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Abstract
Grigore proved that Java generics are Turing complete by describing a reduction from Turing
machines to Java subtyping. Furthermore, he demonstrated that his “subtyping machines” could
have metaprogramming applications if not for their extremely high compilation times. The current
work reexamines Grigore’s study in the context of another prominent programming language –
Python. We show that the undecidable Java fragment used in Grigore’s construction is included
in Python’s type system, making it Turing complete. In contrast to Java, Python type hints are
checked by third-party static analyzers and run-time type checkers. The new undecidability result
means that both kinds of type checkers cannot fully incorporate Python’s type system and guarantee
termination. The paper includes a survey of infinite subtyping cycles in various type checkers and
type reification in different Python distributions. In addition, we present an alternative reduction in
which the Turing machines are simulated in real time, resulting in a significantly faster compilation.
Our work is accompanied by a Python implementation of both reductions that compiles Turing
machines into Python subtyping machines.
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1 Introduction

Python enhancement proposal (PEP) 484 introduced optional type hints to the Python
programming language, together with a full-blown gradual type system [16]. Tools such as
Mypy [9] use type hints to type-check Python programs. Certain programs, however, cause
Mypy to enter an infinite loop (we show an example below). We argue that the reason behind
these failures is not a Mypy bug, but a deeper issue in the PEP 484 type system. We use
Grigore’s reduction from Turing machines (TMs) to nominal subtyping with variance [6] to
prove that Python type hints are, in fact, Turing complete. In other words, checking whether
a Python program is correctly typed is as hard as the halting problem.

1.1 Nominal Subtyping With Variance
Subtyping is a type system decision problem. Given types t and s, the type system should
decide whether type t is a subtype of s, t <: s, meaning that every t object is also a member
of s. For example, every string is an object, str <: object, but not every object is a string,
object ≮: str. Subtyping is needed, for example, for checking variable assignments:
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x: t = ...
y: s = x # t<:s

The second assignment compiles if and only if t <: s.
Object-oriented languages such as Scala, C#, and Python use nominal subtyping with

variance [7]. Nominal means that subtyping is guided by inheritance. Type t is a subtype of
type s if class t is a descendant of s:

class s: ...
class t(s): ...
x: t = ...
y: s = x # ✓

Variance enables variability in type arguments. By default, type t[u] is a subtype of t[v]
if and only if u = v. If t’s type parameter is covariant, u can be any subtype of v, u <: v;
if it is contravariant, then u :> v. In Python, variance is specified in an argument to
TypeVar, the constructor of type parameters. For example, the following Python program
uses contravariance and is correctly typed:

x = TypeVar ("x", contravariant =True)
class t( Generic [x]): ... # t has a contravariant type parameter x
x: t[str] = t[ object ]() # ✓ (str<:object )

Using a reduction from the Post correspondence problem (PCP) [13], Kennedy and Pierce
showed that nominal subtyping with variance is undecidable [7]. Their work focused on three
subtyping features (characteristics):
1. Contravariance: The presence of contravariant type parameters, as described above.
2. Expansive-recursive inheritance: The closure of types under the inheritance relation and

type decomposition (t[v]→ v) is unbounded. Intuitively, expansive inheritance requires
class t to recur in one of its supertypes:

class t( Generic [x], s[s["t[t[x]]"]]): ...
# note: forward refrences are put in string literals

A formal definition of expansive-recursive inheritance is provided in Section 2.
3. Multiple instantiation inheritance: Class t is allowed to derive class s[·] multiple times

using different type arguments:

class t(s[ object ], s[str ]): ... # not legal in Python

Kennedy and Pierce proved that subtyping becomes decidable when contravariance or
expansive inheritance are removed, but they were uncertain about the contribution of
multiple instantiation inheritance to undecidability.

