
38th Computational Complexity
Conference

CCC 2023, July 17–20, 2023, Warwick, UK

Edited by

Amnon Ta-Shma

LIPIcs – Vo l . 264 – CCC 2023 www.dagstuh l .de/ l ip i c s

Editors

Amnon Ta-Shma
Tel Aviv University, Israel
amnon@tauex.tau.ac.il

ACM Classification 2012
Theory of computation

ISBN 978-3-95977-282-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-282-2.

Publication date
July, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CCC.2023.0

ISBN 978-3-95977-282-2 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0001-8186-3622
mailto:amnon@tauex.tau.ac.il
https://www.dagstuhl.de/dagpub/978-3-95977-282-2
https://www.dagstuhl.de/dagpub/978-3-95977-282-2
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.CCC.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-282-2
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University – Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB and Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CCC 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Amnon Ta-Shma . 0:ix

Conference Organization
. 0:xi

External Reviewers
. 0:xiii

Papers

Separation of the Factorization Norm and Randomized Communication
Complexity

Tsun-Ming Cheung, Hamed Hatami, Kaave Hosseini, and Morgan Shirley 1:1–1:16

Border Complexity of Symbolic Determinant Under Rank One Restriction
Abhranil Chatterjee, Sumanta Ghosh, Rohit Gurjar, and Roshan Raj 2:1–2:15

On Correlation Bounds Against Polynomials
Peter Ivanov, Liam Pavlovic, and Emanuele Viola . 3:1–3:35

On the Algebraic Proof Complexity of Tensor Isomorphism
Nicola Galesi, Joshua A. Grochow, Toniann Pitassi, and Adrian She 4:1–4:40

Generative Models of Huge Objects
Lunjia Hu, Inbal Rachel Livni Navon, and Omer Reingold . 5:1–5:20

Bounded Relativization
Shuichi Hirahara, Zhenjian Lu, and Hanlin Ren . 6:1–6:45

Lower Bounds for Polynomial Calculus with Extension Variables over Finite Fields
Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi . 7:1–7:24

Spectral Expanding Expanders
Gil Cohen and Itay Cohen . 8:1–8:19

Hardness Against Linear Branching Programs and More
Eshan Chattopadhyay and Jyun-Jie Liao . 9:1–9:27

An Improved Trickle down Theorem for Partite Complexes
Dorna Abdolazimi and Shayan Oveis Gharan . 10:1–10:16

Derandomization with Minimal Memory Footprint
Dean Doron and Roei Tell . 11:1–11:15

Improved Learning from Kolmogorov Complexity
Halley Goldberg and Valentine Kabanets . 12:1–12:29

New Lower Bounds Against Homogeneous Non-Commutative Circuits
Prerona Chatterjee and Pavel Hrubeš . 13:1–13:10

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

On Relaxed Locally Decodable Codes for Hamming and Insertion-Deletion Errors
Alexander R. Block, Jeremiah Blocki, Kuan Cheng, Elena Grigorescu, Xin Li,
Yu Zheng, and Minshen Zhu . 14:1–14:25

Near-Optimal Set-Multilinear Formula Lower Bounds
Deepanshu Kush and Shubhangi Saraf . 15:1–15:33

Matrix Multiplication and Number on the Forehead Communication
Josh Alman and Jarosław Błasiok . 16:1–16:23

Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols
Dieter van Melkebeek and Nicollas Mocelin Sdroievski . 17:1–17:36

Tight Correlation Bounds for Circuits Between AC0 and TC0
Vinayak M. Kumar . 18:1–18:40

Criticality of AC0-Formulae
Prahladh Harsha, Tulasimohan Molli, and Ashutosh Shankar . 19:1–19:24

Radical Sylvester-Gallai Theorem for Tuples of Quadratics
Abhibhav Garg, Rafael Oliveira, Shir Peleg, and Akash Kumar Sengupta 20:1–20:30

Reducing Tarski to Unique Tarski (In the Black-Box Model)
Xi Chen, Yuhao Li, and Mihalis Yannakakis . 21:1–21:23

A Distribution Testing Oracle Separating QMA and QCMA
Anand Natarajan and Chinmay Nirkhe . 22:1–22:27

Translationally Invariant Constraint Optimization Problems
Dorit Aharonov and Sandy Irani . 23:1–23:15

An Exponential Separation Between Quantum Query Complexity and the
Polynomial Degree

Andris Ambainis and Aleksandrs Belovs . 24:1–24:13

Trade-Offs Between Entanglement and Communication
Srinivasan Arunachalam and Uma Girish . 25:1–25:23

New Sampling Lower Bounds via the Separator
Emanuele Viola . 26:1–26:23

A Ihara-Bass Formula for Non-Boolean Matrices and Strong Refutations of
Random CSPs

Tommaso d’Orsi and Luca Trevisan . 27:1–27:16

Towards Optimal Depth-Reductions for Algebraic Formulas
Hervé Fournier, Nutan Limaye, Guillaume Malod, Srikanth Srinivasan,
and Sébastien Tavenas . 28:1–28:19

Constant-Depth Circuits vs. Monotone Circuits
Bruno P. Cavalar and Igor C. Oliveira . 29:1–29:37

A Degree 4 Sum-Of-Squares Lower Bound for the Clique Number of the Paley
Graph

Dmitriy Kunisky and Xifan Yu . 30:1–30:25

Contents 0:vii

Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem
Per Austrin and Kilian Risse . 31:1–31:21

Leakage-Resilient Hardness vs Randomness
Yanyi Liu and Rafael Pass . 32:1–32:20

On the Impossibility of General Parallel Fast-Forwarding of Hamiltonian
Simulation

Nai-Hui Chia, Kai-Min Chung, Yao-Ching Hsieh, Han-Hsuan Lin, Yao-Ting Lin,
and Yu-Ching Shen . 33:1–33:45

The Optimal Depth of Variational Quantum Algorithms Is QCMA-Hard to
Approximate

Lennart Bittel, Sevag Gharibian, and Martin Kliesch . 34:1–34:24

An Algorithmic Approach to Uniform Lower Bounds
Rahul Santhanam . 35:1–35:26

Colourful TFNP and Propositional Proofs
Ben Davis and Robert Robere . 36:1–36:21

CCC 2023

Preface

The papers in this volume were accepted for presentation at the 38th Computational
Complexity Conference (CCC 2023), held between July 17–20, 2023, in Warwick, UK. The
conference is organized by the Computational Complexity Foundation (CCF) in cooperation
with the ACM Special Interest Group on Algorithms and Computation Theory (SIGACT)
and the European Association for Theoretical Computer Science (EATCS).

The call for papers sought original research papers in all areas of computational complexity
theory. Of the 74 submissions, the program committee selected 36 for presentation at the
conference.

The program committee would like to thank everyone involved in the conference, including
all those who submitted papers for consideration as well as the reviewers (listed separately)
for their scientific contributions; the board of trustees of the Computational Complexity
Foundation for their advice and assistance; the Local Arrangements Committee chair Tom
Gur; Nikolas Breuckmann, Shuichi Hirahara, and Salil Vadhan for their invited talks; and
Michael Wagner for coordinating the production of these proceedings.

Amnon Ta-Shma
Program Committee Chair, on behalf of the Program Committee

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Conference Organization

Program Committee

Eli Ben-Sasson, StarkWare
Andrej Bogdanov, Chinese University of Hong Kong (until Jan 2023) and University of
Ottawa (after Jan 2023)
Lijie Chen, UC Berkeley
Alex Bredariol Grilo, LIP6 (CNRS/Sorbonne Université)
Mika Göös, EPFL
William Hoza, Simons Institute for the Theory of Computing
Susanna F. de Rezende, Lund University
Neeraj Kayal, Microsoft Research India
Tali Kaufmann, Bar-Ilan University
François Le Gall, Nagoya University
Raghu Meka, UCLA
Amnon Ta-Shma (Chair), Tel-Aviv University

Local Arrangements Committee

Tom Gur (Chair), University of Warwick

Board of Trustees

Amit Chakrabarti, Dartmouth College
Valentine Kabanets (President), Simon Fraser University
Michal Koucký, Charles University
Nutan Limaye IIT Bombay
Meena Mahajan, The Institute of Mathematical Sciences
Pierre McKenzie, Université de Montréal
Benjamin Rossman, Duke University
Shubhangi Saraf, University of Toronto
Ryan Williams, Massachusetts Institute of Technology

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

External Reviewers

Gorjan Alagic
Yaroslav Alekseev
Eric Allender
Omar Alrabiah
Andris Ambainis
Robert Andrews
Srinivasan Arunachalam
Aleksandrs Belovs
Shalev Ben-David
Guy Blanc
Ilario Bonacina
Samuel Bouaziz
Mark Bun
Libor Caha
Arkadev Chattopadhyay
Sitan Chen
Kuan Cheng
Tsun Ming Cheung
Shawn Cui
Radu Curticapean
Yotam Dikstein
Michael Dinitz
Irit Dinur
Pavel Dvořák
Prateek Dwivedi
Bill Fefferman
Dmytro Gavinsky
Alexandru Gheorghiu
Halley Goldberg
Oded Goldreich
Alexander Golovnev
Louis Golowich
Jesse Goodman
Spencer Gordon
Roy Gotlib
Fernando Granha Jeronimo
Kasper Green Larsen
Joshua Grochow
Ziyi Guan
Zeyu Guo
Tom Gur
Tuomas Hakoniemi
Nathaniel Harms
Pooya Hatami
Tal Herman

Shuichi Hirahara
Alexandros Hollender
Christian Ikenmeyer
Rahul Ilango
Yuval Ishai
Siddhartha Jain
Ce Jin
Chris Jones
Amitay Kamber
Robbie King
Leszek Kolodziejczyk
Alexis Korb
Sajin Koroth
Oliver Korten
Robin Kothari
William Kretschmer
Mrinal Kumar
Srijita Kundu
Victor Lecomte
Chin Ho Lee
Nutan Limaye
Jiahui Liu
Yunchao Liu
Shachar Lovett
Xin Lyu
Nathan Manohar
Peter Manohar
Or Meir
Dimitrios Myrisiotis
Mikito Nanashima
Oded Nir
Igor Carboni Oliveira
Michael Oliveira
Izhar Oppenheim
Benedikt Pago
Tomáš Peitl
Naty Peter
Supartha Podder
Aaron Potechin
Kevin Pratt
Dömötör Pálvölgyi
Luowen Qian
Youming Qiao
Mikhail Raskin
Alexander Razborov

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv External Reviewers

Daniel Reichman
Hanlin Ren
Artur Riazanov
Kilian Risse
Robert Robere
Ansis Rosmanis
Benjamin Rossman
Ron Rothblum
Dorian Rudolph
Rahul Santhanam
Ramprasad Saptharishi
Pascal Schweitzer
Ronen Shaltiel
Makrand Sinha
Dmitry Sokolov
Harsha Srimath Tirumala
Srikanth Srinivasan
Sathyawageeswar Subramanian
Avishay Tal
Roei Tell
Neil Thapen
Iddo Tzameret
Neekon Vafa
Prashant Vasudevan
Emanuele Viola
Ben Lee Volk
Daochen Wang
James Watson
Ryan Williams
Freek Witteveen
Hongxun Wu
Tal Yankovitz
Amir Yehudayoff
Huacheng Yu
Weiqiang Yuan
Mark Zhandry
Jeroen Zuiddam

Separation of the Factorization Norm and
Randomized Communication Complexity
Tsun-Ming Cheung #

School of Computer Science, McGill University, Montreal, Canada

Hamed Hatami #

School of Computer Science, McGill University, Montreal, Canada

Kaave Hosseini #

Department of Computer Science, University of Rochester, NY, USA

Morgan Shirley #

Department of Computer Science, University of Toronto, Canada

Abstract
In an influential paper, Linial and Shraibman (STOC ’07) introduced the factorization norm as a
powerful tool for proving lower bounds against randomized and quantum communication complexities.
They showed that the logarithm of the approximate γ2-factorization norm is a lower bound for these
parameters and asked whether a stronger lower bound that replaces approximate γ2 norm with the
γ2 norm holds.

We answer the question of Linial and Shraibman in the negative by exhibiting a 2n × 2n Boolean
matrix with γ2 norm 2Ω(n) and randomized communication complexity O(log n).

As a corollary, we recover the recent result of Chattopadhyay, Lovett, and Vinyals (CCC ’19) that
deterministic protocols with access to an Equality oracle are exponentially weaker than (one-sided
error) randomized protocols. In fact, as a stronger consequence, our result implies an exponential
separation between the power of unambiguous nondeterministic protocols with access to Equality
oracle and (one-sided error) randomized protocols, which answers a question of Pitassi, Shirley, and
Shraibman (ITSC ’23).

Our result also implies a conjecture of Sherif (Ph.D. thesis) that the γ2 norm of the Integer Inner
Product function (IIP) in dimension 3 or higher is exponential in its input size.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases Factorization norms, randomized communication complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.1

Funding Hamed Hatami: Supported by an NSERC grant.
Morgan Shirley: Supported by an NSERC grant.

1 Introduction

The γ2-factorization norm is an important notion of matrix complexity that was initially
developed in Banach Space theory. In an influential paper, Linial and Shraibman [12]
introduced this norm to communication complexity. Subsequently, the factorization norm
and its approximate version found numerous applications in communication complexity and
other adjacent areas such as discrepancy theory [13] and differential privacy [14, 3, 7].

▶ Definition 1 (γ2-factorization norm). The γ2 norm of a real matrix A is

∥A∥γ2 := min
X,Y :A=XY

∥X∥row∥Y ∥col,

where ∥X∥row and ∥Y ∥col denote the largest ℓ2-norm of a row in X and the largest ℓ2 norm
of a column in Y , respectively.

© Tsun-Ming Cheung, Hamed Hatami, Kaave Hosseini, and Morgan Shirley;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 1; pp. 1:1–1:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tsun.ming.cheung@mail.mcgill.ca
mailto:hatami@cs.mcgill.ca
mailto:kaave.hosseini@rochester.edu
mailto:shirley@cs.toronto.edu
https://doi.org/10.4230/LIPIcs.CCC.2023.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Separation of the Factorization Norm and Randomized Communication Complexity

▶ Definition 2 (Approximate γ2 norm). The approximate γ2 norm of A ∈ Rk×ℓ with error ϵ,
denoted by γ̃ϵ

2(A), is the minimum ∥B∥γ2 over all matrices B ∈ Rk×ℓ with ∥A − B∥∞ ≤ ϵ.

We use the notation γ̃ϵ
2(·) to emphasize that unlike the γ2 norm ∥ · ∥γ2 , the approximate γ2

norm is not a norm. The choice of the error parameter ϵ is mostly unimportant in the context
of communication complexity. Indeed, a constant-factor reduction in the error parameter
increases log γ̃ϵ

2(A) by a constant factor [1, Lemma 21]. Therefore, we use the standard
choice of ϵ = 1/3 and write γ̃2 for γ̃

1/3
2 . Both of the quantities γ̃2 and γ2 are polynomial-time

computable using semi-definite programming [12].
Linial and Shraibman [12] showed that log γ̃2(A) provides a lower bound on the public-coin

randomized communication complexity R(A) and the quantum communication complexity
with shared entanglement Q∗(A):

log γ̃2(A) ≲ Q∗(A) ≤ R(A). (1)

These lower bounds subsume the most well-known lower bounds on randomized and quantum
communication complexity, such as discrepancy, approximate trace norm [17], and entropy
of singular values [9].

Linial and Shraibman [12] state that “they cannot rule out the intriguing possibility that
the first inequality in Equation (1) is a tip of something bigger and randomized communication
complexity and the quantum communication complexity with shared entanglement are in
fact polynomially equivalent to log ∥A∥γ2 .”

▶ Question 1 ([12]). Is log ∥A∥γ2 ≤ Õ(R(A)) for every a Boolean matrix A : {0, 1}n ×
{0, 1}n → {0, 1}?

Here, the notation Õ(·) hides a factor of polylog(n), which is common in communication
complexity since the communication cost of polylog(n) is considered efficient.

Another motivation for Question 1 comes from the following observation. It is well-known
that the Equality function eq : {0, 1}n × {0, 1}n has R(eq) = O(1) (see e.g. [10]) but its
rank over the reals is 2n, and therefore eq witnesses the strongest possible separation (O(1)
versus 2n) between R and rank. On the other hand, as mentioned before, the γ2 norm can
be viewed as a smooth analogue of rank. However, the γ2 norm of the Equality function is 1,
and therefore, one naturally wonders whether there is a strong separation between R(·) and
the γ2 norm.

The purpose of the present paper is to give a strong negative answer to Question 1. In
fact, we work with a stronger parameter of R1

0(A) instead of R(A). This parameter is the
minimum cost of a one-sided public-coin randomized protocol. The protocol is not allowed
to have any error on 1 entries of A, but on the 0 entries, it can have a probability of error as
big as 1/3.

1.1 Main Result
Our main result establishes a strong separation between the γ2 norm and R1

0.

▶ Theorem 3 (Main Theorem). There is a Boolean matrix M : {0, 1}n × {0, 1}n → {0, 1}
with ∥M∥γ2 ≥ 2n/32 and R1

0(M) ≤ O(log n).

The construction in Theorem 3 is based on the point-line incidence matrix over the
integers. For integers 1 ≤ q ≤ p, let PL be the qp × qp Boolean matrix whose rows and
columns are indexed by the elements of [q] × {0, . . . , p − 1} and its entries are given as
PL[(x, x′), (y, y′)] = 1 iff xy + x′ = y′. We also define a variant of PL over Zp to simplify the
analysis. The matrix PLZp

is the qp×qp Boolean matrix whose rows and columns are indexed
by [q] × Zp and its entries are given as PLZp

[(x, x′), (y, y′)] = 1 iff xy + x′ ≡ y′ mod p.

T.-M. Cheung, H. Hatami, K. Hosseini, and M. Shirley 1:3

Recall that the trace norm of a matrix is the sum of its singular values (see Section 2.1).The-
orem 3 is immediate from the following theorem, which is our main technical contribution.

▶ Theorem 4 (Technical Statement of the Main Theorem). Let p be a prime.
(i) For 1 ≤ q ≤ √

p, we have

∥PLZp
∥Tr = Ω(pq9/8) and ∥PLZp

∥γ2 = Ω(q1/8) and R1
0(PLZp

) = O(log log p).

(ii) For 1 ≤ q ≤ p1/3, we have

∥PL∥Tr = Ω(pq9/8) and ∥PL∥γ2 = Ω(q1/8) and R1
0(PL) = O(log log p).

▶ Remark 5. The condition 1 ≤ q ≤ p1/3 in (ii) allows us to deduce (ii) from (i) since
∥PLZp

− PL∥Tr = o(pq9/8) in this range (see Lemma 15). On the other hand, the condition
1 ≤ q ≤ √

p in (i) is to guarantee R1
0(PLZp

) = O(log log p). Indeed, unlike PL, whose
randomized communication complexity is always small, the randomized communication
complexity of PLZp

is large when q is close to p. For example, for q = p, this follows from the
fact that all nontrivial eigenvalues of PLZp are at most

√
3p [19].

1.2 Consequences of the Main Theorem
As an immediate consequence, combining Theorem 3 with Equation (1) implies an exponential
separation between γ̃2(·) and ∥ · ∥γ2 . This corollary answers a question of Pitassi, Shirley,
and Shraibman [16, Open Question 3].

▶ Corollary 6. There is a Boolean matrix M : {0, 1}n ×{0, 1}n → {0, 1} with ∥M∥γ2 ≥ 2n/32

and γ̃2(M) ≤ O(poly(n)).

Another corollary of Theorem 3 concerns the deterministic communication complexity
with oracle access to the Equality function. We formally define this model in Section 2.2
and denote the corresponding complexity measure by Deq(·). The equality function, which
corresponds to the identity matrix, is the standard example of a problem with O(1) randomized
communication complexity but large deterministic communication complexity. This fact
makes Deq(·) an interesting complexity measure between randomized and deterministic
communication complexities.

log γ̃2(A) ≲ Q∗(A) ≤ R(A) ≲ Deq(A) ≤ D(A). (2)

Since the γ2 norm of the identity matrix is 1, it is not hard to see that [5, Proposition 3.1]
1
2 log ∥A∥γ2 ≤ Deq(A). (3)

In light of Equation (3), Theorem 3 implies the following.

▶ Corollary 7. There is a Boolean matrix M : {0, 1}n × {0, 1}n → {0, 1} with R1
0(M) ≤

O(log n) and Deq(M) = Ω(n).

The above corollary recovers the result of Chattopadhyay, Lovett, and Vinyals [2] separating
R and Deq. In fact, we obtain an exponential lower bound on a model stronger than Deq.
In complexity theory, unambiguous nondeterminism is similar to nondeterminism but with
the extra requirement that for every input, there is at most one accepting computational
path. Therefore, the power of unambiguous nondeterminism lies between determinism and
nondeterminism. For a Boolean matrix M , the unambiguous nondeterministic communication
complexity of M with access to an equality oracle is denoted by UPeq (see Section 2.2). It is
immediate that UPeq(·) ≤ Deq(·). Theorem 3 implies the following corollary, answering a
question of Pitassi, Shirley, and Shraibman [16, Open Question 2].

CCC 2023

1:4 Separation of the Factorization Norm and Randomized Communication Complexity

▶ Corollary 8. There is a Boolean matrix M : {0, 1}n × {0, 1}n → {0, 1} with R1
0(M) ≤

O(log n) and UPeq(M) = Ω(n).

The matrix PL that we consider in Theorem 4 is essentially a submatrix of the Integer Inner
Product matrix (IIP) used in the work of Chattopadhyay et al. [2]; however, the proof
technique here is entirely different.

▶ Definition 9. Let t ∈ N be a fixed constant. For a positive integer m = 2n, the Integer
Inner Product function IIPt : {−m, . . . , m}t × {−m, . . . , m}t → {0, 1} is defined as

IIPt[(x1, . . . , xt), (y1, . . . , yt)] = 1 iff x1y1 + . . . + xtyt = 0.

Since t is a fixed constant, the input size of IIPt is Θ(n)-bits as a communication problem.
Chattopadhyay, Lovett, and Vinyals proved that R1

0(IIPt) = O(log n), and Deq(IIPt) = Ω(n)
for t ≥ 6.

Later, Sherif [18] conjectured ∥IIPt∥γ2 = 2Ω(n) for t ≥ 6. Since the matrix PL is a
submatrix of IIP3, as a corollary of Theorem 4, we answer Sherif’s question in the affirmative.

▶ Corollary 10. For t ≥ 3,

∥IIPt∥γ2 = 2Ω(n).

Proof. Choose n such that 2n−1 ≤ p ≤ 2n and q = ⌈p1/3⌉. From Theorem 4, we obtain PL
as a submatrix of IIP3 with m = 2n such that ∥PL∥γ2 = Ω(2n/32). Since the γ2 norm cannot
increase when restricting to a submatrix, we conclude that

∥IIPt∥γ2 ≥ ∥IIP3∥γ2 ≥ ∥PL∥γ2 = 2Ω(n). ◀

▶ Remark 11. The condition t ≥ 3 is necessary as ∥IIP2∥γ2 = O(1). To prove the latter, we
use Equation (3) and show Deq(IIP2) = O(1). Note that if x1y1 + x2y2 = 0 and y1, x2 ̸= 0,
then x1

x2
= − y2

y1
. To check this equation, Alice and Bob can call the Equality oracle on

rational inputs x1
x2

and − y2
y1

.

1.3 Connections to Fourier Algebra Norm
The sum of the absolute values of the Fourier coefficients of a function f : Zn

2 → R is called
the algebra norm of f :

∥f∥A := ∥f̂∥1 =
∑

a∈Zn
2

|f̂(a)|.

For any error parameter ϵ ∈ (0, 1/2), the ϵ-approximate algebra norm of f : Zn
2 → {0, 1} is

Ãϵ(f) := inf{∥g∥A : ∥f − g∥∞ ≤ ϵ}.

It is possible to use the xor operation to lift these norms to the γ2 norm and the approximate
γ2 norm [12]: for the matrix F : Zn

2 × Zn
2 → {0, 1} defined by F (x, y) = f(x ⊕ y), we have

∥f∥A = ∥F∥γ2 and Ãϵ(f) = γ̃ϵ
2(F).

The communication complexity measures of F are related to the parity query complexity
measures of f . For example, we have

R(F) ≤ 2 rdt⊕(f),

where rdt⊕(f) denotes the randomized parity decision tree complexity of f (see [5]).
Therefore, the class of xor-lifted Boolean functions provide a rich collection of matrices

for which the questions about the factorization norm reduce to simpler questions about the
Fourier algebra norm. In this setting, one can ask the analog of Question 1.

T.-M. Cheung, H. Hatami, K. Hosseini, and M. Shirley 1:5

▶ Question 2 (Open Question). Is log ∥f∥A = Õ(rdt⊕(f)) for every Boolean function
f : Zn

2 → {0, 1}?

By the above discussion, if we find a counter-example f to Question 2, then F (x, y) :=
f(x ⊕ y) would be a counter-example to Question 1. However, Question 2 remains open.
Indeed, our counter-example to Question 1 is not an xor-lift.

Finally, let us comment on the stronger versions of Question 1 and Question 2, where we
do not tolerate a polylog(n) factor, i.e., replace Õ(·) with O(·). Let B(n, r) ⊆ {0, 1}n denote
the Hamming ball of radius r around the origin, i.e.,

B(n, r) :=
{

x ∈ {0, 1}n :
n∑

i=1
xi ≤ r

}
.

Note that the lifted function Fn,r(x, y) = 1B(n,r)(x⊕y) corresponds to the hamming distance
problem, whose communication complexity is well-understood. We have [8]

rdt⊕(1B(n,r)) ≤ O(r log r) and R(Fn,r) ≤ O(r log r).

On the other hand, for r ≤ n/2, the following bounds are known [5, Lemma 2.15] about the
Fourier algebra norm of 1B(n,r):

e−r

√√√√ r∑
i=0

(
n

i

)
≤

∥∥1B(n,r)
∥∥

A
= ∥Fn,r∥γ2 ≤

√√√√ r∑
i=0

(
n

i

)
.

Therefore, in the context of Question 2 and Question 1, taking r = O(1) provides examples
of f : {0, 1}n → {0, 1} and F : {0, 1}n × {0, 1}n → {0, 1} with

rdt⊕(f) = O(1) and log ∥f∥A = Θ(log n),

and

R(F) = O(1) and log ∥F∥γ2 = Θ(log n).

Paper Organization

In Section 2, we discuss the preliminaries of matrix norms, communication complexity, and
Fourier analysis. We give a brief overview of the proof strategy in Section 3. We present
the proof of Theorem 4 in Sections 4 and 5. Finally, we discuss several open problems in
Section 6.

2 Notations and Preliminaries

For a positive integer k, we denote [k] := {1, . . . , k}. We use the shorthand notations a ≡p b

to denote a ≡ b mod p. For a set S, we use the indicator function notation 1S , which is
evaluated to 1 on x if x ∈ S and 0 otherwise. All the logarithms in this paper are in base 2.

We adopt the standard computer science asymptotic notations and use the tilde asymptotic
notations to hide poly-logarithmic factors. We write f ≲ g to denote f(n) = O(g(n)).

For a vector v ∈ Ck, we denote the ℓ2-norm of v by ∥v∥2 =
√∑

i |vi|2. We denote the
all-1 matrix by J.

CCC 2023

1:6 Separation of the Factorization Norm and Randomized Communication Complexity

2.1 Matrix Norms
For a complex-valued matrix A ∈ Ck×ℓ, we denote the singular values of A by

σ1(A) ≥ σ2(A) ≥ . . . ≥ σmin(k,ℓ)(A) ≥ 0.

We primarily work with the matrix norm family of Schatten norms. For p ∈ [1, ∞], the
Schatten-p norm of a matrix is the ℓp norm of the vector of its singular values. The particular
cases of p = 1, 2, ∞ are frequently used, and these norms are commonly known as trace norm,
Frobenius norm, and spectral norm respectively:

∥A∥Tr = ∥A∥S1 =
∑

i

σi

∥A∥F = ∥A∥S2 =
√∑

i

σ2
i =

√∑
i,j

|Aij |2

∥A∥ = ∥A∥S∞ = σ1 = max
x∈Cℓ:∥x∥2=1

∥Ax∥2 = max
u∈Ck,v∈Cℓ

∥u∥2=∥v∥2=1

u∗Av

Viewing Schatten p-norm as the ℓp norm of the singular value vector, one can obtain
several useful properties inherited from ℓp norms. One such property is the monotonicity of
Schatten p-norm in p: ∥A∥Sp

≥ ∥A∥Sq
for 1 ≤ p < q ≤ ∞.

Similar to the case of ℓp norm, for p, q ∈ [1, ∞] with 1
p + 1

q = 1, the dual norm of ∥ · ∥Sp

is ∥ · ∥Sq
. With the inner product on the matrix space Ck×ℓ defined by ⟨A, B⟩ = Tr(A∗B) =∑

ij AijBij , the Schatten p-norm admits the following dual norm characterization:

∥A∥Sp = max
∥B∥Sq =1

|⟨A, B⟩|.

For the particular case of p = 1, this yields

|⟨A, B⟩| ≤ ∥A∥Tr∥B∥.

In particular, by setting B = A, we have

∥A∥2
F ≤ ∥A∥Tr∥A∥. (4)

Next, we discuss a reformulation of the γ2 norm in terms of the trace norm. As shown in
[11], for A ∈ Rk×ℓ, we have

∥A∥γ2 = max
u∈Rk,v∈Rℓ

∥u∥2=∥v∥2=1

∥A ◦ uvT ∥Tr.

Here ◦ denotes the Hadamard (or entrywise) product of two matrices: for B, C ∈ Rk×ℓ, their
product B ◦ C is the m × n matrix defined by [B ◦ C]ij = BijCij for all i, j. It follows from
the trace norm formulation of the γ2 norm that

∥A∥γ2 ≥ 1√
kℓ

∥A∥Tr. (5)

2.2 Communication Complexity
In the standard communication model, there are two parties and problems are modelled by
functions f : X × Y → {0, 1} on finite domains X , Y. The two parties receive x ∈ X and
y ∈ Y , respectively, and they exchange messages to compute f(x, y). We often interpret f as
a Boolean matrix indexed by (x, y) ∈ X × Y .

T.-M. Cheung, H. Hatami, K. Hosseini, and M. Shirley 1:7

For a given ϵ ∈ (0, 1/2), we denote by Rϵ(f), the randomized communication complexity
of f in the public-coin model with two-sided error ϵ > 0. The one-sided versions, R1

ϵ (f) and
R1

0,ϵ(f), restrict the error to be one-sided: R1
ϵ(f) does not allow any error on the inputs in

f−1(0). Similarly, R1
0,ϵ(f) does not allow any error on the inputs in f−1(1). We refer the

reader to [10] for the formal definitions. We use the canonical choice of ϵ = 1/3 and drop ϵ

in the notations in such cases. This choice is without loss of generality since the probability
of error can be reduced to any constant ϵ′ > 0 by repeating the protocol a constant number
of times and outputting the majority.

As mentioned, approximate norms are useful tools for studying communication complexity.
The following well-known inequalities [6, Proposition A.2] connect approximate γ2 norm with
randomized communication complexity.

log γ̃2(A) ≤ R(A) ≤ O(γ̃2(A)2). (6)

Next, we define the deterministic communication complexity with access to an equality
oracle. In this model, a protocol computing a Boolean matrix AX ×Y corresponds to a binary
tree. Each non-leaf node v in the tree is labelled with two functions av : X → Z and
bv : Y → Z for a finite set Z. Such a node v corresponds to the query eq(av(x), bv(y)),
which returns 1 if av(x) = bv(y) and 0 otherwise. Every input (x, y) naturally corresponds
to a path from the tree’s root to a leaf, and the leaf must be labelled with the correct value
A(x, y). The cost of the protocol is the depth of the tree. The deterministic communication
complexity of the matrix A with access to an equality oracle, denoted by Deq(A), is the
smallest depth of such a protocol for A.

Consider a node v in an equality-oracle deterministic communication protocol as described
above. Note that the matrix Bv(x, y) := eq(av(x), bv(y)) consists of a collection of all-1
submatrices with rows and columns disjoint. Such matrices are dubbed blocky matrices
by [5]. The answer to the query at the node v will inform the parties whether the input
(x, y) belongs to the support of Bv or the support of J − Bv.

Consider a leaf ℓ of the protocol tree where the protocol outputs 1, and let v1, . . . , vd = ℓ

be the set of the nodes on the corresponding path from the root. The inputs that lead the
protocol to reach ℓ are the 1 entries of the matrix Mℓ := Cv1 ◦ . . . ◦ Cvd−1 with Cvi

= Bvi
or

Cvi
= J−Bvi

according to the outcome of the query at vi. Each matrix Cvi
is either a blocky

matrix or the difference of two blocky matrices. Since the γ2 norm of a Blocky matrix is at most
1, it follows that ∥Cvi

∥γ2 ≤ 2. Since γ2 is an algebra norm (i.e., ∥X ◦ Y ∥γ2 ≤ ∥X∥γ2∥Y ∥γ2),
we have ∥Mℓ∥γ2 ≤ 2d. Note that A =

∑
Mℓ where the sum is over all the leaves where the

protocol outputs 1. Hence,

∥A∥γ2 ≤ 4d. (7)

An unambiguous nondeterministic protocol with access to equality oracle is a collection of
2m deterministic equality-oracle protocols, each with depth at most d, such that on every
input, at most one of them returns 1. The cost of such a protocol is m + d. Consider such a
protocol for a Boolean matrix A, and let A1, . . . , A2m be the Boolean matrices computed
by the 2m deterministic equality-oracle protocols. We must have A =

∑2m

i=1 Ai, and in
particular, by Equation (7), we have

∥A∥γ2 ≤
2m∑
i=1

∥Ai∥γ2 ≤ 2m × 4d = 2m+2d.

We denote by UPeq(A), the smallest cost of an unambiguous nondeterministic equality-
oracle protocol for A. We conclude

1
2 log ∥A∥γ2 ≤ UPeq(A) ≤ Deq(A). (8)

CCC 2023

1:8 Separation of the Factorization Norm and Randomized Communication Complexity

2.3 Fourier Analysis of Zk
p

This section gives a basic overview of Fourier analysis on the finite Abelian group G := Zk
p

for p, k ∈ N. Consider the Hilbert space L2(G) with the inner product of two functions
f, g : G → C defined by

⟨f, g⟩ =
∑
x∈G

f(x)g(x).

The inner product defines the norm ∥f∥2 =
√

⟨f, f⟩.
Consider the principal p-th root of unity ω := e2πi/p. For every element a = (a1, . . . , ak) ∈

Zk
p, define the corresponding Fourier character χa : G → C as

χa(x) = ω

∑k

j=1
ajxj .

The Fourier characters form an orthogonal basis for L2(G):

⟨χa, χb⟩ =
∑
x∈G

χa−b(x) =
{

|G| if a = b

0 otherwise
.

Therefore, every function f : G → C has a unique expansion

f =
∑
a∈G

f̂(a)χa,

where

f̂(a) = 1
|G|

⟨f, χa⟩.

It follows from the orthogonality of the Fourier characters that for every f : G → C,∑
x∈G

|f(x)|2 = |G|
∑
a∈G

|f̂(a)|2. (9)

This identity is called Parseval’s identity.

3 Overview of the Proof of the Main Theorem

Let 1 ≤ q ≤ p, and let M be the ([q] × Zp) × ([q] × Zp) Boolean matrix defined as
M [(x, x′), (y, y′)] = 1 iff xy = x′ + y′. Note that M [(x, x′), (y, y′)] = PLZp

[(x, −x′), (y, y′)],
and thus M is just a row permutation of PLZp

. Therefore, ∥M∥Tr = ∥PLZp
∥Tr.

Let σ1 ≥ . . . ≥ σN be the singular values of M . Since M is a real symmetric matrix
and every row of M contains exactly q ones, the largest eigenvalue of M is σ1 = q, which
corresponds to the all-1 eigenvector. If M were a “pseudo-random” matrix in the sense that
all of its non-principal eigenvalues were small (i.e., σ2 < q1−ϵ), then one could easily show
that the trace norm of M is large. Indeed, the Frobenius norm of M is equal to√ ∑

(x,x′),(y,y′)

M [(x, x′), (y, y′)]2 =
√

qN,

therefore

∥M∥Tr ≥
N∑

i=2
σi ≥

∑N
i=2 σ2

i

σ2
= qN − q2

σ2
= Ω

(
qN

σ2

)
. (10)

However, we cannot expect M to be pseudo-random since pseudo-random matrices have
large randomized communication complexity and this is not the case for M .

T.-M. Cheung, H. Hatami, K. Hosseini, and M. Shirley 1:9

To prove a lower bound for ∥M∥Tr, there is nothing special about removing only the
largest singular value in Equation (10). One can take any subspace W ⊆ RN and apply
Equation (4) to the orthogonal projection of M to W . More precisely, let PW : RN → RN

be the orthogonal projection from RN to W . By Equation (4), we have

∥M∥Tr ≥ ∥P ∗
W ∥∥M∥Tr∥PW ∥ ≥ ∥P ∗

W MPW ∥Tr ≥ ∥P ∗
W MPW ∥2

F

∥P ∗
W MPW ∥

.

Taking W as the orthogonal complement of the principal eigenvector of M yields Equation (10).
The natural choice to strengthen this lower bound is to take W as the span of the eigenvectors
of M that correspond to small eigenvalues. Dropping the first k − 1 largest eigenvalues will

result in the lower bound ∥M∥Tr ≥
∑N

i=k
σ2

k

σk
. If a non-negligible mass of ∥M∥2

F is on the tail∑N
i=k σ2

k for some σk < q1−ϵ, then this approach provides a strong lower bound for ∥M∥Tr.
Unfortunately, the direct application of this method requires determining the eigenvectors

and eigenvalues of M , which seems difficult. To circumvent this difficult task, we employ
tools from Fourier analysis and show that there is a linear span of some Fourier characters
W ⊆ RN such that ∥P ∗

W MPW ∥F = Ω(∥M∥F) and ∥P ∗
W MPW ∥ is small.

4 Randomized Communication Complexities of PL and PLZp

We divide the proof of Theorem 4 into two sections. In this section, we prove the upper
bounds of Theorem 4 on R1

0(PLZp
) and R1

0(PL).

▶ Proposition 12. For q ≤ √
p, we have R1

0(PLZp) = O(log log p). For every 1 ≤ q ≤ p, we
have R1

0(PL) = O(log log p).

Proof. We describe a randomized protocol that solves PLZp with cost O(log log p) that never
makes mistakes on inputs where PLZp

takes value 1. The same protocol also solves PL.
Suppose Alice and Bob have inputs (x, x′), (y, y′) ∈ [q] × Zp respectively. Since q ≤ √

p,
we have

[xy + x′ ≡p y′] ⇐⇒ [xy + x′ = y′] ∨ [xy + x′ = y′ + p].

In the rest of the proof, we show that each of the two equations on the right-hand side
can be verified with a protocol of cost at most O(log log p) and error at most 1/6, which then
implies a protocol of cost O(log log p) and error at most 1/3 for the matrix PLZp

. Suppose
Alice and Bob want to verify whether xy + x′ = y′; the case for xy + x′ = y′ + p is similar.
Alice picks a uniformly random prime r from the set of the first ⌈6 log(2p)⌉ primes P and
sends it to Bob. Alice and Bob exchange the values (x mod r), (x′ mod r), (y mod r), (y′

mod r) and check whether

(x mod r)(y mod r) + (x′ mod r) ≡r (y′ mod r),

or equivalently

xy + x′ ≡r y′.

The cost of this communication is at most O(log r) = O(log log p). Next, we show that the
probability of error (over the choice of r) is at most 1/6. Observe that an error can only
happen when xy + x′ ̸= y′ but xy + x′ ≡r y′. We want to show that

Pr
r∈P

[[xy + x′ ̸= y′] ∧ [xy + x′ ≡r y′]] ≤ 1
6 .

CCC 2023

1:10 Separation of the Factorization Norm and Randomized Communication Complexity

Let B ⊆ P be the set of bad choices for r, namely

B = {r ∈ P : [xy + x′ ̸= y′] ∧ [xy + x′ ≡r y′]}.

Suppose towards a contradiction that |B| > |P|
6 . Define

m :=
∏
r∈B

r ≥ 2|B| > 2p.

Note that for all r ∈ B, we have xy + x′ ≡r y′. By the Chinese remainder theorem, we have
xy + x′ ≡m y′. This implies the contradiction that xy + x′ = y′ because 0 ≤ xy + x′, y′ <

2p < m. ◀

▶ Remark 13. Note that the protocol used in the proof Proposition 12 is in fact a private-coin
protocol, so the bounds in Proposition 12 hold in both private-coin and public-coin models.
▶ Remark 14. Combining Proposition 12 with Equation (6), we obtain

γ̃2(PLZp
) ≤ logO(1)(N). (11)

5 Trace Norms of PL and PLZp

This section is dedicated to proving the lower bounds on ∥PLZp
∥Tr and ∥PL∥Tr of Theorem 4.

The lower bounds on ∥PLZp
∥γ2 and ∥PL∥γ2 immediately follow from Equation (5).

▶ Lemma 15. For 1 ≤ q ≤ p, we have

∥PL − PLZp
∥Tr ≤ q4.

In particular, if q ≤ p1/3, then

∥PL − PLZp∥Tr = O(pq).

Proof. For (x, x′), (y, y′) ∈ [q] × {0, . . . , p − 1}, we have

PLZp [(x, x′), (y, y′)] = 1 iff [xy + x′ = y′] ∨ [xy + x′ = y′ + p].

Therefore, we can write PLZp
= PL + A, where A is defined as

A[(x, x′), (y, y′)] = 1 iff xy + x′ = y′ + p.

Because xy ≤ q2 and x′ < p, xy + x′ = y′ + p implies y′ < q2. Therefore, A has at most q4

non-zero entries. Consequently ∥A∥Tr ≤ q4. ◀

By Lemma 15, to complete the proof of Theorem 4, it suffices to prove ∥PLZp
∥Tr = Ω(pq9/8).

Since we want to apply Fourier analysis to study the trace norm of PLZp
, it is more convenient

to extend the rows and columns of PLZp
to G := Z2

p by adding all-zero rows and columns.
That is, we consider M : G × G → {0, 1}, defined as

M [(x, x′), (y, y′)] =
{

1 if x, y ∈ [q] and xy ≡p x′ + y′

0 otherwise
.

This definition of M is slightly different from the one used in the proof overview,
but all of the properties we want still hold. For x, y ∈ [q], we have M [(x, x′), (y, y′)] =
PLZp [(x, −x′), (y, y′)], and M is zero on the other entries. In other words, M is obtained

T.-M. Cheung, H. Hatami, K. Hosseini, and M. Shirley 1:11

from PLZp by first permuting the rows according to the change of variable x′ → −x′, then
adding several all-zero rows and columns. These operations do not change the matrix’s trace,
Frobenius, and spectral norm, and in particular,

∥PLZp
∥Tr = ∥M∥Tr.

For (α, β) ∈ G, let χα,β : G → C denote the corresponding character in Ĝ, defined as
χα,β : (x, x′) 7→ ωαx+βx′ where ω = e2πi/p.

Let S ⊆ Zp, and πS be the G × G matrix corresponding to the orthogonal projection
from L2(G) to the span of χα,β for (α, β) ∈ Zp × S. That is, for f : G → C,

πSf =
∑

α∈Zp

∑
β∈S

f̂(α, β)χα,β .

Denote MS := π∗
SMπS . Since πS is an orthogonal projection, we have πS = π∗

S and
∥πS∥ = ∥π∗

S∥ ≤ 1, and therefore,

∥MS∥Tr = ∥π∗
SMπS∥Tr ≤ ∥π∗

S∥∥M∥Tr∥πS∥ ≤ ∥M∥Tr.

Hence, we can use Equation (4) to obtain a lower bound for ∥M∥Tr:

∥M∥Tr ≥ ∥MS∥Tr ≥ ∥MS∥2
F

∥MS∥
.

First, we determine the value of ∥MS∥F .

▶ Lemma 16. For any S ⊆ Zp, ∥MS∥F = q
√

|S ∩ (−S)|.

Proof. Since 1√
|G|

χα,β ’s form an orthonormal basis for L2(G), for every matrix B ∈ CG×G,
we have

∥B∥2
F = 1

|G|2
∑

(α,β),(α′,β′)∈G

|⟨Bχα,β , χα′,β′⟩|2. (12)

For every α, α′, β, β′ ∈ Zp, we have

⟨MSχα,β , χα′,β′⟩ = ⟨MπSχα,β , πSχα′,β′⟩ =
{

⟨Mχα,β , χα′,β′⟩ if β, β′ ∈ S

0 otherwise

and therefore, by Equation (12),

∥MS∥2
F = 1

|G|2
∑

(α,β),(α′,β′)∈Zp×S

|⟨Mχα,β , χα′,β′⟩|2. (13)

For β ∈ S, define the matrix Fβ ∈ Cp×p as

Fβ(α, α′) =
∑

x,y∈[q]

ωαx+α′y+βxy. (14)

Let α, α′ ∈ Zp and β, β′ ∈ S. We have

CCC 2023

1:12 Separation of the Factorization Norm and Randomized Communication Complexity

⟨Mχα,β , χα′,β′⟩ =
∑

x,y∈Zp

∑
x′,y′∈Zp

M [(y, y′), (x, x′)]χα,β(x, x′)χα′,β′(y, y′)

=
∑

x,y∈[q]

∑
x′,y′∈Zp

M [(y, y′), (x, x′)]χα,β(x, x′)χα′,β′(y, y′)

=
∑

x,y∈[q]

∑
y′∈Zp

χα,β(x, xy − y′)χα′,β′(y, y′)

=
∑

x,y∈[q]

∑
y′∈Zp

ωαx+β(xy−y′)−α′y−β′y′

=
∑

x,y∈[q]

ωαx−α′y+βxy
∑

y′∈Zp

ω−(β+β′)y′

=
{

pFβ(α, −α′) if β = −β′

0 otherwise
.

Combining this with Equation (13) gives

∥MS∥2
F = p2

|G|2
∑

α,α′∈Zp

∑
β∈S∩(−S)

|Fβ(α, −α′)|2 = 1
|G|

∑
β∈S∩(−S)

∥Fβ∥2
F . (15)

Furthermore,

∥Fβ∥2
F =

∑
α,α′∈Zp

∑
x,y∈[q]

ωαx+α′y+βxy
∑

x′,y′∈[q]

ω−(αx′+α′y′+βx′y′)

=
∑

α,α′∈Zp

∑
x,y,x′,y′∈[q]

ωα(x−x′)+α′(y−y′)+β(xy−x′y′)

=
∑

x,y,x′,y′∈[q]

ωβ(xy−x′y′)
∑

α,α′∈Zp

ωα(x−x′)+α′(y−y′).

The inner sum is zero unless x = x′ and y = y′, in which case the inner sum is evaluated to
p2. Thus, for every β, we have ∥Fβ∥2

F = q2p2. We conclude that

∥MS∥2
F = |S ∩ (−S)|q2p2

|G|
= q2|S ∩ (−S)|. ◀

Next, we turn to the upper bound of the spectral norm of MS .

▶ Lemma 17. There is a set S ⊆ Zp, closed under negation and of size |S| ≥ p/2, such that
∥MS∥ ≤ 2q7/8.

Proof. We have

∥MS∥ = max
f,g:G→C

∥f∥2=∥g∥2=1

⟨MSf, g⟩ = max
f,g:G→C

∥f∥2=∥g∥2=1

⟨MπSf, πSg⟩.

Define f̂β , ĝβ ∈ Cp as f̂β(α) := f̂(α, β) and ĝβ(α) := ĝ(−α, −β) for each α ∈ Zp. Recalling
the definition of Fβ in Equation (14), we have

T.-M. Cheung, H. Hatami, K. Hosseini, and M. Shirley 1:13

⟨MπSf, πSg⟩ =
∑

β,β′∈S

∑
α,α′∈Zp

f̂(α, β)ĝ(α′, β′)⟨Mχα,β , χα′,β′⟩

=
∑

β∈S∩(−S)

∑
α,α′∈Zp

f̂(α, β)ĝ(α′, −β)⟨Mχα,β , χα′,−β⟩

= p
∑
β∈S

∑
α,α′∈Zp

f̂(α, β)ĝ(α′, −β)Fβ(α, −α′)

= p
∑
β∈S

∑
α,α′∈Zp

f̂(α, β)ĝ(−α′, −β)Fβ(α, α′)

= p
∑
β∈S

∑
α,α′∈Zp

f̂(α, β)ĝ(−α′, −β)Fβ(α′, α)

= p
∑
β∈S

∑
α,α′∈Zp

f̂β(α)ĝβ(α′)Fβ(α′, α)

= p
∑
β∈S

⟨Fβ f̂β , ĝβ⟩,

where at the third equality, we used the negation-closed property of S. By the definition of
spectral norm and Cauchy-Schwarz inequality,

|⟨MπSf, πSg⟩| ≤ p
∑
β∈S

|⟨Fβ f̂β , ĝβ⟩| ≤ p
∑
β∈S

∥Fβ∥∥f̂β∥2∥ĝβ∥2

≤ p max
β∈S

∥Fβ∥
√∑

β∈S

∥f̂β∥2
2

√∑
β∈S

∥ĝβ∥2
2 ≤ p

|G|
max
β∈S

∥Fβ∥,

where the last inequality follows from Parseval’s identity Equation (9) and ∥f∥2 = ∥g∥2 = 1:∑
β∈S

∥f̂β∥2
2 ≤

∑
β∈Zp

∥f̂β∥2
2 =

∑
(α,β)∈G

|f̂(α, β)|2 = 1
|G|

∑
(x,y)∈G

|f(x, y)|2 = 1
|G|

.

Next, we upper-bound the spectral norm of Fβ using the 4th moment of singular values:

∥Fβ∥4 ≤ ∥Fβ∥4
S4

= Tr
(
FβF ∗

β FβF ∗
β

)
=

∑
α1,α′

1,α2,α′
2∈Zp

Fβ(α1, α′
1)Fβ(α1, α′

2)Fβ(α2, α′
2)Fβ(α2, α′

1)

=
∑

α1,α′
1

α2,α′
2

∑
x1,...,x4
y1,...,y4

ωα1(x1−x2)+α2(x3−x4)+α′
1(y1−y4)+α′

2(y3−y2)ωβ(x1y1−x2y2+x3y3−x4y4)

=
∑

x1,...,x4
y1,...,y4

∑
α1,α′

1
α2,α′

2

ωα1(x1−x2)+α2(x3−x4)+α′
1(y1−y4)+α′

2(y3−y2)ωβ(x1y1−x2y2+x3y3−x4y4).

The inner sum is zero unless x1 = x2, x3 = x4, y1 = y4 and y2 = y3. This simplifies ∥Fβ∥4
S4

to

∥Fβ∥4
S4

= p4
∑

x,y,x′,y′∈[q]

ωβ(xy−xy′+x′y′−x′y) = p4r(β),

where

r(β) :=
∑

u⃗∈[q]4

ωβϕ(u⃗) with ϕ(u1, u2, u3, u4) := u1u2 − u1u4 + u3u4 − u3u2.

CCC 2023

1:14 Separation of the Factorization Norm and Randomized Communication Complexity

For every z ∈ Zp and y ∈ Zp \ {0}, we have Prx∈[q][xy ≡p z] ∈ {0, 1/q}. Note that the
event {ϕ(u⃗) ≡p ϕ(v⃗)} is equivalent to {u1(u2 − u4) ≡p z}, where z = v1v2 − v1v4 + v3v4 −
v3v2 − u3u4 + u3u2. Consider uniform independent random variables u⃗, v⃗ ∈ [q]4. Conditioned
on u2 ≠ u4, which happens with probability 1 − 1/q, the probability that u1(u2 − u4) ≡p z

is at most 1/q. Therefore,

Pr[ϕ(u⃗) ≡p ϕ(v⃗)] ≤
(

1 − 1
q

)
× 1

q
+ 1

q
× 1 ≤ 2

q
,

implying that |{(u⃗, v⃗) : ϕ(u⃗) ≡p ϕ(v⃗)}| ≤ 2q7. Hence

E
β

|r(β)|2 = E
β

 ∑
u⃗,v⃗∈[q4]

ωβ(ϕ(u⃗)−ϕ(v⃗))

 =
∑
u⃗,v⃗

E
β

[
ωβ(ϕ(u⃗)−ϕ(v⃗))

]
=

∑
u⃗,v⃗

1{ϕ(u⃗)≡pϕ(v⃗)} ≤ 2q7.

From the above inequality, for t := 2q7/2, by Markov’s inequality we have

Pr
β

[|r(β)| ≥ t] ≤ 2q7

t2 = 1
2 .

As βϕ(u1, u2, u3, u4) = −βϕ(u1, u4, u3, u2), we have r(β) = r(−β) for any β, and so

S := {β ∈ Zp : |r(β)| < t}

is a subset of Zp closed under negation with |S| ≥ p/2. Therefore,

∥MS∥ ≤ p

|G|
max
β∈S

∥Fβ∥ ≤ p

|G|
max
β∈S

∥Fβ∥S4 ≤ p

|G|
max
β∈S

{p|r(β)|1/4} < t1/4 ≤ 2q7/8. ◀

By combining Lemma 16 and Lemma 17, we conclude that

∥M∥Tr ≥ ∥MS∥Tr ≥ ∥MS∥2
F

∥MS∥
≥ q2 × p/2

2q7/8 = Ω(pq9/8).

6 Concluding Remarks

We showed the existence of Boolean matrices MN×N with ∥M∥γ2 ≥ Ω(N1/32) and R(M) ≤
R1

0(M) ≤ O(log log N), displaying a double exponential separation between γ2 norm and
randomized communication complexity. We did not attempt to optimize the power of N in
the lower bound, and there is no reason to suspect that 1/32 is the best possible.

▶ Question 3. What is the largest c such that there exist Boolean matrices MN×N with
R(M) ≤ O(log log N) and ∥M∥γ2 ≥ Ω(N c)?

It is also natural to ask the analogue of Question 3 regarding the approximate γ2 norm.

▶ Question 4. What is the largest c such that there exist Boolean matrices MN×N with
γ̃2(M) ≤ polylog(N) and ∥M∥γ2 ≥ Ω(N c)?

We remark that in Question 4, one cannot hope to obtain a lower bound stronger than
Ω(N1/2) as ∥M∥γ2 ≤ γ̃2(M) + O(

√
N) for all M (see [12, Lemma 15]).

Whether or not the upper bounds in Question 3 and Question 4 can be improved is also
an interesting open problem. As we discussed in Section 1.3, there are Boolean matrices
MN×N with R(M) = O(1) but ∥M∥γ2 = polylog(N).

T.-M. Cheung, H. Hatami, K. Hosseini, and M. Shirley 1:15

▶ Question 5. Is there a Boolean matrix MN×N with R(M) = O(1) and ∥M∥γ2 = NΩ(1)?

We could not overrule the possibility that PL and IIP are such examples. Nevertheless, we
make the following conjecture.

▶ Conjecture 18. R(PL) = ω(1).

Another intriguing question is about the relationship between γ2 norm and the unbounded
error randomized communication complexity, denoted by U(·). It is well-known [15] that
U(M) = log rank±(M) ± O(1) where rank±(·) denotes the sign-rank a.k.a. dimension com-
plexity. The reader is referred to [6] for the definitions of U(·) and rank±. It is natural to
ask whether one can obtain an upper bound on sign-rank based solely on γ2 norm. In other
words, the following conjecture is intriguing.

▶ Conjecture 19. Suppose ∥M∥γ2 = O(1). Then rank±(M) = O(1).

A viable approach to settle the above question in the positive is by using the parameter
Deq(·). Hatami et al. [6] showed that if Deq(M) = O(1), then rank±(M) = O(1). On the
other hand, the following was conjectured in [5], which, if true, would imply Conjecture 19.

▶ Conjecture 20 ([5]). Suppose ∥M∥γ2 = O(1). Then Deq(M) = O(1).

In the special case where M is an XOR function, it is shown in [6] that Conjecture 20 is
true. The authors show that this follows from Green-Sanders’ quantitative version of Cohen’s
idempotent theorem [4].

References
1 Shalev Ben-David, Adam Bouland, Ankit Garg, and Robin Kothari. Classical lower bounds

from quantum upper bounds. 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 339–349, 2018.

2 Arkadev Chattopadhyay, Shachar Lovett, and Marc Vinyals. Equality alone does not simulate
randomness. In 34th Computational Complexity Conference (CCC 2019), 2019.

3 Alexander Edmonds, Aleksandar Nikolov, and Jonathan Ullman. The power of factorization
mechanisms in local and central differential privacy. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, pages 425–438, New York, NY, USA, June
2020. Association for Computing Machinery.

4 Ben Green and Tom Sanders. Boolean functions with small spectral norm. Geometric and
Functional Analysis, 18(1):144–162, 2008.

5 Lianna Hambardzumyan, Hamed Hatami, and Pooya Hatami. Dimension-free bounds and
structural results in communication complexity. Israel J. Math., 2022. doi:10.1007/
s11856-022-2365-8.

6 Hamed Hatami, Pooya Hatami, William Pires, Ran Tao, and Rosie Zhao. Lower bound methods
for sign-rank and their limitations. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms a, volume 245, pages 22:1–22:24, 2022.

7 Monika Henzinger and Jalaj Upadhyay. Constant matters: Fine-grained complexity of
differentially private continual observation using completely bounded norms. arXiv preprint,
2022. arXiv:2202.11205.

8 Wei Huang, Yaoyun Shi, Shengyu Zhang, and Yufan Zhu. The communication complexity of
the Hamming distance problem. Inform. Process. Lett., 99(4):149–153, 2006.

9 Hartmut Klauck. Lower bounds for quantum communication complexity. In Proceedings 42nd
IEEE Symposium on Foundations of Computer Science, pages 288–297. IEEE, 2001.

10 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
Cambridge, 1997.

CCC 2023

https://doi.org/10.1007/s11856-022-2365-8
https://doi.org/10.1007/s11856-022-2365-8
https://arxiv.org/abs/2202.11205

1:16 Separation of the Factorization Norm and Randomized Communication Complexity

11 Troy Lee, Adi Shraibman, and Robert Špalek. A direct product theorem for discrepancy.
In 2008 23rd Annual IEEE Conference on Computational Complexity, pages 71–80, 2008.
doi:10.1109/CCC.2008.25.

12 Nati Linial and Adi Shraibman. Lower bounds in communication complexity based on
factorization norms. Random Structures & Algorithms, 34(3):368–394, 2009.

13 Jiri Matousek, Aleksandar Nikolov, and Kunal Talwar. Factorization norms and hereditary
discrepancy. arXiv preprint, 2014. arXiv:1408.1376.

14 Shanmugavelayutham Muthukrishnan and Aleksandar Nikolov. Optimal private halfspace
counting via discrepancy. In Proceedings of the forty-fourth annual ACM symposium on Theory
of computing, pages 1285–1292, 2012.

15 Ramamohan Paturi and Janos Simon. Probabilistic communication complexity. Journal of
Computer and System Sciences, 33(1):106–123, 1986.

16 Toniann Pitassi, Morgan Shirley, and Adi Shraibman. The strength of equality oracles in
communication. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Sci-
ence Conference (ITCS 2023), volume 251 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 89:1–89:19, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ITCS.2023.89.

17 Alexander A Razborov. Quantum communication complexity of symmetric predicates. Izvestiya:
Mathematics, 67(1):145, 2003.

18 Suhail Sherif. Communication Complexity and Quantum Optimization Lower Bounds via
Query Complexity. PhD thesis, Tata Institute of Fundamental Research, Mumbai, 2021.

19 József Solymosi. Incidences and the spectra of graphs. In Combinatorial number theory and
additive group theory, pages 299–314. Springer, 2009.

https://doi.org/10.1109/CCC.2008.25
https://arxiv.org/abs/1408.1376
https://doi.org/10.4230/LIPIcs.ITCS.2023.89

Border Complexity of Symbolic Determinant Under
Rank One Restriction
Abhranil Chatterjee #

ACM Unit, Indian Statistical Institute, Kolkata, India

Sumanta Ghosh #

Department of Computing and Mathematical Sciences, Caltech, Pasadena, CA, USA

Rohit Gurjar #

Department of Computer Science and Engineering, IIT Bombay, India

Roshan Raj #

Department of Computer Science and Engineering, IIT Bombay, India

Abstract
VBP is the class of polynomial families that can be computed by the determinant of a symbolic
matrix of the form A0 +

∑n

i=1 Aixi where the size of each Ai is polynomial in the number of
variables (equivalently, computable by polynomial-sized algebraic branching programs (ABP)). A
major open problem in geometric complexity theory (GCT) is to determine whether VBP is closed
under approximation i.e. whether VBP ?= VBP. The power of approximation is well understood for
some restricted models of computation, e.g. the class of depth-two circuits, read-once oblivious ABPs
(ROABP), monotone ABPs, depth-three circuits of bounded top fan-in, and width-two ABPs. The
former three classes are known to be closed under approximation [4], whereas the approximative
closure of the last one captures the entire class of polynomial families computable by polynomial-sized
formulas [6].

In this work, we consider the subclass of VBP computed by the determinant of a symbolic matrix
of the form A0 +

∑n

i=1 Aixi where for each 1 ≤ i ≤ n, Ai is of rank one. This class has been studied
extensively [12, 13, 21] and efficient identity testing algorithms are known for it [17, 15]. We show
that this class is closed under approximation. In the language of algebraic geometry, we show that
the set obtained by taking coordinatewise products of pairs of points from (the Plücker embedding
of) a Grassmannian variety is closed.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Border Complexity, Symbolic Determinant, Valuated Matroid

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.2

Funding Abhranil Chatterjee: Supported by DST-INSPIRE Faculty Fellowship.

1 Introduction

The determinant polynomial plays a central role in the study of complexity theory. It is known
to be a complete polynomial i.e. every polynomial can be computed by some affine projection
of the determinant of a symbolic matrix. More precisely, for any polynomial f ∈ F[x1, . . . , xn],
there is some m and A0, A1, . . . , An in Fm×m such that f = detm(A0 +

∑n
i=1 Aixi). VBP

is defined as the class of polynomial families for which the size of such determinantal
representation is polynomially bounded in the number of variables (equivalently, such
polynomial families can be computed by polynomial-size algebraic branching programs
(ABP)).

The other polynomial of significant interest is the permanent polynomial, a close cousin
of the determinant polynomial. The permanent polynomial is also known to be a complete
polynomial. VNP is defined as the class of polynomial families for which the size of the
permanental representation is polynomially bounded in the number of variables. It is known

© Abhranil Chatterjee, Sumanta Ghosh, Rohit Gurjar, and Roshan Raj;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 2; pp. 2:1–2:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abhneil@gmail.com
mailto:besusumanta@gmail.com
mailto:rgurjar@cse.iitb.ac.in
mailto:roshanraj@cse.iitb.ac.in
https://doi.org/10.4230/LIPIcs.CCC.2023.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Border Complexity of Symbolic Determinant Under Rank One Restriction

that VBP ⊆ VNP. The goal of algebraic complexity theory is to separate VBP and VNP,
equivalently, to show a super-polynomial lower bound on the determinantal representation of
the permanent polynomial.

Even though we have witnessed some outstanding progress in our understanding of the
lower bound problem on various restricted models of computation in the last few years,
the fundamental problem in the general setting remains elusive. Geometric Complexity
Theory (GCT) was proposed as a possible approach to settle this question by showing
VNP ̸⊆ VBP [19] where VBP denotes the approximative closure of VBP. Let C be a circuits
class over F, F[ε] be the polynomial ring and F(ε) be the fraction field of F[ε]. We can define
C, the (approximative) closure of the circuit class C in the following equivalent ways.

(a) Approximative closure. A polynomial family {fn} is in the approximative closure of C
over F if there is a polynomial family {gn} in F[ε][x1, . . . , xn] computable in C over F(ε),
such that for every n,

gn(x1, . . . , xn) = fn(x1, . . . , xn) + ε · hn(x1, . . . , xn)

for some polynomial hn in F[ε][x1, . . . , xn]. We say, the polynomial family {fn} is approxim-
ated by the family {gn}.

(b) Euclidean closure. A polynomial family {fn} is in the Euclidean closure of C over F

if, for every n, there exists an infinite sequence of polynomials {gn,i} in C over F such that
the limit point of the sequence of coefficient vectors corresponding to {gn,i} is the coefficient
vector of fn. This definition is known to be equivalent to the previous definition when F is
R or C [7].

(c) Zariski closure. Another equivalent way is to define the approximative closure as a
Zariski closure [20]. For a circuit class C, consider the system of all polynomial equations
which are satisfied by the coefficient vector corresponding to each polynomial in C. Then, the
Zariski closure C consists of the polynomials such that the corresponding coefficient vectors
are satisfying assignments of the system of polynomial equations.

As all these definitions are equivalent, without loss of generality, we define C to be the
approximative closure of C. If C = C, we say C is closed under approximation.

One of the main objectives of geometric complexity theory is to decide whether VBP
is closed under approximation or not. Showing VBP = VBP would imply that showing
VBP ̸= VNP is equivalent to showing VNP ̸⊆ VBP. Though the complexity of VBP is
not well-understood, the power of approximation has been successfully studied for various
restricted models of computation. For example, it is known that the following classes are
closed under approximation: (a) ΣΠ i.e. the sparse polynomials, (b) Monotone ABPs [4], and
(c) Read-once oblivious ABPs (ROABP). Recently, the approximative closure of the depth
three circuits of bounded top fan-in is shown to be contained in VBP [10]. Surprisingly, even
a restricted circuit class can efficiently compute a much larger class under approximation.
For example, consider VBP2, the class of polynomials computed by the width-two ABPs.
Even though, there are families of polynomials that cannot be expressed by this class [1] ,
the approximative closure of this class contains VF, the class of polynomials computed by a
small formula. Indeed, it is known that VBP2 = VF [6].

It is interesting to notice that, for the circuit classes for which the approximative closure
is well-understood, we also know efficient identity testing algorithms. It motivates us to
study the class VBP under some natural restriction for which we already have an efficient

A. Chatterjee, S. Ghosh, R. Gurjar, and R. Raj 2:3

identity testing algorithm. The class of our interest is the symbolic determinant under
rank one restriction. Recall that any n-variate polynomial in VBP can be computed as
det(A0 +

∑n
i=1 Aixi) where the size of each Ai is polynomially bounded in n. We consider the

class of polynomials of form det(A0+
∑n

i=1 Aixi) where for each 1 ≤ i ≤ n, rank(Ai) = 1. This
class has been studied extensively in contexts of polynomial identity testing, combinatorial
optimization, and matrix completion (see, for example [11, 17, 21]). It admits a deterministic
polynomial-time identity testing algorithm in the white-box setting [17] and a deterministic
quasi-polynomial-time algorithm in the black-box setting [15]. This class is equivalent to the
class of polynomial families computed by the determinant of symbolic matrices with each
variable occurring at most once, also known as read-once determinants [2] (as cited in [15,
Lemma 4.3]).. The expressive power of this class has also been studied. It strictly contains
some well-studied classes like the polynomials computed by a small read-once formula (see, for
example [3]). However, it is known that for large enough n, n-variate elementary symmetric
polynomials and the permanent polynomial cannot be expressed as det(A0 +

∑n
i=1 Aixi)

with rank(Ai) = 1 for each i ∈ [n] [3].
Another motivation to study the approximative closure of this class is the fact that the

approximative closure of the orbit of this class under the action of the general linear group
contains VBP [18, 24]. Therefore, understanding the approximative closure of this class may
shed new light on the VBP ?= VBP question.

Our Results

The main result of this paper is that the class of the determinant of symbolic matrices under
rank one restriction is closed under approximation. More precisely, we show the following
theorem, where we use F to denote R or C.

▶ Theorem 1. Given A0, A1, A2, . . . , An ∈ F(ε)r×r such that for each 1 ≤ i ≤ n,
rank(Ai) = 1 over F(ε). Let f = limε→0 det(A0 +

∑n
i=1 Aixi) be defined. Then, there exists

B0, B1, B2, . . . , Bn in F(n+r)×(n+r) such that f = det(B0 +
∑n

i=1 Bixi) and rank(Bi) = 1
over F for each i ∈ [n]. Moreover, if A0 = 0, then the matrices B1, B2, . . . , Bn lie in Fr×r.

Since this class is closed under approximation, the known hitting set and non-expressibility
results for this class also hold for its approximative closure.
▶ Remark 2. By using formal power series, we can extend this result to any arbitrary field.
For the sake of simplicity, we only work with C or R.

An algebraic geometry perspective on the result

Consider the simpler case of Theorem 1, when A0 = 0. Using known techniques, the statement
can be reduced to this simpler case. Now, suppose A1, A2, . . . , An are r × r matrices of rank
1. Let us write Ai = ui · viT for some vectors ui, vi ∈ Fr and define matrices U, V ∈ Fr×n

whose ith columns are ui and vi, respectively. It can be verified that

det(
∑

i

Aixi) =
∑

S

det(US) det(VS)
∏
j∈S

xj ,

where the sum is over all size-r subsets S of [n] and US (or VS) denotes the submatrix of U

(or V) obtained by taking columns with indices in the set S. Hence, essentially our main
result says that the image of the map

(Fr×n)2 → F(n
r), (U, V) 7→ (det(US) × det(VS))S

CCC 2023

2:4 Border Complexity of Symbolic Determinant Under Rank One Restriction

is Euclidean closed (and hence, Zariski closed). A closely related map

Fr×n → F(n
r), U 7→ (det(US))S

has been well-studied in algebraic geometry, which gives the Plücker coordinates of elements
in the Grassmannian variety. And hence, the image of this map is known to be a closed
set. Putting it another way, our result says that the set obtained by taking coordinatewise
products of pairs of points in the Grassmannian variety is closed.

Note that this is not a general phenomenon. It is easy to construct varieties where the
set obtained by taking coordinatewise products of pairs of points from the variety is not
closed. To see a simple example, consider the projective variety in P2 defined by

{[x : y : z] | xz + y2 − x2 = 0}.

Now, observe that the point (0, 1, 0) cannot be obtained as a coordinatewise product of two
points in the variety. On the other hand, it can be obtained as a limit of the product of
two points (ε, 1, ε − 1/ε) and (1, 1, 0). See [5] for a related notion called Hadamard power of
varieties.

Closure of a principal minor map

Our main result also implies the closure of the image of a principal minor map, as defined
below. The affine principal minor map ϕ : Cn2 −→ C2n is defined as

ϕ(A) = (det(AI))I⊆[n]

where is AI is the principal submatrix of A with rows and columns indexed by I. Lin and
Sturmfels [16] showed that for any n > 0, the image of ϕ on n × n matrices is closed. Our
result implies the closure result for a closely related map, which we refer to as the size k

principal minor map. For any k ≤ n, let us define the map ϕk : Cn2 −→ C(n
k) as

ϕk(A) = (det(AI))
I∈([n]

k)

where
([n]

k

)
is the set of all size-k subsets of [n]. We show that the image of ϕk on n × n

rank-k matrices is closed. Formally,

▶ Corollary 3. For any n > 0 and k ≤ n, the image of the size k principal minor map on
n × n matrices with rank at most k is closed in C(n

k).

One can define another similar map, where a rank-at-most-k matrix is mapped to the tuple
of its size-at-most-k principal minors. Note that the closure of the image of this map follows
easily from the result of Lin and Sturmfels [16]. However, to the best of our knowledge,
Corollary 3 does not follow from their result.

Proof idea of the main result

As we said, our goal is to show that the image of the map

(U, V) 7→ (det(US) × det(VS))S

is closed under approximation. The idea is to start with any two given matrices U, V ∈
F(ε)r×n and construct matrices Û , V̂ ∈ Fr×n such that for each size-r subset S ⊆ [n], we
have

lim
ε→0

(det(US) det(VS)) = det(ÛS) det(V̂S).

A. Chatterjee, S. Ghosh, R. Gurjar, and R. Raj 2:5

Of course, we can hope to construct such matrices only when the limit exists for every S.
Note that one cannot simply apply the limit operation on the matrix entries because the
matrix U and V can have rational functions in ε as entries.

We can view each term like det(US) as a Laurent series in ε. For any Laurent series f ,
one can define val(f) as the minimum exponent of ε appearing in f . Clearly, limε→0 f exists
if and only if val(f) ≥ 0. So let us assume that val(det(US) det(VS)) ≥ 0 for every S. In
other words,

min
S

{val(det(US) det(VS))} = min
S

{val(det(US)) + val(det(VS))} = 0.

Observe that only those sets S which achieve this minimum will give a nonzero term in the
limit. It would have been convenient if min operator was distributive over the sum, i.e.,

min
S

{val(det(US)) + val(det(VS))} = min
S

{val(det(US))} + min
S

{val(det(VS))},

but that is of course not true. Amazingly, it turns out that in the case of val function, it is
almost true. This comes from the fact that the val function satisfies a matroid like exchange
property: for any two distinct S, T ⊆ [n] of size r and any j ∈ T \ S, there exists a k ∈ S \ T

such that

val(det(US)) + val(det(UT)) ≥ val(det(US−k+j)) + val(det(UT −j+k)).

Based on this property, Dress and Wenzel [8] defined the so-called valuated matroids. More
interestingly, Murota [22] proved the valuated matroid splitting theorem, which says that the
min operator indeed distributes over the sum of two val functions, but with a “correction”
term which is a linear function. To be more precise, there is a tuple z ∈ Zn such that

min
S

{val(det(US)) + val(det(VS))} = min
S

{val(det(US)) +
∑
i∈S

zi}

+ min
S

{val(det(VS)) −
∑
i∈S

zi}.

The correction term is easy to handle because of linearity. Then basically, the problem breaks
into two independent problems on U and V . That is, given any two matrices U, V ∈ F(ε)r×n,
construct matrices Û , V̂ ∈ Fr×n such that for each size-r subset S ⊆ [n], we have

lim
ε→0

det(US) = det(ÛS) and lim
ε→0

det(VS) = det(V̂S).

The problem now becomes tractable essentially because the image of the map U 7→ (det(US))S

is known to be closed.

Discussion

As discussed earlier, showing that a class of polynomials is closed under approximation also
implies that it is Zariski closed. That is, the class of polynomials must be characterized
by a set of polynomial equations (in the coefficients of the polynomials in the class). It
would be interesting to find the set of characterizing equations for the class of determinant
of symbolic matrices under rank one restriction. Another natural class of polynomials for
which we can study the closure question is that of symbolic determinant under rank 2 (or
higher) restriction.

CCC 2023

2:6 Border Complexity of Symbolic Determinant Under Rank One Restriction

2 Preliminaries and Notations

We use N to denote the set of natural numbers, R to denote the set of real numbers, C to
denote the set of complex numbers, Z to denote the set of integers, and F to denote field R

or C, respectively. For a field F and an indeterminate ε, F(ε) denotes the fractional field.
For a positive integer n, [n] denotes the set {1, 2, . . . n}. For a set E, 2E denotes the family
of all possible subsets of E. For a subset S of E and an element a ∈ E, S − a and S + a

denote the set S \ {a} and S ∪ {a}, respectively. For any subset S of [n], 1S ∈ Fn denotes the
characteristic vector of the subset S. For a set E and a non-negative integer r,

(
E
r

)
denotes

the set family consisting of all subsets of E of size r.
Every element f in the fractional field F(ε) is of the form g/h where g, h ∈ F[ε] with

h ̸= 0. For a nonzero polynomial p ∈ F[ε], let mindeg(p) be the degree of the minimum
degree term in p. The function val from F(ε) to Z is defined as

val(f) :=
{

mindeg(g) − mindeg(h) if f ̸= 0
+∞ otherwise

▶ Proposition 4. The val function satisfies the following properties.
For any f, g ∈ F(ε), val(fg) = val(f) + val(g).
For any f, g ∈ F(ε), val(f + g) ≥ min{val(f), val(g)}.
For any g ∈ F(ε) \ {0}, val(1/g) = − val(g).
For an f ∈ F(ε), limε→0 f exists if and only if val(f) ≥ 0. Furthermore, limε→0 f = 0 if
and only if val(f) > 0.

For a polynomial P ∈ F(ε)[X] where X = {x1, x2, . . . , xn} is the set of variables, we say
limε→0 P exists if coefficient wise limit exists for every monomial of P at ε = 0. In other
words, for any coefficient f ∈ F(ε) of a monomial of P , val(f) ≥ 0.
For a matrix U ∈ Fr×n, i ∈ [r] and j ∈ [n], U [i, j] denotes the entry at ith row and jth
column of U . For a matrix U ∈ Fr×n and a subset S ⊆ [n], US denotes the submatrix of U

with columns indexed by S.
Next, we describe the Cauchy-Binet formula, which is an identity for the determinant of

the product of two rectangular matrices of transposed shape.

▶ Lemma 5 (Cauchy-Binet formula, [26]). Let n ≥ r be two positive integers. Let A and B

are two r × n and n × r matrices over F, respectively. Then

det(AB) =
∑

S∈([n]
r)

det(AS) · det(BS),

where BS denotes the submatrix of B with rows indexed by S.

Now we describe the Grassmann-Plücker identity.

▶ Lemma 6 (Equation 1.3 [9]). Let n ∈ N. Let a0, a1, . . . , an, b2, b3, . . . , bn be 2n vectors in
Fn. For all i ∈ {0, 1, . . . , n}, let Ui and Vi be the matrices (a0, . . . , ai−1, ai+1, . . . , an) and
(ai, b2, . . . , bn), respectively. Then,

n∑
i=0

det(Ui) · det(Vi) = 0.

A. Chatterjee, S. Ghosh, R. Gurjar, and R. Raj 2:7

Matroids

A matroid M is a set family I defined on a ground set E such that I satisfies the following
two properties:
1. Closure under subsets: If X ∈ I and Y ⊂ X, then Y ∈ I.
2. Augmentation Property: If |X| > |Y | and X, Y ∈ I, then there exists x ∈ X \ Y such

that Y ∪ {x} ∈ I.
The set family I is called the independent set family M . The augmentation property ensures
that all the maximal independent sets of M have the same size. The collection B of all the
maximal independent sets is called the base family of M . The base family B satisfies the
following property:

Base exchange property: Let B, B′ ∈ B. Then for all a ∈ B \ B′ there exists a b ∈ B′ \ B

such that B − a + b is in B.

Given the base family B of a matroid M , its independent set family I = {I | ∃B ∈ B, I ⊆ B}.
Therefore, a matroid M can be represented as (E, I) or (E, B). In this work, we mostly
use M = (E, B) to represent a matroid. Every matroid M is associated with a function,
rank : 2E → N, defined as

rank(S) = max{|Y | | Y ⊆ S, Y ∈ I}.

The rank of the ground set E is called the rank of the matroid M . It is equal to the cardinality
of the bases. For more details on matroids, one can see some excellent textbooks like [23, 25].

Linear Matroids

A well-known example of matroids is the linear matroids. A linear matroid over a field F

is represented by an r × n matrix U over the field F with the full row rank. Assume that
the columns are indexed by [n], which is the ground set of the matroid. Let B = {B ⊆ [n] |
|B| = r, det(UB) ̸= 0}. It is not hard to prove that M = ([n], B) is a matroid with B as the
base family.

Matroid Intersection

Let M1 = (E, B1) and M2 = (E, B2) be two matroids defined on the same ground set E.
The problem of finding a common base is called matroid intersection problem. The problem
of perfect matching for bipartite graphs and many other problems can be formulated in the
language of the matroid intersection problem.

In this paper, we study symbolic matrix M =
∑n

i=1 Aixi with each Ai having rank one.
Next, we give an alternate representation of such symbolic matrices.

▶ Observation 7. Let M =
∑n

i=1 Aixi where each Ai is a r × r rank one matrix over F.
Then, there exist U, V ∈ Fr×n such that M = UXV T where X is the n × n diagonal matrix
with xi as its ith diagonal entry.

Proof. Since Ai is a rank one matrix over F, there exist ui, vi ∈ Fr such that Ai = ui·viT . Let
U and V be two r×n matrices such that the ith column of U and V are ui and vi, respectively,
for all i ∈ [n]. Then, for any p, q ∈ [r], UXV T [p, q] =

∑n
i=1 ui

pvi
qxi =

∑n
i=1 Ai[p, q]xi. This

implies that UXV T =
∑n

i=1 Aixi. ◀

CCC 2023

2:8 Border Complexity of Symbolic Determinant Under Rank One Restriction

Valuated Matroid

Dress and Wenzel [8, 9] introduced the notion of valuated matroid. Here, we discuss it as
described by Murota [22]. Suppose that M = (E, B) is a matroid with rank r. A valuation on
a matroid M is a function ω from B to Z∪ {+∞} such that for all B, B′ ∈ B and a ∈ B − B′

there exists b ∈ B′ − B such that B − a + b ∈ B, B′ − b + a ∈ B and

ω(B) + ω(B′) ≥ ω(B − a + b) + ω(B′ − b + a) (1)

A matroid M with a valuation function ω on it is called a valuated matroid, and we denote it
by the 3-tuple (E, B, ω). The definition of the valuated matroids by Dress and Wenzel [8, 9]
and in a subsequent work by Murota [22] consider the inequality in Equation 1 in the reverse
direction. The reason is that their work talks about maximization problems over valuated
matroids, but for our convenience, we describe their results in terms of minimization.

For a matrix, U ∈ F(ε)r×n, the following lemma defines a valuation on the linear matroid
represented by U . A very similar valuation has already been studied by Dress and Wenzel
[9] and by Murota [22, Example 3.2]. For an f ∈ F(ε) with g, h ∈ F[ε] and f = g/h, they
consider degε(f) instead of val(f) which is defined as the difference of degree of p and q.

▶ Lemma 8. Let U be an r × n matrix in F(ε)r×n with full row rank. Let B be the base
family of the linear matroid representable by U . Let ω be a function from B to Z ∪ {+∞},
defined as follows: for all B ∈ B,

ω(B) = val(det(UB)).

Then ([n], B, ω) forms a valuated matroid.

Proof. We prove the above lemma using the Grassmann-Plücker identity based technique
used in [9]. From Grassmann-Plücker identity (Lemma 6), for any two distinct S, T ⊆ [n] of
size r and any j ∈ T \ S,

det(US) · det(UT) =
∑

i∈S\T

µi,j det(US−i+j) · det(UT −j+i),

where µi,j ∈ {1, −1}. Then, from Proposition 4, there exists a k ∈ S \ T such that

val(det(US)) + val(det(UT)) ≥ val(det(US−k+j)) + val(det(UT −j+k)).

This implies that if S, T ∈ B, then for any j ∈ T \ S there exists k ∈ S \ T such that both
T − j + k and S − k + j are in B and

ω(S) + ω(T) ≥ ω(S − k + j) + ω(T − j + k).

Therefore, ([n], B, ω) forms a valuated matroid. ◀

Suppose that U1 = (E, B1, ω1) and U2 = (E, B2, ω2) are two valuated matroids over the
same ground set E. Let w : E → Z be a weight function. For any weight function, w on
the ground set E, it naturally extends to all the subsets of E as follows: for any S ⊆ E,
w(S) =

∑
a∈S w(a). Then, the valuated matroid intersection problem asks to find a common

base B ∈ B1 ∩ B2 that minimizes w(B) + ω1(B) + ω2(B). Like Frank’s weight splitting
theorem for weighted matroid intersection [14], Murota [22, Theorem 4.2] gave a weight
splitting theorem for the valuated matroid intersection. Here, we describe the result on the
minimization version of valuated matroid intersection whose proof can be deduced from the
result on the maximization version in a natural way.

A. Chatterjee, S. Ghosh, R. Gurjar, and R. Raj 2:9

▶ Lemma 9 (Weight-splitting). Let U1 = (E, B1, ω1) and U2 = (E, B2, ω2) be two valuated
matroids and w be a function from E to Z. Then, there exist w1, w2 : E → Z such that a
common base B minimizes w(B) + ω1(B) + ω2(B) if and only if the following holds:
1. w(e) = w1(e) + w2(e) for all e ∈ E.
2. B is a minimum weight base for the matroid U1 = (E, B1) with respect to ω1 + w1.
3. B is a minimum weight base for the matroid U2 = (E, B2) with respect to ω2 + w2.

3 Proof of our closure results

In this section, we prove Theorem 1 and Corollary 3. First, we discuss some lemmas that we
use in the proof of our results. One of the ingredients of our proof is the fact that the maximal
minors of r × n matrices parameterize a variety (Plücker embedding of the Grassmannian).
Since a variety is Euclidean closed, we get that for any r × n matrix U over F(ε) whose r × r

minors approach a vector u ∈ F(n
r) as ε → 0, there exists an r × n matrix Û over F whose

r × r minors equal to u. The next lemma shows how such a matrix Û can be constructed.
For notations, see Section 2.

▶ Lemma 10. Let U be a matrix in F(ε)r×n such that for every S ⊆ [n] of size r,
limε→0 det(US) exists. Then, we can construct Û in Fr×n such that for every S ⊆ [n]
of size r the following holds:

lim
ε→0

det(US) = det(ÛS).

Proof. First consider the trivial case when limε→0 det(US) is zero for every S ⊆ [n] of size r.
In that case, Û can be defined as the matrix with all entries being zero. Now, we assume
that there exists a S ⊆ [n] of size r such that limε→0 det(US) is non-zero. Without loss of
generality, assume that limε→0 det(U[r]) is nonzero. Let

U ′ = U−1
[r] · U.

▷ Claim 11. For every S ⊆ [n] of size r, limε→0 det(U ′
S) exists.

Proof. Since U ′ = U−1
[r] · U , for any S ⊆ [n] of size r,

det(U ′
S) = det(U−1

[r]) · det(US).

Since det(U−1
[r]) = 1/ det(U[r]) and val(det(U[r])) = 0, from Proposition 4, val(det(U−1

[r])) is
also zero. Therefore, applying Proposition 4, we get that limε→0 det(U−1

[r]) is non-zero. The
hypothesis of the lemma ensures that limε→0 det(US) exists. Therefore,

lim
ε→0

det(U ′
S) = lim

ε→0
det(U−1

[r]) · lim
ε→0

det(US).

This implies that limε→0 det(U ′
S) exists. ◁

▷ Claim 12. For every i ∈ [r] and j ∈ [n], limε→0 U ′[i, j] exists.

Proof. From the definition, U ′ = [Ir|A] where Ir is the r × r identity matrix. The claim
trivially follows for i, j ∈ [r]. For an i ∈ [r] and j ∈ [n] − [r], let T = [r] − {i} + {j}, and
U ′

T be the matrix obtained by replacing the ith column of Ir by the jth column of U ′. This
implies that the matrix U ′

T is of the following form:

CCC 2023

2:10 Border Complexity of Symbolic Determinant Under Rank One Restriction

U ′
T =

1 0 0 . . . U ′[1, j] . . . 0
0 1 0 . . . U ′[2, j] . . . 0
...

...
...

. . .
...

...
...

0 0 0 . . . U ′[i, j] . . . 0
...

...
...

...
...

. . .
...

0 0 0 . . . U ′[r, j] . . . 1

.

Therefore, det(U ′
T) = U ′[i, j]. From the hypothesis of the lemma combined with Proposition 4,

we know that val(det(U ′
T)) ≥ 0. Hence, val(U ′[i, j]) ≥ 0. Now applying Proposition 4,

limε→0 U ′[i, j] exists. ◁

Now we define the matrix Ũ ∈ Fr×n as follows: for all i ∈ [r] and j ∈ [n],

Ũ [i, j] := lim
ε→0

U ′[i, j].

From Claim 12, the entries of the matrix Ũ are well defined. Since determinant is a continuous
function,

lim
ε→0

det(U ′
S) = det(ŨS). (2)

Let limε→0 det(U[r]) = α. Consider the matrix Û ∈ Fr×n which exists by multiplying the
first row of Ũ by α, that is for all i ∈ [r] and j ∈ [n],

Û [i, j] =
{

α · Ũ [i, j] if i = 1
Ũ [i, j] otherwise.

The definition of Û implies that for any S ⊆ [n] of size r,

det(ÛS) = α · det(ŨS). (3)

From the definition of U ′,

lim
ε→0

det(US) = lim
ε→0

(det(U[r] · det(U ′
S)).

Applying Claim 11, limε→0 det(U ′
S) exists. Therefore,

lim
ε→0

det(US) = lim
ε→0

det(U[r]) · lim
ε→0

det(U ′
S)

= α · det(ŨS) [from Equation 2]

= det(ÛS) [from Equation 3].

This completes the proof of our lemma. ◀

Suppose that U, V are two matrices in F(ε)r×n with full row rank. Let limε→0(det(US) ·
det(VS)) exists for all S ⊆ [n] of size r. However, the limit value of det(US) and det(VS) at
ε = 0 individually may not exist for all S. Our next lemma shows that there exists two r × n

matrices Ũ and Ṽ such that the limit value of both det(US) ·det(VS) and det(ŨS) ·det(ṼS) at
ε = 0 are same and also the limit value of det(ŨS) and det(ṼS) at ε = 0 individually exists.

For a matrix U ∈ F(ε)r×n with full row rank, let us define

minval(U) := min
S∈([n]

r)
val(det(US)).

A. Chatterjee, S. Ghosh, R. Gurjar, and R. Raj 2:11

▶ Lemma 13. Let U, V in F(ε)r×n with full row rank. Let limε→0 det(US) · det(VS) exists
for all S ⊆ [n] of size r. Then, there exist Ũ , Ṽ in F(ε)r×n such that for every S ⊆ [n] of
size r the following holds:

lim
ε→0

det(US) det(VS) =
(

lim
ε→0

det(ŨS)
)

·
(

lim
ε→0

det(ṼS)
)

.

Proof. When limε→0 det(US) det(VS) = 0 for all S ⊆ [n] of size r, the lemma is trivial
to prove. Now we consider the case when there exists an S ⊆ [n] of size r such that
limε→0 det(US) det(VS) ̸= 0. Next, we show that there exists a vector z ∈ Zn such that

minval(U · Diag(εz)) + minval(V · Diag(ε−z)) = 0,

where Diag(εz) is the diagonal matrix with (i, i)th entry as εzi . Let B1 and B2 be the base
families for the linear matroid represented by U and V , respectively. Let ω1 be a function
from 2[n] to Z ∪ {+∞} defined as follows: for all B ∈ 2[n],

ω1(B) =
{

val(det(UB)) if B ∈ B1
+∞ otherwise

Similarly, we can define ω2 : 2[n] → Z ∪ {+∞} for the matrix V . Now, from Lemma 8, both
([n], B1, ω1) and ([n], B2, ω2) are valuated matroids. Therefore, applying Lemma 9 with w as
the zero function on [n], there exists a weight function z : [n] −→ Z such that a common base
B ∈ B1 ∩ B2 minimizes ω1(B) + ω2(B) if and only if the following holds:
1. B is a minimum weight base for the matroid ([n], B1) with respect to ω1 + z.
2. B is a minimum weight base for the matroid ([n], B2) with respect to ω2 − z.
Abusing notation, let z also denote a vector in Zn with ith coordinate as z(i). Let U ′ =
U · Diag(εz) and V ′ = V · Diag(ε−z). From the definitions, minval(U ′) is the minimum weight
of a base of ([n], B1) with respect to ω1 + z. Similarly, minval(V ′) is the minimum weight of a
base of ([n], B2) with respect to ω2−z. Since for every S ⊆ [n] of size r, limε→0 det(US) det(VS)
exists, for all B ∈ B1 ∩ B2, val(det(UB)) + val(det(VB)) ≥ 0. On the other hand, from our
assumption, there exists an S ⊆ [n] of size r such that limε→0 det(US) det(VS) ̸= 0. Therefore,

min
B∈B1∩B2

val(det(UB)) + val(det(VB)) = 0.

This implies that

minval(U ′) + minval(V ′) = min
B∈B1

(ω1 + z)(B) + min
B∈B2

(ω2 − z)(B)

= min
B∈B1∩B2

ω1(B) + ω2(B)

= min
B∈B1∩B2

val(det(UB)) + val(det(VB))

= 0.

Let c = minval(U ′) = − minval(V ′). Let Ũ and Ṽ be the matrix obtained by multiplying the
first row of U ′ and V ′ by ε−c and εc, respectively. Thus, for all S ⊆ [n] of size r, we have
that

det(US) · det(VS) = det(U ′
S) · det(V ′

S) = det(ŨS) · det(ṼS),

and minval(Ũ) = minval(U ′) − c = 0. Similarly, minval(Ṽ) = 0. This implies that for all
S ⊆ [n] of size r,

lim
ε→0

det(US) · det(VS) =
(

lim
ε→0

det(ŨS)
)

·
(

lim
ε→0

det(ṼS)
)

. ◀

CCC 2023

2:12 Border Complexity of Symbolic Determinant Under Rank One Restriction

3.1 Proof of Theorem 1
In this subsection, we give the proof of Theorem 1. First, we prove for the case when A0 = 0.
From Observation 7, we get U, V ∈ F(ε)r×n such that

∑n
i=1 Aixi = UXV T where X is the

diagonal matrix with xi as its ith diagonal entry. Abusing notation, we use XS to denote∏
i∈S xi. Therefore,

f = lim
ε→0

det
(

n∑
i=1

Aixi

)
= lim

ε→0
det(UXV T)

= lim
ε→0

∑
S⊆[n],|S|=r

det(US) det(VS)XS [from Lemma 5]

=
∑

S⊆[n],|S|=r

(
lim
ε→0

det(US) det(VS)
)

XS .

In the last equality above, we can take the limit inside as f is defined if and only if the limit
exists for the coefficient of every monomial. Applying Lemma 13,

f =
∑

S⊆[n], |S|=r

(
lim
ε→0

det(ŨS)
)(

lim
ε→0

det(ṼS)
)

XS .

From Lemma 10, we have two r × n matrices Û and V̂ in Fr×n such that

f =
∑

S⊆[n], |S|=r

det(ÛS) det(V̂S)XS

= det(ÛXV̂ T).

For all i ∈ [n], let Bi be the r × r rank one matrix defined as Û [i] · V̂ [i]T , where Û [i] and
V̂ [i] are the ith columns of Û and V̂ respectively. Then,

f = det(ÛXV̂ T) = det(
n∑

i=1
Bixi).

This completes the proof of Theorem 1 where A0 = 0.
For the case when A0 ̸= 0, we first give the following lemma that essentially reduces it to

the previous case. This particular proof idea comes from Anderson, Shpilka, and Volk [2]
(see [15, Lemma 4.3]).

For positive integers m and n, let In denote the n × n identity matrix and 0m,n denote
the m × n rectangular matrix with all zeros.

▶ Lemma 14. Let P = det
(
A0 + UXV T

)
for some U, V in F(ε)r×n, A0 ∈ F(ε)r×r and X

is an n×n diagonal matrix with x1, x2, . . . , xn in the diagonal. Let X ′ be a (2n+r)× (2n+r)
diagonal matrix with x1, x2, . . . x2n+r in the diagonal. Then, there exist rectangular matrices
U ′, V ′ ∈ F(ε)(n+r)×(2n+r) such that the following holds:

Let Q be the polynomial in x1, x2, . . . xn obtained by putting xn+1, . . . , x2n+r equal to 1
in det(U ′X ′V ′T). Then, P = Q.
If limε→0 P exists, then limε→0 det(U ′X ′V ′T) also exists.

Proof. Let us define

U ′ =

 0n,n In V T

−U 0r,n A0

 and, V ′ =

 In In 0n,r

0r,n 0r,n Ir

 .

A. Chatterjee, S. Ghosh, R. Gurjar, and R. Raj 2:13

Let X1 be a n × n diagonal matrix with xn+1, . . . , x2n in the diagonal and X2 be a r × r

diagonal matrix with x2n+1, . . . , x2n+r in the diagonal. We now consider U ′X ′V ′T . Notice
that,

U ′X ′V ′T =

 0n,n X1 V T X2

−UX 0r,n A0X2

·

In 0n,r

In 0n,r

0r,n Ir

=
[

X1 V T X2
−UX A0X2

]
.

Let A, B, C, D be matrices where A and D are square matrices and A is invertible. Then,
we have

det
(

A B

C D

)
= det(A). det(D − CA−1B)

Therefore,

det(U ′X ′V ′T) = det(X1). det(A0X2 + UXX−1
1 V T X2)

= det(X1). det(A0 + UXX−1
1 V T). det(X2).

It is easy to see that if we put the value of 1 to xn+1, . . . , x2n+r, we get det(A0 + UXV T).
Also,

lim
ε→0

det(U ′X ′V ′T) = det(X1). det(X2). lim
ε→0

det(A0 + UXX−1
1 V T).

The second part of the lemma follows from the fact that if limε→0 P exists, then
limε→0 det(A0 + UXX−1

1 V T) also exists as XX−1
1 can be treated as a diagonal matrix

with a different set of indeterminates. ◀

Now we prove for the case when A0 ̸= 0. Let f = det(A0 + UXV T) and f ′ = det(U ′X ′V ′T).
From the Lemma 14, limε→0 f ′ exists as it is given that limε→0 f exists. Just like we
discussed above for the case of A0 = 0, we can get Û ′, V̂ ′ ∈ F(n+r)×(2n+r) such that
limε→0 f ′ = det(Û ′X ′V̂ ′T). For all i ∈ [2n+r], let Bi be the (n+r)× (n+r) rank one matrix
defined as Û ′[i] · V̂ ′[i]T , where Û ′[i] and V̂ ′[i] are the ith columns of Û ′ and V̂ ′ respectively.
Hence, limε→0 f ′ = det(

∑2n+r
i=1 Bixi). Let

∑2n+r
i=n+1 Bi = B0. From the first part of Lemma

14, limε→0 f = det(B0 +
∑n

i=1 Bixi).

3.2 Proof of Corollary 3
We will show the following lemma which directly implies Corollary 3.

▶ Lemma 15. Let A ∈ C(ε)n×n be a matrix of rank at most k and A[S] denote the minor
of A whose rows and columns are indexed by S ⊆ [n]. Let limε→0 A[S] exist for all subset
S ⊂ [n] of size k. Then, there exists B ∈ Cn×n such that for all S ⊂ [n] of size k,

lim
ε→0

A[S] = B[S]

Proof. The claim is trivial when rank(A) < k as all the minors are zero. Hence, we
assume that rank(A) = k. Let U, V ∈ C(ε)k×n such that UT , V is a rank-factorization of
A. This implies that A = UT .V and for any subset S ⊂ [n], A[S] = det(UT

S .VS). Since

CCC 2023

2:14 Border Complexity of Symbolic Determinant Under Rank One Restriction

limε→0 A[S] = limε→0 det(US) det(VS) exists for all S ⊂ [n] of size k, from Lemma 13 there
exists Ũ , Ṽ in C(ε)r×n such that for every S ⊆ [n] of size k the following holds:

lim
ε→0

A[S] =
(

lim
ε→0

det(ŨS)
)

·
(

lim
ε→0

det(ṼS)
)

.

From Lemma 10, there exist two k × n matrices Û and V̂ ∈ Ck×n such that for all S ⊂ [n],
the following holds:

lim
ε→0

det(ŨS) = det(ÛS) and lim
ε→0

det(ṼS) = det(V̂S)

Let B = ÛT .V̂ . Hence, for all S ⊂ [n] of size k,

lim
ε→0

A[S] = det(ÛT
S). det(V̂S) = det(ÛT

S .V̂S) = B[S]. ◀

References
1 Eric Allender and Fengming Wang. On the power of algebraic branching programs of width

two. computational complexity, 25:217–253, March 2016. doi:10.1007/s00037-015-0114-7.
2 Matthew Anderson, Amir Shpilka, and Ben Lee Volk. Personal communication, 2016.
3 N. R. Aravind and Pushkar S. Joglekar. On the expressive power of read-once determinants.

In Adrian Kosowski and Igor Walukiewicz, editors, Fundamentals of Computation Theory –
20th International Symposium, FCT 2015, Gdańsk, Poland, August 17-19, 2015, Proceedings,
volume 9210 of Lecture Notes in Computer Science, pages 95–105. Springer, 2015. doi:
10.1007/978-3-319-22177-9_8.

4 Markus Bläser, Christian Ikenmeyer, Meena Mahajan, Anurag Pandey, and Nitin Saurabh.
Algebraic branching programs, border complexity, and tangent spaces. In Shubhangi Saraf,
editor, 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken,
Germany (Virtual Conference), volume 169 of LIPIcs, pages 21:1–21:24. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CCC.2020.21.

5 Cristiano Bocci and Enrico Carlini. Hadamard products of hypersurfaces. Journal of Pure
and Applied Algebra, 226(11):107078, 2022. doi:10.1016/j.jpaa.2022.107078.

6 Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. On algebraic branching programs
of small width. Journal of the ACM, 65, February 2017. doi:10.1145/3209663.

7 Peter Bürgisser. The complexity of factors of multivariate polynomials. Found. Comput. Math.,
4(4):369–396, November 2004.

8 Andreas W.M. Dress and Walter Wenzel. Valuated matroids: a new look at the greedy
algorithm. Applied Mathematics Letters, 3(2):33–35, 1990. doi:10.1016/0893-9659(90)
90009-Z.

9 Andreas W.M Dress and Walter Wenzel. Valuated matroids. Advances in Mathematics,
93(2):214–250, 1992. doi:10.1016/0001-8708(92)90028-J.

10 Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Demystifying the border of depth-3
algebraic circuits. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 92–103, 2022. doi:10.1109/FOCS52979.2021.00018.

11 Jack Edmonds. Systems of distinct representatives and linear algebra. Journal of research of
the National Bureau of Standards, 71:241–245, 1967.

12 Jack Edmonds. Matroid partition. Mathematics of the Decision Sciences, 11:335–345, 1968.
13 Jack Edmonds. Matroid intersection. In P.L. Hammer, E.L. Johnson, and B.H. Korte, editors,

Discrete Optimization I, volume 4 of Annals of Discrete Mathematics, pages 39–49. Elsevier,
1979. doi:10.1016/S0167-5060(08)70817-3.

14 András Frank. A weighted matroid intersection algorithm. Journal of Algorithms, 2(4):328–336,
1981. doi:10.1016/0196-6774(81)90032-8.

https://doi.org/10.1007/s00037-015-0114-7
https://doi.org/10.1007/978-3-319-22177-9_8
https://doi.org/10.1007/978-3-319-22177-9_8
https://doi.org/10.4230/LIPIcs.CCC.2020.21
https://doi.org/10.1016/j.jpaa.2022.107078
https://doi.org/10.1145/3209663
https://doi.org/10.1016/0893-9659(90)90009-Z
https://doi.org/10.1016/0893-9659(90)90009-Z
https://doi.org/10.1016/0001-8708(92)90028-J
https://doi.org/10.1109/FOCS52979.2021.00018
https://doi.org/10.1016/S0167-5060(08)70817-3
https://doi.org/10.1016/0196-6774(81)90032-8

A. Chatterjee, S. Ghosh, R. Gurjar, and R. Raj 2:15

15 Rohit Gurjar and Thomas Thierauf. Linear matroid intersection is in quasi-nc. Comput.
Complex., 29(2):9, 2020. doi:10.1007/s00037-020-00200-z.

16 Shaowei Lin and Bernd Sturmfels. Polynomial relations among principal minors of a 4×4-
matrix. Journal of Algebra, 322(11):4121–4131, 2009. Computational Algebra. doi:10.1016/
j.jalgebra.2009.06.026.

17 László Lovász. Singular spaces of matrices and their application in combinatorics. Boletim da
Sociedade Brasileira de Matemática, 20:87–99, October 1989. doi:10.1007/BF02585470.

18 Dori Medini and Amir Shpilka. Hitting sets and reconstruction for dense orbits in vp_{e}
and ΣΠΣ circuits. In Valentine Kabanets, editor, 36th Computational Complexity Conference,
CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume 200
of LIPIcs, pages 19:1–19:27. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.CCC.2021.19.

19 Ketan D. Mulmuley and Milind Sohoni. Geometric complexity theory i: An approach to
the p vs. np and related problems. SIAM Journal on Computing, 31(2):496–526, 2001.
doi:10.1137/S009753970038715X.

20 David Mumford. Algebraic Geometry I. Springer Berlin, Heidelberg, 1995.
21 Kazuo Murota. Mixed matrices: Irreducibility and decomposition. In Richard A. Brualdi,

Shmuel Friedland, and Victor Klee, editors, Combinatorial and Graph-Theoretical Problems in
Linear Algebra, pages 39–71, New York, NY, 1993. Springer New York.

22 Kazuo Murota. Valuated matroid intersection i: Optimality criteria. SIAM Journal on Discrete
Mathematics, 9(4):545–561, 1996. doi:10.1137/S0895480195279994.

23 James G. Oxley. Matroid Theory (Oxford Graduate Texts in Mathematics). Oxford University
Press, Inc., New York, NY, USA, 2006.

24 Chandan Saha and Bhargav Thankey. Hitting sets for orbits of circuit classes and polynomial
families. In Mary Wootters and Laura Sanità, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August
16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference), volume
207 of LIPIcs, pages 50:1–50:26. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.APPROX/RANDOM.2021.50.

25 Alexander Schrijver. Combinatorial optimization : polyhedra and efficiency. Vol. B. , Matroids,
trees, stable sets. chapters 39-69. Algorithms and combinatorics. Springer-Verlag, Berlin,
Heidelberg, New York, N.Y., et al., 2003. URL: http://opac.inria.fr/record=b1124843.

26 Jiang Zeng. A bijective proof of Muir’s identity and the Cauchy-Binet formula. Linear Algebra
and its Applications, 184:79–82, 1993.

CCC 2023

https://doi.org/10.1007/s00037-020-00200-z
https://doi.org/10.1016/j.jalgebra.2009.06.026
https://doi.org/10.1016/j.jalgebra.2009.06.026
https://doi.org/10.1007/BF02585470
https://doi.org/10.4230/LIPIcs.CCC.2021.19
https://doi.org/10.4230/LIPIcs.CCC.2021.19
https://doi.org/10.1137/S009753970038715X
https://doi.org/10.1137/S0895480195279994
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.50
http://opac.inria.fr/record=b1124843

On Correlation Bounds Against Polynomials
Peter Ivanov #

Northeastern University, Boston, MA, USA

Liam Pavlovic #

Northeastern University, Boston, MA, USA

Emanuele Viola #

Northeastern University, Boston, MA, USA

Abstract
We study the fundamental challenge of exhibiting explicit functions that have small correlation with
low-degree polynomials over F2. Our main contributions include:
1. In STOC 2020, CHHLZ introduced a new technique to prove correlation bounds. Using their

technique they established new correlation bounds for low-degree polynomials. They conjectured
that their technique generalizes to higher degree polynomials as well. We give a counterexample to
their conjecture, in fact ruling out weaker parameters and showing what they prove is essentially
the best possible.

2. We propose a new approach for proving correlation bounds with the central “mod functions,”
consisting of two steps: (I) the polynomials that maximize correlation are symmetric and (II)
symmetric polynomials have small correlation. Contrary to related results in the literature, we
conjecture that (I) is true. We argue this approach is not affected by existing “barrier results.”

3. We prove our conjecture for quadratic polynomials. Specifically, we determine the maximum
possible correlation between quadratic polynomials modulo 2 and the functions (x1, . . . , xn) →
z
∑

xi for any z on the complex unit circle, and show that it is achieved by symmetric polynomials.
To obtain our results we develop a new proof technique: we express correlation in terms of
directional derivatives and analyze it by slowly restricting the direction.

4. We make partial progress on the conjecture for cubic polynomials, in particular proving tight
correlation bounds for cubic polynomials whose degree-3 part is symmetric.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases Correlation bounds, Polynomials

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.3

Related Version Previous Version: https://eccc.weizmann.ac.il/report/2022/092/

Funding NSF grant CCF-2114116
Liam Pavlovic: Northeastern REU supplement

Acknowledgements We are grateful to Brenden Collins for collaborating during the initial stages of
this project.

1 Introduction and our results

Exhibiting explicit functions that have small correlation with low-degree polynomials modulo
2 is a fundamental challenge in complexity theory, cf. the recent survey [33]. This challenge
is generally referred to as “proving correlation bounds” and progress on it is a prerequisite for
progress on a striking variety of other long-standing problems: circuit lower bounds [29, 30],
Valiant’s rigidity challenge [32], number-on-forehead communication complexity [32, 30], and
even recently-made conjectures on the Fourier spectrum of low-degree polynomials [31].

© Peter Ivanov, Liam Pavlovic, and Emanuele Viola;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 3; pp. 3:1–3:35

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ivanov.p@northeastern.edu
mailto:pavlovic.l@northeastern.edu
mailto:viola@ccs.neu.edu
https://doi.org/10.4230/LIPIcs.CCC.2023.3
https://eccc.weizmann.ac.il/report/2022/092/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 On Correlation Bounds Against Polynomials

After many years, the state-of-the-art on this challenge has not changed much since seminal
works from at least thirty years ago. Two bounds are known for degree d polynomials. First,
the results by Razborov and Smolensky from the 80’s give correlation O(d/

√
n) [22, 24, 25];

second, the result by Babai, Nisan, and Szegedy [3] on number-on-forehead communication
protocols yields correlation exp(−Ω(n/d2d)). A slight improvement to exp(−Ω(n/2d)) ap-
pears in [27]. Thus, the first bound applies to large degrees but yields weak correlation, while
the second bound yields exponentially small correlation, but only applies to degrees less than
log n. Achieving correlation less than 1/

√
n for polynomials of degree log n remains open,

for any explicit function. Remarkably, solving this specific setting of parameters is required
for long-sought progress on any of the challenges mentioned in the previous paragraph.

1.1 The conjecture and our first result
In STOC 2020, Chattopadhyay, Hatami, Hosseini, Lovett, and Zuckerman [11]. introduced a
novel technique which they established new correlation bounds for low-degree polynomials.
The key ingredient in their approach is a structural result about the Fourier spectrum of
low-degree polynomials over F2. They show that for any n-variate polynomial p over F2 of
degree ≤ d, there is a set S of variables such that almost all of the Fourier mass of p lies on
Fourier coefficients that intersect with S, and the size of S is exponential in d. Further, they
conjecture that the size of S needs to be just polynomial in d.

We give a counterexample to their conjecture. In fact, we shall rule out weaker parameters
and show what they prove is essentially the best possible. This appears in Section 2.

1.2 Mod functions
A natural candidate for achieving small correlation are the Modϕ functions which map inputs
of Hamming weight w to the complex point on the unit circle with angle wϕ. These Modϕ
are closely related to the boolean mod m functions which indicate if the input Hamming
weight is divisible by m. Specifically, one can bound the correlation with mod m for odd m

by the correlations with the Modϕ functions for ϕ = 2πk/m for k = 1, 2, , (m− 1)/2 (see
Lemma 36). In turn, as discussed below, an early motivation for studying the correlation
with mod m was proving circuit lower bounds.

We now formally define these notions and then discuss previous results.

▶ Definition 1. For any angle ϕ ∈ [0, 2π] the function Modϕ : {0, 1}n → C is defined as

Modϕ(x) := eϕ
√

−1
∑

i
xi .

The correlation of a polynomial p : {0, 1}n → {0, 1} with Modϕ is

Cϕ(p) :=
∣∣∣Ex∈{0,1}n(−1)p(x)Modϕ(x)

∣∣∣ .
For any integer m we define the boolean Mod m function BModm : {0, 1}n → {0, 1} as

BModm(x) :=
{

1 if
∑n
i=1 xi ̸= 0 mod m

0 if
∑n
i=1 xi = 0 mod m.

The correlation between a polynomial p : {0, 1}n → {0, 1} and BModm is:

Bm(p) :=
∣∣∣Ex:BModm(x)=0(−1)p(x) − Ex:BModm(x)=1(−1)p(x)

∣∣∣ .

P. Ivanov, L. Pavlovic, and E. Viola 3:3

Most or all of the works in this area, including this paper, is concerned with the Modϕ
functions. And most of the works use correlation bounds with Modϕ functions for various
ϕ to obtain corresponding correlation bounds with the mod m functions. In particular,
the two correlation bounds stated above hold for Mod2π/3. The first bound essentially
appears in Smolensky’s paper. For the second bound, Bourgain first proved [9] correlation
exp(−Ω(n/cd)) with Mod2π/m, with a correction in [16]. Nisan later pointed out that such
bounds also follow from [3]. The constant c is optimized to 4 in [27]. For more discussion
and background we refer to the survey [33], where the reader may find proofs of both bounds,
including Nisan’s derivation from [3].

1.2.1 Exact results
Unlike other models of computation such as circuits, polynomials seem simple enough that
one may try to obtain exact results. That is, one may try to precisely characterize the
polynomials that achieve the maximum correlation. Twenty years ago, a remarkable paper
by Green [13], which is an inspiration for this work, took precisely such a step. Green, and
the subsequent work [15], precisely characterized the quadratic polynomials modulo three
that achieve the maximum correlation with the Mod2π/2 function, i.e., parity. Compared to
our discussion above, the moduli in [13] are swapped. Green considers polynomials modulo
3 instead of 2, and bounds the correlation with Mod2π/2 instead of Mod2π/3. Extending
Green’s result to other moduli has resisted attacks, see [13, 12]. While these works do not
explicitly consider polynomials modulo 2, difficulties also arise trying to port Green’s proof
to our setting. In fact, jumping ahead, we will show that the answer is different, arguably
explaining the difficulties.

1.2.2 Are symmetric polynomials optimal?
Aiming for exact results, a natural question to ask is whether, for some fixed degree, the
polynomials modulo 2 that have maximum correlation with Modϕ are symmetric. Indeed,
this question has been asked by many authors; it appears explicitly for example in the 2001
paper by Alon and Beigel [2]. A positive answer would have dramatic consequences since
symmetric polynomials modulo 2, even of large degree, have exponentially small correlation
with, say, Mod2π/3. Thus, if one could prove that symmetric polynomials correlate best, one
would obtain long-sought correlation bounds.

However, until now the evidence for this has been negative. The maximizing polynomials
in [13, 15] are not symmetric. Moreover, the work [14] has shown that for a large range of
parameters, symmetric polynomials modulo 3 do not correlate best with parity (and are not
even close). One of the families of polynomials that are shown to outperform symmetric in
these works is that of block-symmetric polynomials, which are sums of symmetric polynomials
on disjoint sets of variables. However, naive conjectures regarding the optimality of block-
symmetric or other families of polynomials fail, and we are not aware of any natural family
of polynomials modulo 3 that is a candidate to maximizing correlation with parity. The
only available evidence that symmetric polynomials correlate best with mod functions are
computer experiments up to 10 variables reported in [14].

1.3 A new approach
Departing from previous proofs, in this work we propose the following approach to proving
correlation bounds with mod functions. It consists of two steps:

CCC 2023

3:4 On Correlation Bounds Against Polynomials

(I) Prove that symmetric polynomials correlate best with mod functions, and
(II) Prove that symmetric polynomials have exponentially small correlation with mod

functions.

Regarding (I), we put forth the following conjecture:

▶ Conjecture 2. For every d, n, ϕ degree-d symmetric polynomials correlate best with the
Modϕ function on n bits.

We verify (II) in Section 7. The result is folklore. We remark that [10] proves a similar
result, but in the case of symmetric polynomials mod m and the mod 2 function. However,
changing moduli can yield different results, as shown by this paper.

1.3.1 Our approach vs. “barriers” to lower bounds
Over the years many “barriers” have been proposed for progress on lower bounds. Barriers
based on oracles or relativization [4, 1] are not known to apply – they mostly concern uniform
models of computation. The Natural Proofs barrier [23] (see also [20, 19]) is also not known to
apply since we do not have candidate pseudorandom functions that correlate with low-degree
polynomials.

More recently, Bhowmick and Lovett [7] proposed a new barrier specifically for proving
correlation bounds. They consider an extension of polynomials called non-classical polyno-
mials, an object first introduced in [26]. In short, in a non-classical polynomial of degree d
monomials can have rational coefficients (with denominators depending on the degree) and
the output of the polynomial is considered as an element in the torus [0, 1]. The work [7]
shows that the proofs of most correlation bounds (such as those mentioned at the beginning
of this introduction) also apply to non-classical polynomials. Moreover, for non-classical
polynomials these bounds are actually tight! For example, there are non-classical polynomials
of degree just O(log n) that correlate well with mod functions.

We argue that non-classical polynomials do not constitute an obstacle for our approach
above. The main reason is that the non-classical polynomials in [7] – including those for mod
functions – are actually symmetric. Hence, one could conceivably prove (I) above without
distinguishing classical from non-classical polynomials. Moreover, the proof of (II) above
already distinguishes classical from non-classical polynomials.

1.4 Our second result: Proof of Conjecture 2 for d = 2
A main technical contribution of this work is a proof of our Conjecture 2 in the case of
degree two. That is, in contrast with the previous proofs discussed above, we show that,
among quadratic polynomials modulo 2, those that correlate best with the Modϕ functions
are symmetric. Let us first define the elementary symmetric polynomials of degree 1 and 2.

▶ Definition 3 (Elementary symmetric polynomials). Let

e1(x1, . . . , xn) :=
n∑
i=1

xi,

e2(x1, . . . , xn) :=
n∑
i<j

xixj .

P. Ivanov, L. Pavlovic, and E. Viola 3:5

▶ Example 4. Let ϕ = 2π/3 and ω = eϕ
√

−1. We have:

Cϕ(0) =
∣∣∣∣ E
x∈{0,1}n

ω

∑
i

xi

∣∣∣∣ =
∣∣∣∣ E
x1∈{0,1}

ωx1

∣∣∣∣n =
∣∣∣1 + ω

2

∣∣∣n =
(1 + cos ϕ

2

)n/2
=
(1

2

)n

,

Cϕ(e1) =
∣∣∣∣ E
x∈{0,1}n

(−1)
∑

i
xiω

∑
i

xi

∣∣∣∣ =
∣∣∣∣ E

x1∈{0,1}
(−1)x1 ωx1

∣∣∣∣n =
∣∣∣1 − ω

2

∣∣∣n =
(1 − cos ϕ

2

)n/2

=
(√

3
2

)n

,

Cϕ(BMod3) ≥ 1/2,

where the last inequality follows because the absolute value of the real component of
(−1)BMod3(x)ω

∑
i
xi is ≥ 1/2 for every x.

We next state our result. Henceforth all polynomials in this paper have coefficients in
{0, 1} and operate modulo two. We characterize the quadratic polynomials that maximize
Cϕ for any angle ϕ ∈ [0, 2π]. Additionally, we show the correlation of other quadratic
polynomials is a multiplicative factor smaller.

It is in fact sufficient to restrict our attention to angles ϕ ∈ [0, π/2] thanks to a simple
symmetry argument presented in Section 3. When ϕ ∈ [0, π/4] then the constant zero
polynomial maximizes correlation. Our main contribution is that when ϕ ∈ (π/4, π/2] the
correlation is maximized by either e2 or e2 + e1, depending on the value of n mod 4.

We define the quantity

vϕ := 2−n−1 · ((1 + sin ϕ)n + (1 − sinϕ)n)

which plays a key role in this paper.

▶ Theorem 5. Fix any angle ϕ ∈ [0, π/2]. For all large enough n, the maximum Cϕ(p) over
quadratic polynomials p is attained by a symmetric polynomial. In more detail:
1. Suppose ϕ ∈ (π/4, π/2].

a. For n even we have Cϕ(e2) = Cϕ(e2 + e1) = √
vϕ.

b. For n ≡ 1 mod 4 we have Cϕ(e2) =
√
vϕ + (cos(ϕ)/2)n, Cϕ(e2 + e1) =√

vϕ − (cos(ϕ)/2)n.
c. For n ≡ 3 mod 4 we have Cϕ(e2) =

√
vϕ − (cos(ϕ)/2)n, Cϕ(e2 + e1) =√

vϕ + (cos(ϕ)/2)n.
d. For any quadratic polynomial p besides e2, e2 + e1 we have

Cϕ(p) ≤
√

1 − Ω(sinϕ− cosϕ) · √
vϕ.

2. Suppose ϕ ∈ [0, π/4]. Then Cϕ(0) =
(

1+cosϕ
2

)n/2
and for any quadratic polynomial p ̸= 0

we have Cϕ(p) ≤ (1 − Ω(1)) · Cϕ(0).

Note that
√
vϕ − (cos(ϕ)/2)n ≥ (1 − o(1))√vϕ and so the theorem shows that the

correlation of non-symmetric polynomials is a constant-factor smaller than optimal.
An important message of this paper is that Cϕ is maximized by symmetric polynomials.

This contrasts with previous works, and gives hope that this may hold for larger degrees
as well. If that is the case one would obtain long-sought correlation bounds, as discussed
previously.

1.4.1 Results and directions for d = 3
We conjecture that Theorem 5 can be extended to show that for any cubic polynomial p
and any ϕ, Cϕ(p) ≤ maxs∈{0,e1,e2,e2+e1} Cϕ(s). In other words, the correlation over all cubic
polynomials is still maximized by a quadratic symmetric. This would prove Conjecture 2 for
d = 3 as well.

CCC 2023

3:6 On Correlation Bounds Against Polynomials

We make progress on this conjecture by proving this indeed holds when p is the sum of
an arbitrary quadratic polynomial and a symmetric degree-3 polynomial. This is done in
Section 8.

1.5 Boolean correlation

We now turn our attention to the boolean BModm function. As mentioned earlier, most or
all papers bounding the corresponding correlation Bm, including this one, proceed by first
bounding Cϕ for several corresponding values of ϕ and then using that information to bound
Bm. Indeed, Cϕ is a better-behaved quantity to work with. In turn, an early motivation for
studying Bm is the so-called discriminator lemma [17]. The lemma implies that if there is
a circuit consisting of a majority of s functions that computes BModm then one of those
functions p has Bm(p) ≥ 1/s. Thus, one can use upper bounds on Bm to obtain lower bounds
for such circuits.

In this paper we determine up to constant factors the maximum of Bm over quadratic
polynomials. This is Item 1 in the next theorem. In fact, we obtain more precise information.
Item 2 determines (exactly) the maximum value when n is congruent to m, 3m mod 4m:
either e2 or e2 + e1 maximizes Bm, and moreover it will achieve the upper bound on Bm
from Item 1. Our inability to determine the maximum value of Bm for every n is reflected in
Item 3, which shows when n is congruent to 0, 2m mod 4m this maximum is not achieved by
symmetric polynomials.

▶ Theorem 6. Fix any odd m ≥ 3, let ϕ := 2π/m, ℓ1 ∈ {m−1
4 , m+1

4 } denote the integer
closest to m

4 , and set Ψ := 2m/(m− 1)√vℓ1ϕ. The following holds for large enough n. Let
B∗
m denote the maximum Bm(p) over all quadratic p.

1. For any n,

Ψ(1/
√

2 − o(1)) ≤ B∗
m ≤ Ψ(1 + o(1)).

2. If n ≡ m, 3m mod 4m then

B∗
m = max

s∈{e2,e2+e1}
Bm(s) = Ψ(1 − o(1)).

3. If n ≡ 0, 2m mod 4m then

(1 + Ω(1)) max
s∈{0,e1,e2,e2+e1}

Bm(s) < max
s′∈{e2,e2+e1}

Bm(x1 + s′(x2, . . . , xn)).

Note that the polynomial in the right-hand side of Item 3 is not symmetric. We conjecture
that this polynomial is in fact optimal (for the corresponding values of n). Our techniques
yield slightly stronger results for specific m and n, but for simplicity we only state the
above theorem that applies for any odd m ≥ 3. In particular, when m = 3, it is possible to
determine for every value of n whether symmetric polynomials maximize B3.

Previous techniques could at best determine this maximum up to polynomial factors.
Hence we also improve polynomially the corresponding circuit lower bounds obtained via the
discriminator lemma – this is a straightforward application that we do not state formally.

Green’s work [13] also determines exactly the maximum correlation between quadratic
polynomials modulo 3 and the parity function. Our setting appears somewhat complicated
by the fact that the BModm functions are not balanced for odd m.

P. Ivanov, L. Pavlovic, and E. Viola 3:7

1.6 Proof sketch of Theorem 5
We begin by rewriting the correlation in a more convenient form, involving derivatives of
the polynomial and of the mod function. Bounding the correlation in terms of derivatives is
natural and done in several previous works, see e.g. discussion of the “squaring trick” in [28,
Chapter 1]. However, these works take repeated derivatives until the polynomial becomes
constant, use the Cauchy-Schwartz inequality, and are lossy.

By contrast, we take a single derivative, avoid Cauchy-Schwartz, and give an exact
expression. In other words, previous works provide asymptotic correlation bounds for larger
degree polynomials, while we provide an exact bound for quadratic polynomials.

For concreteness consider the complex mod 3 function Modϕ := eϕ
√

−1
∑

i
xi := ω

∑
i
xi

where ϕ := 2π/3, and fix some quadratic p. Let py denote the derivative p(x+ y) + p(x) of p
in the direction y ∈ {0, 1}n. Analogously we let Modϕ,y(x) := ω

∑
i
xi−
∑

i
(xi⊕yi). We can

express the correlation squared as

C2
ϕ(p) = EyEx(−1)py(x)Modϕ,y(x).

Writing cy(p) for the inner expectation – where c stands for contribution in direction y – we
express the above as Eycy(p). In this language, our goal now is to prove the following for
any quadratic p and s = e2, e2 + e1:

Ey|cy(p)| ≤ Eycy(s). (1)

1.6.1 Computing Eycy(s) and bounding |cy(p)|
We begin by deriving a clean expression for Eycy(s). Let w(y) denote the Hamming weight
of y and let E,O denote the set of even, odd weight strings respectively. Supposing n is even
for simplicity we have:

Eycy(s) = 2−n
∑
y∈E

(sinϕ)w(y). (2)

To see this, observe that sy =
∑
i:yi=1 xi if y ∈ E and sy =

∑
i:yi=0 xi if y ∈ O. On the other

hand, Modϕ,y = ω

∑
i:yi=1

(2xi−1) which only depends on the variables indexed by the 1 bits
of y for every y.

This means that for any y ∈ O, cy(s) = 0 and for any y ∈ E, cy(s) = (sinϕ)w(y). Together
this implies (2).

Moreover, by observing that py(x) is linear one can show that (sinϕ)w(y) is in fact an
upper bound on |cy(p)|. In other words, for any quadratic p and direction y we have

|cy(p)| ≤ (sinϕ)w(y). (3)

This is an important fact we will use throughout the proof.

1.6.2 Structure on p and slowly restricting y

To deal with
∑
y |cy(p)|, we will first illustrate how we can bound

∑
y:y1=0 |cy(p)|. Looking

ahead, we are able to deal with any partial sum where at least one bit in y is restricted to 0,
as long as p possesses certain structure. This idea, combined with one more ingredient we
discuss in the next section, is the heart of the main proof.

CCC 2023

3:8 On Correlation Bounds Against Polynomials

For the sake of simplicity, suppose that p = x1x2 + q(x3, . . . , xn) for some quadratic q.
With this structure on p, it turns out we gain something after conditioning on y1 = 0:∑

y:y1=0
|cy(p)| ≤

∑
y:y1=0,y2=0

(sinϕ)w(y). (4)

We gain since this improves on the the bound which follows by only using (3):∑
y:y1=0

|cy(p)| ≤
∑
y:y1=0

(sinϕ)w(y). (5)

To prove (4) we condition on y2. If y2 = 1 then we show cy(p) = 0 by mimicking the
proof that cy(s) = 0 for any y ∈ O. By assumption on p we have py(x) = x1 + qy′(x′) for
any y = 01y′. And recall Modϕ,y = ω

∑
i:yi=1

(2xi−1) does not depend on x1 since y1 = 0. If
y2 = 0 then we use the bound from (3). Combining the two cases implies (4).

In the next step, we would ideally like to bound
∑
y:y1=1 |cy(p)|. However, it is not clear

how to repeat the previous step, where the assumption on p and restricting y1 = 0 crucially
allowed us to observe that cy(p) = 0 for half the directions.

To overcome this, we instead condition on y1 = 1, y2 = 0. Now py(x) = x2 + qy′(x′) for
any y = 10y′, but Modϕ,y does not depend on x2 since y2 = 0. Hence∑

y:y1=1,y2=0
|cy(p)| = 0.

To summarize, we can make progress on the partial sum
∑
y:y1=1,...,yj−1=1 |cy(p)| by

conditioning on yj = 0, as long xj has certain structure in p. This argument gives a non-
trivial bound on

∑
y |cy(p)|, but is still not enough to prove (1). We strengthen it in the next

section.

1.6.3 Bounding tEy|cy(p)|
We are almost ready to prove our initial goal:

Ey|cy(p)| ≤ Eycy(s).

The last ingredient we need is that (3) can be improved to

|cy(p)| ≤ (sinϕ)w(y)−1(cosϕ) (6)

whenever y ∈ O, which we sketch in the next section.
Our proof strategy is similar to that of the previous section. We restrict the direction

one bit at a time, but now, we will directly compare
∑

|cy(p)| to
∑
cy(s). In the first step

we show that∑
y:y1=0

|cy(p)| ≤
∑
y:y1=0

cy(s). (7)

We bound
∑
y:y1=0 |cy(p)| by applying (6) for the odd weight directions, which allows us to

improve the bound on
∑
y:y1=0 |cy(p)| from (4) to the following:∑

y:y1=0
|cy(p)| ≤

∑
y:y1=0,y2=0,y′∈E

(sinϕ)w(y) +
∑

y:y1=0,y2=0,y′∈O
(sinϕ)w(y)−1 cosϕ.

P. Ivanov, L. Pavlovic, and E. Viola 3:9

To compare this to
∑
y:y1=0 cy(s), we recall the expression from (2) which implies∑

y:y1=0
cy(s) =

∑
y:y1=0,y2=0,y′∈E

(sinϕ)w(y) +
∑

y:y1=0,y2=1,y′∈O
(sinϕ)w(y).

Now we can conclude the proof of (7) as∑
y:y1=0,y2=0,y′∈O

(sinϕ)w(y)−1 cosϕ ≤
∑

y:y1=0,y2=1,y′∈O
(sinϕ)w(y).

We remark the improvement from (6) is crucial since if we just used (4) then we would need∑
y:y1=0,y2=0,y′∈O

(sinϕ)w(y) ≤
∑

y:y1=0,y2=1,y′∈O
(sinϕ)w(y)

which is clearly false as sinϕ < 1.
For the next step, assuming that x2 appears in at least a few quadratic terms (for the

precise conditions see Lemmas 28, 29), we can similarly show that∑
y:y1=1,y2=0

|cy(p)| ≤
∑

y:y1=1,y2=0

cy(s).

We continue this process until there are no more suitable direction bits to condition on.
When this happens, we conclude by reasoning on the remaining structure of the polynomial
(see Lemmas 31, 32).

1.6.4 The proof of (6) via handshaking
For any p and y, we can determine py(x) by examining the graph Gp,y, which is defined
with w(y) nodes that correspond to the variables indexed by the 1 bits of y, and edges that
represent the quadratic terms of p on those w(y) variables. Observe that xi appears in py(x)
iff xi has odd degree in Gp,y.

Now fix some y ∈ O. The number of nodes in Gp,y is odd, and the handshaking lemma
implies the number of nodes in Gp,y with odd degree must be even. Together this implies
py(x) contains at most w(y) − 1 variables which in turn implies (6) after a calculation. For
the formal proof see Claim 34.

1.6.5 Slackness
Although we get exact results in the end, we emphasize that some steps in the proof do not
yield exact bounds, but are approximate. For example, after we open the first bit we in fact
show a strict inequality between Ey:y1=0|cy(p)| and Ey:y1=0cy(s) when p is non-symmetric
(Lemma 30). This gives us a “buffer” between Ey|cy(p)| and Eycy(s), which is reflected in
the statement of Item 1(d) in Theorem 5.

This extra factor is not just additional information, but is in fact critical for the proof
since the final step might be lossy (this occurs when Lemma 31 is applied). The buffer gained
will be much larger than the loss from Lemma 31 which allows us to conclude the proof.

2 The CHHLZ conjecture

In this section we present the new technique in [11], their conjecture, and our counterexample.
The key ingredient in the approach in [11] is a structural result about the Fourier spectrum
of low-degree polynomials over F2. They show that for any n-variate polynomial p over F2

CCC 2023

3:10 On Correlation Bounds Against Polynomials

of degree ≤ d, there is a set S of variables such that almost all of the Fourier mass of p
lies on Fourier coefficients that intersect with S, and the size of S is exponential in d. This
remarkable result allows them to prove new correlation bounds. Further, they conjecture
that the size of S needs to be just polynomial in d.

Next we present their conjecture in more detail, and then our results. The main quantity
used in [11] is “local correlation” which they define as follows:

▶ Definition 7 (Local correlation, [11]). For any F : {0, 1}n → {−1, 1},

∆S(F) := E
xS

[
(ExS [F (x)] − E[F])2] .

For a polynomial p : Fn2 → F2 we write e(p) for (−1)p which takes values in {−1, 1}. Next
we state their conjecture:

▶ Conjecture 8 ([11, Conjecture 1.14]). For every polynomial p of degree d there exists a set
S of ≤ poly(d, log(1/ϵ)) variables such that ∆S(e(p)) ≤ ϵ.

In fact CHHLZ make a stronger conjecture (Conjecture 1.15 in [11]), where a single set
S is found that works for an entire space of dimension k of polynomials. This generality is
critical in proving their new correlation bounds. However, we shall give a counterexample
even for k = 1. In fact, we shall rule out even much weaker parameters and show that what
they prove is essentially the best possible. Specifically, we show that for d = O(log n) and
constant ϵ, one needs |S| ≥ n/ logO(1) n.

▶ Theorem 9. There exists a polynomial p of degree d = O(log n) such that ∆S(e(p)) ≥ Ω(1)
for any S of size ≤ c · n/ log2 n, where c > 0 is an absolute constant.

The rest of this section is devoted to the proof of this theorem. The idea behind it is quite
natural in hindsight, and highlights the expressive power of polynomials of degree O(log n).

▶ Definition 10 ([5]; cf. [21], Proposition 4.12). We define TRIBES : {0, 1}n → {0, 1} to be
a read-once monotone DNF where every term has size w so that |Ex[TRIBES(x)] − 1/2| ≤
O(log n)/n. This makes w = log n− log log n+O(1).

The next result shows the probability TRIBES is fixed to 1 after a uniform assignment to
xS is approximately the same as after a uniform assignment to x, where S ⊂ [n] is a subset
of nearly linear size. This property was also used in [18] to show separations between DNFs
composed with parity gates and parity decision trees.

▶ Lemma 11. Fix any S ⊂ [n] such that |S| ≤ O(n/ log2 n). Then

P
xS

[TRIBES(x) not fixed] ≤ 1/2 + o(1).

Proof. The set S can intersect at most |S| AND terms. The probability over a uniform
assignment to xS that TRIBES(x) is fixed to 1 is at least the probability one of the untouched
AND terms is set to 1. Hence,

P
xS

[TRIBES(x) = 1] ≥ 1 − (1 − 2−w)n/w−|S|.

= 1 − Px[TRIBES(x) = 0]
(1 − 2−w)|S|

≥ 1 − (1/2 +O(log n)/n)(1 + 1/Ω(log n))
≥ 1/2 − 1/Ω(log n).

where the second ≥ follows since (1 − 2−w)|S| ≥ 1 − |S|/2w ≥ 1 − 1/Ω(log n) and the fact
1/(1 − x) ≥ 1 + x. ◀

P. Ivanov, L. Pavlovic, and E. Viola 3:11

We next show that TRIBES can be approximated by a low-degree polynomial. This can be
seen as a special case of Razborov’s classical approximation [22].

▶ Lemma 12. There exists a O(log n) degree polynomial p such that

Ex[e(TRIBES(x))e(p(x))] ≥ 1/2 + Ω(1).

Proof. We will construct a distribution D of O(log n) degree polynomials such that for any
x, Pq∼D[q(x) ̸= TRIBES(x)] ≤ 1/4. This would allow us to conclude, since by averaging
there must a polynomial p ∈ D such that Px[p(x) ̸= TRIBES(x)] ≤ 1/4.

To construct D, first note the n/w AND terms can be computed by degree w monomials
m1(x), . . . ,mn/w(x). To sample q ∼ D, we uniformly sample T1, T2 ⊆ [n/w] and set

q(x) := 1 − (1 −
⊕
i∈T1

mi(x)) ∧ (1 −
⊕
i∈T2

mi(x)).

Since T1, T2 are chosen uniformly, for any x such that (m1(x), . . .mn/w(x)) ̸= 0 we
have Pq∼D[q(x) = 0] = 1/4 . And for any x such that (m1(x), . . .mn/w(x)) = 0 we have
Pq∼D[q(x) = 1] = 0. Together this implies for any x, Pq∼D[q(x) ̸= TRIBES(x)] ≤ 1/4. ◀

We are now ready to prove the main result.

Proof of Theorem 9. First we note that if ∆S(e(p)) ≤ ϵ then by Markov’s inequality

P
xS

[
|ExS [e(p(x))] − E[e(p)]| > ϵ1/4

]
≤ ϵ1/2. (8)

Then, using T (x) to denote TRIBES(x) for brevity, we can write

Ex [e(T (x))e(p(x))] = Ex [e(T (x)) · (e(p(x)) − E[e(p)])] + E[e(T)]E[e(p)]
≤ Ex [e(T (x)) · (e(p(x)) − E[e(p)])] +O(log n)/n

where the ≤ follows since |E[e(T)]| ≤ O(log n)/n by the definition of TRIBES.
After a uniform assignment to xS , let E1 denote the event |ExS [e(p(x))] − E[e(p)]| ≤ ϵ1/4

and let E2 denote the event that TRIBES(x) is fixed. Then we have

Ex [e(T (x)) · (e(p(x)) − E[e(p)])]

≤ E
xS

[∣∣∣∣ExS [e(T (x)) · (e(p(x)) − E[e(p)])
]∣∣∣∣]

≤ E
xS

[∣∣∣∣ExS [e(T (x)) · (e(p(x)) − E[e(p)])
]∣∣∣∣|E1E2

]
+ P[¬E1] + P[¬E2]

≤ ϵ1/4 + ϵ1/2 + 1/2 + o(1).

For the last inequality, note that ExS [e(T (x)) · (e(p(x)) − E[e(p)])|E1E2] = ExS [e(p(x)) −
E[e(p)]|E1] since TRIBES(x) is fixed conditioned on E2. We bound P[¬E1] by (8) and P[¬E2]
by Lemma 11. Setting ϵ to a small enough constant contradicts Lemma 12 and concludes
the proof of Theorem 9. ◀

3 Derivatives

In this section we rewrite Cϕ(p)2 in terms of the correlation of the derivatives of p with
Modϕ, and use this viewpoint to derive several basic facts which will be used later. Fix any
ϕ ∈ [0, 2π], let ω = eϕ

√
−1, and from here on we let σ := sinϕ, γ := cosϕ.

CCC 2023

3:12 On Correlation Bounds Against Polynomials

We begin by using the fact that |z|2 = zz for any complex number, where z is the complex
conjugate, to rewrite the correlation square C2

ϕ(p) as

Ex(−1)p(x)ω
∑

i
xi · Ey(−1)p(y)ω

∑
i
yi .

Replacing y with x⊕ y and noting that (−1)p(y)ω
∑

i
yi = (−1)p(y)ω−

∑
i
yi we can rewrite

the correlation square with the following expression:

EyEx(−1)p(x)+p(x⊕y)ω
∑

i
xi−
∑

i
(xi⊕yi).

The inner expectation over x plays an important role and so we introduce a definition.

▶ Definition 13. The contribution of polynomial p in the direction y, or the y-contribution
of p, is cy(p) := Ex(−1)p(x)+p(x⊕y)ω

∑
i
xi−
∑

i
(xi⊕yi).

Note cy(p) is always defined with respect to an angle ϕ, which will always be clear from
context. Repeating what was said above,

Cϕ(p)2 = Eycy(p).

The polynomial p(x) + p(x⊕ y) that appears in cy(p) is the derivative of p in direction y,
denoted py. When p is quadratic, this derivative is linear. Hence, py(x) =

∑
i≤n py,ixi + py,0

where for every y, py,i ∈ {0, 1} are is the coefficient of xi, and py,0 is the constant.
Because py(x) is linear, for fixed y the expectation over x is actually the expectation of

independent functions of the xi and so the y-contribution can be written as

(−1)py,0
n∏
i=1

Exi(−1)py,ixiωxi−(xi⊕yi).

Each of the expectations Exi(−1)py,ixiωxi−(xi⊕yi) above takes one of four different values,
depending on the four possibilities for py,i and yi. These values play a crucial role in this
paper and we present them next. Note that if yi = 0 then xi − (xi ⊕ yi) = 0 and so the ω
factor disappears.

▶ Proposition 14. We have the following four possible values for Exi(−1)py,ixiωxi−(xi⊕yi):

py,i yi Exi(−1)py,ixiωxi−(xi⊕yi)

0 0 = 1
1 0 = Exi(−1)xi = 0
0 1 = Exiω

xi−(xi⊕1) = 1
2

(
ω−1 + ω

)
= γ

1 1 = Exi(−1)xiωxi−(xi⊕1) = 1
2

(
ω−1 − ω

)
= −

√
−1 · σ

Restricting to ϕ ∈ [0, π/2]

We now justify our previous assertion that we can restrict our attention to angles ϕ ∈ [0, π/2].
First, if ϕ ∈ [π/2, 3π/2] then we can sum e1 to p. Then Cϕ(p + e1) = Cπ+ϕ(p) and
π + ϕ ∈ [−π/2, π/2]. Next, if ϕ ∈ [−π/2, 0] then Cϕ(p) = C−ϕ(p) and now ϕ ∈ [0, π/2].

▶ Definition 15. We denote the Hamming weight of x ∈ {0, 1}n by w(x).

Looking at the table above we can obtain the following bound on cy(p) in terms of the
weight of the derivative.

P. Ivanov, L. Pavlovic, and E. Viola 3:13

▷ Claim 16 (Weight bound on contribution). For any y ∈ {0, 1}n and any ϕ we have
|cy(p)| ≤ max{σ, γ}w(y).

We conclude this section by giving a quick illustration of how this framework can be
used to compute the maximum correlation for ϕ ∈ [0, π/4]. Note that Theorem 5 proves a
stronger result, showing that non-symmetric polynomials have correlation a constant-factor
smaller than optimal. For such ϕ we are going to show that the constant polynomial, which
is symmetric, maximizes Cϕ. By Example 4,

C2
ϕ(0) = 2−n (1 + γ)n .

We show this is an upper bound for any quadratic polynomial p. We have

C2
ϕ(p) ≤ Ey|cy(p)|,

where cy is as in Definition 13. By Claim 16, since γ > σ, we have

|cy(p)| ≤ γw(y).

Hence,

C2
ϕ(p) ≤ 2−n

n∑
i=0

(
n

i

)
γi = 2−n(1 + γ)n,

by the binomial theorem.

4 Correlation of symmetric polynomials

We use the information from Section 3 to compute the maximal correlation of symmetric
quadratic polynomials, and note an important “no-cancellation” property which will guide
the rest of the proof.

We first apply Proposition 14 to determine the contributions of symmetric polynomials.
The derivatives of e1 are simply the constant term e1

y,0 =
∑
i yi. We now analyze the

derivatives of e2. The coefficient e2
y,i for i ≥ 1 equals to

∑
j ̸=i yj and the constant term

e2
y,0 equals

∑
i<j yiyj . Combining this information with the above we can characterize the

y-contributions of symmetric polynomials.

▶ Lemma 17 (Contributions of symmetric polynomials). For any ϕ ∈ [0, π/2] and any
y ∈ {0, 1}n we have:
1. If w(y) is even then cy(s) = σw(y) for either s = e2 + e1 or s = e2.
2. If w(y) is odd and w(y) < n then cy(s) = 0 for either s = e2 + e1 or s = e2.
3. If w(y) = n and n ≡ 1 mod 4 then cy(s) = +γn for s = e2 and cy(s) = −γn for

s = e1 + e2.
4. If w(y) = n and n ≡ 3 mod 4 then cy(s) = −γn for s = e2 and cy(s) = +γ for s = e1 +e2.

Proof. Refer to Proposition 14.
If w(y) is even, the expectations over xi with yi = 0 contribute 1 since the corresponding

coefficient sy,i (the coefficient of xi in the derivative polynomial sy) is 0. This corresponds
to the first row of Proposition 14. The other expectations contribute (−

√
−1)σ. This

corresponds to the last row of Proposition 14. In addition, we have the constant term. For

CCC 2023

3:14 On Correlation Bounds Against Polynomials

e2 this term is (−1)(
w(y)

2) = (−1)w(y)2/2−w(y)/2 = (−1)−w(y)/2 using that w(y) is even. For
e2 + e1 the constant term is (−1)(

w(y)
2)+w(y) which again equals (−1)−w(y)/2 because w(y) is

even. Hence the y-contribution equals

(−1)−w(y)/2 · ((−
√

−1)σ)w(y) = σw(y)

where the last equality follows again because w(y) is even.
If w(y) is odd and less than n then some yi is zero. The corresponding sy,i equals w(y),

which is odd. So the contribution is zero, by the second row of Proposition 14.
Finally, consider w(y) = n when n is odd. Note that sy,i = n− 1 which is even. By the

third row of Proposition 14, the expectation of x is γn times the constant term. For s = e2

the constant term is (−1)(
n
2) = (−1)n(n−1)/2 which is 1 if n ≡ 1 mod 4 and −1 otherwise.

For s = e2 +e1 the constant term is (−1)(
n
2)+n = (−1)n(n−1)/2+1 which is −1 if n ≡ 1 mod 4

and 1 otherwise. ◀

Lemma 17 yields an expression for the maximum Cϕ(s) attained by symmetric quadratic
polynomials s. It is best to express this correlation using the quantity vϕ that we redefine in
a way that is more convenient for the main proof.

▶ Definition 18 (E,O, v). Let E ⊆ {0, 1}n be the set of n-bit strings of even Hamming
weight, and let O be the set of strings of odd weight. Define

vϕ := 2−n
∑
y∈E

σw(y).

The equivalence between this definition and the one in the introduction is given by the following
claim, which we will use often.

▷ Claim 19 (Odd-even sum). For any number d we have:∑
y:y∈E d

w(y) =
∑
y d

w(y)(1 + (−1)w(y))/2 = (1+d)n+(1−d)n
2 ,∑

y:y∈O d
w(y) =

∑
y d

w(y)(1 − (−1)w(y))/2 = (1+d)n−(1−d)n
2 .

Proof. In each line, the second equality follows from the binomial theorem. ◁

For example, v2π/3 = Θ((1 +
√

3/2)/2)n, where (1 +
√

3/2)/2 = 0.933 We now give the
maximal correlation of a symmetric quadratic polynomial.

▶ Corollary 20. Fix ϕ ∈ [π/2, π/4) and let C∗
ϕ be the maximum Cϕ attained by a symmetric

quadratic polynomial on n bits for large enough n. We have:
C∗
ϕ = √

vϕ if n is even. This is attained by both e2 and e1 + e2.
C∗
ϕ =

√
vϕ + 1/4n if n is odd. This is attained by e2 if n ≡ 1 mod 4 and by e1 + e2 if

n ≡ 3 mod 4.

Proof. By Example 4, Cϕ(e1) < Cϕ(0) =
(1+γ

2
)n/2. By the definition of vϕ, √

vϕ ≥
Ω
((1+σ

2
)n/2

)
which is greater for n large enough since σ > γ when ϕ ∈ [π/2, π/4). The

proof now follows from Lemma 17. ◀

(No) cancellations. Note an interesting fact holds for the symmetric polynomial that
maximizes Cϕ: the y-contributions are always real and non-negative, for any y. This is
not true in general. For a simple example, take p = e2, n = 3 mod 4, and w(y) = n. Then
cy(p) is negative. This leads to cancellations in the correlation. However, for the symmetric
polynomial that maximizes correlation, the inner expectation is always non-negative and
there are no cancellations.

P. Ivanov, L. Pavlovic, and E. Viola 3:15

This fact shows that for the symmetric polynomials p that maximize correlation, the
correlation square C2

ϕ(p) can be equivalently written as

Ey|cy(p)|;

that is, we can take absolute values of the contributions “for free”. Note that by the triangle
inequality, for any polynomial p the above expression is an upper bound on the correlation.
We used this when showing the constant polynomial maximizes Cϕ for ϕ ∈ [0, π/4]. For
the symmetric polynomials that maximize correlation, it turns out that this bound can be
attained.

In the proof of Theorem 5 we shall mostly be working with this quantity, which does not
depend on the linear part of p. This is because the derivative of a linear polynomial is a
constant depending only on y, which disappears when taking absolute values. Hence we can
assume that p does not contain linear terms.

5 Proof of Theorem 5

The next two results are needed to prove the first, main item of Theorem 5. First we deal
with polynomials that are missing at least one degree two monomial.

▶ Theorem 21. Let ϕ ∈ (π/4, π/2] and p be a quadratic polynomial that is not equal to e2 + ℓ

for some linear polynomial ℓ. Then Ey |cy(p)| ≤ (1 − Ω(σ − γ))vϕ.

Next we deal with non-symmetric polynomials that possess all degree two monomials.
Note we use the quantity Eycy(p) instead.

▶ Lemma 22. Let ϕ ∈ (π/4, π/2] and p be a polynomial that is equal to e2 + ℓ where ℓ is a
linear polynomial not equal to a constant or e1. Then Eycy(p) ≤ (1 − Ω(1))vϕ.

Assuming these are true, we prove the first item of Theorem 5.

Proof of Theorem 5 Item 1. Follows from Corollary 20, Theorem 21, and Lemma 22. ◀

We next give similar results that are needed to prove the second item of Theorem 5.

▶ Lemma 23. Let ϕ ∈ [0, π/4] and p be a quadratic polynomial that is not linear. Then
Ey |cy(p)| ≤ (1 − Ω(1))

(1+γ
2
)n.

▶ Lemma 24. Let ϕ ∈ [0, π/4] and p be a linear polynomial that is not equal to the constant
polynomial. Then Eycy(p) ≤ (1 − Ω(1))

(1+γ
2
)n.

Proof of Theorem 5 Item 2. Follows from Lemma 23, Lemma 24, and Example 4 which
says C2

ϕ(0) =
(1+γ

2
)n. ◀

5.1 Proof of Theorem 21
Our proof strategy is to slowly restrict the direction y, to try to connect the corresponding
contributions with the target value vϕ.

▶ Definition 25. A restriction r is an element of {0, 1, ∗}n. The weight w(r) of r is
the number of ones, and S(r) is the number of stars. We also view r as a function r :
{0, 1}S(r) → {0, 1}n mapping assignments to stars to n-bit strings, and we write ry for r(y).
For a restriction r we call xi a b ∈ {0, 1, ∗} variable if the ith bit of r is b.

CCC 2023

3:16 On Correlation Bounds Against Polynomials

We emphasize that r restricts the space of directions y, not x. So for example if xi is a 0
variable then the corresponding directional bit yi has been restricted to 0 – but xi is never
restricted. We next introduce restricted versions of the quantities in Theorem 21.

▶ Definition 26 (c(p, r) and vϕ(r)). Let r be a restriction. For a polynomial p we define

c(p, r) := Ey∈{0,1}S(r) |cry(p)|.

Note that c(p, r) is defined with respect to the angle ϕ since cry(p) is. We also define

vϕ(r) := 2−S(r)
∑

y∈{0,1}S(r):ry∈E

σw(ry),

where we sum over all derivatives ry of even weight.

For any r ∈ {0, 1}n we have c(p, r) = |cr(p)|. Also,

Ey|cy(p)| = c(p, ∗n),
vϕ = vϕ(∗n).

Using the above notation our goal is to show that

c(p, ∗n) ≤ (1 − Ω(σ − γ))vϕ.

Polynomials as graphs

We associate to a quadratic polynomial p the graph over the variables where xi and xj are
connected iff monomial xixj is present in p. Note this graph only depends on the monomials
of degree 2 of p. The degree of a variable shall refer to the degree as a node in this graph.
We shall also talk of variables being connected, etc.

▶ Example 27. Let n = 3, r = (1 ∗ 0) ∈ {0, 1, ∗}3, p = x1x2 + x2x3. The ∗ variable x2 is
connected to the 1 variable x1 and to the 0 variable x3.

We now proceed with the proof of Theorem 21. In all upcoming statements, p is an
arbitrary quadratic polynomial on n variables, ϕ ∈ (π/4, π/2], and we set n and a parameter
t large enough so that both t and n/t are large enough depending on ϕ. The minimal n for
which our proof of Theorem 5 holds increases as ϕ approaches π/4 (where σ approaches γ).

We next state several lemmas and prove Theorem 21 assuming them. The first two
lemmas show that c(p, r) ≤ vϕ(r) under various conditions on p and r.

▶ Lemma 28. Let r ∈ {0, 1, ∗}n be a restriction. Suppose there exists a 0 variable that is
connected to an odd number of 1 variables. Then c(p, r) ≤ vϕ(r).

▶ Lemma 29. Let r ∈ {0, 1, ∗}n be a restriction. Suppose there exists a 0 variable that is
connected to an even number of 1 variables and at least t ∗ variables. Then c(p, r) ≤ vϕ(r).

The next lemma shows that if p is missing a degree two monomial then vϕ(0∗n−1) gains
an advantage over c(p, 0∗n−1). It can be considered a strengthening of Lemma 29 under an
additional constraint.

▶ Lemma 30 (Buffer). Let r = 0∗n−1. Suppose the 0 variable is connected to at least t ∗
variables and at most n− 2 ∗ variables. Then c(p, r) ≤ vϕ(r) −

(
σ−γ
16
)
vϕ.

P. Ivanov, L. Pavlovic, and E. Viola 3:17

We shall use the above lemmas to slowly restrict directions, beginning with Lemma 30
and then iteratively applying either Lemma 28 or Lemma 29. This process stops when we
cannot find variables that satisfy the hypothesis of either Lemma 28 or Lemma 29.

When this happens, we consider two cases based on the number of variables restricted.
In the first case, when the number is large, we give an upper bound on c(p, r). This suffices
because of the buffer afforded to us by Lemma 30.

▶ Lemma 31 (Opened majority). Let r = 1j∗n−j for some j ≥ n/2. Then c(p, r) <

2j
(
σ−γ
1000

)
vϕ.

In the second case, when the number of restricted variables is small, the polynomial has
structure that we can utilize to again show c(p, r) ≤ vϕ(r). Specifically, in the graph of the
polynomial many variables have small degree.

▶ Lemma 32 (Low degree loses). Let r = 1j∗n−j for some j < n/2. Suppose every ∗ variable
is connected to at most t other ∗ variables. Then c(p, r) ≤ vϕ(r).

We will need the following variant of Lemma 32 for an edge case in the main proof.

▶ Lemma 33. Let r = ∗n. Suppose there are at least n− t variables connected to at most t
other variables. Then c(p, r) ≤ (1 − (σ − γ))vϕ.

Assuming these lemmas we can prove Theorem 21.

Proof of Theorem 21. We consider two cases based on the existence of a variable of certain
degree in the graph of p. In the first case, when p is a “typical” polynomial, we suppose the
existence of a variable with degree in [t, n− 2] (corresponding to the hypothesis of Lemma
30). Let us denote this variable x1 for ease. We “open” the directional bit corresponding to
x1. That is, we condition Ey|cy(p)| depending on the value of y1:

c(p, ∗n) = 1
2
(
c(p, 0∗n−1) + c(p, 1∗n−1)

)
.

Correspondingly, it holds that

vϕ(∗n) = 1
2
(
vϕ(0∗n−1) + vϕ(1∗n−1)

)
.

Then we iteratively open up ∗ variables in the term where the restriction has no zeroes, as
long as we can find a ∗ variable that is connected to an number of 1 variables or that is
connected to an even number of 1 variables and at least t other ∗ variables. We can write
the terms corresponding to the variables that were opened (up to permutation of variables):

c(p, ∗n) = 1
2c(p, 0∗n−1) + 1

4c(p, 10∗n−2) + · · · + 1
2j c(p, 1

j∗n−j),

for some 1 ≤ j ≤ n depending on p. We also write the corresponding terms for vϕ:

vϕ(∗n) = 1
2vϕ(0∗n−1) + 1

4vϕ(10∗n−2) + · · · + 1
2j vϕ(1j∗n−j).

We compare the terms in the right-hand sides in the two equations above. For the first
term, we have 1

2c(p, 0∗n−1) ≤ 1
2vϕ(0∗n−1) − (σ−γ

32)vϕ by Lemma 30. For all the other terms
except the last one, we have that the c(p, r) terms is at most the corresponding vϕ(r) term
by either Lemma 28 or Lemma 29. Now we analyze the last terms depending on the value of
j. Note that each ∗ variable is connected to at most t other ∗ variables.

CCC 2023

3:18 On Correlation Bounds Against Polynomials

If 1 ≤ j < n/2 we apply Lemma 32 which says c(p, 1j∗n−j) ≤ vϕ(p, 1j∗n−j) and conclude
as vϕ(∗n) − c(p, ∗n) ≥ σ−γ

32 vϕ .
If j ≥ n/2 then 1

2j c(p, 1
j∗n−j) ≤ (σ−γ

1000)vϕ by Lemma 31 and we conclude as vϕ(∗n) −
c(p, ∗n) ≥

(
σ−γ
32 − σ−γ

1000
)
vϕ.

This finishes the proof of when p has a node with degree in [t, n − 2]. For the second
case, suppose that every node has degree at most t − 1 or degree exactly n − 1. We then
claim there are ≤ t− 1 nodes with degree n− 1. Supposing this is true we can immediately
conclude by Lemma 33.

Now we verify the desired claim. Suppose there are z nodes of degree n− 1 with z ≥ t.
Each of these nodes is connected to every other node, so every node in the graph has degree
at least z ≥ t. By the supposition, every node in the graph has degree n− 1. This contradicts
the hypothesis that p ̸= e2 + ℓ. ◀

Next we give proofs of the technical lemmas.

5.1.1 Proof of Lemma 28
Fix a 0 variable xi that is connected to an odd number of 1 variables. Let T denote the
indices of the ∗ variables connected to xi and let U denote the indices of the remaining ∗
variables. Write y = (yT , yU) for the corresponding bits of y.

Note that by Proposition 14, cry(p) = 0 if w(yT) is even (because the coefficient of xi
would be odd). And if w(yT) is odd we apply the upper bound |cry(p)| ≤ σw(ry) from Claim
16. Combining these two things yields:

c(p, r) = 2−S(r)
∑

yT∈O,yU
|cry(p)|

≤ 2−S(r)
∑

yT∈O,yU
σw(ry).

Now we compare this value with the expression for vϕ. Let us assume that w(r) is even.
Then

vϕ(r) = 2−S(r)
∑
y∈E

σw(ry).

Hence to prove c(p, r) ≤ vϕ(r) it suffices to show∑
yT∈O,yU

σw(y) ≤
∑
y∈E

σw(y).

Note in the above two expressions we can assume |T | > 0 since otherwise the left hand-side
will be 0 and we would be immediately done. Then by conditioning on the parity of yU in
each side it suffices to show∑

yT∈O,yU∈E

σw(y) +
∑

yT∈O,yU∈O

σw(y) ≤
∑

yT∈E,yU∈E

σw(y) +
∑

yT∈O,yU∈O

σw(y).

The second sum in each side is the same, and the first sum in the right-hand side is bigger
than the first sum in the left-hand side by Claim 19. This concludes the case of when w(r) is
even.

When w(r) is odd

vϕ(r) = 2−S(r)
∑
y∈O

σw(ry).

P. Ivanov, L. Pavlovic, and E. Viola 3:19

Then it suffices to show∑
yT∈O,yU∈E

σw(y) +
∑

yT∈O,yU∈O

σw(y) ≤
∑

yT∈E,yU∈O

σw(y) +
∑

yT∈O,yU∈E

σw(y).

The inequality holds again by Claim 19.

5.1.2 Proof of Lemma 29

The high-level approach is similar to the proof of Lemma 28, but we utilize the following
improvement of Claim 16 when the weight of the derivative is odd. The improvement comes
from the handshaking lemma.

▷ Claim 34. Let y ∈ {0, 1}n. Then |cy(p)| is either 0 or σeγw(y)−e, where e is an even
integer and 0 ≤ e ≤ w(y).

Proof. Consider the graph G with w(y) nodes which are the 1 variables and the edges
represent monomials. Let S, T be the nodes in G that have odd, even degree respectively.
Note that nodes in S contribute a σ factor, while the nodes in T contribute a γ factor. The
remaining n− w(y) 0 variables not in G contribute either 1 or 0.

So to finish the proof it suffices to show that |S| must be even. The sum of all the degrees
in G is |S| · odd+ (|V | − |S|) · even = |S| · odd+ even. In any graph, the sum of degrees is
even, hence |S| is always even. ◁

To prove Lemma 29 we exploit that if w(ry) is odd then the exponent of the σ factor is
< w(ry). Fix the 0 variable xi that is connected to an even number of 1 variables and
to at least t ∗ variables. Let T , U denote the same as in the previous proof. The ry

contribution is zero if w(yT) is odd (because the coefficient of xi in the ry derivative would
be even+ odd = odd). So then

c(p, r) = 2−S(r)
∑

yT∈E,yU
|cry(p)|

= 2−S(r)(
∑

yT∈E,yU∈E

|cry(p)| +
∑

yT∈E,yU∈O

|cry(p)|).

Suppose that w(r) is even. For the first term, where yT ∈ E, yU ∈ E, we use Claim 16.
For the second term, where yT ∈ E, yU ∈ O, w(ry) = even+ even+ odd = odd. By Claim
34, the max contribution of ry in the second term is ≤ σw(ry)−1γ. So we can bound

c(p, r) ≤ 2−S(r)(
∑

yT∈E,yU∈E

σw(ry) + γ

σ

∑
yT∈E,yU∈O

σw(ry)).

We compare this to

vϕ(r) = 2−S(r)
∑
y∈E

σw(ry)

= 2−S(r)(
∑

yT∈E,yU∈E

σw(ry) +
∑

yT∈O,yU∈O

σw(ry)).

CCC 2023

3:20 On Correlation Bounds Against Polynomials

The sums over yT ∈ E, yU ∈ E are the same. Hence to show c(p, r) ≤ vϕ(r) it suffices to
show

γ

σ

∑
yT∈E,yU∈O

σw(y) ≤
∑

yT∈O,yU∈O

σw(y)

⇐⇒ γ

σ

∑
yT∈E

σw(yT) ≤
∑
yT∈O

σw(yT)

⇐⇒ (σ/γ + 1) (1 − σ)|T | ≤ (σ/γ − 1) (1 + σ)|T |

⇐⇒ σ + γ

σ − γ
≤
(

1 + σ

1 − σ

)|T |

.

The second to last ⇐⇒ follows by applying Claim 19 and rearranging. The last inequality
holds for t large enough, since |T | ≥ t and the left hand term will be some fixed positive
number since ϕ ∈ (π/4, π/2]. This concludes the w(r) even case.

Now suppose w(r) is odd. Proceeding similarly as before, we have

c(p, r) ≤ 2−S(r)(γ
σ

∑
yT∈E,yU∈E

σw(ry) +
∑

yT∈E,yU∈O

σw(ry)).

Which we need to compare with

vϕ(r) = 2−S(r)
∑
y∈O

σw(ry)

= 2−S(r)(
∑

yT∈E,yU∈O

σw(ry) +
∑

yT∈O,yU∈E

σw(ry)).

Now the sums over yT ∈ E, yU ∈ O are the same. So then it suffices to show
γ

σ

∑
yT∈E

σw(yT) ≤
∑
yT∈O

σw(yT)

which we have already verified.

5.1.3 Proof of Lemma 30
The proof starts identically as the proof of Lemma 29, but then we strengthen the analysis
to give a strict inequality. Let T denote the set of ∗ variables connected to x1, and let U
denote the ∗ variables not connected to x1. We have |T | + |U | = n− 1 and by hypothesis
t ≤ |T | ≤ n− 2. We remark the strengthened analysis only works because of the condition
|T | ≤ n− 2.

We have the following derivation, where the first inequality follows from the same steps
as in w(r) even case of the previous proof. Let a = 1 + σ, b = 1 − σ, and δ = γ/σ.

2n−1 (vϕ(0∗n−1) − c(p, 0∗n−1)
)

≥
∑

yT∈O,yU∈O

σw(y) − γ

σ

∑
yT∈E,yU∈O

σw(y).

=
∑
yU∈O

σw(yU) · (
∑
yT∈O

σw(yT) − δ
∑
yT∈E

σw(yT))

= a|U | − b|U |

2 · (1 − δ)a|T | − (1 + δ)b|T |

2

≥ a|U |

4 · (1 − δ)a|T |

4

= (1 − δ)an−1

16 .

P. Ivanov, L. Pavlovic, and E. Viola 3:21

We elaborate on the last ≥. First, note that if |U | = 0 the inequality would not be valid
since the entire expression would be equal to 0. Second, we verify that

(1 + δ)b|T |

2 ≤ (1 − δ)a|T |

4

⇐⇒ 2 · σ + γ

σ − γ
≤
(

1 + σ

1 − σ

)|T |

.

The last inequality holds for t large enough, since |T | ≥ t. Note this is almost the same
inequality that is in the proof of Lemma 29. Lastly, we verify that

b|U |

2 ≤ a|U |

4
⇐ 2 ≤ 1 + σ

1 − σ
.

The ⇐ holds since |U | > 0 and the last inequality is equivalent to σ ≥ 1/3 which holds since
σ = sin(ϕ) ≥ sin(π/4) = 1/

√
2 ≥ 1/3.

We continue the derivation, applying similar logic:

(1 − δ)an−1

16 ≥ (1 − δ)an−1 + (1 − δ)bn−1

32

≥ (1 − δ)an + (1 − δ)bn

32a

= (1 − δ)
16a · 2nvϕ.

Dividing both sides by 2n−1 we obtain

vϕ(0∗n−1) − c(p, 0∗n−1) ≥ (1 − δ)
8a · vϕ

≥ σ − γ

16 · vϕ.

where the last ≥ follows since a = 1 + σ ≤ 2, (1 − δ) = σ−γ
σ ≥ σ − γ because σ ≤ 1.

5.1.4 Proof of Lemma 31
Applying Claim 16 we can say

c(p, 1j∗n−j) ≤ 2−(n−j)σj
∑
y

σw(y)

= 2−(n−j)σj(1 + σ)n−j .

On the other hand,

2jvϕ(∗n) ≥ 2−(n−j+1)(1 + σ)n.

So it suffices to show that
σj(1 + σ)n−j

2n−j ≤ σ − γ

1000
(1 + σ)n

2n−j+1

⇐⇒ 2000
σ − γ

≤
(

1 + σ

σ

)j
,

where we divided by σ − γ > 0. The last inequality holds for n large enough since j ≥ n/2
and σ > 0.

CCC 2023

3:22 On Correlation Bounds Against Polynomials

5.1.5 Proof of Lemma 32
Consider the subgraph induced by the ∗ variables. There are n−j ≥ n/2 nodes in it of degree
≤ t. By a greedy argument, this implies an independent set of size ≥ (n− j)/(t+ 1) ≥ n/4t.
Let T denote the variables in the independent set and let S denote the remaining ∗ variables.
Note |S| + |T | = n− j and the remaining j variables are 1 variables.

For any fixing yS of S, let pT (yS) ∈ {0, 1}|T | denote the coefficients of the variables
in T based on the partial restriction 1jyS∗|T |. This is a valid definition because T is an
independent set, and so pT (yS) is unaffected by any fixing yT of T . By Proposition 14, if
for some fixing yT there is a variable xj in T such that pTj (yS) = 1 but yTj = 0 then the
contribution is 0. Using also the other values in the table in Proposition 14, for any fixed yS

we can let ψ := w(pT (yS)) and bound the contribution over yT as follows:

2|T |c(p, 1jyS∗|T |) ≤ σj+w(yS)+ψ
∑

z∈{0,1}|T |−ψ

γw(z)

= σj+w(yS)+ψ(1 + γ)|T |−ψ

≤ σj+w(yS)(1 + γ)|T |.

The last ≤ follows since σ < 1 ≤ 1 + γ. By summing over all possible fixings yS and applying
the previous bound we can bound c(p, 1j∗n−j) as follows:

2n−jc(p, 1j∗n−j) ≤ σj(1 + γ)|T |
∑
yS

σw(yS)

= σj(1 + γ)|T |(1 + σ)|S|

≤ σj(1 + γ)n/4t(1 + σ)(n−j)−n/4t.

The last ≤ holds since σ > γ and |T | ≥ n/4t. On the other hand,

2n−jvϕ(1j∗n−j) =
∑

y:1jy∈E

σj+w(y)

≥ σj
(1 + σ)n−j

4 .

So then it suffices to show

σj(1 + γ)n/4t(1 + σ)(n−j)−n/4t < σj
(1 + σ)n−j

4

⇐⇒ (1 + γ)n/4t <
(1 + σ)n/4t

4

⇐⇒ 4 <
(

1 + σ

1 + γ

)n/4t
.

Since σ > γ when ϕ ∈ (π/4, π/2], the last inequality holds for n/t large enough.

5.1.6 Proof of Lemma 33
The proof is nearly identical to the proof of Lemma 32. The hypothesis implies the existence
of an independent set of size ≥ (n− t)/(t+ 1) ≥ (n− t)/2t in the graph consisting of all the
variables. Following the same logic as before, we can upper bound c(p, ∗n) by

2nc(p, ∗n) ≤ (1 + γ)(n−t)/2t(1 + σ)n−(n−t)/2t.

P. Ivanov, L. Pavlovic, and E. Viola 3:23

On the other hand,

2nvϕ ≥ (1 + σ)n

2 .

Then it suffices to show

(1 + γ)(n−t)/2t(1 + σ)n−(n−t)/2t < (1 − (σ − γ)) (1 + σ)n

2

⇐⇒ 2
(1 − (σ − γ)) <

(
1 + σ

1 + γ

)(n−t)/2t
.

Recall that n/t is arbitrarily large, so (n− t)/2t is also arbitrarily large and the inequality
holds.

5.2 Proof of Lemma 22

We can perform a similar analysis as in the proof of Lemma 17. As before cy(p) = 0 if w(y)
is odd. But now if w(y) even, letting T denote the set of variables that appear in the linear
polynomial ℓ, the contribution is

cy(p) = (−1)−w(y)/2+w(yT) · ((−
√

−1)σ)w(y)

= (−1)w(yT)σw(y).

So a derivative makes a positive contribution if w(y) is even and w(yT) is even, and a
negative one if w(y) is even and w(yT) is odd. Let U be the complement of T . By hypothesis,
1 ≤ |T |, |U | ≤ n− 1. We can sum over the positive contributions and subtract the negative
ones to get the expression

2n · Eycy(p) =
∑

yT∈E,yU∈E

σw(y) −
∑

yT∈O,yU∈O

σw(y).

On the other hand,

2n · vϕ =
∑

yT∈E,yU∈E

σw(y) +
∑

yT∈O,yU∈O

σw(y).

Combining the two expressions and letting a = (1 + σ), b = (1 − σ), we get

2n (vϕ − Eycy(p)) = 2
∑

yT∈O,yU∈O

σw(y)

= 1
2

(
a|T | − b|T |

)(
a|U | − b|U |

)
≥ 1

2
a|T |

2
a|U |

2

= an

8 .

The second = follows by Claim 19, and the ≥ after that follows since 1 ≤ |T |, |U | by
hypothesis and 2b < a.

CCC 2023

3:24 On Correlation Bounds Against Polynomials

5.3 Proof of Lemma 23
Since p is not linear there is at least one node with degree ≥ 1 in the polynomial graph. Let
us denote this node x1 for ease, and let T, U denote the nodes connected, not connected to
x1 respectively. We write y = (yT , yU) for the corresponding bits of y. Just like in the proof
of Theorem 21 we condition on the value of y1 to get

c(p, ∗n) = 1
2
(
c(p, 0∗n−1) + c(p, 1∗n−1)

)
.

We bound the second term by applying Claim 16 which says cry(p) ≤ γw(ry) using that
ϕ ∈ [0, π/4]:

2n−1c(p, 1∗n−1) ≤
∑

y∈{0,1}n−1

γ1+w(y)

= γ (1 + γ)n−1
.

To deal with the first term, we proceed similarly as we did in the proof of Lemma 28.
Note that |T | ≥ 1, and if w(yT) is odd then c1y(p) = 0. If w(yT) is even then as before we
use the bound cry(p) ≤ γw(ry). These two things yield

2n−1c(p, 0∗n−1) ≤
∑

yT∈E,yU
γw(y)

=
(

(1 + γ)|T | + (1 − γ)|T |

2

)
(1 + γ)|U |

≤ 3/4(1 + γ)n−1.

The last ≤ follows as |T | ≥ 1 and 1 − γ < 1+γ
2 when 1/

√
2 ≤ γ. Altogether this gives

2nc(p, ∗n) ≤ (3/4 + γ)(1 + γ)n−1.

So it only remains to show (3/4 + γ) ≤ (1 − Ω(1))(1 + γ) which holds because γ ≤ 1.

5.4 Proof of Lemma 24
Let T denote the set of variables that appear in the linear polynomial p and let U denote
the remaining variables. Applying the same logic as in Example 4 we have

Eycy(p) =
(

1 − γ

2

)|T |(1 + γ

2

)|U |

≤
(

1 − γ

2

)(
1 + γ

2

)n−1
.

The ≤ follows since |T | ≥ 1 and 1 + γ > 1 − γ when ϕ ∈ [0, π/4].
So it only remains to show (1 − γ) ≤ (1 − Ω(1))(1 + γ) which holds because γ ≥ 1/

√
2.

6 Boolean correlation

In this section we prove Theorem 6. Recall that Cϕ is defined as the absolute value of a sum.
We need to analyze this sum more carefully, so we define it next.

▶ Definition 35. Eϕ(p) := Ex∈{0,1}n(−1)p(x)ω
∑

i
xi . Note that |Eϕ(p)| = Cϕ(p).

P. Ivanov, L. Pavlovic, and E. Viola 3:25

We now give an overview of the upcoming technical results. In the proof of Theorem 6,
we will use Lemma 39, which relates Bm(p) to the quantity |Real(Eϕ(p))| for a specific angle
ϕ, and Corollary 41, which allows us to compute |Real(Eϕ(s))| for s = e2, e2 + e1. Together
these two results will enable us to compute Bm(s) for s = e2, e2 + e1.

On the other hand, combining Lemma 39 with Theorem 5 lets us bound Bm(p) when p

is not symmetric, since Theorem 5 bounds Cϕ(p) and |Real(Eϕ(p))| ≤ |Eϕ(p)| = Cϕ(p).
Proposition 36 and Claims 37, 38 are used to prove Lemma 39, and Lemma 40 is needed

for Corollary 41.
For the rest of the section, fix any odd m ≥ 3, set ϕ = 2π/m, ω = eϕ

√
−1. We start with

the following standard fact:

▶ Proposition 36. Let b be the fraction of n-bit strings whose weight is divisible by m. For
any p,

Bm(p) = 1
b(1 − b)

∣∣∣∣∣∣ 2
m

·
(m−1)/2∑
k=1

Real(Ekϕ(p)) + 1
m

− b

∣∣∣∣∣∣
where Real(z) denotes the real part of the complex number z.

Proof. Let s(k) :=
∑m
j=0 ω

jk = 1 + ωk + · · · + ω(m−1)k and note that s(k) = m if k ≡ 0
mod m and s(k) = 0 otherwise. Using this notation we can write

Bm(p) =
∣∣∣∣Ex(−1)p(x) s(w(x))

m
· 1
b

− Ex(−1)p(x)
(

1 − s(w(x))
m

)
· 1

1 − b

∣∣∣∣ .
Collecting terms this is∣∣∣∣Ex(−1)p(x)

(
s(w(x))
m

· 1
b

−
(

1 − s(w(x))
m

)
· 1

1 − b

)∣∣∣∣ .
Using the definition of s this equals∣∣∣∣∣∣Ex(−1)p(x)

 m∑
j=1

ωjw(x)

(1
mb

+ 1
m(1 − b)

)
+ 1
mb

−
(

1 − 1
m

)
1

1 − b

∣∣∣∣∣∣ .
Also,

1
mb

−
(

1 − 1
m

)
1

1 − b
= 1 −mb

mb(1 − b) .

Furthermore, ωjw(x) + ω(m−j)w(x) = 2Real(ωjw(x)) for each j. After factoring out 1/b(1 − b)
the result follows. ◀

Observe that in the statement of Lemma 36, if we replaced b with 1/m then the terms
that don’t multiply ω would be 0. However, b ̸= 1/m but it will be very close. We use the
following bound 1 that’s implicit in [8].

▷ Claim 37. |b− 1/m| < cos(π/m)n.

Now let ℓ1 ∈ {m−1
4 , m+1

4 } denote the integer closest to m
4 . The next result suggests we

should focus on Real(Eℓ1ϕ(p)).

1 When m = 3 the claim says |b − 1/m| < 2−n but we do not use this.

CCC 2023

3:26 On Correlation Bounds Against Polynomials

▷ Claim 38. Fix any odd m ≥ 3 and k ∈ {1..., (m − 1)/2} : k ̸= ℓ1. Then for all large
enough n and any quadratic p,

|Real(Ekϕ(p))| = o(√vℓ1ϕ).

Proof. By Theorem 5, for any k it holds that

Ckϕ(p) ≤ max
s∈{0,e1,e2,e2+e1}

Ckϕ(s) ≤ max

{
O

((
1 + | sin(kϕ)|

2

)n/2
)

,

(
1 + | cos(kϕ)|

2

)n/2
}

.

Next we claim that if k ∈ {1..., (m− 1)/2}, k ̸= ℓ1 then max{| sin(kϕ)|, |cos(kϕ)|} < sin(ℓ1ϕ).
If this holds we can conclude since √

vℓ1ϕ = Ω((1+sin(ℓ1ϕ)
2)n/2) and |Real(Ekϕ(p))| ≤ Ckϕ(p).

To verify the claim, note for k ̸= ℓ1, | sin(kϕ)| is maximized when k = ℓ2, where ℓ2
denotes the second closest integer to m/4. Since m is odd, ℓ2 ∈ {m−3

4 , m+3
4 } which implies

sin(ℓ2ϕ) < sin(ℓ1ϕ).
And | cos(kϕ)| is maximized for k = (m−1)/2 and | cos(kϕ)| = | cos(π−π/m)| = cos(π/m).

We can now conclude as cos(π/m) < sin(ℓ1ϕ) = sin(π/2 ± π/2m) = cos(π/2m). ◁

The next result, which combines Claim 37, 38 with Proposition 36, says we can approximate
Bm(p) using just |Real(Eℓ1ϕ(p))|.

▶ Lemma 39. For all large enough n and any quadratic p,∣∣∣∣Bm(p) − 2m
m− 1 |Real(Eℓ1ϕ(p))|

∣∣∣∣ ≤ o(√vℓ1ϕ).

For m = 3 this can be improved to∣∣B3(p) − 3
∣∣Real(E2π/3(p))

∣∣∣∣ ≤ O(2−n).

Proof. By Claim 37 and noting that cos(π/m)n = o(√vℓ1ϕ) we have∣∣∣∣ 1
b(1 − b) − m2

m− 1

∣∣∣∣ = o(√vℓ1ϕ).

Applying the triangle inequality and Claim 38 we also have∣∣∣∣∣∣ (m−1)/2∑
k=1

Real(Ekϕ(p))
∣∣−
∣∣Real(Eℓ1ϕ(p))

∣∣∣∣∣∣ ≤
∑
k ̸=ℓ1

∣∣Real(Ekϕ(p))
∣∣ ≤ m · o(√vℓ1ϕ).

Inserting the previous two inequalities into Lemma 36 implies

|Bm(p) − 2m/(m− 1)|Real(Eℓ1ϕ(p))|| ≤ O(m)o(√vℓ1ϕ).

We can now conclude since we consider m fixed. ◀

We are naturally interested in computing Bm(s) for s = e2, e2 +e1 and the next lemma allows
us to do so by giving an expression for Eℓ1ϕ(s). In Section 4 we determined Cℓ1ϕ(s) = |Eℓ1ϕ(s)|,
but this no longer suffices as we need to understand the angle of Eℓ1ϕ(s) in order to compute
|Real(Eℓ1ϕ(s))|.

▶ Lemma 40. For any k ∈ {1, 2, . . . ,m− 1} we have:

Ekϕ(e2) = 2−(n+1) [(1 + i)(1 − iωk)n + (1 − i)(1 + iωk)n
]
,

Ekϕ(e2 + e1) = 2−(n+1) [(1 − i)(1 − iωk)n + (1 + i)(1 + iωk)n
]
.

P. Ivanov, L. Pavlovic, and E. Viola 3:27

Proof. We prove Item 1. Since (−1)e2(x) = (−1)(
w(x)

2) we can write

Ekϕ(e2) =
n∑
j=0

(
n

j

)
(−1)(

j
2)ωkj .

We also have

∑
j=0 mod 4

(
n

j

)
ωkj =

n∑
j=0

(
n

j

)
ωkj

(
1 + ij

2

)(
1 + (−1)j

2

)
∑

j=2 mod 4

(
n

j

)
ωkj =

n∑
j=0

(
n

j

)
ωkj

(
1 − ij

2

)(
1 + (−1)j

2

)
.

So this implies

∑
j=0 mod 4

(
n

j

)
ωkj −

∑
j=2 mod 4

(
n

j

)
ωkj = 1

2
[
(1 + ωki)n + (1 + ωk(−i))n

]
.

Doing the analogous for j = 1, 3 mod 4 gives

∑
j=1 mod 4

(
n

j

)
ωkj −

∑
j=3 mod 4

(
n

j

)
ωkj = 1

2
[
−i(1 + ωki)n + i(1 + ωk(−i))n

]
.

The proof of Item 2 is similar. ◀

The next result reduces the problem of computing |Real(Eℓ1ϕ(s)| to the problem of computing
| cos(χ± π/4)| for a certain angle χ. The angle χ± π/4 arises because it is the angle of the
vector (1 ± i)(1 − iωℓ1)n, which is the dominant term in the previous expressions for Eℓ1ϕ(s).
The last equality below then allows us to relate |Real(Eℓ1ϕ(s)| to √

vℓ1ϕ.

