Volume 9 | Issue 2 | July, 2023

Special Issue of the 37th European Conference on Object-Oriented Programming (ECOOP 2023)

Edited by
Hernán Ponce de León
Stefan Winter
ISSN 2509-8195

DARTS Special Issue Editors

Hernán Ponce de León
Huawei Dresden Research Center, Germany
hernanl.leon@huawei.com
https://orcid.org/0000-0002-4225-8830

Stefan Winter
LMU Munich, Germany
sw@stefan-winter.net
https://orcid.org/0000-0001-8244-995X

ACM Classification 2012
Software and its engineering

Published online and open access by
Online available at http://drops.dagstuhl.de/darts

Publication date
July, 2023

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0): https://creativecommons.org/licenses/by/4.0/.

In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Contact
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
DARTS, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
publishing@dagstuhl.de

Digital Object Identifier
10.4230/DARTS.9.2.0
http://www.dagstuhl.de/darts

Aims and Scope
The Dagstuhl Artifacts Series (DARTS) publishes evaluated research data and artifacts in all areas of computer science. An artifact can be any kind of content related to computer science research, e.g., experimental data, source code, virtual machines containing a complete setup, test suites, or tools.

Contact
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
DARTS, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
publishing@dagstuhl.de

Digital Object Identifier
10.4230/DARTS.9.2.0
http://www.dagstuhl.de/darts
Contents

Preface

Hernán Ponce de León and Stefan Winter ... 0:vii

Artifact Evaluation Process .. 0:ix

Artifact Evaluation Committee ... 0:xi

Artifacts

Python Type Hints Are Turing Complete (Artifact)

Ori Roth .. 1:1–1:4

Dependent Merges and First-Class Environments (Artifact)

Jinhao Tan and Bruno C. d. S. Oliveira .. 2:1–2:3

Sinatra: Stateful Instantaneous Updates for Commercial Browsers Through Multi-Version eXecution (Artifact)

Ugnius Rumsevicius, Siddhanth Venkateshwaran, Ellen Kidane, and Luís Pina ... 3:1–3:2

Wiring Circuits Is Easy as \{0, 1, \omega\}, or Is It... (Artifact)

Jan de Maijnick-Hughes and Wim Vanderbauwhede 4:1–4:3

Do Machine Learning Models Produce TypeScript Types That Type Check? (Artifact)

Ming-Ho Yee and Arjun Guha ... 5:1–5:3

Semantics for Noninterference with Interaction Trees (Artifact)

Lucas Silver, Paul He, Ethan Cecchetti, Andrew K. Hirsch, and Steve Zdancewic ... 6:1–6:2

Toward Tool-Independent Summaries for Symbolic Execution (Artifact)

Frederico Ramos, Nuno Sabino, Pedro Adão, David A. Naumann, and José Fragoso Santos ... 7:1–7:4

Interaction Tree Specifications: A Framework for Specifying Recursive, Effectful Computations That Supports Auto-Active Verification (Artifact)

Lucas Silver, Eddy Westbrook, Matthew Yacavone, and Ryan Scott 8:1–8:2

Designing Asynchronous Multiparty Protocols with Crash-Stop Failures (Artifact)

Adam D. Barwell, Ping Hou, Nobuko Yoshida, and Fangyi Zhou 9:1–9:3

Dynamically Updatable Multiparty Session Protocols (Artifact)

David Castro-Perez and Nobuko Yoshida .. 10:1–10:2

LoRe: A Programming Model for Verifiably Safe Local-First Software (Artifact)

Julian Haas, Ragnar Mogk, Elena Yanakieva, Annette Bieniusa, and Míra Mezíni ... 11:1–11:2

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Hernán Ponce de León and Stefan Winter
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
Contents

Restrictable Variants: A Simple and Practical Alternative to Extensible Variants (Artifact)
 Magnus Madsen, Jonathan Lindegaard Starup, and Matthew Lutze 12:1–12:3

The Dolorem Pattern: Growing a Language Through Compile-Time Function Execution (Artifact)
 Simon Henniger and Nada Amin .. 13:1–13:3

Behavioural Types for Local-First Software (Artifact)
 Roland Kuhn, Hernán Melgratti, and Emilio Tuosto 14:1–14:5

Modular Verification of State-Based CRDTs in Separation Logic (Artifact)

ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs (Artifact)
 Félix Suchert, Lísa Zeidler, Jerónimo Castrillón, and Sebastian Ertel 16:1–16:3

A Direct-Style Effect Notation for Sequential and Parallel Programs (Artifact)
 David Richter, Timon Böhler, Pascal Weisenburger, and Mira Mezini 17:1–17:3

Synthetic Behavioural Typing: Sound, Regular Multiparty Sessions via Implicit Local Types (Artifact)
 Sung-Shik Jongmans and Francisco Ferreira ... 18:1–18:2

VeriFx: Correct Replicated Data Types for the Masses (Artifact)
 Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix 19:1–19:2

Hoogle: Constants and λ-abstractions in Petri-net-based Synthesis using Symbolic Execution (Artifact)
 Henrique Botelho Guerra, João F. Ferreira, and João Costa Seco 20:1–20:3

Automata Learning with an Incomplete Teacher (Artifact)
 Mark Moeller, Thomas Wiener, Alaia Solko-Breslin, Caleb Koch, Nate Foster, and Alexandra Silva ... 21:1–21:3

super-Charging Object-Oriented Programming Through Precise Typing of Open Recursion (Artifact)