1.2 Subtyping Machines
Ten years after them, Grigore showed that Java subtyping is Turing complete using a direct
reduction from TMs [6]. This reduction uses a subset of Java that conforms to Kennedy and
Pierce’s nominal subtyping with variance. Grigore’s result settled Kennedy and Pierce’s open
problem since Java does not support multiple instantiation inheritance [12, §8.1.5]. Intuitively,
multiple instantiation inheritance corresponds to non-deterministic subtyping [7, 14], so while
it was useful in the PCP reduction, it is redundant in the TM reduction because deterministic
TMs are as expressive as non-deterministic TMs.
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Grigore’s reduction can be described as a function

e(M, w) = ∆ · q (1)

that encodes TM M and input word w as program P = ∆ · q consisting of class table ∆
and subtyping query q. The encoding ensures that TM M accepts w if and only if query q

type-checks against ∆.
The idea behind the reduction is to encode the TM configuration (instantaneous descrip-

tion) in the subtyping query q. Recall that the configuration of TM M comprises (i) the
content of the memory tape, (ii) the location of the machine head on the tape, and (iii) the
current state of the machine’s finite control. Figure 1 illustrates the initial configuration of
M : The input word w = a1a2 . . . am is written on the tape, the machine head points to the
first letter a1, and the current state is the initial state qI .

· · · ⊥ ⊥ a1 a2 · · · am ⊥ ⊥ · · ·

qI

Figure 1 The initial configuration of a Turing machine.

To explain how configurations are encoded as subtyping queries, let us first introduce
some syntax (adopted from Grigore’s paper). We write a generic type A[B[C]] as ABC for
short. The use of ◀ instead of <: in a subtyping query means that the type on the left-hand
side should be read in reverse (the same goes for ▶ and :>), e.g., ABC ◀ DE is equivalent
to CBA <: DE.

The initial TM configuration, depicted in Figure 1, is encoded by the following subtyping
query:

ZEEL⊥NMLNLa1NLa2N · · ·NLam
NL⊥QwR

I ◀ EEZ (2)

Observe that the types in Equation (2) have the same colors as the machine configuration
elements in Figure 1 that they encode. For example, the type La1 encodes the tape symbol
a1, and both are purple. As the type on the left-hand side is written in reverse, the content
of the encoded tape can be obtained by reading the L types from the left to the right. The
full legend in listed in Table 1.

Table 1 The components of Grigore’s subtyping machine. All types use a single contravariant
type parameter x, except Z, which is monomorphic. The superscripts vary.

Type Corresponding TM component / purpose
L⊥x an infinite blank tail of the tape
Lσx a tape cell containing the symbol σ

MLx the location of the machine head
QwR

I x the current TM state qI

Z, Ex, Nx utility types without corresponding TM components

Grigore referred to the subtyping query in Equation (2) as a subtyping machine because
when the subtyping algorithm tries to resolve it, it simulates the computation steps of the
original TM. The subtyping deduction preserves the general structure of the query, except
that it steadily pushes the state type QI along the tape. When QI reaches the head type
ML, the subtyping algorithm simulates a single TM transition: It overwrites the current tape

ECOOP 2023
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cell (La1 ⇒ Lσ), moves the machine head (by repositioning ML), and changes the machine
state (QI ⇒ QJ ). The resulting subtyping query correctly encodes the next configuration in
the TM run. This process continues until the machine accepts and the query is resolved, or
the machine aborts and a compilation error is raised. If the machine runs indefinitely, the
subtyping algorithm does not terminate.

While TMs move the machine head to the left or right freely, subtyping machines can
change direction only when reaching the end of the type, EEZ. After simulating a TM
transition, the subtyping machine must reach the end(s) of the tape, rotate, and then reach
the location of the machine head M in the right orientation, before it can simulate the next
transition. In general, Grigore’s subtyping machines can make O(m) operations for every
computation step of the TM they simulate, where m is the number of symbols on the tape,
resulting in a substantial slowdown. For example, Grigore’s simulation of the CYK algorithm,
which usually runs in O(n3), takes O(n9) subtyping deduction steps to be completed.

1.3 Subtyping Metaprogramming
Beyond the undecidability result, Grigore demonstrated metaprogramming applications for
their subtyping machines. Although the computational power of subtyping machines is
unlimited, harnessing this power for conducting meaningful type-level metaprogramming as
done in, e.g., C++ [18], is not easy. To integrate subtyping machines into programs, Grigore
proposed to wrap them in fluent APIs [2]. Fluent API methods are called in a stream (chain)
of consecutive invocations, as demonstrated in Listing 1.

Listing 1 Running a subtyping machine with a fluent API.
p: Palindrome = a().b().b().a().b().b().a()

In Grigore’s design, the fluent chain produces the tape of the subtyping machine. For example,
the chain in Listing 1 produces a types tape containing the input word abbabba. We run the
subtyping machine by assigning the chain to a variable, invoking a the subtyping query in
Equation (2).