▶ Corollary 41. Let χ = nπ
4m ,−

nπ
4m when ℓ1 = m+1

4 , m−1
4 respectively. Let γ =

√
2|1 − iωℓ1 |n.

For all large enough n, the following holds:
1.
∣∣2n+1|Real(Eℓ1ϕ(e2))| − | cos(χ+ π/4)|γ

∣∣ = o(1)
2.
∣∣2n+1|Real(Eℓ1ϕ(e2 + e1))| − | cos(χ− π/4)|γ

∣∣ = o(1),
3.
∣∣2n+1√

vℓ1ϕ − γ
∣∣ = o(1).

Proof. We show the first equality when ℓ1 = m+1
4 . The ℓ1 = m−1

4 case is symmetrical.
By definition ωℓ1 = e

√
−1(2π/m)(m+1)/4 = e

√
−1(π/2+π/2m), hence −iωℓ1 = e

√
−1(π/2m).

This implies (1 − iωℓ1) = |1 − iωℓ1 |e
√

−1(π/4m). Additionally, 1 + i =
√

2e
√

−1(π/4). So then

(1 + i)(1 − iωℓ1)n =
√

2e
√

−1(π/4) · |1 − iωℓ1 |ne
√

−1(π/4m)n

= γe
√

−1(nπ/4m+π/4).

We can now conclude by Lemma 40, the fact |Real(e
√

−1ϕ)| = | cosϕ| for any ϕ, and noting
|1 + iωℓ1 |n = o(1) since |1 + iωℓ1 | < 1 when m is odd. The second inequality is done similarly.

The third inequality follows by Lemma 40, the facts |Eℓ1ϕ(p)| = Cℓ1ϕ(p), |1+iωℓ1 |n = o(1),
and since when s = e2, e2 + e1,

∣∣Cℓ1ϕ(s) − √
vℓ1ϕ

∣∣ ≤ o(1) by Lemma 17. ◀

CCC 2023

3:28 On Correlation Bounds Against Polynomials

6.1 Proof of Theorem 6

6.1.1 Proof of Item 1
First we prove the upper bound. Lemma 39 implies that

Bm(p) ≤ 2m/(m− 1) |Real(Eℓ1ϕ(p))| + o(√vℓ1ϕ).

The upper bound now follows since |Real(Eℓ1ϕ(p))| ≤ |Eℓ1ϕ(p)| = Cℓ1ϕ(p) ≤ (1 + o(1))√vℓ1ϕ.
The last inequality holds by Theorem 5.

Next we prove the lower bound by showing

max
s∈{e2,e2+e1}

Bm(s) ≥ (2m/(m− 1) − o(1))
√
vℓ1ϕ

2 . (9)

Lemma 39 implies that

Bm(s) ≥ 2m/(m− 1) |Real(Eℓ1ϕ(s))| − o(√vℓ1ϕ).

Then we claim that for either s = e2 or s = e2 + e1,

|Real(Eℓ1ϕ(s))| ≥ (1 − o(1))
√
vℓ1ϕ

2 .

The previous two inequalities imply Equation 9.
To verify the claim, note that since cos(π/4) = 1/

√
2, at least one of the next two

inequalities hold for any angle χ:

cos(χ+ π/4) ≥ 1/
√

2,

cos(χ− π/4) ≥ 1/
√

2.

We then conclude by Corollary 41.

6.1.2 Proof of Item 2
We present the n ≡ 3m mod 4m, ℓ1 = m+1

4 case. In the proof we show that Eℓ1(e2) is
essentially real, which means |Real(Eℓ1(e2))| equals √

vℓ1ϕ by Corollary 41. On the other
hand, for any non-symmetric p, Cℓ1ϕ(p) is a constant factor smaller than √

vℓ1ϕ by Theorem
5. This suffices as |Eℓ1ϕ(p)| = Cℓ1ϕ(p), and note the angle of Eℓ1ϕ(p) does not even matter.

So first we show

Bm(e2) ≥ (2m/(m− 1) − o(1))√vℓ1ϕ.

This follows by Lemma 39 and the claim that∣∣Real(Eℓ1ϕ(e2))
∣∣ ≥ (1 − o(1))√vℓ1ϕ.

To verify the claim, note when n ≡ 3m mod 4m, nπ/4m = (3m+ k4m)π/4m ≡ 3π/4 +
kπ mod 2π for some integer k. Hence cos(nπ/4m + π/4) = cos((k + 1)π) = ±1. We then
conclude by Corollary 41. Note cos(nπ/4m− π/4) = 0, so Bm(e2 + e1) < Bm(e2).

On the other hand, for any p ̸= e2, e2 + e1 we show

Bm(p) ≤ 2m/(m− 1)
√

1 − Ω(sin(ℓ1ϕ) − cos(ℓ1ϕ)) · √
vℓ1ϕ.

P. Ivanov, L. Pavlovic, and E. Viola 3:29

This follows by Lemma 39 and Theorem 5 which states

Cℓ1ϕ(p) ≤
√

1 − Ω(sin(ℓ1ϕ) − cos(ℓ1ϕ)) · √
vℓ1ϕ.

This yields the desired inequality since |Real(Eℓ1ϕ(p))| ≤ Cℓ1ϕ(p).
If p = e1, 0 we show

max
s∈{0,e1}

Bm(s) ≤ (2m/(m− 1)) · o(√vℓ1). (10)

This follows by Lemma 39 and noting for s = e1, 0, Cℓ1ϕ(s) = (1+cos(ℓ1ϕ)
2)n/2 = o(√vℓ1ϕ)

since cos(ℓ1ϕ) < sin(ℓ1ϕ).
The n ≡ 3m, ℓ1 = m−1

4 case is similar except we use e2 + e1 instead of e2. The n ≡ m

cases are analogous.

6.1.3 Proof of Item 3
We present the n ≡ 0 mod 4m, ℓ1 = m+1

4 case. First note that Equations 9 and 10 imply it
suffices to prove maxs∈{e2,e2+e1} Bm(s) < Bm(q) for some non-symmetric q. We will show
that Eℓ1ϕ(e2), Eℓ1ϕ(e2 + e1) are both maximally imaginary as allowed by Equation 9. Next,
consider q := x1 + e2(x2, . . . , xn). Cℓ1ϕ(q) is close to, but less than Cℓ1ϕ(s) for s = e2, e2 + e1.
However, Eℓ1ϕ(q) will be more real which is enough to compensate for this difference and
show that |Real(Eℓ1ϕ(s))| < |Real(Eℓ1ϕ(q))|.

So first we show that for either s = e2, e2 + e1,

Bm(s) ≤ (2m/(m− 1) + o(1)) ·
√
vℓ1ϕ

2 .

This follows by Lemma 39 and the claim that for either s = e2, e2 + e1,

|Real(Eℓ1ϕ(s))| ≤ (1 + o(1))
√
vℓ1ϕ

2 .

To verify the claim, since n ≡ 0 mod 4m, then nπ/4m ≡ kπ mod 2π. Hence cos(nπ/4m ±
π/4m) = ±1/

√
2. We then conclude by Corollary 41.

On the other hand, we show that

Bm(q) > (2m/(m− 1) − o(1)) ·
(1 + tan(π/4m))√vℓ1ϕ√

2
.

Note 1 + tan(π/4m) > 1 for m ≥ 3. The inequality holds by Lemma 39 and the claim

|Real(Eℓ1ϕ(q))| ≥ (1 − o(1)) ·
(1 + tan(π/4m))√vℓ1ϕ√

2
.

To show the claim, we start by rewriting Eℓ1ϕ(q) by conditioning on x1 (below e2 is on
n− 1 variables):

Eℓ1ϕ(q) = (1 − ωℓ1)
2 Eℓ1ϕ(e2).

An analogous version of Corollary 41 Item 1 holds for e2 on n− 1 variables:∣∣∣∣2n|Real(Eℓ1ϕ(e2))| −
∣∣∣∣cos

(
(n− 1)π

4m + π

4

)∣∣∣∣ γ

|1 − iωℓ1 |

∣∣∣∣ = o(1).

CCC 2023

3:30 On Correlation Bounds Against Polynomials

Since −ωℓ1 = e
√

−1(−π/2+π/2m) we have (1 − ωℓ1) = |1 − ωℓ1 |e
√

−1(−π/4+π/4m). Combining
this with the previous equality implies that∣∣∣∣2n+1|Real(Eℓ1ϕ(q))| −

∣∣∣∣cos
(

(n− 1)π
4m + π

4m

)∣∣∣∣ |1 − ωℓ1 |
|1 − iωℓ1 |

γ

∣∣∣∣ = o(1)

⇐⇒
∣∣∣∣2n+1|Real(Eℓ1ϕ(q))| − |1 − ωℓ1 |

|1 − iωℓ1 |
γ

∣∣∣∣ = o(1).

The ⇐⇒ follows as cos(nπ/4m) = ±1 when n ≡ 0 mod 4m.
To conclude, by Corollary 41 it suffices to show

1 + tan(π/4m)√
2

= |1 − ωℓ1 |
|1 − iωℓ1 |

.

Using the identity |1 + e
√

−1ϕ| = 2|cos(ϕ/2)|, we have |1 − iωℓ1 | = 2 cos(π/4m) and
|1 −ωℓ1 | = 2| cos(−π/4 + π/4m)| = 2 cos(π/4 − π/4m) =

√
2(cos(π/4m) + sin(π/4m)) where

the last step holds as cos(a− b) = cos a cos b+ sin a sin b. Hence the equality holds.
The n ≡ 0, ℓ1 = m−1

4 case is similar except q will be e2(x2, . . . , xn) instead. The n ≡ 2m
cases are analogous.

7 Symmetric correlates poorly with mod m

For completeness, we show that symmetric polynomials mod 2 correlate poorly with the
complex mod m function. To get a sense of the parameters below, fix m = 3 and apply
the identities cosx ≤ 1 − x2/6 and (1 − x)n ≤ e−xn. This yields Cϕ(s) ≤ O(d)2−Ω(n/d2), so
if Conjecture 2 were true this would imply exponentially small correlation bounds for any
O(log n) degree polynomial - a long-standing open problem.

▶ Theorem 42. Let ϕ = 2πk/m for some odd m and k ∈ {1, . . .m− 1}. Then for any degree
d symmetric polynomial s,

Cϕ(s) ≤ 2md · cos
(π

2md

)n
.

Proof. Let δ be an integer such that 2δ−1 ≤ d < 2δ. It is shown in [6] that s(x) is determined
by the weight of x mod 2δ. Hence we can write

(−1)s(x) =
2δ−1∑
i=0

ci1w(x)≡i mod 2δ

where ci ∈ {−1, 1} for each i. Then we can write the correlation as

Cϕ(s) =

∣∣∣∣∣∣Ex[Modϕ(x) ·
2δ−1∑
i=0

ci1w(x)≡i mod 2δ]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
2δ−1∑
i=0

Ex
[
Modϕ(x) · ci1w(x)≡i mod 2δ

]∣∣∣∣∣∣ .
Letting ω = e

√
−1·2π/m, for any i we have

Ex
[
Modϕ(x) · 1w(x)≡i mod 2δ

]
=
m−1∑
j=0

ω(i+j2δ)kPx[w(x) ≡ i+ j2δ mod m2δ].

We next use a slightly generalized version of Claim 37: ◀

P. Ivanov, L. Pavlovic, and E. Viola 3:31

▷ Claim 43. For any k,m, |Px[w(x) ≡ k mod m] − 1/m| ≤ cos(π/m)n.

Proof. Combining this with the fact
∑m−1
j=0 ω(i+j2δ)k = 0 implies that∣∣Ex [Modϕ(x) · 1w(x)≡i mod 2δ

]∣∣ ≤ m(cos(π/m2δ))n.

Hence

Cϕ(s) ≤
2δ−1∑
i=0

∣∣Ex [Modϕ(x) · ci1w(x)≡i mod 2δ
]∣∣ ≤ m2δ cos(π/m2δ))n.

We can now conclude the proof since 2δ ≤ 2d. ◁

8 Structured cubic loses to quadratic

In this section we show that any cubic polynomial with a symmetric degree 3 part has
correlation that is a constant factor worse than the optimal achieved by quadratic polynomials.

▶ Theorem 44. Suppose t = e3 + q for some arbitrary quadratic q. Then for any ϕ,

Cϕ(t) ≤ (1 − Ω(1)) max
s∈{0,e1,e2,e2+e1}

Cϕ(s).

We first show that cubic symmetric polynomial e3 has worse correlation than the optimal
quadratic symmetric. We prove this by applying the derivative framework from Section 3.
We analyze for every direction y what the derivative e3

y will be and use this to bound the
contribution |cy(e3)| in Lemma 45.

Next we show that t = e3 + q can only have worse correlation than e3 for any quadratic
q. We do this in Lemma 46 by showing that for any direction y, adding the derivative qy
(which will be linear) to e3

y can only decrease the contribution. In other words, we show
|cy(t)| ≤ |cy(e3)| for every y.

▶ Lemma 45. For any y,
1. If w(y) ∈ E then

|cy(e3)| ≤ |σ|w(y) + |γ|w(y)

2 .

2. If w(y) ∈ O then

|cy(e3)| ≤ 2w(y)

2n−1 .

▶ Lemma 46. Suppose t = e3 + q for some arbitrary quadratic q. Then for any y,

|cy(t)| ≤ |cy(e3)|.

The previous two lemmas imply Theorem 44.

Proof of Theorem 44 assuming Lemmas 45, 46. By Lemmas 45, 46 we have

C2
ϕ(t) ≤

∑
y:w(y)∈E

|σ|w(y) + |γ|w(y)

2 +
∑

y:w(y)∈O

2−(n−w(y)−1)

= (1 + |σ|)n + (1 − |σ|)n

4 + (1 + |γ|)n + (1 − |γ|)n

4 + 3n − 1
2n .

CCC 2023

3:32 On Correlation Bounds Against Polynomials

The = follows by Claim 19. Next note that for any ϕ, max{1 + |σ|, 1 + |γ|} ≥ 1 + 1/
√

2 > 3/2.
Suppose ϕ is such that |σ| > |γ|. Then

C2
ϕ(t) ≤ 2−n (1 + o(1))(1 + |σ|)n

4 .

On the other hand by Theorem 5 we know that

max
s∈{e2,e2+e1}

C2
ϕ(s) ≥ 2−n (1 + |σ|)n

2 .

Now suppose ϕ is such that |σ| ≤ |γ|. Then

C2
ϕ(t) ≤ 2−n (2 + o(1))(1 + |γ|)n

4 .

However by Theorem 5,

max
s∈{0,e1}

C2
ϕ(s) = 2−n(1 + |γ|)n. ◀

8.1 Proof of Lemma 45
We first list some preliminary results we will need. The following is a standard fact we state
without proof.

▷ Claim 47. Let s denote either e2, e2 + e1 on n variables, and let ℓ denote an arbitrary
linear polynomial. Then |bias((−1)s+ℓ)| ≤ 2−(n−1)/2.

Below and for the remainder of the section, we let V1, V0 ⊆ [n] denote the indices of the
1, 0-variables respectively with respect to a fixed direction y.

The next result says that if the bias of py is small after an arbitrary restriction to the
1-variables, then |cy(p)| must be small.

▶ Proposition 48. Fix some polynomial p and direction y ∈ {0, 1}n. Suppose for any
restriction r ∈ {0, 1}|V1| of the 1-variables,∣∣∣Ex:xV1 =r(−1)py(x)

∣∣∣ ≤ δ.

Then

|cy(p)| ≤ δ.

Proof. We have

cy(p) = Ex[(−1)py(x)Modϕ,y(x)]

= ExV1 [Modϕ,y(x) · ExV0 [(−1)py(x)]]
≤ δ.

The second = follows since Modϕ,y(x) only depends on the 1-variables. The ≤ follows since
|Modϕ,y(x)| = 1 and by the hypothesis on py. ◀

Next we characterize the derivatives of e3 which depend on the weight of y mod4. We abuse
notation and let ei(Vj) denote the polynomial ei defined on the variables indexed by Vj .

P. Ivanov, L. Pavlovic, and E. Viola 3:33

▶ Proposition 49. Fix any direction y ∈ {0, 1}n and consider the derivative e3
y.

1. If w(y) ≡ 0 mod 4 then

e3
y = e1(V1) + e1(V1)e1(V0).

2. If w(y) ≡ 2 mod 4 then

e3
y = e1(V1)e1(V0) + e1(V0).

3. If w(y) ≡ 1 mod 4 then

e3
y = e2(V1) + e2(V0).

4. If w(y) ≡ 3 mod 4 then

e3
y = (e2 + e1)(V1) + (e2 + e1)(V0) + 1.

Proof. We can write e3 = e3(V1) + e2(V1)e1(V0) + e1(V1)e2(V0) + e3(V0). Firstly note the
term e3(V0) does not affect e3

y. Secondly, the term e1(V1)e2(V0) only contributes e2(V0) to
e3
y when |V1| = w(y) is odd.

Thirdly, we deal with e2(V1)e1(V0). Note that e1(V0) has a coefficient of
(
w(y)

2
)

in e3
y,

which is odd when w(y) ≡ 2, 3 mod 4. Now let xi denote a 1-variable. Then xie
1(V0) has a

coefficient of
(
w(y)−1

1
)
, hence e1(V1)e1(V0) appears when w(y) is even.

Lastly, we deal with e3(V1). Note xi has a coefficient of
(
w(y)−1

2
)
, hence e1(V1) appears if

w(y) ≡ 0, 3 mod 4. Let xj denote a second 1-variable. Then xixj has a coefficient of
(
w(y)−2

1
)

hence e2(V1) appears if w(y) is odd. The constant 1 has a coefficient of
(
w(y)

3
)

which is odd
when w(y) ≡ 3 mod 4. ◀

Proof of Lemma 45

Proof. Suppose w(y) ≡ 0 mod 4. By Proposition 49, if xV0 ∈ E then e3
y = e1(V1). If xV0 ∈ O

then e3
y = 0. Hence

cy(e3) = 2−n(
∑

x:xV0 ∈E

σw(y) +
∑

x:xV0 ∈O

γw(y))

= σw(y) + γw(y)

2 .

The w(y) ≡ 2 mod 4 case is similar. If xV0 ∈ E then e3
y = 0. Otherwise, e3

y = e1(V0) + 1.
Hence cy(e3) = −σw(y)+γw(y)

2 . This concludes the w(y) ∈ E case.
Now suppose w(y) ∈ O. Fact 47 implies that for s = e2(V0), (e2 + e1)(V0),

|bias((−1)s)| ≤ 2−(n−w(y)−1). Since e3
y is disjoint on V0, V1, Proposition 48 implies that

|cy(e3)| ≤ 2−(n−w(y)−1). ◀

8.2 Proof of Lemma 46
Suppose that t = e3 + q for some quadratic q. Note that for any direction y, ty has the same
quadratic terms as e3

y and qy only affects the linear terms in py. Let us write qy = u(V1)+v(V0),
where u(V1), v(V0) are linear polynomials over the 1, 0-variables respectively.

First suppose y ≡ 0 mod 4. We now consider restricting the 1-variables. If xV1 ∈ E then
t3y = c+ v(V0) where c is some constant. If xV1 ∈ O then t3y = c+ (e1 + v)(V0). Note that if
0 ̸= v(V0) ̸= e1(V0), then the bias of the restricted function will be 0 for both cases. Hence
by Proposition 48, cy(t) = 0 and we are done. If v(V0) = e1(V0) then this is symmetrical to
when v(V0) = 0. Hence we can assume that v(V0) = 0.

CCC 2023

3:34 On Correlation Bounds Against Polynomials

From here, we switch back to restricting the 0-variables. If xV0 ∈ E then e3
y = (e1 +u)(V1),

and if xV0 ∈ O then e3
y = u(V1). Suppose u(V1) contains k variables. Then |cy(t)| ≤

|σ|w(y)−k|γ|k whenever xV0 ∈ E and |cy(t)| ≤ |σ|k|γ|w(y)−k otherwise. Hence

|cy(t)| ≤ |σ|w(y)−k|γk| + |σ|k|γ|w(y)−k

2 .

Assume that |σ| > |γ| (the other case is similar). We can now conclude as

|σ|w(y)−k|γ|k + |σ|k|γ|w(y)−k

2 ≤ |σ|w(y) + |γ|w(y)

2

⇐⇒ |γ|w(y)−k(|σ|k − |γ|k)
2 ≤ |σ|w(y)−k(|σ|k − |γ|k)

2
⇐⇒ |γ| ≤ |σ|.

The w(y) ≡ 2 mod 4 case is analogous.
Now suppose w(y) ≡ 1 mod 4. After an arbitrary restriction to xV1 , we have e3

y =
e2(V0)+v(V0)+c for some constant c. Fact 47 implies that |bias((−1)e

3
y)| ≤ 2−(n−w(y)−1) after

any restriction to xV1 . We can now conclude by applying Proposition 48. The w(y) ≡ 3 mod 4
case is analogous.

References
1 Scott Aaronson and Avi Wigderson. Algebrization: a new barrier in complexity theory. In

40th ACM Symp. on the Theory of Computing (STOC), pages 731–740, 2008.
2 Noga Alon and Richard Beigel. Lower bounds for approximations by low degree polynomials

over Zm. In IEEE Conf. on Computational Complexity (CCC), pages 184–187, 2001.
3 László Babai, Noam Nisan, and Márió Szegedy. Multiparty protocols, pseudorandom generators

for logspace, and time-space trade-offs. J. of Computer and System Sciences, 45(2):204–232,
1992.

4 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P=?NP question.
SIAM J. on Computing, 4(4):431–442, 1975.

5 Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and minima
of Banzhaf values. In 26th Symposium on Foundations of Computer Science, pages 408–416,
Portland, Oregon, 21–23 October 1985. IEEE.

6 Nayantara Bhatnagar, Parikshit Gopalan, and Richard J. Lipton. Symmetric polynomials
over Zm and simultaneous communication protocols. J. of Computer and System Sciences,
72(2):252–285, 2006.

7 Abhishek Bhowmick and Shachar Lovett. Nonclassical polynomials as a barrier to polynomial
lower bounds. In IEEE Conf. on Computational Complexity (CCC), pages 72–87, 2015.
doi:10.4230/LIPIcs.CCC.2015.72.

8 Ravi Boppana, Johan Håstad, Chin Ho Lee, and Emanuele Viola. Bounded independence
versus symmetric tests. ACM Trans. Computation Theory, 11(4):21:1–21:27, 2019.

9 Jean Bourgain. Estimation of certain exponential sums arising in complexity theory. Comptes
Rendus Mathématique. Académie des Sciences. Paris, 340(9):627–631, 2005.

10 Jin-Yi Cai, Frederic Green, and Thomas Thierauf. On the correlation of symmetric functions.
Mathematical Systems Theory, 29(3):245–258, 1996.

11 Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett, and David Zucker-
man. XOR lemmas for resilient functions against polynomials. In Konstantin Makarychev,
Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, ACM
Symp. on the Theory of Computing (STOC), pages 234–246. ACM, 2020. doi:10.1145/
3357713.3384242.

https://doi.org/10.4230/LIPIcs.CCC.2015.72
https://doi.org/10.1145/3357713.3384242
https://doi.org/10.1145/3357713.3384242

P. Ivanov, L. Pavlovic, and E. Viola 3:35

12 Eduardo Dueñez, Steven J. Miller, Amitabha Roy, and Howard Straubing. Incomplete quadratic
exponential sums in several variables. Journal of Number Theory, 116(1):168–199, 2006.

13 Frederic Green. The correlation between parity and quadratic polynomials mod 3. J. of
Computer and System Sciences, 69(1):28–44, 2004.

14 Frederic Green, Daniel Kreymer, and Emanuele Viola. Block-symmetric polynomials correlate
with parity better than symmetric. Computational Complexity, 26(2):323–364, 2017. Available
at https://www.ccs.neu.edu/home/viola/papers/blocksym.pdf.

15 Frederic Green and Amitabha Roy. Uniqueness of optimal mod 3 circuits for parity. Journal
of Number Theory, 130:961–975, 2010.

16 Frederic Green, Amitabha Roy, and Howard Straubing. Bounds on an exponential sum arising
in Boolean circuit complexity. Comptes Rendus Mathématique. Académie des Sciences. Paris,
341(5):279–282, 2005.

17 András Hajnal, Wolfgang Maass, Pavel Pudlák, Márió Szegedy, and György Turán. Threshold
circuits of bounded depth. J. of Computer and System Sciences, 46(2):129–154, 1993.

18 Xuangui Huang, Peter Ivanov, and Emanuele Viola. Affine extractors and ac0-parity, 2021.
19 Eric Miles and Emanuele Viola. Substitution-permutation networks, pseudorandom functions,

and natural proofs. J. of the ACM, 62(6), 2015.
20 Moni Naor, Omer Reingold, and Alon Rosen. Pseudorandom functions and factoring. SIAM

J. Comput., 31(5):1383–1404, 2002.
21 Ryan O’Donnell. Analysis of boolean functions, 2007. Lecture notes. Available at http:

//www.cs.cmu.edu/~odonnell/boolean-analysis/.
22 Alexander Razborov. Lower bounds on the dimension of schemes of bounded depth in a com-

plete basis containing the logical addition function. Akademiya Nauk SSSR. Matematicheskie
Zametki, 41(4):598–607, 1987. English translation in Mathematical Notes of the Academy of
Sci. of the USSR, 41(4):333-338, 1987.

23 Alexander Razborov and Steven Rudich. Natural proofs. J. of Computer and System Sciences,
55(1):24–35, August 1997.

24 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In 19th ACM Symp. on the Theory of Computing (STOC), pages 77–82. ACM,
1987.

25 Roman Smolensky. On representations by low-degree polynomials. In 34th IEEE IEEE
Symp. on Foundations of Computer Science (FOCS), pages 130–138, 1993.

26 Terence Tao and Tamar Ziegler. The inverse conjecture for the gowers norm over finite fields
in low characteristic. In Annals of Combinatorics, 2012.

27 Emanuele Viola. New correlation bounds for GF(2) polynomials using Gowers uniformity.
Electronic Colloquium on Computational Complexity, Technical Report TR06-097, 2006. URL:
https://eccc.weizmann.ac.il/report/2006/097/.

28 Emanuele Viola. Correlation bounds for polynomials over {0, 1}. SIGACT News, Complexity
Theory Column, 40(1), 2009.

29 Emanuele Viola. On the power of small-depth computation. Foundations and Trends in
Theoretical Computer Science, 5(1):1–72, 2009.

30 Emanuele Viola. Challenges in computational lower bounds. SIGACT News, Open Problems
Column, 48(1), 2017.

31 Emanuele Viola. Fourier conjectures, correlation bounds, and majority. In Coll. on Automata,
Languages and Programming (ICALP), 2021. Available at https://www.ccs.neu.edu/home/
viola/papers/L12requiresCor.pdf.

32 Emanuele Viola. New lower bounds for probabilistic degree and AC0 with parity gates. Theory
of Computing, 2021. Available at https://www.ccs.neu.edu/home/viola/papers/diago.pdf.

33 Emanuele Viola. Correlation bounds against polynomials, a survey, 2022.

CCC 2023

https://www.ccs.neu.edu/home/viola/papers/blocksym.pdf
http://www.cs.cmu.edu/~odonnell/boolean-analysis/
http://www.cs.cmu.edu/~odonnell/boolean-analysis/
https://eccc.weizmann.ac.il/report/2006/097/
https://www.ccs.neu.edu/home/viola/papers/L12requiresCor.pdf
https://www.ccs.neu.edu/home/viola/papers/L12requiresCor.pdf
https://www.ccs.neu.edu/home/viola/papers/diago.pdf

On the Algebraic Proof Complexity of Tensor
Isomorphism
Nicola Galesi #

Dipartimento Ingegneria Informatica Automatica e Gestionale “A. Ruberti”,
Sapienza University of Rome, Italy

Joshua A. Grochow #

Departments of Computer Science and Mathematics, University of Colorado Boulder, CO, USA

Toniann Pitassi #

Department of Computer Science, Columbia University, New York, NY, USA

Adrian She #

Department of Mathematics and Computer Science, University of Toronto, Canada

Abstract

The Tensor Isomorphism problem (TI) has recently emerged as having connections to multiple
areas of research within complexity and beyond, but the current best upper bound is essentially
the brute force algorithm. Being an algebraic problem, TI (or rather, proving that two tensors
are non-isomorphic) lends itself very naturally to algebraic and semi-algebraic proof systems, such
as the Polynomial Calculus (PC) and Sum of Squares (SoS). For its combinatorial cousin Graph
Isomorphism, essentially optimal lower bounds are known for approaches based on PC and SoS
(Berkholz & Grohe, SODA ’17). Our main results are an Ω(n) lower bound on PC degree or SoS
degree for Tensor Isomorphism, and a nontrivial upper bound for testing isomorphism of tensors
of bounded rank.

We also show that PC cannot perform basic linear algebra in sub-linear degree, such as comparing
the rank of two matrices (which is essentially the same as 2-TI), or deriving BA = I from AB = I.
As linear algebra is a key tool for understanding tensors, we introduce a strictly stronger proof
system, PC+Inv, which allows as derivation rules all substitution instances of the implication
AB = I → BA = I. We conjecture that even PC+Inv cannot solve TI in polynomial time either,
but leave open getting lower bounds on PC+Inv for any system of equations, let alone those for TI.
We also highlight many other open questions about proof complexity approaches to TI.

2012 ACM Subject Classification Theory of computation → Proof complexity; Theory of computa-
tion → Problems, reductions and completeness

Keywords and phrases Algebraic proof complexity, Tensor Isomorphism, Graph Isomorphism,
Polynomial Calculus, Sum-of-Squares, reductions, lower bounds, proof complexity of linear algebra

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.4

Funding Joshua A. Grochow: Supported by NSF CAREER award CCF-2047756.
Toniann Pitassi: Supported by NSF grant CCF-1900460, and by the IAS School of Mathematics.
Adrian She: Supported by NSERC Canada Graduate Scholarship.

Acknowledgements NG and JAG would like to thank Michael Forbes for early conversation about
the PC degree of matrix rank, which occurred at Dagstuhl Seminar 18051: Proof Complexity in
early 2018. We would also like to thank the organizers A. Atserias, J. Nordstrom, P. Pudlák, and
R. Santhanam for their invitation and support.

© Nicola Galesi, Joshua A. Grochow, Toniann Pitassi, and Adrian She;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 4; pp. 4:1–4:40

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicola.galesi@uniroma1.it
mailto:jgrochow@colorado.edu
https://orcid.org/0000-0002-6466-0476
mailto:tonipitassi@gmail.com
mailto:adrian.she@mail.utoronto.ca
https://doi.org/10.4230/LIPIcs.CCC.2023.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 On the Algebraic Proof Complexity of Tensor Isomorphism

1 Introduction

Tensors have rapidly emerged as a fundamental data structure and key mathematical object
of the 21st century. They play key roles in many different areas of science, engineering, and
mathematics, from quantum mechanics and general relativity to neural networks [39] and
mechanical engineering. They arise in theoretical computer science in many ways, including
from (post-quantum) cryptography [41, 30], derandomization, Matrix Multiplication,
Graph Isomorphism [26], and several different parts of Geometric Complexity Theory.

The fundamental notion of equivalence between tensors is that of isomorphism: two
tensors are isomorphic if one can be transformed into the other by an invertible linear
change of basis in each of the corresponding vector spaces. For example, two 2-tensors
(=matrices) M, M ′ are equivalent under this notion if there are invertible matrices X, Y

such that XMY = M ′; similarly, two 3-tensors, represented by 3-way arrays Tijk, T ′
ijk are

isomorphic if there are three invertible matrices X, Y, Z such that∑
ijk

Xii′Yjj′Zkk′Tijk = T ′
i′j′k′ (1)

for all i′, j′, k′. The problem of (3-)Tensor Isomorphism (TI) is: given two such 3-way
arrays, to decide if they are isomorphic.

Over finite fields, two different versions of TI sandwich the complexity of its more famous
cousin, Graph Isomorphism. Namely, as presented above, GI reduces to TI. In the other
direction, over a finite field =pa , one can take an n × n × n tensor and list it out “verbosely”,
as a set of pan many n × n matrices over ; the isomorphism problem for such verbosely given
tensors is equivalent to Group Isomorphism for a certain class of p-groups, widely believed
to be the hardest cases of Group Isomorphism in general. As such, this verbose version
of TI reduces to GI. Furthermore, with Babai’s quasi-polynomial-time algorithm [4], the
running times are quite close: NO(log N) for VerboseTI and NO(log2 N) for GI (the exponent
of the exponent was worked out by Helfgott [28]). Thus TI stands as a key obstacle to
putting GI into P.

In this paper, we initiate the study of (algebraic) proof complexity approaches to proving
that two tensors are non-isomorphic. Lower bounds on the Polynomial Calculus proof system
imply lower bounds on Gröbner basis techniques, and the latter are some of the leading
methods for solving TI-complete problems in cryptanalysis, e.g., [49, 18]. In the context of GI,
proof complexity plays an important role, through its connection with the Weisfeiler–Leman
(WL) algorithm. Although this algorithm does not, on its own, solve GI in polynomial
time [15], it is a key subroutine in many of the best algorithms for GI, both in theory [4]
and in practice (see [36, 37]). And the picture that has emerged is that some proof systems
for GI are known to be equivalent in power to WL [3], and some lower bounds on proof
systems are closely related to lower bounds for WL [45, 40]. Versions of WL for groups, and
in particular finite p-groups – and hence, by the connection above, tensors over finite fields –
have only recently begun to be explored [12, 9, 10, 17].

1.1 Main results
We focus on the Polynomial Calculus (PC, or Gröbner) proof system [16], though our results
will also hold for semi-algebraic proof systems such as Sum-of-Squares [32] as well. PC is
used to show that a system of polynomial equations over a field is unsatisfiable over the
algebraic closure , by deriving from the system of equations, in a line-by-line fashion, the
contradiction 1 = 0. The degree of a PC proof is the maximum degree of any line appearing

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:3

in the proof, and it is a fundamental result that PC proofs of constant degree can be found
in polynomial time [16]. Much as WL informally “captures all combinatorial approaches”
to GI, PC informally “captures all approaches based on Gröbner bases” to showing that a
system of polynomial equations is unsatisfiable.

The systems of equations we study are, for two non-isomorphic tensors T, T ′, the equations
(1) along with new matrices X ′, Y ′, Z ′, and equations saying that these are the inverses
of X, Y, Z, resp., viz.: XX ′ = X ′X = Id, and similarly for the others. The reason for
introducing these new matrices, despite their not appearing in (1), is that these invertibility
equations are only degree 2. In contrast, if we instead used the determinant to indicate that
X was invertible, then our starting equations would have degree n + 1, rather than constant
degree ≤ 3. Since the main complexity measure we study on PC is degree, having starting
equations of degree n would make it difficult to make meaningful lower bound statements.

Our first main result is (two proofs of) a lower bound on such techniques.

▶ Theorem 1.1. Over any field, there are instances of n × n × n Tensor Isomorphism
that require PC degree Ω(n) to refute. Over R, they also require Sum-of-Squares degree Ω(n)
to refute.

The preceding goes by reduction from known lower bounds on PC for Graph Isomorph-
ism [7, 8], but has the disadvantage (from the tensor point of view) that the resulting tensors
are quite sparse: in one direction, one of the slices is supported on an Ω(n) × n matrix and
all the others slices have support size 1. In a second proof (Section 6), we get a polynomially
worse lower bound Ω(4

√
n), but with a reduction from Random 3XOR that is more direct.

Indeed, we show that 3XOR itself can be viewed as a particular instance of a tensor problem
without gadgets; gadgets are only then needed to reduce from that tensor problem to Tensor
Isomorphism itself. In contrast, the lower bounds on PC for GI (ibid.) already use the
Cai–Fürer–Immerman gadgets [15] to reduce from XOR-SAT, and then even further gadgets
are needed to reduce from GI to TI.

Our technical contributions in the above theorem are thus three-fold:
1. We show that the known reductions from GI to TI can be carried out in low-degree PC;
2. We realize 3XOR very naturally as a tensor problem; and
3. We give new reductions from 3XOR, through a series of tensor-related problems, to TI,

that work as many-one reductions of the decision problems that can be carried out in
low-degree PC.

Complementing our lower bound, we also show that tensors of low rank are comparat-
ively easy to test for (non)-isomorphism. Here, one of our upper bounds is in the weaker
Nullstellensatz proof system (giving a stronger upper bound than only a PC upper bound).
In the Nullstellensatz proof system, a proof that a system of equations f1 = · · · = fm = 0 is
unsatisfiable consists of polynomials gi such that

∑
gifi = 1, and the Nullstellensatz degree is

the maximum degree of any gifi. The PC degree is always at most the Nullstellensatz degree,
and the gap between the two can be nearly maximal for Boolean equations: O(1) versus
Ω(n/ log n) [13]. (For Boolean equations, there is always an O(n) upper bound, though this
does not apply to TI, see Remark 1.3 below).

▶ Theorem 1.2. Over any field, the Nullstellensatz degree of refuting isomorphism of two
n × n × n tensors of tensor rank ≤ r is at most 2O(r2). If working over a finite field q and
including the equations xq − x, the PC degree is at most O(qr2).

In particular, isomorphism of constant-rank tensors can be decided in polynomial time.

CCC 2023

4:4 On the Algebraic Proof Complexity of Tensor Isomorphism

▶ Remark 1.3. In many settings in proof complexity, Boolean axioms such as x2
i = xi or

x2
i = 1 are included among the system of equations, and all such unsatisfiable systems of

equations can be refuted in degree O(n) (n =# variables). If this were the case here, the
above would only be interesting for very small values of r. In contrast, the equations for
TI do not include any such Boolean axioms, and as such the naive degree upper bound is
exponential in the number of variables. For n × n × n tensors, this gives an upper bound of
2O(n2) [48], and thus, Theorem 1.2 gives nontrivial upper bounds all the way up to r ≤ n.
(We note that n × n × n tensors can have rank up to Θ(n2) [34].) The proof of Theorem 1.2
shows that for rank-r tensors, TI can essentially be reduced to a system of equations in only
O(r2) variables.

▶ Remark 1.4. For fixed r, testing if an n×n×n tensor has rank ≤ r can be done in polynomial
time, as follows. This will show that the algorithm of Theorem 1.2 genuinely solves the
decision problem, and not just a promise problem. Given an n × n × n tensor T , consider its
three n × n2 flattenings. Use Gaussian elimination to put each such flattening, separately,
into reduced row echelon form. If any of these flattenings has rank > r, reject. Otherwise,
we get from this a list of 3r vectors u1, . . . , ur, v1, . . . , vr, w1, . . . , wr, such that T lives in the
r × r × r-dimensional space Span{u1, . . . , ur} ⊗ Span{v1, . . . , vr} ⊗ Span{w1, . . . , wr}. Now
in this space we can write down the Brent equations [11] for T to have rank ≤ r, which
will be r3 cubic equations in 3r2 variables (Brent’s equations [11, (5.06)] were specifically
for the matrix multiplication tensor, but analogous equations are easily constructed for
arbitrary tensors using the same idea). Since r is constant, these equations may be solved in
polynomial time (here we assume that we are either working over a finite field, a finite-degree
extension of the rationals – see, for example, Grigoriev [22] – or in the BSS model over an
arbitrary field).

Lastly, one may wonder why we focus on 3-Tensor Isomorphism, and not some of
its many related variants. Indeed, just as there are other equivalence notions for matrices
– such as conjugacy XMX−1 and congruence XMXT – there are many different kinds of
multilinear objects that can be represented by multi-way arrays, including tensors, homogen-
eous polynomials (commutative or noncommutative), alternating matrix spaces, multilinear
maps, and so on, each with their own corresponding notion of isomorphism. While these
problems are indeed distinct, they are all equivalent under polynomial-time isomorphisms
[19, 26]; such problems are called TI-complete. Even isomorphism of k-way tensors (for any
fixed k ≥ 3) is equivalent to isomorphism of 3-tensors [26]. This partially justifies our focus
on 3-Tensor Isomorphism. In the course of proving our reductions for the results stated
above, we use many of the gadgets from [19, 26], and show that such uses also often yield
proof complexity reductions as well. Because of the variety of gadgets used in our reductions,
we believe that many, if not all, of the gadgets from those results would also yield proof
complexity reductions, so the proof complexity of all the known TI-complete problems should
be polynomially related.

1.2 Comparison with linear algebra, a new proof system, and a
conjecture

As linear algebra is part of the core toolkit for understanding tensors, it is natural to wonder
how linear algebra can help in algebraic proof complexity approaches to TI. We believe that
even if it had the “full power” of linear algebra at its disposal “for free,” PC could still not
solve TI efficiently. We begin to make this precise in this section.

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:5

Some basic derivations in linear algebra are to relate the ranks of two matrices and to
derive BA = I from AB = I (the Inversion Principle, one of the so-called “hard matrix
identities” [47], only recently shown to have short NC2-Frege proofs [29]). Soltys [46] and
Soltys & Cook [47] discuss the relationship between these and other standard implications in
linear algebra. We show that PC is not strong enough to prove these in low-degree:

▶ Theorem 1.5. The unsatisfiable system of equations XY = Idn where X is n × r and Y

is r × n with 1 ≤ r < n, requires degree ≥ r/2 + 1 to refute in PC, over any field.

We refer to this system of equations as the Rank Principle, as refuting them amounts to
showing that rk Idn > r.

▶ Theorem 1.6. Any PC derivation of BA = I from AB = I, where A, B are n×n matrices
with {0, 1} entries, requires degree ≥ n/2 + 1, over any field.

We also observe that the Rank Principle can be derived in low degree from the Inversion
Principle.

Although it remains open whether the Inversion Principle is “complete” for linear-algebraic
reasoning (see [46, 47]), we introduce the proof system PC+Inv in an attempt to capture
some linear-algebraic reasoning that seems potentially useful for TI. PC+Inv has all the
same derivation rules as PC, but in addition, for any square matrices A, B (whose entries
may themselves be polynomials – that is, we allow substitution instances), we have the rule

AB = I

BA = I
.

where the antecedent represents the set of n2 equations corresponding to AB = I, and
similarly the consequent denotes the set of n2 equations BA = I (see 2.3 for more details).
Degree is still measured in the usual way, but this rule lets us “cut out” the high-degree
proof that would usually be required to derive BA = I from AB = I. We now formalize our
intuition that linear algebra should not suffice to solve TI efficiently in the following:

▶ Conjecture 1.7. Tensor Isomorphism for n × n × n tensors requires degree Ω(n) in
PC+Inv, over any field.

Despite the conjecture, we do not yet know how to prove lower bounds on PC+Inv for any
unsatisfiable system of equations, let alone those coming from TI. Mod p counting principles
(for p different from the characteristic of the field) strike us as potentially interesting instances
to examine for PC+Inv lower bounds, before tackling a harder problem like TI. In the final
section, we highlight many other open questions around the proof complexity of TI.

1.3 Organization

In Section 2 we cover preliminaries. In Section 3 we prove the lower bounds on linear algebraic
principles just discussed. In Section 4 we prove the upper bound for isomorphism of bounded
rank tensors (Theorem 1.2). In Section 5 we prove Theorem 1.1 by reduction from GI. In
Section 6 we prove the polynomially related lower bound by direct reduction from Random
3XOR.

CCC 2023

4:6 On the Algebraic Proof Complexity of Tensor Isomorphism

2 Preliminaries

2.1 Proof systems
All our rings are commutative and unital. Polynomial calculus (PC) is a proof system to
prove that a given system of (multivariate) polynomial equations P over a field F of the form
p = 0, has no solution over the algebraic closure (i.e. the system is unsolvable). We usually
shorten the polynomial equation p = 0 to just p. The derivation rules of the system are the
following one:

p

xp
(multiplication), p q

ap + bq
(linear combination)

where x is any formal variable, a, b ∈ F and p, q are polynomials over F.
When refuting Boolean systems of equations it is common to include the Boolean axioms

x2
i − xi. Because we do not always include these (esp. for TI) we are explicit about our use

of these, but do not assume they are built into the proof system – that is, if we are assuming
them as axioms, we say so.

A PC derivation (or proof) of a polynomial q from a set of polynomials P is a sequence
of polynomial equations p1, . . . , pm ending with the polynomial q (so pm is q) and where
each pi, i ∈ [m], is either an axiom p for p ∈ P, or is obtained from previous equations in
the refutation by multiplication or linear combination. We denote this by writing P ⊢ q.
Observe that if p is derivable in PC and q is a polynomial then, by repeated applications of
multiplication and linear combination rules, we can derive pq. We often use this generalization
of the multiplication in our proofs without mention.

A PC refutation is just a PC proof of the polynomial 1. The degree of a PC derivation
is the maximal degree of a polynomial used in the proof. The size of a polynomial p is the
number of terms in p. The size a PC derivation p1, . . . , pm is the sum of the sizes of the
polynomials p1, . . . , pm.

For our upper bound in Theorem 1.2, we also consider another algebraic proof system,
known as Nullstellensatz (NS), to certify unsolvability of sets of polynomial equations.
Nullstellensatz is defined in a static form as follows: a refutation of a list P = (p1, . . . , pm)
of polynomial equations over variables x1 . . . , xn is given by the list of polynomials Q =
(q1, . . . qm) such that∑

i∈[m]

piqi = 1

The degree of a NS refutation is the maximal degree of a polynomial in P ∪ Q. The size
of NS proof is the sum of the number of monomials appearing in the polynomials q1, . . . , qm.

Sum-of-Squares (SOS) is a static proof system for certifying the unsolvability of systems
of polynomial equations and polynomial inequalities, where polynomials are usually over the
ring R[x1 . . . , xn].

A polynomial p is a sum-of-squares polynomial if it is in the form p =
∑

i r2
i and

the ri’s are polynomials as well. Given a system made by a set of polynomial equations
P = {p1 = 0, . . . pm = 0} and a set Q = {q1 ≥ 0, . . . qk ≥ 0} of polynomial inequalities, a
sum-of-squares proof of the polynomial inequality p ≥ 0 from P ∪ Q is given by the formal
identity

p = s0 +
∑
i∈[k]

siqi +
∑

j∈[m]

tjpj

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:7

where s0, s1, . . . , sk are sum-of-squares polynomials, while t1, . . . , tm are arbitrary polyno-
mials. When the system P ∪ Q is unsatisfiable, a refutation of P ∪ Q is a proof of the
inequality −1 ≥ 0, that is for p the constant polynomial −1. The degree of the proof is the
max{deg(p), deg(s0), deg(si) + deg(qi), deg(tj) + deg(pj)|i ∈ [k], j ∈ [m]}.

▶ Definition 2.1 (PC reduction between systems of polynomials, cf. [14, Sec. 3]). Let
P (x1, . . . , xn) and Q(y1, . . . , ym) be two sets of polynomials over a field F. P is (d1, d2)-
reducible to Q if:
1. For each i ∈ [m] there is a polynomial ri(x) of degree at most d1 (which we think of as

defining yi in terms of the x variables);
2. There exists a degree d2 PC derivation of Q(r1(x), . . . , rm(x)) from polynomials P (x).

▶ Lemma 2.2 ([14, Lem. 1]). If P (x) is (d1, d2)-reducible to Q(y) and there is a degree d

PC refutation of Q(y), then there is a degree max(d2, d1d) refutation of P (x).

In their paper, they typically only applied this to systems of equations which were known
to be unsatisfiable (such as PHP and Tseitin tautologies), whereas in our paper we have
several situations we want to combine the above notion together with the usual notion of
many-one reduction. We encapsulate this in the following definition. We say a decision
problem Π is a polynomial solvability problem over a field if all valid instances of the problem
are systems of polynomial equations over , and the problem is to decide whether such a
system of equations has solutions over the algebraic closure . Thus, the difference between
multiple polynomial solvability problems is just which systems of equations are valid inputs.

▶ Definition 2.3 (PC many-one reduction). Let Π1, Π2 be two polynomial solvability problems
over a field . We say that Π1 (d1, d2)-many-one reduces to Π2 if there is a polynomial-time
many-one reduction ρ from Π1 to Π2, such that for all unsatisfiable instances F of Π1, F
(d1, d2)-reduces to ρ(F). When this occurs with d1, d2 = O(1), we write

Π1 ≤P C
m Π2.

2.2 Linear algebra and tensors
Given three vector spaces U, V, W over a field , a 3-tensor is an element of the vector space
U ⊗ V ⊗ W , whose dimension is (dim U)(dim V)(dim W). If ei is the i-th standard basis
vector, then a basis for U ⊗ V ⊗ W is given by the vectors {ei ⊗ ej ⊗ ek}. One may also
interpret the symbol ⊗ more concretely as the Kronecker product, in which ei ⊗ ej ⊗ ek

represents a 3-way array whose only nonzero entry is in the (i, j, k) position. The vector
space of such 3-way arrays (with coordinate-wise addition) is isomorphic to U ⊗ V ⊗ W .

The rank of a tensor T ∈ U ⊗ V ⊗ W is the minimum r such that T =
∑r

i=1 ui ⊗ vi ⊗ wi

for some vectors ui, vi, wi.
Two n × m × p 3-tensors T, T ′ ∈ U ⊗ V ⊗ W are isomorphic if there exist matrices

X ∈ GL(U), Y ∈ GL(V), Z ∈ GL(W) such that (X, Y, Z) · T = T ′, where the latter is
shorthand for (1). If we treat T, T ′ as given non-isomorphic tensors, then we may treat (1)
as a system of equations in the n2 + m2 + p2 variables Xii′ , Yjj′ , Zkk′ . To enforce that these
variable matrices are invertible, we furthermore introduce three additional sets of variables
X ′, Y ′, Z ′ meant to be the inverse matrices, and include also the equations

XX ′ = X ′X = In Y Y ′ = Y ′Y = Im ZZ ′ = Z ′Z = Ip,

where In denotes the n × n identity matrix, which is IdU in any basis. (We could have
instead introduced new variables such as δ and the equation det(X)δ = 1, however, the
latter equation is degree n, whereas the above equations all have degree O(1), which is more
desirable from the point of view of algebraic proof complexity.)

CCC 2023

4:8 On the Algebraic Proof Complexity of Tensor Isomorphism

2.3 Polynomial encodings and the inversion principle
Some principles of linear algebra can be formulated as tautologies in propositional logic and
therefore also as a set of polynomial equations. In this paper we preliminarily consider two
such principles.

Rank Principle. As a first example we consider a set of unsatisfiable polynomials encoding
the principle that the product of a n× r matrix X by a r ×n matrix Y cannot be the identity
matrix whenever r < n. We consider variables xi,k, yj,k for i, j ∈ [n] and k ∈ [r], where r < n

to encode X and Y . Then the polynomial encoding is:

I(r, n) :=
∑
k∈[r]

xi,kyj,k − δi,j i, j ∈ [n]

where δi,j = 1 if i = j and 0 otherwise. This set of polynomials is clearly unsatisfiable as
long as r < n.

Inversion Principle. The second principle encodes the invertibility of a square n × n matrix
A, expressing the tautology that AB = I → BA = I where A, B are n × n matrices and I is
the identity matrix. Stephen A. Cook suggested this principle as a tautology that may be
hard to prove in several proof systems.

Let ai,j , bi,j be formal variables encoding respectively the (i, j)-th entries of A and B.
We represent the fact that AB = I as the set of degree 2 polynomials∑

k∈[n]

ai,kbk,j − δi,j i, j ∈ [n],

where δi,j = 1 if i = j and 0 otherwise. We denote this set of polynomials by AB = I. In
Section 3, we study the degree complexity of AB = I ⊢ BA = I, that is of PC derivations of
the polynomials BA = I from the polynomials AB = I.

In view of the results we obtain in Section 3, in Section 1.2 we considered a polynomial
rule schema of the form

AB = I

BA = I

which we call the Inversion Rule (INV) meant to be added to PC as an extra rule. We make
this slightly more precise here.

A polynomial instantiation τ of the polynomials AB = I is a substitution of polynomials
pi,j , qi,j to variables ai,j and bi,j . In PC+INV a polynomial p is derivable from a set of
polynomials P if
1. p is an axiom, or p ∈ P ;
2. p is obtained by multiplication or linear combination from previous polynomials in the

proof;
3. p is a polynomial among a polynomial instantiation τ of BA = I, given that among the

polynomials previously derived in the proof there are all the polynomials forming the
instantiation τ of AB = I.

Pigeonhole Principle. An important role in proving the results in Section 3 is played by
the well-known Pigeonhole principle stating that any function f from [n] to [r] with r < n

has a collision, that is there are i ̸= i′ ∈ [n] and a j ∈ [r] such that f(i) = f(i′) = j. PHP n
r

is the set of polynomials:

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:9

∑
k∈[r]

pi,k − 1, for i ∈ [n], pi,kpj,k, for i ̸= j ∈ [n], k ∈ [r]

p2
ij − pij , for i ∈ [n], j ∈ [r]

Razborov [43] additionally included the “functional equations” (encoding that each pigeon
cannot be matched to more than one hole):

pi,kpi,k′ , for i ∈ [n], k ̸= k′ ∈ [r].

3 Linear algebra warm-up: PC for matrices

Two matrices M, M ′ ∈ U ⊗ V are isomorphic as tensors if they are equivalent as matrices,
meaning under left- and right-multiplication by invertible matrices X ∈ GL(U), Y ∈ GL(V),
that is,

XMY = M ′.

Since we want X, Y to be invertible, we also introduce variable matrices X ′, Y ′ as before,
together with the equations

XX ′ = X ′X = IdU Y Y ′ = Y ′Y = IdV .

Then by left multiplying our initial matrix equation by Y ′, we may replace it with the new
matrix equation

XM = M ′Y ′.

The latter has the advantage of being linear in X and Y ′, but the quadratic equations
XX ′ = IdU , Y Y ′ = IdV still make even this case not totally obvious.

3.1 A trick for PC degree
If our focus is on PC degree, we note that the degree of the equations is unchanged if we
first left- or right-multiply M, M ′ by invertible scalar matrices. For example, if we replace
M by M = AMB with A, B ∈ GL(U), then we may replace X by X := XA−1, Y by
Y := B−1Y . Then we have M ∼= M , so M ∼= M ′ iff M ∼= M ′. Furthermore, since the
transformation X 7→ XA−1, Y 7→ B−1Y is linear and invertible, any PC proof that M ̸∼= M ′

can be transformed by the inverse linear transformation into a PC proof that M ̸∼= M ′ of
the same degree.

Now, for matrices under this equivalence relation, we have a normal form, namely every
matrix M is equivalent to a diagonal matrix with rk(M) 1s on the diagonal and all the
remaining entries 0, that is,

∑rk(M)
i=1 ei ⊗ ei = Ir ⊕ 0, where the latter 0 denotes a 0 matrix of

appropriate size (n − r) × (m − r). So by using the preceding trick, we may put both M and
M ′ in this form. The two are isomorphic iff rk(M) = rk(M ′), so for PC degree we have now
reduced to the case of showing that Ir ⊕ 0 and Ir′ ⊕ 0 are not isomorphic when r ̸= r′.

Note that, aside from the equations saying X and Y are invertible, this is almost identical
to the Rank Principle (see Section 2.3). In the rest of this section we will prove PC lower
bounds on both the Rank Principle and the Inversion Principle.

CCC 2023

4:10 On the Algebraic Proof Complexity of Tensor Isomorphism

3.2 Inversion Principle implies the Rank Principle
▶ Lemma 3.1. If the r × r Inversion Principle has a degree d PC derivation, then there is
a degree max{d, 3} PC refutation of the Rank Principle stating that a rank r matrix is not
equivalent (isomorphic) to a rank n matrix, for any n > r.

If the Inversion Principle has a degree d NS derivation, then the Rank Principle has a
degree d + 2 NS refutation.

Proof. Suppose the r × r Inversion Principle has a degree-d derivation. Consider the Rank
Principle XY = In where X is n × r and Y is r × n, with n > r. Write

X =
[
X0
X1

]
and Y =

[
Y0 Y1

]
,

where X0, Y0 are r × r. Then, examining the upper-left r × r corner of the original equations,
we find X0Y0 = Ir. As these are square matrices, by assumption in degree d we may then
derive that Y0X0 = Ir as well.

Now, multiply both sides of XY = In on the left by the matrix
[
Y0 0
0 In−r

]
. The result

is then the set of degree-3 equations[
Y0X0
X1

] [
Y0 Y1

]
=

[
Y0 0
0 In−r

]
.

Considering the upper-right r × (n − r) block of these equations, we find the equations
Y0X0Y1 = 0.

But now, from the equation Y0X0 = Ir, we may right-multiply by Y1 to get Y0X0Y1 = Y1.
Combining with the equation at the end of the last paragraph, we then conclude Y1 = 0.

Finally, consider the lower-right (n − r) × (n − r) part of the original equation XY = In,
namely, X1Y1 = In−r. We had already derived Y1 = 0, which we can then left-multiply by
X1 to get X1Y1 = 0. Considering any diagonal entry of these two equations, we then derive
the contradiction 1 = 0.

To see the NS certificate, we unwrap the above proof. First write Y0X0 − Ir as a linear
combination of the equations X0Y0 − Ir with polynomial coefficients, in total degree d.
Among our starting equations in the Rank Principle, we have X0Y1 and X1Y1 − In−r. Then
the following linear combination has degree 2 more than Y0X0 − Ir, and derives 1 in any of
its diagonal entries:

−X1Y0X0Y1 + X1(Y0X0 − Ir)Y1 + (X1Y1 − In−r). ◀

▶ Observation 3.2. The n × n Inversion Principle has a proof of degree 2n + 2.

Proof. The idea is to use Laplace expansion. We spell out the details.
We start with XY = In, where X and Y are n × n matrices of variables. Left-multiply by

Y to get Y XY = Y , and then right multiply by Adj(Y) (whose entries are the (n−1)×(n−1)
cofactors of Y , hence have degree n − 1) to get Y XY Adj(Y) = Y Adj(Y). Now, by Laplace
expansion, we have Y Adj(Y) ≡ det(Y)In, so we get Y X det(Y) = det(Y)In.

Next, starting from XY = In and expanding out the determinant term-by-term, we
derive det(XY) = 1. (Note that here, we are not simply applying the determinant to the
matrix XY − I, as that would give us the value of the characteristic polynomial evaluated at
1. Instead, we repeatedly use that from a − b = 0 and c − d = 0 we can derive ac − bd = 0 as
(a − b)c+b(c − d). Similarly, we can derive (a+c)−(b+d) = 0 as (a−b)+(c−d).) Now, since
det(XY) ≡ det(X) det(Y) identically as polynomials, we have derived det(X) det(Y) = 1 in
degree n.

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:11

Now, from Y X det(Y) − det(Y)In in the first paragraph, we multiply by det(X) to get
(Y X − In)(det(X) det(Y)). From det(X) det(Y) − 1 in the second paragraph, we multiply
by −(Y X − In) and add to the preceding to get Y X − In, all in degree at most 2n + 2. ◀

3.3 Lower bound on the Rank Principle (and Inversion Principle) via
reduction from PHP

Here we show that the Rank Principle (see Section 2.3) requires large PC degree, via a
reduction to the Pigeonhole Principle. For the Pigeonhole principle, a tight PC degree lower
bound is known:

▶ Theorem 3.3 (Razborov [43]). Any PC refutation of the Functional PHP n
r requires degree

r/2+1 over any field.

We use this to show:

▶ Theorem 3.4. Let n ∈ N, n ≥ 2 and 1 ≤ r < n. I(r, n) (with or without the Boolean
axioms) requires degree r/2 + 1 in PC over any field.

Proof. We prove that PHP n
r is (1, 2)-reducible to I(r, n). First we consider the following

degree 1 polynomials defining x and y variables of I(r, n) in terms of the p variables of PHP n
r .

variables

xi,k = yi,k = pi,k for i ∈ [n], k ∈ [n − 1].

Second we show a degree 2 PC proof of I(r, n) from the polynomials defining the PHP n
r .

From PHP axioms pi,kpk,j for i, j ∈ [n], i ̸= j, and summing over all k ∈ [r], we get∑
k∈[r]

pi,kpk,j ,

which are exactly the axioms of I(r, n) for i ≠ j, i, j ∈ [n], after the substitution of variables.
For a i ∈ [n], take the boolean axioms written in the form pi,kpi,k − pi,k and sum them

over k ∈ [r]:∑
k∈[r]

pi,kpi,k −
∑
k∈[r]

pi,k

Summing this last polynomial with the PHP axiom
∑

k∈[r] pi,k − 1 we get the polynomial∑
k∈[r]

pi,kpi,k − 1,

which is the axiom of I(r, n) for i = j after the substitution of the variables. The proof has
degree 2. The result follows immediately from Lemma 2.2 and Theorem 3.3. ◀

▶ Corollary 3.5. Any PC proof of AB = I ⊢ BA = I, where A, B are square n × n {0, 1}
matrices requires degree n/2 + 1.

Proof. Follows immediately from Theorem 3.4 and Lemma 3.1. ◀

CCC 2023

4:12 On the Algebraic Proof Complexity of Tensor Isomorphism

4 Upper bound for non-isomorphism of bounded-rank tensors

▶ Theorem 4.1. Over any algebraically closed field, there is a function f(r) ≤ 2O(r2),
depending only on r, such that, given two non-isomorphic tensors M, M ′ of tensor rank ≤ r,
the Nullstellensatz degree of refuting isomorphism is at most f(r).

If working over a finite field GF (q) and including the equations xq −x = 0 for all variables
x, then the PC degree is at most 12qr2.

Proof. The proof is based mainly on the so-called inheritance property of tensor rank.
Let M =

∑r
i=1 ui ⊗ vi ⊗ wi and let M ′ =

∑r
i=1 u′

i ⊗ v′
i ⊗ w′

i be our two tensors of
format n1 × n2 × n3. Let d1 = dim Span{u1, u2, . . . , ur, u′

1, u′
2, . . . , u′

r}, d2 similarly for the
v’s and d3 for the w’s. Choose a basis e1, e2, . . . , en1 for n1 such that Span{e1, . . . , ed1} =
Span{u1, . . . , ur, u′

1, . . . , u′
r}. Let f1, . . . , fn2 be a similar basis for n2 (with the first d2 vectors

a basis for Span{v1, . . . , vr, v′
1, . . . , v′

r}), and similarly g1, . . . , gn3 . Changing everything in
sight into the e• ⊗ f• ⊗ g• basis, we find that M, M ′ are both supported in the upper-left
d1 × d2 × d3 sub-tensors, with all zeros outside of this. Call the corresponding d1 × d2 × d3
tensors M, M

′. Because all the entries outside this box are zero, it is not difficult to show
that M ∼= M ′ iff M ∼= M

′ (the so-called “Inheritance Theorem,”, see, e. g., [31, §3.7.1]); note
that isomorphism of M with M

′ is via the much smaller group GLd1 × GLd2 × GLd3 , rather
than GLn × GLn × GLn (the latter of which is used to determine isomorphism of M with
M ′).

In this basis, isomorphism of M, M
′ is solely determined by the upper-left d1 × d1

sub-matrix of X, X ′, the upper-left d2 × d2 submatrix of Y, Y ′, and the upper-left d3 × d3
sub-matrix of Z, Z ′. So we now only need to deal with equations in d2

1 + d2
2 + d2

3 variables.
Since each di ≤ 2r, this is at most 12r2 variables.

Since we have ≤ 12r2 variables, d1d2d3 cubic equations, and 6n2 quadratic equations
(XX ′ = I = X ′X = Y Y ′ = · · ·), over an algebraically closed field Sombra’s Effective
Nullstellensatz [48] implies that the Nullstellensatz degree of refuting our equations is then
at most 4 · 3Θ(r2).

Over a finite field with the extra equations xq = x, we may reduce degrees so that the
degree of each variable is never more than q, the size of the field. In this case, the PC degree
is at most q times the number of variables, i. e., at most 12qr2. ◀

5 Lower bound on PC degree for Tensor Isomorphism from Graph
Isomorphism

▶ Definition 5.1. Given two graphs G, H with adjacency matrices A, B (resp.), the equations
for Graph Isomorphism (the same as those used by Berkholz & Grohe [7, 8]) are as follows.
Let Z be an n × n matrix of variables zij (where the intended interpretation is that zij = 1 iff
an isomorphism maps vertex i ∈ V (G) to vertex j ∈ V (H)). We say that a partial map, which
sends (i, i′) 7→ (j, j′) is a local isomorphism if (1) i = i′ iff j = j′ (it’s a well-defined map)
and (2) (i, i′) ∈ E(G) ⇔ (j, j′) ∈ E(H). (One may also do Colored Graph Isomorphism
and require that the colors match, c(i) = c(j), c(i′) = c(j′).) Then the equations are:

z2
ij − zij ∀i, j All variables {0, 1}-valued

1 −
∑

i zij ∀j each j ∈ V (H) is mapped to from exactly one vertex
1 −

∑
j zij ∀i each i ∈ V (G) maps to exactly one vertex

zijzi′j′ Whenever (i, i′) 7→ (j, j′) is not a local isomorphism.

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:13

In this section, we prove a lower bound on PC (and SoS) for TI, by reducing from GI
and using the known lower bounds on GI [7, 8]. Specifically, we show

▶ Theorem 5.2. Over any field, there are instances of Tensor Isomorphism of size
O(n) × O(n) × O(n) that require PC degree Ω(n) to refute. The same holds over the reals
for SoS degree.

Proof. Berkholz and Grohe [7, 8] show the same statement for n-vertex graphs of bounded
vertex degrees, with the same PC/SoS degree bound. In Proposition 5.4 we show that
GI reduces to Monomial Code Equivalence by a (2,4)-many-one reduction that turns
n-vertex, m-edge graphs into m × (3m + n) matrices. in Proposition 5.5 we show that
Monomial Code Equivalence reduces to TI by a (2,4)-many-one reduction that turns
k × N matrices into (k + 2N) × N × (1 + 2N) tensors. By Lemma 2.2, this completes the
proof. ◀

To reduce from GI to TI we use the following intermediate problem. A matrix is monomial
if it has exactly one nonzero entry in each row and column; equivalently, a monomial matrix
is the product of a permutation matrix and an invertible diagonal matrix.

▶ Definition 5.3. Monomial Code Equivalence is the problem: given two k × n matrices
C, C ′, do there exist matrices X, Y such that XCY T = C ′ where X is invertible and Y is
invertible and monomial? Given two such matrices C, C ′, the equations for Monomial
Code Equivalence are as follows. There are 2(k2 + n2) variables arranged into matrices
X, X ′ (of size k × k) and Y, Y ′ (of size n × n). The equations are

XCY T = C ′ XX ′ = X ′X = Id Y Y ′ = Y ′Y = Id

and

yijyij′(∀i∀j ̸= j′) yijyi′j(∀i ̸= i′, ∀j)
y′

ijy′
ij′(∀i∀j ̸= j′) y′

ijy′
i′j(∀i ̸= i′, ∀j)

(Note: there are no equations forcing the variables to take on values in {0, 1}.)

▶ Proposition 5.4. The reduction of Petrank & Roth [42] from Graph Isomorphism to
Linear Code Equivalence over 2 in fact gives a (2,4)-many-one reduction from Graph
Isomorphism to Monomial Code Equivalence (sic!) over any field.

Proof. The reduction of Petrank & Roth is as follows: given a simple undirected graph G

with n vertices and m edges, let D(G) be its m × n incidence matrix: De,v = 1 iff v ∈ e and
is 0 otherwise, and let M(G) be the m × (3m + n) matrix

M(G) =
[

Im Im Im D(G)
]

.

Many-one reduction. It was previously shown (over 2 in [42] and over arbitrary fields in [23,
Lem. II.4]) that this gives a many-one reduction to Permutational Code Equivalence.
Here we observe that the same reduction also gives a reduction to Monomial Code
Equivalence. Thus, all that remains to show is that if M(G) and M(H) are monomially
equivalent, then G must be isomorphic to H.

In fact, what was shown in [42] (over arbitrary fields in [23]) is that, up to permutation
and scaling of the rows, M(G) is the unique generator matrix of its code satisfying the
following properties: (1) M(G) is m × (3m + n), (2) each row has Hamming weight ≤ 5,
(3) any linear combination that includes two or more rows with nonzero coefficients has
Hamming weight ≥ 6.

CCC 2023

4:14 On the Algebraic Proof Complexity of Tensor Isomorphism

Now, suppose (X, Y) is a monomial equivalence of the codes M(G), M(H). Then the
rowspans of M(G)Y T and M(H) are the same. Since Y is monomial, if we consider just the
supports of the rows of M(G)Y T , up to re-ordering the rows, by the preceding paragraph,
those supports must be the same as the supports of the rows of M(H). Thus X must also be
monomial. Say X = DP and Y = EQ where D, E are diagonal and P, Q are permutation
matrices. Then PM(G)QT has the same support as XM(G)Y T = M(H), and since P and
Q are permutation matrices and M(G) and M(H) have all entries in {0, 1}, we must have
PM(G)QT = M(H). Thus M(G) and M(H) are in fact equivalent by a permutation matrix
(in place of the monomial matrix Y). Thus, by the fact that (G, H) 7→ (M(G), M(H)) was a
reduction to Permutational Code Equivalence, we conclude that G ∼= H.

Low-degree PC reduction. Let X, X ′, Y, Y ′ be the variable matrices in the equations for
Monomial Code Equivalence of M(G), M(H), and let Z be the variable matrix in the
equations for Graph Isomorphism of G, H. Let n = |V (G)|, m = |E(G)|; so, X, X ′ are of
size m, Y, Y ′ are of size 3m + n, and Z is of size n.

Let Z(2) denote the
(

n
2
)

×
(

n
2
)

matrix whose ({i, i′}, {j, j′}) entry is zijzi′j′ + zij′zi′j .
The idea is that if Z is a map on the vertices, then Z(2) is the corresponding map on the
edges; the two terms come from the fact that the edge {i, i′} can be mapped to the edge
{j, j′} either by (i, i′) 7→ (j, j′) or by (i, i′) 7→ (j′, j). Note that, since Z is a permutation
matrix, at most one of these terms is nonzero, and thus Z(2) is also a {0, 1}-matrix (in fact,
a permutation matrix). Let Z

(2)
E denote the |E| × |E| submatrix of Z(2) all of whose row

indices are {i, i′} ∈ E(G) and all of whose column indices are {j, j′} ∈ E(H). Note also that
(Z(2)

E)T = (ZT)(2)
E , so we use these notations interchangeably for convenience.

Now consider the following substitution:

X 7→ (Z(2)
E)T Y 7→ (ZT)(2)

E ⊕ (ZT)(2)
E ⊕ (ZT)(2)

E ⊕ (ZT)
X ′ 7→ Z

(2)
E Y ′ 7→ Z

(2)
E ⊕ Z

(2)
E ⊕ Z

(2)
E ⊕ Z

After making these substitutions in the equations for Monomial Code Equivalence of
M(G), M(H), we get the equations

(Z(2)
E)T Z

(2)
E = Z

(2)
E (Z(2)

E)T = Idm (Z(2)
E)T D(G)Z = D(H) ZZT = ZT Z = Idn (2)

along with equations saying that Z and Z
(2)
E are monomial.

We now show how to derive these equations in low-degree PC from the GI equations.
The monomial equations for Z are part of the GI equations, so there is nothing to do for

those.
The monomial equations for Z

(2)
E are of the form (zijzi′j′ + zij′zi′j)(zkℓzk′ℓ′ + zkℓ′zk′ℓ)

where either (1) {i, i′} = {k, k′} and {j, j′} ≠ {ℓ, ℓ′} or (2) vice versa. We expand out to get

zijzi′j′zkℓzk′ℓ′ + zijzi′j′zkℓ′zk′ℓ + zij′zi′jzkℓzk′ℓ′ + zij′zi′jzkℓ′zk′ℓ

We show how to get this equation in case (1); case (2) follows similarly, mutatis mutandis.
In case (1), without loss of generality suppose that i = k, i′ = k′, and j /∈ {ℓ, ℓ′}. The first
two terms are divisible by the GI equations zijziℓ (since i = k and j ̸= ℓ), the third term
is divisible by zi′jzi′ℓ′ (since i′ = k′ and j ̸= ℓ′), and the last term is divisible by zi′jzi′ℓ

similarly.
Next, the equations ZZT = Idn are, expanded out,∑

j

zijzij − 1(∀i)
∑

j

zijzkj(∀i ̸= k).

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:15

The first is gotten by linear combination from 1 −
∑

j zij and the Boolean axioms z2
ij − zij .

The second is a linear combination of the monomial axioms zijzkj (part of the local non-
isomorphism axioms). Similarly for ZT Z = Id, using 1 −

∑
i zij instead.

Next, we expand out the equations Z
(2)
E (ZT)(2)

E = Idm, to get1∑
{j,j′}∈E(H)

(zijzi′j′ + zij′zi′j)(zkjzk′j′ + zk′jzkj′) − δ{i,i′},{k,k′}(∀{i, i′}, {k, k′} ∈ E(G))

Thus, for {i, i′} ̸= {k, k′}, we need to derive∑
{j,j′}∈E(H)

(zijzi′j′zkjzk′j′ + zij′zi′jzkjzk′j′ + zijzi′j′zk′jzkj′ + zij′zi′jzk′jzkj′) .

Without loss of generality, suppose that i /∈ {k, k′}. Then the first two terms of each summand
are divisible by the GI equation zijzkj , the third term is divisible by zijzk′j , and the last
term is divisible by zij′zkj′ . On the other hand, when {i, i′} = {k, k′}, we need to derive

−1 +
∑

{j,j′}∈E(H)

(
z2

ijz2
i′j′ + 2zij′zi′jzijzi′j′ + z2

ij′z2
i′j

)
.

The middle terms of each summand are divisible by the GI equations zij′zij . For the first
and third terms, we can use the Boolean axioms to remove the squares, and thus we are left
to derive

−1 +
∑

{j,j′}∈E(H)

(zijzi′j′ + zij′zi′j) (3)

We derive this from the GI equations as follows. Consider (
∑

j zij − 1)(
∑

j′ zi′j′ − 1) +
(
∑

j zij − 1) + (
∑

j′ zi′j′ − 1) and break up the resulting sum according to whether j = j′,
{j, j′} ∈ E(H) or {j, j′} /∈ E(H). Then we get∑

j

zijzi′j +
∑

j,j′:{j,j′}∈E(H)

zijzi′j′ +
∑

j ̸=j′{j,j′}/∈E(H)

zijzi′j′ − 1

Every summand in the first sum is a monomial axiom since i ̸= i′. Every summand in the
third sum is a local non-isomorphism axiom, since {i, i′} ∈ E(G) but {j, j′} /∈ E(H). Note
that every edge {j, j′} of E(H) is represented twice in the middle sum: once as (j, j′) and
once as (j′, j). Thus, the above simplifies to∑

{j,j′}∈E(H)

(zijzi′j′ + zij′zi′j) − 1,

which is what we sought to derive. The derivation of (Z(2)
E)T Z

(2)
E = Id is similar.

Finally, we show how to derive the equation (Z(2)
E)T D(G)Z = D(H) from the equations

ZA(G) = A(H)Z, where A(G) denotes the adjacency matrix of G, with A(G)ii′ = 1 iff
{i, i′} ∈ E(G). Writing out the equations in indices, we need to derive, for all ℓ ∈ V (H) and
all {j, j′} ∈ E(H),∑

{i,i′}∈E(G),k∈V (G)

(
Z

(2)
E

)
{i,i′},{j,j′}

D(G){i,i′},kzkℓ = D(H){j,j′},ℓ

1 We use the notation
∑

{j,j′}∈E(H) to denote a sum in the index of summation takes on the value
e ∈ E(H) for each edge of H exactly once. Because our edges are undirected, we only use such sums
when the summand expression is itself invariant under swapping the roles of j, j′. If so desired, one
could equivalently say

∑
j<j′,{j,j′}∈E(H).

CCC 2023

4:16 On the Algebraic Proof Complexity of Tensor Isomorphism

Using the fact that D(G){i,i′},k = δik + δi′k and the definition of Z(2), this is the same as∑
{i,i′}∈E(G),k∈V (G)

(zijzi′j′ + zij′zi′j) (δik +δi′k)zkℓ = δjℓ +δj′ℓ(∀ℓ ∈ V (H), ∀{j, j′} ∈ E(H))

Thus we need to derive:

∑
{i,i′}∈E(G)

(zijzi′j′ + zij′zi′j) (ziℓ + zi′ℓ) =
{

1 ℓ ∈ {j, j′}
0 otherwise.

Expanding out the summand, we find the four terms

zijzi′j′ziℓ + zijzi′j′zi′ℓ + zij′zi′jziℓ + zij′zi′jzi′ℓ.

When ℓ /∈ {j, j′}, each of these terms is divisible by one of the monomial (local non-
isomorphism) axioms, respectively: zijziℓ, zi′j′zi′ℓ, zij′ziℓ, and zi′jzi′ℓ.

Finally, when ℓ ∈ {j, j′}, without loss of generality suppose that ℓ = j. Then the only
terms that are not divisible by the monomial axioms as above are z2

ijzi′j′ + zij′z2
i′j . Using

the Boolean axioms we can easily convert each such summand to zijzi′j′ + zij′zi′j . The
derivation of the sum of these over all {i, i′} ∈ E(G) is analogous, mutatis mutandis, to the
derivation of (3) above. This completes the proof. ◀

▶ Proposition 5.5. The many-one reduction from Monomial Code Equivalence to
Tensor Isomorphism from Grochow & Qiao [25] is in fact a (2, 4)-many-one reduction.

Proof. We recall the reduction, then prove that it is a low-degree PC reduction. Let M be
a k × n matrix. We build a 3-tensor of size (k + 2n) × n × (1 + 2n) as follows. The first

frontal slice is
[

M

02n×n

]
. The remaining 2n slices all have just a single nonzero entry, which

serve to place a 2 × 2 identity matrix “behind and perpendicular” to M , one 2 × 2 matrix
in each column. Let us index these slices by [n] × 2. Then the (i, b) slice has a 1 in entry
(2(i − 1) + b, i), for all i ∈ [n], b ∈ [2]. Let us call this tensor r(M). Then the reduction maps
M, M ′ to r(M), r(M ′).

Let X, X ′, Y, Y ′, Z, Z ′ be the variable matrices for the TI equations for r(M), r(M ′), and
let A, B, A′, B′ be the variable matrices for Monomial Code Equivalence of M, M ′ (that
is, AMBT = M ′, A is invertible, B is monomial and invertible). Consider the substitution:

X 7→ A ⊕ (B ⊗ I2) Y 7→ B Z 7→ 1 ⊕ (B′ ◦ B′) ⊗ I2

X ′ 7→ A′ ⊕ (B′ ⊗ I2) Y ′ 7→ B′ Z ′ 7→ 1 ⊕ (B ◦ B) ⊗ I2.

As before, B ◦ B denotes the Hadamard or entry-wise product. Let us see what the TI
equations become under this substitution. We get

AMBT = M ′ AA′ = A′A = Id

BB′ = B′B = Id (B′ ◦ B′)(B ◦ B) = (B ◦ B)(B′ ◦ B′) = Id

Indeed, notice that the effect of the B ⊗ I2 in X and the B in Y is that the row and column
locations of the 2 × 2 matrix gadgets get permuted in the same way, and the gadget get
multiplied by the square of the nonzero entries of B. These are then multiplied by the B′ ◦ B′

in Z.

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:17

Now, we derive these equations from the equations for Monomial Code Equivalence.
The first three are already present in the equations for Monomial Code Equivalence.
The last one we expand out, to see that we need to derive:∑

j

b2
ij(b′

jk)2 = δik(∀i, k)

Now, for i ̸= k, we may take the equation
∑

j bijb′
jk and square it, to derive∑

j ̸=j′

bijb′
jk + bij′b′

j′k +
∑

j

b2
ijb2

j′k.

Each term in the first sum is divisible by one of the monomial axioms bijbij′ since j ≠ j′,
and the second sum is what we wanted to derive.

Finally, for i = k, we square the equation
∑

j bijb′
ji − 1 and add to it 2

(∑
j bijb′

ji − 1
)

.
We then proceed to cancel terms with the monomial axioms as above, and end up with∑

j b2
ij(b′

ji)2 − 1, as desired. ◀

6 Lower bound on PC degree for Tensor Isomorphism from Random
3XOR

We get a lower bound on PC refutations for Tensor Isomorphism through the following
series of low-degree PC many-one reductions (Definition 2.3):

Random 3-XOR ≤P C
m {±1}-Monomial Equivalence of (4)

{±1}-Multilinear Noncommutative Cubic Forms (5)
≤P C

m Monomial Equivalence of {±1} Noncommutative (6)
Cubic Forms (7)

≤P C
m Equivalence of {±1} Noncommutative Cubic Forms (8)

≤P C
m Tensor Isomorphism (9)

We then appeal to the following PC lower bound on Random 3-XOR:

▶ Theorem 6.1 (Ben-Sasson & Impagliazzo [5, Thm. 3.3 & Lem. 4.7]). Let be any field of
characteristic ̸= 2. A random 3-XOR instance with clause density ∆ = m/n requires PC
degree Ω(n/∆2) to refute, with probability 1 − o(1).

This allows us to prove:

▶ Theorem 6.2. Over any field of characteristic ̸= 2, there is a random distribution of
instances of n × n × n Tensor Isomorphism – which assigns nonzero probability to at
least 2Ω(4√n) log n different instances – whose associated equations require PC degree Ω(4

√
n)

to refute, with probability 1 − o(1).

Note that such instances have N = 6n2 variables, so this is really only an Ω(8
√

N) lower
bound relative to the number of variables.

In the following subsections we recall the definitions of the above problems and their
associated systems of polynomial equations, and we give the reductions in the order listed
above.

The first two reductions are gadget constructions of linear size; the proof of correctness
for the first uses the fact that random hypergraphs have no automorphisms, while the second
is fairly straightforward. Reduction (8) uses a gadget from Grochow & Qiao [26], albeit for a

CCC 2023

4:18 On the Algebraic Proof Complexity of Tensor Isomorphism

new application, and shows that the reduction using this gadget also yields a low-degree PC
reduction. Reduction (9) is based on two lemmas, which show that the many-one reduction
for this problem in fact also gives a low-degree PC reduction.

▶ Remark 6.3. Both of the latter two reductions have a quadratic size increase, so while we
get a nearly-linear lower bound on PC degree for refutations of Monomial Equivalence
of Noncommutative Cubic Forms, we only get a Ω(

√
n) degree lower bound Equival-

ence of Noncommutative Cubic Forms and a Ω(4
√

n) degree lower bound on Tensor
Isomorphism. If the gadget sizes of these latter two reductions could be improved to linear,
we would get a similarly near-linear lower bound (linear in the side length, still

√
N relative

to the number of variables) on PC refutations for Tensor Isomorphism as well. As many
of the reductions in [19, 26] are of a similar flavor to the ones we consider here, we believe
that they can all be proven in low-degree PC, so we expect the main obstacle to such an
improvement is the size of the constructions themselves.

6.1 From Random 3-XOR to {±1}-multilinear noncommutative cubic
forms

▶ Definition 6.4. A random 3-XOR instance with n variables and m clauses is obtained by
sampling m clauses independently and uniformly from the set of all 2

(
n
3
)

parity constraints
on 3 variables. Each parity constraint is encoded by an equation of the form xixjxk = ±1,
and the Boolean constraints are encoded by x2

i = 1.

By a {±1}-monomial matrix, we mean a monomial matrix in which all nonzero entries
are one of ±1. {±1}-Monomial Equivalence of Noncommutative Cubic Forms
is the problem of deciding, given two noncommutative cubic forms f, f ′ in n variables
x1, . . . , xn with all nonzero coefficients ±1, whether there is a permutation π ∈ Sn and signs
ei ∈ {±1} such that f(e1xπ(1), . . . , e2xπ(2), . . . , enxπ(n)) = f ′(x⃗). Equivalently, if we represent
a noncommutative cubic form f by the 3-way array Tijk such that f(y⃗) =

∑
i,j,k∈[n] Tijkyiyjyk,

the problem here asks whether there is a {±1}-monomial matrix A such that (A, A, A)·T = T ′,
that is, whether T ′

i′j′k′ =
∑

ijk aii′ajj′akk′Tijk for all i′, j′, k′ ∈ [n].

▶ Definition 6.5. We define the systems of equations associated to several variations of
Equivalence of Noncommutative Cubic Forms.
1. Given two n × n × n 3-way arrays T, T ′, the system of equations for Equivalence of

Noncommutative Cubic Forms is the following system of equations in 2n2 variables.
Let A, A′ be n × n matrices of independent variables aij , a′

ij, respectively.

(A, A, A) · T = T ′ (A is an equivalence)
AA′ = A′A = Id (A is invertible with A−1 = A′)

2. The system of equations for Monomial Equivalence of Noncommutative Cubic
Forms includes the preceding equations, as well as:

aijaij′ = 0 ∀i∀j ̸= j′ (at most one nonzero per row)
aijai′j = 0 ∀j∀i ̸= i′ (at most one nonzero per column)

3. The system of equations for {±1}-Monomial Equivalence of Noncommutative
Cubic Forms includes all the preceding equations, as well as

aij(aij + 1)(aij − 1) = 0 ∀i, j ∈ [n] (all entries in {0, ±1})

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:19

4. A noncommutative cubic form
∑

ijk Tijkxixjxk is multilinear if all nonzero terms Tijk

have i, j, k distinct (that is, |{i, j, k}| = 3). The system of equations for {±1}-Monomial
Equivalence of Adjective Noncommutative Cubic Forms is the same as the
above, with the restriction that T and T ′ both satisfy Adjective (e. g., multilinear,
nonzero entries in {±1}, etc.).

▶ Theorem 6.6. There is a linear-size (1,3)-reduction from Random 3-XOR instances on
n variables with m clauses, where 104n ≤ m ≤

(
n
3
)
/1012, to {±1}-Monomial Equivalence

of {±1} Multilinear Noncommutative Cubic Forms, over any ring R of characteristic
̸= 2.

The reduction is always a (1,3)-reduction, but we only show the resulting system of
equations for {±1}-Monomial Equivalence of Noncommutative Cubic Forms is
unsatisfiable with probability 1 − o(1) when the 3-XOR instance is chosen randomly with
the parameters specified in the theorem. (It is possible that it is always unsatisfiable when
the input 3-XOR instance is, but our proof does not answer this question.)

Proof idea. We build multilinear noncommutative cubic forms from the 3-XOR instance
such that they are equivalent by a {±1} diagonal matrix iff the 3-XOR instance is satisfiable:
an equation xixjxk = ±1 corresponds to setting Tijk = 1, T ′

ijk = ±1 in this construction.
The noncommutative cubic forms are multilinear because the construction of the random
3XOR instance ensures that each XOR clause contains 3 distinct variables. In fact, the
equations for {±1}-diagonal equivalence of the correspondence noncommutative cubic forms
will turn out to be identically the same as the equations for the 3-XOR instance.

Next, for random instances chosen with the stated parameters, the 3-way arrays T, T ′ are
the adjacency hyper-matrices of a 3-uniform hypergraph that has no nontrivial automorphisms
by [40, Lemma 6.9]; this is why we needed to restrict the parameter range for m as we did.
Because the hypergraphs have no nontrivial automorphisms, any monomial equivalence of
the corresponding cubic forms must in fact be diagonal, thus letting us further reduce to
{±1}-monomial equivalence. ◀

Proof. We are given a system of 3-XOR equations, which we’ll denote xiℓ
xjℓ

xkℓ
= sℓ for

ℓ = 1, . . . , m, where iℓ ≤ jℓ ≤ kℓ ∈ [n] are indices of variables and sℓ ∈ {±1} for all ℓ. It also
includes the equations x2

i = 1 for all i = 1, . . . , n.

Step 1: Reduce from random 3-XOR to {±1}-diagonal equivalence of noncommutative
cubic forms. From the above system of equations, we now construct two n × n × n 3-way
arrays T, T ′. For the original equations xiℓ

xjℓ
xkℓ

= sℓ (ℓ = 1, . . . , m), and for any aℓ ∈ {±1}
of our choice (we may set all aℓ = 1 if we wish, but this additional flexibility may be useful
in other settings) we set

Tiℓ,jℓ,kℓ
= aℓ and T ′

iℓ,jℓ,kℓ
= sℓaℓ.

All other entries of T and T ′ are set to zero.
We start with a warmup lemma, to see that this part of the construction already has a

desirable property. By a “{±1} diagonal isomorphism” of two non-commutative cubic forms,
we mean a diagonal matrix X whose diagonal entries are all one of ±1 such that X gives an
equivalence between T, T ′.

▶ Lemma 6.7. Notation as in the paragraph above. There is a bijection between the solutions
to the 3-XOR instance and the {±1} diagonal isomorphisms of the noncommutative cubic
forms defined by T, T ′.

CCC 2023

4:20 On the Algebraic Proof Complexity of Tensor Isomorphism

Proof. Suppose x is a solution to the 3-XOR instance. Let X = diag(x1, . . . , xn) be the
diagonal matrix with x on the diagonal. We claim that X is an equivalence between
the noncommutative cubic forms represented by T, T ′, or the same, that (X, X, X) is an
isomorphism of the tensors T, T ′. Note that for any diagonal matrices X, Y, Z, we have
((X, Y, Z) · T)ijk = xiyjzkTijk. In particular, the action of diagonal matrices does not change
which entries of T are zero or nonzero, it merely scales the nonzero entries. Since T, T ′ have
the same support by construction, it is necessary and sufficient to handle the nonzero entries.
By the construction above, there are precisely m such nonzero entries, one for each cubic
equation in the 3-XOR instance. For each ℓ = 1, . . . , m, we have

((X, X, X) · T)iℓjℓkℓ
= xiℓ

xjℓ
xkℓ

Tiℓjℓkℓ

= sℓTiℓjℓkℓ

= T ′
iℓjℓkℓ

.

In the other direction, if X = diag(x) is a diagonal matrix whose diagonal entries are in
{±1} giving an isomorphism of the noncommutative cubic forms, then we have

xiℓ
xjℓ

xkℓ
= Tiℓjℓkℓ

T ′
iℓjℓkℓ

= sℓ

for ℓ = 1, . . . , m. (Here we have pulled Tiℓ,jℓ,kℓ
across the equals sign because every term in

the above equation is ±1.) This concludes the proof of the lemma. ◀

We thus consider the equations corresponding to {±1}-diagonal equivalence of T, T ′:
there are n variables xi (i = 1, . . . , n). Let X denote the diagonal matrix with x on the
diagonal. Then the equations are

X2 = Id (X, X, X) · T = T ′. (10)

By Lemma 6.7, we have that the original 3XOR instance is satisfiable iff (10) is satisfiable.
We claim furthermore that there is (1,3)-reduction from the 3XOR equations to this system
of equations. In fact, as the proof of the preceding lemma shows, they are actually the same
set of equations! So there is nothing more to show.

Step 2: Reduce from {±1}-diagonal equivalence to {±1}-monomial equivalence. We
claim that there is a (1, 3)-reduction from (10) to the the equations for {±1}-monomial
equivalence, see (6.5). The variable substitution is given by

aij = a′
ij 7→

{
0 i ̸= j

xi i = j.

Under this substitution:
The equivalence condition (A, A, A) · T = T ′ becomes exactly the original equivalence
condition (X, X, X) · T = T ′.
The invertibility equations AA′ = A′A = Id become XX = Id
The row and column equations both become 0 = 0, since at least one of the two aij

variables occurring will not be on the diagonal, hence will become 0 after substitution.
The equation aij(aij + 1)(aij − 1) = 0 becomes x(x2 − 1) for the appropriate variable
x ∈ x. This is derivable from the original equation x2 − 1 by multiplication by x.

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:21

Lastly, we show that the system of equations in Definition 6.5(3) for {±1}-monomial
equivalence is satisfiable iff the original 3-XOR instance was. Since we showed above that
that {±1}-diagonal equivalence equations are satisfiable iff the original 3-XOR instance was,
we show the equisolvability of (10) and the equations of Definition 6.5(3).

Since diagonal matrices are monomial, any solution to (10) is a solution to the equations
of Definition 6.5(3).

Conversely, suppose the equations of Definition 6.5(3) are solvable. Then there is a
{±1}-monomial matrix X given an equivalence between T and T ′; we may write X = DP

where D is diagonal and P is a permutation matrix. Now, as the original 3-XOR instance
was chosen uniformly at random, the support of T (the positions of its nonzero entries) is
precisely a uniformly random 3-uniform hypergraph G. As T, T ′ have the same support
by construction, we find that P must be an automorphism of G. But by [40, Lemma 6.9],
uniformly random such hypergraphs have no nontrivial automorphisms with probability
1 − o(1). Thus P = I and X must in fact be diagonal, hence a solution to (10). ◀

▶ Remark 6.8. We may avoid the heavy hammer of [40, Lemma 6.9] by “rigidifying” (in
the sense of removing automorphisms) the system of 3-XOR equations before constructing
the 3-way arrays as follows. The construction corresponds to a standard graph-theoretic
gadget for removing automorphisms. Add new variables z and yij for i = 1, . . . , n and
j = 1, . . . , n + i, as well as the equations xiyijz = 1 for all i, j, as well as y2

ij = 1 and z2 = 1.
The downside of this construction is that it quadratically increases the number of variables,
which would result in a further quadratic loss in our lower bounds on Tensor Isomorphism.

6.2 From {±1}-monomial equivalence to (unrestricted) monomial
equivalence

▶ Theorem 6.9. There is a linear-size (2, 6)-many-one reduction from

{±1}-Monomial Equivalence of {±1} Multilinear Noncommutative Cubic Forms
to

Monomial Equivalence of {±1} Noncommutative Cubic Forms,

over any ring R of characteristic ̸= 2 such that {±1} are the only square roots of 1.
Furthermore, the reduction r has the property that, given any two {±1} multilinear

noncommutative cubic forms f, f ′, any monomial equivalence between r(f) and r(f ′) must
have all its nonzero entries sixth roots of unity, and this can be derived by a degree-6 PC
proof.

▶ Remark 6.10. We note the difference between a reduction to 6
√

1-Monomial Equivalence
and a reduction to Monomial Equivalence with the property stated in the theorem.
In the former case, the problem being reduced to only accepts 6

√
1-monomial matrices as

solutions (and then the goal of the reduction is to introduce gadgets to get this down to
{±1}). In the latter case, the problem being reduced to allows arbitrary monomial matrices
as solutions, but the gadgets enforce that, on the reduced instances, any such monomial
matrix must in fact have its nonzero entries being sixth roots of unity.

Proof. Let T be an n × n × n 3-way array representing a multilinear noncommutative cubic
form with all nonzero entries in ±1. We extend T to r(T) of size 2n × 2n × 2n, by setting

r(T)ijk = Tijk i, j, k ∈ [n]
r(T)i,i,n+i = 1 i ∈ [n]

r(T)n+i,n+i,n+i = 1 i ∈ [n]

and all other entries of r(T) set to zero.

CCC 2023

4:22 On the Algebraic Proof Complexity of Tensor Isomorphism

Many-one reduction. We first show that the map (T, T ′) 7→ (r(T), r(T ′)) is a many-one
reduction. Suppose T, T ′ are {±1}-monomially equivalent by a matrix X, where X = DP

with D = diag(x1, . . . , xn) a diagonal matrix with xi ∈ {±1} for all i, and P is a permutation
matrix. Let π denote the permutation corresponding to P ; that is, Pi,π(i) = 1 for all i ∈ [n].

Then we claim the 2n × 2n matrix X ⊕ P =
[
X 0
0 P

]
is a monomial equivalence of r(T)

with r(T ′). Since X ⊕ P is block-diagonal, the upper-left X certainly sends the upper-left
n × n × n sub-array of r(T) (which is just T) to that of r(T ′) (which is just T ′). So the only
thing to check is what happens to the positions at indices greater than n.

Let X ′ = X ⊕ P . We have

((X ′, X ′, X ′) · r(T))i,i,n+i = r(T)π(i),π(i),n+π(i)(X ′
i,π(i))2X ′

n+i,n+π(i)

= r(T)π(i),π(i),n+π(i)(Xi,π(i))2Pi,π(i)

= 1 = r(T ′)i,i,n+i.

Similarly, we have:

((X ′, X ′, X ′) · r(T))n+i,n+i,n+i = r(T)n+π(i),n+π(i),n+π(i)P
3
i,π(i) = 1 = r(T ′)n+i,n+i,n+i

Because X ′ is monomial, it is easy to see that the zeros of r(T) are sent to zeros of r(T ′).
Thus X ′ is a monomial equivalence of r(T) with r(T ′).

Conversely, suppose r(T) and r(T ′) are equivalent by a monomial matrix Y = DP , with
D diagonal and P a permutation matrix corresponding to permutation π ∈ S2n. We will
show that this implies that T and T ′ are equivalent by a {±1} monomial matrix. Since T

is multilinear, we have Ti,i,i = r(T)i,i,i = 0. Since r(T)n+j,n+j,n+j = 1 for all j ∈ [n], the
permutation π cannot send any element > n to any element ≤ n. Thus P is block-diagonal,

say P =
[
P1 0n

0n P2

]
. Let π1 (resp., π2) be the permutation of [n] corresponding to P1 (resp.,

P2).
Next, we claim P1 = P2. By considering the positions at indices (i, i, n + i), we have:

((P, P, P) · r(T))i,i,n+i = r(T)π1(i),π1(i),n+π2(i)

But the latter is equal to the corresponding position in r(T ′), which is 1 iff π1(i) = π2(i).
Since this holds for all i, we have π1 = π2, and thus P1 = P2.

Finally, we do not claim that the diagonal entries yi themselves must be in ±1. Rather,
we will show that they are all sixth roots of unity. Then cubing them will yield a new n × n

matrix D′ all of whose diagonal entries are ±1 such that D′P1 is a ±1-monomial equivalence
of T with T ′.

From the positions (n + i, n + i, n + i), we have

1 = r(T ′)n+π1(i),n+π1(i),n+π1(i)

= ((Y, Y, Y) · r(T))n+i,n+i,n+i

= y3
n+i.

But then, considering the positions (i, i, n + i), we similarly get that y2
i yn+i = 1. Cubing the

latter equation, we get y6
i y3

n+i = 1. But as we already have y3
n+i = 1, this gives us y6

i = 1 by
a degree-6 PC proof, as claimed in the “furthermore.”

Now we use the fact that T, T ′ have all entries in {0, ±1}. Thus, each nonzero entry of
r(T) in the front-upper-left block (corresponding to T) gives us an equation of the form
yiyjykTijk = T ′

π1(i),π1(j),π1(k). Since the nonzero entries of T, T ′ are ±1, this is thus an

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:23

equation of the form yiyjyk = ±1. If we cube both sides of this equation, we get y3
i y3

j y3
k = ±1.

But since we established above that y6
i = 1 for all i, we have that y3

i ∈ {±1} for all i. Thus,
defining xi := y3

i for i = 1, . . . , n, we have xi ∈ {±1} and letting D′ = diag(x1, . . . , xn), we
have D′P1 is a {±1}-monomial equivalence from T to T ′.

Low-degree PC reduction. We claim that the system of equations for {±1} monomial
equivalence of T and T ′ is (2,6)-reducible to the system of equations for monomial equivalence
of r(T) and r(T ′). Let X, X ′ be the n × n variable matrices for the equations for for {±1}-
monomial equivalence of the original tensors T and T ′, and let Y, Y ′ be the 2n × 2n matrices
for the equations for monomial equivalence of r(T), r(T ′). The PC reduction is defined by
the following substitution:

yij 7→ xij i, j ∈ [n]
yn+i,n+j 7→ x2

ij i, j ∈ [n]
yi,n+j , yn+i,j 7→ 0 i, j ∈ [n],

and similarly for the y′ variables being substituted by the x′ variables. That is, we have

Y 7→
[

X 0n

0n X ◦ X

]
Y ′ 7→

[
X ′ 0n

0n X ′ ◦ X ′

]
,

where X◦X denotes the entrywise (aka Hadamard) product with itself, that is (X◦X)ij = x2
ij .

The reason to use X ◦ X here is that if X is {±1}-valued and monomial, then X ◦ X is the
permutation matrix with the same support as X; that is, this substitution is essentially the
same as the one used in the proof above for the many-one reduction.

Now, taking advantage of the block structure in the substitution above and the block
structure in r(T), r(T ′), let us see what our equations become after substitution, and how to
derive them from the equations for T, T ′. This will complete the proof.
1. The set of equations (Y, Y, Y)·r(T) = r(T ′) becomes the set of equations (X, X, X)·T = T ′

(by examining the front-upper-left corner), as well as the equations

∑
i,j,k∈[2n]

yii′yjj′yk,k′r(T)ijk =
{

1 i′ = j′ = k′ − n or i′ = j′ = k′ > n

0 otherwise.

We deal with the three cases (i′ = j′ = k′ − n, i′ = j′ = k′ > n, or neither of these)
separately.
a. Suppose i′ = j′ = k′ − n. In this case, yii′ is only nonzero for i ∈ [n], and similarly for

yjj′ , while ykk′ is only nonzero for k > n. Thus the substituted equation becomes∑
i,j,k∈[n]

yii′yji′yn+k,n+i′r(T)i,j,n+k =
∑

i,j,k∈[n]

xii′xji′x2
k,i′r(T)i,j,n+k = 1

Now, the only positions in r(T) of the form (i, j, n + k) with i, j, k ∈ [n] that are
nonzero are those of the form (i, i, n + i), so the preceding equation simplifies further
to ∑

i∈[n]

xii′xii′x2
ii′ = 1

i.e.,∑
i∈[n]

x4
ii′ = 1. (11)

CCC 2023

4:24 On the Algebraic Proof Complexity of Tensor Isomorphism

We will now show how to derive (11) from the equations for {±1}-monomial equivalence
of for T, T ′ (Definition 6.5). From the {0, ±1} equation in Definition 6.5(3), if we
multiply by xii′ , we get

x2
ii′(x2

ii′ − 1), (12)

i.e., the usual Boolean equation but for x2
ii′ rather than xii′ itself. Next, from xii′xi′′i′

with i ̸= i′′, we may square this to get

x2
ii′x2

i′′i′ . (13)

and we similarly get (x′
i′i)2(x′

i′i′′)2 when i ̸= i′′.
Lastly, from the equation XX ′ = Id and multiplying by

∑
i∈[n] xii′x′

i′i + 1, we obtain

(
∑
i∈[n]

xii′ x′
i′i +1)(

∑
i∈[n]

xii′ x′
i′i −1) =

∑
i∈[n]

x2
ii′ x2

i′i +
∑

i,j∈[n]i ̸=j

xii′ x′
i′ixji′ x′

i′j −1 =
∑
i∈[n]

x2
ii′ x2

i′i −1,

(14)

where we observed that from the axioms that xii′xji′ = 0 for i ≠ j we may derive in
degree 4 that the middle term

∑
i,j∈[n]i̸=j xii′xji′x′

i′ix
′
i′j = 0.

Now, equations (12)–(14) are a degree-2 substitution instance of the equations in
Lemma 6.11 with c = 2, d = 1. Thus, by Lemma 6.11, we can derive (11) from these
in degree 6.

b. Suppose i′ = j′ = k′ > n. In this case, the substitution makes all of yii′ , yjj′ , ykk′ equal
to zero unless i, j, k > n. Thus we may write the equation, after substitution, as∑

i,j,k∈[n]

yn+i,i′yn+j,iyn+k,ir(T)n+i,n+j,n+k

=
∑

i,j,k∈[n]

x2
i,i′−nx2

j,i′−nx2
k,i′−nr(T)n+i,n+j,n+k

=r(T ′)i′,i′,i′ = 1.

However, because the only entries r(T)n+i,n+j,n+k that are nonzero are those in which
i = j = k, this simplifies further to:∑

i∈[n]

x6
i,i′−n = 1.

This is a degree-2 substitution instance of Lemma 6.11 with c = 3, d = 1, so it can be
derived in degree 6 from the equations derived in part (a).

c. Suppose neither of the previous two cases hold. The derivation will depend on which
of i′, j′, k′ lie in [n] versus {n + 1, . . . , 2n}.
i. When all are in [n], we are in the front-upper-left corner of the tensor, and we

exactly get the equations (X, X, X) · T = T ′.
ii. When all three of i′, j′, k′ are > n, the only nonzero entries of r(T) are of the form

r(T)n+i,n+i,n+i, so the equation becomes∑
i∈[n]

x2
i,i′−nx2

i,j′−nx2
i,k′−n = 0.

Since we have assumed |{i′, j′, k′}| > 1, there are at least two distinct indices among
them, and thus each term in this sum is a multiple of one of our xijxij′ axioms with
j ̸= j′.

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:25

iii. Next, suppose instead that i′, j′ ∈ [n], k′ > n. In this case, the only nonzero entries
of Y after substitution are those with i, j ∈ [n], k > n. Thus the equation becomes∑

i,j,k∈[n]

xii′xjj′x2
k,k′−nr(T)i,j,n+k = 0

However, the only nonzero entries of r(T) in which the first two coordinates are ≤ n

and the third is n + k are those of the form i = j = k, so the preceding becomes∑
i∈[n]

xii′xij′x2
ik′−n = 0.

Since we do not have i′ = j′ = k′ − n (as that was covered in a previous case), at
least two of the column indices differ, and thus each term of this sum is divisible by
one of the axioms of the form xijxij′ with j ̸= j′.

iv. In all other cases, the corresponding entries of r(T) are all zero, so the equation
reduces to 0 = 0.

2. The equations Y Y ′ = Y ′Y = Id become XX ′ = X ′X = Id and (X ◦ X)(X ′ ◦ X ′) =
(X ′ ◦ X ′)(X ◦ X) = Id. The first of these is one of our original equations, so it remains
to derive the second. We show how to derive (X ◦ X)(X ′ ◦ X ′) = Id; the other is similar.
For clarity, let us write it out using indices:∑

j

x2
ij(x′

jk)2 − δik = 0 ∀i, k ∈ [n] (15)

Starting from the equation
∑

j xijx′
jk − δik = 0, we multiply by

∑
j xijx′

jk, to get∑
j

x2
ij(x′

jk)2 +
∑
j ̸=j′

xijx′
jkxij′xj′k − δik

∑
j

xijx′
jk.

Note that every term in the middle summation here is divisible by some xijxij′ with
j ̸= j′, which is one of our equations, so we may cancel off those terms using those
equations in degree 4. If i ̸= k, then we are done. If i = k, then we add in our equation∑

j xijx′
jk − 1 to get (15).

3. The equations yijyij′ = 0 for j ≠ j′ become 0 after substitution unless i, j, j′ are either all
in [n] or all in {n + 1, . . . , 2n}. In the former case, the substituted equation is xijxij′ = 0,
which is already one of the original equations. In the latter case, the equation becomes
x2

ijx2
ij′ = 0; but this is easily derivable from xijxij′ by multiplying it by itself (degree 4).

The equations saying there is at most one entry per column of Y are derived from those
for X similarly.

This covers all the equations for monomial equivalence of r(T), r(T ′), and thus we are
done. ◀

▶ Lemma 6.11. For any integers d ≥ 1, c ≥ 1, from the equations

xi(xd
i − 1)(∀i) xixj(∀i ̸= j)

n∑
i=1

xiyi − 1

there is a degree-max{d + 2, cd} PC derivation (over any ring R) of∑
i∈[n]

xcd
i − 1

Although in the proof above we only used the d = 1 and c = 2, 3, we will later have
occasion to use this lemma with larger values of d and c, which is why we phrase it in this
level of generality.

CCC 2023

4:26 On the Algebraic Proof Complexity of Tensor Isomorphism

Proof. First we show it for c = 1, then derive the general case from that.
Let S =

∑
i∈[n] xd

i , D =
∑

i∈[n] xiyi. Our first goal is to derive S−1. For each i = 1, . . . , n,
we can derive xiyi(S − 1) in degree d + 2 as follows:

xiyi(S − 1) = xd+1
i yi + yi

∑
j ̸=i

xix
d
j − xiyi

= yi(xd+1
i − xi) + yi

∑
j ̸=i

xix
d
j = xi(xd

i − 1)yi + yi

∑
j ̸=i

xixjxd−1
j ,

where we have underlined the use of the axioms.
Summing up the preceding for all i, we derive DS − D in degree d + 2. Finally, we

multiply the starting equation D − 1 by S to get SD − S, also in degree d + 2. Then we have

(DS − D) − (SD − S) + (D − 1) = S − 1 =
∑

i

xd
i − 1,

as desired.
For c > 1, we then sum the preceding with

∑
i∈[n](x

(c−1)d−1
i + x

(c−2)d−1
i + · · · +

xd−1
i)(xd+1

i − xi) =
∑

i∈[n] xcd
i − xd

i , which has degree cd. ◀

6.3 From monomial equivalence to general equivalence of
noncommutative cubic forms

▶ Theorem 6.12. There is a quadratic-size many-one reduction from

Monomial Equivalence of Noncommutative Cubic Forms
to

Equivalence of Noncommutative Cubic Forms,

over any field.
If furthermore the input cubic forms f, f ′ have the property that any monomial equivalence

between them must have its nonzero scalars being d-th roots of unity, and the latter can be
derived by PC in degree d + 1, then the reduction above is a (d, 2d)-many-one reduction.

Proof. Let f be a noncommutative cubic form in variables u1, . . . , un. Then r(f) will be a
new noncommutative cubic form, in n + 2n(n + 1) variables u1, . . . , un, v11, v12, . . . , vn,n+1,
w11, w12, . . . , wn,n+1, which is r(f) = f +

∑
i∈[n],j∈[n+1] uivijwij . In terms of the underlying

three-way arrays, if we have f =
∑

i,j,k∈[n] Tijkuiujuk, then we use r(T) to denote the array
underlying r(f), which can be described as follows. The 3-way array r(T) will have size
N × N × N where N = n + 2n(n + 1). Let Ti denote the i-th frontal slice of Ti, that is, Ti

is the matrix such that (Ti)jk = Tijk. For i = 1, . . . , n, the i-th frontal slice of r(T) will be
defined as:

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:27

Ti

0n+1 0n+1
0n+1 0n+1

.
0n+1 In+1

.
0n+1 0n+1

0n+1 0n+1
0n+1 0n+1

.
0n+1 0n+1

.
0n+1 0n+1

,

where the In+1 occurs in the i-th (n + 1) × (n + 1) block of its region. That is, the lower-right
2n(n + 1) × 2n(n + 1) sub-matrix is the Kronecker product Ei,n+i ⊗ In+1, where Ei,n+i is
the 2n × 2n matrix with a 1 in position (i, n + i) and zeros everywhere else. For the slices
i = n + 1, . . . , N we will have r(T)i = 0.

Our main claim is that the map (T, T ′) 7→ (r(T), r(T)′) is the reduction claimed in the
theorem.

Many-one reduction. Suppose X · f = f ′ with X monomial. Write X = PD with D

diagonal and P a permutation matrix corresponding to the permutation π ∈ Sn. Then we
claim that

Y = X ⊕ ((PD−1) ⊗ In+1) ⊕ (P ⊗ In+1)

is an equivalence between r(f) and r(f ′), where here we assume our variables are ordered as
above. For we have

Y · r(f) =
∑

ijk∈[n]

Tijk(Y ui)(Y uj)(Y uk) +
∑

i∈[n],j∈[n+1]

(Y ui)(Y vij)(Y wij)

=
∑

ijk∈[n]

Tijk(Xui)(Xuj)(Xuk) +
∑

i∈[n],j∈[n+1]

(Xui)(PD−1vij)(Pwij)

= X · f +
∑

i∈[n],j∈[n+1]

Diiuπ(i)(D−1
ii vπ(i),j)wπ(i),j

= f ′ +
∑

i∈[n],j∈[n+1]

uπ(i)vπ(i),jwπ(i),j

= r(f ′).

The final inequality here follows from the fact that π is a permutation, so the final sum
includes all terms of the form uivijwij , just listed in a different order than originally.

Conversely, suppose Y · r(f) = r(f ′) for an arbitrary invertible N × N matrix Y . To find
an equivalence between f and f ′, here we find it more useful to take the viewpoint of the
3-way arrays r(T) and r(T ′) corresponding to r(f) and r(f ′), respectively.

CCC 2023

4:28 On the Algebraic Proof Complexity of Tensor Isomorphism

The way Y acts on the 3-way array r(T) is to first take linear combinations of the frontal
slices, say by replacing the i-th slice with

∑
j∈[N] Yijr(T)j (corresponding to the action of Y

on the third variable in each monomial), and then to take each slice S and replace it by Y SY t

(the left multiplication corresponds to the action on the first variable in each monomial, and
the right multiplication corresponds to the action on the second variable in each monomial).
As this latter transformation preserves the rank of each slice, we will use the ranks of linear
combinations of the slices to reason about properties of Y .

▷ Claim 1. Y is a block-diagonal sum of an n × n matrix X and a 2n(n + 1) × 2n(n + 1)
matrix.

Proof of Claim 1. First we show that Y is block-triangular. To see this, note that since
the last 2n(n + 1) slices are zero, the action of Y by taking linear combinations of slices
cannot send any of the first n slices to the last 2n(n + 1) slices. That is, Y has the form

Y =
[
X Z

0 W

]
where X is n × n and W is 2n(n + 1) × 2n(n + 1). It remains to show that Z

must be zero.
Since Y is block-diagonal and invertible, we have that X and W are each invertible.
Let R be the tensor gotten from r(T) by having Y act by taking linear combinations of

the slices. That is, the i-th frontal slices of R is Ri =
∑

j∈[N] Yijr(T)j . Since each slice r(T)i

has its support in the upper-left n × n sub-matrix and the middle-right n(n + 1) × n(n + 1)
sub-matrix, so does each slice Ri. Write

Ri =

R
(1,1)
i 0 0
0 0 R

(2,2)
i

0 0n(n+1) 0

 ,

where R
(1,1)
i is n × n and R

(2,2)
i is n(n + 1) × n(n + 1).

Now consider the action of Y that sends Ri to Y RiY
t = r(T ′)i. We now break up Y

further into blocks commensurate with how we wrote Ri above; write

Y =

X A B

0 C D

0 E F

 Z =
[
A B

]
W =

[
C D

E F

]
,

where A, B are n × n(n + 1), and C, D, E, F are each n(n + 1) × n(n + 1). Then we have:

Y RiY
t =

X A B

0 C D

0 E F

R

(1,1)
i 0 0
0 0 R

(2,2)
i

0 0n(n+1) 0

Xt 0 0

At Ct Et

Bt Dt F t

=

XR
(1,1)
i 0 AR

(2,2)
i

0 0 CR
(2,2)
i

0 0 ER
(2,2)
i

Xt 0 0

At Ct Et

Bt Dt F t

=

XR
(1,1)
i Xt + AR

(2,2)
i Bt AR

(2,2)
i Dt AR

(2,2)
i F t

CR
(2,2)
i Bt ∗ ∗

ER
(2,2)
i Bt ∗ ∗

 ,

where we have put ∗’s in positions we won’t need in the argument.
Next, since each of the first n slices of r(T ′) must be of this form, and those slices

have zeros in each block except the (1, 1) and (2, 3) blocks, by considering the blocks
(1, 2), (1, 3), (2, 1), (3, 1) we must have

AR
(2,2)
i Dt = 0 AR

(2,2)
i F t = 0 CR

(2,2)
i Bt = 0 ER

(2,2)
i Bt = 0.

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:29

For reasons that will become clear below, we combine these into the two equations

AR
(2,2)
i

[
Dt F t

]
= 0

[
C

E

]
R

(2,2)
i Bt = 0.

Note that the n(n + 1) × 2n(n + 1) matrices
[
Dt F t

]
and

[
Ct Et

]
must both be full rank,

since otherwise W =
[
C D

E F

]
would not be invertible.

The sum of the (2,3) blocks (of size n(n + 1) × n(n + 1)) of the first n slices of r(T)
is precisely the identity matrix In(n+1). Thus, the linear span of these blocks contains an
invertible matrix in it. Since Y is invertible, that linear span is the same as the linear span of
the blocks {R

(2,2)
i : i ∈ [n]}. Thus the latter contains a full-rank matrix, say

∑n
i=1 αiR

(2,2)
i .

But since we have AR
(2,2)
i

[
Dt F t

]
= 0 for all i, we may left multiply by A and right-

multiply by
[
Dt F t

]
to get A

(∑n
i=1 αiR

(2,2
i

) [
Dt F t

]
=

∑n
i=1 αiAR

(2,2)
i

[
Dt F t

]
= 0.

But now we have that
∑

αiR
(2,2)
i is invertible, and

[
Dt F t

]
has full rank n(n + 1), so their

product also has full rank n(n + 1). But then we have that A times a full rank matrix is
equal to 0, hence A must be zero. The same argument, mutatis mutandis, using the equation[
C

E

]
R

(2,2)
i Bt = 0, gives us that B = 0. Hence Y is block-diagonal as claimed. ◁

Next, we use properties of the ranks of the slices coming from the In+1 gadgets to show
that X must in fact be monomial.

▷ Claim 2. Y =
[
X 0
0 W

]
where X is monomial.

Proof. In both r(T) and r(T ′), any linear combination consisting of k of the first n slices
(with nonzero coefficients) has rank in the range [k(n + 1), k(n + 1) + n], for any k = 0, . . . , n.
The lower bound can be seen by noting that any such linear combination is block-diagonal
with k copies of In+1 on the block diagonal of the (2, 3) block. The upper bound comes
from the fact that these are the only nonzero blocks in the lower-right 2n(n + 1) × 2n(n + 1)
sub-matrix, and the only other nonzero entries are in the n × n upper-left sub-matrix, which
has rank at most n because of its size.

Using notation from the proof of the preceding claim, since Y RiY
t = r(T ′)i, and the

latter has rank in the range [n + 1, 2n + 1], Ri must also have rank in the same range. But
this is only possible if Ri is a linear combination of precisely one of the first n slices of r(T).
Thus, X is monomial. ◁

From claim 2, we thus have that there is a permutation π ∈ Sn and nonzero scalars
d1, . . . , dn such that Ri = dir(T)π(i) for all i = 1, . . . , n, where X = DP with D the diagonal
matrix with diagonal entries di and P the permutation matrix corresponding to π. Finally, in
the proof of claim 1, we saw that the upper-left block of Y RiY

t was XR
(1,1)
i Xt + AR

(2,2)
i Bt,

and then learned that A = B = 0. Putting these together, and recalling that the upper-left
block of r(T)i is Ti, we thus get

(DP)diTπ(i)(DP)t = T ′
i

for all i. In other words, X is a monomial equivalence from T to T ′ (hence, from f to f ′).
This completes the proof that the construction gives a many-one reduction.

CCC 2023

4:30 On the Algebraic Proof Complexity of Tensor Isomorphism

Low-degree PC reduction. To prove the “furthermore”, suppose that the pair of cubic
forms f, f ′ has the property that any monomial equivalence between them must have its
nonzero entries being d-th roots of unity, for some d ≥ 1, and that this can be derived – more
specifically, the equations yd+1

ij − yij and similarly for y′
ij – in degree d + 1.

Let Y, Y ′ be the variable matrices for (general) equivalence of r(f), r(f ′); let X, X ′ be
the variable matrices for monomial equivalence of f, f ′. Consider the substitution

Y 7→

X 0
0 X◦(d−1) ⊗ In+1
0 0 X◦d ⊗ In+1

Y ′ 7→

X ′ 0
0 (X ′)◦(d−1) ⊗ In−1
0 0 (X ′)◦d ⊗ In+1

 , (16)

where X◦(d−1) denotes the (d−1)-fold Hadamard product X◦X◦· · ·◦X, namely, (X◦(d−1))ij =
xd−1

ij . We will show that the equations for equivalence of r(f), r(f ′), after this substitution,
can be derived from the equations for monomial equivalence of f, f ′ in low-degree PC.

(Note that the substitutions above correspond precisely to the forward direction of the
many-one reduction, in which X ⊕ (D−1P ⊗ In+1) ⊕ (P ⊗ In+1) served as an equivalence.
For, once we have xd+1

ij − xij , we have X◦(d−1) = Dd−1P = D−1P , and X◦d = DdP = P .)
Recall that these equations are Y ·r(f) = r(f ′) and Y Y ′ = Y ′Y = Id. The latter equations

are easier to handle so we begin with those. They become X◦c(X ′)◦c = (X ′)◦cX◦c = Id
for c ∈ {1, d − 1, d}. For c = 1, these are some of our starting equations. For c > 1, this is
similar to the argument in Theorem 6.9 (see the argument around Equation (15)), iterated,
resulting in a proof of degree 2c for any c – in this case, 2d.

Now to the equation(s) Y · r(f) = r(f ′). After substitution, these become∑
i,j,k∈[n]

Tijk(Xui)(Xuj)(Xuk) +
∑

i∈[n],j∈[n+1]

(Xui)(X◦(d−1)vij)(X◦dwij)

=
∑
ijk

T ′
ijkuiujuk +

∑
ij

uivijwij . (17)

Focusing on the first summations on both sides of the equation, we see these are precisely
the equations X · f = f ′. After subtracting these off, we now deal with the remaining terms.

We have∑
ij

uivijwij =
∑

i∈[n],j∈[n+1]

(Xui)(X◦(d−1)vij)(X◦dwij)

=
∑

i∈[n],j∈[n+1]

 ∑
k∈[n]

xk,iuk

 ∑
ℓ∈[n]

xd−1
ℓ,i vℓ,j

 ∑
h∈[n]

xd
h,iwh,j

=

∑
k,ℓ∈[n],j∈[n+1]

ukvℓ,jwℓ,j

 ∑
i∈[n]

xk,ix
d−1
ℓ,i xd

ℓ,i

+

∑
k,ℓ,h∈[n],j∈[n+1]

ℓ̸=h

ukvℓ,jwℓ′,j

 ∑
i∈[n]

xk,ix
d−1
ℓ,i xd

h,i

This becomes the system of equations

δk,ℓ =
∑

i∈[n] xk,ix
d−1
ℓ,i xd

ℓ,i (∀k, ℓ ∈ [n])
0 =

∑
i∈[n] xk,ix

d−1
ℓ,i xd

h,i (∀k, ℓ, h ∈ [n], ℓ ̸= h).

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:31

(Note that technically we should quantify over all j ∈ [n + 1], but j plays no role in these
equations – it just serves to repeat the same equation n + 1 times. This corresponds to the
fact that the lower-right part of our matrices have the form ∗ ⊗ In+1.)

When k ̸= ℓ, every term in the first equation is a degree-2d multiple of the monomial
axiom xk,ixℓ,i. Similarly, every term in the second set of equations is a degree-2d multiple of
the monomial axiom xℓ,ixh,i. Thus all that remains is the first equation when k = ℓ, namely,
1 =

∑
i∈[n] xk,ix

d−1
k,i xd

k,i. This is derived in Lemma 6.11, with c = 2 in degree 2d (since d > 1,
we have max{2d, d+2} = 2d). This completes the proof that we have a (d, 2d)-reduction. ◀

▶ Remark 6.13. There is a slightly simpler and smaller many-one reduction, namely f 7→
f +

∑
i∈[n],j∈[n+1] uiv

2
ij . However, in using that reduction, the witness for the forward

direction becomes X ⊕ (D−1/2P ⊗ In+1). This square root introduces a square into the
equations that made it difficult to show that it was also a PC reduction. The reduction
above fixes this issue.

6.4 From cubic forms to tensors
Our reductions here are those from Futorny–Grochow–Sergeichuk [19, Cor. 3.4 and Thm. 2.1].
The many-one property follows from the results there. We prove that each of these reductions
is in fact also a low-degree PC reduction between the corresponding polynomial solvability
problems. They reduce first to a problem we call Block Tensor Isomorphism, and then
from there to Tensor Isomorphism, so we begin by introducing the former problem and
its associated equations.

▶ Definition 6.14 (see Futorny–Grochow–Sergeichuk [19]). A block n × m × p 3-way array
is a 3-way array together with a partition of its index sets {1, . . . , n} = {1, . . . , n1} ⊔ {n1 +
1, n1 + 2, . . . , n1 +n2}⊔ · · ·⊔{

∑N−1
i=1 ni + 1, . . . , n}, and similarly for the other two directions.

Two block 3-way arrays are said to be conformally partitioned if they have the same size
and the same partitions of their index sets. Two conformally partitioned 3-way arrays T, T ′

with block sizes as above are block-isomorphic (called “block-equivalent” in [19]) if there exist
invertible matrices S11, . . . , S1,N , S21, . . . , S2M , S31, . . . , S3P , where S1,I is of size nI × nI ,
S2,J is of size mJ × mJ , and S2,K is of size pK × pK , such that the block-diagonal matrices
give an isomorphism of tensors:

(S11 ⊕ S12 ⊕ · · · ⊕ S1N , S21 ⊕ · · · ⊕ S2M , S31 ⊕ · · · ⊕ S3P) · T = T ′.

Given two block 3-way arrays T, T ′ as above, the equations for Block Tensor Iso-
morphism are as folllows. There are 2(

∑
I∈[N] ni +

∑
J∈[M] mJ +

∑
K∈[P] pK) variables

arranged into 2(N + M + P) square matrices XI , X ′
I (of size nI × nI), YJ , Y ′

J (of size
mJ × mJ), and ZK , Z ′

K (of size pK × pK). Then the equations are:

(X1 ⊕ · · · ⊕ XN , Y1 ⊕ · · · ⊕ YM , Z1 ⊕ · · · ⊕ ZP) · T = T ′

XIX ′
I = X ′

IXI = Id YJY ′
J = Y ′

JYJ = Id ZKZ ′
K = Z ′

KZK = Id,

for all I ∈ [N], J ∈ [M], K ∈ [P].

▶ Lemma 6.15. The many-one reduction from

Equivalence of Noncommutative Cubic Forms
to

Block Tensor Isomorphism

in [19, Cor. 3.4] is in fact a linear-size (1,3)-many-one reduction.

CCC 2023

4:32 On the Algebraic Proof Complexity of Tensor Isomorphism

Proof. Given a noncommutative cubic form f in n variables, f =
∑

i,j,k∈[n] Tijkuiujuk, we
recall the block tensor r(T) from [19, Cor. 3.4]. It is partitioned into 2 × 3 × 3 many blocks,
with the rows being partitioned into n, 1, the columns into n, n, 1, and the depths also into
n, n, 1; thus its total size is (n + 1) × (2n + 1) × (2n + 1). Let Eijk denote the tensor of this
size whose only nonzero entry is a 1 in position (i, j, k). Then we define

r(T) = T +
∑
i∈[n]

(Ei,n+i,2n+1 + Ei,2n+1,n+i + En+1,i,n+i + En+1,n+i,i) + En+1,2n+1,2n+1

If you wanted to think of this as part of the tensor corresponding to a cubic form, that cubic
form would have n + 1 new variables v1, . . . , vn, z, and the form would be:

r(f) := f +
∑
i∈[n]

(uiviz + uizvi + zuivi + zviui) + z3.

(This doesn’t quite line up with the above description of a tensor, as the tensor corresponding
to r(f) would necessarily have all 3 side lengths the same, 2n + 1. However, there are n of
the 2n + 1 rows in that tensor that are entirely zero, namely, the rows corresponding to those
monomials that begin with a vi.)

The equations for block isomorphism of r(T) and r(T ′) have the following variable
matrices X, X ′ are n×n, x, x′ are 1×1, Y1, Y ′

1 , Y2, Y ′
2 are n×n, y, y′ are 1×1, Z1, Z ′

1, Z2, Z ′
2

are n × n, and z, z′ are 1 × 1. Let U, U ′ be the n × n variable matrices for the equations for
equivalence of the noncommutative cubic forms f, f ′. We consider the following substitution:

X, Y1, Z1, Y ′
2 , Z ′

2 7→ U X ′, Y ′
1 , Z ′

1, Y2, Z2 7→ U ′ x, x′, y, y′, z, z′ 7→ 1.

Under this substitution, the equations for block isomorphism of r(T), r(T ′) become

(U, U, U) · T +
∑
i∈[n]

((U, U ′, 1) · Ei,n+i,2n+1 + (U, 1, U ′) · Ei,2n+1,n+i

+ (1, U, U ′) · En+1,i,n+i + (1, U ′, U) · En+1,n+i,i

+(1, 1, 1) · En+1,2n+1,2n+1)

=T ′ +
∑
i∈[n]

(Ei,n+i,2n+1 + Ei,2n+1,n+i + En+1,i,n+i + En+1,n+i,i)

+ En+1,2n+1,2n+1

Now, because each summand inside the big sum corresponds to an identity matrix in a block
(e.g.

∑
i∈[n] Ei,n+i,2n+1 is an identity matrix in rows {1, . . . , n}, columns {n+1, . . . , 2n}, and

depth 2n + 1), the above equations give us many instances of UU ′ = Id and U ′U = Id, which
is one of our starting equations. We also get the equation 1 = 1, and lastly, (U, U, U) · T = T ′,
which is another one of our starting equations. Thus the equations we get here are in fact
precisely the same as the equations we started with. As these are cubic equations and the
substitutions were linear, it is a (1,3)-PC reduction. ◀

▶ Lemma 6.16. When the number of blocks is O(1), the many-one reduction from

Block Tensor Isomorphism
to

Tensor Isomorphism

in [19, Thm. 2.1] is in fact a quadratic-size (1,3)-many-one reduction.

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:33

Note that the output of the reduction of Lemma 6.15 has 2 × 3 × 3 many blocks, so the
restriction to O(1) many blocks in Lemma 6.16 presents no obstacle to our goal.

Proof. The key is to show how to effectively remove the partition in one of the three directions;
then that reduction can be applied three times in the three separate directions. Let T, T ′

be block tensors of size n × m × p, with N × M × P many blocks. The construction of [19,
Lem. 2.2] shows how to construct from this a block tensor of quadratic size with N × M × 1
many blocks. We recall the construction here and show that it is a (1,3)-PC reduction.

Let p1, . . . , pP denote the sizes of the parts of the partition in the third direction. Let
r = min{n, m} + 1 – this will govern the rank of the identity matrix gadgets we add.
Let s =

∑P
K=1 2K−1r and t =

∑P
K=1 2K−1rpK . Then the output tensor will have size

(n + s) × (m + t) × p. (Note that, since P = O(1), we have that s is linearly bounded in n, m

and t is quadratic as a function of n, m, p.) Let T1, . . . , Tp be the frontal slices of T . The i-th
slice of r(T) will be as follows. Suppose i is in the K-th block, and write i = i0 +

∑K
k=1 pk

with 1 ≤ i0 ≤ pK+1. Write the slices Ti as Ti =
[
Ai Bi

Ci Di

]
, where Ai is n1 ×m1 – representing

the first part of the partition of T into rows and columns, and Di represents all the other
parts. Then we construct:

r(T)i :=

0 · · · 0
. . .

0 · · · I2K−1r · · · 0
. . .

0 · · · 0
Ai Bi

Ci Di

,

where the I2K−1r is in the i0-th position within the K-th block-row and block-column as
indicated by the dashed lines. Here the dashed lines do not represent additional parts of
the partition, they are just for visual clarity. The solid lines indicate the first part of the
new partition into rows and columns. The rows of Ci and Di are partitioned into blocks the
same as they were originally in Ti, and the columns of Bi and Di are partitioned into parts
in the same way as they were originally in Ti. That is, the entire big gadget in the upper-left
gets prepended to the first parts of the row and column partitions. This is the many-one
reduction.

Let X1, . . . , XN , Y1, . . . , YM , and Z be variable matrices (with associated primes matrices
X ′

1, etc.), with sizes as follows:
X1 has size (s + n1) × (s + n1)
XI for I ≥ 2 has size nI × nI

Y1 has size (t + m1) × (t + m1)
YJ for J ≥ 2 has size mJ × mJ

Z has size p × p.

We start from the equations for Block Isomorphism (but now where there is only one
block in the third direction), namely

XIX ′
I = X ′

IXI = Id YJY ′
J = Y ′

JYJ = Id ZZ ′ = Z ′Z = Id

and

(X1 ⊕ · · · ⊕ XN , Y1 ⊕ · · · ⊕ YN , Z) · r(T) = r(T ′).

CCC 2023

4:34 On the Algebraic Proof Complexity of Tensor Isomorphism

We make the following substitution (with the same substitutions, mutatis mutandis, for the
primed variables):

X1 7→ Is ⊕ X̂1, where X̂1 is a matrix of variables of size n1 × n1.
For I ≥ 2, XI maps to itself.
Y1 7→ It ⊕ Ŷ1, where Ŷ1 is a matrix of variables of size m1 × m1.
For J ≥ 2, YJ maps to itself.
Z maps to a block matrix Z1 ⊕ · · · ⊕ ZP , where for each K ∈ [P], we have ZK is a
pK × pK matrix of variables.

Under these substitutions, the equations for Block Isomorphism of r(T), r(T ′) become
precisely the original equations for Block Isomorphism of T, T ′, together with equations
of the form IsEiIt = Ei, where Ei is the s × t gadget matrix in the upper-left in the i-th
slice. Thus we get a (1, 3)-reduction.

Finally, this is then repeated in the other two directions to reduce the number of blocks
in all three directions to one, thus giving an instance of Tensor Isomorphism. ◀

6.5 Putting it all together
Finally, we combine all the above to prove Theorem 6.2.

Proof of Theorem 6.2. Let m = cn with c ≥ 104. By Theorem 6.1, random 3XOR instances
with clause density c require PC degree Ω(n/c2) = Ω(n) (in our case) to refute. The number
of instances that the random distribution assigns nonzero probability is

(2(n
3)

m

)
∼

(
n3

cn

)
≥

n3cn/(cn)cn = c2cn log n−cn ≥ cΩ(n log n).
By Theorem 6.6, there is a (1,3)-many-one reduction from those instances to {±1}-

Monomial Equivalence of {±1} Multilinear Noncommutative Cubic Forms,
where the number of variables in the cubic form is the same as the number of variables in
the 3XOR instance. By Theorem 6.9 there is then a (2,6)-many-one reduction to Monomial
Equivalence of {±1} Noncommutative Cubic Forms, where the number of variables
in the output cubic form is linear in the original number of variables, and such that the
output forms have the property that any monomial equivalence between them has all its
nonzero entries being 6-th roots of unity. This thus satisfies the hypothesis of Theorem 6.12
with d = 6, so there is a (6,12)-many-one reduction to Equivalence of Noncommutative
Cubic Forms, where the output has a quadratic number of variables compared to the input.
Finally, combining Lemmata 6.15 and 6.16, we get a (1,3) reduction from Equivalence
of Noncommutative Cubic Forms to Tensor Isomorphism, which further increases
the size quadratically. In total, the size increases multiply, yielding a quartic size increase.
The substitution degrees multiply and the derivation degrees we take the max, yielding a
(12,12)-many-one reduction from Random 3XOR to Tensor Isomorphism on tensors of size
O(n4) × O(n4) × O(n4). By Lemma 2.2, any PC refutation of these Tensor Isomorphism
instances requires degree Ω(n). ◀

We note that our lower bound for tensor isomorphism also applies to the stronger Sum-
of-Squares proof system. This is due to the fact that there is lower bound for random 3XOR
in Sum-of-Squares, as shown by Grigoriev [21] and independently by Schoenbeck [44], which
makes the dependence on the clause density explicit.

▶ Theorem 6.17 ([44, Theorem 12]). A random 3-XOR instance with clause density ∆ =
m/n = dnϵ, for all sufficiently large constants d, requires SoS degree Ω(n1−ϵ) to refute, with
probability 1 − o(1).

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:35

In particular, this is a linear Ω(n) lower bound in the case of constant clause density
(ϵ = 0), which matches the PC lower bound of Theorem 6.1.

As we observe all of our reductions go through in Sum-of-Squares, since Sum-of-Squares
simulates PC over the reals due to Berkholz [6]. Furthermore, this simulation preserves
degrees of proofs up to a constant factor.

▶ Theorem 6.18 ([6, Theorem 1.1]). If a system of polynomial equations F over the reals
has a PC refutation of degree d and size s, it also has a sum-of-squares refutation of degree
2d and size poly(s).

Hence, by combining Theorems 6.17, 6.18 and the PC reduction used to prove 6.2, we
obtain the following lower bound for tensor isomorphism in Sum-of-Squares.

▶ Theorem 6.19. Over the real numbers, there is a distribution on n × n × n Tensor
Isomorphism whose associated equations require SoS degree Ω(4

√
n) to refute with probability

1 − o(1).

7 Open Questions

Beyond Conjecture 1.7, we highlight several more questions we find interesting about the
algebraic proof complexity of Tensor Isomorphism.

7.1 Degree

▶ Open Question 7.1. What is the correct value for the PC degree of rank-r Tensor
Isomorphism?

Note that by using the reductions from Section 6, we can produce (random) r × r × r

tensors that require PC degree Ω(r1/4) to refute. However, the number of variables is 6r2,
this lower bound is only Ω(N1/8) where N is the number of variables. Since their rank
could be as large as R = Θ(r2) (and indeed, very likely is), the upper bound we get from
Theorem 4.1 is only 2O(r4) (without the xq − x axioms) or O(r4) (with the xq − x axioms,
with q = O(1)). Even in the latter case, this leaves a polynomial gap between the lower and
upper bounds (without those the gap is exponential).

We note that the upper bound in Theorem 4.1 without the xq − x equations already
applies to the weaker Nullstellensatz proof system. Is there a polynomial upper bound on
PC degree – as a function of rank – without the xq − x axioms?

7.2 Size

In the presence of the Boolean axioms, there is a size-degree tradeoff for PC (or even PCR –
a system with the same degree bounds as PC, but is stronger when measuring size by number
of monomials or number of symbols) [16, 2]. This implies that in the presence of the Boolean
axioms, a good degree lower bound implies a good size lower bound. But TI does not have
the Boolean axioms.

▶ Open Question 7.2. Get lower and upper bounds on the size of PC proofs for Tensor
(Non-)Isomorphism. Are there subexponential size upper bounds, despite the polynomial
degree lower bounds?

CCC 2023

4:36 On the Algebraic Proof Complexity of Tensor Isomorphism

7.3 Other matrix problems
While many different tensor-related problems are all equivalent to TI, in the case of matrices,
we have three genuinely different problems: matrix equivalence (2-TI), matrix conjugacy,
and matrix congruence. Conjugacy is determined by the Rational Normal Form or Jordan
Normal Form, while congruence depends on the field (e.g., over algebraically closed fields it
only depends on rank, over R it depends on the signature, and over finite fields it depends
on whether the determinant is a square or not).

▶ Open Question 7.3. What is the PC complexity (size, degree, etc.) of matrix conjugacy?
Of matrix congruence?

More precisely, for conjugacy we have in mind the system of equations:

XM = M ′X XX ′ = X ′X = I,

and for congruence the system of equations:

XMXT = M ′ XX ′ = X ′X = I.

7.4 Bounded border rank
Not only can testing a tensor for bounded rank can be done in polynomial time (Remark 1.4),
testing a tensor for bounded border-rank can also be done in polynomial time (see, e. g., [24]),
by evaluating a polynomial number of easy-to-evaluate equations. While several partial
results are available, the gap for what is known about the ratio between rank and border
rank is quite large: there are 3-tensors known whose rank approaches 3 times their border
rank [50], but the currently known upper bound is Lehmkuhl and Lickteig [33], who show
that for tensors of border rank b, the ratio of rank to border rank is at most cΘ(nb). See the
Zuiddam’s introduction [50] for more details.

▶ Open Question 7.4. What is the PC degree of testing isomorphism of tensors of bounded
border-rank? Can such tests be done (by any method) in polynomial time?

7.5 Relating different reductions from Graph Isomorphism
While we chose a particular reduction from GI to TI for the lower bound in Section 5, we
are aware of several others, including:

GI to Permutational Code Equivalence [42, 35, 38], then to Matrix Lie Algebra
Conjugacy [23], then to TI [19];
GI to Semisimple Matrix Lie Algebra Conjugacy [23], and then to TI [19];
GI to Alternating Matrix Space Isometry [26, 27], then to TI [19];
GI to Algebra Isomorphism [20, 1], then to TI [19].

We believe all of these can be realized as low-degree PC reduction as well. In the first arXiv
version of [26], they asked which of these might be equivalent in some sense (though there
the final target was Alternating Matrix Space Isometry, another TI-complete problem,
rather than TI itself). Here we make this question slightly more precise, in terms of PC
reductions:

▶ Open Question 7.5. Which, if any, of the reductions above from Graph Isomorphism
to Tensor Isomorphism are equivalent under low-degree PC?

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:37

References

1 Manindra Agrawal and Nitin Saxena. Automorphisms of finite rings and applications to
complexity of problems. In STACS 2005, 22nd Annual Symposium on Theoretical Aspects of
Computer Science, Proceedings, pages 1–17, 2005. doi:10.1007/978-3-540-31856-9_1.

2 Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Pseudor-
andom generators in propositional proof complexity. SIAM J. Comput., 34(1):67–88, 2004.
doi:10.1137/S0097539701389944.

3 Albert Atserias and Elitza N. Maneva. Sherali–Adams relaxations and indistinguishability in
counting logics. SIAM J. Comput., 42(1):112–137, 2013. doi:10.1137/120867834.

4 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In STOC’16 –
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, pages
684–697. ACM, New York, 2016. doi:10.1145/2897518.2897542.

5 Eli Ben-Sasson and Russell Impagliazzo. Random CNF’s are hard for the Polynomial Calculus.
In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 415–421. IEEE Computer Society, 1999. (Journal version in
Comput. Complex. 2010, doi:10.1007/s00037-010-0293-1). doi:10.1109/SFFCS.1999.814613.

6 Christoph Berkholz. The relation between polynomial calculus, sherali-adams, and sum-of-
squares proofs. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

7 Christoph Berkholz and Martin Grohe. Limitations of algebraic approaches to graph iso-
morphism testing. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina
Speckmann, editors, Automata, Languages, and Programming – 42nd International Colloquium,
ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture
Notes in Computer Science, pages 155–166. Springer, 2015.

8 Christoph Berkholz and Martin Grohe. Linear diophantine equations, group csps, and
graph isomorphism. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 327–339. SIAM, 2017. Preprint arXiv:1607.04287 [cs.CC].
doi:10.1137/1.9781611974782.21.

9 Jendrik Brachter and Pascal Schweitzer. On the Weisfeiler–Leman dimension of finite groups.
In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July
8-11, 2020, pages 287–300. ACM, 2020. doi:10.1145/3373718.3394786.

10 Jendrik Brachter and Pascal Schweitzer. A systematic study of isomorphism invariants of finite
groups via the Weisfeiler–Leman dimension. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg,
and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022,
September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 27:1–27:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ESA.2022.27.

11 R. P. Brent. Algorithms for matrix multiplication. Stanford Computer Science Dept. Tech. Re-
port STAN-CS-70-157, available online at https://apps.dtic.mil/sti/pdfs/AD0705509.pdf,
1970.

12 Peter A. Brooksbank, Joshua A. Grochow, Yinan Li, Youming Qiao, and James B. Wilson.
Incorporating Weisfeiler–Leman into algorithms for group isomorphism. arXiv:1905.02518
[cs.CC], 2019.

13 Josh Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann Pitassi. Ho-
mogenization and the polynomial calculus. Comput. Complex., 11(3-4):91–108, 2002.
doi:10.1007/s00037-002-0171-6.

14 Samuel R. Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps
between degrees for the polynomial calculus modulo distinct primes. J. Comput. Syst. Sci.,
62(2):267–289, 2001. doi:10.1006/jcss.2000.1726.

CCC 2023

https://doi.org/10.1007/978-3-540-31856-9_1
https://doi.org/10.1137/S0097539701389944
https://doi.org/10.1137/120867834
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1109/SFFCS.1999.814613
http://arxiv.org/abs/1607.04287
https://doi.org/10.1137/1.9781611974782.21
https://doi.org/10.1145/3373718.3394786
https://doi.org/10.4230/LIPIcs.ESA.2022.27
https://apps.dtic.mil/sti/pdfs/AD0705509.pdf
https://arxiv.org/abs/1905.02518
https://arxiv.org/abs/1905.02518
https://doi.org/10.1007/s00037-002-0171-6
https://doi.org/10.1006/jcss.2000.1726

4:38 On the Algebraic Proof Complexity of Tensor Isomorphism

15 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, 1992. doi:10.1007/
BF01305232.

16 Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm
to find proofs of unsatisfiability. In Proceedings of the Twenty-eighth Annual ACM Symposium
on the Theory of Computing (Philadelphia, PA, 1996), pages 174–183. ACM, New York, 1996.
doi:10.1145/237814.237860.

17 Nathaniel A. Collins and Michael Levet. Count-free Weisfeiler–Leman and group isomorphism.
arXiv:2212.11247 [cs.DS], 2022.

18 Jean-Charles Faugère and Ludovic Perret. Polynomial equivalence problems: Algorithmic
and theoretical aspects. In Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT
2006, 25th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 – June 1, 2006, Proceedings, volume 4004 of
Lecture Notes in Computer Science, pages 30–47. Springer, 2006. doi:10.1007/11761679_3.

19 Vyacheslav Futorny, Joshua A. Grochow, and Vladimir V. Sergeichuk. Wildness for tensors.
Linear Algebra Appl., 566:212–244, 2019. doi:10.1016/j.laa.2018.12.022.

20 D. Ju. Grigoriev. Complexity of “wild” matrix problems and of the isomorphism of algebras and
graphs. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 105:10–17, 198, 1981.
Theoretical applications of the methods of mathematical logic, III. doi:10.1007/BF01084390.

21 Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the
parity. Theoretical Computer Science, 259(1-2):613–622, 2001.

22 Dima Grigoriev. Polynomial complexity of solving systems of few algebraic equations with small
degrees. In Vladimir P. Gerdt, Wolfram Koepf, Ernst W. Mayr, and Evgenii V. Vorozhtsov,
editors, Computer Algebra in Scientific Computing – 15th International Workshop, CASC
2013, Berlin, Germany, September 9-13, 2013. Proceedings, volume 8136 of Lecture Notes in
Computer Science, pages 136–139. Springer, 2013. doi:10.1007/978-3-319-02297-0_11.

23 Joshua A. Grochow. Matrix Lie algebra isomorphism. In IEEE Conference on Computational
Complexity (CCC12), pages 203–213, 2012. Also available as arXiv:1112.2012 [cs.CC] and
ECCC Technical Report TR11-168. doi:10.1109/CCC.2012.34.

24 Joshua A. Grochow. Answer to “deciding bound on tensor rank for a fixed value”. CSTheory
StackExchange, https://cstheory.stackexchange.com/a/19518/129, 2013.

25 Joshua A. Grochow and Youming Qiao. On p-group isomorphism: Search-to-decision, counting-
to-decision, and nilpotency class reductions via tensors. In Valentine Kabanets, editor, 36th
Computational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada
(Virtual Conference), volume 200 of LIPIcs, pages 16:1–16:38. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CCC.2021.16.

26 Joshua A. Grochow and Youming Qiao. On the complexity of isomorphism problems for
tensors, groups, and polynomials I: tensor isomorphism-completeness. In James R. Lee,
editor, 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, January
6-8, 2021, Virtual Conference, volume 185 of LIPIcs, pages 31:1–31:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ITCS.2021.31.

27 Xiaoyu He and Youming Qiao. On the Baer-Lovász-Tutte construction of groups from graphs:
isomorphism types and homomorphism notions. European J. Combin., 98:Paper No. 103404,
12, 2021. doi:10.1016/j.ejc.2021.103404.

28 Harald Andrés Helfgott. Isomorphismes de graphes en temps quasi-polynomial [d’après Babai
et Luks, Weisfeiler–Leman,. . .]. Astérisque, (407):Exp. No. 1125, 135–182, 2019. Séminaire
Bourbaki. Vol. 2016/2017. Exposés 1120–1135. English translation with appendices by Jitendra
Bajpai and Daniele Dona available at arXiv:17010.04574 [math.GR]. doi:10.24033/ast.

29 Pavel Hrubes and Iddo Tzameret. Short proofs for the determinant identities. SIAM J.
Comput., 44(2):340–383, 2015. doi:10.1137/130917788.

https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
https://doi.org/10.1145/237814.237860
https://arxiv.org/abs/2212.11247
https://doi.org/10.1007/11761679_3
https://doi.org/10.1016/j.laa.2018.12.022
https://doi.org/10.1007/BF01084390
https://doi.org/10.1007/978-3-319-02297-0_11
https://arxiv.org/abs/1112.2012
https://doi.org/10.1109/CCC.2012.34
https://cstheory.stackexchange.com/a/19518/129
https://doi.org/10.4230/LIPIcs.CCC.2021.16
https://doi.org/10.4230/LIPIcs.ITCS.2021.31
https://doi.org/10.1016/j.ejc.2021.103404
https://arxiv.org/abs/1710.04574
https://doi.org/10.24033/ast
https://doi.org/10.1137/130917788

N. Galesi, J. A. Grochow, T. Pitassi, and A. She 4:39

30 Zhengfeng Ji, Youming Qiao, Fang Song, and Aaram Yun. General linear group action on
tensors: A candidate for post-quantum cryptography. In Dennis Hofheinz and Alon Rosen,
editors, Theory of Cryptography – 17th International Conference, TCC 2019, Nuremberg,
Germany, December 1-5, 2019, Proceedings, Part I, volume 11891 of Lecture Notes in Computer
Science, pages 251–281. Springer, 2019. Preprint arXiv:1906.04330 [cs.CR]. doi:10.1007/
978-3-030-36030-6_11.

31 J. M. Landsberg. Tensors: geometry and applications, volume 128 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2012. doi:10.1090/gsm/128.

32 Jean B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
J. Optim., 11(3):796–817, 2000/01. doi:10.1137/S1052623400366802.

33 Thomas Lehmkuhl and Thomas Lickteig. On the order of approximation in approximative
triadic decompositions of tensors. Theoret. Comput. Sci., 66(1):1–14, 1989. doi:10.1016/
0304-3975(89)90141-2.

34 Thomas Lickteig. Typical tensorial rank. Linear Algebra Appl., 69:95–120, 1985. doi:
10.1016/0024-3795(85)90070-9.

35 Eugene M. Luks. Permutation groups and polynomial-time computation. In Groups and
computation (New Brunswick, NJ, 1991), volume 11 of DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., pages 139–175. Amer. Math. Soc., Providence, RI, 1993.

36 Brendan D. McKay. Practical graph isomorphism. Congr. Numer., 30:45–87, 1981.
37 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symbolic Comput.,

60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.
38 Takunari Miyazaki. Luks’s reduction of graph isomorphism to code equivalence. Comment to

E. W. Clark, https://groups.google.com/forum/#!msg/sci.math.research/puZxGj9HXKI/
CeyH2yyyNFUJ, 1996.

39 Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. Tensorizing
neural networks. In Proceedings of the 28th International Conference on Neural Information
Processing Systems – Volume 1, NIPS’15, pages 442–450. MIT Press, 2015.

40 Ryan O’Donnell, John Wright, Chenggang Wu, and Yuan Zhou. Hardness of robust graph
isomorphism, lasserre gaps, and asymmetry of random graphs. In Chandra Chekuri, editor,
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2014, Portland, Oregon, USA, January 5-7, 2014, pages 1659–1677. SIAM, 2014. Preprint
available as arXiv:1401.2436 [cs.CC]. doi:10.1137/1.9781611973402.120.

41 Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two
new families of asymmetric algorithms. In Advances in Cryptology – EUROCRYPT ’96, Inter-
national Conference on the Theory and Application of Cryptographic Techniques, Saragossa,
Spain, May 12-16, 1996, Proceeding, pages 33–48, 1996. doi:10.1007/3-540-68339-9_4.

42 Erez Petrank and Ron M. Roth. Is code equivalence easy to decide? IEEE Trans. Inf. Theory,
43(5):1602–1604, 1997. doi:10.1109/18.623157.

43 Alexander A. Razborov. Lower bounds for the polynomial calculus. Comput. Complex.,
7(4):291–324, 1998. doi:10.1007/s000370050013.

44 Grant Schoenebeck. Linear level lasserre lower bounds for certain k-csps. In 2008 49th Annual
IEEE Symposium on Foundations of Computer Science, pages 593–602. IEEE, 2008.

45 Aaron Snook, Grant Schoenebeck, and Paolo Codenotti. Graph Isomorphism and the Lasserre
hierarchy. arXiv:1401.0758 [cs.CC], 2014.

46 Michael Soltys. The complexity of derivations of matrix identities. PhD thesis, University
of Toronto, 2001. Availalble on ECCC at https://eccc.weizmann.ac.il/resources/pdf/
soltys.pdf.

47 Michael Soltys and Stephen Cook. The proof complexity of linear algebra. Ann. Pure Appl.
Logic, 130(1-3):277–323, 2004. doi:10.1016/j.apal.2003.10.018.

48 Martín Sombra. A sparse effective Nullstellensatz. Adv. in Appl. Math., 22(2):271–295, 1999.
doi:10.1006/aama.1998.0633.

CCC 2023

https://arxiv.org/abs/1906.04330
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1090/gsm/128
https://doi.org/10.1137/S1052623400366802
https://doi.org/10.1016/0304-3975(89)90141-2
https://doi.org/10.1016/0304-3975(89)90141-2
https://doi.org/10.1016/0024-3795(85)90070-9
https://doi.org/10.1016/0024-3795(85)90070-9
https://doi.org/10.1016/j.jsc.2013.09.003
https://groups.google.com/forum/#!msg/sci.math.research/puZxGj9HXKI/CeyH2yyyNFUJ
https://groups.google.com/forum/#!msg/sci.math.research/puZxGj9HXKI/CeyH2yyyNFUJ
https://arxiv.org/abs/1401.2436
https://doi.org/10.1137/1.9781611973402.120
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1109/18.623157
https://doi.org/10.1007/s000370050013
https://arxiv.org/abs/1401.0758
https://eccc.weizmann.ac.il/resources/pdf/soltys.pdf
https://eccc.weizmann.ac.il/resources/pdf/soltys.pdf
https://doi.org/10.1016/j.apal.2003.10.018
https://doi.org/10.1006/aama.1998.0633

4:40 On the Algebraic Proof Complexity of Tensor Isomorphism

49 Gang Tang, Dung Hoang Duong, Antoine Joux, Thomas Plantard, Youming Qiao, and
Willy Susilo. Practical post-quantum signature schemes from isomorphism problems of
trilinear forms. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology –
EUROCRYPT 2022 – 41st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Trondheim, Norway, May 30 – June 3, 2022, Proceedings, Part
III, volume 13277 of Lecture Notes in Computer Science, pages 582–612. Springer, 2022.
doi:10.1007/978-3-031-07082-2_21.

50 Jeroen Zuiddam. A note on the gap between rank and border rank. Linear Algebra Appl.,
525:33–44, 2017. doi:10.1016/j.laa.2017.03.015.

https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1016/j.laa.2017.03.015

Generative Models of Huge Objects
Lunjia Hu #

Department of Computer Science, Stanford University, CA, USA

Inbal Rachel Livni Navon #

Department of Computer Science, Stanford University, CA, USA

Omer Reingold #

Department of Computer Science, Stanford University, CA, USA

Abstract
This work initiates the systematic study of explicit distributions that are indistinguishable from a
single exponential-size combinatorial object. In this we extend the work of Goldreich, Goldwasser
and Nussboim (SICOMP 2010) that focused on the implementation of huge objects that are
indistinguishable from the uniform distribution, satisfying some global properties (which they coined
truthfulness). Indistinguishability from a single object is motivated by the study of generative
models in learning theory and regularity lemmas in graph theory. Problems that are well understood
in the setting of pseudorandomness present significant challenges and at times are impossible when
considering generative models of huge objects.

We demonstrate the versatility of this study by providing a learning algorithm for huge in-
distinguishable objects in several natural settings including: dense functions and graphs with a
truthfulness requirement on the number of ones in the function or edges in the graphs, and a version
of the weak regularity lemma for sparse graphs that satisfy some global properties. These and
other results generalize basic pseudorandom objects as well as notions introduced in algorithmic
fairness. The results rely on notions and techniques from a variety of areas including learning theory,
complexity theory, cryptography, and game theory.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Random network models; Theory of computation → Generating
random combinatorial structures

Keywords and phrases pseudorandomness, generative models, regularity lemma

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.5

Related Version Full Version: https://arxiv.org/abs/2302.12823 [17]

Funding Lunjia Hu: Supported by the Simons Foundation Collaboration on the Theory of Al-
gorithmic Fairness, Omer Reingold’s NSF Award IIS-1908774, and Moses Charikar’s Simons Invest-
igators award.
Inbal Rachel Livni Navon: Supported by the Simons Foundation Collaboration on the Theory of
Algorithmic Fairness, the Sloan Foundation Grant 2020-13941, and the Zuckerman STEM Leadership
Program.
Omer Reingold: Supported by the Simons Foundation Collaboration on the Theory of Algorithmic
Fairness and the Simons Foundation Investigators award 689988.

1 Introduction

A pseudorandom distribution is indistinguishable from the uniform distribution to a set
of computationally bounded distinguishers. Pseudorandomness is a cornerstone of many
areas of computer science and mathematics. The variability of pseudorandom distributions
stems from the different objects they can generate (bit strings, functions, permutations and
more) and the different computational bounds that can be imposed on the distinguishers. In
the area of cryptography, it is typical to consider powerful distinguishers that are at least

© Lunjia Hu, Inbal Rachel Livni Navon, and Omer Reingold;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 5; pp. 5:1–5:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lunjia@stanford.edu
mailto:inballn@stanford.edu
mailto:reingold@stanford.edu
https://doi.org/10.4230/LIPIcs.CCC.2023.5
https://arxiv.org/abs/2302.12823
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Generative Models of Huge Objects

Table 1 Comparison between problem settings.

What do we imitate? What do we construct?

Pseudorandomness distribution of objects distribution of objects
Explicit construction (e.g. expander graphs) distribution of objects single object
Our setup: generative models single object distribution of objects

polynomial time, giving rise to central notions such as pseudorandom generators [3, 41],
pseudorandom functions [8] and pseudorandom permutations [27]. More limited distinguishers
give rise to other fundamental notions such as k-wise independent hashing and ε-biased
distributions (cf. [40, 29]). In the area of explicit combinatorial constructions, we typically
try to emulate the uniform distribution by a single object, rather than with a distribution. A
primer example is the fundamental notion of expander graphs (see [16, 39] for surveys), with
its multiple variants (including various notions of randomness extractors). These are graphs
that are indistinguishable from a uniformly selected graph to a limited set of distinguishers
(such as distinguishers that check if a random edge crosses a given cut).

In these classic areas of pseudorandomness, a distribution, or even a single object, is
constructed to emulate a distribution (typically, the uniform distribution). In this paper we
ask for a distribution to emulate a single object (Table 1). This reversal may seem absurd
from the perspective of pseudorandomness but makes perfect sense from the perspective of
generative models. An early exposure of the TOC community to generative models was with
respect to the World Wide Web. These were models that produce distributions of graphs
that imitate some properties of the Web, such as power law on the degrees of nodes (see [28]
for a survey). At any given point, the web is a single graph, but it is also a very large graph
that does not have a simple description. Generative models gave a useful way to analyze, or
estimate through experimentation, the expected performance of protocols on the Web.

Other well studied generative models are the stochastic block model [15] and the more
elaborate mixed membership stochastic block model [1]. Consider a graph representing
some connections between individuals, such as the connectivity of the social network. The
stochastic block model partitions the vertices into disjoint communities and for every two
communities assigns a probability of connection. This model represents a distribution over
graphs where for each two vertices, an edge is placed independently with the probability
assigned to the pair of communities of its end points. (In the mixed-membership model,
each vertex is assigned a distribution over communities.) These models help identify useful
substructures within a social structure such as sub-communities or different social roles. But
given a single social network, B∗, what is an appropriate model to capture it? After all, a
model describes a distribution over networks rather than the single network we are trying
to explain. A prevalent approach is to aim at the maximum likelihood model. Out of all
models, the probability of sampling B∗ is maximized under the maximum likelihood model.
Heuristics for estimating the maximum likelihood model have been playing a major roles
in the generative-model literature and in its application in practice. It should be noted
that the probability that the model would produce B∗ is often very small. In this light,
the meaningfulness of a maximum-likelihood models may be debated and may depend on a
particular setting.

From the perspective of indistinguishability, it may be more natural to seek a model that
produce a distribution that is indistinguishable from B∗ to a meaningful set of distinguishers.
For example, in the case of the stochastic block model, natural distinguishers are defined

L. Hu, I. R. Livni Navon, and O. Reingold 5:3

by two sets of vertices U and V and ask what is the probability that a random edge in
the graph crosses from U to V . A stochastic block model that fool all such distinguishers
is exactly what is given by the Frieze-Kannan regularity lemma (also known as the weak
regularity lemma) [7]. The indistinguishability perspective on generative models and known
connections between learning and pseudrandomness, which we will discuss shortly, are both
a motivation as well as the starting point of this work.

1.1 Overall Goal: Indistinguishable Generative Models of Huge Objects
In many of the applications of generative models, such as modeling the Web or a social
network, the objects being modeled are huge. In this paper, we aim at a systematic theory
of efficiently learning and implementing huge generative models. Our models will generate a
distribution of objects satisfying some global properties that are indistinguishable from a
fixed combinatorial object. Such a theory presents non-trivial challenges that do not manifest
themselves neither when generating huge pseudorandom objects, nor in generative models of
polynomial-size objects.

Concretely, we assume that we have access to an object B∗ with exponential size. For
example, B∗ could be a function with an exponentially large domain, or a graph with
exponentially many vertices and edges. We are most interested in the case where the object
B∗ is too large to read or process as a whole, and we have to access it by sampling: for
example, when B∗ represents a function f : X → {0, 1} with |X| being exponentially large,
we may access B∗ by asking for random pairs (x, f(x)) ∈ X × {0, 1} (sample access) or
random inputs x ∈ X conditioned on f(x) = 1 (support access). Given access to the huge
object B∗, our goal is to create a generative model M for B∗. Here, our model M represents
a distribution over objects, and we want to ensure that this distribution is indistinguishable
from B∗ to all distinguishers D in a class D. Specifically, if we use DB ∈ {“accept”, “reject”}
to denote the output of distinguisher D given sample/support access to object B, our
indistinguishability requirement is that for every D ∈ D,

| Pr[DB∗
= “accept”] − EB∼M [Pr[DB = “accept”]]| ≤ ε.

We aim for building an efficient learner L that can output a model M satisfying the
indistinguishability requirement above when given sample/support access to the true object
B∗. When B∗ is exponentially large (which is the case we are interested in), the output
model M also needs to generate exponentially large objects, and thus we cannot expect an
efficient learner to directly output M . Instead, we want our learner to output an efficient
implementation of M , which, roughly speaking, is a randomized algorithm that can efficiently
provide sample/support access to objects drawn from M (Definitions 13 and 14).

Our goal of learning a generative model M indistinguishable from the true object B∗ is
analogous to the problem addressed by Goldreich, Goldwasser and Nussboim [9] in the area
of pseudorandomness. They study the problem of efficiently implementing a distribution
of huge objects, satisfying some global properties, that are indistinguishable from the
uniform distribution of such objects. Follow-up works of [9] such as [31, 30] study efficient
implementations that are indistinguishable from certain distributions of huge random graphs.
All these works aim to achieve indistinguishability from a known distribution of objects,
whereas in our problem of learning a generative model, we assume that the true object B∗

is initially unknown, and to collect information about B∗, we additionally need a learner L

that can use sample/support access to B∗ to efficiently construct an implementation of an
indistinguishable model.

CCC 2023

5:4 Generative Models of Huge Objects

Beyond indistinguishability, we also aim to achieve the notion of truthfulness introduced
in [9]. To demonstrate this notion, consider pseudorandom permutations fs : {0, 1}n 7→
{0, 1}n [27]. A distribution of permutations is pseudorandom if it is indistinguishable
from the uniform distribution of permutations. It should be noted that a pseudorandom
{0, 1}n 7→ {0, 1}n function [8] is also indistinguishable from a random permutation over
{0, 1}n (as long as the number of queries are sufficiently smaller than 2n/2). Nevertheless,
insisting that the pseudorandom objects satisfy the global condition of being a permutation
is critical in the applications of pseudorandom permutations. This motivates the distinction
of [9] between indistinguishability (that the pseudorandom objects are indistinguishable from
a uniform object to a class of distinguishers) and truthfulness which is a global property that
needs to hold exactly or approximately in a statistical sense. In our setup, a generative model
M is truthful if every object B drawn from the distribution represented by M satisfies a
certain global property. For example, when the true object B∗ is a function f∗ : X → {0, 1}
with support size |{x ∈ X : f∗(x) = 1}| being k, a truthful requirement on a generative
model M for B∗ may restrict M to always generate functions with support size k.

The study of implementing huge pseudorandom objects [32, 9, 31, 30] has pseudorandom
functions and permutations as vital building blocks. Besides these building blocks, our
techniques for learning generative models of huge objects also come from connections to the
regularity lemma and especially the work of Trevisan, Tulsiani and Vadhan [37]. In [37], they
construct an efficiently-implementable function f : X 7→ [0, 1] which is indistinguishable from
some f∗ : X 7→ [0, 1] to a family of distinguishers represented by functions g : X 7→ [0, 1].
Indistinguishability here means that |E[f(x)g(x)] − E[f∗(x)g(x)]| is smaller than some
error parameter ε. After [37], the problem of creating indistinguishable functions and its
applications to cryptography are further studied in [38, 22, 34, 35, 36, 4]. These works
assume that the true function f∗ is known and they do not explicitly deal with the problem
of learning f∗, but the corresponding learning task has been studied in the algorithmic
fairness literature through the notions of multi-accuracy, multi-calibration, and outcome
indistinguishability [14, 23, 5, 13, 6]. When applying techniques from these works to solve
some problems in our setting, we need to deal with additional challenges such as the
truthfulness requirement that we want our generative model to satisfy.

1.2 Our Results
The main conceptual contribution of this paper is in suggesting a new frontier for the study of
indistinguishability, which is highly motivated and technically challenging. As we introduce
in Section 1.1, the notion of indistinguishability from a single huge object combines at its
core the areas of learning theory and pseudorandomness which, as recent research uncovered,
have deep connections, providing a way to describe and address a rich landscape of natural
problems. Below we summarize the main problems we address in this new framework.

Truthful Learning That Preserves Support Size
Suppose we have sample access to a function f∗ : {0, 1}n → {0, 1} and we want to build
an indistinguishable generative model for f∗. Here sample access allows us to observe pairs
(x, f∗(x)) with x drawn uniformly at random from {0, 1}n, and accordingly, we assume that
every distinguisher also decides to accept or reject based on such a random pair (x, f(x)) from
a function f that may or may not be the true f∗. This task of learning a generative model for a
binary function is closely related to the task of no-access outcome indistinguishability studied
in [5], and it has been observed that the task can be reduced to multi-accuracy. Indeed,

L. Hu, I. R. Livni Navon, and O. Reingold 5:5

assuming that the distinguishers have bounded complexity and can be learned efficiently,
using previous algorithms in [14, 23, 5], we can design an efficient learner that constructs a
generative model indistinguishable from f∗ (Theorem 19). The model constructed this way
is specified using a predictor p : {0, 1}n → [0, 1], and the model represents the distribution of
functions f : {0, 1}n → {0, 1} where the function value f(x) is distributed independently for
every x ∈ {0, 1}n according to the Bernoulli distribution Ber(p(x)) with mean p(x).

Learning generative models for binary functions becomes a more challenging task when we
additionally enforce truthfulness requirements. A natural choice of truthfulness requirement
is to preserve the support size of the function. Assuming that we know the support size
|{x ∈ {0, 1}n : f∗(x) = 1}| of f∗ is k, we would like our model to only generate functions
that also have support size k. We show how to build an efficient learner that can output
such a truthful model which is also indistinguishable from the true function f∗:

▶ Theorem 1 (Informal statement of Theorem 20). Let B be the class of sample-access
objects induced by binary functions f : {0, 1}n → {0, 1} satisfying |supp(f)| = k, where
supp(f) := {x ∈ {0, 1}n : f(x) = 1}. Let D be a class of distinguishers that is efficiently
learnable. There exists an efficient (ε, δ)-learner L for B w.r.t. D and the learner always
outputs an efficient implementation of a model M that is truthful w.r.t. B.

Note that the truthfulness requirement on the support size cannot be enforced simply
using computationally-bounded distinguishers, because computing the support size of a
function f exactly requires reading the values f(x) for all the exponentially many inputs
x ∈ {0, 1}n. Also, this truthfulness requirement cannot be satisfied directly by a generative
model specified by a predictor p, where the function value f(x) is distributed according
to Ber(p(x)) independently of the function values f(x′) of other individuals x′ ≠ x. To
enforce a fixed support size, the function values of different individuals must coordinate in
a global manner, requiring us to use new techniques. We create a binary tree with leaves
corresponding to the function domain {0, 1}n, and following ideas in previous work such as
[9], we assign support size budgets from the root to the leaves. However, the true function
f∗ is a single unknown object and is very different from the uniform distribution considered
in [9], so there are no closed-from distributions (such as the binomial distributions used
in [9]) that can guide us to distribute the support size budget from a node two its two
children. Instead, we need to estimate how the budget should be divided, and this leads to
accumulated error towards the leaves and forces us to stop before reaching the leaves. To
efficiently propagate the budgets to the leaves, we solve a zero-sum game where player C

chooses the budgets for the leaves and player D distinguishes them from the target. We show
that if player D uses the multiplicative weights algorithm to minimize regret, we can create
an indistinguishable and truthful model from the empirical distribution over the optimal
responses from player C.

Learning a Function with Support Access
In the classic setting when learning a function f : {0, 1} → {0, 1}, the learner receives random
samples of form (x, f(x)) for a uniform x ∈ {0, 1}. In this work, we also consider a function
object in which we receive a random positive entry. That is, the learner receives random x’s
such that f(x) = 1. This type of random access is natural is certain situations, for example
when we have information on the individuals that graduated some program, but not on those
that did not.

CCC 2023

5:6 Generative Models of Huge Objects

▶ Theorem 2 (Informal statement of Theorem 21). Let α > 0, and let f : {0, 1} → {0, 1} be
a function such that Pr[f(x) = 1] = α. Let D be a collection of distinguishers, each D ∈ D
associated with a set SD ⊆ [N] and accepts x if x ∈ SD. If there exists a weak agnostic
learner for D, then there exists a learning algorithm L running in time poly(n), that receives
random elements from the set {x|f(x) = 1} and outputs a model M that is indistinguishable
from f to all D ∈ D.

The theorem holds when there is a weak agnostic learner for the collection of distinguishers
D under the distribution of a random support element (i.e. random x s.t. f(x) = 1). In the
full version [17] we show that if a collection of distinguishers D has a weak agnostic learner
over the standard sample access distribution, and the learner is a statistical query algorithm,
then there is a learner for D also under the distribution of random support element.

The proof of the theorem is similar to the classic boosting argument, with an additional
step that the learner performs of keeping the support size of the model approximately the
same as support size of f . This step is necessary because under the distribution of a random
support element, the boosting algorithm is only promised to work when the support sizes of
f and the model are approximately equal.

Learning an object under the distribution of random support element is potentially very
useful in the case of sparse objects. For a sparse function f , if we choose a uniform x ∈ {0, 1},
then f(x) = 0 with high probability, and a learner cannot hope to learn anything non-trivial
with random samples of form (x, f(x)). Unfortunately, the above theorem does not hold
for sparse functions, but in the next part we show how this theorem can be used to learn
different sparse objects - sparse graphs.

Learning Sparse Graphs Without Dense Subgraphs
Suppose G = ([N], E) is a graph represented by the N2 length string of its adjacency matrix.
In this representation, receiving a random edge from G is equivalent to receiving a random
support element from the function representing its adjacency matrix. Therefore, Theorem 2
implies that we can learn a model for G that is indistinguishable for a set of distinguishers D
that have a weak agnostic learner. The theorem only holds for functions f with a constant
fraction of 1 entries, which corresponds to a dense graph. What about sparse graphs?

Learning a sparse graph, or a sparse object in general, is a very challenging task because
of the huge domain. The weak regularity lemma [7] has error that is proportional to N2,
which is too much in the case of sparse graphs (an empty graph is indistinguishable from a
sparse graph with this error). Therefore in the setting of a sparse graphs it is more natural to
require an ε error from the distinguisher under the distribution of receiving a random edge.
Under this distribution, the error of the distinguishers scales with the number of edges. We
show a learner for a specific class of sparse graphs, those that have no dense subgraphs. We
note that a random sparse graph has no dense subgraphs, so many graphs have this property.

▶ Theorem 3 (Informal statement of Theorem 25). Let G = ([N], E) be a sparse graph with
no dense subgraphs. Let D be a collection of distinguishers, each D ∈ D associated with
two sets UD, VD ⊆ [N] and accepts an edge (u, v) if u ∈ UD, v ∈ VD. If there exists a weak
agnostic learner for D, then there exists a learning algorithm L running in time polylog(N),
that receives random edges from G and outputs a model M that is indistinguishable from f

to all D ∈ D.

The model that the learner outputs is dense, i.e. the model outputs graphs with Θ(N2)
many edges. This is done because of technical reasons – to allow us to use rejection sampling
when training the model. This brings us to the question, is there a dense graph that is

L. Hu, I. R. Livni Navon, and O. Reingold 5:7

indistinguishable from our sparse graph G? The answer to this question depends on G, and
in the full version [17] we show that if a sparse graph G has a very dense subgraph, then
there is no dense graph that is indistinguishable from G.

The proof of the theorem has two parts, in the first part we show that for every sparse
graph G with no dense subgraphs, there exists a dense graph H that is indistinguishable from
G. In this part of the proof we apply the strong regularity lemma for sparse graphs [26, 33]
on G, and use the resulting partition to build the dense indistinguishable graph H . This part
of the proof is existential, and we do know how to find H efficiently, as the strong regularity
lemma does not have an efficient algorithm for finding the partition. It is not possible to use
the weak regularity lemma or its variants [7], because its error is too large. In the second
part of the proof, we reduce the learning G to learning H , and show that the resulted model
M is indistinguishable from G to all distinguishers D ∈ D.

Other Results on Learning Generative Models
In this work we also show indistinguishable models in several other settings

Let f : {0, 1}n → {0, 1}n be a function. Learning such function is harder than
learning a binary function because the large domain makes f a sparse object (when
viewed as a graph for example it is an out-degree one graph). For such functions,
we show that there exists a learner that given samples from the distribution (x, f(x)),
outputs a model that is indistinguishable against the following set of distinguishers
D = {(SD, jD)|SD ⊂ {0, 1}n

, jD ∈ [n]} such that D = 1 ⇐⇒ x ∈ SD, f(x)j = 1. This
appears on Section 3.4.
In Section 4.1 we apply the theorems for functions on the adjacency matrix of a dense
graph G = ([N], E). For a set of distinguishers D that have a weak agnostic leaner, we
have an efficient learner that outputs an indistinguishable model when G is:

1. A dense graph when the learner receives random adjacency matrix entries.
2. A dense graph with a fixed total number of edges m = Θ(N2).
3. A directed graph with a fixed out-degree m = Θ(N).
4. A dense graph when the learner receives random edges.
For a directed graph G = ({0, 1}n, E) with constant out-degree d, we can treat each of the
d outgoing degrees as a function fi : {0, 1}n → {0, 1}n. For the same set of distinguishers
that we can handle in the case of a length-preserving functions (the first item in this list),
we provide an efficient learner.
In the case of a uniform degree undirected graph, we provide in Section 4.3 a learn-
ing algorithm for an indistinghuishable model, albeit for a somewhat limited set of
distinguishers.

Impossibility Results
As we discussed earlier, our goal of learning a generative model is closely related to the
goal in [9] of implementing huge random objects, but a key difference is that we assume
the groundtruth is a single unknown object B∗, whereas [9] considers a known uniform
distribution of objects. This means that we need an additional learning procedure to collect
information about B∗, and we show in Section 5 that our task of efficiently learning a
generative model is only possible when the distinguisher class is efficiently learnable.

Besides the requirement of learning, our setting is more challenging than the setting
in [9] in many other ways. We demonstrate this by another two impossibility results
on fooling entry-access distinguishers and fooling stronger distinguishers than the model.

CCC 2023

5:8 Generative Models of Huge Objects

When we consider a pseudorandom function, fs, the function is indistinguishable from the
uniform distribution to distinguishers that have entry access to the function (allowed to ask
for an arbitrary string x and get fs(x)). Furthermore, while fs is computable in a fixed
polynomial time, the distinguishers can run in any polynomial time (and under reasonable
assumptions, even exponential time). [9] and subsequent work inherit these two properties -
indistinguishability to distinguishers that are computationally more complex than the models
and have entry access to the model. In Section 5 we argue that neither of these properties is
achievable in our setting.

For the impossibility of fooling distinguishers with entry access, in Theorem 27 we give
the example of a class D that contains a distinguisher Dx for every input x ∈ {0, 1}n which
queries the function value f(x) for a function f and outputs “accept” if and only if f(x) = 1.
We argue that every model M that is indistinguishable from the true f∗ for the set of
distinguishers D has to be very close to f∗. Since the size of f∗ is exponential and f∗ is
unknown, no efficient learner can output a model that is close to f∗. We also show an
example, using an idea from [37], of a distinguisher and a true function f∗, such that the
distinguisher can tell apart f∗ from any model M with a low complexity compared to the
distinguisher (Theorem 28). This highlights the fact that in our setting, the generative model
and the learner constructing the model have to be computationally comparable or stronger
than the distinguishers.

1.3 Related Work
As mentioned in Section 1.1, [9] introduced the problem of creating an indistinguishable
implementation of a random object. [9] as well as follow-up works [31, 30] also present
a collection of positive results for dense and sparse graphs or functions with a variety of
truthfulness conditions and access models of the distinguishers.

The connection between generative models and indistinguishability has been manifested
through the invention of generative adversarial networks (GANs) [10, 2]. Intuitively, a
GAN is trained to imitate a distribution of objects (say images). The generator is trained
in concert with a discriminator that could be interpreted as a distinguisher. Through
a sequence of rounds, the generator is trained to fool the discriminator which is then
trained to fail the generator. GANs highlight the connection between generative models and
indistinguishability [21], but they do not naturally fall into our framework as they are more
directly described in terms of indistinguishability of two distributions.

The connection between indistinguishability and learning theory has been established in
many previous works (e.g. [37] applies the boosting technique from learning theory). More
recently, in the context of algorithmic fairness, the relation between learning theory and
indistinguishability has been dramatically expanded in the notions of multicalibration and
outcome indistinguishability [14, 5], in applications to learning and statistical inference
through the notions of omnipredictors and universal adapatability [12, 24, 18, 11, 25] and in
the emergence of research uncovering intricate and exciting connections while studying the
sample complexity of indistinguishability from a learning-theoretic perspective [20, 19].

It is possible to view our learning setting as a 2-players zero-sum game, between the
learner and the distinguishers, in which the learner’s goal is to output a model for an
indistinguishable object and the distinguishers try to tell apart the input and the model. In
this setting, there is a relation between min-max theorems and regularity-lemma theorems.
Such theorems prove that it is possible to express a complex object f by a function of a
few simpler objects g1, . . . gt that, in our setting, represent the distinguishers [37, 38]. There
have been works improving the parameters and also using such theorems for applications
in cryptography [38, 22, 34, 35, 36, 4]. In this work, our setting is slightly different, as we
assume that the object f is complex and unknown, and the learner has to learn it. The proof

L. Hu, I. R. Livni Navon, and O. Reingold 5:9

of Theorem 3 has an intermediate step that is existential and has a similar structure to a
weak regularity lemma theorems, but since the required error there is too small, we derive it
from the sparse strong regularity lemma.
▶ Note 4. This is an abridged version of the paper. We refer the readers to the full version [17]
for proofs and other contents that are omitted in this version.

2 Preliminaries

Throughout the paper, we are interested in learning objects such as functions and graphs,
and we are particularly interested when these objects have exponential sizes (e.g. functions
with exponentially large domains and graphs with exponentially many vertices and edges).
We typically use B to denote an object, and use B to denote a class of objects. We view an
object B as a function B : Q → ∆A that maps a query q ∈ Q to a distribution B(q) over
answers in A.

2.1 Functions
When the object is a function f : X → Y , we consider three access types. For sample access,
B returns a random pair (x, f(x)). For support access, it returns a random x such that
f(x) = 1. For entry access, upon querying x, B returns f(x).

▶ Definition 5 (Function-induced sample-access object). Let f : X → Y be a function and
let B : Q → ∆A be an object. We say B is the sample-access object induced by f if
Q = {⊥}, A = X × Y , and B(⊥) is the distribution of (x, f(x)) ∈ A where x is drawn
uniformly from X.

▶ Definition 6 (Function-induced support-access object). Let f : X → {0, 1} be a binary
function. We define the support of f to be supp(f) := {x ∈ X : f(x) = 1}. Let B : Q → ∆A

be an object. Assuming supp(f) ̸= ∅, we say B is the support-access object induced by f if
Q = {⊥}, A = X, and B(⊥) is the uniform distribution over supp(f) ⊆ X.

▶ Definition 7 (Function-induced entry-access object). Let f : X → Y be a function and let
B : Q → ∆A be an object. We say B is the entry-access object induced by f if Q = X, A = Y ,
and for every q ∈ Q, B(q) is the singleton distribution such that a ∼ B(q) equals to f(q)
deterministically.

In this paper, we show positive results for learning generative models of functions with sample
access and support access (Section 3) whereas we show impossibility results for entry access
(Section 5). This separation is mainly because entry access makes the distinguishers stronger
and thus makes indistinguishability harder to achieve (see Definitions 10 and 11 below).

2.2 Graphs
For a graph G = (V, E) where we assume V has exponential size, we define two access types,
sample-access which corresponds to a random adjacency matrix entry, and support-access
which corresponds to a random edge in the graph.

▶ Definition 8 (Graph-induced sample-access object). Let G = (V, E) be a directed or
undirected graph and let B : Q → ∆A be an object. We say B is the sample-access object
induced by G if Q = {⊥}, A = V × V × {0, 1}, and B(⊥) is the distribution of (u, v, y) ∈ A

where (u, v) is drawn uniformly from V × V , y = 1 if (u, v) ∈ E and y = 0 otherwise.

CCC 2023

5:10 Generative Models of Huge Objects

▶ Definition 9 (Graph-induced support-access object). Let G = (V, E) be a directed or
undirected graph and let B : Q → ∆A be an object. Assuming E ̸= ∅, we say B is the
support-access object induced by G if Q = {⊥}, A = V × V , and B(⊥) is the uniform
distribution over E ⊆ V × V .