Information Flow Analysis for Detecting Non-Determinism in Blockchain (Artifact)

Determinacy Race Detector for Promises (Artifact)
 Feiyang Jin and Lechen Yu .. 24:1–24:2

Rust for Morello: Always-On Memory Safety, Even in Unsafe Code (Artifact)
 Sarah Harris, Simon Cooksey, Michael Vollmer, and Mark Batty 25:1–25:2

Algebraic Replicated Data Types: Programming Secure Local-First Software (Artifact)
 Christian Kuessner, Ragnar Mogk, Anna-Katharina Wickert, and Mira Mezini ... 26:1–26:4
ECOOP has a long-standing tradition of offering artifact evaluation dating back to 2013. Following the process introduced in 2022, the artifact evaluation involved every single paper submission to ECOOP 2023, rather than just accepted papers, and happened in parallel with the paper review process. Besides providing feedback on the artifacts irrespective of paper acceptance, evaluation results were made available to the technical PC. Artifact submissions could, thus, provide more insights on the technical contributions described in the papers and help to improve the overall review process.

To handle the high review load that such a process entails, we recruited a large artifact evaluation committee that included a total of 51 artifact reviewers. The submission deadlines for artifacts were just 10 days after the paper deadlines for both submission rounds. We received a total of 45 submissions (20 for R1 and 25 for R2). After a kick-the tires review and author response phase, during which authors had the opportunity to clarify or address technical issues with their submissions, each submitted artifact was reviewed by three committee members, leading to an overall review load of around 3 artifact reviews per committee member.

Following the positive experience with adopting ACM’s artifact badges for ECOOP 2021 and 2022, we adopted the same badging policies for ECOOP 2023. The artifact evaluation committee positively evaluated 38 submissions (15/23 for R1/R2) as functional or reusable, out of which 22 belong to papers to appear in the technical program of ECOOP 2023. 4 submitted artifacts that did not pass the bar for the functional and reusable badges in R1 were found eligible for the available badge, 2 of which are associated with papers accepted for presentation at ECOOP 2023.

In order to streamline the artifact review process and to decouple artifact from paper review aspects, we asked authors to submit documentation of explicit claims in a pre-specified format that the artifact evaluation committee checked the artifacts against. At the same time, the PC could assess the importance of these claims for the submitted papers as a frame of reference for the strength of support for the paper that an artifact can provide. This separation greatly facilitated the artifact evaluation committee’s discussions regarding which badges to award.

The smooth and thorough artifact evaluation process would have not been possible without the members of the committee, who handled the artifact review workload and contributed to the technical PC discussions with great dedication. We would like to thank them for their valuable work and the inspiring discussions. We would also like to thank the ECOOP 2023 program committee chairs Karim Ali and Guido Salvaneschi for the pleasant and productive interactions over the coordination of the paper and artifact review processes and the Dagstuhl Publishing team for their assistance with preparing this DARTS volume.

Hernán Ponce de León and Stefan Winter
Artifact Evaluation Process

With ECOOP’s long standing tradition of artifact evaluations, the artifact review process for ECOOP 2023 builds on a wealth of experiences and insights from previous years and adopts concepts that have proven successful, such as the ‘kick-the-tires’ review phase and the adoption of the ACM’s badging scheme. The details of the process are documented in the call for artifacts (https://doi.org/10.5281/zenodo.8012885), the artifact submission template (https://doi.org/10.5281/zenodo.7314238), and an artifact review template (https://doi.org/10.5281/zenodo.7314204) that we provided as guidance for artifact reviewers. In the following we briefly highlight changes compared to previous year’s evaluation.

Badges

Following adoption of ACM’s artifact badges for ECOOP 2021 and 2022, we adopted the same badges’ sub-branding for ECOOP as in 2022, but changed the badging policy to better comply with ACM’s guidelines. In particular, these guidelines demand that only one of the “Artifacts Evaluated” badges, “Functional” or “Reusable”, are assigned as the latter implies the former. We are grateful to ACM’s Scott Delman and Wayne Graves, who provided helpful clarifications regarding the correct interpretation of ACM’s guidelines, and to Dagstuhl Publishing for the many thoughtful checks in the artifact publication process.

Coupling Paper Reviews with Artifact Evaluations

Similar to last year, the review processes for research articles and artifacts were tightly coupled. To address the high review load for the artifact evaluation committee, which also resulted in our decision to provide three reviews for each submitted artifact, we assembled a larger committee than last year. Given the slightly lower artifact submission numbers in 2023 (45 compared to 57 in 2022), each committee member was entrusted with 2-3 artifact reviews over two submission rounds. In addition artifact evaluation committee members contributed 1-2 paper reviews to the technical research track as members of the extended review committee. The lower review load compared to last year left more time for discussions in the badge-assignment process, which we perceived as productive.
Committee

Necca Rusch
Augusta University

John Sarracino
Cornell University

Michael Schröder
TU Wien

Lars Schütze
Technische Universität Dresden

Jiasi Shen
MIT

Qingkai Shi
Purdue University

Somesh Singh
INRIA and ENS de Lyon

Mallku Soldevila
FAMAF, UNC and CONICET

Martin Spiessl
LMU Munich

Quentin Stiévenart
Vrije Universiteit Brussel, Belgium

Alix Trieu
ANSSI

Michele Tucci
Charles University, Prague, Czech Republic

Wenxi Wang
The University of Texas at Austin

Yuke Wang
University of California, Santa Barbara

Zheng Wang
University of California, Santa Barbara

Pascal Weisenburger
University of St. Gallen