The purpose of the subtyping machine is to validate a property of the chain at compile
time. For example, a subtyping machine that recognizes palindromes forces the fluent chain
to encode a palindrome word, or else it would not compile. Since the chain in Listing 1
encodes a palindrome, the subtyping machine accepts and the assignment type-checks. This
sort of type-level metaprogramming in fluent APIs is employed for embedding domain-
specific languages (DSLs) and enforcing higher-level API protocols [3, 10, 4, 19, 14]. In
theory, Grigore’s subtyping machines can encode any computable DSL or API protocol.
Unfortunately, the slowdown ingrained into the design of the subtyping machines results in
extremely high compilation times, making the technique impractical.

1.4 Contributions
This work revisits Grigore’s study of subtyping machines in the context of Python. We
show that Python’s type system includes the Java fragment used in Grigore’s construction
and is, therefore, Turing complete. We review the impact of undecidable subtyping on the
Python ecosystem, covering compile-time and run-type type checkers and different Python
distributions. Finally, we present a new subtyping machine design that avoids the inherent
slowdown imposed by Grigore’s construction – an essential step towards practical subtyping
machine applications. Our subtyping machines simulate TMs in real time, i.e., make O(1)
operations for each TM transition. The paper is accompanied by a Python implementation
of Grigore’s and our reductions, producing subtyping machines on top of Python type hints.
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Outline

The rest of the paper is organized as follows. In Section 2, we show that Python type hints
are Turing complete and discuss possible ways to make them more tractable. Section 3
includes the survey of infinite subtyping and type reification in Python. Section 4 introduces
our alternative design for subtyping machines that simulate TMs in real time. Section 5
presents our Python implementations of Grigore’s original reduction and the new reduction,
and compares their performances. Section 6 concludes.

2 Python Subtyping is Undecidable

Type hints were introduced into the Python programming language with PEP 484 [16].
PEP 484 defines the syntax of type hints but only provides an informal description of their
semantics, referring the reader to the supplementary PEP 483 [17] for an in-depth discussion.
Type hints are used as annotations and are entirely optional:

def positive (x: int) -> bool:
return x > 0

Static analysis on type hints is not performed by the Python interpreter but by third-party
tools. For instance, Mypy [9] is a type checker for Python type hints; in fact, PEP 484 was
originally inspired by Mypy [16].

The type system described in PEP 484 supports declaration-site nominal subtyping with
variance, similar to the abstract type system studied by Kennedy and Pierce [7]. Although
originally designed for Java, Grigore’s subtyping machines conform to Kennedy and Pierce’s
type system. To implement subtyping machines with Python type hints, we need to show that
Python’s type system includes the two subtyping features essential for Grigore’s construction:
contravariance and expansive-recursive inheritance.

In Python, type variables are specified using a special constructor, TypeVar. Making a
contravariant (or covariant) type variable is as simple as passing an argument to TypeVar:

z = TypeVar ("z", contravariant =True)
class N( Generic [z]): ... # class N has a contravariant parameter z

Expansive-recursive inheritance is a more elusive aspect of nominal subtyping. Kennedy
and Pierce [7] defined expansive inheritance using the inheritance and decomposition closure
cl(t) of type t. Here we provide a brief description of the closure; the full definition can be
found in Kennedy and Pierce’s paper. Recall that we use a shorthand notation for generic
types, Cs = C[s]. If cl(t) contains the type Cs, then by decomposition it also contains s:

(Decomposition)
Cs ∈ cl(t)
s ∈ cl(t)

(3)

If, in addition, class C[x] inherits from type u, denoted Cx : u, then cl(t) also contains the
type u[x← s], in which every occurrence of type parameter x is substituted by s:

(Inheritance)
Cs ∈ cl(t) Cx : u

u[x← s] ∈ cl(t)
(4)

Kennedy and Pierce proved that a class table is expansive-recursive if and only if the set
cl(t) is infinite for some type t. For example, consider the following class declaration:

x = TypeVar ("x")
class C( Generic [x], N[N["C[C[x]]"]]): ... # Cx:NNCCx

ECOOP 2023
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The inheritance of class C is expansive-recursive since the set cl(Ct) is infinite for any type t:

1. Ct ∈ cl(Ct)
2. NNCCt ∈ cl(Ct) (Inheritance)
3. NCCt ∈ cl(Ct) (Decomposition)
4. CCt ∈ cl(Ct) (Decomposition)
5. NNCCCt ∈ cl(Ct) (Inheritance)
and so on. . .

