LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board
- Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
- Christel Baier (TU Dresden, DE)
- Mikolaj Bojanczyk (University of Warsaw, PL)
- Roberto Di Cosmo (Inria and Université de Paris, FR)
- Faith Ellen (University of Toronto, CA)
- Javier Esparza (TU München, DE)
- Daniel Král’ (Masaryk University - Brno, CZ)
- Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
- Anca Muscholl (University of Bordeaux, FR)
- Chih-Hao Luke Ong (University of Oxford, GB and Nanyang Technological University, SG)
- Phillip Rogaway (University of California, Davis, US)
- Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
- Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics
## Contents

Message from the Program Chairs
Karim Ali and Guido Salvaneschi ................................................ 0:ix

Message from the Artifact Evaluation Chairs
Stefan Winter and Hernan Luis Ponce de Leon ................................. 0:xi

Foreword by the President of AITO
Eric Jul ................................................................. 0:xiii

List of Authors ................................................................................. 0:xv

### Regular Papers

Designing Asynchronous Multiparty Protocols with Crash-Stop Failures
Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou ................. 1:1–1:30

Nested Pure Operation-Based CRDTs
Jim Bauwens and Elisa Gonzalez Boix ........................................... 2:1–2:26

Multi-Graded Featherweight Java
Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca ........ 3:1–3:27

Hoogle:\*: Constants and λ-abstractions in Petri-net-based Synthesis using Symbolic Execution
Henrique Botelho Guerra, João F. Ferreira, and João Costa Seco ............... 4:1–4:28

Modular Abstract Definitional Interpreters for WebAssembly
Katharina Brandl, Sebastian Erdweg, Sven Keidel, and Nils Hansen ............. 5:1–5:28

Dynamically Updatable Multiparty Session Protocols: Generating Concurrent Go Code from Unbounded Protocols
David Castro-Perez and Nobuko Yoshida ........................................... 6:1–6:30

Modular Compilation for Higher-Order Functional Choreographies
Luís Cruz-Filipe, Eva Graversen, Lovro Lugovič, Fabrizio Montesi, and Marco Peressotti ................................................................. 7:1–7:37

Wiring Circuits Is Easy as \{0, 1, ω\}, or Is It...
Jan de Muijnck-Hughes and Wim Vanderbauwhede ................................ 8:1–8:28

VeriFx: Correct Replicated Data Types for the Masses
Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix .......................... 9:1–9:45

On Leveraging Tests to Infer Nullable Annotations
Jens Dietrich, David J. Pearce, and Mahin Chandramohan ......................... 10:1–10:25

super-Charging Object-Oriented Programming Through Precise Typing of Open Recursion
Andong Fan and Lionel Parreaux ................................................... 11:1–11:28
LoRe: A Programming Model for Verifiably Safe Local-First Software
(Extended Abstract)
Julian Haas, Ragnar Mogk, Elena Yanakieva, Annette Bieniusa, and Mira Mezini
.............................................................................................. 12:1–12:15

Dynamic Determinacy Race Detection for Task-Parallel Programs with Promises

Algebraic Replicated Data Types: Programming Secure Local-First Software
Christian Kuessner, Ragnar Mogk, Anna-Katharina Wickert, and Mira Mezini ... 14:1–14:33

Behavioural Types for Local-First Software
Roland Kuhn, Hernán Melgratti, and Emilio Tuosto ...................... 15:1–15:28

Constraint Based Compiler Optimization for Energy Harvesting Applications
Yannan Li and Chao Wang ............................................................. 16:1–16:29

Restrictable Variants: A Simple and Practical Alternative to Extensible Variants
Magnus Madsen, Jonathan Lindegaard Starup, and Matthew Lutze ........... 17:1–17:27

Programming with Purity Reflection: Peaceful Coexistence of Effects, Laziness, and Parallelism
Magnus Madsen and Jaco van de Pol .............................................. 18:1–18:27