2.3 Indistinguishability
Each learner we design in this paper has access to a ground-truth object B∗, and it aims
to output an object B that is indistinguishable from B∗. In many cases, the learner does
not just output a single object B, but a distribution over objects, and we refer to such
distributions as models. Below we formally define the notion of indistinguishability.

▶ Definition 10 (Distinguisher). A distinguisher D is an algorithm that when given access to
an object B : Q → ∆A, outputs “accept” or “reject”. That is, the distinguisher is allowed to
make queries q ∈ Q to the model, and for each query q the distinguisher receives an answer
a ∈ A drawn independently from B(q) ∈ ∆A. We allow the distinguisher D itself to be
randomized, and we use random variable DB to denote the output of the distinguisher D in
{“accept”, “reject”} when given access to B.

▶ Definition 11 (Indistinguishability). Let B∗ : Q → ∆A be an object, and let model M be a
distribution over objects B : Q → ∆A. We say model M is ε-indistinguishable from object
B∗ w.r.t. a distinguisher D if

| Pr[DB∗
= “accept”] − EB∼M [Pr[DB = “accept”]]| ≤ ε. (1)

We say model M is ε-indistinguishable from object B∗ w.r.t. a class D of distinguishers if
(1) holds for every D ∈ D.

2.4 Truthfulness
In addition to indistinguishability, another desirable property of a model is truthfulness
introduced in [9]. Truthfulness requires every object generated from the model to satisfy a
certain (usually global) property which we formalize using an object class B:

▶ Definition 12 (Truthfulness). We say a model M is truthful w.r.t. an object class B if

PrB∼M [B ∈ B] = 1.

2.5 Implementations
Our goal is to design efficient learners, and thus we cannot expect the learner to output a
model M explicitly, especially when the objects drawn from M are huge. Instead, our learner
outputs an efficient implementation of a model, defined as follows.

▶ Definition 13 (Ordinary Implementation). For ℓ ∈ Z≥0, let T be a randomized algorithm
that takes (r, q) ∈ {0, 1}ℓ × Q as input, and outputs T (r, q) ∈ A. We say T is an ordinary
implementation of a model M with seed length ℓ if for every seed r ∈ {0, 1}ℓ there exists an
object Br : Q → ∆A such that
1. for every q ∈ Q, T (r, q) is distributed according to Br(q), where the randomness in T (r, q)

comes from the internal randomness in algorithm T ;
2. Br is distributed according to M when r is drawn uniformly from {0, 1}ℓ.

L. Hu, I. R. Livni Navon, and O. Reingold 5:11

While our goal is to output an ordinary implementation with a polynomial-length seed,
following the approach in [9], it is more convenient to first build implementations using a
random oracle and then transform the implementation to an ordinary one using Lemma 15.

▶ Definition 14 (Random-Oracle Implementation). Let T be a randomized algorithm that
takes a function r : {0, 1}∗ → {0, 1} as an oracle. On an input q ∈ Q, the algorithm T

outputs T r(q) ∈ A. We say T is a random-oracle implementation of a model M if for every
r : {0, 1}∗ → {0, 1} there exists an object Br : Q → ∆A such that
1. for every q ∈ Q, T r(q) is distributed according to Br(q), where the randomness in T r(q)

comes from the internal randomness in algorithm T ;
2. Br is distributed according to M when r is a uniformly random function from {0, 1}∗ to

{0, 1}.

▶ Lemma 15 (Theorem 2.9 in [9]). Suppose that one-way functions exist. There exists an
algorithm H with the following properties. Let D be a class of distinguishers where each D ∈ D
is a circuit of size at most W for some W ≥ 1. Let T be a random-oracle implementation of
a model M with circuit complexity at most W . Given W, T and an arbitrary ε ∈ (0, 1) as
input, the algorithm H runs in time poly(W, 1/ε) and outputs an ordinary implementation
T ′ of a model M ′ where T ′ has seed length and circuit complexity both being poly(W, 1/ε),
and

|EB′∼M ′ Pr[DB′
= “accept”] − EB∼M Pr[DB = “accept”]| ≤ ε for every D ∈ D.

Moreover, if M is truthful w.r.t. an object class B, then M ′ is also truthful w.r.t. B.

Lemma 15 can be proved by using a pseudorandom function to emulate the random oracle.

2.6 Learning
We describe the learners we aim to design in the definition below.

▶ Definition 16 (Learner). Let B be a class of objects B : Q → ∆A and D be a class of
distinguishers. An (ε, δ)-learner L for the class B w.r.t. D is an algorithm with the following
properties. For any B∗ ∈ B, given access to B∗, the learner outputs an implementation T

of a model M such that with probability at least 1 − δ, M is ε-indistinguishable from B∗

w.r.t. D.

2.7 Other Notations
For v ∈ R, we define cap(v) by capping its value into [0, 1], i.e.,

cap(v) =

v, if 0 ≤ v ≤ 1;
1, if v > 1;
0, if v < 0.

Given a list of values (v1, . . . , vt) we define Lcap(v1, . . . , vt) by summing over the list and
capping the value to [0, 1] in every iteration. We formally define it recursively:

Lcap(v1) = cap(v1),
Lcap(v1, . . . , vt) = cap(Lcap(v1, . . . , vt−1) + vt). (2)

CCC 2023

5:12 Generative Models of Huge Objects

3 Learning Functions with Exponentially Large Domains

The goal of this section is to efficiently learn a generative model that is indistinguishable
from a target function f∗ : X → Y to a class D of distinguishers. We allow the domain
X of the function to have exponential size N := |X|, and require our learner to run in
time polylog(N). This means that the learner cannot read the entire function f∗, and can
only access it via random sample. Throughout the paper, our learners output an efficient
random-oracle implementation T of a model M , which can be turned in to an efficient
ordinary implementation by Lemma 15.

3.1 Learning Sample-Access Binary Functions
We start by studying the case where the target object B∗ is the sample-access object induced
by a binary function f∗ : X → {0, 1} (Definition 5). We assume that every distinguisher
D ∈ D satisfies the following: when given access to a sample-access object B induced by
a function f : X → {0, 1}, the distinguisher asks a single query ⊥, receives an answer
a = (x, y) ∼ B(⊥), and outputs D(x, y) ∈ {“accept”, “reject”}. We allow the distinguisher
itself to be randomized, and each distinguisher D defines a function gD : X → [−1, 1] such
that

gD(x) = Pr[D(x, 1) = “accept”] − Pr[D(x, 0) = “accept”] for every x ∈ X.

We use the following claim to relate a distinguisher D ∈ D to the function gD : X → [−1, 1]:

▷ Claim 17. For every distinguisher D ∈ D, the following equation holds for every x ∈ X

and y1, y2 ∈ {0, 1}:

Pr[D(x, y1) = “accept”] − Pr[D(x, y2) = “accept”] = y1gD(x) − y2gD(x).

The claim can be easily proved by considering the four possible choices of (y1, y2) ∈ {0, 1} ×
{0, 1}.

As we show later in Section 5, it is necessary to impose certain learnability assumptions
on the distinguishers. To that end, we assume that there is an auditor for the function class
G := {gD : D ∈ D}, defined as follows:

▶ Definition 18 (Auditor). Let D and G be defined as above. We say an algorithm Λ is an
(ε, γ, δ)-auditor for G if it satisfies the following property. Given access to a sample-access
object B∗ induced by a function f∗ : X → {0, 1} and taking a predictor p : X → [0, 1] as an
oracle, if there exists g ∈ G such that

|E[f∗(x)g(x)] − E[p(x)g(x)]| ≥ ε,

then Λ outputs ĝ : X → [−1, 1] satisfying the following with probability at least 1 − δ:

E[f∗(x)ĝ(x)] − E[p(x)ĝ(x)] ≥ γ.

The auditor defined above can be viewed as a weak agnostic learner for the class G. When
the domain X is {0, 1}n with size N = 2n, many classes allow efficient auditors that run in
time poly(n) = polylog(N). Using an auditor for G, we prove the following theorem:

▶ Theorem 19. Let the distinguisher class D and the function class G be defined above.
Let ε, γ, δ, δ′ ∈ (0, 1/2) be parameters satisfying γ ≤ ε and δ′ ≤ cδγ2 for a sufficiently small
absolute constant c > 0. Let B be the class of sample-access objects induced by binary
functions f : X → {0, 1}. Let Λ be an (ε, γ, δ′)-auditor for G (Definition 18). Then there

L. Hu, I. R. Livni Navon, and O. Reingold 5:13

exists an (ε, δ)-learner L for B w.r.t. D. Moreover, if the auditor Λ runs in time at most
W1 and always outputs a function with circuit size at most W2, then the learner L runs
in time poly(γ−1, log(δ−1), W1) and always outputs implementations with circuit complexity
Õ(γ−2W2).

We prove the theorem by applying results from algorithmic fairness [37, 14, 23], see the full
version for more details.

3.2 Truthful Learning That Preserves Support Size
Some desirable properties of a generative model are global and cannot be enforced using
computationally bounded distinguishers alone. This motivated [9] to introduce the notion
of truthfulness that ensures such global properties beyond indistinguishability. Here we
focus on a natural global property of a binary function f : X → {0, 1}: the size of its
support supp(f) := {x ∈ X : f(x) = 1}. The model M we create in Section 3.1 using the
multiaccurate predictor p may generate functions f with support size different from the target
function f∗. Indeed, even if

∑
x∈X p(x) = |supp(f∗)|, a random function f with each entry

f(x) independently drawn from Ber(p(x)) is not guaranteed to satisfy |supp(f)| = |supp(f∗)|.
Now we show an efficient learner that outputs truthful models that preserve the support size
of the generated functions.

An overview of the proof appears in the introduction, and the proof appears in the full
version [17].

▶ Theorem 20. Let the distinguisher class D and the function class G be defined as in
Section 3.1. Let ε, γ, δ, δ′ ∈ (0, 1/2) be parameters satisfying γ ≤ ε and δ′ ≤ cδγ2 for a
sufficiently small absolute constant c > 0. Let B be the class of sample-access objects induced
by binary functions f : X → {0, 1} satisfying |supp(f)| = k, where X = {0, 1}n. Let Λ be an
(ε, γ, δ′)-auditor for G (Definition 18). Then there exists an (ε, δ)-learner L for B w.r.t. D
and the learner always outputs a random-oracle implementation of a model M that is truthful
w.r.t. B. Moreover, if the auditor Λ runs in time at most W1 and always outputs a function
with circuit size at most W2, then the learner L runs in time poly(n, γ−1, log(δ−1), W1) and
always outputs an implementation with circuit complexity poly(n, γ−1, W2).

3.3 Learning Support-Access Binary Functions
In the previous sections we showed how to learn and construct an implementation of an
indistinguishable model for a function induced sample-access object B∗, i.e. there exists a
function f∗ : X → {0, 1}, and the distinguishers and learner both receives random samples
of form (x, f∗(x)). In this section, we learn a support-access object induced by a function see
Definition 6. For a binary function f∗ : X → {0, 1}, the support-access object B∗ induced
by f∗ outputs random samples from the set {x|f∗(x) = 1}. We show how to construct an
efficient implementation of a model that is indistinguishable from B∗.

Distinguishers: Let D be a set of distinguishers, such that each D ∈ D has an associated
subset SD ⊂ X. Given access to a sample x from a object B,the distinguisher accepts if
x ∈ SD. We assume that for every D ∈ D, the set SD has known size and an efficient
description, that on input x answers if x ∈ SD.

Auditor: Let D be defined as above. We say that an algorithm ΛB∗,p is an (ε, γ, δ)
auditor for the collection of sets S = {SD|D ∈ D} if it has the following proper-
ties. Given access to a function-induced support access-object B∗ and query access
to a predictor p : X → [0, 1]. If there exists S ∈ S and b ∈ {−1, 1} such that

CCC 2023

5:14 Generative Models of Huge Objects

b
(
Prx∼B∗(⊥)[x ∈ S] − Prx∼p[x ∈ S]

)
> ε. Then the auditor returns a set S′ such that

with probability 1 − δ, b
(
Prx∼B∗(⊥)[x ∈ S′] − Prx∼p[x ∈ S′]

)
> γ. Where x ∼ p is the

distribution generated from the predictor p, i.e. Prx∼p[x = x′] = p(x′)/
∑

x′′∈X p(x′′).

▶ Theorem 21. Let α ∈ [0, 1] be a parameter, and let B be a collection of support access
object induced by binary functions, such that ∀B ∈ B,Ex∈X [fB(x)] = α. Let D be a collection
of distinguishers as described above.

Let ε, γ, δ′, δ′′ be parameters such that δ′ ≤ cδγ2α−2 for a sufficiently small constant c.
Let Λ be an (ε, γ, δ′) auditor Λ for D. Then there exists a (2ε, δ)-learner L for B with respect
to the distinguisher class D. The learner L runs in time poly(γ−1 log(δ−1)α−1, W1, W2),
where W1 is the running time of the auditor Λ and W2 the circuit complexity of its output.
The implementation T that the learner outputs runs in time poly(γ−1 log(δ−1)α−1, W2)

The learner L in the theorem above has access to an auditor Λ that can audit support-access
objects. In the full version [17] we discuss under which conditions such auditor exists. The
learning algorithm is similar to the classic boosting algorithm, with an additional step of
keeping the expected value of the model to be approximately α. We note that if the function
is sparse, i.e. α is very small, then the algorithm is no longer efficient.

3.4 Learning Bit-String Functions
In this section we are interested in learning a function f : {0, 1}n → {0, 1}n. This is a harder
than learning a binary function, because the range of the function is very large. Therefor we
only learn an indistinguishable model with respect to a very limited set of distinguishers,
with a product structure. In this setting, the sampling distribution is a pair (x, f(x)) for a
random input x.
Distinguishers: Let D, such that each distinguisher D ∈ D has an set SD ⊂ {0, 1}n and a

coordinate j ∈ [n]. The distinguisher D accept a sample (x, f(x)) if x ∈ S and f(x)j = 1.
Auditor: Let D be defined as above. We say that an algorithm ΛB∗,p is an (ε, γ, δ) aud-

itor for the collection of sets S if it has the following properties. Given access to a
function-induced support access-object B∗ and query access to a set of n predictors
p1, . . . pn, such that pj : {0, 1}n → [0, 1]. If there exists S ∈ S and j ∈ [n] such
that b (Prx[x ∈ S, f(x)j = 1] − Ex[pj(x) · 1(x ∈ S)]) > ε. Then the auditor returns a set
S′ ⊆ {0, 1}n and j ∈ [n] such that b (Prx[x ∈ S′, f(x)j = 1] − Ex[pj(x) · 1(x ∈ S′)]) > γ

with probability 1 − δ.

▶ Theorem 22. Let B be a collection of support access object induced by functions f :
{0, 1}n → {0, 1}n. Let D be a collection of distinguishers as described above.

Let ε, γ, δ′, δ′′ be parameters such that δ′ ≤ cδγ2n−1 for a sufficiently small constant c.
Let Λ be an (ε, γ, δ′) auditor for D. Then there exists a (2ε, δ)-learner L to B with respect
to the distinguisher class D and the learner L runs in time poly(γ−1 log(δ−1)α−1, W1, W2),
where W1 is the running time of the auditor Λ and W2 the circuit complexity of its output.
The implementation T that the learner outputs runs in time poly(γ−1 log(δ−1)α−1, W2)

4 Learning Exponential-Size Graphs

4.1 Learning Dense Graphs
The most basic setting for graphs is the dense model, where the graph-induced sample-access
object B induced by a graph G = ([N], E) can be thought of as getting a random entry
((u, v), b) for u, v ∈ [N], b ∈ {0, 1} from the adjacency matrix of G (see Definition 8). We can

L. Hu, I. R. Livni Navon, and O. Reingold 5:15

think of the adjacency matrix of the graph as a function, where the graph imposes some
extra structure on the distinguishers. Therefore, some of the results from Section 3 follow
directly.
Distinguishers: Let D be a collection of distinguishers. Each distinguisher has two sets of

vertices UD, VD ⊂ [N]. When getting a random entry ((u, v), b) from the graph-induced
sample-access object B∗, it accepts if u ∈ UD, v ∈ VD and b = 1.

Auditors: An algorithm Λ is an (ε, γ, δ)-auditor for a collection of tuples S containing pairs
(U, V) ⊂ [N] × [N] if it satisfies the following. The auditor received query access to a
predictor p : [N] × [N] → [0, 1] and to a graph-induced sample-access object B∗ induced
by a graph G∗ = ([N], E∗). If there exists (U, V) ∈ S such that

b·
(

Pr
(u,v)∈[N]×[N]

[u ∈ U, v ∈ V, (u, v) ∈ E∗] − E(u,v)∈[N]×[N][1(u ∈ U, v ∈ V)p(u, v)]
)

≥ ε.

Then with probability (1 − δ), it outputs U ′, V ′ such that

b·
(

Pr
(u,v)∈[N]×[N]

[u ∈ U ′, v ∈ V ′, (u, v) ∈ E∗] − E(u,v)∈[N]×[N][1(u ∈ U ′, v ∈ V ′)p(u, v)]
)

≥ γ.

The setting of a dense graph can be derived directly from the function theorem, by applying
it on the adjacency matrix of the graph.

▶ Corollary 23 (Corollary of Theorem 19). Let the distinguisher class D be defined above.
Let ε, γ, δ, δ′ > 0 be parameters satisfying δ′ ≤ cδγ2 for a sufficiently small absolute constant
c > 0. Let B be the class of sample-access objects induced by graphs over vertex set [N]. Let
Λ be an (ε, γ, δ′)-auditor for S = {(UD, VD)|D ∈ D}. Then there exists an (ε, δ)-learner L

for B w.r.t. D. Moreover, if the auditor Λ runs in time at most W1 and always outputs a
function with circuit size at most W2, then the learner L runs in time poly(γ−1, log(δ−1), W1)
and always outputs implementations with circuit complexity O(γ−2W2).

The same holds also for learning a graph with a fixed number of edges, by applying
Theorem 20. Similarly, we can derive a theorem on directed graphs by applying Theorem 19
or Section 3.2 on the directed graph adjacency matrix. It is also possible to generate a
directed graph with a fixed out-degree by applying Section 3.2 for every vertex individually.

4.2 Learning Sparse Graphs Without Dense Subgraphs
For a sparse graph, a sample-access graph object is not useful, because a random entry in
the adjacency matrix of the graph is nearly always 0. We study graph-induced support-
access objects (Definition 9), which corresponds to an object B∗ induced by a sparse graph
G = ([N], E), B(⊥) that outputs a random edge in the graph (u, v) ∈ E.

Applying Theorem 21 implies a corollary for support-access graphs, but the theorem is
only efficient for dense graphs. In this section we show how to create a dense model for a
sparse graph, as long as the sparse graph does not have a subgraph which is too dense. We
do so by using the strong regularity lemma for sparse graphs [26, 33].

Distinguishers: Let D be a collection of distinguishers. Each distinguisher has two sets of
vertices UD, VD ⊂ [N]. A distinguisher D on input (u, v) accepts if u ∈ UD and v ∈ VD.

Auditors: An algorithm Λ is an (ε, ε′, δ)-auditor for a collection pairs of sets S, such that
(U, V) ∈ S, U, V ⊂ [N] if it satisfies the following. The auditor received query access to
a predictor p : [N] × [N] → [0, 1] and access to a graph-induced support-access object

CCC 2023

5:16 Generative Models of Huge Objects

B∗ representing a graph G∗ = ([N], E∗). If there exists a pair of sets (U, V) ⊂ S and
a bit b such that b ·

(
Pr(u,v)∼B∗(⊥)[u ∈ U, v ∈ V] − Pr(u,v)∼p[u ∈ U, v ∈ V]

)
≥ ε, Then Λ

outputs sets U ′, V ′ ⊂ [N] such that

b ·
(

Pr
(u,v)∼B∗(⊥)

[u ∈ U ′, v ∈ V ′] − Pr
(u,v)∼p

[u ∈ U ′, v ∈ V ′]
)

≥ ε′.

The distribution (u, v) ∼ p is defined by the predictor p, i.e. for all u, v ∈ [N] we have
Pr(u′,v′)∼p[u′ = u, v′ = v] = p(u, v)/

∑
u′′,v′′∈[N] p(u′′, v′′).

Graph Notations and Definitions

For a graph G = ([N], E) and U, V ⊂ [N], we define EG(U, V) = {(u, v) ∈ E|u ∈ U, v ∈ V }
to be the set of edges between U, V in G. We denote by ρG(U, V) the edge density between
U, V in G, ρG(U, V) = |EG(U,V)|

|U ||V | . We denote by ρG = ρG([N], [N]) the edge density of the
graph. We use the definition of upper-uniform graphs from [26, 33] with a small additional
requirement also for small sets.

▶ Definition 24 (Upper-uniform graphs). A graph G = ([N], E) is (η, γ)-upper uniform, if for
every two disjoint sets U, V ⊂ [N], with min {|U | , |V |} ≥ ηN we have that ρG(U, V) ≤ γρG,

and for U, V such that min {|U | , |V |} < ηN , we have that |E(U, V)| ≤ γηρGN2.

We remark that a random sparse graph is upper-uniform for constants η, γ with high
probability.

▶ Theorem 25. For every parameter γ, ε, ε′, λ′λ′′ > 0, such that λ′ ≤ cλε′2 for a sufficiently
large constant c. Then there exists η ∈ [0, 1] such that the following holds. Let B be a
collection of graph-induced support access objects, such that for each B∗ ∈ B, the graph it
represents GB∗ is (η, γ)-upper-uniform.

Let D be a collection of distinguishers. If there exists an (ε, ε′, δ′)-auditor Λ for the
collection of sets C = {(UD, VD)|D ∈ D}, then there exists an (ε, δ′′)-learning algorithm L

for all B∗ ∈ B with respect to D.

The proof of the theorem appears in the full version [17]. In addition, we show how this
theorem can be combined with Theorem 20 to create a sparse uniform out-degree graph.

4.3 Learning Uniform Degree Graphs
Suppose we are interested in generating a truthful model for a uniform degree d graph.
That is, we want that all graph in our model has a uniform degree d. In previous sections
we discussed directed graphs with uniform out-degree. For undirected graphs, in [9] the
authors show a construction of a graph indistinguishable from random, by applying a random
permutation on a large girth expander. In this work we restrict the set of distinguishers to
those that can be described by a partition, and create a model by learning the densities of
the edges between each part in the partition and permuting the edges.
Distinguishers: Then the set of distinguishers D contains distinguishers D with sets (UD, VD)

such that U, V ∈ U . Every distinguisher D accepts an edge (u, v) if u ∈ U, v ∈ V . Let
U = {U ⊂ [N]|∃D s.t. U = UD or U = VD}. We assume that U is a partition with t

parts, and that |UJ | is linear in N .

▶ Lemma 26. Let B be a collection of graph-induced support-access objects, such that for
all B∗ ∈ B, the graph GB∗ has a uniform degree d. Let D be the distinguishers class defined
above. Then for every constant ε there exists an (ε, δ)− learning algorithm L for the class B
with respect to D. The algorithm runs in time poly(1/ε, log(1/δ)).

L. Hu, I. R. Livni Navon, and O. Reingold 5:17

5 Impossibilities

A main difference in our work from [9] is in the target distribution/object we aim to be
indistinguishable from. In [9], the target distribution is fixed and uniform over many objects,
whereas in our setup the target is a single object which is initially unknown, and a learner is
needed to access the target object to make it possible to create an indistinguishable model.
This difference makes our setup challenging, and below we show example tasks that are
impossible to achieve in our setup because of this difference.

5.1 Fooling Distinguishers with Entry-Access is Hard
In [9], the distinguishers can query for specific entries of an object. Such distinguishers can be
impossible to fool in our setup. For example, suppose the target object B∗ is the entry-access
object induced by a function f∗ : X → {0, 1} (Definition 7), and suppose our learner aims
to output a model M of entry-access objects B induced by functions f : X → {0, 1}. For
every x ∈ X, suppose there is a distinguisher that queries for the value of f(x) and outputs
“accept” if and only if f(x) = 1. To fool these distinguishers, we have to learn the target
function f∗ exactly, which is clearly impossible if the domain X has exponential size and the
learner can only make polynomially many queries.

▶ Theorem 27. Let X be a non-empty finite set. Let B be the class of entry-access objects
induced by all functions f : X → {0, 1}. Let D be the class of distinguishers Dx for every
x ∈ X where given an object B, the distinguisher Dx outputs “accept” if and only if the
answer a ∼ B(x) is equal to 1. Let L be an (ε, δ)-learner for the class B w.r.t. D for
ε, δ < 1/2. Then L needs to query every input x ∈ X in the worst case.

5.2 Learned Model Needs to be Stronger than Distinguishers
The model learned in [9] can fool distinguishers with significantly larger circuit complexity
than the model itself. Below we show that this can become impossible in our setup where
the target is a single object.

▶ Theorem 28 (Remark 1.6 in [37]). Let n, W > 1 be positive integers satisfying W log W ≤
2n/C for a sufficiently large absolute constant C > 0. There exists a sample-access object
B∗ induced by a function f∗ : {0, 1}n → {0, 1} and a distinguisher D with circuit complexity
Õ(nW) such that for any model M with circuit complexity at most W , it holds that

| Pr[DB∗
= “accept”] − EB∼M [Pr[DB = “accept”]]| > 1/3. (3)

5.3 The Distinguisher Class Needs to be Learnable
Since the target distribution in [9] is fixed, no learning is needed in order to produce an
indistinguishable model. In our setup, the learning task is usually performed using an auditor,
which can be viewed as a weak agnostic learner for the class of distinguishers. A natural
question is whether we can still achieve indistinguishability if such a weak agnostic learner does
not exist. Previous works [14, 11] have shown negative answers to this question for certain
notions of indistinguishability (such as calibrated multiaccuracy) by showing that these notions
imply (strong) agnostic learning for the distinguisher class. The indistinguishability notion
we use for generative models is closer to multiaccuracy, and below we show that efficiently
achieving this notion requires the distinguisher class to be efficiently realizably learnable. For
a true function f∗ : X → {0, 1}, multiaccuracy requires a predictor p : X → [0, 1] to satisfy

CCC 2023

5:18 Generative Models of Huge Objects

|E[(f∗(x) − p(x))g(x)]| ≤ ε (4)

for every function g in a class G. Now consider the case where G consists of functions
g : X → {−1, 1}. For an arbitrary g∗ ∈ G, suppose the true function f∗ satisfies f∗(x) = 1 if
g∗(x) = 1 and f∗(x) = 0 if g∗(x) = −1. Then (4) implies

E |f∗(x) − p(x)| ≤ ε. (5)

Now we define ĝ(x) = 1 if p(x) ≥ 1/2, and define ĝ(x) = −1 if p(x) < 1/2. It is easy to check
that if ĝ(x) ̸= g∗(x) for some x ∈ X, then |f∗(x) − p(x)| ≥ 1/2, and thus (5) implies the
following realizable learning guarantee for the class G:

Pr[ĝ(x) ̸= g∗(x)] ≤ 2ε.

References
1 Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed membership

stochastic blockmodels. Journal of machine learning research: JMLR, 9:1981–2014, 2008.
2 Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and

equilibrium in generative adversarial nets (GANs). In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 224–232. PMLR, 06–11 August 2017. URL:
https://proceedings.mlr.press/v70/arora17a.html.

3 Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudorandom bits. SIAM Journal on Computing, 13(4):850–864, 1984. doi:10.1137/0213053.

4 Yi-Hsiu Chen, Kai-Min Chung, and Jyun-Jie Liao. On the complexity of simulating auxiliary
input. In Advances in cryptology—EUROCRYPT 2018. Part III, volume 10822 of Lecture Notes
in Comput. Sci., pages 371–390. Springer, Cham, 2018. doi:10.1007/978-3-319-78372-7_12.

5 Cynthia Dwork, Michael P Kim, Omer Reingold, Guy N Rothblum, and Gal Yona. Outcome
indistinguishability. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 1095–1108, 2021.

6 Cynthia Dwork, Daniel Lee, Huijia Lin, and Pranay Tankala. New insights into multi-
calibration. arXiv preprint, 2023. arXiv:2301.08837.

7 Alan Frieze and Ravi Kannan. Quick approximation to matrices and applications. Combinat-
orica, 19(2):175–220, 1999.

8 Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, October 1986.

9 Oded Goldreich, Shafi Goldwasser, and Asaf Nussboim. On the implementation of huge
random objects. SIAM Journal on Computing, 39(7):2761–2822, 2010.

10 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinber-
ger, editors, Advances in Neural Information Processing Systems, volume 27. Cur-
ran Associates, Inc., 2014. URL: https://proceedings.neurips.cc/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

11 Parikshit Gopalan, Lunjia Hu, Michael P. Kim, Omer Reingold, and Udi Wieder. Loss
Minimization Through the Lens Of Outcome Indistinguishability. In Yael Tauman Kalai,
editor, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023), volume
251 of Leibniz International Proceedings in Informatics (LIPIcs), pages 60:1–60:20, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
ITCS.2023.60.

https://proceedings.mlr.press/v70/arora17a.html
https://doi.org/10.1137/0213053
https://doi.org/10.1007/978-3-319-78372-7_12
https://arxiv.org/abs/2301.08837
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.4230/LIPIcs.ITCS.2023.60
https://doi.org/10.4230/LIPIcs.ITCS.2023.60

L. Hu, I. R. Livni Navon, and O. Reingold 5:19

12 Parikshit Gopalan, Adam Tauman Kalai, Omer Reingold, Vatsal Sharan, and Udi Wieder.
Omnipredictors. In Mark Braverman, editor, 13th Innovations in Theoretical Computer
Science Conference, ITCS 2022, January 31 – February 3, 2022, Berkeley, CA, USA, volume
215 of LIPIcs, pages 79:1–79:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ITCS.2022.79.

13 Parikshit Gopalan, Michael P Kim, Mihir A Singhal, and Shengjia Zhao. Low-degree multical-
ibration. In Po-Ling Loh and Maxim Raginsky, editors, Proceedings of Thirty Fifth Conference
on Learning Theory, volume 178 of Proceedings of Machine Learning Research, pages 3193–3234.
PMLR, 02–05 July 2022. URL: https://proceedings.mlr.press/v178/gopalan22a.html.

14 Ursula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration:
Calibration for the (computationally-identifiable) masses. In International Conference on
Machine Learning, pages 1939–1948. PMLR, 2018.

15 Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social Networks, 5(2):109–137, 1983. doi:10.1016/0378-8733(83)90021-7.

16 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the AMS, 43(4):439–561, 2006.

17 Lunjia Hu, Inbal Livni-Navon, and Omer Reingold. Generative models of huge objects, 2023.
arXiv:2302.12823.

18 Lunjia Hu, Inbal Livni-Navon, Omer Reingold, and Chutong Yang. Omnipredictors for
constrained optimization. arXiv preprint, 2022. arXiv:2209.07463.

19 Lunjia Hu and Charlotte Peale. Comparative Learning: A Sample Complexity Theory for
Two Hypothesis Classes. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical
Computer Science Conference (ITCS 2023), volume 251 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 72:1–72:30, Dagstuhl, Germany, 2023. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITCS.2023.72.

20 Lunjia Hu, Charlotte Peale, and Omer Reingold. Metric entropy duality and the sample
complexity of outcome indistinguishability. In Sanjoy Dasgupta and Nika Haghtalab, editors,
Proceedings of The 33rd International Conference on Algorithmic Learning Theory, volume
167 of Proceedings of Machine Learning Research, pages 515–552. PMLR, 29 March–01 April
2022. URL: https://proceedings.mlr.press/v167/hu22a.html.

21 Russell Impagliazzo. Lecture on learning models: connections between boosting, hard-core
distributions, dense models, GAN, and regularity I. https://www.ias.edu/video/csdm/2017/
1113-RussellImpagliazzo, 2017.

22 Dimitar Jetchev and Krzysztof Pietrzak. How to fake auxiliary input. In Theory of cryptography,
volume 8349 of Lecture Notes in Comput. Sci., pages 566–590. Springer, Heidelberg, 2014.
doi:10.1007/978-3-642-54242-8_24.

23 Michael P Kim, Amirata Ghorbani, and James Zou. Multiaccuracy: Black-box post-processing
for fairness in classification. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society, pages 247–254, 2019.

24 Michael P. Kim, Christoph Kern, Shafi Goldwasser, Frauke Kreuter, and Omer Reingold.
Universal adaptability: Target-independent inference that competes with propensity scoring.
Proceedings of the National Academy of Sciences, 119(4):e2108097119, 2022. doi:10.1073/
pnas.2108097119.

25 Michael P. Kim and Juan C. Perdomo. Making Decisions Under Outcome Performativity.
In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference
(ITCS 2023), volume 251 of Leibniz International Proceedings in Informatics (LIPIcs), pages
79:1–79:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ITCS.2023.79.

26 Yoshiharu Kohayakawa and Vojtech Rödl. Szemerédi’s regularity lemma and quasi-randomness.
Recent advances in algorithms and combinatorics, pages 289–351, 2003.

27 Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988.

CCC 2023

https://doi.org/10.4230/LIPIcs.ITCS.2022.79
https://proceedings.mlr.press/v178/gopalan22a.html
https://doi.org/10.1016/0378-8733(83)90021-7
https://arxiv.org/abs/2302.12823
https://arxiv.org/abs/2209.07463
https://doi.org/10.4230/LIPIcs.ITCS.2023.72
https://proceedings.mlr.press/v167/hu22a.html
https://www.ias.edu/video/csdm/2017/1113-RussellImpagliazzo
https://www.ias.edu/video/csdm/2017/1113-RussellImpagliazzo
https://doi.org/10.1007/978-3-642-54242-8_24
https://doi.org/10.1073/pnas.2108097119
https://doi.org/10.1073/pnas.2108097119
https://doi.org/10.4230/LIPIcs.ITCS.2023.79

5:20 Generative Models of Huge Objects

28 Michael Mitzenmacher. A Brief History of Generative Models for Power Law and Lognormal
Distributions. Internet Mathematics, 1(2):226–251, 2003.

29 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM Journal on Computing, 22(4):838–856, August 1993.

30 Moni Naor and Asaf Nussboim. Implementing huge sparse random graphs. In Moses Charikar,
Klaus Jansen, Omer Reingold, and José D. P. Rolim, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, 10th International Workshop,
APPROX 2007, and 11th International Workshop, RANDOM 2007, Princeton, NJ, USA,
August 20-22, 2007, Proceedings, volume 4627 of Lecture Notes in Computer Science, pages
596–608. Springer, 2007. doi:10.1007/978-3-540-74208-1_43.

31 Moni Naor, Asaf Nussboim, and Eran Tromer. Efficiently constructible huge graphs that
preserve first order properties of random graphs. In Joe Kilian, editor, Theory of Cryptography,
Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February
10-12, 2005, Proceedings, volume 3378 of Lecture Notes in Computer Science, pages 66–85.
Springer, 2005. doi:10.1007/978-3-540-30576-7_5.

32 Moni Naor and Omer Reingold. Constructing pseudo-random permutations with a prescribed
structure. J. Cryptol., 15(2):97–102, January 2002. doi:10.1007/s00145-001-0008-5.

33 Alexander Scott. Szemerédi’s regularity lemma for matrices and sparse graphs. Combinatorics,
Probability and Computing, 20(3):455–466, 2011.

34 Maciej Skórski. Simulating auxiliary inputs, revisited. In Theory of cryptography. Part
I, volume 9985 of Lecture Notes in Comput. Sci., pages 159–179. Springer, Berlin, 2016.
doi:10.1007/978-3-662-53641-4_7.

35 Maciej Skórski. A subgradient algorithm for computational distances and applications to
cryptography. Cryptology ePrint Archive, 2016.

36 Maciej Skórski. A cryptographic view of regularity lemmas: simpler unified proofs and refined
bounds. In Theory and applications of models of computation, volume 10185 of Lecture Notes
in Comput. Sci., pages 586–599. Springer, Cham, 2017. doi:10.1007/978-3-319-55911-7.

37 Luca Trevisan, Madhur Tulsiani, and Salil P. Vadhan. Regularity, boosting, and efficiently
simulating every high-entropy distribution. In Proceedings of the 24th Annual IEEE Conference
on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 126–136.
IEEE Computer Society, 2009. doi:10.1109/CCC.2009.41.

38 Salil Vadhan and Colin Jia Zheng. A uniform min-max theorem with applications in cryp-
tography. In Advances in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 93–110. Springer,
2013.

39 Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012. doi:10.1561/0400000010.

40 Mark N. Wegman and J. Lawrence Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 1981.

41 Andrew C. Yao. Theory and applications of trapdoor functions. In 23rd annual symposium on
foundations of computer science (Chicago, Ill., 1982), pages 80–91. IEEE, New York, 1982.

https://doi.org/10.1007/978-3-540-74208-1_43
https://doi.org/10.1007/978-3-540-30576-7_5
https://doi.org/10.1007/s00145-001-0008-5
https://doi.org/10.1007/978-3-662-53641-4_7
https://doi.org/10.1007/978-3-319-55911-7
https://doi.org/10.1109/CCC.2009.41
https://doi.org/10.1561/0400000010

Bounded Relativization
Shuichi Hirahara #

National Institute of Informatics, Tokyo, Japan

Zhenjian Lu #

University of Oxford, UK

Hanlin Ren # Ñ

University of Oxford, UK

Abstract
Relativization is one of the most fundamental concepts in complexity theory, which explains the
difficulty of resolving major open problems. In this paper, we propose a weaker notion of relativization
called bounded relativization. For a complexity class C, we say that a statement is C-relativizing if the
statement holds relative to every oracle O ∈ C. It is easy to see that every result that relativizes also
C-relativizes for every complexity class C. On the other hand, we observe that many non-relativizing
results, such as IP = PSPACE, are in fact PSPACE-relativizing.

First, we use the idea of bounded relativization to obtain new lower bound results, including the
following nearly maximum circuit lower bound: for every constant ε > 0,

BPEMCSP/2εn ̸⊆ SIZE[2n/n].

We prove this by PSPACE-relativizing the recent pseudodeterministic pseudorandom generator by
Lu, Oliveira, and Santhanam (STOC 2021).

Next, we study the limitations of PSPACE-relativizing proof techniques, and show that a seemingly
minor improvement over the known results using PSPACE-relativizing techniques would imply a
breakthrough separation NP ̸= L. For example:

Impagliazzo and Wigderson (JCSS 2001) proved that if EXP ̸= BPP, then BPP admits infinitely-
often subexponential-time heuristic derandomization. We show that their result is PSPACE-
relativizing, and that improving it to worst-case derandomization using PSPACE-relativizing
techniques implies NP ̸= L.
Oliveira and Santhanam (STOC 2017) recently proved that every dense subset in P admits
an infinitely-often subexponential-time pseudodeterministic construction, which we observe is
PSPACE-relativizing. Improving this to almost-everywhere (pseudodeterministic) or (infinitely-
often) deterministic constructions by PSPACE-relativizing techniques implies NP ̸= L.
Santhanam (SICOMP 2009) proved that pr-MA does not have fixed polynomial-size circuits.
This lower bound can be shown PSPACE-relativizing, and we show that improving it to an
almost-everywhere lower bound using PSPACE-relativizing techniques implies NP ̸= L.

In fact, we show that if we can use PSPACE-relativizing techniques to obtain the above-mentioned
improvements, then PSPACE ̸= EXPH. We obtain our barrier results by constructing suitable oracles
computable in EXPH relative to which these improvements are impossible.

2012 ACM Subject Classification Theory of computation → Complexity classes; Theory of com-
putation → Oracles and decision trees; Theory of computation → Circuit complexity; Theory of
computation → Pseudorandomness and derandomization

Keywords and phrases relativization, circuit lower bound, derandomization, explicit construction,
pseudodeterministic algorithms, interactive proofs

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.6

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/070/ [37]

Funding Shuichi Hirahara: Supported by JST, PRESTO Grant Number JPMJPR2024, Japan.
Hanlin Ren: Received support from DIMACS through grant number CCF-1836666 from the National
Science Foundation.

© Shuichi Hirahara, Zhenjian Lu, and Hanlin Ren;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 6; pp. 6:1–6:45

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s_hirahara@nii.ac.jp
mailto:zhenjian.lu@cs.ox.ac.uk
mailto:h4n1in.r3n@gmail.com
https://hanlin-ren.github.io/
https://orcid.org/0000-0002-7632-7574
https://doi.org/10.4230/LIPIcs.CCC.2023.6
https://eccc.weizmann.ac.il/report/2023/070/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Bounded Relativization

Acknowledgements We thank Rahul Santhanam for helpful discussions and for pointing out that
the oracle in Theorem 52 can be constructed in EXPH, using [31] only as a black-box. We thank
Lijie Chen for helpful discussions regarding [19], Ian Mertz for discussions about the statement (*),
and Ryan Williams for useful discussions about time-space tradeoffs for SAT. We thank Lijie Chen
(again) and an anonymous CCC reviewer for pointing out an error in a previous version of this
paper. Part of this work was completed when the authors are visiting the Simons Institute for the
Theory of Computing, participating in the Meta-Complexity program.

1 Introduction

The relativization barrier, introduced by Baker, Gill, and Solovay [11], is an influential
meta-mathematical barrier in complexity theory. Techniques based on simulation and
diagonalization tend to relativize, in the sense that they also work in an “oracle world” where
every machine has access to an oracle O. On the other hand, the P vs. NP question cannot be
solved in a relativizing way: [11] showed that there exists an oracle A such that PA = NPA,
as well as another oracle B such that PB ̸= NPB. Relativization has been successful not
only in explaining the difficulty of resolving the P vs. NP question, but also in pinning
down the exact place where we are stuck – for example, there are oracles relative to which
BPP = EXPNP [32, 14], or PNP ⊆ SIZE[O(n)] [80].

In the early 1990s, the interactive proof results such as IP = PSPACE [55, 66] generated
much excitement among complexity theorists, as they are the first examples of “truly
compelling” [4] non-relativizing results in complexity theory. Indeed, coNPO ̸⊆ IPO relative
to a random oracle O [28, 16]. The IP = PSPACE result and its underlying technique,
arithmetization, has significantly expanded our knowledge about circuit lower bounds [13, 40,
73, 1, 65, 27], derandomization [42, 70, 20, 21, 19], Karp–Lipton theorems [55, 10, 39, 18],
meta-complexity [5, 61, 39, 60, 54], and other areas.

Still, it seems that arithmetization alone would not suffice to resolve the P vs. NP question.
How far can we push these techniques? As relativization does not capture the “current
techniques” anymore [16, 13, 1], what are the other barriers preventing us from making
progress?

Aaronson and Wigderson [3] proposed the algebrization barrier to capture the limitations
of arithmetization. Roughly speaking, an inclusion C ⊆ D algebrizes if CO ⊆ DÕ for every
oracle O and every low-degree extension Õ of O. This framework captures most results
proved using arithmetization, such as IP = PSPACE [66] and MIP = NEXP [9].1 On the other
hand, [3] constructed oracles O1, O2, and O3 such that NPÕ1 ⊆ PO1 , NEXPÕ2 ⊆ PO2/poly,
and RPO3 ̸⊆ PÕ3 . Therefore, techniques based on arithmetization are not enough for proving
long-standing conjectures in complexity theory such as P ̸= NP, NEXP ̸⊆ P/poly, and RP = P.

It turns out that the algebrization barrier suffers from subtleties. For example, it
was unclear how to formalize algebrization for complexity-theoretic statements that are
neither separation nor inclusion; moreover, algebrization is not closed under modus ponens.
Impagliazzo, Kabanets, and Kolokolova [38] and Aydınlıoğlu and Bach [8] revised the definition
of algebrization to fix these issues. For more discussion of algebrization, see Section 1.4.

1 A subtle issue on relativizing NEXP is that we need to restrict the NEXP machine to only query O
on polynomially-long inputs. In other words, while we can show that NEXPO[poly] ⊆ MIPÕ for every
oracle O and its low-degree extension Õ, the statement NEXPO ⊆ MIPÕ is false in general. We refer
the readers to Remark 2 for more details on relativizing space-bounded and exponential-time classes.

S. Hirahara, Z. Lu, and H. Ren 6:3

Unfortunately, algebrization did not become as popular as relativization in proving barrier
results and predicting the limitations of “current techniques”. Perhaps one reason is that
algebrization barriers are harder to demonstrate, as one needs to construct an oracle O that
diagonalizes against its low-degree extension Õ.2 For many complexity theoretic statements
that are slightly more complicated than inclusions (“C ⊆ D”) or separations (“C ̸⊆ D”), it
appears much harder to demonstrate algebrization barriers than relativization barriers.

1.1 Bounded Relativization
This paper takes one step back and considers relativization in the presence of non-relativizing
techniques. Our main message is perhaps surprising: the shadow of the relativization barrier
has never gone away, even though we already have powerful non-relativizing techniques at
hand!

Specifically, we put forward a notion of bounded relativization. Roughly speaking, for a
complexity class C, a complexity-theoretic statement is C-relativizing if it is true relative to
every oracle O ∈ C. It is easy to see that every statement that relativizes also C-relativizes, for
every complexity class C. On the other hand, even though IP = PSPACE is not relativizing,
it is easily seen to be PSPACE-relativizing:

▶ Proposition 1. For every oracle O ∈ PSPACE, IPO = PSPACEO.

Proof. Since the proof of IP ⊆ PSPACE is relativizing, we have IPO ⊆ PSPACEO.
On the other hand, since O ∈ PSPACE, we have PSPACEO = PSPACE = IP ⊆ IPO. ◀

▶ Remark 2. In this paper, when we relativize space-bounded machines (in particular
PSPACE), we assume the query tape is counted into the space bound. That is, a PSPACEO

machine can only query O on polynomially-long inputs. It is easy to see that under this
definition, PSPACEPSPACE = PSPACE.

On the other hand, we allow EXPO or NEXPO machines to issue exponentially-long
queries to O. When we restrict the query length to be a polynomial, we write EXPO[poly]

and NEXPO[poly] instead.

How is Proposition 1 helpful in studying the limitation of IP = PSPACE as a technique?
Say that we want to prove “a slight improvement of [42]” using “current techniques”. (For
now, the exact meaning of “a slight improvement of [42]” is not important; a concrete example
will be given in Section 1.3.1. We also do not formally define “current techniques” here.)
Suppose we construct an oracle O, in the usual, Baker–Gill–Solovay sense of relativization,
relative to which the “slight improvement of [42]” is impossible (see, e.g., Theorem 10).

Suppose, in addition, that O ∈ PSPACE. It follows immediately that, if the term “current
techniques” is interpreted as “PSPACE-relativizing techniques”, then “current techniques”
cannot prove the desired “slight improvement”.
In reality, it is often the case that we do not know how to put O in PSPACE; however, we
can still show that O ∈ EXPH in many cases. Then, the oracle O tells us that, if there
is a PSPACE-relativizing proof of the “slight improvement of [42]”, then this proof also
implies PSPACE ̸= EXPH. The latter would be a breakthrough in complexity theory, and
in particular, it implies L ̸= NP.

2 Or, one needs to make sure the oracle O satisfies the so-called Arithmetic Checkability Theorem in the
sense of [38].

CCC 2023

6:4 Bounded Relativization

To summarize, any EXPH-computable oracle presents the following barrier to “current
techniques”:

If “current techniques” are PSPACE-relativizing and cannot separate L from NP,
then “current techniques” also cannot prove the “slight improvement of [42]” (or any
statement that is not EXPH-relativizing).

How “relativizing” are interactive proof results? The above discussion suggests that
IP = PSPACE is actually “mildly relativizing” in the sense that it requires significant
computational power (namely, super-polynomial space) to create an oracle world in which it
is false. Using the same reasoning as Proposition 1, we can see that other interactive proof
results, such as MIP = NEXP [9] and MIP∗ = RE [44], are also “mildly relativizing”.

▶ Proposition 3. The following are true:
(Relativization of MIP = NEXP) For every O ∈ NEXP∩coNEXP, MIPO = NEXPO[poly].
(Relativization of MIP∗ = RE) For every O ∈ R (i.e., O is computable), (MIP∗)O =
REO.

Proof. One direction relativizes: MIPO ⊆ NEXPO[poly], and (MIP∗)O ⊆ REO. For the other
direction, notice that NEXPO[poly] ⊆ NEXP = MIP ⊆ MIPO and REO ⊆ RE = MIP∗ ⊆
(MIP∗)O. ◀

Consequently, many results proved by combining interactive proof techniques and other
relativizing techniques are also C-relativizing for a large complexity class C.3 (It seems fair
to say that most of them are PSPACE-relativizing.) This paper will explore the following
two directions:
1. The positive direction: we relativize some previous results with an oracle O ∈ PSPACE

to obtain new results.
2. The negative direction: we construct oracle worlds in EXPH and demonstrate that

certain seemingly minor improvements over known results might be hard to prove by
PSPACE-relativizing techniques.

1.2 New Lower and Upper Bounds via Bounded Relativization
We first explain our positive results. Lu, Oliveira, and Santhanam [54] constructed a
pseudodeterministic pseudorandom generator (PRG) with sub-polynomial seed length and
one bit of advice that infinitely-often fools uniform algorithms. That is, for every ε > 0,
they constructed a function G : {0, 1}nε → {0, 1}n computable in randomized polynomial
time with one bit of advice, such that for every polynomial-time algorithm A, G fools A on
infinitely many input lengths. The term “pseudodeterministic” means that the randomized
algorithm for G, on input z ∈ {0, 1}nε , will output the fixed string G(z) with high probability.

Although the PRG construction in [54] is not relativizing, we observe that it is still
PSPACE-relativizing. We exploit this fact to prove new circuit lower bounds and design new
pseudodeterministic algorithms for the range avoidance problem.

3 The fact that these results are C-relativizing might not be as obvious as Proposition 3, as one still
needs to look into the proof of these results and replace the usage of interactive proof results by their
bounded-relativizing counterparts. For example, using IP = PSPACE, Santhanam [65] showed that
there is a problem in pr-MA without size-n100 circuits. To show this result is PSPACE-relativizing,
one apparently needs to follow the proof of [65] and replace all occurrences of “IP = PSPACE” by
Proposition 1.

S. Hirahara, Z. Lu, and H. Ren 6:5

A Nearly Maximum Circuit Lower Bound. Our first result shows that BPEMCSP/2εn

requires circuits of nearly maximum size. Here, MCSP is the minimum circuit size problem [46]
that takes as input the length-N truth table of a function f : {0, 1}log N → {0, 1} and a size
parameter s, and decides whether f can be computed by a size-s circuit.

▶ Theorem 4. For every constant ε > 0, BPEMCSP/2εn cannot be computed by circuits of
size 2n/n.

Note that every function can be computed by a circuit of size (1 + o(1))2n/n [56, 29]. Also,
it is trivial that E/2n contains a language with maximum circuit complexity. For comparison,
the advice length in our lower bound in Theorem 4 is only 2εn, for an arbitrarily small
constant ε > 0. Previously, the smallest complexity class known to require maximum circuit
complexity is EΣp

2 [57]. It was proved in [39] that ZPEXPMCSP does not have polynomial-size
circuits, but an exponential-size lower bound for this class is open.

Proof Idea of Theorem 4. Theorem 4 is proved by PSPACE-relativizing the PRG construc-
tion in [54]. Let O := MCSP ∈ PSPACE. We can relativize the PRG in [54] with the MCSP
oracle and obtain:

For every ε > 0, there is a function G : {0, 1}nε → {0, 1}n computable in randomized
polynomial time with access to an MCSP oracle and one bit of advice, such that for
every polynomial-time algorithm A with access to an MCSP oracle, G fools A on
infinitely many input lengths.

Let A be the following algorithm: given the truth table of a function f : {0, 1}log N →
{0, 1}, use the MCSP oracle to determine if the circuit complexity of f is at least 2n/n

(where n := log N), and outputs 1 if and only if this is the case. Since most truth tables
have circuit complexity at least 2n/n [67, 56, 29], and A is fooled by the PRG G, it follows
that there is a seed z ∈ {0, 1}Nε/2 such that the function whose truth table is G(z) also has
circuit complexity at least 2n/n.

Consider the following language L. On input x ∈ {0, 1}n, it takes advice (z, α), where
z ∈ {0, 1}2εn/2 is defined as above, and α ∈ {0, 1} is the one-bit advice used by G. It
computes the truth table G(z) and accepts the input x if and only if the x-th bit of G(z) is
1. Then L does not have circuits of size 2n/n. On the other hand, L can be computed by a
BPEMCSP machine taking 2εn bits of advice. ◀

Besides the nearly-maximum circuit lower bound, we also prove new circuit lower bounds
for meta-complexity problems and design new algorithms for range avoidance. We omit the
proof ideas below since the main idea is essentially the same, namely relativizing the PRG
in [54] to the MCSP oracle.

Circuit Lower Bounds for Meta-Complexity Problems. Meta-computational problems play
a central role in a recently emerging area of research called meta-complexity, and have diverse
applications in complexity theory, cryptography and learning. Roughly speaking, meta-
computational problems are those that ask about the complexity (e.g., circuit complexity,
time-bounded Kolmogorov complexity) of their inputs, and meta-complexity refers to the
complexity of computing these problems themselves.

Before stating our result, we first recall some basic definitions. For a string x and
a time bound function t, Kt(x), the t-time-bounded Kolmogorov complexity of x, is the
minimum length of a string d such that U(d) outputs x within t(|x|) steps, where U is a time-
optimal universal Turing machine fixed in advance. rKt(x), the randomized t-time-bounded

CCC 2023

6:6 Bounded Relativization

Kolmogorov complexity of x, is defined in the same way as Kt(x) except that U in this case
is a randomized universal Turing machine and we want x to be outputted with probability
at least 2/3. We can also define oracle versions of these complexity measures. For example,
rKt,O can be defined in the same way as rKt except that the universal Turing machine in
this case has access to the oracle O. (See Definition 21 for the formal definitions.)

Previously [35] showed that the problem of computing the Kpoly complexity of a given
string is hard against fixed-polynomial-time deterministic algorithms. Later [54] showed a
similar lower bound for computing rKpoly but against fixed-polynomial-time randomized al-
gorithms. Here, we show that computing rKpoly,MCSP cannot be done using fixed-polynomial-
size circuits.

▶ Theorem 5 (Informal; see Theorem 32). For every k ≥ 1, there is a polynomial t such that
the problem of computing the rKt,MCSP complexity of a given string cannot be done using
circuits of size nk.

In proving Theorem 5, we construct an efficient pseudodeterministic PRG, using MCSP
oracle and a short advice string, that can fool polynomial-size circuits, which may be of
independent interest. (See Theorem 33.)

Pseudodeterministic Construction for Range Avoidance. In the range avoidance problem,
given a circuit C : {0, 1}n → {0, 1}n+1, we are asked to find a string x ∈ {0, 1}n+1 that is
not in the range of C. This problem is complete for the class called APEPP that corresponds
to explicit constructions of objects whose existence can be shown using the probabilistic
method [49, 51, 64]. It is open whether there is a deterministic polynomial-time algorithm
with access to an NP oracle that solves the range avoidance problem; indeed, this open
question is equivalent to the circuit lower bound ENP ̸⊆ SIZE[2n/2] [51].

Here, we present a new algorithm that pseudodeterministically solves the range avoidance
problem for polynomial-size circuits. A pseudodeterministic algorithm is a probabilistic
algorithm that “behaves like a deterministic algorithm” in the sense that it returns a fixed
output with high probability over its internal randomness. Our algorithm runs in polynomial
time, using an NP oracle and an advice of length nε (that is independent of the input circuit),
and it works for infinitely many n, where n is the input length of the given circuit.

▶ Theorem 6 (Informal; see Theorem 36). For every ε > 0 and c ≥ 1, there exists a
polynomial-time pseudodeterministic advice-taking oracle-algorithm A such that for infinitely
many n, given a circuit C : {0, 1}n → {0, 1}n+1 of size nc, the algorithm A, with access to
an NP oracle and nε bits of advice, outputs an (n + 1)-bit string that is not in the range of C.

1.3 Barriers for PSPACE-Relativizing Techniques
Next, we explain our negative results. We present EXPH-relativization barriers for “slightly
improving” known results in uniform derandomization, explicit construction, and circuit
lower bounds.

1.3.1 Uniform Derandomization
Standard “hardness vs. randomness” paradigm [59, 41] requires lower bounds against non-
uniform circuits, such as E ̸⊆ i. o. SIZE[2εn] for some constant ε > 0. In their seminal
work, Impagliazzo and Wigderson [42] showed that hardness against uniform algorithms

S. Hirahara, Z. Lu, and H. Ren 6:7

also implies weak forms of derandomization: in particular, if EXP ̸= BPP, then every
algorithm in BPP can be derandomized in subexponential time infinitely often on average,
i.e., BPP ⊆ i. o. heur-SUBEXP.4

We observe that their techniques are PSPACE-relativizing:

▶ Proposition 7 (Uniform Derandomization in [42] is PSPACE-Relativizing). Let O ∈ PSPACE.
If EXPO[poly] ̸= BPPO, then BPPO ⊆ i. o. heur-SUBEXPO[poly].

More recently, Chen, Rothblum, and Tell [19] presented a uniform derandomization result
on almost all input lengths: Given any language in PSPACE that is almost-everywhere hard
against probabilistic algorithms, we can derandomize RP and BPP on average on almost every
input length, where the derandomization of BPP requires some advice.5 Their techniques
are also PSPACE-relativizing:

▶ Proposition 8 (Uniform Derandomization in [19] is PSPACE-Relativizing). Let O ∈ PSPACE
and suppose that PSPACEO ̸⊆ i. o. BPPO. Then

RPO ⊆ heur-SUBEXPO[poly] and BPPO ⊆ heur-SUBEXPO[poly]/O(log n).

The above results only obtain average-case derandomization instead of worst-case ones.
Can we obtain worst-case derandomization based on uniform hardness assumptions, such as
EXP ̸= BPP? Consider the following “slight improvement of [42]”:

▶ Conjecture 9 (Worst-Case Uniform Derandomization). EXP ≠ BPP =⇒ BPP ⊆
i. o. SUBEXP.

We present the following oracle suggesting that resolving Conjecture 9 would require new
techniques.

▶ Theorem 10. There is an oracle O ∈ EXPH such that

RPO ̸⊆ i. o. DTIMEO[2n] and UPO ̸⊆ BPTIMEO[2n].

In this oracle world, we have UP ̸⊆ BPTIME[2n] (which is much stronger than EXP ̸= BPP),
while at the same time, worst-case derandomization of RP into deterministic fixed-exponential
(2n) time is impossible. This oracle is in EXPH, and therefore any PSPACE-relativizing proof
of Conjecture 9 would also imply a breakthrough separation PSPACE ̸= EXPH.

An open question left from [19] is whether the O(log n)-bit advice can be removed in
their derandomization of BPP. We present some evidence that this is difficult using current
techniques:

▶ Theorem 11. There is an oracle O such that

BPPO ̸⊆ heur-DTIMEO[2n] and UPO ̸⊆ i. o. BPTIMEO[2n].

Unfortunately, we do not know if the oracle O constructed in Theorem 11 is in EXPH.
Nevertheless, under an assumption that is unlikely yet seems difficult to rule out, we show
how to construct the oracle O in polynomial space. The assumption is that

SAT ∈ DTIME[n · polylog(n)] ∩ NC, (*)

i.e., SAT admits both a near-linear-time sequential algorithm and a polylog(n)-time parallel
algorithm.

4 Here, heur-SUBEXP is the class of problems solvable by a deterministic subexponential time heuristic
over every samplable distribution; see Definition 38 for details.

5 We only state the “low-end” version of [19] here; note that they also proved some “high-end” derandom-
ization results.

CCC 2023

6:8 Bounded Relativization

▶ Theorem 12. Suppose that SAT ∈ DTIME[n · polylog(n)] ∩ NC. Then there is an oracle O
satisfying the conclusions of Theorem 11 that can be computed in polynomial space.

It follows that if we use PSPACE-relativizing techniques to eliminate the O(log n)-bit
advice in the derandomization of [19], then we can refute (*), thus proving a non-trivial
lower bound for SAT. Thus, we can still say that the oracle O in Theorem 11 presents some
evidence that “current proof techniques” do not suffice to eliminate the O(log n)-bit advice
in Proposition 8.

1.3.2 Explicit Constructions
Next, we consider bounded relativization for explicit constructions. A property Q ⊆ {0, 1}∗

is dense if for every input length n ∈ N, we have that |Q ∩ {0, 1}n| ≥ 2n/poly(n). Given
any dense property Q decidable in polynomial time and an input length n, how hard is it to
construct a length-n string that is in Q? This is a central open question in derandomization.

Recently, Oliveira and Santhanam [62] showed how to make progress if we allow the
construction algorithm to be pseudodeterministic. Recall that an algorithm is pseudodetermin-
istic if it outputs the same valid answer with high probability (despite being probabilistic).
It was shown in [62] that for every dense property Q ∈ P, there is a subexponential-time
pseudodeterministic construction algorithm that succeeds infinitely often. We observe that
this result is PSPACE-relativizing:

▶ Proposition 13 ([62] is PSPACE-Relativizing; Informal). For every oracle O ∈ PSPACE and
every dense property Q ∈ PO, there is a zero-error pseudodeterministic O-oracle algorithm
that on input 1n outputs some element in Q ∩ {0, 1}n in subexponential time, for infinitely
many n ∈ N.

Scott Aaronson’s blog [2] contains a nice description of the result in [62], where he also
mentioned that the result has “merely the following four caveats”: (1) the algorithm runs in
subexponential time instead of polynomial time; (2) the algorithm is not deterministic but
pseudodeterministic; (3) instead of being almost-everywhere, the algorithm only succeeds on
infinitely many input lengths; and (4) [62] only proved the existence of such an algorithm,
but were unable to say what the algorithm is. In this paper, we show that caveats (2) and
(3) cannot be improved by EXPH-relativizing techniques.

We start with (3), namely that EXPH-relativizing techniques cannot improve the pseudo-
deterministic construction algorithm in [62] to work on almost every input length.

▶ Theorem 14. There is an oracle O ∈ EXPH and a dense property Q ∈ PO such that
every pseudodeterministic algorithm that runs in 2o(n) time and attempts to find a string in
Q ∩ {0, 1}n fails on infinitely many input lengths n.

Goldwasser, Impagliazzo, Pitassi, and Santhanam [31] showed that the pseudodetermin-
istic query complexity of a certain NP search problem is Ω(

√
N), where N is the input length.

We prove Theorem 14 by using the results in [31] directly as a black box. Each time we
diagonalize against a certain pseudodeterministic machine by finding the lexicographically
first counterexample (which is guaranteed to exist by [31]). This procedure, even when
naïvely implemented, is computable in EXPH. We think this is the interesting aspect of
Theorem 14, as it illustrates our main point that the ghost of (bounded) relativization has
never gone away from complexity theory: for many natural complexity-theoretic statements
that are non-relativizing, the straightforward counterexample oracle construction is already
in EXPH.

S. Hirahara, Z. Lu, and H. Ren 6:9

Now we move to (2). We show that any deterministic construction algorithm for dense
properties has to overcome an EXP-relativization barrier, even if the algorithm is allowed to
only succeed on infinitely many input lengths:

▶ Theorem 15. There is an oracle O ∈ EXP and a dense property Q ∈ PO such that every
deterministic algorithm that runs in 2n/nω(1) time fails to find a string in Q ∩ {0, 1}n on
almost every input length n.

In fact, the complexity of deterministic construction is known to be equivalent to the
complexity of approximating Levin’s Kt-complexity for a certain range of parameters [34].
Here, the Kt-complexity of a string x is defined to be the minimum of |M | + log t over all
t-time Turing machines M of length |M | such that M outputs x (see Definition 22 for a
precise definition). Informally, MKtP is the problem of computing Kt(x) for a given string
x. Although MKtP is EXP-complete under non-uniform polynomial-time reductions [5], it
is a long-standing open question to show that MKtP ̸∈ P. Using the connection between
MKtP and deterministic construction [34], we show that Kt-complexity can be efficiently
approximated under the oracle of Theorem 15.

▶ Theorem 16 (Informal; see Theorem 55). There exists an oracle O ∈ EXP under which
Kt(x) can be approximated to within a factor of (1 + ε) for every constant ε > 0 in time
nO(log n) on input x of length n.

Previously, Ren and Santhanam [63] constructed an oracle under which approximating
Kt(x) to within a factor of (2 + ε) is in P. Theorem 16 improves this oracle construction,
at the cost of increasing the running time from nO(1) to nO(log n). We note that there are
lower bounds for the randomized variant of MKtP [60, 36]. Their proof techniques are
PSPACE-relativizing [60] and relativizing [36], respectively. Theorem 16 suggests that such
proof techniques cannot be used to show a lower bound for approximating Kt-complexity
without resolving L ̸= P.

The property Q of Theorem 15 is a dense subset of
{

x : KtO(x) ≥ n − c log n
}

. To see
why any 2n/nω(1)-time algorithm AO fails to find a string in Q ∩ {0, 1}n, observe that the
output of AO on input 1n has KtO-complexity at most O(log n)+log(2n/nω(1)) ≤ n−ω(log n),
which is not in Q. To obtain Theorem 16, we regard Q as an errorless heuristic algorithm for
KtO, and use the worst-case to average-case reduction for KtO [33] to obtain a worst-case
approximation algorithm for KtO-complexity.

1.3.3 Circuit Lower Bounds
Finally, we consider circuit lower bounds for Merlin–Arthur classes. Santhanam [65], im-
proving [13], showed that for every integer k, there is a function computable in MA/1
(Merlin–Arthur protocols with one bit of advice) that does not have size-nk circuits. We
observe that this result is PSPACE-relativizing:

▶ Proposition 17 ([65] is PSPACE-Relativizing). Let O ∈ PSPACE. Then for every constant
k ≥ 1, MAO/1 ̸⊆ SIZEO[nk].

By showing that (a variant of) the oracle constructed by [13] is in EXPH, we show that
Santhanam’s circuit lower bound cannot be improved to an almost-everywhere circuit lower
bound by EXPH-relativizing proof techniques.

▶ Theorem 18. There is an oracle O ∈ EXPH such that pr-MATIMEO[2n] ⊆
i. o. SIZEO[O(n)].

CCC 2023

6:10 Bounded Relativization

In fact, it is unknown if the fixed polynomial-size lower bound for Σp
2 due to Kannan [47]

(i.e., Σp
2 ̸⊆ SIZE[nk] for every constant k) can be improved to an almost-everywhere circuit

lower bound. We are not aware of any relativization barrier for improving Kannan’s lower
bound. To the best of our knowledge, Theorem 18 is the first evidence that “current proof
techniques” cannot improve fixed polynomial-size circuit lower bounds for Σp

2 ⊇ pr-MA to
almost everywhere. Note that the smallest complexity class known to be outside i. o. SIZE[nk]
for every k is ∆p

3 = PΣp
2 [57].

▶ Remark 19 (The Infinite-Often Phenomenon). As noticed in [17], almost-everywhere separa-
tions in structural complexity theory are significantly harder to prove than infinitely-often
separations. The PSPACE-relativization barrier provides an explanation of such difficulties –
it is much easier to construct oracles (in EXPH) such that certain separation fails infinitely
often. On the other hand, achieving almost-everywhere separations in oracle worlds might
be much harder, and in some cases (such as in Theorem 18) the resulting oracle is not in
EXPH anymore.

Besides circuit lower bounds for pr-MA, another notorious open problem mentioned in [17]
is proving almost-everywhere NTIME hierarchies. Indeed, there is an oracle O relative to
which NTIME[2n] ⊆ i. o. RP [12], and it is easy to see that this oracle can be implemented in
EXPH.

1.4 Comparison with Algebrization
Our paper and the line of work on the algebrization barrier [23, 7, 3, 38, 8] share a common
motivation, namely, to capture the limitations of “current techniques” after the interactive
proof results such as IP = PSPACE were proved via arithmetization. Therefore, we feel it
necessary to compare the two barriers. However, before we make the comparison, let us
briefly review the different variants of algebrization [23, 3, 38, 8].

1.4.1 Variants of Algebrization
Already in 1994, Fortnow [23] showed that every oracle O is many-one reducible to some
oracle A such that IPA = PSPACEA; the oracle A is the “algebraic extension” of O as defined
in [23, Section 5.3]. However, the definition of “algebraic extension” is rather involved and
Fortnow did not show any unprovability results relative to “algebraic-extended” oracles.

Aaronson and Wigderson [3] defined an inclusion C ⊆ D to algebrize if for every oracle
O and its low-degree extension Õ, CO ⊆ DÕ. This simplifies Fortnow’s definition in the
following sense. Roughly speaking, Fortnow’s “algebraic extension” of O is another (Boolean)

oracle that encodes all information of O, Õ, ˜̃O,
˜̃̃
O, · · · ; the Aaronson–Wigderson definition

is simpler in that it only considers O and Õ. However, this comes with a price of asymmetry
that the RHS of an inclusion has access to Õ but the LHS does not (e.g., PSPACEO ⊆ IPÕ).
Consequently, the Aaronson–Wigderson definition of algebrization is not closed under modus
ponens: for example, although NEXP ̸⊆ P/poly does not algebrize [3, Theorem 5.6], it is
possible that one could find an intermediate class C such that both C ⊆ NEXP and C ̸⊆ P/poly
algebrizes, thus using algebrizing techniques to separate NEXP from P/poly.

Partially due to the above drawback, there are two subsequent works [38, 8] that aim at a
more satisfactory definition of algebrization. Both definitions have the spirit that a statement
is algebrizing if it holds relative to every oracle O satisfying certain algebraic properties. For
example, a statement is IKK-algebrizing (IKK stands for Impagliazzo–Kabanets–Kolokolova)
if it holds relative to every oracle O that satisfies the so-called Arithmetic Checkability

S. Hirahara, Z. Lu, and H. Ren 6:11

Theorem (ACT) [38]; a statement is affine-relativizing [8] if it holds relative to every affine
extension – the result of a particular error correcting code applied to the characteristic string
of a language. These variants of algebrization are indeed closed under modus ponens, and an
algebrization barrier for a statement is simply an oracle that satisfies the algebraic property
and under which the statement is false.

1.4.2 Comparison

Recall that a statement is C-relativizing if it holds relative to every oracle whose complexity
is in C. In bounded relativization, we are interested in the complexity of the oracle instead
of its algebraic properties. Therefore, the notions of (say) PSPACE-relativization and (say)
IKK-algebrization appear incomparable: there are oracles outside PSPACE (in particular,
undecidable ones) that satisfy the ACT; on the other hand, it is unknown if there are oracles
in PSPACE that do not satisfy the ACT.

Moreover, as a framework for barrier results, we think that the main advantage of bounded
relativization is its simplicity:

To demonstrate a barrier result via bounded relativization, one only needs to construct
a corresponding oracle in the usual sense of relativization, and show an upper bound
on the complexity of the oracle (e.g., in EXPH). On the other hand, one needs to work
against low-degree extensions of Boolean oracles or ensure the ACT in order to prove an
algebrization barrier result.

On the other hand, as demonstrated in Propositions 1 and 3, interactive proof character-
izations of complexity classes are bounded-relativizing for trivial reasons. If MIP∗ = RE
is true, then there is a one-liner proof of it being R-relativizing. In contrast, it appears
that one needs to examine the 200-page proof of [44] thoroughly to tell whether it is
algebrizing.

However, as we discussed before, the bounded relativization barrier has its own subtle
disadvantages. An oracle construction in EXPH (such as Theorem 10) only tells us the
following information: “if PSPACE-relativizing techniques can prove certain statements (such
as Conjecture 9), then we can also separate EXPH from PSPACE”. We interpret this as
limitations of PSPACE-relativizing techniques, since we do not think such techniques are
powerful enough to separate EXPH from PSPACE.6 Hence, the bounded relativization barrier
does not explain the difficulty of (e.g.) proving PSPACE ̸= EXPH, since this difficulty itself
is assumed to indicate barriers for proving other statements. We leave it as an interesting
open problem to justify the statement that although arithmetization-based techniques such
as IP = PSPACE are already available, fundamentally new techniques are needed to prove
separation results such as PSPACE ̸= EXPH.7

6 Although we should not be too pessimistic about the resolution of grand challenges in complexity theory
such as PSPACE vs. EXPH, it seems extremely unlikely to us that they will be resolved by building
an EXPH-computable oracle world inside which a certain statement is false, and proving the same
statement using PSPACE-relativizing techniques. We suspect that techniques fundamentally “deeper”
than those used to build oracles (e.g., diagonalization) are needed.

7 Or, to refute this statement by proving PSPACE ̸= EXPH!

CCC 2023

6:12 Bounded Relativization

2 Preliminaries

2.1 Definitions and Notations
For n, i ∈ N and x ∈ {0, 1}n, where i ≤ n, we let x[i] denote the i-bit prefix of x. We use Un

to denote the uniform distribution over all length-n strings.
We assume the reader is familiar with basic complexity classes such as PSPACE, EXP,

IP, BPP, MA; the definitions of these classes can be found in [30, 6]. One complexity class
that occurs frequently in this paper and that might not be familiar to the broader audience,
though, is EXPH, the exponential-time hierarchy.

▶ Definition 20. A language L is in EXPH if there is a constant k, an exponential bound
e(n) = 2poly(n), and a poly(e(n))-time algorithm M such that, for every input x ∈ {0, 1}∗,

x ∈ L ⇐⇒ ∃y1∀y2∃y3∀y4 . . . ∃yk, M(x, y1, . . . , yk) = 1,

where yi ∈ {0, 1}e(n) for each i ∈ [k].

Equivalently, a language is in EXPH if it can be decided in exponential (2poly(n)) time
with access to a PH oracle.

Pseudodeterministic Algorithms. A pseudodeterministic algorithm is a probabilistic al-
gorithm that returns a fixed output with high probability on any given input. We will
also consider pseudodeterministic oracle (or advice-taking) algorithms. Such an algorithm
will maintain its pseudodeterministic behavior (i.e., outputting a fixed answer with high
probability for any input) when a correct oracle (or advice) is given.

Time-Bounded Kolmogorov Complexity. We fix a time-optimal universal Turing machine
U and a time-optimal randomized Turing machine V .

▶ Definition 21. For a string x ∈ {0, 1}∗, a time bound function t : N → N, and an oracle
O, we define

(t-time-bounded Kolmogorov complexity)

Kt,O(x) := min
d∈{0,1}∗

{
|d| : UO(d) outputs x in at most t(|x|) steps

}
.

(Randomized t-time-bounded Kolmogorov complexity)

rKt,O(x) := min
d∈{0,1}∗

{
|d| : V O(d) runs in at most t(|x|) steps and Pr[V O(d) = x] ≥ 2/3

}
.

We also consider Levin’s notion of time-bounded Kolmogorov complexity [52].

▶ Definition 22. For a string x ∈ {0, 1}∗ and an oracle O, we define

KtO(x) := min
d∈{0,1}∗, t∈N

{
|d| + ⌈log t⌉ : UO(d) outputs x in at most t steps

}
.

2.2 Technical Tools
▶ Theorem 23 ([68]). For every oracle O, BPPO ⊆ (Σp

2)O.

We also need the following theorem for approximate counting that runs in linear time
with a constant number of alternations. (In particular, Theorem 24 implies that approximate
counting can be done in PH.)

S. Hirahara, Z. Lu, and H. Ren 6:13

▶ Theorem 24 (Approximate Counting in Quasi-Linear-Time Hierarchy). There is a Σ5TIME[n ·
polylog(n)] machine M such that on input (φ, K), accepts if φ has at least K satisfying
assignments, and rejects if φ has at most K/2 satisfying assignments.

Proof Sketch. Using universal hashing [69], we can show that there is a BPTIME[n ·
polylog(n)]SAT machine M ′ that approximates the number of satisfying assignments of φ′.
Let H be a family of pairwise-independent hash functions whose output range is {0, 1}⌈log K⌉,
that is computable in near-linear time. (See, e.g., [72, Problem 3.3, (2)] for an example based
on Toeplitz matrices.) The machine M ′ randomly samples h ∼ H and r ∼ {0, 1}⌈log K⌉, and
uses the SAT oracle to decide whether there is a satisfying assignment x of φ′ such that
h(x) = r.

Finally, the lemma follows from the fact that for every oracle O, BPTIMEO[t] ⊆ Σ3TIME[t·
polylog(t)]O [74]. ◀

3 New Lower and Upper Bounds via Bounded Relativization

We start by showing a PSPACE-relativizing version of the pseudodeterministic PRG in [54].

3.1 A PSPACE-Relativizing, Pseudodeterministic, Efficient PRG
▶ Theorem 25 (A PSPACE-Relativizing Efficient Pseudodeterministic PRG with One Bit of
Advice). For every O ∈ PSPACE, ε > 0 and c, d ≥ 1, there exists a generator G = {Gn}n∈N
with Gn : {0, 1}nε → {0, 1}n for which the following holds:
Efficiency: There is a probabilistic polynomial-time algorithm A such that for every n ∈ N,

on input 1n and z ∈ nε, A, with oracle access to O and one advice bit α(n) ∈ {0, 1} that
is independent of z, outputs Gn(z) with probability ≥ 2/3.

Pseudorandomness: For every language L ∈ DTIMEO[nc], there exist infinitely many input
lengths n such that∣∣∣ Pr

x∼{0,1}n
[L(x) = 1] − Pr

z∼{0,1}nε
[L(Gn(z)) = 1]

∣∣∣ ≤ 1
nd

.

To show Theorem 25, we consider two cases.

Case 1: PSPACE ⊆ BPPO

▶ Lemma 26. Let O ∈ PSPACE. If PSPACE ⊆ BPPO, then there is a PRG with seed length
O(log n), computable in pseudodeterministic polynomial time with oracle access to O, that
fools DTIMEO[n] with error 1/n for all but finitely many n.

We need the following “relativizing version” of a hardness-to-randomness construction.

▶ Lemma 27 ([41, 50, 62]). Let O be any language. If there is an ε > 0 and a Boolean
function h ∈ BPEO that requires O-oracle circuits of size 2εm on all but finitely many input
length m, then there is a PRG with O(log n) seed length, computable in pseudodeterministic
polynomial time with oracle access to O, that fools DTIMEO[n] with error 1/n for all but
finitely many n.

Proof of Lemma 26. Since PSPACE ⊆ BPPO, by a simple padding argument, we have that
DSPACE

[
2O(n)] ⊆ BPEO.

By direct diagonalization, there is a language L ∈ DSPACE
[
2O(n)] such that, for all but

finitely many input lengths n, L does not have O-oracle circuits of size 20.9n. Indeed, using
2O(n) space, we can find the lexicographically first truth table of length 2n that cannot be

CCC 2023

6:14 Bounded Relativization

computed by O-oracle circuits of size 20.9n. This can be done because O ∈ PSPACE and we
can simulate any such circuit in 2O(n) space. By the simulation in the previous paragraph,
we have that L ∈ BPEO. Now the desired conclusion follows from Lemma 27. ◀

Case 2: PSPACE ̸⊆ BPPO

▶ Lemma 28. Let O be any language and suppose PSPACE ̸⊆ BPPO. Then for every ε > 0
and c, d ≥ 1, there exists a PRG with seed length nε, computable in pseudodeterministic
polynomial time with oracle access to O and one bit of advice, that fools DTIMEO[nc] with
error 1/nd for infinitely many n.

Proof Sketch. The proof is essentially the same as that of [54]. The only difference is that
instead of assuming PSPACE ̸⊆ BPP in [54], here we assume PSPACE ̸⊆ BPPO. We provide
a high-level description of the proof here. For details, we refer the reader to [54, Sections 1.2
and 3.1].

As in [54], Lemma 28 can be shown by combining hierarchy theorems for probabilistic
classes, which can be viewed as hardness results against (uniform) probabilistic algorithms,
with the hardness-to-randomness framework under uniform hardness assumptions [42, 70].
More specifically, for any oracle O and k ≥ 1, we can construct a language Lk ∈ BPPO/1
that is hard against BPTIMEO[

nk
]
/1. (See [54, Lemma 19].)

As in [26], assuming PSPACE ̸⊆ BPPO, the language Lk is obtained by constructing a
padded version of a certain PSPACE-completed language Lhard that has useful structural prop-
erties, such as downward self-reducibility, random self-reducibility, and instance checkability
[70, 26], using the idea of an “optimal O-oracle algorithm” for Lhard. (See [54, Lemma 17].)

The language Lk constructed in this way will have certain forms of downward self-
reducibility and random self-reducibility. These properties enable us to plug Lk into the
hardness-to-randomness construction of [70] (with additional “relativization properties”
observed by [50]), and get a PRG that is infinitely-often secure against O-oracle adversaries.
Also, the fact that Lk ∈ BPPO/1 allows us to compute the PRG efficiently with oracle access
to O and with one bit of advice, in a pseudodeterministic manner. ◀

Proof of Theorem 25. The theorem follows directly from Lemma 26 and Lemma 28, since
in both the cases of PSPACE ⊆ BPPO and of PSPACE ̸⊆ BPPO, we get a PRG that satisfies
the conditions stated in the theorem. ◀

3.2 A Nearly Maximum Circuit Lower Bound for BPEMCSP/2εn

▶ Theorem 29. For every ε > 0,

BPEMCSP/2εn ̸⊆ SIZE[2n/n].

We first show the following two lemmas.

▶ Lemma 30. For every ε > 0, there is a probabilistic polynomial-time algorithm A such
that the following holds.

For every N ∈ N, on input 1N , the algorithm A, with oracle access to MCSP and with
an advice α(N) ∈ {0, 1}Nε

, outputs with high probability a fixed truth table TN of length
2n:=⌊log N⌋ (which corresponds to some function f : {0, 1}n=⌊log N⌋ → {0, 1}), and
for infinitely many N ∈ N, TN has circuit complexity greater than 2n/n.

S. Hirahara, Z. Lu, and H. Ren 6:15

Proof. Let D be the following algorithm. On input x ∈ {0, 1}N , D lets n := ⌊log N⌋
and checks if MCSP

(
x[2n], 2n/n

)
is false. It is clear D can be determined in time

DTIMEMCSP[O(N)] and that D accepts x only if x[2n] is a truth table with circuit complexity
greater than 2n/n. Also, since most truth tables of length 2n have circuit complexity greater
than 2n/n [67, 56], the acceptance probability of D is at least 1/2.

Consider the generator {GN }N from Theorem 25 that fools DTIMEMCSP[O(N)] for
infinitely many N . By the security of {GN }N , there exists some seed z ∈ {0, 1}Nε

such
that D(GN (z)) = 1, and with oracle access to MCSP and with some bit b ∈ {0, 1}, we can
compute GN (z) pseudodeterministically in time poly(N). Therefore, given such z and b as
advice (which is of Nε + 1 bits but we can always scale the parameter ε), we can obtain with
high probability some fixed truth table of length 2n with circuit complexity greater than
2n/n. ◀

▶ Lemma 31. For every ε > 0, there is a probabilistic algorithm B such that the following
holds.

For every n ∈ N, on input 1n, the algorithm B, with oracle access to MCSP and with an
advice α(n) ∈ {0, 1}2εn

, runs in time 2O(n) and outputs with high probability a fixed truth
table Tn of length 2n, and
for infinitely many n ∈ N, Tn has circuit complexity greater than 2n/n.

Proof. Let ε0 := ε/2. We first describe the advice used by the algorithm B. For input 1n,
the first part of the advice is a number N (if exists) such that

n = ⌊log N⌋, and that
the algorithm A from Lemma 30 (instantiated with parameter ε0) on input 1N , with
oracle access to MCSP and with Nε0 bits of advice, outputs with high probability a fixed
truth table of length 2n with circuit complexity greater than 2n/n.

Note that such a number N can be specified using n + 1 bits. Also, we say that n is good if
such an N exists. By Lemma 30, there are infinitely many good n.

The second part of the advice is the Nε0 bits that are needed to compute A(1N). Note
that the total number of bits for the advice is at most

n + 1 + Nε0 < 2εn.

We let the output of B(1n) be the output of A(1N). Then whenever n is good, the
canonical output of A(1N) (hence B(1n)) will be a truth table of length 2n with circuit
complexity greater than 2n/n. ◀

Theorem 29 now follows easily from Lemma 31.

Proof of Theorem 29. Consider the language L ∈ BPEMCSP/2εn that can be computed as
follows. On input x ∈ {0, 1}n, we run B(1n), where B is the algorithm from Lemma 31,
using MCSP as an oracle and using 2εn bits of advice. With high probability, we obtain
the truth table of some fixed function fn : {0, 1}n → {0, 1}. We then let L(x) := fn(x). By
Lemma 31, for infinitely many n, fn has circuit complexity greater than 2n/n, which implies
that L ̸∈ SIZE[2n/n]. ◀

3.3 Circuit Lower Bounds for Meta-Complexity Problems
In this subsection, we show that the problem of estimating rKpoly,MCSP (the MCSP-oracle ver-
sion of polynomial-time randomized Kolmogorov complexity) does not have fixed-polynomial-
size circuits.

CCC 2023

6:16 Bounded Relativization

▶ Theorem 32 (An Unconditional Circuit Lower Bound for Estimating rKpoly,MCSP). For every
ε > 0 and c ≥ 1 there exists a constant k ≥ 1 such that the following holds. Consider the
following promise problem Πε = (YESn, N On)n∈N, where

YESn :=
{

x ∈ {0, 1}n : rKt,MCSP(x) ≤ nε
}

,

N On :=
{

x ∈ {0, 1}n : rKt,MCSP(x) ≥ n − 10
}

,

and t(n) = nk. Then Πε /∈ SIZE[nc].

To show Theorem 32, we first construct an efficient pseudodeterministic PRG, with oracle
access to MCSP and an advice string of length O(log n), that can fool circuits (instead of
uniform algorithms in [54]).

3.3.1 A Pseudodeterministic PRG Fooling Circuits
▶ Theorem 33. For every ε > 0 and every c, d ≥ 1, there is a generator G = {Gn}n∈N with
Gn : {0, 1}nε → {0, 1}n such that the following holds.
Efficiency: There is a probabilistic polynomial-time algorithm A such that for every n ∈ N,

on input 1n and z ∈ {0, 1}nε

, A, with oracle access to MCSP and an advice α(n) ∈
{0, 1}O(log n) that is independent of z, outputs Gn(z) with probability ≥ 2/3.

Pseudorandomness: For infinitely many n ∈ N, for every circuit C : {0, 1}n → {0, 1} of
size at most nc,∣∣∣∣ Pr

x∼{0,1}n
[C(x) = 1] − Pr

z∼{0,1}nε
[C(Gn(z)) = 1]

∣∣∣∣ ≤ 1
nd

.

We need the following hardness-to-randomness construction.

▶ Lemma 34 (Umans [71]). There is a universal constant g and a function GUmans :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that, for all s and Y where the circuit complexity of Y

(viewed as a truth table) is at least sg, and for all circuits C of size s,∣∣∣∣ Pr
x∼{0,1}g log |Y |

[C(GUmans(Y, x)) = 1] − Pr
x∼{0,1}s

[C(x) = 1]
∣∣∣∣ ≤ 1

s
.

Moreover, GUmans is computable in time poly(|Y |).

We also need the following variant of Lemma 30, whose proof is essentially the same as
that of Lemma 30. We omit the details here.

▶ Lemma 35. For every ε > 0 and d ≥ 1, there is a probabilistic polynomial-time algorithm
A such that the following holds.

For every N ∈ N, on input 1N and z ∈ {0, 1}Nε

, the algorithm A, with oracle access to
MCSP and with an advice αA(N) ∈ {0, 1}, outputs with high probability a fixed truth table
TN,z of length 2m:=⌊log N⌋ (which corresponds to some function f : {0, 1}m → {0, 1}), and
for infinitely many N ∈ N, with probability at least 1 − 1/Nd over z, TN,z has circuit
complexity at least 2m/2.

We now present the PRG in Theorem 33.

Proof of Theorem 33. The idea is to combine Lemma 35 and Lemma 34.
Let c′ := max{c, 2d} and ε0 := ε/(7c′g), where g is the constant from Lemma 34.
For n ∈ N, we first specify the advice for computing the generator Gn. The first part of

the advice is a number N (if exists) such that
n3c′g ≤ N < (n + 1)3c′g, and that

S. Hirahara, Z. Lu, and H. Ren 6:17

the algorithm A from Lemma 35 (instantiated with parameters ε0 and d := 1), on input
1N and z ∈ {0, 1}Nε0 , with oracle access to MCSP and with one advice bit αA(N),
outputs (with high probability) a fixed truth table of length 2⌊log N⌋ that has circuit
complexity greater than 2⌊log N⌋/2, for at least 1 − 1/N fraction of the z’s.

Note that N can be encoded using O(log n) bits. We say that n is good if such an N exists.
By Lemma 35, there are infinitely many good n. The second part of the advice is then the
bit αA(N) needed to run the algorithm A.

We compute Gn as follow. Given z := (zfirst, zsecond), where zfirst ∈ {0, 1}nε/2 and
zsecond ∈ {0, 1}O(log n), we first invoke the algorithm A from Lemma 35 on 1N (where N is
the first part of the advice as described in the previous paragraph) and zfirst to obtain a
truth table Tn,zfirst . We can compute A using MCSP as oracle and the bit αA(N), which is
the second part of the advice. We will then use the hardness-to-randomness construction in
Lemma 34 on Tn,zfirst . Note that since |Tn,zfirst | ≤ nO(1), the input length of GUmans(Tn,zfirst , −)
can be O(log n). Finally, we output

GUmans
(
Tn,zfirst , zsecond)

[n].

It is easy to verify that Gn satisfies the efficiency condition stated in Theorem 33, since
A is a pseudodeterministic polynomial-time algorithm and GUmans(Tn,zfirst , −) runs in time
poly(n) deterministically.

Next, we show the pseudorandomness condition of Gn. Note that for any good n, with
probability at least 1 − 1/nc′ over zfirst, the algorithm A will output (with high probability)
some fixed truth table Tn,zfirst with circuit complexity at least nc′g. Whenever Tn,zfirst has
such circuit complexity, GUmans

(
Tn,zfirst , −

)
, by Lemma 34, will be a PRG that (1/nc′)-fools

size-(nc′) circuits. In order words, with probability at least 1 − 1/nc′ over zfirst, for every
circuit C : {0, 1}n → {0, 1} of size at most nc′ ,∣∣∣∣ Pr

x∼{0,1}n
[C(x) = 1] − Pr

zsecond
[C(GUmans(Tn,zfirst , zsecond)) = 1]

∣∣∣∣ ≤ 1
nc′ .

Then by a union bound, we get∣∣∣∣ Pr
x∼{0,1}n

[C(x) = 1] − Pr
z

[C(Gs(z)) = 1]
∣∣∣∣ ≤ 1

nc′ + 1
nc′ ≤ 1

nd
,

as desired. ◀

3.3.2 Circuit Lower Bound for rKpoly,MCSP

We complete the proof of Theorem 32 using our PRG in Theorem 33.

Proof of Theorem 32. Let t be a polynomial specified later. For the sake of contradiction,
suppose there exists a circuit C : {0, 1}n → {0, 1} of size at most nc such that for all
x ∈ {0, 1}n,

if rKt,MCSP(x) ≤ nε then C(x) = 1, and
if rKt,MCSP(x) ≥ n − 10 then C(x) = 0.

Note that by a simple counting argument, for most x ∈ {0, 1}n, we have rKt,MCSP(x) ≥ n−10.
This gives

Pr
x∼{0,1}n

[C(x) = 0] ≥ 1
2 .

CCC 2023

6:18 Bounded Relativization

Consider the PRG in Theorem 32 instantiated with parameters ε/2, c and d := 1. We have
that for infinitely many n, Gn (1/n)-fools circuits of size at most nc. On the one hand, this
implies

Pr
z∼{0,1}nε/2

[C(Gn(z)) = 0] ≥ Pr
x∼{0,1}n

[C(x) = 0] − 1
n

≥ 1
3 . (1)

On the other hand, since Gn can be computed, with oracle access to MCSP and with O(log n)
bits of advice, pseudodeterministically in time poly(n), we have that there exists some
polynomial t with t(n) = poly(n) such that for every z ∈ {0, 1}nε/2

rKt,MCSP(Gs(z)) ≤ nε/2 + O(log n) < nε,

which by our assumption implies that

Pr
z∼{0,1}ε/2

[C(Gn(z)) = 1] = 1.

This contradicts Equation (1). ◀

3.4 Pseudodeterministic Construction for Range Avoidance
In this subsection, we show a pseudodeterministic algorithm, using an NP oracle and an
advice string of sub-polynomial length, that solves the range avoidance problem infinitely
often.

▶ Theorem 36. For every ε > 0 and every d ≥ 1, there is a probabilistic polynomial-time
algorithm A such that the following holds.

For every m ∈ N, on any input circuit C : {0, 1}m → {0, 1}m+1 of size md, the algorithm
A, with access to an NP oracle and with an advice α(m) ∈ {0, 1}mε

,8 outputs with high
probability a string xC ∈ {0, 1}m+1, and
for infinitely many m ∈ N, xC ̸∈ Range(C) for each input C.

The following lemma is implicit in [51], attributed to [43].

▶ Lemma 37 (Adaption of [51]). There exists an algorithm R that runs in deterministic
polynomial time with an NP oracle such that the following holds. For every m ∈ N, given any
circuit C : {0, 1}m → {0, 1}m+1 and a truth table of length 2n with circuit complexity at least
2n/2, where n := 4⌈log(m · |C|)⌉ + ⌊log m⌋, the algorithm R outputs a string x ∈ {0, 1}m+1

such that x ̸∈ Range(C).

Proof Sketch. The proof is adapted from those of [51, Lemma 3 and Theorem 7].
First of all, it can be shown that for every m ∈ N and for every circuit C : {0, 1}m →

{0, 1}m+1, there exists a circuit D : {0, 1}m → {0, 1}2m, which can be constructed efficiently
from C, of size m · |C|, such that given a string y ∈ {0, 1}2m that is not in the range D and
given access to an NP oracle, one can compute efficiently a string x ∈ {0, 1}m+1 that is not
in the range of C. (See the proof of [51, Lemma 3].) Therefore, to show the lemma, it suffices
to show how to find, for a given circuit D of size m · |C| mapping m bits to 2m bits, a string
that is not in the range of D.

Given a circuit D : {0, 1}m → {0, 1}2m, let k := 4 ⌈log(|D|)⌉. It can be shown that one
can efficiently construct a circuit E : {0, 1}m → {0, 1}2km with the following properties.
Given a (2km)-bit string that is not in the range of E and given access to an NP oracle,

8 We stress that the advice α(m) does not depend on the input circuit C.

S. Hirahara, Z. Lu, and H. Ren 6:19

we can compute in time poly(|D|) a string x ∈ {0, 1}2m that is not in the range of D.
Moreover, every string y ∈ {0, 1}2km in the range of E has small circuit complexity, in the
sense that there is a circuit Fy : {0, 1}k+⌈log m⌉ → {0, 1} of size at most O(|D| log |D|) that
computes a truth table (of length 2k+⌈log m⌉) whose prefix is y. (See [51, Figure 1 and Proof
of Theorem 7].)

Now if we have a truth table T ∈ {0, 1}2n

with circuit complexity at least 2n/2, where
n = k + ⌊log m⌋, we can construct a (2km)-bit string

yT := T ◦ 02km−2n

.

For the sake of contradiction, suppose yT is in the range of E. Then by the discussion in the
previous paragraph, it is easy to construct a circuit from FyT

of size at most O(|D| log |D|)
that computes T , which has circuit complexity at least 2n/2 = 2(4⌈log(|D|)⌉+⌊log m⌋)/2 ≥ |D|2.
This gives a contradiction. ◀

We are now ready to show Theorem 36.

Proof of Theorem 36. The idea is to use Lemma 31 to obtain a hard truth table, and plug
it in Lemma 37 to solve the range avoidance problem.

Let ε0 := ε/(10d), and let B be the pseudodeterministic algorithm from Lemma 31
instantiated with parameter ε0.

We say that m ∈ N is good if for n := 4⌈(d+1) log m⌉+⌊log m⌋, the algorithm B on input
1n, with oracle access to MCSP and with 2ε0n bits of advice, outputs with high probability
some fixed truth table of circuit complexity greater than 2n/n. Note that there are infinitely
many good m, since there are infinitely many n such that B(1n) will successfully output a
fixed hard truth table with high probability.

Consider the following algorithm A. Given a circuit C : {0, 1}m → {0, 1}m+1 of size md,
A first runs B(1n), where n := 4⌈(d + 1) log m⌉ + ⌊log m⌋, using an NP-complete oracle (that
can simulate MCSP) and using an advice string of length 2ε0n ≤ mε, to obtain (with high
probability) a fixed truth table of length 2n. We then run the algorithm R from Lemma 37
using this truth table and using the NP-complete oracle again to get a string x ∈ {0, 1}m+1.
Note that whenever m is good (and sufficiently large), the truth table output by B(1n) will
have circuit complexity greater than 2n/n ≥ 2n/2, so using such a hard truth table the
algorithm R will successfully output a string that is not in the range of C. ◀

4 Barriers for Derandomization under Uniform Assumptions

4.1 PSPACE-Relativizing Derandomization under Uniform Assumptions
We show that previous results on derandomization under uniform assumptions are PSPACE-
relativizing. This includes the subexponential-time derandomization of Impagliazzo and
Wigderson [42] (see also [70]) and the recent “unstructured hardness to average-case random-
ness” [19]. These results only achieve average-case derandomization, therefore it is helpful to
introduce the following definition.9

9 In the literature, it is more common to define heur-P as a family of distributional problems, which are
pairs (L, D) where L is a language and D is a distribution. In this paper, we only care about whether our
derandomization succeeds on all polynomial-time samplable distributions. Thus, for simplicity, we define
heur-P as simply a class of languages that admits polynomial-time heuristics over all polynomial-time
samplable distributions.

CCC 2023

6:20 Bounded Relativization

▶ Definition 38 (Average-Case Complexity Classes). We say a language L is in heur-P
if for every polynomial-time samplable distribution D and every polynomial p, there is a
deterministic polynomial-time algorithm A such that

Pr
x∼D

[A(x) = L(x)] ≥ 1 − 1/p(n).

Similarly, if the algorithm A runs in quasi-polynomial time, then we say L ∈ heur-QuasiP;
if for every ε > 0 there is such an algorithm A running in 2nε time, then we say L ∈
heur-SUBEXP.

We start by demonstrating that the techniques in [42] are PSPACE-relativizing:

▶ Proposition 7 (Uniform Derandomization in [42] is PSPACE-Relativizing). Let O ∈ PSPACE.
If EXPO[poly] ̸= BPPO, then BPPO ⊆ i. o. heur-SUBEXPO[poly].

Proof Sketch. We first prove that if PSPACEO ̸= BPPO, then BPPO ⊆
i. o. heur-SUBEXPO[poly]. Observe that since O ∈ PSPACE, we have PSPACEO = PSPACE.
Let L be a PSPACEO-complete problem that is both downward self-reducible and random
self-reducible (as constructed in [70]). One could define a family of pseudorandom generators
Gn : {0, 1}no(1) → {0, 1}n based on the hardness of L such that the following holds: Let D

be any oracle such that for every n ∈ N,

|Pr[D(Un) = 1] − Pr[D(Gn(Uno(1))) = 1]| > 1/n,

then L can be decided in randomized polynomial time with a D oracle. Moreover, Gn is
computable in 2no(1) time. If BPPO ̸⊆ i. o. heur-SUBEXPO[poly], then in particular Gn does
not fool certain BPP algorithm (on average, on every input length). It follows from the
reconstruction properties of {Gn} that PSPACE ⊆ BPPO.

We consider two cases. Suppose that EXPO[poly] ̸⊆ PO/poly, then it follows from standard
relativizing hardness-randomness trade-offs [59, 41] that BPPO ⊆ i. o. SUBEXPO[poly]. On
the other hand, if EXPO[poly] ⊆ PO/poly, then by the relativizing Karp-Lipton theorem [48],
EXPO[poly] ⊆ (Σp

2)O ⊆ PSPACEO. Since PSPACEO ̸= BPPO, it follows (again) that BPPO ⊆
i. o. heur-SUBEXPO[poly]. ◀

Before we consider [19], it is helpful to define the notion of logspace-uniform low-depth
circuits:

▶ Definition 39 (Logspace-Uniform Circuits, see [19, Definition 3.5]). We say that a circuit
family {Cn : {0, 1}n → {0, 1}}n∈N of size T (n) is logspace-uniform if there exists a machine
M that on input 1n runs in space O(log T (n)) and prints Cn. For two functions T (n) and
d(n), we denote the class of languages computable by logspace-uniform circuits of size T (n)
and depth d(n) by lu-CKT[T, d].

We show the following PSPACE-relativizing version of [19, Theorem 5.2]. Note that we
can only achieve quasi-polynomial time derandomization if we want a PSPACE-relativizing
result; this is because an oracle in PSPACE might require 2poly(n) time (instead of 2O(n)

time) to compute, and consequently, the HSG in [19] has seed length polylog(n) (instead
of O(log n)). It might be possible to obtain a SPACE[n]-relativizing result that achieves
polynomial-time derandomization, but we do not pursue this direction here.

S. Hirahara, Z. Lu, and H. Ren 6:21

▶ Theorem 40 (High-End Uniform Derandomization in [19] is PSPACE-Relativizing). Let
O ∈ PSPACE and ε > 0 be a constant. Assume there is a function L computable by
logspace-uniform circuits of size 2poly(n) and depth 2no(1) , making O-oracle queries of
poly(n) length, such that L ̸∈ i. o. BPTIME

[
2nε]O. (That is, lu-CKTO[poly]

[
2poly(n), 2no(1)

]
̸⊆

i. o. BPTIMEO[
2nε]

.) Then

RPO ⊆ heur-QuasiPO and BPPO ⊆ heur-QuasiPO/logo(1) n.

Proof Sketch. The key observation is that since O ∈ PSPACE, O itself admits a logspace-
uniform circuit of size 2poly(n) and depth poly(n). It follows that the hard language L in
our assumption can actually be computed by a logspace-uniform circuit of size 2poly(n) and
depth 2no(1) without any oracles. That is:

L ∈ lu-CKTO[poly]
[
2poly(n), 2no(1)

]
⊆ lu-CKT

[
2poly(n), 2no(1)

]
.

The rest of the proof follows [19, Theorem 5.2] closely. In what follows, the input
length of the hard problems with low-depth circuits will be denoted as ℓ instead of n. Let
L(1) ∈ lu-CKT

[
2O(ℓ), 2ℓo(1)

]
be an instance-checkable problem from [19, Proposition 4.4] such

that L polynomial-time reduces to L(1).10 The instance checker for L(1) runs in 2ℓo(1) time.
By [19, Lemma A.1], there exists a constant ε′ > 0 and a language L′ ∈ lu-CKT

[
2O(ℓ), 2ℓo(1)

]
that is not in i. o. BPTIMEO

[
2ℓε′]

and has an instance checker running in 2ℓo(1) time.
The next step is to create an HSG from the hard function L′. Let A be a probabilistic

algorithm which we want to derandomize, n be its input length, and M := nk be the amount
of randomness it uses. Let ℓ := ⌈log2/ε′

n⌉, f : {0, 1}n → {0, 1}2ℓ be the multi-output
function that discards the input and outputs the truth table of L′

ℓ := L′ ∩ {0, 1}ℓ. We use
[19, Theorem 4.5] with parameter δ := ℓε′/4−1 to obtain a generator Gf and a reconstruction
algorithm R.

The generator Gf runs in time T O(1/δ) ≤ 2ℓ2 ≤ 2polylog(n) and outputs a list of M -bit
strings.
The reconstruction algorithm R gets oracle access to a function D : {0, 1}M → {0, 1},
and runs in time 2ℓo(1) · T δ ≤ 2ℓε′/3 . Assume that D (1/M)-avoids the generator Gf , then
w.p. ≥ 1 − O(log2 T)

T , RD prints an oracle circuit Cf such that the truth table of CD
f is

exactly L′
ℓ.

Given an RPO algorithm A, we use the HSG to fool A, making it run in deterministic
T O(1/δ) ≤ 2polylog(n) time. Now suppose there is a distribution D samplable in polynomial
time with O oracles, as well as an infinite set of input lengths I ⊆ N such that our
derandomization fails on I w.p. 1/poly(n). This means that w.p. at least 1/poly(n) over
x ∼ D, we have Prr[A(x, r) = 1] ≥ 1/2 but A(x, w) = 0 for every w in the HSG.

We will use a reconstruction argument to compute L′
ℓ in probabilistic 2ℓε′

time with an
O oracle, reaching a contradiction. We say an input length ℓ is nice if there is some n ∈ I
such that ℓ = ⌈log2/ε′

n⌉; there are infinitely many nice input lengths. On input x ∈ {0, 1}ℓ,

10 Proposition 4.4 of [19] only claimed to hold for L ∈ lu-CKT
[
2O(ℓ), 2ℓo(1)

]
instead of

lu-CKT
[
2poly(ℓ), 2ℓo(1)

]
. We can use a padding argument to reduce L to some problem in

lu-CKT
[
2O(ℓ), 2ℓo(1)

]
and then invoke this proposition; the only difference is that the reduction runs in

polynomial time instead of linear time.

CCC 2023

6:22 Bounded Relativization

where ℓ is a nice input length, we sample uniformly at random an input length n such that
ℓ = ⌈log2/ε′

n⌉, and sample x ∼ Dn. With probability 1/poly(n), the following good event
(which we denote G) happens: n is good and A(x, −) is a distinguisher for our hitting set.
Then we invoke the instance checker for L′

ℓ on input x. Whenever the instance checker asks
a query q, we use RA(x,−) to find the answer of L′(q). If G happens then w.h.p. the instance
checker outputs the correct answer L′(x); even if G does not happen, w.h.p. the instance
checker outputs either L′(x) or ⊥. By sampling n and x for poly(ℓ) times, w.h.p. G will
happen at least once, and we compute L′

ℓ(x) successfully. Since there are poly(n) samples,
the instance checker runs in 2ℓo(1) time, the oracle A(x, −) runs in poly(n) time, and the
reconstruction algorithm runs in 2ℓε′/3 time, the total running time is

poly(n) · 2ℓo(1)
· poly(n) · 2ℓε′/3

≪ 2ℓε′

.

The proof for BPPO ⊆ heur-QuasiPO/logo(1) n is similar. The only difference is to notice
that the targeted HSG constructed in [19, Theorem 4.5] is also a targeted somewhere-PRG,
consisting of 2ℓo(1) sub-PRGs one of which is guaranteed to be secure. The advice for
the derandomized algorithm is the index of the sub-PRG that is secure, thus has length
log(2ℓo(1)) ≤ logo(1) n. ◀

▶ Proposition 8 (Uniform Derandomization in [19] is PSPACE-Relativizing). Let O ∈ PSPACE
and suppose that PSPACEO ̸⊆ i. o. BPPO. Then

RPO ⊆ heur-SUBEXPO[poly] and BPPO ⊆ heur-SUBEXPO[poly]/O(log n).

Proof Sketch. The proof outline is the same as Theorem 40, but the parameters are a bit
different. In particular, the hard language L′ is in lu-CKT

[
2O(ℓ), poly(ℓ)

]
\ BPPO. Fix any

constant ε > 0, the HSG has the following parameters:

ℓ := nε/3, M := nk, and δ := (3/ε) log ℓ/ℓ.

The generator runs in T O(1/δ) ≤ 2O(ℓ2) ≤ 2nε time and outputs a list of M -bit strings. The
reconstruction algorithm runs in O(nT δ) ≤ poly(ℓ) time. If the generator fails to fool a
certain RPO algorithm (on average and infinitely often), then we can use the reconstruction
algorithm to compute L′ in BPPO, contradicting our hypothesis. Therefore the generator
successfully fools every RPO algorithm (on average and infinitely often), and thus RPO ⊆
heur-SUBEXPO[poly].

Moreover, the generator is a somewhere PRG: It can be partitioned into d′ := poly(ℓ)
“sub-PRGs” such that for every BPPO algorithm, one of the “sub-PRG” fools this algorithm
successfully (on average and infinitely often). We embed the index of the correct “sub-PRG”
as advice, taking log d′ = O(log n) bits. Therefore BPPO ⊆ heur-SUBEXPO[poly]/O(log n). ◀

4.2 Bounded-Relativization Barriers for Uniform Derandomization
4.2.1 Barrier for Worst-Case Derandomization under Uniform

Assumptions
Recall that [42] showed that if EXP ̸= BPP then BPP ⊆ i. o. heur-SUBEXP. We present some
evidence that current techniques cannot improve this result to worst-case derandomization:

▶ Theorem 10. There is an oracle O ∈ EXPH such that

RPO ̸⊆ i. o. DTIMEO[2n] and UPO ̸⊆ BPTIMEO[2n].

S. Hirahara, Z. Lu, and H. Ren 6:23

Note that UP ̸⊆ BPTIME[2n] is much stronger than EXP ̸= BPP, yet it still does not imply
fixed exponential time worst-case derandomization of RP by EXPH-relativizing techniques.

▶ Corollary 41. If we can use PSPACE-relativizing techniques to show

EXP ̸= BPP =⇒ BPP ⊆ i. o. SUBEXP,

then L ̸= NP follows.

Proof of Theorem 10. Our oracle world will consist of two oracles P and Q (it is easy to
combine them into a single oracle). The oracle P creates a hard problem in RP against
deterministic algorithms, and the oracle Q creates a hard problem in UP against probabilistic
algorithms. In particular, every input to the oracle P will be of the form (x, r) where
|r| = 100|x|, and let

LP :=
{

x : ∃r ∈ {0, 1}100|x|, P(x, r) = 1
}

.

We will guarantee that for every x, Prr[P(x, r) = 1] is either 0 or greater than 1/2, thus
LP ∈ RP. We also define

LQ :=
{

1n : ∃r ∈ {0, 1}100n, Q(r) = 1
}

.

We will guarantee that for every input length 100n, |Q ∩ {0, 1}100n| ≤ 1, thus LQ ∈ UP.
Let M1, M2, . . . be an enumeration of Turing machines running in deterministic 2n time,

and N1, N2, . . . be an enumeration of probabilistic Turing machines running in 2n time (that
does not necessarily satisfy the BPP promise).11 We want every Mi to fail to solve LP on all
but finitely many input lengths, and every Ni to fail to solve LQ on infinitely many input
lengths. In particular, let n1 be a large enough constant, and ni = 2500ni−1 for each i ≥ 2.
Assuming that every machine appears in the sequence {Ni} infinitely often, we want that for
each i ∈ N, Ni fails to solve LQ on input 1ni .

We also need the following terminologies. The n-th slice of P is the set of inputs of the
form (x, r) where |x| = n and |r| = 100n. The ℓ-th slice of Q is simply the set of inputs
with length ℓ. During our construction, there will be some entries P(x, r) and Q(r) that are
fixed, meaning that their values will never change in the subsequent construction. There will
also be some inputs x that are frozen, meaning that for every r ∈ {0, 1}100|x|, the values of
P(x, r) are fixed and will never change in the subsequent construction. If an entry P(x, r) or
Q(r) is not fixed and, in the case of P(x, r), x is not frozen, then we say this entry is free.

Our construction proceeds in stages. During stage n, we will fix the entire n-th slices of
P and Q; we will possibly also fix or freeze some other entries. It will be guaranteed that
before the n-th stage:
1. the number of frozen strings beyond the n-th slice (including the n-th slice) is at most

2n/2;
2. the number of fixed strings (except the frozen ones) beyond the n-th slice (including the

n-th slice) is at most 25n; and
3. each fixed or frozen entry beyond the n-th slice (including the n-th slice) is set to be 0.

11 In this paper, whenever we enumerate a list of Turing machines, we assume every machine occurs in the
list infinitely many times.

CCC 2023

6:24 Bounded Relativization

Diagonalization against Mi. Let x1, x2, . . . , xn be n inputs of length n that are not frozen.
Since there are at most 2n/2 frozen inputs of length n, it is always possible to select n

unfrozen inputs. For each i ∈ [n], we simulate the machine Mi on input xi. Whenever Mi

asks a query P(x, r) or Q(r), if this query is not free, then we return the corresponding value
fixed before; if it is free, then we return 0 as the answer and also fix this query to be 0. Then
Mi will output an answer ansi ∈ {0, 1}. Note that there are at most 25n + n · 2n ≪ 2100n/3
entries in P that are fixed, thus the vast majority of the entries P(xi, r) are free. We fix
all these entries P(xi, r) to be (1 − ansi). It is easy to see that Mi fails to compute LP on
input xi.

Diagonalization against Ni. If n = 10ni for some i ∈ N, then we also need to fix the
100ni-th slice of Q so that Ni fails to compute LQ on input 1ni . (In stage n, this happens
after the above diagonalization against Mi.) We simulate Ni on input 1ni . Note that Ni is a
probabilistic machine running in time 2ni , thus it has B := 22ni computational branches,
where each branch has 1/B probability mass. On each branch, whenever Ni asks a query
P(x, r) or Q(r), if this query is not free, then we return the corresponding value fixed before;
if it is free, then we return 0 as the answer to the query. Note that we cannot fix the
query as there are potentially as many as B queries to fix. Instead, after simulating all the
computational branches, we pick out the “heavy” queries that occur in a lot of branches and
fix them:

A string x is heavy if at least 1
104|x|3 fraction of branches queried some free entry of the

form P(x, r).
An entry Q(r) is heavy if at least 1

104 fraction of branches queried Q(r).

We freeze every heavy x by setting every unfixed entry P(x, r) to be 0. We also fix every
heavy Q(r) to be 0. Note that each computational branch of Ni only makes at most 2ni

queries. Therefore, for each input length m where n ≤ m ≤ 2ni , the number of heavy strings
x ∈ {0, 1}m is at most 1042nim3. The number of entries Q(r) fixed before this stage is at
most 25n, and the number of heavy entries Q(r) is at most 1042ni , therefore the total number
of fixed entries in Q after this stage is at most 26n ≪ 2100ni .

After simulating every computational branch of Ni, let p be the probability that Ni

outputs 1 on input 1n. If p < 0.5, then we pick a free r ∈ {0, 1}100ni and set Q(r) = 1; since
the number of fixed entries Q(r) is ≪ 2100ni , such r always exists. If p ≥ 0.5, then we do
nothing.

Now we have that Ni solves LQ on input 1ni with probability less than 2/3 (actually, at
most 1/2). Is this always the case in the future? Consider how the future changes to the
oracles might affect the behavior of Ni. Let m be an input length where n < m ≤ 2n. During
stage m (which has not happened yet), we will pick m inputs x1, x2, . . . , xm ∈ {0, 1}m, then
some entries of the form P(xi, r) will be set to be 1. Also note that the probability mass of
computational branches that each xi affects is at most 1

104m3 . Therefore, the total probability
mass of computational branches affected is at most∑

m∈N

m

104m3 <
1

103 .

Note that we also set at most one entry Q(r) to be 1, where |r| = 100ni. (The next time we
diagonalize against Ni+1 happens in stage ni+1 ≫ 2n.) Since this entry Q(r) is not heavy,
the probability mass of computational branches that it affects is at most 1

104 .
It follows that only an 11

104 fraction of computational branches of Ni will be affected in
the future. That is, let p′ be the probability that Ni outputs 1 on input 1ni at the end of
our construction (i.e., after stage ≫ 2n), then |p′ − p| < 11

104 . Therefore, it cannot be the
case that

S. Hirahara, Z. Lu, and H. Ren 6:25

Pr[Ni(1ni) = LQ(1ni)] ≥ 2/3.

Clean-up. At the end of stage n, we fix every unfixed input P(x, r) in the n-th slice to be
0. If n = 10ni then we also fix every unfixed input Q(r) in the 10n-th slice to be 0. The
number of frozen strings is at most 1042n/10n3 ≤ 2n/2 (note that at most one Ni contributes
to the frozen strings since the input lengths {ni} are very far apart). The number of fixed
entries above the (n + 1)-st slice is at most

25n + n · 2n +
2n/10∑
m=n

1042n/10m3 < 25(n+1).

The complexity of O. We show that the above oracles P and Q are computable in EXPH.
It suffices to present a deterministic algorithm with access to a Σp

3 oracle that on input 1n,
outputs the truth tables of the n-th slices of P and Q in 2O(n) time.

We simulate each stage n′ ≤ n. Before stage n′, we maintain the set of fixed entries
P(x, r), Q(r), as well as the set of frozen strings x. There are at most 2O(n′) many such
strings. In what follows, we use ⟨P , Q⟩ to denote (the length-2O(n′) encoding of) the list of
fixed entries and frozen strings.

It is easy to diagonalize against each Mi: we simply choose the inputs x1, x2, . . . , xn′ ,
simulate each Mi on input xi, and fix the oracles accordingly. This takes 2O(n′) time.

To simulate Ni, we need to define the following language capturing the weight of queries.
Consider simulating the probabilistic machine Ni on the current oracle ⟨P , Q⟩. Whenever
Ni makes a query, if this query is not free, then we return the answer of the query; otherwise
we return 0. The following two claims are immediate corollaries of Theorem 23:

▷ Claim 42. There is a language Heavy-String(⟨P , Q⟩, Ni, x) computable in Σp
2 such that:

if at least 1.1
104|x|3 fraction of computational branches of Ni queried some free entry of the

form P(x, −), then Heavy-String(⟨P , Q⟩, Ni, x) = 1;
if at most 0.9

104|x|3 fraction of computational branches of Ni queried some free entry of the
form P(x, −), then Heavy-String(⟨P , Q⟩, Ni, x) = 0.

▷ Claim 43. There is a language Heavy-Entry(⟨P , Q⟩, Ni, r) computable in Σp
2 such that:

if at least 1.1
104 fraction of branches of Ni queried Q(r), then Heavy-Entry(⟨P , Q⟩, Ni, r) =

1;
if at most 0.9

104 fraction of branches of Ni queried Q(r), then
Heavy-Entry(⟨P , Q⟩, Ni, r) = 0.

(Note that both Heavy-String and Heavy-Entry accepts inputs of length 2O(n′).)
With the aid of these two languages, it is possible to simulate stage n′ now. We say

a string x is heavy if Heavy-String(⟨P , Q⟩, Ni, x) = 1, and an entry Q(r) is heavy if
Heavy-Entry(⟨P , Q⟩, Ni, r) = 1. Since there are at most 2O(n′) heavy strings, we can find
all of them in 2O(n′) time with access to an NPHeavy-String oracle. Similarly, since there are
2O(n′) heavy entries, we can find all of them in 2O(n′) time with access to an NPHeavy-Entry

oracle. We freeze these heavy strings and fix these heavy entries accordingly.
Finally, we estimate the probability that Ni outputs 1 (given current versions of P and

Q) in Σp
2, within additive error 0.1. If this estimation is less than 1/2, then we pick a free

r ∈ {0, 1}10n′ and set Q(r) = 1; otherwise we do nothing.

CCC 2023

6:26 Bounded Relativization

At the end of stage n′, we fix every unfixed entry in the n′-th slice of P(x, r) to be 0. If
n = 10ni then we also fix every unfixed input Q(r) in the 10n-th slice to be 0. This takes
2O(n′) time.

It is easy to see that simulating the n stages takes 2O(n) time with access to a Σp
3

oracle. ◀

▶ Remark 44. It is instructive to see why this construction only rules out worst-case de-
randomization instead of average-case derandomization. (If we could rule out average-case
derandomization, then PSPACE ̸= EXPH follows from Proposition 7!)

The reason is that we do not want to affect the acceptance probability of Ni(1ni) by
too much. Let m ∈ [10ni + 1, 2ni] be a “future” input length, we say x ∈ {0, 1}m is “used
for diagonalization” if there is some P(x, r) that is fixed to 1. Each string x used for
diagonalization influences the accept probability of Ni by a small amount (1

104m3 in our
proof), therefore we cannot afford to have too many strings used for diagonalization.

If we only want each Mi to fail in the worst case, we only need to use one input xi ∈ {0, 1}m

to diagonalize against each Mi, hence we only need to use ω(1) strings x for diagonalization.
On the other hand, if we want each Mi to fail on average (say, under the uniform distribution
over {0, 1}m), then there has to be a lot of strings (e.g., 2m/poly(m)) used for diagonalization;
our previous guarantees on the acceptance probability of Ni will be completely destroyed.

4.2.2 Barrier for Almost-Everywhere Derandomization without Advice
It is natural to ask whether the results of [42] can be improved to almost-everywhere
derandomization. Recently, substantial progress was made by Chen, Rothblum, and Tell [19],
who showed average-case derandomization on almost every input length based on uniform
assumptions. In particular, assuming lu-CKT[2O(n), 2o(n)] ̸⊆ i. o. BPTIME[2Ω(n)], they showed
that RP ⊆ heur-P and BPP ⊆ heur-P/O(log n).

One open question is whether the O(log n)-bit advice in the derandomization of BPP can
be eliminated. In Theorem 11, we present an oracle world where this improvement is not
possible. Unfortunately, we do not know how to implement this oracle in EXPH; nevertheless,
we still show in Theorem 12 that eliminating the O(log n)-bit advice by PSPACE-relativizing
techniques would require proving new lower bounds for SAT.

▶ Theorem 11. There is an oracle O such that

BPPO ̸⊆ heur-DTIMEO[2n] and UPO ̸⊆ i. o. BPTIMEO[2n].

Proof. We use a similar construction as in Theorem 10. The difference is that now we want a
problem in BPP that is infinitely-often hard, and a problem in UP that is almost-everywhere
hard, therefore we need to define the oracles differently. In particular, the oracle P only
receives one input r, and the oracle Q receives two inputs (x, r), where |r| = 10|x|. The hard
language in BPP is:

LP =
{

1n : Pr
r∼{0,1}n4

[P(r) = 1] ≥ 1/2
}

.

It is guaranteed that for every n, the fraction of length-n4 strings that are in P is either at
most 1/3 or at least 2/3, therefore LP ∈ BPP. On the other hand, the hard language in
UP is:

LQ =
{

x : ∃r ∈ {0, 1}10|x|, Q(x, r) = 1
}

.

S. Hirahara, Z. Lu, and H. Ren 6:27

It is guaranteed that for every input x, there is at most one string r ∈ {0, 1}10|x| such
that Q(x, r) = 1, therefore LQ ∈ UP. We will construct the oracles P and Q such that
LP ̸∈ DTIME[2n] and LQ ̸∈ i. o. BPTIME[2n]. Note that LP is a unary language, therefore
we also have BPP ̸⊆ heur-DTIME[2n].

We use the same terminologies as before: M1, M2, . . . is an enumeration of deterministic
Turing machines running in 2n time, and N1, N2, . . . is an enumeration of probabilistic Turing
machines running in 2n time. The ℓ-th slice of P is the set of inputs with length ℓ, and the
n-th slice of Q is the set of inputs of the form (x, r) where |x| = n and |r| = 10n. An entry
is fixed if its value will never change in the subsequent construction. We choose n1 to be
a large enough constant and define a sequence {ni} where ni = 210ni−1 for each i ≥ 2. We
want every Ni to fail to solve LQ on all but finitely many input lengths, and every Mi to fail
to solve LP on input 1ni .

Our construction proceeds in stages. We guarantee that:
For every input length n that is not in the sequence {ni}, the n-th slice of P is identically 0.
For every input length n, there are at most 2n entries in the entire n-th slice of Q that
returns 1.
Consider only the oracle Q. Before the n-th stage, the number of fixed entries beyond the
n-th slice of Q (including the n-th one) is at most 26n, and all of them are fixed to be 0.

We start from the n⋆-th stage for some large enough constant n⋆. For each n ≥ n⋆, in
the n-th stage, we diagonalize against the machines Ni and Mi, and fix the n-th slice of Q
as well as the n4-th slice of P (when n equals some ni). Details follow.

Diagonalization against Ni. Let n′ be the smallest integer in the sequence {ni} such that
n′ ≥ n, and i′ be the index such that n′ = ni′ . The (n′)4-th slice of P may contain either
few or most strings, and we do not know which is the case yet. Therefore, we will diagonalize
each Ni twice, first assuming the n′-th slice of P is nearly empty and then assuming the
n′-th slice of P is nearly full. For this reason, we will need 2n distinct strings xi,b ∈ {0, 1}n,
one for each pair of i ∈ [n] and b ∈ {0, 1}. Note that at the beginning of the n-th stage, there
are at most 26n ≪ 210n strings fixed in the n-th slice of Q, therefore we can always choose
2n strings xi,b where no entry of the form Q(xi,b, r) is fixed.

For each i ∈ [n] and b ∈ {0, 1}, we simulate Ni(xi,b), assuming that most entries in the
n′-th slice of P returns b. Note that Ni is a probabilistic machine running in time 2n, thus
it has B := 22n computational branches, where each branch has 1/B probability mass. On
each branch, whenever Ni asks a query P(r) or Q(x, r), if this query is already fixed, then
we return the corresponding value fixed before; otherwise:

Suppose the query is P(r). If |r| is in the sequence {n4
i }, then since P(r) is not fixed and

|r| ≤ 2n, we know that |r| = (n′)4 and we return b as the answer. Otherwise (|r| ̸= (n′)4)
we return 0.
Suppose the query is Q(x, r), then we return 0 as the answer.

Again, we can only afford to fix the heavy entries, defined as follows. Let K be the number
of machine-input pairs that we still need to simulate in the future before fixing the (n′)4-th
slice of P; note that this includes both the current Ni(xi,b) and the final Mi′(1n′). That is:

K = 2(n − i) + (2 − b) +
n′∑

j=n+1
(2j) + 1.

An entry P(r) is heavy if |r| = (n′)4 and at least 2−(n′+4)K fraction of branches queried
P(r).
An entry Q(x, r) is heavy if at least 1

104|x|3 fraction of branches queried Q(x, r).

CCC 2023

6:28 Bounded Relativization

We fix every heavy entry according to the way we answer this entry before. That is, every
heavy entry P(r) is fixed to be b and every heavy entry Q(x, r) is fixed to be 0. The number
of heavy entries in P is at most 2(n′+4)K · 2n; for each input length m ≥ n, the number of
heavy entries in the m-th slice of Q is at most 2n · 104 · m3.

Let p be the probability (over the B computational branches) that Ni(xi,b) outputs 1.
If p < 1/2 then we find a string r such that Q(xi,b, r) is unfixed yet and set Q(xi,b, r) = 1,
making xi,b ∈ LQ. Such a string r exists since we have fixed strictly less than 210n strings in
the n-th slice of Q. If p ≥ 1/2 then we do nothing.

Assuming that most entries in the (n′)4-th slice of P indeed returns b, at this point the
probability that Ni outputs the correct answer on input xi,b is at most 1/2. However, the
oracles P and Q might change in the future, thus the behavior of Ni might also change.
What fraction of computational branches might be affected in the future?

Consider the K − 1 machine-input pairs that we will simulate in the future before the
(n′)4-th slice of P is completely fixed. The number of heavy entries in the (n′)4-th slice
of P that these machines fix is at most

K−1∑
k=1

2(n′+4)k · 2n′
≤ 2 · 2(n′+4)(K−1) · 2n′

.

Therefore, the probability mass of computational branches of Ni(xi,b) influenced by the
future changes to the (n′)4-th slice of P is at most

2 · 2(n′+4)(K−1) · 2n′
· 2−(n′+4)K ≤ 1/8.

For each m ≤ 2n, there are at most 2m entries in the m-th slice of Q that we will fix to
be 1. The probability mass of computational branches of Ni(xi,b) influenced by these
entries is at most

2n∑
m=n

2m

104m3 <
1

103 .

It follows that the future modifications to the oracles P and Q will only affect the accept
probability of Ni(xi,b) by 1

8 + 1
103 < 1

6 . Therefore, it cannot be the case that

Pr[Ni(xi,b) = LQ(xi,b)] ≥ 2/3.

Diagonalization against Mi. If n = ni for some i ∈ N, then we want that Mi does not
compute LP on input 1n correctly. We simulate Mi on the input 1n. When Mi asks a query
P(r) or Q(x, r), if this query is already fixed, then we return the corresponding value fixed
before; otherwise we return 0 and fix this queried entry.

After this simulation, we argue that only a small fraction of entries in the n4-th slice of
P are fixed. First, the simulation of Mi(1n) fixes at most 2n entries. Second, there are at
most K =

∑n
j=1(2j) = O(n2) machine-input pairs Ni(xi,b) simulated so far, and the k-th

such machine fixes at most 2(n+4)k · 2n entries. Therefore, the number of entries fixed by
some previous Ni(xi,b) is at most

K∑
k=1

2(n+4)k · 2n ≤ 2O(n3).

It follows that all but 2O(n3) entries in the n4-th slice of P are not fixed yet. Let b ∈ {0, 1}
be the output bit of Mi(1n), then we set LP(1n) = 1 − b by fixing every unfixed entry in the
n4-th slice of P to be 1 − b. We have that on input 1n, LP satisfies the BPP promise, and
Mi fails to solve LP .

S. Hirahara, Z. Lu, and H. Ren 6:29

Clear-up. At the end of stage n, we fix every unfixed input Q(x, r) on the n-th slice to be 0.
It is easy to see that there are at most 2n entries in the n-th slice of Q(x, r) that returns 1.

During the n-th stage, the number of entries we fixed beyond the (n + 1)-st slice of Q is
at most

2n +
2n∑

m=n+1
2n · 104 · m3 ≤ 25n.

Thus the total number of entries we fixed beyond the (n + 1)-st slice of Q is at most
26n + 25n < 26(n+1). ◀

Unfortunately, we do not know how to compute the above oracles in EXPH. The reason
is that when we diagonalize Ni on input length n, the number of heavy entries P(r) we need
to fix is 2(n′+4)K · 2n = 2poly(n′). Since n′ might be exponentially large compared to n, this
upper bound might be doubly exponential. Nevertheless, we show that under the assumption
that

SAT ∈ DTIME[n · polylog(n)] ∩ NC, (*)

the oracles P, Q in Theorem 11 can be computed in PSPACE. It follows that

▶ Corollary 45. Any PSPACE-relativizing proof of

PSPACE ̸⊆ i. o. BPP =⇒ BPP ⊆ heur-SUBEXP

would also imply a breakthrough lower bound for SAT, i.e., refuting Equation (*).

▶ Theorem 12. Suppose that SAT ∈ DTIME[n · polylog(n)] ∩ NC. Then there is an oracle O
satisfying the conclusions of Theorem 11 that can be computed in polynomial space.

We sketch some intuition before presenting the full proof of Theorem 12. The bottleneck
of putting O into EXPH is that we do not have enough space to store all the heavy entries
P(r) fixed by a probabilistic machine Ni, as there might be doubly-exponentially many of
them. Therefore, whenever we simulate a machine Ni and it asks a query P(r), we have to
compute from scratch whether P(r) was fixed by a previous machine. If we have an oracle
Heavy that given r, decides whether P(r) was already fixed, then we can simulate Ni in
exponential time with a constant number of alternations (using Theorem 24). However,
there are poly(n) machines Nj simulated before Ni, and each time we invoke Heavy, we
need to simulate these machines to see if any of them has already fixed P(r). It follows that
the simulation of Ni actually requires poly(n) alternations and 2poly(n) time. Still, under a
strong enough assumption such as (*), we can simulate these poly(n) alternations in 2poly(n)

time.

Proof of Theorem 12. Consider the construction in Theorem 11, with the only difference
that we do not calculate the precise probabilities; instead, we compute their approximations
in PH. Since SAT ∈ NC, we have EXP = PSPACE by padding, thus it suffices to construct
the oracles in 2poly(n) time.

The most involved part of this proof is to compute the following function
Heavy(n, ⟨P , Q⟩, i, b, xi,b, r), which indicates whether P(r) is a heavy query of the prob-
abilistic machine Ni on input xi,b. Here, the input of Heavy consists of the description
of oracles P and Q, an integer i ≤ n, an input xi,b ∈ {0, 1}n, and a query r ∈ {0, 1}(ni′)4

(where ni′ is the smallest element in the sequence {ni} such that ni′ ≥ n). We may assume
|r| ≤ 2n as otherwise Ni could never query P(r). The oracle description ⟨P , Q⟩ will contain
the following information:

CCC 2023

6:30 Bounded Relativization

We record a table of all entries in Q that are fixed; there are at most
∑

m≤n 2m + 26n ≤
2O(n) such entries. For each entry, we also record a timestamp indicating when this entry
is fixed.
We record all entries of P up to the ni′−1-th slice (but we do not include any information
of the ni′ -th slice of P); the description length of P is also at most 2O(n).

Note that the input length of Heavy is at most 2O(n). Instead of requiring Heavy to decide
exactly whether P(r) is a heavy query, we only require a 2-approximation: if P(r) is queried
by Ni(xi,b) w.p. at least 2−(n′+4)K then Heavy returns 1, while if P(r) is queried w.p. at
most 2−(n′+4)K/2 then Heavy returns 0.

Let k be the number of machine-input pairs we have simulated before Ni(xi,b) (inclusive).
That is,

k :=
∑
m<n

(2m) + 2i + b + 1 ≤ O(n2).

We will show that:

▷ Claim 46. If SAT ∈ DTIME[n · polylog(n)], then we can compute Heavy in deterministic
O(2k2) time.

Proof. Consider simulating (a random computational branch of) Ni(xi,b) while answering the
oracle queries of Ni accordingly.12 Note that we have not recorded the ni′ -th slice of P in our
description ⟨P , Q⟩. As a consequence, whenever Ni(xi,b) asks a query P(rq) where |rq| = ni′ ,
we need to recursively call Heavy to decide whether this query was already fixed and which
value it was fixed to. We enumerate every ni′−1 < ñ ≤ n, every machine Nj (j ≤ ñ), and
every bit b′. Suppose that we feed the machine Nj with the input x′

j,b′ ∈ {0, 1}ni′ .13 Using
the timestamps recorded in the table Q, we can recover the state of the oracle Q before the
simulation of Nj(x′

j,b′); we call this oracle Q′. (The portion of oracle P up to the ni′−1-th
slice remains the same.) Then, we call Heavy(ñ, ⟨P , Q′⟩, j, b′, x′

j,b′ , rq) to see if this query is
a heavy query fixed by N ′

j . If it is, then we return P(rq) := b′; otherwise we search through
the next machine. If the query P(r) was not fixed before and was asked in this simulation.
then we return 1; otherwise we return 0.

The above argument implies that Heavy can be computed recursively in the following
sense. There is a machine VHeavy that gets input := (n, ⟨P , Q⟩, i, b, xi,b, r) and some random-
ness z ∈ {0, 1}2O(n) (denoting a random computational branch of Ni(xi,b)), runs in 2O(n)

time with poly(n) invocations of the Heavy oracle, and outputs 0 or 1. Let ε := 2−(n′+4)/K ,
we want that Heavy(input) = 1 if Prz[VHeavy(input; z) = 1] ≥ ε, and Heavy(input) = 0 if
Prz[VHeavy(input; z) = 1] ≤ ε/2.

We can use induction to show that Heavy can be computed in (deterministic) O(2k2)
time. In particular, by the induction hypothesis, each call of the Heavy oracle made by
VHeavy on input can be computed in O(2(k−1)2) time. Therefore, VHeavy runs in at most
2(k−1)2 · poly(k) time. By Theorem 24, there is a Σ5TIME[2(k−1)2 · poly(k)] time machine
H̃eavy such that H̃eavy(input) = 1 if Prz[VHeavy(input; z) = 1] ≥ ε and H̃eavy(input) = 0
if Prz[VHeavy(input; z) = 1] ≤ ε/2. By our hypothesis that SAT ∈ DTIME[n · polylog(n)],
there is a deterministic machine Heavy that runs in 2(k−1)2 · poly(k) < 2k2 time and decides
the same language as H̃eavy. ◁

12 That is, whenever Ni asks a query P(r) or Q(x, r) that is fixed, we answer accordingly. Whenever Ni

asks a query P(r) that is not fixed, if |r| = (n′)4 then we return b, otherwise we return 0. Whenever Ni

asks a query Q(x, r) that is not fixed, we return 0.
13 We assume that there is an easy and deterministic way of assigning the inputs xj,b′ for each pair (j, b′).

S. Hirahara, Z. Lu, and H. Ren 6:31

Now we show that given an integer N , it is possible to print the N -th slice of P and Q in
deterministic 2poly(N) time. We simulate the stages n for n = 1, 2, · · · , where during each
stage we need to diagonalize against probabilistic machines N1, N2, · · · . If n = ni for some
i ∈ N, then we also need to diagonalize against Mi.

For each Ni, we can list the set of its heavy queries of the form Q(x, r) in deterministic
2poly(n) time with a PHHeavy oracle. Note that Heavy can be decided in time quasi-
polynomial in its input length; also recall we assumed that SAT ∈ P. Thus we can
enumerate the heavy queries of the form Q(x, r) in deterministic 2poly(n) time (without
additional oracles). We fix all these queries. (Note that we do not fix the heavy queries
of the form P(r); instead, we use the oracle Heavy to decide whether a query P(r) is
fixed.) Then we use the PH oracle to estimate the probability that Ni(xi,b) outputs 1. If
the probability is small then we pick some r such that Q(xi,b, r) is unfixed, and fix this
entry to 1; otherwise we do nothing.
Before we diagonalize against Mi, we spend 2poly(n) time to retrieve the list of fixed
entries in the n4-th slice of P from the oracle Heavy. Then we simulate Mi, and for
every unfixed query, we fix it to be 0. Let b ∈ {0, 1} be the output of Mi, then we set
every unfixed entry in the n4-th slice of P to be 1 − b.

It is easy to see that the above process runs in 2poly(N) time. ◀

▶ Remark 47. A beautiful line of work [24, 53, 25, 22, 76, 77, 15, 58] investigated time-space
trade-off lower bounds for SAT. Lower bounds proved in these works come in two flavors:
“SAT cannot be solved by a machine with certain time and space bounds simultaneously”,
or “SAT either cannot be solved in some time bound, or cannot be solved in some space
bound (even by two different machines)”. The state-of-the-art lower bounds of the first
flavor is that SAT cannot be solved in nc time and no(1) space simultaneously, for every
c < 2 cos(π/7) ≈ 1.801 [77]; note that such lower bounds do not contradict (*). The state-of-
the-art lower bounds of the second flavor is that SAT either requires more than n · polylog(n)
time or requires log2−o(1) n depth [58]. To the best of our knowledge, it is still an open
question to disprove (*).

5 Barriers for Explicit Constructions

5.1 PSPACE-Relativizing Pseudodeterministic Constructions
In this section, we show that the previous results on pseudodeterministic constructions are
PSPACE-relativizing. A property Q is dense if for every n ∈ N, |Q ∩ {0, 1}n| ≥ 2n/poly(n).
For every dense property Q computable in polynomial time, Oliveira and Santhanam [62]
presented a pseudodeterministic algorithm that on input 1n, outputs a canonical element
in Qn with high probability. Their pseudodeterministic algorithm runs in subexponential
time, is zero-error (i.e., the algorithm never outputs any element besides ⊥ (“failure”) and
the canonical one), and is correct on infinitely many input lengths n. We verify that their
argument holds relative to every oracle O ∈ PSPACE.

▶ Proposition 48 (Formal Version of Proposition 13). Let O ∈ PSPACE. Then for every
ε > 0 and every dense property Q ∈ PO, there exist a zero-error pseudodeterministic
O-oracle algorithm A with running time 2nε and an infinite sequence {xni}i∈N such that
xni

∈ Q ∩ {0, 1}ni for each i ∈ N and that

Pr
A

[
AO(1ni) = xni

]
≥ 3/4.

CCC 2023

6:32 Bounded Relativization

Proof Sketch. We follow the analysis from [62].
Let c ≥ 1 and Q ∈ DTIMEO[nc] be a dense property. It suffices to show an HSG {Hn}n

of seed length nε such that Hn can be computed pseudodeterministically with zero error in
time 2nε with oracle access to O, and that for infinitely many n, Hn hits Q on input length
n. This is because we can then enumerate all z ∈ {0, 1}nε

and find the first z such that
Q(Hn(z)) = 1. Such a z exists since Q is a dense property and Hn hits Q.

First of all, using the “easy witness” method [45], one can show that there exists a family
of sets {Heasy

n ⊆ {0, 1}n}n, such that each Heasy
n is computable deterministically in time 2nε

with oracle access to O, and that if Q avoids {Heasy
n }n on all but finitely many input length

n, then BPPO = ZPPO. Roughly speaking, Heasy
n contains the truth tables of all O-circuits

C : {0, 1}log n → {0, 1} of size at most nε/10. If Q avoids Heasy
n , then we can obtain, with

high probability and without error, an n-bit truth table that has O-circuit complexity at
least nε/10, by randomly picking an n-bit string that is accepted by Q. Such hard truth
tables can then be used to derandomize BPPO. (See [62, Proof of Lemma 2] for details.)

If BPPO ̸= ZPPO, {Heasy
n }n will give a valid HSG. Now assume BPPO = ZPPO. It suffices

to construct an infinitely often HSG that can be computed pseudodeterministically with
oracle access to O, since it can be made zero-error using the assumption BPPO = ZPPO.

We consider two cases. Suppose PSPACE ⊆ BPPO. Then the existence of a valid HSG
follows easily from Lemma 26. Now suppose PSPACE ̸⊆ BPPO. We can also use the following
hardness-to-randomness construction to obtain a valid HSG.

▶ Theorem 49 ([42, 70, 50]). Let O be any oracle. If PSPACE ̸⊆ BPPO, then for every
b, c ≥ 1, there is a sequence {Gℓ}ℓ≥1, where Gℓ : {0, 1}ℓ → {0, 1}ℓb

is computable in time
2O(ℓ), such that for every language L ∈ DTIMEO[nc], there are infinitely many ℓ such that∣∣∣∣∣ Pr

x∼{0,1}ℓb
[L(x) = 1] − Pr

z∼{0,1}ℓ
[L(Gℓ(z)) = 1]

∣∣∣∣∣ ≤ 1
10 .

This completes the proof of Proposition 48. ◀

5.2 Bounded-Relativization Barriers for Explicit Constructions
5.2.1 Barriers for Almost-Everywhere Pseudodeterministic Constructions
We show that EXPH-relativizing techniques cannot prove almost-everywhere pseudodetermin-
istic constructions, even if the construction algorithms are allowed 2o(n) time. The underlying
oracle uses the query complexity lower bounds proved by Goldwasser, Impagliazzo, Pitassi,
and Santhanam [31] in a black-box fashion. (We thank Rahul Santhanam for pointing
out that the query complexity lower bounds imply an EXPH-computable oracle without
almost-everywhere pseudodeterministic constructions in a black-box fashion.)

▶ Definition 50. A pseudodeterministic decision tree for a search problem S is a distribution
T over decision trees with the following property: For every input x, there is a canonical
value o such that with probability at least 2/3, T (x) = o. Let psPdt(S) denote the minimum
depth of any pseudodeterministic decision tree for S.

Consider the following search problem denoted as Find1. The input is a string x ∈ {0, 1}N

where it is guaranteed that there are at least N/2 bits in x that are equal to 1. The problem is
to find some i ∈ [N] such that xi = 1. The following lower bound on the pseudodeterministic
query complexity of Find1 was proved in [31]:

▶ Theorem 51 ([31]). psPdt(Find1) = Ω(
√

N).

S. Hirahara, Z. Lu, and H. Ren 6:33

We use this result as a black box and construct an oracle O ∈ EXPH without almost-
everywhere pseudodeterministic constructions running in 2o(n) time:

▶ Theorem 52. There is an oracle O ∈ EXPH and a dense property Q ∈ PO such that the
following holds. For every randomized (and purportedly pseudodeterministic) algorithm A
that runs in 2o(n) time with oracle access to O and every infinite sequence of outputs {xn}n∈N
where each xn ∈ Q ∩ {0, 1}n, there are infinitely many input lengths n ∈ N such that

Pr[A(1n) = xn] ≤ 3/4.

Proof. Let M1, M2, · · · be an enumeration of probabilistic machines running in 20.1n time.
Let n1 be a large enough constant and define the sequence {ni} where ni = 2ni−1 for each
i ≥ 2. We let Q = O itself be the dense property without pseudodeterministic construction
algorithms. In particular, we want that for every i ∈ N, Mi(1ni) fails to generate a canonical
string x ∈ O ∩ {0, 1}ni . Naturally, our oracle construction proceeds in stages, where for each
i ∈ N, the ni-th slice of O is constructed by carefully diagonalizing against Mi; on the other
hand, if n ∈ N is not in the sequence {ni}, then we simply let O accept every string of length
n.

Now we show how to construct the ni-th slice of O in the i-th stage. The idea is simple:
construct the (purportedly pseudodeterministic) decision tree T corresponding to Mi, find
an exponential-length input tt of Find1 on which T fails, and let the truth table of the ni-th
slice of O be tt. More precisely:

Converting Mi into a distribution of decision trees. We define the distribution
of decision trees T . The input to Find1 has length 2ni and is considered as the truth
table of the ni-th slice of O. Note that since 20.1ni ≪ ni+1, for every n′ ≤ 20.1ni such
that n′ ̸= ni, the n′-th slice of O are fixed. To sample a (deterministic) decision tree T

from T , sample a sequence of random coins fed to Mi and simulate Mi on the oracle O.
Whenever Mi makes a query O(x), if |x| = ni, then the decision tree asks the x-th bit of
our input; otherwise we return the already-fixed value of O(x).
Invoking the lower bound. Note that T only makes 20.1ni < o(

√
2ni) queries. By

Theorem 51, there exists an input tt ∈ {0, 1}2ni such that T fails to solve Find1 on
input tt pseudodeterministically. That is, for every valid output x such that ttx = 1,
Pr[T (tt) = x] < 2/3. Let the truth table of the ni-th slice of O to be such a tt.
It is easy to see that for every probabilistic machine A that runs in 2o(n) time with oracle
access to O, and every infinite sequence of outputs {xn}n∈N where each xn ∈ O ∩ {0, 1}n,
for every i such that A = Mi, the probability that A(1ni) outputs xni

is at most 3/4.
Complexity of O. Let O≤ni−1 denote the description of the oracle O up to the
ni−1-th slice (note that O≤ni−1 can be described in poly(2ni−1) ≤ poly(ni) bits), and
x ∈ {0, 1}ni . Note that O≤ni−1 and tt together defines the oracle O up to input length
ni+1 − 1, so the behavior of MO

i is completely determined by Mi, O≤ni−1 , and tt. Let
ProbEst(O≤ni−1 , tt, Mi, x) be an oracle such that

Pr[MO
i (1ni) = x] > 3/4 =⇒ ProbEst(O≤ni−1 , tt, Mi, x) = 1,

Pr[MO
i (1ni) = x] < 2/3 =⇒ ProbEst(O≤ni−1 , tt, Mi, x) = 0.

By Theorem 23, the oracle ProbEst can be implemented in DTIME[2O(ni)]PH. Consider
the following algorithm with oracle access to ProbEst that prints a truth table tt. The
algorithm maintains the prefix of a truth table which is initially the empty string, and
extends this prefix bit by bit. Suppose that we have a prefix of length ℓ, denoted as
tt′ ∈ {0, 1}ℓ. To fix the (ℓ + 1)-st bit of tt′, we check if there exists a truth table tt

CCC 2023

6:34 Bounded Relativization

such that (1) for every x ∈ {0, 1}ni , ProbEst(O≤ni−1 , tt, Mi, x) = 0, and (2) tt′ ◦ 0 (tt′

concatenated with a bit 0) is a prefix of tt. If there is such a tt, then we append 0 to the
end of tt′; otherwise we append 1 to the end of tt′.
It is clear that the algorithm always outputs a truth table tt on which Mi fails. Since
ProbEst runs in DTIME[2O(ni)]PH, the whole algorithm also runs in DTIME[2O(ni)]PH.
Using this algorithm, it is easy to construct the oracle O in EXPH. ◀

▶ Corollary 53. If there is a PSPACE-relativizing proof that for every dense property Q

computable in polynomial time, there is a pseudodeterministic construction for Q running in
2o(n) time that is correct on almost every input length, then L ̸= NP.

5.2.2 Barriers for Deterministic Constructions and Lower Bounds for
MKtP

In this section, we construct an oracle in EXP relative to which there is no deterministic con-
struction in 2n/nω(1) time (even infinitely often), showing that any non-trivial deterministic
constructions using PSPACE-relativizing techniques would separate PSPACE from EXP.

As an interesting corollary, it is easy to approximate the Kt complexity to an (1 + ε)
factor in this oracle world in deterministic nO(log n) time. Therefore, although it is EXP-hard
to approximate the Kt complexity under (P/poly)-truth-table reductions and NP-Turing
reductions [5], any PSPACE-relativizing proof that the Kt complexity requires deterministic
nω(log n) time to approximate would separate PSPACE from EXP.

▶ Definition 54. For a constant ε > 0, GapεMKtP is defined to be the promise problem
(YESn, N On)n∈N, where

YESn := {(x, s) ∈ {0, 1}n × N : Kt(x) ≤ s} ,

N On := {(x, s) ∈ {0, 1}n × N : Kt(x) > (1 + ε) · s} .

Our proof relies heavily on the equivalence between non-trivial derandomization and the
hardness of GapεMKtP [34]. It is not hard to construct an oracle under which non-trivial
derandomization is impossible, which means that a dense subset of the complement of MKtP
can be accepted by an efficient algorithm A. Then, we use the worst-case to average-case
reduction of [33] to transform A into a worst-case approximation algorithm for GapεMKtP.

▶ Theorem 55. There exists an oracle O ∈ EXP such that
1. there is a dense property Q ∈ PO such that every deterministic algorithm that runs in

time 2n/nω(n) fails to find a string in Q ∩ {0, 1}n on almost every input length n, and
2. GapεMKtPO ∈ DTIMEO[nO(log n)] for every constant ε > 0.

To show the worst-case to average-case reduction, we use the following pseudorandom
generator construction.

▶ Lemma 56 (cf. [33]). For any d, m ≤ 2n, ε > 0, there exists a “pseudorandom generator
construction”

G : {0, 1}n × {0, 1}d → {0, 1}m

such that for any distinguisher D : {0, 1}m → {0, 1}, if

Pr
w∼{0,1}m

[D(w) = 1] − Pr
z∼{0,1}d

[D(G(x, z)) = 1] ≥ 1
2 ,

S. Hirahara, Z. Lu, and H. Ren 6:35

then

Kpoly(n),D(x) ≤ exp(ℓ2/d) · m + d + O(log n),

where ℓ = O(log n). Moreover, G(x, z) can be computed in time poly(n).

Proof of Theorem 55. We construct an oracle O ∈ EXP under which a dense subset of
MKtP is in P. We start with n := 1, O := ∅, and F := ∅, where F is a set of “frozen”
strings. The construction of O in Stage n is as follows. Let On denote the state of the
oracle O at the beginning of stage n. Let En be the set of all strings x ∈ {0, 1}n such that
KtOn(x) ≤ n − c log n, where c is a sufficiently large constant (e.g., c := 3). Let Fn be the set
of all strings q ∈ {0, 1}∗ such that there exist k ∈ [n − c log n] and a description d ∈ {0, 1}k of
a Turing machine such that the universal Turing machine UOn on input d makes the query q

in time 2n−k−c log n. Then, we update F := F ∪Fn and On+1 := On ∪({0, 1}n \(En ∪F)) and
move on to the next stage n + 1. This completes the description of the oracle O :=

⋃
n∈N On.

It is easy to observe that O ∈ EXP.
The oracle O is a dense subset of

{
x : KtO(x) > n − c log n

}
in the following sense:

1. x ̸∈ O for every string x ∈ {0, 1}n such that KtO(x) ≤ n − c log n.
2. x ∈ O for at least half of the strings x ∈ {0, 1}n.
To see the first property, it suffices to show that if x ∈ {0, 1}n satisfies KtO(x) ≤ n − c log n,
then KtOn(x) ≤ n − c log n (which implies x ∈ En and thus x ̸∈ O). Assuming that there
exists a string d such that UO(d) outputs x in time 2n−c log n−|d|, we claim that UOn(d) also
outputs x. If not, there exists a query in O \ On made by UO(d). Let q be the first query in
O \ On. The same query is also queried during the computation of UOn(d). Thus, q ∈ Fn,
which implies q ̸∈ O, which is a contradiction.

To see the second property, we bound the size of En ∪ F at Stage n. The size of En is at
most

∑
k∈[n−c log n] 2k ≤ 2n/nc−1. The number |Fn| of frozen strings in Stage n is at most∑

k∈[n−c log n]

2k · 2n−k−c log n ≤ 2n/nc−1.

Thus, the number |F | of frozen strings until Stage n is at most
∑n

n′=1 |Fn′ | ≤ 2n/nc−2.

Overall, we obtain

|O ∩ {0, 1}n | ≥ 2n − |En| − |F | ≥ 1
2 · 2n.

Let Q := O. We prove that Q ∈ PO is a dense property such that every 2n/nω(1)-time
deterministic algorithm A fails to find a string in Q ∩ {0, 1}n on input 1n. By the definition
of Kt, we have KtO(A(1n)) ≤ O(log n) + log(2n/nω(1)) ≤ n − ω(log n). Thus, the output
A(1n) of A is not in O.

We now use the worst-case to average-case reduction of [34] to obtain an approximation
algorithm AO for GapεMKtP. Let x ∈ {0, 1}n and s ∈ N be an instance of GapεMKtP. Let
d = k ·O(log2 n), where k = k(ε) is a sufficiently large constant that will be chosen depending
on ε > 0. We may assume without loss of generality that O(k2 · log2 n) ≤ s ≤ n + O(log n)
because whether Kt(x) ≤ O(k2 · log2 n) or not can be decided in time nO(k2·log n) by an
exhaustive search. Let m be a parameter chosen later. Let G be the pseudorandom generator
construction of Lemma 56. The algorithm AO accepts (x, s) if and only if G(x, z) ̸∈ O for
every z ∈ {0, 1}d. The running time of AO is 2dpoly(n) = nO(log n).

We prove the correctness of AO. Assume that KtO(x) ≤ s. Then, for every z ∈ {0, 1}d,
we have

KtO(G(x, z)) ≤ KtO(x) + O(d + log n) ≤ s + O(d + log n) ≤ m − c log m,

CCC 2023

6:36 Bounded Relativization

where the last inequality holds by choosing a sufficiently large m = s + O(d + log n). It
follows that G(x, z) ̸∈ O and that AO accepts (x, s). Conversely, assume that AO accepts
(x, s), which means that Prz∼{0,1}d [O(G(x, z)) = 1] = 0. We claim that KtO(x) ≤ (1 + ε) · s.
Since O is dense, we have

Pr
w∼{0,1}m

[O(w) = 1] − Pr
z∼{0,1}d

[O(G(x, z)) = 1] ≥ 1
2 .

By Lemma 56, we obtain

Kpoly(n),O(x) ≤ exp(O(log2 n)/d) · m + d + O(log n) ≤ exp(1/k) · m + O(k · log2 n).

In particular,

KtO(x) ≤ exp(1/k) · m + O(k · log2 n) ≤ (1 + O(1/k)) · m + O(k · log2 n) ≤ (1 + ε) · m,

where we choose a sufficiently large k := O(1/ε) and use that m ≥ O(k2 · log2 n) in the last
inequality. ◀

6 Barriers for Circuit Lower Bounds for Merlin–Arthur Classes

Buhrman, Fortnow, and Thierauf [13] showed that MA-EXP ̸⊆ P/poly and Santhanam [65]
proved that MA/1 ̸⊆ SIZE[nk] for every constant k. Their techniques rely heavily on win-win
analysis and thus only yield circuit lower bounds that hold infinitely often.

This section presents an EXPH-relativizing barrier for proving almost-everywhere versions
of these lower bounds. In Section 6.1, we show that Santhanam’s circuit lower bound
is PSPACE-relativizing. In Section 6.2, we construct an EXPH oracle under which the
almost-everywhere lower bound fails.

6.1 PSPACE-Relativizing Circuit Lower Bounds for Merlin–Arthur
Classes

▶ Theorem 57. Let O ∈ PSPACE. For every k ∈ N, MAO/1 ̸⊆ SIZEO[nk].

We need the notion of an instance checker.

▶ Definition 58 (Instance-Checkable Languages). A language L is said to be same-length
instance-checkable if there is a probabilistic polynomial-time oracle machine I(−) with output
in {0, 1, ⊥} such that for any input x:
1. I(−) only makes oracle queries of length |x|.
2. IL(x) = L(x) with probability 1.
3. IA(x) ∈ {L(x), ⊥} with probability at least 2/3 for any oracle A.

▶ Lemma 59 ([70, 26]). There is a PSPACE-complete language Lhard that is same-length
instance-checkable.

We now show Theorem 57. The proof follows closely to that of [65], which employs a
win-win argument. Let Lhard be the language from Lemma 59. We will consider two cases:
Lhard ∈ SIZEO[poly] and Lhard ̸∈ SIZEO[poly].

▶ Lemma 60. Let O ∈ PSPACE. If Lhard ∈ SIZEO[poly], then for every k ∈ N, MAO ̸⊆
SIZEO[nk].

S. Hirahara, Z. Lu, and H. Ren 6:37

Proof. We first note that Lhard ∈ SIZEO[poly] implies Lhard ∈ MAO. More specifically, the
MAO protocol for Lhard on input x ∈ {0, 1}n is as follows. Merlin sends to Arthur the
polynomial-size O-oracle circuit Cn that computes Lhard on inputs of length n. Then Arthur,
which has access to the oracle O, runs the (same-length) instance checker I for Lhard on x

while answering its queries using Cn and outputs 1 if and only if ICn(x) = 1. The correctness
follows from the property of the instance checker. Since Lhard is PSPACE-complete, we have
PSPACE ⊆ MAO.

Following the (folklore) diagonalization argument showing that PSPACE does not have
fixed-polynomial-size circuits, one can show that for every k ≥ 1, there is a language
L ∈ PSPACE that does not have O-oracle circuits of size nk. This argument works because
O ∈ PSPACE and we can simulate any size-(nk) O-oracle in polynomial space. Then by the
previous paragraph, we have L ∈ PSPACE ⊆ MAO. ◀

▶ Lemma 61. Let O be any oracle. If Lhard ̸∈ SIZEO[poly], then for every k ∈ N, MAO/1 ̸⊆
SIZEO[nk].

The proof of Lemma 61 is essentially the same as the original proof in [65]. We present the
detail here for completeness.

Proof of Lemma 61. We define the following padded version of Lhard, called Lk, as follows.

x ∈ Lk iff x = yz, where y ∈ Lhard, |z| > |y|, |z| = 2ℓ for some integer ℓ and
(|y|+ |z|)k+1 ≤ s(|x|) < (|y|+2|z|)k+1, where s(m) is the minimum size of an O-oracle
circuit that computes Lhard on inputs of length m.

We will show that Lk is in MAO/1, but does not have O-oracle circuits of size nk.
For the upper bound, we first specify the sequence of advice bits. We say that input

length n ∈ N is good for Lk if n = m + 2ℓ for non-negative integers m and ℓ, n > 2m and
(m + 2ℓ)k+1 ≤ s(m) ≤ (m + 2 · 2ℓ)k+1, where s(m) is the minimum size of an O-oracle circuit
that computes Lhard on inputs of length m. Note that if n is good for Lk, m = m(n) and
ℓ = ℓ(n) are well-defined, since in this case, we can obtain ℓ by looking at the most significant
bit of the binary representation of n. For input length n, we let the corresponding advice bit
bn = 1 iff n is good.

Consider the following procedure for deciding Lk. On input x ∈ {0, 1}n, Arthur first
checks if the advice bit bn is 1. If not, reject immediately, Otherwise, we have n = m + 2ℓ for
some m, ℓ ∈ N and Arthur can obtain yz := x, where |y| = m, |z| = 2ℓ. Note that in this
case, x ∈ Lk if and only if y ∈ Lhard. Then Merlin sends to Arthur the minimum O-oracle
circuit Cm that computes Lhard on inputs of length m. Note that the size of this circuit is
s(m) < (m + 2 · 2ℓ)k+1 ≤ nO(1) since n is good. Then Arthur, which has oracle access to O,
runs the (same-length) instance checker I for Lhard on y while answering its queries using
Cm, and he outputs 1 if and only if ICm(y) = 1. The correctness follows from the property
of the instance checker.

For the lower bounds, suppose for the sake of contradiction that Lk ∈ SIZEO[nk]. Let
{Dn}n be a circuit family that computes Lk, where each Dn is an O-oracle circuit of size nk.

For each m ∈ N, let s(m) be the minimum size of an O-oracle circuit that computes Lhard
on inputs of length m. By assumption, Lhard ̸∈ SIZEO[poly], so there is an infinite set I ⊆ N
such that for each m ∈ N ,

s(m) > (m + 1)k+1.

CCC 2023

6:38 Bounded Relativization

Consider the following sequence of circuits {Cm}m∈I that computes Lhard on the input
lengths in I. For each m ∈ I, consider the the unique integer ℓ such that

(m + 2ℓ)k+1 ≤ s(m) < (m + 2 · 2ℓ)k+1. (2)

Such an ℓ exists since (m + 1)k+1 < s(m) ≤ 2m for m ∈ I. Then on input x ∈ {0, 1}m, Cm

simulates Dm+2ℓ on x12ℓ . Since m + 2ℓ is a good length and Dm+2ℓ computes Lk correctly
on inputs of length m + 2ℓ, Cm+2ℓ

(
x12ℓ

)
= 1 if and only if x ∈ Lk. Note that the size of

Cm is at most the size of Dm+2ℓ , which is at most (m + 2ℓ)k+1 < s(m). This contradicts
Equation (2). ◀

Proof of Theorem 57. Theorem 57 follows directly from Lemma 60 and Lemma 61. ◀

6.2 Bounded-Relativization Barriers for Circuit Lower Bounds
We present an EXPH-relativization barrier for proving an almost-everywhere version of
Santhanam’s lower bound. The oracle construction is based on [13]. Although the construction
in [13] does not seem to be in EXPH, by modifying the construction using approximation
counting in PH, we obtain an EXPH-computable oracle under which MA/1 is computable by
linear-sized circuits infinitely often.

▶ Lemma 62. There exists an oracle O ∈ EXPH such that

MATIMEO[2n]/1 ⊆ i. o. SIZEO[O(n)].

Proof. We prove pr-MATIMEO[2n] ⊆ i. o. SIZEO[O(n)] for some oracle O. We enumerate all
the 2n-time randomized machine M1, M2, · · · , where each Mi takes an input x of length n

and a certificate y ∈ {0, 1}2n

and runs in time 2n. Note that any MA-type algorithm that
runs in time 2n can be simulated by Mi for some i.

Let c be some universal constant (c := 5 suffices). Let Rn := {0, 1}cn. The input to
O is of the form (r, i, x), where r ∈ Rn, i ∈ [n], and x ∈ {0, 1}n for some n ∈ N. For any
r ∈ {0, 1}cn, let Sr be the set of (r, i, x) such that i ∈ [n] and x ∈ {0, 1}n.

We will construct an oracle O and a family of “advice strings” r∗
n ∈ Rn for infinitely

many n such that
1. if PrMi [MO

i (x, y) = 1] ≥ 3
4 for some y, then (r∗

n, i, x) ∈ O, and
2. if PrMi

[MO
i (x, y) = 1] ≤ 1

4 for any y, then (r∗
n, i, x) ̸∈ O.

Assuming this, it is easy to construct an O-oracle linear-size circuit that simulates Mi as
follows. The circuit takes r∗

n as hard-wired input and accepts an input x ∈ {0, 1}n if and
only if (rn, i, x) ∈ O.

Here is the construction of O. We start with O := ∅. Some pairs (i, x) will be marked
“forced”, meaning that Mi accepts on input x. Some strings r will be marked “frozen”,
meaning that the behavior of O on inputs in Sr will not be changed after r is frozen. Initially,
no pair is forced and no advice string is frozen. We start with Stage n := 1. In Stage n, we
construct an oracle as follows.

Stage n. Consider the following condition, which we call (∗)θ for a threshold θ ∈ (0, 1).

There exist an unfrozen string r ∈ Rn, an unforced pair (i, x) ∈ [n]×{0, 1}n, an oracle
B ⊆ Sr, and a certificate y ∈ {0, 1}2n

such that

Pr
Mi

[
MO∪B

i (x, y) = 1
]

≥ θ,

where the probability is taken over the coin flip of the randomized machine Mi.

S. Hirahara, Z. Lu, and H. Ren 6:39

We need to argue that the final oracle O can be computed in EXPH. It may not be possible
to check (∗)3/4 exactly in EXPH, but using approximate counting in PH (Theorem 23), we
can check whether a promise variant of (∗)3/4 is satisfied or not in EXPH. Specifically, by
Theorem 23, there exists an algorithm in PH that, given as input n and O (which can be
encoded as a binary string of length 2O(n)), accepts if (∗)3/4 holds, and rejects if (∗)1/2 does
not hold. By the standard search-to-decision reduction, we obtain a PH-oracle polynomial-
time algorithm S that outputs r ∈ Rn, (i, x) ∈ [n] × {0, 1}n, B ⊆ Sr, and y ∈ {0, 1}2n

that
satisfy (∗)1/2 if (∗)3/4 holds, and outputs ⊥ if (∗)1/2 does not hold. (Note that S runs in
time 2O(n) on inputs of length 2O(n) with a PH oracle.)

While the search algorithm S outputs a certificate (r, i, x, B) for (∗)1/2 on input (n, O)
(instead of ⊥), we do the following. Update O := O ∪ B. Let r be frozen and let (i, x) be
forced. Let Rθ be the set of r′ ∈ Rn such that (r′, i′, x′) is queried during the computation
of MO

i (x, y) for some (i′, x′) with probability at least θ over the internal randomness of Mi.
By Theorem 24, some set A such that R2−2n ⊆ A ⊆ {0, 1}∗ \ R2−2n−1 can be enumerated
in EXPH. Note that |A| ≤ 22n+1 · 2n because Mi can make at most 2n queries on each
computation path. Let r′ be frozen for every r′ ∈ A. If S outputs ⊥ (and thus (∗)3/4 does not
hold), then let r∗

n ∈ Rn be the first string that is not frozen. (We will later claim that such a
string r∗

n exists.) Then, we add to O all the tuples (r∗
n, i, x) such that (i, x) ∈ [n] × {0, 1}n

is forced. This completes the description of Stage n. Then we move on to the next stage
n′ := 2n + 1, so that the construction in each stage is independent.

It is evident from the construction that O ∈ EXPH.
Fix any n and consider Stage n. We claim that there exists a string r∗

n ∈ Rn that is not
frozen at the end of Stage n. We say that (∗) is satisfied if S does not output ⊥. Observe
that the number of times that (∗) is satisfied is at most n2n. The reason is that there are
at most n2n pairs (i, x) ∈ [n] × {0, 1}n, and each time (∗) is satisfied, (i, x) becomes forced.
Each time (∗) is satisfied, at most 1 + 22n+1 · 2n ≤ 23n+2 strings r ∈ Rn can be frozen. Thus,
the number of frozen strings in Rn in Stage n is at most n2n · 23n+2. Since there are at most
n stages before Stage n, in total, there are at most n · n2n · 23n+2 < 25n ≤ |Rn| frozen strings
in Rn. (Here, we used that c := 5.) Thus, there exists some unfrozen string r∗

n ∈ Rn, which
shows that the construction of O is well defined.

It remains to show that for every pair (i, x) ∈ [n] × {0, 1}n,
1. if PrMi

[MO
i (x, y) = 1] ≥ 3

4 for some y, then (i, x) is forced (and thus (rn, i, x) ∈ O), and
2. if PrMi

[MO
i (x, y) = 1] ≤ 1

4 for any y, then (i, x) is not forced (and thus (rn, i, x) ̸∈ O).

Fix any n and consider any unforced pair (i, x) ∈ [n] × {0, 1}n. We claim that for every
y ∈ {0, 1}2n

, it holds that

Pr
Mi

[
MO

i (x, y) = 1
]

<
3
4 .

Fix any y ∈ {0, 1}2n

. Let On be the oracle O right after the while loop of Stage n. Since
(∗)3/4 is not satisfied at that point, for every r ∈ Rn and for every oracle B ⊆ Sr,

Pr
Mi

[
MOn∪B

i (x, y) = 1
]

<
3
4 .

Let B ⊆ Sr∗
n

be the set of strings added to O at the end of Stage n. Then, the final oracle O
coincides with On ∪ B on any inputs of length at most 2n; thus, we obtain

Pr
Mi

[
MO

i (x, y) = 1
]

= Pr
Mi

[
MOn∪B

i (x, y) = 1
]

<
3
4 .

CCC 2023

6:40 Bounded Relativization

Next, fix any n and consider any forced pair (i, x) ∈ [n] × {0, 1}n. Let Oi,x be the oracle
right after (i, x) is forced and y be the certificate that satisfies (∗). Then, we have

Pr
[
M

Oi,x

i (x, y) = 1
]

≥ 1
2 .

We claim that this probability does not decrease by 1
4 even if we replace Oi,x with the final

oracle O. After (i, x) is forced, (∗) can be satisfied at most n2n times, and each time (∗) is
satisfied, at most one Sr whose subset is added to O. Thus, there are at most n2n unfrozen
strings r ∈ Rn such that some strings in Sr are added to O. Note that any string r that is
queried by Mi with probability 2−2n is frozen right after (i, x) is forced. Thus, each unfrozen
string can decrease the probability that MO

i (x, y) accepts by 2−2n. In total, the unfrozen
strings can affect the probability of acceptance by n2n · 2−2n < 1

4 . Thus, we obtain

Pr
[
MO

i (x, y) = 1
]

>
1
2 − 1

4 ≥ 1
4 . ◀

▶ Corollary 63. If there is a PSPACE-relativizing proof that for every constant k ≥ 1,
MA/1 ̸⊆ i. o. SIZE[nk], then L ̸= NP follows.

7 Open Problems

We believe that the perspective of bounded relativization will lead to a better understanding
of current proof techniques, in particular interactive proofs. There are many interesting
questions left open:
1. Find some reason that “current techniques” have not been able to separate PSPACE from

EXPH. We interpret the results in this paper as: If “current techniques” are PSPACE-
relativizing and cannot separate PSPACE from EXPH, then they also cannot prove “slight
improvements of known results” for which an EXPH-relativization barrier exists.
The “conventional wisdom” seems to indicate that it is difficult for “current techniques” to
separate PSPACE from EXPH, but we have not been able to find any formal justification.
Instead, an optimist might treat the oracles in this paper as first steps for attacking the
PSPACE vs. EXPH problem – IP = PSPACE indicates some weakness of PSPACE, thus
making it vulnerable to separate from EXPH.

2. Find new oracles in EXPH that rules out “slight” improvements of known results. For
example, can we show that EXPH-relativizing techniques cannot prove MA ̸⊆ SIZE[nk]?
(Santhanam’s lower bound [65] is for the class MA/1, and it has been an open problem
since then to eliminate the one-bit advice in the lower bound.) Can we show that
EXPH-relativizing techniques cannot yield fast derandomization from strong uniform
lower bounds for EXP, such as EXP ̸⊆ BPSUBEXP =⇒ BPP ⊆ i. o. heur-QuasiP?14

3. What can bounded relativization say about the Algorithmic Method for proving circuit
lower bounds? Williams [78, 79] showed that non-trivial circuit-analysis (e.g., satisfiability
or derandomization) algorithms for polynomial-size circuits imply that NEXP ̸⊆ P/poly.
The general implication from non-trivial algorithms to circuit lower bounds does not
relativize as shown in [75, Theorem 11]; however, it is unclear whether the corresponding
oracle is in EXPH.

14 Note that we might need to assume P ̸= L for this problem, since if P = L then EXPO[poly] = PSPACEO

for every oracle O. It is known that strong uniform lower bound for PSPACE implies fast derandomization
of BPP [70, 20], and the proofs are likely PSPACE-relativizing.

S. Hirahara, Z. Lu, and H. Ren 6:41

4. Finally, is there an oracle world under which Σp
2 has linear-size circuits on infinitely many

input lengths? Our construction showed that if we replace Σp
2 by pr-MA then such an

oracle world exists and can be computed in EXPH. This problem is connected to the
Missing-String problem studied in [75].

References
1 Scott Aaronson. Oracles are subtle but not malicious. In Conference on Computational

Complexity (CCC), pages 340–354. IEEE Computer Society, 2006. doi:10.1109/CCC.2006.32.
2 Scott Aaronson. The teaser. https://scottaaronson.blog/?p=3054, 2017. Accessed: Feb 6,

2023.
3 Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. ACM

Trans. Comput. Theory, 1(1):2:1–2:54, 2009. doi:10.1145/1490270.1490272.
4 Eric Allender. Oracles versus proof techniques that do not relativize. In SIGAL International

Symposium on Algorithms, volume 450 of Lecture Notes in Computer Science, pages 39–52.
Springer, 1990. doi:10.1007/3-540-52921-7_54.

5 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ron-
neburger. Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006. doi:
10.1137/050628994.

6 Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cambridge
University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.asp?isbn=
9780521424264.

7 Sanjeev Arora, Russell Impagliazzo, and Umesh Vazirani. Relativizing versus nonrelativizing
techniques: the role of local checkability. Manuscript, 1992. URL: https://people.eecs.
berkeley.edu/~vazirani/pubs/relativizing.pdf.

8 Barış Aydınlıoğlu and Eric Bach. Affine relativization: Unifying the algebrization and
relativization barriers. ACM Trans. Comput. Theory, 10(1):1:1–1:67, 2018. doi:10.1145/
3170704.

9 László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Comput. Complex., 1:3–40, 1991. doi:10.1007/BF01200056.

10 László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318,
1993. doi:10.1007/BF01275486.

11 Theodore P. Baker, John Gill, and Robert Solovay. Relativizations of the P =?NP question.
SIAM J. Comput., 4(4):431–442, 1975. doi:10.1137/0204037.

12 Harry Buhrman, Lance Fortnow, and Rahul Santhanam. Unconditional lower bounds against
advice. In International Colloquium on Automata, Languages and Programming (ICALP),
pages 195–209, 2009. doi:10.1007/978-3-642-02927-1_18.

13 Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. In
Conference on Computational Complexity (CCC), pages 8–12, 1998. doi:10.1109/CCC.1998.
694585.

14 Harry Buhrman and Leen Torenvliet. Randomness is hard. SIAM J. Comput., 30(5):1485–1501,
2000. doi:10.1137/S0097539799360148.

15 Samuel R. Buss and R. Ryan Williams. Limits on alternation trading proofs for time-space
lower bounds. Comput. Complex., 24(3):533–600, 2015. doi:10.1007/s00037-015-0104-9.

16 Richard Chang, Benny Chor, Oded Goldreich, Juris Hartmanis, Johan Håstad, Desh Ranjan,
and Pankaj Rohatgi. The random oracle hypothesis is false. J. Comput. Syst. Sci., 49(1):24–39,
1994. doi:10.1016/S0022-0000(05)80084-4.

17 Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit lower bounds from
non-trivial derandomization. In Symposium on Foundations of Computer Science (FOCS),
pages 1–12. IEEE, 2020. doi:10.1109/FOCS46700.2020.00009.

CCC 2023

https://doi.org/10.1109/CCC.2006.32
https://scottaaronson.blog/?p=3054
https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1007/3-540-52921-7_54
https://doi.org/10.1137/050628994
https://doi.org/10.1137/050628994
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://people.eecs.berkeley.edu/~vazirani/pubs/relativizing.pdf
https://people.eecs.berkeley.edu/~vazirani/pubs/relativizing.pdf
https://doi.org/10.1145/3170704
https://doi.org/10.1145/3170704
https://doi.org/10.1007/BF01200056
https://doi.org/10.1007/BF01275486
https://doi.org/10.1137/0204037
https://doi.org/10.1007/978-3-642-02927-1_18
https://doi.org/10.1109/CCC.1998.694585
https://doi.org/10.1109/CCC.1998.694585
https://doi.org/10.1137/S0097539799360148
https://doi.org/10.1007/s00037-015-0104-9
https://doi.org/10.1016/S0022-0000(05)80084-4
https://doi.org/10.1109/FOCS46700.2020.00009

6:42 Bounded Relativization

18 Lijie Chen, Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Relations and
equivalences between circuit lower bounds and Karp–Lipton theorems. In Computational
Complexity Conference (CCC), volume 137 of LIPIcs, pages 30:1–30:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CCC.2019.30.

19 Lijie Chen, Ron D. Rothblum, and Roei Tell. Unstructured hardness to average-case random-
ness. In Symposium on Foundations of Computer Science (FOCS), pages 429–437. IEEE, 2022.
doi:10.1109/FOCS54457.2022.00048.

20 Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev. On exponential-time hypotheses,
derandomization, and circuit lower bounds. In Symposium on Foundations of Computer
Science (FOCS), pages 13–23. IEEE, 2020. doi:10.1109/FOCS46700.2020.00010.

21 Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box, and
instance-wise. In Symposium on Foundations of Computer Science (FOCS), pages 125–136.
IEEE, 2021. doi:10.1109/FOCS52979.2021.00021.

22 Scott Diehl and Dieter van Melkebeek. Time-space lower bounds for the polynomial-time
hierarchy on randomized machines. SIAM J. Comput., 36(3):563–594, 2006. doi:10.1137/
050642228.

23 Lance Fortnow. The role of relativization in complexity theory. Bull. EATCS, 52:229–243,
1994.

24 Lance Fortnow. Time-space tradeoffs for satisfiability. J. Comput. Syst. Sci., 60(2):337–353,
2000. doi:10.1006/jcss.1999.1671.

25 Lance Fortnow, Richard J. Lipton, Dieter van Melkebeek, and Anastasios Viglas. Time-space
lower bounds for satisfiability. J. ACM, 52(6):835–865, 2005. doi:10.1145/1101821.1101822.

26 Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic polynomial
time. In Symposium on Foundations of Computer Science (FOCS), pages 316–324, 2004.
doi:10.1109/FOCS.2004.33.

27 Lance Fortnow, Rahul Santhanam, and R. Ryan Williams. Fixed-polynomial size circuit
bounds. In Computational Complexity Conference (CCC), pages 19–26. IEEE Computer
Society, 2009. doi:10.1109/CCC.2009.21.

28 Lance Fortnow and Michael Sipser. Are there interactive protocols for coNP languages? Inf.
Process. Lett., 28(5):249–251, 1988. doi:10.1016/0020-0190(88)90199-8.

29 Gudmund Skovbjerg Frandsen and Peter Bro Miltersen. Reviewing bounds on the circuit size
of the hardest functions. Inf. Process. Lett., 95(2):354–357, 2005. doi:10.1016/j.ipl.2005.
03.009.

30 Oded Goldreich. Computational complexity – A conceptual perspective. Cambridge University
Press, 2008.

31 Shafi Goldwasser, Russell Impagliazzo, Toniann Pitassi, and Rahul Santhanam. On the
pseudo-deterministic query complexity of NP search problems. In Computational Complexity
Conference (CCC), volume 200 of LIPIcs, pages 36:1–36:22. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.CCC.2021.36.

32 Hans Heller. On relativized exponential and probabilistic complexity classes. Inf. Control.,
71(3):231–243, 1986. doi:10.1016/S0019-9958(86)80012-2.

33 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In
Symposium on Foundations of Computer Science (FOCS), pages 247–258, 2018. doi:
10.1109/FOCS.2018.00032.

34 Shuichi Hirahara. Non-disjoint promise problems from meta-computational view of pseudor-
andom generator constructions. In Computational Complexity Conference (CCC), volume
169 of LIPIcs, pages 20:1–20:47. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CCC.2020.20.

35 Shuichi Hirahara. Unexpected hardness results for Kolmogorov complexity under uniform
reductions. In Symposium on Theory of Computing (STOC), pages 1038–1051, 2020. doi:
10.1145/3357713.3384251.

https://doi.org/10.4230/LIPIcs.CCC.2019.30
https://doi.org/10.1109/FOCS54457.2022.00048
https://doi.org/10.1109/FOCS46700.2020.00010
https://doi.org/10.1109/FOCS52979.2021.00021
https://doi.org/10.1137/050642228
https://doi.org/10.1137/050642228
https://doi.org/10.1006/jcss.1999.1671
https://doi.org/10.1145/1101821.1101822
https://doi.org/10.1109/FOCS.2004.33
https://doi.org/10.1109/CCC.2009.21
https://doi.org/10.1016/0020-0190(88)90199-8
https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.4230/LIPIcs.CCC.2021.36
https://doi.org/10.1016/S0019-9958(86)80012-2
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.4230/LIPIcs.CCC.2020.20
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1145/3357713.3384251

S. Hirahara, Z. Lu, and H. Ren 6:43

36 Shuichi Hirahara. Symmetry of information from meta-complexity. In Computational Com-
plexity Conference (CCC), volume 234 of LIPIcs, pages 26:1–26:41. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.26.

37 Shuichi Hirahara, Zhenjian Lu, and Hanlin Ren. Bounded relativization. Electron. Colloquium
Comput. Complex., 30:70, 2023. URL: https://eccc.weizmann.ac.il/report/2023/070.

38 Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. An axiomatic approach
to algebrization. In Symposium on Theory of Computing (STOC), pages 695–704. ACM, 2009.
doi:10.1145/1536414.1536509.

39 Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The power of natural properties as
oracles. In Computational Complexity Conference (CCC), volume 102 of LIPIcs, pages 7:1–7:20.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CCC.2018.7.

40 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672–694, 2002.
doi:10.1016/S0022-0000(02)00024-7.

41 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Symposium on Theory of Computing (STOC), pages 220–229.
ACM, 1997. doi:10.1145/258533.258590.

42 Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization under a
uniform assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001. doi:10.1006/jcss.2001.
1780.

43 Emil Jerábek. Dual weak pigeonhole principle, Boolean complexity, and derandomization.
Ann. Pure Appl. Log., 129(1-3):1–37, 2004. doi:10.1016/j.apal.2003.12.003.

44 Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. MIP∗ = RE.
CoRR, abs/2001.04383, 2020. doi:10.48550/arXiv.2001.04383.

45 Valentine Kabanets. Easiness assumptions and hardness tests: Trading time for zero error. J.
Comput. Syst. Sci., 63(2):236–252, 2001. doi:10.1006/jcss.2001.1763.

46 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Symposium on Theory
of Computing (STOC), pages 73–79. ACM, 2000. doi:10.1145/335305.335314.

47 Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Inf. Control.,
55(1-3):40–56, 1982. doi:10.1016/S0019-9958(82)90382-5.

48 Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uniform
complexity classes. In Symposium on Theory of Computing (STOC), pages 302–309. ACM,
1980. doi:10.1145/800141.804678.