(5)

Between steps 1 and 4 the type Ct was transformed to CCt, increasing the size of the type
by a single C. By continuing the deduction we get that the set cl(Ct) contains the type Cnt

for any n ≥ 1 and is, therefore, infinite.
As PEP 484 and the accompanying PEP 483 do not mention any restrictions on expansive-

recursive inheritance (at least, that the author could find), we conclude that Python implicitly
supports expansive inheritance. As evidence, the example above correctly compiles in Python
and Mypy.

By enabling both contravariance and expansive-recursive inheritance, the designers of
PEP 484 opened up Python type hints to the same pitfalls of nominal subtyping with variance
studied by Kennedy, Pierce, and Grigore. For example, the code in Listing 2, adapted from
Kennedy and Pierce [7], shows how contravariance and expansive inheritance can be combined
to induce an infinite subtyping cycle.

Listing 2 Contravariance, expansive inheritance, and infinite subtyping with Python type hints.
from typing import TypeVar , Generic , Any
z = TypeVar ("z", contravariant =True)
class N( Generic [z]): ...
x = TypeVar ("x")
class C( Generic [x], N[N["C[C[x]]"]]): ...
class T: ...
class U: ...
_: N[C[U]] = C[T]() # CT <: NCU ✗ infinite subtyping

The last line of Listing 2 contains a variable assignment that invokes the subtyping query
CT <: NCU . The query is resolved using two subtyping rules [7]: Super, allowing us to
replace a type with its supertype using an inheritance rule:

(Super) Cx : u u[x← s] <: t

Cs <: t
(6)

And Var, allowing us to remove a single type from both sides of the query:

(Var) C’s type parameter x is contravariant t <: s

Cs <: Ct
(7)

We use the rules Super and Var to resolve the query as follows:

1. CT <: NCU

2. NNCCT <: NCU (Super)
3. CU <: NCCT (Var)
4. NNCCU <: NCCT (Super)
5. CCT <: NCCU (Var)
and so on. . .

(8)
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Between steps 1 and 5, the subtyping query was not reduced but increased in size. This
deductive process continues indefinitely. When Mypy checks this program, it throws a
segmentation fault. In Section 5, we show that Mypy crashes because it gets stuck in an
infinite recursion during the subtyping algorithm.

Since contravariance and expansive inheritance are enough to implement Grigore’s sub-
typing machines, we get that Python type hints are Turing complete. Section 5 presents
our implementation of Grigore’s reduction with Python type hints. The resulting subtyping
machines correctly run with Mypy.

2.1 Taming Python’s Type System
The source of undecidability in PEP 484 is the hazardous combination of contravariance
and expansive-recursive inheritance, whose presence enables the construction of Grigore’s
subtyping machines. Kennedy and Pierce proved that nominal subtyping with variance
becomes decidable once either contravariance or expansive inheritance are removed [7].
Restrictions to expansive inheritance are implemented, for example, in the Scala programming
language [11, §5.1.5] and the .NET framework [1, §II.9.2]. Removing expansive inheritance,
however, might not be enough to make Python type hints decidable. A more thorough
inspection of the various features of Python’s type system is required to determine this.

Greenman et al. [5] and Tate et al. [15] presented alternative subtyping algorithms for
Java that are decidable. Besides the theoretical work, they surveyed extensive corpora of
Java projects to show that their new algorithms do not break existing code and are thus
backward compatible. Future attempts at making Python’s type hints decidable may follow
a similar line.

3 Type Reification and Infinite Subtyping in the Wild

A remote code execution vulnerability allows an attacker to run arbitrary code on a remote
machine. Python type hints, on the other hand, can be used to run arbitrary computations.
The distinction between code and computation is critical in the context of security: we
can use type hints to compute prime numbers but not to access the file system or to open
an SSH connection. Nevertheless, the fact that Python type hints are Turing complete
does raise a few practical concerns. Type hints can induce infinite subtyping cycles, as
demonstrated in Listing 2. These cycles cannot be detected by a “smart” type checker due
to the undecidability of the halting problem. Thus, we can use infinite subtyping to attack
Python type checkers and cause them to loop indefinitely or crash. For example, we managed
to use infinite subtyping to crash the online playground of the Pyre Python type checker, as
depicted in Figure 2. The playground in available at https://pyre-check.org/play/.