Exact Separation Logic: Towards Bridging the Gap Between Verification and Bug-Finding
Petar Maksimović, Caroline Cronjäger, Andreas Lööw, Julian Sutherland, and Philippa Gardner ......................................................... 19:1–19:27

Morpheus: Automated Safety Verification of Data-Dependent Parser Combinator Programs
Ashish Mishra and Suresh Jagannathan ........................................... 20:1–20:27

Automata Learning with an Incomplete Teacher
Mark Moeller, Thomas Wiener, Alaia Solko-Breslin, Caleb Koch, Nate Foster, and Alexandra Silva ............................. 21:1–21:30

Modular Verification of State-Based CRDTs in Separation Logic

Information Flow Analysis for Detecting Non-Determinism in Blockchain

Toward Tool-Independent Summaries for Symbolic Execution
Frederico Ramos, Nuno Sabino, Pedro Adão, David A. Naumann, and José Fragoso Santos ......................................................... 24:1–24:29

A Direct-Style Effect Notation for Sequential and Parallel Programs

Sinatra: Stateful Instantaneous Updates for Commercial Browsers Through Multi-Version eXecution
Ugnius Rumsevicius, Siddhant Venkateshwaran, Ellen Kidane, and Luís Pina .. 26:1–26:29
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Efficient Vectorized Hash Table for Batch Computations</td>
<td>Hesam Shahrokhi and Amir Shaikhha</td>
<td>27:1–27:27</td>
</tr>
<tr>
<td>Breaking the Negative Cycle: Exploring the Design Space of Stratification for First-Class Datalog Constraints</td>
<td>Jonathan Lindegaard Starup, Magnus Madsen, and Ondřej Lhoták</td>
<td>31:1–31:28</td>
</tr>
<tr>
<td>Asynchronous Multiparty Session Type Implementability is Decidable – Lessons Learned from Message Sequence Charts</td>
<td>Felix Stutz</td>
<td>32:1–32:31</td>
</tr>
<tr>
<td>ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs</td>
<td>Felix Suchert, Lissa Zeidler, Jeronimo Castrillon, and Sebastian Ertel</td>
<td>33:1–33:39</td>
</tr>
<tr>
<td>Dependent Merges and First-Class Environments</td>
<td>Jinhao Tan and Bruno C. d. S. Oliveira</td>
<td>34:1–34:32</td>
</tr>
<tr>
<td>Synthesis-Aided Crash Consistency for Storage Systems</td>
<td>Jacob Van Geffen, Xi Wang, Émina Torlak, and James Bornholt</td>
<td>35:1–35:26</td>
</tr>
<tr>
<td>Do Machine Learning Models Produce TypeScript Types That Type Check?</td>
<td>Ming-Ho Yee and Arjun Guha</td>
<td>37:1–37:28</td>
</tr>
<tr>
<td>Experience Papers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Code Transpilers for Domain-Specific Languages Using Program Synthesis</td>
<td>Sahil Bhatia, Sumer Kohli, Sanjit A. Seshia, and Alvin Cheung</td>
<td>38:1–38:30</td>
</tr>
<tr>
<td>Pearls/Brave New Ideas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Dolorem Pattern: Growing a Language Through Compile-Time Function Execution</td>
<td>Simon Henniger and Nada Amin</td>
<td>41:1–41:27</td>
</tr>
</tbody>
</table>
Contents

Synthetic Behavioural Typing: Sound, Regular Multiparty Sessions via Implicit Local Types
_Sung-Shik Jongmans and Francisco Ferreira_ ........................................ 42:1–42:30

On the Rise of Modern Software Documentation
_Marco Raglianti, Csaba Nagy, Roberto Minelli, Bin Lin, and Michele Lanza_ ...... 43:1–43:24

Python Type Hints Are Turing Complete
_Ori Roth_ .......................................................... 44:1–44:15
Message from the Program Chairs