49 Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos H. Papadimitriou. Total
functions in the polynomial hierarchy. In Innovations in Theoretical Computer Science (ITCS),
volume 185 of LIPIcs, pages 44:1–44:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ITCS.2021.44.

50 Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526,
2002. doi:10.1137/S0097539700389652.

51 Oliver Korten. The hardest explicit construction. In Symposium on Foundations of Computer
Science (FOCS), pages 433–444. IEEE, 2021. doi:10.1109/FOCS52979.2021.00051.

52 Leonid A. Levin. Randomness conservation inequalities; information and independence in math-
ematical theories. Information and Control, 61(1):15–37, 1984. doi:10.1016/S0019-9958(84)
80060-1.

53 Richard J. Lipton and Anastasios Viglas. On the complexity of SAT. In Symposium on
Foundations of Computer Science (FOCS), pages 459–464. IEEE Computer Society, 1999.
doi:10.1109/SFFCS.1999.814618.

54 Zhenjian Lu, Igor Carboni Oliveira, and Rahul Santhanam. Pseudodeterministic algorithms
and the structure of probabilistic time. In Symposium on Theory of Computing (STOC), pages
303–316. ACM, 2021. doi:10.1145/3406325.3451085.

CCC 2023

https://doi.org/10.4230/LIPIcs.CCC.2022.26
https://eccc.weizmann.ac.il/report/2023/070
https://doi.org/10.1145/1536414.1536509
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1145/258533.258590
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1016/j.apal.2003.12.003
https://doi.org/10.48550/arXiv.2001.04383
https://doi.org/10.1006/jcss.2001.1763
https://doi.org/10.1145/335305.335314
https://doi.org/10.1016/S0019-9958(82)90382-5
https://doi.org/10.1145/800141.804678
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1109/FOCS52979.2021.00051
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1109/SFFCS.1999.814618
https://doi.org/10.1145/3406325.3451085

6:44 Bounded Relativization

55 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, 1992. doi:10.1145/146585.146605.

56 Oleg B Lupanov. On the synthesis of switching circuits. Doklady Akademii Nauk SSSR,
119(1):23–26, 1958.

57 Peter Bro Miltersen, N. V. Vinodchandran, and Osamu Watanabe. Super-polynomial versus
half-exponential circuit size in the exponential hierarchy. In International Computing and
Combinatorics Conference (COCOON), pages 210–220, 1999. doi:10.1007/3-540-48686-0_
21.

58 Cody D. Murray and R. Ryan Williams. Easiness amplification and uniform circuit lower
bounds. In Computational Complexity Conference (CCC), volume 79 of LIPIcs, pages 8:1–8:21.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.CCC.2017.8.

59 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994. doi:10.1016/S0022-0000(05)80043-1.

60 Igor C. Oliveira. Randomness and intractability in Kolmogorov complexity. In International
Colloquium on Automata, Languages, and Programming (ICALP), pages 32:1–32:14, 2019.
doi:10.4230/LIPIcs.ICALP.2019.32.

61 Igor C. Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, circuit
lower bounds, and pseudorandomness. In Computational Complexity Conference (CCC), pages
18:1–18:49, 2017. doi:10.4230/LIPIcs.CCC.2017.18.

62 Igor C. Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subexponential
time. In Symposium on Theory of Computing (STOC), pages 665–677, 2017. doi:10.1145/
3055399.3055500.

63 Hanlin Ren and Rahul Santhanam. A relativization perspective on meta-complexity. In
International Symposium on Theoretical Aspects of Computer Science (STACS), volume
219 of LIPIcs, pages 54:1–54:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.STACS.2022.54.

64 Hanlin Ren, Rahul Santhanam, and Zhikun Wang. On the range avoidance problem for circuits.
In FOCS, pages 640–650. IEEE, 2022. doi:10.1109/FOCS54457.2022.00067.

65 Rahul Santhanam. Circuit lower bounds for Merlin–Arthur classes. SIAM J. Comput.,
39(3):1038–1061, 2009. doi:10.1137/070702680.

66 Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992. doi:10.1145/146585.146609.
67 Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell Syst. Tech. J.,

28(1):59–98, 1949. doi:10.1002/j.1538-7305.1949.tb03624.x.
68 Michael Sipser. A complexity theoretic approach to randomness. In Symposium on Theory of

Computing (STOC), pages 330–335, 1983. doi:10.1145/800061.808762.
69 Larry J. Stockmeyer. The complexity of approximate counting (preliminary version). In

Symposium on Theory of Computing (STOC), pages 118–126. ACM, 1983. doi:10.1145/
800061.808740.

70 Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity
via uniform reductions. Computational Complexity, 16(4):331–364, 2007. doi:10.1007/
s00037-007-0233-x.

71 Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci.,
67(2):419–440, 2003. doi:10.1016/S0022-0000(03)00046-1.

72 Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–336, 2012.
doi:10.1561/0400000010.

73 N. V. Vinodchandran. A note on the circuit complexity of PP. Theor. Comput. Sci., 347(1-
2):415–418, 2005. doi:10.1016/j.tcs.2005.07.032.

74 Emanuele Viola. On approximate majority and probabilistic time. In Conference on
Computational Complexity (CCC), pages 155–168. IEEE Computer Society, 2007. doi:
10.1109/CCC.2007.16.

75 Nikhil Vyas and R. Ryan Williams. On oracles and algorithmic methods for proving lower
bounds. In Innovations in Theoretical Computer Science Conference (ITCS), volume 251
of LIPIcs, pages 99:1–99:26. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.ITCS.2023.99.

https://doi.org/10.1145/146585.146605
https://doi.org/10.1007/3-540-48686-0_21
https://doi.org/10.1007/3-540-48686-0_21
https://doi.org/10.4230/LIPIcs.CCC.2017.8
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.4230/LIPIcs.ICALP.2019.32
https://doi.org/10.4230/LIPIcs.CCC.2017.18
https://doi.org/10.1145/3055399.3055500
https://doi.org/10.1145/3055399.3055500
https://doi.org/10.4230/LIPIcs.STACS.2022.54
https://doi.org/10.1109/FOCS54457.2022.00067
https://doi.org/10.1137/070702680
https://doi.org/10.1145/146585.146609
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://doi.org/10.1145/800061.808762
https://doi.org/10.1145/800061.808740
https://doi.org/10.1145/800061.808740
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1561/0400000010
https://doi.org/10.1016/j.tcs.2005.07.032
https://doi.org/10.1109/CCC.2007.16
https://doi.org/10.1109/CCC.2007.16
https://doi.org/10.4230/LIPIcs.ITCS.2023.99
https://doi.org/10.4230/LIPIcs.ITCS.2023.99

S. Hirahara, Z. Lu, and H. Ren 6:45

76 R. Ryan Williams. Inductive time-space lower bounds for SAT and related problems. Comput.
Complex., 15(4):433–470, 2006. doi:10.1007/s00037-007-0221-1.

77 R. Ryan Williams. Time-space tradeoffs for counting NP solutions modulo integers. Comput.
Complex., 17(2):179–219, 2008. doi:10.1007/s00037-008-0248-y.

78 R. Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
J. Comput., 42(3):1218–1244, 2013. doi:10.1137/10080703X.

79 R. Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.
doi:10.1145/2559903.

80 Christopher B. Wilson. Relativized circuit complexity. J. Comput. Syst. Sci., 31(2):169–181,
1985. doi:10.1016/0022-0000(85)90040-6.

CCC 2023

https://doi.org/10.1007/s00037-007-0221-1
https://doi.org/10.1007/s00037-008-0248-y
https://doi.org/10.1137/10080703X
https://doi.org/10.1145/2559903
https://doi.org/10.1016/0022-0000(85)90040-6

Lower Bounds for Polynomial Calculus with
Extension Variables over Finite Fields
Russell Impagliazzo #

University of California San Diego, CA, USA

Sasank Mouli #

Hyderabad, India

Toniann Pitassi #

Columbia University, New York, NY, USA

Abstract
For every prime p > 0, every n > 0 and κ = O(log n), we show the existence of an unsatisfiable
system of polynomial equations over O(n log n) variables of degree O(log n) such that any Polynomial
Calculus refutation over Fp with M extension variables, each depending on at most κ original variables
requires size exp

(
Ω(n2)/10κ(M + n log n)

)
2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Proof complexity, Algebraic proof systems, Polynomial Calculus, Extension
variables, AC0[p]-Frege

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.7

Funding Russell Impagliazzo: Supported by the Simons Foundation and NSF grant CCF-1909634.
Sasank Mouli: Supported by the Simons Foundation, NSF grant CCF-1909634 and the Swiss
National Science Foundation project n. 200021_207429 / 1 “Ideal Membership Problems and the
Bit Complexity of Sum of Squares Proofs”.
Toniann Pitassi: Supported by NSF grant CCF-1900460, and by the IAS School of Mathematics.

Acknowledgements The authors would like to thank Paul Beame and Dmitry Sokolov for helpful
discussions.

1 Introduction

A major goal of proof complexity is to show limits on the types of reasoning formalizable with
concepts of small computational complexity, usually formalized as circuits from small circuit
classes. This makes results in proof complexity analogous to (and often building on) results in
circuit complexity. However, despite having strong lower bounds for the class AC0[p] since the
1980’s, ([18, 19]) it is still an open problem in proof complexity to establish superpolynomial
(or even quadratic) lower bounds for the corresponding proof system AC0[p]-Frege.

Motivated by the lack of progress towards proving AC0[p]-Frege lower bounds, [4] defined
the Nullstellensatz (Nullsatz) proof system for refuting systems of unsolvable polynomial
equations. Given a system of polynomial equations P = {P1 = 0, . . . , Pm = 0} in Boolean
variables x1, . . . , xn (where we enforce the Boolean condition by adding the equations x2

i−xi =
0 to P), a Nullsatz refutation of P over a field F is a set of polynomials Q = {Q1, . . . , Qm}
such that

∑
i PiQi = 1. The degree of the refutation is the maximum degree of the PiQi’s,

and the size is the sum of the sizes of the polynomials in P,Q. A dynamic version of Nullsatz,
called the Polynomial Calculus (PC) was later defined in [10].

While these and later papers showed strong lower bounds for these proof systems, often
these lower bounds were brittle in that the tautologies where lower bounds were proved
also had small upper bounds under changes of variables. Our work is intended to address

© Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 7; pp. 7:1–7:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:russell@cs.ucsd.edu
mailto:sasankm.iitk@gmail.com
mailto:tonipitassi@gmail.com
https://doi.org/10.4230/LIPIcs.CCC.2023.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Lower Bounds for Polynomial Calculus with Extension Variables over Finite Fields

the issue of proving algebraic proof lower bounds that are more robust under changes of
variables. This can be viewed as a small but significant step towards proving lower bounds
for AC0[p]-Frege, since the latter can simulate such changes of variables.

One reason for the brittleness of many of the earlier lower bounds is that these lower bounds
were highly sensitive to the initial encoding. The known PC lower bounds hold for unsatisfiable
CNF formulas which are converted to a corresponding system of unsolvable polynomial
equations. Previous works established exponential PC lower bounds assuming a Boolean
encoding, where the variables are Boolean, enforced by the initial equations x2

i − xi = 0.
Another natural encoding is the “Fourier” encoding which represents the constraints by
polynomials over {−1, 1}-valued variables (by applying the linear transformation xi = 1−2xi

to the Boolean encoding). However under this second encoding, the size lower bounds all
break down. This is due to the proof method, where size lower bounds were obtained from
degree lower bounds. Over {0, 1}-valued variables, this can be accomplished by applying
known size-degree tradeoffs for PC or by a random restriction argument to kill off all large
monomials. But over {−1, 1}-valued variables, these methods no longer work: a generic size-
degree tradeoff no longer holds (there are polynomial sized proofs of the Tseitin tautologies,
although they require linear degree [8]), and since the monomials now correspond to parity
equations, they are resilient to random restrictions.

However, recently, Sokolov [20] broke this barrier, and managed to prove exponential size
lower bounds for PC refutations over the {−1, 1} encoding. We note that while this may seem
like a minor improvement over the known lower bounds which held for the {0, 1}-encoding,
Sokolov had to invent a new and ingenious technique for proving size lower bounds. In this
work, we generalize the methods of Sokolov to prove exponential PC lower bounds with up to
M = N2−ϵ extension variables which can depend on up to κ = O(log N) original variables
(where N is the number of variables in the tautology). This shows that the Sokolov method
can be used to prove highly robust lower bounds, that are not sensitive to local changes of
variables. We state our result more precisely for two different choices of parameters, one
that maximizes the size lower bound, and the other that maximizes the number of allowable
extension variables.

▶ Theorem 1 (high-end). For n sufficiently large, there is a family of CNF tautologies
F SEL on O(n log n) variables with poly(n) clauses of width O(log n) such that for any
M = npolylog(n) and κ = O(log log n), any PC refutation over Fp of F SEL, together with
M κ-local extension axioms, requires size 2Ω(n/polylog(n)).

▶ Theorem 2 (low-end). For the same family of tautologies as above, there are 0 < α, β, γ < 1
so that, for M = n1+α, κ = βlogn, any PC refutation of F SEL together with any M κ-local
extensions over Fp requires size 2Ω(nγ).

We remark that our extension variables are only allowed to depend on the original
variables, and not on previously defined extension variables. (In the more general case where
extension variables are defined recursively, the proof system corresponds to AC0[p]-Frege,
where the level of recursion corresponds to the AC0[p] circuit depth.) Thus our lower bound
can be (roughly) seen as proving exponential lower bounds for the following restricted class of
depth-2.5 PC refutations. First, the refutation is given a new set of M variables, z1, . . . , zM ,
and is allowed to define a corresponding set of M κ-local polynomials Q1, . . . , QM (where
each Qi can only depend on κ original variables). Lines in the refutation are polynomials
over the original variables, plus the new extension variables (which are placeholders for the
Qi’s). Substituting the Qi’s for the new variables gives a set of depth 2.5 algebraic circuits
using a pre-specified set of κ-local functions at the bottom layer of the circuit.

R. Impagliazzo, S. Mouli, and T. Pitassi 7:3

1.1 Related Work

The work that inspired us and that is most related to our result is the recent paper by
Sokolov [20], proving exponential lower bounds on the size of PC refutations of CNF formulas,
where the variables take on values in {1,−1}. We generalize Sokolov’s result to hold over any
finite field, even with the addition of superlinear many extension variables, each depending
arbitrarily on a small number of original variables. Thus our result can be alternatively viewed
as making progress towards proving exponential lower bounds for depth-3 AC0[p]-Frege, for
a family of CNF formulas.

We note that for systems of polynomial equations over the rationals, a body of recent
work establishes much stronger lower bounds. First, [13] proved lower bounds for subsystems
of IPS over the rationals by restricted classes of circuits, including low-depth formulas,
multilinear formulas and read-once oblivious branching programs. Secondly, Alekseev [2]
proved exponential lower bounds on the bit complexity of PC proofs with an arbitrary number
of extension variables of unbounded depth over the rationals. Andrews and Forbes [3] prove
quasipolynomial lower bounds on the circuit size of constant-depth IPS proofs for a different
family of polynomials over the rationals; however, their hard instances do not have small-size
constant-depth circuits. Finally, [14] establish a similar lower bound as [3], but for hard
instances that have small constant-depth circuits.

We remark that these lower bounds are incomparable to ours for several reasons. First,
they do not hold for finite fields, and secondly, the choice of hard polynomials are inherently
nonboolean: [13, 2, 14] use the subset sum principle which when translated to a propositional
statement is no longer hard, and the hard polynomials in [3] have logarithmic depth. Thus
on the one hand they establish superpolynomial lower bounds for much stronger subsystems
of IPS, but on the other hand, they do not translate to lower bounds for propositional proofs
in the sense of Cook-Reckhow [11]. In particular, they don’t imply lower bounds for proof
systems dealing with Boolean formulae.

1.2 Our Result: Proof Overview

The standard way of proving size lower bounds for PC for an unsatisfiable formula F for
Boolean-valued variables dates back to the celebrated superpolynomial lower bounds for
Resolution [15, 7], where the basic tool is to reduce size lower bounds to degree lower bounds
(or in the case of Resolution, size to clause-width) by way of either a general size-depth
tradeoff, or by a more general random restriction argument. At a high level, both methods
iteratively select a variable that occurs in a lot of high-degree terms, set this variable to
zero (to kill off all high-degree terms containing it), while also ensuring (possibly by setting
additional variables) that F remains hard to refute after applying the partial restriction.
After applying this size-to-degree reduction, the main technical part is to prove degree lower
bounds for the restricted version of F .

As mentioned in the Introduction, over the {−1, 1} basis, the size to degree reduction
breaks down. In fact, no generic reduction to degree can exist since random XOR instances
over this basis require linear degree but have polynomial size PC refutations. Moreover,
we lacked any method for proving PC lower bounds for unsatisfiable CNFs over the basis
{−1, 1}, and more generally over an arbitrary linear transformation of the variables. In [16],
we highlighted this as an open problem, noting that it is a necessary step toward proving
superpolynomial AC0[2]-Frege lower bounds, a major open problem in proof complexity.

CCC 2023

7:4 Lower Bounds for Polynomial Calculus with Extension Variables over Finite Fields

Recently, Sokolov [20] made significant progress by proving exponential lower bounds for
PC (as well as for SOS) for random CNF formulas over the domain {−1, 1}, by developing
new formula-specific techniques to reduce size to degree over this domain. As this is the
starting point for our work, we begin by describing the main method in [20] for reducing size
to degree for certain families of formulas over {−1, 1}.

Let Π be an alleged PC refutation of F of small size which includes the axioms w2 = 1 for
all variables w. The first step in Sokolov’s argument is to show how to remove all high degree
terms containing a particular variable w, provided that w is irrelevant – meaning that it
does not occur in any of the initial polynomials other than the equation w2 = 1. Intuitively,
we want to show that if our unsatisfiable system of polynomial equations doesn’t contain
w, then we should be able to eliminate high degree terms containing w altogether from the
refutation. To show this, Sokolov introduced a new operation termed Split where he writes
each line q in the refutation as q0 + q1w, and proves by induction that if we replace each line
q by the pair of lines q0, q1, then it is still a valid refutation of F (and no longer contains w).
While the Split operation removes w from the proof, it doesn’t kill off high degree terms.
The crucial insight is that although this doesn’t directly kill off high degree terms, a slightly
different measure of degree (called Quadratic degree) can be used instead, since removing
w via the Split operation removes all high Quadratic degree terms that w contributed to,
and secondly low Quadratic degree implies low ordinary degree. The second and easier step
in Sokolov’s argument uses specific expansion properties of F to show that for any variable
w, there exists a small restriction ρ (to some of the other variables) such that w becomes
irrelevant under ρ.

Our main theorem significantly generalizes Sokolov’s lower bound by proving exponential
lower bounds for an unsatisfiable CNF formulas F , even when we allow the axioms P to
contain superlinear many extension axioms, provided that each extension axiom depends
on a small number of original variables. Note that the variables of F are Boolean, but the
extension variables are not restricted to being Boolean. In particular, it may be the case that
zero is not in the support of an extension variable (i.e. the set of all possible values that can
be assigned to it without violating any Boolean axioms), for example if extension variable
z is defined by the equation z = x− 2, then z cannot be set to zero without falsifying the
Boolean axiom x2 − x = 0 for x. Intuitively we will handle extension variables z that cannot
be set to zero in a similar manner to Sokolov, by first isolating z, and then generalizing the
Split operation in order to kill off all large Quadratic degree terms that contain z. However,
dealing with a general set of extension axioms presents new technical challenges that we
address next.

Our first idea is to design the unsatisfiable formula F carefully so that we can force
variables to be irrelevant in a more modular way. Specifically, let F (x1, . . . , xn) be an
expanding unsatisfiable k-CSP formula with m = O(n) constraints, such that any subset of
m′ = ϵm constraints is unsatisfiable and requires proofs of large PC degree. We define an
unsatisfiable formula F SEL (based on F) that intuitively states that there is a subset S of
m′ = ϵm constraints of F (as chosen by new selector variables y) that is satisfiable. We will
prove lower bounds on the set of constraints F SEL even with the addition of an arbitrary set
of extension axioms satisfying the conditions mentioned earlier. In order to make a variable
of F SEL irrelevant, we will simply make sure that our eventual assignment to the selector
variables (y) avoids constraints of F that contain this variable (we can also make a selector
variable irrelevant in a slightly more complicated way, details are left to the relevant section).

A second challenge that we face (that doesn’t come up in Sokolov’s proof) is that extension
variables may be defined so that originally they can be consistently set to zero, but can
change status after applying a restriction. For example, suppose the proof uses the extension

R. Impagliazzo, S. Mouli, and T. Pitassi 7:5

axiom z = x1x2 + x1. Then zero is in the support of z (since we can set x1 = x2 = 0),
but if we set x1 = 1, then zero is no longer in the support of z. In order to deal with this
dynamically changing status of variables, our notion of Quadratic degree must pay attention
to which category each of the extension variables is in at any particular time, and make
sure that we do not lose progress that was made earlier due to variables changing from
initially containing zero to disallowing zero in their support. Fortunately we observe that
variables can only change unidirectionally, (since the support of a variable cannot increase
under a restriction) and this is crucial for arguing that our measure of Quadratic degree
always decreases so that we continually make progress.

Finally, we also have to generalize Sokolov’s Split operation, which was previously defined
only for {−1, 1} variables. We give a generalization of how to do the Split for arbitrary
valued variables.

2 Preliminaries

▶ Definition 3 (Polynomial Calculus/Polynomial Calculus Resolution). Let Γ = {P1 . . . Pm}
be an unsolvable system of polynomials in variables {x1 . . . xn} over F. A PC (Polynomial
Calculus) refutation of Γ is a sequence of polynomials {R1 . . . Rs} such that Rs = 1 and for
every ℓ ∈ [s], Rℓ ∈ Γ, Rℓ is either a polynomial from Γ, or is obtained from two previous
polynomials Rj , Rk, j, k < ℓ by one of the following derivation rules:

Rℓ = αRj + βRk for α, β ∈ F
Rℓ = xiRk for some i ∈ [n]}

The size of the refutation is
∑s

ℓ=1 |Rℓ|, where |Rℓ| is the number of monomials in the
polynomial Rℓ. The degree of the refutation is maxℓ deg(Rℓ).

A PCR (Polynomial Calculus Resolution) refutation is a PC refutation over the set of
Boolean variables {x1 . . . xn, x̄1 . . . x̄n} where {x̄1 . . . x̄n} are twin variables of {x1 . . . xn} i.e.
the equations x2

i − xi = 0, x̄i
2 − x̄i = 0 and xix̄i = 0 are treated as axioms.

▶ Definition 4 (PC plus Extension Axioms). Let Γ = {P1 . . . Pm} be a set of polynomials
in variables {x1 . . . xn} over a field F. We will refer to the polynomials in Γ as (initial)
axioms. Let z = z1 . . . zM be new extension variables with corresponding extension axioms
zj −Qj(x1 . . . xn). A PC + Ext (PC plus extension) refutation of Γ with M extension axioms
Ext = {zj −Qj(x1 . . . xn)} is a PC refutation of the set of polynomials Γ′ = {P1 . . . Pm, z1 −
Q1 . . . zM −QM}. An extension axiom zj = Qj(x1 . . . xn) is κ-local if Qj is a κ-junta; that
is, if the polynomial Qj defining zj involves at most κ of the x-variables. We say that Π
is a (M, κ)− PC + Ext refutation of Γ if it is a PC + Ext refutation of Γ with M extension
axioms, each of which are κ-local. The size of the refutation is total size of all lines in the
refutation, including the polynomials in Γ plus the extension axioms (where the size of a line
P ∈ Π is the number of monomials in P).

We note that our definition of extension axioms is more limited than the general notion
of extension axioms. Here we only allow the extension variables to depend on the original
variables from Γ; the more general definition allows the extension variables to depend on the
original x-variables, and also on other extension variables.

▶ Definition 5 (k-local CSPs). A constraint Ci over Boolean variables {x1, . . . , xn} is simply
a Boolean formula over these variables. Ci is a k-local constraint if Ci depends on at most
k variables. A k-CSP C = C1 ∧ . . . ∧ Cm over {x1, . . . , xN} is the conjunction of a set of
k-local constraints.

CCC 2023

7:6 Lower Bounds for Polynomial Calculus with Extension Variables over Finite Fields

We translate a k-CSP formula into a system of polynomial equations using the standard
PCR translation which we define next.

▶ Definition 6 (Converting k-CSPs into Polynomial Equations). Let C be a k-local constraint
over variables xi1 , . . . , xik

. We convert C to a polynomial equation, p(C), using the trans-
lations p(xij

) = 1 − xij
, p(¬A) = 1 − p(A), p(A ∨ B) = p(A) · p(B). It is easy to check

that for any Boolean assignment α to the underlying variables, C(α) = 1↔ p(α) = 0, and
C(α) = 0↔ p(α) = 1.

A k-CSP C = C1 ∧ . . . ∧ Cm over {x1, . . . , xn} converts to a set of polynomial equations
{Ej | j ∈ [m]} ∪ {Bi | i ∈ [n]} over {x1, . . . , xn} ∪ {x̄1, . . . , x̄n} where Ej is the polynomial
equation p(Cj) In addition, we add the Boolean axioms {Bi | i ∈ [n]}, where Bi = {x2

i −xi =
0, x̄i

2 − x̄i = 0, xix̄i = 0} which force xi, x̄i to be zero-one valued, and force exactly one of
xi, x̄i to be one.

3 The Hard Formulas

We distinguish between the case p = 2 and the case p > 2, and concentrate on the latter.
This is because the case p = 2 does not require any new technical ideas, and we can pick from
a large number of known hard tautologies for this case, such as random CNF ’s. Over F2,
every extension variable is zero-one valued, and so standard size-degree tradeoffs pertain even
with respect to extension variables. Also, κ-local extension variables can change the degree by
at most a factor of κ, therefore a degree lower bound of Ω(n) for the original tautology over
n variables implies a degree lower bound of Ω(n/κ) after adding κ-local extension variables.
Known size-degree tradeoffs imply that the degree must be at least square root of the number
of variables in order to obtain exponential size lower bounds, this immediately gives a lower
bound tolerating close to n2/κ2 many κ-local extension variables [10, 6, 17].

Over any field, there are unsatisfiable families of k-CNF formulas (e.g. the Tseitin
tautologies as well as random parity equations) that require linear degree but have polynomial
sized proofs with a linear number of extension variables [8, 6]. Therefore formulas that
require high PC degree are not sufficient. Instead we will create our hard examples by taking
a hard instance and then using selector variables to pick out a subset of the constraints.
Similar ideas were used earlier (e.g., [12]). In more detail, our underlying hard unsatisfiable
formulas, {F SEL

n,k }, will be constructed from a family of k-CSP formulas, Fn,k, that have the
property that any sufficiently large subset of the constraints of Fn,k is unsatisfiable and still
requires large PC degree.

▶ Definition 7. Let Fn,k = {Ej | j ∈ [m]} ∪ {Bi | i ∈ [n]} be the system of degree-k
polynomial equations over x = {xi, x̄i | i ∈ [n]}, obtained by converting a size-m k-CSP as
given by Definition 6. For convenience, we will index the polynomial equations Ej in binary
notation, so for example if b1 . . . blog m ∈ {0, 1}log m is the binary notation for j ∈ [m], we will
write Ej as Eb1...blog m

. We define a new set of polynomial equations F SEL
n,k with parameters

m, m′ as follows. The variables are x ∪ y, where x are the original variables of Fn,k and
y = {yi,j , yi,j | i ∈ [m′], j ∈ [log m]} are new “pigeon” variables. Let ESEL be the following
set of equations, where yi ̸= b1 . . . blog m abbreviates the monomial

∏
bj=1 yi,j

∏
bj=0 yi,j:

(i) ∀i ∈ [m′], ∀b1 . . . blog m ∈ {0, 1}log m, (yi ̸= b1 . . . blog m) · Eb1...blog m
= 0;

(ii) ∀i, i′ ∈ [m′], i ̸= i′, ∀b1 . . . blog m ∈ {0, 1}log m, (yi ̸= b1 . . . blog m) · (yi′ ̸= b1 . . . blog m) =
0.

F SEL
n,k consists of the polynomial equations ESEL together with the Boolean axioms

Bi,j = {y2
i,j − yi,j = 0, yi,j

2 − yi,j = 0, yi,jyi,j = 0} for all i ∈ [m′], j ∈ [m].

R. Impagliazzo, S. Mouli, and T. Pitassi 7:7

Intuitively we think of the y variables as a mapping from m′ pigeons to m holes, where
the holes correspond to the m axioms/constraints from E. For i ∈ [m′], the ith “pigeon” yi

selects a hole (an equation from E).
The first set of polynomial equations in ESEL states that if pigeon yi selects the equation

Eb1...blog m
, then this equation must be satisfied; the second set of equations in ESEL states

that the mapping is one-to-one and thus altogether the y selector variables choose a subset
E′ of exactly m′ equations from E. Thus F SEL

n,k asserts that there exists a subset of m′

constraints of Fn,k (chosen by the y-variables) that are satisfiable.
Throughout this paper, the x-variables are the variables that underly Fn,k; the y-variables

are the selector/pigeon variables described above that choose a subset of m′ constraints from
Fn,k, and the extension variables used in the PC + Ext refutation will be the z-variables.

Our hard instances will be F SEL
n,k , with m = 10n, m′ = (1 − ϵ)m, where Fn,k is (the

polynomial translation of) an unsatisfiable k-CSP formula with m = 10n k-local constraints
over variables x = x1 . . . xn, satisfying the follow property:

▶ Property 8. Every subset of (1− ϵ)m′ constraints is unsatisfiable and requires linear PC
degree.

The following Theorem shows that for sufficiently large n, such formulas exist. Similar
proofs have appeared in several papers (e.g., [5]) but we give a proof in the Appendix for
completeness.

▶ Theorem 9. Let m = 10n. Then there exists constants k > 0, 0 < ϵ < 1 such that
for sufficiently large n, there exists k-CSP formulas {Fn,k} with m constraints such that
Property 8 holds with m′ = (1− ϵ)m.

4 The Lower Bound

4.1 Technical Proof Overview
Conventionally, proof size lower bounds are reduced to degree lower bounds, a single step of
which involves finding a heavy variable that occurs in a large fraction of high degree terms
of the proof and setting it to zero. In our setting, if the heavy variable turns out to be an
extension variable, z with extension axiom z = Q(x, y), it may be Nonsingular meaning
that we cannot set z = 0 (without falsifying the extension axiom or a Boolean axiom), as
opposed to Singular variables which can be set to zero in a consistent way1. In this case, we
cannot simply eliminate the high degree terms containing z by setting z = 0. Sokolov [20]
focused on the case where variables are over the ±1 basis instead of the usual Boolean one,
which is the simplest case where all variables are Nonsingular. Sokolov introduced Quadratic
degree as a measure to be used instead of degree. Quadratic degree essentially measures the
maximal degree of the square of each polynomial P occurring in the proof. For a ±1 variable
z, z2 = 1, so squaring a polynomial P on ±1 variables removes the contribution of a term
t ∈ P as it gets squared out, and what remain are the terms t1t2 for t1, t2 ∈ P . Since any
variable that appears in both terms gets squared out, the degree of these terms measures the
symmetric difference between such terms, and this turns out to be a key complexity measure
while dealing with Nonsingular variables. Sokolov showed that a refutation of low Quadratic
degree can be turned into one of low degree. Thus the presence of Nonsingular variables

1 This terminology is taken from singular and nonsingular matrices, since the key property we use is that
a variable z is Nonsingular if and only if zp−2 is a “multiplicative inverse” of z, i.e. zp−1 = 1

CCC 2023

7:8 Lower Bounds for Polynomial Calculus with Extension Variables over Finite Fields

is not necessarily a problem as long as the Quadratic degree of each line is low. Sokolov
also introduced an operation Split that acts on a proof line by line in order to remove the
contribution to Quadratic degree of any particularly heavy Nonsingular variable z, in the
special case where they always take on values in ±1, by replacing a line P = P1z + P0 in the
refutation with the lines P1 and P0. Sokolov managed to show that for some well chosen
tautologies, the new Split lines still form a valid refutation of a hard subset of axioms. The
crucial observation here is that this splitting of lines has eliminated from the square of the
proof all pairs of terms whose product contained z. Thus, repeated application of Split would
lead to contradiction of known degree lower bounds.

The first step for us was to generalize the notions of Quadratic degree and Split to any
finite field. Motivated by the above definition of Quadratic degree, we generalize it as follows.
Given two terms t1 and t2, a Nonsingular variable z contributes to the Quadratic degree
between t1 and t2 if and only if it appears with different exponents in them, i.e. zi ∈ t1 and
zj ∈ t2, for i ̸= j. A Singular variable z contributes if and only if it appears in one of the
terms with a nonzero exponent. The Quadratic degree of t1 and t2 is the total number of such
variables z that contribute. Generalizing the Split operation proved a bit more difficult. We
first focus on the case over Fp analogous to Sokolov’s, where we have a variable z such that
the identity (z − a)(z − b) = 0 holds for some constants a, b ̸= 0 in the field. Note that a line
P (z) of the proof is of the form Pp−2zp−2 + · · ·+ P1z + P0. In the case of ±1 variables, p = 3
and thus the contribution by z to Quadratic degree comes just from the interaction between
two polynomials P1 and P0. Therefore separating P1 and P0 into different lines removes this
contribution entirely. In the general case, however, the contribution by z to Quadratic degree
is the sum total of interactions between polynomials Pi and Pj for every pair i, j < p − 1
such that i and j are distinct. We show how to separate P into two lines R1, R0 such that
the interaction between Pi and Pj is completely removed, for any i, j satisfying ai−j ̸= bi−j ,
or in other words, zi and zj are linearly independent over the two values that z takes. Let
R(z) = R1zi + R0zj be a polynomial such that R agrees with P for each possible value of
z, i.e. R(a) = P (a) and R(b) = P (b). Since zi and zj are linearly independent over values
{a, b}, these two equations can be solved for their coefficients R1, R0, expressed in terms of
Pp−2 . . . P0. On closer observation, we find that Pi does not occur in the expression for R1
and similarly Pj does not occur in R0, and therefore we have successfully broken P into lines
R1 and R0 while separating Pi and Pj . It is straightforward to show that this new set of
lines forms a valid refutation, but an essential assumption we make here is that the initial
axioms are free of z, except for (z − a)(z − b) = 0.

We now move to dealing with the case of a more general extension variable z with the
extension axiom z−Q, where Q(x, y) is a polynomial that can depend on at most κ variables.
Let H be the set of all pairs of terms (t1, t2) in a line of a given refutation that have high
Quadratic degree between them. We would like to emulate Sokolov’s strategy of eliminating
this set of pairs from the refutation to drop its Quadratic degree. If an extension variable z

which is Singular appears heavily in H, we apply the restriction that sets it to zero (which
exists by the definition of Singular). In the case that z is Nonsingular, our goal is to reduce
it to the above case in order to apply Split. But first, we will have to choose a “good” pair
of indices ℓ1, ℓ0 such that Splitting them is effective in reducing H. We observe that for any
pair of indices i, j, the set of pairs (t1, t2) in H such zi ∈ t1 and zj ∈ t2 is disjoint from the
similar set defined for a distinct pair i′, j′. Therefore by averaging we can pick a good pair
ℓ1, ℓ0 that covers at least a 1/p2 fraction of z’s appearances in H. We now have to reduce
z to take on two distinct values a, b in order to apply Split, but these values need to be
such that aℓ1−ℓ0 ≠ bℓ1−ℓ0 . We show that there is a decision tree process (Lemma 22) that

R. Impagliazzo, S. Mouli, and T. Pitassi 7:9

queries the variables underlying Q such that it is always possible to reduce z to the form
(b− a)w∗ + a, where a, b are useful to separate the indices ℓ1, ℓ0. It is fairly easy to see as a
result of the discussion so far that if we are able to apply Split on z with indices ℓ1, ℓ0 at
this stage, it causes a sizable reduction in H.

We are now almost ready to apply Split, but we still have to meet the requirement that
the axioms are free of z. Since z is an extension variable it appears only in the extension
axiom which has now been reduced to the form (b− a)w∗ + a, and so the only way to remove
this axiom is to make a substitution for w∗ = (z−a)/(b−a) in terms of z. This would get rid
of this extension axiom and take the Boolean axiom for w∗ to (z − a)(z − b) = 0 just like we
need, but if w∗ appears in any of the other axioms this substitution just creates new copies
of z. Therefore we need to remove w∗ from all the other axioms before we try to make this
substitution. Here is where we make use of the structure of our tautology F SEL

n,k by defining
an operation Cleanup which can remove any Boolean variable w∗ from the axioms without
actually setting it to a constant value. Cleanup also restores the structure of our tautology
so that we are always working with a subset of equations and pigeons from F SEL

n,k that are
untouched by previous restrictions. We describe this operation in detail in Section 4.5.1.

Once we perform the above cleanup operations we are ready to make the substitution for
w∗ = (z − a)/(b− a) in terms of z to satisfy the requirements for Split. We are met with a
final hurdle here: this substitution can potentially increase the number of pairs of terms in
H. Fortunately it can be resolved by a simple case analysis: if the blowup is too large it
must have been the case that w∗ appeared frequently in H, and so setting it to zero will
reduce H without the need for Split. Otherwise, Split is able to offset this blowup.

Therefore we have demonstrated above how to reduce the size of the high Quadratic degree
set H by a constant fraction. Performing this for sufficiently many iterations would remove
H entirely and lower the Quadratic degree of any refutation. We then use a generalized
version of Sokolov’s argument that low Quadratic degree implies low degree in order to switch
to a low degree refutation. For a small sized refutation, the number of iterations needed is
bounded and thus we are able to keep most of the pigeons and equations alive at the end.
We then select a hard subset of equations by assigning all remaining pigeons, and expand any
remaining extension variables in order to obtain a low degree refutation of these equations,
towards a contradiction.

4.2 Singular and Nonsingular variables
Let us fix the finite field Fp, p > 2 for the rest of the article. We also fix a set of unsatisfiable
polynomials F over Boolean variables x ∪ y, and a set of extension axioms Ext of the form
z−Q over variables z. Whenever we refer to a refutation Π, we assume that it is a PC + Ext
refutation of F ∪ Ext.

▶ Definition 10 (Support of a variable). Let z −Q(wi1 , . . . , wiκ
) = 0 be a κ-local extension

axiom associated with z. We define the set vars(Q) = {wi1 , . . . , wiκ
} and sometimes write

vars(z) to denote vars(Q), the set of variables that z depends on. The support of z,
supp(z) ⊆ [0, p − 1], is equal to the set of all values a ∈ [0, p − 1] such that there exists a
Boolean assignment α to the variables of Q such that Q(α) = a. Sometimes we also indicate
this by supp(Q).

We extend the definition of support also to Boolean variables. For a Boolean variable w,
supp(w) = {0, 1} as enforced by the Boolean axiom w2 = w.

▶ Definition 11 (Singular and Nonsingular variables w.r.t. Ext). Let Ext be a set of extension
axioms and let z be an extension variable with an axiom in Ext. We say that z is Singular

CCC 2023

7:10 Lower Bounds for Polynomial Calculus with Extension Variables over Finite Fields

w.r.t. Ext iff 0 ∈ supp(z); otherwise we say that z is Nonsingular w.r.t. Ext. Any Boolean
variable is considered Singular by default, independent of the set Ext, since zero always
belongs to its support. For a term t, let sing(t) be the subterm of t containing the Singular
variables in t, and let nsing(t) be the subterm of t containing the Nonsingular variables.

Note that for a Singular extension variable z, it is possible to set z to zero, However,
we note that this may falsify other polynomial equations in F . For example, if xy = 0 is
a polynomial equation in F , and the extension axiom for z is z − 1 + xy = 0, then setting
x = y = 1 forces z = 0, but this falsifies xy = 0.

▶ Definition 12. Let A ⊆ [1, . . . , p− 1], A ̸= ∅. Define ℓ(A) to be the least ℓ ∈ [1, p− 1] such
that the set {aℓ | a ∈ A} is singleton. For a Nonsingular z, define ℓ(z) = ℓ(supp(z)).

▶ Lemma 13. Let z be a Nonsingular extension variable with extension axiom z −Q = 0.
Then the following polynomial equations are implied by (and therefore derivable from) the
extension axiom for z plus the Boolean axioms for all variables in vars(Q), in degree at most
|vars(Q)|.
1. z −Q′ = 0, where Q′ is the multilinear version of Q;
2. For any A′ ⊆ [0, p− 1] such that supp(z) ⊆ A′, Πa∈A′(z − a) = 0;
3. zℓ(z) − c = 0 for some c ∈ F∗

p.

In particular, if z is Nonsingular, then the polynomial equation zp−1 − 1 = 0 is implied
by z −Q = 0 together with the Boolean axioms for vars(Q).

Proof. Let z − Q(wi1 , . . . , wiκ) = 0 be the extension axiom for z, and let supp(z) = A ⊆
A′ ⊆ [1, p−1]. First, we can derive the multilinear version of Q, Q′, from Q together with the
Boolean axoms w2 −w = 0 for all w ∈ vars(Q). Secondly, by definition, supp(z) = A means
that the allowable values for z over Boolean assignments to vars(Q) are the values in A.
Therefore, z−Q = 0 together with the Boolean axioms w2−w = 0 for all w ∈ vars(Q) implies
Πa∈A(z − a) = 0. Furthermore, this polynomial has a PC derivation, by the derivational
completeness of PC. Since A ⊆ A′, Πa∈A′(z − a) = 0 is a weakening of Πa∈A(z − a) = 0
and is therefore derivable from Πa∈A(z = a) = 0. Lastly, we will argue that there exists
some constant c ∈ F∗

p such that zℓ(A) − c = 0 is semantically implied by z −Q = 0 plus the
Boolean axioms for vars(z) and therefore is derivable from these axioms. Since the only
allowable values for z under the Boolean axioms are the values in A, and since by definition
of ℓ(A), for every a ∈ A, aℓ(A) = c for some c ∈ F∗

p, it follows that zℓ(A) − c = 0. ◀

▶ Definition 14. For a term t and a variable w, deg(t, w) is equal to the degree of w in t. If
w is Nonsingular, then wp−1 = 1 mod p, so deg(t, w) < p− 1. On the other hand if w is
Singular then we have wp = w mod p and therefore deg(t, w) < p. For a term t the degree
of t, deg(t), equals

∑
w∈vars(t) deg(t, w).

4.3 Quadratic degree
The next definition is a generalization/modification of Sokolov’s definition of Quadratic
degree for the more general scenario where the proof contains extension variables that are
Singular as well as ones that are Nonsingular.

▶ Definition 15 (Quadratic degree). Let V be a set of variables and let S be a subset of
V . For a pair of terms t1, t2 over V , and a variable w ∈ V , we define QdegS(t1, t2, w) as
follows. If w ∈ S, then QdegS(t1, t2, w) = 1 if w occurs in at least one of t1 or t2; if w ̸∈ S,
then QdegS(t1, t2, w) = 1 if and only if deg(t1, w) ̸= deg(t2, w). The overall quadratic degree

R. Impagliazzo, S. Mouli, and T. Pitassi 7:11

of the pair t1, t2, QdegS(t1, t2), is equal to
∑

w∈V QdegS(t1, t2, w). The quadratic degree of
a polynomial P is equal to the maximum quadratic degree over all pairs (t1, t2) such that
t1, t2 ∈ P . For a proof Π, the quadratic degree of Π is the maximum quadratic degree over
all polynomials P ∈ Π.

We usually instantiate the above definition with V = x ∪ y ∪ z and with S being the
set of Singular variables as defined by the extension axioms corresponding to z. However
since QdegS is a different measure for every S, and our set of Singular variables can change
under the application of a restriction ρ to the variables in V , we must make sure that our
measure of Quadratic degree does not change significantly under a restriction2. Fortunately,
we can show that for any two sets S and T such that T ⊆ S, QdegT ≤ QdegS . Along with
the simple observation that the set of Singular extension variables can only shrink under
a restriction, this implies that our measure of Quadratic degree can only decrease under a
restriction. We make this formal below.

▶ Lemma 16. Let V be a set of variables and let S and T be subsets of V such that T ⊆ S.
Then for any two terms t1, t2 over V , QdegT (t1, t2) ≤ QdegS(t1, t2).

Proof. Note that for a variable w ∈ S − T , QdegS(t1, t2, w) = 1 when w has a nonzero
exponent in one of t1 or t2, otherwise zero. However, QdegT (t1, t2, w) = 1 if and only if the
previous condition is satisfied and the exponents of w in t1 and t2 are not equal. Thus the
claim follows. ◀

Henceforth, when we refer to Quadratic degree, we always fix the set S to be the set of
Singular variables w.r.t. the underlying extension axioms. We have the following important
corollary that this measure always decreases under a restriction to the underlying variables.

▶ Corollary 17. Let F be a set of unsatisfiable polynomials over variables x ∪ y and let
Ext be a set of extension axioms of the form z − Q(wi1 , . . . , wiκ) for variables z ∈ z and
wi1 , . . . , wiκ

∈ x ∪ y. Let ρ be a restriction to x ∪ y and let Ext|ρ be the axioms given by
z − Q|ρ for each axiom z − Q ∈ Ext. The Quadratic degree w.r.t. Ext|ρ is at most the
Quadratic degree w.r.t. Ext.

Proof. Since supp(Q|ρ) ⊆ supp(Q) for any polynomial Q, we have that the set of Singular
variables under Ext|ρ is a subset of those under Ext. Therefore our claim follows from the
previous lemma. ◀

▶ Lemma 18 (Quadratic degree upper bounds degree of Singular variables). For any term t,
deg(sing(t)) ≤ pQdeg(t, t)

Proof. For any Singular variable w, Qdeg(t, t, w) = 1 if and only if w occurs in t. Since w

can occur in t with degree at most p− 1, the claim follows. ◀

▶ Definition 19 (High quadratic degree terms). For a proof Π and d ≥ 0, let Hd(Π) denote
the set of unordered pairs (t1, t2) of quadratic degree at least d. That is, Hd(Π) is the set of
unordered pairs of terms (t1, t2) such that t1, t2 both occur in P for some polynomial P ∈ Π,
and Qdeg(t1, t2) ≥ d.

2 If the set S does not change under a restriction, QdegS can still change under the restriction as terms
can shrink or disappear when variables are set by the restriction. However, this is no different from
how the usual notion of degree changes under a restriction, and it is trivial to show that QdegS always
decreases. Therefore we ignore this for the sake of simplicity.

CCC 2023

7:12 Lower Bounds for Polynomial Calculus with Extension Variables over Finite Fields

▶ Lemma 20. Let Π be a PC + Ext refutation of F and let z be a Nonsingular variable. Let
Π′ be the proof obtained from Π by reducing each line of Π by zℓ(z) − c = 0 for some c ∈ F∗

p.
Then |Hd(Π′)| ≤ |Hd(Π)| for any d ≥ 0.

Proof. Consider a polynomial P ∈ Π and a pair of terms (t1, t2) that occur in P . For any
variable w distinct from z, Qdeg(t1, t2, w) is unaltered when P is reduced by zℓ(z) = c. On the
other hand, if z does not contribute to the Quadratic degree of (t1, t2) i.e. Qdeg(t1, t2, z) = 0,
then it will still be 0 after reducing by zℓ(z) = c. Therefore Qdeg(t1, t2) never increases for
any pair (t1, t2) and thus |Hd(Π′)| ≤ |Hd(Π)|. ◀

The following is a generalized version of the argument from [20] that shows how to convert
a proof with low Quadratic degree to one with low degree.

▶ Lemma 21. Let F be a set of unsatisfiable polynomials of degree d0 with a PC refutation
of Quadratic degree at most d ≥ d0 over Fp. Then F has a PC refutation of degree at most
3pd.

Proof. The proof of this lemma is largely based on (a slightly cleaner version of) Sokolov’s
argument ([20], Lemma 3.6) that low Quadratic degree over {±1} variables implies low
degree. Our first observation is that Sokolov’s argument can be applied to any refutation of
low Quadratic degree over Fp such that every term contains only Nonsingular variables. In
particular if {Pj} is a refutation that only contains Nonsingular terms, then we can use his
argument to show that {tp−2

j Pj} is also a valid refutation for some carefully chosen term
tj ∈ Pj . Moreover, the degree of the latter refutation is bounded by a constant times the
Quadratic degree of the former one. To see this, first note that for two Nonsingular terms
t1 and t2, we have that deg(t1tp−2

2) ≤ (p− 1) ·Qdeg(t1, t2), because of the following. For a
variable z that is Nonsingular such that z occurs in t1 and t2 with deg(t1, z) = deg(t2, z), we
have deg(t1tp−2

2 , z) = Qdeg(t1, t2, z) = 0 since it would appear in t1tp−2
2 with an exponent

that is a multiple of p − 1, and zp−1 = 1 holds for Nonsingular variables. Any other
Nonsingular z that occurs in at least one of t1 and t2 has deg(t1tp−2

2 , z) < p − 1 and
Qdeg(t1, t2, z) = 1. Therefore the degree of t1tp−2

2 is at most p ·Qdeg(t1, t2) when t1 and t2
contain only Nonsingular variables. This implies that the lines in the new refutation {tp−2

j Pj}
have degree at most p times the Quadratic degree of the original refutation {Pj}. Sokolov
additionally showed that each line in the new refutation can be derived from previous lines
without exceeding degree equal to 2p times the Quadratic degree of the original refutation,
completing the argument.

In our case we deal with terms containing both Singular and Nonsingular variables. The
above argument cannot be applied directly to our case, since it crucially depends on the fact
that Nonsingular variables can be raised to the power p−1 to make them vanish. Fortunately
by Lemma 18, the degree of Singular variables in any term is at most p times the Quadratic
degree with itself. Given this bound, we can ignore for each term the part that contains
Singular variables, and apply the above argument only with respect to the Nonsingular part
of each term, to reduce the degree of Nonsingular variables in each term of the refutation.
Since we now have a bound on the degree of both Singular and Nonsingular variables in each
term, we have bounded its degree. We describe this in full technical detail below.

Let {Pj} be a refutation of F with Quadratic degree bounded by d. For any term t

recall that nsing(t) denotes the subterm of t containing only Nonsingular variables. Note
that nsing(t)p−1 = 1 for any t. For every line Pj in the refutation, we pick a term
tj ∈ Pj and define P ′

j = nsing(tj)p−2Pj . Note that by the arguments outlined above, for
any two terms t1 and t2 in Pj , we have deg(nsing(t1)p−2nsing(t2)) ≤ pd and thus the
degree of Nonsingular variables in any term of P ′

j is bounded by pd. Since the Singular

R. Impagliazzo, S. Mouli, and T. Pitassi 7:13

variables in any term remain unchanged under multiplication by nsing(tj)p−2, the Singular
degree of P ′

j the same as that of Pj and is bounded by pd (Lemma 18) and therefore
deg(P ′

j) ≤ pd + pd = 2pd. We now show that the set {P ′
j} forms a valid refutation of F and

each P ′
j can be derived from previous lines in degree 3pd. If Pj is one of the axioms, we

multiply by nsing(tj)p−2 to get P ′
j for an arbitrary tj ∈ Pj , and this takes degree pd0 ≤ pd.

If Pj = wPj1 for j1 < j and some variable w, we choose tj ∈ Pj such that tj = wtj1

where tj1 ∈ Pj1 was chosen earlier. If w is Singular, we have nsing(tj) = nsing(tj1) and
therefore P ′

j = nsing(tj)p−2Pj = w · nsing(tj1)p−2Pj1 = wP ′
j1

. On the other hand, if w

is Nonsingular, we have nsing(tj) = w · nsing(tj1) and therefore P ′
j = nsing(tj)p−2Pj =

wp−1 ·nsing(tj1)p−2Pj1 = P ′
j1

. Finally, let Pj = Pj1 +Pj2 for j1, j2 < j. We pick an arbitrary
term tj ∈ Pj . Note that since nsing(t)p−1 = 1 for any term t, Pj1 = nsing(tj1)P ′

j1
and Pj2 =

nsing(tj2)P ′
j2

and thus we have P ′
j = nsing(tj)p−2nsing(tj1)P ′

j1
+nsing(tj)p−2nsing(tj2)P ′

j2

for tj1 ∈ Pj1 and tj2 ∈ Pj2 chosen earlier. We now show that deg(nsing(tj)p−2nsing(tj1)) ≤
pd and deg(nsing(tj)p−2nsing(tj2)) ≤ pd to conclude the proof. Since every term in Pj

appears in one of Pj1 , Pj2 , let tj ∈ Pj1 without loss of generality. Then we have that
tj , tj1 both appear in Pj1 and thus deg(nsing(tj)p−2nsing(tj1)) ≤ pd. If tj2 ∈ Pj i.e. it
is not cancelled in the sum Pj1 + Pj2 , then we have tj , tj2 both appear in Pj and hence
deg(nsing(tj)p−2nsing(tj2)) ≤ pd. If tj2 ̸∈ Pj , this implies that it was cancelled in the sum
Pj1 + Pj2 and therefore tj2 ∈ Pj1 and deg(nsing(tj)p−2nsing(tj2)) ≤ pd. ◀

4.4 The Split Operation
In this section we will show how to apply a restriction and then use an operation Split
(motivated by [20]) in order to eliminate high quadratic degree terms. Our main focus will
be to handle the case where the variable to be set is an extension variable with extension
axiom z −Q = 0 where z is Nonsingular, since in the other case we can potentially just set
z = 0 to eliminate terms. We start by showing how to apply a small Boolean restriction ρ

such that Q|ρ is a simple linear function of just one variable.

▶ Lemma 22. Let z be an extension variable with extension axiom z −Q(w1, . . . , wk), for
k ≤ κ. Assume that z is Nonsingular (i.e. supp(Q) ⊆ [1, . . . , p − 1]) and |supp(Q)| ≥ 2.
Then for every l ∈ [0, . . . , ℓ(supp(Q)) − 1], there exists a variable w∗ in vars(Q), and a
restriction δ to vars(Q)− w∗ such that:
(1) Q|δ = (b − a)w∗ + a, where b, a ∈ supp(Q). Thus Q|δ is a linear function of w∗ and

supp(Q|δ) = {a, b};
(2) al ̸= bl (mod p)

Proof. We will create a decision tree that will query vars(Q) one-by-one. Associated with
the root r is the set of values Sr = {al | a ∈ supp(Q)}. That is, we label the root with the
set of all possible values that zl can take on. Since l < ℓ(supp(z)), it follows that |Sr| ≥ 2
(since otherwise we would have l = ℓ(supp(z))). At the root we query the first variable w1,
with left edge labelled by w1 = 0 and right edge labelled by w1 = 1. Now we label the left
vertex with the set {al | a ∈ supp(Q|w1=0)}, of all values that zl can take on under the
restriction w1 = 0. Similarly we label the right vertex with the set {al | a ∈ supp(Q|w1=1)}.
We continue recursively, querying the next variable at each vertex v of the decision tree, as
long as the set of allowable values for zl under the partial restriction ρv associated with v is
greater than one. Now consider the longest path, ξ in T . The partial restriction ρ associated
with ξ sets the first k′ variables, where k′ ≥ 1 since initially zl takes on at least two values.
Also since ξ is a complete path, the associated set {al | a ∈ supp(Q|ρ)} contains exactly one
element, call it q.

CCC 2023

7:14 Lower Bounds for Polynomial Calculus with Extension Variables over Finite Fields

Now consider the twin path ξ′ with associated restriction ρ′, where ρ′ is obtained from ρ

by toggling the value of the last variable, wk′ , queried. Again since ξ′ is a complete path,
the associated set {al | a ∈ supp(Q|ρ′)} contains exactly one element, call it q′. Note that
q, q′ must be distinct.

Let δ be the following assignment to vars(Q) − wk′ : for 1 ≤ j < k′, we set δ(wj) =
ρ(wj) = ρ′(wj), and for k′ < j ≤ k, we set δ(wj) = 0. Setting w∗ = wk′ , Q|δ is a linear
equation of the form (b− a)w∗ + a, where b, a ∈ supp(Q). Finally, by construction, al ̸= bl

(since otherwise the two paths corresponding to ρ, ρ′ would be the same). ◀

In the remainder of this subsection, we will be interested in the case where we want to
eliminate some Nonsingular extension variable z from the refutation, and we have already
applied the above Lemma so that the extension axiom for z is of the form z−((b−a)w+a) = 0,
where w is some variable in x∪y. Thus, supp(z) = {a, b}. The next two Lemmas generalizes
a similar argument due to Sokolov, and show how to remove Quadratic degree pairs of the
form (t1zi, t2zj) for a carefully chosen pair i, j from the refutation via the Split operation.

▶ Lemma 23. Let z be an extension variable such that supp(z) = {a, b}, where a ≠ b and
a, b ∈ F∗

p and let P be any polynomial. Then, for any two distinct numbers ℓ0, ℓ1 where
ℓ0 < ℓ1 and aℓ1−ℓ0 ≠ bℓ1−ℓ0 , there exists a unique polynomial R = R0zℓ0 + R1zℓ1 such that
R = P mod (z − a)(z − b). That is, R(a) = P (a) and R(b) = P (b), where P (a) denotes the
polynomial P under the substitution z = a.

Proof. Let z−Q = 0 be the extension axiom for z, where supp(z) = {a, b}. Then by Lemma
13 the polynomial (z − a)(z − b) = 0 is implied by (and derivable from) the extension axiom
for z plus the Boolean axioms. We can assume without loss of generality that P has the
form P0 + zP1 + . . . + zp−2Pp−2.

Now we want to argue that there exists a polynomial R = zℓ0R0 + zℓ1R1, where R0, R1
are polynomials over vars(P) − z, and such that R(a) = P (a), and R(b) = P (b). We can
find R0 and R1 by solving the following system of equations, where we view R0, R1 as the
underlying variables, and treating P (a), P (b) as constants:

aℓ0R0 + aℓ1R1 = P (a)

bℓ0R0 + bℓ1R1 = P (b)

This has a (unique) solution since the determinant of the associated matrix is
∣∣∣∣aℓ0 aℓ1

bℓ0 bℓ1

∣∣∣∣ =

aℓ0bℓ0(bℓ1−ℓ0 − aℓ1−ℓ0). By our assumption, this matrix is non-singular over Fp and therefore
the above system of equations has a unique solution over Fp, given by:(

R0
R1

)
=

(
aℓ0 aℓ1

bℓ0 bℓ1

)−1 (
P (a)
P (b)

)
Abbreviating aℓ0 , aℓ1 , bℓ0 , bℓ1 by a0, a1, b0, b1 respectively, we have by definition of the

inverse:(
R0
R1

)
=

(
a0 a1
b0 b1

)−1 (
P (a)
P (b)

)
= 1

a0b1 − a1b0

(
b1 −a1
−b0 a0

) (
P (a)
P (b)

)
Solving for R0 we have:

R. Impagliazzo, S. Mouli, and T. Pitassi 7:15

R0 = b1

a0b1 − a1b0
P (a) − a1

a0b1 − a1b0
P (b)

= b1

a0b1 − a1b0
(a0Pℓ0 + a1Pℓ1 +

∑
i ̸=ℓ0,ℓ1

aiPi) − a1

a0b1 − a1b0
(b0Pℓ0 + b1Pℓ1 +

∑
i ̸=ℓ0,ℓ1

biPi)

= a0b1

a0b1 − a1b0
Pℓ0 + a1b1

a0b1 − a1b0
Pℓ1 + b1

a0b1 − a1b0
(

∑
i ̸=ℓ0,ℓ1

aiPi)

− a1b0

a0b1 − a1b0
Pℓ0 − a1b1

a0b1 − a1b0
Pℓ1 − b1

a0b1 − a1b0
(

∑
i ̸=ℓ0,ℓ1

biPi)

= Pℓ0 +
∑

i ̸=ℓ0,ℓ1

c0iPi

for some constants c0i ∈ Fp. And similarly solving for R1, it has the following form:

R1 = Pℓ1 +
∑

i̸=ℓ0,ℓ1

c1iPi

for some constants c1i ∈ Fp. ◀

▶ Definition 24 (Split). Let z be an extension variable with extension axiom z−Q = 0 such
that supp(z) = {a, b} ⊆ [1, . . . , p− 1]. For any polynomial P and for every ℓ0 < ℓ1 such that
aℓ1−ℓ0 ̸= bℓ1−ℓ0 , let R = R0zℓ0 + R1zℓ1 be the unique polynomial given by Lemma 23 such
that R = P mod (z − a)(z − b). Then Splitz,ℓ1,ℓ0(P) is defined to be the pair of polynomials
{R0, R1}. For a proof Π, and an extension variable z such that supp(z) = {a, b}, we define
Splitz,ℓ0,ℓ1(Π) to be the sequence of lines Splitz,ℓ0,ℓ1(P), over all P ∈ Π.

▶ Lemma 25. Let Π be a refutation of a set of unsatisfiable polynomials F . Let z be a
variable that occurs in Π such that the polynomials in F do not contain z except for the
axiom (z − a)(z − b) = 0 for some a, b ∈ F∗

p. Then for any ℓ0, ℓ1 such that ℓ0 < ℓ1 and
aℓ1−ℓ0 ̸= bℓ1−ℓ0 , Π′ = Splitz,ℓ0,ℓ1(Π) forms a valid refutation of F modulo (z − a)(z − b)

Proof. Fix an extension variable z in Π such that it does not occur in any axioms except
(z − a)(z − b) = 0, and let ℓ0, ℓ1 be such that ℓ0 < ℓ1 and aℓ1−ℓ0 ̸= bℓ1−ℓ0 . We will show by
induction on the number of lines in Π that Splitz,ℓ0,ℓ1(Π) is a valid derivation that meets
the conditions of the lemma. For the base case, note that all of the axioms are either free
of z or eliminated as a result of reducing by (z − a)(z − b), and hence their Split versions
are derivable. Now suppose that the Lemma holds for the first j − 1 lines of Π; that is,
Splitz,ℓ0,ℓ1(Πj−1) is a valid derivation, where Πj−1 denotes the first j − 1 lines of Π.

The first case is where Pj is a linear combination of two previously derived lines, so
Pj = αPj1 +βPj2 for some j1 and j2 less than j and α, β ∈ Fp. Using the inductive hypothesis,
we have:

Pj = α(zℓ0Rj10 + zℓ1Rj11) + β(zℓ0Rj20 + zℓ1Rj21) mod (z − a)(z − b)
= zℓ0(αRj10 + βRj20) + zℓ1(αRj11 + βRj21) mod (z − a)(z − b)

By the uniqueness of the polynomial Rj = zℓ0Rj0 + zℓ1Rj1 that is equivalent to Pj mod
(z − a)(z − b) (by Lemma 23), this implies that Rj0 = αRj10 + βRj20 and similarly Rj1 =
αRj11 + βRj21, and thus Rj0 can be derived from a linear combination of Rj10 and Rj20 and
similarly for Rj1.

CCC 2023

7:16 Lower Bounds for Polynomial Calculus with Extension Variables over Finite Fields

The second case is when Pj is derived from a previously derived line Pj′ by multiplying
Pj′ by a variable w. That is, Pj = wPj′ for some j′ < j. If w ̸= z, then we have that
Rj1 = wRj′1 (similarly for Rj0). If w = z then we have:(

Rj′1
Rj′0

)
=

(
aℓ1 aℓ0

bℓ1 bℓ0

)−1 (
Pj′(a)
Pj′(b)

)
from which we need to derive(

Rj1
Rj0

)
=

(
aℓ1 aℓ0

bℓ1 bℓ0

)−1 (
Pj(a)
Pj(b)

)
=

(
aℓ1 aℓ0

bℓ1 bℓ0

)−1 (
aPj′(a)
bPj′(b)

)
=

(
aℓ1 aℓ0

bℓ1 bℓ0

)−1 (
a 0
0 b

) (
aℓ1 aℓ0

bℓ1 bℓ0

) (
Rj′1
Rj′0

)
.

Thus, Rj1 can be derived as a linear combination of Rj′1 and Rj′0, and similarly for Rj0. ◀

4.5 Proof of Main Theorem
The proof of our lower bound for the tautology F SEL

n,k with extension axioms Ext proceeds
by choosing a variable in the given refutation Π that contributes to a lot of high quadratic
degree pairs of terms in Π. If this variable is Singular, we apply the restriction that sets it to
zero. On the other hand, if it is Nonsingular and therefore an extension variable z, we first
reduce it to depend on a single variable w∗ by applying a restriction chosen from Lemma
22, and then use a more complicated case analysis (see Lemma 30) in order to apply the
Split operation from Lemmas 23 and 25 on z. In both of these cases we are able to remove a
small fraction of high Quadratic degree terms, and thus after sufficiently many iterations we
obtain a refutation of low Quadratic degree. We convert this to a refutation of low (usual)
degree using Lemma 21, and then substitute for the pigeon variables y to select a subset of
equations from Fn,k that require high degree, obtaining a contradiction.

4.5.1 Cleanup operations
In order to get the contradiction at the end of the above argument, we need to ensure that
our process above is always working with a subset of equations of Fn,k that are untouched,
i.e. unaffected by earlier restrictions to variables. We also need to eliminate any partially
assigned pigeons so that we have full choice over the equations we are able to pick at the end.
Additionally, a key requirement of the Split lemmas (Lemmas 23 and 25) is that the variable
z we Split on must not appear in any axioms except for one of the form (z − a)(z − b) = 0,
which indicates that it takes two distinct values. In particular, we cannot set z or the
underlying variable w∗ described above in order to eliminate them from the refutation. This
presents us with a unique requirement: for any choice of a variable w∗ ∈ x ∪ y, we need to
be able to eliminate all axioms containing w∗ without actually setting it. We show how to
perform these operations by making use of the structure of our tautology F SEL

n,k .
We first show how to “ban” an equation Eb1...blog m

from Fn,k by switching to a set of
axioms that prevent any pigeon from being assigned to b1 . . . blog m.

▶ Lemma 26. Let Π be a refutation of F SEL
n,k |ρ for some restriction ρ and let (yi ̸=

b1 . . . blog m) · Eb1...blog m
= 0 be one of its axioms. Then there exists another valid refutation

Π′ with the latter axiom replaced by the axiom (yi ̸= b1 . . . blog m) ≡
∏

bj=1 yi,j

∏
bj=0 yi,j,

such that the quadratic degree of Π′ is at most that of Π.

R. Impagliazzo, S. Mouli, and T. Pitassi 7:17

Proof. Note that the axiom (yi ̸= b1 . . . blog m) ·Eb1...blog m
= 0 can be derived from the axiom

(yi ̸= b1 . . . blog m) ≡
∏

bj=1 yi,j

∏
bj=0 yi,j by multiplying by the polynomial Eb1...blog m

. Since
this derivation involves only singular variables, the degree can never drop and therefore the
quadratic degree of this derivation is at most that of the final polynomial. We construct Π′

as follows. We first derive the former axiom from the latter in Π′. Besides this derivation, Π′

involves the same steps as Π. ◀

▶ Definition 27. An equation Eb1...blog m
is said to be banned when the previous lemma is

applied repeatedly to eliminate all occurrences of it from the axioms.

▶ Definition 28. A clean version of F SEL
n,k is any subset of axioms of F SEL

n,k along with
axioms that ban some subset of equations of the form Eb1...blog m

.

4.5.1.1 Cleanup(ρ)

We now describe how to perform the cleanup operations, which we collectively call
Cleanup(ρ), that takes as input an “unclean” version of F SEL

n,k derived by applying a
restriction ρ to a clean version, and outputs another clean version that is in some sense a
subset of the input. Suppose that we are given a restriction ρ that has been applied to a clean
version of F SEL

n,k , with a variable w∗ ∈ ρ possibly set to ⋆, indicating that it must remain
unset. To eliminate an axiom that has been affected by a x variable in ρ not set to ⋆, we
simply obtain the refutation that bans the corresponding equation Eb1...blog m

as described in
the above lemma. Note that since we are eliminating the axiom without setting any variables
in it, we can also do this in case our variable w∗ ∈ x. Suppose that yij is a y variable in ρ not
set to ⋆. We first note that any axiom that contained yij before the application of ρ contains
all the variables yi1 . . . yi log m corresponding to the ith pigeon yi. We first make sure that this
ith pigeon does not contain our variable w∗ that must remain unset. If it doesn’t, we proceed
as follows. We set all the other variables in this pigeon to select some equation Eb1...blog m

that has not been banned. Such an equation exists provided that the number of banned
equations so far is bounded, and the size of the restriction ρ is also bounded (we formalize
this in the lemma below). We then apply an additional restriction to the x variables that
satisfies this equation Eb1...blog m

picked above. We then ban all the equations affected by
this additional restriction, like we did above for the part of ρ containing x variables. This
eliminates the pigeon yi. We are left with the case where our variable w∗ belongs to some
pigeon yj . We set all the variables in the pigeon yj except for w∗, such that neither of the
two equations Eb1...blog m

and Eb′
1...b′

log m
that would be selected if w∗ is set to zero or one

are banned (again, these exist under the same conditions as above). We then proceed as
before, i.e. apply an additional restriction to satisfy both these equations, and then ban any
other equations that have been affected by this additional restriction. With this we have
eliminated the axioms of pigeon yj which select an equation, but we are still left with the
axioms that prevent yj from colliding with any other pigeon, which are now of the form
w∗ · (yj′ ̸= b1 . . . blog m) and w∗ · (yj′ ̸= b′

1 . . . b′
log m) indicating that any pigeon yj′ distinct

from yj must not be mapped to the equations Eb1...blog m
and Eb′

1...b′
log m

if one of them is
selected by setting w∗ to zero or one. To remove the latter axioms we do something similar
to the process of banning an equation, where we simply replace these axioms by the axioms
(yj′ ̸= b1 . . . blog m) and (yj′ ̸= b′

1 . . . b′
log m), effectively banning the equations Eb1...blog m

and
Eb′

1...b′
log m

for the remaining pigeons.

CCC 2023

7:18 Lower Bounds for Polynomial Calculus with Extension Variables over Finite Fields

4.5.1.2 Correctness of Cleanup(ρ)

We note that the above cleanup operations over y variables terminate successfully only when
there are enough equations that have not been banned by prior calls to cleanup, and also the
size of the restriction ρ is bounded. We make this formal by the below lemma.

▶ Lemma 29 (Correctness of Cleanup(ρ)). Let ρ be a restriction of size κ. If the number of
banned equations (from previous calls to Cleanup) is ≪ m/2κ, then Cleanup(ρ) terminates
correctly. Moreover, it bans at most O(κ) additional equations and removes at most O(κ)
pigeons in its run.

Proof. In Cleanup(ρ), note that we can remove the axioms that contain x variables
unconditionally. When we remove a pigeon yi = yi1 . . . yi log m, we rely on having an equation
it can be set to that is not already banned. Since the size of ρ is bounded by κ, note that at
most κ variables from yi1 . . . yi log m can be set by ρ. Therefore there are at least log m− κ

of them unset, corresponding to selecting m/2κ many equations. Since we assume that the
number of banned equations is much less than this, we can always find one that is not banned
to assign this pigeon to.

We now count the number of new equations banned and the number of pigeons removed
by this call to Cleanup(ρ). Since each x variable appears in a constant number of equations,
the number of equations we ban while processing it is a constant. When we process a y
variable, we pick and satisfy an equation, and ban all other equations affected in the process.
Since every equation also contains a constant number of variables, satisfying it affects only a
constant number of other equations. Therefore, for every variable we process we ban only a
constant number of equations, and thus the total number of equations banned is O(κ). We
remove only those pigeons with a variable in ρ, so this is also bounded by O(κ). ◀

4.5.2 The Main Theorem
We need first the following key lemma that shows how to apply the Split operation to reduce
high quadratic degree terms.

Algorithm 1 Algorithm for Lemma 30.

Input: A refutation Π, and a nonsingular variable z with extension axiom z −Q = 0
satisfying the pre-conditions of Lemma 30

Output: A refutation Π′ satisfying post-conditions of Lemma 30
1 Let ℓ0 < ℓ1 be such that |Hd(Π, z, ℓ0, ℓ1)| ≥ |Hd(Π, z)|/p2.
2 Apply Lemma 22 with l = ℓ1 − ℓ0 to obtain δ, w∗, a, b satisfying post-conditions of

Lemma 22.
3 Π = Π|δ (and in particular z −Q|δ = z − (b− a)w∗ − a)
4 Cleanup(δ ∪ {w∗ = ⋆}) (Cleanup axioms affected by δ and remove w∗ from all

axioms other than z − (b− a)w∗ − a while keeping it alive.)
5 if w∗ contributes to ≥ ϵ/4p2 fraction of pairs in Hd(Π) then
6 Π = Π|w∗=0
7 end
8 else
9 Apply the substitution (z − a)/(b− a) for w∗ in Π

10 Let Π′ = Splitz,l0,l1(Π)
11 end

R. Impagliazzo, S. Mouli, and T. Pitassi 7:19

▶ Lemma 30. Let F be a system of unsatisfiable polynomials and let z be a nonsingular
extension variable with the extension axiom z −Q. Let ℓ = ℓ(supp(Q)) so that zℓ = c holds
for some c ∈ Fp. Let Π be a refutation of F ∪{z−Q} modulo zℓ = c such that for at least an
ϵ fraction of pairs (t1, t2) in Hd(Π), Qdeg(t1, t2, z) = 1, for some d ≥ 0. Then there exists a
refutation Π′ of F such that |Hd(Π′)| ≤ (1− ϵ/4p2)|Hd(Π)|

Proof. We will apply a procedure as described by Algorithm 1 in order to modify the proof
to satisfy the post-conditions of the Lemma. Here we give a detailed description of the
algorithm, together with its correctness. Let Hd(Π, z) be the set of all unordered pairs
(t1, t2) ∈ Hd(Π) that z contributes to. That is, Hd(Π, z) is the set of all unordered pairs
(t1, t2) ∈ Hd(Π) such that Qdeg(t1, t2, z) = 1. There are many different ways that z can
contribute to Hd(Π, z): namely, for all i, j such that i < j < ℓ, let Hd(Π, z, i, j) be the set of
all unordered pairs (t1, t2) ∈ Hd(Π, z), such that the degree of z in t1 is i and the degree of z

in t2 is j. Note that for any two pairs (i, j) and (i′, j′) such that i ≠ i′ or j ̸= j′, Hd(Π, z, i, j)
and Hd(Π, z, i′, j′) are disjoint. Therefore, there exists a “good” pair ℓ0 < ℓ1 < ℓ such that
removing Hd(Π, z, ℓ1, ℓ0) from Hd(Π, z) will remove at least a 1/p2 fraction of Hd(Π, z) and
therefore a ϵ/p2 fraction of pairs in Hd(Π), since |Hd(Π, z)| ≥ ϵ|Hd(Π)|.

We want to apply the Split operation Splitz,ℓ0,ℓ1 to remove all such pairs. But in
order to do this we have to satisfy the preconditions of Lemmas 23 and 25: we need two
values a, b such that aℓ1−ℓ0 ≠ bℓ1−ℓ0 and all the axioms should be free of z except for
(z − a)(z − b) = 0. The first step (Line 2 of 1) is to apply Lemma 22 with l = ℓ1 − ℓ0. This
gives us w∗ ∈ vars(Q), a, b ∈ supp(Q) and a partial restriction δ to vars(Q)− w∗ such that
(z −Q)|δ = z − (b− a)w∗ − a, where aℓ1−ℓ0 ̸= bℓ1−ℓ0 mod p. Next, we apply the restriction
δ to Π (Line 3).

Now we have a simpler linear extension axiom for z of the form z − (b− a)w∗ − a = 0.
Next we would like to make the substitution w∗ = (z − a)/(b− a) in Π in order to satisfy
this extension axiom, towards the goal of eliminating z from the axioms so that we have
the preconditions of Lemma 25 and therefore are able to apply Splitz,ℓ1,ℓ0 . However, if w∗

appears in any of the axioms in F , this would create additional occurrences of z and we
would not make any progress. Therefore, we have to make sure that none of the axioms of F

contain w∗. But we also cannot set w∗ to zero or one in an attempt to get rid of it, since
this would set z to either a or b through the above extension axiom, and Split requires that
z take on two distinct values. We thus have to get rid of all axioms mentioning w∗ either
by setting other variables or by replacing these axioms with stronger versions, such that
the former can be derived from the latter. This is what the subroutine Cleanup does, in
addition to removing the axioms in F that were affected by our earlier restriction δ, so that
we have a clean version of F SEL

n,k as defined in the previous section.
We are now ready to make the substitution w∗ = (z− a)/(b− a). Under this substitution,

the Boolean axiom w∗2−w = 0 reduces to (z−a)(z−b) = 0, and the original extension axiom
for z disappears (since under this substitution it becomes 0 = 0.) Thus this substitution
would satisfy all of the preconditions of Lemmas 23, 25. However, this substitution can create
a new problem: it can cause a blow up in the size of Hd(Π) since for every pair of terms
(t1, t2) such that one of them contains w∗, we could have up to four new terms after the
substitution. In order to deal with this potential blow up we do a simple case analysis: If w∗

contributes to at least an ϵ/4p2 fraction of pairs (t1, t2) in Hd(Π), then we set w∗ = 0 (Lines
4-5). This gives us the required reduction in the size of Hd(Π) (z is also set to a constant
by setting w∗ = 0, but we don’t care about that since we have obtained a reduction in high
Quadratic degree terms without needing to use Split). Otherwise, the blowup caused by
the substitution w∗ = (z − a)/(b− a) adds at most 3ϵ/4p2 fraction of pairs to Hd(Π), and

CCC 2023

7:20 Lower Bounds for Polynomial Calculus with Extension Variables over Finite Fields

thus if we remove all pairs in Hd(Π, z, ℓ0, ℓ1) (after this blowup) then overall we will will
have reduced the size of Hd(Π) to (1− ϵ/4p2)|Hd(Π)|. So in this latter case, we apply the
substitution mentioned above (Line 8) which simultaneously removes w∗ from all axioms,
and replaces the linear axiom for z by (z− a)(z− b) = 0. Now all preconditions for Lemma 8
hold so we can apply Splitz,ℓ0,ℓ1 (Line 9) to get a valid refutation. It is left to argue that this
indeed removes the set Hd(Π, z, ℓ1, ℓ0). More precisely, we argue that high Quadratic degree
pairs of terms in the refutation obtained after applying Split have a one to one mapping to
the set Hd(Π) − Hd(Π, z, ℓ1, ℓ0). Fix a line P ∈ Π. Since we are working modulo zℓ = c,
we can assume that P = P0 + zP1 + . . . zℓ−1Pℓ−1. Let R = zℓ0R0 + zℓ1R1 be the unique
polynomial equivalent to P mod (z − a)(z − b). Splitz,ℓ0,ℓ1(Π) is the refutation with lines
R1, R0 for all P ∈ Π. By the proof of Lemma 23 R0, R1 have the form:

R1 = Pℓ1 +
∑

i<ℓ,i ̸=ℓ0

c1iPi

R0 = Pℓ0 +
∑

i<ℓ,i ̸=ℓ1

c0iPi

for some constants c1i, c0i ∈ Fp.
For a pair of terms (ti, tj) in R1 such that ti ∈ Pi and tj ∈ Pj and Qdeg(ti, tj) ≥ d,

we map it to the pair (tiz
i, tjzj) ∈ P , and similarly for R0. Clearly this is a one-one

mapping, and since Pℓ0 does not occur in R1 and Pℓ1 does not occur in R0, it is a mapping
to Hd(Π) −Hd(Π, z, ℓ1, ℓ0). Therefore we have that for the refutation Π′ = Splitz,ℓ0,ℓ1(Π)
whose lines are {R1, R0}, |Hd(Π′)| ≤ |Hd(Π)−Hd(Π, z, ℓ1, ℓ0)| ≤ (1− ϵ/4p2)|Hd(Π)|. ◀

▶ Theorem 31. For n sufficiently large, any (M, κ)-PC + Ext refutation of F SEL
n,k has size

exp
(Ω(n2)

10κ(M+n log n)
)
.

Proof. Let Π be an alleged (M, κ)-PC + Ext refutation of F SEL
n,k with logarithm of its size

less than γn2/(10κ(M + n log n)), for a small enough constant γ. Given Π, Algorithm 2
(defined below) will apply a sequence of restrictions and cleanup steps in order to produce
a refutation Π′ of a clean version of F SEL

n,k (see Definition 29) with the property that the
Quadratic degree of Π′ is at most d = νn/κ for a small enough constant ν > 0. The algorithm
contains a while loop which iteratively removes all pairs of terms of high Quadratic degree.
From Π′, we will apply a further restriction to all of the remaining unset y-variables (i.e.
pigeons that select equations from Fn,k), to extract a refutation of a subset of m′ equations
from Fn,k of low degree, contradicting the degree lower bound given in Lemma 35. Recall
that Fn,k is defined over variables x and we pick a subset of these equations by matching
pigeons yi to equations in Fn,k through a complete bipartite graph.

The algorithm first initializes a few things. Set d = νn/κ for a small enough constant
ν > 0. Let M ′ = M + n log n, which upper bounds the total number of variables occurring
in the refutation. Let S be the set of all variables that are Singular w.r.t. the current set
of extension axioms. We initialize S to be the set of all variables x ∪ y ∪ z since this is the
largest possible set we will be dealing with; this will be updated at every iteration of the
while loop, although we note that it can only reduce as we apply restrictions. Henceforth
when we refer to Quadratic degree, we mean QdegS . Finally, we initialize H to be the set of
all pairs of terms in Π with Quadratic degree greater than d.

In the while loop, we first update the set S by checking which of the extension variables
z have zero in their support according to their current extension axioms, and deleting those
that don’t. For each extension variable z that we delete from S, we reduce the refutation Π

R. Impagliazzo, S. Mouli, and T. Pitassi 7:21

Algorithm 2 Eliminating high Quadratic degree terms from the proof.

Input: A refutation Π of F SEL
n,k with extension axioms Ext

Output: A refutation Π′ with Quadratic degree less than d

1 d← νn/κ, where ν is a sufficiently small constant.
2 M ′ ←M + n log(n). (M ′ upper bounds |x ∪ y ∪ z|, the total number of variables)
3 S ← x ∪ y ∪ z (the current set of singular variables: all Boolean variables are

singular by default and we initialize all extension variables to also be singular. This
could possibly reduce in each iteration.)

4 H ← {(t1, t2) | t1, t2 ∈ Π and QdegS(t1, t2) ≥ d} (the set of all pairs of terms of
large Quadratic degree according to S)

5 while H is non empty do
6 for every extension axiom z −Q ∈ Ext do
7 if 0 ̸∈ supp(Q) then
8 S ← S − {z}
9 Compute c such that zℓ(z) = c and reduce Π by the latter identity

10 end
11 end
12 H ← {(t1, t2) | t1, t2 ∈ Π and QdegS(t1, t2) ≥ d} (update H to reflect changes

due to the above for loop)
13 Pick a variable w that, by an averaging argument, occurs in at least an ϵ fraction

of terms in H, where we choose ϵ = d/M ′.
14 if w ∈ S then
15 Let σ be a restriction on x ∪ y such that w|σ = 0
16 Π← Π|σ
17 Cleanup(σ)
18 end
19 else
20 Apply Algorithm 1, which by Lemma 30 satisfies the post-conditions of

Lemma 30
21 end
22 end

by zℓ(z) = c. Such an identity exists and is derivable by Lemma 13, and does not increase the
size of H by Lemma 20. Once we have updated S, we recompute the set of high Quadratic
degree pairs H with respect to the updated set S. This also does not increase the size of
H, by Lemma 16. We then pick a variable w that contributes to the Quadratic degree of at
least a d/M ′ fraction of pairs in H by averaging.

There are two cases depending on whether w ∈ S or not. In the first case (lines 14-18), w

is Singular so we apply the restriction σ such that w|σ = 0 and call Cleanup(σ) to restore to
a clean version of our tautology. This eliminates the contribution to high Quadratic degree
from terms containing w, and hence obtains a (1 − d/M ′)-factor reduction in the size of
H. In the second case (lines 19-34), w is Nonsingular so we apply Algorithm 1, which uses
the Split operation non-trivially to reduce the size of H. Lemma 30 proves correctness of
the algorithm, and thus upon termination of one call to Algorithm 1, we have obtained a
(1− d/(4p2M ′))-factor reduction in the number of high Quadratic degree terms.

Repeating the above for − log |H|/ log(1− d/4p2M ′) ≈ 4p2M ′ log |H|/d ≤ O(γ)κn/10κ

iterations, we eliminate all terms in H from the proof and thus obtain a refutation of
Quadratic degree less than d. Since we call Cleanup once per iteration, and in each call it

CCC 2023

7:22 Lower Bounds for Polynomial Calculus with Extension Variables over Finite Fields

bans at most O(κ) many equations and removes at most O(κ) many pigeons (by Lemma 29),
we have banned at most O(γ)κ2n/10κ equations and removed at most those many pigeons
in total. Therefore, we always satisfy the invariant that the number of banned equations is
much less than m/2κ (where m = 10n), satisfying the required conditions for correctness of
Cleanup from Lemma 29.

Let Π′ denote the modified proof upon termination of Algorithm 2. Note that out of
the m′ = (1− ϵ)m pigeons, there are at least a 1−O(γ) fraction of pigeons still alive (i.e.
not removed by Cleanup) and a 1 − O(γ) fraction of the m equations not banned. We
now substitute for the remaining pigeons y so that we select a subset of at least (1− 2ϵ)m
unsatisfiable equations from Fn,k that are not banned and obtain a refutation of them of
Quadratic degree at most d (assuming γ is small enough). By Lemma 21, we can obtain a
refutation of these equations of degree at most 3pd. Now, for all surviving extension variables
we substitute them with their definitions in terms of the variables x. Note that since each
extension variable is a degree κ polynomial this raises the degree to at most 3κpd. Since
d = νn/κ, for sufficiently small ν we end up with a refutation of (1− 2ϵ) equations from Fn,k

of degree less than c2n, contradicting Lemma 35. ◀

References
1 Michael Alekhnovich and Alexander A. Razborov. Lower bounds for polynomial calculus:

Non-binomial case. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 190–199. IEEE Computer Society,
2001. doi:10.1109/SFCS.2001.959893.

2 Yaroslav Alekseev. A lower bound for polynomial calculus with extension rule. In Valentine
Kabanets, editor, 36th Computational Complexity Conference, CCC 2021, July 20-23, 2021,
Toronto, Ontario, Canada (Virtual Conference), volume 200 of LIPIcs, pages 21:1–21:18.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CCC.2021.21.

3 Robert Andrews and Michael A. Forbes. Ideals, determinants, and straightening: Proving and
using lower bounds for polynomial ideals. CoRR, abs/2112.00792, 2021. arXiv:2112.00792.

4 Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák. Lower
bounds on hilbert’s nullstellensatz and propositional proofs. Proceedings of the London
Mathematical Society, 3(1):1–26, 1996.

5 Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. The efficiency of resolution
and davis–putnam procedures. SIAM Journal on Computing, 31(4):1048–1075, 2002.

6 Eli Ben-Sasson and Russell Impagliazzo. Random cnfs are hard for the polynomial calculus. In
40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pages
415–421. IEEE, 1999.

7 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow – Resolution made simple. In
Proceedings of the thirty-first annual ACM symposium on Theory of computing, pages 517–526,
1999.

8 Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear gaps between
degrees for the polynomial calculus modulo distinct primes. Journal of Computer and System
Sciences, 62(2):267–289, 2001.

9 Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the ACM
(JACM), 35(4):759–768, 1988.

10 Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the groebner basis algorithm
to find proofs of unsatisfiability. In Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, pages 174–183, 1996.

11 Stephen A Cook and Robert A Reckhow. The relative efficiency of propositional proof systems.
The journal of symbolic logic, 44(1):36–50, 1979.

https://doi.org/10.1109/SFCS.2001.959893
https://doi.org/10.4230/LIPIcs.CCC.2021.21
https://arxiv.org/abs/2112.00792

R. Impagliazzo, S. Mouli, and T. Pitassi 7:23

12 Stefan S. Dantchev and Søren Riis. On relativisation and complexity gap. In Matthias Baaz
and Johann A. Makowsky, editors, Computer Science Logic, 17th International Workshop,
CSL 2003, 12th Annual Conference of the EACSL, and 8th Kurt Gödel Colloquium, KGC
2003, Vienna, Austria, August 25-30, 2003, Proceedings, volume 2803 of Lecture Notes in
Computer Science, pages 142–154. Springer, 2003. doi:10.1007/978-3-540-45220-1_14.

13 Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. Proof complexity
lower bounds from algebraic circuit complexity. Theory Comput., 17:1–88, 2021. URL:
https://theoryofcomputing.org/articles/v017a010/.

14 Nashlen Govindasamy, Tuomas Hakoniemi, and Iddo Tzameret. Simple hard instances for
low-depth algebraic proofs. In 63rd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2022, Denver, CO, USA, October 31 – November 3, 2022, pages 188–199.
IEEE, 2022.

15 Armin Haken. The intractability of resolution. Theoretical computer science, 39:297–308, 1985.
16 Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi. The surprising power of constant

depth algebraic proofs. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 591–603, 2020.

17 Russell Impagliazzo, Pavel Pudlák, and Jirí Sgall. Lower bounds for the polynomial calculus
and the gröbner basis algorithm. Comput. Complex., 8(2):127–144, 1999. doi:10.1007/
s000370050024.

18 Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Math. notes of the Academy of Sciences of the USSR, 41(4):333–338,
1987.

19 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 77–82, 1987.

20 Dmitry Sokolov. (semi) algebraic proofs over {±1} variables. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, pages 78–90, 2020.

A Appendix

We will prove Theorem 9, which we state again here for convenience.

▶ Theorem 32 (Theorem 9). Let m = 10n. Then there exists constants k > 0, 0 < ϵ < 1 such
that for sufficiently large n, there exists k-CSP formulas {Fn,k} with m k-local constraints
such that for m′ = (1− ϵ)m, every subset of m′ constraints is unsatisfiable and requires linear
degree PC refutations.

First we’ll show that a random regular bipartite graph has good boundary expansion.
This has been used implicitly in other works ([9], [5]), but for completeness we state and
prove it here. Let G = (L, R, E) be a bipartite graph, and let A ⊆ R. The boundary for A,
∂(A), is the set of vertices x in L so that |N(x)∩A| = 1, i.e., vertices with a unique neighbor
in A. A bipartite graph is (d, k) regular if every vertex in L has degree d and every vertex in
R has degree k. In this case, for n = |L|, m = |R|, we have dn = km.

▶ Theorem 33. Let d, k, n, m be positive integers with dn = km, k ≥ 12 . Then with high
probability for a random (d, k) regular bipartite graph with |L| = n, |R| = m, for all A ⊂ R ,
|A| < n/(e6k2), we have ∂(A) ≥ k|A|/2 .

Proof. Let N(A) be all the neighbors of A. Since the total degrees of vertices in A is k|A|, and
each element of N(A)−∂(A) is contingent on two such edges, k|A| ≥ 2(|N(A)|−|∂(A)|)+|∂(A),
or ∂(A) ≥ 2|N(A)| − k|A|. We will show that with high probability for all such A, |N(A)| >
3k|A|/4, and hence ∂(A) ≥ k|A|/2.

CCC 2023

https://doi.org/10.1007/978-3-540-45220-1_14
https://theoryofcomputing.org/articles/v017a010/
https://doi.org/10.1007/s000370050024
https://doi.org/10.1007/s000370050024

7:24 Lower Bounds for Polynomial Calculus with Extension Variables over Finite Fields

If not, there are sets A ⊂ R and B ⊂ L so that N(A) ⊆ B and |B| = 3k|A|/4. We will
bound the probability that this is true for fixed sets A, B and then take a union bound. We
can view picking a random (d, k) bipartite graph as picking a random matching between d

half-edges adjacent to each x ∈ L and k such half-edges adjacent to each y ∈ R; if a half
edge for x is matched to a half-edge for y, it forms an edge between x and y.

We can form this matching by going through the half edges for nodes in R and for each
randomly selecting an unmatched half-edge for some node in L. We start with the edges
for A in an arbitrary order. If we condition on all previous neighbors for A being in B, the
number of half-edges left still available for B is less than d|B|, whereas the number for B

stays at exactly d(n− |B|). Thus, the conditional probability that the next edge formed is
also in B is at most |B|/n, and we do this for each of k|A| edges, meaning the probability
that all neighbors are in B is at most (|B|/n)k|A|.

Now, for a fixed |A| and setting |B| = 3k|A|/4, we take the union bound over all subsets
A and B. This gives a total probability of failure for some set A of size a as :(

m

a

)(
n

3ka/4

)
(3ka/4n)ka

≤ (em/a)a(4en/3ka)3ka/4(3ka/4n)ka

≤ (em/a)a(e3ka/n)ka/4 = (ekn/da)a(e3ka/n)ka/4 = (e3k/4+1ak/4−1kk/4+1/dnk/4−1)a

Since we are assuming a < n/(e6k2), the base in the above expression is at most

e3k/4+1(n/e6k2)k/4−1kk/4+1/dnk/4−1

= e7−3k/4k3−k/4/d

which for k ≥ 12 is bounded below e−2, meaning the probability of such a bad set existing is
exponentially small in a, and the probability of such a bad set existing for any a is less than
1/2. ◀

▶ Definition 34. For a Boolean vector X = {x1, . . . , xn}, we define Ln,m,k1,k(X) to be the
distribution over k-CSP formulas over n variables X = {x1, . . . , xn} obtained by selecting
m parity equations, where each parity is represented by a node on the right of a randomly
chosen bipartite graph G(L, R, E), with |L| = n, |R| = m, and with left degree bounded by k1
and right degree bounded by k.

▶ Lemma 35. Let Fn,k be a tautology given by the system of parity equations AX = b over
variables X = {x1, . . . , xn} drawn at random from Ln,m,k1,k where m = 10n, for large enough
constants k1, k > 0, and b is chosen randomly. Then the following hold with high probability
for a small enough ϵ > 0:
a) Any subset of a (1− ϵ)-fraction of the equations in Fn,k is unsatisfiable
b) Any subset of a (1− ϵ)-fraction of the equations in Fn,k requires PC degree c2(n) to refute,

for some c2 > 0.

Proof.
a) The probability that a set of (1− ϵ)10n random parities (i.e. for a random choice of b) is

satisfiable is at most 2−9n for a small enough ϵ. The probability that any such subset of
Fn,k is satisfiable is therefore at most 2(−n(9−10H(ϵ))), which is exponentially small for a
small enough ϵ (where H(ϵ) is the binary entropy function).

b) This follows directly from [1], Theorem 3.8 and Theorem 4.4, since by Theorem 33 the
bipartite graph underlying the system of parity equations A has good boundary expansion
with high probability. ◀

Spectral Expanding Expanders
Gil Cohen #

Department of computer science, Tel Aviv University, Israel

Itay Cohen #

Department of computer science, Tel Aviv University, Israel

Abstract
Dinitz, Schapira, and Valadarsky [5] introduced the intriguing notion of expanding expanders –
a family of expander graphs with the property that every two consecutive graphs in the family
differ only on a small number of edges. Such a family allows one to add and remove vertices with
only few edge updates, making them useful in dynamic settings such as for datacenter network
topologies and for the design of distributed algorithms for self-healing expanders. [5] constructed
explicit expanding-expanders based on the Bilu-Linial construction of spectral expanders [3]. The
construction of expanding expanders, however, ends up being of edge expanders, thus, an open
problem raised by [5] is to construct spectral expanding expanders (SEE).

In this work, we resolve this question by constructing SEE with spectral expansion which, like [3],
is optimal up to a poly-logarithmic factor, and the number of edge updates is optimal up to a
constant. We further give a simple proof for the existence of SEE that are close to Ramanujan up to
a small additive term. As in [5], our construction is based on interpolating between a graph and its
lift. However, to establish spectral expansion, we carefully weigh the interpolated graphs, dubbed
partial lifts, in a way that enables us to conduct a delicate analysis of their spectrum. In particular,
at a crucial point in the analysis, we consider the eigenvectors structure of the partial lifts.

2012 ACM Subject Classification Theory of computation → Expander graphs and randomness
extractors; Theory of computation → Random walks and Markov chains

Keywords and phrases Expanders, Normalized Random Walk, Spectral Analysis

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.8

Related Version Full Version: https://eccc.weizmann.ac.il/report/2022/154/

Funding Gil Cohen: Supported by ERC starting grant 949499 and by the Israel Science Foundation
grant 1569/18.
Itay Cohen: Supported by ERC starting grant 949499.

1 Introduction

Expander graphs are among the most useful combinatorial objects in theoretical computer
science, and in computer science in general. In theory, expanders proved to be pivotal in
many groundbreaking results (e.g., [22, 1, 10, 6, 17, 19, 7, 4]). Informally, expanders are
sparse undirected graphs that have many desirable pseudorandom properties.

There are several ways of defining the expansion of a graph. Taking the combinatorial
perspective, one thinks of the edge- or vertex-expansion, whereas from the spectral point of
view, the spectral expansion is considered. The latter coincides with the Markovian point
of view as it captures the rate at which random walks converge. If one is willing to absorb
some deterioration in parameters, it is possible to move from one definition to the next, and
so in the non-extreme regime of parameters, and only there, the different definitions are, in a
sense, equivalent. This work concerns with spectral expansion and so we recall the definition
right away. For the formal definition of other notions of expansion, and for the relations
between them, we refer the reader to the wonderful texts [9, 21, 20, 18].

© Gil Cohen and Itay Cohen;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 8; pp. 8:1–8:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gil@tauex.tau.ac.il
mailto:itay3@mail.tau.ac.il
https://doi.org/10.4230/LIPIcs.CCC.2023.8
https://eccc.weizmann.ac.il/report/2022/154/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Spectral Expanding Expanders

Let G be an undirected graph with adjacency matrix A. Since A is symmetric it has n

real eigenvalues which we denote by λ1 ≥ · · · ≥ λn. The spectral expansion1 of G is defined
by λ(G) ≜ max(λ2, |λn|). As mentioned, the reason λ(G) is of interest is mostly due to
the fact that it captures the rate of converges of random walks on regular graphs. Indeed,
for d-regular graphs the adjacency matrix is a simple normalization of the random walk
matrix, W = 1

d A. For many applications in theoretical computer science, and in particular
in a typical work on expander graphs, restricting to regular graphs is a nonissue, and so
the spectrum of the adjacency matrix is studied instead of that of the random walk matrix.
For arbitrary undirected graphs, as those we will work with 2, the random walk matrix can
be written as W = AD−1, where D is the diagonal matrix that encodes the degrees of
the vertices of G. Since W is similar to the symmetric matrix D− 1

2 AD− 1
2 , its eigenvalues

are real, denoted λ̄1 ≥ · · · ≥ λ̄n. The parameter of interest, which determines the rate of
converges, is then the normalized spectral expansion, defined by λ̄(G) = max(λ̄2, |λ̄n|).

Typically, when working with expanders one cares not about one graph but rather about
an infinite family of graphs G = (Gn)n∈I where, for each n ∈ I, Gn is an undirected graph
on n vertices. It is typically assumed that all graphs in the family have bounded degree d

and, naturally, the denser I is in N, the better. We denote λ(G) = supn λ(Gn) and similarly
for the normalized quantity λ̄(G) = supn λ̄(Gn). For most applications, one requires the
expander family G to be explicit which, in this work, means that given n ∈ I, the graph Gn

can be generated in poly(n)-time.

1.1 Expanding expanders
Dinitz, Schapira and Valadarsky [5] introduced a natural and intriguing aspect of families of
expander graphs, which, informally captures the extent to which the family is “continuous”.
Formally, let G = (Gn = (Vn, En))n∈I be a family of expander graphs. Dinitz et al. considered
the expansion cost c(G) which is the number of edges one must add or remove, from any
graph in the family so as to obtain the next. If we denote the least element in I that is
larger than n by nextI(n), then the expansion cost can be written as

c(G) ≜ max
n∈I

∣∣En △ EnextI(n)
∣∣

if this maximum exists and ∞ otherwise.
Clearly, high δ(G) ≜ maxn∈I (nextI(n) − n) implies high expansion cost. Typically, we

will think of I as a very dense set in N, in particular, δ(G) will be bounded by some small
universal constant (independent of the degree). Dinitz, Schapira and Valadarsky initiated
the study of families of expander graphs with bounded expansion cost c(G) < ∞. As noted
by [5], for d-regular expanders, c(G) ≥ 3d

2 and so the authors asked whether there is an
infinite family of expanders whose expansion cost is bounded by some constant c = c(d).

With such a family at hand, one can add and remove vertices with low cost in terms
of edge updates while maintaining expansion. This stands in contrast to, say, a randomly
sampled family in which the difference between expanders of consecutive size is linear in
the number of vertices and, in particular, is unbounded. The motivation of [5] for studying
such families, dubbed expanding expanders, originated from datacenter network topologies.

1 There is some harmless inconsistency in the literature regarding the definition of spectral expansion.
Some sources refer to d − λ(G) as the spectral expansion. Others consider 1 − 1

d λ(G). In some cases, it
is only λ2 that is considered.

2 As we prove in the full version of the paper, in our setting, one must resort to the use of irregular graphs.

G. Cohen and I. Cohen 8:3

The different servers of a datacenters correspond to the vertices of a graph and the edges
represent the wires connecting the servers. The degrees being bounded implies low cost in
wiring, and the expansion of the graph is essential for avoiding traffic routed ineffectively.
As datacenters grow regularly, low expansion cost translates to a low overhead in rewiring
when adding a new server.

As another application, [5] showed how to obtain better distributed algorithms for self-
healing expanders, improving upon a prior work by Pandurangan, Robinson, and Trehan [16].
Informally, self-healing expanders are expanders that can, distributively, fix themselves
when vertices are added or removed. In this setting, the fact that the expander family is
deterministically constructed makes the distributive task significantly simpler as there is no
randomness that is needed to be communicated.

The main result of [5] is an explicit construction of a family of d-regular expanders where
the expansion is with respect to edge-expansion. More concretely, it was shown how to
maintain edge expansion of roughly d

3 while guaranteeing expansion cost of at most 5d
2 .

1.2 Our results
The construction of Dinitz, Schapira, and Valadarsky [5] for edge-expanding expanders is
based on the work of Bilu and Linial [3] who analyzed the operation of “lifting” a spectral
expander as a way of obtaining a graph on, say, twice the number of vertices, while maintaining
spectral expansion. The [5] construction goes by way of interpolating between every two
consecutive Bilu-Linial spectral expanders, assuring good edge-expansion.

Dinitz et al. observed that in their interpolation, some of the graphs in the family
are only weak spectral expanders. That is, despite the fact that they are interpolating
between spectral expanders, the construction ends up only having good edge expansion.
Therefore, Dinitz et al. left open the question of whether spectral expanding expanders
can be constructed (or exist for that matter). In this work we answer this question to the
affirmative by constructing spectral expanding expanders via lifting which, spectrally, are
essentially as good as the ones we are interpolating between.

▶ Theorem 1 (Main result). For every integer d ≥ 3 there exists an explicit family of
undirected graphs G such that all vertices of every graph in the family has degree bounded in
[d, 4d]. The expansion cost c(G) = O(d), and the spectral- and normalized-spectral expansions
are given by

λ(G) = O

(√
d log3 d

)
, λ̄(G) = O

√
log3 d

d

 .

We wish to stress that, as our construction is of irregular graphs, hence, a bound on λ(G)
does not imply the bound on the normalized λ̄(G). As it turns out, our proof for the bound
on λ̄(G) is significantly more involved than the proof for the unnormalized λ(G), though the
latter too requires careful analysis. In particular, the bound on λ(G) is used for obtaining
the bound on λ̄(G). The proofs of the two bounds are given in Section 4 and Section 5, and
the straightforward derivation of Theorem 1 is then given in Section 6.

Theorem 1 makes the important tool of random walks on expanders available to applica-
tions that require the dynamical setting offered by expanding expanders.

Before moving on, we remark that the graphs in the family G that is constructed
in Theorem 1 have multiple edges. As for the density of the family, δ(G) = O(1) and
min I = O(d).

CCC 2023

8:4 Spectral Expanding Expanders

1.2.1 Expanding Ramanujan graphs

The bound obtained by Theorem 1 for λ(G), and similarly for the normalized version, is off
by a poly-logarithmic factor from the spectral expansion of a Ramanujan graph, namely,
2
√

d − 1 which is optimal up to a negligible additive term [15]. We leave it as an intriguing
open problem to determine whether expanding Ramanujan graphs exist. It seems to us that
the known algebraic constructions (e.g., [11]) are not adequate for the setting of expanding
expanders. In their seminal work [12, 13, 14] Marcus, Spielman and Srivastava proved the
existence of bipartite Ramanujan graphs. The question of whether expanding bipartite
Ramanujan graphs exists is too an interesting one. It is unclear to us whether the proof
technique of Marcus et al. is suitable in the expanding setting.

In the full version of the paper we give a simple proof for the existence of nearly-
Ramanujan spectral expanding expanders. While our proof does not yield an explicit
construction, the question of whether expanding Ramanujan graphs exist is of interest
already on the combinatorial level.

▶ Theorem 2. For every ϵ > 0 and every even integer d ≥ 6, there exists an infinite family
G of d-regular spectral expanding expanders with expansion cost c(G) ≤ 3d and spectral
expansion λ(G) ≤ 2

√
d − 1 + ε.

1.2.2 On spectral expanding expanders meeting the Ramanujan bound
and the ubiquitous of Ramanujan graphs

We find the question on the existence of expanding Ramanujan graphs, as well as its bipartite
analog, to be interesting also in the context of non-expanding expanders. Indeed, the
existence of a family of expanding Ramanujan graphs would arguably be an indication for an
affirmative answer to the fundamental open problem that asks whether a random d-regular
graph, under a natural distribution, is Ramanujan with positive probability. The reasoning
being that if Ramanujan graphs are sparse among graphs then they should have a certain
underlying structure. That this structure happens to coincide with the structure required by
expanding expanders seems far-fetched.

By the above discussion, proving the existence of spectral expanding expanders that
attain the Ramanujan bound would be an indication for the ubiquitous of Ramanujan graphs.
We remark, as further discussed in the full version of the paper, that for the construction of
regular expanding expanders, as required in the context of Ramanujan graphs, one would
need to employ a different paradigm than ours.

1.3 Organization

In Section 2 we give a proof overview of our results. The reader may freely skip this section
and jump straight to Sections 4–6 in which the formal proof of Theorem 1 is given. The first
section, Section 4, covers the bulk of the proof for the unnormalized case, Section 5 handles
the normalized case, and in Section 6 we derive the proof of Theorem 1. Theorem 2 is proved
in the full version of the paper. In the full version of the paper we further discuss the extent
to which irregular graphs are necessary for constructing spectral expanding expanders. We
prove that within a fairly general framework for constructing spectral expanding expanders,
regularity must be abandoned.

G. Cohen and I. Cohen 8:5

2 Proof Overview

In this section, we give a brief account on some of the ideas that go into the proof of
Theorem 1. As mentioned, bounding λ(G) is simpler than (and used by) the proof for the
bound on λ̄(G). Therefore, we start by discussing the unnormalized spectral expansion. In
any case, both proofs are based on the well-known notion of a lift of a graph, as well as on our
extension of this notion we dub partial lifts. These are covered in Section 2.1 and Section 2.2,
respectively. A more extensive treatment of lifts can be found in [2] and references therein.

2.1 Lifts

For an integer k ≥ 2, a k-lift of an undirected graph G = (V, E) is an undirected graph Ĝ on
the vertex set [k] × V where each edge {u, v} ∈ E induces k edges in Ĝ that form a perfect
matching between the vertices [k] × {u} and [k] × {v}. The set [k] × {v} is called the fiber of
v. Thus, a k-lift is determined by a choice of one perfect matching per edge {u, v} ∈ E that
is placed between the fibers of the two endpoints u, v. A slightly more formal treatment of
the notion of a k-lift is given in Section 3.2.

A well-known fact is that the spectrum of G is inherited by that of Ĝ. Bilu and Linial [3]
constructed explicit d-regular expanders by a repeated application of a 2-lift of some base
graph (e.g., the clique on d + 1 vertices). To this end, they proved that every d-regular graph
has a 2-lift whose spectrum contains, on top of the eigenvalues of G, only eigenvalues that
are bounded, in absolute value, by O(

√
d log3 d), thus forming a family of d-regular graphs,

one for each size of the form (d + 1)2k, k ∈ N, having spectral expansion O(
√

d log3 d). Bilu
and Linial further gave an explicit construction based on a suitable derandomization of their
existential proof.

We digress a bit and mention that Bilu and Linial conjectured that every d-regular graph
has a 2-lift all of whose “new” eigenvalues are bounded, in absolute value, by 2

√
d − 1. This

conjecture has been proved by Marcus, Spielman, and Srivastava [12] for the bipartite case.

2.2 Partial lifts

As mentioned, [5] obtained their result by interpolating between every two consecutive 2-lifts,
guaranteeing that every graph between a pair of consecutive 2-lifts is a good edge-expander.
Following [5], to prove Theorem 1, we also interpolate between consecutive lifts. However,
proving spectral expansion require us to use a completely different proof technique. The
underlying idea is to carefully weigh the interpolated graphs in a way that will allow us to
argue about their eigenvectors. We dub these interpolated graphs partial lifts, and turn to
define them.

▶ Definition 3 (Partial lifts). Let G = (V, E) be an undirected simple graph with a k-lift
Ĝ = (V̂ = [k] × V, Ê). Let (B, L) be a partition of V . The L-partial lift of G (with respect
to Ĝ) is defined to be the undirected weighted graph ĜL = (V̂L, ÊL) whose vertex set consists
of the vertices of B and the fibers of the vertices of L, namely, V̂L = B ∪ ([k] × L). The edge
set ÊL is the union of the edges of three sets:
1. The edges of G connecting vertices in B.
2. The edges of Ĝ connecting vertices in L.
3. For every edge {u, v} ∈ E with u ∈ B and v ∈ L, we add an edge of weight 1√

k
between u

and each of the vertices in the fiber of v. The edges from Items (1) and (2) have weight 1.

CCC 2023

8:6 Spectral Expanding Expanders

The slightly more formal definition of a partial lift is given in Definition 5. Informally, we
think of the vertices in B as vertices of the base graph G that are not yet lifted, and of those
in L as the already lifted vertices. The edges from Items (1) and (2) form the corresponding
induced graphs. The set of “hybrid” edges, appearing in Item (3), connect already-lifted and
not-yet-lifted vertices, where the weight assigned to these edges is chosen in hindsight.

Note that ĜL is a simple weighted undirected graph. Moreover, ĜL interpolates between
G and Ĝ in the sense that Ĝ∅ = G and ĜV = Ĝ. Already here we mention that for the proof
of Theorem 1 we will be working with 4-lifts, or with any whole square number k for that
matter, as then the 1√

k
weight can be “simulated” without weights using parallel edges.

Before we proceed, we set some notation. We denote b = |B|, ℓ = |L|, and further denote
the number of vertices of ĜL by m, noting that m = b + kℓ. The number of vertices in
G is denoted n = b + ℓ. We denote the smallest eigenvalue of the adjacency matrix of an
undirected graph H by λmin(H). This will be convenient as the different graphs that we will
be considering (G and ĜL) will be on a different number of vertices.

2.3 Bounding the spectral expansion
Our main result with regards to the bound on the unnormalized spectral expansion is that
for every L-partial lift of G (with respect to Ĝ) it holds that

λmin(Ĝ) ≤ λmin(ĜL) ≤ λ2(ĜL) ≤ λ2(Ĝ). (2.1)

This in particular implies that the spectral expansion of every L-partial lift is as good as the
spectral expansion of the (fully) lifted graph, namely, λ(ĜL) ≤ λ(Ĝ). See Proposition 6 for
the more complete statement.

To prove Equation (2.1), we consider the subspace F ∥ of Rm that consists of all vectors
that are constants on the fibers of the lifted vertices. We denote the orthogonal complement
of F ∥ by F ⊥, noting that it contains all vectors that sum up to zero on the fibers of the
lifted vertices, and that vanish on the unlifted vertices. In the first step of the proof we
characterize the eigenvectors of ĜL that lay inside F ∥. To do so, we order the vertices of ĜL

such that the unlifted vertices, those in B, appear first. With this ordering, consider the
m × n matrix

U =

Ib 0
0 1√

k
Iℓ

...
...

0 1√
k

Iℓ

 .

We prove (see Lemma 8) that Ux is an eigenvector of ĜL if and only if x is an eigenvector
of G. In fact, we weigh the hybrid edges as we did precisely for the purpose of making this
statement true. At any rate, this accounts for n eigenvectors of ĜL, all of which are contained
in F ∥, whose eigenvalues are the same as those of G. In particular, every eigenvalue of G is
an eigenvalue of ĜL with the same, or with higher multiplicity.

Since ĜL is symmetric, its eigenvectors are orthogonal to each other, and so the remaining
eigenvectors of ĜL are contained in F ⊥. While we cannot argue that these correspond to
eigenvectors of Ĝ, as one might have hoped, in the second step of the proof we show that
these correspond to eigenvectors of some principal submatrix M of the adjacency matrix of
Ĝ. This suffices for the purpose of bounding the eigenvalues as one can invoke the eigenvalue
interlacing theorem (Theorem 4).

G. Cohen and I. Cohen 8:7

We stress that not every eigenvector of M induces an eigenvector of ĜL, a fact that is
crucial to the proof. Indeed, the crux of the proof is in showing that some “problematic”
eigenvectors of M do not affect the spectrum of ĜL. Although this is a key part of the proof,
we cannot cover it without delving into more details, and so at this point we refer the reader
to the formal treatment that is given in Section 4.

2.4 Bounding the normalized spectral expansion
Our main result regarding the normalized spectral expansion, which recall determines the
rate of convergence of a random walk, is given by Proposition 11 and essentially states that
assuming k is sufficiently small compared to λ(G), for all L ⊆ V it holds that

λ̄(ĜL) = O(k · λ̄(Ĝ)). (2.2)

We remark that in the normalized case, a stronger statement as in Equation (2.1) does
not hold. Namely, λ2(ĜL) depends on both λ2(Ĝ) and λmin(Ĝ), and similarly for λmin(ĜL).
Moreover, note that, unlike the unnormalized case, here k affects the bound, though the
reader should keep in mind that for our construction of spectral expanding expanders, as
given in Theorem 1, we will anyhow set k to 4. Another technical caveat worth mentioning is
that we can only prove Equation (2.2) for a regular base graph G (which, again, suffices for
the proof of Theorem 1). This is essentially because we need a good handle on an eigenvector
of G that corresponds to its largest eigenvalue.

To discuss our proof strategy we introduce some notation. Let M
ĜL

be the adjacency
matrix of ĜL and W

ĜL
be its random walk matrix. More precisely, if we denote by D

ĜL

the diagonal matrix that encodes the degrees of vertices in ĜL then W
ĜL

= M
ĜL

D−1
ĜL

.
We first note that z = D

ĜL
1 is an eigenvector of W

ĜL
with eigenvalue 1, and so to prove

Equation (2.2) it suffices to bound the Rayleigh quotient, with respect to W
ĜL

, of vectors
orthogonal to z. As F ∥ and F ⊥ are invariant subspaces of W

ĜL
, it suffices to do so for each

of these subspaces separately. In the first step of the proof, we use the result we already
proved for the unnormalized case to deduce that

∀x ∈ F ⊥
xTW

ĜL
x

xTx ≤
√

k · λ̄(Ĝ),

which allows us to turn our focus to F ∥.
To bound the Rayleigh quotient of vectors in F ∥, we characterize the eigenvectors of

W
ĜL

laying in F ∥ by the eigenvectors of another operator. Formally, if MG is the adjacency
matrix of the base graph G then, in Lemma 14, we prove that there exists a diagonal n × n

matrix D such that a vector x ∈ Rn is an eigenvector of MGD−1 if and only if Ux is
an eigenvector of W

ĜL
, and both correspond to the same eigenvalue. We stress that the

matrix D is not the matrix encoding the degrees of G (as indeed it should somehow encode
information about L) but rather it encodes the degree of vertices in the lifted graph, where
from every fiber we take only one representative.

The above leaves us with the task of studying the eigenvalues of the matrix MGD−1

which, as eluded to above, “skews” the degrees of vertices in G according to the partial lift
structure. The crux of the proof, which we will not be able to cover in this high level proof
overview, boils down to bounding the sum of reciprocal of these skewed degrees∑

v∈V

1
Dv,v

(see Lemmas 19 and 20). We refer the reader to Section 5 for the formal treatment.

CCC 2023

8:8 Spectral Expanding Expanders

3 Preliminaries

We start by setting some fairly standard notation from spectral graph theory.

3.1 Spectral graph theory
The adjacency matrix of an undirected graph G = (V, E) is denote by MG. Being real and
symmetric, MG has n = |V | real eigenvalues which we denote by λ1(MG) ≥ · · · ≥ λn(MG).
For i ∈ [n] we define λi(G) = λi(MG), and write λmin(G) for λn(G). We refer to the
eigenvectors of MG as the eigenvectors of G. The spectral expansion of G is given by
λ(G) ≜ max(λ2(G), |λn(G)|).

Let DG be the degrees matrix of G, that is, the matrix that encodes the degrees of vertices
in G (under the same order that they appear in MG). Assuming G has no isolated vertices,
the random walk matrix of G, denoted WG, is defined by WG = MGD−1

G . Note that WG

has n real eigenvalues as it is similar to the symmetric matrix D− 1
2

G MGD− 1
2

G . We denote
these by λ̄1(G) ≥ · · · ≥ λ̄n(G) ≜ λ̄min(G) and refer to them as the normalized eigenvalues of
G. The normalized spectral expansion of G is given by λ̄(G) ≜ max(λ̄2(G), |λ̄n(G)|).

For a family G = (Gn)n∈I of expander graphs, we let λ(G) = supn∈I λ(Gn) if the
maximum exists, and ∞ otherwise, and similarly define λ̄(G) = supn∈I λ̄(Gn).

We make use of the well-known fact that the eigenvalues of a real symmetric matrix
interlace with the eigenvalues of any of its principal submatrices. For a proof see, e.g., [8],
Theorem 9.1.1.

▶ Theorem 4 (Eigenvalue Interlacing Theorem). Let N be a real symmetric n × n matrix and
let M be an m × m principal submatrix of N. Then, for all i ∈ [m],

λi(N) ≥ λi(M) ≥ λn−m+i(N).

3.2 Lifts
In contrast to the introductory part, from here on we define the notion of a lift in a somewhat
more formal way, which is also easier to work with. To this end, we first recall the notion
of graph orientation. Let G = (V, E) be a simple undirected graph. An orientation of G is
an assignment of a direction to each of its edges, resulting with a directed graph which we
denote by G⃗ = (V, E⃗). That is, for every undirected edge {u, v} of G exactly one of (u, v),
(v, u) is included in E⃗.

In what comes next, we consider maps π : E⃗ → Sk where E⃗ is the edge (multi-)set of
some oriented graph G⃗ and, as customary, Sk is the group of permutations on [k]. For ease
of notation, we write πu,v instead of the more cumbersome expression π((u, v)).

Let G = (V, E) be an undirected simple graph on n vertices, G⃗ = (V, E⃗) an orientation of
G, and let π : E⃗ → Sk for some integer k ≥ 1. The π-lift of G⃗ is the graph G⃗π = ([k] × V, Eπ)
where for every (u, v) ∈ E⃗ we include the edges

{(i, u), (πu,v(i), v)} for i = 1, 2, . . . , k

in Eπ. Note that regardless of the choice of orientation (and regardless of the choice of π),
since G is simple so is G⃗π. For v ∈ V , the set of vertices [k] × {v} of G⃗π is called the fiber of
v. For ease of notation, from hereon we write Gπ for G⃗π despite the fact that this graph
depends on the chosen orientation.

G. Cohen and I. Cohen 8:9

We extend the map π : E⃗ → Sk to the set {(v, u) | (u, v) ∈ E⃗} as follows: For (u, v) ∈ E⃗

we set πv,u = π−1
u,v. With this, it is convenient to write down the adjacency matrix of Gπ as

follows. For i, j ∈ [k] define the zero-one n × n matrix Mi,j
G by

(Mi,j
G)u,v = 1 ⇐⇒ {u, v} ∈ E and πu,v(i) = j.

Then, the adjacency matrix MGπ of Gπ is the k × k block matrix, where block (i, j) is given
by the n × n matrix (MGπ

)i,j = Mi,j
G . That is,

MGπ =

M1,1

G M1,2
G · · · M1,k

G

M2,1
G M2,2

G · · · M2,k
G

...
...

. . .
...

Mk,1
G Mk,2

G · · · Mk,k
G

 .

Note that Mi,j
G = (Mj,i

G)T. A well-known fact about lifting is that the spectrum of the base
graph G is contained in the spectrum of the lifted graph Gπ. More precisely, if λ is an
eigenvalue of G with multiplicity r then λ is an eigenvalue of Gπ with multiplicity at least r.
This is easily seen by noting that for every i ∈ [k],

k∑
j=1

Mi,j
G = MG, (3.1)

and so every eigenvector x of MG induces the eigenvector (x, . . . , x) of MGπ with the same
eigenvalue.

4 Bounding the Spectral Expansion

We start this section by introducing the notion of a partial lift and study its properties.
Throughout, we make use of the notation from Section 3.2.

▶ Definition 5. Let G = (V, E) be an undirected simple graph, and let G⃗ = (V, E⃗) be an
orientation of G. Let π : E⃗ → Sk for some k ≥ 1, and let (B, L) be a partition of the
vertices of G. The L-partial π-lift of G⃗ is defined to be the undirected weighted graph
Gπ,L = (Vπ,L, Eπ,L) whose vertex set is Vπ,L = B ∪ ([k] × L). The edge set Eπ,L is the
union of

EB = {{u, v} ∈ E | u, v ∈ B},

EL = {{(i, u), (j, v)} ∈ Eπ | u, v ∈ L} ,

and

EH = {{u, (i, v)} | i ∈ [k] and u ∈ B, v ∈ L s.t. {u, v} ∈ E} ,

with weight of 1√
k

assigned to each edge in EH . The edges in EB , EL have a unit weight
assigned to them.

Note that EB is the set of edges of the B-induced sub-graph of the base graph G, and EL

is the set of edges of the induced graph of Gπ with respect to the fibers of the lifted vertices.
The set Eπ,L contains the “hybrid” edges, connecting already-lifted and not-yet-lifted vertices
where the weight assigned to these edges is chosen with a hindsight.

CCC 2023

8:10 Spectral Expanding Expanders

Note that Gπ,L is a weighted undirected simple graph. Moreover, Gπ,L interpolates
between G and Gπ in the sense that Gπ,∅ = G and Gπ,V = Gπ. Observe that, assuming G is
d-regular, the weighted degree of every vertex in Gπ,L is in the range [d/

√
k,

√
k · d].

The main result of this section is the following proposition, which is the more complete
and formal version of Equation (2.1) from the Proof Overview section.

▶ Proposition 6. Let G = (V, E) be an undirected simple graph with orientation G⃗ = (V, E⃗).
Let π : E⃗ → Sk, and (B, L) a partition of V . Then,

λmin(Gπ) ≤ λmin(Gπ,L) ≤ λ2(Gπ,L) ≤ λ2(Gπ) ≤ λ1(Gπ) = λ1(Gπ,L).

Proof. Note that the non-trivial inequalities and equality, which we set to prove, are

λmin(Gπ) ≤ λmin(Gπ,L), (4.1)
λ2(Gπ,L) ≤ λ2(Gπ), (4.2)

λ1(Gπ) = λ1(Gπ,L). (4.3)

Let MG be the adjacency matrix of G where we order the rows and columns so that
those corresponding to vertices in B appear first, namely,

MG =
(

MB MH

MT
H ML

)
.

Note that MB , ML are the adjacency matrices of the B-induced and L-induced subgraphs
of G, respectively. Observe that the adjacency matrix of Gπ,L is given by

MGπ,L
=

MB

1√
k

MH · · · 1√
k

MH

1√
k

MT
H M1,1

L · · · M1,k
L

...
...

. . .
...

1√
k

MT
H Mk,1

L · · · Mk,k
L

 ,

where Mi,j
L is a slight abuse of notation (recall we defined Mi,j

H for a graph H) and is used
as a shorthand for Mi,j

H , H being the L-induced subgraph of G. Similar to Equation (3.1),
we have

∀i ∈ [k]
k∑

j=1
Mi,j

L = ML. (4.4)

Let n, m be the number of vertices in G and in Gπ,L, respectively. Denote b = |B| , ℓ = |L|,
and note that n = b + ℓ and m = b + kℓ. Define

F ∥ =
{

x ∈ Rm | xb+j = xb+ℓ+j = · · · = xb+(k−1)ℓ+j for j = 1, 2, . . . , ℓ
}

.

Informally, F ∥ is the space of vectors that are constant on the fibers of the lifted vertices,
and are otherwise arbitrary. Let F ⊥ be the dual subspace of F ∥, namely,

F ⊥ =
{

x ∈ Rm | x1 = · · · = xb = 0 and
k−1∑
i=0

xb+iℓ+j = 0 for j = 1, 2, . . . , ℓ

}
.

It is easy to verify, using Equation (4.4), that both F ∥ and F ⊥ are invariant subspaces of
MGπ,L

. Define the matrix U ∈ Rm×n

U =

Ib 0
0 1√

k
Iℓ

...
...

0 1√
k

Iℓ

 . (4.5)

G. Cohen and I. Cohen 8:11

The following claim lists some useful, easy to prove, properties of U.

▷ Claim 7. U satisfies the following properties:
1. Im(U) = F ∥.
2. The right kernel of U is 0.
3. UTU = In.
4. UUT is the orthogonal projection to F ∥.
5. UTMGπ,L

U = MG.
We can now easily characterize all the eigenvectors of Gπ,L laying in F ∥.

▶ Lemma 8. For every x ∈ Rn, x is an eigenvector of G corresponding to an eigenvalue λ

if and only if Ux is an eigenvector of Gπ,L laying in F ∥ and corresponding to λ.

Proof.

MGx = λx ⇐⇒ UTMGπ,L
Ux = λx

⇐⇒ UUTMGπ,L
Ux = λUx

⇐⇒ MGπ,L
Ux = λUx,

where the first implication follows from Item (5) of Claim 7, the second from Item (2), and
the last follows by Items (1) and (4) together with the invariance of F ∥ under MGπ,L

. ◀

To summarize, we have found n eigenvectors of MGπ,L
, all of which are contained in F ∥,

whose eigenvalues correspond to those of MG. In particular, every eigenvalue of MG is an
eigenvalue of MGπ,L

with the same, or higher, multiplicity. Observe that F ∥ is defined by
(k − 1)ℓ linear constraints. Hence, its dimension is exactly n = b + kℓ − (k − 1)ℓ. We conclude
that the characterized eigenvectors are exactly all the eigenvectors of Gπ,L in F ∥.

We proceed to explore the remaining eigenvectors of MGπ,L
. Since MGπ,L

is symmetric,
its eigenvectors are orthogonal to each other, and so the remaining eigenvectors of MGπ,L

are contained in F ⊥. We turn to prove that while we cannot argue that these correspond
to eigenvectors of MGπ

, as one might hope, they will correspond to eigenvectors of some
principal submatrix of MGπ , at which point we can invoke the Eigenvalue Interlacing Theorem
(see Theorem 4) so to bound the corresponding eigenvalues.

Take x ∈ F ⊥ an eigenvector of MGπ,L
with eigenvalue λ. Then, x = (0, z) for some

nonzero z = (z1, . . . , zk) ∈ Rkℓ where
∑k

i=1 zi = 0 ∈ Rℓ. Therefore,

λx = MGπ,L
x =

(
0

Mπ,Lz

)
,

where

Mπ,L =

M1,1
L · · · M1,k

L
...

. . .
...

Mk,1
L · · · Mk,k

L

 .

Hence, z is an eigenvector of Mπ,L. That is, all eigenvectors of MGπ,L
that are contained in

F ⊥ correspond to eigenvectors of Mπ,L.
We stress that not every eigenvector of Mπ,L induces an eigenvector of MGπ,L

, a fact
that will be crucial in what follows. Indeed, the eigenvectors of MGπ,L

coming from F ⊥ have
the special structure described above of being orthogonal to 1 on each fiber. This can also
be seen by a dimension argument, noting that Mπ,L has kℓ eigenvectors, and together with
the n eigenvectors that are induced from MG these amount to kℓ + n eigenvectors. However,
MGπ,L

is a matrix of order (kℓ + b) × (kℓ + b), and so n − b = ℓ eigenvectors of Mπ,L do
not induce eigenvectors of MGπ,L

. At any rate, for convenience, we summarize the analysis
so far.

CCC 2023

8:12 Spectral Expanding Expanders

▷ Claim 9. The spectrum of MGπ,L
consists of the spectrum of MG with corresponding

eigenvectors in F ∥ as well as of a subset of the spectrum of Mπ,L with corresponding
eigenvectors in F ⊥, where we remind the reader that we consider the spectrum as a multi-set
so to track multiplicities correctly.

Note that Mπ,L is a principal submatrix of MGπ
and so, by the Eigenvalue Interlacing

Theorem (Theorem 4),

λmin(Gπ) ≤ λmin(Mπ,L) ≤ λ2(Mπ,L) ≤ λ2(Gπ). (4.6)

Further, recall that the spectrum of Gπ contains that of G, in particular,

λmin(Gπ) ≤ λmin(G) ≤ λ2(G) ≤ λ2(Gπ). (4.7)

By putting together Claim 9, Equation (4.6) and Equation (4.7), we establish Equation (4.1).
For proving Equation (4.2) we are left to prove that an eigenvector x ∈ F ⊥ of Gπ,L cannot
correspond to an eigenvalue λ > λ2(Mπ,L). To this end, let x = (0, z) ∈ F ⊥ be an eigenvector
of Gπ,L. Recall that for every j ∈ [ℓ],

k−1∑
i=0

zb+iℓ+j = 0. (4.8)

Assume for contradiction that x is an eigenvector of Gπ,L corresponding to an eigenvalue
λ > λ2(Mπ,L). Then, by the above discussion, z is an eigenvector of Mπ,L with eigenvalue
λ > λ2(Mπ,L), meaning λ = λ1(Mπ,L). As the vector corresponding the largest eigenvalue,
z maximizes the Rayleigh quotient, we have that

λ1(Mπ,L) = zTMπ,Lz
zTz = max

w̸=0

wTMπ,Lw
wTw .

Note, however, that the vector |z|, which is obtained by taking the absolute value of every
entry of z, satisfies

|z|TMπ,L|z|
|z|T|z|

≥ zTMπ,Lz
zTz , (4.9)

and so, as a maximizer of the Rayleigh quotient, |z| is also an eigenvector with eigenvalue
λ1(Mπ,L). However, by Equation (4.8), z and |z| are linearly independent. Indeed, there
is a fiber on which z attains both a positive and negative entries. Hence, we have found
two independent vectors corresponding to λ1(Mπ,L), implying λ1(Mπ,L) = λ2(Mπ,L). This
stands in contradiction to λ1(Mπ,L) = λ > λ2(Mπ,L). Putting this result together with
Claim 9, Equation (4.6) and Equation (4.7) completes the proof of Equation (4.2). To prove
Equation (4.3), we will use a general result on graph lifts.

▶ Lemma 10. Let G = (V, E) be an undirected simple graph with orientation G⃗ = (V, E⃗).
Let π : E⃗ → Sk. Then, λ1(G) = λ1(Gπ).

Proof. By invoking Lemma 8 to Gπ = Gπ,V , we get that λ1(G) is an eigenvalue of Gπ,
which implies λ1(G) ≤ λ1(Gπ). Proving λ1(Gπ) ≤ λ1(G) will thus finish the proof. For any
vector x on the vertices of Gπ, take the vector y(x) = y on the vertices of G defined by
yv =

√∑k
i=1 x2

i,v. Now, recall the definition of |x| and note that

yTy =
∑
v∈V

y2
v =

∑
v∈V

k∑
i=1

x2
i,v = xTx = |x|T|x|.

G. Cohen and I. Cohen 8:13

Therefore,

yTMGy
yTy = 1

yTy
∑

(u,v)∈E⃗

yuyv

= 1
xTx

∑
(u,v)∈E⃗

√√√√ k∑
i=1

x2
i,u ·

k∑
i=1

x2
i,v

= 1
|x|T|x|

∑
(u,v)∈E⃗

√√√√ k∑
i=1

|xi,u|2 ·
k∑

i=1
|xπu,v(i),v|2

≥ 1
|x|T|x|

∑
(u,v)∈E⃗

k∑
i=1

|xi,u||xπu,v(i),v|

= |x|TMGπ
|x|

|x|T|x|

≥ xTMGπ x
xTx ,

where the third equality is just a reordering of the elements in the summation, as πu,v is a
permutation on [k]. The first inequality follows by the Cauchy-Schwarz inequality, and the
second inequality is as in Equation (4.9). Thus,

λ1(Gπ) = max
x ̸=0

xMGπ x
xTx ≤ max

x ̸=0

y(x)MGy(x)
y(x)Ty(x) ≤ max

z̸=0

zMGz
zTz = λ1(G). ◀

Combining the results we proved so far, we conclude that

λ1(G) ≤ λ1(Gπ,L) ≤ λ1(Gπ) = λ1(G).

Indeed, the first inequality follows by Lemma 8, the second follows by Claim 9 and by the
fact that Mπ,L is a principal submatrix of MGπ,L

, together with the Eigenvalue Interlacing
Theorem (Theorem 4). Lastly, the equality follows by Lemma 10, completing the proof of
Proposition 6. ◀

5 Bounding the Normalized Spectral Expansion

In this section we bound the normalized eigenvalues of a partial lift. That is, we show that a
random walk on a partial lift converges quickly given that the random walk on the (full) lift
does so. Unlike the unnormalized case, we restrict ourselves to d regular base graphs.

▶ Proposition 11. Let G = (V, E) be an undirected simple d-regular graph having orientation
G⃗ = (V, E⃗). Let π : E⃗ → Sk, and (B, L) a partition of V . Assume that

√
k ≤ λ(G)

3 + 1.
Then,

λ̄(Gπ,L) = O(k · λ̄(Gπ)).

Proof. Note that the degrees matrix of Gπ,L, DGπ,L
, is constant on every fiber, and so F ∥

and F ⊥ are invariant subspaces of D−1
Gπ,L

. As noted in the proof of Proposition 6, these are
also invariant subspaces of MGπ,L

, hence, also of WGπ,L
= MGπ,L

D−1
Gπ,L

.

CCC 2023

8:14 Spectral Expanding Expanders

Equation (4.2) and Equation (4.1) implies that λ(Gπ,L) ≤ λ(Gπ). This, together with the
fact that the eigenvector corresponding to the largest eigenvalue of Gπ,L lays in F ∥, implies
that

x, y ∈ F ⊥ ∣∣xTMGπ,L
y

∣∣ ≤ λ(Gπ)∥x∥2∥y∥2.

This, together with Item (4) of Claim 13, which we state below, yields the desired bound on
the Rayleigh quotient for all vectors in F ⊥. Indeed, for every x ∈ F ⊥, we have that

|xTWGπ,L
x|

xTx =
|xTMGπ,L

D−1
Gπ,L

x|
xTx ≤

λ(Gπ) · ∥x∥2 · ∥D−1
Gπ,L

x∥2

xTx ≤
√

k

d
·λ(Gπ) =

√
k·λ̄(Gπ).

We summarize this in the following corollary.

▶ Corollary 12. The Rayleigh quotient of all eigenvectors laying in F ⊥, with respect to
WGπ,L

, are bounded by
√

k · λ̄(Gπ).

Since F ∥ and F ⊥ are invariant subspaces of WGπ,L
, we are left to analyze the vectors

laying in F ∥. To this end, define the diagonal matrix D ∈ Rn×n by D = UTDGπ,L
U, where

we recall the reader that the definition of U is in Equation (4.5). By this definition, since
the degrees of vertices on the same fiber are equal, we get

Du,u =
{

degGπ,L
(u) u ∈ B;

degGπ,L
((1, u)) u ∈ L.

(5.1)

For a vertex v of G we define θv, the cut degree of v, to be

θv =
{

|EG(v, L)| v ∈ B;
|EG(v, B)| v ∈ L,

(5.2)

where, for S, T ⊆ V , |EG(S, T)| is the sum of weights of edges between (S, T) in G. Denote
kB =

√
k − 1 and kL = 1√

k
− 1. The following claim is easy to verify and is stated without a

proof.

▷ Claim 13. The matrices DGπ,L
and D have the following properties:

1. DGπ,L
U = UD and D−1

Gπ,L
U = UD−1.

2. For a vertex u ∈ B the value of Du,u is given by

1 · |EG(u, B)| +
√

k · |EG(u, L)| = d + kBθu.

3. For a vertex u ∈ L the value of Du,u is given by

1 · |EG(u, L)| + 1√
k

· |EG(u, B)| = d + kLθu.

4. (DGπ,L
)u,u ∈ [1√

k
d,

√
kd].

5. Du,u ∈ [1√
k

d,
√

kd].

▶ Lemma 14. A vector x ∈ Rn is an eigenvector of MGD−1 corresponding to eigenvalue λ

if and only if Ux is an eigenvector of WGπ,L
corresponding to the same eigenvalue.

G. Cohen and I. Cohen 8:15

Proof. By Items (5) and (2) of Claim 7,

MGD−1x = λx ⇐⇒ UTMGπ,L
UD−1x = λx

⇐⇒ UUTMGπ,L
UD−1x = λUx.

Thus, by Item (1) of Claim 13,

MGD−1x = λx ⇐⇒ UUTWGπ,L
Ux = λUx.

By Item (1) of Claim 7, Ux ∈ F ∥ and since F ∥ is an invariant subspace of WGπ,L
, we get

that WGπ,L
Ux ∈ F ∥. Item (4) of Claim 7 then implies that

UUTWGπ,L
Ux = WGπ,L

Ux,

and so

MGD−1x = λx ⇐⇒ WGπ,L
Ux = λUx,

as desired. ◀

Given Corollary 12 and Lemma 14, and since every vector in F ∥ is of the form Ux
for some x ∈ Rn (recall Item (1) of Claim 7), we can turn our focus to characterizing the
eigenvalues of MGD−1. We do so by analyzing the eigenvalues of the symmetric matrix
M̃G = D− 1

2 MGD− 1
2 as, note, it is similar to MGD−1. To start with, observe that DGπ,L

1m

is an eigenvector of WGπ,L
corresponding to its largest eigenvalue, 1. Thus, Lemma 14

together with Item (4) of Claim 7 imply that UTDGπ,L
1 is an eigenvector of MGD−1

corresponding to the eigenvalue 1. By Item (1) of Claim 13, UTDGπ,L
= DUT, and so the

latter eigenvector can be written as DUT1. As MGD−1 is similar to M̃G, by the above,
the latter has an eigenvector x̃1 = D 1

2 UT1 corresponding to its largest eigenvalue, 1. Since
M̃G is symmetric, an eigenvector corresponding to its second largest eigenvalue has to be
orthogonal to x̃1.

As we assume G is regular, 1n is an eigenvector corresponding to MG-s largest eigenvalue.
For a vector y, let y∥ = ⟨1n, y⟩ · 1n be the orthogonal projection of y onto 1n. We write
y⊥ = y − y∥ and turn to analyze the Rayleigh quotient of a vector y ⊥ x̃1. Let z = D− 1

2 y
and note that y ⊥ x̃1 if and only if z ⊥ D 1

2 x̃1. With this, we have that

yTM̃Gy
yTy = zTMGz

zTDz = (z∥)TMGz∥

zTDz + (z⊥)TMGz⊥

zTDz . (5.3)

Using Item (5) of Claim 13, it is clear that d√
k

∥z∥2 ≤ zTDz. We can thus get a good bound
on the size of the second summand in the right hand side of Equation (5.3), namely,∣∣∣∣ (z⊥)TMGz⊥

zTDz

∣∣∣∣ ≤ λ(G)∥z∥2

d√
k

∥z∥2 =
√

k · λ̄(G). (5.4)

The first summand in the right hand side of Equation (5.3) equals to

(z∥)TMGz∥

zTDz = d · ∥z∥∥2

∥z∥2
D

(5.5)

and is always non-negative. This already gives a bound on λ̄min(M̃G), because for every
y ⊥ x̃1, we have

yTM̃Gy
yTy = (z∥)TMGz∥

zTDz + (z⊥)TMGz⊥

zTDz ≥ 0 −
√

k · λ̄(G).

We summarize this in the following corollary.

CCC 2023

8:16 Spectral Expanding Expanders

▶ Corollary 15.
∣∣∣λmin(M̃G)

∣∣∣ ≤
√

k · λ̄(G).

Going back to the first summand in the right hand side of Equation (5.3), per Equa-
tion (5.5), we are left to bound the quotient ∥z∥∥

∥z∥D
. We start with the numerator. As

z ⊥ D 1
2 x̃1, for every α ∈ R we have that

∥z∥∥ = ⟨z, 1⟩ =
〈

z, 1 − αD 1
2 x̃1

〉
=

〈
D 1

2 z, D− 1
2 1 − αx̃1

〉
≤ ∥D 1

2 z∥∥D− 1
2 1 − αx̃1∥. (5.6)

Choosing the optimal α for the bound, α =

〈
D− 1

2 1,̃x1

〉
∥x̃1∥2 , we get that

∥D− 1
2 1 − αx̃1∥2 = ∥D− 1

2 1∥2 −

〈
D− 1

2 1, x̃1

〉2

∥x̃1∥2 . (5.7)

We now turn to analyze each of the summands in the above expression. To this end, we
introduce the following notations. Let s = |(B, L)| be the size of the cut (B, L) in G, and
let e = s − bℓ

n d. Note that, had G been a d-regular random graph, s would have equal to
bℓ
n d in expectation, and so we think of e as the “cut size error”. It will also be convenient to
consider e, b and ℓ-s normalized counterpart ē = e

nd , b̄ = b
n and ℓ̄ = ℓ

n .
From this point, denote λ = λ(G) and λ̄ = λ̄(G) = λ

d . We further define µ = b +
√

kℓ

and its normalized counterpart µ̄ = µ√
mn

(where this normalization is in hindsight). The
analysis of Equation (5.7) is divided to the following three claims.

▷ Claim 16.

∥x̃1∥2 = 2 |E(Gπ,L)|
m

= dµ̄2 − (
√

k − 1)2 e

m
,

where recall |E(Gπ,L)| counts the number of edges, accounting for the weights.

▷ Claim 17.
〈

D− 1
2 1, x̃1

〉
= µ̄.

▷ Claim 18. ∥D− 1
2 1∥2 ≤ 1+kλ̄

d .

Claim 16 and Claim 17 follow by a fairly straightforward calculation. Their proofs can be
found in the full version of the paper. Claim 18, whose proof also appears in the full version,
follows by the following two more substantial lemma.

▶ Lemma 19.

∑
v∈B

1
Dv,v

≤ b

d

(
1

1 + kB ℓ̄
+

√
kλ̄

)
.

▶ Lemma 20.

∑
v∈L

1
Dv,v

≤ ℓ

d

(
1

1 + kLb̄
+ kλ̄

)
.

G. Cohen and I. Cohen 8:17

The proof of Lemma 19 and Lemma 20 can be found in the full version of the paper, and
we proceed with the proof of Proposition 11. Using Claim 16 and Claim 17, we write〈

D− 1
2 1, x̃1

〉2

∥x̃1∥2 = 1
d

· µ̄2

µ̄2 − (
√

k − 1)2 e
dm

= 1
d

· 1
1 − (

√
k − 1)2 e

dmµ̄2

≥ 1
d

(
1 + (

√
k − 1)2 e

dmµ̄2

)
≥ 1

d

(
1 − (

√
k − 1)2 |e|

dmµ̄2

)
. (5.8)

Focusing on the error term,

(
√

k − 1)2 |e|
dmµ̄2 = (

√
k − 1)2 |ē|

(µ/n)2 ,

observe that according to the expander mixing lemma, |ē| ≤ λ̄
√

b̄ℓ̄ ≤ λ̄. Additionally, µ
n is

bounded below by 1. The error term is thus bounded above by λ̄(
√

k − 1)2. Plugging the
above back to Equation (5.8), we get〈

D− 1
2 1, x̃1

〉2

∥x̃1∥2 ≥ 1
d

·
(

1 − (
√

k − 1)2λ̄
)

. (5.9)

By Equation (5.6), Equation (5.7), Claim 18, and Equation (5.9),

∥z∥∥ ≤ ∥D 1
2 z∥ ·

√√√√
∥D− 1

2 1∥2 −

〈
D− 1

2 1, x̃1

〉2

∥x̃1∥2

≤ ∥D 1
2 z∥ ·

√
λ̄√

d
·
√

k + (
√

k − 1)2. (5.10)

By Equation (5.5) and Equation (5.10), using that ∥z∥D = ∥D 1
2 z∥,

(z∥)TMGz∥

zTDz = d · ∥z∥∥2

∥z∥2
D

≤ (k + (
√

k − 1)2)λ̄.

Thus, by Equation (5.3) and Equation (5.4),

λ2(M̃G) ≤ d · ∥z∥∥2

∥z∥2
D

+
√

k · λ̄(G) ≤ (k +
√

k + (
√

k − 1)2)λ̄ = O(k · λ̄).

Combining this with Corollary 15, we obtain λ(M̃G) = O(k · λ̄). Restating this result, for
every x ∈ F ∥ with x ⊥ DGπ,L

1m we have xTWGπ,L
x = O(k · λ̄). Recall λ̄ = λ̄(G) ≤ λ̄(Gπ).

Combining this and Corollary 12 we conclude λ̄(Gπ,L) = O(k · λ̄(Gπ)), which completes the
proof. ◀

CCC 2023

8:18 Spectral Expanding Expanders

6 Proof of Theorem 1

In this section we wrap it all up and prove Theorem 1.

Proof of Theorem 1. By repeatedly applying Corollary 3.1 of [3] to the base graph, denoted
BL0, which is the clique on d + 1 vertices, we obtain an explicit family of d-regular expanders
BL = (BLn)n∈I , where I = {(d + 1) · 2i | i ∈ N} and λ(BL) = O(

√
d log3 d). Moreover, as

BL0 is simple, all graphs in BL are simple. By regularity,

λ̄(BL) = 1
d

λ(BL) = O

√
log3 d

d

 .

Let n : N → I be the function defined by n(i) = (d + 1) · 2i. That is, n(i) is the number of
vertices of the i-th graph in BL. Observe that for every i ∈ I, BLn(i+2) is a πi-lift of BLn(i)
with k = 4. Indeed, the 2-lift of a 2-lift is a 4-lift.

Fix i ∈ N. Choose an arbitrary ordering on the vertices of BLn(i) and denote the first
j vertices, under this ordering, by Ln(i),j . Define Pn(i),j to be the Ln(i),j-partial πi-lift of
BLn(i). Note that the edge weights of Pn(i),j are 1 and 1

2 . In order to avoid fractional edges,
multiply every edge by 2 to obtain the unweighted graph with multiple edges Gn(i),j . Note
that the latter is a graph on n(i) + 3j vertices, and that Gn(i),n(i) = Gn(i+2),0. The family
that we construct is given by G = (Gn,j)(n,j)∈I′ , where the index set

I ′ = {(n(i), j) | i ∈ 2N and 0 ≤ j ≤ n(i)}

is lexicographically ordered.
Per Definition 5, and as we duplicated all edges, the degrees of all vertices in this family

are in the range [2 d√
4 , 2

√
4d] = [d, 4d], as claimed. Proposition 6 and Proposition 11 readily

imply the bounds on λ(G) and λ̄(G), respectively. To conclude the proof, note that the
expansion cost is O(d).

◀

References
1 Miklós Ajtai, János Komlós, and Endre Szemerédi. Deterministic simulation in logspace. In

Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 132–140,
1987.

2 Alon Amit and Nathan Linial. Random graph coverings. I. General theory and graph
connectivity. Combinatorica, 22(1):1–18, 2002. doi:10.1007/s004930200000.

3 Yonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly optimal spectral gap. Combin-
atorica, 26(5):495–519, 2006. doi:10.1007/s00493-006-0029-7.

4 Nikolas P. Breuckmann and Jens N. Eberhardt. Balanced product quantum codes. IEEE
Trans. Inform. Theory, 67(10):6653–6674, 2021. doi:10.1109/tit.2021.3097347.

5 Michael Dinitz, Michael Schapira, and Asaf Valadarsky. Explicit expanding expanders.
Algorithmica, 78(4):1225–1245, 2017. doi:10.1007/s00453-016-0269-x.

6 Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):Art. 12, 44, 2007.
doi:10.1145/1236457.1236459.

7 Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes. Locally testable
codes with constant rate, distance, and locality. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, pages 357–374, 2022.

8 Chris Godsil and Gordon F Royle. Algebraic graph theory, volume 207. Springer Science &
Business Media, 2001.

https://doi.org/10.1007/s004930200000
https://doi.org/10.1007/s00493-006-0029-7
https://doi.org/10.1109/tit.2021.3097347
https://doi.org/10.1007/s00453-016-0269-x
https://doi.org/10.1145/1236457.1236459

G. Cohen and I. Cohen 8:19

9 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

10 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the twenty-sixth annual ACM symposium on Theory of computing,
pages 356–364, 1994.

11 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

12 Adam Marcus, Daniel A Spielman, and Nikhil Srivastava. Interlacing families I: Bipartite
Ramanujan graphs of all degrees. In 2013 IEEE 54th Annual Symposium on Foundations of
computer science, pages 529–537. IEEE, 2013.

13 Adam W Marcus, Daniel A Spielman, and Nikhil Srivastava. Interlacing families IV: Bipartite
Ramanujan graphs of all sizes. SIAM Journal on Computing, 47(6):2488–2509, 2018.

14 Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Finite free convolutions
of polynomials. Probab. Theory Related Fields, 182(3-4):807–848, 2022. doi:10.1007/
s00440-021-01105-w.

15 A. Nilli. On the second eigenvalue of a graph. Discrete Math., 91(2):207–210, 1991. doi:
10.1016/0012-365X(91)90112-F.

16 Gopal Pandurangan, Peter Robinson, and Amitabh Trehan. DEX: self-healing expanders.
Distrib. Comput., 29(3):163–185, 2016. doi:10.1007/s00446-015-0258-3.

17 Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):Art. 17, 24, 2008.
doi:10.1145/1391289.1391291.

18 Daniel A Spielman. Spectral and algebraic graph theory, 2019. URL: http://cs-www.cs.
yale.edu/homes/spielman/sagt/.

19 Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, pages 238–251, 2017.

20 Luca Trevisan. Lecture notes on graph partitioning, expanders and spectral methods,
2017. University of California, Berkeley, https://people.eecs.berkeley.edu/luca/books/
expanders-2016.pdf.

21 Salil P Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012.

22 Leslie G. Valiant. Graph-theoretic properties in computational complexity. J. Comput. System
Sci., 13(3):278–285, 1976. doi:10.1016/S0022-0000(76)80041-4.

CCC 2023

https://doi.org/10.1007/s00440-021-01105-w
https://doi.org/10.1007/s00440-021-01105-w
https://doi.org/10.1016/0012-365X(91)90112-F
https://doi.org/10.1016/0012-365X(91)90112-F
https://doi.org/10.1007/s00446-015-0258-3
https://doi.org/10.1145/1391289.1391291
http://cs-www.cs.yale.edu/homes/spielman/sagt/
http://cs-www.cs.yale.edu/homes/spielman/sagt/
https://people. eecs. berkeley. edu/luca/books/expanders-2016.pdf
https://people. eecs. berkeley. edu/luca/books/expanders-2016.pdf
https://doi.org/10.1016/S0022-0000(76)80041-4

Hardness Against Linear Branching Programs and
More
Eshan Chattopadhyay #

Cornell University, Ithaca, NY, USA

Jyun-Jie Liao #

Cornell University, Ithaca, NY, USA

Abstract
In a recent work, Gryaznov, Pudlák and Talebanfard (CCC ’22) introduced a linear variant of
read-once branching programs, with motivations from circuit and proof complexity. Such a read-once
linear branching program is a branching program where each node is allowed to make F2-linear
queries, and is read-once in the sense that the queries on each path is linearly independent. As their
main result, they constructed an explicit function with average-case complexity 2n/3−o(n) against a
slightly restricted model, which they call strongly read-once linear branching programs. The main
tool in their lower bound result is a new type of extractor, called directional affine extractors, that
they introduced.

Our main result is an explicit function with 2n−o(n) average-case complexity against the strongly
read-once linear branching program model, which is almost optimal. This result is based on a
new connection from this problem to sumset extractors, which is a randomness extractor model
introduced by Chattopadhyay and Li (STOC ’16) as a generalization of many other well-studied
models including two-source extractors, affine extractors and small-space extractors. With this new
connection, our lower bound naturally follows from a recent construction of sumset extractors by
Chattopadhyay and Liao (STOC ’22). In addition, we show that directional affine extractors imply
sumset extractors in a restricted setting. We observe that such restricted sumset sources are enough
to derive lower bounds, and obtain an arguably more modular proof of the lower bound by Gryaznov,
Pudlák and Talebanfard.

We also initiate a study of pseudorandomness against linear branching programs. Our main
result here is a hitting set generator construction against regular linear branching programs with
constant width. We derive this result based on a connection to Kakeya sets over finite fields.

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of computa-
tion → Expander graphs and randomness extractors; Theory of computation → Pseudorandomness
and derandomization

Keywords and phrases linear branching programs, circuit lower bound, sumset extractors, hitting
sets

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.9

Related Version Preliminary Version: https://eccc.weizmann.ac.il/report/2022/153/

Funding Supported by NSF CAREER award 2045576.

Acknowledgements We thank Jason Gaitonde for collaboration during initial stages of this project.
We thank anonymous reviewers for helpful comments.

1 Introduction

The central goal of complexity theory is to understand the power and limitation of different
computation models. Motivated by this goal, it is natural to study the lower bound problem:
given a computation model and a corresponding complexity measure, can we find an explicit
function (e.g. computable in polynomial time) that has large complexity? Researchers have
studied this problem on many interesting circuit models such as bounded-depth circuits

© Eshan Chattopadhyay and Jyun-Jie Liao;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 9; pp. 9:1–9:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eshan@cs.cornell.edu
https://orcid.org/0000-0001-9140-3160
mailto:jjliao@cs.cornell.edu
https://orcid.org/0000-0003-3332-1460
https://doi.org/10.4230/LIPIcs.CCC.2023.9
https://eccc.weizmann.ac.il/report/2022/153/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Hardness Against Linear Branching Programs and More

(AC0), DeMorgan formula and branching programs, and many interesting results have been
found. For example, one of the most notable results in this field is that it requires exponential
number of gates to compute parity in AC0 [54, 31]. (See the excellent book by Jukna [34] for
more about circuit lower bound problems.)

Interestingly, circuit lower bound problems have found connections with randomness
extraction, another central problem in complexity theory. The theory of randomness extraction
is concerned with the following problem: we are given an unknown distribution X which is
guaranteed to have some amount of entropy, and our goal is to find an efficiently computable
function Ext, which is called a randomness extractor, such that Ext(X) is (close to) the
uniform distribution. Unfortunately, it turns out to be impossible to design extractors in
this generality, and a central line of inquiry has been to consider extracting random bits
assuming some additional structure on X. Randomness extractors have also found a variety
of applications in other areas of theoretical computer science, including proving lower bounds
for various computational models. For example, the state-of-the-art lower bound for Boolean
circuits is based on affine extractors [40], which are extractors that work for weak sources
that are uniform over affine subspaces. Affine extractors were also used to obtain almost
optimal lower bounds for DNF of parities and parity decision trees [19]. As another example,
extractors for sources sampled by small-space algorithms [35] were shown to be average-case
hard against read-once branching program [8].

The main idea behind this connection is as follows. Suppose one can show that for every
function f : X → {0, 1} with small complexity measure, the uniform distribution over the
larger pre-image (say, f−1(0)) is a source X with some specific structure. If one can construct
an extractor for weak sources with this structure, then f(X) is a constant while Ext(X) is
close to uniform, immediately implying that f and Ext cannot be the same function. In
fact, f cannot even approximately compute Ext much better than a random guess, i.e., Ext
exhibits average-case hardness against f . For instance, to derive average-case lower bounds
for parity decision trees, for which it is not hard to see that the pre-image is a disjoint union
of affine subspaces, one can choose Ext to be an affine extractor. However, the choice of
the extractor is not always obvious. For example, the connection between general Boolean
circuits and affine extractors [20, 25, 40] is more non-trivial.

In this paper, we study the lower bound problem for read-once linear branching pro-
grams [29]. Our main contribution is a new connection between lower boundS for read-once
linear branching programs and sumset extractors [10], which we will discuss in later sections.

1.1 Linear branching programs

Read-once linear branching programs (ROLBPs) were first studied by Gryaznov, Pudlák
and Talebanfard [29], motivated by its connection to proof complexity. Roughly speaking,
a ROLBP is a read-once branching program that can make linear queries. We leave the
definition of “read-once” for later and define a linear branching program first.

▶ Definition 1 (Linear branching program [29]). A linear branching program on Fn
2 is a

directed acyclic graph P with the following properties:
There is only one source s in P .
There are two sinks in P , labeled with 0 and 1 respectively.
Every non-sink node v is labeled with a linear function ℓv : Fn

2 → F2, which is called the
(linear) query on node v. Moreover, there are exactly two outgoing edges from v, one is
labeled with 1 and the other is labeled with 0.

E. Chattopadhyay and J.-J. Liao 9:3

The size of P is the number of non-sink nodes in P . We say P computes a boolean function
f : Fn

2 → {0, 1} in the following way. For every input x ∈ Fn
2 , we define the computation

path of x as starting from s, and when on a node v which is not a sink, moving to the next
node following the edge with label ℓv(x) ∈ {0, 1}. We repeat this process until the path ends
at a sink. f(x) is defined to be the label on this sink.1

The most natural definition of “read-once” for a linear branching program is that the queries
made on every path is linearly independent. In this paper, we focus on a more restricted
model called strongly read-once.2

▶ Definition 2 (Strongly Read-Once [29]). For every node v in a branching program P , define
Prev to be the span of all queries that appear on any path from the source to v, and Postv

to be the span of all queries that appear on any path from v to a sink. (For every non-sink
node v, both Prev and Postv include ℓv. For any sink w we define Postw = {0}.) We say P

is strongly read-once if the following two properties hold.
For every edge e = (u → v), Preu ∩ Postv = {0}.
For every non-sink node v, Prev ∩ Postv = {0, ℓv}.

As pointed out in [29], although being more restricted than the natural definition of read-once,
strongly read-once linear branching programs still generalize two important models: parity
decision trees and read-once branching programs. A parity decision tree is a decision tree
which can make linear queries. This model was first defined by Kushilevitz and Mansour [37]
for its connection with Fourier analysis, and has recently received attention because of
its connections to special cases of the log-rank conjecture in communication complexity
[51, 32] and quantum query complexity [28]. A read-once branching program is another
generalization of decision tree such that different paths can share nodes, and can be used to
model streaming algorithms and randomized small-space algorithms. Similar to how decision
trees are generalized to parity decision trees, it is natural to study ROBPs with linear queries.

The lower bound problem we are trying to answer is the following:

▶ Question 3. For a function f : Fn
2 → F2, let ROLBP(f) denote the smallest possible

size of a strongly read-once linear branching program that computes f . Can we find an
explicit function f which is computable in polynomial time such that ROLBP(f) is as large
as possible?

Note that every function f has a trivial size upper bound ROLBP(f) ≤ 2n (e.g. a trivial
decision tree of depth n), so our goal is to find a function f such that ROLBP(f) is as close
to 2n as possible. We are also interested in answering the average-case lower bound problem:

▶ Question 4. For a function f : Fn
2 → F2 and any ε > 0, let ROLBPε(f) denote the smallest

size of strongly read-once linear BP P such that

Pr
x∼Fn

2

[P (x) = f(x)] ≥ 1
2 + ε.

Can we find a function f which is computable in polynomial time such that ROLBPε(f) is as
large as possible?

1 In this paper, we sometimes abuse notation and also use P to denote the function computed by P .
2 Our definition here is slightly more general than the original one in [29], but we don’t view it as a

substantial difference. We choose the definition here merely for simpler notation in the proofs. See
Appendix A for further discussions.

CCC 2023

9:4 Hardness Against Linear Branching Programs and More

1.2 Prior work
To obtain a lower bound for strongly read-once linear branching programs, [29] introduced a
new type of extractor called directional affine extractors. (We refer the reader to Section 2
for standard notation in the context of extractors.)

▶ Definition 5 (Directional Affine Extractor [29]). We say DAExt : Fn
2 → F2 is a (d, ε)-

directional affine extractor if for any distribution X ∈ Fn
2 which is uniform over an affine

subspace of dimension d, and any non-zero vector a ∈ Fn
2 , it holds that

DAExt(X + a) + DAExt(X) ≈ε U1.

[29] proved that a directional affine extractor for small dimension has a large average-case
lower bound for strongly read-once linear BP.

▶ Theorem 6 ([29, Theorem 17]). Let DAExt be a (d, ε)-directional affine extractor. Then

ROLBP√
2ε(DAExt) ≥ ε2n−d−1.

In [29], they constructed a directional affine extractor for dimension (2/3 + o(1))n, which
implied a 2n/3−o(n) average-case lower bound for ROLBPs. A natural open question left
in [29] was to construct a directional affine extractor for dimension d = o(n), which would
directly imply a 2n−o(n) average-case lower bound for ROLBPs. However, this seems like a
challenging problem. Indeed, even constructing affine extractors for dimension d = o(n) has
been a difficult task that has been recently resolved [41, 7]; a directional affine extractor is
an affine extractor with additional non-malleable properties (see Appendix B) and it is not
clear how to use known techniques to construct such extractors for low dimension.

1.3 Our results
In this work, we take a different approach and show that to get an average-case lower bound
strongly read-once linear BP, it suffices to construct a sumset extractor. Informally, a sumset
extractor is a function that can extract uniform randomness from sum of two independent
weak sources (such sources are called sumset sources). The formal definition of sumset
extractors is as follows.3

▶ Definition 7 (Sumset Extractor [10]). A function SumExt : Fn
2 → {0, 1} is a (k1, k2, ε)-

sumset extractor if for any two independent distributions A, B on Fn
2 with H∞(A) ≥ k1 and

H∞(B) ≥ k2,

SumExt(A + B) ≈ε U1.

Our main theorem is as follows:

▶ Theorem 8. Let SumExt be a (k1, k2, ε)-sumset extractor. Then

ROLBP9ε(SumExt) > 2n−k1−k2−2.

Sumset extractors were first introduced by Chattopadhyay and Li [10] as a “unified”
extractor model for many other important extractor problems such as two-source extractors,
affine extractors and small-space extractors. (We refer the reader to [13] for a more elaborate
discussion on sumset extractors.) A recent work [13] gave an explicit construction of sumset
extractors for polylogarithmic entropy.

3 For simplicity, we present the definition where the output length of the extractor is just 1 bit.

E. Chattopadhyay and J.-J. Liao 9:5

▶ Theorem 9 ([13]). There is a (polylog(n), polylog(n), n−Ω(1))-sumset extractor that can
be computed in polynomial time.

Plugging this extractor into Theorem 8, we improve the best lower bound for strongly
read-once linear BP from 2n/3−o(n) to 2n−o(n), which is almost optimal.

▶ Theorem 10. There is a function SumExt which can be computed in polynoimal time such
that

ROLBPn−Ω(1)(SumExt) > 2n−polylog(n).

1.4 On average-case lower bound with negligible error
One drawback of the average-case lower bound based on Theorem 8 is that we don’t yet
know any explicit construction of (k1, k2, ε)-sumset extractors such that k1 + k2 ≤ n and
ε = n−ω(1).4 Thus we cannot directly use Theorem 8 to derive non-trivial average-case lower
bound in the negligible correlation setting (for functions in P). (Note that the 2n/3−o(n)

lower bound in [29] does have negligible correlation.) However, a closer inspection at the
proof of Theorem 8 actually shows that it suffices to construct extractors for sumset sources
A + B with two additional properties, that we describe below.

▶ Theorem 11. Let SumExt′ : Fn
2 → {0, 1} be a function such that SumExt′(A + B) ≈ε U1

for any independent distributions A, B ∈ Fn
2 which satisfy H∞(A) ≥ k1, H∞(B) ≥ k2 and

the following two additional properties.
B is almost affine: the span of Supp(B) is of dimension ≤ k2 + 1.
A and B have non-intersecting span: span(Supp(A)) ∩ span(Supp(B)) = {0}.

Then

ROLBP9ε(SumExt′) > 2n−k1−k2−2.

Next we show two different extractor constructions that utilize the first and second property,
respectively. The first construction is exactly the directional affine extractors in [29]. Our
main observation is that directional affine extractors can extract from the restricted class of
sumset sources with the almost affine property in Theorem 11, which gives an alternative
proof of the average-case lower bound in [29] (Theorem 6). Furthermore, the proof of this
statement is just a simple application of leftover hash lemma [33]. We view this as a more
modular proof of the lower bound result in [29].

We note that a directional affine extractor is a strictly stronger notion than a sumset
extractor with the almost affine property. Indeed, given any sumset extractor, one can modify
it to get a new sumset extractor so that the extractor ignores its first bit of input; however it
is easy to see that the modified sumset extractor is not a directional affine extractor (see
Remark 36). Thus, it could be an easier task to build sumset extractors with the almost
affine property.

Our second construction is based on the interleaved-source extractor constructed in [12].
An interleaved source is a source over {0, 1}2n of the form (A ◦ B)π, where A, B are
independent sources over {0, 1}n, and π is a fixed but unknown permutation of the 2n bits.
We observe that their extractor construction can be extended to work for for a more general
class of sources: sumset sources with the non-intersecting span property. In fact, we prove a
slightly more general result.

4 A Paley graph extractor [17] with proper choice of parameters is actually a (k1, k2, ε)-sumset extractor
for k1 + k2 = (1

2 + γ)n and negligible ε, for any constant γ > 0. (See [14, Theorem 4.2].) However, it is
not known how to compute such an extractor in polynomial time.

CCC 2023

9:6 Hardness Against Linear Branching Programs and More

▶ Theorem 12. For every constant δ > 0, there is a function ILExt : Fn
2 → {0, 1} computable

in polynomial time such that for every independent sources A, B ∈ Fn
2 which satisfy H∞(A) ≥

(1
3 + δ)n, H∞(B) ≥ (1

3 + δ)n and H∞(A + B) ≥ (2
3 + 2δ)n,

ILExt(A + B) ≈2−Ω(n) U1.

It’s not hard to see that the additional entropy requirement on A + B is implied by the
non-intersecting span property, and hence we can apply Theorem 11 on the extractor in
Theorem 12. Interestingly, while the two constructions are very different, they give the same
average-case lower bound as in [29].

▶ Corollary 13. For every constant δ > 0, there exists a constant γ > 0 and a function
f : Fn

2 → {0, 1} computable in polynomial time such that

ROLBP2−γn(f) > 2(1/3−δ)n.

1.5 Pseudorandomness against linear branching programs
Motivated by close connections between hardness and pseudorandomness [47], we initiate the
study of obtaining pseudorandomness results against linear branching programs. Generally
speaking, in the pseudorandomness problem for a function class F , our goal is to construct
a pseudorandom distribution which can be generated with only r ≪ n random bits but
is indistinguishable from the n-bit uniform distribution Un by any function in F . We
now formally define a hitting set generator (HSG), which is the one-sided variant of a
pseudorandom generator (PRG).

▶ Definition 14 (Hitting Set Generators). We say a set H ⊆ {0, 1}n is a hitting set with
error ε for a class of functions F (on n-bit input), if for every function f : {0, 1}n → {0, 1}
in F such that Prx∼Un

[f(x) = 1] ≥ ε, there exists h ∈ H such that f(h) = 1. Moreover,
G : {0, 1}d → {0, 1}n is called a hitting set generator (HSG) with error ε for a class of
functions F if {G(s)}s∈{0,1}d is a hitting set for F , and s is called the seed length of G.

Constructing good HSGs for (standard) read-once branching programs is a central problem
in complexity theory. If one can construct an explicit HSG with seed length O(log(n)) and
O(1) error for ROBPs of size poly(n), this would imply RL = L, which is a major open
problem in complexity theory. Interestingly, it was recently shown [15] that HSGs suffice to
even derandomize BPL.

We note that for the above derandomization applications, it suffices to construct a HSG
for oblivious ROBPs with ordered input. That is, given an n-bit input x = (x1, . . . , xn),
the ROBPs read the bits x1, x2, . . . , xn in order, regardless of what x is. For oblivious
ROBPs with ordered input, the best known construction is due to Nisan [46] that has seed
length O(log2(n)) (which in fact is a pseudorandom generator). However, in spite of the
improvement in several restricted sub-classes of ROBPs, Nisan’s result remains the best
known construction in the general setting after three decades of work.

A recent research direction has been to find approaches that are completely different
from Nisan’s construction. In this direction, researchers considered the task of constructing
PRGs (and HSGs) for a natural generalization of ROBPs called as (oblivious) unordered
ROBPs for which it is known that Nisan’s construction fails to work [52, 5]. An unordered
ROBPs still read the bits of x in a fixed order that does not depend on x, but this order
is unknown. By an impressive line of work culminating with a beautiful construction by
Forbes and Kelley [27], we now have explicit PRGs with seed length O(log3(n)) for unordered

E. Chattopadhyay and J.-J. Liao 9:7

ROBPs. The general approach used to construct PRGs for this model is based on analyzing
the effects of random restrictions on ROBPs and leveraging bounds on the Fourier spectrum
of branching programs [49, 9].

This gives us further motivation to study pseudorandomness against oblivious ROLBPs,
which is a further generalization of unordered ROBPs.

▶ Definition 15 (Oblivious ROLBPs). We say a read-once linear branching programs P on
input Fn

2 is oblivious if the nodes can be divided into layers L0, . . . , Ln such that
L0 only contains the source, and Ln consists of all the sinks.
For every 0 ≤ i < n, every edge from nodes in Li connects to a node in Li+1.
For every 0 ≤ i < n, every node on Li is labeled with the same linear query ℓi.
(ℓ0, . . . , ℓn−1) is a basis of Fn

2 .
The width of P is defined as maxi∈[n](|Li|).

We note that unordered ROBPs correspond to the case of (ℓ0, . . . , ℓn−1) being a permutation
of the standard basis. Thus, Nisan’s PRG construction fails to work for oblivious ROLBPs.
Further, it is not clear how to use the techniques of random restriction based constructions
employed for unordered ROBPs when the layers can be arbitrary linear functions. Thus, it
looks like we need new ideas to obtain pseudorandomness against oblivious ROLBPs.

Our first observation is that the case of width w = 2 is easy since it is well known that a
small-biased distribution [45, 1, 50] fools such programs.5 This follows since small-biased
distributions are invariant under full-rank linear transformations. Further, [3] proved that
sum of small-biased distributions fools width-2 ROBPs that reads multiple bits. Thus, one
can obtain a similar result for the linear analogue of these programs. It has been asked by
Vadhan and Reingold (see [39]) whether sums of small-biased distributions can be employed
to construct PRGs (or HSG) for general ROBPs. Indeed a positive answer to this question
would immediately imply a PRGs (or HSG) for oblivious ROLBPs. We are not able to
resolve this conjectured approach, and take a different route that we describe below.

We take an initial step towards constructing HSGs against oblivious ROLBPs of width
more than 2, and focus on the sub-class of regular oblivious ROLBPs. A regular linear
branching program is a linear branching program in which every non-source node has in
degree 2. We note that the sub-class of regular (standard and unordered) ROBPs have been
well-studied [6, 49, 4, 38]. In fact, a recent result [4] proved that obtaining a HSG against
regular ROBPs would imply a HSG with similar parameters against all ROBPs.

As our main result here, we construct a hitting set generator with (1 − Ω(1))n seed length
for regular oblivious ROLBPs with constant width.

▶ Theorem 16. For every w ∈ N, there is an explicit construction of HSG for regular
oblivious ROLBPs of width w with seed length (w − 1) + ⌈(1 − 2−(w−1))n⌉.

Interestingly, our construction is based on a well-studied problem called rank-r Kakeya
set [24, 36], which is a set that contains a r-dimensional affine subspace in every direction.

▶ Definition 17. A set K ⊆ Fn
2 is called a rank-r Kakeya set (over Fn

2) if for every
r-dimension subspace V ⊆ Fn

2 , there exists b ∈ Fn
2 such that V + b ⊆ K.

We prove the following theorem.

5 This result is due to Saks and Zuckerman. See [3] for sketch of a proof.

CCC 2023

9:8 Hardness Against Linear Branching Programs and More

▶ Theorem 18. A rank-r Kakeya set is a hitting set for oblivious read-once regular linear
BP of width (r + 1).

To get an efficiently computable HSG, we take the following simple construction of rank-r
Kakeya set constructed by Kopparty, Lev, Saraf and Sudan [36].

▶ Theorem 19 ([36]). For every r, n ∈ N s.t. r ≤ n, there is an explicit construction of
rank-r Kakeya set Kn,r ⊆ Fn

2 with size at most 2⌈(1−2−r)n⌉+r, which is defined as follows.
Let I1, . . . , I2r be a parition of [n], each having size at least ⌊2−rn⌋. Then

Kn,r =
2r⋃

t=1
span ({ei}i̸∈Ii) .6

In other words, Kn,r is the union of 2r boolean subcubes where the i-th subcube contains
every point x ∈ Fn

2 such that the xIi
is 0.

To prove Theorem 16, observe that we can construct an efficient HSG with seed length
r+⌈(1−2−r)n⌉ that uses the first r bits to select a set Ii and use the remaining ⌈(1−2−r)n⌉ ≥
n − |Ii| bits to choose a point in the subcube corresponding to Ii.

We note our approach based on Kakeya set does not seem to extend beyond regular
ROLBPs. For non-regular oblivious ROLBPs, we observe that the construction in Theorem 19
is not a hitting set for width 3, because a read-once CNF

∧2r

t=1(
∨

i∈It
xi) always outputs 0

on Kn,r, and a read-once CNF can be computed by a width-3 ROBP.
Further, while one might hope to extend our result to larger width (for regular ROLBPs)

with a better construction of Kakeya sets, we show that the construction in Theorem 19 is
essentially optimal. This negative result also answers an open question in [36] (for the case
of Fn

2), where they asked whether there is a better construction of rank-r Kakeya sets than
Theorem 19. This lower bounds may be of independent interest.

▶ Theorem 20. Every rank-r Kakeya set over Fn
2 has size at least 2(1−2−r)(n+2)−r.

1.6 Subsequent Works and Future Directions

In the preliminary version of this work, we asked whether one can obtain an lower bound for
ROLBPs with negligible correlation that is greater than 2n/3. This problem is recently solved
by Li and Zhong [43]: they showed how to construct a directional affine extractor DAExt
with 2−nΩ(1) for o(n) entropy. As proved in [29], this implies an average-case lower bound of
size 2n−o(n) and exponentially small correlation, i.e. ROLBP2−nΩ(1) (DAExt) ≥ 2n−o(n).

In addition, an amazing recent work by Li [42] showed how to improve the entropy
requirement of explicit sumset extractors to O(log(n)) in the constant error regime. By
Theorem 8, such an extractor implies a 2n/ poly(n) average-case lower bound with constant
correlation.

Another natural open problem raised in this work is to construct improved hitting set
generators (and more ambitiously pseudorandom generators) for oblivious ROLBPs. As
discussed above, one way to make progress on this question would be to show that sum of
small-biased distributions are pseudorandom against (standard) oblivious ROBPs. Another
direction is to see if objects from linear algebraic pseudorandomness [26] can be leveraged
for derandomization in this setting.

E. Chattopadhyay and J.-J. Liao 9:9

1.7 Organization
We introduce preliminaries in Section 2. We prove Theorem 8 (and Theorem 11, which is a
stronger version of Theorem 8) in Section 3. We discuss average-case lower bound results
based on Theorem 11 in Section 4. We prove our results about HSGs and Kakeya sets
(Theorem 18 and Theorem 20) in Section 5.

2 Preliminaries

2.1 Notation
Distributions and random variables

We sometimes abuse notation and treat distributions and random variables as the same. We
always write a random variable/distribution in boldface font. Every log in this paper is of
base 2 unless specified. We use Supp(X) to denote the support of a distribution. We use
Un to denote the uniform distribution on {0, 1}n. When Un appears with other random
variables in the same joint distribution, Un is considered to be independent of other random
variables. When there is a sequence of random variables X1, X2, . . . , Xt in the context, for
every set S ⊆ [t] we use XS to denote the sequence of random variables which use indices in
S as subscript, i.e. XS := {Xi}i∈S .

Notation for Fn
2

Throughout this paper, we treat Fn
2 and {0, 1}n as the same. We use ei ⊆ Fn

2 to denote
the i-th standard basis vector, which as its i-th coordinate being 1 and other coordinates
being 0. We sometimes use a vector ℓ ∈ Fn

2 to represent a function f : Fn
2 → F2 defined as

f(x) = ⟨ℓ, x⟩.

2.2 Statistical Distance
▶ Definition 21. Let D1, D2 be two distributions on the same universe Ω. The statistical
distance between D1 and D2 is

∆ (D1; D2) := max
T ⊆Ω

(
Pr [D1 ∈ T] − Pr [D2 ∈ T]

)
= 1

2
∑
s∈Ω

|D1(s) − D2(s)| .

We say D1 is ε-close to D2 if ∆(D1; D2) ≤ ε, which is also denoted by D1 ≈ε D2. When
there are two joint distributions (X, Z) and (Y, Z) such that (X, Z) ≈ε (Y, Z), we write
(X ≈ε Y) | Z for short.

Throughout this paper, we frequently use the following standard properties without explicit
referencing.

▶ Lemma 22. For every distribution D1, D2, D3 on the same universe, the following proper-
ties hold:

For every function f , ∆ (f(D1); f(D2)) ≤ ∆ (D1; D2).
(Triangle inequality) ∆ (D1; D3) ≤ ∆ (D1; D2) + ∆ (D2; D3).
For any distribution Z,

∆ ((D1, Z); (D2, Z)) = E
z∼Z

[∆ (D1|Z=z; D2|Z=z)] .

CCC 2023

9:10 Hardness Against Linear Branching Programs and More

(Markov argument) For any distribution Z, if (D1 ≈ε D2) | Z, then

Pr
z∼Z

[
D1|Z=z ≈√

ε D2|Z=z

]
≥ 1 −

√
ε

2.3 Conditional Min-entropy
In this work we use a fine-grained definition of conditional min-entropy called average
conditional min-entropy which was introduced in [22].

▶ Definition 23 ([22]). For a joint distribution (X, Z), the average conditional min-entropy
of X given Z is

H̃∞(X | Z) := − log
(

E
z∼Z

[
max

x
(Pr [X = x | Z = z])

])
.

For average conditional min-entropy we have the following nice property called chain rule:

▶ Lemma 24 ([22]). Let X, Y, Z be (correlated) random variables such that Supp(Y|Z=z) ≤
2λ for every z ∈ Supp(Z). Then

H̃∞(X | (Y, Z)) ≥ H̃∞((X, Y) | Z) − λ ≥ H̃∞(X | Z) − λ.

The average conditional min-entropy can be converted into worst-case conditional min-entropy
with the following lemma.

▶ Lemma 25 ([22, 44]). Let X, Z be (correlated) random variables. For every ε > 0,

Pr
z∼Z

[
H∞(X|Z=z) ≥ H̃∞(X | Z) − log(1/ε)

]
≥ 1 − ε.

2.4 Extractors
First we define a more general form of seeded extractors. (In the standard definition of
seeded extractor, we consider Y to be the uniform distribution over S.)

▶ Definition 26. Let X , S be two finite sets. Let Y be a distribution over S. We say
Ext : X × S → {0, 1}m is a (k, ε)-extractor with seed Y if for every distribution X ∈ X
independent of Y such that H∞(X) ≥ k,

Ext(X, Y) ≈ε Um.

Furthermore, we say Ext is strong in g(Y) for some deterministic function g if

(Ext(X, Y) ≈ε Um) | g(Y).

When Ext is strong in Y we simply say Ext is strong.

For strong seeded extractor we have the following standard lemma.

▶ Lemma 27. Suppose Ext : X × S → {0, 1}m is a (k, ε)-strong extractor with seed Y, where
Y is the uniform distribution over a set S ⊆ S. Then for every Y′ such that Supp(Y′) ⊆ S

and H∞(Y′) ≥ H∞(Y) − ∆, Ext is a (k, 2∆ε)-strong extractor with seed Y′.

We need the following form of leftover hash lemma. This is more general than the original
lemma in [33], but is also standard in the literature. (See, e.g., [53, Problem 6.3].)

E. Chattopadhyay and J.-J. Liao 9:11

▶ Lemma 28 (Leftover Hash Lemma [33]). Consider any h : {0, 1}n × S → {0, 1}m and any
distribution Y ∈ S such that for every distinct x1, x2 ∈ {0, 1}n, Pry∼Y [h(x1, y) = h(x2, y)] ≤
(1 + ε)2−m. (We say h is ε-almost universal over randomness Y if h and Y satisfy the
condition above.) Then h is a strong (m + log(1/ε),

√
ε/2)-extractor with seed Y.

We will also use the following lemma for seeded extractors on conditional min-entropy from
[53, Problem 6.8]. We need a more general form which works for the general seeded extractors
defined above. We include a proof in Appendix C for completeness. (In the standard form of
the following lemma, Y is a uniform over S, and Xe = X for every e.)

▶ Lemma 29. Let (X, Y, E) be a joint distribution such that X ∈ X and Y ∈ S are
independent conditioned on E, and H̃∞(X | E) ≥ k. Let Ext : X × S → {0, 1}m be a function
which satisfies the following conditions for an error parameter ε > 0 and a deterministic
function g: for every e ∈ Supp(E), there exists a set Xe ⊆ X with size at least 2k+1 such
that Ext when restricted to the domain Xe × S is a (k, ε)-extractor with seed Y|E=e and is
strong in g(e, Y). Then

(Ext(X, Y) ≈3ε Um) | (E, g(E, Y)).

3 Linear BP lower bounds based on sumset extractors

In this section, we prove Theorem 11 that we restate below. We note that Theorem 8 follows
as a special case of this theorem.