In Java, the compiler eliminates type arguments to generic types in a process called type
erasure, making infinite subtyping a compile-time-only issue. Although PEP 484 mentions
type erasure, it does not explicitly prohibit run-time type reification. The later PEP 585 [8]
settles the matter, stating:

“The generic parameters are not preserved in instances created with parameterized
types, in other words generic types erase type parameters during object creation.”

In practice, Python implementations ignore type erasure and keep records of generic types in
run-time objects. Listing 3 demonstrates how to obtain information about type parameters
and generic arguments at run time.

ECOOP 2023
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Figure 2 Crashing the Pyre playground with an infinite subtyping cycle.

Listing 3 Obtaining reified generic types in Python at run time.
from typing import TypeVar , Generic
x = TypeVar ("x", contravariant =True)
class C( Generic [x]): ...
print(C. __parameters__ ) # (-x,)
y = C[int ]()
print(y. __orig_class__ ) # __main__ .C[int]

The field __parameters__ of the generic class C reveals that the class uses a single con-
travariant type parameter x. The generic type of the parameterized instantiation C[int]() is
retrieved using the __orig_class__ field. We tested the code in Listing 3 on several Python
distributions. The results are presented in Table 2.

Table 2 Type reification in different Python distributions.

Python
Distribution Version

Type
Reification Notes

CPython 3.9.13
PyPy 7.3.11
RustPython 3.5.0alpha
WinPython 3.0.20
Brython 3.11.1 __orig_class__ is bugged

Table 2 shows that all the Python implementations tested practice type reification. As
an exception, Brython fails to retrieve the field __orig_class__. After inspecting the source
code, the author believes it to be a bug. At the moment of writing these lines, an open issue1

on CPython’s GitHub project calls for a proper API wrapper for the __orig_class__ field.
This development indicates that the Python community sees type reification not as a mere
implementation detail but as a desired feature that should be established further.

Although Python reifies generic types, it does not mean that run-time type checkers
use them in subtyping checks. And while static analyzers have all the type hints available,
there is no guarantee that they implement the complete Python type system described in

1 https://github.com/python/cpython/issues/101688

https://github.com/python/cpython/issues/101688


O. Roth 44:9

PEP 484. Whether or not a type checker gets stuck on infinite subtyping or successfully runs
a subtyping machine is determined by its support of type parameter variance. In particular,
both cases depend on contravariant type parameters. We reviewed various static and dynamic
Python type checkers and checked whether they support variance as described in PEP 484.
The results are presented in Table 3.

Table 3 Variance support in Python type checkers.

Type
Checker Version

Typing
Discipline

Variance
Support Notes

Mypy 0.991 static
Pyre 0.9.17 static
Pyright 1.1.279 static Pyright is unsound
Pytype 2022.11.10 static
Pyanalyze 0.8.0 static
Pydantic 1.10.2 dynamic
Typeguard 2.13.3 dynamic
Pytypes 1.0b10 dynamic Delegates to isinstance (sometimes)
Typical 2.8.0 dynamic Delegates to isinstance

We found that Mypy and Pyre are the only type checkers to fully support subtyping
with variance. Pyright also acknowledges variant type parameters, but reports errors for
correctly-typed programs, meaning that it is unsound. We showed this by running one of
our (accepting) subtyping machines: Mypy and Pyre reported no errors while Pyright did
report one. The code is found in the supplementary material. Pytype reported that it
does not support contravariant parameters. For the rest of the type checkers, we had to
search the source code for any mention of variance to conclude that they do not support it.
Typical seems to delegate subtyping checks to isinstance or equivalent methods that reject
generic types altogether. We observed similar behavior in Pytypes when using type forward
references, i.e., types in string literals.

To fully support PEP 484, Python type checkers must support covariant and contravariant
type parameters. Variance, however, introduces a security vulnerability in the form of
unavoidable infinite subtyping cycles. Crashes of static type checkers may be forgiven, but
for dynamic checkers, infinite subtyping poses a major concern. This also holds for Python’s
isinstance check, if the designers of Python or one of its implementations ever consider
adding run-time subtyping checks against generic types.