Started in 1987, ECOOP is Europe’s oldest programming conference, welcoming papers on all practical and theoretical investigations of programming languages, systems and environment providing innovative solutions to real problems as well as evaluations of existing solutions. Papers were submitted to one of four categories: Research for papers that advance the state of the art in programming; Reproduction for empirical evaluations that reconstructs a published experiment in a different context in order to validate the results of that earlier work; Experience for applications of known techniques in practice; and Pearl for papers that either explain a known idea in an elegant way or unconventional papers introducing ideas that may take some time to substantiate. ECOOP is a selective venue, with acceptance, by tradition, capped at 25% of all submissions and re-submissions. The chairs thank the Program Committee: B. Hermann, C. Omar, E. Söderberg, G. Agha, R. Baghdadi, S. Chiba, A. Craik, W. De Meuter, A. F. Donaldson, S. J. Gay, J. Gibbons, T. Hosking, A. Igarashi, M. Luján, A. Milanova, A. Møller, K. Ostermann, T. Petricek, A. Potanin, T. Schrijvers, M. Serrano, T. Sotiropoulos, P. Thiemann, E. Tosch, V. T. Vasconcelos, Y. Wang, S. Wehr, T. Wrigstad, and C. Zhang. This year, we continued a number of innovations that were first introduced in 2022:

- **Multiple rounds.** ECOOP has two main rounds of submissions per year (Dec 1 and Mar 1). Each round supports both minor and major revisions. Major revisions are handled in the next round (either the same year or the next) by the same reviewers.

- **No format or length restrictions.** In order reduce friction for authors, papers can come in any format and at any length. This applies to submissions. Final versions must abide by the publisher’s requirements.

- **Artifacts and Papers together.** Every submitted paper can be accompanied with an artifact, submitted a few days after the paper. Both submissions are evaluated in parallel by overlapping committees as members of the artifact evaluation committee were invited to served on the conference review committee.

- **Journal First/Last.** Papers can be submitted either one of three associated journals and be invited to present at the meeting. Furthermore, some accepted papers can be forward to journals.

Overall, we found that most of these innovations to have worked well. We hope that future chairs will continue to experiment with more, and perhaps, different innovations that will enrich the ECOOP community further.

Karim Ali  
*Program Committee Co-chair*  
*University of Alberta*

Guido Salvaneschi  
*Program Committee Co-chair*  
*University of St. Gallen*
ECOOP has a long-standing tradition of offering artifact evaluation dating back to 2013. Following the process introduced in 2022, the artifact evaluation involved every single paper submission to ECOOP 2023, rather than just accepted papers, and happened in parallel with the paper review process. Besides providing feedback on the artifacts irrespective of paper acceptance, evaluation results were made available to the technical PC. Artifact submissions could, thus, provide more insights on the technical contributions described in the papers and help to improve the overall review process.

To handle the high review load that such a process entails, we recruited a large artifact evaluation committee that included a total of 51 artifact reviewers. The submission deadlines for artifacts were just 10 days after the paper deadlines for both submission rounds. We received a total of 45 submissions (20 for R1 and 25 for R2). After a kick-the tires review and author response phase, during which authors had the opportunity to clarify or address technical issues with their submissions, each submitted artifact was reviewed by three committee members, leading to an overall review load of around 3 artifact reviews per committee member.

Following the positive experience with adopting ACM’s artifact badges for ECOOP 2021 and 2022, we adopted the same badging policies for ECOOP 2023. The artifact evaluation committee positively evaluated 38 submissions (15/23 for R1/R2) as functional or reusable, out of which 22 belong to papers to appear in the technical program of ECOOP 2023. 4 submitted artifacts that did not pass the bar for the functional and reusable badges in R1 were found eligible for the available badge, 2 of which are associated with papers accepted for presentation at ECOOP 2023.

In order to streamline the artifact review process and to decouple artifact from paper review aspects, we asked authors to submit documentation of explicit claims in a pre-specified format that the artifact evaluation committee checked the artifacts against. At the same time, the PC could assess the importance of these claims for the submitted papers as a frame of reference for the strength of support for the paper that an artifact can provide. This separation greatly facilitated the artifact evaluation committee’s discussions regarding which badges to award.