▶ Theorem 11 (restated). Let SumExt′ : Fn
2 → {0, 1} be a function such that SumExt′(A +

B) ≈ε U1 for any independent distributions A, B ∈ Fn
2 which satisfy H∞(A) ≥ k1, H∞(B) ≥

k2 and the following two additional properties.
B is almost affine: the span of Supp(B) is of dimension ≤ k2 + 1.
A and B have non-intersecting span: span(Supp(A)) ∩ span(Supp(B)) = {0}.

Then

ROLBP9ε(SumExt′) > 2n−k1−k2−2.

We first discuss the main ideas behind the proof before formally proving it. Given a
read-once linear BP P : Fn

2 → {0, 1} and any b ∈ {0, 1}, the uniform distribution over the
pre-image P −1(b) corresponds to the uniform distribution over all the computation path
from the source s to the sink labeled b. For every edge e, whether a computation path
pass goes through e and ends at a sink labeled b can be divided into two events: whether
a path starting from s would reach e, and whether a path starting from e would end at a
sink labeled b. The strongly read-once property guarantees that we can divide Fn

2 into two
complemented subspaces VA, VB such that the first event is determined by the projection of
the input x ∈ Fn

2 on VA, and the second event is determined by the projection of x on VB.
Given a uniform input X ∈ Fn

2 , the two projections are independent. Therefore, conditioned
on the computation path passing through e and end at a sink labeled b, X can be written as
the sum of two independent sources A + B, where Supp(A) ⊆ VA and Supp(B) ⊆ VB. It
remains to choose a cut E such that for every choice of e ∈ E, the two sources A, B stated
above both have enough entropy.

We formalize the ideas above as the following structural lemma:

▶ Lemma 30. Let X be a uniform random variable over Fn
2 . For every strongly read-once

linear BP f : Fn
2 → {0, 1} of size s and every d ∈ [n], there exists a random variable E, and

random variables A, B ∈ Fn
2 , s.t.

CCC 2023

9:12 Hardness Against Linear Branching Programs and More

E has support size at most 2s.
X = A + B
For every e ∈ Supp(E), define Ae = A|E=e and Be = B|E=e. Then we have

Ae and Be are independent.
Be is uniform over an affine subspace V B

e of dimension d

There exists a complemented subspace V A
e of V B

e such that Ae ∈ V A
e

There is a deterministic function g s.t. g(E, B) = f(X).

Proof. We show that there exist some functions E, A, B s.t. E = E(X), A = A(X), B = B(X)
satisfy the above claim. Fix any x ∈ Fn

2 . Consider the computation path of x, and let v be the
first node on this path which satisfies that dim(Postv) ≤ d. Note that v is well-defined because
the last node w on this path satisfies dim(Postw) = 0 ≤ d. Then we define E(x) := (u → v)
to be the edge right before v in this path. (If v is the source, we define u to be a dummy
node ⊥, and define Pre⊥ = {0}.) First we claim that dim(Preu) ≤ n − d. If u = ⊥ then the
claim is trivially true. Otherwise, observe that dim(Postu) ≥ d + 1 by the definition of v,
and by the strongly read-once property we have

dim(Preu) ≤ n + dim(Preu ∩ Postu) − dim(Postu) ≤ n + 1 − (d + 1) = n − d.

Observe that Preu ∩ Postv = {0} by the strongly read-once property. Now we choose an
arbitrary basis (b1, b2, . . . , bn) of Fn

2 such that span({bi}1≤i≤dim(Preu)) = Preu and
span({bn−i}0≤i<dim(Postv)) = Postv. Define Pre′

u = span({bi}1≤i≤n−d) and
Post′

v = span({bi}n−d<i≤n). Note that Preu ⊆ Pre′
u, Postv ⊆ Post′

v and Pre′
u and Post′

v are
complemented subspaces. Then define (A(x), B(x)) to be the unique pair in (Post′

v)⊥ ×
(Pre′

u)⊥ s.t. A(x) + B(x) = x. It remains to prove that E = E(X), A = A(X), B = B(X)
satisfy our claim.

First it’s easy to see that the support size of E is upper bounded by 2s: if the source s

satisfies dim(Posts) ≤ d, v is always the source s and E has support size 1; otherwise E is an
edge in the branching program, and there are at most 2s choices. Moreover, X = A + B
by definition of A and B. To prove the remaining two claims, consider any possible fixing
E = e := (u → v). Let (Ae(x), Be(x)) denote the unique pair in (Post′

v)⊥ × (Pre′
u)⊥ s.t.

Ae(x) + Be(x) = x. We claim that there exists a set S ⊆ (Post′
v)⊥ so that E(x) = e if and

only if Ae(x) ∈ S. This implies that (A, B)|E=e is exactly the uniform distributions over
S × (Pre′

u)⊥, which satisfies the third claim by taking V B
e = (Pre′

u)⊥ and V A
e = (Post′

v)⊥.
To prove this claim, observe that whether E(x) = e can be decided by the following
procedure. We follow the computation path of x, but stop and answer “NO” if we reach
any node w such that either w cannot reach u (so that E(x) can never be e regardless of
the remaining queries) or dim(Postw) ≤ d (so that E(x) would be the edge ending at w

instead of e). Otherwise, if we reach the edge e we stop and answer “YES” . Observe that
every linear query ℓ we made in this procedure is in Preu. Moreover, for every such query,
ℓ(x) = ℓ(Ae(x)) + ℓ(Be(x)) = ℓ(Ae(x)) because Be(x) ∈ (Pre′

u)⊥ ⊆ (Preu)⊥. Therefore, the
event E(x) = e is completely determined by Ae(x), which proves our claim. Finally, observe
that conditioned on E(x) = e, the value of f(x) is determined by queries in Postv, and
every such query ℓ satisfies that ℓ(x) = ℓ(Ae(x)) + ℓ(Be(x)) = ℓ(Be(x)) = ℓ(B(x)) because
Ae(x) ∈ (Post′

v)⊥ ⊆ (Postv)⊥. Therefore by choosing g(e, ·) to be the subprogram of f

starting at v, the last condition is also satisfied. ◀

Now we are ready to prove Theorem 11.

E. Chattopadhyay and J.-J. Liao 9:13

Proof of Theorem 11. Let SumExt′ be a function which satisfies the conditions in The-
orem 11 with parameters (k1, k2, ε), and let f : Fn

2 → {0, 1} be any strongly read-once linear
BP of size s = 2n−k1−k2−2. Let X be a uniform random variable over Fn

2 . We want to show
that

(SumExt′(X), f(X)) ≈9ε (U1, f(X)), (1)

which would imply Prx∼X
[
f(x) = SumExt′(x)

]
≤ 1

2 + 9ε for every f of size s, and hence
ROLBP9ε(SumExt′) > s.

Let E, A, B be the random variables depending on X as in Lemma 30, by taking d = k2 +1.
Recall that E, A, B have the following properties:

E has support size at most 2s.
X = A + B
For every e ∈ Supp(E), define Ae = A|E=e and Be = B|E=e. Then we have

Ae and Be are independent.
There exist complemented subspaces V A

e , V B
e of dimension n − d and d such that Be

is uniform over V B
e and Ae ∈ V A

e .
There is a deterministic function g s.t. g(E, B) = f(X).

Therefore we can rewrite Equation (1) as

(SumExt′(A + B) ≈9ε U1) | g(E, B). (2)

Consider the function Ext : (Fn
2)2 → {0, 1} defined as Ext(a, b) = SumExt′(a + b). We

claim that for every e ∈ Supp(E), Ext restricted on the domain V A
e × Fn

2 is a (k1, 3ε)-
extractor with seed Be and is strong in g(e, Be). This would imply Equation (2) because of
the following. Observe that

H̃∞(A | E) = H̃∞(A | (B, E)) ≥ H̃∞((A, B) | E) − d ≥ (n − log(2s)) − d ≥ k1,

where the first equality is by the fact that A and B are independent conditioned on E, and
the first and second inequalities are by chain rule (Lemma 24). Furthermore, we can w.l.o.g.
assume that k1 + k2 ≤ n − 2 (since otherwise the bound is trivial), and this would imply
|V A

e | = 2n−d ≥ 2k1+1. Therefore we can apply Lemma 29 on Ext to get Equation (2).
Next we prove the claim. Let A′ ∈ V A

e be any distribution such that H∞(A′) ≥ k1.
By definition of SumExt′, we have that for every random variable B′ ∈ V B

e such that
H∞(B′) ≥ dim(V B

e) − 1 = k2,

SumExt′(A′ + B′) ≈ε U1.

In other words, the function Ext′ : V B
e × Fn

2 → {0, 1} defined as Ext′(b, a) = SumExt′(a + b)
is a (k2, ε)-extractor with seed A′. By chain rule, H̃∞(Be | g(e, Be)) ≥ H∞(Be) − 1 = k2.
Therefore, by Lemma 29 we can conclude that

(SumExt′(A′ + Be) ≈3ε U1) | g(e, Be),

and this is exactly what we claimed. ◀

CCC 2023

9:14 Hardness Against Linear Branching Programs and More

4 Average-case lower bound with negligible error

As we discussed in the introduction, Theorem 8 only implies average-case lower bound
with polynomially small error because it is not known how to construct a (k1, k2, ε)-sumset
extractor for entropy k1 + k2 < n with negligible error ε. However, we proved a stronger
theorem, Theorem 11, which says that we only need an extractor for sumset sources A + B
with two additional properties:

B is almost affine: Supp(B) is contained in a linear subspace of dimension H∞(B) + 1,
and
A and B have non-intersecting span: span(Supp(A)) ∩ span(Supp(B)) = {0}.

In this section we will see that we only need either of the two properties to prove a 2(1/3−γ)n

average-case lower bound with exponentially small error.

4.1 Sumset extractors for almost affine source
In this section, we show that a directional affine extractor can work for a sumset source
A + B as long as B is almost affine. The proof is simply an application of leftover hash
lemma (Lemma 28).

▶ Lemma 31. Let DAExt : Fn
2 → {0, 1} be any (d, ε/2)-directional affine extractor. Then

for any B ∈ Fn
2 which is uniform over an affine subspace of dimension d, and any A ∈ Fn

2
independent of B such that H∞(A) ≥ log(1/ε) + 1,

(DAExt(A + B) ≈√
ε/2 U1) | B.

Proof. Observe that for every distinct a1, a2 ∈ Fn
2 ,

Pr
b∼B

[DAExt(a1+b) = DAExt(a2+b)] = Pr
b∼B

[(DAExt(a1+b)+DAExt(a2+b)) = 0] ≤ 1 + ε

2 ,

by definition of (d, ε/2)-directional affine extractor. This means the function h(a, b) =
DAExt(a + b) is ε-almost universal over randomness B. By leftover hash lemma (Lemma 28),
h is a (log(1/ε)+1,

√
ε/2)-strong extractor with seed B. In other words, for every distribution

A ∈ Fn
2 independent of B such that H∞(A) ≥ log(1/ε) + 1,

(DAExt(A + B) ≈√
ε/2 U1) | B. ◀

▶ Corollary 32. Let DAExt : Fn
2 → {0, 1} be any (d, ε/2)-directional affine extractor. Then

for any independent distributions A, B ∈ Fn
2 such that H∞(A) ≥ log(1/ε)+1, H∞(B) ≥ d−1

and dim(span(Supp(B))) ≤ d,

DAExt(A + B) ≈3
√

ε/2 U1.

Proof. Let V be a linear subspace of dimension d such that Supp(B) ⊆ V , and let B′ denote
the uniform distribution over V . Define Ext : (Fn

2)2 → {0, 1} to bet Ext(a, b) = DAExt(a+b).
By Lemma 31, Ext is a strong (log(1/ε) + 1,

√
ε/2)-extractor with seed B′. Since H∞(B) ≥

d − 1 = H∞(B′) − 1, by Lemma 27, Ext is a strong (log(1/ε) + 1, 3
√

ε/2)-extractor with
seed B, which is exactly what we want to prove. ◀

Apply Theorem 11 on Corollary 32 by taking k1 = log(1/ε) + 1 and k2 = d − 1, we get an
alternative proof of [29, Theorem 17].

E. Chattopadhyay and J.-J. Liao 9:15

▶ Theorem 33. If DAExt is a (d, ε/2)-directional affine extractor, then

ROLBP27
√

ε/2(DAExt) ≥ ε2n−d−1.

▶ Remark 34. The error in the above theorem is worse than [29, Theorem 17] by a constant
factor 27, but we note that our proof above is just a modular presentation of the proof in [29,
Theorem 17], and the factor 27 can be removed by a more careful analysis of this specific
construction. That is, in the proof of Theorem 11 we actually need an affine source with 1-bit
leakage instead of an almost affine source, so a factor 9 incurred by arguments related to
average conditional min-entropy is unnecessary. Second, a seeded extractor based on leftover
hash lemma can in fact work for average conditional min-entropy without any loss (see [22]),
so we can remove another factor 3.

Recall that [29, Theorem 15] shows that there is an explicit (d + log(1/ε), ε/2)-directional
affine extractor. This implies the following corollary:

▶ Corollary 35. For every constant γ > 0, there exists an explicit function DAExt : Fn
2 →

{0, 1} such that

ROLBP2−γn(DAExt) > 2(1/3−2γ)n−O(1).

▶ Remark 36. We note that while directional affine extractors imply sumset extractors with
the additional “almost affine” restriction, the converse is not true. For example, if we take
any sumset extractor Ext on n-bit input, and construct a new function Ext′ on (n + 1)-bit
input which simply ignore the first bit and compute Ext on the last n bits, then Ext′ is
still a sumset extractor, but Ext′ cannot be a directional affine extractor, because the shift
a = (1, 0, . . . , 0, 0) ∈ Fn+1

2 would make Ext′(X + a) + Ext′(X) = 0 for every source X.

4.2 Sumset extractors for non-intersecting span
To utilize the non-intersecting span property, we show that the interleaved-source extractor
in [12] can be extended to work for the sum of two independent sources A, B as long as
both A, B has entropy rate greater than 1/3 and A + B has entropy rate greater than 2/3.
Formally, we prove the following theorem which extends Theorem 8.1 in [12].7

▶ Theorem 12 (restated). For every constant δ > 0, there exists constants γ, τ > 0 and an
explicit function ILExt : Fn

2 → {0, 1}m, m = γn, such that for any two independent sources
A, B ∈ Fn

2 which satisfies that
H∞(A), H∞(B) ≥ (1

3 + δ)n
H∞(A + B) ≥ (2

3 + 2δ)n
we have

ILExt(A + B) ≈2−τn Um.

This theorem also implies a roughly 2n/3 average-case lower bound:

▶ Corollary 37. For every constant δ > 0, there exists a constant τ > 0 and an explicit
function ILExt : Fn

2 → {0, 1} such that

ROLBP2−τn(ILExt) > 2(1/3−2δ)n.

7 Note that we also improve the error from 2n−Ω(1)
in [12] to 2−Ω(n). This improvement comes from a

better construction of affine correlation breakers in more recent works [7, 13].

CCC 2023

9:16 Hardness Against Linear Branching Programs and More

Proof. Let ILExt be the extractor in Theorem 12 with parameter δ > 0, and let τ > 0 be the
corresponding constant in Theorem 12. (The output of ILExt is truncated to 1 bit.) Observe
that given any two independent sources A, B ∈ Fn

2 , span(Supp(A)) ∩ span(Supp(B)) = {0}
implies that for every x ∈ Supp(A + B), there is a unique pair (a, b) ∈ Supp(A) × Supp(B)
such that a + b = x, where a is the projection of x on span(Supp(A)) and b is the projection
of x on span(Supp(B)). This implies H∞(A + B) = H∞(A) + H∞(B). Therefore, we can
apply Theorem 11 on ILExt by taking k1 = k2 = (1/3 + δ)n and conclude that

ROLBP2−τn(ILExt) > 2(1/3−2δ)n. ◀

Before we formally prove Theorem 12, first we recall the construction of the interleaved-
source extractor in [12]. The construction can be viewed as an affine variant of the three-
source extractor in [18], which is as follows. Suppose we have three independent sources
X, Y, Z ∈ {0, 1}n with min-entropy δn. The first step is to apply a somewhere random
condenser on Z to get t = O(1) correlated sources (S1, . . . , St) ∈ ({0, 1}d1)t such that there
exists an unknown i∗ ∈ [t] for which Si∗ is guaranteed to have min-entropy (1 − β)d1, for
some small enough constant β > 0. The second step is to compute Ri = Ext(Y, Si) for every
i ∈ [t] with some strong seeded extractor Ext. This makes sure that Ri∗ is close to uniform,
but we still don’t know i∗, and Ri∗ is correlated with other Ri. To fix this problem, the
final step is to apply a correlation breaker to “break the correlation” between (R1, . . . , Rt)
with the help of the remaining independent source X, and merge them into a single uniform
string by computing their parity.

In the interleaved source/sumset source setting, we are only given one source A + B. To
apply the above three-source extractor construction, [12] takes a prefix of A + B of length
n1, denoted by A0 + B0, to play the role of Z in the above construction. Then A and B
would play the roles of X and Y in the above construction respectively. In fact, since we do
not have access to A and B separately, we would actually use A + B to play the role of both
X and Y. We would take Ext to be a strong linear seeded extractor, and the correlation
breaker to be an affine correlation breaker, so that A + B can play the role of B and A
respectively in the analysis. We will see the definitions of these primitives later.

To see why taking Z to be the prefix A0 + B0 could possibly work, first observe that in
the above construction, we only need a block source (Z, X) and another independent source
Y, instead of three independent sources. That is, we only need (X, Z) to be independent of
Y, and X to have enough entropy conditioned on Z, because we would fix Z after the first
step in the analysis. Therefore, as long as A0 has enough entropy, we can fix B0 in the first
step, and (A, A0 + B0) would become independent of B. For the analysis to work, we need
to make sure that after fixing both A0 and B0, both A and B still have enough entropy.
Therefore, we need H∞(A), H∞(B) to be greater than n1. At the same time, we also need
n1 to be large enough so that A0 contains enough entropy. (Note that A, B are symmetric
in the construction, so the analysis can also work if B0 contains enough entropy instead.) It
turns out that it suffices to take n1 = n/3 if A + B is an interleaved source, and this is the
only place where [12] needs A + B to be an interleaved source. We observe that what we
actually need in the analysis is that H∞(A + B) is larger than 2n/3.

Next we introduce the primitives that we mentioned in the above construction. First we
define somewhere random sources and somewhere random condenser.

▶ Definition 38. We say (R1, . . . , Rt) ∈ ({0, 1}n)t is an elementary somewhere random
k-source if there exists i ∈ [t] s.t. H∞(Ri) ≥ k. A somewhere random k-source is a convex
combination of elementary somewhere random k-sources.

E. Chattopadhyay and J.-J. Liao 9:17

▶ Definition 39. We say SRCon : {0, 1}n → ({0, 1}m)t is a (α1 → α2, ε)-somewhere random
condenser if for every X ∈ {0, 1}n such that H∞(X) ≥ α1n, SRCon(X) is ε-close to a
somewhere random (α2m)-source.

▶ Lemma 40 ([2, 48, 55]). For every constants δ, β > 0, there exist constants t ∈ N and
γ1, γ2 > 0 such that the following holds. For every large enough n ∈ N, there exists an explicit
(δ → 0.99, ε)-somewhere random condenser SRCon : {0, 1}n → ({0, 1}γ1n)t where ε = 2−γ2n.

The second primitive we need is a strong linear seeded extractors. We say a seeded extractor
Ext : X × S → {0, 1}n is linear if for every s ∈ S, Ext(·, s) is a linear function. We need a
linear seeded extractor with good dependence on the error, which can be constructed with a
composition of GUV condenser [30] and leftover hash lemma [33]. (See, e.g., [7] for a proof.)

▶ Lemma 41. For every m and ε > 0, and every d ≥ 2m + 8 log(n/ε) + O(1), there is an
explicit (k, ε)-strong linear extractor LExt : {0, 1}n × {0, 1}d → {0, 1}m with seed Ud, where
k ≥ m + 2 log(1/ε) .

Specifically, we want to choose ε small enough to get a seeded extractor that works for
high-entropy seed.

▶ Lemma 42. For every d ≥ 200 log(n), there is an explicit function LExt : {0, 1}n ×
{0, 1}d → {0, 1}d/3, such that for every distribution Y ∈ {0, 1}d which satisfies H∞(Y) ≥
0.99d, LExt is a (0.5d, 2−0.02d)-strong extractor with seed Y.

Proof. We claim that we can take LExt to be the (k, ε)-extractor in Lemma 41, where
ε = 2−0.03d and k = 0.5d. Note that the restriction on k and d is satisfied by our choice of
parameters. Since LExt is a strong-(k, 2−0.03d) extractor with seed Ud, Lemma 27 implies
that for every distribution Y ∈ {0, 1}d with min-entropy 0.99d, LExt is a (k, 2−0.02d)-strong
extractor with seed Y. ◀

Finally we introduce (a special case of) affine correlation breakers. Roughly speaking, if
we are given correlated random variables (Y1, . . . , Yt) where Yi is uniform, we can feed
(Y1, . . . , Yt) into a correlation breaker, and break the correlation of the i-th output from the
other output, with the help of an extra independent source X. We say a correlation breaker
is an affine correlation breaker if we allow the extra source to be in the form X = A + B
where A is an independent source but B can be correlated with (Y1, . . . , Yt).

▶ Definition 43 ([41, 10]). We say ACB : {0, 1}n × {0, 1}d × [t] → {0, 1}m is a (t, k, ε)-affine
correlation breaker if for every distribution A, B ∈ {0, 1}n, Y1, . . . , Yt ∈ {0, 1}d and every
i∗ ∈ [t] such that

H∞(A) ≥ k,
A is independent of (B, Y1, . . . , Yt),
Yi∗ = Ud,

it holds that

(ACB(A + B, Yi∗ , i∗) ≈ε Um) | {ACB(A + B, Yi, i)}i∈[t]\{i∗}

We need the following construction of affine correlation breaker which can work for ε = 2−Ω(n).

▶ Lemma 44 ([7, 13]). For every t = O(1), there exists a universal constant C such that
for ε > 0 and m ∈ N, there exists an explicit (t, k, ε)-affine correlation breaker ACB :
{0, 1}n × {0, 1}d × [t] → {0, 1}m such that d = C log(n/ε) and k = C(m + log(n/ε)).

CCC 2023

9:18 Hardness Against Linear Branching Programs and More

Now we are ready to prove Theorem 12.

Proof of Theorem 12. The construction of ILExt is as follows.
1. Take X1 to be a length-(n/3) prefix of X.
2. Compute (S1, S2, . . . , St) = SRCon(X1), where SRCon : {0, 1}n/3 → ({0, 1}γ1n)t is the

(3δ → 0.99, 2−γ2n) somewhere random condenser from Lemma 40. (t ∈ N, γ1 > 0, γ2 > 0
are constants depending on δ. Specifically, we can make γ1 < δ.)

3. Define γ3 = min(δ/3t, γ1/3), and let LExt : {0, 1}n × {0, 1}γ1n → {0, 1}γ3n be the
(0.5γ1n, 2−0.01γ1n)-strong linear extractor from Lemma 42 which can work for any seed
with 0.99γ1n min-entropy. Note that for every constant γ1 > 0 we can guarantee that
γ1n ≥ 200 log(n) for large enough n.8
For every i ∈ [t], compute Ri = LExt(X, Si).

4. Output ILExt(X) :=
⊕

i∈[t] ACB(X, Ri, i), where ACB : {0, 1}n × {0, 1}γ3n × [t] →
{0, 1}γn is the (t, (δ/2)n, 2−γ4n)-affine correlation breaker from Lemma 44, where γ4, γ > 0
are small enough constants that satisfy the constraints γ3n ≥ C log(n/ε) and (δ/2)n ≥
C(log(n/ε) + γn) in Lemma 44. (C is a constant depending on t.) It suffices to choose
γ4 = min(γ3/2C, δ/4C) and γ = δ/8C.

Next we prove the correctness of this construction. Let A0 be the prefixes of A of length
(1/3)n respectively, and B0 be the prefixed of B of length (1/3)n. First observe that either
H∞(A0) ≥ δn or H∞(B0) ≥ δn, since

H∞(A0) + H∞(B0) ≥ H∞(A0 + B0) ≥ H∞(A + B) − (2/3)n ≥ 2δn.

Note that A and B are symmetric in this theorem, so without loss of generality we assume
that H∞(A0) ≥ δn. By Lemma 24 and Lemma 25, we have H∞(B|B0=b0) ≥ (δ/2)n with
probability 1 − 2−(δ/2)n over the fixing B0 = b0. For the rest of the proof we fix B0 = b0 and
only consider b0 which makes H∞(B) ≥ (δ/2)n, and add back the 2−(δ/2)n = 2−Ω(n) error in
the end.

Observe that H∞(X0) = H∞(A0 + b0) ≥ δn. Therefore S[t] is 2−γ2n-close to a somewhere
random 0.99γ1n-source. For every i ∈ [t], define RA,i = LExt(A, Si) and RB,i = LExt(B, Si).
Note that Ri = RA,i + RB,i. Now assume that there exists i ∈ [t] such that Si has min-
entropy 0.99γ1n. Because Si is independent of B, and H∞(B) ≥ 0.5δn ≥ 0.5γ1n, we have
then RB,i ≈2−Ω(n) Uγ3n with probability 1 − 2−Ω(n) over the fixing of Si by our choice of
parameters of LExt and Markov argument. Moreover, after fixing Si, RB,i is independent of
A0. Therefore, with probability 1 − 2−Ω(n) over the fixing of A0 (which would also fix Si),
RB,i ≈2−Ω(n) Uγ3n. Then observe that we can remove the assumption and use the fact that
S[t] is 2−γ2n-close to a somewhere random 0.99γ1n-source to conclude that with probability
1−2−Ω(n) over the fixing of A0, there exists i∗ ∈ [t] such that RB,i∗ ≈2−Ω(n) Uγ3n. Moreover,
since RA,[t] is independent of RB,i∗ after fixing A0, we have Ri∗ ≈2−Ω(n) Uγ3n over any
further fixing of RA,[t].

Next, observe that by Lemma 24,

H̃∞(A | (A0, RA,1, . . . , RA,t)) ≥ H∞(A) − (1/3)n − (tγ3)n ≥ (2/3)δn.

By Lemma 25 and union bound, we can conclude that with probability 1 − 2−Ω(n) over
the fixing of A0, RA,1, . . . , RA,t, we have Ri∗ ≈2−Ω(n) Uγ3n and H∞(A) ≥ δ/2n. Moreover,
observe that under any such fixing, A is independent of (B, R[t]). Therefore, by Lemma 44
we can conclude that

8 If γ3 < 1/3 we can simply take the prefix of length γ3n of the output. The output is still uniform, and
LExt is still linear.

E. Chattopadhyay and J.-J. Liao 9:19

(ACB(A + B, Ri∗ , i∗) ≈2−γ4n Uγn) | {ACB(A + B, Ri, i)}i∈[t]\{i∗},

which implies

ILExt(A + B) =
⊕
i∈[t]

ACB(A + B, Ri∗ , i∗) ≈2−γ4n Uγn.

Finally, after adding back all the 2−Ω(n) error that we mentioned above, the error is still
2−Ω(n). ◀

5 Kakeya sets and HSGs for regular ROLBPs

In this section, we prove Theorem 18, which says that rank-r Kakeya set is a hitting set for
oblivious ROLBPs of width (r + 1), and Theorem 20, a size lower bound for rank-r Kakeya
set over Fn

2 .
In [6], it was proved that a Hamming ball of radius (w − 1) is a hitting set for regular

read-once branching program of width w.9 Their proof relies on the fact that there are only
(w − 1) “crucial layers” such that we can only make a “fatal decision” which goes from a
“possibly accept” node to an “always reject” node in these layers. The formal statement is as
follows.

▶ Lemma 45 ([6]). For a ROBP f on Fn
2 with layers L0, L1, . . . , Ln, we say a layer Li is

crucial if there exists v ∈ Li and an edge (u → v) such that u can reach an accepting state
but v cannot.10 Then for every w ∈ N, a regular ROBP of width w has at most (w − 1)
crucial layers.

Based on this lemma, [6] observed that in order to find an input x of which the computation
path reaches an accepting state, we only need to make sure that we do not make any fatal
decision in the crucial layers, and the bits read in the other layer can simply be set to 0.
Therefore, the Hamming ball of radius (w − 1) centered around 0 is a hitting set for regular
ROBPs of width w, because the Hamming ball covers every possible decision in the crucial
layers, no matter where the crucial layers are. This makes sure that we can find a string
which does not make any fatal decision, and this string would reach the sink labeled with 1
in the end.

To generalize this argument to the setting of regular ROLBPs, we want to find a set H

such that for every possible rotation R of Fn
2 , the rotation of H (denoted by R(H)) contains

a string which does not make any fatal decision. A naive idea is to find a set which contains
every possible rotation of Hamming balls centered at 0. However, this contains exactly the
whole set Fn

2 . To deal with this issue, we observe that for the argument in [6] to work, we
only need to make sure that for every possible choices of crucial layers Li1 , . . . , Liw−1 , where
I = {i1, . . . , iw−1} ⊆ [n], there exists a fixing of the bits outside the crucial layer, such that
we enumerate over every possible choice of bits in the crucial layers. Note that the fixing
does not need to be 0 and can depend on the choice of crucial layers I. That is, for every set
I ⊆ [n] of size at most (w − 1), we need to enumerate over a subcube with free bits in I and
arbitrary fixing outside I. To ensure this for every possible rotation, what we need is exactly
a Kakeya set. Next we give a formal proof of our argument.

9 A Hamming ball of radius r centered around c ∈ {0, 1}n is the set of all the strings which are different
from c in at most r bits.

10 Accepting states are the sinks with label 1.

CCC 2023

9:20 Hardness Against Linear Branching Programs and More

▶ Lemma 46. Let H ⊆ Fn
2 be a set which satisfies the following: for every I ⊆ [n] of size

(w − 1), there exists b ∈ Fn
2 such that b + span({ei}i∈I) ⊆ H. Then H is a hitting set for

regular branching programs of width w.

Proof. Let f be a regular branching program of width w which accepts at least one string.
By Lemma 45, there are at most (w − 1) crucial layers in f . Let I denote the set of indices
of these crucial layers. By assumption there exists b ∈ Fn

2 such that b + span({ei}i∈I) ⊆ H.
Now we define a string b′ ∈ Fn

2 inductively as follows. Let v0 be the source of f , and for
every non-sink node v and every b ∈ {0, 1} let next(v, b) denote the node which v connects
to with an edge of label b. For i from 1 to n, we define b′

i (the i-th bit of b′) as follows:
If i ̸∈ I, then set b′

i = bi.
If i ∈ I, then set b′

i = 0 if next(vi−1, 0) can reach a accepting state. Otherwise set b′
i = 1.

Then we define vi = next(vi−1, b′
i). First observe that b′ only differ from b on the bits with

indices in I. Therefore b′ ∈ H. It remains to prove that f(b′) = 1. Next we prove by
induction that every vi can reach a accepting state. This means vn is a accepting state, i.e.
f(b′) = 1. For the base case, note that v0 is the source and hence can reach a accepting
state by assumption. To prove that vi can reach an accepting state assuming that vi−1 can
reach an accepting state, consider two cases. If i ̸∈ I, then the i-th layer is not crucial,
which means vi can reach a accepting state. If i ∈ I, observe that at least one node in
{next(vi−1, 0), next(vi−1, 1)} should be able to reach a accepting state, because they are the
only nodes that vi−1 can connect to, and vi−1 can reach a accepting state. Therefore vi can
also reach a accepting state by definition of b′

i. ◀

Now we are ready to prove Theorem 18.

Proof of Theorem 18. Let K be a rank-r Kakeya set, and f be any oblivious ROLBP of
width (r + 1) that accepts at least one string. Observe that there exists a full-rank matrix
R ∈ Fn×n

2 and a read-once regular BP f ′ of width (r + 1) such that for every x ∈ Fn
2 we have

f(x) = f ′(Rx). We claim that f ′ accepts at least one string in H = {Rx : x ∈ K}, which
implies that f accepts at least one string in K.

For every I ⊆ [n] of size r, observe that there exists b ∈ Fn
2 such that

b + span({R−1ei}i∈I) ⊆ K,

by definition of Kakeya set. This implies that Rb + span({ei}i∈I) ⊆ H. By Lemma 46, H is
a hitting set for regular branching programs of width (r + 1). Therefore f ′ accepts at least
one string in H. ◀

▶ Corollary 47. For every r, n ∈ N s.t. r ≤ n, there is an explicit hitting set K ⊆ Fn
2 for

oblivious read-once regular linear BP of width (r + 1) such that |K| ≤ 2⌈(1−2−r)n⌉+r.

5.1 Limitation to our approach
Next we prove Theorem 20, which proves a lower bound on rank-r Kakeya sets and implies
that the seed length of hitting set generator based on our approach cannot be improved by
much.

▶ Theorem 20 (restated). Every rank-r Kakeya set over Fn
2 has size at least 2(1−2−r)(n+2)−r.

Proof. Let sn,r denote the minimum size of rank-r Kakeya set over Fn
2 . Clearly Sn,0 = 1 for

every n ∈ N. We will show that for every n, r we have S2
n,r ≥ 2n+1Sn−1,r−1, and then the

claimed bound easily follows by induction.

E. Chattopadhyay and J.-J. Liao 9:21

To prove this claim, consider any rank-r Kakeya set over Fn
2 , denoted by K, and for every

non-zero a ∈ Fn
2 define Ka = {v ∈ Fn

2 : v ∈ K ∧ v + a ∈ K}. We claim that for every a we
have |Ka| ≥ 2Sn−1,r−1. (Note that this also implies |K| ≥ 2Sn−1,r−1 because every Ka is a
subset of K.) To prove this, first we assume w.l.o.g. that the n-th bit of a is 1, and define
K ′

a = {v′ ∈ Fn−1
2 : v′ ◦ 0 ∈ Ka}. Note that |K ′

a| = |Ka|/2 because for every v ∈ Fn
2 we have

v ∈ Ka if and only if v + a ∈ Ka, and exactly one of {v, v + a} has the last bit being 0.
We claim that K ′

a is a rank-(r − 1) Kakeya set over size Fn−1
2 , and hence has size at

least Sn−1,r−1. To prove this, consider any subspace V ′ ⊆ Fn−1
2 of dimension (r − 1), and

let V denote the subspace of Fn
2 which consists of vectors in V ′ padded with a 0 in the last

bit. Since K is a rank-r Kakeya set, there exists b ∈ Fn
2 such that b + V + {0n, a} ⊆ K.

W.l.o.g. we can assume that the last bit of b is 0, i.e. b = b′ ◦ 0 for some b′ ∈ Fn−1
2 . Then

observe that V ′ + b′ ⊆ K ′
a, because for every v′ ∈ V ′ we have that (v′ ◦ 0) + (b′ ◦ 0) ∈ K and

(v′ ◦ 0) + (b′ ◦ 0) + a ∈ K, which implies that v′ + b′ ∈ K ′
a.

Since the same argument works for every subspace V ′ of dimension (r − 1), this means
K ′

a is a rank-r Kakeya set. Finally, consider the bijective function f : Fn
2 × Fn

2 → Fn
2 × Fn

2
defined as f(v1, v2) = (v1, v2 − v1). Observe that the image of f on K × K is exactly
(K × {0n}) ∪

⋃
a∈Fn

2 ,a ̸=0n Ka × {a}. This implies |K|2 ≥ 2n+1Sn−1,r−1, which is exactly the
bound we want. ◀

References
1 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost

k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.
2 Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simulating

independence: New constructions of condensers, ramsey graphs, dispersers, and extractors. J.
ACM, 57(4):20:1–20:52, 2010. doi:10.1145/1734213.1734214.

3 Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff. Pseudorandomness for
width-2 branching programs. Theory of Computing, 9(1):283–293, 2013.

4 Andrej Bogdanov, William M Hoza, Gautam Prakriya, and Edward Pyne. Hitting sets for
regular branching programs. In 37th Computational Complexity Conference (CCC 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

5 Andrej Bogdanov, Periklis A. Papakonstantinou, and Andrew Wan. Pseudorandomness for
read-once formulas. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, pages 240–246, 2011. doi:10.1109/FOCS.2011.57.

6 Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators for
regular branching programs. SIAM Journal on Computing, 43(3):973–986, 2014.

7 Eshan Chattopadhyay, Jesse Goodman, and Jyun-Jie Liao. Affine extractors for almost
logarithmic entropy. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, pages 622–633, 2021. doi:10.1109/FOCS52979.2021.00067.

8 Eshan Chattopadhyay, Jesse Goodman, and David Zuckerman. The space complexity of
sampling. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

9 Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved pseudoran-
domness for unordered branching programs through local monotonicity. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, pages 363–375, 2018.

10 Eshan Chattopadhyay and Xin Li. Extractors for sumset sources. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages 299–311, 2016.
doi:10.1145/2897518.2897643.

11 Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-depth circuits,
and affine functions. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 1171–1184, 2017.

CCC 2023

https://doi.org/10.1145/1734213.1734214
https://doi.org/10.1109/FOCS.2011.57
https://doi.org/10.1109/FOCS52979.2021.00067
https://doi.org/10.1145/2897518.2897643

9:22 Hardness Against Linear Branching Programs and More

12 Eshan Chattopadhyay and Xin Li. Non-malleable codes, extractors and secret sharing for
interleaved tampering and composition of tampering. In Theory of Cryptography - 18th
International Conference, TCC 2020, volume 12552 of Lecture Notes in Computer Science,
pages 584–613, 2020. doi:10.1007/978-3-030-64381-2_21.

13 Eshan Chattopadhyay and Jyun-Jie Liao. Extractors for sum of two sources. In STOC ’22:
54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1584–1597, 2022.
doi:10.1145/3519935.3519963.

14 Eshan Chattopadhyay and David Zuckerman. New extractors for interleaved sources. In 31st
Conference on Computational Complexity, CCC 2016, volume 50 of LIPIcs, pages 7:1–7:28,
2016. doi:10.4230/LIPIcs.CCC.2016.7.

15 Kuan Cheng and William M Hoza. Hitting sets give two-sided derandomization of small space.
In 35th Computational Complexity Conference (CCC 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

16 Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. In Theory of Cryptography Conference, pages 440–464. Springer, 2014.

17 Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988. doi:
10.1137/0217015.

18 Gil Cohen. Local correlation breakers and applications to three-source extractors and mergers.
SIAM J. Comput., 45(4):1297–1338, 2016. doi:10.1137/15M1029837.

19 Gil Cohen and Igor Shinkar. The complexity of DNF of parities. In Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science, ITCS 2016, pages 47–58,
2016. doi:10.1145/2840728.2840734.

20 Evgeny Demenkov and Alexander S. Kulikov. An elementary proof of a 3n - o(n) lower bound
on the circuit complexity of affine dispersers. In Mathematical Foundations of Computer
Science 2011 - 36th International Symposium, MFCS 2011, volume 6907 of Lecture Notes in
Computer Science, pages 256–265, 2011. doi:10.1007/978-3-642-22993-0_25.

21 Yevgeniy Dodis, Xin Li, Trevor D. Wooley, and David Zuckerman. Privacy amplification and
non-malleable extractors via character sums. In IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, pages 668–677, 2011. doi:10.1109/FOCS.2011.67.

22 Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139,
2008. doi:10.1137/060651380.

23 Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryptography
from weak secrets. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, pages 601–610, 2009. doi:10.1145/1536414.1536496.

24 Jordan S Ellenberg, Richard Oberlin, and Terence Tao. The kakeya set and maximal conjectures
for algebraic varieties over finite fields. Mathematika, 56(1):1–25, 2010.

25 Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov.
A better-than-3n lower bound for the circuit complexity of an explicit function. In IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016, pages 89–98, 2016.
doi:10.1109/FOCS.2016.19.

26 Michael A. Forbes and Venkatesan Guruswami. Dimension expanders via rank condensers. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2015, volume 40 of LIPIcs, pages 800–814, 2015.

27 Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, pages 946–955, 2018. doi:10.1109/FOCS.2018.00093.

28 Uma Girish, Avishay Tal, and Kewen Wu. Fourier growth of parity decision trees. arXiv
preprint, 2021. arXiv:2103.11604.

https://doi.org/10.1007/978-3-030-64381-2_21
https://doi.org/10.1145/3519935.3519963
https://doi.org/10.4230/LIPIcs.CCC.2016.7
https://doi.org/10.1137/0217015
https://doi.org/10.1137/0217015
https://doi.org/10.1137/15M1029837
https://doi.org/10.1145/2840728.2840734
https://doi.org/10.1007/978-3-642-22993-0_25
https://doi.org/10.1109/FOCS.2011.67
https://doi.org/10.1137/060651380
https://doi.org/10.1145/1536414.1536496
https://doi.org/10.1109/FOCS.2016.19
https://doi.org/10.1109/FOCS.2018.00093
https://arxiv.org/abs/2103.11604

E. Chattopadhyay and J.-J. Liao 9:23

29 Svyatoslav Gryaznov, Pavel Pudlák, and Navid Talebanfard. Linear branching programs
and directional affine extractors. In 37th Computational Complexity Conference, CCC 2022,
volume 234 of LIPIcs, pages 4:1–4:16, 2022. doi:10.4230/LIPIcs.CCC.2022.4.

30 Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced expanders
and randomness extractors from Parvaresh-Vardy codes. J. ACM, 56(4):20:1–20:34, 2009.
doi:10.1145/1538902.1538904.

31 John Hastad. Almost optimal lower bounds for small depth circuits. Adv. Comput. Res.,
5:143–170, 1989.

32 Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for xor functions.
SIAM Journal on Computing, 47(1):208–217, 2018.

33 Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from
one-way functions (extended abstracts). In Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, STOC 1989, pages 12–24, 1989. doi:10.1145/73007.73009.

34 Stasys Jukna. Boolean Function Complexity – Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

35 Jesse Kamp, Anup Rao, Salil P. Vadhan, and David Zuckerman. Deterministic extractors for
small-space sources. J. Comput. Syst. Sci., 77(1):191–220, 2011. doi:10.1016/j.jcss.2010.
06.014.

36 Swastik Kopparty, Vsevolod F Lev, Shubhangi Saraf, and Madhu Sudan. Kakeya-type sets in
finite vector spaces. Journal of Algebraic Combinatorics, 34(3):337–355, 2011.

37 Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.
SIAM J. Comput., 22(6):1331–1348, 1993. doi:10.1137/0222080.

38 Chin Ho Lee, Edward Pyne, and Salil P. Vadhan. Fourier growth of regular branching
programs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2022, volume 245 of LIPIcs, pages 2:1–2:21, 2022.
doi:10.4230/LIPIcs.APPROX/RANDOM.2022.2.

39 Chin Ho Lee and Emanuele Viola. Some limitations of the sum of small-bias distributions.
Theory of Computing, 13(1):1–23, 2017.

40 Jiatu Li and Tianqi Yang. 3.1n – o(n) circuit lower bounds for explicit functions. In STOC
’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1180–1193, 2022.
doi:10.1145/3519935.3519976.

41 Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic entropy.
In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, pages
168–177, 2016. doi:10.1109/FOCS.2016.26.

42 Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. CoRR,
abs/2303.06802, 2023. doi:10.48550/arXiv.2303.06802.

43 Xin Li and Yan Zhong. Explicit directional affine extractors and improved hardness for linear
branching programs. CoRR, abs/2304.11495, 2023. doi:10.48550/arXiv.2304.11495.

44 Ueli M. Maurer and Stefan Wolf. Privacy amplification secure against active adversaries. In
Advances in Cryptology – CRYPTO ’97, 17th Annual International Cryptology Conference,
volume 1294 of Lecture Notes in Computer Science, pages 307–321, 1997. doi:10.1007/
BFb0052244.

45 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993. doi:10.1137/0222053.

46 Noam Nisan. Pseudorandom generators for space-bounded computation. Comb., 12(4):449–461,
1992. doi:10.1007/BF01305237.

47 Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and System
Sciences, 49(2):149–167, 1994.

48 Ran Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, STOC 2005, pages 11–20, 2005. doi:10.1145/1060590.
1060593.

CCC 2023

https://doi.org/10.4230/LIPIcs.CCC.2022.4
https://doi.org/10.1145/1538902.1538904
https://doi.org/10.1145/73007.73009
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1016/j.jcss.2010.06.014
https://doi.org/10.1016/j.jcss.2010.06.014
https://doi.org/10.1137/0222080
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.2
https://doi.org/10.1145/3519935.3519976
https://doi.org/10.1109/FOCS.2016.26
https://doi.org/10.48550/arXiv.2303.06802
https://doi.org/10.48550/arXiv.2304.11495
https://doi.org/10.1007/BFb0052244
https://doi.org/10.1007/BFb0052244
https://doi.org/10.1137/0222053
https://doi.org/10.1007/BF01305237
https://doi.org/10.1145/1060590.1060593
https://doi.org/10.1145/1060590.1060593

9:24 Hardness Against Linear Branching Programs and More

49 Omer Reingold, Thomas Steinke, and Salil Vadhan. Pseudorandomness for regular branch-
ing programs via fourier analysis. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 655–670. Springer, 2013.

50 Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 238–251,
2017.

51 Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. Fourier sparsity, spectral
norm, and the log-rank conjecture. In 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pages 658–667. IEEE, 2013.

52 Yoav Tzur. Notions of weak pseudorandomness and gf (2n)-polynomials. Master’s thesis,
Weizmann Institute of Science, 2009.

53 Salil P. Vadhan. Pseudorandomness. Found. Trends Theor. Comput. Sci., 7(1-3):1–336, 2012.
doi:10.1561/0400000010.

54 Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In 26th Annual Symposium on Foundations of Computer Science (sfcs 1985), pages
1–10, 1985. doi:10.1109/SFCS.1985.49.

55 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory Comput., 3(1):103–128, 2007. doi:10.4086/toc.2007.v003a006.

A Definitions of strongly read-once linear branching programs

The difference between the definition of strongly read-once in [29] and our definition (Defin-
ition 2) is as follows. First, let Pre′

u denote the span of all the linear queries on a path
to u, excluding the query ℓu on u. The definition of strongly read-once in [29] is that
Pre′

u ∩ Postu = {0} for every node u. First we show that the definition in [29] implies
Definition 2.

▷ Claim 48. In a linear branching program, if for every node v it holds that Pre′
v∩Postv = {0},

then
For every edge (u, v), Preu ∩ Postv = {0}.
For every node v, Prev ∩ Postv = {0, ℓv}.

Proof. Let P (v) denote the set of all nodes u such that there is an edge (u → v). Observe
that Pre′

v = span(
⋃

u∈P (v) Preu). Therefore, if Pre′
v ∩ Postv = {0}, then (Preu ∩ Postv) ⊆

(Pre′
v ∩ Postv) for every u ∈ P (v), which implies Preu ∩ Postv = {0} for every u ∈ P (v). To

prove the second property, note that Prev = Pre′
v∪(Pre′

v+ℓv). Because Postv is a subspace that
contains ℓv, we have (Pre′

v +ℓv)∩Postv = (Pre′
v +ℓv)∩(Postv +ℓv) = (Pre′

v ∩Postv)+ℓv = {ℓv},
which implies Prev ∩ Postv = {0, ℓv}. ◁
Next we show that our definition is strictly more general.

▷ Claim 49. There exists a linear branching program which satisfies the strongly read-once
definition in Definition 2, but contains some node w such that Pre′

w ∩ Postw ̸= {0}.

Proof. To see why this is the case, consider a linear branching programs with four non-
sink nodes, s, v1, v2, w, and the two edges of w connect to two sink labeled with 0 and 1
respectively. Furthermore, we choose the queries on these nodes to be ℓs = e3, ℓv1 = e1,
ℓv2 = e2 and ℓw = e1 + e2. Then observe that both Pre′

w and Postw contain e1 + e2, but this
linear branching program satisfies the definition in Definition 2. ◁

https://doi.org/10.1561/0400000010
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.4086/toc.2007.v003a006

E. Chattopadhyay and J.-J. Liao 9:25

In fact, from the example above, one can see that our definition of strongly read-once is
technically incomparable with the “weakly read-once” model defined in [29], which requires
that ℓv ̸∈ Pre′

v for every v. However, our definition is closer to strongly read-once in [29]
because we still need the fact that the queries before v and the queries after v do not affect
each other.

Finally let us elaborate what the second property in our definition means, because it
might seem less intuitive. Given the first definition, we see that every edge e = (u → v)
decompose Fn

2 into two complemented subspace. The second property is to make sure that
the dimension of both subspaces in this decomposition change by at most 1 when we move
one step from an edge (u → v) to another edge (v → w). This is to make sure that for every
path we can find an edge e such that the dimension of Preu and Postv is exactly what we
want. Without this property, the size lower bound in Theorem 11 would become roughly
2n−k1−2k2 because the dimension of Postv can drop down to half after one step, and the
directional affine extractor in [29] would no longer work.

B Directional affine extractors are non-malleable

Recently, stronger variants of seeded and seedless extractors, called non-malleable extractors
have been studied, with motivations from cryptography and pseudorandomness [23, 16]. In
this section we show that directional affine extractors are equivalent to affine extractors that
are non-malleable against tampering functions that are constant shift.

We refer the reader to [16] for the general definition of seedless non-malleable extractors,
and present the definition specialized to our setting below.

▶ Definition 50. We say Ext : Fn
2 → {0, 1} is a (d, ε)-non-malleable affine extractor against

shifts if for every source X ∈ Fn
2 which is uniform over an affine subspace of dimension d,

and every non-zero shift a ∈ Fn
2 ,

(Ext(X) ≈ε U1) | Ext(X + a).

It’s easy to see that a (d, ε)-non-malleable affine extractor against shifts is also a (d, ε)-
directional affine extractor. We prove the converse below.

▶ Theorem 51. For every d ∈ N, ε > 0 such that d ≥ log(1/ε), a (d, ε)-directional affine
extractor is also a (d, O(

√
ε))-non-malleable affine extractor.

Proof. To prove this theorem, we need an extension of Vazirani’s XOR lemma, which can
be found in [21, Lemma 3.8]. We only state the special case we need here.

▶ Lemma 52. Let (W, W′) be a random variable over (F2)2. If W ≈ε U1 and (W+W′) ≈ε

U1, then

(W ≈4ε U1) | W′.

With this lemma, it suffices to prove that for every (d, ε)-directional affine extractor DAExt :
Fn

2 → {0, 1} the following holds. for every source X ∈ Fn
2 which is uniform over an affine

subspace of dimension d, and every non-zero shift a ∈ Fn
2 ,

DAExt(X) ≈√
ε U1, and

DAExt(X) + DAExt(X + a) ≈√
ε U1.

The second condition is directly implied by the definition of DAExt. It remains to prove the
first condition. Let V be the linear subspace which is a shift of the affine subspace Supp(X),
and let V denote the uniform distribution over V which is independent of X. Observe that
V + X is the same distribution as X, and H∞(V) ≥ d ≥ log(1/ε). Then, by Lemma 31 we
have DAExt(X + V) ≈O(

√
ε) U1. ◀

CCC 2023

9:26 Hardness Against Linear Branching Programs and More

We note that Chattopadhyay and Li [11] considered the problem of constructing non-
malleable extractors against the more general class of all linear functions, but their results
requires to the affine source to have dimension 0.99n. However, it appears difficult to extend
their techniques to handle smaller min-entropy, even against the weaker class of shifts.

C Extractors for average conditional min-entropy, generalized

In this section we prove the following lemma.

▶ Lemma 29 (restated). Let (X, Y, E) be a joint distribution such that X ∈ X and Y ∈ S are
independent conditioned on E, and H̃∞(X | E) ≥ k. Let Ext : X × S → {0, 1}m be a function
which satisfies the following conditions for an error parameter ε > 0 and a deterministic
function g: for every e ∈ Supp(E), there exists a set Xe ⊆ X with size at least 2k+1 such
that Ext when restricted to the domain Xe × S is a (k, ε)-extractor with seed Y|E=e and is
strong in g(e, Y). Then

(Ext(X, Y) ≈3ε Um) | (E, g(E, Y)).

The proof follows the outline in [53, Problem 6.8], but each step in the proof needs to be
extended to our more general definition of seeded extractors. First we need the following
lemma.

▶ Lemma 53. Let Ext : X × S → {0, 1}m be a (k, ε)-extractor with seed Y, where k ≤
log(|X |) − 1, and is strong in g(Y) for some deterministic function g. Then for every
0 < t ≤ k, Ext : X × S → {0, 1} is also a (k − t, 2t+1ε)-extractor with seed Y that is strong
in g(Y).

Proof. Let G = Supp(g(Y)). It suffices to prove that for every T ⊆ {0, 1}m × G and every
X such that H∞(X) ≥ k − t, it holds that

Pr [(Ext(X, Y), g(Y)) ∈ T] − Pr [(Um, g(Y)) ∈ T] ≤ (2t+1 − 1)ε

For every x ∈ X , define δ(x) = Pr [(Ext(x, Y), g(Y)) ∈ T] − Pr[(Um, g(Y)) ∈ T]. Let
N = |X |, and consider an ordering of the elements in X , x1, . . . , xN such that δ(x1) ≥
δ(x2) ≥ . . . ≥ δ(xN). Define a step function f : (0, N] → R to be f(r) = δ(x⌈r⌉). Note
that f is decreasing. Since Ext is a (k, ε) extractor, observe that for every 0 ≤ m ≤
N − 2k it holds that −ε ≤ 2−k

∫m+2k

m
f(t) dt ≤ ε, because 2−k

∫m+2k

m
f(t) dt corresponds

to Pr [(Ext(X′, Y), g(Y)) ∈ T] − Pr [(Um, g(Y)) ∈ T] for some X′ of min-entropy k. Then
observe that

Pr [(Ext(X, Y), g(Y)) ∈ T] − Pr [(Um, g(Y)) ∈ T]

≤ 2t−k

∫ 2k−t

0
f(t) dt

= 2t−k

(∫ 2k

0
f(t) dt −

∫ 2k

2k−t

f(t) dt

)

≤ 2t−k

(∫ 2k

0
f(t) dt − 2k − 2k−t

2k

∫ N

N−2k

f(t) dt

)
(2k ≤ N − 2k and f is decreasing)

≤ (2t+1 − 1)ε
≤ 2t+1ε. ◀

E. Chattopadhyay and J.-J. Liao 9:27

Next we prove Lemma 29.

Proof of Lemma 29. For every e ∈ Supp(E), write Xe = X|E=e and Ye = Y|E=e for short.
Note that (X, Y) | (E = e) is equivalent to independent distributions (Xe, Ye). Therefore,

∆ ((Ext(X, Y), E, g(E, Y)); (Ext(X, Y), E, g(E, Y)))
= E

e∼E
[∆ ((Ext(Xe, Ye), g(e, Ye)); (Ext(Xe, Ye), g(e, Ye)))]

=
∑

e:H∞(Xe)≥k

Pr[E = e] · ∆ ((Ext(Xe, Ye), g(e, Ye)); (Ext(Xe, Ye), g(e, Ye)))

+
∑

e:H∞(Xe)<k

Pr[E = e] · ∆ ((Ext(Xe, Ye), g(e, Ye)); (Ext(Xe, Ye), g(e, Ye)))

=
∑

e:H∞(Xe)≥k

Pr[E = e] · ε

+
∑

e:H∞(Xe)≥k

Pr[E = e] · 2k+1−H∞(Xe)ε (by Lemma 53)

≤
∑

e

Pr[E = e] · ε +
∑

e

Pr[E = e] · 2k+1−H∞(Xe)ε

= ε + 2−k · 21+H̃∞(X|E) · ε

≤ 3ε. ◀

CCC 2023

An Improved Trickle down Theorem for Partite
Complexes
Dorna Abdolazimi #

University of Washington, Seattle, WA, USA

Shayan Oveis Gharan #

University of Washington, Seattle, WA, USA

Abstract
We prove a strengthening of the trickle down theorem for partite complexes. Given a (d + 1)-partite
d-dimensional simplicial complex, we show that if “on average” the links of faces of co-dimension 2
are 1−δ

d
-(one-sided) spectral expanders, then the link of any face of co-dimension k is an O(1−δ

kδ
)-

(one-sided) spectral expander, for all 3 ≤ k ≤ d + 1. For an application, using our theorem as
a black-box, we show that links of faces of co-dimension k in recent constructions of bounded
degree high dimensional expanders have spectral expansion at most O(1/k) fraction of the spectral
expansion of the links of the worst faces of co-dimension 2.

2012 ACM Subject Classification Theory of computation → Expander graphs and randomness
extractors; Theory of computation → Error-correcting codes; Theory of computation → Random
walks and Markov chains

Keywords and phrases Simplicial complexes, High dimensional expanders, Trickle down theorem,
Bounded degree high dimensional expanders, Locally testable codes, Random walks

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.10

Funding Dorna Abdolazimi: Research supported by NSF grant CCF-1907845 and Air Force Office
of Scientific Research grant FA9550-20-1-0212.
Shayan Oveis Gharan: Research supported by Air Force Office of Scientific Research grant FA9550-
20-1-0212, Simons Investigator grant.

Acknowledgements The discussion that initiated this work took place at the DIMACS Workshop on
Entropy and Maximization. We would like to thank the DIMACS center and the workhop organizers
for making this happen. In particular, we would like to thank Tali Kaufman for raising the question
of an improved trickle down theorem for sparse simplical complexes in that workshop. We also
would like to thank Ryan O’Donnell and Kevin Pratt for helpful discussions on high dimensional
expanders based on Chevalley groups.

1 Introduction

A simplicial complex X on a finite ground set [n] = {0, . . . , n} is a downwards closed collection
of subsets of [n], i.e. if τ ∈ X and σ ⊂ τ , then σ ∈ X. The elements of X are called faces,
and the maximal faces are called facets. We say that a face τ is of dimension k if |τ | = k + 1
and write dim(τ) = k. A simplicial complex X is a pure d-dimensional complex if every facet
has dimension d. In this paper, all simplicial complexes are assumed to be pure. Given a
d-dimensional complex X, for any 0 ≤ i ≤ d, define X(i) = {τ ∈ X : dim(τ) = i}. Moreover,
the co-dimension of a face τ ∈ X is defined as codim(τ) = d − dim(τ). For a face τ ∈ X,
define the link of τ as the simplicial complex Xτ = {σ \ τ : σ ∈ X, σ ⊃ τ}. Note that Xτ is a
(codim(τ) − 1)- dimensional complex.

A (d + 1)-partite complex is a a d-dimensional complex such that X(0) can be (uniquely)
partitioned into sets T0 ∪ · · · ∪ Td such that for every facet τ ∈ X(d), we have |τ ∩ Ti| = 1
for all i ∈ [d]. The type of any face τ ∈ X is defined as type(τ) = {i ∈ [d] : |τ ∩ Ti| = 1}.

© Dorna Abdolazimi and Shayan Oveis Gharan;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 10; pp. 10:1–10:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dornaa@cs.washington.edu
mailto:shayan@cs.washington.edu
https://doi.org/10.4230/LIPIcs.CCC.2023.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 An Improved Trickle down Theorem for Partite Complexes

We equip X with a probability distribution π supported on all facets of X and we denote
this pair by (X, π). For a face τ ∈ X, π induces a conditional distribution πτ on facets of
Xτ where for each facet σ ∈ Xτ ,

πτ (σ) = π(σ ∪ τ)∑
facet σ′∈Xτ

π(σ′ ∪ τ) .

For each face τ of co-dimension at least 2 the 1-skeleton of (Xτ , πτ) is a weighted graph
with vertices Xτ (0), edges Xτ (1), and edge weights given by Pσ∼πτ [{x, y} ⊆ σ] for each edge
{x, y}. Note that when τ is of co-dimension 2, the complex (Xτ , πτ) is itself a weighted
graph. We say that a complex X is totally connected if the 1-skeleton of the link of any face
τ of co-dimension at least 2 is connected.

▶ Definition 1 (Local Spectral High Dimensional Expander). We say that the link of a face τ

of co-dimension at least 2 of a d-dimensional (weighted) complex (X, π) is a λ-(one sided)
spectral expander if the second largest eigenvalue of the simple random walk on the 1-skeleton
of (Xτ , πτ) is at most λ. We say that (X, π) is a (γ2, γ3, . . . , γd+1)-local spectral expander if
the link of any face τ of co-dimension at least 2 is a γcodim(τ)-spectral expander. When the
complex (X, π) is clear in the context, for an integer 2 ≤ k ≤ d + 1, we write γk to denote
the largest 2nd eigenvalue of the simple random walk on the 1-skeleton of all links of faces of
co-dimension k of the complex.

Over the last few years, the study of local spectral high dimensional expanders (HDX) has
revolutionized several areas of Math and theoretical computer science, namely in analysis of
Markov chains [4, 3, 6, 1], coding theory [9], and elsewhere [2, 11, 10]. One can generally divide
the family of HDXes studied in recent works into two groups: (i) Dense Complexes. Here, we
have a HDX with exponentially large number of facets, i.e., |X(0)|d. One typically encounters
these objects in studying Markov Chain Monte Carlo technique where we use a Markov
Chain to sample from an exponentially large probability distribution. Perhaps the simplest
such family is the complex of all independent sets of a matroid. (ii) Sparse/Ramanujan
Complexes. Here we have a HDX where every vertex (of X(0)) only appear in constant
number of facets, independent of |X(0)|. See, [15, 13, 17] for explicit constructions. These
objects have been useful in constructing double samplers [11], agreement testers [8, 7], or
locally testable codes [9].

One of the main aspects of local spectral expanders is their “local to global phenomenon”,
often referred to as the Garland’s method or the trickle down theorem [18].

▶ Theorem 2 (Trickle Down Theorem). Given a totally connected complex (X, π), if γ2 ≤ 1−δ
d

for some 0 < δ ≤ 1, then γk ≤ 1−δ
d−(k−2)(1−δ) ≤ 1−δ

dδ for all 2 ≤ k ≤ d.

The trickle down theorem has found numerous applications in proving bounds on local
spectral expansion of simplicial complexes. To invoke the theorem one needs to inspect all
faces of co-dimension 2 to find the worst 2nd eigenvalue. If we get lucky and this number
is below 1/d, then, the trickle down theorem kicks in and inductively bounds the spectral
expansion of all links of the complex.

There are, however, two pitfalls for the theorem: i) The required bound on γ2 is too
small and often not satisfiable. In particular, for many dense complexes in counting and
sampling applications that satisfy γk = O(1/k) for k ≥ Ω(d) (see e.g., [3, 6]), the links of
faces of co-dimension 2 are only Θ(1)-spectral expanders. ii) Even if γ2 ≪ 1/d, the trickle
down theorem only implies γk ≃ γ2, i.e., γk does not increase too much as k increases. This
is in contrast with the fact that, for many dense complexes, one can observe a steep decrease
in spectral expansion as the co-dimension increases, i.e., γk ≲ γ2/k.

D. Abdolazimi and S. Oveis Gharan 10:3

Such a decrease has not been known for any sparse complex. This led some experts to
conjecture that, perhaps, dense and sparse complexes exhibit a different pattern of local
spectral expansion; in particular, unlike dense HDX, local spectral expansion does not decay
for sparse complexes.

In this paper, we prove a generalization of the trickle down theorem for partite complexes
that shows that even if γ2 = Θ(1), but “on average” the links of faces of co-dimension 2 are
< 1/d-spectral expanders, then we have γk ≤ O(1/k) for all 3 ≤ k ≤ d + 1. Surprising to us,
our average condition is satisfied by some recent construction of (sparse) bounded degree
high dimensional expanders [13, 17]. In particular, as we explain below, one can use our
theorem to prove a significantly better local spectral expansion for the Kaufman-Opennheim
construction in a black-box manner.

1.1 Main Contribution

We start by stating two special cases of our theorem. We need the following definition.

▶ Definition 3. Given a (d + 1)-partite complex (X, π) with parts [d], for every i ∈ [d], define

∆(X,π)(i) = |{j ∈ [d] \ i : ∃τ of type(τ) = [d] \ {i, j} s.t. λ2(Pτ) > 0}|,

i.e. ∆(X,π)(i) is the number of parts j ̸= i for which there exists a face of type [d] \ {i, j}
whose link is not a 0-spectral expander. Moreover, define ∆(X,π) = maxi∈[d] ∆(X,π)(i). We
drop the subscripts (X, π) when the complex is clear in the context.

▶ Theorem 4. Let (X, π) be a (d + 1)-partite (weighted) totally connected complex. For
some 0 < δ < 1, assume that

γ2 ≤ δ2

10(1 + ln ∆) and γ2 ≤ 1 − δ

∆ + ln ∆ .

Then, the link of any face τ of co-dimension k of X has spectral expansion{
c(1−δ)

kδ if k ≥ ∆,
c(1−δ) k+ln k

∆+ln ∆
kδ if k < ∆,

for some constant c ≤ 2 that depends on δ. .

Note that, for ∆ = d, this theorem retrieves Theorem 2 up to a lower order term in the
condition on γ2 and a constant in the bounds on local spectral expansions.

When ∆ ≪ d, this theorem is a significant improvement over Theorem 2. Roughly
speaking, this theorem says that, if the complex has many faces of co-dimension 2 whose links
are 0-expanders, one needs to satisfy a much weaker condition on γ2 to get O(1/k)-spectral
expansion for faces of co-dimension k. In other words, the faces of co-dimension 2 that have
perfect spectral expansion can compensate for faces of co-dimension 2 that have bad spectral
expansion.

Next, we state the second special case of our theorem. For every integers 1 ≤ n,
let Hn =

∑n
i=1

1
i be the n-th harmonic number. Moreover, for any 1 ≤ i ≤ n define

Hn(i) =
∑n

j=i
1
j and let Hn(0) = Hn(1).

CCC 2023

10:4 An Improved Trickle down Theorem for Partite Complexes

▶ Theorem 5. Let (X, π) be a (d + 1)-partite (weighted) totally connected complex. For any
distinct i, j ∈ [d], let ϵ{i,j} = maxτ :type(τ)=[d]\{i,j} λ2(Pτ) be the 2nd largest eigenvalue of the
simple random walk matrices on (Xτ , πτ) for all τ of type [d] \ {i, j}. For some 0 < δ < 1,
assume that for every i ∈ [d],

ϵ{i,j} · Hd ≤ δ2

10 , ∀j ̸= i and
d∑

ℓ=1
ϵ{i,jℓ} · Hd(ℓ − 1)

d
≤ 1 − δ

d
,

where j0 . . . , jd is an ordering of [d] \ i such that ϵ{i,j0} ≤ · · · ≤ ϵ{i,jd}. Then, X is
(c(1−δ)

δ , . . . , c(1−δ)
dδ)-local spectral expander for some constant c ≤ 2 that depends on δ.

We remark that for every any i ∈ [d], 1 ≤
∑d

ℓ=1
Hd(ℓ−1)
d ≤ 1 + ln d

d . So, roughly speaking, the
latter condition can be seen as Ej [ϵ{i,j}] ≤ 1−δ

d for every i ∈ [d], where the expectation is
weighted according to Hd(.)

d . This is an improvement over the stronger condition in Theorem 2.
Now, we state the main theorem.

▶ Theorem 6 (Main). Let (X, π) be a (d+1)-partite (weighted) totally connected complex. For
any distinct i, j ∈ [d], let ϵ{i,j} = maxτ :type(τ)=[d]\{i,j} λ2(Pτ) be the 2nd largest eigenvalue of
the simple random walk matrices on (Xτ , πτ) for all τ of type [d] \ {i, j}. For some 0 < δ < 1,
assume that for every i ∈ [d],

ϵ{i,j} · H∆−1 ≤ δ2

10 , ∀j ̸= i and (1)
∆(i)∑
ℓ=1

ϵ{i,jℓ} · H∆(i)−1(ℓ − 1) ≤ 1 − δ, (2)

where j0 . . . , jd is an ordering of [d] \ i such that ϵ{i,j0} ≤ · · · ≤ ϵ{i,jd}. Then, (the link of the

emptyset of) X is a c(1−δ)
dδ -expander for c = 2(1+ δ2

10)
(1+δ) .

▶ Remark 7. If, for some δ > 0, the conditions of the above theorem hold for a complex (X, π),
then the conditions also hold for the same δ for all links (Xτ , πτ) (of faces of co-dimension
at least 2). Therefore, this theorem implies that X is (c(1−δ)

δ , . . . , c(1−δ)
dδ)-local spectral

expander for c = 2(1+ δ2
10)

(1+δ) . One can prove tighter bounds if they apply this theorem to any
link (Xτ , πτ) individually and possibly use better bounds on ∆(Xτ ,πτ)(i).

Proof of Theorem 4. Fix a face τ of co-dimension k. For brevity we abuse notation and
write ∆τ denote ∆(Xτ ,πτ). If k ≥ ∆ the statement follows from the above remark. In
particular, for any i, j ∈ [d]

ϵ{i,j} · H∆τ −1 ≤ γ2 · H∆−1 ≤ γ2 · (1 + ln ∆) ≤ δ2

10 ,

∆τ (i)∑
ℓ=1

ϵ{i,jℓ} · H∆τ (i)−1(ℓ − 1) ≤ γ2(∆ + ln ∆) ≤ 1 − δ.

So, we can apply Theorem 6.

D. Abdolazimi and S. Oveis Gharan 10:5

Otherwise, to bound the spectral expansion of (Xτ , πτ), let δk = 1 − (1 − δ) k+ln k
∆+ln ∆ ≥ δ.

For i, j ∈ [d]

ϵ{i,j} · H∆τ −1 ≤ γ2 · Hk−1 ≤ δ2 · Hk−1

10(1 + ln ∆) ≤
δ≤δk

δ2
k

10 ,

∆τ (i)∑
ℓ=1

ϵ{i,jℓ} · H∆τ (i)−1 ≤
ϵi,jℓ

≤γ2,∆τ (i)≤k
γ2(k + ln k) ≤ (1 − δ)(k + ln k)

∆ + ln ∆ = 1 − δk.

Therefore, applying Theorem 6 to (Xτ , πτ), we obtain that (Xτ , πτ) is a c(1−δk)
kδ -expander. ◀

Applications to Graph Coloring

Consider a graph G = ([n], E) with degree function ∆ : [n] → Z≥0 and maximum degree
∆, paired with a collection of color lists {L(i)}i∈[n] satisfying L(i) ≥ ∆(i) + (1 + η)∆ for
all i ∈ [n] and for some 0 < η ≤ 0.9 such that 1+ln ∆

∆ ≤ η2,
40 . We define the (n + 1)-partite

coloring complex X(G, L) specified by the following facets: {i, σ(i)}i∈[n] is a facet if and
only if σ is a proper L-coloring of G, i.e. σ(i) ∈ L(i) for each i ∈ [n] and σ(i) ̸= σ(j) if
{i, j} ∈ E. It is not hard to see that if {i, j} /∈ E, then ϵ{i,j} = 0. Moreover, if {i, j} ∈ E,
then ϵ{i,j} ≤ 1

(1+η)∆ + 1
(1+η)2∆2 (see Theorem 4.4 in [1]). Once can verify that if we apply

the above theorem to the coloring complex X(G, L) with δ = η
2 , we get that X(G, L) is a(

4
η , 4

2η , . . . , 4
(|V |−1)·η

)
-local spectral expander, and thus the Glauber dynamics for sampling a

random proper coloring mixes in polynomial time. This retrieves (up to constants) a theorem
proved in [1].

Applications to Sparse High Dimensional Expanders

Kaufman and Oppenheim [13] obtained a simple construction of sparse (d + 1)-partite
complexes with |X(0)| ≥ ps for any integer s > d and prime power p such that every
x ∈ X(0) is in at most pO(d3) many facets (hence the degree is independent of s). They
argued that for any non-consecutive pair of parts i, j ∈ [d], i.e., j ̸= i + 1 and i ≠ j + 1 (mod
d + 1), we have ϵ{i,j} = 0 but ϵ{i,i+1} ≤ 1√

p for any i ∈ [d] (i + 1 is taken modulo d + 1).
Consequently, ∆(i) = 2 for any i ∈ [d]. Then, using Theorem 2, they show that the complex
is a (1√

p−(d−2) , . . . , 1√
p−d−2)-local spectral expander for p > (d − 2)2. Simply plugging in

these values into the above theorem, for δ = 1 − 2√
p and p ≥ 193 (independent of d) the

assumptions of the theorem are satisfied. The resulting complex is (2c√
pδ , . . . , 2c

d
√

pδ)-local
spectral expander for c ≈ 1.15. In other words, not only does the Kaufman-Opennheim
construction give a HDX for constant values of p independent of d, but also its local spectral
expansion improves inverse linearly with the co-dimension.

O’Donnell and Pratt [17] constructed (d + 1)-partite (sparse) high-dimensional expanders,
with unbounded dimension d, via root systems of simple Lie Algebras, namely families Ad for
d ≥ 1, Bd for d ≥ 2, Cd for d ≥ 3 and Dd for d ≥ 4. For explicit descriptions of these root
systems, see e.g. [5, Sec. 3.6]. O’Donnell and Pratt [17] showed that, similar to the Kaufman-
Oppenheim construction, the resulting d-dimensional complex X satisfies |X(0)| ≥ pΘ(m)

whereas every vertex is only in pΘ(d2) many facets and for any i, j ∈ [d], ϵi,j ≤
√

2/p. Then,
using Theorem 2 they concluded that the complex is a (1√

p/2−d+1
, . . . , 1√

p/2−d+1
)-local

spectral expander. Upon further inspection of the explicit set of roots, one can verify that
∆ ≤ 2 for complexes based on Ad, Bd, Cd root systems and ∆ ≤ 3 for the Dd root system.
Plugging in these values in the above theorem and setting δ = 1 − 2

√
2/p for Ad, Bd, Cd

CCC 2023

10:6 An Improved Trickle down Theorem for Partite Complexes

complexes and δ = 1 − 3.5
√

2/p for the Dd complex, if p ≥ 376 for Ad, Bd, Cd complexes and
p ≥ 729 for the Dd complex, we get that these complexes are (c′

√
pδ , . . . , c′

d
√

pδ)-local spectral
expander for some constant c′ > 1.

The well known Ramanujan complexes, also known as LSV complexes, are generalizations
of Ramanujan graphs that were introduced by Lubotsky, Samuels, and Vishne in [14] and
explicitly constructed in [16]. Any d-dimenssional LSV complex X that is q-thick for some
fixed prime power q and d ≥ 2 has a bounded degree (the number of facets that contain each
x ∈ X(0) only deponents on q and d, and is constant in the size of the ground set n which
can be arbitrarily large) (e.g. see [12]). Moreover, the link of every proper face of type S

is a spherical building complex in which ∆(i) = |{j ̸= i : ϵ{i,j} > 0}| is at most 2 for every
i ∈ [d] \ S. Furthermore, the worst expansion among links co-dimension 2 is c√

q , for some
constant c independent of q, d, n. So, there is a constant q0 such that if q ≥ q0, Theorem 6
implies that the link of any (proper) face of X of co-dimension k is a c′

(k−1)√
q -spectral

expander for some constant c′ > 0 independent of q, d, n. This improves over the bound C(d)√
q

proved in [12], where C(d) ≥ 2d(d + 1)!.

1.2 Proof Overview

At a high-level, our proof builds on the matrix trickle down framework introduced in the work
of the authors with Liu [1]. The Oppenheim’s trickle down theorem follows from an inductive
argument that derives a bound on the second eigenvalue of the simple walk on 1-skeleton of
each link (Xτ , πτ) using the largest second eigenvalue of the simple walk on the 1-skeleton
of links (Xτ ′ , πτ ′) for all faces τ ′ ⊃ τ of size |τ | + 1. The reason that one has to take the
largest 2nd eigenvalue as opposed to the average in each inductive step is that the eigenspaces
of these simple walks are very different. The matrix trickle down framework overcomes
this issue by substituting the scalar bounds on the second eigenvalues with matrices that
upper bound the transition probability matrices of the simple walks on the 1-skeletons of
links. However, as opposed to Oppenhiem’s trickle down theorem, the matrix trickle down
framework cannot be applied in a black-box manner to bound the spectral expansion of
the 1-skeletons of all links only by bounding the spectral expansion of the 1-skeletons of
links of faces of co-dimension 2. The main result of this paper can be seen as applying the
matrix trickle down framework with a carefully chosen set of upper-bound matrices to prove
an improved trickle down theorem for partite complexes that can be applied in the same
black-box fashion, just known an “average” second eigenvalue.

Our technical contribution in this paper are twofold: First, we observe that for any two
disjoint sets of parts S, T ⊆ [d], if the links of all faces of co-dimension 2 whose types intersect
with both S, T are 0-spectral expanders, then for any σ ∈ X of type S and τ of type T we get

Pη∼π[σ ⊂ η|τ ⊂ η] = Pη∼π[σ ⊂ η] and Pη∼π[τ ⊂ η|σ ⊂ η] = Pη∼π[τ ⊂ η],

namely, the conditional distributions on these types are independent (see Lemma 18 for
details). This observation significantly simplifies invoking the Matrix trickle down framework.
Armed with this tool, we invoke the matrix trickle down theorem using a carefully chosen
family of (diagonal) matrices as the matrix bounds. These matrices are recursively defined
based on an “average” of the spectral expansions of the links of all faces of co-dimension 2,
See the proof of Theorem 6 for the construction of these matrices.

D. Abdolazimi and S. Oveis Gharan 10:7

2 Preliminaries

For any integer n ≥ 0, let [n] = {0, . . . , n}. When it is clear from context, we write x to
denote a singleton {x}. Given a set S, we write v ∈ RS and M ∈ RS×S to respectively
denote a vector and a matrix indexed by S. Given a probability distributions µ over a set S,
we may view µ as a vector in RS

≥0. For a n × n matrix M with eigenvalues λ1, . . . , λn, define
ρ(A) = max1≤i≤n |λi|.

Graphs

Given a graph G = (V, E), for any v ∈ V , let ∆G(v) be the degree of v in G, and let ∆G

be the maximum degree of G. Moreover, given a subset S ⊆ V , G[S] denotes the induced
subgraph of G on the set of vertices S. For any S ⊆ V , define GS = G[V \ S]. For simplicity
of notation, when G is clear from context, we denote ∆G(v) by ∆(v) for any v ∈ V , and
for any S ⊆ V , we denote ∆GS

(v) by ∆S(v) for any v ∈ V \ S. Similarly, we denote the
maximum degree of G and GS by ∆ and ∆S respectively. Moreover, when G is clear from
context, we write u ∼ v if u, v are adjacent vertices in G and u ∼S v if u, v ∈ V \ S and
u ∼ v.

We say that a graph G = (V, E) paired with a weight function w : E → R≥0 is ϵ-
expander if λ2(P) ≤ ϵ, where P ∈ RV ×V is the transition probability matrix of the simple
random walk on (G, w) defined as P (x, y) = w({x,y})∑

z
w({x,z})

for any x, y ∈ V . For such a
graph we write dw(x) =

∑
y∼x w({x, y}) to denote the weighted degree of a vertex x and

vol(S) =
∑

x∈S dw(x) to denote the volume of a set S ⊆ V .

2.1 Linear Algebra
▶ Lemma 8 (Cheeger’s Inequality). For any graph G = (V, E) with weights w : E → R≥0 and
any S ⊆ V ,

w(E(S, S))
min{vol(S), vol(S)}

≤
√

2(1 − λ2)

where λ2 is the second largest eigenvalue of the simple random walk on G

▶ Lemma 9 (Expander Mixing Lemma). Given a (weighted) graph G = (V, E, w), for any set
S ⊆ V ,∣∣∣∣w(E(S)) − vol(S)2

vol(V)

∣∣∣∣ ≤ λ2vol(S),

where λ2 is the second largest eigenvalue of the simple random walk on G.

2.2 Simplicial Complexes
We say that a simplicial complex X is gallery connected if for any face τ of co-dimension at least
2 and any pair of facets σ, σ′ of Xτ there is a sequence of facets of Xτ , σ = σ0, σ1, . . . , σℓ = σ′,
such that for all 0 ≤ i < ℓ, |σi∆σi+1| = 2. It is shown in [18, Prop 3.6] that if X is totally
connected, then it is gallery connected.

▶ Lemma 10. Consider a totally connected (d + 1)-partite complex X with parts indexed by
[d]. For any S ⊆ [d], The induced subgraph of the 1-skeleton of X on vertices of type S is
connected.

CCC 2023

10:8 An Improved Trickle down Theorem for Partite Complexes

Proof. Take x, y of type i, j ∈ S and facets η, η′ such that x ∈ η, y ∈ η′. Total connectivity
implies that there is a sequence η = η1, . . . , ηt = η′ such that ηi ∩ηi+1 ̸= ∅ for all 1 ≤ i ≤ t−1.
Let σ1 ⊆ η1, . . . , σt ⊆ ηt be faces of type {i, j}. Then σ1, . . . , σt gives a path between x, y. ◀

Given a (weighted) complex (X, π), for integer −1 ≤ i ≤ dim(X) − 1, π induces a
distribution πi on X(i),

πi(σ) = 1(dim(X)+1
i+1

) Pr
τ∼π

[σ ⊂ τ] ∀σ ∈ X(i).

Let P(X,π),τ ∈ RX(0)×X(0) denote the transition probability matrix of the simple random
walk on the 1-skeleton of (Xτ , πτ) padded with zeros outside the Xτ (0) × Xτ (0) block, i.e.
P(X,π),τ (x, y) = Pσ∼πτ [{x,y}⊂σ]∑

z∈xτ (0)
Pσ∼πτ [{x,z}⊂σ]

for x, y ∈ Xτ (0), and Pτ (x, y) = 0 otherwise. When

the weighted complex (X, π) is clear from context, we write Pτ to denote P(X,π),τ . For any
τ of co-dimension at least 2, we define the diagonal matrix Π(X,π),τ ∈ RX(0)×X(0) as follows:
Π(X,π),τ (x, x) = πτ,0(x) for x ∈ Xτ (0), and Π(X,π),τ (x, x) = 0 otherwise. When (X, π) is
clear from context, we write Πτ to denote Π(X,π),τ . Note that Πτ Pτ is a symmetric matrix.

Given a (d + 1)-partite complex,
we say that an x ∈ X(0) is of type i and write type(x) = i if x ∈ Ti. Similarly, the type

of a face τ ∈ X is defined as type(τ) = {i ∈ [d] : |τ ∩ Ti| = 1}. The following facts hold for
weighted partite complexes.

▶ Observation 11. Consider a weighted (d + 1) partite complex (X, π) and a face τ of
co-dimension k ≥ 1. We have kπτ,0(x) = Prσ∼πτ

[x ∈ σ] for all x ∈ Xτ (0).

▶ Observation 12. Consider a weighted (d + 1) partite complex (X, π) with parts indexed by
[d] and a face τ of co-dimension k ≥ 1. For any i ∈ [d],

∑
x:type(x)=i Prσ∼πτ [x ∈ σ] = 1.

The following definition is useful for proving the main theorem.

▶ Definition 13. For any (d + 1)-partite complex (X, π) with parts indexed by [d], define a
graph G(X,π) on the set of vertices [d], where any distinct i, j ∈ [d] are adjacent in G(X,π) if
there exists τ of type [d] \ {i, j} such that the second eigenvalue of (Xτ , πτ) is positive.

▶ Remark 14. For any (d + 1)-partite complex (X, π) with parts indexed by [d], for every
i ∈ [d], ∆(i) (see Definition 3) is the degree of i in graph G(X,π) and ∆ is the maximum
degree of G(X,π).
Note that if codim(τ) = k, the link Xτ is a k-partite complex with parts indexed by [d] \ S.
One can verify that given a face τ of type S, the set of edges of G(Xτ ,πτ) is a subset of the
edges of (G(X,π))S , i.e., the induced subgraph of G(X,π) on [d] \ S. When (X, π) is clear from
context, we write G for G(X,π) and GS for (G(X,π))S .

Product of Weighted Complexes

Given weighted complexes (Y1, µ1), . . . , (Yℓ, µℓ) defined on disjoint ground sets and of di-
mensions d1, . . . , dℓ respectively, and a weighted complexes (X, π) of dimension d, we write
(X, π) = (Y1, µ1) × · · · × (Yℓ, µℓ) if X(d) = {∪i∈[ℓ]τi : τ1 ∈ Y1(d1), . . . , τℓ ∈ Yℓ(dℓ)} and
π(∪i∈[ℓ]τi) =

∏
i∈[ℓ] µi(τi) for all τ1 ∈ Y1(d1), . . . , τℓ ∈ Yℓ(dℓ). We denote the generating

polynomial of (X, π) by g(X,π), i.e. g(X,π) =
∑

τ∈X(d) π(τ)
∏

x∈τ zx. One can verify that
(X, π) = (X1, µ1) × · · · × (Xℓ, µℓ) if and only if g(X,π) = g(X1,µ1) × · · · × g(Xℓ,µℓ). Note
that this is true because we assume that for any weighted simplicial complex, the given
distribution on facets is non-zero on all facets.

D. Abdolazimi and S. Oveis Gharan 10:9

Matrix Trickle Down Theorem

We use the following theorem which is the main technical theorem in [1].

▶ Theorem 15 ([1, Thm III.5]). Let (X, π) be a totally connected weighted complex. Suppose
{Mτ ∈ RX(0)×X(0)}τ∈X(≤d−2) is a family of symmetric matrices satisfying the following:
1. Base Case: For every τ of co-dimension 2, we have the spectral inequality

Πτ Pτ − 2πτ,0π⊤
τ,0 ⪯ Mτ ⪯ 1

5Πτ .

2. Recursive Condition: For every τ of co-dimension at least k ≥ 3, at least one of the
following holds: Mτ satisfies

Mτ ⪯ k − 1
3k − 1Πτ and Ex∼πτ Mτ∪{x} ⪯ Mτ − k − 1

k − 2Mτ Π−1
τ Mτ . (3)

Or, (Xτ , πτ,k−1) is a product of weighted simplicial complexes (Y1, µ1), . . . , (Yt, µt) and
for every η ∈ Xτ (k − 1),

Mτ =
⊕

1≤i≤t:dYi
≥1

dYi(dYi + 1)
k(k − 1) Mτ∪η−i ,

where η−i = η \ Yi(0).
Then for every τ ∈ X(≤ d − 2), we have the bound λ2(Πτ Pτ) ≤ ρ(Π−1

τ Mτ).

3 Simplifying Matrix Trickle Down’s Conditions to Scalar Inequalities

In this section, given a (d + 1)-partite complex (X, π), we apply the matrix trickle down
theorem to derive a set of conditions on a family of vectors {fS ∈ R[d]}S⊂[d],|S|<d that will
guarantee that λ2(Pτ) ≤ maxi∈[d] fS(i)

k−1 for all k ≥ 2 and τ of co-dimension k and type S. We
prove the following theorem.

▶ Theorem 16. Consider a totally connected (d+1)-partite complex (X, π) with parts indexed
by [d] and graph G = G(X,π). Suppose we are given a family of vectors {fS ∈ R[d]}S⊂[d],|S|<d

such that for all S ⊂ [d] of size (d + 1) − k, the support of fS is a subset of [d] \ S, and the
following holds:

If GS is disconnected, then fS =
∑

1≤i≤ℓ:|Ii|≥2 f[d]\Ii
, where I1 ∪ · · · ∪ Iℓ are the vertices

of the connected components of GS. Note that if all connected components are of size 1,
then fS = 0.
Otherwise if GS is connected, we have maxi∈[d] fS(i) ≤ (k−1)2

3k−1 and
(i) Base Case: If k = 2, then for every face τ of type S, λ2(Pτ) ≤ maxi∈[d]\S fS(i).
(ii) Recursive Condition: If k ≥ 3, then∑

j∈[d]\(S∪i)

fS∪j(i) ≤ (k − 2)fS(i) − f2
S(i),

for all i ∈ [d] \ S.
Then, for all k ≥ 2 and τ of co-dimension k and type S, λ2(Pτ) ≤ maxi∈[d] fS(i)

k−1 .

The main sets of conditions in the above theorem are the inequalities in Item i and Item ii.
To get some intuition about these conditions, it is helpful to compare the above with the
standard trickle down theorem (Theorem 2). There, one shows that if λ2(Pτ∪{x}) ≤ λ for all
x ∈ Xτ (0), then λ2(Pτ) ≤ α, where satisfies

λ ≤ α − α2(1 − λ). (4)

CCC 2023

10:10 An Improved Trickle down Theorem for Partite Complexes

Then, Theorem 2 follows by recursively applying this inequalities.
In the above theorem, instead of a single upper bound on λ2(Pτ) for faces τ of co-

dimension 2, one bounds the expansion of the links of all faces of co-dimension 2 of each type
separately, allowing higher degrees of freedom. For any face τ of type S and co-dimension
k = |S|, the function fS(.)

k−1 will serve as the digonal entries of a matrix upper-bound Pτ .

Then, the inequality
∑

j∈[d]\(S∪i)
fS∪j(i)

k−2 ≤ fS(i) − f2
S(i)

k−2 is the natural analogue of (4)
which requires fS to be at least “the average” of fS∪j for all j ∈ [d] \ S plus an square error
term.

Before proving the above theorem, we show that if GS is disconnected with parts
G[I1], . . . , G[Iℓ] for some S ⊂ [d] of size at most d − 1, then for any τ of type S, (Xτ , πτ,k−1)
can be written as a product of family of its links of types [d] \ Ii for all 1 ≤ i ≤ ℓ. This
allows us to prove a better upper-bound on λ2(Pτ) for such faces τ by simply “concatenating”
upper-bounds on each connected component of GS .

▶ Lemma 17. Consider a 2-partite complex (X, π) with parts S, T . If (X, π) is 0-expander,
then (X, π) = (Xz, πz) × (Xy, πy) for any y ∈ S and z ∈ T .

Proof. Note that (X, π) is a weighted bipartite graph with parts S, T . Let A ∈ RX(0)×X(0)

be the adjacency matrix of (X, π). Let AS,T (y, z) = A(y, z) for y ∈ S, z ∈ T and 0 on
other entries. Moreover, let AT,S = A − AS,T . Then, for any vector v ∈ RX(0), we get
A = AS,T vT +AT,SvS , where vS , vT are respectively supported on S, T and v = vS +vT . Thus,
if Av = λv, then Av′ = −λv′, for v′ = (−vS +vT). So if µ is an eigenvalue of A, then −µ is also
an eigenvalue of A. Thus, if (X, π) is 0-expander, the rank of A is 2. This implies that there
are vectors wS ∈ RS and wT ∈ RT such that π({y, z}) = A(y, z) = A(z, y) = wS(y)wT (z)
for y ∈ S, z ∈ T . Without loss of generality, assume ∥wS∥1 = ∥wT ∥1 = 1. Then, for any
y ∈ S and z ∈ T , we have πz(y) = π({y,z})∑

x∈S
π({x,z})

= wS(y). Similarly πy(z) = wT (z). Thus

π({y, z}) = πy(z)πz(y). This finishes the proof. ◀

▶ Lemma 18. Consider a totally connected (d + 1)-partite complex (X, π) with parts indexed
by [d] and its associated graph G = G(X,π). Let I1 ∪ · · · ∪ Iℓ be a partition of [d] such that
for any 1 ≤ i ≤ ℓ the induced graph G[Ii] is a connected component or the union of several
connected components of G. Then (X, π) = (Xσ−1 , πσ−1) × · · · × (Xσ−ℓ

, πσ−ℓ
), where σ−i is

an arbitrary face of type [d] \ Ii for any 1 ≤ i ≤ ℓ.

Proof. We prove the statement by induction on d. For d = 1, the statement simply follows
from Lemma 17. Now, assume that d > 1. If |Ii| = 1 for all 1 ≤ i ≤ ℓ, then ℓ ≥ 3. In this
case, let S = I1 ∪ I2. Otherwise, WLOG assume that |I1| ≥ 2 and let S = I1. First, we show
that g(X,π) can be written as g(X,π) = h · h′, where h is a polynomial in {zy : type(y) ∈ I \ S}
and h′ is a polynomial in terms of variables in {zy : type(y) ∈ S}. By induction hypothesis,
for any i ∈ S, x ∈ Ti, and any face σ ∈ X of type S such that x ∈ σ

∂zx
g(X,π) = fx · gx (5)

where fx is a polynomial in terms of variables in {zy : type(y) ∈ S \ i} and gx is a polynomial
in terms of variables in {zy : type(y) ∈ I \ S}. Now, take arbitrary i, j ∈ S such that i ̸= j.
Then, (5) implies that for any face {x, y} of type {i, j}

∂zx
∂zy

g(X,π) = (∂zy
fx)gx = (∂zx

fy)gy

It thus follows that gx is a multiple of gy. One can see this simply by substituting 1 for all
variables in {zy : type(y) ∈ S \ {i, j}}. Moreover, since gx and gy are generating polynomials
of distributions, i.e. the coefficients sum up to 1, we get gx = gy. Therefore, we get that

D. Abdolazimi and S. Oveis Gharan 10:11

for any distinct x, y such that type(x), type(y) ∈ S and {x, y} is a face, gx = gy. Applying
Lemma 10, we get gx = gy for all x, y ∈ ∪i∈STi. Thus, there exist a polynomial h in variables
{zy : type(y) ∈ I \ S} such that we can rewrite (5) for any x with type(x) ∈ S as

∂zx
g(X,π) = fx · h,

where fx is a polynomial in terms of variables in {zy : type(y) ∈ S \ i}. Finally, since X is a
partite complex,

|S|g(X,π) =
∑
i∈S

∑
x∈Ti

zx∂zx
g(X,π) = h ·

∑
i∈S

∑
x∈Ti

zxfx = h · h′, (6)

where h′ =
∑

i∈S

∑
x∈Ti

zxfx is a polynomial in {zy : type(y) ∈ S}. It remains to show
that for any face σ of type S, we have h = g(Xσ,πσ), and for any τ of type [d] \ S, we have
h′ = g(Xτ ,πτ). Fix arbitrary faces σ of type S and τ of type [d] \ S. Noting that g(X,π) is a
multiple of h · h′, and that h′ is in variables associated to elements whose types are in S and
h is in variables associated to elements whose types are in [d] \ S, we conclude that h′ has a
monomial that is a multiple of

∏
x∈σ zx and h has a monomial that is a multiple of

∏
x∈τ zx.

First, take (
∏

x∈σ ∂zx) from both sides of (6). We get that g(Xσ,πσ) is a positive multiple
of h. Similarly, taking (

∏
x∈τ ∂zx

) from both sides of (6), we get that g(Xτ ,πτ) is a positive
multiple of h′. Thus, noting that the coefficients of generating polynomials sum up to 1, we
get h = g(Xσ,πσ) and h′ = g(Xτ ,πτ) as desired. Repeating the same argument inductively on
the complex (Xσ, πσ) proves the claim. ◀

Now we are ready to prove Theorem 16.

Proof of Theorem 16. We apply Theorem 15. For every S ⊂ [d] such that |S| < d, define
a diagonal matrix DS ∈ RX(0)×X(0) as DS(x, x) = fS(type(x)) for all x ∈ X(0). We prove
that the conditions of Theorem 15 hold for Mτ = Πτ DS

k−1 for an arbitrary face τ ∈ X of
co-dimension at least k ≥ 2 and type S. If GS is connected, maxi∈[d] fS(i) ≤ (k−1)2

3k−1 holds by
assumption. If GS is disconnected, maxi∈[d] fS(i) ≤ (k−1)2

3k−1 follows from the assumptions that
fS =

∑
1≤i≤ℓ:|Ii|≥2 f[d]\Ii

, where I1 ∪ · · · ∪ Iℓ are the vertices of connected components of GS .
That is because the supports of vectors f[d]\Ii

are disjoint by assumption and (k−1)2

3k−1 is an
increasing function for k ≥ 2. So, we get Dτ ⪯ (k−1)2

3k−1 I, and thus, Mτ ⪯ k−1
3k−1 Πτ . To prove

the rest of the conditions hold, first assume that k = 2. If GS is two disconnected vertices,
we get fS = 0, and therefore, DS = 0. Thus, we get Πτ Pτ − πτ,0π⊤

τ,0 ⪯ 0 = Πτ DS = Mτ , as
desired. If GS is connected, the base case assumption (Item i) implies that λ2(Pτ) ≤ DS(x, x)
for all x ∈ Xτ (0). Therefore, Πτ Pτ − πτ,0π⊤

τ,0 ⪯ Πτ DS = Mτ . Now, assume k ≥ 3.
First assume that GS is disconnected and G[I1], . . . , G[Iℓ] are its connected components for
some partition I1 ∪ · · · ∪ Iℓ of [d] \ S. Fix any σ ∈ Xτ (k − 1). By Lemma 18, (Xτ , πτ) =
(Xτ∪σ−1 , πτ∪σ−1)×· · ·×(Xτ∪σ−ℓ

, πτ∪σ−ℓ
) where for every 1 ≤ j ≤ ℓ, σ−j is a subset of σ that

has type [d] \ (S ∪ Ij). Therefore, we get Prη∼πτ∪σ−j
[x ∈ η] = Prη∼πτ [x ∈ η] for all 1 ≤ j ≤ ℓ

and x ∈ Xτ∪σ−j
(0). Combining this with Observation 11, we get kj ·πτ∪σ−j ,0(x) = k ·πτ,0(x),

where kj = |Ij | for all 1 ≤ j ≤ ℓ. Thus we can write∑
1≤j≤ℓ:|Ij |≥2

(kj − 1)kj

(k − 1)k Mτ∪σ−j =
def of Mτ∪σ−j

∑
1≤j≤ℓ:|Ij |≥2

(kj − 1)kj

(k − 1)k
Πτ∪σ−j

D[d]\Ij

kj − 1

=
∑

1≤j≤ℓ:|Ij |≥2

kj

k(k − 1)
k

kj
Πτ D[d]\Ij

= Πτ

k − 1
∑

1≤j≤ℓ:|Ij |≥2

D[d]\Ij
= Πτ DS

k − 1 = Mτ ,

CCC 2023

10:12 An Improved Trickle down Theorem for Partite Complexes

where in the second to last equality, we used the fact that
∑

1≤j≤ℓ:|Ij |≥2 f[d]\Ij
= fS , and

thus
∑

1≤j≤ℓ:|Ij |≥2 D[d]\Ij
= DS by definition of DS . Now, assume that GS is connected. It

is enough to show that Ex∼πτ,0Mτ∪x ⪯ Mτ − Mτ Π−1
τ Mτ . This is equivalent to showing that

for any x ∈ Xτ (0)

Ey∼πτ,0

[(Π−1
τ Πτ∪yDS∪type(y))(x, x)

k − 2

]
≤ DS(x, x)

k − 1 − D2
S(x, x)

(k − 2)(k − 1) (7)

One can check that for any x ∈ Xτ (0) of type i

Ey∼πτ,0

[Π−1
τ Πτ∪yDS∪type(y)(x, x)

k − 2

]
=
∑

y∈Xτ∪x(0) Prσ∼πτ∪x
[y ∈ σ]DS∪type(y)(x, x)

(k − 1)(k − 2)

=
∑

j∈[d]\S

fτ∪j(i)
(k − 1)(k − 2)

∑
y∈X τ∪x(0):

type(y)=j

Pr
σ∼πτ∪x

[y ∈ σ]

=
∑

j∈[d]\S fτ∪j(i)
(k − 1)(k − 2) ,

where in the last equality, we used Observation 12. Thus, substituting DS(x, x) = fS(type(x))
in the RHS of (7), it is enough to show that for any i ∈ [d] \ S∑

j∈[d]\S fτ∪j(i)
(k − 1)(k − 2) ≤ fS(i)

k − 1 − f2
S(i)

(k − 1)(k − 2) ,

which holds by assumption Item ii. ◀

4 Proof of Main Theorem

We are ready to prove Theorem 6.

Proof of Theorem 6. We find a family of vectors {fS ∈ R[d]}S⊂[d]:|S|<d that satisfy the
conditions of theorem Theorem 16. Let G = G(X,π). Based on the conditions of Theorem 16,
vectors {fS ∈ R[d]}S⊂[d]:|S|<d can be defined as functions of {ϵ{i,j}}i,j∈[d],i̸=j . Recall that
edges of G capture pairs {i, j} for which ϵ{i,j} > 0. Assign every edge {i, j} of G with weight
ϵ{i,j}. We restrict our attention to functions that are very local with respect to G, i.e. for
every S and i ∈ [d] \ S, we assume fS(i) only depends on ∆S(i) and the weights of edges
adjacent to i in GS if ∆(i) > 1. It turns out that if ∆(i) = 1, we would need to also take
into account the degree of the unique neighbor of i. More formally, consider the following
family of vectors {fS ∈ R[d]}S⊂[d]:|S|<d: for any S ⊂ [d] such that |S| < d, let fS be of the
following form: for any i ∈ S, let fS(i) = 0, and for any i ∈ [d] \ S define

fS(i) =

0 if ∆S(i) = 0,

ϵ{i,j} · gi,j(∆S(j)) if ∆S(i) = 1andi ∼S j,∑
j∼Si ϵ{i,j} · hi (∆S(i)) if ∆S(i) ≥ 2,

where for every i ∈ [d] and j ∼ i, functions gi,j , hi : {1, . . . , ∆} → R≥0 are defined later in a
way that guarantees that {fS}S⊂[d]:|S|<d satisfies the assumptions of Theorem 16 (see (10),
(12)).

D. Abdolazimi and S. Oveis Gharan 10:13

First, consider the case that GS is disconnected. Note that for any S, S′ ⊂ [d] such that
|S|, |S′| < d, if {j ∈ [d] : j ∼S i} = {j ∈ [d] : j ∼S′ i} for some i /∈ S, S′, then fS(i) = fS′(i).
Let I1, . . . , Iℓ be the vertices of connected components of GS . Since the neighborhood of
each vertex in any connected component of GS is the same as its neighborhood in GS , we
get fS =

∑
1≤i≤ℓ:|Ii|≥2 f[d]\Ii

.
Now, assume GS is connected. Take an arbitrary k ≥ 2 and S ⊂ [d] of size (d + 1) − k.

First we verify the set of conditions given in Item i and Item ii. First, assume that k = 2. Let
[d] \ S = {i, j}. By definition of ϵ{i,j}, for any τ of type S, λ2(Pτ) ≤ ϵ{i,j}. Thus, if we define
gℓ,t(1) = 1 for all distinct ℓ, t ∈ [d], then we get λ2(Pτ) ≤ ϵ{i,j} = ϵ{i,j}gi,j(1) = fS(i) = fS(j),
as desired. Now, assume that k ≥ 3. Fix an arbitrary i ∈ [d] \ S. Our goal is to define
gi,j , hi : {1, . . . , ∆} → R≥0 for all j ∼ i such that gi,j(1) = 1 for all j ∼ i and the following
inequality is satisfied:∑

j∈[d]\(S∪i)

fS∪j(i) ≤ (k − 2)fS(i) − f2
S(i). (8)

To keep the notation concise, relabel the elements such that i is relabeled to 0 and ϵ{0,1} ≥
· · · ≥ ϵ{0,d}. Moreover, define ϵj = ϵ{0,j} for any j ∈ [d] \ 0.

Case 1: ∆S(0) = 1, and j ∼S 0. Since GS is connected and (d + 1) − |S| ≥ 3, we have
∆S(j) ≥ 2. Define t = ∆S(j). We have∑

ℓ∈[d]\(S∪0)

fS∪ℓ(0) = fS∪j(0) +
∑

ℓ∈[d]\(S∪0):ℓ∼Sj

fS∪ℓ(0) +
∑

ℓ∈[d]\(S∪0):ℓ̸∼Sj,ℓ ̸=j

fS∪ℓ(0)

= 0 + (t − 1) · ϵj · g0,j(t − 1) + (k − t − 1) · ϵj · g0,j(t).

On the other hand, (k − 2)fS(0) − fS(0)2 = (k − 2) · ϵj · g0,j(t) − ϵ2
j · g2

0,j(t). So it is enough
to satisfy

(t − 1) · ϵj · (g0,j(t) − g0,j(t − 1)) ≥ ϵ2
j · g2

0,j(t). (9)

Now, define g0,j : {1, . . . , ∆} → R≥0 as follows: recall that we defined g0,j(1) = 1. For any
2 ≤ ℓ ≤ ∆, let

g0,j(ℓ) = 1 + 1.3 · ϵj · Hℓ−1. (10)

Using assumption (1), ϵjH∆−1 ≤ δ2

10 ≤ 1
10 . Thus

ϵ2
j · g2

0,j(t) ≤ ϵ2
j (1 + 1.3ϵj (1 + H∆−1))2

< 1.3ϵ2
j .

Substituting g0,j(t) according to (10) and using the above bound, one can verify that (9)
holds.

Case 2: ∆S(0) ≥ 2. For simplicity of notation, define t = ∆S(0) and α =
∑

j:j∼S0 ϵj .
Define h0(1) = maxj:j∼0 g0,j(∆).∑

j∈[d]\(S∪0)

fS∪j(0) =
∑

j∈[d]\(S∪0):j∼S0

fS∪j(0) +
∑

j∈[d]\(S∪0):j ̸∼S0

fS∪j(0)

≤

 ∑
j∈[d]\(S∪0):j∼S0

(α − ϵ{0,j})

 · h0(t − 1) + (k − t − 1) · α · h0(t)

= (t − 1) · α · h0(t − 1) + (k − t − 1) · α · h0(t).

CCC 2023

10:14 An Improved Trickle down Theorem for Partite Complexes

Note that if t ≥ 3, the first inequality is an equality by definition. If t = 2, the first inequality
follows from the definition of h0(1). Thus, it is enough to satisfy∑

j∈[d]\(S∪0)

fS∪j(0) = (t − 1) · α · h0(t − 1) + (k − t − 1) · α · h0(t)

≤ (k − 2) · α · h0(t) − α2 · h2
0(t) = (k − 2)fS(0) − f2

S(0).

Equivalently, it suffices to satisfy

(t − 1)(h0(t) − h0(t − 1)) ≥ α · h2
0(t). (11)

Now, define h0 : {1, . . . , ∆} → R≥0 as follows: recall that we defined h0(1) = maxj:j∼0 g0,j(∆).
For any 2 ≤ ℓ ≤ ∆, define

h0(ℓ) = h0(1)
1 − c

(∑ℓ
j=1 ϵjHℓ−1(j − 1)

) . (12)

We need to prove (11) for a carefully chosen c. Let β be such that h0(t) = h0(1)
β . We get

h0(t − 1) = h0(1)
β+c(

∑t

j=1

ϵj
t−1)

, and thus,

(t − 1)(h0(t) − h0(t − 1)) =
h0(1) · c

∑t
j=1 ϵj

β · (β +
c
∑t

j=1
ϵj

t−1)
.

Note that α · h2
0(t) = α·h2

0(1)
β2 . Thus, to satisfy (11), it is enough to show that

β · c ·

 t∑
j=1

ϵj

 ≥ α · h0(1) ·

(
β +

c
∑t

j=1 ϵj

t − 1

)
.

Note that

h0(1) ≤ max
j∼i

g0,j(∆) = 1 + 1.3ϵ1H∆−1 ≤
by (1)

1 + 1.3 δ2

10 . (13)

Moreover,
∑t

j=1 ϵj ≥
∑

j:j∼S0 ϵj = α. Thus, letting c = 1 + c′δ for some c′ > 0 that we
choose later, it is enough to show that

β · (c′ − 0.13δ)δ ≥ (1 + 0.13δ) ·
(1 + c′δ)

∑t
j=1 ϵj

t − 1 .

Using
∑t

j=1
ϵj

t−1 ≤ 2ϵ1 ≤
(1)

δ2

5 , it is enough to show that

β · (c′ − 0.13δ) ≥ (1 + 0.13δ)(1 + c′δ)δ

5 . (14)

On the other hand,

β ≥ 1 − (1 + c′δ)

∆(0)∑
j=1

ϵjH∆(0)−1(j − 1)

 ≥
(2)

1 − (1 + c′δ)(1 − δ) = δ(1 − c′ + c′δ), (15)

D. Abdolazimi and S. Oveis Gharan 10:15

Thus, to satisfy (14), it is enough to show that (1−c′ +c′δ)(c′ −0.13δ) ≥ (1+1.13δ)(1+c′δ) 1
5 .

Letting c′ = 1
2 , this inequality holds for every 0 < δ < 1. This establishes Equation (8). So

we verified conditions Item i and Item ii are satisfied.
To show that all conditions of Theorem 16 are satisfied, it remains to show that

maxi∈[d] fS(i) ≤ (k−1)2

3k−1 . Note that
∑

j:j∼i ϵ{i,j} ≤ ∆S · ϵ1 ≤
(1)

∆S · δ2

10 for all i ∈ [d] \ S.

Thus, we get maxi∈[d] fS(i) ≤ ∆S · δ2

10 maxi∈[d]\S ·hi(∆S(i)). Moreover, using (13) and (15)
with c′ = 1

2 (we can write this inequality for every i), we get

hi(∆S(i)) ≤ hi(∆(i)) ≤
1 + δ2

10
δ(1

2 + δ
2)

, (16)

Thus, we can write

max
i∈[d]

fS(i) ≤ ∆S · δ2

10
1 + δ2

10
δ(1

2 + δ
2)

≤ ∆S

5 ≤ k − 1
5 ≤ (k − 1)2

3k − 1 ,

as desired. So we proved that {fS}S⊂[d]:|S|<d satisfies the conditions of Theorem 16. Now,
we are ready to bound λ2(Pτ) for any face τ of co-dimension k ≥ 2 and type S. First, we
show that for every i ∈ [d] \ S,

∑
j:j∼Si ϵ{i,j} ≤ 1 − δ. Note that

∆(i)∑
ℓ=1

H∆(i)−1(ℓ − 1) =
∆(i)∑
ℓ=2

ℓ

ℓ − 1 = 2 +
∆(i)∑
ℓ=3

ℓ

ℓ − 1 ≥ ∆(i).

Thus, we can write

∑
j:j∼Si

ϵ{i,j} ≤

∆(i)∑
ℓ=1

H∆(i)−1(ℓ − 1)
∆(i)

∑
j∼i

ϵ{i,j}

 ≤
∆(i)∑
ℓ=1

H∆(i)−1(ℓ − 1) · ϵ{i,jℓ} ≤ 1 − δ.

(17)

where we assumed that i1, . . . , jd is an ordering of [d] \ S such that ϵj1 ≤ · · · ≤ ϵjd
. Using

this inequality and (16), we get

λ2(Pτ) ≤
maxi∈[d]\S fS(i)

k − 1 ≤
maxi∈[d](

∑
j∼Si ϵ{i,j}) · hi(∆S(i))

k − 1

≤
(1 − δ) · maxi∈[d] hi(∆(i))

k − 1 ≤
(1 − δ) · 2(1+ δ2

10 δ)
δ(δ+1)

k − 1 ,

as desired. ◀

References
1 Dorna Abdolazimi, Kuikui Liu, and Shayan Oveis Gharan. A matrix trickle-down theorem on

simplicial complexes and applications to sampling colorings. In FOCS, pages 161–172. IEEE,
2021.

2 Vedat Levi Alev, Fernando Granha Jeronimo, and Madhur Tulsiani. Approximating constraint
satisfaction problems on high-dimensional expanders. In David Zuckerman, editor, FOCS,
pages 180–201. IEEE Computer Society, 2019.

3 Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-dimensional
expanders and applications to the hardcore model. SIAM Journal on Computing, FOCS20:1–37,
2020. doi:10.1137/20M1367696.

CCC 2023

https://doi.org/10.1137/20M1367696

10:16 An Improved Trickle down Theorem for Partite Complexes

4 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials
II: high-dimensional walks and an FPRAS for counting bases of a matroid. In Moses Charikar
and Edith Cohen, editors, STOC, pages 1–12. ACM, 2019.

5 Roger Carter. Simple groups of Lie type. John Wiley & Sons, 1989.
6 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of glauber dynamics: entropy

factorization via high-dimensional expansion. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC, pages 1537–1550. ACM, 2021.

7 Yotam Dikstein and Irit Dinur. Agreement testing theorems on layered set systems. In
David Zuckerman, editor, FOCS, pages 1495–1524. IEEE Computer Society, 2019. doi:
10.1109/FOCS.2019.00088.

8 I. Dinur and T. Kaufman. High dimensional expanders imply agreement expanders. In FOCS,
pages 974–985, 2017.

9 Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes. Locally testable
codes with constant rate, distance, and locality. In Stefano Leonardi and Anupam Gupta,
editors, STOC, pages 357–374. ACM, 2022.

10 Irit Dinur, Yuval Filmus, Prahladh Harsha, and Madhur Tulsiani. Explicit sos lower bounds
from high-dimensional expanders. In James R. Lee, editor, 12th Innovations in Theoretical
Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume
185 of LIPIcs, pages 38:1–38:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

11 Irit Dinur, Prahladh Harsha, Tali Kaufman, Inbal Livni Navon, and Amnon Ta-Shma. List-
decoding with double samplers. SIAM J. Comput., 50(2):301–349, 2021.

12 Shai Evra and Tali Kaufman. Bounded degree cosystolic expanders of every dimension. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages 36–48,
2016.

13 Tali Kaufman and Izhar Oppenheim. Construction of new local spectral high dimensional
expanders. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, STOC, pages
773–786. ACM, 2018. doi:10.1145/3188745.3188782.

14 Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit constructions of ramanujan
complexes of type ad. European Journal of Combinatorics, 26(6):965–993, 2005.

15 Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit constructions of ramanujan
complexes of type Ãd. European Journal of Combinatorics, 26(6):965–993, 2005. Combinatorics
and Representation Theory. doi:10.1016/j.ejc.2004.06.007.

16 Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Ramanujan complexes of type a d. Israel
journal of Mathematics, 149:267–299, 2005.

17 Ryan O’Donnell and Kevin Pratt. High-Dimensional Expanders from Chevalley Groups. In
Shachar Lovett, editor, 37th Computational Complexity Conference (CCC 2022), volume 234
of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:26, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

18 Izhar Oppenheim. Local spectral expansion approach to high dimensional expanders part i:
Descent of spectral gaps. Discrete and Computational Geometry, 59(2):293–330, 2018.

https://doi.org/10.1109/FOCS.2019.00088
https://doi.org/10.1109/FOCS.2019.00088
https://doi.org/10.1145/3188745.3188782
https://doi.org/10.1016/j.ejc.2004.06.007

Derandomization with Minimal Memory Footprint
Dean Doron #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Roei Tell #

The Institute for Advanced Study at Princeton, NJ, USA
DIMACS Center at Rutgers University, Piscataway, NJ, USA

Abstract
Existing proofs that deduce BPL = L from circuit lower bounds convert randomized algorithms
into deterministic algorithms with large constant overhead in space. We study space-bounded
derandomization with minimal footprint, and ask what is the minimal possible space overhead for
derandomization. We show that BPSPACE[S] ⊆ DSPACE[c·S] for c ≈ 2, assuming space-efficient
cryptographic PRGs, and, either: (1) lower bounds against bounded-space algorithms with advice,
or: (2) lower bounds against certain uniform compression algorithms. Under additional assumptions
regarding the power of catalytic computation, in a new setting of parameters that was not studied
before, we are even able to get c ≈ 1.

Our results are constructive: Given a candidate hard function (and a candidate cryptographic
PRG) we show how to transform the randomized algorithm into an efficient deterministic one. This
follows from new PRGs and targeted PRGs for space-bounded algorithms, which we combine with
novel space-efficient evaluation methods. A central ingredient in all our constructions is hardness
amplification reductions in logspace-uniform TC0, that were not known before.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory of
computation → Pseudorandomness and derandomization; Theory of computation → Error-correcting
codes

Keywords and phrases derandomization, space-bounded computation, catalytic space

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.11

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/036/ [14]

Funding The second author is supported in part by the National Science Foundation under grant
number CCF-1900460.

Acknowledgements We are grateful to Avi Wigderson for several useful conversations regarding the
gap between double space blow-up and single space blow-up. We thank Lijie Chen for suggesting the
idea of using catalytic space to save on complexity, early in this work, and for pointing out a gap in a
previous version of the proof of Theorem 2. We also thank Ian Mertz for several useful conversations
exploring the abilities of catalytic space. We are very grateful to an anonymous reviewer for a careful
read of this paper and for many useful comments. Part of this work was done while the second
author was visiting the Simons Institute for the Theory of Computing.

1 Introduction

One of the greatest challenges in complexity theory is the derandomization of efficient
algorithms, or more broadly, understanding to what extent randomness is necessary or useful
for algorithms. In the time-bounded setting, can we simulate any randomized algorithm by
a deterministic one with a roughly similar runtime? In the space-bounded setting, can we
derandomize with only a small factor blowup in space?

Classical hardness-to-pseudorandomness results tell us that under plausible circuit lower
bounds, any randomized algorithm that runs in time T can be be simulated deterministically
by an algorithm running in time T c [37, 26], and any randomized algorithm that uses S

© Dean Doron and Roei Tell;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deand@bgu.ac.il
https://orcid.org/0000-0003-1862-8341
mailto:roeitell@gmail.com
https://orcid.org/0000-0002-9693-9244
https://doi.org/10.4230/LIPIcs.CCC.2023.11
https://eccc.weizmann.ac.il/report/2023/036/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Derandomization with Minimal Memory Footprint

space can be simulated deterministically in space c · S [31], where c is a large constant. In
the terminology of complexity classes, BPP = P and BPL = L follow from circuit lower
bounds.1

The constant c in the foregoing classical results can indeed be large to the point of
impracticality, for reasons that are inherent to the proof techniques. Therefore, a natural
question is whether these results can be made more efficient, by providing an explicit small
bound on the time or space overhead in derandomization. In other words, we ask what is
the precise, fine-grained value of randomness in various computational settings. Note that
this question is likely to be relevant even when the great goal of establishing BPP = P and
BPL = L without relying on hardness assumptions is achieved.

In recent years, starting with the work of Doron, Moshkovitz, Oh, and Zuckerman [13] and
continuing with the works of Chen and Tell [11, 10, 12], a study of fine-grained derandomization
led to a series of results:2

BPTIME[T] ⊆ DTIME[T 2+α] assuming there exists a language in DTIME[2(1+α)n]
that is hard for certain randomized, non-deterministic circuits of size 2(1−α)n [13]. Chen
and Tell [11] showed that one can get rid of the circuits’ randomness by assuming that
the language is batch-computable.
BPTIME[T] ⊆ DTIME[n1+α · T], where n denotes the length of the input, assuming
that one-way functions exist, and there exists a language in DTIME[2k·n] that is hard
for DTIME[2(k−α)·n]/2(1−α)·n [11]. In a followup work, Chen and Tell [12] showed that
one can forgo the cryptographic assumption and replace it with [13]-style ones.
BPTIME[T] ⊆ heurDTIME[nα · T], meaning that the derandomization fails with
negligible probability with respect to all efficiently-samplable distributions [11]. This
result follows from uniform cryptographic assumptions and certain uniform hardness
assumptions for multi-bit output functions.
Derandomization of interactive proof systems with constantly many rounds, that either
has a (bounded) polynomial time overhead that depends on the number of rounds, or has
only nα time overhead and yields a deterministic (NP-style) argument system [12].

These results are often complemented with nearly matching conditional lower bounds (i.e.,
lower bounds assuming certain complexity-theoretic assumptions). In addition to derandom-
ization in nearly no cost, those results gave rise to new notions, tools, and techniques in
derandomization.

The space-bounded setting

In this work, we study efficient space-bounded derandomization under hardness assumptions,
asking what is the minimal possible space overhead for derandomization. That is, can we
transform randomized algorithms into deterministic ones that use roughly the same amount
of memory?

We note that unlike the time-bounded setting, wherein unconditional derandomiz-
ation results would lead to lower bounds that currently seem out of reach (see, e.g.,
[25, 28, 30, 47, 34, 44, 7, 8]), in the space-bounded setting we do have unconditional partial de-
randomization results. Savitch’s theorem [40] can be extended to show that BPSPACE[S] ⊆
DSPACE[O(S2)] (see also [5]). Nisan [35, 36] devised a time-efficient derandomization with

1 We also have equality between the promise classes. In fact, all our results in this paper will hold for the
corresponding promise classes as well, but for readability we will omit the promise problems notation.

2 In what follows, α > 0 is an arbitrarily small constant, but different appearances of α may (or should)
not be the same. We refer the reader to the relevant papers for the precise statements.

D. Doron and R. Tell 11:3

a quadratic overhead in space, namely, BPL ⊆ DTISP[poly(n), O(log2 n)]. Focusing solely
on space, Saks and Zhou [39] cleverly built on Nisan’s work to deterministically simulate
space-S randomized algorithms in DSPACE[O(S2/3)]. The state-of-the-art is a recent
improvement by Hoza [23], giving a deterministic simulation in space O(S2/3/

√
log S).

Still, even when BPL = L is proven, it is very likely that the minimal-footprint deran-
domization question would remain: What is the minimal c for which

BPSPACE[S] ⊆ DSPACE[c · S]?

We will give assumptions under which c approaches 2, and further assumptions under which
c approaches 1! Moreover, the results in this paper are constructive. Namely, given a
candidate hard function (and a candidate cryptographic PRG), we show how to transform
the randomized algorithm into an efficient deterministic one.

We proceed to give an overview of our results. Throughout the paper, when we refer to a
nice space function, we mean a function S(n) ≥ c0 ·log(n) (where c0 ≥ 1 is a universal constant)
such that there exists a Turing machine that gets input (x, 1t) where t ≤ ⌈log(S(|x|))⌉, runs
in space O(log(|x|) + log(S(|x|))), and accepts if and only if t = ⌈log(S(|x|))⌉.

1.1 Setting the stage: A tighter hypothesis and improved local list
decoding

We first revisit the Klivans–van-Malkebeek result [31] that establishes BPL = L from
standard, nonuniform hardness assumptions. The [31] result, which goes along the line of [37],
states that given a language in DSPACE[O(n)] that is hard for circuits of size 2εn, then
BPL = L.3 Can we do better? In particular, can we work with a more restricted class of
circuits? We show:

▶ Theorem 1 (see also [14, Theorem 5.2]). Assume there exists a language L ∈
DSPACE[O(n)] that is hard for TC0 circuits of size 2εn, for some ε ∈ (0, 1), with or-
acle access to read-once branching programs of length and width 2εn. Then, for any nice
space function S,

BPSPACE[S] ⊆ DSPACE[O(S)].

While Theorem 1 is not needed for our minimal-footprint results, the main ingredient
that goes into the proof of Theorem 1 is a basic component in all of our results: We give a
new hardness amplification result in TC0, or equivalently, a new locally list decodable code
with TC0 decoding. We elaborate on it in Section 2.1.

1.2 Black-box derandomization with minimal footprint
Our first derandomization result follows from worst-case nonuniform hardness assumptions
and cryptographic assumptions. We begin with our hardness assumption, which asserts that
there is a language computable in linear space that is hard for algorithms that use smaller
linear space as well as non-uniform advice.

3 In [31] it is also stated that one can obtain BPL = L from a size-2εn lower bound on branching
programs. The proof of this statement is not spelled out there in full detail, and as far as we understand,
the branching programs referred to in the statement are non oblivious and non read once – a model
that lies between NC1 and AC1. Theorem 1 gives a stronger statement.

CCC 2023

11:4 Derandomization with Minimal Memory Footprint

▶ Assumption 1 (nonuniform hardness assumption). For a sufficiently large constant C there
exists a language L computable in deterministic space (C + 1) · n that is hard, on all but
finitely many input lengths, for algorithms that run in deterministic space C · n with 2n/2

bits of advice.

We note that the gap of C + 1 vs. C can be replaced by any constant gap (i.e., C + k vs.
C for any small constant k), at the cost of allowing a relatively minor additional overhead in
the derandomization; for the precise statement, see [14, Theorem 5.5]. We note that a small
gap between the space complexity of L and the space for which it is hard for, is inherent for
“super efficient” derandomization results merely due to space hierarchy theorems.

We continue with our cryptographic PRG.

▶ Assumption 2. There exists a polynomial-stretch PRG fooling circuits of arbitrary polyno-
mial size, computable in logarithmic space.4

One appealing candidate for a cryptographic PRG satisfying Assumption 2 is Goldreich’s
expander-based PRG [16], instantiated with expanders whose neighbor function is logspace-
computable; we elaborate on this below. However, in the assumption we can use any
cryptographic PRG with polynomial stretch, as long as its space complexity is as described.

Equipped with those two assumptions, we can state our efficient derandomization from
worst case hardness assumptions.

▶ Theorem 2 (see also [14, Theorem 5.5]). Suppose that Assumption 1 and Assumption 2
hold. Then, for any nice space function S, we have that

BPSPACE[S] ⊆ DSPACE
[(

2 + c

C

)
S

]
,

where c > 1 is some fixed universal constant.

As the section’s name suggests, the above result uses a space-efficient pseudorandom
generator (along the lines of [11]), which we combine with a new method to space-efficiently
evaluate a space-bounded machine over the PRG’s image, utilizing the machine’s own
configuration. See Section 2.2 for a discussion about the techniques.

On the hardness assumptions

The combination of two assumptions – one asserting hardness for non-uniform machines,
and an additional one that is either cryptographic or relies on hardness for non-deterministic
non-uniform machines (as in [13]) – is in line with previous works in the area (see [11, 12]).
However, previous works focused on time bounded algorithms, whereas the space bounded
model turns out to be more subtle, posing several additional challenges. Thus, the particular
hardness assumptions that we use above are more specialized. Let us elaborate.

First, note that the hypothesized lower bound in Assumption 1 is against space-bounded
Turing machines (with advice). One could have hoped for a hardness assumption that is
even closer to Theorem 1, namely, for read-once branching programs (or for TC0 circuits
with oracle access to such programs). In the technical section we show that Assumption 1
can indeed be relaxed to a seemingly weaker, branching programs based assumption, which
is a bit more involved to state (see [14, Section 5.3.2] for details).

4 That is, for any constants η and k we have a PRG Ccry : {0, 1}nη

→ {0, 1}nk

computable in space
O(log(nη) + log log(nk)) (see [14, Section 3.1]).

D. Doron and R. Tell 11:5

Secondly, our cryptographic PRG is not just an arbitrary one, but has to be logspace-
computable. However, as mentioned above, we propose Goldreich’s PRG [16] as a natural
and well-studied candidate, that works as follows. Let Γ: [nC]× [d]→ [nη] be the neighbor
function of a suitable lossless expander, and let P : {0, 1}d → {0, 1} be a predicate. Then,
given s ∈ {0, 1}nη and i ∈ [nC], we define

Gexp(s)i = P
(

s↾Γ(i)

)
,

where s↾Γ(i) is the restriction of s to the set of right-neighbors of i the lossless expander. For
Γ, we use an explicit, space-efficient expander [22, 29]. We further discuss Goldreich’s PRG
and its security, including possible choices for P , in [14, Section 5.3.1].

1.3 Non black-box derandomization with minimal footprint
Next, we turn to minimal-footprint derandomization under uniform hardness assumptions.
Roughly speaking, we assume the existence of a function computable in space (C + 1) · n
that cannot be probabilistically “compressed” (even in slightly larger space) into a small
Turing machine that uses only C · n space and computes the function. Formally:

▶ Definition 1. We say that P ∈ {0, 1}⋆ is an S-space compressed version of f ∈ {0, 1}⋆ if
P is a description, of length

√
|f |, of a Turing machine M that satisfies the following: On

input x ∈ [|f |], the machine M runs in space S(log(|f |)) and outputs fx.

▶ Assumption 3. For a sufficiently large constant C, there exists a function f : {0, 1}⋆ →
{0, 1}⋆ mapping n bits to n2 bits, that is computable in space (C + 1) · log n, and satisfies the
following. For every probabilistic algorithm R running in space C · log n + O(log n)5 there
are at most finitely many x ∈ {0, 1}⋆ for which

Pr [R(x) prints a (C · log n)-space compressed version of f(x)] ≥ 2
3 .

Again, similarly to our comments after Assumption 1, the precise difference of C + 1 vs.
C is not crucial (i.e., we can use C + k vs. C for a fixed small universal k), and moreover the
precise “amount of compression” can also be relaxed (e.g., compressing to |f |0.01 instead of
to

√
|f |); see [14, Section 6] for the precise details.

▶ Theorem 3 (see also [14, Theorem 6.5]). Suppose that Assumption 3 and Assumption 2
hold. Then, for any nice space function S, we have that

BPSPACE[S] ∈ DSPACE
[(

2 + c

C

)
S

]
,

where c > 1 is some fixed universal constant.

The derandomization algorithm in Theorem 3 does not rely on a pseudorandom generator,
but instead works in a “non black-box” way that depends on the input. This follows an
approach in a recent line of works initiated in [10] (with origins dating back to [18, 17]). As
in previous works, the underlying hardness-to-randomness tradeoff is instance-wise, in the
sense that for every space-S machine M and any fixed input x, if a certain machine RM (x)
fails to print a compressed version of f(x), then the deterministic simulation of M succeeds
at the particular input x.

5 The constant hidden in the O() does not depend on C.

CCC 2023

11:6 Derandomization with Minimal Memory Footprint

On the hardness assumption

The hardness assumption in Theorem 3 is different than the one in Theorem 2, but the
conclusion is identical. This lends additional support for the possibility of derandomization
with small footprint. Moreover, assuming hardness only for uniform algorithms (as in
Theorem 3) is preferable, and the notion of hardness on all but finitely many inputs is
necessary for derandomization and was used in several recent works (see, e.g., [10, 32, 33]).

Nevertheless, the particular notion of hardness of compressing f(x) is non standard,
and we elaborate on it. Recall that, by Kolmogorov-complexity-type arguments, almost all
strings do not have any concise representation, let alone one that represents a space-bounded
machine. (In particular, since such a representation does not exist, then certainly it is
impossible to efficiently find it as in Assumption 3.) The crux of the assumption is that
such representations are infeasible to find even for the outputs of the efficiently-computable
function f(x). We also note that an assumption reminiscent of “hardness of compressing
f(x) on all but finitely many inputs x” was recently used to characterize time-bounded
derandomization (i.e., it is equivalent to the statement prBPP = prP); see [32] for precise
details.

Lastly, since the underlying hardness-vs.-randomness tradeoff is instance-wise, the state-
ment of Theorem 3 is robust, in the following sense: If the hardness holds not on all n-bit
inputs, but rather only on 1− µ(n) fraction of the n-bit inputs over some distribution xn,
then the derandomization succeeds with precisely the same probability and over the same
distribution. Further details appear in [14, Section 6].

1.4 Catalytic computation towards an even smaller footprint
In the model of catalytic computation, introduced by Buhrman et al. [6], we enrich the
space-bounded model with an auxiliary memory, that initially already stores some data.
While we are allowed to use the auxiliary memory for our computation, in addition to the
standard work tape, the auxiliary memory needs to be restored to its original content after
use. Can such a seemingly restrictive usage be useful for computation? The work of [6] and
followup works showed that it is indeed the case. Here, we give a possible application of
catalytic space to derandomization, a connection that as far as we know, was not suggested
before.

Suppose that our hard language from Assumption 1 can be computed catalytically, that
is, most of the space used to compute it can be eventually restored. More concretely, consider
the following assumption:

▶ Assumption 4. The language from Assumption 1 is computable in space n using additional
C · n auxiliary catalytic space.

Then, we can show:

▶ Theorem 4. Suppose that Assumption 4 and Assumption 2 hold. Then, for any nice space
function S, we have that

BPSPACE[S] ⊆ DSPACE
[(

1 + c

C

)
S

]
for some fixed universal constant c.

The same conclusion holds when adapting Assumption 3 in similar fashion.
Theorem 4 brings us tantalizingly close to derandomization without added memory

footprint. Interestingly, the regime of parameters in Assumption 4, where the work space is
only a small constant fraction of the catalytic space, has not been studied in the catalytic

D. Doron and R. Tell 11:7

computation literature. (So far, the focus has been on the particular case where the catalytic
space is exponential in the working space.) We thus view Assumption 3 also as a motivation
to study catalytic computation in other regimes of parameters, which are useful for the study
of derandomization.

2 Technical Overview

In Section 2.1 we describe the proof of Theorem 1, the main component of which (a new
error-correcting code – see Theorem 2) will be used in the subsequent proofs. Then, in
Section 2.2 we describe the proofs of Theorem 2 and Theorem 4. In particular, we show how
to eliminate derandomization overheads, using a new algorithmic idea for derandomization,
a particular type of cryptographic PRG, and an assumption about catalytic space. The
proof of Theorem 3 is described in Section 2.3, and requires the strengthening of all the
components described in Sections 2.1 and 2.2.

2.1 Warm-up: Hardness amplification for TC0 circuits in linear space
The proof of Theorem 1 relies on the standard hardness-vs.-randomness approach, follow-
ing [37, 26, 43]: Given an input x ∈ {0, 1}n the derandomization algorithm first computes
the truth-table f ∈ {0, 1}poly(n) of the hard function (on input length O(log n)); then it
transforms f into a truth-table f̄ ∈ {0, 1}poly(|f |) of a function that is hard on average,
using a locally list-decodable error-correcting code; and finally it uses the Nisan–Wigderson
generator to transform f̄ into pseudorandom strings on which the probabilistic machine is
evaluated with input x (see, e.g., [15, Chapters 7, 8], [4, Chapters 19, 20]).

The bottleneck in this approach is the worst-case to average-case reduction underlying the
transformation of f to f̄ . To prove that the derandomization works for logspace machines,
it suffices for f̄ to be hard on 1/2− 2−ε·m fraction of its inputs for ROBPs of width 2ε·m,
for some ε > 0 and where m = log(|f̄ |).6 In order to deduce this conclusion using the
standard argument of [43], we need to assume that f itself is hard (in the worst-case) for
C-procedures with oracle access to ROBPs of linear width, where C is the complexity of the
local list-decoding algorithm of the code.

Loosely speaking, to decode from distance 1/2 − δ (and deduce hardness on 1/2 − δ

fraction of the inputs), the procedure C needs to be able to compute the majority function
(on Θ(1/δ) bits, which in our setting would be Θ(2ε·m) bits; see [19]).7 Unfortunately, even
when allowing C = TC0, the best known decoder, from [19], only handles δ = 2−

√
m, which is

too large for us. The codes that are typically used for hardness amplification with δ = 2−ε·m

(i.e., the ones from [26, 43]) are not known to be locally list-decodable in complexity as low
as TC0.8

The key observation allowing us to bridge this gap is that for our application of hardness
amplification, we do not have to insist on the TC0 circuit being of size poly(ℓ), where
ℓ = log(|f |), as in the standard setting of local coding. In fact, in our setting we can allow a
circuit of size 2ε·ℓ. Given this relaxation, we construct the following suitable code.

6 This is actually an over-simplification, and what we actually need is for f̄ to be hard on 1/2 − 2−ε·m

fraction of the its inputs for AC0 circuits that have oracle access to an ROBPs of width 2ε·m (this
follows from the standard reconstruction argument of [37]). In this high-level overview we ignore the
AC0 overhead, for simplicity of presentation.

7 In fact, a similar statement holds for any “black-box” worst-case to average-case hardness amplifica-
tion [46, 41, 20].

8 The bottleneck in both cases is local list-decoding of the Reed-Muller code; see [10] for a recent
construction of a decoder in logspace-uniform NC.

CCC 2023

11:8 Derandomization with Minimal Memory Footprint

▶ Theorem 2 (see also [14, Theorem 4.2]). There exists a universal constant c > 1 such that
for any constant γ ∈ (0, 1) the following holds. For every k ∈ N and ε > 0, there exists a
logspace-computable code C : {0, 1}k → {0, 1}n, for n = (k

ε)c/γ , that is locally list decodable
from 1/2 + ε fraction of agreement by constant-depth threshold circuits of size kγ · (1/ε)c.

At a high level, the proof of Theorem 2 (wherein one should think of k = 2m) combines
three known code constructions:
1. A small modification of the code of [19], which uniquely decodes from agreement 1− 1

25
using TC0 circuits;

2. the derandomized direct-product code of [26], which (1− 1
25)-approximately list-decodes

from agreement η = 2−O(ε·m) using a TC0 circuit of size 2O(ε·m); and,
3. the Hadamard code, which we concatenate with the direct product code and is list-

decodable from agreement 1
2 + 2−ε·m by TC0 circuits of size poly(m).

As a corollary, we obtain a TC0-computable worst-case to average-case reduction for
computing functions in DSPACE[O(n)]; see [14, Corollary 4.1]. This reduction handles the
“high-end” parameter regime, which previous reductions for functions in DSPACE[O(n)] did
not handle (see [42, 21, 19]), and is incomparable to reductions computable by probabilistic
(uniform) algorithms [45, 9].

The decoder’s complexity

For our results we crucially rely on the fact that the decoder can be implemented in TC0 (e.g.,
when deducing black-box derandomization from hardness for TC0 circuits with oracle access
to branching programs, or when deducing non-black-box derandomization). We suspect that
it is possible to construct a code with weaker guarantees – namely, a logspace decoder, rather
than a TC0 decoder – using simpler techniques (i.e., replacing the “outer” code of [19] by
more classical tools).

2.2 Derandomization with minimal footprint using PRGs
Let S = C · log n denote the space complexity of the machine M we wish to derandomize
(the result for arbitrary S will follow from padding). At a high-level, our construction follows
an approach first introduced in [11], which composes two “low-cost” PRGs:

An inner PRG that stretches O(log n) bits to nη bits for some tiny constant η > 0, and,
an outer PRG that stretches nη bits to nC bits.

Specifically, as in [10], we take the inner PRG, denoted by NW, to be an appropriately
parameterized Nisan-Wigderson PRG [37] with a hard truth-table f ∈ {0, 1}n2 , and the
outer PRG, denoted by Gcry, to be one that relies on a cryptographic assumption.

Unfortunately, materializing this approach in the current setting turns out to be signific-
antly more subtle than in [11]. To see this, observe that the final computation iterates over
seeds s ∈ {0, 1}O(log n), and for each s computes

M(x, Gcry(NWf (s))),

where f is the truth-table of the hypothesized hard function. To compute this using space-
efficient composition, we use the following chain of simulations:
1. Simulate M(x, ·), and whenever it queries its second input –
2. Simulate Gcry, and whenever it queries its input –
3. Simulate NWf (s), and whenever it queries f –
4. Compute the corresponding bit of f .

D. Doron and R. Tell 11:9

Recall that, using space-efficient (emulative) composition, the complexity of the final
construction is additive in the space complexity of each of its components, plus additional
overheads that are logarithmic in the output length of each component. (The latter logarithmic
overhead is caused by the fact that we are simulating a virtual input head for each component.
See [14, Proposition 3.2].) A naive implementation of this approach yields space complexity
of 3S + Space(Gcry) + Space(NW), where Space(·) denotes the space complexity of the
corresponding algorithm, and we ignore factors of the form c · log n where c > 1 is a universal
constant that doesn’t depend on S.

A more efficient derandomization

Our first observation is that the standard way of derandomizing probabilistic space-S machine
is wasteful. There, we think of the probabilistic machine as reading a tape of random bits,
sequentially; and when simulating it deterministically, we keep track of a counter i ∈ [2S],
and whenever the machine wishes to read a random bit, we answer using the i-th bit in the
pseudorandom output of the generator, and update i← i + 1.

It might (mistakenly) seem that using a dedicated counter is necessary, because we must
ensure that the machine reads each bit in the random (or pseudorandom) sequence exactly
once. However, this intuition turns out to be false: Instead of keeping a dedicated counter
i ∈ [2S], we can use the machine’s own configuration as a counter. Specifically, recall that at
each step the machine has some configuration σ ∈ {0, 1}S describing the contents of its work
tapes, its current state, and the locations of its heads.9 Moreover, since for every input x

and fixed sequence r of coins, the execution of M(x, r) halts, any configuration σ ∈ {0, 1}S is
encountered at most once during the execution of M (see [14, Claim 3.3]). Thus, we consider
the following machine M̄ , which simulates M using oracle access to a sequence of random
coins but without the overhead of keeping a counter:

Simulate M , and whenever M tries to flip a random coin, access the sequence of
random coins at location σ, where σ is M ’s current configuration.

Since the functionality of M̄ and of M at any input x, with uniform coins, is identical, it
suffices to faithfully simulate M̄ with pseudorandom coins.

At this point the space complexity of the derandomization is essentially

2S + Space(Gcry) + Space(NW).

Since NW maps a truth-table f of length n2 to pseudorandom strings of length nη, it can be
computed in space c′ · log n for a universal c′ > 1 (see [14, Section 5.1]). Thus, our last step
is to bound the space complexity of Gcry.

We do so by relying on a specific PRG whose space complexity is logarithmic in its input
length nη and sub-logarithmic in its output length nC . A natural candidate for such a PRG
arises from the “cryptography in NC0” literature (see, e.g., [2, 27, 1, 38]), and in particular
we can use Goldreich’s PRG [16]. The latter PRG relies on a bipartite lossless expander
Γ: [nC]× [d]→ [nη] with a small left-degree d, and on a predicate P : {0, 1}d → {0, 1}. For
s ∈ {0, 1}nη and i ∈ [nC], the i-th output of Gcry(s) is

P
(
sΓ(i,1), ..., sΓ(i,d)

)
,

where Γ(i, 1), . . . , Γ(i, d) are the d neighbors of i in the expander.

9 Indeed, we count the location of the heads and the state in the configuration of the machine, and in
fact assume that they are written on dedicated worktapes; see [14, Section 3] for the precise details.

CCC 2023

11:10 Derandomization with Minimal Memory Footprint

In the cryptography literature, the graph is often taken to be a random one, but in our
setting we need a lossless expander whose neighbor function is computable in space c′′ · log n,
and also a predicate known to withstand existing attacks that is computable in space c′′ · log n,
where in both cases c′′ > 1 is a universal constant. We use the recent expander construction
of Kalev and Ta-Shma [29], whose degree is d = polylog(n) and whose neighbor function is
computable in space O(loglogn), and a predicate introduced by Applebaum and Raykov [3]
that is computable in space O(log d) = O(loglogn). See [14, Section 5.3.1] for further details.

This brings the complexity of the deterministic simulation of M on each particular seed
to be 2S + c · log n for some universal constant c, and after enumerating over all seeds and
taking the majority output, the space complexity increases only by an additive factor of, say,
at most c · log n.

The reconstruction argument

We prove that the derandomization works using a reconstruction argument. Specifically, in
the derandomization, we instantiate the NW generator with the code from Theorem 2, and
rely on the reconstruction argument of NW and on the local list-decoding algorithm of the
code to transform any ROBP distinguisher for the PRG (which arises from the computation
of the space-S machine M on a fixed input x) into an efficient procedure that computes f .

The details of the reconstruction procedure appear in [14, Theorem 5.1], so let us only
highlight the important points in the argument. First, our distinguisher is actually derived
from M̄ , the machine that reads bits according to its configuration. Secondly, by a standard
analysis of PRG composition, the distinguisher for NWf is not just the ROBP derived from
M̄ and x, but actually the composed procedure

D(r) = M̄Gcry(r)(x).

This increases the complexity of the distinguisher from a simple ROBP to a bounded-space
machine. Lastly, while the machine implementing D uses space at least S = C · log n, the
amount of non-uniform advice that it uses is much smaller than 2S = nC . Specifically, it
uses only |x| = n = 2log(|f |)/2 bits of advice.

To sum up, if the derandomization fails on some input x, then there exists a TC0 circuit
C of size nε, and a function D that is computable in space ≈ C · log n with n bits of advice,10

such that CD(i) = fi for all i ∈ [n2]. Finally, using the fact that C is a TC0 circuit, we
show that CD itself can be computed by a TM with advice, whose space complexity is only
slightly larger than the space complexity of D. This contradicts the hardness of f .

Obtaining a sub-double space overhead

The derandomization above takes 2S + c · log n space, where the increase from S to 2S

is caused by the space complexity of computing f . Indeed, it seems unavoidable that we
will need space larger than S to compute f , because we are assuming that it is hard for
algorithms running in space S.

The key observation to reducing this overhead is that if f is computable in catalytic space
S, we can roughly use the existing used worktape cells – which, at any point in time, contain
the current configuration of the derandomized machine – in order to compute each query of

10 The precise complexity of D is (C + 1 + ε) · log n, but in the high-level overview we ignore these minor
overheads, for simplicity of presentation.

D. Doron and R. Tell 11:11

NW to f . Specifically, whenever the derandomization machine queries f at location i ∈ [n2],
we compute fi using (mostly) the existing space in a catalytic way. After the computation
of the bit fi ends, the original content of the worktapes is restored. The key point is that
since the configuration of the machine does not change during the computation of i 7→ fi,
nor is this computation dependent on the configuration in any way, the correctness of the
procedure is maintained.

Thus, under this strengthened hypothesis that f is computable in small catalytic space,
the final space complexity of the derandomization algorithm is just S + c · log n.

An alternative to Assumption 1

Recall that D(r) above can be computed by a bounded-space machine that uses |x| bits of
advice. While indeed D is not a read-once branching program, the computation of D(r) is
oblivious. Namely, computing Ccry can be done by a bounded-width branching program that
at each layer queries several locations of r, however these locations are determined only by
the underlying expander Γ. Thus, we can model CD as a TC0 circuit with (non-adaptive)
oracle access to branching programs of the aforementioned type. Moreover, we will later see
that the TC0 circuit can be space-efficiently generated using a short advice. The formal
assumption is given in [14, Assumption 5.10], and can replace Assumption 1 for both the
double and sub-double overhead results.

2.3 Non black-box derandomization with minimal memory footprint
Set S = C·log n and recall that we wish to obtain the same conclusions for BPSPACE[S] as in
Section 2.2, but from different assumptions. Specifically, we assume the existence of a function
f : {0, 1}n → {0, 1}n2 computable in space S′ = S +O(log n) such that for every probabilistic
algorithm R running in space SR = S′ + O(log n), and every x ∈ {0, 1}n, the algorithm R(x)
fails to print a compressed version of f(x) (except with small probability). In this context,
a compressed version means a Turing machine of description size O(n) = O(

√
|f(x)|) that

runs in space roughly S + log n < S′.
Following ideas from [10, 32], we will construct a targeted PRG, which is an algorithm

that maps any input x to a set of pseudorandom strings that will fool the machine M with
this particular input x. As in those previous works, our targeted PRG is based on the Nisan–
Wigderson generator, and we analyze it using an instance-wise hardness vs. randomness
tradeoff. Specifically, we show that if the derandomization fails on an input x, then a
probabilistic space-SR machine R succeeds in mapping the same fixed x to a compressed
version of f(x). This yields Theorem 3, and also the more general version mentioned after
the theorem’s statement: For every distribution x over the inputs, if the probability over
x ∼ x that R fails to print compressed version of f(x) is 1− µ, then the derandomization
succeeds on 1− µ of the inputs x ∼ x.

The derandomization itself is similar to the one from Section 2.2, with a minor difference
that is nevertheless crucial. Instead of instantiating NW with f that is the truth-table of a
hypothesized hard function, we instantiate NW with f = f(x) obtained from the input x.
That is, we compute the majority, over seeds s ∈ {0, 1}O(log n), of

M̄Gcry(NWf(x)(s))(x) .

Note that the complexity of the derandomization algorithm is essentially identical to that of
the algorithm from Section 2.2. Thus, the only question is – why does it work?

CCC 2023

11:12 Derandomization with Minimal Memory Footprint

Analysis

The main argument underlying Theorem 3 is proving that there exists a space-SR algorithm
R = RM satisfying the following: For any fixed x ∈ {0, 1}n, when NW is instantiated with
the code from Theorem 2, if NWf(x) does not fool M , then R(x) prints a compressed version
of f(x).

The intuition for why this might be possible dates back to [24], who showed that the
reconstruction algorithm of NW, which maps a distinguisher to a small circuit for the hard
truth-table, can be made uniform – as long as it is allowed to make queries to the hard
truth-table. Recall that in our setting, the algorithm R explicitly gets the input x, and we are
allowing R to run in space that is slightly larger than the space complexity of computing f(x).
Therefore, R can simulate the reconstruction algorithm, and whenever the latter queries an
index i of f(x), the algorithm R simply computes f(x) and returns the relevant bit.

The main technical challenge that we are faced with is making the algorithm R not
only uniform, but also a small-space algorithm, and doing so when the underlying code for
hardness amplification is the one from Theorem 2. The resulting statement appears in [14,
Theorem 6.1], and its proof is the most technically subtle argument in this paper. In the rest
of the section we describe the proof, at a high-level.

Low-space uniform reconstruction and decoding

We first strengthen the analysis of the code C from Theorem 2, to show that not only is
it locally list-decodable, but that it also has a probabilistic space-O(log n) uniform decoder,
which does not need non-uniform advice (but rather uses queries to the corrupt codeword).
The algorithm R will answer this decoder’s queries to the corrupt codeword C(f(x)) by
computing f(x) and then C, which it can do in its allotted space. We compose this uniform
decoder for C with a space-O(log n) reconstruction algorithm for NW.

We stress that the two algorithms underlying R – the decoder, and the NW reconstruction
– run in space O(log n), but print a procedure of description size nΩ(1). Thus, not only do
the two algorithms need to print a description of a procedure without remembering most of
the functionality of the machine that they printed so far – but also the algorithms cannot
even evaluate the procedures that they print.

The key observation is that in both cases, the decoding/reconstruction prints a procedure
almost all of which is a large, static, truth-table. To see this, let us focus for simplicity
on the NW reconstruction algorithm.11 Recall that this algorithm implements very simple
functionality, which can be described by a logspace-uniform constant-depth circuit of size
polylog(n), and that is hard-wired with “static” information of size nε that is mostly obtained
from queries to C(f(x)).12 With some low-level care, we can design an algorithm that queries
C(f(x)) and prints a machine that implements that functionality, and has states encoding
the foregoing static information. Thus, the algorithm which prints the machine does not
need to remember static information that is already printed.

A related complication arises because both the decoding algorithm of C and the reconstruc-
tion algorithm of NW actually succeed only with small probability. The standard approach
(e.g., in [24, 10, 32]) is for R to use queries to C(f(x)) to estimate the agreement of the

11 The computational bottleneck in the decoder for C is the decoder for the derandomized direct product
code of [26], which acts in a similar way to the reconstruction of NW. Thus, we use similar ideas to
handle both the reconstruction of NW and the decoder of C.

12 The information consists of an index i (used for a hybrid argument), of a combinatorial design, of values
for the seed outside the i-th set in the design, and of nη partial truth-tables.

D. Doron and R. Tell 11:13

procedure that it outputs with C(f(x)), repeating the experiment until it gets a procedure
with sufficiently large agreement. Since in our case R cannot evaluate the procedure that
it prints, it cannot take this approach. Instead, R prints a procedure that performs this
“success amplification” functionality by itself. We leave the details to the technical section.

Composing the two algorithms

The description above refers vaguely to “the procedure” that R print, and being more
accurate, this procedure is a TC0 circuit C of size nε making queries to a space-S machine
D that uses n bits of advice. This is not enough, since our goal is for R to print a single
Turing machine of description size O(

√
|f(x)|) = O(n) running in space S + log n < S′.

Bridging this gap requires more care in composing the two algorithms. Specifically,
our algorithm R prints a machine whose states encode the circuit C, and that implements
the standard DFS-style emulation of NC1 ⊇ TC0 circuits in logspace, while reading the
description of the hard-coded C out of its own states. The space overhead of the emulation
itself is O(log |C|) = O(log(nε)), and the machine also needs to compute the values of the
gates along each DFS path. In particular, this means that we need to ensure that each path
contains at most one oracle call to D (otherwise the machine’s space complexity will be larger
than 2S). For this purpose, in our strengthened analysis of C we ensure that its decoding
procedure only makes non-adaptive queries. This allows us to bound the space complexity of
the machine that R prints by S + O(ε · log n) ≤ S + log n, as desired.

References

1 Benny Applebaum. Cryptography in constant parallel time. Information Security and Crypto-
graphy. Springer, 2014.

2 Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM Journal
on Computing, 36(4):845–888, 2006.

3 Benny Applebaum and Pavel Raykov. Fast pseudorandom functions based on expander graphs.
In Theory of Cryptography. Part I, volume 9985, pages 27–56. Springer, 2016.

4 Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach. Cambridge
University Press, Cambridge, 2009.

5 Allan Borodin, Stephen Cook, and Nicholas Pippenger. Parallel computation for well-endowed
rings and space-bounded probabilistic machines. Information and Control, 58(1-3):113–136,
1983.

6 Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman. Computing
with a full memory: catalytic space. In Proc. 46th Annual ACM Symposium on Theory of
Computing (STOC), pages 857–866, 2014.

7 Lijie Chen. Non-deterministic quasi-polynomial time is average-case hard for ACC circuits.
In Proc. 60th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2019.

8 Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit lower bounds from
non-trivial derandomization. In Proc. 61st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2020.

9 Lijie Chen, Ron D. Rothblum, and Roei Tell. Unstructured hardness to average-case random-
ness. In Proc. 63rd Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 429–437. IEEE, 2022.

10 Lijie Chen and Roei Tell. Hardness vs. randomness, revised: uniform, non-black-box, and
instance-wise. In Proc. 62nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2021.

CCC 2023

11:14 Derandomization with Minimal Memory Footprint

11 Lijie Chen and Roei Tell. Simple and fast derandomization from very hard functions: Elimin-
ating randomness at almost no cost. In Proc. 53st Annual ACM Symposium on Theory of
Computing (STOC), 2021.

12 Lijie Chen and Roei Tell. When arthur has neither random coins nor time to spare: Superfast
derandomization of proof systems. Electronic Colloquium on Computational Complexity:
ECCC, 2022.

13 Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. Nearly optimal pseudoran-
domness from hardness. In Proc. 61st Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2020.

14 Dean Doron and Roei Tell. Derandomization with minimal memory footprint. Electronic
Colloquium on Computational Complexity: ECCC, 30:036, 2023.

15 Oded Goldreich. Computational complexity: A conceptual perspective. Cambridge University
Press, New York, NY, USA, 2008.

16 Oded Goldreich. Candidate one-way functions based on expander graphs. In Studies in Com-
plexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation,
pages 76–87. Springer, 2011.

17 Oded Goldreich. In a world of P = BP P . In Studies in Complexity and Cryptography.
Miscellanea on the Interplay Randomness and Computation, pages 191–232. Springer, 2011.

18 Oded Goldreich and Avi Wigderson. Derandomization that is rarely wrong from short
advice that is typically good. In Proc. 6th International Workshop on Randomization and
Approximation Techniques in Computer Science (RANDOM), pages 209–223, 2002.

19 Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum.
Verifying and decoding in constant depth. In Proc. 39th Annual ACM Symposium on Theory
of Computing (STOC), pages 440–449, 2007.

20 Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishability by adaptive
procedures with advice, and lower bounds on hardness amplification proofs. In Proc. 59th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 956–966, 2018.

21 Venkatesan Guruswami and Valentine Kabanets. Hardness amplification via space-efficient
direct products. Computational Complexity, 17(4):475–500, 2008.

22 Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and
randomness extractors from Parvaresh-Vardy codes. Journal of the ACM, 56(4):Art. 20, 34,
2009.

23 William M. Hoza. Better pseudodistributions and derandomization for space-bounded compu-
tation. In Proc. 25th International Workshop on Randomization and Approximation Techniques
in Computer Science (RANDOM), pages 28:1–28:23, 2021.

24 Russel Impagliazzo and Avi Wigderson. Randomness vs. time: Derandomization under a
uniform assumption. Journal of Computer and System Sciences, 63(4):672–688, 2001.

25 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

26 Russell Impagliazzo and Avi Wigderson. P = BP P if E requires exponential circuits: deran-
domizing the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, STOC ’97, page 220–229. Association for Computing Machinery, 1997.

27 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant
computational overhead. In Proc. 40th Annual ACM Symposium on Theory of Computing
(STOC), pages 433–442, 2008.

28 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

29 Itay Kalev and Amnon Ta-Shma. Unbalanced expanders from multiplicity codes. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022), volume 245 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 12:1–12:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

D. Doron and R. Tell 11:15

30 Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. Pseudorandom generators, typically-
correct derandomization, and circuit lower bounds. Computational Complexity, 21(1):3–61,
2012.

31 Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing, 31(5):1501–
1526, 2002.

32 Yanyi Liu and Rafael Pass. Characterizing derandomization through hardness of Levin-
Kolmogorov complexity. In 37th Computational Complexity Conference (CCC 2022), volume
234 of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1–35:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

33 Yanyi Liu and Rafael Pass. Leakage-resilient hardness vs. randomness. Electronic Colloquium
on Computational Complexity: ECCC, 30:113, 2022.

34 Cody Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-polytime:
An easy witness lemma for NP and NQP . In Proc. 50th Annual ACM Symposium on Theory
of Computing (STOC), 2018.

35 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

36 Noam Nisan. RL ⊆ SC. Computational Complexity, 4(1):1–11, 1994.
37 Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Computer and System

Sciences, 49(2):149–167, 1994.
38 Hanlin Ren and Rahul Santhanam. Hardness of KT characterizes parallel cryptography. In

36th Computational Complexity Conference (CCC 2021), volume 200 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 35:1–35:58. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021.

39 Michael E. Saks and Shiyu Zhou. BPHSP ACE(S) ⊆ DSP ACE(S2/3). Journal of Computer
and System Sciences, 58(2):376–403, 1999.

40 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2):177–192, 1970.

41 Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. In Proc.
40th Annual ACM Symposium on Theory of Computing (STOC), pages 589–598, 2008.

42 Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. toit,
42(6):1723–1731, 1996. Codes and complexity.

43 Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the XOR
lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

44 Roei Tell. Proving that prBP P = P is as hard as proving that “almost NP ” is not contained
in P/poly. Information Processing Letters, 152:105841, 2019.

45 Luca Trevisan and Salil Vadhan. Pseudorandomness and average-case complexity via uniform
reductions. Computational Complexity, 16(4):331–364, 2007.

46 Emanuele Viola. Hardness vs. randomness within alternating time. In Proc. 18th Annual
IEEE Conference on Computational Complexity (CCC), pages 53–69, 2003.

47 R. Ryan Williams. Non-uniform acc circuit lower bounds. In 2011 IEEE 26th Annual
Conference on Computational Complexity, pages 115–125, 2011.

CCC 2023

Improved Learning from Kolmogorov Complexity
Halley Goldberg #

Simon Fraser University, Burnaby, Canada

Valentine Kabanets #

Simon Fraser University, Burnaby, Canada

Abstract
Carmosino, Impagliazzo, Kabanets, and Kolokolova (CCC, 2016) showed that the existence of natural
properties in the sense of Razborov and Rudich (JCSS, 1997) implies PAC learning algorithms
in the sense of Valiant (Comm. ACM, 1984), for boolean functions in P/poly, under the uniform
distribution and with membership queries. It is still an open problem to get from natural properties
learning algorithms that do not rely on membership queries but rather use randomly drawn labeled
examples.

Natural properties may be understood as an average-case version of MCSP, the problem of
deciding the minimum size of a circuit computing a given truth-table. Problems related to MCSP
include those concerning time-bounded Kolmogorov complexity. MKTP, for example, asks for the
KT-complexity of a given string. KT-complexity is a relaxation of circuit size, as it does away with
the requirement that a short description of a string be interpreted as a boolean circuit. In this work,
under assumptions of MKTP and the related problem MKtP being easy on average, we get learning
algorithms for boolean functions in P/poly that

work over any distribution D samplable by a family of polynomial-size circuits (given explicitly
in the case of MKTP),
only use randomly drawn labeled examples from D, and
are agnostic (do not require the target function to belong to the hypothesis class).

Our results build upon the recent work of Hirahara and Nanashima (FOCS, 2021) who showed
similar learning consequences but under a stronger assumption that NP is easy on average.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases learning, Kolmogorov complexity, meta-complexity, average-case complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.12

Acknowledgements We thank Shuichi Hirahara, Russell Impagliazzo, Zhenjian Lu, and Igor Oliveira
for helpful discussions.

1 Introduction

There is a deep connection between computational learning and pseudorandomness. Loosely
speaking, the goal of learning is to extract “structure” (a simple hypothesis) from a “random”
environment, whereas the goal of pseudorandom constructions is to hide “structure” within a
“random-looking” environment. Before mentioning any examples illustrating this antagonism
between learning and pseudorandomness, let us recall the definitions of some basic learning
models.

In Valiant’s Probably Approximately Correct (PAC) learning model [29], a learner tries
to learn an unknown concept c (say, a Boolean function) from a known class C of concepts,
with respect to some (arbitrary) distribution D over inputs to c. The learner gets to see
independently sampled labeled examples of the form (x, c(x)), where x is sampled by D, and
needs to output (with high probability) a hypothesis h that has just tiny disagreement with
c with respect to the distribution D. The agnostic PAC learning model [21] is a natural
generalization of the PAC model where an unknown concept f to be learned is not necessarily

© Halley Goldberg and Valentine Kabanets;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 12; pp. 12:1–12:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:halley_goldberg@sfu.ca
mailto:kabanets@cs.sfu.ca
https://doi.org/10.4230/LIPIcs.CCC.2023.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Improved Learning from Kolmogorov Complexity

from the concept class C. The learner gets to see independently sampled labeled examples of
the form (x, f(x)), with x sampled from some distribution D, and needs to output (with
high probability) a hypothesis h so that the disagreement between h and f with respect to
D is very close to the disagreement between f and the concept cf ∈ C that is closest to f

with respect to D. Classical (agnostic) PAC learning model is distribution-independent in
the sense that a successful PAC learning algorithm for a concept class C must work with
respect to any distribution D of examples. One also considers a distribution-specific setting
where a learning algorithm must work with respect to a single fixed distribution D, e.g., the
uniform distribution or a polytime-samplable distribution.

Impagliazzo and Levin [18] and Blum et al. [5] (see also [24]) show that breaking crypto-
graphic Pseudorandom Generators (PRGs) implies average-case PAC learning with respect
to polytime-samplable distributions; here, rather than learning every concept from some
concept class C, one gets to learn a significant fraction of concepts from C under a polytime-
samplable distribution over C. In contrast, Nisan and Wigderson [25] show that breaking
complexity-theoretic PRGs (namely, the NW generators) implies worst-case learning (of every
concept in a given concept class C) under the uniform distribution, but here the learning
algorithm needs to make membership queries (MQs) to the concept c ∈ C it is trying to learn,
i.e., the learner gets to ask the value c(x) for any input x of its choosing.

Where does one get an algorithm to break a given PRG in order to get a learning
algorithm? For the case of the NW PRG, Carmosino et al. [10] showed that a natural
property (in the sense of Razborov and Rudich [27]) for a (sufficiently expressive) circuit
class C yields a learning algorithm for C under the uniform distribution, with membership
queries; this was generalized to learning with respect to polytime-samplable distributions
by Binnendyk et al. [4]. Using a known natural property for the class AC0[p] of constant-
depth circuits with AND, OR, NOT, and mod-p counting gates (for any prime modulus
p) from [27], [10] obtained a quasipolynomial-time learning algorithm for AC0[p] over the
uniform distribution, using membership queries. Later, [11] generalized this framework to
show that one also gets agnostic learning algorithms from certain generalizations of natural
properties. It remains an important open problem to get from a natural property a learning
algorithm that uses only random labeled examples. In particular, it would be very interesting
to get an efficient learning algorithm for AC0[p] without membership queries, which would
rule out weak Pseudorandom Function Generator constructions in AC0[p]; see [6] for a recent
survey on pseudorandom functions.

A natural property for general circuits is an efficient average-case heuristic for Minimum
Circuit Size Problem (MCSP) over the uniform distribution, with one-sided error. Namely,
it should always accept the truth tables of Boolean functions of low circuit complexity (for
a given threshold size parameter s), and should reject at least a constant fraction of all
possible truth tables. MCSP is an example of a meta-complexity problem asking to estimate
the circuit size of a given truth table. There are closely related meta-complexity problems
for variants of time-bounded Kolmogorov complexity.

For example, MKTP (defined in [1]) asks if a given binary string x is efficiently locally
computable (outputting bit xi on any input i in at most t steps) by a universal Turing
machine with oracle access to some short binary string d, where one seeks to minimize the
sum |d| + t. As MCSP, MKTP asks for a description of a string x that allows one to compute
x locally, any bit xi at a time. However, such a description of x needn’t be a Boolean circuit
for the truth table x, the time t of an algorithm computing each xi is explicitly taken as part
of the complexity measure of x, and this reconstruction algorithm is given random access to
the description string d.

H. Goldberg and V. Kabanets 12:3

We show that this extra flexibility of MKTP compared to MCSP leads to improved
learning algorithms from an assumed “natural property” (or one-sided error average-case
heuristic) for MKTP, where we get agnostic PAC learning algorithms over explicitly given
efficiently samplable distributions. Recall that SIZE[s(n)] denotes the set of all n-variate
Boolean functions computable by circuits of size at most s(n). We have the following.

▶ Theorem 1 (Learning from MKTP: Informal version). Suppose MKTP has an efficient
one-sided error average-case heuristic over the uniform distribution over inputs. Then for any
circuit size bound s(n) ≤ poly(n), the concept class C = SIZE[s(n)] is agnostic PAC-learnable
in polytime with respect to any explicitly given ensemble of polysize-samplable distributions
D = {Dn}.

Here an ensemble D of distributions Dn is polysize-samplable if there is a family of
polysize circuits Sampn that are samplers for Dn, i.e., the distribution of outputs of Sampn

on uniformly random inputs is Dn. Explicitness of D means that a learning algorithm,
when asked to learn some n-variate Boolean function, is explicitly given a description of
the sampling circuit Sampn for the distribution Dn. Note that this explicitness condition
for D = {Dn} is trivially satisfied by the uniform distribution or any polytime-samplable
distribution ensemble (in the latter case, one just needs a constant-size description of a
polytime Turing machine that samples according to Dn, for any given n).

For the learning setting over distributions D = {Dn} where D is polysize-samplable, but
the sampling circuits Sampn are not explicitly given to the learning algorithm (and only
their sizes are given), we can get efficient agnostic PAC learning from a “natural property” for
a different Kolmogorov-complexity measure, Kt. Recall that, for any time parameter t ∈ N,
Kt(x) is defined as the length of a shortest string d ∈ {0, 1}∗ such that a universal Turing
machine with input d outputs the string x within t steps. Note that, in contrast to KT, here
the time t to reconstruct a given string x is a parameter rather than part of the complexity
measure of x, and there is no requirement to compute x locally. The minimization version of
Kt, denoted MKtP, needs to decide, for a given binary string x and a size parameter s, if
Kt(x) ≤ s. We have the following.

▶ Theorem 2 (Learning from MKtP: Informal version). Suppose MKtP has an efficient one-
sided error average-case heuristic over the uniform distribution over inputs. Then for any
circuit size bound s(n) ≤ poly(n), the concept class C = SIZE[s(n)] is agnostic PAC-learnable
in polytime with respect to any ensemble of polysize-samplable distributions D = {Dn}.

The conclusion of Theorem 2 is stronger than that of Theorem 1, as it does away with
the requirement of explicitness of D. Though we cannot yet reach the same conclusion
under average-case easiness of MKTP, we make some partial progress; we show that under
worst-case easiness of MKTP, learning is possible without the sampling circuit explicitly
given.

▶ Theorem 3 (Learning from worst-case MKTP: Informal version). Suppose MKTP is decidable
by an efficient randomized algorithm. Then for any circuit size bound s(n) ≤ poly(n), the
concept class C = SIZE[s(n)] is agnostic PAC-learnable in polytime with respect to any
ensemble of polysize-samplable distributions D = {Dn}.

Below we explain our results and proof techniques in more detail.

1.1 Results
In this work, we present agnostic PAC-learners for polynomial-size circuits over efficienly
samplable distributions, under assumptions of problems of time-bounded Kolmogorov com-
plexity being easy on average. More specifically, we consider the problem of learning an

CCC 2023

12:4 Improved Learning from Kolmogorov Complexity

unknown target function f : {0, 1}n → {0, 1} with respect to a concept class C and a class
D of ensembles of distributions. Learnability here is agnostic in the sense that f does not
necessarily belong to C, and our learner is asked to learn f with error that is just a small
additive ε over the disagreement between f and the closest function in C to f , with high
probability. In this case, we say the algorithm achieves ε-agnostic learning; see Section 2.3
for more precise definitions.

We will typically take C to be SIZE[s(n)] for some function s : N → N: that is, the class of
functions computable by boolean circuits of size s(n). Our agnostic PAC-learners have access
to an example oracle EX(f, D), with each query returning an independent and identically
distributed pair (x, b), where x is sampled according to the distribution D and b = f(x).
The sample complexity of the learning algorithm is the number of queries made to EX(f, D).
Note that our learners may not ask membership queries of the target function f .

We will typically take D to be Samp[T (n)]/a(n) for some functions T, a : N → N, i.e., the
class of distributions samplable non-uniformly in time T (n) and with a(n) bits of advice.
We consider two different kinds of access to the target distribution D. The first is white-box
access, where the learner is explicitly given the a(n) bits of advice required to sample D (as
well as the parameters T (n) and a(n) that define the distribution class D). In this case, we
will say that C is agnostic PAC-learnable over w.b.-Samp[T (n)]/a(n). In the second kind of
access to D, the learner is not given the advice to sample D but is given the parameters
T (n) and a(n). In this case, we will simply say that C is agnostic PAC-learnable over
Samp[T (n)]/a(n).1

We also consider two different notions of time-bounded Kolmogorov complexity. The
minimum KT-complexity problem, MKTP, is the problem of deciding, given a string x ∈ {0, 1}∗

and a parameter s ∈ N, whether the KT-complexity of x is at most s. Roughly speaking,
KT-complexity is the minimum |d| + t such that a universal TM with oracle access to
d ∈ {0, 1}∗ can compute any individual bit of x in time t ∈ N. MKtP is defined analogously,
where Kt-complexity is the minimum description length |d| such that a universal TM U on
input d outputs (the whole string) x in time t. See Section 2.2 for formal definitions of these
measures of time-bounded Kolmogorov complexity and the associated decision problems.2

As mentioned earlier, our notion of an average-case heuristic over the uniform distribution
U over inputs for MKTP or MKtP mimics the one-sided error definition of a natural property
of [27], where all yes-instances must be accepted, and a constant fraction of all instances must
be rejected. Given the extreme sparsity of yes-instances of these problems over the uniform
distribution, we easily get required one-sided error average-case heuristics for these problems
from errorless average-case heuristics; the class of errorless randomized heuristics is denoted
by AvgBPP (see Section 2.1 for the precise definition). For example, our assumption that
there is an efficient errorless randomized heuristic for MKTP under the uniform distribution
over inputs will be denoted by (MKTP, U) ∈ AvgBPP.

Learning over explicitly given efficiently samplable distributions

Here we give a more formal statement of our Theorem 1.

1 For context, the first model is that employed in the recent work of [4], and the second model is
that employed in the recent work of [16]. In the original PAC-learning framework of [29], the target
distribution is allowed to be completely unknown and arbitrary.

2 MKtP has elsewhere been denoted MINKT.

H. Goldberg and V. Kabanets 12:5

▶ Theorem 4. Suppose (MKTP, U) ∈ AvgBPP. Then for any time-constructible function
s : N → N, polynomials T, a : N → N, and ε ∈ (n−d, 1) for a constant d > 0, the concept class
SIZE[s(n)] is ε-agnostic PAC-learnable on w.b.-Samp[T (n)]/a(n)

in time poly(n, s(n), T (n), a(n), ε−1) and
with sample complexity ((s(n) + n)3 · ε−26)1+o(1).

Proof. The theorem follows by combining Theorem 19 and Theorem 36 below. ◀

Learning over unknown efficiently samplable distributions

Below we give a formal statement of our Theorem 2. For MKtP, as above, we allow errorless
randomized heuristics.

▶ Theorem 5. Suppose (MKtP, U) ∈ AvgBPP. Then for any time-constructible func-
tions s, T, a : N → N and ε ∈ (0, 1), the concept class SIZE[s(n)] is ε-agnostic learnable
on Samp[T (n)]/a(n)

in time poly(n, s(n), T (n), a(n), ε−1) and
with sample complexity ((s(n) + a(n) + log T (n))3 · ε−8)1+o(1).

Proof. The theorem follows by combining Theorem 19 and Theorem 38 below. ◀

Finally, we give a formal statement of our Theorem 3.

▶ Theorem 6. Suppose MKTP ∈ BPP. Then for any time-constructible functions
s, T, a : N → N and ε ∈ (0, 1), the concept class SIZE[s(n)] is ε-agnostic learnable on
Samp[T (n)]/a(n) in time and sample complexity poly(n, s(n), T (n), a(n), ε−1).

Proof. The theorem follows by combining Theorem 19 and Theorem 41 below. ◀

1.2 Techniques
All of our proofs work by way of the known reduction, due to Kothari and Livni [22], from
agnostic PAC-learning to the task of correlative RRHS-refutation. Consider polynomials
s(n), T (n), and a(n). Given a concept class SIZE[s(n)], a distribution class Samp[T (n)]/a(n),
and a tuple of labeled strings (⟨x(1), b(1)⟩, ..., ⟨x(m), b(m)⟩), where each x(i) ∼ Dn for some
distribution D ∈ Samp[T (n)]/a(n), a correlative RRHS-refuter R is asked to distinguish the
following two cases:

A “correlative case”, in which the labels b are correlated with the output of some s(n)-size
circuit f ; that is, for each 1 ≤ i ≤ m, independently,

Pr
x(i)∼D

[
b(i) = f(x(i))

]
≥ 1

2 + ε

2 ,

and a “random case”, in which the labels b(i) are sampled independently and uniformly
at random.

Kothari and Livni show that if there is a probabilistic polynomial-time algorithm R satisfying
the above conditions, then there is an agnostic learner for f over D. The proof of this
statement essentially uses distribution-specific boosting algorithms for the agnostic setting,
as given by Feldman [12] and Kalai and Kanade [20]. The fact that the distribution D

remains the same during polynomially many boosting stages is crucial as it keeps the circuit
complexity of the sampler for D polynomially bounded.

For our results, the key intuition is that the concatenated samples in the correlative
case will have lower time-bounded Kolmogorov complexity than those in the random case,
since the complexity of uniformly random labels (b(1), ..., b(m)) is close to its maximum value

CCC 2023

12:6 Improved Learning from Kolmogorov Complexity

m + O(1) with very high probability. Choosing m = poly(n) sufficiently larger than the
circuit-complexity s(n) of the target function f yields the desired gap between the two cases.
In this way, a heuristic algorithm for computing time-bounded K-complexity may be used as
a correlative RRHS-refuter.

A first observation is that, regardless of the version of time-bounded K-complexity
available as a heuristic algorithm, it is easy to construct a correlative RRHS-refuter working
over the uniform distribution. For example, suppose (MKTP, U) ∈ AvgBPP. Let X :=
(x(1), ..., x(m)) ∈ {0, 1}nm and b := (b(1), ..., b(m)) ∈ {0, 1}m. On one hand, in the correlative
case, we will always have

KT(X, b) ≤ nm + ℓs(n) + δ · m,

where ℓs(n) ≤ O(s(n) log s(n)) is the length of an encoding of a circuit for f , and a further
δ · m bits for a constant δ < 1 are used to encode the discrepancy between the labels b and
the true outputs of f (see Lemma 34). In particular, given X, it is easy to construct b from
the outputs of f (and knowing which of the labels b(i) are incorrect). On the other hand, in
the random case, (X, b) ∼ Unm+m. Since the KT-complexity of uniformly random strings is
usually close to maximum, we have that with high probability,

KT(X, b) ≥ nm + m − 10.

It is not hard to see that our randomized heuristic for deciding KT-complexity will serve as
a randomized distinguisher between these two cases.

For distributions other than uniform, the situation is less straightforward. In particular,
our heuristic algorithms are only defined to work well over U ; moreover, KT(X, b) is not
necessarily likely to be large. In recent work, Hirahara and Nanashima [16] circumvent these
obstacles under the assumption that DistNP ⊆ AvgP. In particular, they use this assumption
to construct a worst-case algorithm approximating Kt within logarithmic additive error.
They also use it to prove a worst-case weak Symmetry of Information theorem for Kt, which
conditionally states that for some polynomial p, for every X ∈ {0, 1}∗,

Kt(X, b) ≥ Kp(t)(X) + |b| − O(log t)

with high probability over a uniformly random string b. The above inequality is used in the
random case of RRHS-refutation. In the correlative case, as above, it holds that

Kt(X, b) ≤ Kt′
(X) + ℓs(n) + δ · m

for some time-bound t′ < t. The authors then use the worst-case algorithm for Kt to approx-
imate the value of Kt(X, b) − Kτ (X) for an appropriate choice of τ , thereby distinguishing
the two cases. To overcome the technical issue of the different time bounds p(t) and t′ in the
expressions above, they show that such differences are immaterial in the expectation over
an efficiently samplable distribution:3 for any D ∈ Samp[mT (n)]/a(n) and sufficiently large
time bound t,

E
X∼D

[
Kt(X) − K(X)

]
≤ O(log(mT (n))) + a(n). (1)

In other words, both Kt(X) and Kt′(X) are likely close enough to K(X), and therefore close
enough to each other.

3 Note that for x(i) ∼ D, for D ∈ Samp[T (n)]/a(n), we have X = (x(1), ..., x(m)) ∼ D′, for D′ ∈
Samp[mT (n)]/a(n).

H. Goldberg and V. Kabanets 12:7

1.2.1 Learning from MKtP
To prove our result for MKtP, we show that similar arguments may be carried out under a
significantly weaker assumption. One issue is that [16] uses the assumption DistNP ⊆ AvgP
to achieve derandomization, as shown possible by [9]. Roughly speaking, one “encodes” a
string x into a distribution DP(x) such that any efficient algorithm distinguishing DP(x)
from uniform can be used to show that Kt(x) is small, a process that crucially relies on the
derandomization of the DP reconstruction. Such derandomization is not known to hold under
the assumption DistNP ⊆ AvgBPP, let alone our weaker assumption of (MKtP, U) ∈ AvgBPP,
where MKtP is not even known to be NP-hard. In our setting, compression via the DP
generator gives a randomized algorithm A that, for any string X and sufficiently large t ∈ N,
outputs a value s̃ ∈ N such that

pKpoly(t)(X) − O(log t) ≤ s̃ ≤ Kt(X),

where pKpoly(t) denotes a probabilistic measure of time-bounded Kolmogorov complexity. See
Section 2.2 for a definition. In general, pKt(X) could be much smaller that Kt(X), so the
algorithm A does not appear very useful a priori. However, as we outline below, it turns out
to be sufficient for the purposes of learning.

Another challenge in our setting is to argue for Eq. (1) above, which says that Kt(X) is close
to K(X) in the expectation. In [16], the proof of that statement relies on a conditional source-
coding theorem for Kt: if DistNP ⊆ AvgP, then for any distribution D ∈ Samp[mT (n)]/a(n)
and X ∈ supp(D),

Kpoly(mT (n))(X) ≲ log(1/D(X)), (2)

where D(X) denotes the probability of X under D, and “≲” hides the term O(log(mT (n))) +
a(n). Specifically, to prove Eq. (1) from this statement, one observes that

E
X∼D

[
Kt(X)

]
≲ E

X∼D
[log(1/D(X))]

= H(D)
≤ E

X∼D
[K(X)],

where H(D) denotes the Shannon entropy of the distribution D.
In our setting, without derandomization, Eq. (2) is not known to hold. Unconditionally,

it is only known that with high probability over r ∼ Upoly(mT (n)),

Kpoly(mT (n))(X, r) ≲ log(1/D(X)) + |r|. (3)

That is, source coding for Kt only holds in the presence of additional uniform randomness.
A statement of this kind was originally proved in [3]. In analogy with Eq (1), we may use
Eq. (3) to prove that

E
[
Kt(X, r) − K(X, r)

]
≤ O(log(mT (n))) + a(n), (4)

for X ∼ D and r ∼ Upoly(mT (n)).
We cope with the necessity of this additional randomness r by incorporating it into our

correlative RRHS-refuter R. That is, we use the randomness of R to uniformly sample
a string r, and rather than approximating Kτ (X) and Kt(X, b), we approximate Kτ (X, r)
and Kt(X, b, r). We show the analysis of the RRHS-refutation to be unharmed by this
modification.

CCC 2023

12:8 Improved Learning from Kolmogorov Complexity

Importantly, Eq. (4) allows us to make use of our inferior approximation algorithm A

described at the beginning of this section. For any strings X and r, pKt(X, r) is known to be
lower-bounded by the time-unrestricted K(X, r). Eq. (4) then implies that the expected value
of Kt(X, r) − pKt(X, r) will be low, for X sampled from an efficiently samplable distribution
and r sampled uniformly at random. Intuitively, there is a “smoothing out” of the differences
between different measures of Kolmogorov complexity in the expectation, so the correlative
RRHS-refuter we construct may sometimes safely ignore such differences.

Finally, there is the issue of the Symmetry of Information theorem for Kt, which is not
known to hold in the absence of derandomization. To get around this, we observe that such a
statement is actually not necessary for our purposes. Rather, since Kt(X, b, r) will be close to
K(X, b, r) with high probability over X ∼ Dm

n , b ∼ Um, and r ∼ Upoly(mT (n)), we may simply
apply the well-known, unconditional Symmetry of Information theorem for time-unbounded
Kolmogorov complexity. This observation has the advantage of simplifying our proofs as well
as painting a clearer picture of the true prerequisites of learning.

1.2.2 Learning from MKTP
Many of the tools available in the Kt setting, such as compression via generator reconstruction
yielding a worst-to-average reduction, become unavailable in the setting of KT. For this
reason, we can no longer apply the framework of [16], and we obtain a model of learning
that requires a stronger form of access to the target distribution in question. In this setting,
we take advantage of the fact, as described above, that it is easy to learn via KT over
the uniform distribution. Our goal is then to reduce the task of learning over arbitrary
distributions in PSamp/poly to that of learning over the uniform distribution. Inspired by
a recent work of Binnendyk et al. [4], we employ the distributional inverters of [19]. A
distributional inverter for a function g : {0, 1}∗ → {0, 1}∗ is an algorithm that, given some
y = g(x), outputs a nearly uniformly random member of the set {z | g(z) = y}. It is already
known that (MKTP, U) ∈ AvgBPP implies the existence of such objects for every efficiently
computable g (see Section 2.4).