4 Real-Time Subtyping Machines

Grigore’s subtyping machines must scan the entire tape memory before they can simulate
a single TM transition. This is because the subtyping machines can change their direction
(from ◀ to ▶ and vice versa) only when reaching the end of the tape. We now present an
alternative design for subtyping machines that simulate TMs in real time, i.e., where a single
TM computation step is simulated by O(1) subtyping deductions.

Let M = ⟨Q, Σ, qI , qh, δ⟩ be a TM where Q is the set of machine states, Σ is the set of
tape symbols, qI is the initial state, qh is the termination state, and

δ : Q× (Σ ∪ {⊥})→ Q× Σ× {L, R}

is the transition function. In each computation step, the TM changes its state, overwrites
the current tape cell, and moves the machine head to the left (L) or right (R). The TM
accepts its input if and only if it reaches the termination state qh. We use the symbol ⊥ ̸∈ Σ
to denote blank tape cells.

ECOOP 2023
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The new encoding of subtyping machines is shown in Table 4. The encoding comprises
ten inheritance rules (i) to (x) (recall that we use a colon to denote inheritance). To encode
a TM M as a subtyping machine, fill in the inheritance rules’ missing values using elements
from M that satisfy the conditions on the right-hand side. For example, if M contains state
q4 ∈ Q and tape symbol p ∈ Σ, then by rule (v),

QLL
4 x : LpNQL

4 LpNx.

When multiple rules apply to the same type, multiple inheritance is used. Symbol x is a
contravariant type parameter and symbol ? denotes the wildcard type, i.e., the type that is
consistent with (can be substituted by) any type. In Python, this is the Any type [16]. All
the type parameters used in the encoding are contravariant. There are ten more inheritance
rules in addition to those in Table 4, obtained by swapping L and R in each rule in the table.

Table 4 Real-time subtyping machines. For each inheritance rule, swap L and R to get the
symmetrical rule. The type parameter x is contravariant.

(i) QL
s x : LaNQL

s′LbNx δ(qs, a) = ⟨qs′ , b, L⟩
(ii) QL

s x : LaQLRR
s′ NLbNx δ(qs, a) = ⟨qs′ , b, R⟩

(iii) QL
s x : L⊥QL⊥L

s′ NLbNx δ(qs,⊥) = ⟨qs′ , b, L⟩
(iv) QL

s x : L⊥QL⊥R
s′ NLbNx δ(qs,⊥) = ⟨qs′ , b, R⟩

(v) QLL
s x : LaNQL

s LaNx ∀qs ∈ Q,∀a ∈ Σ
(vi) Nx : QLRR

s NQRR
s x ∀qs ∈ Q

(vii) Nx : QL⊥L
s QRL

s NL⊥Nx ∀qs ∈ Q

(viii) Nx : QL⊥R
s NQRR

s L⊥Nx ∀qs ∈ Q

(ix) Nx : QLR
s NQR

s x ∀qs ∈ Q

(x) QL
h x : La? ∀a ∈ Σ ∪ {⊥}

The roles of the types in Table 4 are mostly the same as in Grigore’s encoding (Table 1),
i.e., La is a tape cell containing the symbol a, N is a buffer type, and Qs is a state type. The
new encoding, however, does not use a type for the machine head (M in Grigore’s encoding)
because the state type Q also indicates the location of the machine head. The superscripts
of Q imply the head’s movement direction; e.g., QLL

s means that the head is about to go two
cells to the left, QL⊥R

s means that the head is about to move left into a blank cell and then
rotate, and so on.

The initial TM configuration is encoded by the following subtyping query:

ZNL⊥QR
IQR
I ◀La1NLa2N · · ·Lam−1NLamNL⊥NZ (9)

The content of the tape is encoded by the L types, read from the left to the right. The
current state and the position of the machine head are encoded by the type QR

I – the current
cell is on the right (R) of the type, which is also the direction of the query (◀). The infinite
blank ends of the tape are encoded by the type L⊥. Observe that the colors of the types in
Equation (9) match the colors of the corresponding TM components in Figure 1. Type QR

s is
half red and half orange because it represents both the current state and the head location.