The smooth and thorough artifact evaluation process would have not been possible without the members of the artifact evaluation committee, who handled the artifact review workload and contributed to the technical PC discussions with great dedication. We would like to thank them for their valuable work and the inspiring discussions. We would also like to thank the ECOOP 2023 program committee chairs Karim Ali and Guido Salvaneschi for the pleasant and productive interactions over the coordination of the paper and artifact review processes.

Hernán Ponce de León
Artifact Evaluation Co-chair
Huawei Dresden Research Center

Stefan Winter
Artifact Evaluation Co-chair
Ludwig-Maximilians-Universität München
Foreword by the President of AITO

Welcome to ECOOP 2023, which this time will be held in the “well-known European city of Seattle”. Why outside Europe? Well, ECOOP traditionally has had many contributors and participants from other parts of the world and so ECOOP every once in a while has been held outside Europe. In 1990, ECOOP was co-located with OOPSLA in Ottawa, Canada, and in 2012, ECOOP was co-located with PLDI, LCTES, and ISMM in Beijing, China. This year, we are co-locating with ISSTA at the University of Washington main campus beautifully located by Lake Washington and with splendid views of the Cascade Mountains and Mount Rainier. The ECOOP 2023 team along with the ISSTA team has done a great job of putting together a great program for the conferences – a huge thanks to them and to all others that have contributed.

I am looking forward to two excellent conferences with lots of great papers, personal interaction, excellent keynotes, including talks by the two 2023 Dahl-Nygaard Prize Winners. Enjoy the conference, and Seattle.

Eric Jul
AITO President
List of Authors

Pedro Adão (24)
Instituto Superior Técnico, University of Lisbon, Portugal; Institute of Telecommunications, Campus de Santiago, Aveiro, Portugal

Nada Amin (41)
Harvard University, Cambridge, MA, USA

Vincenzo Arceri (23)
University of Parma, Italy

Adam D. Barwell (1)
University of St. Andrews, UK; University of Oxford, UK

Mark Batt (39)
University of Kent, Canterbury, UK

Jim Bauwens (2)
Software Languages Lab, Vrije Universiteit Brussel, Belgium

Sahil Bhatia (38)
University of California, Berkeley, CA, USA

Riccardo Bianchini (3)
DIBRIS, University of Genova, Italy

Annette Bieniusa (12)
University of Kaiserslautern-Landau, Germany

Lars Birkedal (22)
Aarhus University, Denmark

James Bornholt (35)
The University of Texas at Austin, TX, USA; Amazon Web Services, Seattle, WA, USA

Henrique Botelho Guerra (4)
INESC-ID and IST, University of Lisbon, Portugal

Katharina Brandl (5)
Johannes Gutenberg-Universität Mainz, Germany

Timon Böehler (25)
Technische Universität Darmstadt, Germany

Jeronimo Castrillon (33)
TU Dresden, Germany

David Castro-Perez (6)
University of Kent, UK

Ethan Cecchetti (29)
University of Maryland, College Park, MD, USA; University of Wisconsin – Madison, WI, USA

Mahin Chandramohan (10)
Oracle Labs, Brisbane, Australia

Alvin Cheung (38)
University of California, Berkeley, CA, USA

Tiago Cogumbeiro (13)
College of Science and Mathematics, University of Massachusetts Boston, MA, USA

Simon Cooksey (39)
University of Kent, Canterbury, UK

Agostino Cortesi (23)
Ca’ Foscari University of Venice, Italy

João Costa Seco (4)
NOVA LINCS, NOVA School of Science and Technology, Caparica, Portugal