To construct a correlative RRHS-refuter for an arbitrary distribution D ∈ PSamp/poly,
we apply distributional inversion in the following way. Let I be a distributional inverter
for the sampler for D, which is a polynomial-size circuit C. Recall that in the problem of
correlative RRHS-refutation, we are provided labeled examples {(x(i), b(i))}, where either
the b(i)s are uniformly random, or they are correlated with the outputs f(x(i)) of the target
function f . Given such pairs {(x(i), b(i))}, we apply I to the first part to simulate pairs of the
form {(r(i), b(i))}, where the r(i)s are now from a distribution close to uniform, and the b(i)s
are either uniformly random, or they are correlated with the outputs f(C(r(i))) of the target
function f composed with the sampler C. Using a correlative RRHS-refuter for f ◦ C over
the uniform distribution, we can distinguish these two cases, thereby distinguishing the two
cases of the original problem over D. Because I must have oracle access to the non-uniform
circuit C it is inverting, the learner will ultimately require an explicit description of C, so
that the learner can output a circuit for f with no extra oracle gates.

1.3 Related Work
[16] proved a version of Theorem 2 under the assumption that DistNP ⊆ AvgP. In [13], the
authors adapted the learning result of [16] to the case of the randomized average-case easiness
assumption that DistNP ⊆ AvgBPP, by showing that the probabilistic Kolmogorov complexity
measure pKt may be used instead of Kt, and proving (under the same average-case easiness

H. Goldberg and V. Kabanets 12:9

assumption) various results for pKt (e.g., the existence of a randomized approximation
algorithm for pKt, and the Symmetry of Information). Using [13], it is fairly straightforward
to get a learning algorithm from the assumption that MpKtP (the minimization problem for
pKt) is in AvgBPP, relying on the properties of pKt proved in [13]. However, in the present
paper, we use a weaker assumption that MKtP is in AvgBPP (under the uniform distribution),
and avoid using any nontrivial properties of pKt. Intuitively, the reason we are able to do
so is the “smoothing out” phenomenon mentioned above: the time-bounded Kolmogorov
complexity measures Kt and pKt are close to the time-unbounded measure K, in expectation
over appropriate efficiently samplable distributions.

Recall that Partial-MCSP is the problem of deciding, given a collection of pairs {(xi, bi)},
whether there is a small circuit C such that every C(xi) = bi. Ilango, Loff, and Oliveira
prove that under an average-case easiness assumption about Partial-MCSP, PAC-learning
without membership queries is possible over the uniform distribution [17]. This relies on a
reduction of Vadhan [28] from PAC-learning (in a distribution-independent sense) to the
problem of “RRHS-refutation”: namely, the simpler version of correlative RRHS-refutation
in which the labels bi are precisely the outputs of the target concept f applied to the samples
xi. We expect that by using the tools of this work, including correlative RRHS-refutation
and distributional inversion, the statement of [17] could be extended to the agnostic setting
and arbitrary efficiently samplable distributions, in the sense of our Theorem 1.

2 Preliminaries

2.1 Average-case Complexity
A distributional problem is a pair (L, D), where L ⊆ {0, 1}∗ is a language and D is a family of
distributions D = {Dn}n∈N. We denote by U the family of parameterized uniform distributions
{U⟨n,t1,...,tk⟩}n,t1,...,tk∈N, where k is a constant, each U⟨n,t1,...,tk⟩ := (Un, 1t1 , ..., 1tk), and Un

is the uniform distribution over n-bit strings.4

▶ Definition 7 (AvgBPP [7]). A distributional problem (L, D) belongs to AvgBPP if there
is an algorithm A and polynomial p such that, on any n ∈ N, x ∈ supp(Dn), and δ > 0,
A(x; n, δ) runs in time at most p(n/δ), and
1. PrA [A(x; n, δ) /∈ {L(x), ⊥}] ≤ 1

10 ;
2. Prx∼Dn

[PrA[A(x; n, δ) = ⊥] ≥ 1/10] ≤ δ(n).
Such an algorithm A is called a randomized errorless heuristic scheme for (L, D).

2.2 Time-bounded Kolmogorov Complexity
▶ Definition 8 (KT [1]). Fix a universal oracle TM U . For strings x, y ∈ {0, 1}∗, the
KT-complexity of x given y is defined as

KT(x | y) := min
d∈{0,1}∗, t∈N

{
|d| + t | ∀ 1 ≤ i ≤ N + 1, Ud,y(i) = xi in at most t steps

}
,

where xN+1 := ⊥, and the notation Ud,y means that U has random (oracle) access to strings
d and y.

4 Formally, ⟨t1, ..., tk⟩ denotes Enc(t1, ..., tk), where Enc : N∗ → N is an efficiently computable and
decodable encoding function. Such an encoding function is known to exist by standard techniques; see,
for example, [7].

CCC 2023

12:10 Improved Learning from Kolmogorov Complexity

▶ Definition 9 (Kt). Fix a universal deterministic TM U . For strings x, y ∈ {0, 1}∗ and a
time bound t ∈ N, the t-time-bounded Kolmogorov complexity of x given y is defined as

Kt(x | y) := min
k∈N

{
k

∣∣ ∃ w ∈ {0, 1}k, U(w, y) outputs x within t steps
}

.

▶ Definition 10 (pKt
δ). Fix a universal deterministic TM U . For strings x, y ∈ {0, 1}∗, a

time bound t ∈ N, and δ ∈ [0, 1], the δ-probabilistic t-time-bounded Kolmogorov complexity of
x given y is defined as

pKt
δ(x | y) := min

k∈N

{
k

∣∣∣∣ Pr
r∼{0,1}t

[
∃ w ∈ {0, 1}k, U(w, y, r) outputs x within t steps

]
≥ δ

}
.

▶ Definition 11 (MKTP and MKtP). We define languages
MKTP := {(x, 1s) | x ∈ {0, 1}∗, s ∈ N, and KT(x) ≤ s};
MKtP := {(x, 1s, 1t) | x ∈ {0, 1}∗, s, t ∈ N, and Kt(x) ≤ s};

▶ Proposition 12. For any string x ∈ {0, 1}∗ and time bound t ∈ N,

pKt(x) ≤ Kt(x).

▶ Proposition 13 ([13]). There is a constant c such that, for any string x ∈ {0, 1}∗ and time
bound t ∈ N,

K(x | t) ≤ pKt(x) + c log |x|.

▶ Proposition 14. There is a constant c′ such that, for any string x ∈ {0, 1}∗ and time
bound t ∈ N,

Kt(x) ≤ |x| + c′.

▶ Lemma 15 (Symmetry of Information for Time-unbounded K-complexity [31]). For every
pair of strings x ∈ {0, 1}∗ and y ∈ {0, 1}∗,

K(xy) ≥ K(x) + K(y | x) − O(log |xy|).

2.3 Agnostic PAC-Learning and Correlative RRHS-Refutation
In the PAC-learning framework, one is asked to learn an unknown concept: namely, a Boolean
function f : {0, 1}n → {0, 1} for some n ∈ N. A concept class C refers to a set of such concepts,
and Cn denotes C ∩ {f : {0, 1}n → {0, 1}}. One may ask whether C is PAC-learnable over a
class D of ensembles D = {Dn}n≥1 of distributions Dn. Dn denotes {Dn | D ∈ D}. For a
hypothesis h : {0, 1}n → {0, 1}, define

errDn
(h, f) = Pr

x∼Dn

[h(x) ̸= f(x)].

We also define the minimum relative distance between f and C with respect to Dn as the
disagreement between f and the best-fitting hypothesis c ∈ C, i.e.,

optCn,Dn,f = min
c ∈ Cn

errDn
(c, f).

Learners are provided an example oracle EX(f, Dn) such that each query returns an inde-
pendently sampled pair (x, b), where x ∼ Dn and b = f(x). We will use the term sample
complexity to mean the number of queries made to EX(f, Dn).

H. Goldberg and V. Kabanets 12:11

▶ Definition 16 (PAC learning [29]). Let C be a concept class, and let D be a class of
distributions. We say that C is PAC-learnable on D if there is an algorithm A with the
following property. For every n ≥ 1, ε > 0, δ > 0, distribution D ∈ Dn, and concept
f : {0, 1}n → {0, 1} belonging to Cn,

Pr
A, EX(f,D)

[
AEX(f,D)(n, ε, δ) outputs a hypothesis h such that errD(h, f) ≤ ε

]
≥ 1 − δ,

where the probability is over the internal randomness of A and random examples provided by
EX(f, D).

The following definition of agnostic PAC learning is a generalization of the PAC learning
definition above to the case where a function f to be learned is not necessarily from the
concept class C. In this case, the hypothesis h output by the learning algorithm should have
an error close to the minimum relative distance between f and the concept class C.

▶ Definition 17 (Agnostic PAC learning [21]). Let C be a concept class, and let D be a class
of distributions. We say that C is ε-agnostic PAC-learnable on D if there is an algorithm A

with the following property. For every n ≥ 1, ε > 0, δ > 0, distribution D ∈ Dn, and concept
f : {0, 1}n → {0, 1},

Pr
A, EX(f,D)

[
AEX(f,D)(n, ε, δ) outputs a hypothesis h such that errD(h, f) ≤ optCn,D,f +ε

]
≥ 1− δ.

▶ Definition 18 (Correlative RRHS-Refutation). Let C be a concept class, and let D = {Dn}n≥1
be an ensemble of distributions. A randomized algorithm R is a ε-correlative random-right-
hand-side-refuter (ε-correlative RRHS-refuter) for C on D with sample complexity m provided
it satisfies the following. Given input parameters n ∈ N and ε ∈ (0, 1), as well as a set

S =
(〈

x(1), b(1)
〉

, . . . ,
〈

x(m), b(m)
〉)

of samples, where x(i) ∈ {0, 1}n and b(i) ∈ {0, 1} for i ∈ [m];
Soundness: Suppose the samples S are i.i.d. from a distribution D′ on {0, 1}n × {0, 1}
such that the marginal on {0, 1}n equals Dn, and for some f ∈ Cn,

Pr
⟨x(i), b(i)⟩ ∼ D′

[
b(i) = f(x(i))

]
≥ 1

2 + ε

2 .

Then,

Pr
S,R

[R(n, ε, S) = correlative] ≥ 2/3.

Completeness: Suppose the samples S are i.i.d. with x(1), . . . , x(m) ∼ Dn and
b(1), . . . , b(m) ∼ U . Then,

Pr
S,R

[R(n, ε, S) = random] ≥ 2/3.

Kothari and Livni [22] prove an equivalence between distribution-specific agnostic PAC
learning and RRHS-refutation. We will be using the following direction from RRHS-refutation
to agnostic learning.

▶ Theorem 19 (Agnostic Learning from RRHS-Refutation [22]). Let C be a concept class, and
let D = {Dn}n≥1 be an ensemble of distributions. If there exists an ε-correlative RRHS-
refuter for C on D with sample complexity m(n, ε) and running time T (n, ε), then C is
(2ε)-agnostic PAC-learnable over D with

sample complexity O
(
m(n, ε/2)3 · ε−2)

, and
running time O

(
T (n, ε/2) · m(n, ε/2)2 · ε−2)

.

CCC 2023

12:12 Improved Learning from Kolmogorov Complexity

The proof of the above theorem relies on distribution-specific boosting algorithms for the
agnostic setting, such as those of Feldman [12] and Kalai and Kanade [20]. These algorithms
transform a weak agnostic learner over some distribution into a strong agnostic learner over
that same distribution; they work by adaptively modifying the labels of example points rather
than the distributions on those points as is typically the case in boosting. Interestingly, in
the agnostic setting, it is possible to accomplish this without a superpolynomial increase in
the running time of the learner.

2.4 Inversion
In this section, we cover definitions of inversion of functions, which are the negations of
corresponding definitions of the existence of one-way functions. Throughout, we take the
word “function” to include auxiliary input functions in the sense of Ostrovsky and Wigderson,
in which both function and potential inverter have access to the same non-uniform input
(denoted y below) [26].

▶ Definition 20 (Invertible functions). Consider a function g(y, x) computable uniformly in
polynomial time. The function g is said to be weakly invertible if there is a probabilistic
polynomial-time Turing machine I and a constant b such that for every n ∈ N and for every
y ∈ {0, 1}∗,

Pr
x∼Un

[g(y, I(y, g(y, x))) = g(y, x)] ≥ 1
nb

.

The function g is said to be strongly invertible if for every constant d there is a probabilistic
polynomial-time Turing machine I such that for every n ∈ N and for every y ∈ {0, 1}∗,

Pr
x∼Un

[g(y, I(y, g(y, x))) = g(y, x)] ≥ 1 − 1
nd

.

▶ Definition 21 (Statistical Indistinguishability). Two probability distributions D and D′ are
statistically indistinguishable within δ if for all T ⊆ {0, 1}n,∣∣∣∣ Pr

x∼Dn

[x ∈ T] − Pr
x∼D′

n

[x ∈ T]
∣∣∣∣ ≤ δ.

We denote this as D ≡δ D′.

▶ Definition 22 (Distributionally invertible functions). Consider a function g(y, x) computable
uniformly in polynomial time. The function g is said to be distributionally invertible if for
every constant b > 0 there is a probabilistic polynomial-time oracle Turing Machine I such
that for every n ∈ N and y ∈ {0, 1}∗,

(x, g(y, x)) ≡n−b (I(y, g(y, x)), g(y, x)),

where x ∼ Un. We refer to the machine I as an n−b-distributional inverter.

▶ Lemma 23 ([30]). If every function computable in polynomial time is weakly invertible,
then every such function is strongly invertible.

▶ Lemma 24 ([19]). If every function computable in polynomial time is strongly invertible,
then every such function is distributionally invertible.

▶ Lemma 25 ([1]). If (MKTP, U) ∈ AvgBPP, then every function computable in polynomial
time is weakly invertible.

▶ Corollary 26. If (MKTP, U) ∈ AvgBPP, then every function computable in polynomial
time is distributionally invertible.

H. Goldberg and V. Kabanets 12:13

2.5 Direct Product Generator and pKt-Compression
▶ Definition 27 (Direct Product Generator). For n, k ∈ N, the k-wise direct product generator
DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k is the function defined by

DPk(x; z1, ..., zk) = (z1, ..., zk; ⟨x, z1⟩, ..., ⟨x, zk⟩),

where ⟨−, −⟩ denotes the inner product ⟨x, y⟩ =
(∑|x|

i=1 xiyi

)
mod 2.

▶ Lemma 28 (Probabilistic pKt Reconstruction [13]). There is a polynomial p′ with the
following property. For ε > 0, x ∈ {0, 1}n, s ∈ N, and k ∈ N satisfying k ≤ 2n, let D be
a randomized algorithm that takes an advice string β, runs in time tD, and ε-distinguishes
DPk(x; Unk) from Unk+k. Then

pKp′(tD·n/ε)(x | β) ≤ k + log p′(tD · n/ε).

2.6 Source Coding Theorem
The following lemma is very similar to one of [3], but with a greater probability of success on
the right-hand side, which is necessary for the application in Lemma 37. For completeness,
we present a slight modification of a proof due to [2], which uses hashing.

▶ Lemma 29. The following holds unconditionally. There exist polynomials p and q such
that for any T, a : N → N, n ∈ N, D ∈ Samp[T (n)]/a(n), and x ∈ Supp(Dn),

Pr
r∼U3T (n)

[
Kp(T (n))(x, r) ≤ log(1/Dn(x)) + |r| + a(n) + log p(T (n))

]
≥ 1 − 1

4T (n) ,

where Dn(x) denotes the probability of x under Dn.

Proof. Let A be a non-uniform algorithm sampling D ∈ Samp[T (n)]/a(n). That is, there is
some α ∈ {0, 1}a(n) such that for any x ∈ supp(Dn),

Pr
w∼UT (n)

[A(w; α, 1n)] = Dn(x).

Let s be the smallest integer such that Dn(x) ≥ 2−s. Define ℓ := T (n) and k := ℓ − s −
log(8T (n)). Consider a universal hash function family H = {h : {0, 1}ℓ → {0, 1}k}. For each
h ∈ H and w ∈ {0, 1}T (n), h(w) = U · w + v for some binary Toeplitz matrix U of dimension
k × ℓ and binary vector v of dimension k. Define a set

Sx := {w ∈ {0, 1}T (n) | A(w; α, 1n) = x}.

For h ∼ H, define a random variable X := |Sx ∩ h−1(0k)|. Note that |Sx| = Dn(x) · 2T (n) ≥
2ℓ−s. Then |Sx|/2k ≥ 8T (n), and by universality,

Var[X] ≤ E[X] = |Sx|
2k

.

By Chebyshev’s Inequality,

Pr[X = 0] ≤ Pr [|X − E[X]| ≥ E[X]]
≤ Var[X]/E[X]2

≤ 1/8T (n).

CCC 2023

12:14 Improved Learning from Kolmogorov Complexity

Now define a random variable Y = |h−1(0k)|, where h ∼ H. Note that E[Y] = 2ℓ/2k =
2s+log(8T (n)). Then by Markov’s Inequality,

Pr[Y ≥ 2s+2 log(8T (n))] = Pr[Y ≥ 8T (n) · E[Y]]
≤ 1/8T (n).

By a union bound,

Pr[X = 0 or Y ≥ 2s+2 log(8T (n))] ≤ 1/4T (n).

Assume X > 0 and Y < 2s+2 log(8T (n)). It is possible to represent x with descriptions of the
hash function h, the index of a string w ∈ Sx in the set h−1(0k), and the advice string α used
in the sampler A. In particular, x may be recovered by performing Gaussian elimination to
compute the set h−1(0k) from the description (U, v) of h, locating w in this set, and then
returning the output of A(w; α, 1n). This requires |(U, v)| < 3T (n) bits to describe h, at
most log Y ≤ s + 2 log(8T (n)) ≤ log(1/Dn(x)) + 1 + 2 log(8T (n)) bits to describe the position
of w in h−1(0k), and |α| = a(n) bits to run the sampler A. Define the “random” string
r ∈ {0, 1}3T (n) as the description (U, v) of h. Overall, we have that with probability at least
1 − 1/4T (n) over r sampled uniformly,

Kp(T (n))(x, r) ≤ log(1/Dn(x)) + |r| + a(n) + log p(T (n))

for some polynomial p. ◀

3 Approximating Kt

▶ Lemma 30 (implicit in [15]). If (MKtP, U) ∈ AvgBPP, then there is a polynomial p such
that the following promise problem is in promiseBPP:

ΠYES :=
{(

x, 1s, 1t
)

| x ∈ {0, 1}∗, s, t ∈ N, t ≥ |x|, and Kt(x) ≤ s
}

,

ΠNO :=
{(

x, 1s, 1t
)

| x ∈ {0, 1}∗, s, t ∈ N, t ≥ |x|, and pKp(t)(x) > s + log p(t)
}

.

Proof. Let the input (x, 1s, 1t) be given, where x ∈ {0, 1}n and s ≤ n + O(1). Define

k := s + 2 log q(t), and
s′ := s + nk + log q(t),

where q is a polynomial chosen later.
Let B0 be a randomized errorless heuristic scheme for (MKtP, U), with failure probability

1/n. Let B be the modification of B0 that outputs “1” whenever B0 would output “⊥”. Note
that on yes-instances of MKtP, B errs with probability at most 1/10 over its own internal
randomness.

Define another algorithm B′ as follows:

On input (x, 1s, 1t), sample z ∼ Unk and then output B(DPk(x; z), 1s′
, 1q(t)).

In the remainder of the proof, we argue that B′ solves (ΠYES, ΠNO) correctly with high
probability in the worst case.

H. Goldberg and V. Kabanets 12:15

First, suppose (x, 1s, 1t) ∈ ΠYES. Observe that for our choice of k, given any x ∈ {0, 1}n

and z ∈ {0, 1}nk+k, it is possible to compute DPk(x; z) in polynomial time. Thus, we let q

be a polynomial such that for any z ∈ {0, 1}nk and sufficiently large t ∈ N,

Kq(t)(DPk(x; z)) ≤ Kt(x) + |z| + log q(t)
≤ s + |z| + log q(t)
= s′.

Then by definition of B, for (x, 1s, 1t) ∈ ΠYES,

Pr[B′(x, 1s, 1t) = 1] ≥ 9/10,

where the above probability is over the inner randomness of B and z ∼ Unk.
Now suppose (x, 1s, 1t) ∈ ΠNO. For a contradiction, suppose

Pr[B′(x, 1s, 1t) = 1] = Pr
B,z

[B(DPk(x; z), 1s′
, 1q(t)) = 1] > 1/4. (5)

By a counting argument, for randomly selected w ∼ Unk+k,

Pr
w

[
Kq(t)(w) ≤ s′

]
≤ 2s′

2nk+k
= 1

q(t) .

Then by definition of B,

Pr
B,w

[
B(w, 1s′

, 1q(t)) = 1
]

= 1
10 + 1

n
+ 1

q(t)
< 1/8. (6)

Comparing Equations (5) and (6), we see that B(−, 1s′
, 1q(t)) (1/8)-distinguishes DPk(x; Unk)

from Unk+k. Then by Lemma 28, for some polynomial p′,

pKp′(t)(x) ≤ k + O(log t)
= s + O(log t).

In other words, for an appropriate choice of the polynomial p in the statement of the lemma,
(x, 1s, 1t) is not in ΠNO. This gives a contradiction. We conclude that for (x, 1s, 1t) ∈ ΠNO,

Pr
[
B′(x, 1s, 1t) = 1

]
≤ 1/4. ◀

▶ Lemma 31 ([15]). If (MKtP, U) ∈ AvgBPP, then there exists a polynomial p and a
randomized algorithm A that on input (x, 1t), where x ∈ {0, 1}n and t ∈ N, runs in time
poly(n, t) and with probability at least 1 − 2−n outputs an integer s̃ such that

pKtc

(x) − log p(t) ≤ s̃ ≤ Kt(x).

Proof. Consider the polynomial-time randomized algorithm B′ that solves the promise
problem from Lemma 30. By standard success amplification, we may assume that the error
of B′ is at most 2−2n on inputs satisfying the promise. Algorithm A runs B′ on (x, 1s, 1t)
for s = 1, 2, . . . , n + log n, and outputs the first s̃ such that B′(x, 1s̃, 1t) = 1. If B′ never
accepts, A simply outputs n + log n.

On one hand, if s = Kt(x), then (x, 1s, 1t) ∈ ΠYES, so Pr[B′(x, 1s, 1t) = 1] ≥ 1−2−2n. On
the other, if s < pKp(t)(x) − log p(t), then (x, 1s, 1t) ∈ ΠNO, so Pr[B′(x, 1s, 1t) = 1] ≤ 2−2n.

By a union bound, with probability at least 1 − 2−n, s̃ has the desired property. ◀

CCC 2023

12:16 Improved Learning from Kolmogorov Complexity

4 Agnostic Learning from Heuristics for K-complexity

In what follows, for a distribution D and m ∈ N, Dm will denote the distribution
(x(1), ..., x(m)) where x(i) ∼ D for i ∈ [m]. Moreover, ℓs(n) ≤ O(s(n) log s(n)) will de-
note the number of bits needed to encode a function f ∈ SIZE[s(n)].

▶ Lemma 32 ([16]). There exists a polynomial t′ such that for any m ≥ n ∈ N, string
b ∈ {0, 1}m, function f : {0, 1}n → {0, 1}, X = (x(1), ..., x(m)) ∈ ({0, 1}n)m, and δ ∈ (0, 1)
satisfying∣∣∣{i ∈ [m] | bi = f(x(i))}

∣∣∣ ≥ (1/2 + δ) · m,

we have that for any r ∈ {0, 1}∗,

Kt′(m) (b | X, r) ≤ ℓs(n) +
(
1 − 2δ2)

· m.

Proof. Given X, we can compute f(x(1)), . . . , f(x(m)) in time poly(m · ℓs(n)) using the
encoding of f , which requires ℓs(n) bits. Note that b and f(x(1)), . . . , f(x(m)) disagree on at
most (1/2 − δ) · m coordinates. So to recover b, it suffices to encode the string e ∈ {0, 1}m

such that ei = 1 iff f(x(i)) ̸= bi. We will show that Kpoly(m)(e) ≤ (1 − 2δ2) · m, which will
conclude the proof of the lemma.

Note that e has hamming weight at most m′ = (1/2 − δ) · m. Every m′-size subset of
an m-size set can be represented using log2

(
m
m′

)
bits, via the combinatorial number system,

with both encoding and decoding algorithms running in time polynomial in m (see, e.g., [14]
for details). Using standard inequalities for binomial coefficients and the binary entropy
function H2, we get

log2

(
m

m′

)
≤ log2 2H2(m′/m)·m

= H2 (1/2 − δ) · m

≤
(
1 − 2δ2)

· m,

as required. ◀

We will also need a lemma similar to the above for the case of KT: that is, bounding the
KT-complexity of the labels b in the case that they correlate with a function f . Lemma 32 is
insufficient as-is, since the time bound t′(m) would render KT(b) trivial. To overcome this
issue, we use an encoding scheme from Golovnev et al. for strings of bounded hamming
weight.

▶ Lemma 33 ([14]). For some m, m′ ∈ N and e ∈ {0, 1}m, suppose e has hamming weight
at most m′. Then there is a string e′ of length at most log

(
m
m′

)
+ m3/4 such that for all

1 ≤ i ≤ m, ei can be computed with random access to e′ in time m2/3.

▶ Lemma 34. For any m, n ∈ N, string b ∈ {0, 1}m, function f : {0, 1}n → {0, 1},
X = (x(1), ..., x(m)) ∈ ({0, 1}n)m, r ∈ {0, 1}∗, and δ ∈ (0, 1) satisfying∣∣∣{i ∈ [m] | bi = f(x(i))}

∣∣∣ ≥ (1/2 + δ) · m,

we have that

KT (X, b, r) ≤ KT(X, f(x(1)), ..., f(x(m)), r) +
(
1 − 2δ2)

· m + 2m3/4.

H. Goldberg and V. Kabanets 12:17

Proof. It is clear that any bit of X or r can be computed in time and description size
upper-bounded by KT(X, f(x(1)), ..., f(x(m)), r). To compute a bit bi of b, for i ∈ [m], we
observe the following. As in Lemma 32, let e ∈ {0, 1}m be such that ei = 1 iff f(x(i)) ̸= bi.
Then bi is f(x(i)) ⊕ ei. Note that the the hamming weight of e is at most m′ := (1/2 − δ) · m.
Applying Lemma 33, ei may be computed in time at most m2/3 from a description e′ of
length at most

log
(

m

m′

)
+ m3/4.

Arguing as in Lemma 32, we upper-bound the above by (1 − 2δ2) · m + m3/4.
To compute a bit bi, we first use time and description size KT(X, f(x(1)), ..., f(x(m)), r) to

obtain the corresponding f(x(i)). Then, given f(x(i)), bi may be computed in time at most
m2/3 + O(1) from a description of e′ of size at most

(
1 − 2δ2)

· m + m3/4. This concludes
the proof. ◀

4.1 Learning over the Uniform Distribution from MKTP
Here, we construct a correlative RRHS-refuter, working over distributions that are statistically
close to uniform, under the assumption that MKTP is easy on average. In the next section,
we will reduce the case of arbitrary efficiently samplable distributions to this case.

▶ Theorem 35. If (MKTP, U) ∈ AvgBPP, then for any time-constructible function s : N → N,
constants c, ζ > 0, and any family of distributions D such that Dn ≡n−c Un, there is an
ε-correlative RRHS-refuter for SIZE[s(n)] under Dn taking parameters n ∈ N and ε ∈ (0, 1)
with sample complexity

m(n, ε) :=
(

s(n) + n

ε8

)1+ζ

and running time poly
(
n, ε−1, s(n)

)
.

Proof. Let A0 be a randomized errorless heuristic scheme for (MKTP, U) with failure prob-
ability 1/n. Let A be the algorithm that simulates A0 and outputs “correlative” whenever
it would output “1” or “⊥”, and “random” whenever it would output “0”. Note that on
yes-instances of MKTP, A errs with probability at most 1/10 over its own internal randomness.

The (correlative) RRHS-refuter R. On input n ∈ N, ε > 0, and a set

S =
(〈

x(1), b(1)
〉

, . . . ,
〈

x(m), b(m)
〉)

of samples, let X := (x(1), . . . , x(m)) and b := (b(1), . . . , b(m)). R is defined as follows.
1. Compute θ := mn + (1 − ε2/16) · m.
2. Evaluate A((X, b), 1θ). Output “correlative” if A accepts, and output “random” otherwise.

Correlative Case (Soundness). Suppose the labeled examples in S are sampled i.i.d from
some distribution D′ on {0, 1}n × {0, 1}, whose marginal on {0, 1}n is given by Dn, and there
exists f ∈ SIZE[s(n)] such that

Pr
⟨x(i), b(i)⟩ ∼ D′

[
b(i) = f(x(i))

]
≥ 1

2 + ε

2 .

CCC 2023

12:18 Improved Learning from Kolmogorov Complexity

In this case, by a Chernoff bound, the probability over S ∼(D′)m that∣∣∣{i ∈ [m] | bi = f(x(i))}
∣∣∣ < (1/2 + ε/4) · m

is at most exp(−2m(ε/4)2) ≤ o(1). So with probability 1 − o(1), the conditions of Lemma 34
are met. Now observe that

KT(X, f(x(1)), ..., f(x(m))) ≤ mn + 2ℓs(n) + 2n,

using an mn-bit description of X to obtain any bit of X in constant time, along with an
ℓs(n)-bit description of a circuit computing f to obtain any bit f(x(i)) from X in time at
most ℓs(n) + 2n. This, along with Lemma 34 (with r the empty string), implies that

KT(X, b) ≤ mn +
(
1 − ε2/8

)
· m + 2ℓs(n) + 2n + 2m3/4. (7)

Finally, by our choice of m = ω
(
(s(n) + n) · ε−8)

,

m >
32

(
ℓs(n) + n + m3/4)

ε2 ;

re-written and combined with Eq. (7),

KT(X, b) ≤ mn +
(
1 − ε2/8

)
· m + 2ℓs(n) + 2n + 2m3/4

< mn +
(
1 − ε2/16

)
· m

= θ.

By definition of A, R will output “correlative” with probability at least 9/10 − o(1) > 2/3.

Random Case (Completeness). Suppose (X, b) is sampled from the distribution (Dm
n , Um).

Note that for X ∼ Um
n and b ∼ Um, it holds that

Pr
X,b

[KT(X, b) > mn + m − 10] ≥ 9/10.

Then by the definition of statistical distance, with probability at least 9/10 − o(1) over
X ∼ Dm

n and b ∼ Um,

KT(X, b) > mn + m − 10
> θ.

In other words, ((X, b), 1θ) /∈ MKTP.
Now, since the failure probability of our heuristic A is at most 1/10 + 1/n over the

uniform distribution, the definition of statistical distance implies that its failure probability
is at most 1/10 + o(1) over the distribution (Dm

n , Um).
Overall, by a union bound, R outputs “random” with probability at least 4/5 − o(1) >

2/3. ◀

4.2 Learning over PSAMP/poly from MKTP
In this section, we generalize the previous theorem to give correlative RRHS-refuters working
over arbitrary efficiently samplable distributions. In particular, we reduce to the case of a
nearly-uniform distribution by inverting the circuit that samples our given target distribution.

H. Goldberg and V. Kabanets 12:19

This requires distributional inversion as defined by Impagliazzo and Luby [19], which is
possible under the assumption of MKTP being easy on average.5

▶ Theorem 36. Suppose (MKTP, U) ∈ AvgBPP. Consider any time-constructible function
s : N → N, polynomials T, a : N → N, constant ζ > 0, and ε ∈ (n−d, 1) for a constant
d > 0. Let D = {Dn}n∈N be a family of distributions such that each Dn is samplable in time
T (n) with a(n) bits of non-uniform advice αn. There is an algorithm which, given αn and
parameters n ∈ N and ε, is an ε-correlative RRHS-refuter for SIZE[s(n)] under Dn. This
RRHS-refuter has sample complexity

m(n, ε) :=
(

s(n) + n

ε8

)1+ζ

and running time poly
(
n, T (n), a(n), s(n), ε−1)

.

Proof. By Corollary 26, every function g(y, x) computable in polynomial time is distribu-
tionally invertible. In particular, let I be a ε/4-distributional inverter for the function g that
evaluates the Boolean circuit y on the input string x. Let {Cn}n∈N be the family of circuits
that sample D. In particular, each Cn applies the T (n)-time sampler for Dn along with the
advice αn. By the definition of distributional inversion (Definition 22), we have that for all
sufficiently large n ∈ N,

(I(Cn, Cn(w)), Cn(w)) ≡ε/4 (w, Cn(w)), (8)

where w ∼ Uℓ, ℓ ≤ a(n), and I runs in time poly(T (n), a(n)).
Given labeled samples of the form (x, b), where x ∼ Dn = Cn(Uℓ), one may apply

I to the first part to simulate labeled samples of the form (r′, b), where r′ ∈ {0, 1}ℓ.
Specifically, r′ ∼ D′

ℓ, where D′
ℓ is the distribution I(Cn, Cn(Uℓ)) sampled by the circuit

C ′
ℓ(−) := I(Cn, Cn(−)). By Eq. (8), D′

ℓ ≡ε/4 Uℓ.
We will reduce to the case of a nearly-uniform distribution: namely, the case of Theorem 35.

Consider a target function f computable in SIZE[s(n)]. By Theorem 35, since D′ is statistically
close to uniform, there is a correlative RRHS-refuter R′ for f ◦Cn over D′ with parameter ε′ :=
ε/2 that has sample complexity m =

(
(s(n) + n)/ε8)1+ζ and running time poly(n, s(n), ε−1).

To get a correlative RRHS-refuter R for f over D, we simply return the output of this R′ on
the simulated examples (r′, b). Note that R takes time poly(n, T (n), a(n), s(n), ε−1) overall.

We now argue that in the “random” case of the original problem, R will output “random”
with high probability, and likewise for the “correlative” case. In the random case, the labels
b are simply sampled from the uniform distribution U , so R will output “random” with
probability at least 2/3, by the correctness of R′. In the correlative case, b is such that

Pr
x∼Dn

[b = f(x)] ≥ 1
2 + ε

2 . (9)

We would now like to show that the above probability is not too much smaller when x is
sampled from Cn(D′

ℓ) rather than Dn = Cn(Uℓ). Define a set

T := {(r, x) | x = Cn(r)}

5 Similar ideas are employed in the work of Binnendyk et al. [4], which shows that PAC-learning with
membership queries over arbitrary efficiently samplable distributions is possible under the existence of
natural properties.

CCC 2023

12:20 Improved Learning from Kolmogorov Complexity

and note that samples from the distribution (r, Cn(r)), for r ∼ Uℓ, belong to T with probability
1. By the property of distributional inversion, ie. Eq. (8), samples from the distribution
(I(Cn, Cn(r)), Cn(r)) = (C ′

ℓ(r), Cn(r)), for r ∼ Uℓ, belong to the set T with probability at
least 1 − ε/4. Whenever this holds, by definition of T , we have that Cn(C ′

ℓ(r)) = Cn(r).
Particularly, f(Cn(r′)) = f(x), for r′ = C ′

ℓ(r) and x = Cn(r). Then by a union bound with
Eq. (9), in the correlative case of the original problem,

Pr
r′∼D′

ℓ

[b = f(Cn(r′))] ≥ 1
2 + ε

2 − ε

4 = 1
2 + ε′

2 .

Thus, R will output “correlative” with probability at least 2/3, by the correctness of R′.
This completes the proof of the theorem. ◀

4.3 Learning from MKtP
The following lemma is similar to one from [16], but accounts for a uniformly random
string r ∼ U3mT (n), which is essential given Lemma 29. This lemma states that in the
expectation, over an efficiently samplable distribution (along with the uniformly random
string r), the Kt-complexity of a string is close to its time-unbounded K-complexity. Note
that the lemma from [16] holds under the assumption that DistNP ⊆ AvgP whereas this one
holds unconditionally.

▶ Lemma 37. There exists a polynomial p1 : N × N → N such that for any T, a : N → N
and n, m ∈ N, the following holds unconditionally. Let Dn ∈ Samp[T (n)]/a(n). For every
t ≥ p1(T (n), m), X ∼ Dm

n , and r ∼ U3mT (n),

E
X,r

[Kt(X, r) − K(X, r)] ≤ a(n) + O (log m + log T (n)) .

Proof. Let p1 be the polynomial p in Lemma 29. Note that for Dn ∈ Samp[T (n)]/a(n), we
have Dm

n ∈ Samp[m · T (n)]/a(n). For every t ≥ p1 (T (n), m), for X ∼ Dm
n and r ∼ U3mT (n),

E
X,r

[
Kt(X, r)

]
≤ E

X,r

[
Kp1(T (n),m)(X, r)

]
≤ 1

4mT (n) · (mn + 3mT (n) + O(log mn)) (Proposition 14)

+ E
X

[log(1/Dm
n (X))] + |r| + a(n) + O(log(m) + log T (n))

(Lemma 29)
≤ H(Dm

n) + |r| + a(n) + O(log(m) + log T (n))
≤ E

X,r
[K(X) + K(r | X)] + a(n) + O(log(m) + log T (n))

≤ E
X,r

[K(X, r)] + a(n) + O(log(m) + log T (n)) , (Time-unbounded S.o.I.)

where the second last inequality uses the fact that for any distribution D, the Shannon
entropy H(D) is at most E [K(x)] for x ∼ D (see [23, Theorem 8.1.1]), as well as a counting
argument showing that EX,r[K(r | X)] ≥ |r| − 3.

Rearranging the above, we get

E
X,r

[Kt(X, r) − K(X, r)] ≤ a(n) + O (log m + log T (n))

as desired. ◀

H. Goldberg and V. Kabanets 12:21

▶ Theorem 38. If (MKtP, U) ∈ AvgBPP, then for any time-constructible functions
s, T, a : N → N, any ε ∈ (0, 1), and any constant ζ > 0, there is an ε-correlative RRHS-refuter
for SIZE[s(n)] under Samp[T (n)]/a(n) taking parameters n ∈ N and ε ∈ (0, 1) with sample
complexity

m :=
(

s(n) + a(n) + log T (n)
ε2

)1+ζ

and running time poly
(
n, ε−1, T (n), a(n), s(n)

)
.

Proof. The proof closely follows that of [16, Theorem 8].

The (correlative) RRHS-refuter R. On input n ∈ N, ε > 0, and a set

S =
(〈

x(1), b(1)
〉

, . . . ,
〈

x(m), b(m)
〉)

of samples, let X := (x(1), . . . , x(m)) and b := (b(1), . . . , b(m)). R is defined as follows.
1. Compute t := p1(T (n), m), where p1 is the polynomial from Lemma 37. Also compute

t′ := t′(p(t)), where t′ is the polynomial from Lemma 32 and p is the polynomial from
Lemma 31.

2. Sample r ∼ U3mT (n).
3. Compute

β := A
(
(X, r), 1t

)
and

β′ := A
(

(X, b, r), 1t′
)

,

where A is the randomized algorithm from Lemma 31.
4. Output “correlative” if β′−β ≤ θ, where θ =

(
1 − ε2

16

)
m, and output “random” otherwise.

We now argue for the correctness of R. Consider any distribution Dn ∈ Samp[T (n)]/a(n).

Correlative Case (Soundness). Suppose the samples S are i.i.d. from a distribution D′ on
{0, 1}n × {0, 1} such that the marginal on {0, 1}n equals Dn, and there exists f ∈ SIZE[s(n)]
such that

Pr
⟨x(i), b(i)⟩ ∼ D′

[
b(i) = f(x(i))

]
≥ 1

2 + ε

2 .

Chernoff bounds imply that∣∣∣{i ∈ [m] | bi = f(x(i))}
∣∣∣ ≥ (1/2 + ε/4) · m

holds with probability at least 1 − exp(−2m(ε/4)2) over the choice of samples S ∼(D′)m, in
which case the conditions of Lemma 32 are met.

Now, suppose that in Step 3 of R, β and β′ output by the algorithm A are good
approximations in terms of Lemma 31, which happens with probability at least 1 − o(1).
Moreover, by Lemma 37,

E
X,r

[
Kt(X, r) − pKp(t)(X, r)

]
≤ E

X,r

[
Kt(X, r) − K(X, r)

]
(Prop. 13)

≤ a(n) + O(log(mT (n))).

CCC 2023

12:22 Improved Learning from Kolmogorov Complexity

Applying Markov’s inequality, with probability at least 3/4, there is a constant c such that

Kt(X, r) − pKp(t)(X, r) ≤ c · (a(n) + log(mT (n))). (10)

Thus, by a union bound, with probability at least 3/4 − o(1) > 2/3 over the samples
S ∼(D′)m and the internal randomness of R,

β′ − β ≤ Kt′
(X, b, r) − pKp(t)(X, r) + log p(t) (β′ and β are good approximations)

≤
(

Kt(X, r) − pKp(t)(X, r)
)

+ log p(t) + ℓs(n) +
(
1 − ε2/8

)
· m (Lemma 32)

≤ m ·
(
1 − ε2/8

)
+ c · (a(n) + log(mT (n))) + ℓs(n) (Eq. (10))

< θ.

For the last inequality, observe that by our choice of m = ω((s(n) + log T (n) + a(n)) · ε−2),

m > 16 ·
(

c · (a(n) + log m + log T (n)) + ℓs(n)
ε2

)
;

re-written,

m ·
(
1 − ε2/8

)
+ c · (a(n) + log(mT (n))) + ℓs(n) < m ·

(
1 − ε2/16

)
= θ.

Thus, R will output “correlative”.

Random Case (Completeness). Suppose the labels bi are sampled from U . For X ∼ Dm
n ,

r ∼ U3mT (n), and b ∼ Um, we get by Lemma 37 and Markov’s inequality, that, with
probability at least 3/4 over X, r,

Kt(X, r) − K(X, r) ≤ 4(a(n) + O(log mT (n))). (11)

Since β′ and β are good estimates with high probability, we get that, with probability at
least 3/4 − o(1) over X, r, b and the internal randomness of A,

β′ − β ≥ pKp(t′)(X, b, r) − Kt(X, r) − O(log(mT (n))) (β′, β good w.h.p.)
≥ K(X, b, r) − Kt(X, r) − O(log(mT (n))) (Prop. 13)
≥ K(X, r) + K(b | X, r) − Kt(X, r) − O(log(mT (n))) (Lemma 15)
= m −

(
Kt(X, r) − K(X, r)

)
− O(log(mT (n))) (b ∼ Um)

≥ m − 4 (a(n) + O(log(mT (n)))) (Eq. (11))
> θ,

and hence R outputs “random”. ◀

4.4 Learning from Worst-case Easiness of MKTP
In this section, we show that if MKTP is easy for efficient randomized algorithms in the worst
case, then it is possible to PAC learn without white-box access to the target distribution.

The following lemma is analogous to the source-coding lemma for Kt, Lemma 29, but with
some modifications to allow for KT-compression in the case that we have many independent
samples from the distribution Dn.

H. Goldberg and V. Kabanets 12:23

▶ Lemma 39. For some constant d ∈ N, the following holds unconditionally. For any
T, a : N → N, m, n ∈ N, distribution D ∈ Samp[T (n)]/a(n), and string X = (x(1), ..., x(m)) ∈
Supp(Dm

n),

KT(X, r) ≤ log(1/Dm
n (X)) + |r| + a(n) + d · m3/4 · T (n)3

holds with probability at least 1 − 1
6mT (n) over r ∼ U4mT (n).

Moreover, for any s : N → N and function f ∈ SIZE[s(n)],

KT(X, f(x(1)), ..., f(x(m)), r) ≤ log(1/Dm
n (X)) + 2ℓs(n) + |r| + a(n) + d · m3/4 · T (n)3

holds with probability at least 1 − 1
6mT (n) over r ∼ U4mT (n).

Proof. The proof is quite similar to that of Lemma 29, with some modifications (namely, the
partitioning of [m]) to get the bound for KT-complexity. Let A be a non-uniform algorithm
sampling D ∈ Samp[T (n)]/a(n). That is, there is some α ∈ {0, 1}a(n) such that for any
x ∈ supp(Dn),

Pr
w∼UT (n)

[A(w; α, 1n)] = Dn(x).

Consider any X = (x(1), ..., x(m)) ∈ Supp(Dm
n). For N and L chosen later, we will partition

[m] into N blocks b1, ..., bN , each of size at most L. For every block bj , let sj be the largest
integer such that DL

n (x(j1), ..., x(jL)) ≤ 2−sj , where bj = {j1, ..., jL}, and let s =
∑

j∈[N] sj .
For each bj , consider a universal hash function family Hj = {h : {0, 1}L·T (n) → {0, 1}kj },
where kj = L · T (n) − sj − log(12m2T (n)) − 1. As in Lemma 29, we represent hash functions
with Toeplitz matrices.

For each block bj , define a set

Sj := {(w1, ..., wL) ∈ ({0, 1}T (n))L | ∀l ∈ [L], A(wl; α, 1n) = x(jl)},

where jl denotes the lth element of bj . For each j ∈ [N], define a random variable Xj :=
|Sj ∩ h−1(0kj)|, where h ∼ Hj . Arguing as in Lemma 29,

Pr[Xj = 0] ≤ 1
12m2T (n) .

Now, for each j ∈ [N], define a random variable Yj = |h−1(0kj)|, where h ∼ Hj . Arguing as
in Lemma 29,

Pr[Yj ≥ 2sj+2 log(12m2T (n))+1] ≤ 1
12m2T (n) .

By a union bound, with probability at least 1 − 1/6mT (n), we have that for every j ∈ [N],
Xj ̸= 0 and Yj < 2sj+2 log(12m2T (n))+1.

Assume the above holds. It is possible to obtain any bit of a substring x(i) of X, for i in
some block bj , from the description of the hash function h sampled from Hj , the index of a
string (w1, ..., wL) ∈ Sj in the set h−1(0kj), and the advice string α used in the sampler A.
In particular, x(i) may be recovered by performing Gaussian elimination to compute the set
h−1(0kj) from the description of h, locating wl in this set such that i is the lth element of
bj , and then returning the desired bit of A(wl; α, 1n) = x(i). Given h, this requires at most
log Yj ≤ sj + 2 log(12m2T (n)) + 1 bits to describe the position of (w1, ..., wL) in h−1(0kj)
and |α| = a(n) bits to run the sampler A. Define the “random” string rj ∈ {0, 1}3L·T (n) as
the description of h ∼ Hj . So, a description working for any block (and therefore any bit of
X) is of length

CCC 2023

12:24 Improved Learning from Kolmogorov Complexity

∑
j∈[N]

[
sj + 2 log(12m2T (n)) + 1

]
+ a(n) ≤ s + N · (2 log(12m2T (n)) + 1) + a(n)

given randomness r = (r1, ..., rN) of length 3L · N · T (n). The amount of time required is
dominated by the Gaussian elimination step, at most O((L · T (n))3).

To obtain some bit f(x(i)), one may apply the above procedure to obtain x(i) and then
apply an ℓs(n)-bit description of a circuit computing f , taking additional time at most ℓs(n).

Overall, with probability at least 1 − 1/6mT (n) over r, we have that

KT(X, r) ≤ s + |r| + a(n) + N · O(log(mT (n))) + O((L · T (n))3)

and

KT(X, f(x(1)), ..., f(x(m)), r) ≤ s+ |r|+2ℓs(n)+a(n)+N ·O(log(mT (n)))+O((L ·T (n))3).

The lemma follows by setting L = m1/4 and N = ⌈m3/4⌉. ◀

The following lemma is analogous to Lemma 37, showing that KT and K complexities are
somewhat close in the expectation over efficiently sampled strings.

▶ Lemma 40. For any T, a : N → N, n, m ∈ N, Dn ∈ Samp[T (n)]/a(n), X ∼ Dm
n , b ∼ Um,

and r ∼ U4mT (n),

E
X,b,r

[KT(X, b, r) − K(X, b, r)] ≤ a(n) + 2d · m3/4 · T (n)3,

where d is the constant from Lemma 39.
Moreover, for any function f ∈ SIZE[s(n)],

E
X,r

[KT(X, f(x(1)), ..., f(x(1)), r)−K(X, f(x(1)), ..., f(x(1)), r)]

≤ a(n) + 2ℓs(n) + 2d · m3/4 · T (n)3.

Proof. The proof closely follows that of Lemma 37.

E
X,b,r

[KT(X, b, r)] ≤ E
X,r

[KT(X, r)] + |b| + log m

≤ 1
6mT (n) · (mn + 4mT (n) + m + O(log mn))

+ E
X

[log(1/Dm
n (X))] + |r| + a(n) + d · m3/4 · T (n)3 + |b| + log m

(Lemma 39)

≤ H(Dm
n) + |r| + a(n) + d · m3/4 · T (n)3 + |b| + O(log m)

≤ E
X,b,r

[K(X) + K(b | X) + K(r | b, X)] + a(n) + d · m3/4 · T (n)3 + O(log m)

≤ E
X,b,r

[K(X, b, r)] + a(n) + 2d · m3/4 · T (n)3. (Time-unbounded S.o.I.)

Rearranging the above, we get

E
X,b,r

[KT(X, b, r) − K(X, b, r)] ≤ a(n) + 2d · m3/4 · T (n)3

as desired.
The proof of the “moreover” part of the lemma is very similar. It follows by applying the

“moreover” part of Lemma 39 in the second line, and in the last line using the simple fact
that K(X, r) ≤ K(X, f(x(1)), ..., f(x(1)), r). ◀

H. Goldberg and V. Kabanets 12:25

▶ Theorem 41. If MKTP ∈ BPP, then for any time-constructible functions s, T, a : N →
N, and any ε ∈ (0, 1), there is an ε-correlative RRHS-refuter for SIZE[s(n)] under
Samp[T (n)]/a(n) taking parameters n ∈ N and ε ∈ (0, 1) with sample complexity

m :=
(

s(n) + a(n) + T (n)12

ε8

)12

and running time poly
(
n, ε−1, T (n), a(n), s(n)

)
.

Proof. Let A0 be the assumed randomized algorithm for MKTP, and let A be the randomized
poly-time “search” algorithm that on input y runs A0(y, 1s) for s = 1, ..., |y| + log |y| and
outputs the smallest s on which A accepts. It is not hard to see, using standard techniques,
that A can be made to correctly compute KT(y) with probability 1 − 2−|y|.

The (correlative) RRHS-refuter R. On input n ∈ N, ε > 0, and a set

S =
(〈

x(1), b(1)
〉

, . . . ,
〈

x(m), b(m)
〉)

of samples, let

k :=
(

s(n) + a(n) + T (n)12

ε8

)2

.

Partition the m = k6 samples S into k5 sets, each containing k samples. Denote these sets
Si, for i ∈ [k]. Then partition each Si into two equally sized sets,

S0
i =

(〈
x

(1)
i , b

(1)
i

〉
, . . . ,

〈
x

(k/2)
i , b

(k/2)
i

〉)
and S1

i =
(〈

x
(k/2+1)
i , b

(k/2+1)
i

〉
, . . . ,

〈
x

(k)
i , b

(k)
i

〉)
.

Let Zi := (x(1)
i , ..., x

(k/2)
i), Xi := (x(k/2+1)

i , . . . , x
(k)
i) and bi := (b(k/2+1)

i , . . . , b
(k)
i).

R is defined as follows. We repeat the following k5 times: once on each set of samples Si.
For simplicity, we omit the subscripts i: denote (⟨x(1), b(1)⟩, . . . , ⟨x(k), b(k)⟩) := Si, Z := Zi,
X := Xi, and b := bi.
1. Sample r ∼ U2kT (n).
2. Sample u ∼ Uk/2, and using the first half of the samples Z, compute

γi := A(Z, u, r).

3. Using the second half of the samples X along with their given labels b, compute

βi := A (X, b, r) .

4. Let wi = γi − βi.
5. At the end, after k5 repetitions of the above, take the sum

w =
∑

i∈[k5]

wi.

Let d be the constant from Lemma 39. Output “correlative” if w ≥ k5 · θ, where
θ = 2 ·

(
a(n) + 4d · k3/4 · T (n)3)

, and output “random” otherwise.

CCC 2023

12:26 Improved Learning from Kolmogorov Complexity

We begin by showing that the expected value of γi is roughly H(Dk/2
n) + k/2 + |r|. On

one hand, we have

E
Z,u,r,A

[γi] ≤ E
Z,u,r

[KT(Z, u, r)] + O(1) (definition of A)

≤ E[K(Z, u, r)] + a(n) + 2d · k3/4 · T (n)3 + O(1) (Lemma 40)

≤
(

H(Dk/2
n) + k/2 + |r|

)
+ a(n) + 3d · k3/4 · T (n)3, (12)

where the last line follows by a counting argument and the fact that E[K(Z)] ≤ H(Dk/2
n).

On the other hand,

E
Z,u,r,A

[γi] ≥ E
Z,u,r

[KT(Z, u, r)] − O(1) (definition of A)

≥ E[K(Z, u, r)] − O(1)
≥ E[K(Z) + K(u | Z) + K(r | Z, u)] − O(log(kn)) (symmetry of information)

≥
(

H(Dk/2
n) + k/2 + |r|

)
− O(log(kn)), (13)

where in the last line we use that E[K(Z)] ≥ H(Dk/2
n) − O(log(kn)) [23, Theorem 8.1.1].

Correlative Case (Soundness). Suppose the samples S are i.i.d. from a distribution D′ on
{0, 1}n × {0, 1} such that the marginal on {0, 1}n equals Dn, and there exists f ∈ SIZE[s(n)]
such that

Pr
⟨x(j), b(j)⟩ ∼ D′

[
b(j) = f(x(j))

]
≥ 1

2 + ε

2 .

Chernoff bounds imply that∣∣∣{j ∈ {k/2 + 1, ..., k} | bi = f(x(j))}
∣∣∣ ≥ (1/2 + ε/4) · k/2

holds with probability at least 1 − exp(−k(ε/4)2/8) over the choice of samples S1
i , in which

case the conditions of Lemma 34 are met. Then,
E

X,b,r,A
[βi] ≤ E

X,b,r
[KT(X, b, r)] + O(1)

≤ E[KT(X, f(x(k/2+1)), ..., f(x(k)), r)] + (1 − ε2/8) · k/2 + 2k3/4 (Lemma 34)

≤ E[K(X, f(x(k/2+1)), ..., f(x(k)), r)] + (1 − ε2/8) · k/2 + a(n) + 2ℓs(n) + 3d · k3/4 · T (n)3

≤ H(Dk/2
n) + (1 − ε2/8) · k/2 + |r| + a(n) + 3ℓs(n) + 3d · k3/4 · T (n)3,

where the second-last line uses Lemma 40, and the last line uses the observation that

K(f(x(k/2+1)), ..., f(x(k)) | X) ≤ ℓs(n).

Combining the above with Eq. (13), we have

E[γi − βi] ≥ ε2

16 · k −
(

a(n) + 3ℓs(n) + O(k3/4T (n)3)
)

≥ 2θ,

by our choices of k and θ.
After k5 trials of the above, we have E[w] ≥ 2k5θ. By Hoeffding’s inequality, with

probability at least 1 − 2−k, it holds that |2k5θ − w| ≤ k5θ, and so

w ≥ k5θ,

in which case R will output “correlative”.

H. Goldberg and V. Kabanets 12:27

Random Case (Completeness). Suppose the labels bj are sampled from U . Arguing as in
Eq. (13),

E
X,b,r,A

[βi] ≥
(

H(Dk/2
n) + k/2 + |r|

)
− O(log(kn)).

Combining the above with Eq. (12),

E[γi − βi] ≤ a(n) + 4d · k3/4 · T (n)3

= θ/2.

After k5 trials of the above, we have E[w] ≤ k5θ/2. By Hoeffding’s inequality, with probability
at least 1 − 2−k, it holds that |k5θ/2 − w| < k5θ/2, and so

w < k5θ,

in which case R will output “random”. ◀

5 Open questions

We showed that “natural propeties” for more expressive Kolmogorov-complexity relatives of
MCSP such as MKTP and MKtP allow one to cross the divide between learning algorithms
with membership queries and those without. An obvious disadvantage of relying on more
expressive Kolmogorov measures rather than MCSP is that it is difficult to get meaningful
circuit class restrictions when talking about MKTP or MKtP, and utilize the known circuit
lower bound proofs for these restricted circuit classes in order to derive a learning algorithm.
Can one use our understanding of AC0[2] circuit lower bounds (e.g., the known natural
property for AC0[2]) to get an RRHS-refuter for AC0[2] on uniform distribution? This
question is also very interesting from the point of view of cryptography in the context of
efficient constructions of weak PRFs; see, e.g., [8] for more discussion on this direction.

Another question is whether it is possible to bridge the gap between the assumptions
used in our two main theorems. More precisely, is it possible to get an agnostic PAC learning
algorithm over any not necessarily explicitly given polysize samplable distribution ensemble
D from a one-sided average-case heuristic for MKTP rather than MKtP?

References
1 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ron-

neburger. Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006. doi:
10.1137/050628994.

2 Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher Moore, and Andrew
Morgan. Minimum circuit size, graph isomorphism, and related problems. SIAM J. Comput.,
47(4):1339–1372, 2018. doi:10.1137/17M1157970.

3 Luis Filipe Coelho Antunes and Lance Fortnow. Worst-case running times for average-case
algorithms. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity,
CCC 2009, Paris, France, 15-18 July 2009, pages 298–303. IEEE Computer Society, 2009.
doi:10.1109/CCC.2009.12.

4 Eric Binnendyk, Marco Carmosino, Antonina Kolokolova, R. Ramyaa, and Manuel Sabin.
Learning with distributional inverters. In Sanjoy Dasgupta and Nika Haghtalab, editors,
International Conference on Algorithmic Learning Theory, 29-1 April 2022, Paris, France,
volume 167 of Proceedings of Machine Learning Research, pages 90–106. PMLR, 2022. URL:
https://proceedings.mlr.press/v167/binnendyk22a.html.

CCC 2023

https://doi.org/10.1137/050628994
https://doi.org/10.1137/050628994
https://doi.org/10.1137/17M1157970
https://doi.org/10.1109/CCC.2009.12
https://proceedings.mlr.press/v167/binnendyk22a.html

12:28 Improved Learning from Kolmogorov Complexity

5 Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic
primitives based on hard learning problems. In Douglas R. Stinson, editor, Advances in
Cryptology – CRYPTO ’93, 13th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 22-26, 1993, Proceedings, volume 773 of Lecture Notes in Computer
Science, pages 278–291. Springer, 1993. doi:10.1007/3-540-48329-2_24.

6 Andrej Bogdanov and Alon Rosen. Pseudorandom functions: Three decades later. In
Yehuda Lindell, editor, Tutorials on the Foundations of Cryptography, pages 79–158. Springer
International Publishing, 2017. doi:10.1007/978-3-319-57048-8_3.

7 Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor. Comput.
Sci., 2(1), 2006. doi:10.1561/0400000004.

8 Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu. Exploring crypto
dark matter: New simple PRF candidates and their applications. In Amos Beimel and Stefan
Dziembowski, editors, Theory of Cryptography – 16th International Conference, TCC 2018,
Panaji, India, November 11-14, 2018, Proceedings, Part II, volume 11240 of Lecture Notes in
Computer Science, pages 699–729. Springer, 2018. doi:10.1007/978-3-030-03810-6_25.

9 Harry Buhrman, Lance Fortnow, and Aduri Pavan. Some results on derandomization. Theory
Comput. Syst., 38(2):211–227, 2005. doi:10.1007/s00224-004-1194-y.

10 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In Ran Raz, editor, 31st Conference on Computational
Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages
10:1–10:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
CCC.2016.10.

11 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Agnostic learning from tolerant natural proofs. In Klaus Jansen, José D. P. Rolim, David Wil-
liamson, and Santosh S. Vempala, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017,
Berkeley, CA, USA, volume 81 of LIPIcs, pages 35:1–35:19. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.35.

12 Vitaly Feldman. Distribution-specific agnostic boosting. In Andrew Chi-Chih Yao, editor,
Innovations in Computer Science – ICS 2010, Tsinghua University, Beijing, China, January
5-7, 2010. Proceedings, pages 241–250. Tsinghua University Press, 2010. URL: http://
conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/20.html.

13 Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor Carboni Oliveira. Probabilistic
kolmogorov complexity with applications to average-case complexity. In Shachar Lovett,
editor, 37th Computational Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia,
PA, USA, volume 234 of LIPIcs, pages 16:1–16:60. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.16.

14 Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Koloko-
lova, and Avishay Tal. AC0[p] lower bounds against MCSP via the coin problem. In Christel
Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019,
Patras, Greece, volume 132 of LIPIcs, pages 66:1–66:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.66.

15 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In Mikkel
Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, pages 247–258. IEEE Computer Society, 2018. doi:
10.1109/FOCS.2018.00032.

16 Shuichi Hirahara and Mikito Nanashima. On worst-case learning in relativized heuristica. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022, pages 751–758. IEEE, 2021. doi:10.1109/FOCS52979.2021.00078.

https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/978-3-319-57048-8_3
https://doi.org/10.1561/0400000004
https://doi.org/10.1007/978-3-030-03810-6_25
https://doi.org/10.1007/s00224-004-1194-y
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.35
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/20.html
http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/20.html
https://doi.org/10.4230/LIPIcs.CCC.2022.16
https://doi.org/10.4230/LIPIcs.ICALP.2019.66
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS52979.2021.00078

H. Goldberg and V. Kabanets 12:29

17 Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. Np-hardness of circuit minimization
for multi-output functions. In Shubhangi Saraf, editor, 35th Computational Complexity
Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume
169 of LIPIcs, pages 22:1–22:36. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CCC.2020.22.

18 Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances
than picking uniformly at random. In 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume II, pages 812–821. IEEE
Computer Society, 1990. doi:10.1109/FSCS.1990.89604.

19 Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based
cryptography (extended abstract). In 30th Annual Symposium on Foundations of Computer
Science, Research Triangle Park, North Carolina, USA, 30 October – 1 November 1989, pages
230–235. IEEE Computer Society, 1989. doi:10.1109/SFCS.1989.63483.

20 Adam Kalai and Varun Kanade. Potential-based agnostic boosting. In Yoshua Bengio, Dale
Schuurmans, John D. Lafferty, Christopher K. I. Williams, and Aron Culotta, editors, Advances
in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information
Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British
Columbia, Canada, pages 880–888. Curran Associates, Inc., 2009. URL: https://proceedings.
neurips.cc/paper/2009/hash/13f9896df61279c928f19721878fac41-Abstract.html.

21 Michael J. Kearns, Robert E. Schapire, and Linda Sellie. Toward efficient agnostic learning.
Mach. Learn., 17(2-3):115–141, 1994. doi:10.1007/BF00993468.

22 Pravesh K. Kothari and Roi Livni. Improper learning by refuting. In Anna R. Karlin,
editor, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January
11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 55:1–55:10. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ITCS.2018.55.

23 Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications, 4th Edition. Texts in Computer Science. Springer, 2019. doi:10.1007/
978-3-030-11298-1.

24 Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. ACM Trans. Algorithms,
15(3):35:1–35:30, 2019. doi:10.1145/3306193.

25 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994. doi:10.1016/S0022-0000(05)80043-1.

26 Rafail Ostrovsky and Avi Wigderson. One-way fuctions are essential for non-trivial zero-
knowledge. In Second Israel Symposium on Theory of Computing Systems, ISTCS 1993,
Natanya, Israel, June 7-9, 1993, Proceedings, pages 3–17. IEEE Computer Society, 1993.
doi:10.1109/ISTCS.1993.253489.

27 Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–35,
1997. doi:10.1006/jcss.1997.1494.

28 Salil P. Vadhan. On learning vs. refutation. In Satyen Kale and Ohad Shamir, editors, Proceed-
ings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The Netherlands,
7-10 July 2017, volume 65 of Proceedings of Machine Learning Research, pages 1835–1848.
PMLR, 2017. URL: http://proceedings.mlr.press/v65/vadhan17a.html.

29 Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.
doi:10.1145/1968.1972.

30 Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 80–91. IEEE Computer Society, 1982. doi:10.1109/SFCS.1982.45.

31 Alexander K. Zvonkin and Leonid A. Levin. The complexity of finite objects and the
development of the concepts of information and randomness by means of the theory of
algorithms. Russian Mathematical Surveys, 25(6):83, 1970.

CCC 2023

https://doi.org/10.4230/LIPIcs.CCC.2020.22
https://doi.org/10.1109/FSCS.1990.89604
https://doi.org/10.1109/SFCS.1989.63483
https://proceedings.neurips.cc/paper/2009/hash/13f9896df61279c928f19721878fac41-Abstract.html
https://proceedings.neurips.cc/paper/2009/hash/13f9896df61279c928f19721878fac41-Abstract.html
https://doi.org/10.1007/BF00993468
https://doi.org/10.4230/LIPIcs.ITCS.2018.55
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1145/3306193
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1109/ISTCS.1993.253489
https://doi.org/10.1006/jcss.1997.1494
http://proceedings.mlr.press/v65/vadhan17a.html
https://doi.org/10.1145/1968.1972
https://doi.org/10.1109/SFCS.1982.45

New Lower Bounds Against Homogeneous
Non-Commutative Circuits
Prerona Chatterjee # Ñ

Department of Computer Science, Tel Aviv University, Israel

Pavel Hrubeš # Ñ

Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic

Abstract
We give several new lower bounds on size of homogeneous non-commutative circuits. We present an
explicit homogeneous bivariate polynomial of degree d which requires homogeneous non-commutative
circuit of size Ω(d/ log d). For an n-variate polynomial with n > 1, the result can be improved to
Ω(nd), if d ≤ n, or Ω(nd log n

log d
), if d ≥ n. Under the same assumptions, we also give a quadratic lower

bound for the ordered version of the central symmetric polynomial.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Algebraic circuit complexity, Non-Commutative Circuits, Homogeneous
Computation, Lower bounds against algebraic circuits

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.13

Related Version Full Version: https://arxiv.org/abs/2301.01676

Funding Prerona Chatterjee: Funded by the Azrieli International Fellowship. This work was done
while the author was a postdoctoral researcher at the Czech Academy of Sciences, Prague, and was
funded by Czech Science Foundation GAČR grant 19-27871X.
Pavel Hrubeš : Czech Science Foundation GAČR grant 19-27871X.

Acknowledgements Prerona would like to acknowledge Cafedu for being such a nice place to work
from. Pavel thanks Amir Yehudayoff for useful ideas on this topic which were exchanged in distant
and joyous past.

1 Introduction

Arithmetic Circuit Complexity aims to categorize polynomials according to how hard they
are to compute in algebraic models of computation. The most natural model is that of an
arithmetic circuit: a directed acyclic graph with constant or variables as the leaf labels and
addition or multiplication as labels of the internal nodes. Therefore, starting from variables
or constants at the leaves, the every node in the circuit naturally computes new polynomials
by means of addition and multiplication operations. The question is how many of these
operations are needed.

The most challenging problem is to prove super-polynomial lower bounds against arith-
metic circuits computing a low-degree polynomial. This is known as the VP vs VNP problem
and is the algebraic analogue of the famed P vs. NP question. The classical result of Baur
and Strassen [13, 1] gives an Ω(n log d) lower bound for an n variate polynomial of degree
d. A variety of lower bounds has since been obtained by imposing various restrictions on
the computational model - e.g., arithmetic formulas1 [8] or monotone circuits2 [15]. But the
result of Baur and Strassen remains the strongest lower bound on unrestricted arithmetic
circuits.

1 Similar to circuits except that the underlying graph is only allowed to be a tree instead of a DAG.
2 Similar to circuits except that only non-negative constants are allowed.

© Prerona Chatterjee and Pavel Hrubeš;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 13; pp. 13:1–13:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:prerona.ch@gmail.com
https://preronac.bitbucket.io/
https://orcid.org/0000-0003-2643-8142
mailto:pahrubes@gmail.com
https://users.math.cas.cz/~hrubes/
https://doi.org/10.4230/LIPIcs.CCC.2023.13
https://arxiv.org/abs/2301.01676
https://www.cafedu.cz/en/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 New Lower Bounds Against Homogeneous Non-Commutative Circuits

In this paper, we are interested in the non-commutative setting where multiplication does
not multiplicatively commute. Starting with the seminal works of Hyafil [7] and Nisan [9],
non-commutative circuits are a well-studied object. The lack of commutativity is a severe
limitation on the computational power which makes the task of proving circuit lower bounds
seemingly easier. Nisan gave an exponential lower bound for non-commutative formulas
whereas, commutatively, the best bound is only quadratic [8, 4]. Since then, it seemed that
exponential non-commutative circuit lower bounds are just around the corner. Recently,
Limaye, Srinivasan and Tavenas [14] proved such a lower bound in the homogeneous, constant
depth setting for a polynomial that can be computed efficiently by non-commutative ABPs3.
They showed that any constant depth ∆ non-commutative homogeneous circuit for the
iterated matrix multiplication polynomial (a polynomial over n variables of degree d must
have size nΩ(d

1
∆). However for general circuits, even in the non-commutative setting, the

strongest lower bound remains Ω(n log d).
We improve this lower bound to Ω(nd/ log d) under the assumption that the non-

commutative circuit is additionally homogeneous (see Section 2 for definition). Non-
commutatively, this is already interesting if n = 2: we obtain a bivariate polynomial
of degree d which requires circuit size nearly linear in d. It is well-known that a (commutative
or not) circuit computing a homogeneous polynomial of degree d can be converted to an equi-
valent homogeneous circuit with at most a d2 increase in size (see, for example, [6]). Hence,
homogeneity is not a serious restriction if either d is small or if one proves a super-polynomial
lower bound. However, our results fall in neither category and we do not know how to remove
the homogeneity restriction. Furthermore, Carmosino et al. [3] have shown that strong
enough superlinear lower bounds can be amplified to truly exponential ones. Unfortunately,
the parameters of our result are not sufficient to allow amplification. Nevertheless, we
strongly believe that it can be removed and that stronger non-commutative circuit lower
bounds are just around the corner.

2 Notation and preliminaries

Let F be a field. A non-commutative polynomial over F is a formal sum of products of
variables and field elements. We assume that the variables do not multiplicatively commute,
whereas they commute additively and with elements of F. The ring of non-commutative
polynomials in variables x1, . . . , xn is denoted F ⟨x1, . . . , xn⟩. A polynomial is said to be
homogeneous if all monomials with a non-zero coefficient in f have the same degree.

A non-commutative arithmetic circuit C over the field F is a directed acyclic graph as
follows. Nodes (or gates) of in-degree zero are labelled by either a variable or an element in
the field F. All the other nodes have in-degree two and they are labelled by either + or ×.
The two edges going into a gate labelled by × are labelled by left and right to indicate the
order of multiplication. Gates of in-degree zero will be called input gates; gates of out-degree
zero will be called output gates.

Every node in C computes a non-commutative polynomial in the obvious way. We say
that C computes a polynomial f if there is a gate in C computing f (not necessarily an
output gate). C will be called homogeneous if every gate in C computes a homogeneous
polynomial. Given a circuit C, let Ĉ := (f : f is computed by some gate in C).

3 An algebraic computational model whose power lies in between that of circuits and formulas.

P. Chatterjee and P. Hrubeš 13:3

A product gate will be called non-scalar, if both of its inputs compute a non-constant
polynomial. We define the size of C to be the number of non-input gates in it, and the
non-scalar size of C to be the number of non-scalar product gates in it.

Given integers n1, n2, [n1, n2] is the interval {n1, n1 + 1, . . . , n2} and [n] := [1, n].

Note. Unless stated otherwise, circuits and polynomials are assumed to be non-commutative
and the underlying field F is fixed but arbitrary.

3 Main results

For univariate polynomials there is no difference between commutative and non-commutative
computations. Already with two variables, non-commutative polynomials display much richer
structure. There are 2d monomials in variables x0, x1 of degree d (as opposed to d + 1 in the
commutative world); so a generic bivariate polynomial requires a circuit of size exponential
in d.

Our first result is a lower bound that is almost linear in d. The hard polynomial is a
bivariate monomial (a specific product of variables x0, x1).

▶ Theorem 1. For every d > 1, there exists an explicit bivariate monomial of degree d such
that any homogeneous non-commutative circuit computing it has non-scalar size Ω(d/ log d).

In Remark 10, we point out a complementary O(d/ log d) upper bound for every bivariate
monomial. Note that commutatively every such monomial can be computed in size O(log d).

For n-variate polynomials, we obtain a stronger result (the hard polynomial is no longer
a monomial).

▶ Theorem 2. For every n, d > 1 there exists an explicit n-variate homogeneous polynomial
of degree d which requires a homogenous non-commutative circuit of non-scalar size Ω(nd),
if d ≤ n, or Ω(nd log n

log d), if d ≥ n.

Theorem 1 and Theorem 2 are proved in Sections 4.1 and 4.2 respectively.
Given 0 ≤ d, n, the ordered symmetric polynomial, OSd

n, is the polynomial4

OSd
n(x1, . . . , xn) =

∑
1≤i1<···<id≤n

 d∏
j=1

xij

 .

It can be thought of as an ordered version of the commutative elementary symmetric
polynomial. In Section 5, we shall prove a lower bound for this polynomial.

▶ Theorem 3. If 2 ≤ d ≤ n/2, any homogeneous non-commutative circuit computing
OSd

n(x1, . . . , xn) must have non-scalar size Ω(dn).

For the central ordered symmetric polynomial OS⌊n/2⌋
n , the lower bound becomes Ω(n2).

We also observe that the known commutative upper bounds on elementary symmetric
polynomials work non-commutatively as well.

▶ Proposition 4. OS1
n, . . . , OSn

n can be simultaneously computed by a non-commutative
circuit of size O(n log2 n log log n), and by a homogeneous non-commutative circuit of size
O(n2).

4 Hence OS0
n = 1 and OSd

n = 0 whenever d > n.

CCC 2023

13:4 New Lower Bounds Against Homogeneous Non-Commutative Circuits

The polylog factor in the proposition depends on the underlying field and can be improved
for some Fs. Moreover, when measuring non-scalar size, one can obtain an O(n log n) upper
bound if F is infinite – this is tight by [1].

The ordered symmetric polynomial can be contrasted with the truly symmetric polynomial

Sk
n =

∑
1i1,...,ik∈[n] distinct

xi1 · · · xik
,

Non-commutatively, already Sn
n is as hard as the permanent [6] and is expected to require

exponential circuits.
▶ Remark 5. A polynomial of degree d can be uniquely written as f =

∑d
k=0 f (k) where f (k)

is homogeneous of degree k. It is well-known that if f has a circuit of size s, the homogeneous
parts f (0), . . . , f (d) can be simultaneously computed by a homogeneous circuit of size O(sd2)
(this holds non-commutatively as well [6]). Note that OS0

n, . . . , OSn
n are the homogeneous

parts of
∏n

i=1(1 + xi) which has a circuit of a linear size. Theorem 3 shows that in this case,
homogenization provably costs a factor of the degree.

4 Lower bounds against homogeneous non-commutative circuits

Let us define the measure we use to prove our lower bounds. Suppose f ∈ F ⟨x1, . . . , xn⟩ is a
homogeneous polynomial of degree d. Given an interval J = [a, b] ⊆ [d], the polynomial fJ is
obtained be setting variables in position outside of J to one. More precisely, if α =

∏d
i=1 xji

is a monomial then αJ :=
∏b

i=a xji
, and the map is extended linearly so that fJ =

∑
k ckαJ

k

whenever f =
∑

k ckαk. Given a non-negative integer ℓ, let

F ℓ(f) =
(
fJ : J ⊆ [d] is an interval of length ℓ

)
.

Given homogeneous polynomials f1, . . . , fm, our hardness measure is defined as

µℓ(f1, . . . , fm) := dim(span(
m⋃

i=1
F ℓ(fi))) .

Here, span(F) denotes the vector space of F-linear combinations of polynomials in F and
dim is its dimension.

The following lemma bounds the measure in terms of circuit size.

▶ Lemma 6. Let C be a homogeneous circuit with s non-scalar multiplication gates. Then
for every ℓ ≥ 2, µℓ(Ĉ) ≤ (ℓ − 1)s.

Proof. This is by induction on the size of C. If C consists of input gates only then F ℓ(Ĉ) = ∅,
as we assumed ℓ ≥ 2 and Ĉ consists of linear polynomials.

Otherwise, assume that u is some output gate of C and let C′ be the circuit obtained by
removing that gate. If u is a sum gate or a scalar product gate then

µℓ(Ĉ) ≤ µℓ(Ĉ′) .

For if u computes f then f = a1f1 + a2f2 for some constants a1, a2 and f1, f2 ∈ Ĉ′. If f has
degree d then for every interval J ⊆ [d] of length ℓ, fJ = (a1f1 + a2f2)J = a1fJ

1 + a2fJ
2 ∈

span(F ℓ(Ĉ′)).
If u is a non-scalar product gate computing f = f1 · f2 then

µℓ(Ĉ) ≤ µℓ(Ĉ′) + (ℓ − 1) .

P. Chatterjee and P. Hrubeš 13:5

To see this assume f1, f2 have degrees d1 and d2 respectively, and let J ⊆ [d1 + d2] be an
interval of length ℓ. If J is contained in [d1], fJ = (f1f2)J = fJ

1 f∅
2 is a scalar multiple

of fJ
1 and hence fJ is contained in span(F ℓ(Ĉ′)); similarly if J is contained in [d1 + 1, d2].

Otherwise, both d1 and d1 + 1 are contained in J . But there are only ℓ − 1 such intervals.
Hence F ℓ(Ĉ) contains at most ℓ − 1 polynomials outside of span(F ℓ(Ĉ′)).

This means that µℓ increases only at product gates, and that it increases only by ℓ − 1 at
such gates. Hence µℓ(Ĉ) ≤ (ℓ − 1)s. ◀

▶ Remark 7. If f has n variables and degree d, the measure µℓ(f) can be at most the
minimum of d − (ℓ − 1) and nℓ. Hence, Lemma 6 can by itself give a lower of at most the
order of d log n/ log d.

4.1 Lower bounds for a single monomial
Interestingly, Lemma 6 gives non-trivial lower bounds for f being merely a product of
variables (that is, monomials), namely lower bounds of the form Ω̃(d) for a monomial of
degree d. The simplest example is for an n-variate monomial of degree n2.

▶ Proposition 8. Every homogeneous circuit computing f =
∏n

i=1
∏n

j=1(xixj) contains at
least n2 non-scalar product gates.

Proof. This is an application of Lemma 6 with ℓ = 2. The family F2(f) consists of all
monomials xixj . Hence, µ2(f) = n2. If C computes f , we have µ2(Ĉ) ≥ µ2(f) and hence C
contains at least n2 product gates. ◀

Another case of interest is a monomial in two variables, x0, x1, of degree d. Suppose
f =

∏d
i=1 xσi

where σ = (σ1, . . . , σd) ∈ {0, 1}d. Then µℓ(f) equals the number of distinct
substrings of σ of length ℓ. Hence we want to find a σ which contains as many substrings as
possible. One construction of such an object is provided by the de Bruijn sequence [5].

de Bruijn sequences

For a given k, a de Bruijn sequence of order k over alphabet A is a cyclic sequence σ in
which every k-length string from Ak occurs exactly once as a substring. Note that σ must
have length |A|k. Furthermore, precisely k − 1 of the substrings overlap the beginning and
the end of the sequence and σ contains |A|k − (k − 1) substrings when viewed as an ordinary
sequence. de Bruijn sequences are widely studied and, in particular, they exist. Moreover,
efficient algorithms are known for constructing de Bruijn sequences (see, for example, [11]
and its references). In the case of binary alphabet A = {0, 1}, this is especially so. We can
start with a string of k zeros. At each stage, extend the sequence by 1, unless this results in
a k-string already encounters, otherwise extend by 0.

Given d ≥ 2, let σ be a binary de Bruijn sequence of order ⌈log2 d⌉. It has length
2⌈log2 d⌉ ≥ d. Define the polynomial

Bd(x0, x1) :=
d∏

i=1
xσi

.

The following implies the result of Theorem 1.

▶ Proposition 9. Every homogeneous circuit computing Bd contains Ω(d/ log d) non-scalar
product gates.

CCC 2023

13:6 New Lower Bounds Against Homogeneous Non-Commutative Circuits

Proof. This is an application of Lemma 6 with ℓ = ⌈log2 d⌉. [d] contains d − ℓ − 1 intervals
of length ℓ, all of which give rise to different substrings of σ. The family F ℓ(Bd) consists of
d − (ℓ − 1) different monomials and hence µℓ(Bd) = d − (ℓ − 1). By the lemma, assuming
ℓ > 1, a homogenous circuit for Bd must contain (d − (ℓ − 1))/(ℓ − 1) = Ω(d/ log d) product
gates. ◀

▶ Remark 10. Using de Bruijn sequences over alphabet of size n, one can give an explicit
monomial in n > 1 variables and degree d ≥ n which requires homogeneous circuit of
non-scalar size Ω(d log n/ log d). This can also be deduced from Proposition 9 by viewing
degree k bivariate monomials as a single variable.

Conversely, every such monomial α can be computed in size O(d log n/ log d) using
multiplication gates only (such a computation is automatically homogeneous). Indeed, we
can first compute all monomials of degree at most k by a circuit of size O(nk+1) and then
compute α using ⌈d/k⌉ additional multiplication gates. Choosing k around 0.5 log2 d log−1

2 n

is sufficient. This also means that the bound in Theorem 2 is tight.

4.2 Computing partial derivatives simultaneously
In order to obtain stronger lower bounds, we will translate the classical theorem of Baur and
Strassen [1] on computing partial derivatives to the non-commutative setting.

We define partial derivative with respect to first position only, as follows. Given a
polynomial f and a variable x, f can be uniquely written as f = xf0 + f1 where no monomial
in f1 contains x in the first position. We set ∂xf := f0.

The proof of the following lemma is almost the same as the one due to Baur and Strassen.
The only additional subtlety is that we need the derivatives to be computed by a homogeneous
circuit. This requires the generalization of homogeneity to allow arbitrary variable weights.
We emphasize that taking derivatives with respect to the first position is essential in the
non-commutative setting.

▶ Lemma 11. Assume that f ∈ F ⟨x1, . . . , xn⟩ can be computed by a homogeneous circuit
of size s and non-scalar size s×. Then ∂x1f, . . . , ∂xnf can be simultaneously computed by a
homogeneous circuit of size O(s) and non-scalar size O(s×).

Proof. Given w = (w1, . . . , wn) ∈ Nn, let wi be the weight of xi and let the weight of a
monomial α =

∏d
j=1 xij

be defined as wt(α) =
∑d

j=1 wij
. A polynomial f ∈ F ⟨x1, . . . , xn⟩

is said to be w-homogeneous if every monomial in it has the same weight. We call this the
weight of f , denoted by wt(f). Furthermore we say that a circuit C is w-homogeneous if
every gate in it computes a w-homogeneous polynomial. The weight of any node, v, in a
w-homogeneous circuit is defined to be the weight of the polynomial being computed by it.

Note that if (w1, . . . , wn) = (1, . . . , 1), then w-homogeneity coincides with the usual
notion of homogeneity. Therefore Lemma 11 follows from the following claim.

▷ Claim 12. For any w = (w1, . . . , wn) ∈ Nn, if there is a w-homogenous circuit that
computes f ∈ F ⟨x1, . . . , xn⟩ of size s and non-scalar size s×, then there is a w-homogeneous
circuit that computes D(f) = {∂x1f, . . . , ∂xnf} of size at most 5s and non-scalar size at
most 2s×.

We prove this claim by induction on s. Recall that circuit size is measured by the
number of non-input gates. For the base case, s = 0, the circuit only consists of leaves. The
derivatives are then either 0 or 1 and can again be computed in zero size.

P. Chatterjee and P. Hrubeš 13:7

Assume s > 0. Let w = (w1, . . . , wn) ∈ Nn be arbitrarily fixed. Furthermore, suppose
there is a w-homogenous circuit C that computes f ∈ F ⟨x1, . . . , xn⟩ of size s. Choose a
vertex v in C such that both its children are leaves, and let v̂ be the polynomial it computes.
v̂ is a homogeneous polynomial in at most two variables and degree at most two; w.l.o.g., we
can also assume that v̂ is at least linear (otherwise v could be replaced by a leaf).

Let C′ be the circuit obtained from C by removing the incoming edges to v and labelling
the vertex v with a new variable, say x0. Let us assign it weight w0 := wt(v̂).

Let f ′ be the polynomial computed by C′. Then, D(f) = {∂x1f, . . . , ∂xnf} can be
recovered from D(f ′) = {∂x0f ′, ∂x1f ′, . . . , ∂xn

f ′} using the following version of chain rule:

∂xk
f = (∂xk

f ′ + ∂xk
v̂ · ∂x0f ′)|

x0:=v̂
.

Note that ∂xk
v̂ is a variable or a constant, and that it is zero except for at most two of the

xk’s.
Let us set w′ = (w′

0, w1, . . . , wn). Note that the weight of every vertex in C′ is the same as
the corresponding vertex in C. Therefore, since C is w-homogeneous, C′ is w′-homogeneous.
Furthermore, C′ has s − 1 non-input gates and, by the inductive assumption, there is a
w′-homogeneous circuit D′ of size 5(s − 1) which computes D(f ′). Using D′ and the chain
rule above, we can construct a circuit with 5 additional gates which computes D(f). The
size of this circuit is at most 5(s − 1) + 5 = 5s and is easily seen to be w-homogeneous.

When counting non-scalar complexity, note that in the construction, only non-scalar
product gates introduce non-scalar gates, and we always introduce at most two such gates. ◀

We can now prove Theorem 2.

Proof of Theorem 2. Let n, d be given with5 n > 1, d > 2. Let k be the smallest integer
such that nk ≥ n(d − 1). Take a de Bruijn sequence σ of order k in alphabet [n]. Take
sequences σ1, . . . , σn ∈ [n]d−1 so that their concatenation σ1 . . . σn is the initial segment of
σ. Define the polynomial

f = x1α1 + · · · + xnαn , where αi =
d−1∏
j=1

xσi
j

.

Assume f has a homogeneous circuit of non-scalar size s. Then, by Lemma 11, α1, . . . , αn

can be simultaneously computed by a homogeneous circuit of size s′ = O(s). We now apply
Lemma 6 with ℓ = k. By construction, µk(α1, . . . , αn) = n(d − 1 − (k − 1)) = n(d − k). This
is because αJ

i are distinct monomials for different i’s and intervals of length k. The lemma
then gives s′ ≥ n(d − k)/(k − 1). If d ≤ n, we have k = 2 and so s′ ≥ n(d − 2). If d > n,
we have k ≤ c1 log2 d/ log2 n and d − k ≥ c2d, for some constants c1, c2 > 0. Hence indeed
s′ ≥ Ω(nd log n

log d). ◀

4.3 Lower bound for ordered symmetric polynomials
We now prove Theorem 3. Firstly, we note the following.
▶ Remark 13. OS2

n requires Ω(n) non-scalar product gates (even in the commutative setting).
This can be proved by a standard partial derivatives argument as in [10].

Hence we can focus on degree d > 2, in which case we give the following strengthening of
Theorem 3:

5 If d = 2, OS2
n satisfies the theorem; see Remark 13.

CCC 2023

13:8 New Lower Bounds Against Homogeneous Non-Commutative Circuits

▶ Theorem 14. If 1 < k < n, any homogeneous circuit computing OSk+1
n (x1, . . . , xn) requires

non-scalar size Ω(k(n − k)).

Proof. Assume that a homogeneous circuit computes f = OSk+1
n (x1, . . . , xn) using s non-

scalar product gates. Then by Lemma 11 there is a homogeneous circuit of non-scalar size
O(s) which simultaneously computes {∂x1f, . . . , ∂xn

f}. Let this circuit be C. Then, by
Lemma 6, µ2(Ĉ) ≤ O(s). Note that

∂xi
f = OSk

n−i(xi+1, . . . , xn) .

Let fi,j := (∂xi
f)[j,j+1]. We claim that the polynomials in F :=

(fi,j : i ∈ [n − k], j ∈ [k − 1]) are linearly independent. This implies that
µ2(Ĉ) ≥ (n − k)(k − 1) and gives a lower bound of Ω(k(n − k)) as required.

We now prove that F is indeed linearly independent. Consider the lexicographic ordering
on S := [n − k] × [k − 1] defined by:

(i0, j0) < (i, j) iff (j0 > j) or (j0 = j and i0 < i) .

Let (i0, j0) ∈ S be given. Denote δi0,j0(g) the coefficient of the monomial xi0+j0xn+j0−k+1
in g. Then for every (i, j) ∈ S,

δi0,j0(fi,j) =
{

1 if (i0, j0) = (i, j)
0 if (i0, j0) < (i, j) .

(1)

To see (1), assume that ∂xif contains xn+j0−k+1 in position j + 1 in some monomial
α with a non-zero coefficient. The degree of α is k, and the positions j + 1, . . . , k need
to be filled with variables from xn+j0−k+1, . . . , xn in an ascending order. There are k − j

such positions and k − j0 such variables. Therefore j ≥ j0. Furthermore, if j = j0, the
last k − j0 positions in α are uniquely determined as the variables xn+j0−k+1, . . . , xn in
that order. Similarly, if ∂xif contains xi0+j0 in position j0 in some α, the first j0 positions
must be filled with variables from xi+1, . . . , xi0+j0 . Hence i ≤ i0, and in case of equality,
the first j0 positions are uniquely determined. This means that δi0,j0(fi,j) = 0 whenever
(i0, j0) < (i, j). Furthermore, α :=

∏i0+j0
p=i0+1 xp

∏n
p=n+j0−k+1 xp is the unique monomial in

fi0,j0 with δi0,j0(α) = 1, concluding (1).
Finally, assume for the sake of contradiction that there exists a non-trivial linear combin-

ation∑
(i,j)∈S

γi,jfi,j = 0 .

Let (i0, j0) be the first pair in the lexicographic ordering with γi0,j0 ̸= 0. Then we have

0 =
∑

(i,j)∈S

γi,jδi0,j0(fi,j) = γi0,j0δi0,j0(fi0,j0) +
∑

(i,j)>(i0,j0)

γi,jδi0,j0(fi,j) .

Using (1), the last sum is zero and γi0,j0δi0,j0(fi0,j0) = γi0,j0 = 0, contrary to the assumption
γi0,j0 ̸= 0. ◀

5 Upper bounds for ordered symmetric polynomials

In Proposition 4, we promised upper bounds on the complexity of elementary symmetric
polynomials. The promise we now fulfil.

P. Chatterjee and P. Hrubeš 13:9

A quadratic upper bound in the homogeneous setting

We want to show that for d ∈ {0, . . . , n}, OSd
n can be simultaneously computed by a

homogeneous circuit of size O(n2).
Note that

OSd
n(x1, . . . , xn) = OSd−1

n−1(x1, . . . , xn−1) · xn + OSd
n−1(x1, . . . , xn−1).

Hence, once we have computed OSd
n−1, d ∈ {0, . . . , n−1}, we can compute OSd

n, d ∈ {0, . . . , n}
using O(n) extra gates. The overall complexity is quadratic.

An almost linear upper bound in the non-homogeneous setting

We want to show that OSd
n, d ∈ {0, . . . , n}, can be simultaneously computed by a non-

commutative circuit of size n · poly(log n).
The proof is the same as its commutative analog for elementary symmetric polynomials,

see [1] or the monograph by Burgisser et al. [2, Chapters 2.1-2.3].
The main observation is that polynomial multiplication can be done efficiently. Let

f =
n∑

i=0
yit

i, g =
n∑

i=0
zit

i,

where f, g ∈ F ⟨y0, . . . , yn, z0, . . . , zn⟩ [t]. In other words, we assume that t commutes with
otherwise non-commuting variables y0, . . . , yn,z0, . . . , zn. We view f, g as univariate poly-
nomials in the variable t with non-commutative coefficients. Then fg =

∑2n
i=0 cit

i with
ci =

∑i
j=0 yjzi−j . Commutatively, the polynomials c0, . . . , c2n can be simultaneously com-

puted by a small circuit. Indeed, if F contains sufficiently many roots of unity, one can obtain
an O(n log n) circuit using Fast Fourier Transform; in other fields there are modification
giving a circuit of size O(n log n log log n) see [12, 2]. When counting only non-scalar product
gates, this can be improved to O(n) if F is sufficiently large. We observe that the same holds
if the coefficients of f, g do not commute. This is because the polynomials ck are bilinear in
y0, . . . , yn,z0, . . . , zn. Commutativity does not make a difference in this case (an exercise).

Now consider the polynomial hn(t) =
∏n

i=1(xi + t) ∈ F ⟨x1, . . . , xn⟩ [t]. Then one can see
that OSd

n(x1, . . . , xn) is the coefficient of tn−d in h(t). The coefficients can be be recursively
computed by first computing

∏⌈n/2⌉
i=1 (xi + t),

∏n
i=⌈n/2⌉+1(xi + t), and then combining the

two by means of the fast polynomial multiplication above. This gives the claimed complexity.

6 Open problems

We end with two open problems.

▶ Open Problem 1. Find an explicit bivariate polynomial of degree d which requires non-
commutative homogeneous circuit of size superlinear in d

▶ Open Problem 2. Given a non-commutative monomial α, can addition gates help to
compute α?

Observe that the bounds obtained in this paper are barely linear in d. Problem 1 simply
asks for a quantitative improvement. A circuit with no addition gates is automatically
homogeneous – hence a negative answer to Problem 2 would allow to remove the homogeneity
assumption in Theorem 1.

CCC 2023

13:10 New Lower Bounds Against Homogeneous Non-Commutative Circuits

References
1 Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical computer

science, 22(3):317–330, 1983.
2 Peter Bürgisser, Michael Clausen, and M Amin Shokrollahi. Algebraic complexity theory, with

the collaboration of thomas lickteig. Grundlehren der Mathematischen Wissenschaften, 315,
1997.

3 Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin. Hardness
amplification for non-commutative arithmetic circuits. In Rocco A. Servedio, editor, 33rd
Computational Complexity Conference, CCC 2018, June 22-24, 2018, San Diego, CA, USA,
volume 102 of LIPIcs, pages 12:1–12:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018.

4 Prerona Chatterjee, Mrinal Kumar, Adrian She, and Ben Lee Volk. Quadratic lower bounds
for algebraic branching programs and formulas. Comput. Complex., 31(2):8, 2022.

5 N.G. de Bruijn. A combinatorial problem. Proceedings of the Section of Sciences of the
Koninklijke Nederlandse Akademie van Wetenschappen te Amsterdam, 49(7):758–764, 1946.

6 Pavel Hrubes, Avi Wigderson, and Amir Yehudayoff. Non-commutative circuits and the
sum-of-squares problem. J. Amer. Math. Soc., 24(3):871–898, 2011.

7 Laurent Hyafil. The power of commutativity. In 18th Annual Symposium on Foundations of
Computer Science, Providence, Rhode Island, USA, 31 October – 1 November 1977, pages
171–174. IEEE Computer Society, 1977.

8 K. Kalorkoti. A lower bound for the formula size of rational functions. SIAM J. Comput.,
14(3):678–687, 1985.

9 Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In
Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages
410–418. ACM, 1991.

10 Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Comput. Complex., 6(3):217–234, 1997.

11 Joe Sawada, Aaron Williams, and Dennis Wong. Generalizing the classic greedy and necklace
constructions of de bruijn sequences and universal cycles. Electron. J. Comb., 23(1):1, 2016.

12 Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer Zahlen. Computing,
7(3-4):281–292, 1971.

13 Volker Strassen. Die Berechnungskomplexität von elementarsymmetrischen Funktionen und
von Interpolationskoeffizienten. Numerische Mathematik, 20(3):238–251, 1973.

14 Sébastien Tavenas, Nutan Limaye, and Srikanth Srinivasan. Set-multilinear and non-
commutative formula lower bounds for iterated matrix multiplication. In Stefano Leonardi
and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory
of Computing, Rome, Italy, June 20–24, 2022, pages 416–425. ACM, 2022.

15 Leslie G. Valiant. Negation can be exponentially powerful. Theor. Comput. Sci., 12:303–314,
1980.

On Relaxed Locally Decodable Codes for Hamming
and Insertion-Deletion Errors
Alexander R. Block #

University of Maryland, College Park, MD, USA
Georgetown University, Washington, D.C., USA

Jeremiah Blocki #

Department of Computer Science,
Purdue University, West Lafayette, IN, USA

Kuan Cheng #

Center on Frontiers of Computing Studies,
Peking University, China

Elena Grigorescu #

Department of Computer Science,
Purdue University, West Lafayette, IN, USA

Xin Li #

Department of Computer Science,
Johns Hopkins University, Baltimore, MD, USA

Yu Zheng #

Meta Platforms, Inc., Bellevue, WA, USA

Minshen Zhu #

Department of Computer Science,
Purdue University, West Lafayette, IN, USA

Abstract
Locally Decodable Codes (LDCs) are error-correcting codes C : Σn → Σm, encoding messages in Σn

to codewords in Σm, with super-fast decoding algorithms. They are important mathematical objects
in many areas of theoretical computer science, yet the best constructions so far have codeword length
m that is super-polynomial in n, for codes with constant query complexity and constant alphabet
size.

In a very surprising result, Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan (SICOMP 2006)
show how to construct a relaxed version of LDCs (RLDCs) with constant query complexity and almost
linear codeword length over the binary alphabet, and used them to obtain significantly-improved
constructions of Probabilistically Checkable Proofs.

In this work, we study RLDCs in the standard Hamming-error setting, and introduce their
variants in the insertion and deletion (Insdel) error setting. Standard LDCs for Insdel errors were
first studied by Ostrovsky and Paskin-Cherniavsky (Information Theoretic Security, 2015), and are
further motivated by recent advances in DNA random access bio-technologies.

Our first result is an exponential lower bound on the length of Hamming RLDCs making 2
queries (even adaptively), over the binary alphabet. This answers a question explicitly raised by
Gur and Lachish (SICOMP 2021) and is the first exponential lower bound for RLDCs. Combined
with the results of Ben-Sasson et al., our result exhibits a “phase-transition”-type behavior on
the codeword length for some constant-query complexity. We achieve these lower bounds via a
transformation of RLDCs to standard Hamming LDCs, using a careful analysis of restrictions of
message bits that fix codeword bits.

We further define two variants of RLDCs in the Insdel-error setting, a weak and a strong version.
On the one hand, we construct weak Insdel RLDCs with almost linear codeword length and constant
query complexity, matching the parameters of the Hamming variants. On the other hand, we prove
exponential lower bounds for strong Insdel RLDCs. These results demonstrate that, while these
variants are equivalent in the Hamming setting, they are significantly different in the insdel setting.
Our results also prove a strict separation between Hamming RLDCs and Insdel RLDCs.

2012 ACM Subject Classification Theory of computation → Error-correcting codes; Mathematics of
computing → Coding theory; Theory of computation → Lower bounds and information complexity

Keywords and phrases Relaxed Locally Decodable Codes, Hamming Errors, Insdel Errors, Lower
Bounds

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.14

Related Version Full Version: https://arxiv.org/abs/2209.08688

© Alexander R. Block, Jeremiah Blocki, Kuan Cheng, Elena Grigorescu,
Xin Li, Yu Zheng, and Minshen Zhu;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 14; pp. 14:1–14:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alexander.block@georgetown.edu
https://orcid.org/0000-0002-2632-763X
mailto:jblocki@purdue.edu
https://orcid.org/0000-0002-5542-4674
mailto:ckkcdh@pku.edu.cn
https://orcid.org/0000-0002-8972-1749
mailto:elena-g@purdue.edu
https://orcid.org/0000-0001-9673-4313
mailto:lixints@cs.jhu.edu
https://orcid.org/0000-0002-9408-2451
mailto:hizzy1027@gmail.com
mailto:zhu628@purdue.edu
https://orcid.org/0000-0003-1927-6085
https://doi.org/10.4230/LIPIcs.CCC.2023.14
https://arxiv.org/abs/2209.08688
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 On RLDCs for Hamming and Insdel Errors

Funding Alexander R. Block: NSF Award CCF-1910659 and DARPA agreement No. HR00112020022
and No. HR00112020025. The views, opinions, findings, conclusions and/or recommendations
expressed in this material are those of the author and should not be interpreted as reflecting the
position or policy of the Department of Defense or the U.S. Government, and no official endorsement
should be inferred.
Jeremiah Blocki: NSF CAREER Award CNS-2047272 and NSF Award CCF-1910659.
Elena Grigorescu: NSF CCF-1910659, NSF CCF-1910411, and NSF CCF-2228814.
Xin Li: NSF CAREER Award CCF-1845349 and NSF Award CCF-2127575.
Yu Zheng: NSF CAREER Award CCF-1845349.
Minshen Zhu: NSF CCF-1910659, NSF CCF-1910411, and NSF CCF-2228814.

Acknowledgements We are indebted to some anonymous reviewers who helped us improve the
presentation of the paper.

1 Introduction

Locally Decodable Codes (LDCs) [55, 72] are error-correcting codes C : Σn → Σm that have
super-fast decoding algorithms that can recover individual symbols of a message x ∈ Σn, even
when worst-case errors are introduced in the codeword C(x). Similarly, Locally Correctable
Codes (LCCs) are error-correcting codes C : Σn → Σm for which there exist very fast decoding
algorithms that recover individual symbols of the codeword C(x) ∈ Σm, even when worst-case
errors are introduced. LDCs/LCCs were first discovered by Katz and Trevisan [55] and since
then have proven to be crucial tools in many areas of computer science, including private
information retrieval, probabilistically checkable proofs, self-correction, fault-tolerant circuits,
hardness amplification, and data structures (e.g., [2, 4, 17,18,20,28,62] and surveys [36,73]).

The parameters of interest of these codes are their rate, defined as the ratio between
the message length n and the codeword length m, their relative minimum distance, defined
as the minimum normalized Hamming distance between any pair of codewords, and their
locality or query complexity, defined as the number of queries a decoder makes to a received
word y ∈ Σm. Trade-offs between the achievable parameters of Hamming LDCs/LCCs have
been studied extensively over the last two decades [8–11,32–35,37,56,57,74,75,78,79] (see
also surveys by Yekhanin [79] and by Kopparty and Saraf [58]).

Specifically, for 2-query Hamming LDCs/LCCs it is known that m = 2Θ(n) [6, 11, 37,
56]. However, for q > 2 queries, the current gap between upper and lower bounds is
superpolynomial in n. In particular, the best constructions have super-polynomial codeword
length [32, 34, 78], while the most general lower bounds for q ≥ 3 are of the form m =
Ω((n

log n)1+1/(⌈ q
2 ⌉−1)) [55,56]. In particular, for q = 3, [55] showed an m = Ω(n3/2) bound,

which was improved in [56] to m = Ω(n2/ log2 n). This was further improved by [75, 76]
to m = Ω(n2/ log n) for general codes and m = Ω(n2) for linear codes. [11] used new
combinatorial techniques to obtain the same m = Ω(n2/ log n) bound. A very recent
paper [1] breaks the quadratic barrier and proves that m = Ω(n3/ poly log n). We note that
the exponential lower bound on the length of 3-query LDCs from [35] holds only for some
restricted parameter regimes, and do not apply to the natural ranges of the known upper
bounds.

Motivated by this large gap in the constant-query regime, as well as by applications in
constructions of Probabilistically Checkable Proofs (PCPs), Ben-Sasson, Goldreich, Harsha,
Sudan, and Vadhan [7] introduced a relaxed version of LDCs for Hamming errors. Specifically,
the decoder is allowed to output a “decoding failure” answer (marked as “⊥”), as long as it errs
with some small probability. More precisely, a (q, δ, α, ρ)-relaxed LDC is an error-correcting
code satisfying the following properties.

A. R. Block, J. Blocki, K. Cheng, E. Grigorescu, X. Li, Y. Zheng, and M. Zhu 14:3

▶ Definition 1. A (q, δ, α, ρ)-Relaxed Locally Decodable Code C : Σn → Σm is a code for
which there exists a decoder that makes at most q queries to the received word y, and satisfies
the following further properties:
1. (Perfect completeness) For every i ∈ [n], if y = C(x) for some message x then the decoder,

on input i, outputs xi with probability 1.1

2. (Relaxed decoding) For every i ∈ [n], if y is such that dist(y, C(x)) ≤ δ for some unique
C(x), then the decoder, on input i, outputs xi or ⊥ with probability ≥ α.

3. (Success rate) For every y such that dist(y, C(x)) ≤ δ for some unique C(x), there is a
set I of size ≥ ρn such that for every i ∈ I the decoder, on input i, correctly outputs xi

with probability ≥ α.
We will call an RLDC that satisfies all 3 conditions by the notion of strong RLDC, and one
that satisfies just the first 2 conditions by the notion of weak RLDC, in which case it is called
a (q, δ, α)-RLDC. Furthermore, if the q queries are made in advance, before seeing entries of
the codeword, then the decoder is said to be non-adaptive; otherwise, it is called adaptive.

The above definition is quite general, in the sense that dist(a, b) can refer to several
different distance metrics. In the most natural setting, we use dist(a, b) to mean the
“relative” Hamming distance between a, b ∈ Σm, namely dist(a, b) = |{i : ai ̸= bi}|/m. This
corresponds to the standard RLDCs for Hamming errors. As it will be clear from the
context, we also use dist(a, b) to mean the “relative” Edit distance between a, b ∈ Σ∗, namely
dist(a, b) = ED(a, b)/(|a| + |b|), where ED(a, b) is the minimum number of insertions and
deletions to transform string a into b. This corresponds to the new notion introduced and
studied here, which we call Insdel RLDCs. Throughout this paper, we only consider the case
where Σ = {0, 1}.

Definition 1 has also been extended recently to the notion of Relaxed Locally Correctable
Codes (RLCCs) by Gur, Ramnarayan, and Rothblum [40]. RLDCs and RLCCs have been
studied in a sequence of exciting works, where new upper and lower bounds have emerged,
and new applications to probabilistic proof systems have been discovered [3, 27,29,38–40].

Surprisingly, [7] constructs strong RLDCs with q = O(1) queries and m = n1+O(1/
√

q), and
more recently Asadi and Shinkar [3] improve the bounds to m = n1+O(1/q), in stark contrast
with the state-of-the-art constructions of standard LDCs. Gur and Lachish [39] show that
these bounds are in fact tight, as for every q ≥ 2, every weak q-query RLDC must have length
m = n1+1/O(q2) for non-adaptive decoders. We remark that the lower bounds of [39] hold
even when the decoder does not have perfect completeness and in particular valid message
bits are decoded with success probability 2/3. Dall’Agnon, Gur, and Lachish [30] further
extend these bounds to the setting where the decoder is adaptive, with m = n1+1/O(q2 log2 q).

1.1 Our results
As discussed before, since the introduction of RLDCs, unlike standard LDCs, they displayed
a behaviour amenable to nearly linear-size constructions, with almost matching upper and
lower bounds. However, recently [39] conjecture that for q = 2 queries, there is in fact an
exponential lower bound, matching the bounds for standard LDCs.

1 We remark that the initial definition in [7] only requires that xi is output with probability 2/3 when
there are no errors. However, to the best of our knowledge, all constructions of RLDCs (and LDCs)
from the literature do satisfy perfect completeness. Moreover, some lower bounds (e.g., [11]) only hold
with respect to perfect completeness.

CCC 2023

14:4 On RLDCs for Hamming and Insdel Errors

In this paper, our first contribution is a proof of their conjecture, namely to show that
Hamming 2-query RLDCs require exponential length. In fact, our exponential lower bound
for q = 2 applies even to weak RLDCs, which only satisfy the first two properties (perfect
completeness and relaxed decoding), and even for adaptive decoders.

▶ Theorem 2. Let C : {0, 1}n → {0, 1}m be a weak adaptive (2, δ, 1/2 + ε)-RLDC. Then
m = 2Ωδ,ε(n).

Our results are the first exponential bounds for RLDCs. Furthermore, combined with
the constructions with nearly linear codeword length for some constant number of queries
[3, 7], our results imply that RLDCs experience a “phase transition”-type phenomena, where
the codeword length drops from being exponential at q = 2 queries to being almost linear
at q = c queries for some constant c > 2. In particular, this also implies that there is a
query number q where the codeword length drops from being super-polynomial at q to being
polynomial at q + 1. Finding this exact threshold query complexity is an intriguing open
question.

As our second contribution, we introduce and study the notion of RLDCs correcting
insertions and deletions, namely Insdel RLDCs. The non-relaxed variants of Insdel LDCs
were first introduced in [68], and were further studied in [12,13,26]. Local decoding in the
Insdel setting is motivated in DNA storage [77], and in particular [5] show recent advances
in bio-technological aspects of random access to data in these precise settings.

In [13,68], the authors give Hamming to Insdel reductions which transform any Hamming
LDC into an Insdel LDC with rate reduced by a constant multiplicative factor, and locality
increased by a polylog(m) multiplicative factor. Unfortunately, these compilers do not imply
constant-query Insdel LDCs, whose existence is still an open question.

The results of [14] show strong lower bounds on the length of constant-query Insdel
LDCs. In particular, they show that linear Insdel LDCs with 2 queries do no exist, general
Insdel LDCs for q = 3 queries must have m = exp(Ω(

√
n)), and for q ≥ 4 they must have

m = exp(nΩ(1/q)).
In this work we continue the study of locally decodable codes in insertion and deletion

channels by proving the first upper and lower bounds regarding the relaxed variants of Insdel
LDCs. We first consider strong Insdel RLDCs, which satisfy all three properties of Definition
1 and where the notion of distance is now that of relative edit distance. We adapt and extend
the results of [14] to establish strong lower bounds on the codeword length of strong Insdel
RLDCs. In particular, we prove that m = exp(nΩ(1/q)) for any strong Insdel RLDC with
locality q.

▶ Theorem 3. Let C : {0, 1}n → {0, 1}m be a non-adaptive strong (q, δ, 1/2 + β, ρ)-Insdel
RLDC where β > 0. Then for every q ≥ 2 there is a constant c1 = c1(q, δ, β, ρ) such that

m = exp
(

c1 · nΩρ(β2/q)
)

.

Furthermore, the same bound holds even if C does not have perfect completeness. If C has
an adaptive decoder, the same bound holds with β replaced by β/2q−1. Formally, there exists
a constant c2 = c1(q, δ, β/2q−1, ρ) such that

m = exp
(

c2 · nΩρ(β2/(q22q))
)

.

A. R. Block, J. Blocki, K. Cheng, E. Grigorescu, X. Li, Y. Zheng, and M. Zhu 14:5

Our reduction shown in the proof of Theorem 2, together with the impossibility results
of standard linear or affine 2-query Insdel LDCs from [14] show a further impossibility result
for linear and for affine 2-query Insdel RLDCs. A linear code of length m is defined over a
finite field F and it is a linear subspace of the vector space Fm, while an affine code is an
affine subspace of Fm.

We then consider weak Insdel RLDCs that only satisfy the first two properties (perfect
completeness and relaxed decoding). In contrast with Theorem 3, we construct weak Insdel
RLDCs with constant locality q = O(1) and length m = n1+γ for some constant γ ∈ (0, 1).
To the best of our knowledge, this is the first positive result in the constant-query regime
and the Insdel setting. However, the existence of a constant-query standard Insdel LDC (or
even a constant-query strong Insdel RLDC) with any rate remains an open question. Finally,
it is easy to see that our exponential lower bound for weak Hamming RLDCs with locality
q = 2 still applies in the Insdel setting, since Insdel errors are more general than Hamming
error. Thus, in the Insdel setting we discover the same “phase transition”-type phenomena
as for Hamming RLDCs.

▶ Theorem 4. For any γ > 0 and ε ∈ (0, 1/2), there exist constants δ ∈ (0, 1/2) and
q = q(δ, ε, γ), and non-adaptive weak (q, δ, 1/2 + ε)-Insdel RLDCs C : {0, 1}n → {0, 1}m with
m = O(n1+γ).

We remark that in the Hamming setting, [7] shows that the first two properties of
Definition 1 imply the third property for codes with constant query complexity and which
can withstand a constant fraction of errors. Our results demonstrate that, in general, unlike
in the Hamming case, the first two properties do not imply the third property for Insdel
RLDCs from Definition 1. Indeed, while for strong Insdel RLDCs we have m = exp(nΩ(1/q))
for codes of locality q, there exists q = O(1) for which we have constructions of weak Insdel
RLDCs with m = n1+γ . This observation suggests that there are significant differences
between Hamming RLDCs and Insdel RLDCs.

We note that our construction of weak Insdel RLDCs can be modified to obtain strong
Insdel Relaxed Locally Correctable Codes (Insdel RLCCs). Informally, an Insdel RLCC
is a code for which codeword entries can be decoded to the correct value or ⊥ with high
probability, even in the presence of insdel errors (see the full version for a formal definition
of RLCC). We have the following corollary.

▶ Corollary 5. For any γ > 0 and ε ∈ (0, 1/2), there exist constants δ ∈ (0, 1/2) and
q = q(δ, ε, γ), and non-adaptive strong (q, δ, 1/2+ε, 1/2)-Insdel RLCCs C : {0, 1}n → {0, 1}m

with m = O(n1+γ).

1.2 Overview of techniques
1.2.1 Exponential Lower Bound for Weak Hamming RLDCs with q = 2
To simplify the presentation, we assume a non-adaptive decoder in this overview. While the
exact same arguments do not directly apply to adaptive decoders2, with a bit more care they
can be adapted to work in those settings.

2 For standard LDCs Katz and Trevisan [55] observed that an adaptive decoder could be converted into a
non-adaptive decoder by randomly guessing the output yj of the first query j to learn the second query
k. Now we non-adaptively query the received codeword for both yj and yk. If our guess for yj was
correct then we continue simulating the adaptive decoder. Otherwise, we simply guess the output xi.
If the adaptive decoder succeeds with probability at least p ≥ 1/2 + ϵ then the non-adaptive decoder
succeeds with probability p′ ≥ 1/4 + p/2 ≥ 1/2 + ϵ/2. Unfortunately, this reduction does not preserve
perfect completeness as required by our proofs for relaxed 2-query Hamming RLDCs i.e., if p = 1 then
p′ = 3/4.

CCC 2023

14:6 On RLDCs for Hamming and Insdel Errors

At a high level we prove our lower bound by transforming any non-adaptive 2-query weak
Hamming RLDC for messages of length n and δ fraction of errors into a standard 2-query
Hamming LDC for messages of length n′ = Ω(n), with slightly reduced error tolerance of δ/2.
Kerenidis and de Wolf [56] proved that any 2-query Hamming LDC for messages of length n

must have codeword length m = exp(Ω(n)). Combining this result with our transformation,
it immediately follows that any 2-query weak Hamming RLDC must also have codeword
length m = exp(Ω(n)). While our transformation does not need the third property (success
rate) of a strong RLDC, we crucially rely on the property of perfect completeness, and that
the decoder only makes q = 2 queries.

Let C : {0, 1}n → {0, 1}m be a weak (2, δ, 1/2 + ε)-RLDC. For simplicity (and without
loss of generality), let us assume the decoder Dec works as follows. For message x and
input i ∈ [n], the decoder non-adaptively makes 2 random queries j, k ∈ [m], and outputs
f i

j,k(yj , yk) ∈ {0, 1, ⊥}, where yj , yk are answers to the queries from a received word y,
and f i

j,k : {0, 1}2 → {0, 1, ⊥} is a deterministic function. When there is no error, we have
yj = C(x)j and yk = C(x)k.

We present the main ideas below, and refer the readers to Section 4 for full details.

1.2.1.1 Fixable codeword bits

The starting point of our proof is to take a closer look at those functions f i
j,k with ⊥ entries

in their truth tables. It turns out that when f i
j,k has at least one ⊥ entry in the truth table,

C(x)j can be fixed to a constant by setting either xi = 0 or xi = 1, and same for C(x)k. To
see this, note that the property of perfect completeness forces f i

j,k to be 0 or 1 whenever
xi = 0 or xi = 1 and there is no error. Thus if neither xi = 0 nor xi = 1 fixes C(x)j , then
there must be two entries of 0 and two entries of 1 in the truth table of f i

j,k, which leaves no
space for ⊥ (see Claim 13). Thus, when there is at least one ⊥ entry in the truth table of
f i

j,k, we say that C(x)j and C(x)k are fixable by xi.
This motivates the definition of the set Si, which contains all indices j ∈ [m] such that

the codeword bits C(x)j are fixable by xi; and the definition of Tj , the set of all indices
i ∈ [n] such that C(x)j is fixable by the message bits xi. It is also natural to pay special
attention to queries j, k that are not both contained in Si, since in this case the function f i

j,k

never outputs ⊥.

1.2.1.2 The query structure

In general, a query set {j, k} falls into one of the following three cases: (1) both j, k lie
inside Si; (2) both j, k lie outside of Si; (3) one of them lies inside Si and the other lies
outside of Si. It turns out that case (3) essentially never occurs for a decoder with perfect
completeness. The reason is that when, say, j ∈ Si and k /∈ Si, one can effectively pin down
every entry in the truth table of f i

j,k by using the perfect completeness property, and observe
that the output of f i

j,k does not depend on yk at all (see Claim 14). Thus in this case we
can equivalently view the decoder as only querying yj where j ∈ Si, which leads us back to
case (1). In what follows, we denote by E1 the event that case (1) occurs, and by E2 the
event that case (2) occurs.

1.2.1.3 The transformation by polarizing conditional success probabilities

We now give a high level description of our transformation from a weak RLDC to a standard
LDC. Let y be a string which contains at most δm/2 errors from the codeword C(x). We
have established that the success probability of the weak RLDC decoder on y is an average
of two conditional probabilities

A. R. Block, J. Blocki, K. Cheng, E. Grigorescu, X. Li, Y. Zheng, and M. Zhu 14:7

Pr[Dec(i, y) ∈ {xi, ⊥}] = p1 · Pr[Dec(i, y) ∈ {xi, ⊥} | E1] + p2 · Pr[Dec(i, y) ∈ {xi, ⊥} | E2],

where p1 = Pr[E1] and p2 = Pr[E2]. Let us assume for the moment that Si has a small size,
e.g., |Si| ≤ δm/2. The idea in this step is to introduce additional errors to the Si-portion
of y, in a way that drops the conditional success probability Pr[Dec(i, y) ∈ {xi, ⊥} | E1] to
0 (see Lemma 15). In particular, we modify the bits in Si to make it consistent with the
encoding of any message x̂ with x̂i = 1 − xi. Perfect completeness thus forces the decoder to
output 1 − xi conditioned on E1. Note that we have introduced at most δm/2 + |Si| ≤ δm

errors in total, meaning that the decoder should still have an overall success probability of
1/2 + ε. Furthermore, now the conditional probability Pr[Dec(i, y) ∈ {xi, ⊥} | E2] takes all
credits for the overall success probability. Combined with the observation that Dec never
outputs ⊥ given E2, this suggests the following natural way to decode xi in the sense of a
standard LDC: sample queries j, k according to the conditional probability given E2 (i.e.,
both j, k lie outside Si) and output f i

j,k(yj , yk). This gives a decoding algorithm for standard
LDC, with success probability 1/2 + ε and error tolerance δm/2 (see Lemma 16), modulo
the assumption that |Si| ≤ δm/2.

1.2.1.4 Upper bounding |Si|

The final piece in our transformation from weak RLDC to standard LDC is to address the
assumption that |Si| ≤ δm/2. This turns out to be not true in general, but it would still
suffice to prove that |Si| ≤ δm/2 for n′ = Ω(n) of the message bits i. If we could show
that |Tj | is small for most j ∈ [m], then a double counting argument shows that |Si| is
small for most i ∈ [n]. Unfortunately, if we had C(x)j =

∧n
i=1 xi for m/2 of the codeword

bits j then we also have |Tj | = n for m/2 codeword bits and |Si| ≥ m/2 ≥ δm/2 for all
message bits i ∈ [n]. We address this challenge by first arguing that any weak RLDC for
n-bit messages can be transformed into another weak RLDC for Ω(n)-bit messages for which
we have |Tj | ≤ 3 ln(8/δ) for all but δm/4 codeword bits. The transformation works by fixing
some of the message bits and then eliminating codeword bits that are fixed to constants.
Intuitively, if some C(x)j is fixable by many message bits, it will have very low entropy
(e.g., C(x)j is the AND of many message bits) and hence contain very little information
and can (likely) be eliminated. We make this intuition rigorous through the idea of random
restriction: for each i ∈ [n], we fix xi = 0, xi = 1, or leave xi free, each with probability 1/3.
The probability that C(x)j is not fixed to a constant is at most (1 − 1/3)|Tj | ≤ δ/8, provided
that |Tj | ≥ 3 ln(8/δ). After eliminating codeword bits that are fixed to constants, we show
that with probability at least 1/2 at most δm/4 codeword bits C(x)j with |Tj | ≥ 3 ln(8/δ)
survived3. Note that with high probability the random restriction leaves at least n/6 message
bits free. Thus, there must exist a restriction which leaves at least n/6 message bits free
ensuring that |Tj | ≥ 3 ln(8/δ) for at most δm/4 of the remaining codeword bits C(x)j . We
can now apply the double counting argument to conclude that |Si| ≤ δm/2 for Ω(n) message
bits, completing the transformation.

3 We are oversimplifying a bit for ease of presentation. In particular, the random restriction process may
cause a codeword bit C(x)j to be fixable by a new message bit xi that did not belong to Tj before the
restriction – We thank an anonymous reviewer for pointing this out to us. Nevertheless, for our purpose
it is sufficient to eliminate codeword bits that initially have a large |Tj |. See the formal proof for more
details.

CCC 2023

14:8 On RLDCs for Hamming and Insdel Errors

1.2.1.5 Adaptive decoders

For possibly adaptive decoders, we are going to follow the same proof strategy. The new
idea and main difference is that we focus on the first query made by the decoder, which is
always non-adaptive. We manage to show that the first query determines a similar query
structure, which is the key to the transformation to a standard LDC. More details can be
found in Section 4.2.

1.2.2 Lower Bounds for Strong Insdel RLDCs

We recall that a strong Insdel RLDC C is a weak Insdel RLDC which satisfies an additional
property: for every x ∈ {0, 1}n and y ∈ {0, 1}m′

such that ED(C(x), y) ≤ δ · 2m, there exists
a set Iy ⊆ [n] of size |Iy| ≥ ρn such that for every i ∈ Iy, we have Pr[Dec(i, y) = xi] ≥ α. In
other words, for ρ-fraction of the message bits, the decoder can correctly recover them with
high probability, just like in a standard Insdel LDC. Towards obtaining a lower bound on the
codeword length m, a natural idea would be to view C as a standard Insdel LDC just for that
ρ-fraction of message bits, and then apply the exponential lower bound for standard Insdel
LDCs from [14]. This idea would succeed if the message bits correctly decoded with high
probability were the same for all potential corrupted codewords y. However, it could be the
case that i ∈ Iy for some strings y, whereas i /∈ Iy′ for other strings y′. Indeed, allowing the
set Iy to depend on y is the main reason why very short constant-query Hamming RLDCs
exist.

We further develop this observation to obtain our lower bound. We use an averaging
argument to show the existence of a corruption-independent set I of message bits with
|I| = Ω(n), which the decoder can recover with high probability. To this end, we need to open
the “black box” of the lower bound result of Blocki et al. [14]. The proof in [14] starts by
constructing an error distribution E with several nice properties, and deduce the exponential
lower bound based solely on the fact that the Insdel LDC should, on average (i.e., for a
uniformly random message x), correctly recover each bit with high probability under E . One
of the nice properties of E is that it is oblivious to the decoding algorithm Dec. Therefore,
it makes sense to consider the average success rate against E , i.e., Pr[Dec(i, y) = xi], where
i ∈ [n] is a uniformly random index, x ∈ {0, 1}n is a uniformly random string, and y is a
random string obtained by applying E to C(x). By replacing ⊥ with a uniformly random bit
in the output of Dec, the average success rate is at least ρα + (1 − ρ)α/2 = (1 + ρ)α/2, since
there is a ρ-fraction of indices for which Dec can correctly recover with probability α, and
for the remaining (1 − ρ)-fraction of indices the random guess provides an additional success
rate of at least α/2. Assuming α is sufficiently close to 1, which we can achieve by repeating
the queries independently for a constant number of times and doing something similar to a
majority vote, the average success rate against E is strictly above 1/2. Therefore, there exist
a constant fraction of indices for which the success rate against E is still strictly above 1/2,
and the number of queries remains a constant. This is sufficient for the purpose of applying
the argument in [14] to get an exponential lower bound.

1.2.3 Constant-Query Weak Insdel RLDC

Our construction of a constant query weak Insdel RLDC uses code concatenation and two
building blocks: a weak Hamming RLDC (as the outer code) with constant query complexity,
constant error-tolerance, and codeword length k = O(n1+γ) for any γ > 0 [7], and the

A. R. Block, J. Blocki, K. Cheng, E. Grigorescu, X. Li, Y. Zheng, and M. Zhu 14:9

Schulman-Zuckerman [69] (from now on denoted by SZ) Insdel codes4 (as the inner code).
We let Cout : {0, 1}n → {0, 1}k and Cin : [k] × {0, 1} → {0, 1}t denote the outer and inner
codes, respectively. Our final concatenation code C will have codewords in {0, 1}m for
some m (to be determined shortly), will have constant query complexity, and will tolerate a
constant fraction of Insdel errors.

1.2.3.1 Code construction

Given a message x ∈ {0, 1}n, we first apply the outer code to obtain a Hamming codeword y =
y1 ◦ · · · ◦ yk = Cout(x) of length k, where each yi ∈ {0, 1} denotes a single bit of the codeword.
Then for each index i, we compute ci = Cin(i, yi) ∈ {0, 1}t as the encoding of the message
(i, yi) via the inner code. Finally, we output the codeword C(x) := c1 ◦ 0t ◦ c2 ◦ · · · ◦ 0t ◦ ck,
where 0t denotes a string of t zeros (which we later refer to as a buffer). Note that the
inner code is a constant-rate code, i.e., t = O(log(k)), and has constant error-tolerance
δin ∈ (0, 1/2). Thus, the final codeword has length m := (2t − 1)k = O(k log(k)) bits. For
any constant γ > 0 we have a constant query outer code with length k = O(n1+γ). Plugging
this into our construction we have codeword length m = O(n1+γ log n) which is O(n1+γ′) for
any constant γ′ > γ.

1.2.3.2 Decoding algorithm: intuition and challenges

Intuitively, our relaxed decoder will simulate the outer decoder. When the outer decoder
requests yi, the natural approach would be to find and decode the block ci to obtain (i, yi).
There are two challenges in this approach. First, if there were insertions or deletions, then we
do not know where the block ci is located; moreover, searching for this block can potentially
blow-up the query complexity by a multiplicative polylog(m) factor [13,68]. Second, even
if we knew where ci were located, because t = O(log k) and we want the decoder to have
constant locality, we cannot afford to recover the entire block ci.

We address the first challenge by attempting to locate block ci under the optimistic
assumption that there are no corruptions. If we detect any corruptions, then we may
immediately abort and output ⊥ since our goal is only to obtain a weak Insdel RLDC.
Assuming that there were no corruptions, we know exactly where the block ci is located, and
we know that ci can only take on two possible values: it is either the inner encoding of (i, 0)
or the inner encoding of (i, 1). If we find anything inconsistent with the inner encoding of
either (i, 0) or (i, 1), then we can immediately output ⊥.

Checking consistency with the inner encodings of (i, 0) and (i, 1) is exactly how we
address the second challenge. In place of reading the entire block ci, we instead only need
to determine whether (1) ci is (close to) the inner encoding of (i, 0), (2) ci is (close to) the
inner encoding of (i, 1), or (3) ci is not close to either string. In either case (1) or case
(2), we simply output the appropriate bit, and in case (3), we simply output ⊥. Thus, our
Insdel RLDC decoder simulates the outer decoder. Whenever the outer decoder request
yi, we determine the expected location for ci, randomly sub-sample a constant number of
indices from this block and compare with the inner encodings of (i, 0) and (i, 1) at the
corresponding indices. To ensure perfect completeness, we always ensure that at least one
of the sub-sampled indices is for a bit where the inner encodings of (i, 0) and (i, 1) differ.
If there are no corruptions, then whenever the simulated outer decoder requests yi we will
always respond with the correct bit. Perfect completeness of our Insdel RLDC now follows

4 In particular, these are classical/non-local codes.

CCC 2023

14:10 On RLDCs for Hamming and Insdel Errors

immediately from the perfect completeness of the outer decoder. Choosing a constant number
of indices to sub-sample ensures that the locality of our weak Insdel RLDC decoder is a
constant multiplicative factor larger than the outer decoder, which gives our Insdel RLDC
decoder constant locality overall.

1.2.3.3 Analysis of the decoding algorithm

The main technical challenge is proving that our Insdel RLDC still satisfies the second
condition of Definition 1, when the received word is not a correct encoding of the message
x. Recall that ci = Cin(i, yi), and suppose c̃i ̸= ci is the block of the received word that we
are going to check for consistency with the inner encodings of (i, 0) and (i, 1). Then, the
analysis of our decoder falls into three cases. In the first case, if c̃i is not too corrupted (i.e.,
ED(c̃i, ci) is not too large), then we can argue that the decoder outputs the correct bit yi or
⊥ with good probability. In the second case, if c̃i has high edit distance from both Cin(i, 0)
and Cin(i, 1), then we can argue that the decoder outputs ⊥ with good probability. The
third case is the most difficult case, which we describe as “dangerous”. We say that the block
c̃i is dangerous if the edit distance between c̃i and Cin(i, 1 − yi) is not too large; i.e., c̃i is
close to the encoding of the opposite bit 1 − yi.

The key insight to our decoding algorithm is that as long as the number of dangerous
blocks c̃i is upper bounded, then we can argue the overall probability that our decoder
outputs yi or ⊥ satisfies the relaxed decoding condition of Definition 1. Intuitively, we
can we think of our weak Insdel RLDC decoder as running the outer decoder on a string
ỹ = ỹ1 ◦ . . . ◦ ỹk, where each ỹi ∈ {0, 1, ⊥} and the outer decoder has been modified to output
⊥ whenever it queries for yi and receives ⊥. Observe that if δout is the error-tolerance of the
outer decoder, then as long as the set

∣∣{i : ỹi ̸= ⊥ ∧ ỹi ̸= yi}
∣∣ ≤ δoutk, the modified outer

decoder, on input j ∈ [n], will output either the correct value xj or ⊥ with high probability
(for appropriate choices of parameters). Intuitively, if a block is “dangerous” then we can
view ỹi = 1 − yi, and otherwise we have ỹi ∈ {yi, ⊥} with reasonably high probability. Thus,
as long as the number of “dangerous” block is at most δoutk/2, then our relaxed Insdel
decoder will satisfy the second property of Definition 1 and output either xj or ⊥ with high
probability for any j ∈ [n].

1.2.3.4 Upper bounding the number of dangerous blocks

To upper bound the number of “dangerous” blocks we utilize a matching argument based on
the longest common sub-sequence (LCS) between the original codeword and the received
(corrupted) word. Our matching argument utilizes a key feature of the SZ Insdel code. In
particular, the Hamming weight (i.e., number of non-zero symbols) of every substring c′

of an SZ codeword is at least
⌊
|c′|/2

⌋
. This ensures that the buffers 0t cannot be matched

with large portions of any SZ codeword. We additionally leverage a key lemma (full version,
Lemma 9) which states that the edit distance between the codeword Cin(i, 1 − yi) and any
substring of length less than 2t of the uncorrupted codeword C(x) has relative edit distance
at least δin/2. We use these two properties, along with key facts about the LCS matching,
to yield an upper bound on the number of dangerous blocks, completing the analysis of our
decoder.

1.2.3.5 Extension to relaxed locally correctable codes for insdel errors

Our construction also yields a strong Insdel Relaxed Locally Correctable Code (RLCC) with
constant locality if the outer code is a weak Hamming RLCC. First, observe that bits of
the codeword corresponding to the 0t buffers are very easy to predict without even making

A. R. Block, J. Blocki, K. Cheng, E. Grigorescu, X. Li, Y. Zheng, and M. Zhu 14:11

any queries to the corrupted codeword. Thus, if we are asked to recover the j’th bit of
the codeword and j corresponds to a buffer 0t, we can simply return 0 without making
any queries to the received word. Otherwise, if we are asked to recover the j’th bit of the
codeword and j corresponds to block ci, we can simulate the Hamming RLCC decoder (as
above) on input i to obtain yi (or ⊥). Assuming that yi ∈ {0, 1}, we can compute the
corresponding SZ encoding of (i, yi) and obtain the original value of the block ci and then
recover the j’th bit of the original codeword. The analysis of the RLCC decoder is analogous
to the RLDC decoder. See Section 6 in the full version for details on both our weak Insdel
RLDC and strong Insdel RLCC constructions.
▶ Remark 6. The “adaptiveness” of our constructed Insdel RLDC/RLCC decoder is identical
to that of the outer Hamming RLDC/RLCC decoder. In particular, the weak Hamming
RLDC of Ben-Sasson et al. [7] has a non-adaptive decoder, making our final decoder non-
adaptive as well. Similarly, we use a weak Hamming RLCC due to Asadi and Shinkar [3] for
our Insdel LCC, which is also a non-adaptive decoder.

2 Open Questions

Exact “phase-transition” thresholds

Our results show that both in the Hamming and Insdel setting there is a constant q such
that every q-query RLDC requires super-polynomial codeword length, while there exists
a (q + 1)-query RLDC of polynomial codeword length. Finding the precise q remains an
intriguing open question. Further, a more refined understanding of codeword length for
RLDCs making 3, 4, 5 queries is another important question, which has lead to much progress
in the understanding of the LDC variants.

Constant-query strong Insdel RLDCs/RLCCs

While we do construct the first weak RLDCs in the Insdel setting, the drawback of our
constructions is the fact that our codes do not satisfy the third property of Definition 1.
Building strong Insdel RLDCs remains an open question. We note that our lower bounds
imply that for a constant number of queries, such codes (if they exist) must have exponential
codeword length.

Applications of local Insdel codes

As previously mentioned, Hamming LDCs/RLDCs have so far found many applications
such as private information retrieval, probabilistically checkable proofs, self-correction, fault-
tolerant circuits, hardness amplification, and data structures. Are there analogous or new
applications of the Insdel variants in the broader computing area?

Lower bounds for Hamming RLDCs/LDCs

Our 2-query lower bound for Hamming RLDCs crucially uses the perfect completeness
property of the decoder. An immediate question is whether the bound still holds if we
allow the decoder to have imperfect completeness. We also note that the argument in our
exponential lower bounds for 2-query Hamming RLDCs fail to hold for alphabets other than
the binary alphabet, and we leave the extension to larger alphabet sizes as an open problem.
Another related question is to understand if one can leverage perfect completeness and/or
random restrictions to obtain improved lower bounds for q ≥ 3-query standard Hamming
LDCs. Perfect completeness has been explicitly used before to show exponential lower bounds
for 2-query LCCs [11].

CCC 2023

14:12 On RLDCs for Hamming and Insdel Errors

2.1 Further discussion about related work
Insdel codes

The study of error correcting codes for insertions and deletions was initiated by Levenstein [59].
While progress has been slow because constructing codes for insdel errors is strictly more
challenging than for Hamming errors, strong interest in these codes lately has led to many
exciting results [19, 21–25, 41–43, 45–49, 51, 61, 63, 69] (See also the excellent surveys of
[50,64,66,71]).

Insdel LDCs

[67] gave private-key constructions of LDCs with m = Θ(n) and locality polylog(n). [16]
extended the construction from [67] to settings where the sender/decoder do not share
randomness, but the adversarial channel is resource bounded. [12] applied the [13] compiler
to the private key Hamming LDC of [67] (resp. resource bounded LDCs of [16]) to obtain
private key Insdel LDCs (resp. resource bounded Insdel LDCs) with constant rate and
polylog(n) locality.

Insdel LDCs have also been recently studied in computationally bounded channels, in-
troduced in [60]. Such channels can perform a bounded number of adversarial errors, but
do not have unlimited computational power as the general Hamming channels. Instead,
such channels operate with bounded resources. As expected, in many such limited-resource
settings one can construct codes with strictly better parameters than what can be done
generally [31, 44, 65, 70]. LDCs in these channels under Hamming error were studied in
[15, 16, 52–54, 67]. [12] applied the [13] compiler to the Hamming LDC of [16] to obtain a
constant rate Insdel LDCs with polylog(n) locality for resource bounded channels. The work
of [26] proposes the notion of locally decodable codes with randomized encoding, in both
the Hamming and edit distance regimes, and in the setting where the channel is oblivious
to the encoded message, or the encoder and decoder share randomness. For edit error they
obtain codes with m = O(n) or m = n log n and polylog(n) query complexity. However, even
in settings with shared randomness or where the channel is oblivious or resource bounded,
there are no known constructions of Insdel LDCs with constant locality.

Locality in the study of insdel codes was also considered in [49], which constructs explicit
synchronization strings that can be locally decoded.

2.2 Organization
The remainder of the paper is organized as follows. We give general preliminaries and recall
some prior results used in our results in Section 3. Due to space limit, we only present the
proof of Theorem 2 in Section 4. The readers are pointed to the full version for proofs of
Theorem 3, Theorem 4 and Corollary 5.

3 Preliminaries

For natural number n ∈ N, we let [n] := {1, 2, . . . , n}. We let “◦” denote the standard string
concatenation operation. For a string x ∈ {0, 1}∗ of finite length, we let |x| denote the
length of x. For i ∈ [|x|], we let x[i] denote the i-th bit of x. Furthermore, for I ⊆ [|x|], we
let x[I] denote the subsequence x[i1] ◦ x[i2] ◦ · · · ◦ x[iℓ], where ij ∈ I and ℓ = |I|. For two
strings x, y ∈ {0, 1}n of length n, we let HAM(x, y) denote the Hamming Distance between
x and y; i.e., HAM(x, y) :=

∣∣{i ∈ [n] : xi ̸= yi}
∣∣. Similarly, we let ED(x, y) denote the Edit

A. R. Block, J. Blocki, K. Cheng, E. Grigorescu, X. Li, Y. Zheng, and M. Zhu 14:13

Distance between x and y; i.e., ED(x, y) is the minimum number of insertions and deletions
needed to transform string x into string y. We often discuss the relative Hamming Distance
(resp., relative Edit Distance) between x and y, which is simply the Hamming Distance
normalized by n, i.e., HAM(x, y)/n (resp., the Edit Distance normalized by |x| + |y|, i.e.,
ED(x, y)/(|x| + |y|)). Finally, the Hamming weight of a string x is the number of non-zero
entries of x, which we denote as wt(x) := |{i ∈ [|x|] : xi ̸= 0}|.

For completeness, we recall the definition of a classical locally decodable code, or just a
locally decodable code.
▶ Definition 7 (Locally Decodable Codes). A (q, δ, α)-Locally Decodable Code C : Σn → Σm is
a code for which there exists a randomized decoder that makes at most q queries to the received
word y and satisfies the following property: for every i ∈ [n], if y is such that dist(y, C(x)) ≤ δ

for some unique C(x), then the decoder, on input i, outputs xi with probability ≥ α. Here, the
randomness is taken over the random coins of the decoder, and dist is a normalized metric.

If dist is the relative Hamming distance, then we say that the code is a Hamming LDC;
similarly, if dist is the relative edit distance, then we say that the code is an Insdel LDC.

We recall the general 2-query Hamming LDC lower bound [6, 56].
▶ Theorem 8 ([6,56]). For constants δ, ε ∈ (0, 1/2) there exists a constant c = c(δ, ε) ∈ (0, 1)
such that if C : {0, 1}n → {0, 1}m is a (2, δ, 1/2 + ε) Hamming LDC then m ≥ 2cn−1.

In our weak Insdel RLDC construction, we utilize a weak Hamming RLDC due to [7].
▶ Lemma 9 ([7]). For constants ε, δ ∈ (0, 1/2) and γ ∈ (0, 1), there exists a constant
q = Oδ,ε(1/γ2) and a weak (q, δ, 1/2 + ε)-Hamming RLDC C : {0, 1}n → {0, 1}m with
m = O(n1+γ). Moreover, the decoder of this code is non-adaptive.

Our construction additionally utilizes the well-known Schulman-Zuckerman Insdel
codes [69].
▶ Lemma 10 (Schulman-Zuckerman (SZ) Code [69]). There exists constants β ≥ 1 and δ > 0
such that for large enough values of t > 0, there exists a code C : {0, 1}t → {0, 1}βt capable of
decoding from δ-fraction of Insdel errors and the additional property that for every x ∈ {0, 1}t

and y = C(x), every substring y′ of y with length at least 2 has Hamming weight ≥
⌊
|y′|/2

⌋
.

Our strong Insdel RLCC construction relies on a weak Hamming RLCC. We utilize the
following weak Hamming RLCC implicit in [3].
▶ Lemma 11 (Implied by Theorem 1 of [3]). For every sufficiently large q ∈ N and ε ∈ (0, 1/2),
there is a constant δ such that there exists a weak (q, δ, 1/2 + ε)-relaxed Hamming Locally
Correctable Code C : {0, 1}n → {0, 1}m with m = n1+O(1/q). Moreover, the decoder of this
code is non-adaptive.

4 Lower Bounds for 2-Query Hamming RLDCs

We prove Theorem 2 in this section. As a reminder, a weak (q, δ, α)-RLDC satisfies the first
two conditions in Definition 1, and non-adaptive means the decoder makes queries according
to a distribution which is independent of the received string y. Here we are interested in the
case q = 2 and α = 1/2 + ε.

To avoid overloading first-time readers with heavy notations, we first present a proof of the
lower bound for non-adaptive decoders, i.e., decoders with a query distribution independent
of the received string. This proof will be easier to follow, while the crucial ideas behind it
remain the same. The proof for the most general case is presented in the last subsection,
with an emphasis on the nuances in dealing with adaptivity.

CCC 2023

14:14 On RLDCs for Hamming and Insdel Errors

4.1 A Warm-up: the lower bound for non-adaptive decoders
In the following, we fix a relaxed decoder Dec for C. In this subsection, we assume that Dec
is non-adaptive, and that it has the first two properties specified in Definition 1. To avoid
technical details, we also assume Dec always makes exactly 2 queries (otherwise add dummy
queries to make the query count exactly 2).

Given an index i ∈ [n] and queries j, k made by Dec(i, ·), in the most general setting
the output could be a random variable which depends on i and yj , yk, where yj , yk are the
answers to queries j, k, respectively. An equivalent view is that the decoder picks a random
function f according to some distribution and outputs f(yj , yk). Let DFi

j,k be the set of
all decoding functions f : {0, 1}2 → {0, 1, ⊥} which are selected by Dec(i, ·) with non-zero
probability when querying j, k. We partition the queries into the following two sets

F 0
i :=

{
{j, k} ⊆ [m] : ∀f ∈ DFi

j,k the truth table of f contains no “⊥”
}

,

F ≥1
i :=

{
{j, k} ⊆ [m] : ∃f ∈ DFi

j,k the truth table of f contains at least 1 “⊥”
}

.

Notations

Given a string w ∈ {0, 1}m and a subset S ⊆ [m], we denote w[S] := (wi)i∈S ∈ {0, 1}|S|.
Given a Boolean function f : {0, 1}n → {0, 1}, and σ ∈ {0, 1}, we write f ↾xi=σ to denote
the restriction of f to the domain

{
x ∈ {0, 1}n : xi = σ

}
. For a sequence of restrictions, we

simply write f ↾(xj1 ,...,xjk
)=(σ1,...,σk), or fJ|σ where J = [n]\{j1, . . . , jk} and σ = (σ1, . . . , σk).

Note that fJ|σ is a Boolean function over the domain {0, 1}J .
We will identify the encoding function of C as a collection of m Boolean functions

C :=
{

C1, . . . , Cm : ∀j ∈ [m], Cj : {0, 1}n → {0, 1}
}

.

Namely, C(x) = (C1(x), C2(x), . . . , Cm(x)) for all x ∈ {0, 1}n.
For j ∈ [m], we say Cj is fixable by xi if at least one of the restrictions Cj ↾xi=0 and

Cj ↾xi=1 is a constant function. Denote

Si :=
{

j ∈ [m] : Cj is fixable by xi

}
, Tj :=

{
i ∈ [n] : Cj is fixable by xi

}
,

and wj := |Tj |. Let

W :=
{

j ∈ [m] : wj ≥ 3 ln(8/δ)
}

.

For i ∈ [n] define the sets Si,+ := Si ∩ W , and Si,− := Si ∩ W .
Let J ⊆ [n] and ρ ∈ {0, 1}J . A code C : {0, 1}n → {0, 1}m restricted to xJ = ρ, denoted

by CJ|ρ, is specified by the following collection of Boolean functions

CJ|ρ :=
{

Cj ↾x
J

=ρ : j ∈ [m], Cj ↾x
J

=ρ is not a constant function
}

.

Namely, we restrict each function Cj in C to xJ = ρ, and eliminate those that have become
constant functions. CJ|ρ encodes n′-bit messages into m′-bit codewords, where n′ = |J | and
m′ =

∣∣∣CJ|ρ

∣∣∣ ≤ m.
We note that the local decoder Dec for C can also be used as a local decoder for CJ|ρ,

while preserving all the parameters. This is because, Dec never needs to really read a
codeword bit which has become a constant function under the restriction J |ρ.

The lemma below will be useful later in the proof. It shows that a constant fraction of
the message bits can be fixed so that most codeword bits Cj with large wj become constants.

A. R. Block, J. Blocki, K. Cheng, E. Grigorescu, X. Li, Y. Zheng, and M. Zhu 14:15

▶ Lemma 12. There exist a set J ⊆ [n] and assignments ρ ∈ {0, 1}J such that |J | ≥ n/6,
and |W \ A| ≤ δm/4, where A ⊆ W collects all codeword bits j ∈ W such that Cj ↾x

J
=ρ is a

constant function.

Proof. Let J be a random subset formed by selecting each i ∈ [n] independently with
probability 1/3. For each j ∈ J , set ρj = 0 or ρj = 1 with probability 1/2. We have E[|J |] =
n/3, and hence the Chernoff bound shows that |J | < n/6 with probability exp(−Ω(n)).
Furthermore, for each j ∈ W , Cj ↾x

J
=ρ becomes a constant function except with probability

δ/8. This is because for each i ∈ Tj , Cj ↾xi=0 or Cj ↾xi=1 is a constant function, and either
case happens with probability 1/3. Therefore

Pr
[
Cj ↾x

J
=ρ is not constant

]
≤

(
1 − 1

3

)|Tj |

< e−|Tj |/3 ≤ δ

8 ,

where the last inequality is due to wj = |Tj | ≥ 3 ln(8/δ), since j ∈ W .
By linearity of expectation and Markov’s inequality, we have

Pr

 ∑
j∈W

1
{

Cj ↾x
J

=ρ is not constant
}

≥ δ

4 |W |

≤
E

[∑
j∈W 1

{
Cj ↾x

J
=ρ is not constant

}]
δ|W |/4

=

∑
j∈W Pr

[
Cj ↾x

J
=ρ is not constant

]
δ|W |/4

≤δ/8 · |W |
δ|W |/4 ≤ 1

2 .

Applying a union bound gives

Pr

(
|J | < n/6

)
∨

 ∑
j∈W

1
{

Cj ↾x
J

=ρ is not constant
}

≥ δ

4 |W |

≤ exp
(
−Ω(n)

)
+ 1

2 < 1.

Finally, we can conclude that there exist J ⊆ [n] and ρ ∈ {0, 1}J such that |J | ≥ n/6, and
Cj ↾x

J
=ρ becomes a constant function for all but δ/4 fraction of j ∈ W . ◀

Let J ⊆ [n] and ρ ∈ {0, 1}J be given by the Lemma 12, and consider the restricted code
CJ|ρ. By rearranging the codeword bits, we may assume J = [n′] where n′ = |J | ≥ n/6.

Let A ⊆ [m] be the set of codeword bits which get fixed to constants under J |ρ. We
denote W ′ := W \ A, S′

i := Si \ A, S′
i,− := Si,− \ A, and S′

i,+ := Si,+ \ A. Note that
|W ′| = |W \ A| ≤ δm/4, and thus |S′

i,+| = |Si,+ ∩ W ′| ≤ δm/4 for all i ∈ [n′]. We emphasize
that S′

i does not necessarily contain all codeword bits fixable by xi in the restricted code
CJ|ρ, as fixing some message bits may cause more codeword bits to be fixable by xi.

We first show that the queries of C must have certain structures. The following claim
characterizes the queries in F ≥1

i .

▷ Claim 13. Suppose {j, k} ∈ F ≥1
i . Then we must have j, k ∈ Si.

CCC 2023

14:16 On RLDCs for Hamming and Insdel Errors

Proof. Let {j, k} ∈ F ≥1
i . Suppose for the sake of contradiction that j /∈ Si. This implies

there are partial assignments σ00, σ01, σ10, σ11 ∈ {0, 1}n−1 such that

Cj (x−i = σ00, xi = 0) = 0, Cj (x−i = σ01, xi = 1) = 0,

Cj (x−i = σ10, xi = 0) = 1, Cj (x−i = σ11, xi = 1) = 1,

where x−i is defined as
(
xt : t ∈ [n] \ {i}

)
.

Let C00, C01, C10, C11 be encodings of the corresponding assignments mentioned above.
Since the relaxed decoder has perfect completeness, when Dec(i, ·) is given access to C00 or
C10 it must output xi = 0. Note that the j-th bit is different in C00 and C10. Similarly,
when Dec(i, ·) is given access to C01 or C11 it must output xi = 1. However, this already
takes up 4 entries in the truth table of any decoding function f ∈ DFi

j,k, leaving no space for
any “⊥” entry. This contradicts with the assumption {j, k} ∈ F ≥1

i . ◁

Here is another way to view Claim 13 which will be useful later: Suppose {j, k} is a query
set such that j /∈ Si (or k /∈ Si), then {j, k} ∈ F 0

i . In other words, conditioned on the event
that some query is not contained in Si, the decoder never outputs ⊥.

The following claim characterizes the queries in F 0
i .

▷ Claim 14. Suppose {j, k} ∈ F 0
i , and j ∈ Si. Then one of the following three cases occur:

(1) k ∈ Si, (2) Cj = xi, or (3) Cj = ¬xi.

Proof. Since j ∈ Si, we may, without loss of generality, assume that Cj ↾xi=0 is a constant
function. Let us further assume it is the constant-zero function. The proofs for the other
cases are going to be similar.

Denote by f(yj , yk) the function returned by Dec(i, ·) conditioned on reading {j, k}. Any
function f ∈ DFi

j,k takes values in {0, 1} since {j, k} ∈ F 0
i . Suppose case (1) does not occur,

meaning that Ck ↾xi=0 is not a constant function. Then there must be partial assignments
σ00, σ01 ∈ {0, 1}n−1 such that

Ck(xi = 0, x−i = σ00) = 0, Ck(xi = 0, x−i = σ01) = 1.

Let C00 and C01 be the encodings of the corresponding assignments mentioned above. Due
to perfect completeness of Dec, it must always output xi = 0 when given access to C00 or
C01. That means f(0, 0) = f(0, 1) = 0.

Now we claim that Cj ↾xi=1 must be the constant-one function. Otherwise there is a
partial assignment σ10 ∈ {0, 1}n−1 such that

Cj(xi = 1, x−i = σ10) = 0.

Let C10 be the encoding of this assignment. On the one hand, due to perfect completeness
Dec(i, ·) should always output xi = 1 when given access to C10. On the other hand, Dec(i, ·)
outputs f((C10)j , 0) = f(0, 0) = 0. This contradiction shows that Cj ↾xi=1 must be the
constant-one function. Therefore Cj = xi, i.e., case (2) occurs.

Similarly, when Cj ↾xi=0 is the constant-one function, we can deduce that Cj = ¬xi, i.e.,
case (3) occurs. ◁

We remark that Claim 13 and Claim 14 jointly show that for any query set {j, k} made
by Dec(i, ·) there are 2 essentially different cases: (1) both j, k lie inside Si, and (2) both
j, k lie outside Si. The case j ∈ Si, k /∈ Si (k ∈ Si, j /∈ Si, resp.) means that k (j, resp.) is
a dummy query which is not used for decoding. Furthermore, conditioned on case (2), the
decoder never outputs ⊥.

A. R. Block, J. Blocki, K. Cheng, E. Grigorescu, X. Li, Y. Zheng, and M. Zhu 14:17

Another important observation is that all properties of the decoder discussed above hold
for the restricted code CJ|ρ, with Si replaced by S′

i. This is because CJ|ρ uses essentially
the same decoder, except that it does not actually query any codeword bit which became a
constant.

For a subset S ⊆ [m], we say “Dec(i, ·) reads S” if the event “j ∈ S and k ∈ S” occurs
where j, k ∈ [m] are the queries made by Dec(i, ·). The following lemma says that conditioned
on Dec(i, ·) reads some subset S, there is a way of modifying the bits in S that flips the
output of the decoder.

▶ Lemma 15. Let S ⊆ [m] be a subset such that Pr[Dec(i, ·) reads S] > 0. Then for
any string s ∈ {0, 1}m and any bit b ∈ {0, 1}, there exists a string z ∈ {0, 1}m such that
z[[m] \ S] = s[[m] \ S], and

Pr
[
Dec(i, z) = 1 − b | Dec(i, ·) reads S

]
= 1.

Proof. Let x ∈ {0, 1}n be a string with xi = 1 − b. Let z ∈ {0, 1}m be the string satisfying

z[S] = C(x)[S], z[[m] \ S] = s[[m] \ S].

Since Dec has perfect completeness, we have

1 = Pr
[
Dec(i, C(x)) = xi | Dec(i, ·) reads S

]
= Pr

[
Dec(i, z) = 1 − b | Dec(i, ·) reads S

]
.

◀

The next lemma is a key step in our proof. It roughly says that there is a local decoder
for xi in the standard sense as long as the size of Si is not too large.

▶ Lemma 16. Suppose i ∈ [n] is such that |Si| ≤ δm/2. Then there is a (2, δ/2, 1/2 + ε)-
local decoder Di for i. In other words, for any x ∈ {0, 1}n and y ∈ {0, 1}m such that
HAM(C(x), y) ≤ δm/2, we have

Pr
[
Di(y) = xi

]
≥ 1

2 + ε,

and Di makes at most 2 queries into y.

Proof. Let i ∈ [n] be such that |Si| ≤ δm/2. The local decoder Di works as follows. Given
x ∈ {0, 1}n and y ∈ {0, 1}m such that HAM(C(x), y) ≤ δm/2, Di obtains a query set Q

according to the query distribution of Dec(i, ·) conditioned on Q ⊆ [m] \ Si. Then Di finishes
by outputting the result returned by Dec(i, ·).

Denote by Ei the event “Dec(i, ·) reads [m]\Si”, i.e., both two queries made by Dec(i, ·) lie
outside Si. In order for the conditional distribution to be well-defined, we need to argue that
Ei occurs with non-zero probability. Suppose this is not the case, meaning that Q ∩ Si ̸= ∅
for all possible query set Q. Let z ∈ {0, 1}m be the string obtained by applying Lemma 15
with S = Si, s = C(x) and b = xi. Claim 13 and Claim 14 jointly show that either Q ⊆ Si,
or the decoder’s output does not depend on the answers to queries in Q \ Si. In any case,
the output of Dec(i, z) depends only on z[Si]. However, by the choice of z we now have a
contradiction since

1
2 + ε ≤ Pr

[
Dec(i, z) ∈ {xi, ⊥}

]
= Pr

[
Dec(i, z) ∈ {xi, ⊥} | Dec(i, ·) reads Si

]
= 0,

where the first inequality is due to HAM(C(x), z) ≤ |Si| < δm and the relaxed decoding
property of Dec.

CCC 2023

14:18 On RLDCs for Hamming and Insdel Errors

By definition of Di, it makes at most 2 queries into y. Its success rate is given by

Pr[Di(y) = xi] = Pr[Dec(i, y) = xi | Ei].

Therefore it remains to show that

Pr
[
Dec(i, y) = xi | Ei

]
≥ 1

2 + ε.

Let z be the string obtained by applying Lemma 15 with S = Si, s = y and b = xi. From
previous discussions we see that conditioned on Ei (i.e., the event Ei does not occur), the
output of Dec(i, z) only depends on z[Si]. Therefore

Pr
[
Dec(i, z) ∈ {xi, ⊥} | Ei

]
= 1 − Pr

[
Dec(i, z) = 1 − xi | Ei

]
= 0. (1)

We also have that z is close to C(x) since

HAM(z, C(x)) ≤ HAM(z, y) + HAM(y, C(x)) ≤|Si| + δm/2 ≤ δm.

Thus, the relaxed decoding property of Dec gives

Pr
[
Dec(i, z) ∈ {xi, ⊥}

]
≥ 1

2 + ε.

On the other hand, we also have

Pr
[
Dec(i, z) ∈ {xi, ⊥}

]
= Pr

[
Dec(i, z) ∈ {xi, ⊥} | Ei

]
· Pr

[
Ei

]
+ Pr

[
Dec(i, z) ∈ {xi, ⊥} | Ei

]
· Pr [Ei]

= Pr
[
Dec(i, z) ∈ {xi, ⊥} | Ei

]
· Pr

[
Ei

]
+ Pr

[
Dec(i, y) ∈ {xi, ⊥} | Ei

]
· Pr [Ei]

(z[[m] \ Si] = y[[m] \ Si])
= Pr

[
Dec(i, y) ∈ {xi, ⊥} | Ei

]
· Pr [Ei] (Equation (1))

≤ Pr
[
Dec(i, y) ∈ {xi, ⊥} | Ei

]
.

Note that by Claim 13, conditioned on Ei, Dec(i, ·) never outputs “⊥”. We thus have

Pr
[
Dec(i, y) = xi | Ei

]
≥ 1

2 + ε. ◀

We remark once again that the above lemma holds for the restricted code CJ|ρ, with Si

replaced by S′
i.

Below we prove an exponential lower bound for non-adaptive 2-query Hamming RLDCs.

▶ Proposition 17. Let C : {0, 1}n → {0, 1}m be a non-adaptive weak (2, δ, 1/2 + ε)-RLDC.
Then m = 2Ωδ,ε(n).

Proof. Let CJ|ρ : {0, 1}n′
→ {0, 1}m′

be the restricted code where J |ρ is given by Lemma 12,
and A ⊆ [m] be the set of codeword bits which get fixed to constants. We also let S′

i := Si \A,
S′

i,− = Si,− \ A, S′
i,+ = Si,+ \ A.

Denote T ′
j :=

{
i ∈ [n′] : j ∈ S′

i

}
. Since S′

i ⊆ Si for each i, we also have T ′
j ⊆ Tj for each

j. In particular, for each j /∈ W ′ ⊆ W , we have |T ′
j | ≤ |Tj | ≤ 3 ln(8/δ). Therefore

E
i∈[n′]

[
|S′

i,−|
]

= 1
n′

n′∑
i=1

|S′
i,−| = 1

n′

∑
j∈[m′]\W ′

|T ′
j | ≤ 3 ln(8/δ) · m′

n′ .

A. R. Block, J. Blocki, K. Cheng, E. Grigorescu, X. Li, Y. Zheng, and M. Zhu 14:19

Therefore by Markov’s inequality,

Pr
i∈[n′]

[
|S′

i,−| > δm′/4
]

≤ 12 ln(8/δ)
δn′ = Oδ

(
1
n′

)
.

In other words, there exists I ⊆ [n′] of size |I| ≥ n′ − Oδ(1) such that |S′
i,−| ≤ δm′/4 for

all i ∈ I. For any such i ∈ I, we have |S′
i| = |S′

i,−| + |S′
i,+| ≤ δm′/4 + δm′/4 = δm′/2. By

Lemma 16, we can view CJ|ρ as a (2, δ/2, 1/2 + ε)-LDC for message bits in I (for instance,
we can arbitrarily fix the message bits outside I), where |I| > n′ − Oδ(1) = Ω(n). Finally,
the statement of the proposition follows from Theorem 8. ◀

4.2 Lower bounds for adaptive 2-Query Hamming RLDCs
Now we turn to the actual proof, which still works for possibly adaptive decoders. Let C be
a weak (2, δ, 1/2 + ε)-RLDC with perfect completeness. We fix a relaxed decoder Dec for
C. Without loss of generality, we assume Dec works as follows: on input i ∈ [n], Dec(i, ·)
picks the first query j ∈ [m] according to a distribution Di. Let b ∈ {0, 1} be the answer to
this query. Then Dec picks the second query k ∈ [m] according to a distribution Di;j,b, and
obtains an answer b′ ∈ {0, 1}. Finally, Dec outputs a random variable Xi;j,b,k,b′ ∈ {0, 1, ⊥}.

We partition the support of Di into the following two sets:

F 0
i :=

{
j ∈ supp(Di) : ∀b, b′ ∈ {0, 1} , k ∈ supp(Di;j,b,k,b′), Pr[Xi;j,b,k,b′ =⊥] = 0

}
,

F >0
i :=

{
j ∈ supp(Di) : ∃b, b′ ∈ {0, 1} , k ∈ supp(Di;j,b,k,b′), Pr[Xi;j,b,k,b′ =⊥] > 0

}
.

We will still apply the restriction guaranteed by Lemma 12 to C. The sets Si, Tj , W ,
Si,−, Si,+ (are their counterparts for CJ|ρ) are defined in the exact same way.

The following claim is adapted from Claim 13.

▷ Claim 18. (supp(Di) \ Si) ⊆ F 0
i .

Proof. Let j ∈ supp(Di) \ Si and we will show j ∈ F 0
i . By the definition of Si, j /∈ Si means

that there are partial assignments σ00, σ01, σ10, σ11 ∈ {0, 1}n−1 such that

Cj (x−i = σ00, xi = 0) = 0, Cj (x−i = σ01, xi = 1) = 0,

Cj (x−i = σ10, xi = 0) = 1, Cj (x−i = σ11, xi = 1) = 1,

where x−i is defined as
(
xt : t ∈ [n] \ {i}

)
.

Let C00, C01, C10, C11 be encodings of the corresponding assignments mentioned above.
Consider an arbitrary query k ∈ supp(Di;j,0), and let b′

1, b′
2 be the k-th bit of C00 and C01,

respectively. We note that Xi;j,0,k,b′
1

is the output of Dec(i, C00) conditioned on the queries
j, k, and Xi;j,0,k,b′

2
is the output of Dec(i, C01) conditioned on the queries j, k. Due to perfect

completeness of Dec, we have

Pr[Xi;j,0,k,b′
1

= 0] = 1, Pr[Xi;j,0,k,b′
2

= 1] = 1.

Therefore, it must be the case that b′
1 ̸= b′

2, which implies that Pr[Xi;j,0,k,b′ =⊥] = 0 for any
b′ ∈ {0, 1}.

An identical argument shows that Pr[Xi;j,1,k,b′ =⊥] = 0 for any k ∈ supp(Di;j,1) and
b′ ∈ {0, 1}. Thus we have shown j ∈ F 0

i . ◁

We remark that the above claim also implies F >0
i ⊆ Si, since supp(Di) is a disjoint

union of F 0
i and F >0

i . In other words, conditioned on the event that the first query j is not
contained in Si, the decoder never outputs ⊥.

The next claim is adapted from Claim 14.

CCC 2023

14:20 On RLDCs for Hamming and Insdel Errors

▷ Claim 19. Let j ∈ supp(Di) ∩ Si. For any b ∈ {0, 1} one of the following three cases
occurs:
1. supp(Di;j,b) ⊆ Si;
2. For any k ∈ supp(Di;j,b) \ Si, Pr[Xi;j,b,k,0 = b] = Pr[Xi;j,b,k,1 = b] = 1;
3. For any k ∈ supp(Di;j,b) \ Si, Pr[Xi;j,b,k,0 = 1 − b] = Pr[Xi;j,b,k,1 = 1 − b] = 1.

Proof. Since j ∈ Si, we may, without loss of generality, assume that Cj ↾xi=0 is a constant
function. Let us further assume Cj ↾xi=0 ≡ 0. The proofs for the other cases are going to be
similar.

Suppose supp(Di;j,0) ̸⊆ Si, and let k ∈ supp(Di;j,0) \ Si. By the definition of Si, k /∈ Si

means that there are partial assignments σ00, σ01 ∈ {0, 1}n−1 such that

Ck(xi = 0, x−i = σ00) = 0, Ck(xi = 0, x−i = σ01) = 1.

Let C00 and C01 be the encodings of the corresponding assignments mentioned above. We
note that Xi;j,0,k,0 and Xi;j,0,k,1 are the outputs of Dec(i, C00) and Dec(i, C01), respectively,
conditioned on the queries j, k. Due to perfect completeness of Dec, we must have

Pr[Xi;j,0,k,0 = 0] = Pr[Xi;j,0,k,1 = 0] = 1,

since both C00 and C01 encode messages with xi = 0.
Now we claim that Cj ↾xi=1 ≡ 1 must hold. Otherwise there is a partial assignment

σ10 ∈ {0, 1}n−1 such that

Cj(xi = 1, x−i = σ10) = 0.

Let C10 be the encoding of this assignment, and let b′ ∈ {0, 1} be the k-th bit of C10. On
the one hand, Xi;j,0,k,b′ is the output Dec(i, C10) conditioned on the queries j, k, and we
have just established

Pr[Xi;j,0,k,b′ = 0] = 1.

On the other hand, Dec(i, C10) should output xi = 1 with probability 1 due to perfect
completeness. This contradiction shows that Cj ↾xi=1 ≡ 1.

Similarly, suppose supp(Di;j,1) ̸⊆ Si and let k ∈ supp(Di;j,1) \ Si, meaning that there are
partial assignments σ10, σ11 ∈ {0, 1}n−1 such that

Ck(xi = 1, x−i = σ10) = 0, Ck(xi = 1, x−i = σ11) = 1.

Let C10 and C11 be the corresponding encodings, and note that Xi;j,1,k,0 and Xi;j,1,k,1 are the
outputs of Dec(i, C10) and Dec(i, C11), respectively, conditioned on the queries j, k. Perfect
completeness of Dec implies

Pr[Xi;j,1,k,0 = 1] = Pr[Xi;j,1,k,1 = 1] = 1,

since both C10 and C11 encode messages with xi = 1.
So far we have shown that for any b ∈ {0, 1} such that supp(Di;j,b) ̸⊆ Si, it holds that

∀k ∈ supp(Di;j,b) \ Si, Pr[Xi;j,b,k,0 = b] = Pr[Xi;j,b,k,1 = b] = 1,

provided that Cj ↾xi=0 ≡ 0. In case of Cj ↾xi=0 ≡ 1, we can use an identical argument to
deduce that for any b ∈ {0, 1} such that supp(Di;j,b) ̸⊆ Si, it holds that

∀k ∈ supp(Di;j,b) \ Si, Pr[Xi;j,b,k,0 = 1 − b] = Pr[Xi;j,b,k,1 = 1 − b] = 1.◁

A. R. Block, J. Blocki, K. Cheng, E. Grigorescu, X. Li, Y. Zheng, and M. Zhu 14:21

Here is another way to view Claim 19: conditioned on the event that the first query j is
contained in Si, either the second query k is also contained in Si, or the output Xi;j,b,k,b′ is
independent of the answer b′ to query k. In either case, the decoder’s output depends solely
on the Si-portion of the received string.

Once again, the conclusions of Claim 18 and Claim 19 hold for CJ|ρ, with Si replaced
by S′

i.
Finally, we are ready to prove Theorem 2. We recall the Theorem below.

▶ Theorem 2. Let C : {0, 1}n → {0, 1}m be a weak adaptive (2, δ, 1/2 + ε)-RLDC. Then
m = 2Ωδ,ε(n).

Proof. The proof is almost identical to the one for Proposition 17. First, we can show that
there exists I ⊆ [n′] of size |I| ≥ n′ − Oδ(1) = Ω(n) such that |S′

i,−| ≤ δm/4 for all i ∈ I,
and hence |S′

i| = |S′
i,−| + |S′

i,+| ≤ δm/2. Second, similar to the proof of Lemma 16, for each
i ∈ I we can construct a decoder Di for xi as follows. Di restarts Dec(i, ·) until it makes a
first query j ∈ [m′] \ S′

i. Then Di finishes simulating Dec(i, ·) and returns its output. With
the help of Claim 18 and Claim 19, the same analysis in Lemma 16 shows that Di never
returns ⊥, and that the probability of returning xi is at least 1/2 + ε. Finally, the theorem
follows from Theorem 8. ◀

References
1 Omar Alrabiah, Venkatesan Guruswami, Pravesh Kothari, and Peter Manohar. A near-cubic

lower bound for 3-query locally decodable codes from semirandom csp refutation. Electron.
Colloquium Comput. Complex., 2022. URL: https://eccc.weizmann.ac.il/report/2022/
101/.

2 Alexandr Andoni, Thijs Laarhoven, Ilya P. Razenshteyn, and Erik Waingarten. Optimal
hashing-based time-space trade-offs for approximate near neighbors. In SODA, pages 47–66,
2017.

3 Vahid R. Asadi and Igor Shinkar. Relaxed locally correctable codes with improved parameters.
In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium
on Automata, Languages, and Programming, ICALP 2021, volume 198 of LIPIcs, pages
18:1–18:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

4 László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations in
polylogarithmic time. In STOC, pages 21–31, 1991.

5 James L. Banal, Tyson R. Shepherd, Joseph Berleant, Hellen Huang, Miguel Reyes, Cheri M.
Ackerman, Paul C. Blainey, and Mark Bathe. Random access dna memory using boolean
search in an archival file storage system. Nature Materials, 20:1272–1280, 2021. doi:10.1101/
2020.02.05.936369.

6 Avraham Ben-Aroya, Oded Regev, and Ronald de Wolf. A hypercontractive inequality for
matrix-valued functions with applications to quantum computing and ldcs. In FOCS, pages
477–486. IEEE Computer Society, 2008.

7 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Robust
pcps of proximity, shorter pcps, and applications to coding. SIAM J. Comput., 36(4):889–974,
2006. A preliminary version appeared in the Proceedings of the 36th Annual ACM Symposium
on Theory of Computing (STOC).

8 Arnab Bhattacharyya, L. Sunil Chandran, and Suprovat Ghoshal. Combinatorial lower
bounds for 3-query ldcs. In ITCS, volume 151 of LIPIcs, pages 85:1–85:8. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020.

9 Arnab Bhattacharyya, Zeev Dvir, Shubhangi Saraf, and Amir Shpilka. Tight lower bounds for
linear 2-query lccs over finite fields. Comb., 36(1):1–36, 2016.

CCC 2023

https://eccc.weizmann.ac.il/report/2022/101/
https://eccc.weizmann.ac.il/report/2022/101/
https://doi.org/10.1101/2020.02.05.936369
https://doi.org/10.1101/2020.02.05.936369

14:22 On RLDCs for Hamming and Insdel Errors

10 Arnab Bhattacharyya and Sivakanth Gopi. Lower bounds for constant query affine-invariant
lccs and ltcs. ACM Trans. Comput. Theory, 9(2):7:1–7:17, 2017.

11 Arnab Bhattacharyya, Sivakanth Gopi, and Avishay Tal. Lower bounds for 2-query lccs over
large alphabet. Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, 2017.

12 Alexander R. Block and Jeremiah Blocki. Private and resource-bounded locally decodable
codes for insertions and deletions. In 2021 IEEE International Symposium on Information
Theory (ISIT), pages 1841–1846, 2021. doi:10.1109/ISIT45174.2021.9518249.

13 Alexander R. Block, Jeremiah Blocki, Elena Grigorescu, Shubhang Kulkarni, and Minshen
Zhu. Locally decodable/correctable codes for insertions and deletions. In FSTTCS, volume
182 of LIPIcs, pages 16:1–16:17, 2020.

14 Jeremiah Blocki, Kuan Cheng, Elena Grigorescu, Xin Li, Yu Zheng, and Minshen Zhu.
Exponential lower bounds for locally decodable and correctable codes for insertions and
deletions. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 739–750, 2022. doi:10.1109/FOCS52979.2021.00077.

15 Jeremiah Blocki, Venkata Gandikota, Elena Grigorescu, and Samson Zhou. Relaxed locally
correctable codes in computationally bounded channels. IEEE Transactions on Information
Theory, 67(7):4338–4360, 2021. doi:10.1109/TIT.2021.3076396.

16 Jeremiah Blocki, Shubhang Kulkarni, and Samson Zhou. On Locally Decodable Codes in
Resource Bounded Channels. In Yael Tauman Kalai, Adam D. Smith, and Daniel Wichs,
editors, 1st Conference on Information-Theoretic Cryptography (ITC 2020), volume 163,
pages 16:1–16:23, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ITC.2020.16.

17 Manuel Blum and Sampath Kannan. Designing programs that check their work. J. ACM,
42(1):269–291, 1995.

18 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

19 Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. Efficient low-redundancy
codes for correcting multiple deletions. IEEE Trans. Inf. Theory, 64(5):3403–3410, 2018.

20 Victor Chen, Elena Grigorescu, and Ronald de Wolf. Error-correcting data structures. SIAM
J. Comput., 42(1):84–111, 2013.

21 Kuan Cheng, Venkatesan Guruswami, Bernhard Haeupler, and Xin Li. Efficient linear and
affine codes for correcting insertions/deletions. In SODA, pages 1–20. SIAM, 2021.

22 Kuan Cheng, Bernhard Haeupler, Xin Li, Amirbehshad Shahrasbi, and Ke Wu. Synchronization
strings: Highly efficient deterministic constructions over small alphabets. In Timothy M. Chan,
editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2185–2204. SIAM, 2019.

23 Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Deterministic document exchange protocols,
and almost optimal binary codes for edit errors. In Mikkel Thorup, editor, FOCS, pages
200–211, 2018.

24 Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Block edit errors with transpositions:
Deterministic document exchange protocols and almost optimal binary codes. In ICALP,
volume 132 of LIPIcs, pages 37:1–37:15, 2019.

25 Kuan Cheng and Xin Li. Efficient document exchange and error correcting codes with
asymmetric information. In SODA, pages 2424–2443. SIAM, 2021.

26 Kuan Cheng, Xin Li, and Yu Zheng. Locally decodable codes with randomized encoding.
CoRR, abs/2001.03692, 2020. arXiv:2001.03692.

27 Alessandro Chiesa, Tom Gur, and Igor Shinkar. Relaxed locally correctable codes with nearly-
linear block length and constant query complexity. In Shuchi Chawla, editor, Proceedings of
the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 1395–1411. SIAM, 2020.

https://doi.org/10.1109/ISIT45174.2021.9518249
https://doi.org/10.1109/FOCS52979.2021.00077
https://doi.org/10.1109/TIT.2021.3076396
https://doi.org/10.4230/LIPIcs.ITC.2020.16
https://arxiv.org/abs/2001.03692

A. R. Block, J. Blocki, K. Cheng, E. Grigorescu, X. Li, Y. Zheng, and M. Zhu 14:23

28 Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information
retrieval. J. ACM, 45(6):965–981, 1998.

29 Gil Cohen and Tal Yankovitz. Relaxed locally decodable and correctable codes: Beyond
tensoring. Electron. Colloquium Comput. Complex., TR22-045, 2022. arXiv:TR22-045.

30 Marcel Dall’Agnol, Tom Gur, and Oded Lachish. A structural theorem for local algorithms
with applications to coding, testing, and privacy. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1651–1665. SIAM, 2021.

31 Yan Ding, Parikshit Gopalan, and Richard Lipton. Error correction against computationally
bounded adversaries. Manuscript, 2004.

32 Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. SIAM J. Comput.,
40(4):1154–1178, 2011.

33 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Superquadratic lower bound for 3-query
locally correctable codes over the reals. Theory Comput., 13(1):1–36, 2017.

34 Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM J. Comput.,
41(6):1694–1703, 2012.

35 Anna Gál and Andrew Mills. Three-query locally decodable codes with higher correctness
require exponential length. ACM Trans. Comput. Theory, 3(2):5:1–5:34, 2012.

36 William I. Gasarch. A survey on private information retrieval (column: Computational
complexity). Bulletin of the EATCS, 82:72–107, 2004.

37 Oded Goldreich, Howard J. Karloff, Leonard J. Schulman, and Luca Trevisan. Lower bounds
for linear locally decodable codes and private information retrieval. Comput. Complex.,
15(3):263–296, 2006.

38 Tom Gur and Oded Lachish. A lower bound for relaxed locally decodable codes. arXiv preprint,
2019. arXiv:1904.08112.

39 Tom Gur and Oded Lachish. On the power of relaxed local decoding algorithms. SIAM J.
Comput., 50(2):788–813, 2021.

40 Tom Gur, Govind Ramnarayan, and Ron Rothblum. Relaxed locally correctable codes. Theory
Comput., 16:1–68, 2020.

41 Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi. Optimally resilient
codes for list-decoding from insertions and deletions. In Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, STOC, pages
524–537. ACM, 2020.

42 Venkatesan Guruswami and Ray Li. Coding against deletions in oblivious and online models.
In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 625–643. SIAM, 2018.

43 Venkatesan Guruswami and Ray Li. Polynomial time decodable codes for the binary deletion
channel. IEEE Trans. Inf. Theory, 65(4):2171–2178, 2019.

44 Venkatesan Guruswami and Adam Smith. Optimal rate code constructions for computationally
simple channels. J. ACM, 63(4):35:1–35:37, September 2016. doi:10.1145/2936015.

45 Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate
regimes. IEEE Transactions on Information Theory, 63(4):1961–1970, 2017.

46 Bernhard Haeupler. Optimal document exchange and new codes for insertions and deletions.
In David Zuckerman, editor, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019,
pages 334–347, 2019.

47 Bernhard Haeupler, Aviad Rubinstein, and Amirbehshad Shahrasbi. Near-linear time insertion-
deletion codes and (1+ϵ)-approximating edit distance via indexing. In Moses Charikar and
Edith Cohen, editors, STOC, pages 697–708. ACM, 2019.

48 Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: codes for insertions
and deletions approaching the singleton bound. In Hamed Hatami, Pierre McKenzie, and
Valerie King, editors, STOC, pages 33–46. ACM, 2017.

CCC 2023

https://arxiv.org/abs/TR22-045
https://arxiv.org/abs/1904.08112
https://doi.org/10.1145/2936015

14:24 On RLDCs for Hamming and Insdel Errors

49 Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: explicit construc-
tions, local decoding, and applications. In Ilias Diakonikolas, David Kempe, and Monika
Henzinger, editors, STOC, pages 841–854. ACM, 2018.

50 Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings and codes for
insertions and deletions – a survey, 2021. arXiv:2101.00711.

51 Bernhard Haeupler, Amirbehshad Shahrasbi, and Madhu Sudan. Synchronization strings: List
decoding for insertions and deletions. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel
Marx, and Donald Sannella, editors, ICALP, volume 107 of LIPIcs, pages 76:1–76:14, 2018.

52 Brett Hemenway and Rafail Ostrovsky. Public-key locally-decodable codes. In Advances in
Cryptology – CRYPTO 2008, 28th Annual International Cryptology Conference, Proceedings,
pages 126–143, 2008.

53 Brett Hemenway, Rafail Ostrovsky, Martin J. Strauss, and Mary Wootters. Public key
locally decodable codes with short keys. In 14th International Workshop, APPROX, and 15th
International Workshop, RANDOM, Proceedings, pages 605–615, 2011.

54 Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local correctability of expander
codes. Inf. Comput., 243:178–190, 2015.

55 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In STOC, pages 80–86, 2000.

56 Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally decodable
codes via a quantum argument. J. Comput. Syst. Sci., 69(3):395–420, 2004.

57 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally correctable
and locally testable codes with sub-polynomial query complexity. J. ACM, 64(2):11:1–11:42,
2017.

58 Swastik Kopparty and Shubhangi Saraf. Guest column: Local testing and decoding of high-rate
error-correcting codes. SIGACT News, 47(3):46–66, 2016.

59 Vladimir Iosifovich Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10(8):707–710, 1966. Doklady Akademii Nauk SSSR, V163
No4 845-848 1965.

60 Richard J. Lipton. A new approach to information theory. In STACS, pages 699–708, 1994.
61 Shu Liu, Ivan Tjuawinata, and Chaoping Xing. On list decoding of insertion and deletion

errors. CoRR, abs/1906.09705, 2019. arXiv:1906.09705.
62 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for

interactive proof systems. J. ACM, 39(4):859–868, 1992.
63 Jiri Matousek Marcos Kiwi, Martin Loebl. Expected length of the longest common subsequence

for large alphabets. Advances in Mathematics, 197(2):480–498, 2005.
64 Hugues Mercier, Vijay K. Bhargava, and Vahid Tarokh. A survey of error-correcting codes for

channels with symbol synchronization errors. IEEE Communications Surveys and Tutorials,
12, 2010.

65 Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal error correction
against computationally bounded noise. In Theory of Cryptography, Second Theory of Cryp-
tography Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings,
pages 1–16, 2005.

66 Michael Mitzenmacher. A survey of results for deletion channels and related synchronization
channels. Probability Surveys, 6:1–3, July 2008.

67 Rafail Ostrovsky, Omkant Pandey, and Amit Sahai. Private locally decodable codes. In
ICALP, pages 387–398, 2007.

68 Rafail Ostrovsky and Anat Paskin-Cherniavsky. Locally decodable codes for edit distance.
In Anja Lehmann and Stefan Wolf, editors, Information Theoretic Security, pages 236–249,
Cham, 2015. Springer International Publishing.

69 L. J. Schulman and D. Zuckerman. Asymptotically good codes correcting insertions, deletions,
and transpositions. IEEE Transactions on Information Theory, 45(7):2552–2557, 1999.

https://arxiv.org/abs/2101.00711
https://arxiv.org/abs/1906.09705

A. R. Block, J. Blocki, K. Cheng, E. Grigorescu, X. Li, Y. Zheng, and M. Zhu 14:25

70 Ronen Shaltiel and Jad Silbak. Explicit list-decodable codes with optimal rate for computation-
ally bounded channels. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM, pages 45:1–45:38, 2016.

71 N.J.A. Sloane. On single-deletion-correcting codes. arXiv, 2002. arXiv:math/0207197.
72 Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the

XOR lemma (abstract). In CCC, page 4, 1999.
73 Luca Trevisan. Some applications of coding theory in computational complexity. CoRR,

cs.CC/0409044, 2004. arXiv:0409044.
74 Stephanie Wehner and Ronald de Wolf. Improved lower bounds for locally decodable codes

and private information retrieval. In ICALP, volume 3580 of Lecture Notes in Computer
Science, pages 1424–1436. Springer, 2005.

75 David P. Woodruff. New lower bounds for general locally decodable codes. Technical report,
Weizmann Institute of Science, Israel, 2007.

76 David P. Woodruff. A quadratic lower bound for three-query linear locally decodable codes
over any field. J. Comput. Sci. Technol., 27(4):678–686, 2012.