To prove the correctness of the simulation, we show that the subtyping query in Equa-
tion (9) simulates the TM transitions while preserving the encoding of the machine tape,
head, and state comprising the TM configuration. There are three variables to be considered:
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the initial orientation of the head, whether or not the current cell is blank, and whether or
not the machine head changes direction. For example, the machine head QR

I in Equation (9)
points to the right (R) and reads a non-blank cell La1 . The next cell could be either La2 , if
the head continues right, or blank L⊥, if it rotates.

We now cover four cases, assuming that the initial orientation is left (this is the orientation
used in Table 4). The other four cases are symmetrical. Next to each subtyping deduction
step, we mention the subtyping rule used in this step. Recall that there are two subtyping
rules, Super and Var (Equations (6) and (7)). As all the type parameters are contravariant,
the query changes direction (from ◀ to ▶ and vice versa) after applying Var a single time.

Case I. The head points to a non-blank cell a, replaces it with symbol b, and continues left.
The relevant TM transition is

δ(qs, a) = ⟨qs′ , b, L⟩

and the resulting subtyping query is

· · ·NLa ▶ QL
s · · ·

· · ·NLa ▶ LaNQL
s′LbN · · · (i) + (Super)

· · · ▶ QL
s′LbN · · · (Var)× 2

“(i)+Super” means applying rule Super with inheritance rule (i) from Table 4. “(Var)×2”
means applying rule Var twice. Observe that the subtyping query simulates the TM
transition while preserving the encoding: symbol La is replaced by Lb, state Qs is replaced
by Qs′ (the next machine state), and the head moves to the cell on the left.

Case II. The head points to a non-blank cell a, replaces it with symbol b, and continues
right. The relevant TM transition is

δ(qs, a) = ⟨qs′ , b, R⟩

and the resulting subtyping query is

· · ·NLa ▶ QL
s · · ·

· · ·NLa ▶ LaQLRR
s′ NLbN · · · (ii) + (Super)

· · ·N ◀ QLRR
s′ NLbN · · · (Var)

· · ·QRR
s′ NQLRR

s′ ◀ QLRR
s′ NLbN · · · (vi) + (Super)

· · ·QRR
s′ ◀ LbN · · · (Var)× 2

· · ·NLbQR
s′NLb ◀ LbN · · · (v) + (Super)

· · ·NLbQR
s′ ◀ · · · (Var)× 2

Case III. The head points to a blank cell (the end of the tape), replaces it with symbol b,
and continues left. The relevant TM transition is

δ(qs,⊥) = ⟨qs′ , b, L⟩

and the resulting subtyping query is

ZNL⊥ ▶ QL
s · · ·

ZNL⊥ ▶ L⊥QL⊥L
s′ NLbN · · · (iii) + (Super)

ZN ◀ QL⊥L
s′ NLbN · · · (Var)

ZNL⊥NQRL
s′ QL⊥L

s′ ◀ QL⊥L
s′ NLbN · · · (vii) + (Super)

ZNL⊥NQRL
s′ ▶ NLbN · · · (Var)

ZNL⊥NQRL
s′ ▶ QRL

s′ NQL
s′LbN · · · (ix) + (Super)

ZNL⊥ ▶ QL
s′LbN · · · (Var)× 2
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Case IV. The head points to a blank cell, replaces it with symbol b, and continues right.
The relevant TM transition is

δ(qs,⊥) = ⟨qs′ , b, R⟩

and the resulting subtyping query is

ZNL⊥ ▶ QL
s · · ·

ZNL⊥ ▶ L⊥QL⊥R
s′ NLbN · · · (iv) + (Super)

ZN ◀ QL⊥R
s′ NLbN · · · (Var)

ZNL⊥QRR
s′ NQL⊥R

s′ ◀ QL⊥R
s′ NLbN · · · (viii) + (Super)

ZNL⊥QRR
s′ ◀ LbN · · · (Var)× 2

ZNL⊥NLbQR
s′NLb ◀ LbN · · · (v) + (Super)

ZNL⊥NLbQR
s′ ◀ · · · (Var)× 2

The TM rejects its input when its current state is qs, the current tape symbol is a, and
the transition δ(qs, a) is not defined. In this case, the subtyping query La ▶ QL

s also rejects
since there is no inheritance rule in Table 4 with which rule Super can be applied. On the
other hand, if the TM reaches state qh and accepts its input, the subtyping query La ▶ QL

h

is resolved by applying rule (x).
Note that our simulation is clearly real-time. To simulate a single TM transition, the

subtyping machine performs at most eight subtyping deductions (in cases II and IV).
The wildcard type used in rule (x) is not a part of Kennedy and Pierce’s system of

nominal subtyping with variance. Instead of using the wildcard, the subtyping machine
could go to either side of the tape before resolving the query, as done in Grigore’s simulation.
This makes the subtyping machine design a bit more complicated, and its simulation of the
TM returns to be non-real-time, but the computational complexity of the simulation is not
increased.