Caroline Cronjäger (19)
Ruhr-Universität Bochum, Germany

Luís Cruz-Filipe (7)
Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark

Arnaud Daby-Seesaram (22)
ENS Paris-Saclay, France

Francesco Dagnino (3)
DIBRIS, University of Genova, Italy

Jan de Muijnck-Hughes (8)
University of Glasgow, UK

Kevin De Porre (9)
Vrije Universiteit Brussel, Belgium

Jens Dietrich (10)
Victoria University of Wellington, New Zealand

Sebastian Erdweg (5)
Johannes Gutenberg-Universität Mainz, Germany

Sebastian Ertel (33)
Barkhausen Institut, Dresden, Germany

Andong Fan (11)
The Hong Kong University of Science and Technology (HKUST), Hong Kong, China

Gang Fan (36)
Ant Group, Shenzhen, China

Pietro Ferrara (23)
Ca’ Foscari University of Venice, Italy
Sanjit A. Seshia (38)
University of California, Berkeley, CA, USA

Hesam Shahrokhi (27, 28)
University of Edinburgh, UK

Amir Shaikhha (27, 28)
University of Edinburgh, UK

Jun Shirako (13)
College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

Alexandra Silva (21)
Cornell University, Ithaca, NY, USA

Lucas Silver (29, 30)
University of Pennsylvania, Philadelphia, PA, USA

Alaia Solko-Breslin (21)
University of Pennsylvania, Philadelphia, PA, USA

Fausto Spoto (23)
University of Verona, Italy

Jonathan Lindegaard Starup (17, 31)
Department of Computer Science, Aarhus University, Denmark

Felix Stutz (32)
MPI-SWS, Kaiserslautern, Germany

Felix Suchert (33)
TU Dresden, Germany

Julian Sutherland (19)
Nethermind, London, UK

Fabio Tagliaferro (23)
CYS4 Srl, Florence, Italy

Jinhao Tan (34)
The University of Hong Kong, China

Wensheng Tang (36)
The Hong Kong University of Science and Technology, China

Amin Timany (22)
Aarhus University, Denmark

Emina Torlak (35)
University of Washington, Seattle, WA, USA; Amazon Web Services, Seattle, WA, USA

Emilio Tuosto (15)
Gran Sasso Science Institute, L’Aquila, Italy

Jaco van de Pol (18)
Department of Computer Science, Aarhus University, Denmark

Jacob Van Geffen (35)
University of Washington, Seattle, WA, USA

Wim Vanderbauwhede (8)
University of Glasgow, UK

Siddhanth Venkateshwaran (26)
University of Illinois at Chicago, IL, USA

Michael Vollmer (39)
University of Kent, Canterbury, UK

Chao Wang (16)
University of Southern California, Los Angeles, CA, USA

Chengpeng Wang (36)
The Hong Kong University of Science and Technology, China

Xi Wang (35)
University of Washington, Seattle, WA, USA; Amazon Web Services, Seattle, WA, USA

Pascal Weissenburger (25)
Universität St. Gallen, Switzerland

Eddy Westbrook (30)
Galois, Inc., Portland, OR, USA

Anna-Katharina Wickert (14)
Technische Universität Darmstadt, Germany

Thomas Wiener (21)
Cornell University, Ithaca, NY, USA

Matthew Yacavone (30)
Galois, Inc., Portland, OR, USA

Elena Yanakieva (12)
University of Kaiserslautern-Landau, Germany

Peisen Yao (36)
Zhejiang University, Hangzhou, China

Ming-Ho Yee (37)
Northeastern University, Boston, MA, USA

Nobuko Yoshida (1, 6)
University of Oxford, UK

Lechen Yu (13)
College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

Steve Zdancewic (29)
University of Pennsylvania, Philadelphia, PA, USA

Lisza Zeidler (33)
Barkhausen Institut, Dresden, Germany
Authors

Charles Zhang (36)
The Hong Kong University of Science and Technology, China

Fangyi Zhou (1)
Imperial College London, UK;
University of Oxford, UK

Elena Zucca (3)
DIBRIS, University of Genova, Italy