77 S. M. Hossein Tabatabaei Yazdi, Ryan Gabrys, and Olgica Milenkovic. Portable and
error-free dna-based data storage. Scientific Reports, 7:2045–2322, 2017. doi:10.1038/
s41598-017-05188-1.

78 Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. J. ACM,
55(1):1:1–1:16, 2008.

79 Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical Computer
Science, 6(3):139–255, 2012.

CCC 2023

https://arxiv.org/abs/math/0207197
https://arxiv.org/abs/0409044
https://doi.org/10.1038/s41598-017-05188-1
https://doi.org/10.1038/s41598-017-05188-1

Near-Optimal Set-Multilinear Formula Lower
Bounds
Deepanshu Kush # Ñ

Department of Computer Science, University of Toronto, Canada

Shubhangi Saraf # Ñ

Department of Computer Science and Department of Mathematics, University of Toronto, Canada

Abstract
The seminal work of Raz (J. ACM 2013) as well as the recent breakthrough results by Limaye,
Srinivasan, and Tavenas (FOCS 2021, STOC 2022) have demonstrated a potential avenue for
obtaining lower bounds for general algebraic formulas, via strong enough lower bounds for set-
multilinear formulas.

In this paper, we make progress along this direction by proving near-optimal lower bounds
against low-depth as well as unbounded-depth set-multilinear formulas. More precisely, we show
that over any field of characteristic zero, there is a polynomial f computed by a polynomial-sized
set-multilinear branching program (i.e., f is in set-multilinear VBP) defined over Θ(n2) variables
and of degree Θ(n), such that any product-depth ∆ set-multilinear formula computing f has size at
least nΩ(n1/∆/∆). Moreover, we show that any unbounded-depth set-multilinear formula computing
f has size at least nΩ(log n).

If such strong lower bounds are proven for the iterated matrix multiplication (IMM) polynomial
or rather, any polynomial that is computed by an ordered set-multilinear branching program (i.e., a
further restriction of set-multilinear VBP), then this would have dramatic consequences as it would
imply super-polynomial lower bounds for general algebraic formulas (Raz, J. ACM 2013; Tavenas,
Limaye, and Srinivasan, STOC 2022).

Prior to our work, either only weaker lower bounds were known for the IMM polynomial (Tavenas,
Limaye, and Srinivasan, STOC 2022), or similar strong lower bounds were known but for a hard
polynomial not known to be even in set-multilinear VP (Kush and Saraf, CCC 2022; Raz, J. ACM
2009).

By known depth-reduction results, our lower bounds are essentially tight for f and in general,
for any hard polynomial that is in set-multilinear VBP or set-multilinear VP. Any asymptotic
improvement in the lower bound (for a hard polynomial, say, in VNP) would imply super-polynomial
lower bounds for general set-multilinear circuits.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Algebraic Complexity, Set-multilinear, Formula Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.15

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/017/

Acknowledgements We would like to thank Srikanth Srinivasan for several helpful and insightful
discussions. Our early discussions with him were what inspired much of this work.

1 Introduction

1.1 Background on Algebraic Complexity
Algebraic Complexity Theory is the study of the complexity of computational problems
which can be described as computing a multivariate polynomial P (x1, . . . , xN) over some
elements x1, . . . , xN lying in a fixed field F. Several fundamental computational tasks such
as computing the determinant, permanent, matrix product, etc., can be represented using

© Deepanshu Kush and Shubhangi Saraf;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 15; pp. 15:1–15:33

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deepkush@cs.toronto.edu
http://www.cs.toronto.edu/~deepkush/
https://orcid.org/0000-0001-5764-2942
mailto:shubhangi.saraf@utoronto.ca
https://www.math.toronto.edu/ssaraf/
https://orcid.org/0009-0005-0874-2978
https://doi.org/10.4230/LIPIcs.CCC.2023.15
https://eccc.weizmann.ac.il/report/2023/017/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Near-Optimal Set-Multilinear Formula Lower Bounds

this framework. The natural computational models that we investigate in this setting are
models such as algebraic circuits, algebraic branching programs, and algebraic formulas, all of
which employ the natural algebraic operations in F[x1, . . . , xN] to compute P .

An algebraic circuit over a field F for a multivariate polynomial P (x1, . . . , xN) is a directed
acyclic graph (DAG) whose internal vertices (called gates) are labeled as either + (sum) or ×
(product), and leaves (vertices of in-degree zero) are labeled by the variables xi or constants
from F. A special output gate (the root of the DAG) represents the polynomial P . If the
DAG happens to be a tree, such a resulting circuit is called an algebraic formula. The size of a
circuit or formula is the number of nodes in the DAG. We also consider the product-depth of
the circuit, which is the maximum number of product gates on a root-to-leaf path. The class
VP (respectively, VF) then is defined to be the collection of all polynomials having at most
polynomially large degree which can be computed by polynomial-sized circuits (respectively,
formulas).

An algebraic branching program is a layered DAG with two special nodes in it: a start-
node and an end-node. All edges of the ABP go from layer ℓ− 1 to layer ℓ for some ℓ (say
start-node is the unique node in layer 0) and are labeled by a linear polynomial. Every
directed path γ from start-node to end-node computes the monomial Pγ , which is the product
of all labels on the path γ. The ABP computes the polynomial P =

∑
γ Pγ , where the sum

is over all paths γ from start-node to end-node. Its size is simply the number of nodes in
the DAG, its depth is the length of the longest path from the start-node to the end-node,
and width is the maximum number of nodes in any layer. The class VBP then is defined to
be the collection of all polynomials which can be computed by polynomial-sized branching
programs1.

The complexity of these models is measured by the size, which serves as an indicator of
the time complexity of computing the polynomial. The product-depth measures the extent
to which this computation can be made parallel. As these models are supposed to construct
a formal polynomial P , they are syntactic models of computation. This is unlike a Boolean
circuit, which is only required to model specific truth-table constraints. The problem of
proving algebraic circuit lower bounds is therefore widely considered to be easier than its
Boolean counterpart. Indeed, we know that proving VP ̸= VNP, the algebraic analog of
the P vs NP problem, is implied by the latter separation in the non-uniform setting ([5]).
Similarly, proving super-polynomial lower bounds for algebraic formulas is the algebraic
analogue of the NC1 vs NP problem and is also considered to be one of the central challenges
in algebraic complexity theory. We refer the reader to [32] for a more elaborate survey of
this topic and for the formal definitions of the algebraic complexity classes VF, VBP, VP,
and VNP.

1.2 A Recent Breakthrough
Much like in the Boolean setting, the problem of showing lower bounds for general algebraic
circuits (or even formulas) has remained elusive. However, some remarkable progress has
been made very recently by Limaye, Srinivasan, and Tavenas ([23]) who in a spectacular
breakthrough, showed the first super-polynomial lower bounds for algebraic formulas of all
constant depths. Prior to their work, the best known lower bound ([18]) even for product-
depth 1 (or ΣΠΣ formulas) was only almost-cubic. This is in stark contrast with the
Boolean setting, in which we have known strong constant-depth lower bounds for many

1 The inclusions VF ⊆ VBP ⊆ VP follow.

D. Kush and S. Saraf 15:3

decades [3, 11, 38, 13, 31, 34]. Constant-depth formulas are critical to the study of algebraic
complexity theory, as unlike the Boolean setting, strong enough bounds against them are
known to yield VP ̸= VNP ([2]). This helps put into perspective the importance of the
work [23].

The crucial step in the proof of the [23] result is to first establish super-polynomial lower
bounds for a certain restricted class of (low-depth) algebraic formulas, namely set-multilinear
formulas which we now define along with other important circuit models. A polynomial is
said to be homogeneous if each monomial has the same total degree and multilinear if every
variable occurs at most once in any monomial. Now, suppose that the underlying variable
set is partitioned into d sets X1, . . . , Xd. Then the polynomial is said to be set-multilinear
with respect to this variable partition if each monomial in P has exactly one variable from
each set. Note that a set-multilinear polynomial is both multilinear and homogeneous. Next,
we define different models of computation corresponding to these variants of polynomials
classes. An algebraic formula/branching program/circuit is set-multilinear with respect to a
variable partition (X1, . . . , Xd) if each internal node in the formula/branching program/circuit
computes a set-multilinear polynomial2. Multilinear and homogeneous formulas/branching
programs/circuits are defined analogously.

Several well-studied and interesting polynomials happen to be set-multilinear. For
example, the determinant and the permanent polynomials, the study of which is profoundly
consequential to the field of algebraic complexity theory, are set-multilinear (with respect
to the column variables). Another well-studied polynomial, namely the Iterated Matrix
Multiplication polynomial, is also set-multilinear. The polynomial IMMn,d is defined on
N = dn2 variables, where the variables are partitioned into d sets X1, . . . , Xd of size n2, each
of which is represented as an n× n matrix with distinct variable entries. The polynomial
IMMn,d is defined to be the polynomial that is the (1, 1)-th entry of the product matrix
X1X2 · · ·Xd. Note that hence, this polynomial precisely captures the computational power
of a branching program of width n and depth d and is “complete” for the class VBP. This
polynomial has a simple divide-and-conquer-based set-multilinear formula of size nO(log d),
and more generally for every ∆ ≤ log d, a set-multilinear formula of product-depth ∆ and
size nO(∆d1/∆), and circuit3 of size nO(d1/∆). Even without the set-multilinearity constraint,
no significantly better upper bound is known. It is reasonable to conjecture that this simple
upper bound is tight up to the constant in the exponent.

The lower bounds in [23] for general constant-depth algebraic circuits are shown in the
following sequence of steps:
1. It is shown that general low-depth algebraic formulas can be transformed to set-multilinear

algebraic formulas of low depth, and without much of a blow-up in size (as long as the
degree is small). More precisely, any product-depth ∆ formula of size s computing a
polynomial that is set-multilinear with respect to the partition (X1, . . . , Xd) where each
|Xi| ≤ n, can be converted to a set-multilinear formula4 of product-depth 2∆ and size
poly(s) · dO(d). Such a “set-multilinearization” of general formulas of small degree was
already shown before in [28] (which we describe soon in more detail); however, the main
contribution of [23] here is to prove this depth-preserving version of it.

2 Of course, a non-root node need not be set-multilinear with respect to the entire variable partition.
Nevertheless, here we demand that it must be set-multilinear with respect to some subset of the collection
{X1, . . . , Xd}.

3 Any product-depth ∆ (set-multilinear) circuit of size s can be simulated by a product-depth ∆ (set-
multilinear) formula of size s2∆. Hence, any constant-depth formula lower bound automatically yields a
corresponding circuit lower bound.

4 There is also an intermediate “homogenization” step which we skip describing here for the sake of
brevity.

CCC 2023

15:4 Near-Optimal Set-Multilinear Formula Lower Bounds

2. Strong lower bounds are then established for low-depth set-multilinear circuits (of small
enough degree). More precisely, any set-multilinear circuit C computing IMMn,d (where
d = O(log n)) of product-depth ∆ must have size at least ndexp(−O(∆)) . This combined
with the first step yields the desired lower bound for general constant-depth circuits.

Given Raz’s set-multilinearization of formulas of small degree that we alluded to, and this
description of the set-multilinear formula lower bounds from [23] when d = O(log n), it is
evident the “small degree” regime is inherently interesting to study – as it provides an avenue,
via hardness escalation, for tackling one of the grand challenges of algebraic complexity theory,
namely proving super-polynomial lower bounds for general algebraic formulas. However, we
shall now see that even the large degree regime can be equally consequential in this regard.

1.3 The Large Degree Regime
Consider a polynomial P that is set-multilinear with respect to the variable partition
(X1, . . . , Xd) where each |Xi| ≤ n. In this paper, we shall focus on studying set-multilinear
formula complexity in the regime where d and n are polynomially related (as opposed to
say, the assumption d = O(log n) described above). We now provide some background and
motivation for studying this regime.

In follow-up work [36], the same authors showed the first super-polynomial lower bound
against unbounded-depth set-multilinear formulas computing IMMn,n

5. As is astutely
described in [36], studying the set-multilinear formula complexity of IMM is extremely
interesting and consequential even in the setting d = n because of the following reasons:

IMMn,n is a self-reducible polynomial i.e., it is possible to construct formulas for IMMn,n

by recursively using formulas for IMMn,d (for any d < n). In particular, if we had formulas
of size no(log d) for IMMn,d (for some d < n), this would imply formulas of size no(log n)

for IMMn,n. In other words, an optimal nΩ(log n) lower bound for IMMn,n implies nωd(1)

lower bounds for IMMn,d for any d < n.
Raz in [28] showed that if an N -variate set-multilinear polynomial of degree d has an
algebraic formula of size s, then it also has a set-multilinear formula of size poly(s)·(log s)d.
In particular, for a set-multilinear polynomial P of degree d = O(log N/ log log N), it
follows that P has a formula of size poly(N) if and only if P has a set-multilinear formula
of size poly(N). Thus, having Nωd(1) set-multilinear formula size lower bounds for such
a low degree would imply super-polynomial lower bounds for general formulas.

In particular, proving the optimal nΩ(log n) set-multilinear formula size lower bound for
IMMn,n would have dramatic consequences as it would yield general formula lower bounds
(and more specifically, the separation VF ⊊ VBP). To this end, the authors in [36] are able
to show a weaker bound of the form (log n)Ω(log n) instead. Even though it is the case that
“simply” improving the base of this exponent from log n to n yields general formula lower
bounds, it seems that we are still far from achieving it. Indeed, as is observed in [36], we
do not even have the optimal nΩ(

√
n) lower bound for IMMn,n

6 when product-depth ∆ = 2.
For constant (or low) product-depths (i.e., when ∆ ≤ log n), [36] shows a set-multilinear
formula size lower bound of (log n)Ω(∆n1/∆) for IMMn,n (while we expect the lower bound to
be nΩ(n1/∆)).

5 Note that for IMMn,n, each Xi has size n2, not n. But the important thing for us here is that the
degree, n, is polynomially related to this parameter.

6 This is known for set-multilinear (and even multilinear) ΣΠΣΠ circuits (see [10, 19]), but those are only
special cases of general product-depth 2 circuits, which are ΣΠΣΠΣ.

D. Kush and S. Saraf 15:5

The best set-multilinear lower bound we know for any explicit polynomial of degree Θ(n)
and in poly(n) variables and for any constant ∆ ≥ 2 is indeed nΩ(n1/∆), from a recent work
by the authors ([22]). However, the polynomial for which these bounds are obtained is not
IMMn,n. The “hard” polynomial in this work is NWn,n, which comes from the class of
so-called Nisan-Wigderson design-based polynomials7 and is known to be in VNP, but not
known to be even in VP. The authors are also able to establish an nΩ(log n) set-multilinear
formula size lower bound for NWn,n in the unbounded-depth setting. By far the most striking
problem left open by this work is to “simplify” the hard polynomial from NWn,n to IMMn,n.

We remark that such a line of simplification has been successful in other contexts in
algebraic complexity theory. Indeed, for several lower bounds for algebraic circuit classes
in the past, a lower bound was initially shown for the NW polynomial and then with
additional effort, was shown to also hold for the IMM polynomial. For instance, [17] showed
a lower bound of nΩ(

√
n) for the top fan-in of a ΣΠ[O(

√
n)]ΣΠ[

√
n] circuit computing the

NW polynomial, which was subsequently shown for IMM by [10]. Similarly, [15] showed an
nΩ(

√
d) size lower bound for homogeneous depth-4 algebraic formulas for the NW polynomial,

which was then shown for IMM later in [21]. In our context of set-multilinear formula lower
bounds, such a simplification from NW to IMM would be especially momentous as it would
directly lead to general formula lower bounds. In this paper, although we are presently
unable to simplify all the way down to IMM, we manage to make significant progress along
this direction.

1.4 Our Results
The main result of this work is the following statement.

▶ Theorem 1. Let N be a growing parameter and ∆ be a constant integer. Then, over
any field of characteristic zero, there is an explicit polynomial PN defined over N = Θ(n2)
variables with degree d = Θ(n) that is set-multilinear with respect to the variable partition
X = (X1, . . . , Xd) where each |Xi| = n and such that:

there is a poly(N)-size set-multilinear branching program computing PN (i.e., its every
internal node computes a set-multilinear polynomial),
any set-multilinear formula of product-depth ∆ computing PN must have size at least
NΩ(d1/∆), and
further, any set-multilinear formula of arbitrary product-depth PN must have size at least
NΩ(log d).

▶ Remark 2. Similar to [22], the lower bound in Theorem 1 is actually dΩ(d1/∆/∆), where
d is the degree of the underlying polynomial, and it holds as long as degree d ≤ n and the
product-depth ∆ ≤ log d/ log log d (the details are deferred to the proof of Theorem 19 in
Section 4).

A few more remarks are in order. First, given that IMMn,n is complete for the class VBP
as described in Section 1.2, one might expect that Theorem 1 immediately implies such a
lower bound for IMMn,n as well, thereby obtaining general formula lower bounds. Curiously,
however, this is not the case. This is because the underlying reduction from PN to IMMn,n

destroys the set-multilinearity of the formula, and hence the set-multilinear formula lower
bounds no longer apply. Nevertheless, we observe that if we can make the hard polynomial in

7 The name is inspired from [24].

CCC 2023

15:6 Near-Optimal Set-Multilinear Formula Lower Bounds

Theorem 1 be computable by a polynomial-sized ordered set-multilinear branching program8,
then that does yield the desired lower bounds for IMMn,n. More precisely, given a variable
partition (X1, . . . , Xd) (say with each |Xi| ≤ n), we say that a set-multilinear branching
program of width n and depth d is ordered with respect to (X1, . . . , Xd) if for each ℓ ∈ [d],
all edges of the ABP from layer ℓ− 1 to layer ℓ are labeled using a linear form in Xℓ. Let
f(X1, . . . , Xd) be a polynomial that can be computed by an ordered set-multilinear ABP A.
Then, given any set-multilinear formula computing IMMn,d (say over the variables {x(ℓ)

i,j }
where i, j ∈ [n] and 1 ≤ ℓ ≤ d), we immediately obtain a set-multilinear formula of the same
size for f by replacing x

(ℓ)
i,j with the linear form e

(ℓ)
i,j , where e

(ℓ)
i,j is the label of the edge in A

between the i-th node of layer ℓ− 1 and j-th node of layer ℓ. As a consequence, any lower
bound on the size of a set-multilinear formula computing f yields a lower bound for one
computing IMMn,d. We conclude that replacing PN in Theorem 1 by any polynomial that is
computable by an ordered set-multilinear ABP would yield general formula lower bounds!
This observation raises the question of the relative power of ordered vs general set-multilinear
ABPs – we leave this as an intriguing open problem (see Section 5).

We also remark that obtaining this precise bound is interesting also when viewed through
the lens of depth-reduction. Tavenas ([35]), building on several prior works ([2, 20]), showed
that any algebraic circuit of poly(N) size computing a homogeneous N -variate polynomial
of degree d can be converted to a homogeneous circuit of product-depth9 ∆ of size NO(d1/∆).
It easily follows from the proof that this depth reduction preserves syntactic restrictions.
That is, if we start with a syntactically set-multilinear circuit, the resulting product-depth
∆ circuit is also syntactically set-multilinear. Therefore, because PN has a polynomial-
sized set-multilinear circuit (in particular, a set-multilinear ABP), it follows that it has a
product-depth ∆ set-multilinear formula of size NO(d1/∆). Furthermore, by classical depth-
reduction results10, it follows that a size s, degree d set-multilinear circuit can be simulated
by a set-multilinear formula of size sO(log d). Hence, the lower bounds we obtain for PN in
Theorem 1 – in both, the constant and unbounded-depth settings – are asymptotically optimal.
In fact, the precise bound in Theorem 1 is also sharp in the sense that any asymptotic
improvement in its exponent for any constant ∆ (say, for a set-multilinear polynomial in
VNP) would imply super-polynomial set-multilinear circuit lower bounds (i.e., set-multilinear
VP ̸= set-multilinear VNP), which would be quite a strong and exciting result, as it would
demonstrate considerable progress towards the VP vs VNP problem.

On a related note, in [22], the authors posed a question about the possibility of obtaining
improved depth-reduction bounds for set-multilinear circuits. More specifically, it was
observed that if any asymptotic improvement in the exponent on the NO(d1/∆) bound for
general circuits from [35] could be shown to hold for set-multilinear circuits in the setting of
Theorem 1 (i.e., when N = Θ(d2)), then combined with the lower bounds for NWn,n, this
would imply super-polynomial set-multilinear circuit lower bounds. It was noted that [10]
rules out the possibility of obtaining a stronger reduction to depth-4, or ΣΠΣΠ circuits, as it
shows an nΩ(

√
n) size lower bound for set-multilinear depth-4 circuits computing IMMn,n,

which of course has small polynomial-sized set-multilinear circuits. Nevertheless, there could
still be the possibility of obtaining improved depth-reduction statements for product-depths
2 (which is ΣΠΣΠΣ and hence more general than depth-4) or higher, and combining it

8 Interestingly, this model, along with that of read-once oblivious ABPs (or ROABPs), has been studied
quite extensively in the polynomial identity testing (PIT) literature; see [9, 1, 12].

9 The result is stated in [35] for ΣΠΣΠ circuits but the proof can be appropriately modified for larger
product-depths.

10 See [37] and then, [4] for an adaptation to the set-multilinear setting.

D. Kush and S. Saraf 15:7

with the lower bound for NWn,n to obtain general set-multilinear circuit lower bounds. We
answer this question in the negative and remark that Theorem 1 implies that an improved
depth-reduction bound for set-multilinear circuits is impossible (at least when N and d are
polynomially related).

We also point out the differences in the quality of the best lower bounds known in the
closely related (and more general) multilinear setting. Despite the multilinear formula model
receiving significant attention in the literature11, to the best of our knowledge, the best known
lower bound for a polynomial of degree n over poly(n) variables even for product-depth 2
multilinear formulas12 is only 2Ω(

√
n) ([7]), and generalizes as 2Ω(∆n1/∆) for higher ∆ ≤ log n.

In contrast, using the terminology of [23], the lower bounds that we obtain for constant
product-depth set-multilinear formulas in this paper (and indeed, in [22]) are stronger,
non-FPT bounds. Furthermore, we point out that even solely the third item of Theorem 1 i.e.,
an nΩ(log n) lower bound for a set-multilinear polynomial of degree n over poly(n) variables
computable by a small set-multilinear branching program, is a new result – as far as we
know, it is not implied by any prior work. For example, though [27] shows that the n× n

determinant and permanent require nΩ(log n) multilinear formula size, these polynomials are
not actually known to have small set-multilinear (or even multilinear) circuits – in fact, they
are conjectured not to ([25]).

We now move on to the second result of this paper. As noted earlier, prior to this work,
the “hard” polynomial for which we had the same lower bounds as Theorem 1 was not known
to be even in VP. In the result below, we construct a set-multilinear polynomial in VP
matching the bounds of [22].

▶ Theorem 3. Let N be a growing parameter and ∆ be a constant integer. Then, over
any field of characteristic zero, there is an explicit polynomial QN defined over N = Θ(n2)
variables with degree d = Θ(n) that is set-multilinear with respect to the variable partition
X = (X1, . . . , Xd) where each |Xi| = n and such that:

there is a poly(N)-size set-multilinear circuit computing QN ,
any set-multilinear formula of product-depth ∆ computing QN must have size at least
NΩ(d1/∆), and
further, any set-multilinear formula of arbitrary product-depth QN must have size at least
NΩ(log d).

▶ Remark 4. Similar to Theorem 1, the lower bound in Theorem 3 is actually dΩ(d1/∆/∆),
where d is the degree of the underlying polynomial, and it holds as long as degree d ≤ n and
the product-depth ∆ ≤ log d/ log log d (the details are deferred to the proof of Theorem 10
in Section 3).

Evidently, despite already being a new result, Theorem 3 is subsumed by Theorem 1.
However, as we shall see in Section 3 and also in the proof overview below, this construction
and the associated lower bound argument is simpler than that of Theorem 1. Moreover, this
argument will be quite instructive and helpful for the reader to ease into the proof of the
main result (Theorem 19 in Section 4).

11 See [25, 30, 7, 6, 16] for results in the bounded-depth setting and [27, 8, 14, 19] for results in the
unbounded-depth setting. Note that however, in many of these works, the “hard” polynomial is not
set-multilinear and as such, the corresponding lower bounds do not even apply in our setting.

12 The situation is significantly better for ∆ = 1 (or multilinear ΣΠΣ formulas) as [16] shows a lower
bound of nΩ(d) – in fact, for IMMn,d.

CCC 2023

15:8 Near-Optimal Set-Multilinear Formula Lower Bounds

1.5 Proof Overview and Relation to Prior Work
In this subsection, we give an overview of the proof techniques used in both Theorems 1 and
3. We divide the subsection into two parts: the first part discusses the construction of our
hard polynomial in VP (which is mainly inspired from a result ([29]) of Raz and Yehudayoff)
and the second part discusses the construction of our hard polynomial in VBP (which relies
upon the arc-partition framework of Dvir, Malod, Perifel, and Yehudayoff ([8])).

VP Construction

We shall first discuss an overview of the proof of Theorem 3. At a high-level, our overall
proof techniques are similar to that of many known lower bounds. We work with a measure
that is known to be small for all polynomials computed by small enough set-multilinear
formulas (suitably so in the bounded and unbounded-depth settings) from the work [22],
where it is also shown to be large for the NW polynomial. These partial derivative measures
were introduced by Nisan and Wigderson in [25], who used them to prove the constant-depth
set-multilinear formula lower bounds we discussed earlier. [23, 36] use a particular variant of
this measure and this measure is in turn inspired from these works.

Given a variable partition (X1, . . . , Xd), the idea is to label each set of variables Xi as
“positive” or “negative” uniformly at random. Let P and N denote the set of positive and
negative indices respectively, and let MP and MN denote the sets of all set-multilinear
monomials over P and N respectively. For a polynomial f that is set-multilinear over the
given variable partition (X1, . . . , Xd), the measure then is simply the rank of the “partial
derivative matrix” M(f) whose rows are indexed by the elements of MP and columns
indexed by NP , and the entry of this matrix corresponding to a row m1 and a column m2 is
the coefficient of the monomial m1 ·m2 in the given polynomial. We remark that though
this was inspired by the measure and the techniques from [23], it is also reminiscent of the
measure used in [26, 27] to prove multilinear formula lower bounds. [22] shows that indeed
for the NW polynomial, the matrix M(NW) always has full-rank (at least when conditioned
on the event |P| = |N |).

In proving Theorem 3, our main contribution is to construct a set-multilinear polynomial
Q such that M(Q) always has full-rank – but in addition, Q is computable by a small
set-multilinear circuit. For this, we turn to the literature on the multilinear setting for
inspiration. In [26], Raz constructed a multilinear polynomial g computable by a small
multilinear circuit and showed a super-polynomial (general-depth) multilinear formula size
bound for it. The measure used was the rank of a matrix defined analogously to M(·). Our
starting point for constructing Q was a simplification of g (which we call h) by Raz and
Yehudayoff ([29]) using Dyck words13, which we shall describe in more detail in Section
3. One idea that is key in these constructions is the introduction of auxiliary variables:
h = h(X, Λ) is defined over an original variable set X = {x1, . . . , xn} and an auxiliary
variable set Λ of poly(n) size. It is then shown that the matrix associated to h(X) has
full-rank (i.e., h has “large” measure), when viewed as a matrix over the extended field F(Λ).
In other words, the auxiliary variables assist in showing that its matrix (whose entries are
now polynomials over variables in Λ) is non-singular.

While attempting to “set-multilinearize” the construction of h(X, Λ) in order to define
our Q(XQ, ΛQ) (say where XQ = (X1, . . . , Xd) and each |Xi| = n), we were able adapt
the correct (i.e., a set-multilinear) dependence of Q on the XQ-variables (from that of h

13 [29] does not actually explicitly use Dyck words in its construction, but we benefited from its exposition
given in [32].

D. Kush and S. Saraf 15:9

on X) in a relatively straightforward manner – this involved picking the right “gadget” or
“building block” in the set-multilinear setting, which turns out to the inner product gadget
(see Observation 8). Essentially, the simple observation that if X1 is labeled “positive”
and X2 is labeled “negative”, then the n × n matrix corresponding to the inner product
polynomial X1 · X2 is full-rank allows us to “build” more complicated and higher-degree
full-rank polynomials, similar to how h is “built” by [29]. However, the main hurdle that
we encountered while trying to construct Q using the construction of h was to achieve the
correct dependence on the auxiliary variables. The issue is that if we introduce too many
sets of auxiliary variables (i.e., if ΛQ = (Λ1, . . . , Λd′) and d′ = ω(d)), then the degree of the
polynomial blows up and because we work over the extended field F(Λ), the final quantitative
expression for the lower bound in the constant-depth case of Theorem 3 suffers (in fact,
it becomes even worse than the aforementioned lower bound of [7] in the constant-depth
multilinear formula model). As a consequence, we need to be judicious in our use of the
auxiliary variables – we highlight some of the finer details later on in Section 3. For this
reason, the analysis of our hard polynomial being full-rank ends up being more intricate
than [29]. In turn, this leads to the demand that the characteristic of F be zero – although
we suspect that this assumption should not be necessary; see the discussion in Section 5.

VBP Construction

For proving Theorem 1, we build upon the work of Dvir, Malod, Perifel, and Yehudayoff ([8]),
who showed the first separation between multilinear branching programs and formulas. That
is, they constructed an n-variate polynomial F that can be computed by a small multilinear
branching program, but needs multilinear formulas of size nΩ(log n) to compute. Our overall
strategy is to adapt their approach to our set-multilinear setting – however, there are some
inherent difficulties in doing so because of the nature of the very strong bounds sought in
the low-depth setting (which was not an issue for [8] as this setting was not considered in
that work). In what follows, we provide an overview of the arc-partition framework of [8],
state it in our set-multilinear setting, and describe the additional challenges we face with the
adaptation.

The proof of Theorem 1 consists of two parts: (i) constructing a small set-multilinear
ABP computing a polynomial G and (ii) showing that any set-multilinear multilinear formula
computing G must be very large (appropriately so in the constant and general-depth settings).
The two parts have opposing demands: In part (i) we wish to make the polynomial G simple
enough so that a small ABP can compute it, whereas in part (ii) we will need to rely on the
hardness of G to prove lower bounds. One might wonder if we can get away with using the
same rank measure that was defined above for the VP construction in order to meet these
two demands. However, as far as we know, full-rank polynomials (in the sense described
above) may also require super-polynomial sized set-multilinear ABPs. [8] were faced with a
similar challenge: full-rank multilinear polynomials (say with respect to the aforementioned
analogous measure of [26]) may also require super-polynomial sized multilinear ABPs. Thus,
in order to prove a separation between multilinear ABPs and formulas, they sought a property
which is weaker than being full-rank but is still useful enough for proving lower bounds. One
of the main ideas in their proof is an ingenious construction of a special subset of partitions,
called arc-partitions, which is sufficiently powerful to carry through the lower bound proof
and, at the same time, simple enough to carry part (i) of the proof. In this context, a
partition simply refers to a particular “positive”/“negative” labelling of the variable sets
X1, . . . , Xd. The point is that the support of the distribution over these arc-partitions turns
out to be much smaller than the support of the uniform distribution over such labellings that

CCC 2023

15:10 Near-Optimal Set-Multilinear Formula Lower Bounds

was used as our measure in the VP construction. Nevertheless, after overcoming some hurdles
that we soon describe, we are able to adapt their argument to show that every arc-full-rank
polynomial f (i.e., the matrix M(f) is always full-rank, but now defined only with respect
to the labellings coming from this special arc-partition distribution, instead of the uniform
distribution) must have very large set-multilinear formulas – appropriately so in the constant
and general-depth settings.

Let us now describe this family of partitions (stated in our set-multilinear setting) and its
advantages. More specifically, we will describe a distribution over partitions (or labellings,
as explained above). The partitions that will have positive probability of being obtained in
this distribution will be called arc-partitions. The distribution is defined according to the
following (iterative) sampling algorithm. Position the d variable sets on a cycle with d nodes
so that there is an edge between i and i + 1 modulo d. Start with the arc [L1, R1] = {1, 2}
(an arc is a connected path on the cycle). At step t > 1 of the process, maintain a partition
of the arc [Lt, Rt]. “Grow” this partition by first picking a pair uniformly at random out of
the three possible pairs {Lt− 2, Lt− 1}, {Lt− 1, Rt + 1}, {Rt + 1, Rt + 2}, and then choosing
a labelling (or partition) Π on this pair i.e., assigning one of them “positive” and the other
“negative” uniformly at random. After d/2 steps, we have chosen a partition of the d variable
sets into two disjoint, equal-size sets of variables P and N .

Given these arc-partitions of [8], let us now briefly describe how we obtain the desired
optimal lower bounds in the constant-depth setting. In part (i) of the proof, in order to
construct an arc-full-rank set-multilinear branching program, we face similar challenges as
we did in the VP construction – but similarly, a more careful use of the auxiliary variables
comes to the rescue. Next, we show that with high probability over the arc-partition
distribution, the rank of a polynomial computed by a product-depth ∆ set-multilinear
formula is (appropriately) small. This is done via a proof by induction on ∆. We separately
show that each summand Ci of C = C1 + · · · + Ct for a product-depth ∆ formula C has
small enough rank, yielding the desired bound by the sub-additivity of rank. There are two
cases: either Ci already has a factor of very large degree (i.e., at least ∼ d

∆−1
∆ , which allows

us to use the inductive hypothesis for ∆− 1) or otherwise, we argue that we may assume
that it has many factors (roughly K ∼ d1/∆ many) of a similar degree. It is this inductive
argument (and specifically, the first case) that forces us to work with an arc-partition over a
larger D-cycle (where D ≥ d) – one of the reasons contributing to a more nuanced analysis
than [8]. In the second case, the many factors then define a “non-redundant” K-coloring of
the d variable sets. This is simply a (partial) mapping Ci : [D]→ [K] so that the pre-images
of every color k ∈ [K] are not too small (and of similar sizes). A color k is said to be
“balanced” with respect to a partition Π if the number of “positive” variable sets of color
k is roughly the same as the number of “negative” variable sets of color k. Now, for a
given coloring Ci, if we choose a random partition Π from the set of all partitions, simple
properties of the hyper-geometric distribution imply that the probability that all colors in
Ci are “balanced” is at most p = d−Ω(K) = d−Ω(d1/∆). This bound, in turn, proves a roughly
1/p = dΩ(d1/∆) lower bound for the size of product-depth ∆ set-multilinear formulas for the
VP construction (Theorem 3). Following a similar overall outline, we adapt the [8] argument
to show that for any “non-redundant” partial K-coloring Ci, for a random arc-partition, the
probability that all colors in Ci are “balanced” is at most d−Ω(K) as well. This turns out
to be significantly more difficult than showing it for a random partition (from the set of all
partitions). Furthermore, because we seek such strong and optimal bounds in the low-depth
setting, the analysis turns out to be more intricate (Section 4.4 in particular). Throughout
Section 4 where we formally prove Theorem 1, we have suitably placed remarks to point out
the locations where we require a different technical or conceptual argument than [8].

D. Kush and S. Saraf 15:11

2 Preliminaries

2.1 Relative Rank and its Properties

We first describe the notation that we need to define the measures that we use to prove
Theorems 1 and 3.

▶ Definition 5 (Relative Rank Measure of [23, 36]). Let f be a polynomial that is set-
multilinear with respect to the variable partition (X1, X2, . . . , Xd) where each set is of size n.
Let w = (w1, w2, . . . , wd) be a tuple (or word) of non-zero real numbers such that 2|wi| ∈ [n]
for all i ∈ [d]. For each i ∈ [d], let Xi(w) be the variable set obtained by removing arbitrary
variables from the set Xi such that |Xi(w)| = 2|wi|, and let X(w) denote the tuple of sets of
variables (X1(w), . . . , Xd(w)). Corresponding to a word w, define Pw := {i | wi > 0} and
Nw := {i | wi < 0}. Let MP

w be the set of all set-multilinear monomials over a subset of the
variable sets X1(w), X2(w), . . . , Xd(w) indexed by Pw, and similarly let MN

w be the set of
all set-multilinear monomials over these variable sets indexed by Nw.

Define the ‘partial derivative matrix’ matrix Mw(f) whose rows are indexed by the
elements of MP

w and columns indexed by the elements of NP
w as follows: the entry of this

matrix corresponding to a row m1 and a column m2 is the coefficient of the monomial m1 ·m2
in f . We define

relrkw(f) := rank(Mw(f))√
|MP

w | · |MN
w |

= rank(Mw(f))

2
1
2

∑
i∈[d]

|wi|
.

▶ Definition 6. For any tuple w = (w1, . . . , wt) and a subset S ⊆ [t], we shall refer to the
sum

∑
i∈S wi by wS. And by w|S, we will refer to the tuple obtained by considering only

the elements of w that are indexed by S. We denote by Fsm[T] the set of set-multilinear
polynomials over the tuple of sets of variables T .

The following is a simple result that establishes various useful properties of the relative
rank measure.

▷ Claim 7 ([23]).
1. (Imbalance) Say f ∈ Fsm[X(w)]. Then, relrkw(f) ≤ 2−|w[d]|/2.
2. (Sub-additivity) If f, g ∈ Fsm[X(w)], then relrkw(f + g) ≤ relrkw(f) + relrkw(g).
3. (Multiplicativity) Say f = f1f2 · · · ft and assume that for each i ∈ [t], fi ∈ Fsm[X(w|Si)],

where (S1, . . . , St) is a partition of [d]. Then

relrkw(f) =
∏
i∈[t]

relrkw|Si
(fi).

2.2 Inner Product Gadget

We crucially need the following observation to construct the hard polynomials in Theorems 1
and 3.

▶ Observation 8. Let n = 2k and X1 = {x1,1, . . . , x1,n} and X2 = {x2,1, . . . , x2,n} be
two disjoint sets of variables. Then, for any symmetric word w ∈ {k,−k}2 (i.e., where
w1 + w2 = 0) and for the inner product “gadget” f = X1 ·X2 =

∑n
i=1 x1,ix2,i, relrkw(f) = 1

i.e., Mw(f) is full-rank.

CCC 2023

15:12 Near-Optimal Set-Multilinear Formula Lower Bounds

3 A Hard Set-multilinear Polynomial in VP

3.1 Description of the Polynomial
Let d be an even integer and let X = (X1, . . . , Xd) be a collection of sets of variables where
each |Xi| = n, and similarly, let Y = (Y1, . . . , Yd) be a distinct collection of sets of variables
where each |Yi| = n. We shall refer to the Y -variables as the auxiliary variables. For i and
j ∈ {1, . . . , d}, let Xi ·Xj denote the inner-product quadratic form

∑n
k=1 xikxjk. Here, we

shall assume that Xi = {xi,1, . . . , xi,n} and Yi = {yi,1, . . . , yi,n}.
For two integers i ∈ N and j ∈ N, we denote [i, j] = {k ∈ N : i ≤ k and k ≤ j}

and call such a set an interval. For every interval [i, j] ⊆ [d], we define a polynomial
fi,j(X, Y) ∈ Fsm[Xi, . . . , Xj , Yi, . . . , Yj] as follows:

fi,j =

yi,jyj,i(Xi ·Xj) if j = i + 1
0 if j − i is even
yi,jyj,i(Xi ·Xj) · fi+1,j−1 +

∑j−1
r=i+1 fi,rfr+1,j otherwise

▶ Remark 9. As described in Section 1.5, other than the use of the inner product gadget, one
key difference between fi,j and the construction in [29] is that it uses fewer auxiliary variables.
More specifically, while [29] had a “fresh” auxiliary variable for every choice of i, r, j in the
sum, we are unable to afford that not only because it destroys the set-multilinearity of the
polynomial but most importantly, because of the aforementioned degree blow-up. This is
also the reason why more straightforward attempts to “set-multilinearize” [29] such as by
adding two “copies” y0 and y1 for each of their auxiliary variables y (where intuitively y0
and y1 correspond to setting y as 0 or 1 respectively in their argument) do not work.

The following is a more precise and general version of Theorem 3 that is stated in
Section 1. We also incorporate Remark 4 here and show our lower bound for any degree
d ≤ n. Theorem 3 follows from the special case d = n.

▶ Theorem 10. Let n = 2k, and suppose d ≤ n be an even integer that is large enough14,
and 1 ≤ ∆ ≤ log d/ log log d be any positive integer. Let Xi, Yi denote the sets of n variables
{xi,j : j ∈ [n]} and {yi,j : j ∈ [n]} respectively and let X, Y be the tuples (X1, . . . , Xd) and
(Y1, . . . , Yd). Then,

there is a poly(n, d)-size set-multilinear circuit computing Fn,d = f1,d(X, Y) as defined
above,
any set-multilinear formula of product-depth ∆ computing Fn,d must have size at least
dΩ(d1/∆/∆), and
further, any set-multilinear formula of arbitrary product-depth computing Fn,d must have
size at least dΩ(log d).

3.2 Proof of Hardness
Note that the first item in Theorem 10 follows immediately from the recursive definition of
f1,d (notice that there are only up to d2 many distinct intervals of [d]). For proving the next
two items, we invoke the symmetric word framework of [22]. The following couple of lemmas
help establish that the relative rank measure with respect to symmetric words is (suitably)
small for low-depth and general-depth set-multilinear formulas, respectively.

14 We only need d to be larger than some absolute constant.

D. Kush and S. Saraf 15:13

▶ Lemma 11 ([22]). Let C be a set-multilinear formula of product-depth 1 ≤ ∆ ≤
log d/ log log d of size at most s which computes a polynomial (over any fixed field) that
is set-multilinear with respect to the partition (X1, . . . , Xd) where each |Xi| = n. Let
w ∈ {k,−k}d be chosen uniformly at random. Then, we have

relrkw(C) ≤ s · 2− kd1/∆
20

with probability at least 1− s · d− d1/∆
12∆ .

▶ Lemma 12 ([22]). Let F be a set-multilinear formula of size at most s which com-
putes a polynomial (over any fixed field) that is set-multilinear with respect to the partition
(X1, . . . , Xd) where each |Xi| = n. Let w ∈ {k,−k}d be chosen uniformly at random. Then,
we have

relrkw(F) ≤ s · 2− k log d
20

with probability at least 1− s · d− log d
60 .

Next, we shall show that the hard polynomial Fn,d in Theorem 10 has high relative rank
(in fact, the maximum possible value – 1) with respect to a symmetric word. For this, we
consider an alternate view of these polynomials and require the following notion. For an
even integer d, define Dyck(d) to be the collection of all strings (called Dyck words) of length
d over symbols ‘(’ and ‘)’ that are well-matched in the natural way. More precisely, it is the
collection of all strings u of length d such that all prefixes of u contain no more)’s than (’s
and the total number of (’s in u equals the total number of). For example, “()()” and “(())”
belong to Dyck(4) but not “(()(”. Note that for any ‘(’ appearing in a Dyck word, there is
a unique ‘)’ which “closes” it. Given a Dyck word u ∈ Dyck(d), we call (i, j) a matching
parenthesis pair of u if there is ‘(’ in the i-th position of u that is closed by a ‘)’ in the j-th
position of u (clearly then, j − i > 0 must be odd).

Given a string u ∈ Dyck(d) and the setup above for defining the polynomials fi,j , we
can associate to u a product of inner products polynomial IPu ∈ Fsm[Xi, . . . , Xj] in the
natural way: define IPu to be the product of all Xi ·Xj where (i, j) is a matching parenthesis
pair of u. For example, the strings “()()” and “(())” would correspond to the polynomials
(X1 · X2) · (X3 · X4) and (X1 · X4) · (X2 · X3) respectively. We define yu analogously:
it is the product of all yi,j · yj,i where (i, j) is a matching parenthesis pair of u. So, if
u = “(())” ∈ Dyck(4), then yu = y1,4y4,1y2,3y3,2. The following observation then follows
immediately from the recursive definition of fi,j .

▶ Observation 13. For every interval [i, j] ⊆ [d] where j−i is odd, there exist constants cu ∈ F
corresponding to every u ∈ Dyck(j− i + 1) such that fi,j(X, Y) =

∑
u∈Dyck(j−i+1) cuyuIPu

15.
Moreover, if F has characteristic zero, then every cu ̸= 0.

▷ Claim 14. Let d be a positive even integer. For any w ∈ {−k, k}d with w[d] = 0 (i.e.,
|Pw| = |Nw|), there exists a Dyck work u ∈ Dyck(d) such that for every matching parenthesis
pair (i, j) of u, either i ∈ Pw and j ∈ Nw, or i ∈ Nw and j ∈ Pw.

Proof. We prove this by induction on d. The base case d = 2 is trivial as there is only a
single matching parenthesis pair (1, 2) for which the given condition must indeed hold. Now,
suppose d > 2 and w ∈ {−k, k}d is a given word with w[d] = 0. Let us refer to Pw and Nw

as the two “parts” of w and take cases on the membership of 1 and d in these sets.

15 Strictly speaking, the indices within IPu and yu here need to be “translated” appropriately to suit the
interval [i, j] (which may not necessarily be [1, j − i + 1]).

CCC 2023

15:14 Near-Optimal Set-Multilinear Formula Lower Bounds

Case 1: 1 and d are in different parts. By the induction hypothesis, there is a Dyck word
u′ ∈ Dyck(d − 2) (corresponding to the subset {2, . . . , d − 1} of indices) for which the
desired condition holds. Hence, we can simply define u to be the string “(u′)” and the
claim follows.

Case 2: 1 and d are in the same part. Notice that there exists an index r such that both
w[1,r] and w[r+1,d] are 0. Then, we can define u to be the concatenation of the two Dyck
words that the induction hypothesis yields for the intervals [1, r] and [r + 1, d] respectively
and the claim follows. ◁

▶ Lemma 15. Let n = 2k and d ≤ n be an even integer. Over any field F of characteristic
zero, the polynomial Fn,d = f1,d ∈ Fsm[X, Y] as defined above satisfies the following: For any
w ∈ {−k, k}d with w[d] = 0, Mw(Fn,d) is full-rank when viewed as a matrix over the field
F(Y), the field of rational functions over the Y variables.

Proof. Fix a word w ∈ {−k, k}d with w[d] = 0 and let s ∈ Dyck(d) be a Dyck word as given
by Claim 14. By Observation 13, we know that F = f1,d has the form

∑
u∈Dyck(d) cuyuIPu.

Consider the polynomial f obtained by plugging in yi,j = yj,i = 0 for every i, j such that (i, j)
is not a matching parenthesis pair of s, and yi,j = yj,i = 1 for every i, j such that (i, j) is a
matching parenthesis pair of s. Observe that the only surviving term from F in f is the one
indexed by s. Therefore, to argue that Mw(F) is full-rank over F(Y)16, it suffices to show
that Mw(csIPs) is full-rank. As cs ̸= 0 by Observation 13, this follows from Observation 8
(the matrix of the inner product gadget has full rank), Claim 14 (w “splits” every matching
parenthesis pair of s), and Claim 7 (the multiplicativity of relrkw). ◀

Let us return to the proof of the last two items of Theorem 10. Let C be a set-multilinear
formula of product depth ∆ of size s computing Fn,d(X) (now interpreted as a formula
over the field F(Y)). Suppose s < d

d1/∆
24∆ . Then, by Lemma 11, with probability at least

1− d− d1/∆
24∆ ,

relrkw(C) ≤ s · 2− kd1/∆
20 .

But now, we can condition on the event that w[d] = 0 (which occurs with probability
Θ(1√

d
)) to establish the existence of a word w ∈ {−k, k}d with w[d] = 0 such that w satisfies

relrkw(C) ≤ s · 2− kd1/∆
20 . This is because of the asymptotic bound 1√

d
≫ d− d1/∆

24∆ , which
follows from the given constraints on the parameters d, ∆. Therefore, by Lemma 15,

s ≥ 2 kd1/∆
20 · relrkw(C) = n

d1/∆
20

which contradicts the assumption that s < d
d1/∆
24∆ . Thus, we conclude that s ≥ d

d1/∆
24∆ =

dΩ(d1/∆/∆).
Similarly, to see the final item of Theorem 10, let F be a set-multilinear formula of size

s computing Fn,d (now interpreted as a formula over the field F(Y)). Suppose s < d
log d
120 .

Then, by Lemma 12, with probability at least 1− d− log d
120 ,

relrkw(F) ≤ s · 2− klog d
20 .

16 We need to show that its determinant – a polynomial in F[Y] – is non-zero.

D. Kush and S. Saraf 15:15

But now, we can condition on the event that w[d] = 0 (which occurs with probability
Θ(1√

d
)) to establish the existence of a word w ∈ {−k, k}d with w[d] = 0 such that w satisfies

relrkw(F) ≤ s · 2− klog d
20 . This is because of the trivial asymptotic bound 1√

d
≫ d− log d

120 .
Therefore, again by Lemma 15,

s ≥ 2
klog d

20 · relrkw(F) = n
log d

20

which contradicts the assumption that s < d
log d
120 . Thus, we conclude that s ≥ d

log d
120 = dΩ(log d).

4 A Hard Set-multilinear Polynomial in VBP

4.1 Arc-partition Measure Description
This subsection is adapted from Section 2 of [8]. Let n = 2k, d ≤ n be an even integer, and
let X = (X1, X2, . . . , Xd) be a collection of disjoint sets of n variables each. An arc-partition
will be a special kind of symmetric word w ∈ {−k, k}d (i.e., a one-to-one map Π from X to
{−k, k}d). For the purpose of this subsection, the reader can even choose to think of the
alphabet of w as {−1, 1} (i.e., one “positive” and one “negative” value) – we use k,−k only
to remain consistent with Definition 5.

Identify X with the set {1, 2, . . . , d} in the natural way. Consider the d-cycle graph,
i.e., the graph with nodes {1, 2, . . . , d} and edges between i and i + 1 modulo d. For two
nodes i ̸= j in the d-cycle, denote by [i, j] the arc between i, j, that is, the set of nodes
on the path {i, i + 1, . . . , j − 1, j} from i to j in d-cycle. First, define a distribution DP

on a family of pairings (a list of disjoint pairs of nodes in the cycle) as follows. A random
pairing is constructed in d/2 steps. At the end of step t ∈ [d/2], we shall have a pairing
(P1, . . . , Pt) of the arc [Lt, Rt]. The size of [Lt, Rt] is always 2t. The first pairing contains
only P1 = {L1, R1} with L1 = 1 and R1 = 2. Given (P1, . . . , Pt) and [Lt, Rt], define the
random pair Pt + 1 (independently of previous choices) by

Pt+1 =

{Lt − 2, Lt − 1} with probability 1/3
{Lt − 1, Rt + 1} with probability 1/3
{Rt + 1, Rt + 2} with probability 1/3

Define

[Lt+1, Rt+1] = [Lt, Rt] ∪ Pt+1.

So, Lt+1 is either Lt − 2, Lt − 1 or Lt, each value is obtained with probability 1/3, and
similarly (but not independently) for Rt+1.

The final pairing is P = (P1, P2, . . . , Pd/2). Denote by P ∼ DP a pairing distributed
according to DP .

Once a pairing P has been obtained, a word w ∈ {−k, k}d is obtained by simply randomly
assigning +k and −k to the indices of any pair Pi. More formally, for every t ∈ [n/2], if
Pt = {it, jt}, let with probability 1/2, independently of all other choices,

wit = +k and wjt = −k,

and with probability 1/2,

wit = −k and wjt = +k.

Denote by w ∼ D a word in {−1, 1}n that is sampled using this procedure. We call such a
word an arc-partition. For a pair Pt = {it, jt}, we refer to it and jt as partners.

▶ Definition 16 (Arc-full-rank). We say that a polynomial f that is set-multilinear over
X = (X1, . . . , Xd) is arc-full-rank if for every arc-partition w ∈ {−k, k}d, relrkw(f) = 1.

CCC 2023

15:16 Near-Optimal Set-Multilinear Formula Lower Bounds

4.2 Construction of an Arc-full-rank Polynomial
Below, we describe a simple construction of an ABP that computes an arc-full-rank set-
multilinear polynomial. The high-level idea is to construct an ABP in which every path
between start-node and end-node corresponds to a specific execution of the random process
which samples arc-partitions. Each node in the ABP corresponds to an arc [L, R], which
sends an edge to each of the nodes [L− 2, R], [L− 1, R + 1] and [L, R + 2]. The edges have
specially chosen labels that help guarantee full rank with respect to every arc-partition. For
simplicity of presentation, we allow the edges of the program to be labeled by degree three
polynomials in three variables. This assumption can be easily removed by replacing each
edge with a constant-size ABP computing the corresponding degree three polynomial.

Formally, the nodes of the program are even-size arcs in the d-cycle, d an even integer.
The start-node of the program is the empty arc ∅ and the end-node is the whole cycle [d]
(both are “special” arcs). Let X = (X1, . . . , Xd) be a collection of sets of variables where
each |Xi| = n, and similarly, let Y = (Y1, . . . , Yd) be a distinct collection of sets of variables
where each |Yi| = n (we shall refer to the Y -variables as auxiliary variables). For i and j in
{1, . . . , d}, let Xi ·Xj denote the inner-product quadratic form

∑n
k=1 xikxjk. Here, we shall

assume that Xi = {xi,1, . . . , xi,n} and Yi = {yi,1, . . . , yi,n}.
Construct the branching program by connecting a node/arc of size 2t to three nodes/arcs

of size 2t + 2. For t = 1, there is just one node [1, 2], and the edge from start-node to it is
labeled y1,2y2,1(X0 ·X1). For t > 1, the node [L, R] ⊃ [1, 2] of size 2t < d is connected to
the three nodes: [L− 2, R], [L− 1, R + 1], and [L, R + 2]. (It may be the case that the three
nodes are the end-node.) The edge labeling is:

The edge between [L, R] and [L− 2, R] is labeled yL−2,L−1yL−1,L−2(XL−2 ·XL−1).
The edge between [L, R] and [L− 1, R + 1] is labeled yL−1,R+1yR+1,L−1(XL−1 ·XR+1).
The edge between [L, R] and [L, R + 2] is labeled yR+1,R+2yR+2,R+1(XR+1 ·XR+2).

Consider the ABP thus described, and the polynomial G = Gn,d it computes. For every
path γ from start-node to end-node in the ABP, the list of edges along γ yields a pairing P ;
every edge e in γ corresponds to a pair Pe = {ie, je} of nodes in d-cycle. Thus,

G =
∑

γ

∏
e={ie,je}∈γ

yie,jeyje,ie · (Xie ·Xje). (1)

where the sum is over all paths γ from start-node to end-node.

▶ Remark 17. There is in fact a one-to-one correspondence between pairings P and such
paths γ (this follows by induction on t). Note that this is true only because pairings are
tuples i.e., they are ordered by definition. Otherwise, it is of course still possible to obtain
the same set of pairs in a given pairing using multiple different orderings. The sum defining
G can be thought of, therefore, as over pairings P .

The following statement summarizes the main useful property of G.

▶ Lemma 18. Over any field F of characteristic zero, the polynomial G = Gn,d defined
above is arc-full-rank as a set-multilinear polynomial in the variables X over the field F(Y)
of rational functions in Y .

Proof. Let w ∼ D be an arc-partition. We want to show thatMw(G) has full rank. The arc-
partition w is defined from a pairing P = (P1, . . . , Pd/2) (though as discussed in Remark 17,
there could be multiple such P). The pairing P corresponds to a path γ from start-node to
end-node. Consider the polynomial f that is obtained by setting every yi,j = yj,i = 0 in F

D. Kush and S. Saraf 15:17

such that {i, j} is not a pair in P , and setting every yi,j = yj,i = 1 for every pair {i, j} in P .
Then, it is easy to see that the only terms that survive in (1) correspond to paths (and in
turn, pairings) which have the same underlying set of pairs as P . As a consequence, f is
simply some non-zero constant times a polynomial which is full-rank. Mw(f) being full rank
then implies that Mw(G) is also full-rank17. ◀

4.3 Bounding relrkw for Small Set-multilinear Formulas
As discussed in Section 1, the high-level strategy to prove Theorem 1 is to show that the
relative rank (with respect to arc-partitions) of our hard polynomial is large (as already
established in Lemma 18), while it is small for (small enough) set-multilinear formulas. The
remainder of the section is devoted to establishing the latter. Before moving on to it, we shall
first state the following more precise and general version of Theorem 1. We also incorporate
Remark 2 here and show our lower bound for any degree d ≤ n. Theorem 1 follows from the
special case d = n.

▶ Theorem 19. Let n = 2k, and suppose d ≤ n be an even integer that is large enough18, and
1 ≤ ∆ ≤ log d/ log log d be any integer. Let Xi, Yi denote the sets of n variables {xi,j : j ∈ [n]}
and {yi,j : j ∈ [n]} respectively and let X, Y be the tuples (X1, . . . , Xd) and (Y1, . . . , Yd).
Then,

there is a poly(n, d)-size branching program computing Gn,d as defined above whose every
internal node computes a set-multilinear polynomial,
any set-multilinear formula of product-depth ∆ computing Gn,d must have size at least
dΩ(d1/∆/∆).
Further, any set-multilinear formula of arbitrary product-depth computing Gn,d must have
size at least dΩ(log d).

The following couple of lemmas formalize the high-level idea mentioned before the
statement of Theorem 19 – they correspond to the low-depth case and general depth case
respectively. Most of the remainder of this section is devoted to the proof of Lemma 20;
Lemma 22 has a similar (and in fact, easier) proof and for this reason, we only provide a
sketch that is deferred to the appendix.

▶ Lemma 20. Let K be any field and let X1, . . . , XD be sets of n distinct variables each.
Let C be a set-multilinear formula over K of constant product-depth ∆ ≥ 1 of size at most
s which computes a polynomial over K that is set-multilinear with respect to the partition
(Xi1 , . . . , Xid

) where 1 ≤ i1 < · · · < id ≤ D and each |Xi| = n. Let w ∼ D be an arc-partition
sampled from {−k, k}D. Then, we have

relrkw(C) ≤ s · 2− kd1/∆
2000

with probability at least 1− s · d− d1/∆
107∆ .

▶ Remark 21. Note that in the statement above, we are abusing notation and overloading
the relrkw notation – assume that relrkw(C) is defined in the obvious projective manner i.e.,
if S = {i1, . . . , id}, then relrkw(C) := relrkw|S

(C) where w|S is as defined in Definition 6.

17 This argument is the same as in the proof of Lemma 15.
18 We only need d to be larger than some absolute constant.

CCC 2023

15:18 Near-Optimal Set-Multilinear Formula Lower Bounds

▶ Lemma 22. Let K be any field and let X1, . . . , Xd be sets of n distinct variables each. Let
F be a set-multilinear formula over K of size at most s which computes a polynomial over K
that is set-multilinear with respect to the partition (X1, . . . , Xd) where each |Xi| = n. Let
w ∼ D be an arc-partition sampled from {−k, k}d. Then, we have

relrkw(F) ≤ s · 2− k log d
2000

with probability at least 1− s · d− log d

107∆ .

Before moving on to the technical core of this section (the proof of Lemma 20), let us
finish the proof of Theorem 19.

Proof of Theorem 19 given Lemmas 20 and 22. Note that the first item follows immedi-
ately from the definition of Gn,d (see (1)). Let us prove the last two items of Theorem 19.
Let C be a set-multilinear formula of product depth ∆ of size s computing Gn,d(X) (now

interpreted as a formula over the field F(Y)). Suppose s < d
d1/∆

2×107∆ . Then, by Lemma 20,
for an arc-partition w ∼ D sampled from {−k, k}d, it follows that with probability at least

1− d
− d1/∆

2×107∆ ,

relrkw(C) ≤ s · 2− kd1/∆
2000 .

Fix such an arc-partition w. By Lemma 18, we have

s ≥ 2 kd1/∆
2000 · relrkw(C) = n

d1/∆
2000

which contradicts the assumption that s < d
d1/∆

2×107∆ . Thus, we conclude that s ≥ d
d1/∆

2×107∆ =
dΩ(d1/∆/∆).

Similarly, to see the final item of Theorem 19, let F be a set-multilinear formula of size
s computing Gn,d (now interpreted as a formula over the field F(Y)). Suppose s < d

log d

2×107 .
Then, for an arc-partition w ∼ D sampled from {−k, k}d, by Lemma 22, with probability at
least 1− d

− log d

2×107 ,

relrkw(F) ≤ s · 2− klog d
2000 .

Fix such an arc-partition w. Therefore, again by Lemma 18,

s ≥ 2
klog d
2000 · relrkw(F) = n

log d
2000

which contradicts the assumption that s < d
log d

2×107 . Thus, we conclude that s ≥ d
log d

2×107 =
dΩ(log d). ◀

The essential ingredient in the proof of Lemma 20 is a combinatorial proposition which
we will call the “many violations lemma”. As alluded to in Section 1.5, this is a modification
of a corresponding statement in [8] (Lemma 4.1). However, because we are working in the
low-depth setting (as opposed to [8]) and because we are seeking such strong and near-optimal
lower bounds, we need to make significant changes – this includes introducing new conceptual
arguments to tighten the analysis. To state this lemma, we shall reproduce some of the
definitions made in Section 4 of [8].

Again, we identify the set of variables X = (X1, . . . , XD) with the D-cycle {1, . . . , D},
where addition is modulo D. Let S be a collection of disjoint subsets of the cycle to K parts,
namely, S = (S1, . . . , SK) where each Sk ⊂ {1, . . . , D} and Sk ∩ Sk′ = ∅ for all k ̸= k′ in [K].

D. Kush and S. Saraf 15:19

We also think of [K] as a set of colors, and of S as a (partial) K-coloring of some d nodes of
the cycle, where d = |S1|+ · · ·+ |SK |. We shall refer to the nodes in the D-cycle outside of
S as uncolored.

For a pairing P , define the number of k-violations by

Vk(P) = {Pt ∈ P : |Pt ∩ Sk| = 1}.

In words, it is the set of pairs in which one color is k and the other color is different. Fix
ε = 1/1000 and denote

G(P) = {k ∈ [K] : |Vk(P)| ≥ dε}.

We do not include S as a subscript in these two notations since S will be known from the
context (and will be fixed throughout most of the discussion). The next crucial lemma shows
that for every fixed non-redundant K-coloring of the cycle, a random pairing has, with high
probability, many colors with many violations.

▶ Lemma 23 (Many Violations Lemma). For all large enough d and for all integers K in the
range [2d

1
∆+1 /3, 2d

1
∆+1] the following holds: Let S = (S1, . . . , SK) be a collection of disjoint

subsets of the D-cycle and suppose that |Sk| ≥ d
∆

∆+1 /2 for all k ∈ [K]. Then,

P[G(P) ≤ K/1000] ≤ d−K/500,

where P ∼ DP .

▶ Remark 24. Other than the differences in parameter ranges, one key difference between
the statement above from Lemma 4.1 in [8] is the loosening of the requirement that S be a
partition of the D-cycle. Note that here, we only demand that S be a collection of disjoint
subsets (i.e., some nodes are allowed to remain uncolored) – this requirement is indeed key
for the inductive proof of Lemma 20 to go through.

Before proving Lemma 23, let us next see that the many violations lemma suffices to
prove the relative rank upper bound on low-depth set-multilinear formulas.

Proof of Lemma 20 given Lemma 23. We prove the statement by induction on ∆. Identify
the set {i1, . . . , id} with [d].

If ∆ = 1, then C = C1 + · · ·+ Ct where each Ci is a product of linear forms. So, for all
i ∈ [t], by Claim 7,

relrkw(Ci) =
d∏

i=1
2− 1

2 |wj | = 2− kd
2

where in the last step, we used the observation that regardless of the choice of w, |wj | = k

for all j ∈ [n]. Hence, by the sub-additivity of relrkw, with probability 1, we have

relrkw(C) ≤ s · 2− kd
2 ≤ s · 2− kd

2000 .

Next, we assume the statement is true for all formulas of product-depth ≤ ∆. Let C be a
formula of product-depth ∆ + 1. So, C is of the form C = C1 + · · ·+ Ct. Using a similar
terminology to that in [23] and [22], we say that a sub-formula Ci of size si is of type 1 if
one of its factors has degree at least T∆ = d

∆
∆+1 , otherwise we say it is of type 2.

CCC 2023

15:20 Near-Optimal Set-Multilinear Formula Lower Bounds

Suppose Ci = Ci,1 · · · · · Ci,ti is of type 1 with, say, Ci,1 having degree at least T∆. Let
wi,1 be the corresponding word i.e., wi,1 = w|S1 if Ci,1 is set-multilinear with respect to
S1 ⊊ [d]. If it has size si,1, then since it has product-depth at most ∆, it follows by induction
that

relrkw(Ci) ≤ relrkwi,1(Ci,1) ≤ si,1 · 2−
kT

1/∆
∆

2000 ≤ si · 2− kd1/(∆+1)
2000

with probability at least

1− si,1 · T
−

T
1/∆
∆

107∆
∆ ≥ 1− si · d− d1/(∆+1)

107∆
· ∆

∆+1 = 1− si · d
− d1/(∆+1)

107(∆+1) .

Now suppose that Ci = Ci,1 · · · · · Ci,ti
is of type 2 i.e., each factor Ci,j has degree < T∆.

Note that this forces ti > d/T∆ = d
1

∆+1 . As the formula is set-multilinear, (S1, . . . , Sti
) form

a partition of [d] where each Ci,j is set-multilinear with respect to (Xℓ)ℓ∈Sj and Ci is set-
multilinear with respect to (Xℓ)ℓ∈S . Let wi,1, . . . , wi,ti be the corresponding decomposition,
whose respective sums are denoted simply by wS1 , . . . , wSti

.
From the properties of relrkw (Claim 7), we have

relrkw(Ci) =
ti∏

j=1
relrkwi,j (Ci,j) ≤

ti∏
j=1

2− 1
2 |wSj

| = 2− 1
2

∑ti

j=1
|wSj

|
,

from which we observe that the task of upper bounding relrkw(C) can be reduced to the
task of lower bounding the sum

∑ti

j=1 |wSj
|, which is established in the following claim. For

the sake of convenience, the choice of the alphabet for w below is scaled down to {−1, 1}.

▷ Claim 25. For large enough d, suppose (S1, . . . , SK) is a partition of [d] such that each
|Sj | < T∆ = d

∆
∆+1 . Then, we have

P
w∼D

 K∑
j=1
|wSj
| < d1/(∆+1)

2000

 ≤ d− d1/(∆+1)
107 .

Here, D refers to the original distribution i.e., an arc-partition over the D-cycle.

Proof. We first show that without loss of generality, we may assume that each Sj has size
“roughly” T∆. To see this, we apply the following clubbing procedure to the sets in the
partition (S1, . . . , SK):

Start with the given partition (S1, . . . , SK). At each step in the procedure, we shall “club”
two of the sets in the partition according to the following rule.
If there are two distinct sets S′ and S′′ in the current partition each of size < T∆/2, we
remove both of them and add their union S′ ∪ S′′ to the partition.
If the rule above is no longer applicable, then we have at most one set in the current
partition of size < T∆/2. If there is none, then we halt the procedure here. Otherwise,
we union this set with any one of the other sets and then halt.

After the clubbing procedure, we are left with a partition (S′
1, . . . , S′

K′) of [d] such that
T∆
2 ≤ |S′

j | ≤
3T∆

2 for each j ∈ [K ′], also implying that 2d1/(∆+1)

3 ≤ K ′ ≤ 2d1/(∆+1).
Through a repeated use of the triangle inequality, we see that

∑K′

j=1 |wS′
j
| ≤

∑K
j=1 |wSj

|.
Therefore, upper bounding the latter sum is a “smaller” event than upper bounding the
former sum. Hence, it suffices to prove the statement of the claim with the assumption that
T∆
2 ≤ |Sj | ≤ 3T∆

2 for each j ∈ [K] (we henceforth drop the primed notation).

D. Kush and S. Saraf 15:21

Applying Lemma 23 to the tuple (S1, . . . , SK), we obtain that

P[G(P) ≤ K/1000] ≤ d−K/500.

The idea is to condition on the high probability event that G(P) > K/1000. Fix a pairing
P with this property. Consider an ordering σ of the colors in G(P). A color k is said to be
bright with respect to an ordering if there are at least dε/2 nodes x of color k such that either
the partner of x is uncolored or its partner is colored using a color that appears after k in
the ordering σ. Call an ordering σ of the nodes in G(P) good if there are at least |G(P)|/2
bright colors with respect to σ. The observation is that for any ordering σ of the colors,
either σ itself is good, or its reverse is good. We conclude that given any pairing P , there
exists a good ordering of G(P). Fix any such good ordering and let H(P) be the collection
of bright colors with respect to this ordering.

Next, notice that if the sum
∑K

j=1 |wSj | is at most d1/(∆+1)

2000 , then so is the sum∑
k∈H(P) |wSk

|. Let K ′ = |H(P)| (which is at least K/2000 if G(P) > K/1000). View
the sampling of Π from P as happening in a specific order, according to the order of
k1, k2, . . . , kK′ : First define Π on pairs with at least one point with color k1, then define Π
on remaining pairs with at least one point with color k2, and so forth. When finished with
k1, . . . , kK′ , continue to define Π on all other pairs.

Conditioned on the event that G(P) > K/1000, this implies that |wSj
| ≤ 1 for each

j ∈ H(P). For every j ∈ H(P), define Ej to be the event that |wSkj
| ≤ 1. By choice,

conditioned on E1, . . . , Ej−1, there are at least dε/2 pairs Pt so that |Pt ∩ Skj
| = 1 that are

not yet assigned a “positive” or “negative” sign. For every such Pt, the element in Pt ∩ Skj

is assigned a positive sign with probability 1/2, and is independent of any other Pt′ . The
probability that a binomial random variable B over a universe of size U ≥ dε/2 and marginals
1/2 obtains any specific value is at most O(U−1/2) = O(d−ε/2). Hence, for all j ∈ H(P), by
the union bound,

P[Ej |E1, . . . , Ej−1, P] ≤ P
B

[U/2− 1 ≤ B ≤ U/2 + 1] ≤ O(3 · d−ε/2) ≤ d−ε/4.

Therefore,

P[|wSkj
| ≤ 1 for all j ∈ H(P)] ≤ E[d−ε|H(P)|/4|G(P) > K/1000] + d−K/500 ≤ d−K/107

.

Finally, we note that

P
w∼D

 K∑
j=1
|wSj
| < d1/(∆+1)

2000

 ≤ P[|wSkj
| ≤ 1 for all j ∈ H(P)]. ◁

The claim above and the preceding calculation immediately implies that for a sub-formula
Ci of type 2,

relrkw(Ci) ≤ si · 2− kd1/(∆+1)
2000

with probability at least 1− d− d1/(∆+1)
107 ≥ 1− si · d

− d1/(∆+1)
107(∆+1) .

Next, by a union bound over i ∈ [t] and the sub-additivity property of relrkw, it follows
that

relrkw(C) ≤ relrkw(C1)+· · ·+relrkw(Ct) ≤ s1 ·2− kd1/(∆+1)
2000 +· · ·+st ·2− kd1/(∆+1)

2000 = s·2− kd1/(∆+1)
2000

with probability at least 1− s · d− d1/(∆+1)
107(∆+1) , which concludes the proof of the lemma. ◀

CCC 2023

15:22 Near-Optimal Set-Multilinear Formula Lower Bounds

4.4 Proof of the Many Violations Lemma
Fix some collection of disjoint subsets (or a “partial” coloring) S = (S1, . . . , SK) of the
D-cycle satisfying the conditions of the lemma. Think of S as a partial function from the
D-cycle to the set [K], either assigning a node its color in [K] or leaving it uncolored; S(i) is
the color of i. Use the following definition to partition the proof into cases. For a color k,
count the number of jumps in it (with respect to the partition S) to be

Jk = {j ∈ Sk : k = S(j) ̸= S(j + 1)},

the set of elements j of color k so that j + 1 is either uncolored or has a color different from
k. As mentioned previously, this subsection is adapted from the proof of Lemma 4.1 in [8].
In what follows, we include remarks where we require a more refined analysis than [8] or a
different argument to suit the parameter demands of Lemma 23. Overall, we have attempted
to provide a more comprehensive and complete exposition to the proof of the many violations
lemma.

Case 1: Many colors with many jumps

The high-level idea is that each color with many jumps has many violations because pairs of
the form (j, j + 1) yield violations as soon as they are constructed.

Assume that for at least K/2 colors k, |Jk| > d2ε. Denote by B ⊆ [K] the set of k’s
that satisfy this inequality. Then, for every k in B, there exists a subset Qk ⊂ Jk of size
N = ⌈d2ε⌉. Let

Q :=
⋃

k∈B

Qk.

We think of the construction of the (random) pairing P as happening in epochs, depending
on Q, as follows.

For t > 0, define the random variable

Q(t) = Q \ [Lt − 4, Rt + 4],

the set Q after removing a four-neighborhood of [Lt, Rt]. For a certain sequence of time
steps t, we will define special nodes qt which lie in this small “cloud” around the arc [Lt, Rt]
(i.e., within a distance of 4 on either side of the arc) - it is for these special nodes qt that the
set of pairs (qt, qt+1) will provide many violations. We now formalize this intuition.

Let τ1 ≥ τ0 := 1 be the first time t after τ0 so that the distance between [Lt, Rt] and
Q(τ0) is at most two. The distance between [Lτ0 , Rτ0] and Q(τ0) is at least five. The size of
the arc [Lt, Rt] increases by two at each time step. So, τ1 ≥ τ0 + 2. Let q1 be an element
of Q(τ0) that is of distance at most two from [Lτ1 , Rτ1]; if there is more than one such q1,
choose arbitrarily. The minimality of τ1 implies that q1 is not in [Lτ1 , Rτ1].

Let τ2 ≥ τ1 be the first time t after τ1 so that the distance between [Lt, Rt] and Q(τ1)
is at most two. Let q2 be an element of Q(τ1) that is of distance at most two from
[Lτ2 , Rτ2]. Define τj , qj for j > 2 similarly, until Q(τj) is empty. As long as |Q(τj)| ≥ 8,
we have |Q(τj + 1)| ≥ |Q(τj)| − 8. This process, therefore, has at least KN/16 steps. For
1 ≤ j ≤ KN/16, denote by Ej the event that during the time between τj and τj+1 the pair
{qj , qj + 1} is added to P . The pair {qj , qj + 1} is violating color S(qj). At time τj , even
conditioned on all the past P1, . . . , Pτj

, in at most two steps (and before τj+1) we can add
the pair {qj , qj + 1} to P . For every j, therefore,

P[Ej |P1, . . . , Pτj
] ≥ (1/3)(1/3) = 1/9.

D. Kush and S. Saraf 15:23

Next, let N ′ = ⌈KN/960⌉. We want to show that with high probability, for at least N ′ many
j, the event Ej occurs. There are

(⌊KN/16⌋
⌈KN/960⌉

)
many ways of choosing a set of indices j of size

N −N ′. Subsequently,

P[there is j1, . . . , jN ′ so that Ej1 ∩ · · · ∩ EjN′] ≥ 1−
(
⌊KN/16⌋
⌈KN/960⌉

)
·
(

8
9

)N−N ′

≥ 1−
(

960e

16

)N ′

·
(

8
9

)60N ′

≥ 1− cN ′

where 0 < c < 1 is a universal constant. Finally, we argue that if there do exist j1, . . . , jN ′ for
which the events Ej1 , . . . , EjN′ occur, then G(P) ≥ K/1000. To see this, note that the size
of every Qk is N . So, every color k in B can contribute at most N elements to j1, . . . , jN ′ . If
G(P) < K/1000, then at most these many colors can contribute larger than dε (and up to N

elements) - combined, at most KN/1000 elements. However, there are at least K/2−K/1000
colors which can contribute only up to dε elements. Again combined, this is not sufficient to
cover the N ′ elements overall (for large enough d), which is a contradiction. Hence,

P[G(P) ≥ K/1000] ≥ P[there is j1, . . . , jN ′ so that Ej1 ∩ · · · ∩ Ej′
N

].

and the proof follows in this case as cN ′ ≪ d−Ω(K).

Case 2: Many colors with few jumps

The intuition is that many violations will come from pairs of the form {Lt − 1, Rt + 1} in
the construction of the pairing. Assume that for at least K/2 colors k, |Jk| ≤ d2ε. Denote
again by B ⊆ [K] the set of k’s that satisfy the above inequality. We say that a color k is
noticeable in the arc A if

d
∆

∆+1 −4ε ≤ |Sk ∩A| ≤ |A| − d
∆

∆+1 −4ε.

▷ Claim 26. There are K ′ ≥ K/2− 1 disjoint arcs A1, . . . , AK′ so that for every j ∈ [K ′],
1. |Aj | = m = ⌊d

∆
∆+1 −3ε⌋ and,

2. there is a color kj in B that is noticeable in Aj .
Moreover, the colors k1, . . . , kK′ can be chosen to be pairwise distinct.

Proof. For each color k in B, there are at least d
∆

∆+1 /2 vertices of color k in the D-cycle and
at most d2ε jumps in the color k. Therefore, there is at least one k-monochromatic arc of size
at least d

∆
∆+1 −2ε. Hence, on the D-cycle, there are such monochromatic arcs Ik1 , . . . , Ik|B|

for the colors k1, . . . , k|B| in B, in this order (1 < 2 < · · · < D).
Consider an arc A of size m included in Ik1 . Thus |Sk1 ∩A| = m. If we “slide” the arc A

until it is included in Ik2 , then |Sk1 ∩A| = 0. By continuity, there is an intermediate position
for the arc A such that d

∆
∆+1 −4ε ≤ |Sk1 ∩A| ≤ m− d

∆
∆+1 −4ε. This provides the first arc A1

of the claim.
Sliding an arc inside Ik2 to inside Ik3 shows that there exists an arc A2 such that

d
∆

∆+1 −4ε ≤ |Sk2 ∩A2| ≤ m− d
∆

∆+1 −4ε. The arcs A1 and A2 are disjoint: The distance of the
largest element of A1 and the smallest element of Ik2 is at most m. The distance of the
smallest element of A2 and the largest element of Ik2 is at most m. The size of Ik2 is larger
than 2m. Proceed in this way to define A3, . . . , A|B|−1. ◁

CCC 2023

15:24 Near-Optimal Set-Multilinear Formula Lower Bounds

Use Claim 26 to divide the construction of the (random) pairing into epochs. Denote by
A(0) the family of arcs given by the claim. Let τ1 be the first time t that the arc [Lt, Rt] hits
one of the arcs in A(0). Denote by A1 that arc that is hit at time τ1 (break ties arbitrarily).
Denote by k1 the color that is noticeable in A1. Let σ1 be the first time t so that A1 is
contained in [Lt, Rt]. Let A(1) be the subset of A(0) of arcs that have an empty intersection
with [Lσ1 , Rσ1]. Similarly, let τ2 be the first time t after σ1 that the arc [Lt, Rt] hits one
of the arcs in A(1). If there are no arc in A(1), define τ2 =∞. Denote by A2 that arc that
is hit at time τ2. Denote by k2 the color that is noticeable in A2. Let σ2 be the first time
t so that A2 is contained in [Lt, Rt]. Let A(2) be the subset of A(1) of arcs that have an
empty intersection with [Lσ2, Rσ2]. Define τj , σj , Aj , kj , A(j) for j > 2 analogously. For
every j ≥ 1, denote by Ej the event that during the time between τj and τj+1 the number of
pairs added that violate color kj ’s at most dε. (If Ej does not hold, then |Vkj

(P)| ≥ dε and
kj ∈ G(P). The main part of the proof is summarized in the following proposition, whose
proof is deferred to Section 4.5.

▶ Lemma 27 (Chessboard Lemma). Let δ = 0.10. For every j ≥ 1, and any choice of pairs
P1, . . . , Pτj ,

P[Ej |P1, . . . , Pτj
, |A(j−1)| ≥ 3] ≤ d−δ

Given this lemma, let us finish the proof of Lemma 23. Define K ′′ = ⌊K ′/10⌋ and let T

denote the event that the number of j’s for which |A(j)| ≥ 3 is at least K ′′. First, we argue
that T occurs with high probability.

For any j ≥ 1, consider the evolution of the arc [Lt, Rt] between the time steps τj (when
it first hits arc Aj) and σj (when it completely engulfs it). During this epoch, let us call
the evolution of [Lt, Rt] in the “direction” of Aj as good (labelled “G”) and away from the
direction of Aj as bad (“B”). To this end, for any time step in this epoch, we can code
the three possible choices for the evolution of [Lt, Rt] as GG (when the arc is grown in the
direction of Aj), GB (when it is grown equally on either side), or BB (when it is grown
away from the direction of Aj). Consequently, the evolution of [Lt, Rt] during this epoch can
be realized as a sequence consisting of the symbols G and B.

Consider the sequence s of G’s and B’s obtained by concatenating the sequences corres-
ponding to all the epochs (ignoring the choices made at time steps that do not lie in such
epochs, i.e., between τj and σj for some j - as there is no corresponding notion of a “good”
direction outside such epochs). The intuition is that if |A(K′′)| < 3 (i.e., if T does not occur),
then there must be an extremely large number of B’s compared to G’s (i.e., the arc [Lt, Rt]
evolves disproportionately in the bad direction) in the concatenated string s, which should
occur only with a vanishingly small probability.

Consider the sub-string s′ of s that corresponds to the choices made only for the nodes
in A(0) \A(K′′). Note that there are precisely mK ′′ many G’s in s′. Suppose |A(K′′)| = 2 for
concreteness (the cases |A(K′′)| = 1 and |A(K′′)| = 0 are similar). This implies that there
are m(K ′ − 2−K ′′) many B’s in s′. Since only up to mK ′′ many of these B’s may appear
as a result of the evolution making a choice of the form GB, it follows that the evolution
of [Lt, Rt] must make a choice of the form BB at least m(K ′ − 2− 2K ′′)/2 times out of a
possible m(K ′−2)/2, in order to cover the elements of A(0)\A(K′′). Denote K1 := (K ′−2)/2.
By the union bound, this probability is at most

P[|A(K′′)| = 2] ≤
(

mK1

mK ′′

)
·
(

1
3

)m(K1−K′′)
< cmK′′

2

for some universal constant 0 < c2 < 1. Similarly, we have bounds for both P[|A(K′′)| = 1]
and P[|A(K′′)| = 0] and it follows that P[T] ≥ 1−cmK′′ for some universal constant 0 < c < 1.

D. Kush and S. Saraf 15:25

▶ Remark 28. The argument above for showing that T occurs with high probability differs
considerably from [8], where the corresponding event is sketched to occur with probability
only at least 1− dcm1/3 , which is not strong enough for our purposes.

Next, note that

P[G(P) < K/1000] ≤ P[G(P) < K/1000 ∩ T] + P[¬T] ≤ P[G(P) < K/1000|T] + P[¬T].

If G(P) < K/1000, then at least K/2−K/1000 colors in B have at most dε many violations.
Since K ′′ = ⌊K ′/10⌋ < K/2−K/1000, in particular, there must exist at least K ′′/2 colors
within the first K ′′ colors (here we are using the ordering of colors as provided by Claim 26)
for which there are at most dε many violations. We then obtain the following by conditioning
on T , using the union bound.

P[G(P) < K/1000 ∩ T] ≤ 2K′′
max

H={j1<···<jK′′/2}⊂[K′′]
P[Ej1 , . . . , EjK′′/2 ||A

(K′′)| ≥ 3]

For a fixed choice of H, by the chain rule and Lemma 27, we have

P[Ej1∩ · · · ∩ EjK′′/2 ||A
(K′′)| ≥ 3]

= P[Ej1 |T] · P[Ej2 |Ej1 ∩ T] · · · · · P[EjK′′/2 |EjK′′/2−1 ∩ · · · ∩ Ej1 ∩ T]

≤ d−δK′′/2 ≤ d−0.1K′/20 ≤ d−K/400.

Overall, we conclude that

P[G(P) < K/1000] ≤ d−K/500.

4.5 Proof of the Chessboard Lemma
To prove Lemma 27, we use a different point of view of the random process. We begin by
describing this different view, and later describe its formal connection to the distribution on
pairings. This subsection is adapted from Section 5 of [8] and closely follows their argument,
though with numerous parameter changes to suit our demands.

The view uses two definitions. One is a standard definition of a two-dimensional random
walk, and the other is a definition of a “chessboard” configuration in the plane. The proof of
the proposition will follow by analyzing the behavior of the random walk on the “chessboard”.
Let d be as above and m be as defined in Lemma 26. The random walk W on N2 is defined
as follows. It starts at the origin, W0 = (0, 0). At every step it move to one of three nodes,
independently of previous choices,

Wt+1 =

Wt + (0, 2) with probability 1/3
Wt + (1, 1) with probability 1/3
Wt + (2, 0) with probability 1/3

At time t, the L1-distance of Wt from the origin is thus 2t.
The “chessboard” is defined as follows. Let α1 : [m]→ {0, 1} and α2 : [2m]→ {0, 1} be

two Boolean functions. The functions α1, α2 induce a “chessboard” structure on the board
[m]× [2m]. A position in the board ξ = (ξ1, ξ2) is colored either white or black. It is colored
black if α1(ξ1) ̸= α2(ξ2) and white if α1(ξ1) = α2(ξ2). We say that the “chessboard” is
well-behaved if

CCC 2023

15:26 Near-Optimal Set-Multilinear Formula Lower Bounds

1. α1 is far from constant:

d
∆

∆+1 −4ε ≤ |{ξ1 ∈ [m] : α1(ξ1) = 1}| ≤ m− d
∆

∆+1 −4ε.

2. α1 does not contain many jumps:

|{ξ1 ∈ [m− 1] : α1(ξ1) ̸= α1(ξ1 + 1)}| ≤ d2ε

3. α2 does not contain many jumps:

|{ξ2 ∈ [2m− 1] : α2(ξ2) ̸= α2(ξ2 + 1)}| ≤ d2ε

Consider a random walk W on top of the “chessboard” and stop it when reaching the
boundary of the board (i.e., when it tries to make a step outside the board [m]× [2m]). We
define a good step to be a step of the form (1, 1) that lands in a black block. We will later
relate good steps to violating edges. Our goal is, therefore, to show that a typical W makes
many good steps.

▶ Lemma 29. Let δ = 0.10 and assume the chessboard is well-behaved. The probability that
W makes less than d2ε good steps is at most d−δ.

We use this lemma to show Lemma 27.

Proof of Lemma 27 given Lemma 29. Recall that Aj is an arc of size |Aj | = m =
⌊d

∆
∆+1 −3ε⌋ so that there is a color kj satisfying

d
∆

∆+1 −4ε ≤ |Sk ∩A| ≤ |A| − d
∆

∆+1 −4ε. (2)

Furthermore, condition on P1, . . . , Pτj
, |A(j−1)| ≥ 3. Assume without loss of generality

that Rτj is in Aj (when Lτj is in Aj , the analysis is similar). The distance of Rτj from the
smallest element of Aj is at most one (the length of “one step to the right” is between zero
and two). We now grow the random interval until σj , i.e., as long as Rt stays in Aj . At
the same time, Lt performs a movement to the left. Since |A(j−1)| ≥ 3, there are at least
2m steps for Lt to take to the left before hitting Aj . There is a one-to-one correspondence
between pairings P and random walks W using the correspondence

Pt+1 = {Lt − 2, Lt − 1} ←→Wt+1 = Wt + (0, 2),

Pt+1 = {Lt − 1, Rt + 1} ←→Wt+1 = Wt + (1, 1),

Pt+1 = {Rt + 1, Rt + 2} ←→Wt+1 = Wt + (2, 0).

Define the function α1 to be 1 at positions of Aj with color kj , and 0 at the other
positions. Set the function α2 as to describe the color kj from Lτj

leftward. The “chessboard”
is well-behaved by (2) and since kj is in the set B defined in case 2 of the proof of Lemma 23
(so there are not many jumps for the color kj). Finally, if W makes a good step, then the
corresponding pair added to P violated color kj . So, if Ej holds for P , then the corresponding
W makes less than d2ε good steps. Formally, by Lemma 23,

P[Ej |P1, . . . , Pτj
, |A(j−1)| ≥ 3] ≤ P[W makes less than d2ε good steps] ≤ d−δ. ◀

Proof of Lemma 29. Define three events ER, EC , ED, all of which happen with small prob-
ability, so that every W that is not in their union makes many good steps.

D. Kush and S. Saraf 15:27

Call a subset of the board of the form I × [2m] or [m]× I, where I is a sub-interval, a
region. The width of a region is the size of I. Let R be the set of regions of width at least
d4ε. The size of R is at most 2m2. For a region r in R, denote by Er the event that the
number of steps of the form (1, 1) that W makes in r is less than d2ε given that it makes at
least d3ε steps in r. Denote

ER =
⋃

r∈R

Er

To estimate the probability of Er, note that we can simply apply the Chernoff bound to
a sum of d3ε Bernoulli random variables with p = 1/3. By the union bound, we conclude
that there is a universal constant 0 < c < 1 such that

P[ER] ≤ cd3ε

.

Denote by H the set of all points in the board with L1-norm at least m5/8. At time T the
random walk W is distributed along all points in N2 of L1-norm exactly T . The distribution
of W on this set is the same as that of a random walk on Z that is started at 0, and moves at
every step to the right with probability 1/3, stays in place with probability 1/3 and moves to
the left with probability 1/3. The probability that such a random walk on Z is at a specific
point in Z at time T is at most O(T −1/2). Hence, for every point h in H,

P[W hits h] ≤ O(m−5/16) ≤ m−1/4.

Call a point c = (ξ1, ξ2) in the board a corner if both (ξ1, ξ2) and (ξ1 + 1, ξ2 + 1) are of
the same color κ ∈ {black, white}, but (ξ1 + 1, ξ2) and (ξ1, ξ2 + 1) are not of color κ. For a
corner c, denote by ∆(c) the d4ε-neighborhood of c in L1-metric. Denote by ∆ the union
over all ∆(c), for corners c in H . Denote by EC the event that W hits any point in ∆. Since
the board is well-behaved, the number of jumps in each of α1, α2 is at most d2ε. Therefore,
the number of corners is at most d4ε. By the union bound,

P[EC] ≤ O(d4εd8εm−1/4) ≤ d−0.112,

where in the last step, we plugged in ε = 1/1000 and used m ≥ d1/2−3ε. Next, let m′ = ⌈m5/8⌉.
Define three (vertical) lines: D1 is the line {m′} × [2m], D2 is the line {2m′} × [2m] and D3
is the line {m −m′} × [2m]. Denote by ED the event that W does not cross the line D3
before stopped (i.e., hitting the boundary of the board). Chernoff’s bound implies that there
is a universal constant 0 < c < 1 for which

P [ED] ≤ cm.

To conclude the proof by the union bound, it suffices to show that for every W not
in ER ∪ EC ∪ ED, the walk W makes at least d2ε good steps. Fix such a walk W . Since
W /∈ ED, we know that W crosses the line D2.

We consider several cases. Define a block to be a maximal monochromatic rectangle in
the board. The board is thus partitioned into black blocks and white blocks - which is what
led [8] to calling it a “chessboard.” We now think of the board [m]× [2m] as drawn in the
plane with (1, 1) at the bottom-left corner and (m, 2m) at the upper-right corner.
Case 1: The walk W does not hit any white block after crossing D1 and before crossing D2.

In this case, all steps taken in the region whose left border is D1 and right border is D2
are in a black area. The number of such steps is at least m5/8/2≫ d3ε. Since W /∈ ER,
the claim holds.

CCC 2023

15:28 Near-Optimal Set-Multilinear Formula Lower Bounds

Case 2: The walk W hits a white block after crossing D1 and before crossing D2. Let us
label the blocks as follows: we associate every block with a pair ⟨η1, η2⟩ where η1 is
between 1 and the number of jumps in α1 and η2 is between 1 and the number of jumps
in α2. So, the label of the “bottom-left” is ⟨1, 1⟩, the label of the block “above” it is ⟨1, 2⟩
and the label of the block “to its right” is ⟨2, 1⟩, etc. There are two sub-cases to consider:

Sub-case 1: At some point after crossing D1 and before crossing D3, there are two white
blocks of the form ⟨η1, η2⟩, ⟨η1 + 1, η2 + 1⟩ so that W intersects both blocks. Let c be
the corner between these two blocks (which must exist by definition). Since W /∈ EC , we
know that W does not visit ∆(c). Therefore, W must walk in a black area around ∆(c).
Every path surrounding ∆(c) has length at least d4ε. Since W /∈ ER, the claim holds.

Sub-case 2: At all times after crossing D1 and before crossing D3, the walk never moves
from a white block ⟨η1, η2⟩ to one of the two white blocks ⟨η1 + 1, η2 + 1⟩, ⟨η1− 1, η2− 1⟩.
Since W /∈ ED, this is indeed the last case. The width of a combinatorial rectangle in the
board is the size of its “bottom side” (i.e., the corresponding subset of [m]). Let η be the
first white block W hits after crossing D1. Let Σ be the family of black blocks that are
to the right but on the same height as η. Define γ as the maximal width of a rectangle
of the form σ ∩ [0, m−m0 − 1]× [2m] over all σ ∈ Σ. Since the board is well-behaved,
it follows (from the first condition) that the total width of the black area on the same
height as η is at least d

∆
∆+1 −4ε. Also, since we are in case 2, the left border of η is to the

left of D2. Therefore, the total width of the black area to the right of the left border of η

and to the left of D3, on the same height as η is at least d
∆

∆+1 −4ε − 3m′. Therefore, since
the number of jumps is at most d2ε,

γ ≥ (d
∆

∆+1 −4ε − 3m′)/d2ε ≫ d4ε.

Since we are in this sub-case, the walk W must “go through” every black block it hits: it
can go from bottom side to upper side or from left side to right side (but not from left side
to upper side or from bottom side to right side). Consider the behaviour of W after it hits
η: starting from a white block, because W /∈ ED, it is guaranteed to cross D3. Therefore,
the color of the block that W “exits” from from each column must keep alternating between
white and black. For each black block in Σ, therefore, there exists a black block in the same
column that W crosses horizontally. Focusing on one such black block of width γ, since
W /∈ ER, the claim holds. ◀

5 Discussion and Open Problems

We conclude by mentioning some interesting directions for future work.

The most interesting and natural question is to make the hard polynomial in our main
result IMMn,n. This would imply super-polynomial algebraic formula lower bounds. As
far as we know, it is conceivable that even the complexity measure of [22] as described in
Section 3 could be used to prove the lower bound for the IMMn,n polynomial. While the
relative rank of IMMn,n itself is low, there might be a suitable “restriction” of it such that
for a randomly chosen w ∈ {−k, k}n, with reasonably high probability the restriction
has large rank. This could then be used to prove the lower bound for IMMn,n (using
Lemma 11 and Lemma 12). Secondly, we point out that perhaps it is more viable to find
an ordered set-multilinear branching program (as described in Section 1.4) which can be
shown to be arc-full-rank. This would also lead to general formula lower bounds.

D. Kush and S. Saraf 15:29

The discussion in Section 1.4 raises the question of the relative computational power of
the ordered vs general set-multilinear branching program models. Clearly, if it is shown
that these classes coincide, then it leads to formula lower bounds via Theorem 1. We
would like to note here that in fact, exponential lower bounds are known for the ordered
model (see [4] for a discussion19).

References
1 Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for ROABP

and sum of set-multilinear circuits. SIAM J. Comput., 44(3):669–697, 2015. doi:10.1137/
140975103.

2 Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008,
Philadelphia, PA, USA, pages 67–75. IEEE Computer Society, 2008. doi:10.1109/FOCS.2008.
32.

3 Miklós Ajtai.
∑1

1-formulae on finite structures. Ann. Pure Appl. Log., 24(1):1–48, 1983.
doi:10.1016/0168-0072(83)90038-6.

4 Vikraman Arvind and S. Raja. Some lower bound results for set-multilinear arithmetic
computations. Chic. J. Theor. Comput. Sci., 2016, 2016. URL: http://cjtcs.cs.uchicago.
edu/articles/2016/6/contents.html.

5 Peter Bürgisser. Cook’s versus valiant’s hypothesis. Theor. Comput. Sci., 235(1):71–88, 2000.
doi:10.1016/S0304-3975(99)00183-8.

6 Suryajith Chillara, Christian Engels, Nutan Limaye, and Srikanth Srinivasan. A near-optimal
depth-hierarchy theorem for small-depth multilinear circuits. In Mikkel Thorup, editor, 59th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France,
October 7-9, 2018, pages 934–945. IEEE Computer Society, 2018. doi:10.1109/FOCS.2018.
00092.

7 Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. Small-depth multilinear formula
lower bounds for iterated matrix multiplication with applications. SIAM J. Comput., 48(1):70–
92, 2019. doi:10.1137/18M1191567.

8 Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating multilinear
branching programs and formulas. In Howard J. Karloff and Toniann Pitassi, editors, Proceed-
ings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY,
USA, May 19–22, 2012, pages 615–624. ACM, 2012. doi:10.1145/2213977.2214034.

9 Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 243–252. IEEE Computer Society, 2013. doi:10.1109/FOCS.2013.34.

10 Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds for
depth-4 formulas computing iterated matrix multiplication. SIAM J. Comput., 44(5):1173–1201,
2015. doi:10.1137/140990280.

11 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Math. Syst. Theory, 17(1):13–27, 1984. doi:10.1007/BF01744431.

12 Zeyu Guo and Rohit Gurjar. Improved explicit hitting-sets for roabps. In Jaroslaw Byrka and
Raghu Meka, editors, Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference,
volume 176 of LIPIcs, pages 4:1–4:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.4.

19 What they term as a “type-width 1” set-multilinear ABP is an ordered set-multilinear ABP for us.

CCC 2023

https://doi.org/10.1137/140975103
https://doi.org/10.1137/140975103
https://doi.org/10.1109/FOCS.2008.32
https://doi.org/10.1109/FOCS.2008.32
https://doi.org/10.1016/0168-0072(83)90038-6
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
https://doi.org/10.1016/S0304-3975(99)00183-8
https://doi.org/10.1109/FOCS.2018.00092
https://doi.org/10.1109/FOCS.2018.00092
https://doi.org/10.1137/18M1191567
https://doi.org/10.1145/2213977.2214034
https://doi.org/10.1109/FOCS.2013.34
https://doi.org/10.1137/140990280
https://doi.org/10.1007/BF01744431
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.4

15:30 Near-Optimal Set-Multilinear Formula Lower Bounds

13 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Juris Hartmanis,
editor, Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28-30,
1986, Berkeley, California, USA, pages 6–20. ACM, 1986. doi:10.1145/12130.12132.

14 Pavel Hrubes and Amir Yehudayoff. Homogeneous formulas and symmetric polynomials.
Comput. Complex., 20(3):559–578, 2011. doi:10.1007/s00037-011-0007-3.

15 Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An exponential lower
bound for homogeneous depth four arithmetic formulas. SIAM J. Comput., 46(1):307–335,
2017. doi:10.1137/151002423.

16 Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation between read-once oblivious
algebraic branching programs (roabps) and multilinear depth-three circuits. ACM Trans.
Comput. Theory, 12(1):2:1–2:27, 2020. doi:10.1145/3369928.

17 Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower bound for
regular arithmetic formulas. In David B. Shmoys, editor, Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 – June 03, 2014, pages 146–153. ACM, 2014.
doi:10.1145/2591796.2591847.

18 Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An almost cubic lower bound for
depth three arithmetic circuits. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages
33:1–33:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
ICALP.2016.33.

19 Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. On the size of homogeneous and of
depth-four formulas with low individual degree. Theory Comput., 14(1):1–46, 2018. doi:
10.4086/toc.2018.v014a016.

20 Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput. Sci.,
448:56–65, 2012. doi:10.1016/j.tcs.2012.03.041.

21 Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic circuits.
SIAM J. Comput., 46(1):336–387, 2017. doi:10.1137/140999335.

22 Deepanshu Kush and Shubhangi Saraf. Improved low-depth set-multilinear circuit lower
bounds. In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022,
July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 38:1–38:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.38.

23 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds
against low-depth algebraic circuits. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 804–814. IEEE,
2021. doi:10.1109/FOCS52979.2021.00083.

24 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994. doi:10.1016/S0022-0000(05)80043-1.

25 Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Comput. Complex., 6(3):217–234, 1997. doi:10.1007/BF01294256.

26 Ran Raz. Separation of multilinear circuit and formula size. Theory Comput., 2(6):121–135,
2006. doi:10.4086/toc.2006.v002a006.

27 Ran Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size.
J. ACM, 56(2):8:1–8:17, 2009. doi:10.1145/1502793.1502797.

28 Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. J. ACM, 60(6):40:1–40:15,
2013. doi:10.1145/2535928.

29 Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic circuits. Comput.
Complex., 17(4):515–535, 2008. doi:10.1007/s00037-008-0254-0.

30 Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth multilinear
circuits. Comput. Complex., 18(2):171–207, 2009. doi:10.1007/s00037-009-0270-8.

https://doi.org/10.1145/12130.12132
https://doi.org/10.1007/s00037-011-0007-3
https://doi.org/10.1137/151002423
https://doi.org/10.1145/3369928
https://doi.org/10.1145/2591796.2591847
https://doi.org/10.4230/LIPIcs.ICALP.2016.33
https://doi.org/10.4230/LIPIcs.ICALP.2016.33
https://doi.org/10.4086/toc.2018.v014a016
https://doi.org/10.4086/toc.2018.v014a016
https://doi.org/10.1016/j.tcs.2012.03.041
https://doi.org/10.1137/140999335
https://doi.org/10.4230/LIPIcs.CCC.2022.38
https://doi.org/10.1109/FOCS52979.2021.00083
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1007/BF01294256
https://doi.org/10.4086/toc.2006.v002a006
https://doi.org/10.1145/1502793.1502797
https://doi.org/10.1145/2535928
https://doi.org/10.1007/s00037-008-0254-0
https://doi.org/10.1007/s00037-009-0270-8

D. Kush and S. Saraf 15:31

31 Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical notes of the Academy of Sciences of the USSR,
41:333–338, 1987.

32 Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github
Survey, 2015. URL: https://github.com/dasarpmar/lowerbounds-survey.

33 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Found. Trends Theor. Comput. Sci., 5(3-4):207–388, 2010. doi:10.1561/
0400000039.

34 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 1987, New York, New York, USA, pages 77–82. ACM, 1987. doi:
10.1145/28395.28404.

35 Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf. Comput.,
240:2–11, 2015. doi:10.1016/j.ic.2014.09.004.

36 Sébastien Tavenas, Nutan Limaye, and Srikanth Srinivasan. Set-multilinear and non-
commutative formula lower bounds for iterated matrix multiplication. In Stefano Le-
onardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium
on Theory of Computing, Rome, Italy, June 20–24, 2022, pages 416–425. ACM, 2022.
doi:10.1145/3519935.3520044.

37 Leslie G. Valiant, Sven Skyum, Stuart J. Berkowitz, and Charles Rackoff. Fast parallel
computation of polynomials using few processors. SIAM J. Comput., 12:641–644, 1983.

38 Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In 26th Annual Symposium on Foundations of Computer Science, Portland, Oregon,
USA, 21-23 October 1985, pages 1–10. IEEE Computer Society, 1985. doi:10.1109/SFCS.
1985.49.

A Proof Sketch of Lemma 22

In this section, we describe the proof of Lemma 22. As mentioned in Section 4, the proof
structure is very similar to that of Lemma 20. The setup is similar as well, but we describe
it here again for the convenience of the reader.

Again, we identify the set of variables X = (X1, . . . , Xd) with the d-cycle {1, 2, . . . , d},
where addition is modulo d. Let S be a partition of the cycle to K parts, namely, S =
(S1, . . . , SK). We also think of [K] as a set of colors, and of S as a (now “full”) coloring of
the cycle.

For a pairing P , define the number of k-violations by

Vk(P) = {Pt ∈ P : |Pt ∩ Sk| = 1}

in words, the set of pairs in which one color is k and the other color is different. Fix
ε = 1/1000 and denote

G(P) = {k ∈ [K] : |Vk(P)| ≥ dε}

We do not include S as a subscript in these two notations since S will be known from the
context (and will be fixed throughout most of the discussion). We begin by stating the
analogue to Lemma 23, which shows that for every fixed K-coloring of the cycle, a random
pairing has, with high probability, many colors with many violations.

▶ Lemma 30. There is a constant C > 0 such that for all integers K in the range [C, d1/1000]
the following holds: Let S = (S1, . . . , SK) be a partition of the d-cycle and suppose that
|Sk| ≥ d7/8 for all k ∈ [K]. Then,

P[G(P) ≤ K/1000] ≤ d−K/500,

where P ∼ DP .

CCC 2023

https://github.com/dasarpmar/lowerbounds-survey
https://doi.org/10.1561/0400000039
https://doi.org/10.1561/0400000039
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.1016/j.ic.2014.09.004
https://doi.org/10.1145/3519935.3520044
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.1109/SFCS.1985.49

15:32 Near-Optimal Set-Multilinear Formula Lower Bounds

Let us prove Lemma 22 given this lemma.

Proof of Lemma 22 given Lemma 30. We first need the following structural result, whose
proof can be extrapolated from [33] , where it is shown for multilinear formulas.

▶ Lemma 31 (Product Lemma; see [8, 33]). Assume that F is a formula with at most s

leaves, and is set-multilinear with respect to the set partition (X1, . . . , Xd). Then, we can
write

F =
s∑

i=1

ℓ∏
j=1

Fi,j

where ℓ ≥ log d/100 and for each i ∈ [s], the product Fi =
∏ℓ

j=1 Fi,j is also set-multilinear.
Furthermore, the degree of each Fi,j is at least d7/8.

Continuing with the proof, let F be a formula as in the statement of Lemma 22. We start
by writing F =

∑s
i=1 Fi in the form given by Lemma 31, so that each Fi =

∏ℓ
j=1 Fi,j . As each

Fi is set-multilinear, (Si,1, . . . , Si,ℓ) form a partition of [d] where each Fi,j is set-multilinear
with respect to (Xp)p∈Si,j . Let wi,1, . . . , wi,ℓ be the corresponding decomposition, whose
respective sums are denoted simply by wSi,1 , . . . , wSi,ℓ

.
From the properties of relrkw (Claim 7), we have

relrkw(Fi) =
ℓ∏

j=1
relrkwi,j (Fi,j) ≤

ℓ∏
j=1

2− 1
2 |wSj

| = 2− 1
2

∑ℓ

j=1
|wSj

|
,

from which we observe that the task of upper bounding relrkw(F) can be reduced to the
task of lower bounding the sum

∑ℓ
j=1 |wSj

|, which is established in the following claim. For
the sake of convenience, the choice of the alphabet for w below is scaled down to {−1, 1}.

▷ Claim 32. For large enough d, suppose (S1, . . . , SK) is a partition of [d] such that each
|Sj | ≥ d7/8. Then, we have

P
w∼D

 K∑
j=1
|wSj
| < log d

2000

 ≤ d− log d

107 .

Here, D refers to the original distribution i.e., an arc-partition over the d-cycle.

Proof. The proof is going to be similar to that of Claim 25. Applying Lemma 30 to the tuple
(S1, . . . , SK), we obtain that

P[G(P) ≤ K/1000] ≤ d−K/500.

The idea is to condition on the high probability event that G(P) > K/1000. Fix a pairing
P with this property. Consider an ordering σ of the colors in G(P). A color k is said to be
bright with respect to an ordering if there are at least dε/2 nodes x of color k such that either
the partner of x is uncolored or its partner is colored using a color that appears after k in
the ordering σ. Call an ordering σ of the nodes in G(P) good if there are at least |G(P)|/2
bright colors with respect to σ. The observation is that for any ordering σ of the colors,
either σ itself is good, or its reverse is good. We conclude that given any pairing P , there
exists a good ordering of G(P). Fix any such good ordering and let H(P) be the collection
of bright colors with respect to this ordering.

D. Kush and S. Saraf 15:33

Next, notice that if the sum
∑K

j=1 |wSj
| is at most log d

2000 , then so is the sum
∑

k∈H(P) |wSk
|.

Let K ′ = |H(P)| (which is at least K/2000 if G(P) > K/1000). View the sampling of Π from
P as happening in a specific order, according to the order of k1, k2, . . . , kK′ : First define Π
on pairs with at least one point with color k1, then define Π on remaining pairs with at least
one point with color k2, and so forth. When finished with k1, . . . , kK′ , continue to define Π
on all other pairs.

Conditioned on the event that G(P) > K/1000, this implies that |wSj
| ≤ 1 for each

j ∈ H(P). For every j ∈ H(P), define Ej to be the event that |wSkj
| ≤ 1. By choice,

conditioned on E1, . . . , Ej−1, there are at least dε/2 pairs Pt so that |Pt ∩ Skj
| = 1 that are

not yet assigned a “positive” or “negative” sign. For every such Pt, the element in Pt ∩ Skj

is assigned a positive sign with probability 1/2, and is independent of any other Pt′ . The
probability that a binomial random variable B over a universe of size U ≥ dε/2 and marginals
1/2 obtains any specific value is at most O(U−1/2) = O(d−ε/2). Hence, for all j ∈ H(P), by
the union bound,

P[Ej |E1, . . . , Ej−1, P] ≤ P
B

[U/2− 1 ≤ B ≤ U/2 + 1] ≤ O(3 · d−ε/2) ≤ d−ε/4.

Therefore,

P[|wSkj
| ≤ 1 for all j ∈ H(P)] ≤ E[d−ε|H(P)|/4|G(P) > K/1000] + d−K/500 ≤ d−K/107

.

Finally, we note that

P
w∼D

 K∑
j=1
|wSj
| < log d

2000

 ≤ P[|wSkj
| ≤ 1 for all j ∈ H(P)]. ◁

The claim above and the preceding calculation immediately implies that for every sub-formula
Fi of size si,

relrkw(Fi) ≤ si · 2− k log d
2000

with probability at least 1− d− log d

107 ≥ 1− si · d− log d

107 .
Next, by a union bound over i ∈ [s] and the sub-additivity property of relrkw, it follows

that

relrkw(F) ≤ s · 2− k log d
2000

with probability at least 1− s · d− log d

107 , which concludes the proof of the lemma. ◀

We shall omit the proof of Lemma 30 here as it is, in fact, a significantly easier adaptation
of Lemma 4.1 from [8] than the proof of Lemma 23 – this is because we no longer need to
conduct the tighter analysis that was necessary for the low-depth case.

CCC 2023

Matrix Multiplication and Number on the
Forehead Communication
Josh Alman #

Columbia University, New York, NY, USA

Jarosław Błasiok #

Columbia University, New York, NY, USA

Abstract
Three-player Number On the Forehead communication may be thought of as a three-player Number
In the Hand promise model, in which each player is given the inputs that are supposedly on the other
two players’ heads, and promised that they are consistent with the inputs of the other players. The
set of all allowed inputs under this promise may be thought of as an order-3 tensor. We surprisingly
observe that this tensor is exactly the matrix multiplication tensor, which is widely studied in the
design of fast matrix multiplication algorithms.

Using this connection, we prove a number of results about both Number On the Forehead
communication and matrix multiplication, each by using known results or techniques about the
other. For example, we show how the Laser method, a key technique used to design the best matrix
multiplication algorithms, can also be used to design communication protocols for a variety of
problems. We also show how known lower bounds for Number On the Forehead communication
can be used to bound properties of the matrix multiplication tensor such as its zeroing out subrank.
Finally, we substantially generalize known methods based on slice-rank for studying communication,
and show how they directly relate to the matrix multiplication exponent ω.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases Number on the forehead, communication complexity, matrix multiplication

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.16

Related Version Full Version: https://arxiv.org/abs/2302.11476

Funding Josh Alman: Supported in part by NSF Grant CCF-2238221 and a grant from the Simons
Foundation (Grant Number 825870 JA).
Jarosław Błasiok: Supported by Junior Fellowship from the Simons Society of Fellows.

Acknowledgements The authors thank Madhu Sudan and Toniann Pitassi for helpful discussions.

1 Introduction

Number on the forehead (NOF) communication complexity was introduced by Chandra,
Furst and Lipton [12] as a variant of Yao’s model of communication complexity. Here, we
consider k players, each of them having one of k inputs, but instead of providing the players
with their inputs, we imagine them having their inputs written on their foreheads – in
particular each player can observe all inputs except for their own. Similar to the standard
communication complexity, the players wish to exchange as little communication as possible,
in order to jointly compute some function of their inputs.

As it turns out this innocuous alteration has deep mathematical consequences. For
example, being able to prove lower bounds for specific NOF problems with k = Θ(logc n)
players would imply explicit circuit complexity lower bounds [24, 7].

Moreover, even if we consider only three players, the theory of NOF communication
complexity is simultaneously extremely deep, and frustratingly lacking. Its depth comes
in part from a number of fascinating and perhaps surprising connections between natural

© Josh Alman and Jarosław Błasiok;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 16; pp. 16:1–16:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:josh@cs.columbia.edu
mailto:jb4451@columbia.edu
https://doi.org/10.4230/LIPIcs.CCC.2023.16
https://arxiv.org/abs/2302.11476
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Matrix Multiplication and Number on the Forehead Communication

questions in NOF communication complexity and well-studied problems in Ramsey Theory,
extremal combinatorics and additive combinatorics. For example, already in the seminal
paper [12], a surprisingly efficient deterministic protocol was provided for the NOF problem
of checking whether x + y + z = 0 in ZN , where x, y, z ∈ ZN are the inputs on the players’
foreheads (we will call this problem EvalZN

from now on). The protocol uses just O(
√

log N)
communication, and makes use of Behrand’s construction of a relatively dense set without
three-terms arithmetic progression [6]. On the other hand, in the same paper they showed an
ω(1) lower bound for the EvalZN

problem using the Hales–Jewett theorem – a deep theorem
in Ramsey theory. Since then, connections with the Ruzsa–Szemerédi problem, Corner-Free
Sets and other objects from extremal combinatorics have been discovered, frequently leading
to state-of-the-art constructions [26, 4, 3, 27, 14].

At the same time, perhaps because of these connections, many seemingly simple ques-
tions about NOF communication complexity remain unresolved, despite the fact that their
number-in-hand variants are very easy to answer. For example, completely resolving the
communication complexity of EvalZN

requires a significantly better understanding of the
correct quantitative dependency in the Roth’s theorem (that large density subsets of [N]
contain a 3-terms arithmetic progression), and seems to be far out of reach of current
techniques.

Similarly, it is still open how to find an explicit 3-party NOF problem which can be solved
with O(1) randomized communication complexity (assuming shared randomness), but which
requires Ω(n) deterministic communication, even though this is a relatively simple property of
Equality for two-party communication, and even though, with a non-constructive argument,
it is possible to show that such NOF problems exist [21]. A natural candidate for such
a problem is checking whether x + y + z = 0 in Fn

3 (or, more generally, if xyz = 1 in a
large power Gn of some fixed group G, not necessarily abelian – we will call those problems
EvalGn), but proving a NOF communication complexity lower bound has been so far elusive.

Problems like EvalGn , in which for any pair of inputs to two of the players, there is exactly
one input to the remaining player for which they should accept, will be called permutation
problems. These problems always have O(1) randomized communication complexity, so
they are natural candidates to try to prove Ω(n) deterministic communication lower bounds.
Indeed, a number of recent works have studied permutation problems toward this goal [5, 14].

The construction [12] of an efficient protocol for EvalZN
can be interpreted as a statement

that existence of a large set S ⊂ G without three terms arithmetic progressions in an abelian
group G can be used to provide an efficient protocol for EvalG; by contrapositive, a lower
bound for the communication complexity of EvalG would imply an upper bound for the
size of any such set S. This latter statement for the group Fn

3 used to be known as a cap-set
conjecture for few decades, and has famously been positively resolved in 2016 [22, 20, 32] –
the largest set S ⊂ Fn

3 without three terms arithmetic progressions has size O(cn) for some
c < 3. This leads to a natural question: can the techniques used to prove the cap-set theorem
be generalized to prove a linear lower bound for the communication complexity of EvalFn

3
?

Christandl et al. [14] recently identified a barrier against a direct applications of such
techniques – they used a method called combinatorial degenration to prove that a subrank of a
specific tensor associated with the communication problem EvalGn for an abelian group G is
near-maximal – whereas an upper bound on this subrank would imply a desired lower-bound
for communication complexity.

1.1 Our contributions
In this paper, we study three-player communication through the lens of promise number-
in-hand problems. For an alphabet Σ, a promise problem (I, P) consists of two subsets
I ⊂ P ⊂ Σ × Σ × Σ. In this problem, the three players are given as input a, b, c ∈ Σ,

J. Alman and J. Błasiok 16:3

respectively, with the promise that (a, b, c) ∈ P , and their goal is to determine whether
(a, b, c) ∈ I. For instance, usual number-in-hand communication corresponds to this model
where P = Σ× Σ× Σ.

NOF problems can also be viewed as promise number-in-hand problems. Each player
is given as an input a pair (ai, bi) ∈ Σ2 for i ∈ {1, 2, 3}, and their inputs are guaranteed to
satisfy that a2 = b1, a3 = b2 and a1 = b3. (For instance, one thinks of a2 and b1 as the input
on the head of player 3, so we are promised that players 1 and 2 see the same value there.)
Write Pnof ⊂ Σ2 × Σ2 × Σ2 to denote the inputs that satisfy that promise.

A key idea we pursue is to interpret I and P , not just as subsets of inputs, but also as
order-3 (3-dimensional) {0, 1}-valued tensors. For example, letting N = |Σ|, we can represent
Pnof as a {0, 1}-valued tensor Pnof ∈ FN2×N2×N2 , with the tensor entry being one whenever
the corresponding tuple is a legal input.

As it turns out, Pnof is exactly the matrix multiplication tensor, the same tensor which is
extensively studied in the theory of fast matrix multiplication algorithms! We leverage this
extremely surprising, if only formal connection, to transfer ideas which have been developed in
studying fast matrix multiplication to give new insights into NOF communication complexity,
and conversely, to use results proved originally about NOF communication complexity and
obtain new alternative proofs of consequential properties of the matrix multiplication tensor.

We use this connection to prove the following results.

Communication Protocols from the Laser Method

We use the Laser method, the technique introduced by Strassen and used to design the
best-known matrix multiplication algorithms [31, 19], as a tool to design NOF communication
protocols. For any three NOF problems I, J, K, let I ⊗ J ⊗K (“their product”) denote the
NOF problem of solving the three simultaneously, i.e., given one input to each, determining
whether all three are accepting inputs. Using the Laser method, we show that for any three
permutation NOF problems I, J, K with n-bit inputs, the product I ⊗ J ⊗K (which has
3n-bit inputs) can be solved using only n bits of communication deterministically.

For example, for any permutation NOF problem I with n-bit inputs, one can consider
the problem of, given N simultaneous inputs to I, determining if they are all accepting
inputs. A consequence of our protocol is that this can be solved with 1

3 nN +O(n) bits of
communication deterministically. This implies constructions of surprisingly large corner-free
sets for powers of arbitrary abelian groups G.

By contrast, we show using a counting argument that a random NOF permutation problem
I with n-bit inputs has requires deterministic communication complexity ≥ n/3−O(1). It
was not previously clear to what extent this is tight; our protocol shows that this bound
can at least be achieved for any permutation problem which is itself the product of three
permutation problems.

Our protocol should also be contrasted with the proof by probabilistic method in [14],
which showed that every NOF permutation problem with n-bit inputs has a protocol with
communication complexity n/2 +O(1), improving in turn upon the trivial n upper bound.

The Zeroing Out Subrank of Matrix Multiplication

A quantity which appears frequently in the theory of matrix multiplication algorithms is the
zeroing out subrank of matrix multiplication, denoted Qzo(⟨n, n, n⟩). This is the size of the
largest identity tensor (3-dimensional analogue of the identity matrix) which can be achieved
as a zeroing out of the tensor ⟨n, n, n⟩ for multiplying two n × n matrices. Strassen [31]

CCC 2023

16:4 Matrix Multiplication and Number on the Forehead Communication

famously proved that Qzo(⟨n, n, n⟩) ≥ n2−o(1), which is roughly as large as possible (since
⟨n, n, n⟩ is an n2×n2×n2 tensor), and used it as part of the Laser method to design a faster
algorithm for matrix multiplication1. Recent barrier results have also used this bound to
rule out certain approaches to designing faster matrix multiplication algorithms [2, 1, 15].

In the bound Qzo(⟨n, n, n⟩) ≥ n2−o(1), it is natural to ask what is hidden by the o(1).
For instance, it was recently shown that the “border subrank” of ⟨n, n, n⟩ is ⌈ 3

4 n2⌉ [25]; is it
possible that we also have Qzo(⟨n, n, n⟩) ≥ Ω(n2)? This could improve low-order terms in
some applications.

In fact, we prove that this is not possible, and that Qzo(⟨n, n, n⟩) < n2/ω(1). To prove
this, we build off of the work of [26], who showed a NOF communication lower bound,
that any NOF permutation problem requires ω(1) deterministic communication. Using our
connection between NOF communication and matrix multiplication, we are able to modify
their proof to get our upper bound on Qzo(⟨n, n, n⟩).

Interestingly, the prior work [26] proved their communication lower bound using a
connection with the Ruzsa–Szemerédi problem from extremal combinatorics. Not only
does our new proof show a connection between Qzo(⟨n, n, n⟩) and the Ruzsa–Szemerédi
problem, but we are in fact able to show that the two are equivalent! More precisely, it is
impossible to determine the precise asymptotics of Qzo(⟨n, n, n⟩) without also resolving the
Ruzsa–Szemerédi problem. This is interesting in contrast with the “border subrank” which
has been precisely determined [25].

Finally, using the connection with NOF communication, we also provide an alternative
proof of Strassen’s lower bound Qzo(⟨n, n, n⟩) ≥ n2−o(1), deducing it as a corollary of the
existence of the efficient deterministic NOF protocol for EvalZN

.

Slice-Rank Methods

Since their introduction [12], NOF problems I have been associated with a corresponding 3-
hypergraph H whose chromatic number exactly characterizes the deterministic communication
complexity of I. One recent powerful approach for bounding the chromatic number of such
a hypergraph is the “slice rank” method, which was introduced to resolve the cap-set
conjecture [20, 22]. Roughly speaking, if one can show that the slice rank of the adjacency
tensor of H is not too large, then this implies the chromatic number of H is not too small,
and hence a communication lower bound.

Since then, a few successful techniques have been introduced to bound the slice ranks
of many different tensors [32, 10]. Recent work [13] asked whether these techniques could
give linear deterministic NOF communication lower bounds. However, they showed that,
unfortunately, it is impossible to use such techniques to prove communication lower bounds
for any Eval group problem. They proved this by defining the corresponding adjacency
tensor and calculating that it has maximal “asymptotic subrank” and hence large slice rank.

We generalize their result and show that slice-rank methods cannot be used to prove a
linear deterministic communication lower bound for any NOF permutation problem (not just
an Eval group problem). To show this, we observe that for any NOF permutation problem,
the corresponding adjacency tensor is actually (a permutation of) the matrix multiplication

1 See, e.g., [9, Section 8]. Bounds used in algorithms are sometimes described as bounds on a “monomial
degeneration subrank” or “combinatorial degeneration subrank”, but these are in turn ultimately used
to bound the zeroing out subrank via [8]. Note that bounds on more general notions like “border
subrank” or “subrank” would not suffice in these algorithms, since the subrank decomposition is applied
only to the “outer structure” of a tensor in the Laser method [31].

J. Alman and J. Błasiok 16:5

tensor Pnof. Since the matrix multiplication tensor is known to have maximal asymptotic
subrank [31], it follows that the adjacency tensor never has small enough slice rank. In
particular, this implies that in hindsight, the tensor whose asymptotic subrank was computed
in the prior work [13] is exactly the matrix multiplication tensor.

By contrast, we use slice-rank methods to prove linear lower bounds for other promise
problems. The key is that this method works whenever the promise tensor has low slice-rank.
For example, consider the promise problem EqFN

3
, where parties receive inputs x, y, z ∈ FN

3
with a promise that x + y + z = 0, and they wish to decide whether x = y. We prove that
this problem requires Ω(N) communication. This may seem like it should be straightforward
to prove (“how could the third player”s input z = −(x + y) possibly help the first two players
to test for equality?”), but we prove that the problem is actually equivalent to the cap-set
problem (which was a long-open conjecture).

General Rank Methods and the Asymptotic Spectrum of Tensors

Slice-rank is one way to measure the “complexity” of a tensor, but there are many others,
including other notions of tensor rank, and more generally a spectrum of different measures
which is well-studied in algebraic complexity and tensor combinatorics called the “asymptotic
spectrum of tensors” [31, 34]. Let r be any of these measures (the reader may want to focus
on the case when r is the tensor rank). We generalize the slice-rank method and prove
that for any promise problem (I, P), its deterministic communication complexity is at least
log2(r(I)/r(P)). Hence, finding a measure r which is larger for the problem I than the
promise P leads to a communication lower bound. (This is why, for slice rank, the fact that
the promise Pnof has maximal slice rank means that a lower bound cannot be proved in
this way.)

This already has intriguing consequences when r is tensor rank R.
For number-in-hand communication, we know that the promise tensor PNIH is the all-1s

tensor which has rank R(PNIH) = 1. Hence, for any number-in-hand problem I, we get
a communication lower bound of log2(R(I)). This is analogous to the standard upper
bound in two-party deterministic communication compleixty by the log of the rank of the
communication matrix. Moreover, any 2n × 2n × 2n tensor I (corresponding to an n-bit
input problem) which is not “degenerate” in some way has rank at least 2n, which explains
why nearly all number-in-hand communication problems require linear communication.

For NOF communication for n-bit inputs, as we’ve discussed, the promise tensor PNOF is
the matrix multiplication tensor. Determining the rank of matrix multiplication is the central
question when designing matrix multiplication algorithms; the matrix multiplication exponent
ω is defined exactly such that the rank of PNOF is R(PNOF) = (2n)ω+o(1). Hence, for any
problem I with rank R(I) ≥ (2n)c, we get a communication lower bound of (c−ω− o(1)) · n.
The fact that ω appears negated in this lower bound is intriguing: this means that designing
faster matrix multiplication algorithms, and hence lowering the known upper bound on ω,
leads to an improved communication lower bound for such problems I.

Matrix Multiplication as a Communication Problem

Finally, we consider how other promise problems can be used to shed further light on NOF
communication lower bounds. Let I be any n-bit NOF problem, let N = 2n, and let T(Z/NZ)2

denote the structure tensor of the group (Z/NZ)2, i.e., the tensor

T(Z/NZ)2 =
∑

a,b,c,d∈[N]

x(a,b)y(c,d)z(a+c (mod N),b+d (mod N)).

CCC 2023

16:6 Matrix Multiplication and Number on the Forehead Communication

We observe that PNOF ⊂ T(Z/NZ)2 (after appropriately permuting variables), and so it is
well-defined to consider three different promise problems using these three tensors: (I, PNOF),
(PNOF , T(Z/NZ)2), and (I, T(Z/NZ)2). Moreover, a simple triangle inequality-style argument
shows that their communication complexities are related via:

CC(I, PNOF) ≥ CC(I, T(Z/NZ)2)− CC(PNOF , T(Z/NZ)2).

On the left-hand side is exactly the deterministic NOF complexity of the problem I that
we would like to prove a lower bound for. On the right-hand side, (I, T(Z/NZ)2) is a similar
problem to the original NOF problem of I, but with a weaker promise, and so it should be
easier to prove communication lower bounds for. What about CC(PNOF , T(Z/NZ)2)? (Recall
that in this problem, we’re given as input a term from the tensor T(Z/NZ)2 , and our goal is
to determine whether or not it is a valid NOF input from PNOF .)

For this problem, we give a protocol with communication ≤ n (the trivial bound would
be 2n). Moreover, we prove a communication lower bound of ≥ (ω − 2)n (this follows from
the rank-based approach discussed above). So, further improvements to the communication
protocol actually require fast matrix multiplication (since they would imply an upper bound
on ω via this inequality). If it were the case that ω = 2 (which is popularly conjectured), then
it is plausible that this problem actually has sublinear communication complexity. In that
case, in order to prove a linear lower bound for the NOF problem (I, PNOF), it would suffice
to prove a linear lower bound for the seemingly-harder problem (I, T(Z/NZ)2). In summary, if
we could design a faster matrix multiplication algorithm achieving ω = 2, then this may be a
promising approach to proving NOF communication lower bounds.

2 Tensor Preliminaries

In this paper we will relate communication problems to related tensors and their properties.
We will focus on order-3 tensors (also known as 3-dimensional tensors). For a field F and
three positive integers A, B, C, we define FA×B×C to be the set of tensors

T =
∑
a∈A

∑
b∈B

∑
c∈C

Ta,b,cxaybzc

for coefficients Ta,b,c ∈ F (where xa, yb, zc are formal variables). When the specific sets are
not important, we will often write F|A|×|B|×|C| instead of FA×B×C .

T is {0, 1}-valued if, for all a, b, c, we have Ta,b,c ∈ {0, 1}. Such tensors are in bijection
with subsets of A×B×C. All tensors considered in this paper are assumed to be {0, 1}-valued
unless stated otherwise.

The field F that one works over will be primarily important to us for the following
definition. The (not necessarily {0, 1}-valued) tensor T has rank 1 if it can be written as

T =
(∑

a∈A

αaxa

)(∑
b∈B

βbyb

)(∑
c∈C

γczc

)

for coefficients αa, βb, γc ∈ F. More generally, the rank of the (not necessarily {0, 1}-valued)
tensor T , denoted R(T), is the minimum number of tensors of rank 1 which sum to T .

Rank is critical to the definition of the matrix multiplication exponent ω. For n, m, p ∈ N,
we write ⟨n, m, p⟩ ∈ Fn2×n2×n2 to denote the matrix multiplication tensor

⟨n, m, p⟩ =
n∑

i=1

m∑
j=1

p∑
k=1

xi,jyj,kzk,i.

J. Alman and J. Błasiok 16:7

The exponent ω is defined as

ω := inf{t | R(⟨n, n, n⟩) ≤ nt for some n ∈ N}.

Indeed, it is known that for any ε > 0, matrix multiplication of n × n matrices can be
performed with an arithmetic circuit of size O(nω+ε), and conversely, that any arithmetic
circuit for matrix multiplication can be converted into a tensor rank upper bound which
yields the same operation count in this way [30].

We say T is an identity tensor if, for all a ∈ A, there is at most one pair (b, c) ∈ B × C

such that Ta,b,c ̸= 0, and similarly for all b ∈ B and for all c ∈ C. Often, when A = B = C,
one specifically thinks of the identity tensor of size k as a tensor

∑
a∈S xayaza for some

subsets S ⊂ A of size |S| = k. To be clear that this is sufficient but not necessary (as one
could in general permute the indices), we will refer to permutations of identity tensors.

If T, T ′ ∈ FA×B×C , we say T ′ is a zeroing out of T if there are subsets A′ ⊂ A, B′ ⊂
B, C ′ ⊂ C such that T ′

a,b,c is equal to Ta,b,c whenever a ∈ A′, b ∈ B′, c ∈ C ′, and T ′
a,b,c = 0

otherwise. In other words, we are setting coefficients outside of A′, B′, C ′ to zero. We will
sometimes write T ′ = T |A′,B′,C′ .

The zeroing out subrank of T , denoted Qzo(T), is the maximum k such that T has a
zeroing out to a permutation of an identity tensor of size k. This more combinatorial variant
on the notion of “subrank” (which uses “restrictions” rather than zeroing outs) will be useful
a number of times.

3 Promise problems and colored tensors

▶ Definition 1. A promise problem over alphabet Σ is a pair of subsets I ⊂ P ⊂ Σ× Σ× Σ,
where P is a set of allowed inputs (the promise), and I is the subset of accepting inputs (the
problem).

To study those objects, we will introduce a notion of colored tensors. A colored tensor is
a pair (I, TP), where TP ∈ FΣ×Σ×Σ is a tensor and I ⊂ supp(TP) is a subset of its non-zero
terms. (We imagine those terms to have a special color, and in what follows we will call them
green terms). 3-party promise number in hand problems over the alphabet Σ are therefore in
direct correspondence with {0, 1}-valued colored tensors over FΣ×Σ×Σ, where the non-zero
terms of the tensor T corresponds to the set of allowed inputs, and the subset I of green
terms corresponds to accepting inputs.

▶ Definition 2. For any field F we can define the communication tensor of a promise problem
(I, P) as a colored tensor (I, TP), with TP ∈ FΣ×Σ×Σ given by

TP :=
∑

(i,j,k)∈P

xiyjzk.

We will say that TP is the promise tensor of the problem (I, P).

We will sometimes abuse notation, and use the same symbol to denote a {0, 1}-valued
tensor P ∈ FA×B×C and its support supp(P) ⊂ A × B × C whenever it is clear from
context. All tensors we discuss in this paper are {0, 1}-valued and for the vast majority of
the discussion the underlying field is irrelevant.

CCC 2023

16:8 Matrix Multiplication and Number on the Forehead Communication

Communication Complexity Model

We use CC(I, P) to denote the deterministic communication complexity of the promise
problem (I, P). To make this concrete, we consider a shared blackboard model: here a
protocol is given by a triple of functions, one for each player, encoding what each player
should append to the blackboard in each round of communication, given the current state of
the blackboard, and their private input. Players write their communication on the blackboard
in cyclic order; in each stage each player can either append something to the blackboard,
accept the current instance, or reject the current instance. A specific instance is accepted if
all players accept it (based on their own input, and the final state of the blackboard). A
protocol solves a promise problem (I, P) if it accepts all the inputs from I and rejects all
other inputs from P \ I. (Since P is the promise, the protocol need not have any particular
behavior on inputs outside of P .)

Asymptotic communication complexity

For a promise problem (I, P) we use (I, P)⊗n to denote a promise problem in which parties
are given n valid instances of the original promise problem (I, P), and wish to determine
whether all of those instances simultaneously are accepting.

More formally, (I, P)⊗n is the promise problem with the promise P ⊗n ⊂ (Σn)×(Σn)×(Σn),
i.e., for A, B, C ∈ Σn, the triple of sequences (A, B, C) is in P ⊗n if and only if we have
(Ai, Bi, Ci) ∈ P for all i ∈ [n]. The set of accepting instances I⊗n is defined analogously. This
operation corresponds to the Kronecker product of the associated communication tensors.

▶ Definition 3. For tensors I(1) ⊂ T (1) ⊂ FA1×B1×C1 and I(2) ⊂ T (2) ⊂ FA2×B2×C2 We
define the Kronecker product of colored tensors (I(1), T (1))⊗ (I(2), T (2)) as a colored tensor
(I, T) in FA1A2×B1B2×C1C1 , where T = T1 ⊗ T2 satisfies

T(a1,a2),(b1,b2),(c1,c2) = T
(1)
a1,b1,c1

· T (2)
a2,b2,c2

,

and I = {(a1, a2), (b1, b2), (c1, c2) : (ai, bi, ci) ∈ Ii for i ∈ {1, 2}}.

We remark that all tensors considered in this work are order-3 tensors (also known as
3-dimensional tensors), and we will use symbol ⊗ exclusively to denote the Kronecker product
of tensors (as opposed to tensor product).

We will define the asymptotic communication complexity of the problem P as

CC(I, P) := lim
n→∞

CC((I, P)⊗n)
n

.

Permutation problems

We pay special attention to a particular class of communication problems, which we will call
injection problems – as we will see later on, the deterministic communication complexity of
injection problems have very simple combinatorial interpretation, and they all have protocols
with constant randomized communication (under public randomness).

▶ Definition 4 (Injection problem). Let π1, π2, π3 : Σ3 → Σ be projections onto first, second,
and third coordinate respectively.

We say that (I, P) (where I ⊂ P ⊂ Σ3) is an injection problem, if the tensor TI :=∑
(i,j,k)∈I xiyjzk restricted to the coordinates appearing in I (i.e. (TI)|π1(I),π2(I),π3(I)) is a

permutation of an identity tensor.
That is: for every valid input of the i ∈ Σ of the first player, there is at most one pair

j, k, such that (i, j, k) ∈ I, and analogously for the second and the third player.

J. Alman and J. Błasiok 16:9

▶ Definition 5 (Permutation problem). We say that (I, P) is a permutation problem if (I, P)
is an injection problem and moreover |I| = Σ.

Note that if (I, P) is an injection (resp. permutation) problem, then (I, P)⊗n also is an
injection (permutation) problem.

3.1 Number on the forehead problems as promise-number-in-hand
problems

We can treat a NOF problem I ⊂ Σ × Σ × Σ as a promise problem over the alphabet
Γ := Σ× Σ, where the promise Pnof ⊂ Γ3 is given by the following promise-tensor

Pnof :=
∑

i,j,k∈Σ
xi,jyj,kzk,i.

A key observation that we will explore in this paper is that Pnof is exactly the matrix
multiplication tensor P = ⟨N, N, N⟩ where N = |Σ|.

The set of accepting instances I ⊂ Γ × Γ × Γ can be bijectively mapped into a subset
Ĩ ⊂ ⟨N, N, N⟩ of non-zero terms of the promise tensor, by Ĩ := {((x, y), (y, z), (z, x)) :
(x, y, z) ∈ I}.

Having interpreted number-on-the-forehead problems as number-in-hand problems with
promise ⟨N, N, N⟩, we observe that our more general definition of the permutation problem
agrees with the definition of the permutation problem in [26] for NOF problems – which are
in turn are equivalent to Latin squares of size N ×N .

An important family of examples of NOF permutation problems are Eval problems
induced by an abelian group G. Specifically, for any abelian group G, let EvalG be the
problem defined as follows. Players have x, y, z ∈ G on their foreheads, and they want to
decide whether x + y + z = 0. We can represent the problem by its set of accepting instances
I ⊂ G3 defined by I = {(x, y, z) : x + y + z = 0}.

The observation that all NOF permutation problems admit an efficient randomized
protocol, generalizes to injection problems regardless of the promise, using a constant
communication randomized protocol for two-players Equality problem.

▶ Fact 6. Every injection problem has a O(1) randomized protocol with shared randomness,
regardless of the promise.

Proof. First player, upon receiving his input x can find unique y1, z1, such that (x, y1, z1) ∈
I. He can then proceed by using the randomized two-player protocol for Equality to
check whether y1 = y, and z1 = z, where y, z are inputs of the second and third player
respectively. ◀

What can we say about the deterministic communication complexity of promise injection
problems? It turns out that we can express it equivalently as a question about the smallest
proper coloring of the communication tensor (I, P).

▶ Definition 7. Consider a colored tensor T = (I, P), We say that a subset of its green terms
S ⊂ I is an independent set if S is a permutation of an identity tensor and the restriction
T |π1(S),π2(S),π3(S) is equal to S. We use α(T) to denote the size of largest independent set in
the colored tensor T .

If T is an ordinary tensor, we use α(T) to denote the size of the largest independent set
in the colored tensor (supp(T), T) (i.e., we treat all its terms as green). This coincides with
the usual notion of zero-out subrank of a tensor.

CCC 2023

16:10 Matrix Multiplication and Number on the Forehead Communication

Note that if T = (I, P) is an injection problem, S ⊂ I is an independent set if and only
if all non-zero terms in the restriction T |π1(S),π2(S),π3(S) are in I – that is, if we denote by
Si := πi(S) then set S is independent if and only if

supp(T) ∩ (S1 × S2 × S3) = S.

With a definition of an independent set, we can define a proper coloring and the chromatic
number of a colored tensor in a natural way.

▶ Definition 8. For a colored tensor T := (I, P) we say that τ : I → [k] is a proper coloring
if for all colors c ∈ [k], the set τ−1(c) is independent.

We denote by χ(T) the chromatic number of tensor T – the smallest k, such that there
is a proper coloring τ : I → [k]. Again, if T is an ordinary tensor, we use a shorthand
χ(T) := χ(supp(T), T).

The proof of the following characterization follows exactly the original proof in [12],
just phrased in a slightly more general language of promise problems instead of specifically
Number on the Forehead problems.

▶ Theorem 9. The deterministic communication complexity of any promise injection problem
(I, P) is equal to ⌈log χ(I, P)⌉.

Proof. Given a coloring τ : I → [k], we will describe a communication protocol with
complexity ⌈log k⌉. The first player, with an input x, looks at the only y(1), z(1), s.t.
(x, y(1), z(1)) ∈ I, and writes down the color τ(x, y(1), z(1)). Similarly, the second player, with
an input y, compares the written color with the color of (x(2), y, z(2)) ∈ I, and analogously
the third player. Clearly, if (x, y, z) was an accepting instance, all three of the triples in
the consideration would be the same (x(2) = x(3) = x, y(1) = y(3) = y, z(1) = z(2) = z), and
therefore the colors under consideration would agree – the protocol will correctly accept such
an instance.

On the other hand, if all (x, y(1), z(1)), (x(2), y, z(2)), (x(3), y(3), z) have the same color c,
let us take the independent set S := τ−1(c) ⊂ I, then x ∈ π1(S), y ∈ π2(S), z ∈ π3(S), and
since (x, y, z) ∈ P and S is an independent set, we must have (x, y, z) ∈ I – i.e. the instance
was accepting. This completes the proof that a coloring τ : I → [k] implies existence of an
efficient protocol.

The converse is similar: given a protocol for a problem (I, P) with communication at
most k, we can use the transcript of the communication on each input (x, y, z) ∈ I as a color
for the term. This yields a mapping τ : I → [2k], and all we need to check is that it is a
proper coloring. Indeed, let us chose an arbitrary color c, and take a set S = τ−1(c). If
there was (x, y, z) ∈ P − I, such that (x, y, z) ∈ π1(S)× π2(S)× π3(S), the communication
transcript on the (allowed) input (x, y, z) would have been the same as on accepting inputs
(x, y(1), z(1)), (x(2), y, z(2)), (x(3), y(3), z), and therefore each player would have accepted it –
contradicting correctness of the protocol, since (x, y, z) ̸∈ I. ◀

3.2 Comparison with standard bounds for the NOF communication
complexity

What we discussed so far is a slightly different perspective on the standard way of charac-
terizing NOF communication complexity (already present in [12]). Classically, with NOF
permutation problem I ⊂ Γ×Γ×Γ, one associated a directed 3-hypergraph H , and the logar-
ithm of the chromatic number of this hypergraph is equal to the deterministic communication
complexity of the associated problem.

J. Alman and J. Błasiok 16:11

We will show that in fact the adjacency tensor of the aforementioned hypergraph H is
just a permutation of the promise tensor Pnof (i.e., the matrix multiplication tensor), and
the permutation is uniquely determined by the problem I – it corresponds to permuting
variables yi and zi in a way such that I is exactly on the diagonal of the tensor.

This provides a generalization, and another perspective on the barrier against using a
slice-rank or any other bounds on the subrank of the adjacency tensor of H as a way to show
a lower bound for communication complexity of H.

Specifically, note that any independent set S ⊂ V (H) induces a zeroing-out of the
adjacency tensor of the hypergraph H to a large identity subtensor (given by restriction to
indices in S × S × S – note that in the construction of the hypergraph H and its adjacency
tensor, we include self-loops (t, t, t) for each t ∈ V (H)). One could then hope to show a
lower bound on the chromatic number of the hypergraph H by upper bounding the size of
the largest independent set, which in turn can be upper bounded by subrank of adjacency
sub-tensor. Finally, it is known that subrank of any tensor is always bounded by its slice-rank,
and a few successful techniques for controlling slice-ranks of particular tensors of interest
have been developed [32, 10].

This, apparently promising avenue for showing lower bounds for specific NOF permutation
problems unfortunately has to fail. In [14] it was shown that similar techniques as those used
by Strassen to prove lower bound on the asymptotic subrank of the matrix multiplication
tensor, can be used to lower bound the asymptotic subrank of the adjacency tensor for any
Eval group problem – it is maximally large. We observe that this is not a coincidence:
in fact all adjacency tensors constructed this way are just permutations of the matrix-
multiplication tensor, so the lower bound for asymptotic subrank of the matrix multiplication
tensor directly applies – not only for problems arising as EvalG, but more generally for all
number-on-the-forehead permutation problems.

▶ Definition 10 (Communication Hypergraph [12]). For a permutation NOF problem I ⊂ Γ×
Γ×Γ, we define its communication hypergraph H(I) to be an order-3 hypergraph, with vertices
V (H(I)) = I – set of all accepting instances, and hyperedges constructed in the following way:
for all (x, y, z) ∈ Γ× Γ× Γ, let T1 := (x, y, z′) ∈ I be the only triple in I with agreeing with
(x, y, z) in the first two coordinates, and similarly T2 := (x′, y, z) ∈ I, T3 := (x, y′, z) ∈ I.

Then E(H(I)) = {(T1, T2, T3) : (x, y, z) ∈ Γ3}.

▶ Fact 11. The adjacency tensor of the hypergraph H(I) is a permutation of the matrix
multiplication tensor ⟨|Γ|, |Γ|, |Γ|⟩.

Moreover if we consider a set of green terms Ĩ ⊂ ⟨|Γ|, |Γ|, |Γ|⟩ given by Ĩ =
{((x, y), (y, z), (z, x)) : (x, y, z) ∈ I} in the colored communication tensor for the problem
I, this set corresponds under the aforementioned permutation exactly to the set of diagonal
terms {(t, t, t) : t ∈ I} of the adjacency tensor of H(I).

Proof. Consider a map π12 : I → Γ× Γ, given by π12(x, y, z) = (x, y), and similarly π23, π13.
Note that those three bijections between I and Γ×Γ. Applying those bijections to three axes
of the adjacency tensor A of the hypergraph H(I), we see that an image of any hyperedge
(T1, T2, T3) is in the Definition 10 is (π12(T1), π23(T2), π13(T3)) = ((x, y), (y, z), (x, z)) – a
non-zero term of the matrix multiplication tensor ⟨|Γ|, |Γ|, |Γ|⟩. All the non-zero terms of
the matrix multiplication tensor can be obtained this way: since, by construction of the
communication hypergraph, any term ((x, y), (y, z), (x, z)) can be lifted to an hyperedge
(T1, T2, T3) ∈ H(I).

Finally, the statement about the image of the diagonal follows directly from the definition
of permutations π12, π23 and π13 and construction of the hypergraph H. ◀

▶ Corollary 12. For any NOF permutation problem, the adjacency tensor of its communication
hypergraph has maximal asymptotic subrank.

CCC 2023

16:12 Matrix Multiplication and Number on the Forehead Communication

3.3 Lower bounding the communication complexity of random NOF
permutation problem

In this section we will show that a random NOF permutation problem over the alphabet
[N]× [N]× [N], where N = 2n requires ≥ n/3−O(1) deterministic communication. This
is a simple counting argument, similar in spirit to the one used in [21]. Since the NOF
permutation problems over [N]× [N]× [N] are bijective with Latin squares of size N ×N ,
known upper and lower bounds for the number of Latin squares can be used in our proof.

The following is a consequence of the fact that any Latin square can be constructed by
repeatedly taking a perfect matching in a regular bipartite graph, and using standard bounds
on the number of perfect matchings in a k-regular bipartite graph.

▶ Theorem 13 ([33]). Total number #P of NOF permutation problems over [N]× [N]× [N]
satisfies

NN2
e−N2

≤ #P ≤ NN2
.

With this in hand, we can prove

▶ Theorem 14. For most of NOF permutation problems (I, P), over the alphabet [N] where
N = 2n, we have CC(I, P) ≥ n

3 −O(1).

Proof. Let (I, P) be a NOF permutation problem over [N]× [N]× [N] with communication
complexity d. By Theorem 9 communication complexity is equivalent to the existence of
proper coloring κ : I → {0, 1}d. Since I is a permutation problem, for any x ∈ [N]×[N], there
is a unique π−1

1 (x) ∈ I ⊂ ([N]× [N])3 (where π1 : ([N]× [N])3 → [N]× [N] is the projection
onto first coordinate). We can define κ1 : [N] × [N] → {0, 1}d as κ1(x) := κ(π−1

1 (x)).
Analogously, we define κ2 and κ3.

We observe that the triple of functions (κ1, κ2, κ3) uniquely determines I. Indeed, for
(a, b, c) ∈ P to check if (a, b, c) ∈ I ⇐⇒ κ1(a) = κ2(b) = κ3(c). Therefore, the number of
bits to specify a problem with communication complexity d (i.e. the logarithm of the number
of such problems) is at most 3dN2 – to specify a function κ : [N]× [N]→ {0, 1}d we need
dN2 bits.

On the other hand, using the lower bound of Theorem 13, we need N2 log N −O(N2)
bits to write down arbitrary NOF permutation problem. Therefore if d ≤ (log N)/3−O(1),
most of the problems do not have a protocol with communication complexity d. ◀

3.4 Background on independence number and coloring of matrix
multiplication tensor

The following statement asserting that matrix-multiplication tensor has almost maximal
zero-out subrank is an important insight in the study of matrix multiplication. It has been
originally proven by Strassen in [29], and has been used as a technical step in the design
of some of the fast matrix multiplication algorithms. Here we will use it as a tool in the
proof of Theorem 20. On the other hand, in Section 3.6 we will discuss how, using our
connection between number on the foreheads protocol and structural properties of the matrix
multiplication tensor, the following statement can be easily deduced from the known results
in the NOF communication complexity on efficient protocols for some permutation problems.

J. Alman and J. Błasiok 16:13

▶ Theorem 15 ([29]). There is I ⊂ supp⟨N, N, N⟩, such that |I| ≥ N2−o(1), and the restric-
tion ⟨N, N, N⟩|π1(I),π2(I),π3(I) is a permutation of the identity tensor, i.e. Qzo(⟨N, N, N⟩) ≥
N2−o(1).

Equivalently, in the notation introduced in this work,

α(⟨N, N, N⟩) ≥ N2−o(1).

The following is a standard technique of lifting the large independent set to a small
coloring in symmetric combinatorial objects. We include the proof for completeness.

▶ Definition 16 (Automorphism group). For a colored tensor T = (I, P), we define Aut(T)
to be the set of all triples of permutations (σ1, σ2, σ3) such that σ(I) = I, and moreover for
all (x, y, z) we have Tx,y,z = Tσ1(x),σ2(y),σ3(z).

▶ Lemma 17. For a colored tensor T = (I, P) if for any two green elements a, b ∈ I, there
is a σ ∈ Aut(T), s.t. σ(a) = b, then

χ(T) ≤ |I|
α(T) log |I|.

Proof. Let S ⊂ I be an independent set, and σ ∼ Aut(T) a uniformly random element of the
automorphism group. Then clearly σ(S) is also an independent set. We claim that for any
x ∈ I, we have Pr(x ∈ σ(S)) = |S|

|I| . Indeed, let S = {s1, s2, . . . sm}. The subset T ⊂ Aut(T)
of permutations σ such that σ(s1) = x is exactly a coset of a subgroup H in Aut(T) where
H is a set of permutations fixing x, i.e. H = {σ : σ ∈ Aut(T), σ(x) = x}. Number of such
cosets is exactly |I|, since we assumed that x can be mapped to any other s ∈ I by some
permutation in Aut(T) (and no other element, by the property of automorphism group that
each σ ∈ Aut(T) preserves green terms: σ(I) = I). Since all cosets of a given subgroup are
disjoint and have the same size, we get Pr(σ(s1) = x) = 1/|I|). Therefore

Pr(x ∈ σ(S)) =
∑

i≤|S|

Pr(x = σ(si)) = |S|/|I|.

Finally, if we consider K = C(|I| log |S|)/|S| independent random permutations
σ1, σ2, . . . , σm ∈ Aut(T), we wish to say that with positive probability for every element
x ∈ I it is covered by at least one set σi(S). Indeed, in expectations, each of those is covered
by C log |S| such sets, and applying a standard Chernoff and union bound argument, we
reach the conclusion.

Having a covering of I by K independents sets, we can easily find a coloring τ : I → [K]
mapping an elemnet x ∈ I to the smallest i ∈ [K] such that x ∈ σi(S). ◀

▶ Corollary 18. The chromatic number of the matrix multiplication tensor satisfies

χ(⟨N, N, N⟩) ≤ N1+o(1).

We shall also need the following standard fact on the Kronecker products of matrix
multiplication tensors.

▶ Fact 19 (see, e.g., [9, Page 24]). The Krnoecker product of matrix multiplication tensors
satisfies

⟨N1, M1, P1⟩ ⊗ ⟨N2, M2, P2⟩ = ⟨N1N2, M1M2, P1P1⟩

CCC 2023

16:14 Matrix Multiplication and Number on the Forehead Communication

3.5 Laser method gives a non-trivial asymptotic protocol for all NOF
permutation problems

In this section we will use the celebrated Laser method, introduced to design fast matrix
multiplication algorithms [31, 19], to prove the following surprising upper bound on the
asymptotic NOF communication complexity of the third player of arbitrary permutation
problem.

▶ Theorem 20. For every triple of NOF permutation problems I, J, K, each over {0, 1}n ×
{0, 1}n × {0, 1}n, we have

CC(I ⊗ J ⊗K) ≤ (1 + o(1))n.

(Note that the trivial bound is CC(I ⊗ J ⊗K) ≤ 3n.)
In particular for any NOF permutation problem P over {0, 1}n × {0, 1}n × {0, 1}n, we

have

CC(P) ≤ (1 + o(1))n

3 .

We define the block-colored tensor to be a colored tensor (I, T) over A×B × C together
with a collection of partitions A = A1 ∪ . . . Ap, B = B1 ∪ . . . ∪Bq, and C = C1 ∪ . . . Cq.

The outer structure of a block tensor T , is a tensor Out(T) over [p] × [q] × [r] with
Out(T)i,j,k = 1 if and only if the restriction T |Ai,Bj ,Ck

̸= 0 (and Out(T)i,j,k = 0 otherwise).
The inner structure I(T) of a block tensor T is a collection of (colored) tensors T |Ai,Bj ,Ck

.
The notions of outer and inner structure feature prominently in the Laser method; see e.g., [9,
Section 8].

▶ Lemma 21. For a block-colored tensor T , we have

χ(T) ≤ χ(Out(T)) · max
T ′∈I(T)

χ(T ′).

Proof. This is immediate – to find a proper coloring for the set of green terms I of a block
tensor T , we can map an element x ∈ I to (c1, c2), where c1 is a color assigned to the block
in which x lies in the coloring of Out(T), and c2 is a color assigned to x in the coloring of
the block itself.

We need to show that each color class is an independent set. With an induced partition
of A, B, C, this amounts to observing that for any block tensor for which Out(T) is is a
permutation of the identity tensor, as well as all tensors in I(T), the entire tensor also is a
permutation of the identity tensor. ◀

▶ Fact 22. Let T 1, T 2 be a pair of block-colored tensor. Then T := T 1⊗T 2 is a block-colored
tensor, with the outer structure Out(T) = Out(T 1) ⊗ Out(T 2), and the inner structure
I(T) ⊂ I(T 1)⊗I(T 2) (Here, for two collections of tensors A and B we use A⊗B := {a⊗ b :
a ∈ A, b ∈ B}.)

Proof. Directly follows from the definition. ◀

▶ Fact 23. For any pair of colored tensors T1, T2, we have χ(T1 ⊗ T2) ≤ χ(T1)χ(T2).

Proof. Given two colorings κ1 : I1 → [k1] and κ2 : I2 → [k2] we can construct a
coloring of the Kronecker product T1 ⊗ T2 using pairs [k1] × [k2], by mapping a term
((i1, i2), (j1, j2), (k1, k2)) ∈ I1 ⊗ I2 to a pair (κ1(i1, j1, k1), κ2(i2, j2, k2)). The fact that it is a
proper coloring follows directly from the fact that Kronecker product of two identity tensors
is again an identity tensor. ◀

J. Alman and J. Błasiok 16:15

▶ Lemma 24. There is a triple of partitions A,B, C such that for any NOF permutation-
problem (I, Pnof), the block-colored tensor T := (I, Pnof,A,B, C) induced by those partitions
satisfies the following conditions

The outer structure Out(T) = ⟨N, 1, 1⟩.
Every colored tensor in the inner structure (Y, T ′) ∈ I(T) has T ′ = ⟨1, N, N⟩ and
χ(Y, T ′) = 1.

Proof. Consider partitions A := (A1, . . . , An) where At := {(i, t) : i ∈ [N]}, similarly
B := (B1, . . . BN) where Bt = {(t, i) : i ∈ [N]}, and finally C := (C) := ([N] × [N]) is a
trivial partition with a single part.

First note that with this partition of the matrix multiplication tensor P , the block
At1 ×Bt2 × C is non-empty if and only if t1 = t2,

Out(T) =
∑

t

x1,tyt,1z1,1,

is the matrix multiplication tensor ⟨N, 1, 1⟩.
Moreover, let us consider an arbitrary non-empty block At ×Bt ×C. Tensor T restricted

to this block is

T |At×Bt×C =
∑
j,k

xj,tyt,kzk,j ,

which is exactly a ⟨1, N, N⟩ matrix multiplication tensor.
Note now that the projection π3 : At ×Bt × C → C induces a bijection between C and

Y := supp(T |At×Bt×C). If we look at S := I ∩ Y , we wish to argue that S is an independent
set in T |At×Bt×C . Indeed, denoting Si := πi(S), since (I, Pnof) is a permutation problem,
all we need to argue is that

(S1 × S2 × S3) ∩ Y = S.

But since π3 is bijection, we already have (At ×Bt × π−1
3 (S3)) ∩ Y = S. ◀

We are now ready to prove Theorem 20.

Proof of Theorem 20. For permutation NOF problems I, J, K, according to Lemma 24
we can chose a block-colored tensor structure TI , TJ , TK , such that Out(TI) = ⟨N, 1, 1⟩,
Out(TJ) = ⟨1, N, 1⟩ and Out(TK) = ⟨1, 1, N⟩.

By Fact 22 and Fact 19, the block-colored tensor T = TI ⊗ TJ ⊗ TK satisfies Out(T) =
⟨N, N, N⟩, and by Fact 23 every colored tensor Z ∈ I(T) has χ(Z) = 1 (since it is a product
of three colored tensors with chromatic number 1).

By Corollary 18, χ(⟨N, N, N⟩) ≤ N1+o(1), and finally using Lemma 21,

χ(T) ≤ χ(Out(T)) max
T ′∈I(T)

χ(T ′) ≤ N1+o(1).

The communication complexity bound now follows from the characterization in Theorem 9.
◀

3.6 Zeroing out subrank of the matrix multiplication tensor
We will use the connection between number on the forehead communication complexity, and
structural properties of matrix multiplication tensor to find a non-trivial upper bound for the
zero-out subrank of matrix multiplication tensor – i.e., an upper bound on the size of the
largest diagonal subtensor to which matrix multiplication tensor can be zeroed-out.

CCC 2023

16:16 Matrix Multiplication and Number on the Forehead Communication

Authors of the work [26] observed a connection between the NOF communication com-
plexity and the Ruzsa–Szemerédi problem. In particular, they proved a super-constant lower
bound for NOF communication complexity of any permutation problem, as a corollary of
the Ruzsa–Szemerédi theorem (which in turns is proved via the triangle-removal lemma).

Here, we observe that with our connection between NOF communication and the matrix-
multiplication tensor, we can use their proof to show a somewhat stronger statement – the
upper bound on the zero-out subrank of matrix multiplication.

▶ Theorem 25. The zero-out subrank of matrix multiplication satisfies

Qzo(⟨N, N, N⟩)) ≤ N2/2c log∗ N .

Note that this theorem (together with Proposition 27) implies in fact the Ω(log∗ N) lower
bound for all NOF permutation problems present in [26], and the proof is almost identical.

Before we continue, we shall state a convenient well-known equivalent formulation of
the Ruzsa–Szemerédi theorem. The sub-quadratic upper bound of the quantity below has
been famously proven by Ruzsa and Szemerédi in 1978 [28], using the notorious triangle
removel lemma (in fact they considered a slightly different formulation, the (6, 3)-problem,
but it can be easily seen to be equivalent to the following statement [16]). Substituting a
quantitative version of the triangle removal lemma by Fox [23] in their proof leads to the
following quantitative bound.

▶ Theorem 26 ([28, 16, 23]). For any graph G(V, E), let C be a collection of all triangles in
the graph G. If all those triangles are edge-disjoint, then |C| ≤ N2/2c log∗ N where N = |V |.

With this theorem in hand, it is easy to show a sub-quadratic upper bound on the largest
independent set in the matrix multiplication tensor. In fact the quantitative question about
the density of the largest independent set in the matrix multiplication tensor is equivalent to
the Ruzsa–Szemerédi problem.

Proof of Theorem 25. Consider an independent set S̃ ⊂ ⟨N, N, N⟩ – we can treat it as a
subset S ⊂ [N]× [N]× [N]. Let us now consider the following tri-partite graph on [N]× [3]:
for each (a, b, c) ∈ S we put a triangle on vertices (a, 0), (b, 1) and (c, 2). This construction
yields a graph G on 3N vertices, together with a collection C of its |S| triangles. To appeal
to the Theorem 26, we need to show that triangles in the collection C are edge-disjoint, and
that those are all the triangles in a graph G.

First of all, those are edge disjoint – if we had a pair of distinct triangles in C sharing an
edge, it would correspond to two elements (a, b, c1) ∈ S and (a, b, c2) ∈ S – a contradiction
with an assumption that S is an independent set in matrix multiplication tensor.

Similarly, since the graph G is tri-partite, the only possible triangle are of form
(a, 0), (b, 1), (c, 2) for some a, b, c. We wish to show that if S was an independent set,
this is possible only for (a′, b′, c′) ∈ S.

Indeed, if the edge (a, 0), (b, 1) was included in the graph, there must have been a tuple
(a, b, c′) ∈ S, and analogously (a, b′, c) ∈ S, (a′, b, c) ∈ S for some a′, b′, c′. Since S was an
independent set, this readily implies that a′ = a, b′ = b, c′ = c and indeed (a, b, c) ∈ S. ◀

Lower bound for matrix multiplication subrank from NOF protocols
In the study of the matrix multiplication tensor, lower bounds on its zero-out subrank are
much more consequential than upper bounds. Strassen proved that α(⟨N, N, N⟩) ≥ N2−o(1),
which is almost maximal (since the tensor ⟨N, N, N⟩ has size N2 × N2 × N2, the largest
diagonal tensor one could potentially hope to find there is of size N2). He used this

J. Alman and J. Błasiok 16:17

together with the Laser method to design a fast matrix multiplication algorithm in [31],
and all subsequent record-holding matrix multiplication algorithms have also used this. At
the same time, recent barrier results [2, 1, 15] used the lower bounds on the subrank of
matrix multiplication to prove barrier against certain approaches for proving that the matrix
multiplication constant ω = 2. (Roughly speaking, using our notation here, they show that
since α(⟨N, N, N⟩) is so large, one would need to use an intermediate tensor T with α(T)
also large in order to design a sufficiently fast algorithm.)

One of the crucial ingredients in the proof using the Laser method that α(⟨N, N, N⟩) ≥
N2−o(1) is leveraging the existence of a subset S ⊂ [N] which does not have three-term
arithmetic progressions, and has relatively high density. Using Behrend’s [6] construction of
such a set with density 2−O(

√
log N), it follows that α(⟨N, N, N⟩) ≥ N2/2O(

√
log N).

Using the same construction of Behrend’s set, it was proved in [12] that the NOF
problem Eval(ZN) has a deterministic protocol with communication complexity O(

√
log N)

– significantly improving upon the naive O(log N). We observe that their construction of
an efficient NOF protocol not only uses the same technical ingredients as the construction
of large independent set in the matrix multiplication tensor, but in fact it is much more
intimately related – known results in communication complexity together with our connection
directly imply the Strassen result on the subrank of matrix multiplication tensor.

▶ Proposition 27. If there is any permutation problem I ⊂ [N] × [N] × [N] with NOF
communication complexity CC(Ĩ , Pnof) ≤ k, then α(⟨N, N, N⟩) ≥ N22−k.

Proof. By Theorem 9, if the promise problem (Ĩ , Pnof) has NOF communication complexity
k, then χ(I, Pnof) ≤ 2k, and in particular taking the largest color we get α(I, Pnof) ≥ n22−k.
Since the promise tensor Pnof for the number on the forehead communication problems is
exactly the matrix multiplication tensor ⟨n, n, n⟩, we can disregard which terms are green,
and deduce α(⟨n, n, n⟩) ≥ α(I, Pnof) ≥ n22−k. ◀

3.7 Other promise problems
As we understand now, the slice rank-based approach for proving lower bounds for asymptotic
communication complexity of NOF permutation problems failed, because the technique
depends only on the promise tensor, and is insensitive to the specific problem – and the promise
tensor corresponding to the number-on-the-forehead problems is a matrix multiplication
tensor, with maximal subrank.

With this in mind, it is worth looking at promise problems with other promise-tensors,
hopefully ones for which we know the asymptotic subrank is not maximal – this statement
alone shall imply that every permutation problem with such a promise should have positive
asymptotic communication complexity.

▶ Fact 28. If the promise tensor P over Σ× Σ× Σ has non-maximal asymptotic subrank

α(P) := lim sup α(P ⊗N)1/N < |Σ|,

then for every permutation problem I ⊂ P we have

CC((I, P)⊗N) ≥ Ω(N).

The proof of this fact is straightforward with what we have discussed so far. We later provide
a complete proof of a strictly stronger theorem (Theorem 33), so we leave a direct proof of
this special case to the reader.

CCC 2023

16:18 Matrix Multiplication and Number on the Forehead Communication

The solution of the cap-set problem [20, 22, 32] and its subsequent generalizations [10],
can be interpreted as saying that for any abelian group G, the structure tensor

TG :=
∑

g,h∈G

xgyhz−g−h,

has α(TG) < |G|. In particular, all permutation problems with a promise tensor being a
structure tensor of such a group, have positive asymptotic communication complexity. For
example, the following is true

▶ Corollary 29. Consider the promise problem EqFN
3

, where parties receive inputs x, y, z ∈ FN
3

with a promise that x + y + z = 0, and they wish to decide whether x = y. This problem
requires Ω(N) communication.

Without the preceding discussion it would not be immediately clear whether we should
expect this statement to be true – the relevant part of the problem is between Alice and
Bob, and they just wish to decide the equality predicate for their inputs – a task which, with
ordinary deterministic two-party protocols, requires Ω(N) communication. But should we
expect Charlie, who knows x + y to be of much help in solving the task?

On the other hand, one might think that the statement above – if true – should be
relatively straightforward to prove directly, with a proof similar to the communication lower
bound for deterministic two-party equality problem. We observe that in fact this statement
is easily equivalent to the cap-set theorem, hence a direct proof would be an interesting new
proof of what used to be a cap-set conjecture for almost four decades.

▶ Fact 30. For any abelian group G, if there is a S ⊂ G of size |G|1−δ without three-terms
arthmetic progressions, then CC(EqG) ≤ δ log |G|+O(log log |G|)

Proof. The corresponding communication tensor of a problem EqG is (I, TG) where TG is
the structure tensor of the group G, and I = {(x, x,−2x) : x ∈ G} ⊂ TG.

We will first show that α(I, TG) ≥ |S|. We wish to show that if S does not have three
terms arithmetic progressions, then S′ := {(x, x,−2x) : x ∈ S} ⊂ I is an independent set.
Indeed, for the sake of contradiction, let us assume that (x, y,−x− y) for some x ̸= y has
x ∈ π1(S′), y ∈ π2(S′),−x− y ∈ π3(S′). This means x, y ∈ S, and −x− y = −2z for some
z ∈ S – i.e. x, z, y is a three terms arithmetic progression.

To lift a large independent set to a small coloring, we will refer to Lemma 17 – it is
enough to show that there is an automorphism of (I, TG) that maps arbitrary (x, x,−2x)
to (y, y,−2y). This is given by a triple of permutations σ1 = σ2 : w 7→ w − x + y, and
σ3 : w 7→ w + 2y− 2x. Finally, by Theorem 9 a coloring of the tensor (I, TG) into |G|δ log |G|
colors yields a protocol with complexity δ log |G|+ log log |G|. ◀

3.8 Lower Bounds from the Asymptotic Spectrum of Tensors
The results in this section concern promise problems which are not necessarily permutation
problems. We will first need a simple combinatorial description of the communication
complexity of such a problem.

For any transcript of a protocol π, the set of inputs Sπ ⊂ Σ×Σ×Σ which result in such
a transcript is a combinatorial cube Aπ ×Bπ ×Cπ for some Aπ, Bπ, Cπ ⊂ Σ. If the protocol
is correct, in every such cube either all terms from P are contained in I, or they all are not
in I. As such, a correct protocol of complexity k induces a partition of the tensor P into 2k

monochromatic combinatorial cubes (where a cube is monochromatic in the preceding sense).
In particular, for any promise problems (I, P) all terms from I can be covered by 2CC(I,P)

combinatorial cubes, each of which does not contain any term in P − I.

J. Alman and J. Błasiok 16:19

▶ Theorem 31. Let r : FΣ×Σ×Σ → R≥0 be any function which is:
sub-additive, meaning, if A, B ∈ FΣ×Σ×Σ then r(A + B) ≤ r(A) + r(B), and
monotone under zeroing outs, meaning, if A, B ∈ FΣ×Σ×Σ and B is a zeroing out of A,
then r(B) ≤ r(A).

Suppose P is any promise tensor over Σ×Σ×Σ, and I ⊂ P is any problem (not necessarily
a permutation problem). Then,

CC(I, P) ≥ log2

(
r(I)
r(P)

)
.

Proof. Let k = 2CC(I,P). By the preceding discussion, there are k tensors T1, . . . , Tk ∈
FΣ×Σ×Σ which are each zeroing outs of P , such that T1 + · · ·+ Tk = I. We thus have

r(I) ≤
k∑

i=1
r(Ti) ≤ k · r(P),

as desired. ◀

Although it is relatively simple, Theorem 31 is quite powerful since there are many
well-studied examples of functions r in algebraic complexity and tensor combinatorics which
are sub-additive and monotone under zeroing outs. Tensor rank (R) is the most prominent
example, but there are also other well-studied rank variants such as “slice rank” [32] and
“geometric rank” [25]. (Note that subrank (Q) is super-additive, not sub-additive.)

Number In Hand

For one example, consider the all-1s tensor PNIH ∈ FΣ×Σ×Σ, which is the promise tensor
for the Number In Hand model. This very simple tensor has rank R(PNIH) = 1. Thus, by
Theorem 31, any tensor I with R(I) ≥ |Σ|Ω(1) has essentially maximal Number In Hand
communication complexity Ω(log |Σ|). Note that all tensors I ∈ FΣ×Σ×Σ have R(I) ≥ |Σ|
except for tensors which are somehow “degenerate”; for instance, all “concise” tensors have
this property [18].

This instantiation of Theorem 31, where the promise is the all-ones tensor and r is the
rank of the problem tensor I, is akin to the standard lower bound in two-party deterministic
communication complexity by the log rank of the communication matrix. The celebrated
log-rank conjecture stipulates that in the standard setting this statement can be weakly
inverted, and in fact any two-party communication problem (with trivial promise) has a
protocol with complexity (log rank(I))c for some constant c.

Number On Forehead

For another example, consider the tensor PNOF ∈ FΣ2×Σ2×Σ2 , which is the promise tensor
for the Number On Forehead model. As we’ve seen, PNOF = ⟨|Σ|, |Σ|, |Σ|⟩, and so we know
that R(PNOF) = |Σ|ω+o(1). It follows that if I ⊂ PNOF is a problem with R(I) ≥ |Σ|c
for some constant c > ω, then I has Number On Forehead communication complexity
≥ (c− ω + o(1)) log |Σ|.

This relates the classic open problem in algebraic complexity of finding high-rank tensors
to the task of proving deterministic NOF lower bounds. Furthermore, the fact that ω,
the exponent of matrix multiplication, is subtracted in the communication lower bound is
intriguing. This means that designing faster matrix multiplication algorithms, and hence
decreasing our best-known upper bound on ω, actually makes it easier to prove NOF lower
bounds via this approach.

CCC 2023

16:20 Matrix Multiplication and Number on the Forehead Communication

Generalization to the Asymptotic Spectrum
Finally, in this section, we note that while subrank is not sub-additive, the zeroing out
variant (QZO) we have been studying is additive (and hence sub-additive) for direct sums,
and so a similar version of Theorem 31 still holds for it. Moreover, this holds for any r in
the “asymptotic spectrum of tensors’ [31, 34], a well-studied class which roughly captures
the different ways to generalize the notion of the “rank” of a matrix to tensors.

▶ Definition 32. Tensor B is an identification of tensor A if you can get to B from A

by first doing a zeroing out then setting some variables equal to each other. For example,
B = x0y0z0 + x0y1z1 is an identification of A = x0y0z0 + x1y1z1 + x0y1z2 by zeroing out z2
and setting x1 ← x0. Identifications generalize zeroing outs, but are a special case of tensor
restrictions.

▶ Theorem 33. Let r : FΣ×Σ×Σ → R≥0 be any function which is:
sub-additive for direct sums, meaning, if A ∈ FΣ×Σ×Σ and B ∈ FΣ′×Σ′×Σ′ are tensors
for disjoint sets Σ, Σ′, then r(A + B) ≥ r(A) + r(B), where A + B is a tensor over
FΣ∪Σ′×Σ∪Σ′×Σ∪Σ′ and
monotone under identifications, meaning, if A, B ∈ FΣ×Σ×Σ and B is an identification
of A, then r(B) ≤ r(A).

Suppose P is any promise tensor over Σ × Σ × Σ, and I ⊂ P is any problem (not
necessarily a permutation problem). Then,

CC(I, P) ≥ log2

(
r(I)
r(P)

)
.

Proof. Let k = 2CC(I,P). By definition, there are k tensors T1, . . . , Tk ∈ FΣ×Σ×Σ which are
each zeroing outs of P , such that T1 + · · · + Tk = I. In particular, the direct sum of k

copies of P has a zeroing out to the direct sum of all the Ti tensors, which in turn has an
identification to I. We thus have

r(I) ≤
k∑

i=1
r(Ti) ≤ k · r(P),

as desired. ◀

▶ Fact 34. The zeroing out subrank r = QZO satisfies the premises of Theorem 33.

Proof. QZO is sub-additive for direct sums since any zeroing out of a direct sum to a diagonal
tensor must separately zero out each part into a diagonal tensor. It’s monotone under
identifications since, when transforming a tensor A to a diagonal tensor via identification, we
may assume that we first perform a zeroing out and then set variables equal to each other,
but setting variables equal to each other cannot increase the size of a diagonal tensor. ◀

3.9 Intermediate Group Promise Problems
Suppose T1 ⊂ T2 ⊂ T3 are {0, 1}-valued tensors. These give rise to three promise problems,
depending on which one picks as the promise and which one picks as the problem: (T1, T2),
(T1, T3), and (T2, T3). We observe a simple triangle inequality-type relationship between
their communication complexities:

▶ Fact 35. CC(T1, T3) ≤ CC(T1, T2) + CC(T2, T3)

J. Alman and J. Błasiok 16:21

Proof. In order to solve (T1, T3), first use a protocol for (T2, T3) to determine whether the
input is in T2, then use a protocol for (T1, T2) to determine whether the input is in T1. ◀

We will now consider a particular instantiation of Fact 35 which yields a potential avenue
toward proving deterministic NOF lower bounds. T1, T2, T3 will be tensors from FΣ2×Σ2×Σ2

for some finite set Σ. Let n := |Σ|.
We will pick T3 to be the structure tensor of the group (Z/nZ)2. This tensor is typically

written

T3 =
∑

a,b,c,d∈[n]

x(a,b)y(c,d)z(a+c,b+d),

where additions in the subscripts (here and in the remainder of this subsection) are done mod
n. However, to simplify the next step, we can permute the variable names (replacing x(a,b)
with x(a+b,b) for all a, b ∈ [n], replacing y(c,d) with y(c,c+d) for all c, d ∈ [n], and replacing
z(a+c,b+d) with z(b+d,a+c) for all a, b, c, d ∈ [n]) to equivalently write it as

T3 =
∑

a,b,c,d∈[n]

x(a+b,b)y(c,d+c)z(b+d,a+c).

Next, we will pick T2 = Pnof ∈ Fn2×n2×n2 to be the Number On Forehead promise tensor,
i.e., the ⟨n, n, n⟩ matrix multiplication tensor,

T2 =
∑

i,j,k∈[n]

x(i,j)y(j,k)z(k,i).

▶ Fact 36. T2 ⊂ T3.

Proof. For each i, j, k ∈ [n], we need to prove that there is a choice of a, b, c, d ∈ [n] such
that x(i,j)y(j,k)z(k,i) = x(a+b,b)y(c,d+c)z(b+d,a+c). The choice which achieves this is b = c = j,
a = i− j (mod n), and d = k − j (mod n). ◀

Finally, we may pick T1 to be any Number On Forehead problem T1 ⊂ T2. Fact 35 now
relates the Number On Forehead complexity of the problem T1 to two different promise
problems with the promise T3:

CC(T1, PNOF) ≥ CC(T1, T3)− CC(PNOF , T3).

Using the tools we’ve developed thusfar, we can bound the communication complexity
CC(PNOF , T3). Note that these are tensors over Fn2×n2×n2 , so the trivial communication
upper bound would be 2 log n.

▶ Lemma 37.

(ω − 2) log n ≤ CC(PNOF , T3) ≤ log(n).

Proof. Since PNOF is the ⟨n, n, n⟩ matrix multiplication tensor, its rank is R(PNOF) =
nω+o(1). Meanwhile, since T3 is the structure tensor of an abelian group, its rank is R(T3) = n2

(see, e.g., [17, Theorem 2.3 and Theorem 4.1]). Thus, Theorem 31 yields the lower bound
(ω − 2) log n ≤ CC(PNOF , T3).

For the upper bound, we directly give a communication protocol. In this problem, player
A is given (a + b, b), player B is given (c, d + c), and player C is given (b + d, a + c), for
some values a, b, c, d ∈ Zn, and their goal is to determine whether or not the following three
equalities hold: b = c, d + c = b + d, and a + c = a + b. Note that this is equivalent to
testing whether b = c, since the other two equalities follow from this. They can do this by
having player A send b, which uses log n bits, and then having player B confirm that it is
equal to c. ◀

CCC 2023

16:22 Matrix Multiplication and Number on the Forehead Communication

Interestingly, in light of the lower bound in Lemma 37, we know that improving the
upper bound CC(PNOF , T3) ≤ log(n) requires using fast matrix multiplication. Indeed, any
bound CC(PNOF , T3) ≤ (1− δ) log(n) would imply that ω < 3− δ. More specifically, one can
observe that an upper bound on ω obtained in this way would fall under the “group-theoretic
approach” to matrix multiplication [17], using the group (Z/nZ)2. There are known barriers
to this approach for any fixed n [10], but it’s consistent with the best-known barriers that
this approach could prove ω = 2 by using increasingly larger n. (On the other hand, most
recent work on the group-theoretic approach has focused instead on non-abelian groups [11].)

Combining Lemma 37 together with Fact 35 shows that

▶ Fact 38.

CC(T1, PNOF) ≥ CC(T1, T3)− log(n).

For any T1, the straightforward algorithm for the problem (T1, T3) has communication
complexity 2 log(n). Fact 38 shows that any T1 with CC(T1, T3) ≥ (1 + δ) log(n) for any fixed
δ > 0 would give a linear Number On Forehead lower bound CC(T1, PNOF) ≥ Ω(log n).

In light of this, improving the upper bound of Lemma 37 could be quite powerful. In
particular, if ω = 2, and if this can be used to give an algorithm achieving CC(PNOF , T3) ≤
o(log(n)), then any T1 with CC(T1, T3) ≥ Ω(log(n)) (without any restriction on the leading
constant) would give a linear Number On Forehead lower bound CC(T1, PNOF) ≥ Ω(log n)
as well.

References
1 Josh Alman. Limits on the universal method for matrix multiplication. Theory Of Computing,

17(1):1–30, 2021.
2 Josh Alman and Virginia Vassilevska Williams. Limits on all known (and some unknown)

approaches to matrix multiplication. SIAM Journal on Computing, FOCS:18–285, 2021.
3 Noga Alon, Ankur Moitra, and Benny Sudakov. Nearly complete graphs decomposable into

large induced matchings and their applications. In Proceedings of the Forty-Fourth Annual
ACM Symposium on Theory of Computing, STOC ’12, pages 1079–1090, New York, NY, USA,
2012. Association for Computing Machinery. doi:10.1145/2213977.2214074.

4 Noga Alon and Adi Shraibman. Algorithmic number on the forehead protocols yielding dense
ruzsa-szemerédi graphs and hypergraphs, 2020. doi:10.48550/arXiv.2001.00387.

5 Paul Beame, Matei David, Toniann Pitassi, and Philipp Woelfel. Separating deterministic
from randomized multiparty communication complexity. Theory of Computing, 6(1):201–225,
2010.

6 Felix A Behrend. On sets of integers which contain no three terms in arithmetical progression.
Proceedings of the National Academy of Sciences, 32(12):331–332, 1946.

7 Richard Beigel and Jun Tarui. On acc. Computational Complexity, 4:350–366, 1994.
8 Dario Bini. Border rank of a p×q ×2 tensor and the optimal approximation of a pair of bilinear

forms. In Automata, Languages and Programming: Seventh Colloquium Noordwijkerhout, the
Netherlands July 14–18, 1980, pages 98–108. Springer, 2005.

9 Markus Bläser. Fast matrix multiplication. Theory of Computing, pages 1–60, 2013.
10 Jonah Blasiak, Thomas Church, Henry Cohn, Joshua A Grochow, Eric Naslund, William F

Sawin, and Chris Umans. On cap sets and the group-theoretic approach to matrix multiplication.
Discrete Analysis, 3, 2017.

11 Jonah Blasiak, Henry Cohn, Joshua A Grochow, Kevin Pratt, and Chris Umans. Matrix
multiplication via matrix groups. arXiv preprint, 2022. arXiv:2204.03826.

12 Ashok K Chandra, Merrick L Furst, and Richard J Lipton. Multi-party protocols. In
Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 94–99,
1983.

https://doi.org/10.1145/2213977.2214074
https://doi.org/10.48550/arXiv.2001.00387
https://arxiv.org/abs/2204.03826

J. Alman and J. Błasiok 16:23

13 Matthias Christandl, Omar Fawzi, Hoang Ta, and Jeroen Zuiddam. Symmetric subrank of
tensors and applications, 2021. doi:10.48550/arXiv.2104.01130.

14 Matthias Christandl, Omar Fawzi, Hoang Ta, and Jeroen Zuiddam. Larger corner-free sets
from combinatorial degenerations. In 13th Innovations in Theoretical Computer Science
Conference, ITCS 2022, January 31 – February 3, 2022, Berkeley, CA, USA. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ITCS.2022.48.