5 Implementation and Performance Experiment

We present our Python implementation of Grigore’s original reduction and our new real-time
simulation introduced in Section 4 in the supplementary material. Our implementation
compiles TMs into Python subtyping machines that use the type hints and generics described
in PEP 484 [16]. Each subtyping machine comprises a class table (Table 4) and a variable
assignment that invokes a subtyping query (Equation (9)). To run the subtyping machine,
we use Mypy to type-check the generated Python code.

If the subtyping machine accepts its input, Mypy terminates successfully, and if the input
is rejected, Mypy reports a typing error. But what happens when the subtyping machine runs
indefinitely? When running Mypy on the code in Listing 2, containing an infinite subtyping
cycle, Mypy crashes with a segmentation fault. To uncover the reason for the segmentation
fault, we remove a call to sys.setrecursionlimit from Mypy’s source code and run it again
with the flag --show-traceback. Mypy reports the following error:

. . .

File "mypy/types.py", line 1283 , in accept
File "mypy/ subtypes .py", line 585, in visit_instance
File "mypy/ subtypes .py", line 345, in check_type_parameter
File "mypy/ subtypes .py", line 339, in check
File "mypy/ subtypes .py", line 179, in is_subtype
File "mypy/ subtypes .py", line 329, in _is_subtype
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File "mypy/types.py", line 1283 , in accept
File "mypy/ subtypes .py", line 585, in visit_instance
File "mypy/ subtypes .py", line 345, in check_type_parameter
File "mypy/ subtypes .py", line 339, in check
File "mypy/ subtypes .py", line 147, in is_subtype

RecursionError: maximum recursion depth exceeded while calling a Python object

The stack trace confirms that Mypy’s subtyping algorithm is implemented using recursion,
causing it to crash with a segmentation fault on infinite subtyping. This observation makes
it possible to measure the run time of the subtyping machine, i.e., the number of subtyping
deductions it performs, by calculating the minimal size of the call stack required for Mypy
to type-check the machine.

Figure 3 describes the results of our experiment, in which we measured the run times of
subtyping machines accepting input words of various lengths. The TM used in the experiment
recognizes palindromes over {a, b} and runs in O(n2). We compiled the TM together with
random palindromes of increasing lengths into subtyping machines, once using Grigore’s
method and once with our construction. Then, binary search was used to find the minimal
call stack size (in megabytes (MB)) required for Mypy to type-check the machine without
getting a segmentation fault.
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Figure 3 Run times of the palindrome subtyping machines: Grigore’s reduction vs. the new
reduction.

In theory, Grigore’s subtyping machines should run in O(n3) due to their inherent slow-
down, while our machines are expected to run in O(n2) since they simulate the palindromes
TM in real time. In practice, we see that our subtyping machines are much faster than
Grigore’s and require significantly fewer resources to be type-checked.

6 Conclusions

Python type hints are Turing complete because PEP 484 supports nominal subtyping with
variance, including contravariance and expansive-recursive inheritance. These two subtyping
features are sufficient to implement Grigore’s subtyping machines that simulate TMs at
compile time.
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We demonstrated that infinite subtyping cause Python type checkers to crash with a stack
overflow error. Due to the undecidability of the halting problem, fixing this problem requires
changing the Python type system described in PEP 484. Even run-time type checkers are in
danger because existing Python distributions reify generic types – in spite of the language
specifications. In practice, we found that only two static analyzers (Mypy and Pyre) are
vulnerable to infinite subtyping since they provide the most complete implementations of
Python’s type system.

We described an alternative subtyping machine design that simulates TMs in real time,
removing the inherent slowdown introduced in Grigore’s original design. Our experiment
shows that the new subtyping machines compile significantly faster. Our design is an essential
step towards practical subtyping machine applications. Nevertheless, such applications would
most likely depend on the type checker’s implementation of the subtyping algorithm –
specifically, that it is not recursive.
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