Python Type Hints Are Turing Complete (Artifact)

Ori Roth =&

Department of Computer Science, Technion, Haifa, Israel

— Abstract

The artifact comprises a Docker image (virtual en- submitted to the ECOOP Artifact Evaluation Com-
vironment) containing the source code and experi- mittee (AEC) is also available on Zenodo®. The
ments setup mentioned in the paper. The artifact project is maintained on GitHub?®.

is available on Zenodo'. The anonymous version

2012 ACM Subject Classification Software and its engineering — General programming languages
Keywords and phrases nominal Subtyping with Variance, Python
Digital Object Identifier 10.4230/DARTS.9.2.1

Related Article Ori Roth, “Python Type Hints Are Turing Complete”, in 37th European Conference on
Object-Oriented Programming (ECOOP 2023), LIPIcs, Vol. 263, pp. 44:1-44:15, 2023.
https://doi.org/10.4230/LIPIcs.ECO0P.2023.44

Related Conference 37th European Conference on Object-Oriented Programming (ECOOP 2023), July
17-21, 2023, Seattle, Washington, United States

Evaluation Policy The artifact has been evaluated as described in the ECOOP 2023 Call for Artifacts
and the ACM Artifact Review and Badging Policy.

1 Scope

The artifact contains:

1. The Python implementation of Grigore’s reduction mentioned in Sections 2 and 5 of the paper.

2. The Python implementation of our real-time simulation described in Section 4 and mentioned
in Section 5.

3. The experiment setup for obtaining the data depicted in Figure 3 and Table 3.

4. An example program supporting the claim that Pyright is unsound, made in Table 3 and
Section 3.

2 Content

The artifact package includes:
A Docker image python-typing-machines.tar, containing:
The project source code in /app/typing_machines/.
The Figure 3 experiment setup in /app/typing_machines/experiment/.
Variance examples for Python type checkers in /app/motivation/.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://doi.org/10.5281/zenodo.7898753.

! https://doi.org/10.5281/zenodo. 7898753
2 https://doi.org/10.5281/zenodo. 7004898
3 https://github.com/0OriRoth/python-typing-machines

© Ori Roth;
Bv licensed under Creative Commons License CC-BY 4.0
Dagstuhl Artifacts Series, Vol. 9, Issue 2, Artifact No. 1, pp. 1:1-1:4

\\v DAGSTUHL Dagstuhl Artifacts Series
ARTIFACTS SERIES Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,

Dagstuhl Publishing, Germany

mailto:soriroth@cs.technion.ac.il
https://oriroth.github.io/
https://orcid.org/0009-0002-1025-6707
https://doi.org/10.4230/DARTS.9.2.1
https://doi.org/10.4230/LIPIcs.ECOOP.2023.44
https://doi.org/10.5281/zenodo.8012885
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.5281/zenodo.7898753
https://doi.org/10.5281/zenodo.7898753
https://doi.org/10.5281/zenodo.7004898
https://github.com/OriRoth/python-typing-machines
https://doi.org/10.4230/DARTS.9.2.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

1:2

Python Type Hints Are Turing Complete (Artifact)

4 Tested platforms

Install Docker (https://www.docker.com/) to use the artifact.

5 License

The artifact is available under the Apache License 2.0 (https://www.apache.org/licenses/
LICENSE-2.0).

6 MD5 sum of the artifact

9f1a321947a77a3144d2dfc75{72abb7

7 Size of the artifact

0.645 GiB

A Getting started

To install the Docker image run:
docker load -i python-typing-machines.tar
To run the Docker image run:
docker run --rm -it --entrypoint bash python-typing-machines:1.1

Then type the commands described below.

B Claims supported by the artifact

B.1 Artifact functionality

1. The Python implementation of Grigore’s reduction mentioned in Sections 2 and 5 can be found
in /app/typing_machines/. Run:
cd /app/typing_machines/

source /venvs/mypy/bin/activate
python main.py Grigore abbabba > tm.py

mypy tm.py
rm tm.py

deactivate

These commands run Grigore’s reduction on a Turing machine accepting palindromes over {a, b}
and input word abbabba. To modify the Turing machine, edit /app/typing_machines/main.py.
To change the input word, edit the command above. In this case, Mypy reports no error since
abbabba is a palindrome. If we change the input word to abbabaa, which is not a palindrome,
Mypy reports an error.

