable Used as Two Different Types

	5 Discussion
	6 Related Work
	7 Conclusion

	p038-Bhatia
	1 Introduction
	2 Overview
	3 Framework
	3.1 Analysis
	3.2 Verification Condition Generation
	3.3 MTL
	3.4 Expressing Verification Conditions in MTL
	3.5 Expressing Target DSLs in MTL
	3.6 Describing Search Space for Synthesis
	3.7 Synthesis
	3.8 Verification
	3.8.1 Leveraging Additional Axioms

	3.9 Code Generation

	4 Evaluation
	4.1 Case Study: Spark
	4.2 Case Study: Domino
	4.3 Case Study: Vector Operations

	5 Related Work
	6 Conclusion and Future Work

	p039-Harris
	1 Introduction
	2 Background
	2.1 Rust
	2.1.1 Move and Drop
	2.1.2 References and lifetimes
	2.1.3 unsafe

	2.2 The Rust Compiler
	2.3 Capability hardware
	2.3.1 Morello prototype

	3 Adjustments to the Rust compiler and standard library
	3.1 Rust semantics open question: usize
	3.2 Target specification
	3.3 Constant evaluation
	3.4 Pointer code generation
	3.5 Tweaks to LLVM
	3.6 MPSC
	3.7 FFI types

	4 Performance analysis methodology
	4.1 Test hardware
	4.2 Operating system
	4.3 Disabling bounds checking
	4.4 cargo bench
	4.5 Line counts
	4.6 Test suites

	5 Results
	5.1 The cost of software bounds checking
	5.2 The cost of hardware bounds checking
	5.3 Benchmarks
	5.4 Validity of results
	5.4.1 Prototype hardware
	5.4.2 Choice of benchmark suite

	6 Related Work
	6.1 Rust and type-safe systems programming
	6.2 Prior work porting Rust to CHERI
	6.3 Bounds checking

	7 Future work
	8 Conclusions
	A Test suite

	p040-Mota
	1 Introduction
	2 Background
	2.1 VeriFast
	2.2 VerCors
	2.3 Plural
	2.4 KeY

	3 Experiments
	3.1 Running examples
	3.2 File reader specification
	3.3 Linked-list and iterator specifications
	3.4 RQ evaluation

	4 General assessment of the tools
	5 Related work
	6 Conclusions

	p041-Henniger
	1 Introduction
	1.1 Motivation
	1.2 Idea
	1.3 Structure

	2 Design
	2.1 Definition
	2.2 Two languages
	2.3 Design Goals
	2.3.1 Lower, don't evaluate
	2.3.2 Macros are special cases of lowering
	2.3.3 Give macros explicit control over code generation
	2.3.4 Give macros access to the entire language
	2.3.5 Keep the base language as small as possible

	2.4 Secondary principles
	2.4.1 Limit barriers
	2.4.2 Do not prescribe a model of execution
	2.4.3 Layers are sets of overridden macros
	2.4.4 At global scope, everything is a macro
	2.4.5 Use S-expressions

	3 Concepts
	3.1 Compile-time function execution
	3.2 Heterogeneous staging

	4 dolorem-c: Implementation with C Target
	4.1 The lower macro
	4.2 Macros in the base language
	4.3 Marking a function as a macro
	4.4 Implementing base language macros
	4.5 Writing functions in the base language
	4.6 Example macro 1: defun
	4.7 Example macro 2: var
	4.8 Language usage example: Hello, world in a loop
	4.9 Different types of transformations
	4.10 Example macro 3: Arithmetic operators
	4.11 Macro Overriding
	4.12 Overriding Example: Location hints
	4.13 Layers
	4.14 Layer Example: Function overloading
	4.15 Implementing optimizations

	5 Discussion of the C implementation
	5.1 Code size
	5.2 Scope
	5.3 Generated code
	5.4 Run-time overhead
	5.5 Compile speed

	6 Implementation with LLVM Target
	6.1 The lower macro
	6.2 Functions
	6.3 Language usage: Compiling code
	6.4 Precompilation
	6.5 Optimizations

	7 Discussion of the LLVM implementation
	7.1 More powerful language
	7.2 Code size
	7.3 Run-time overhead
	7.4 Compile speed

	8 Related Work
	9 Conclusion

	p042-Jongmans
	1 Introduction
	1.1 Open Question: Regular Expressions as Global/Local Types
	1.2 Contributions of This Paper

	2 Overview of the Techniques
	2.1 Sub-Regular Grammars
	2.2 Regular Grammars

	3 Sub-Regular Grammars
	3.1 Global Types – Syntax
	3.2 Global Types – Operational Semantics
	3.3 Main Result 1: Well-Behavedness Implies Operational Equivalence
	3.4 Processes – Syntax
	3.5 Processes – Operational Semantics
	3.6 Main Result 2: Well-Typedness Implies Operational Refinement
	3.7 Safety and Liveness

	4 Regular Grammars
	5 Related Work
	6 Conclusion

	p043-Raglianti
	1 Introduction
	2 Dataset Creation and DwarvenMail
	2.1 Project Mining
	2.2 Tool Support: DwarvenMail
	2.3 Manual Annotation
	2.4 Parsing Links: Strategy & Heuristics
	2.5 Parsing README Histories
	2.6 Community Size
	2.7 Data Availability and Replication Package

	3 Documentation Landscape
	4 Modern Communication Platforms
	5 Coexistence and Competition
	6 Instant Messaging: A Deep Dive
	6.1 Gitter, Discord, and Slack: A Timeline
	6.2 Throughput and Volatility
	6.3 Community Sizes
	6.4 Different Projects, Same Community
	6.5 Technical, Social, and Ethical Challenges

	7 Threats to Validity
	8 Related Work
	9 Conclusions and Future Work

	p044-Roth
	1 Introduction
	1.1 Nominal Subtyping With Variance
	1.2 Subtyping Machines
	1.3 Subtyping Metaprogramming
	1.4 Contributions

	2 Python Subtyping is Undecidable
	2.1 Taming Python's Type System

	3 Type Reification and Infinite Subtyping in the Wild
	4 Real-Time Subtyping Machines
	5 Implementation and Performance Experiment
	6 Conclusions