2. The Python implementation of our real-time simulation described in Section 4 and mentioned

in Section 5 can be found in /app/typing_machines/. To run our reduction, run the command
in the previous bullet but replace Grigore with Roth.

https://www.docker.com/
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

O. Roth 1:3

3. The data in the graph depicted in Figure 2 can be obtained by running

cd /app/typing_machines/experiment/
source /venvs/mypy/bin/activate
python stack_size_experiment.py
deactivate

Expected output:

mypy requires 9M stack size with algorithm Grigore and palindrome of length 10
mypy requires 13M stack size with algorithm Grigore and palindrome of length 12
mypy requires 21M stack size with algorithm Grigore and palindrome of length 14
mypy requires 37M stack size with algorithm Grigore and palindrome of length 16
Grigore’s results:

Grigore 10 9

Grigore 12 13

Grigore 14 21

Grigore 16 37

mypy requires 5M stack size with algorithm Roth and palindrome of length 10
mypy requires 5M stack size with algorithm Roth and palindrome of length 20
mypy requires 5M stack size with algorithm Roth and palindrome of length 30
mypy requires 6M stack size with algorithm Roth and palindrome of length 40
mypy requires 9M stack size with algorithm Roth and palindrome of length 50
mypy requires 9M stack size with algorithm Roth and palindrome of length 60
mypy requires 13M stack size with algorithm Roth and palindrome of length 70
mypy requires 21M stack size with algorithm Roth and palindrome of length 80
mypy requires 21M stack size with algorithm Roth and palindrome of length 90
Roth’s results:

Roth 10 5

Roth 20 5
Roth 30 5
Roth 40 6
Roth 50 9
Roth 60 9
Roth 70 13
Roth 80 21
Roth 90 21

4. The data in Table 3 can be obtained by running the type checkers on the code in
/app/motivation. To test the static type checkers run:
cd /app/motivation/static/
source /venvs/mypy/bin/activate
mypy inf_sub_static.py
deactivate

These commands run Mypy on a code with an infinite subtyping cycle. You can test the
other type checkers by replacing mypy with pyre, pyright, pytype, and pyanalyze in the
commands above (at two locations; run pyre instead of pyre inf_sub_static.py).

Mypy fully supports variance so it gets a segmentation fault.

Pyre fully supports variance so it gets an internal error.

Pyright is unsound (see below).

Pytype reports that it does not support variance.

Pyanalyze reports no error because it does not support variance.
To test the dynamic type checkers run:

cd /app/motivation/dynamic/

source /venvs/pydantic/bin/activate

python inf_sub_pydantic.py
deactivate

DARTS

1:4

Python Type Hints Are Turing Complete (Artifact)

These commands run Pydantic on a code with an infinite subtyping cycle. You can test the
other type checkers by replacing pydantic with pytypes, typeguard, and typical in the
commands above (at two locations).

Pydantic reports no error because it does not support variance.

Pytypes reports an unrelated error because it does not support generics.

Typeguard reports no error because it does not support variance.

Typical reports an unrelated error because it does not support generics with type forward

refrences.
The claim in Table 3 and Section 3 that Pyright is unsound is proven by running the following
commands:

cd /app/motivation/pyright/

source /venvs/mypy/bin/activate

mypy pyright_unsound.py

deactivate

source /venvs/pyre/bin/activate

pyre

deactivate

source /venvs/pyright/bin/activate
pyright pyright_unsound.py
deactivate

The code in pyright_unsound.py is typed correctly. Mypy and Pyre report no error when
checking the file. Pyright reports a single, false error when checking the file.

B.2 Artifact reusability

The implementation can easily be modified to use a different algorithm than the one de-
scribed in Section 4 of the paper. A new algorithm should use a similar interface to that of
/app/typing_machines/compilers/compiler.py and
/app/typing_machines/compilers/compiler_g.py.
You can add your new algorithm to the experiment by:

adding support for the new algorithm in /app/typing_machines/app.py, and

editing /app/typing_machines/experiment/stack_size_experiment.py.
The implementation can easily be modified to use a different language than Python by editing
the compilers in /app/typing_machines/compilers/.

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact
	A Getting started
	B Claims supported by the artifact
	B.1 Artifact functionality
	B.2 Artifact reusability