15 Matthias Christandl, Péter Vrana, and Jeroen Zuiddam. Barriers for fast matrix multiplication
from irreversibility. THEORY OF COMPUTING, 17(2):1–32, 2021.

16 Lane H Clark, Roger C Entringer, Joseph E McCanna, and László A Székely. Extremal
problems for local properties of graphs. Australas. J Comb., 4:25–32, 1991.

17 Henry Cohn and Christopher Umans. A group-theoretic approach to fast matrix multiplication.
In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings.,
pages 438–449. IEEE, 2003.

18 Austin Conner, Fulvio Gesmundo, Joseph M Landsberg, Emanuele Ventura, and Yao Wang. To-
wards a geometric approach to strassen’s asymptotic rank conjecture. Collectanea mathematica,
72:63–86, 2021.

19 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
In Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 1–6,
1987.

20 Ernie Croot, Vsevolod F Lev, and Péter Pál Pach. Progression-free sets in are exponentially
small. Annals of Mathematics, pages 331–337, 2017.

21 Matei David and Toniann Pitassi. Separating nof communication complexity classes rp and
np, 2008. doi:10.48550/arXiv.0802.3860.

22 Jordan S. Ellenberg and Dion Gijswijt. On large subsets of fn
q with no three-term arithmetic

progression, 2016. doi:10.48550/arXiv.1605.09223.
23 Jacob Fox. A new proof of the graph removal lemma. Annals of Mathematics, pages 561–579,

2011.
24 J. Hastad and M. Goldmann. On the power of small-depth threshold circuits. In Proceedings

[1990] 31st Annual Symposium on Foundations of Computer Science, pages 610–618 vol.2,
1990. doi:10.1109/FSCS.1990.89582.

25 Swastik Kopparty, Guy Moshkovitz, and Jeroen Zuiddam. Geometric rank of tensors and
subrank of matrix multiplication. arXiv preprint, 2020. arXiv:2002.09472.

26 Nati Linial, Toniann Pitassi, and Adi Shraibman. On the communication complexity of
high-dimensional permutations, 2019.

27 Nati Linial and Adi Shraibman. Larger corner-free sets from better nof exactly-n protocols,
2021. doi:10.48550/arXiv.2102.00421.

28 Imre Z Ruzsa and Endre Szemerédi. Triple systems with no six points carrying three triangles.
Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai, 18(939-945):2, 1978.

29 V Strassen. Relative bilinear complexity and matrix multiplication. Journal für die reine und
angewandte Mathematik, 375:406–443, 1987.

30 Volker Strassen. Vermeidung von divisionen. Journal für die reine und angewandte Mathematik,
264:184–202, 1973.

31 Volker Strassen. The asymptotic spectrum of tensors and the exponent of matrix multiplication.
In 27th Annual Symposium on Foundations of Computer Science (sfcs 1986), pages 49–54.
IEEE, 1986.

32 Terence Tao. A symmetric formulation of the Croot-Lev-Pach-Ellenberg-Gijswijt capset bound.
blog post, 2016.

33 Jacobus Hendricus Van Lint and Richard Michael Wilson. A course in combinatorics. Cam-
bridge university press, 2001.

34 Avi Wigderson and Jeroen Zuiddam. Asymptotic spectra: Theory, applications and extensions,
2022.

CCC 2023

https://doi.org/10.48550/arXiv.2104.01130
https://doi.org/10.4230/LIPICS.ITCS.2022.48
https://doi.org/10.48550/arXiv.0802.3860
https://doi.org/10.48550/arXiv.1605.09223
https://doi.org/10.1109/FSCS.1990.89582
https://arxiv.org/abs/2002.09472
https://doi.org/10.48550/arXiv.2102.00421

Instance-Wise Hardness Versus Randomness
Tradeoffs for Arthur-Merlin Protocols
Dieter van Melkebeek # Ñ

University of Wisconsin-Madison, WI, USA

Nicollas Mocelin Sdroievski # Ñ

University of Wisconsin-Madison, WI, USA

Abstract

A fundamental question in computational complexity asks whether probabilistic polynomial-time
algorithms can be simulated deterministically with a small overhead in time (the BPP vs. P problem).
A corresponding question in the realm of interactive proofs asks whether Arthur-Merlin protocols
can be simulated nondeterministically with a small overhead in time (the AM vs. NP problem). Both
questions are intricately tied to lower bounds. Prominently, in both settings blackbox derandomization,
i.e., derandomization through pseudo-random generators, has been shown equivalent to lower bounds
for decision problems against circuits.

Recently, Chen and Tell (FOCS’21) established near-equivalences in the BPP setting between
whitebox derandomization and lower bounds for multi-bit functions against algorithms on almost-all
inputs. The key ingredient is a technique to translate hardness into targeted hitting sets in an
instance-wise fashion based on a layered arithmetization of the evaluation of a uniform circuit
computing the hard function f on the given instance.

In this paper we develop a corresponding technique for Arthur-Merlin protocols and establish
similar near-equivalences in the AM setting. As an example of our results in the hardness to
derandomization direction, consider a length-preserving function f computable by a nondeterministic
algorithm that runs in time na. We show that if every Arthur-Merlin protocol that runs in time
nc for c = O(log2 a) can only compute f correctly on finitely many inputs, then AM is in NP. Our
main technical contribution is the construction of suitable targeted hitting-set generators based on
probabilistically checkable proofs for nondeterministic computations.

As a byproduct of our constructions, we obtain the first result indicating that whitebox deran-
domization of AM may be equivalent to the existence of targeted hitting-set generators for AM, an
issue raised by Goldreich (LNCS, 2011). Byproducts in the average-case setting include the first
uniform hardness vs. randomness tradeoffs for AM, as well as an unconditional mild derandomization
result for AM.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases Hardness versus randomness tradeoff, Arthur-Merlin protocol, targeted
hitting set generator

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.17

Funding Partial support for this research was provided by the University of Wisconsin-Madison
Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin
Alumni Research Foundation, and by the National Science Foundation under Grant No. 2312540.

Acknowledgements We thank Ronen Shaltiel and Chris Umans for answering questions about
their work, Oded Goldreich for helpful feedback on the write-up, and Lijie Chen for suggesting the
potential use of PCPs during a presentation of our preliminary results.

© Dieter van Melkebeek and Nicollas Mocelin Sdroievski;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 17; pp. 17:1–17:36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dieter@cs.wisc.edu
https://pages.cs.wisc.edu/~dieter/
mailto:sdroievski@wisc.edu
https://pages.cs.wisc.edu/~nmsdroievski/
https://doi.org/10.4230/LIPIcs.CCC.2023.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

1 Introduction

The power of randomness constitutes a central theme in the theory of computing. In some
computational settings, randomness is indispensable for any algorithmic solution. In others,
it is provably needed for attaining efficiency. In yet others, the use of randomness leads to
algorithms that run faster than all known deterministic ones, but the question remains open:
Does an efficient deterministic algorithm exist?

In the context of decision problems, the key question is whether probabilistic polynomial-
time algorithms with bounded error (the class BPP) can be simulated deterministically
with a small overhead in time. In the realm of interactive verification protocols, the
corresponding question asks whether Arthur-Merlin protocols (the class AM) can be simulated
nondeterministically with a small overhead in time. In both settings, polynomial overhead is
conjectured to suffice but even subexponential overhead remains open. Both settings have
intricate connections to the quest for lower bounds, referred to as hardness vs. randomness
tradeoffs. In some cases equivalences are known. We first describe the situation for BPP and
then the one for AM, the focal point of this paper.

BPP setting. The first hardness vs. randomness tradeoffs were developed for blackbox
derandomization, where a pseudo-random generator (PRG) produces, in an input-oblivious
way, a small set of strings that “look random” to the process under consideration on every
input of a given length. A long line of research established tight equivalences between
blackbox derandomization of prBPP (the promise version of the class BPP) and nonuniform
lower bounds for exponential-time classes. At the low end of the derandomization spectrum,
subexponential-time blackbox derandomizations of prBPP are equivalent to super-polynomial
circuit lower bounds for EXP .= DTIME[2poly(n)] [2]. At the high end, polynomial-time
blackbox derandomizations of prBPP are equivalent to linear-exponential circuit lower bounds
for E .= DTIME[2O(n)] [15]. A smooth interpolation between the two extremes exists and
yields tight equivalences over the entire derandomization spectrum [27]. The results are also
robust in the sense that if the circuit lower bound holds at infinitely many input lengths
(equivalent to the separation EXP ̸⊆ P/poly at the low end), then the derandomization works
at infinitely many input lengths, and if the circuit lower bound holds at almost-all input
lengths, then the derandomization works at almost-all input lengths.

A uniformization of the underlying arguments led to equivalences between derandomiza-
tions that work on most inputs of a given length, and uniform lower bounds, i.e., lower bounds
against algorithms. This derandomization setting is often referred to as the average-case
setting.1 At the low end, there exist subexponential-time simulations of BPP that work on
all but a negligible fraction of the inputs of infinitely many lengths if and only if EXP ̸⊆ BPP
[16]. Unfortunately, the known construction does not scale well (see [26, 7, 6] for progress
toward an equivalence at the high end) and is not robust (a version for almost-all input
lengths remains open). On the other hand, the result holds for blackbox derandomization
as well as for general, “whitebox” derandomization, and implies an equivalence between
blackbox and whitebox derandomization in this setting: If derandomization is possible at all,
it can be done through pseudo-random generators.

This left open the setting of whitebox derandomizations that work for almost all inputs. For
prBPP, such derandomizations are equivalent to the construction of targeted pseudo-random
generators, which take an input x for the underlying randomized process, and produce a

1 The underlying distribution may be the uniform one or any other polynomial-time sampleable distribu-
tion.

D. van Melkebeek and N. Mocelin Sdroievski 17:3

small set of strings that “look random” on that specific input x [9]. Recently, Chen and
Tell [8] raised the question of an equivalent lower bound condition, and proposed a candidate:
uniform lower bounds for multi-bit functions (rather than usual decision problems) that hold
on almost-all inputs in the following sense.

▶ Definition 1 (Hardness on almost-all inputs). A computational problem f is hard on almost-
all inputs against a class of algorithms if for every algorithm A in the class there is at most
a finite number of inputs on which A computes f correctly.

Chen and Tell started from the following observation about derandomization to hardness at
the high end of the spectrum.

▶ Proposition 2 (Chen and Tell [8]). If prBPP ⊆ P, then for every constant c there exists a
length-preserving function f that is computable in deterministic polynomial time and is hard
on almost-all inputs against prBPTIME[nc].

Remarkably, they also established a converse, albeit with an additional uniform-circuit depth
restriction on the hard function f . Their approach naturally yields a targeted hitting-set
generator (HSG), the counterpart of a pseudo-random generator for randomized decision
processes with one-sided error (the class RP and its promise version prRP).

▶ Theorem 3 (Chen and Tell [8]). Let f be a length-preserving function computable by
logspace-uniform circuits of polynomial size and depth nb for some constant b. If f is hard on
almost-all inputs against prBPTIME[nb+O(1)], where O(1) denotes some universal constant,
then prRP ⊆ P.

Note that the hardness hypothesis of Theorem 3 necessitates the depth nb of the uniform
circuits computing the function f to be significantly less than their size. Otherwise, there
exists even a deterministic algorithm that computes f in time nb+O(1).

The proof of Theorem 3 constructs a polynomial-time targeted hitting-set generator
for prRP, which generically implies a polynomial-time targeted pseudo-random generator
for prBPP, and thus that prBPP ⊆ P. Theorem 3 scales smoothly over the entire deran-
domization spectrum for prRP. Due to losses in the generic conversion from hitting sets
to derandomizations for two-sided error, the corresponding result for prBPP does not scale
that well. In particular, a low-end variant of Theorem 3 for prBPP remains open. That
said, the results are robust in a similar sense as above with respect to input lengths. In fact,
the approach inherently yields a much higher degree of robustness because it effectuates a
hardness vs. randomness tradeoff on an input-by-input basis, as we explain further in the
paragraph below about our techniques.

As a summary of the above discussion, Table 1 provides a qualitative overview of the
lower bound equivalences for each of the three types of derandomization considered. We
point out that, in the new setting of whitebox derandomizations that work on almost-all
inputs, an actual equivalence along the lines of Chen and Tell [8] remains open due to the
additional uniform-circuit depth requirement that is needed in the direction from hardness
to derandomization. We refer to such results as near-equivalences. Follow-up works managed
to obtain full-fledged equivalences in terms of other types of hardness, namely hardness of a
computational problem related to Levin-Kolmogorov complexity [19] and hardness in the
presence of efficiently-computable leakage [20].

AM setting. An equivalence corresponding to the first line of Table 1 is known throughout
the entire spectrum [17, 22, 24]. The role of EXP is now taken over by NEXP ∩ coNEXP,
and the circuits are nondeterministic (or single-valued nondeterministic, or deterministic

CCC 2023

17:4 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

Table 1 Equivalences between various types of derandomization and lower bounds.

Derandomization Lower bound
blackbox, almost-all inputs non-uniform

most inputs uniform
whitebox, almost-all inputs uniform, almost-all inputs

with oracle access to an NP-complete problem like SAT). The simulations use hitting-set
generators for AM that are efficiently computable nondeterministically. Hitting-set generators
are the natural constructs in the setting of AM because every Arthur-Merlin protocol can
be efficiently transformed into an equivalent one with perfect completeness. As in the BPP
setting, the lower bound equivalences for blackbox derandomization of prAM scale smoothly
and are robust with respect to input lengths.

Regarding derandomizations that work on all but a negligible fraction of the inputs of
a given length (the second line in Table 1), no hardness vs. randomness tradeoffs for AM
were known prior to our work. What was known, are high-end results on derandomizations
where no efficient nondeterministic algorithm can locate inputs on which the simulation
is guaranteed to be incorrect [13, 25]. Indeed, the authors of [13] explicitly mention the
average-case setting and why their approach fails to yield average-case simulations that are
correct on a large fraction of the inputs. The setting corresponding to the third line in
Table 1 was not studied before.

Main results. As our main results, we obtain near-equivalences in this third setting, i.e.,
between whitebox derandomizations of Arthur-Merlin protocols that work on almost-all
inputs, on the one hand, and hardness on almost-all inputs against Arthur-Merlin protocols,
on the other hand.

We start from a similar observation in the derandomization to hardness direction as the
one Chen and Tell made for BPP at the high end of the spectrum.

▶ Proposition 4. If prAM ⊆ NP, then for every constant c there exists a length-preserving
function f that is computable in nondeterministic polynomial time with “a few” bits of advice,
and is hard on almost-all inputs against AMTIME[nc].

We refer to Section 5.1 for the quantification of “a few”.
Importantly, we are able to establish an almost-converse of Proposition 4. Under a slightly

stronger hardness assumption, we construct a targeted hitting-set generator for prAM that
is computable in nondeterministic polynomial time, yielding the following derandomization
result.

▶ Theorem 5. Let f be a length-preserving function computable in nondeterministic time
na for some constant a. If f is hard on almost-all inputs against prAMTIME[nc] for c =
O((log a)2), where O(·) hides some universal constant, then

prAM ⊆ NP.

Note that, in contrast to Theorem 3 in the BPP setting, Theorem 5 in the AM setting has no
uniform-circuit depth restriction on the function f . Together with Proposition 4, Theorem 5
represents a near-equivalence between prAM ⊆ NP and hardness on almost-all inputs of

D. van Melkebeek and N. Mocelin Sdroievski 17:5

length-preserving2 functions against Arthur-Merlin protocols. Whereas in the BPP setting,
the remaining gap relates to uniform-circuit depth, in the AM setting the remaining gap
relates to the advice and the technical distinction between AM and prAM protocols. We
point out that the approaches in [19] and [20], which yield full-fledged equivalences in the
BPP setting, do not seem compatible with the AM setting [18].

Both Proposition 4 and Theorem 5 scale quite smoothly across the derandomization
spectrum. The generalization of Theorem 5 has the following form: Let f be a length-
preserving function computable in nondeterministic time T (n). If f is hard on almost-all
inputs against prAMTIME[t(n)], then prAM ⊆ NTIME[poly(T (n))]. Intuitively, we may think
of t(n) as only slightly smaller than T (n) for high-end results and much smaller for low-end
results. Pushing our techniques as far as possible toward the low end, we obtain the following
variant of Theorem 5.

▶ Theorem 6. Let f be a length-preserving function computable in nondeterministic expo-
nential time. If f is hard on almost-all inputs against prAMTIME[nb(log n)2] for all constants
b, then for some constant c

prAM ⊆ NTIME[2nc

]. (1)

As prAM ⊆ NEXP trivially holds, the conclusion (1) of Theorem 6 represents the very low
end of the derandomization spectrum. Note that a perfectly smooth scaling of Theorem 5
would only need a polynomial lower bound to arrive at the conclusion of Theorem 6, but the
hypothesis of Theorem 6 requires a lower bound of nω((log n)2). We remark that the same
discrepancy shows up in the current best-scaling uniform hardness vs. randomness tradeoffs
for AM [25]. We refer to Theorem 27 in Section 4 for the full scaling and to Table 2 in the
same section for other interesting instantiations.

Byproducts. Using our targeted hitting-set generators we are able to make progress on a
number of related topics. We mention three representative ones here; more are described in
the body of the paper.

First, there is the relationship between whitebox derandomization of prAM and the
existence of targeted hitting-set generators for prAM. In the paper [9] where Goldreich
introduced targeted pseudo-random generators for prBPP and showed that their existence
is equivalent to whitebox derandomization of prBPP, he asked about analogous results for
prAM. To the best of our knowledge, there have been no prior results along those lines. We
take a first step toward an equivalence in this setting.

▶ Theorem 7. If prAMTIME[2polylog(n)] ⊆ io-NEXP, then there exists a targeted hitting-set
generator for prAM that yields the simulation prAM ⊆ io-NTIME[2nc]/nϵ for some constant
c and all ϵ > 0.

Second, we establish the first hardness vs. randomness tradeoffs for Arthur-Merlin
protocols in the average-case setting. Informally, under a high-end worst-case hardness
assumption, we obtain nondeterministic polynomial-time simulations of prAM that are
correct on all but a negligible fraction of the inputs.

2 The focus on length-preserving functions f in Proposition 4 and Theorem 5 is for concreteness. For
Proposition 4 to hold, the number of output bits needs to grow with n in an efficiently computable
fashion. For Theorem 5 any number of output bits suffices as long as there are not so many that the
function f becomes trivially hard for Arthur-Merlin protocols running in time nc.

CCC 2023

17:6 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

▶ Theorem 8. If NTIME[2an]∩coNTIME[2an] ̸⊆ BPTIME[2(log(a+1))2n]SAT
|| for some constant

a > 0, then for every problem in prAM and all e > 0 there exists a simulation of the problem
in NP that is correct on all but a fraction 1/ne of the inputs of length n for infinitely many
lengths n.

The class BPTIME[t(n)]SAT
|| denotes probabilistic algorithms with bounded error that

run in time t(n) and can make parallel (i.e., non-adaptive) queries to an oracle for SAT.
Theorem 8 answers a question in [13], which presents results in the different but related
“pseudo” setting, where the simulation may err on many inputs of any given length, but no
polynomial-time nondeterministic algorithm can pinpoint an error at that length. We remark
that our technique also leads to identical results in the “pseudo” setting by replacing the
hardness assumption with hardness against AMTIME[t(n)].

The model prBPPSAT
|| was used as a proxy for prAM in the initial derandomization results

for Arthur-Merlin protocols [17] and is seemingly more powerful. However, derandomization
results for prAM typically translate into similar derandomization results for prBPPSAT

|| .
In particular, the conclusion prAM ⊆ NP of Theorem 5 implies that prBPPSAT

|| ⊆ PSAT
|| ,

and the conclusion prAM ⊆ NTIME[2nc] for some constant c in Theorem 6 implies that
prBPPSAT

|| ⊆ DTIME[2nc]SAT
|| for some constant c. In the case of Theorem 8, we argue that

the hardness assumption implies simulations of prBPPSAT
|| in PSAT

|| of the same strength as
the simulations of prAM in NP. This way, we obtain a hardness vs. randomness tradeoff in
which the hardness model and the model to-be-derandomized match, namely probabilistic
algorithms with bounded error and non-adaptive access to an oracle for SAT.

As our third byproduct, we present an unconditional mild derandomization result for
AM in the average-case setting. By a mild derandomization of AM we mean a nontrivial
simulation on Σ2-machines. Recall that AM ⊆ Π2P, and proving that AM ⊆ Σ2P is a
required step if we hope to show that AM ⊆ NP. It is known that AM can be simulated (at
infinitely many input lengths n) on Σ2-machines that run in subexponential time and take
nc bits of advice for some constant c [28]. It remains open whether AM can be simulated on
Σ2-machines in subexponential time with subpolynomial advice. Indeed, such a simulation
for prAM would imply lower bounds against nondeterministic circuits that are still open [1].
We show an unconditional subexponential-time and subpolynomial-advice Σ2-simulation for
prAM in the average-case setting.

▶ Theorem 9. For every problem in prAM and every constant ϵ > 0 there exists a simulation
of the problem in Σ2TIME[2nϵ]/nϵ that is correct on all but a fraction 1/ne of the inputs of
length n, for all constants e and infinitely many lengths n.

In fact, we can extend Theorem 9 to prBPPSAT
|| in lieu of prAM.

Techniques. For our main result, we develop an instance-wise transformation of hardness
into targeted hitting sets tailored for AM. In the setting of BPP, Chen and Tell combine
the Nisan-Wigderson pseudo-random generator construction [23] with the doubly-efficient
proof systems of Goldwasser, Kalai, and Rothblum [12] (as simplified in [10]). The latter
allows them to capture the computation of a uniform circuit of size T and depth d for f on
a given input x by a downward self-reducible sequence of polynomials, which they use to
instantiate the NW generator. In case the derandomization of a one-sided error algorithm
on a given input x fails, a bootstrapping strategy à la [16], based on a learning property of
the NW generator, allows them to retrieve the value of f(x) in time O(d · polylog(T)). Thus,
provided the depth d is small compared to the size T , either the derandomization on input x

works or else the computation of f(x) can be sped up.

D. van Melkebeek and N. Mocelin Sdroievski 17:7

A similar approach based on [12] applies to the AM setting by replacing the NW construc-
tion with a hitting-set generator construction for AM that also has the learning property.
Like in the BPP setting, the construction is only of interest when the circuits for f have
relatively small depth. Moreover, the construction can only handle a limited amount of
nondeterminism in the computation for f , whereas the direction from derandomization to
hardness seems to require more.

In order to remedy both shortcomings, we develop a new method to extract hardness
from a nondeterministic computation on a given input x, based on probabilistically checkable
proofs rather than [12]. The soundness of our method presupposes some type of resilience of
the underlying regular pseudo-random generator. The required property was first identified
and used by Gutfreund, Shaltiel and Ta-Shma [13] for the Miltersen-Vinochandran generator
MV [22], and later by Shaltiel and Umans [25] for their recursive variant of the MV generator,
RMV. We combine RMV with the probabilistically checkable proofs of Ben-Sasson, Goldreich,
Harsha, Sudan, and Vadhan [4] to transform hardness into pseudo-randomness for AM in
an instance-wise fashion, without any uniform-circuit depth restriction or limitation on the
amount of nondeterminism.

We highlight one strong feature of all instance-wise approaches. If the hardness condition
holds on almost-all inputs, then the derandomization works on almost-all inputs. This is the
setting in which we stated the results of Chen and Tell and our main results. Similarly, if the
hardness condition holds on all inputs of a given length, then the derandomization works on
all inputs of that length. This is the robustness property that we alluded to earlier. However,
an instance-wise approach yields much more, including average-case derandomization results:
To obtain a nondeterministic simulation for some prAM problem that works with high
probability over any given distribution, it suffices to assume that every prAM protocol can
only compute the hard function f with low probability over that same distribution.

Our derandomization-to-hardness result follows by diagonalization, as does the one by
Chen and Tell. To obtain our byproducts, we combine our targeted hitting-set generator
with several other ingredients, including diagonalization, the “easy-witness” method and
traditional hardness vs. randomness tradeoffs. Our average-case derandomization results
require a modification of our targeted HSG so that it respects a stronger resilience property.
Along the way to our unconditional mild derandomization result, we establish an “easy
witness lemma” for Σ2 computations, which may be of independent interest.

Organization. In Section 2, we develop the ideas behind our results and relate them to
existing techniques. We start the formal treatment in Section 3 with definitions, notation,
and other preliminaries. In Section 4, we construct our targeted HSG and establish our
hardness-to-derandomization results that make use of it (Theorems 5 and 6). Section 5
presents the derandomization-to-hardness side of our near-equivalence, as well as a proof
of our byproduct on derandomization to targeted hitting-set generators (Theorem 7). In
Section 6, we derive our derandomization byproducts under uniform worst-case hardness
(the average-case simulation of Theorem 8 as well as a simulation that works on all inputs of
infinitely many lengths). Section 7 contains our unconditional mild derandomization result
for AM (Theorem 9).

2 Technical overview

In this section, we start with an overview of techniques used in prior hardness vs. randomness
tradeoffs for BPP and AM in a way that facilitates a high-level exposition of our main hardness-
to-derandomization result for AM. We also provide the intuition for our derandomization-to-
hardness result and for our byproducts.

CCC 2023

17:8 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

2.1 Main results
We start with an overview of the techniques used for hardness-to-derandomization results
in the traditional setting for BPP (lines 1 and 2 in Table 1), followed by those in the new
setting (line 3 in Table 1). We then transition to AM, discuss the additional challenges, the
known techniques in the traditional setting and, finally, our results in the new setting.

Traditional setting for BPP. The key ingredient in all known hardness vs. randomness
tradeoffs is a pseudo-random generator construction G that takes a function h as an oracle and
produces a pseudo-random distribution Gh with the following property: Any statistical test
D that distinguishes Gh from uniform suffices as an oracle to efficiently learn h approximately
from a small number of queries. Thus, if Gh does not “look random” to an efficient randomized
process A on an input x, an approximation to h can be reconstructed efficiently when provided
with x and the values of h on a small number of points, as well as oracle access to the
distinguisher D(r) = A(x, r), where A(x, r) denotes the output of A on input x and random-
bit string r. If the function h can be self-corrected (e.g., by being random self-reducible or
by its truth table being a codeword in a locally-correctable error-correcting code), then the
exact function h can be reconstructed efficiently.

In order to obtain hardness vs. randomness tradeoffs from pseudo-random generator
constructions with the learning property, two questions need to be addressed:
1. How to obtain the distinguishers D?
2. How to obtain the answers to the learning queries?

The first question asks how to find inputs x on which the process A is not fooled by Gh.
In the non-uniform setting such an input can be included in the advice. In the uniform setting
for BPP, such inputs can be found by sampling x at random and testing for a difference in
behavior of D

.= A(x, ·) between the uniform and the pseudo-random distributions, which
can be done in prBPP.

Regarding the second question, in the non-uniform setting, the answers to the learning
queries can also be provided as advice. In the uniform setting, [16] employs a function h that
is not only random self-reducible but also downward self-reducible, and uses the downward
self-reduction to answer the learning queries for length n by evaluating the circuit that
resulted from the reconstruction for length n − 1. This bootstrapping strategy presupposes
that the reconstruction works at almost-all input lengths. This is why we only know how to
obtain simulations that are correct at infinitely many input lengths in the uniform setting
for BPP.

New setting for BPP. In the setting of line 3 in Table 1, the role of pseudo-random
generators is taken over by targeted pseudo-random generators. Whereas PRGs are oblivious
to x (beyond its length), targeted PRGs take x as an input and are only supposed to fool the
randomized process on that particular x. This approach obviates the problem of obtaining
the distinguisher D (question 1 above) as we can use D = A(x, ·) for the given x. Targeted
PRGs can be constructed from a PRG G by instantiating G with an oracle h = hx that
depends on x. This raises a third question in the application of a PRG for hardness vs.
randomness tradeoffs:
3. How to obtain the function hx from x?

Chen and Tell [8] use the doubly-efficient proof systems of Goldwasser, Kalai, and
Rothblum [12] (as simplified in [10]) to obtain hx from x and combine it with the Nisan-
Wigderson pseudo-random generator construction [23]. The GKR proof system takes a

D. van Melkebeek and N. Mocelin Sdroievski 17:9

logspace-uniform family of circuits of size T (n) and depth d(n) computing a (multi-bit)
Boolean function f , and transforms the circuit for f on a given input x into a downward
self-reducible sequence of multi-variate low-degree polynomials ĝx,0 . . . , ĝx,d′(n) where d′(n) =
O(d(n) log (T (n))). The polynomial ĝx,0 is efficiently computable at any point given input x,
and the value of f(x) can be extracted efficiently from ĝx,d′(n). We refer to the sequence of
polynomials as a layered arithmetization of the circuit for f on input x.

Chen and Tell instantiate the NW generator with the Hadamard encoding of each of the
polynomials ĝx,i as the function h = hx,i, and follow a bootstrapping strategy similar to [16]
to construct ĝx,d′(n) from ĝx,0. For the strategy to work, the NW reconstructor needs to
succeed at every level. This is the reason why Chen and Tell only end up with a (targeted)
hitting-set generator rather than a pseudo-random generator. The time required by the
bootstrapping process is proportional to the number of layers and thus to the depth d(n) of
the circuit computing f . By setting the parameters of the arithmetization appropriately, the
dependency on the size T (n) is only polylogarithmic. This is what enables the reconstruction
to compute f(x) very quickly as long as the depth d(n) is not too large.

Liu and Pass [20] also use the NW generator but obtain hx as an encoding of the value
of f(x) itself, where f is an almost-all inputs leakage-resilient hard function (a function
that remains hard even if some efficiently-computable information about f(x) is leaked to
an attacker). The answers to the learning queries are provided as part of the information
about f(x) that is leaked, which allows them to reconstruct f(x) directly and efficiently.
This approach leads to a (targeted) pseudo-random generator since it only involves a single
instantiation of the NW generator. Reversing the hardness-to-derandomization direction
yields an equivalence between derandomization of prBPP and the existence of almost-all
inputs leakage-resilient hard functions.

Transition to AM. A number of changes are in order in terms of the requirements for
similar results for AM. First, we need to handle co-nondeterministic distinguisher circuits
D instead of deterministic ones. Co-nondeterministic circuits suffice because Arthur-Merlin
protocols can be assumed to have perfect completeness. The only requirement for a correct
derandomization is in the case of negative instances, in which case we want to hit the set of
Arthur’s random-bit strings for which Merlin cannot produce a witness. By the soundness
property of the Arthur-Merlin protocol, the set contains at least half of the random-bit
strings.

Second, we need to accommodate nondeterministic algorithms computing the function f .
This is because the direction from derandomization to hardness seems to need them (see
Proposition 4). On each input x, such an algorithm needs to have at least one successful
computation path, and on every successful computation path, the output should equal f(x).

Third, the algorithm for the targeted hitting-set generator can also be nondeterministic,
which is natural when the algorithm for f is nondeterministic. In the case of a generator,
the nondeterministic algorithm should still have at least one successful computation path on
every input, but it is fine to produce different outputs on different successful computation
paths. For any given x and D, on every successful computation path, the output should be a
hitting set for D. This allows us to nondeterministically simulate a promise Arthur-Merlin
protocol on input x as follows: Guess a computation path of the targeted HSG; if it succeeds,
say with output S, guess a computation path for the Arthur-Merlin protocol on input x

using each of the elements in S as the random-bit string, and accept if all of them accept;
otherwise, reject.

CCC 2023

17:10 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

Finally, we need to be able to run the reconstruction procedure as a (promise) Arthur-
Merlin protocol. This is because we want the model in which we can compute f(x) in case
of a failed derandomization on input x, to match the class we are trying to derandomize.
There are two requirements for the protocol to compute f(x) on input x:

Completeness demands that there exists a strategy for Merlin that leads Arthur to succeed
with output f(x) with high probability.
Soundness requires that, no matter what strategy Merlin uses, the probability for Arthur
to succeed with an output other than f(x) is small.

The reconstructor naturally needs the power of nondeterminism in order to simulate the
distinguisher D. Making sure the reconstructor is sound and needs no more power than
prAM is the challenge.

Traditional setting for AM. In reference to the first two questions above, the answer to
the one about obtaining a distinguisher D is similar as for BPP, except that in the uniform
setting we do not know how to check in prAM for a difference in behavior of D

.= A(x, ·)
between the uniform and the pseudo-random distributions. This is why average-case results
remain open for AM. Instead, one assumes that some nondeterministic algorithm produces,
on every successful computation path on input 1n, an input x of length n on which the
difference in behavior is guaranteed.

As for obtaining answers to the learning queries in the uniform setting for AM, we can
make use of the nondeterminism allowed during the reconstruction and ask Merlin to provide
the answers to the learning queries. However, we need to guard against a cheating Merlin.
A strategy proposed by Gutfreund, Shaltiel and Ta-Shma in [13] consists of employing a
function h that has a length-preserving instance checker. After Merlin has provided the
supposed answers to the learning queries, to compute h(z) for a given input z, we run the
instance checker on input z and answer the queries y of the instance checker by running the
evaluator part of the reconstruction process on input y. All the runs of the evaluator can be
executed in parallel, ensuring a bounded number of rounds overall, which can be reduced to
two in the standard way at the cost of a polynomial blowup in the running time [3].

To guarantee soundness, the reconstruction process needs to have an additional resilience
property, namely that it remains partial single-valued even when the learning queries are
answered incorrectly. Two hitting-set generators tailored for AM are known to have the
property: the Miltersen-Vinodchandran generator MV [22], which is geared toward the high
end, and a recursive version, RMV, developed by Shaltiel and Umans [25] to cover a broader
range. MV is used for the high end in [13], and RMV for the rest of the spectrum in [25].

New setting for AM. We build a targeted hitting-set generator for AM based on the RMV
hitting-set generator. To obtain hx from x, we make use of Probabilistically Checkable Proofs
(PCPs) for the nondeterministic computation of the string f(x) from x. Let V denote the
verifier for such a PCP system that uses O(log(T (n)) random bits and polylog(T (n)) queries
for nondeterministic computations that run in time T (n). On input x, our targeted HSG
guesses the value of f(x) and a candidate PCP witness yi for the i-th bit of f(x) for each i,
and runs all the checks of the verifier V on yi (by cycling through all random-bit strings for
V). If all checks pass, our targeted HSG instantiates RMV with yi for each i as (the truth
table of) the oracle hx, and outputs the union of all the instantiations as the hitting set,
provided those nondeterministic computations all accept; otherwise, the targeted HSG fails.

For the reconstruction of the i-th bit of f(x), Arthur generates the learning queries of the
RMV reconstructor for the oracle yi, and Merlin provides the purported answers as well as
the value of the i-th bit of f(x). Arthur then runs some random checks of the verifier V on

D. van Melkebeek and N. Mocelin Sdroievski 17:11

input x, answering the verifier queries by executing the evaluator of the RMV reconstructor.
All the executions of the evaluator can be performed in parallel, ensuring a bounded number
of rounds overall. The resilient partial single-valuedness property of the RMV reconstructor
guarantees that the verifier queries are all consistent with some candidate proof ỹi. The
completeness and soundness of the PCP then imply the completeness and soundness of the
reconstruction process for our targeted HSG. As V makes few queries and is very efficient,
the running time of the process is dominated by the running time of the RMV reconstructor.

Abstracting out the details of our construction and how the distinguisher D is obtained,
the result can be captured in two procedures: a nondeterministic one, H, which has at
least one successful computation path for every input and plays the role of a targeted
hitting-set generator, and a promise Arthur-Merlin protocol, R, which plays the role of a
reconstructor for the targeted hitting-set generator. H and R have access to the input x and
a co-nondeterministic circuit D, and have the following property.3

▶ Property 10. For every x ∈ {0, 1}∗ and for every co-nondeterministic circuit D that
accepts at least half of its inputs, at least one of the following holds:
1. H(x, D) outputs a hitting set for D on every successful computation path.
2. R(x, D) computes f(x) in a complete and sound fashion.

Theorem 5 follows by considering nondeterministic running time T (n) = na and co-
nondeterministic circuits D of size nc for some c > 1. In this regime, H runs in time
nO(a+c) and R in time nO(c(log a)2). Under the hypothesis of Theorem 5, the second item in
Property 10 cannot happen except for finitely many x of length n, so the first item needs to
hold. For any constant c′ < c, this yields a polynomial-time targeted hitting-set generator
for prAMTIME[nc′], which can be used for all of prAM by padding. Theorem 6 follows along
the same lines; the running time is dictated by the RMV reconstructor.

We point out that the approach of Chen and Tell can be ported to the AM setting by
replacing NW with a generator for AM that has the learning property and a reconstructor
running in prAM. The nondeterminism allows us to run the bootstrapping process in parallel,
so the number of rounds of Arthur and Merlin remains bounded, but the overall running time
remains proportional to the depth of the circuits for f . This means that, like in the setting of
BPP, this approach only yields meaningful results when the depth is small compared to the
size. Nondeterministic circuits for f can be accommodated in this approach by treating them
as deterministic circuits with nondeterministic guess bits as additional inputs. However, this
limits the amount of nondeterminism that can be handled. Our approach based on PCPs
remedies the limitations on depth as well as nondeterminism.

Derandomization to hardness. Our derandomization-to-hardness result is proven by diag-
onalization. Under the prAM ⊆ NP assumption, every fixed-polynomial time AM protocol
computing a length-preserving function can be simulated in nondeterministic fixed-polynomial
time. We would like to diagonalize against these simulating nondeterministic machines to
construct our hard function. Due to the lack of an almost-everywhere hierarchy result for
NTIME, we do not know how to do this efficiently for generic nondeterministic machines.
This is where the advice comes to rescue: We use advice to indicate which nondeterministic

3 The dependency of H on D is only through the number of input bits of D. For R, blackbox access to D
suffices (in addition to the input x). However, we may as well give both H and R full access to the
input x and the circuit D. In the intended application, the co-nondeterministic circuit D is obtained by
hardwiring the input x into the Arthur-Merlin protocol being derandomized, but this is not essential for
the construction.

CCC 2023

17:12 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

machines are single-valued at a particular input length. We only need to consider single-valued
machines, and diagonalizing against them is easy for a nondeterministic machine with a little
more running time, but figuring out which nondeterministic machines are single-valued at a
given input length is hard.

2.2 Byproducts
In this section, we develop the intuition for our byproducts.

Targeted hitting-set generators from derandomization (Theorem 7). To obtain a targeted
HSG from derandomization of prAM, we employ our targeted hitting-set generator in a win-win
argument. Either a complexity class separation holds, in which case a result of [14] guarantees
the existence of a regular (oblivious) hitting-set generator that yields the derandomization
result, or we get a strong complexity class collapse. The collapse allows us to bypass some of
the difficulties in diagonalizing against prAM protocols on almost-all inputs (one of the reasons
we require advice in the derandomization-to-hardness direction of our near-equivalence), thus
allowing us to do so efficiently and uniformly, and then instantiate our targeted hitting-set
generator construction.

Average-case derandomization (Theorem 8). Our average-case derandomization results
under worst-case hardness assumptions also make use of our targeted hitting-set generator
construction, but in a different way. They do not exploit the potential of the hitting sets
to depend on the input x. In fact, they set f(x) to the truth table of the worst-case hard
language L from the hypothesis at an input length determined by |x|. Instead, they hinge on
the strong resilient soundness properties of the reconstructor.

As we are considering the average-case derandomization setting, the problem of obtaining
the distinguisher D for the reconstruction resurfaces. Our approach is similar to the one for the
traditional average-case derandomization setting for BPP. If the simulation fails for protocol A

with noticeable probability over a random input, then we can sample multiple inputs x1, x2, . . .

and construct a list of “candidate distinguishers” Dx1
.= A(x1, ·), Dx2

.= A(x2, ·), . . . such
that the list contains, with high probability, at least one “true” distinguisher. Whereas in
the BPP setting one can test each candidate and discard, with high probability, the ones
that are not distinguishers, we do not know how to do that in the AM setting. Instead, we
employ a different approach: We run the reconstructor with each distinguisher with the hope
that every execution either fails or outputs the correct value.

This approach necessitates a stronger form of resilience than the one provided by the RMV
generator: That its reconstruction is sound when given as input any co-nondeterministic
circuit D, not just those that accept at least half of their inputs (as in Property 10). We
don’t know how to guarantee this with our prAM reconstruction, but we are able to do so in
prBPPSAT

|| by approximating the fraction of inputs that D accepts and outright failing if the
fraction is too low.

We point out that earlier works [13, 25] also manage to guarantee soundness of the
reconstructor for co-nondeterministic circuits D that accept at least half of their inputs,
based on the resilient partial single-valuedness of the reconstructor for MV or RMV. They
do so by running an instance checker, which limits the hard function f to classes for which
instance checkers are known to exist, such as complete problems for E and EXP. Instead, we
achieve soundness of the reconstructor based on the soundness of a PCP. As PCPs exist for
all nondeterministic computations, this makes our approach more suitable in this setting. In
particular, we do not know how to obtain Theorem 8 along the lines of [13, 25].

D. van Melkebeek and N. Mocelin Sdroievski 17:13

Unconditional mild derandomization (Theorem 9). Our unconditional mild derandom-
ization result relies on a similar win-win argument as in the proof of Theorem 7: Either
some hardness assumption/class separation holds, in which case we get derandomization
right away, or we get a complexity collapse that we use to construct, by diagonalization, a
hard function f that has the efficiency requirements we need to obtain the derandomization
result using our targeted hitting-set generator.

Since our result is unconditional, we cannot use derandomization assumptions to make
diagonalizing against prAM protocols easier. Instead, we rely on the inclusion prAM ⊆ Π2P,
which allows for diagonalizing against such protocols in Σ2TIME[nω(1)]. Our generator,
however, requires the hard function to be computable by efficient nondeterministic algorithms.
To help bridge the gap, we prove an “easy witness lemma” for Σ2 computations that
guarantees a strong collapse in case the aforementioned hardness assumption does not hold.
The collapse then allows us to instantiate our targeted hitting-set generator construction
with the diagonalizing function.

3 Preliminaries

We assume familiarity with standard complexity classes such as NP, AM, and prAM. We
often consider inputs and outputs from non-Boolean domains, such as Fr for a field F and
r ∈ N. In such cases, we implicitly assume an efficient binary encoding for the elements of
these domains. Finally, as is customary, all time bounds considered are implicitly assumed
to be time-constructible.

3.1 Nondeterministic, co-nondeterministic and single-valued
computation

We make use of nondeterministic, co-nondeterministic, and single-valued circuits in our
results. A nondeterministic circuit is a Boolean circuit C with two sets of inputs, x and y.
We say that C accepts x if there exists some y such that C(x, y) = 1, and that C rejects x

otherwise. A co-nondeterministic circuit has a symmetric acceptance criterion: It accepts x if
for all y it holds that C(x, y) = 1, and rejects x otherwise. A partial single-valued circuit also
has two inputs, x and y; on input (x, y) it either fails (which we represent by C(x, y) = ⊥) or
succeeds and outputs a bit b = C(x, y). Moreover, we require that for all y, y′ such that both
C(x, y) and C(x, y′) succeed, C(x, y) = C(x, y′), i.e., the circuit computes a partial function
on its first input. If, furthermore, for all x there exists a y such that C(x, y) succeeds, we
call the circuit total single-valued or just single-valued.

We are also interested in nondeterministic algorithms that compute multi-bit functions
f : {0, 1}∗ → {0, 1}∗. Let T (n) be a time bound. We say that f ∈ NTIME[T (n)] if there
exists a nondeterministic algorithm N running in time O(T (n)) such that for all x ∈ {0, 1}∗,
there exists at least one computation path on which N(x) succeeds, and N(x) outputs f(x)
on all successful computation paths. Note, in particular, that if f ∈ NTIME[T (n)], then the
language Lf = {(x, i, b) | f(x)i = b} is in NTIME[T (n)].

3.2 Arthur-Merlin protocols
A promise Arthur-Merlin protocol P is a computational process in which Arthur and Merlin
receive a common input x and operate as follows in alternate rounds for a bounded number
of rounds. Arthur samples a random string and sends it to Merlin. Merlin sends a string that
depends on the input x and all prior communication from Arthur; the underlying function

CCC 2023

17:14 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

is referred to as Merlin’s strategy, which is computationally unrestricted. At the end of
the process, a deterministic computation on the input x and all communication determines
acceptance. The running time of the process is the running time of the final deterministic
computation.

Any promise Arthur-Merlin protocol can be transformed into an equivalent one with just
two rounds and Arthur going first, at the cost of a polynomial blow-up in running time,
where the degree of the polynomial depends on the number of rounds [3]. As such, we often
use the notation prAM to refer to promise Arthur-Merlin protocols with any bounded number
of rounds, even though, strictly speaking, the notation refers to a two-round protocol with
Arthur going first.

Promise Arthur-Merlin protocols can be simulated by probabilistic algorithms with oracle
access to SAT: Instead of interacting with Merlin, Arthur asks the SAT oracle whether there
exists a response of Merlin that would lead to acceptance. Similarly, PprAM

|| can be simulated
in BPPSAT

|| , the class of problems decidable by probabilistic polynomial-time algorithms with
bounded error and non-adaptive oracle access to SAT. In fact, a converse also holds and
helps to extend some of our results for prAM to the class prBPPSAT

|| .

▶ Lemma 11 ([5]). prBPPSAT
|| ⊆ PprAM

|| .

In Lemma 11, the deterministic machines with oracle access to prAM on the right-hand
side are guaranteed to work correctly irrespective of how the queries outside of the promise
are answered, even if those queries are answered inconsistently, i.e., different answers may be
given when the same query is made multiple times.

Arthur-Merlin protocols that output values. A promise Arthur-Merlin protocol P may
also output a value. In this case, at the end of the interaction, the deterministic computation
determines success/failure and, in case of success, an output value. We denote this value by
P (x, M), which is a random variable defined relative to a strategy M for Merlin. Similar to
the setting of circuits, we indicate failure by setting P (x, M) = ⊥, a symbol disjoint from
the set of intended output values. Our choice of using success and failure for protocols that
output values is to avoid confusion with the decisional notions of acceptance and rejection.

▶ Definition 12 (Arthur-Merlin protocol with output). Let P be a promise Arthur-Merlin
protocol. We say that on a given input x ∈ {0, 1}∗:

P outputs v with completeness c if there exists a Merlin strategy such that the probability
that P succeeds and outputs v is at least c. In symbols: (∃M) Pr[P (x, M) = v] ≥ c.
P outputs v with soundness s if, no matter what strategy Merlin uses, the probability that
P succeeds and outputs a value other than v is at most s. In symbols: (∀M) Pr[P (x, M) ̸∈
{v, ⊥}] ≤ s.
P has partial single-valuedness s if there exists a value v such that P outputs v with
soundness s. In symbols: (∃v)(∀M) Pr[P (x, M) ̸∈ {v, ⊥}] ≤ s.

Note that if P on input x outputs v with completeness c and has partial single-valuedness s,
then it outputs v with soundness s, provided s > 1 − c. If we omit c and s, then they take
their default values of c = 1 (perfect completeness) and s = 1/3.

For a given function f : X → {0, 1}∗ where X ⊆ {0, 1}∗, we say that P computes f

with completeness c(n) and soundness s(n) if on every input x ∈ X, P outputs f(x) with
completeness c(|x|) and soundness s(|x|). Note that P may behave arbitrarily on inputs
that are not in X. In contrast, an AM protocol computing f still computes some value in a
complete and sound fashion on inputs x /∈ X.

D. van Melkebeek and N. Mocelin Sdroievski 17:15

3.3 Learn-and-evaluate and commit-and-evaluate protocols
The reconstruction processes for hardness-based hitting-set generators for prAM are typically
special types of promise Arthur-Merlin protocols. We distinguish between two types.

A learn-and-evaluate protocol is composed of two phases: A learning phase followed by
an evaluation phase. In the learning phase, a probabilistic algorithm makes queries to a
function f and produces an output (which we call a sketch). The evaluation phase then
consists of a promise Arthur-Merlin protocol that computes f(x) correctly on every input x

when given the sketch as additional input.

▶ Definition 13 (Learn-and-evaluate protocol). A learn-and-evaluate protocol P consists
of a probabilistic oracle algorithm Alearn and a promise Arthur-Merlin protocol Peval. Let
f : X → {0, 1}∗ where X ⊆ {0, 1}∗. We say that P computes f with error e(n) for
completeness c(n) and soundness s(n) if on every input x ∈ X of length n the following hold:
The probability over the randomness of Alearn that Peval with input x and additional input
π = Af

learn(1n) outputs f(x) with completeness c(n) and soundness s(n) is at least 1 − e(n).

The learning phase of a learn-and-evaluate protocol can be simulated by an Arthur-Merlin
protocol with output, where Merlin guesses the queries that Alearn makes on a given random-
bit string and answers them in parallel, and the output is a sketch of f . In this view, a
learn-and-evaluate protocol becomes a pair of promise Arthur-Merlin protocols: one for the
learning phase, and one for the evaluation phase. Note that the quality of the evaluation
phase is only guaranteed when the learning queries are answered correctly, i.e., when Merlin
is honest in the learning phase.

A commit-and-evaluate protocol [25] has the syntactic structure of a pair of promise
Arthur-Merlin protocols without the restriction that Merlin in the first phase only answers
queries about f . Semantically, a commit-and-evaluate protocol is more constrained than a
learn-and-evaluate protocol. The first protocol of the pair now represents a commitment phase
instead of a learning phase. In this phase, Arthur and Merlin interact and produce an output
π, which we call a commitment. Similar to a learn-and-evaluate protocol, the commitment
is given as input to the protocol of the evaluation phase. Whereas in a learn-and-evaluate
protocol there are no guarantees whatsoever when Merlin is dishonest in the first phase,
in a commit-and-evaluate protocol there is a strong guarantee: With high probability over
Arthur’s randomness in the commitment phase, the evaluation protocol is partial single-
valued, meaning that Merlin cannot make Arthur output different values for the same input
x with high probability. The guarantee is referred to as resilient partial single-valuedness.

▶ Definition 14 (Commit-and-evaluate protocol). A commit-and-evaluate protocol is a pair
of promise Arthur-Merlin protocols P = (Pcommit, Peval). P has resilience r(n) for partial
single-valuedness s(n) on domain X ⊆ {0, 1}∗ if for all n, no matter what strategy Merlin
uses during the commit phase, the probability that in the commitment phase, on input 1n,
Pcommit succeeds and outputs a commitment π that fails to have the following property (2) is
at most r(n):

For every x of length n in X, Peval(x, π) has partial single-valuedness s(n). (2)

In symbols: (∀n)(∀Mcommit)

Pr[(∀x ∈ X ∩ {0, 1}n)Peval(x, π) has partial single-valuedness s(n)] ≥ 1 − r(n),

where π = Pcommit(1n, Mcommit).

CCC 2023

17:16 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

A commit-and-evaluate protocol naturally induces a promise Arthur-Merlin protocol: On
input x, run Pcommit on input 1|x|. If this process succeeds, let π denote its output and run
Peval on input (x, π).

3.4 Hitting-set generators and targeted hitting-set generators
In the setting of prBPP, Goldreich [11] discusses two equivalent definitions of targeted pseudo-
random generators: one for deterministic linear-time machines that take both the input
x and the random-bit string r as inputs, and one based on circuits D that only take the
random-bit string r as input. The circuit D can be obtained by first constructing a circuit C

that simulates the machine on inputs of length |x|, and then hardwiring the input x. The
difference between a regular and targeted pseudo-random generator lies in the dependency
of the output on x (in the first definition) or the circuit D (in the second definition): For
a regular PRG the output can only depend on |x| or the size of D, whereas for a targeted
PRG it can depend on x and D proper.

In the setting of prAM, without loss of generality, we can assume that promise Arthur-
Merlin protocols have perfect completeness. Therefore, we only need to consider targeted
hitting-set generators, the variant of targeted PRGs for one-sided error. Similar to the BPP
setting, there are two equivalent definitions of targeted HSGs for prAM. We propose a third,
hybrid, and also equivalent definition, where the targeted generator is given access to both
x and the circuit C. For prAM with perfect completeness the circuit C (as well as D) is
co-nondeterministic. For regular HSGs, the output can only depend on the size of C. Our
definition highlights that, in principle, there are two types of obliviousness that regular
PRGs/HSGs exhibit: With respect to the input (where only dependencies on its size are
allowed) and with respect to the algorithm being derandomized (where only dependencies on
its running time are allowed). Since the algorithm description can be incorporated as part of
the input, the dependency on C can be avoided. This is essentially why all three definitions
are equivalent. In our targeted hitting-set generator constructions the dependency will only
be through x and the size of C.

We start by defining hitting sets for co-nondeterministic circuits.

▶ Definition 15 (Hitting set for co-nondeterministic circuits). Let D be a co-nondeterministic
circuit of size m. A set S of strings of length m is a hitting set for D if there exists at least
one z ∈ S such that D(z) = 1 (where D might take a prefix of z as input if necessary). In
that case, we say that S hits D.

The notion allows us to define targeted hitting-set generators for prAM as follows, where
we assume, without loss of generality, perfect completeness and soundness 1/2. Regular
hitting-set generators are viewed as a special case.

▶ Definition 16 (Regular and targeted hitting-set generator for prAM). A targeted hitting-set
generator for prAM is a nondeterministic algorithm that, on input x ∈ {0, 1}∗ and a co-
nondeterministic circuit C, has at least one successful computation path, and if Prr[C(x, r) =
1] ≥ 1/2, outputs a hitting set for D(r) .= C(x, r) on every successful computation path. A
regular hitting-set generator for prAM is a targeted hitting-set generator where the output
only depends on the size of C.

For completeness, we state the standard way of obtaining the co-nondeterministic circuits
C and D capturing promise Arthur-Merlin protocols.

D. van Melkebeek and N. Mocelin Sdroievski 17:17

▶ Proposition 17. There exists an algorithm that, on input 1n and the description of a
(Boolean output, two-round) prAMTIME[t(n)] protocol P , runs in time O(t(n)2) and outputs a
co-nondeterministic circuit C of size m = O(t(n)2) that simulates and negates the computation
of P for input length n, i.e., the input of C is comprised of x ∈ {0, 1}n and Arthur’s random-
bit string r, and it co-nondeterministically verifies that there is no Merlin message that would
lead to acceptance. In particular:

If P with input x accepts all random inputs, then Dx(r) .= C(x, r) rejects every input.
If P with input x rejects at least a fraction 1/2 of its random-bit strings, then Dx(r) .=
C(x, r) accepts at least a fraction 1/2 of its inputs.

3.5 PCPs and low-degree extensions
We use the following construction that follows from the PCP of proximity of Ben-Sasson,
Goldreich, Harsha, Sudan, and Vadhan [4].

▶ Lemma 18 ([4]). Let T be a time bound. For every s = s(n) : N → (0, 1] and every language
L ∈ NTIME[T (n)] there exists a PCP verifier V with perfect completeness, soundness s,
randomness complexity log (1/s) · (log T (n) + O(log log T (n))), non-adaptive query complexity
log (1/s) · polylog(T (n)), and verification time log (1/s) · poly(n, log T (n)). More precisely,

V has oracle access to a proof of length T (n) · polylog(T (n)), uses log (1/s) · (log T (n) +
O(log log T (n))) random bits in any execution, makes log (1/s)·polylog(T (n)) non-adaptive
queries to the proof and runs in time log (1/s) · poly(n, log T (n)).
If x ∈ L, |x| = n, then there exists y of length T (n) · polylog(T (n)) such that Pr[V y(x) =
1] = 1.
If x /∈ L, |x| = n, then for all y′ of length T (n) · polylog(T (n)), Pr[V y′(x) = 1] ≤ s.

We also need standard low-degree extensions. Let g : {0, 1}ℓ → {0, 1} be a function,
F = Fp be the field with p elements (for prime p) and h and r integers such that hr ≥ 2ℓ. The
low-degree extension of g with respect to p, h, r is the unique r-variate polynomial ĝ : Fr → F
with degree h − 1 in each variable, for which ĝ(v⃗) = g(y) for all v⃗ ∈ [h]r representing a
y ∈ {0, 1}ℓ and ĝ(v⃗) = 0 for the v⃗ ∈ [h]r that do not represent a string y. The total degree
of ĝ is ∆ = hr and ĝ is computable in time poly(hr, log p, r) given oracle access to g.

3.6 Average-case simulation
The instance-wise nature of our technique allows us to conclude derandomization on average
with respect to arbitrary distributions by assuming hardness with respect to that same
distribution. The notion of average-case simulation that we use is the one where the
simulation works correctly with high probability over inputs drawn from the distribution.
We typically want good simulations to exist with respect to every efficiently sampleable
distribution (where the simulation may depend on the distribution). This is usually referred
to as the “heuristic” setting.

▶ Definition 19 (Heuristic). Let Π be a promise-problem, µ : N → [0, 1), C a complexity class
and x = {xn}n∈N an ensemble of distributions where xn is supported on {0, 1}n and such
that for all n, every x in the support of xn satisfies the promise of Π. We write

Π ∈ Heurx,µC

CCC 2023

17:18 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

if there exists a language L ∈ C such that for all sufficiently large n, Prx∈xn [L(x) ̸= Π(x)] ≤
µ(n). We write

Π ∈ HeurµC

if the above property holds for every polynomial-time sampleable ensemble of distributions
with the above support restriction.

The notions of average-case simulation extend to the infinitely-often setting in the
natural way.

4 Targeted hitting-set generator construction

In this section, we develop our targeted HSG construction, which leads to our instance-wise
hardness vs. randomness tradeoffs for Arthur-Merlin protocols.

Our construction builds on the RMV generator due to Shaltiel and Umans [25], which is
a recursive variant of the MV generator that shares the desired resilience property with MV.
We start with the definition of the RMV generator in Section 4.1 and state its reconstruction
properties in terms of a commit-and-evaluate protocol. We present our construction and
analysis in Section 4.2 and the derandomization consequences in Section 4.3.

4.1 Recursive Miltersen-Vinodchandran generator
We need a couple of ingredients to describe how the RMV generator works. The first one
is a local extractor for the Reed-Müller code. A local extractor is a randomness extractor
that only needs to know a few bits of the sample. In the following definition the sample is
provided as an oracle, and the structured domain from which the sample is drawn is given as
an additional parameter.

▶ Definition 20 (Local extractor). Let S be a set. A (k, ϵ) local S-extractor is an oracle
function E : {0, 1}s → {0, 1}t that is computable in time poly(s, t) and has the following
property: For every random variable X distributed on S with min-entropy at least k, EX(Us)
is ϵ-close to uniform.

We make use of the following local extractor for Reed-Müller codes.

▶ Lemma 21 (Implicit in [24]). Fix parameters r < ∆, and let S be the set of polynomials
ĝ : Fr → F having total degree at most ∆, where F = Fp denotes the field with p elements.
There is a (k, 1/k) local S-extractor for k = ∆5 with seed length s = O(r log p) and output
length t = ∆.

Note that for every subcube with sides of size ∆
r and choice of values at its points, there

exists an interpolating polynomial ĝ with the parameters of Lemma 21. It takes (∆/r)r log p

bits to describe these polynomials, but the local extractor only accesses poly(∆, r, log p) bits.
When instantiated with a polynomial ĝ : Fr → F, the RMV generator groups variables

and operates over axis-parallel (combinatorial) lines over the grouped variables.4 Shaltiel
and Umans call these MV lines, which we define next.

4 In the original construction [25], the RMV generator is defined with the number d of groups of variables
as an additional parameter. Eventually, d is set to 2, which is the value we use for our results as well.

D. van Melkebeek and N. Mocelin Sdroievski 17:19

▶ Definition 22 (MV line). Let F = Fp for a prime p. Given a function ĝ : Fr → F where r

is an even integer, we define B = Fr/2 and identify ĝ with a function from B2 to F. Given
a point a⃗ = (⃗a1, a⃗2) ∈ B2 and i ∈ {1, 2}, we define the line passing through a⃗ in direction i

to be the function L : B → B2 given by L(z⃗) = (z⃗, a⃗2) if i = 1 and L(z⃗) = (⃗a1, z⃗) if i = 2.
This is an axis-parallel, combinatorial line, and we call it an MV line. Given a function
ĝ : Fr → F and an MV line L we define the function ĝL : B → F by ĝL(z) = ĝ(L(z)).

The input for the RMV construction is a multivariate polynomial ĝ : Fr → F of total
degree at most ∆, and the output is a set of m-bit strings for m ≤ ∆1/100. The construction
is recursive and requires that r is a power of 2 and that p is a prime larger than ∆100

(say, between ∆100 and 2∆100). Let E be the (k, 1/k)-local extractor from Lemma 21 for
polynomials of degree ∆ in (r/2) variables over F. Remember that k = ∆5 and that the
extractor uses seed length O(r log p) and output length t = ∆ ≥ m. By using only a prefix
of the output, we have it output exactly m bits.

The operation of the RMV generator on input ĝ is as follows: Set B = Fr/2. For every
a⃗ ∈ B2 and i ∈ {1, 2}, let L : B → B2 be the MV line passing through a⃗ in direction i.
Compute EĝL(y) for all seeds y. For r = 2, output the set of all strings of length m obtained
over all a⃗ ∈ B2, MV lines L through a⃗, and seeds y. For r > 2, output the union of this
set and the sets output by the recursive calls RMV(ĝL) for each of the aforementioned MV
line L.

The construction runs in time pO(r) and therefore outputs at most that many strings. If
the set output by the procedure fails as a hitting set for a co-nondeterministic circuit D of
size m, then there exists an efficient commit-and-evaluate protocol P for ĝ with additional
input D. This is the main technical result of [25], which we present in a format that is
suitable for obtaining our results.5

▶ Lemma 23 ([25]). Let ∆, m, r, p be such that m ≤ ∆1/100, r is a power of 2 and p is a prime
between ∆100 and 2∆100. Let also F = Fp and s ∈ (0, 1]. There exists a commit-and-evaluate
protocol P = (Pcommit, Peval) with additional input D, where D is a co-nondeterministic
circuit of size m, such that the following holds for any polynomial ĝ : Fr → F of total degree
at most ∆.

Completeness: If D rejects every element output by RMV(ĝ) then there exists a strategy
Mcommit for Merlin in the commit phase such that Peval on input (z, D, π) outputs ĝ(z)
with completeness 1 for every z ∈ Fr, where π

.= Pcommit(1n, Mcommit).
Resilience: If D accepts at least a fraction 1/2 of its inputs then P has resilience s for
partial single-valuedness s on domain Fr.
Efficiency: Both Pcommit and Peval have two rounds. Pcommit runs in time log (1/s) ·
poly(∆, r) and Peval runs in time (log (1/s))2 · ∆O((log r)2).

P only needs blackbox access to the deterministic predicate that underlies D.

4.2 Targeted generator and reconstruction
In this section, we present our targeted HSG construction, which works as follows: On input
x and a co-nondeterministic circuit D of size m, it guesses a PCP (as in Lemma 18) for each
bit of f(x) and verifies each PCP deterministically by enumerating over the PCP verifier’s

5 Shaltiel and Umans present the evaluation protocol as a multi-round protocol (with log r rounds). We
collapse it into a two-round protocol by standard amplification (which also amplifies the crucial resilience
property) [3, 25].

CCC 2023

17:20 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

randomness. It encodes each PCP as a low-degree polynomial (as in Section 3.5), instantiates
the RMV generator with each of the polynomials and outputs the union of the outputs for
each instantiation. For the reconstruction, we have Merlin send a bit b and commit to the
low-degree extension of a proof that the i-th bit of f(x) equals b. Arthur then runs the PCP
verifier using the evaluation protocol to answer proof queries. The protocol succeeds and
outputs b if and only if the PCP verifier accepts. Here is the formal statement of the result.

▶ Theorem 24. Let T (n) be a time bound and f ∈ NTIME[T (n)]. There exists a non-
deterministic algorithm H (the generator) that always has at least one successful computation
path per input, and a promise Arthur-Merlin protocol R (the reconstructor) such that for
every x ∈ {0, 1}∗ and every co-nondeterministic circuit D that accepts at least half of its
inputs, at least one of the following holds.

1. H(x, D) outputs a hitting set for D on every successful computation path.
2. R(x, D) computes f(x) with completeness 1 and soundness 1/3.

The construction also has the following properties:
Resilient soundness: In either case, the probability that R(x, D) outputs a value other
than f(x) is at most 1/3.
Efficiency: On inputs x of length n and D of size m, H runs in time poly(T (n), m),
and R, given an additional index i, computes the i-th bit of f(x) in time poly(n) · (m ·
log T (n))O((log r)2) for r = O(log (T (n))/ log m).

Moreover, H(x, D) only depends on x and the size of D, and R(x, D) only needs blackbox
access to the deterministic predicate that underlies D.

Proof. Let f ∈ NTIME[T (n)], consider the language Lf = {(x, i, b) | f(x)i = b} and note
that Lf ∈ NTIME[T (n)]. Let V be the PCP verifier of Lemma 18 for Lf with soundness
s = s(n) = (100T (n)−1). Let also h = h(m) = m100, r = r(n, m) be the smallest power
of 2 such that hr is greater than the proof length of V on input length n and p = p(n, m)
be the smallest prime in the interval [∆100, 2∆100] for ∆ = h · r. Note, in particular, that
hr = poly(T (n), m) and r = O(log (T (n))/ log m).

Generator. The generator H, on input x and a co-nondeterministic circuit D of size m,
first guesses the value of z = f(x) and a proof yi of the correct length T (n) · polylog(T (n))
for the i-th bit of z for each i. Then it verifies that Pr[V yi(x, i, zi) = 1] = 1 for all i by
deterministically enumerating over the poly(T (n)) random-bit strings for V . If any of the
verifications fail, it fails. Otherwise, it views each yi as a function gi : {0, 1}ℓ → {0, 1} for
ℓ = log |yi| and outputs RMV(ĝi), where ĝi is the low-degree extension of gi with parameters
p, h and r. The initial verification step takes time poly(T (n)), and executing RMV(ĝ) takes
time pO(r) = poly(T (n), m) and outputs strings of length m. This culminates in a running
time of poly(T (n), m). Finally, since for the correct output z = f(x) there always exist proofs
yi that are accepted with probability 1 for each i, there always exists a nondeterministic
guess that leads the generator to succeed.

Reconstructor. We describe and analyze the prAM protocol R, which uses the commit-and-
evaluate protocol P = (Pcommit, Peval) of Lemma 23 with soundness parameter s′ = s′(n) =
(100T (n) · q)−1, where q = q(n) = polylog(T (n)) denotes the query complexity of V at input
length n. On inputs x, D and an index i, Arthur and Merlin play the commit phase Pcommit,
which produces a commitment πi to be fed into the evaluation phase. In parallel, Merlin also
sends a bit b to Arthur. The idea is for an honest Merlin to send b = f(x)i and commit to

D. van Melkebeek and N. Mocelin Sdroievski 17:21

the low-degree extension ĝi of a proof yi that witnesses (x, i, b) ∈ Lf (or f(x)i = b), though
a dishonest Merlin may send a different bit and/or commit to some different function. Let γi

denote the function that Merlin committed to via Pcommit, which may be accessed with high
probability by executing the evaluation protocol Peval with input πi. The restriction of γi to
[h]r defines a candidate PCP proof ỹi. Arthur then runs the verifier V ỹi(x, i, b), employing
Merlin’s help to evaluate ỹi whenever V makes a query to it (where binary queries are first
converted into the respective v⃗ ∈ Fr

p and all queries are evaluated in parallel). If V ỹi(x, i, b)
accepts, then R succeeds and outputs b, otherwise it fails.

Completeness. If D is not hit by H(x, D), then for all indices i there exists at least one
proof yi that witnesses (x, i, f(x)i) ∈ Lf and such that RMV(ĝi) fails to hit D, where ĝi is
the low-degree extension of yi with parameters p, h and r. In that case, an honest Merlin
can commit to such a ĝi with probability 1 by the completeness property of Lemma 23 as
well as send the correct value of f(x)i during the first phase. Then perfect completeness of
V and Peval guarantee that R succeeds and outputs f(x)i with probability 1.

(Resilient) soundness. If D accepts at least half of its inputs, then for a fixed index i

the resilience property of P in Lemma 23 guarantees that with probability at least 1 − s′,
the commit phase is successful and thus the evaluation protocol with input πi has partial
single-valuedness s′. In that case, by a union bound over the at most q queries that V makes,
with probability at least 1 − (100T (n))−1 = 1 − s, every execution of the evaluation protocol
results in the evaluation of a fixed function γi : Fr → F. If Merlin sends the incorrect value
of b ̸= f(x)i in the first round (the only way he could try to have Arthur output the wrong
value), the soundness property of V in Lemma 18 guarantees that R fails with probability
at least 1 − s since (x, i, b) /∈ Lf . By a union bound over these three “bad” events, all of
which have probability at most s since s ≥ s′, for any fixed index i, R(x, D) with additional
input i either fails or outputs f(x)i with probability at least 1 − 3s. Finally, a union bound
over the at most T (n) possible indices i guarantees that R either fails or outputs f(x) with
soundness 1/3. In particular, if completeness also holds then R(x, D) computes f(x) with
completeness 1 and soundness 1/3.

Efficiency. The commit phase takes time log (1/s′) · poly(∆, r) = poly(m, log T (n)) and
two rounds of communication. Afterwards, evaluating each query made by V (x, i, b) with
Peval takes time (log (1/s′))2 · ∆O((log r)2) = (m · polylog(T (n)))O((log r)2). The verification
step for V takes time log (1/s) · poly(n, log T (n)) = poly(n, log T (n)), and it makes at most
log (1/s) ·polylog(T (n)) = polylog(T (n)) queries, resulting in a total running time of poly(n)+
(m · log T (n))O((log r)2). Moreover, because V is non-adaptive, each execution of the evaluation
protocol can be carried out in parallel, and thus the total number of rounds is four. Collapsing
this protocol into a two-round one [3] leads to a prAM protocol with running time poly(n) ·
(m · log T (n))O((log r)2).

For the moreover part, we observe that computing RMV(ĝi) for each i only requires
knowledge of m, the size of circuit D (instead of the circuit itself) and thus the generator H

also only requires knowledge of m. Similarly, the commit-and-evaluate protocol in Lemma 23
only requires blackbox access to the deterministic predicate that underlies the circuit D, and
thus so does our reconstructor R since it just gives D as input to P . ◀

We remark that we can amplify the resilient soundness property for the reconstructor so
that the probability that it outputs a value outside of {f(x)i, ⊥} is at most 2−t by running
it Θ(t) times in parallel and outputting ⊥ as soon as at least one of the answers is ⊥ or the
answers are inconsistent, and outputting the consistent answer bit otherwise.

CCC 2023

17:22 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

We also present a version of the generator with a stronger resilient soundness property at
the expense of increasing the complexity of the reconstructor from a promise Arthur-Merlin
protocol to a probabilistic algorithm with parallel access to SAT. This version is useful for
obtaining our byproducts in the average-case setting.

▶ Corollary 25. Let T (n) be a time bound and f ∈ NTIME[T (n)]. There exists a non-
deterministic algorithm H (the generator) and a probabilistic algorithm R (the reconstructor)
with parallel access to SAT that have the same properties as in Theorem 24 but such that the
resilient soundness property holds for every co-nondeterministic circuit.

In the setting of Corollary 25, item 2 of Theorem 24 should be interpreted as saying that
R(x, D) outputs f(x) with probability at least 2/3. We refer to the stronger resilience
property in Corollary 25 as strong resilient soundness.

The idea behind Corollary 25 is for the reconstructor to first check whether the co-
nondeterministic circuit D accepts at least somewhat less than half of its inputs. This is
where the parallel access to an oracle for SAT comes in; it allows us to distinguish with
high probability between the cases where the fraction of accepted inputs is, say, at most
1/3 and at least 1/2. In the former case, the new reconstructor indicates failure with high
probability. Otherwise, we boost the fraction of accepted inputs to at least 1/2 by trying
D on two independent inputs, and then run the old reconstructor on the corresponding
co-nondeterministic circuit D′.

Proof of Corollary 25. Let H ′ be the generator and R′ the reconstructor of Theorem 24
instantiated with function f and amplified to have (resilient) soundness 1/6.

Generator. The generator H, on input x and D of size m, first constructs the circuit
D′ of size 2m as D′(r1r2) = D(r1) ∨ D(r2). We then define H(x, D) as Left(H ′(x, D′)) ∪
Right(H ′(x, D′)), where Left(S) and Right(S) output the set of the left and right halves of
every string in S, respectively.

Reconstructor. On input (x, D) and an index i, the reconstructor R estimates up to error
1/12 and with probability of failure 1/6 the fraction of inputs accepted by D by evaluating
circuit D on O(1) random inputs of length m, which can be done in probabilistic time poly(m)
with O(1) parallel queries to a SAT oracle. If the estimated fraction is less than 5/12 (the
midpoint between 1/3 and 1/2), then R declares failure. In parallel, R builds the circuit D′

in the same way as H, samples Arthur’s randomness for protocol R′ with inputs (x, D′) and
i and makes three queries to the SAT oracle to obtain the protocol’s output: Whether there
is a Merlin response that leads to success and whether there are Merlin responses that lead
to outputting 0 and 1. If the first query is answered negatively, or the last two queries give
inconsistent answers, then R declares failure. Otherwise, R outputs whatever R′ does.

Strong resilient soundness. Consider two cases in relation to circuit D: Either D accepts
fewer than 1/3 of its inputs, or it accepts at least a 1/3 of its inputs. In the first case,
the initial verification fails with probability at least 5/6. In the second case, D′ accepts at
least 2/3 − 1/9 = 5/9 > 1/2 of its inputs. The resilient soundness property of protocol R′

guarantees that with probability at least 5/6, R either fails or outputs f(x) correctly. In
either case, it follows that R outputs an incorrect value for f(x) with probability at most
1/6 ≤ 2/3.

D. van Melkebeek and N. Mocelin Sdroievski 17:23

Correctness. If a co-nondeterministic circuit D accepts at least half of its inputs, so does
the circuit D′. Moreover, if H(x, D) fails to hit D, then H ′(x, D′) fails to hit D′. The
correctness of protocol R′ then guarantees that there exists a strategy for Merlin that makes
R′ output f(x) with probability 1, and no strategy can make R′ output an incorrect value
for f(x) with probability at least 1/6. It follows that the second parallel phase of R yields
f(x) with probability at least 5/6. Accounting for the error probability of 1/6 in the initial
verification, we conclude that R outputs f(x) with probability at least 2/3.

Efficiency. The running time of H is asymptotically identical to that of H ′, and the running
time of R is polynomial in the running time of R′.

Finally, the moreover part follows right away from the moreover part of Theorem 24. ◀

Similar to the case of Theorem 24, we can amplify the strong resilient soundness property
for the reconstructor so that the probability that it outputs a value outside of {f(x)i, ⊥} (or
different from f(x)i in case D is not hit by the generator) is at most 2−t by running it Θ(t)
times in parallel and outputting the majority answer.

4.3 Derandomization consequences
First, we present a generic derandomization result for prAM that works under hardness
against arbitrary distributions.

▶ Theorem 26. There exists a constant c such that the following holds. Let t, T : N → N
be time bounds such that t(n) ≥ n, Π ∈ prAMTIME[t(n)] and {xn}n∈N be an ensemble of
distributions such that xn is supported over {0, 1}n and such that for all n, every x in the
support of xn satisfies the promise of Π. Assume that for µ : N → [0, 1) there exists a
length-preserving function f ∈ NTIME[T (n)] such that for every prAMTIME[t(n)O((log r)2)]
protocol P for r = O(log (T (n))/ log (t(n))), it holds that the probability over x ∼ xn that
P (x) = f(x) is at most µ(n) for all but finitely many n. Then, it holds that

Π ∈ Heurx,µNTIME[T (n)c].

Proof. First, notice that if t(n) ≤ log T (n), then the conclusion is trivial and if t(n) ≥ T (n)
then the premise is impossible, so we focus on the case that log T (n) ≤ t(n) ≤ T (n). Let
Π ∈ prAMTIME[t(n)] and let P be a two-round protocol for Π running in time O(t(n)) on
inputs of length n. On input x ∈ {0, 1}n, compute the circuit Dx of Proposition 17 with
protocol P , and note that Dx has size O(t(n)2). Then, instantiate the HSG of Theorem 24
with f . Feed H inputs x and Dx and run the usual derandomization procedure for protocol
P with the set output by H(x, Dx): For each string ρ ∈ H(x, Dx), nondeterministically
guess Merlin’s message yρ and compute the output of P with randomness ρ and message
yρ, accepting if and only if P accepts for every ρ ∈ H(x, Dx). The entire procedure runs in
nondeterministic time poly(T (n), t(n)) = O(T (n)c) for some constant c, since T (n) ≥ t(n).

Assume, with the intent of deriving a contradiction, that with probability at least µ(n)
over x ∼ xn, this derandomization fails for input x. First, notice that by the perfect
completeness of P it must be the case that such an x lies in ΠN and that P with input x

accepts every string in H(x, Dx). Therefore, Dx acts as a distinguisher for H(x, Dx), i.e., it
rejects every string output by Dx while accepting at least half of its inputs. By computing
Dx and feeding it to the prAM protocol R of Theorem 24, we obtain a prAM protocol that
computes individual bits of f(x) correctly for every x for which the derandomization fails,
i.e., with probability at least µ(n) over x ∼ xn. By running this protocol n times in parallel
to compute every bit of f(x), we obtain a prAM protocol that runs in time

CCC 2023

17:24 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

poly(n) · (t(n) · log T (n))O((log r)2) = t(n)O((log r)2)

since t(n) ≥ log T (n) and t(n) ≥ n. This is a contradiction to the hardness of f so we are
done. ◀

We remark that we require hardness not just against AM protocols but against prAM
protocols, which may not respect the completeness and/or soundness conditions on some
inputs. However, an input of length n only contributes to the success fraction µ(n) provided
the completeness and soundness conditions are met on that input.

As a consequence of Theorem 26, if the hardness assumption holds for almost-all inputs,
then we obtain full derandomization of prAM.

▶ Theorem 27. There exists a constant c such that the following holds. Let t, T : N → N be
time bounds such that t(n) ≥ n. If there is a length-preserving function f ∈ NTIME[T (n)] that
is hard on almost-all inputs against prAMTIME[t(n)O((log r)2)] for r = O(log (T (n))/ log (t(n)))
then

prAMTIME[t(n)] ⊆ NTIME[T (n)c].

Moreover, there exists a targeted hitting-set generator that achieves this derandomization
result.

Proof. The statement follows from Theorem 26 by noting that the assumption that f is
hard on almost-all inputs implies that f is hard for all possible distributions xn with success
probability µ(n) = 0. In particular, the following nondeterministic algorithm is a hitting-set
generator for prAM: On input x ∈ {0, 1}∗ and a co-nondeterministic circuit C of size m,
output H(x, D) where H is the generator of Theorem 24 and D

.= C(x, ·). This algorithm
has a successful computation path for any input and, on every successful computation path
on inputs where D accepts at least half of its inputs, it outputs a set that hits D. The
running time of the generator is poly(T (n), m). ◀

Table 2 Derandomization consequences that follow from different instantiations of Theorem 27.

Setting T (n) Hard for Derandomization
high end na nO((log a)2) prAM ⊆ NP

middle-of-the-road 2polylog(n) nO((log log n)2) prAM ⊆ NTIME[2polylog(n)]
low end 2no(1)

no((log n)2) prAM ⊆ NTIME[2no(1)
]

very low end 2poly(n) nb(log n)2
∀b ∃c prAM ⊆ NTIME[2nc

]

By setting parameters in Theorem 27, we obtain the derandomization results listed on
Table 2. In particular, the first line of Table 2 establishes Theorem 5 and the last line
establishes Theorem 6. We now provide more details on how to obtain each line of Table 2:

For the high end, set t(n) = n, in which case r = O(a). Then, prAMTIME[n] ⊆ NP follows
as long as f is hard on almost-all inputs against prAMTIME[nO((log a)2)]. The result for
prAM follows by padding.
For the middle-of-the-road result, set t(n) = n, in which case r = polylog(n). Then,
prAMTIME[n] ⊆ NTIME[2polylog(n)] follows as long as f is hard on almost-all inputs against
prAMTIME[nO((log log n)2)]. The result for prAM follows by padding.

D. van Melkebeek and N. Mocelin Sdroievski 17:25

For the low end, let ν = ν(n) = o(1) be such that T (n) = 2nν and set t(n) = n. In this
case, r ≤ nν . Then, prAMTIME[n] ⊆ NTIME[poly(n, 2nν)] follows as long as f is hard
on almost-all inputs against prAMTIME[nO((ν log n)2)]. Since poly(n, 2nν) = 2no(1) and
nO((ν log n)2) = no((log n)2), the result for prAM follows by padding.
For the very low end, set t(n) = nb for a constant b, in which case r = poly(n). Then,
prAMTIME[nb] ⊆ NTIME[2nc] for some constant c follows as long as f is hard on almost-all
inputs against prAMTIME[nO(b(log n)2)]. To get the result for prAM, it suffices for hardness
to hold for all b.

5 Consequences of derandomization

In this section, we prove the derandomization-to-hardness and derandomization-to-targeted
HSGs directions of our near-equivalences.

5.1 Hardness on almost-all inputs
We start with our derandomization-to-hardness implication: If prAM ⊆ NP then for all
constants c there is a length-preserving function f computable in nondeterministic polynomial
time (with a few bits of advice) that is hard on almost-all inputs against AMTIME[nc]. The
basic idea is that, under the derandomization hypothesis, every (single-bit) AM protocol that
runs in time nc can be simulated by a single-valued nondeterministic machine without too
much time overhead. If we have as advice whether a particular nondeterministic machine is
single-valued or not at input length n, we can negate its input efficiently, obtaining a function
f computable in nondeterministic time poly(n) that is almost-all inputs hard against AM
protocols that run in time nc. We now state Proposition 4 formally.

▶ Proposition 28 (Formal version of Proposition 4). If prAM ⊆ NP, then for every constant
c and increasing function α : N → N there exists a length-preserving function f ∈ NP/α(n)
that is hard on almost-all inputs against AMTIME[nc].

Proof. Assume that prAM ⊆ NP and let c′ be a constant to be defined later (which depends
on c). The basic idea for the function f is as follows: On an input x of length n, we set its
i-th output bit (for 1 ≤ i ≤ min(n, α(n))) to the opposite of the i-th bit output by the i-th
nondeterministic Turing machine Ni on input x (if Ni is single-valued and halts in at most
nc′+2 steps at input length n), and otherwise we set it to 0. Formally, on input x of length n

and for 1 ≤ i ≤ n

f(x)i =
{

1 − Ni(x)i if i ≤ α(n), Ni is single-valued and halts in at most nc′+2 steps,
0 otherwise.

Note that f is computable by a single-valued nondeterministic machine running in time
O(nc′+3) with α(n) bits of advice (indicating whether Ni is single-valued and halts in at
most nc′+2 steps at input length n for 1 ≤ i ≤ α(n)).6 This holds because, when Ni is
single-valued, computing 1 − Ni(x)i can be done by guessing a path on which Ni succeeds,
which must result in the unique value Ni(x), and then outputting the opposite of the i-th
bit of that. Assume, with the intent of deriving a contradiction, that there exists an AM
protocol P that runs in time O(nc) and computes f on an infinite set of inputs X ⊆ {0, 1}∗.

6 The nondeterministic machine computing f is only guaranteed to be single-valued when given the
correct advice string.

CCC 2023

17:26 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

Consider the protocol P ′ that takes as regular input a triple (x, i, b) and accepts iff the i-th
bit of the output of protocol P with input x equals b (if i > |x| then P ′ rejects). Note that P ′

induces a language L in AMTIME[nc]. Since prAM ⊆ NP and prAMTIME[nc] has a complete
problem under linear-time reductions, it follows that there exists a constant c′ such that
AMTIME[nc] ⊆ NTIME[nc′].7 Let N be a nondeterministic machine that runs in time nc′

and computes L. Note that for every x ∈ {0, 1}∗ and 1 ≤ i ≤ |x|, N(x, i, b) = 1 for exactly
one b ∈ {0, 1}, and when x ∈ X, N(x, i, b) = 1 if and only if f(x)i = b.

Now consider the following procedure N ′: On input x ∈ {0, 1}n, guess a value bi and a
witness yi for each 1 ≤ i ≤ n and run N(x, i, bi; yi). If for all i, N(x, i, bi; yi) accepts, N ′

succeeds and prints the concatenation of the guessed bi’s, otherwise N ′ fails. Note that N ′ is
a nondeterministic machine that runs in time O(nc′+1). Moreover, by our assumption that P

is an AM protocol and that prAM ⊆ NP, N ′ is single-valued on every input. By construction,
the single value equals f(x) for all x ∈ X.

Let i be the index of N ′ in our enumeration, i.e., Ni = N ′. By definition of f , for
every input x ∈ {0, 1}∗ of sufficiently large length n ≥ α−1(i) (so that it has a chance to
negate the output of Ni), and in particular for all sufficiently large x ∈ X, we have that
f(x)i = 1 − N ′(x)i = 1 − f(x)i, which is a contradiction. ◀

This result extends to other parameter settings. As an example, we state a version of
Proposition 28 at the very low end.

▶ Proposition 29. If there exists a constant c such that that AM ⊆ NTIME[2nc], then for
every increasing function α : N → N there exists a function f ∈ NEXP/α(n) that is hard on
almost-all inputs against AM protocols running in polynomial time.

Proof (Sketch). The proof is essentially identical to that of Proposition 28, but with a
different time bound. Since AM ⊆ NTIME[2nc], the diagonalizing machine N needs to
diagonalize against single-valued nondeterministic algorithms running in time 2nc′

for some
fixed constant c′ > c, and thus we get a nondeterministic algorithm that runs in time O(2nk)
for any constant k > c′. ◀

We conclude this section by noting in more detail where the gaps between our hardness-
to-derandomization and derandomization-to-hardness results lie. The first gap lies in the
fact that in the derandomization-to-hardness direction, the hard function f we construct
requires a few bits of advice that we don’t know how to handle in the other direction. There
is, however, a subtler difference – In the hardness-to-derandomization direction, we require
hardness against prAM protocols, which may not obey the AM promise on all inputs (though
we only consider the protocol as computing f(x) on input x if it obeys the promise and
respects both completeness and soundness on input x). In the derandomization-to-hardness
direction, we can only guarantee hardness against AM protocols, which necessarily obey the
AM promise on all inputs. We remark that a similar problem shows up in other hardness
vs. randomness tradeoffs for AM [13, 25]. For example, to conclude almost-everywhere
derandomization of AM, the authors of [13] require hardness of EXP against AM protocols
for which completeness only holds infinitely-often. Finally, we also note that, while Chen
and Tell only state their derandomization-to-hardness result for BPP [8], in that setting one
can actually achieve hardness against prBPP (where the probabilistic algorithm might not
have a high-probability output for every input).

7 While our argument only requires that there exists a constant c′ such that AMTIME[nc] ⊆ NTIME[nc′
],

we use the assumption prAM ⊆ NP instead of AM ⊆ NP since it is unknown whether AMTIME[nc]
contains a complete problem under linear-time reductions.

D. van Melkebeek and N. Mocelin Sdroievski 17:27

5.2 Targeted hitting-set generator
In this section, we prove Theorem 7 along the lines of the intuition provided in Section 2.2.
We make use of a win-win argument: Either the EXP ̸= NEXP hardness assumption holds, in
which case there is a regular (oblivious) HSG that guarantees the derandomization result [14].
Or else we may assume that EXP = NEXP, which allows us to construct a function f that is
hard against prAM protocols by diagonalization, with which we then instantiate Theorem 24
to obtain the targeted HSG.

We need the following result that follows from the “easy-witness” method.

▶ Lemma 30 ([14]). If NEXP ≠ EXP then prAM ⊆ io-NTIME[2nϵ]/nϵ for every ϵ > 0.
Moreover, there exists a (regular) HSG that achieves this derandomization.

We now prove Theorem 7, which we restate here for convenience.

▶ Theorem 7. If prAMTIME[2polylog(n)] ⊆ io-NEXP, then there exists a targeted hitting-set
generator for prAM that yields the simulation prAM ⊆ io-NTIME[2nc]/nϵ for some constant
c and all ϵ > 0.

Proof. If EXP ̸= NEXP, we are done by Lemma 30. Otherwise, it holds that NEXP = EXP.
We use this collapse to construct a length-preserving multi-bit function f ∈ EXP that is
hard against prAMTIME[n(log n)3]. We then instantiate Theorem 24 with f to obtain the
targeted HSG. Hardness against protocols running in this time bound suffices along the lines
of Theorem 6.

Before constructing f , we make an observation: Due to the instance-wise nature of our
construction, to obtain an infinitely-often derandomization result using Theorem 24 it suffices
to have an infinitely-often all-inputs hardness assumption. More precisely, we require the
following: For every prAMTIME[n(log n)3] protocol P , there exist infinitely many input lengths
n such that P fails to compute f for every x of length n. Thus, we construct a function f

with this requirement in mind.
Under the hypothesized derandomization assumption and because prAMTIME[n(log n)3]

has a complete problem under linear-time reductions, it follows that there exists a constant
k such that prAMTIME[n(log n)3] ⊆ io-NTIME[2nk]. Since NTIME[2nk] also has a complete
problem under linear-time reductions, under the assumption EXP = NEXP, there exists
a constant k′ such that prAMTIME[n(log n)3] ⊆ io-DTIME[2nk′

]. In that case, it suffices to
diagonalize against fixed-exponential time machines to construct f . Similar to Proposition 28,
we define the i-th bit of f(x) to be the opposite of the i-th bit output by Mi(x) when it runs
for at most 2|x|k′+1 steps, where Mi is the i-th deterministic Turing machine. Formally, on
input x of length n and for 1 ≤ i ≤ n,

f(x)i =
{

1 − Mi(x) if Mi(x) halts in at most 2nk′+1 steps,
0 otherwise.

Note that f is computable by a deterministic machine running in time O(n · 2nk′+1) and
thus f ∈ EXP.

Assume, with the intent of deriving a contradiction, that there exists a prAMTIME[n(log n)3]
protocol P such that for almost-all input lengths n, P computes f on at least one input
x ∈ {0, 1}n, and call the set of inputs where P computes f correctly X. Again, similar
to the proof of Proposition 28, P induces a problem Π in prAMTIME[n(log n)3], and by our
assumptions, there is a language L ∈ DTIME[2nk′

] such that L and Π agree on infinitely

CCC 2023

17:28 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

many input lengths. Let M be a deterministic Turing machine running in time O(2nk′

) that
decides L. Recall that yes-instances of Π are triples (x, i, b) such that x ∈ X and f(x)i = b

while no-instances have x ∈ X and f(x)i ̸= b. Let M ′ be the deterministic Turing machine
that, on input x of length n, outputs M ′(x) of length n such that M ′(x)i = 1 if and only if
M accepts (x, i, 1) for 1 ≤ i ≤ n. Note that M ′ runs in time 2nk′+1 . By construction and our
assumption on P , for infinitely many input lengths n there exists at least one x ∈ X ∩ {0, 1}n

such that M ′(x) = f(x).
Let i be the index of M ′ in our enumeration. By definition of f , for every input x ∈ {0, 1}∗

of sufficiently large length n ≥ i (so that it has a chance to negate the output of M ′), and in
particular for all sufficiently large inputs x ∈ X, we have that f(x)i = 1−M ′(x)i = 1−f(x)i,
a contradiction. Finally, we instantiate Theorem 26 with f to obtain a targeted HSG for
prAM that runs in exponential time, which suffices to obtain the conclusion. ◀

6 Derandomization under uniform worst-case hardness

Our technique also leads to new results in the traditional uniform worst-case setting. Under
worst-case hardness against probabilistic algorithms with non-adaptive oracle access to SAT,
we obtain average-case derandomization results for prAM. Moreover, by further strengthening
the hardness assumption, we may also conclude full (infinitely-often) derandomization of
prAM. As previously mentioned, these results extend to average-case derandomization of
prBPPSAT

|| .

6.1 Average-case simulation
In this section, we develop our average-case derandomization results for prAM under worst-
case uniform hardness assumptions (where hardness is against BPTIMESAT

||). Our results
in this setting work as follows: Assume there exists a hard language L ∈ NTIME[T (n)] ∩
coNTIME[T (n)]. To derandomize some prAM protocol P on input length n, we first consider
the hard language L at some suitable input length ℓ, which depends on the hardness of L

(for Theorem 8, for example, we take ℓ = Θ(log n)). Then we let f be the function that
maps any input x ∈ {0, 1}n to the truth table of L at input length ℓ, and it follows from
the complexity of L that f ∈ NTIME[2ℓ · T (ℓ)]. Finally, we instantiate our targeted HSG
construction H with f and use it to derandomize P .

For the reconstruction, we make use of the strong resilient soundness property of Corol-
lary 25. If the average-case derandomization fails, to decide whether z of length ℓ is in L, we
first sample multiple candidate “good” strings x that hopefully lead to a distinguisher Dx

for the generator (enough so that we expect at least one “good” x with high probability).
Then, we run the reconstruction for all of them, accepting if and only if at least one of
those outputs 1. By the strong resilient soundness property and amplification, with high
probability every execution either fails or outputs f(x)z = L(z), and in the high probability
case that we sample at least one “good” x, some execution outputs L(z), meaning we can
compute L efficiently on input length ℓ.

First, we present such a result at the high end of the derandomization spectrum.

▶ Theorem 31 (Strengthening of Theorem 8). If NTIME[2an] ∩ coNTIME[2an] is not included
in BPTIME[2(log(a+1))2n]SAT

|| for some constant a > 0, then for all e > 0 it holds that

prAM ⊆ io-Heur1/neNP
prBPPSAT

|| ⊆ io-Heur1/nePSAT
|| .

D. van Melkebeek and N. Mocelin Sdroievski 17:29

Proof. We first argue the result for prAM. Consider derandomizing a prAM protocol P for a
problem Π running in time O(nk) for some constant k. Let S be an O(ns)-time sampler for
a distribution in {0, 1}n and e be a constant such that we want to “fool” S with probability
at least 1 − 1/ne. Let f be a function mapping every x ∈ {0, 1}n to the truth table of the
hard language L ∈ NTIME[2an] ∩ coNTIME[2an] at input length ℓ = ℓ(n) = Θ(log n) to be
set precisely later. Note that f ∈ NTIME[T (n)] for T (n) = 2(a+1)ℓ. Instantiate the generator
H of Corollary 25 with f , run H on input x = 0n (recall f maps every string in {0, 1}n to
the same truth table) and co-nondeterministic circuit size m = O(n2k), and use it to attempt
to derandomize P in nondeterministic time poly(T (n), n2k) = poly(n).

If the derandomization fails for almost-all input lengths, even heuristically, then for almost-
all input lengths n, S(1n) outputs with probability at least 1/ne a string x ∈ {0, 1}n such
that the simulation errs on x, i.e., the circuit Dx obtained from x and P using Proposition 17
is a distinguisher for H(0n, Dx). To compute L at input length ℓ, it then suffices to do
the following: On input z ∈ {0, 1}ℓ, first use S to sample t = Θ(ne) inputs x1, . . . , xt and
use these to construct a list Dx1 , . . . , Dxt

of candidate distinguishers for H(0n, Dx). With
high probability, this list contains an actual distinguisher for the generator. Let R be the
algorithm of Corollary 25, amplified by parallel repetition to have negligible soundness 2−n,
i.e., with probability at least 1 − 2n, the algorithm outputs either f(x) or ⊥. Finally, run
R with inputs 0n, index z (recall f(0n) equals the truth table of L at input length ℓ) and
Dxi

for every sampled input xi, and accept if and only if some execution outputs 1. To see
that this is correct, note that by a union bound, with high probability every execution of R

is successful in the sense that it either outputs f(0n)z = L(z) or ⊥. Conditioned on there
being a distinguisher in the list, we are guaranteed to output the correct value of L(z) with
high probability.

The running time for the reconstruction is O(ne+s) for generating the t = Θ(ne) samples,
and O(n2k)O((log r)2) per sample for running R, where r = O(((a + 1)ℓ)/(k log n)), for a total
of O(ne(ns + nO(k(log r)2))). By setting ℓ = dk log n, we have that r = O(d(a + 1)) and we
can upper bound the total running time by nO(e+s+k(log(d(a+1)))2). In terms of the input
length ℓ, this is 2(log(a+1))2ℓ when d is a sufficiently large constant depending on a, e, s. This
concludes the argument for prAM.

Now, we argue the result for prBPPSAT
|| . To do so, we use the containment prBPPSAT

|| ⊆
PprAM

|| [5]. It suffices to show that every deterministic polynomial-time algorithm with non-
adaptive oracle access to a paddable prAM-complete problem Γ ∈ prAMTIME[n] can be
simulated by deterministic polynomial-time algorithms with non-adaptive oracle access to
SAT. Let M be a deterministic algorithm with non-adaptive oracle access to Γ running in
time O(nb) and S be an O(ns)-time sampler that we want to “fool” with probability at least
1 − 1/ne. Since Γ is paddable, we may assume that every query made by M on inputs of
length n is of length O(nb) (at the expense of increasing its running time to O(n2b)). To
simulate M on input x, let f be a function mapping every x ∈ {0, 1}n to the truth table
of L at input length ℓ = ℓ(n) = Θ(log n). As before, f ∈ NTIME[2(a+1)ℓ]. Instantiate the
generator H of Corollary 25 with f and use it to derandomize Γ at input length O(nb) in
order to obtain a PSAT

|| simulation for M . Whenever M with input x queries Γ, we instead
query the SAT oracle whether the nondeterministic simulation of Γ using H with input 0n

and co-nondeterministic circuit size m = O(n2b) accepts. This simulation runs in PSAT
|| since

M is non-adaptive.
If this derandomization fails on almost-all input lengths n, then as before we can use S

to sample t = Θ(ne) inputs x1, . . . , xt such that with high probability the simulation fails on
some xi. Let Q(M, x) be the set of queries to Γ made by M on input x. If the simulation fails

CCC 2023

17:30 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

on xi, it must be the case that some query q in Q(M, xi) (and also in the promise of Γ) was
answered incorrectly. Since the protocol for Γ has perfect completeness, it must be the case
that q ∈ ΠN and that Dq is a distinguisher for H(0n, Dq). The reconstruction is as before
though we use the sets Q(M, xi) for i ∈ [t] to obtain the list of candidate generators, and
correctness follows by the same argument as in the prAM case. The running time analysis is
similar to the one for the case of prAM. ◀

At the low end, we are able to obtain a slightly stronger average-case derandomization
result. Instead of having a different simulation for each sampler, we obtain a single simula-
tion (depending on the problem in prAM/prBPPSAT

|| and the constant ϵ) that “fools” every
polynomial-time sampler.

▶ Theorem 32. If NEXP ∩ coNEXP ̸⊆ BPTIME[nb((log n)2)]SAT
|| for all b > 0, then for every

ϵ > 0 and all e > 0

prAM ⊆ io-Heur1/neNTIME[2nϵ

]

prBPPSAT
|| ⊆ io-Heur1/neDTIME[2nϵ

]SAT
|| .

Moreover, for any Π in prAM or prBPPSAT
|| and ϵ > 0, there is a single simulation that works

for all e > 0.

Proof. We begin with the argument for prAM. Let L be a hard language in NTIME[2na] ∩
coNTIME[2na] for some constant a ≥ 1. Consider derandomizing a protocol P for a problem
Π ∈ prAMTIME[nk] for constant k. Let ϵ > 0 and f be the function mapping every
x ∈ {0, 1}n to the truth table of L at input length ℓ = nϵ. Note that f ∈ NTIME[T (n)] for
T (n) = 2naϵ . Instantiate the generator H of Corollary 25 with f , run H on input x = 0n and
co-nondeterministic circuit size m = O(n2k), and use it to derandomize P . The simulation
runs in nondeterministic time poly(T (n), n2k), which is at most 2nϵ′

for any ϵ′ > 0 by taking
a sufficiently small ϵ > 0.

The reconstruction is identical to that of Theorem 31 but with ℓ = nϵ. The running
time is O(ne+s) to generate the samples and (n2k)O((log r)2) per sample for running R, where
r = O(log (T (n))/ log n), for a total of O(ne(ns + nO((log r)2))). Given our parameter choices,
r = O(naϵ), and the expression is upper bounded by O(ne(ns + nO((aϵ log n)2))). As the input
length is ℓ = nϵ for constant ϵ, there exists a constant b (depending on a, e, s, ϵ) such that the
running time is upper bounded by ℓb(log n)2 . If hardness holds for all b > 0, then the same
simulation works for any constant value of s and e, i.e., for any polynomial-time sampler and
any inverse-polynomial error probability.

The proof for prBPPSAT
|| is also almost identical to that of Theorem 31, where we de-

randomize the “oracle” Γ using the generator H from Corollary 25 instantiated with the
function f that maps every x ∈ {0, 1}n to the truth table of L at input length ℓ = nϵ and
use a set of queries instead of a set of inputs to obtain the list of candidate distinguishers
for the reconstruction. This approach naturally leads to a simulation in PNTIME[2nϵ

]
|| , and

we obtain the DTIME[2nϵ]SAT
|| simulation by replacing the original queries with padded SAT

queries. ◀

6.2 Infinitely-often all-input simulation
By introducing nondeterminism in the algorithms we require hardness for, we are able to
extend Theorem 8 to conclude full (infinitely-often) derandomization of prAM. We have shown
that, if the HSG construction of Theorem 8 fails to obtain average-case derandomization

D. van Melkebeek and N. Mocelin Sdroievski 17:31

of prAM, then we are able to efficiently sample candidate distinguishers with the hope that
at least one is “good”. However, if the HSG fails in the worst case, it is harder to pinpoint
exactly where it does so as to obtain a distinguisher. To solve this, we have Merlin send
a “good” input x. This necessitates a lower bound against MATIMESAT

|| , but allows for
concluding full (infinitely-often) derandomization of prAM and prBPPSAT

|| .

▶ Theorem 33. If NTIME[2an] ∩ coNTIME[2an] ̸⊆ MATIME[2(log (a+1))2ℓ)]SAT
|| for some con-

stant a > 0, then

prAM ⊆ io-NP
prBPPSAT

|| ⊆ io-PSAT
|| .

Proof. We argue the result for prAM first. Let Π ∈ prAMTIME[nk] for some constant k and
let L be a hard language in NTIME[2an] ∩ coNTIME[2an]. Let f be a function mapping every
string in {0, 1}n to the truth table of L at input length ℓ = Θ(log n) to be set precisely later.
Note that f ∈ NTIME[T (n)] for T (n) = 2(a+1)ℓ. Instantiate the generator H of Corollary 25
with f , run H on input 0n and co-nondeterministic circuit size m = O(n2k), and use it to
derandomize P in time poly(T (n), n) = poly(n).

If the simulation fails for some input of almost-all input lengths, then for almost-all input
lengths n there exists an x ∈ ΠN of length n such that the simulation errs on x, i.e., the
circuit Dx of Proposition 17 instantiated with the protocol for Π and x is a distinguisher for
H(0n, Dx). Let R be the reconstructor of Corollary 25 and consider the following Merlin-
Arthur protocol for L, where the protocol has parallel oracle access to SAT: On input
z ∈ {0, 1}ℓ, Merlin sends x, and Arthur runs R(0n, Dx) to compute the z-th bit of f(0n)
(which equals L(z)). If R outputs ⊥, then the protocol rejects, otherwise, it accepts if and
only if R outputs 1. Because R is a probabilistic algorithm with parallel access to an oracle
for SAT, Arthur can sample the randomness required for it and then run the underlying
deterministic parallel-SAT-oracle computation, meaning this is indeed a MASAT

|| protocol.
Completeness follows since Merlin can send a correct value of x, and soundness follows from
the strong resilience property of R: Even if Merlin sends a “bad” x′, R is still guaranteed to
either fail or output L(z) with high probability.

To finish the argument for prAM, note that the running time of the protocol is just the
running time of R, which is poly(n) · (m · log T (n))O((log r)2) for r = O(log (T (n))/ log m).
Since m = O(n2k) and setting ℓ = dk log n, we have r = O(d(a + 1)) and the running time
for the protocol is upper bounded by nO(k(log (d(a+1)))2). In terms of the input length ℓ, this
is 2(log (a+1))2ℓ) when d is a sufficiently large constant depending on a.

The simulation for prBPPSAT
|| is similar to before and the reconstruction is identical to

the prAM case: If the simulation fails, then there is a query q of length O(nk) (which results
in a distinguisher of size O(n2k)) that Merlin can send Arthur to make Arthur output L(z)
with high probability. Soundness also follows exactly as in the prAM case and the running
time is again 2(log (a+1))2ℓ). ◀

We only state the previous result for the high-end parameter setting because stronger
results are already known for the low end. For example, to conclude a subexponential
derandomization of prAM, it suffices for there to exist a language in NEXP ∩ coNEXP that
is hard for a subclass of MASAT

|| [1]. In comparison with ours, other results that conclude
the same derandomization either require hardness of nondeterministic algorithms against
much larger deterministic time bounds, e.g., NE ∩ coNE ̸⊆ DTIME[22nϵ

] for some ϵ > 0 [14]
or hardness of deterministic algorithms against slightly less space, e.g., E ̸⊆ SPACE[2ϵn] for
some ϵ > 0 [21].

CCC 2023

17:32 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

7 Unconditional mild derandomization

In this section, we establish our unconditional mild derandomization result for prAM and
extend it to prBPPSAT

|| . We employ a similar win-win argument to that of the proof of
Theorem 7: Either some hardness assumption/class separation holds (here, Σ2EXP ̸⊆
NP/poly), in which case we get derandomization right away. Or else we get a complexity
collapse which we can use to construct a hard function f that has the efficiency requirements
we need to apply one of our targeted hitting-set constructions (in this case Theorem 32,
which requires hardness against BPTIME[2polylog(n)]SAT

||).
As a first step toward the win-win argument, we prove an “easy-witness lemma” for Σ2EXP,

which allows for the collapse PΣ2EXP ⊆ EXP from the assumption that Σ2EXP ⊆ NP/poly.
Then we consider two cases:

Σ2EXP ̸⊆ NP/poly. In this case, the derandomization result follows from standard
hardness vs. randomness tradeoffs.
Σ2EXP ⊆ NP/poly. In this case, we diagonalize against BPTIME[2polylog(n)]SAT

|| in
PΣ2EXP = EXP, and then instantiate Theorem 32 to conclude the proof.

To diagonalize against BPTIME[2polylog(n)]SAT
|| , we make use of the inclusion prBPPSAT

|| ⊆
PprAM

|| and diagonalize against deterministic algorithms with non-adaptive oracle access to
prAM instead.

7.1 Nondeterministic easy witnesses
In this section, we prove our “easy witness lemma” for Σ2EXP. One way of thinking of Σ2
computations is as follows: On input x, guess a string y and then run a co-nondeterministic
verifier on input (x, y). This view allows us to abstract the co-nondeterministic verification
and think of y as a witness for x. In this section, we show that if Σ2EXP ⊆ NP/poly, then
every language in Σ2EXP has witnesses that are the truth tables of functions computed
by polynomial-size single-valued circuits. To do so, we use the following result to convert
hardness against single-valued circuits into hitting sets for co-nondeterministic circuits.

▶ Lemma 34 ([27]). There is a universal constant b and a deterministic polynomial-time
algorithm that, on input 1m and a truth table y of a function with single-valued circuit
complexity at least mb, outputs a set S of size O(|y|b) that hits co-nondeterministic circuits
of size m that accept at least half of their inputs.

We also need the following equivalence from [1].

▶ Lemma 35 ([1]). Σ2EXP ̸⊆ NP/poly if and only if prAM ⊆ io-Σ2TIME[2nϵ]/nϵ for all
ϵ > 0.

We are now ready to prove our easy witness result for Σ2EXP.

▶ Theorem 36. Assume Σ2EXP ⊆ NP/poly. Then Σ2EXP has single-valued witnesses
of polynomial size, i.e., for every L ∈ Σ2EXP and linear-time (in its input length) co-
nondeterministic verifier H for L, the following holds: For every x ∈ L, there exists a
single-valued circuit Cx of size poly(|x|) such that H(x, ·) accepts the exponential-length truth
table of Cx.

Proof. We show that Σ2E has single-valued witness circuits of size nc for some constant c.
The result for Σ2EXP then follows by padding.

D. van Melkebeek and N. Mocelin Sdroievski 17:33

Assume that Σ2E does not have single-valued witness circuits of size nc for any constant
c. This implies that for all c ≥ 1, there is a co-nondeterministic verifier Hc that takes as
input a string x and a string y of length 2O(|x|), runs in time 2O(|x|), and has the following
property: For infinitely many n, there is a input x′ of length n such that Hc(x′, y′) accepts
for some y′, but every y accepted by Hc(x′, ·) has single-valued circuit complexity at least
nc. Thus, there are infinitely many n such that, if we give x′ as n bits of advice, guess a
string y of length 2O(n), and verify that Hc(x′, y) accepts (using co-nondeterminism), we are
guaranteed that y encodes the truth table of a function with single-valued circuit complexity
at least nc. This gives us a Σ2-procedure for obtaining hard functions, which we use to
derandomize prAM and obtain a contradiction to Lemma 35.

Let Π ∈ prAM and let P be a protocol for Π that runs in time O(ℓa) on input length ℓ. By
Proposition 17, to derandomize P it suffices to have a set S that hits any co-nondeterministic
circuit of size O(ℓ2a) that accepts at least half of its inputs. To obtain such a set using
Lemma 34, we need to first obtain a truth table of single-valued circuit complexity at least
Ω(ℓ2ab), where b is the constant from the lemma. Recall that our objective is to obtain a
subexponential (time 2nϵ for all ϵ > 0) simulation. To this end, let ϵ > 0 be sufficiently
small and consider the verifier Hc for c = 3ab/ϵ on inputs of length n = ℓϵ. If n is one of
the infinitely many input lengths for which there exists x′ such that every string accepted
by Hc(x′, ·) has single-valued circuit complexity at least nc = ℓ3ab, then we can obtain such
a hard string by having x′ as advice, guessing y ∈ {0, 1}2O(ℓϵ) and verifying that Hc(x′, y)
accepts.

In parallel, apply Lemma 34 to y to obtain a set S of size 2O(ℓϵ), and use S to derandomize
the prAM computation (guessing a Merlin response for each string in S). Finally, accept if
and only if both Hc(x′, y) and the prAM simulation accept. All of this can be carried out
in Σ2TIME[2O(ℓϵ)]/ℓϵ. Since ϵ is an arbitrarily small constant and the simulation works for
infinitely many input lengths ℓ, we obtain a contradiction to Lemma 35. ◀

Theorem 36 allows us to establish the following complexity class collapse in case Σ2EXP ⊆
NP/poly. The corollary represents the role our easy witness result plays in the proof of
Theorem 9.

▶ Corollary 37. If Σ2EXP ⊆ NP/poly, then PΣ2EXP = EXP.

Proof. Under the hypothesis from the statement, we show that Σ2EXP = coNEXP, which
suffices by combining Lemma 35 and Lemma 30. The hypothesis and Lemma 35 guarantee
the negation of prAM ⊆ io-Σ2TIME[2nϵ]/nϵ for all ϵ, which in turn implies the negation of
prAM ⊆ io-NTIME[2nϵ]/nϵ for all ϵ, and thus the contrapositive of Lemma 30 implies EXP =
NEXP and therefore Σ2EXP = coNEXP = EXP. Finally, we have PΣ2EXP = PEXP = EXP.

To show that Σ2EXP = coNEXP, by padding, it suffices to show that every L ∈ Σ2E is in
coNEXP. Fix L ∈ Σ2E. By Theorem 36, L has single-valued witnesses of size nc for some
constant c. On input x ∈ {0, 1}n, we cycle through all nondeterministic circuits C of size nc

and compute their truth tables in time O(2nc). For each truth table T , we then run V (x, T)
(where V is a co-nondeterministic verifier for L), accepting if and only if some verification
accepts. All of this runs in exponential co-nondeterministic time, so we are done. ◀

7.2 Simulation
We now execute our win-win strategy and establish Theorem 9 and its strengthening for
prBPPSAT

|| in lieu of prAM. We first consider the case where Σ2EXP ̸⊆ NP/poly. In this case
simulations of the required type that work on all inputs of a given length are provided by
Lemma 35 for prAM. We argue the same simulations follow for prBPPSAT

|| .

CCC 2023

17:34 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

▶ Lemma 38. If Σ2EXP ̸⊆ NP/poly, then for every ϵ > 0

prBPPSAT
|| ⊆ io-Σ2TIME[2nϵ

]/nϵ.

Proof. We use the inclusion prBPPSAT
|| ⊆ PprAM

|| . Let k be a constant and M be an O(nk)-time
deterministic machine with non-adaptive oracle access to a paddable prAM-complete problem
Γ ∈ prAMTIME[n]. We assume that all queries made by M on inputs of length n are of
length O(nk) at the expense of increasing M ’s running time to O(n2k).

Our approach is to use Lemma 34 to derandomize the queries made to Γ while making
sure that the overall simulation of M can be carried out in subexponential Σ2-time. To
derandomize Γ at input length O(nk) using the lemma, we need to obtain a truth table of
single-valued circuit complexity at least Ω(n2bk), where b is the constant from the lemma.
Let ϵ > 0 and L ∈ Σ2E be a language that has nondeterministic circuit complexity at least
n3bk/ϵ for infinitely many input lengths (which is guaranteed to exist by the hypothesis of
the theorem). The simulation of M on inputs x goes as follows: Given as advice the number
of strings of length nϵ that are in L, the Σ2 algorithm guesses the truth table of L at input
length nϵ, verifies it, and uses it as the string y in Lemma 34. More precisely, after guessing
the truth table, the algorithm performs the following operations in parallel:

It uses an existential and a universal guess to verify that the guessed truth table for L is
correct. This is possible because the algorithm has as advice the number of strings of
length nϵ that are in L, and thus it can existentially guess which strings are in L and
only verify those, with the guarantee that the others are not in L.
It guesses which of the queries to Γ that M makes on input x are answered positively and
which are answered negatively. For each query that is guessed to be answered positively,
it uses the set S from Lemma 34 and the existential phase to verify that there is a
random-bit string in S for which Merlin can provide a witness. Similarly, it uses S and
the universal phase to verify each query that is guessed to be answered negatively.

We note that the only existential computation paths that survive the computation are the
ones where the truth table of L at input length nϵ was guessed correctly. In this case, and in
the case that nϵ is one of the infinitely many input lengths where L has nondeterministic
circuit complexity at least n3bk/ϵ, it holds that the guessed truth table has high enough
(single-valued) nondeterministic circuit complexity such that S hits the co-nondeterministic
circuits given by Proposition 17 for negative instances of Γ at input length O(nk). This
further guarantees that the surviving existential computation paths are those that correctly
guess the answers to all queries M makes on input x that are in the promise of Γ. This
suffices to obtain a simulation of M that is correct on infinitely many input lengths since M

is insensitive to variations in answers to queries that are outside the promise (even when the
same query is answered differently on different occasions). Finally, we note that the entire
procedure runs in time 2O(nϵ), which can be made smaller than 2nϵ′

for any ϵ′ > 0 by taking
ϵ to be sufficiently small. ◀

The other case of the win-win analysis is when Σ2EXP ⊆ NP/poly. In this case, we
use the collapse PΣ2EXP = EXP given by Corollary 37 and our targeted hitting-generator
construction to obtain the desired simulation. We conclude:

▶ Theorem 39 (Strengthening of Theorem 9). For every ϵ > 0 and every e > 0

prBPPSAT
|| ⊆ io-Heur1/neΣ2TIME[2nϵ

]/nϵ.

D. van Melkebeek and N. Mocelin Sdroievski 17:35

Proof. If Σ2EXP ̸⊆ NP/poly, then it follows that prBPPSAT
|| ⊆ Σ2TIME[2nϵ]/nϵ for all ϵ > 0

by Lemma 38. Otherwise, by Corollary 37, we have that PΣ2EXP = EXP. By Theorem 31,
all we need to show is that PΣ2EXP ̸⊆

⋃
b∈N BPTIME[nb((log n)2)]SAT

|| . Given the containment
prBPPSAT

|| ⊆ PprAM
|| and a padding argument, it follows that

⋃
b∈N BPTIME[nb((log n)2)]SAT

|| ⊆
DTIME[2polylog(n)]prAM

|| . It remains to show that PΣ2EXP ̸⊆ DTIME[2polylog(n)]prAM
|| , which we

do by diagonalization.
Fix a prAM-complete problem Γ and note that if L ∈ DTIME[2polylog(n)]prAM

|| , then there
exists a Turing machine M running in time 2polylog(n) with non-adaptive oracle access to
Γ that computes L. Thus, it suffices to diagonalize against such machines with Γ as an
oracle. Let S be the following Σ2EXP-oracle machine: On input x ∈ {0, 1}n, interpret x as
a non-adaptive oracle Turing machine Mx with an oracle for Γ. Then, using binary search
and the Σ2EXP oracle, compute the number q of queries that Mx on input x makes that are
answered negatively, where we let Mx run for at most 2n steps. This is possible in PΣ2EXP

because prAM ⊆ Π2P, so we can verify negative instances in Σ2EXP. Once we know q, we can
simulate Mx(x) for at most 2n steps in Σ2EXP as follows: Guess which q queries are negative
and verify them in Σ2EXP (again using the fact that prAM ⊆ Π2P); then assume that the
other queries are answered positively and simulate Mx(x) directly with these answers. By
querying the Σ2EXP oracle S then outputs the opposite of this simulation. By construction,
the language of S is in PΣ2EXP \ DTIME[2polylog(n)]prAM

|| . ◀

This concludes our discussion of the byproducts of our main results.

References
1 Barış Aydınlıoğlu and Dieter van Melkebeek. Nondeterministic circuit lower bounds from

mildly derandomizing Arthur-Merlin games. Computational Complexity, 26(1):79–118, 2017.
doi:10.1007/s00037-014-0095-y.

2 László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity, 3(4):307–318,
1993. doi:10.1007/BF01275486.

3 László Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system, and a
hierarchy of complexity classes. Journal of Computer and System Sciences, 36(2):254–276,
1988. doi:10.1016/0022-0000(88)90028-1.

4 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust
PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on Computing,
36(4):889–974, 2006. doi:10.1137/S0097539705446810.

5 Venkatesan T. Chakaravarthy and Sambuddha Roy. Arthur and Merlin as oracles. Computa-
tional Complexity, 20(3):505–558, 2011. doi:10.1007/s00037-011-0015-3.

6 L. Chen, R. D. Rothblum, and R. Tell. Unstructured hardness to average-case randomness.
In Symposium on Foundations of Computer Science (FOCS), pages 429–437, 2022. doi:
10.1109/FOCS54457.2022.00048.

7 Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev. On exponential-time hypotheses,
derandomization, and circuit lower bounds: Extended abstract. In Symposium on Foundations
of Computer Science (FOCS), pages 13–23, 2020. doi:10.1109/FOCS46700.2020.00010.

8 Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box, and
instance-wise. In Symposium on Foundations of Computer Science (FOCS), 2021. doi:
10.1109/FOCS52979.2021.00021.

9 Oded Goldreich. In a world of P=BPP. In Studies in Complexity and Cryptography. Miscellanea
on the Interplay between Randomness and Computation, pages 191–232. Springer, 2011.
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6650). doi:
10.1007/978-3-642-22670-0_20.

CCC 2023

https://doi.org/10.1007/s00037-014-0095-y
https://doi.org/10.1007/BF01275486
https://doi.org/10.1016/0022-0000(88)90028-1
https://doi.org/10.1137/S0097539705446810
https://doi.org/10.1007/s00037-011-0015-3
https://doi.org/10.1109/FOCS54457.2022.00048
https://doi.org/10.1109/FOCS54457.2022.00048
https://doi.org/10.1109/FOCS46700.2020.00010
https://doi.org/10.1109/FOCS52979.2021.00021
https://doi.org/10.1109/FOCS52979.2021.00021
https://doi.org/10.1007/978-3-642-22670-0_20
https://doi.org/10.1007/978-3-642-22670-0_20

17:36 Instance-Wise Hardness Versus Randomness Tradeoffs for Arthur-Merlin Protocols

10 Oded Goldreich. On doubly-efficient interactive proof systems. Foundations and Trends in
Theoretical Computer Science, 13:157–246, 2018. doi:10.1561/0400000084.

11 Oded Goldreich. Two comments on targeted canonical derandomizers. In Computational
Complexity and Property Testing: On the Interplay Between Randomness and Computation,
pages 24–35. Springer, 2020. doi:10.1007/978-3-030-43662-9_4.

12 Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. Journal of the ACM, 62(4), 2015. doi:10.1145/2699436.

13 Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform hardness versus randomness
tradeoffs for Arthur-Merlin games. Computational Complexity, 12(3):85–130, 2003. doi:
10.1007/s00037-003-0178-7.

14 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002. doi:10.1016/S0022-0000(02)00024-7.

15 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Symposium on Theory of Computing (STOC), page 220–229,
1997. doi:10.1145/258533.258590.

16 Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization under
a uniform assumption. Journal of Computer and System Sciences, 63(4):672–688, 2001.
doi:10.1006/jcss.2001.1780.

17 Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential
size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing,
31(5):1501–1526, 2002. doi:10.1137/S0097539700389652.

18 Yanyi Liu. Personal communication, October 2022.
19 Yanyi Liu and Rafael Pass. Characterizing derandomization through hardness of Levin-

Kolmogorov complexity. In Computational Complexity Conference (CCC), volume 234, pages
35:1–35:17, 2022. doi:10.4230/LIPIcs.CCC.2022.35.

20 Yanyi Liu and Rafael Pass. Leakage-resilient hardness v.s. randomness. In Computational
Complexity Conference (CCC), 2023. URL: https://eccc.weizmann.ac.il/report/2022/
113/.

21 Chi-Jen Lu. Derandomizing Arthur-Merlin games under uniform assumptions. Computational
Complexity, 10(3):247–259, 2001. doi:10.1007/s00037-001-8196-9.

22 Peter Bro Miltersen and N. V. Vinodchandran. Derandomizing Arthur–Merlin games using hit-
ting sets. Computational Complexity, 14(3):256–279, 2005. doi:10.1007/s00037-005-0197-7.

23 Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, 1994. doi:10.1016/S0022-0000(05)80043-1.

24 Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. Journal of the ACM, 52(2):172–216, 2005. doi:10.1145/1059513f.
1059516.

25 Ronen Shaltiel and Christopher Umans. Low-end uniform hardness versus randomness tradeoffs
for AM. SIAM Journal on Computing, 39(3):1006–1037, 2009. doi:10.1137/070698348.

26 Luca Trevisan and Salil Vadhan. Pseudorandomness and average-case complexity via uniform re-
ductions. Computational Complexity, 16(4):331–364, 2007. doi:10.1007/s00037-007-0233-x.

27 Christopher Umans. Pseudo-random generators for all hardnesses. Journal of Computer and
System Sciences, 67(2):419–440, 2003. doi:10.1016/S0022-0000(03)00046-1.

28 R. Ryan Williams. Natural proofs versus derandomization. SIAM Journal on Computing,
45(2):497–529, 2016. doi:10.1137/130938219.

https://doi.org/10.1561/0400000084
https://doi.org/10.1007/978-3-030-43662-9_4
https://doi.org/10.1145/2699436
https://doi.org/10.1007/s00037-003-0178-7
https://doi.org/10.1007/s00037-003-0178-7
https://doi.org/10.1016/S0022-0000(02)00024-7
https://doi.org/10.1145/258533.258590
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.4230/LIPIcs.CCC.2022.35
https://eccc.weizmann.ac.il/report/2022/113/
https://eccc.weizmann.ac.il/report/2022/113/
https://doi.org/10.1007/s00037-001-8196-9
https://doi.org/10.1007/s00037-005-0197-7
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1145/1059513f.1059516
https://doi.org/10.1145/1059513f.1059516
https://doi.org/10.1137/070698348
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1137/130938219

Tight Correlation Bounds for Circuits Between
AC0 and TC0
Vinayak M. Kumar # Ñ

Department of Computer Science, University of Texas at Austin, TX, USA

Abstract
We initiate the study of generalized AC0 circuits comprised of arbitrary unbounded fan-in gates
which only need to be constant over inputs of Hamming weight ≥ k (up to negations of the input
bits), which we denote GC0(k). The gate set of this class includes biased LTFs like the k-OR (outputs
1 iff ≥ k bits are 1) and k-AND (outputs 0 iff ≥ k bits are 0), and thus can be seen as an interpolation
between AC0 and TC0.

We establish a tight multi-switching lemma for GC0(k) circuits, which bounds the probability
that several depth-2 GC0(k) circuits do not simultaneously simplify under a random restriction. We
also establish a new depth reduction lemma such that coupled with our multi-switching lemma, we
can show many results obtained from the multi-switching lemma for depth-d size-s AC0 circuits lifts
to depth-d size-s.99 GC0(.01 log s) circuits with no loss in parameters (other than hidden constants).

Our result has the following applications:
Size-2Ω(n1/d) depth-d GC0(Ω(n1/d)) circuits do not correlate with parity (extending a result of
Håstad (SICOMP, 2014)).
Size-nΩ(log n) GC0(Ω(log2 n)) circuits with n.249 arbitrary threshold gates or n.499 arbitrary
symmetric gates exhibit exponentially small correlation against an explicit function (extending a
result of Tan and Servedio (RANDOM, 2019)).
There is a seed length O((log m)d−1 log(m/ε) log log(m)) pseudorandom generator against size-m
depth-d GC0(log m) circuits, matching the AC0 lower bound of Håstad up to a log log m factor
(extending a result of Lyu (CCC, 2022)).
Size-m GC0(log m) circuits have exponentially small Fourier tails (extending a result of Tal
(CCC, 2017)).

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Pseudorandomness and derandomization

Keywords and phrases AC0, TC0, Switching Lemma, Lower Bounds, Correlation Bounds, Circuit
Complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.18

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/045/

Funding Vinayak M. Kumar : Supported by NSF Grant CCF-2008076 and a Simons Investigator
Award (#409864, David Zuckerman).

Acknowledgements The author thanks David Zuckerman and Chin Ho Lee for many valuable
discussions, Xin Lyu for explaining his work in [18], anonymous reviewers for valuable feedback and
for pointing us to the construction presented in Theorem 54, and Jeffrey Champion, Shivam Gupta,
Michael Jaber and Jiawei Li for helpful comments.

1 Introduction

Proving superpolynomial circuit lower bounds against explicit functions is one of the most
central questions in complexity theory. However, after the initial flurry of work resulting in
Blum’s lower bound of 3n− o(n) [5], followed by a recent revival 30 years later leading to the
state of the art 3.1n− o(n) size lower bound by Li and Yang [15], this problem has proven to
be extremely difficult. Furthermore, there are various proof barriers that give strong evidence
that our current intuition is not developed enough to tackle this problem [4, 25, 1].

© Vinayak M. Kumar;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 18; pp. 18:1–18:40

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vmkumar@utexas.edu
https://v-m-kumar.github.io/
https://orcid.org/0009-0002-7309-5648
https://doi.org/10.4230/LIPIcs.CCC.2023.18
https://eccc.weizmann.ac.il/report/2023/045/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Tight Correlation Bounds for Circuits Between AC0 and TC0

In order to gain more understanding on this problem, researchers considered circuits with
constant depth whose gates are AND, OR, or NOT with unbounded fanin. To this end there
has been a fruitful line of work culminating in the state of the art average case hardness of
depth d size 2Ω(n

1
d−1) AC0 circuits computing the parity and majority functions [7, 9] (with

this result being tight for parity). A natural followup question to ask is how powerful AC0

would then be if ⊕ (parity) or MAJ (majority) gates were added, corresponding to the circuit
classes AC0[⊕] and TC0. With regard to AC0[⊕], Oliveira, Santhanam, and Srinivasan [21]
proved that it is average case hard for any size-2Ω(n1/(2d−4)) AC0

d[⊕] circuit to compute MAJ,
improving earlier work by Razborov [24]. Smolensky [29] proved exponential size lower
bounds even if one replaces the ⊕ gate with a MODp gate for prime p (MODp is the gate
that outputs 0 iff p divides the sum of the input bits.).

As we see, MAJ is a hard function demonstrating exponential circuit lower bounds for
almost all the circuit classes mentioned thus far, and so we would guess TC0 is extremely
powerful and thus challenging to show circuit lower bounds for. This is evident in the current
state of the art for TC0, which is stark in contrast with the landscape of AC0[⊕]. In 1993,
Impagliazzo, Paturi, and Saks [10] showed that parity is hard for depth-d size-Ω(n1+ε−d

IP S)
circuits for some constant CIP S > 1, which remains as the current state of the art modulo
the case of d = 2, where Kane and Williams established a n2.49-size lower bound [11]. In
fact, a bootstrapping result by Chen and Tell [6] shows that if one slightly improves (e.g.
decreases CIP S) this superlinear lower bound against certain NC1-complete problems (NC1

is the class of O(log n)-depth, polysized, constant fan-in circuits), we would immediately get
superpolynomial lower bounds and a separation of TC0 and NC1, attesting to the hardness
of this task.

Due to the halted state of affairs for TC0 circuits, we study a circuit class not as strong as
TC0, but still captures the motivation of analyzing “AC0 with the power of majority.” After
it had been shown AC0 circuits cannot efficiently compute the majority of n bits, it seemed
natural that the next step would be to add unbounded MAJ gates to AC0 to create TC0.
However, due to having unbounded fan-in, TC0 gives a size-s circuit the power to calculate
the majority of up to s bits. Hence, one could argue the reason why size s TC0 circuits are
much harder to analyze than AC0 is because they are getting much more power than simply
calculating the majority of n bits when s≫ n. In order to maintain the unbounded fan-in
property of the circuit but also ration the computational power we give AC0 to be “just
sufficient” to compute the majority of n bits, one can consider the following circuit class.

▶ Definition 1 (AC0(k) Circuits). Define the unbounded fan-in gates k-OR to output 1 iff
there are at least k ones in the input string, and k-AND to output 0 iff there are at least k

zeros in the input string. Define the class of constant depth circuits created by negations and
{k′-AND, k′-OR}s for k′ ≤ k to be AC0(k).

One can observe that AC0(n/2) is a natural circuit class that contains the majority of n bits
and doesn’t add “extra power” like the majority of a much larger quantity of bits. Therefore,
analyzing AC0(n/2) will give us a better understanding on how much power majority gives
to circuits. More generally, AC0(k) also allows us to nicely interpolate between AC0 and TC0,
since a size-s AC0 circuit is characterized by AC0(1), while a size-s TC0 circuit is characterized
by AC0(s/2). Hence, studying AC0(k) for increasing k is a necessary step and a compelling
intermediary model that can help us understand the power of TC0.

For how large of a k will AC0(k) trivially collapse to AC0? An immediate observation is
that AC0(k) contains the majority gate over 2k bits, for which we know 2Ω(k1/2d)-size AC0

lower bounds. Hence, for k = polylog(n), we have a superpolynomial size seperation between

V. M. Kumar 18:3

AC0 and AC0(k). Even for any k = ω(1), it is unknown whether AC0(k) is equivalent to AC0.
A standard argument would be to represent a k-OR with fan-in m as a width-k DNF with(

m
k

)
clauses (check over all size k subsets of input bits to see if some subset are all 1s) or

a width-(m− k) CNF with
(

m
k

)
clauses (check over all size m− k subsets of input bits to

see if all subsets contain some 1). Therefore, if we have a size s circuit made from k-OR
and k-AND gates, we can turn this into an AC0 circuit with size s ·

(
s
k

)
≈ sk (since a gate

in the original circuit can have fan in size up to s) and depth d + 1 (one can naively get
depth 2d, but by alternating CNFs and DNFs, we can collapse the depth to d + 1). Hence,
we see that a size s lower bound for AC0

d translates to a size s1/k lower bound for AC0
d−1(k).

This reduction is not an equivalence, as we pay with a reduction in depth, as well as an
asymptotically weaker size lower bound for any k = ω(1). For example, a polynomial size
bound for AC0 cannot be converted to a polynomial size lower bound for AC0(k) for any
superconstant k. Consequently, the relationship between AC0 and AC0(k) already becomes
nontrivial in the mild regime of k = ω(1).

In this paper, we study an even more general class of circuits, which we denote as GC0(k).

▶ Definition 2 (G(k) gates/GC0(k) circuits). Let G(k) be the set of all unbounded fan-in
gates that are constant over all input bits with ≥ k ones, or over all input bits with ≥ k

zeros (notice for k ≥ 1 this includes negations by definition). Define GC0(k) to be the class
of constant depth circuits created from G(k) gates.

Some concrete examples of G(k) gates are arbitrary gates of fan-in k, majority of 2k bits,
the k-OR, and functions that compute parity if the input has < k ones, and is 0 otherwise.
Notice that this is indeed a generalization of AC0(k).

On top of being an alternative generalization of AND/OR gates which may be of inde-
pendent interest, one nice property about G(k) is that it includes a generalized notion of
k-AND and k-OR gates to arbitrary LTFs (functions of the form sgn(

∑
wixi − θ)).

▶ Definition 3 (k-balanced LTFs). Let f(x) = sgn(
∑n

i=1 wixi−θ) be an LTF, and let σ : [n]→
[n] be a permutation sorting the wi in increasing magnitude (i.e. |wσ(1)| ≤ · · · ≤ |wσ(n)|). We
say f is k-balanced if k is the smallest index j such that −

∑
i≤j |wσ(i)|+

∑
i>j |wσ(i)| < |θ|.

One can verify that k-balanced LTFs are indeed in G(k) (see Theorem 51). Therefore, our
results can also be seen as a study of arbitrary LTFs that are biased.

Various notions of balancedness (or regularity in some literature) for LTFs has been
defined in previous work about threshold functions [26, 22, 8], but are all distinct from the
combinatorial definition we have proposed. In light of being able to show lower bounds for
this characterization of balanced, it may be of interest to explore this class of balanced LTFs
in other contexts regarding LTF circuit complexity.

1.1 Our Results
We outline all the results we obtain regarding AC0(k) (or more generally GC0(k)) circuits.
The core result from which all the other results are derived from is an optimal multi-
switching lemma for GC0(k) circuits. We state the result without getting into the fine-grained
definitions.

▶ Theorem 4 (Multi-Switching Lemma for GC(k) Circuits (Informal)). Let F = {F1, . . . , Fm}
be a list of G(k) ◦ ANDw circuits on {0, 1}n. Then

Pr
ρ∼Rp

[F|ρ do not all simultaneously “simplify”] ≤ (2km)t/r(O(pw))t

CCC 2023

18:4 Tight Correlation Bounds for Circuits Between AC0 and TC0

The theorem statement and proof is formally written in Theorem 20. This bound can be
proven to be optimal in the regime of large t. See the appendix (Theorem 52) for the proofs
of this claim.

It is illuminating to compare this result to the multi-switching lemma for AC0 circuits,
which bounds the probability by the very similar expression of mt/r(O(pw))t. The only
difference is that in the new lemma, the m and 2k are coupled in the base of the exponent.
This seems to hint that as long as 2k = O(m), one gets the same probability bound when
using either the AC0 or GC0(k) version of the multi-switching lemma. In practice, the
parameter m is upper bounded by s, the size of the circuit. Hence, we would intuit that any
result obtained from the multi-switching lemma for depth d size s AC0 circuits can then be
lifted to size s GC0

d(log s) circuits. This indeed turns out to be the case as we demonstrate
through four different results. We obtain a surprising lifting theorem: any depth d size s

AC0 lower bound obtained by the multi-switching lemma immediately lifts to depth d size
s.99 GC0(.01 log s)-circuits with no loss in parameters. We demonstrate three different results
exhibiting this phenomenon.

For the first result, denote PAR to be the parity gate.

▶ Theorem 5 (Optimal Correlation Bounds Against Parity). Let C be a size m depth d

GC0(k)-circuit. Then the correlation of C against parity is

|Ex[(−1)C(x)+PAR(x)]| ≤ 2−Ωd(n/(k+log m)d−1)+k.

In particular, we get a 2Ω(n1/d)-size lower bound for GC0
d(Ω(n1/d)) circuits almost matching

the lower bound of 2Ω(n1/(d−1)) we know for AC0! This is especially surprising in light of
the fact that GC0

d(Ω(n1/d)) is a much stronger class than AC0; there exist singleton G(n1/d)
gates that cannot be computed by size O(2n1/2d) AC0

d circuits. This can be seen as a limited
dual result to [24], who showed AC0

d augmented with parity gates requires size 2Ω(n1/2d) to
compute majority, whereas we show AC0

d augmented with n1/d-biased majority gates requires
size 2Ω(n1/d) to compute parity. It also contrasts with [21], who surprisingly showed that
adding parity gates to AC0 improved optimal circuit constructions of majority. Here, we
show that majority gates whose threshold value is shifted to Ω(n1/d) has no effect on AC0’s
ability to calculate parity, even though such gates adds a lot of power to AC0. (majority
gates whose threshold has been biased to n1/d cannot be computed by size 2Ω(n1/2d2

) AC0
d

circuits).
Notice that this result is tight in an extremely sensitive way. Letting PARn denote the

parity gate over n bits, we see PARn1/d ∈ G(n1/d), and we can calculate the parity of n bits
by creating a depth d n1/d-ary tree of PARn1/d gates, where the ith layer from the bottom
has n1−i/d PARn1/d gates that take the parity of all the bits fed below it in blocks of n1/d.
This is a depth d size O(n1−1/d) circuit computing parity. Therefore, we have a simple
counterexample of a GC0

d(n1/d) circuit computing parity (which is sublinear in size!). This
demonstrates a sharp threshold behavior where the exponential lower bound of 2Ω(n1/d) is
tight up to the hidden constant factor of the Ω(·) in GC0

d(Ω(n1/d)), and if the constant is too
large, we suddenly go from requiring exponentially large circuits to only needing sublinear
size ones.

This theorem is tight in all other parameters as well. We show that this result is
tight in the size parameter by giving a size-2Ω(n1/d) GC0(.1n1/d) circuit computing parity.
Furthermore, we show that the correlation bound is tight by giving a size-m GC0(k) circuit
that approximates parity.

V. M. Kumar 18:5

For what k will analyzing AC0(k) give implications for TC0? A result by Allender and
Koucký ([2], Theorem 3.8) states that there exists an absolute constant CAK such that MAJn

can be written as an AC0(nε) circuit with depth ≤ CAK/ε and size O(n1+ε). Therefore,
beating the current state of the art depth d size Ω(n1+C−d

IP S) lower bound for TC0 reduces to
beating depth CAKd/ε size n(1+50−d)(2+ε) lower bounds for GC0(nε) circuits for any choice of
ε. In our paper, we show exponential size lower bounds against parity when ε = 1/d but at
depth d rather than CAKd2. It would be interesting to see whether with some NC1-complete
problem can display strong lower bounds for AC0(n1/d) for depth larger than d, even if it
may be less than CAKd2 (but a function other than parity would need to be considered).

Another angle researchers have taken towards understanding the power of threshold
circuits has been to start with an AC0 circuit and augment some of the gates to arbitrary
threshold gates [33, 17, 27]. Our multi-switching lemma shows that we can instead start
with a base GC0(log s) circuit and obtain the same state of the art parameters as [27] if we
started from an AC0 circuit.

▶ Theorem 6. There exists a function RW ∈ P (introduced by Razborov and Widgerson [23])
and absolute constant τ such that for C, a size nΩ(log n) GC0(Ω(log2 n))-circuit with n.249

THR gates, we have

|Ex[(−1)RW(x)+C(x)]| ≤ 2−Ω̃(n.249).

The original motivation to study AC0 with a small number of THR gates was to use this
to gradually convert circuits gate by gate from AC0 to TC0. This result “speeds up” this
process by augmenting all AC0 gates to G(log2 n) gates (which contain unbalanced LTFs as
discussed above). If one tried proving this theorem by expanding the GC0(log2 n) circuits
into an AC0 circuit, completing the proof would require solving a longstanding open problem
regarding correlation bounds against ω(log n)-party NOF protocols! In Section 4.2, we point
out this observation explicitly along with the proof.

As another application, we can create PRGs for GC0(log m) circuits whose seed length
matches that of size m AC0 circuits. This is accomplished by fully derandomizing Theorem 4
and using the partition-based PRG approach in [18]. The resulting PRG for GC0

d(log m) has
identical seed length as Lyu’s PRG, thereby also matching Håstad’s AC0 lower bound barrier
up to a log log m factor (see [31, 28, 12] for a discussion on why an o(logd(m/ε)) seed length
implies breakthrough circuit lower bounds).

▶ Theorem 7. For every m, n, d ≥ 3 and ε > 0, there is an ε-PRG for size-m GC0
d(log m)

with seed length O(logd−1(m) log(m/ε) log log m)

The proof is covered in Section 4.3. Notice that if we had simply expanded out all
gates as width log m CNF/DNFs, we would have a size ≈ mlog m AC0

d+1 circuit, and plug-
ging in Lyu’s near-optimal PRG would yield us a suboptimal seed length of O((log2 m +
log(1/ε)) log2d m log log m).

Finally, we establish results on the Fourier spectrum of GC0(k) circuits. It can be shown
that every Boolean function, when written as a map {±1}n → {±1}, can be uniquely
expressed as a multivariate polynomial f(x) =

∑
S⊂[n] f̂(S)

∏
i∈S xi. We show exponentially

small Fourier tail bounds for any C ∈ GC0(k). More concretely,

▶ Theorem 8. For arbitrary C ∈ GC0
d(k) of size m, the following is true for any 0 ≤ ℓ ≤ n.

∑
|S|≥ℓ

Ĉ(S)2 ≤ 2
−Ω
(

ℓ

(k+log m)d−1

)
+k

.

CCC 2023

18:6 Tight Correlation Bounds for Circuits Between AC0 and TC0

Linial, Kushilevitz, Mansour, and Tal [13, 16, 19, 30] showed that with small Fourier
tails, one can get a variety of Fourier structure results, efficient learning algorithms, and
correlation bounds. We demonstrate applications of such techniques to GC0(k) in detail in
Section 4.4.

1.2 The Switching Lemma
To grasp this section, an understanding of Lyu’s witness/transcript proof of the switching
lemma [18] would be helpful. We still give an overview of the proof here and provide intuition
from an information-theoretic lens, which differs in certain places than the intuition presented
in [18]. After the overview, we will highlight the necessary changes needed to prove the more
general lemma for GC0(k) circuits.

Say we have a k-OR ◦ AND circuit F (in the formal proof, we consider general G(k) ◦
{AND, OR} circuits). For Λ ⊂ [n] and z ∈ {0, 1}n, denote ρ(Λ, z) to be the restriction/partial
assignment where all variables whose indices are in Λ are kept alive/unfixed, and all remaining
variables xi with i /∈ Λ are fixed to the corresponding bit in z, zi. Consider a random
restriction ρ(Λ, z), where z ∼ {0, 1}n is a uniformly random ground assignment, and Λ is
a random subset of [n] such that each element is added with probability p. To show that
with low probability, F |ρ has decision tree depth ≥ t, it suffices to create a specific canonical
decision tree (CDT) for each ρ and argue that this tree has depth ≥ t with low probability
(because if the decision tree depth of F |ρ is ≥ t, then surely the canonical decision tree has
depth ≥ t). We consider the following CDT, where we first initialize a counter ctr ← 0, and
then scan the bottom layer clauses from left to right.

If the clause is fixed to 1 and ctr = k, terminate since we know that F evaluates to 1.
Otherwise increment ctr and move to the next clause.
If the clause is fixed to 0, move to the next clause.
If the clause is ambiguous, query all variables in the clause, and behave accordingly as
above.

If we think of our CDT as an algorithm that queries certain bits of the input, then bad
ρ that creates a depth ≥ t CDT will produce a unique “transcript” of large size recording
the behavior of CDT (i.e. the clauses and variables the CDT queries from). Like [18], we
consider transcripts that store (ℓi), the indices of the clauses queried, along with a set P

that further elucidates which variables in the clauses were queried in an information-efficient
manner. We get the following inequality

Pr
ρ

[DT(F |ρ) ≥ t] ≤ Pr
ρ

[CDT(F |ρ) ≥ t]

≤
∑

large transcripts
(ℓi,P)

Pr
ρ

[(ℓi, P) is a large transcript for ρ] (1)

via the union bound. A natural thought is to then bound each term in the sum. Unfortunately,
it turns out that the number of transcripts (ℓi, P), when counted naively by multiplying
the total possible lists (ℓi) by the total possible sets P , is far too large to get our switching
lemma due to the vast amount of possible (ℓi).

However, it turns out that (ℓi) contains redundant information. Say P is a partial
transcript for ρ if it can be completed with a suitable (ℓi) to form a transcript for ρ. We can
show that given ρ and P that is a partial transcript for it, there is a unique list (ℓi) that
completes P to a full transcript. Hence

V. M. Kumar 18:7

∑
large transcripts

(ℓi,P)

Pr
ρ

[(ℓi, P) is a large transcript for ρ]

=
∑

partial transcripts P

Pr
ρ

[P is a partial transcript for ρ] (2)

which is a sum of far fewer terms, making the union bound feasible. It remains to bound
each individual term in the sum.

We want to bound the probability a particular P is a partial transcript for ρ. If we
were given the complementary (ℓi)’s, this would be easy. The (ℓi) along with P would give
a transcript of the specific set of ≥ t variables that the CDT queried, which ρ must keep
alive in order to have any hope of (ℓi, P) being a transcript for ρ. This would happen with
probability ≤ pt, which is a sufficiently small probability to apply the union bound. However,
the trickiness arises due to ℓi not being specified. It turns out different (ℓi) might couple
with the same P to form transcripts for different ρ! Therefore if we use no information about
ρ, then we have no hope of recovering a fixed (ℓi).

On the other hand, if we were given complete information about ρ, then we can recover a
unique (ℓi) or deduce none exists. However, this eliminates all randomness of ρ and we get
the trivial large upper bound of 1 for each term. Therefore, for such an approach to work,
we need to condition on partial information about ρ and hope that it is enough information
to recover (ℓi) but not too much information to the point where we get a weak bound on the
probability due to the lack of randomness.

This motivates us to think of a restriction by first assigning a uniform random string
z to x and then covering up a p-subset Λ with stars to create a restriction ρ(Λ, z). The
intuition for this is that hopefully the random string z, combined with P , will be enough
information from ρ to fix (ℓi), from which we can use the remaining randomness in ρ (namely
Λ) to obtain the pt bound. In particular, we hope that there is a “transcript searcher” S,
which on input (z, P), can recover a completed transcript (ℓi, P) such that all ρ designed by
initially assigning x = z will have partial transcript P only if (ℓi, P) is its transcript. If such
a function exists, then we could say

Pr
ρ

[P is a partial transcript for ρ] = Ez∼Un
Pr
Λ

[P is a partial transcript for ρ(Λ, z)]

= Ez∼Un
Pr
Λ

[S(z, P) is a transcript for ρ(Λ, z)]

≤ pt

where the last inequality follows since ρ must keep the variables in the transcript alive.
Alas, such an S cannot exist. There can exist different restrictions created from the same
ground assignment z that are witnessed by different completions of P (this ambiguity
is an unavoidable side effect of not being able to condition on all information about ρ).
We cannot hope for a unique completion, but what if our S output all of these potential
completions with decent probability over the randomness in z? Say ρ is good if P is a
partial transcript for it. In formal terms, say we can construct S such that for any good
ρ, Prz[S(z, P) is a partial transcript for ρ] ≥ γ (earlier we were demanding γ = 1, which
turned out to be impossible). Then we can deduce

CCC 2023

18:8 Tight Correlation Bounds for Circuits Between AC0 and TC0

Pr
ρ

[P is a partial transcript for ρ] (3)

= EΛ Pr
z

[ρ(Λ, z) is good]

= EΛ
Prz[S(z, P) is a transcript for ρ(Λ, z)]

Prz[S(z, P) is a transcript for ρ(Λ, z)|ρ(Λ, z) is good]

≤ 1
γ
EΛ Pr

z
[S(z, P) is a transcript for ρ(Λ, z)

= 1
γ
Ez Pr

Λ
[S(z, P) is a transcript for ρ(Λ, z)]

≤ pt/γ. (4)

Stringing Equations (1),(2), and (4) lets us bound

Pr
ρ

[DT(F |ρ) ≥ t] ≤ (pt/γ) ·#{partial transcripts P}

It turns out we can define our partial transcripts P and construct a transcript searcher such
that the above term is small enough to give us the desired switching lemma. See Theorem 20
for the technical details.

1.2.1 Comparison to Lyu [18]
Although the proof structure for proving our switching lemma is similar to Lyu’s [18] proof of
the AC0 switching lemma, some changes are necessary to accommodate the general structure
of G(k) ◦ {AND, OR} circuits.

We need to create a more complex CDT that can compute G(k)◦{AND, OR} circuits, and
a corresponding new definition of witnesses/partial witnesses that records the transcript
of the complex CDT so that our witness searcher can effectively reconstruct a transcript
given information about ρ and a partial witness.
Because our CDT contains more steps, there will naturally be more possible tran-
scripts/witnesses. As the switching lemma hinges on a low quantity of possible partial
witnesses to union bound over, we need to argue with our new CDT, the number of
partial witnesses can be controlled by the parameter k. This makes designing the CDT
and partial witness to be an act of balancing contrasting parameters

For example, the more complicated a CDT procedure is, the closer to the true decision
tree depth it will reach (and hence a tighter bound on Prρ[CDT(F |ρ) ≥ t] can be
expected), but the larger the possible number of transcripts it will have (thereby
increasing the number of terms we union bound over). Therefore, this approach
demands the designed CDT to be complicated enough to give a small depth decision
tree with high probability, but simple enough to be tractable to analyze with a union
bound.
Similarly, the more that a partial witness keeps track of, the larger amount of possible
partial witnesses we will need to union bound over. However, if we keep track of too
little, there will not exist an effective witness searcher that can use the information
from the partial witness to construct the whole witness. Hence we need to keep track
of just the right amount of information.

V. M. Kumar 18:9

In the argument for AC0 circuits, one would show a multi-switching lemma on depth 2 AC0

circuits. In other words, one would argue that a collection of AC0
2 circuits simultaneously

simplify after a one random restriction is applied to all of them. Rather than the natural
idea of proving a switching lemma for the analogous GC0

2(k) circuits, we consider the
hybrid class of G(k)◦{AND, OR} circuits. It turns out a switching lemma on these simpler
circuit classes suffice to depth reduce and prove bounds on GC0

d(k) as we will see below.

1.3 The Depth Reduction Lemma
The multi-switching lemma gives a simplification lemma for depth 2 circuits. To extend this to
constant depth circuits, we would like to iteratively decrease the depth of the circuit and induct.
The argument for AC0 circuits was quite simple. Say we have a depth 3 OR◦AND◦OR circuit
F . Using the switching lemma, we can say with high probability, F |ρ is an OR ◦ DTt circuit.
We now expand each bottom layer decision tree into an OR ◦ ANDt circuit by enumerating
over all 1-paths. Consequently this simplifies F |ρ to a OR◦ (OR◦ANDt) = OR◦ANDt circuit,
since an OR of OR of variables is simply a single OR over all variables involved, getting us a
depth reduction from depth 3 to 2.

What happens when we try the same argument for a k-OR ◦ k-AND ◦ OR circuit F? By
our switching lemma, F |ρ, with high probability will simplify to a k-OR◦DTt circuit. We can
then unravel the decision trees into OR2t ◦ ANDt CNFs, resulting in a k-OR ◦ OR2t ◦ ANDt

circuit. Here, we reach an issue: a k-OR ◦OR circuit is not necessarily itself a k-OR function!
We could have up to (k − 1)2t input bits of a k-OR ◦ OR2t be 1 while still evaluating to 0
(set all 2t bits of k − 1 of the bottom depth ORs to be 1). The best we can do is say the
function is in G((k − 1)2t + 1), which is too large of a blowup in the “k” parameter for our
switching lemma to handle.

We rewind a bit to our k-OR◦DTt circuit and unravel the bottom-layer trees to OR2t◦ANDt

DNFs by enumerating over 1-paths. But we now make the key observation about each DNF
which follows from the fact any assignment uniquely defines a path on a decision tree: any
assignment of x makes at most 1 ANDt clause true. To use more standard terminology, the
DNF created from decision trees is unambiguous. This means the pathological case above
of all clauses under k − 1 OR2t gates being satisfied cannot happen. In fact, we can prove
something stronger. Since at most one clause under each OR2t gate can be satisfied in the
unraveled k-OR ◦ OR2t ◦ ANDt circuit, the number of middle layer OR2t clauses that are
satisfied will be precisely the total number of bottom layer ANDt clauses that are satisfied.
Hence, a k-OR over the OR gates is exactly the same as a k-OR over the ANDt clauses
themselves, and we can indeed collapse to a k-OR ◦ ANDt circuit! This gets us our depth
reduction. A slightly more involved argument is carried out to show the more general
G(k) ◦DTt circuit can be calculated by a G(k) ◦ ANDt circuit, but the heart of the argument
is captured in the k-OR case itself.

1.4 Putting It All Together
We now have all the ingredients to simplify GC0

d(k) circuits. The argument will be the
following inductive process, where we are effectively inducting on circuits of the form
GC0

d(k) ◦ {AND, OR}w rather than GC0
d directly. Given a GC0

d(k) circuit,

1. Add a trivial (d + 1)-st layer at the bottom that is simply the identity gate (think of it as
an AND1 gate)

2. By the multi-switching lemma, we know the depth 2 G(k)◦{AND, OR} subcircuits simplify
to DTt trees with high probability, resulting in a GC0

d−1(k) ◦ DTt circuit.

CCC 2023

18:10 Tight Correlation Bounds for Circuits Between AC0 and TC0

3. By the depth reduction lemma, each of the bottom depth 2 G(k) ◦DTt subcircuits can be
calculated by a G(k) ◦ {ANDt, ORt} circuit, resulting in a GC0

d−1(k) ◦ {AND, OR} circuit.
4. The depth has reduced by 1, so we go back to Step 2 and induct.

This argument allows us to use the multi-switching lemma along with the depth reduction
lemma to establish size lower bounds for GC0

d(k) bounds. We show a formal argument of
this outline in Section 3.

2 Preliminaries

2.1 Notation
[n] = {1, 2, . . . , n} denotes the set of the first n positive integers.

([n]
k

)
denotes the set of all

size k subsets of [n]. log is assumed to be in base 2. This paper concerns constant-depth
circuits, and so the depth variable, d, should be treated as a constant. In particular hidden
constants in O(·) or Ω(·) may depend on d. For S ⊂ [n], we denote xS =

∏
i∈S xi.

2.2 Random Restrictions and Partial Assignments
A partial assignment or restriction is a string ρ ∈ {0, 1, ⋆}n. Intuitively, a ⋆ represents an
index that is still “alive” and hasn’t been fixed to a value yet.

An alternative way of defining a restriction is by the set of alive variables and a “ground
assignment” string. Given a “⋆ set” Λ and a ground assignment z ∈ {0, 1}n, we define ρ(Λ, z)
to be the partial assignment where we assign

ρ(Λ, z)i =
{

⋆ i ∈ Λ
zi i /∈ Λ

Sometimes, Λ may be in the form of an indicator {0, 1}n string, where the set is defined to
be the set of indices containing a 1.

We also define a composition operation on partial assignments. For two restrictions ρ1, ρ2,
define ρ1 ◦ ρ2 so that

(ρ1 ◦ ρ2)i =
{

ρ1
i ρ1

i ̸= ⋆

ρ2
i ρ1

i = ⋆.

Intuitively, one can see this as fixing bits determined by ρ1 first, and then out of the remaining
alive positions, fix them according to ρ2.

A random restriction is simply a distribution over restrictions. A common random
restriction we will use is Rp, the distribution where each index will be assigned ⋆ with
probability p, and 0, 1 each with probability 1−p

2 .
The main reason for defining restrictions is to observe their action on functions. Given

a restriction ρ and function f : {0, 1}n → {0, 1}, we define f |ρ : {0, 1}n → {0, 1} to be the
function mapping f |ρ(x) := f(ρ ◦ x).

2.3 Models of Computation
Circuits
We measure the size of a circuit by the total number of wires (including input wires) in it.
We define the width of a DNF or CNF to be the maximum number of variables in any of its
clauses. We also use k-DNF (resp. k-CNF) to denote DNF (resp. CNF) of width at most

V. M. Kumar 18:11

k. AC0
d are depth d circuits with unbounded fan-in whose gate set is {AND, OR, NOT}. In

general, if we have a gate G, a subscript Gk will refer to its fan-in (in this case, G is fixed to
have fan-in k). We now define more general circuit classes that we analyze in this work.

▶ Definition 9 (k-OR/k-AND/AC0
d(k)). Define k-ORm : {0, 1}m → {0, 1} to be a function

that evaluates to 1 iff x contains ≥ k ones. Analogously define k-ANDm to be 0 iff x contains
≥ k zeros. Define AC0

d(k) to be the class of depth d circuits with unbounded fan-in whose
gate set is {k′-AND, k′-OR, NOT} for all k′ ≤ k.

In more generality, we define G(k) gates and GC0
d(k) circuits.

▶ Definition 10 (G(k)/GC0(k)). Define a gate set G(k) to be the set of all arbitrary fan-in
gates such that they are constant on inputs with ≥ k ones (we call such gates orlike) or
are constant on inputs with ≥ k zeros (we call such gates andlike). GC0(k) is the class of
constant depth circuits made by G(k) gates.

In the rest of the paper, we may write circuit classes GC0
d(k) ◦ {AND, OR} or G(k) ◦

{AND, OR}. In the literature, this usually refers to the circuit class whose gates above the
bottom layer are in G(k), and whose bottom layer gates can either be AND or OR with no
restriction on the choice. However, in this paper, assume this notation implicitly restricts
AND gates to only be under orlike G(k) gates and OR gates to only be under andlike G(k)
gates.

On top of being an alternate generalization of AND/OR gates, G(k) gates capture arbitrary
LTFs that are “unbalanced” in some sense. We will use the {±1} bits to define these, but
one can convert between {0, 1} and {±1} via the map b→ (−1)b.

▶ Definition 11 (Balance of an LTF/TC0(k)). Consider an arbitrary LTF f : {±1} → {±1}
with f(x) = sgn(

∑
wixi − θ). Let σ : [n] → [n] be a permutation ordering (wi) such that

|wσ(1)| ≤ · · · ≤ |wσ(n)|. Define the balance of f (denoted as bal(f)) to be the smallest integer
k such that −

∑
i≤k |wi|+

∑
i>k |wi| < |θ|. Now denote TC0(k) to be the class of constant

depth circuits made out of THR gates with balance ≤ k.

We prove that up to negations in the inputs and output, THR gates with balance k are
in G(k) in the appendix (Theorem 51). All results in this paper hold for TC0(k), but from
now on, we will only refer to GC0(k) as it is the more general class.

Decision Trees

We assume knowledge of decision trees (see Definition 3.13 in [20] for a reference). We will
be using slightly more complex models of decision trees in this work.

▶ Definition 12 (Partial Decision Trees). For a collection of functions F = {F1, . . . , Fm}, we
say F can be computed by an r-partial depth-t DT if there exists a singe depth r tree such
that for all Fi and paths π of T , Fi|π can be computed by a depth t decision tree (here, F |π
is F acted on by the restriction induced by taking path π down T).

▶ Definition 13 ((d, C)-tree). Let d be an integer and C a computational model (e.g. a circuit
class). A function is computable by a (d, C)-tree if it is computable by a depth t decision tree
with C functions as its leaves. That is, there exists a depth d decision tree T such that for
every path π in T , F |π ∈ C.

CCC 2023

18:12 Tight Correlation Bounds for Circuits Between AC0 and TC0

2.4 Pseudorandomness and Probability
We will use various pseudorandom primitives and terminology. We will use Un to denote the
uniform distribution over n bits unless specified otherwise.

▶ Definition 14 (ε-error PRG/Seed Length). A distribution D over {0, 1}n is called an ε-error
PRG for a computational model C if for all C ∈ C,

|Ex∼Un
[C(x)]− Ex∼D[C(x)]| ≤ ε

The seed length s of D is defined to be the minimal quantity s such that the following is true:
there exists a polytime computable function G : {0, 1}s → {0, 1}n such that the distribution
of G(z) over z ∼ Us is exactly D.

▶ Definition 15 ((ε, k)-wise independent source). A distribution D over {0, 1}n is an (ε, k)-
wise independent source if for all 1 ≤ i1 < · · · < ik ≤ n and α ∈ {0, 1}k,

| Pr
x∼D

[xi1xi2 . . . xik
= α]− 2−k| < ε.

There exists constructions of these sources with seed length O(log log n + k + log(1/ε)) [3].

▶ Definition 16 (k-wise Independent Hash Family). Let H be a distribution over hash functions
mapping {0, 1}n → {0, 1}m. We say that H is k-wise independent if for any k input-output
pairs (x1, y1), . . . , (xk, yk) ∈ {0, 1}n × {0, 1}m where x1, . . . , xt are distinct, it holds that

Pr
h∼H

[∀i ∈ [k], h(xi) = yi] = 2−km.

Such functions can be sampled using O(k(n + m)) bits (Chapter 3.5.5 of [32]).

▶ Definition 17 (k-wise p-bounded Subset). Let Λ be a random subset of [n]. Λ is a k-wise
p-bounded subset iff for all subsets S ⊂ [n] of size ≤ k, PrΛ[S ⊂ Λ] ≤ p|S|.

For example, Rp is n-wise p-bounded.

2.5 Fourier Analysis
Every Boolean function f : {±1}n → {±1} has a unique representation as a multilinear real
polynomial

f(x) =
∑

S⊂[n]

cSxS .

Given f , we can think of the Fourier transform of f , f̂ to be a function mapping 2[n] → R
such that f̂(S) = cS . This is well defined by the uniqueness of the polynomial representation
of S. One can explicitly compute f̂(S) = Ex[f(x)xS]. By Parseval’s, one can derive∑

S⊂[n] f̂(S)2 = 1. There are various quantities involving the Fourier coefficients that we
will work with.

▶ Definition 18 (Fourier Tails). For a Boolean function f , define

W ≥k[f] :=
∑

|S|≥k

f̂(S)2.

V. M. Kumar 18:13

▶ Definition 19 (Discrete Derivative/Influence). For Boolean f and i ∈ [n], define the discrete
derivative

Dif(x) = f(x(i→1))− f(x(i→−1)
2

where x(i→b) = (x1, . . . , xi−1, b, xi+1, . . . , xn). Now for S ⊂ [n] with S = {i1, . . . , ik}, define

DSf = Di1Di2 . . . Dik
.

Now for S ⊂ [n], define the influence

InfS(f) = Ex∼{±1}n [DSf(x)2].

Finally, define the degree k influence

Infk(f) =
∑

|S|=k

InfS(f).

3 Simplification Theorem of GC0
d(k) Circuits

▶ Theorem 20. Let F be computable by a depth-2 G(k) ◦ {AND, OR}w circuit. Let Λ be a
(t + w)-wise p-bounded subset of [n], and x a uniform string. Then

Pr
Λ,x

[DT(F |ρ(Λ,x)) ≥ t] ≤ (20pw)t2k.

Proof. The proof will follow that of Section 5 in [18]. We urge the reader to first read the
overview given in Section 1.2. As discussed there, the main differences between this proof and
the one presented there are present in the constructions of the canonical decision tree and
witness searchers, the definition of witnesses, and the counting of partial witnesses. These
are altered to support the more general G(k) gates. Besides this, the general proof strategy
remains the same. Let m be the fan-in of the F . We present a procedure that constructs a
decision tree (which we deem the “Canonical Decision Tree”) in Algorithm 1.

The difference between the CDT defined in [18] and the one presented here is the use of
ctr. Intuitively, this is added in to keep track of the number of satisfied clauses we see before
we reach our limit of k. We rigorously prove this in the following claim.

▷ Claim 21. The CDT correctly outputs F (α).

Proof. The CDT scans the clauses in order to find the first one not fixed to zero. There are
only two return statements in the algorithm, so we consider the two cases of terminating on
each one. Suppose we terminate at the first return statement and output F (1m). Notice ctr

is incremented each time the CDT encounters a satisfied clause. Therefore, when ctr = k,
at least k Ci evaluate to 1, and therefore F (C1, . . . , Cm) = F (1m) by virtue of F ∈ G(k)
being orlike, proving correctness. Now suppose we terminate after the while loop and output
C(x ◦ 0). If CDT finishes the while loop without terminating, that must mean all clauses
must be determined by the partial assignment x. This is because for any clause Cj′ , if the
clause wasn’t already determined in the algorithm when j∗ = j′, all unknowns of Cj′ would
have been queried and fixed in the partial assignment x, thereby determining it. Therefore,
in this case, C(x) is determined, and in particular is equal to C(x ◦ 0n). ◁

CCC 2023

18:14 Tight Correlation Bounds for Circuits Between AC0 and TC0

Algorithm 1 Canonical Decision Tree.

Input: (orlike G(k)) ◦ ANDw circuit F = G(C1, . . . , Cm), black-box access to a
string α ∈ {0, 1}n.

initialize:
j∗ ← 0
x← (⋆)n

ctr ← 0
while j∗ < m do

Find the first j > j∗ such that Cj(x) ̸≡ 0. If no such j exists, exit the loop.
Bj ← the set of unknown variables in Cj(x) (may be empty).
Query αBj

.
Set xBj

← αBj
.

if Cj(x) = 1 then
ctr ← ctr + 1;
if ctr = k then

return G(1m)
end

end
j∗ ← j

end
return F (x ◦ 0n).

Therefore, CDT is indeed a decision tree computing F . Define CDT(F) to be the depth
of the canonical decision tree TF .If ρ is bad (i.e. DT(F |ρ) ≥ t), then clearly CDT(F |ρ) ≥
DT(F |ρ) ≥ t and so TF |ρ

will result in at least t queries for some choice of α (this is equivalent
to saying that some path of TF |ρ

must have length ≥ t). We define a witness that will
effectively be the transcript of the algorithm on this particular α.

▶ Definition 22. Let F be the circuit described above and ρ a restriction. Let t ≥ 1. Consider
the tuple (r, ℓi, si, Bi, αi) where

r ∈ [1, t + k] is an integer
(ℓ1, . . . , ℓr) ∈ [m]r is an increasing list of indices
(s1, . . . , sr) is a list of non-negative integers, at most k of which are allowed to be 0, such
that s :=

∑r
i=1 si ∈ [t, t + w − 1]

(B1, . . . , Br) is a list of (potentially empty) subsets of [w] satisfying |Bi| = si.
(α1, . . . , αr) is a list of (potentially empty) bit strings satisfying |αi| = si.

(r, ℓi, si, Bi, αi) is called a t-witness for ρ if there exists an α ∈ {0, 1}n such that

When we run TF |ρ
on α, Cℓi is the i-th term queried by TF |ρ

.
TF |ρ

queries si variables in Cℓi
, and the relative location of those variables within Cℓi

are specified by set Bi.
TF |ρ

receives αi in response to its i-th batch query.

The size of the witness (r, ℓi, si, Bi, αi) is defined to be s :=
∑r

i=1 si. We may denote the
size of a witness W as size(W).

▷ Claim 23. For every ρ such that DT(F |ρ) ≥ t, there exists a t-witness for ρ

V. M. Kumar 18:15

Proof. We simply run TF |ρ
on α that causes at least t queries to be issued. We then record

the transcript until the number of variables queried exceeds t, after which we halt. To be
more explicit, we let r be the number of times the CDT stops at a clause before either
outputting a bit or exeeding t queries. At the ith stop, say on clause Cj , we set ℓi = j, si to
be the number of unknown variables queried (which may be 0), Bi to be the subset of [w]
indicating the relative positions of the variables in the clause, and αi being the query replies
received from the black-boxed α. We can first verify this creates a valid tuple.

r ∈ [1, t + k]. Every time we stop at a clause, either it evaluates to 1 and we increment
ctr, or we have to query at least 1 variable. Since ctr can incremented at most k times
and we can query variables from at most t clauses before reaching our quota of t queried
variables, it follows we stop at most t + k times.
(ℓ1, . . . , ℓr) ∈ [m]r is an increasing list of indices since the CDT linearly sweeps the clauses
in increasing index order.
(s1, . . . , sr) is a list of non-negative integers, at most c of which are allowed to be 0, such
that s :=

∑r
i=1 si ∈ [t, t + w − 1]. A particular si being zero implies that the CDT’s

ith stop was at a clause Cj that was already determined to be 1, and hence ctr was
incremented. Since ctr can be incremented at most k times, at most k of the si’s are zero.
s is the total number of variables queried before halting. Notice after the penultimate
clause is queried, there are < t clauses queried. Consequently when the ultimate clause is
queried, there clearly will be < t + w variables queried, since k is the width of the clause.
Of course, since the transcript halted after this clause, ≥ t variables had to be queried.
(B1, . . . , Br) is a list of (potentially empty) subsets of [w] satisfying |Bi| = si trivially by
construction.
(α1, . . . , αr) is a list of (potentially empty) bit strings satisfying |αi| = si trivially by
construction.

We can then easily see by construction of the tuple, it is indeed a t-witness for ρ. ◁

We note that the difference between Definition 4 in [18] and the one here is the relaxation to
allow (s1, . . . , sr) to contain up to k zeros, rather than to all be positive. As evident in the
proof, this is to handle cases the CDT encounters a clause that was already fixed to 1, which
causes the corresponding si value to be 0. This wasn’t recorded in Lyu’s witness definition
because in the case of CNFs, one satisfied clause determines the value of the circuit, and the
CDT immediately halts. Why do we still record that the CDT didn’t query any variables at
a clause instead of just ignoring this behavior and moving on? It turns out if we don’t include
this piece of information, the witness searcher we create will not have enough information to
reconstruct the whole witness (see the “balancing act” discussion in Section 1.2.1).

We now move on to define partial witnesses.

▶ Definition 24. Let F be a circuit and ρ a restriction. We call (r, si, Bi, αi) a partial
t-witness for ρ if there exists (ℓ1, . . . , ℓr) such that (r, ℓi, si, Bi, αi) is a t-witness for ρ.

We note the following important claim.

▷ Claim 25. If P is a partial witness for ρ, then there exists exactly one list of integers (ℓi)
such that (ℓi, P) is a witness for ρ.

Proof. By construction of Algorithm 1, ℓ1 must be be the index of the first clause not fixed
to 0 by ρ. But now, we notice ℓ2 must be the index of the first clause after Cℓ1 not fixed to
0 by ρ ◦ α1. We then continue this induction to get our unique list (ℓi), Where ℓj will be
forced to be the index of the first clause after Cℓj−1 that is not fixed to 0. ◁

CCC 2023

18:16 Tight Correlation Bounds for Circuits Between AC0 and TC0

Therefore, by Claims 23 and 25

Pr
ρ

[DT(F |ρ) ≥ t] ≤
∑

(ℓi,P)

Pr
ρ

[(ℓi, P) is a t-witness for ρ]

≤
∑

P

Pr
ρ

[P is a partial t-witness for ρ]] (5)

where P ranges over all partial t-witness tuples.
Going back to our proof, we now define our witness searcher S as Algorithm 2.

Algorithm 2 Witness Searcher S.

Input: (orlike G(k)) ◦ ANDw circuit F (C1, . . . , Cm), ground assignment z ∈ {0, 1}n,
partial witness W = (r, si, Bi, αi) .

initialize:
j∗ ← 0
x← (⋆)n

ctr ← 1
while ctr ≤ r do

while j∗ < m do
Find the first j > j∗ such that Cj(z) ≡ 1. If no such j exists, exit the inner
while loop.

ℓctr ← j

Query αBj
.

Set the Bctr portion of z to be αctr.
ctr ← ctr + 1
j∗ ← j

end
end
return (ℓi, W)

We now prove the following essential property about S, stating in a probabilistic way, it
can use a partial witness to reconstruct a total witness for ρ.

▶ Lemma 26. Let P be a partial witness, and let s be its size. Define a restriction ρ to be
good for P if P is a partial t-witness for it.

Pr
z

[S(z, P) is a t-witness for ρ(Λ, z)|ρ(Λ, z) is good for P] = 2−s

Furthermore this event is solely dependent on zI , where I is the set of variable indices
referred to by the unique completion of P with respect to ρ.

Proof. If ρ = ρ(Λ, z) is good, then by Claim 25 we know there exists unique ℓi such that
(ℓi, P) witnesses ρ. In particular, we know that Λ must contain all the indices I that (ℓi, Bi)
identify. Let Ij be the index set identified by ℓj and Bj (so I = I1 ⊔ · · · ⊔ Ir). Now condition
on a fixed ρ. This means all bits in z not covered by Λ are fixed. In particular, only source of
randomness left are the bits covered by Λ, which is a superstring of zI . We now claim every
zIj

is assigned the unique bit string such that Cℓi
|zIj
̸≡ 0 (not forced to be unsatisfied) iff S

successfully outputs (ℓi, P). This consequently proves the lemma, since this has probability
2−|I| = 2−s of happening.

By construction of TF |ρ
we know that all clauses before Cℓ1 was falsified by ρ. Upon

inspection, we see S correctly skips past these clauses (as z is a completion of ρ). Now we
note Cℓ1 was not fixed to 0 ρ, causing TF |ρ

to query all unknowns in Cℓ1 at the time (which

V. M. Kumar 18:17

might be nothing if Cℓ1 was fixed to 1), which is xI1 . Inspecting S, we see S will set the
correct ℓ1 iff Cℓ1(z) is satisfied iff zI1 is assigned the unique string such that Cℓi

|zIj
̸≡ 0

(since all variables outside I1 ocurring in Cℓ1 is fixed by ρ). S then (importantly) replace zI1

with αI1 so that all variables encountered thus far are assigned exactly as TF |ρ
did.

We then repeat this argument r times, noting that due to z ◦ αI1 ◦ · · · ◦ αIj
being a

completion of ρ ◦ αI1 ◦ · · · ◦ αIj , S rightfully skips all clauses between Cℓj and Cℓj+1 . We
then similarly argue that S will set ℓj+1 to be the j + 1st clause TF |ρ

queries iff zIj+1 is the
unique string such that Cℓj+1 |zIj+1

̸≡ 0. ◀

Combining Equation (5) and Lemma 26, it follows that

Pr
ρ

[DT(F |ρ) ≥ t] ≤
∑

P

Pr
ρ

[P is a partial t-witness for ρ]

≤
∑

P

EΛ
Prz[S(z, P) is a t-witness for ρ(Λ, z)]

Prz[S(z, P) is a t-witness for ρ(Λ, z)|ρ(Λ, z) is good]

≤
∑

P

2size(P)Ez Pr
Λ

[S(z, P) is a t-witness for ρ(Λ, z)] (6)

Notice a necessary condition for a restriction ρ(Λ, z) to be t-witnessed by a size-s W is for Λ
to cover the s variables that W recorded as the CDT needing to query, which happens with
probability ≤ ps (as s ≤ t + w and Λ is (t + w)-wise p-bounded). Hence, every term in the
sum in (6) can be bounded by psize(P) and it remains to find the number of partial t-witness
tuples P .

For a fixed s, we can bound the number of potential partial witnesses naively by noting
the number of choices of (r, si) can be bounded by the number of ways to write s as the
sum of at most s + k nonnegative integers, which is

∑s+k
r=1

(
s+r

r

)
≤
∑s+k

r=1
(2s+k

r

)
≤ 22s+k

(notice that we get a larger count here than the analogous quantity of 22s in Lyu’s proof
[18], which is a side effect of looking at a more complicated circuit class),
the choices for (Bi) can be bounded by

∏
i

(
w
si

)
≤ ws,

and the choices for (αi) can be bounded by 2s,
giving a total count of (8w)s2k. Combining this count with the previous paragraph’s
observation and (6), while remembering to sum over all sizes, we derive

Pr
ρ

[DT(F |ρ) ≥ t] ≤
t+w−1∑

s=t

(2p)s(8w)s2k =
t+w−1∑

s=t

(16pw)s2k ≤ (20pw)s2k. ◀

▶ Remark 27. One may ask whether the failure probability of (20pw)t2k tight. We show that
PARkw can be expressed as a G(k) ◦ ANDw cirucit and prove this saturates the above bound
in the Appendix (Theorem 52).

After defining witnesses, partial witnesses, and witness searchers for G(k) ◦ {AND, OR}
circuits, we notice that Lyu’s proof of the multi-switching lemma directly goes through
with these definitions with zero changes (even down to the exact algorithm of the canonical
partial decision tree and global witness searcher). Due to this, we defer the proof of the
multi-switching lemma to the appendix. However, we do highlight here what properties
about the circuit class is needed in order to invoke Lyu’s lift from a switching lemma to a
multi-switching lemma. The key properties needed were that

the number of partial witnesses for a depth t canonical decision tree needed to be small,
and
there needed to exist a witness searcher function S such that for all ρ and a partial
witness for ρ, S recovers the full witness with decent probability over an advice string.

CCC 2023

18:18 Tight Correlation Bounds for Circuits Between AC0 and TC0

given a complete witness, there needed to be a small chance that a random restriction
witnessed it

▶ Theorem 28. Let F = {F1, . . . , Fm} be a list of G(k) ◦ ANDw circuits on {0, 1}m. Then

Pr
ρ∼Rp

[F|ρ does not have r-partial depth-t DT] ≤ 4(64(2km)1/rpw)t

Proof. See Theorem 56. ◀

▶ Remark 29. At this point, we can observe an aspect of the expression that illuminates an
important unifying flavor of the rest of the results. Notice that the only difference in the
failure probability expression between the standard AC0 multi-switching lemma in (lyu) and
the above one for G(k) is that every occurrence of m is multiplied by a factor of 2k. This
means if constants in the exponent can be ignored, the multi-switching lemma asymptotically
gives the same result as the AC0 version if 2k ≈ m. In particular, we can expect any result for
size s AC0 circuits to immediately extend to GC0(log s) circuits with no loss in parameters!
This will be demonstrated in various settings in future sections.

With our multi-switching lemma in hand, we can simplify depth 2 circuits with high
probability. To extend this to constant depth circuits, we also require a depth reduction
lemma. In the case of AC0, this was trivial enough to embed in the main proof, but in the
case of GC0(k), we need to be more delicate and use more specific properties of decision trees.

▶ Lemma 30. Any depth 2 circuit of the form G(k) ◦ DTw with top gate fan-in m can be
expressed as a circuit in G(k) ◦ {AND, OR}w of size m2w.

Proof. Say the circuit we start with is F (D1, . . . , Dm), where Di are the bottom layer depth
w decision trees. Assume F is orlike (the andlike case is analogous). By enumerating over
all 1-paths, expand out each Di as an OR of ANDs, namely Ci

1 ∨ Ci
2 ∨ · · · ∨ Ci

2w . Now define
a function F ′ over m2w bits, where

F ′(x1
1, . . . x1

2w , x2
1, . . . , xm

2w) =
{

F (1m)
∑

i,j xi
j ≥ k

F (
∨2w

i=1 x1
j , . . . ,

∨2w

i=1 xm
j) otherwise

Clearly by construction, F ′ ∈ G(k). Therefore to prove the lemma, it suffices to show that
over all input assignments, F (D1, . . . , Dm) = F ′(C1

1 , . . . C1
2w , C2

1 , . . . , Cm
2w).

If ≥ k of the Di are satisfied, we know since F is an orlike G(k) function, F (D1, . . . , Dm) =
F (1m). This also clearly implies ≥ k of the Ci

j are satisfied. Therefore by construction of F ′,
F ′(C1

1 , . . . , Cm
2w) also evaluates to F (1m).

If < k of the Di are satisfied, then we need to use the following observation. For any
assignment of inputs, at most one of the clauses Ci

1, . . . , Ci
2m can be satisfied for each i, since

each assignment uniquely defines a path in a decision tree. In more conventional terms, the
DNF created by the decision tree Di is unambiguous. Therefore the amount of Di satisfied is
exactly equal to the number of Ci

j satisfied, and so < k clauses Cj
i are satisfied. This forces

us into the second case of the piecewise definition of F ′, and so

F ′(C1
1 , . . . , Cm

2w) = F (
2w∨
i=1

C1
j , . . . ,

2w∨
i=1

Cm
j) = F (D1, . . . , Dm)

as desired. ◀

We have finally built up the tools to prove our main result: a constant depth simplification
lemma.

V. M. Kumar 18:19

▶ Theorem 31. Let G be any gate, and let F be a G ◦ GC0
d(k) circuit of size m. Then for

p = 1
128(m2k)1/w (128w(m2k)1/w)−d+1 and any t ≥ 1,

Pr
ρ∼Rp

[F |ρ is not computed by a ((2d − 1)t, G ◦ DTw)-decision tree] ≤ 4d · 2−t

Proof. WLOG assume the circuit is layered (all paths down the circuit are of length exactly
d + 1). We first append an extra layer of {AND, OR}1 gates to the bottom of the circuit
so that the input level fan-in is 1. We then apply a random restriction ρ0 ∼ Rp0 with
p0 = 1

128(m2k)1/w and use Theorem 28 on all the depth-2 subcircuits to deduce that

Pr
ρ0∼Rp0

[F |ρ is not computed by (t, G ◦ GC0
d−1(k) ◦ DTw)-decision tree] ≤ 4 · 2−t.

Letting F (0) be a good tree from above which does simplify, we see that there are at most
2t leaves of the partial decision tree, with each leaf containing a G ◦GC0(k)d−1 ◦DTw circuit
(which we will refer to as “leaf-circuits”). By Lemma 30, these circuits can be simplified to
G ◦ GC0

d−1(k) ◦ {AND, OR}w circuits. We apply Theorem 28 on the depth-2 subcircuits of a
particular leaf-circuit with p1 = 1

128w(m2k)1/w , using 2t instead of t, union bound over all 2t

leaves, and then apply Lemma 30 to get that

Pr
ρ1∼Rp1

[F (0)|ρ1 is not a (t + 2t, G ◦ GC0
d−2(k) ◦ {AND, OR}w-decision tree] ≤ 4 · 2−2t · 2t

= 4 · 2−t.

Iterating this argument d − 2 more times, where we apply Theorem 28 on the depth
2 subcircuits using pi = 1

128w(m2k)1/w and 2it instead of t on the ith iteration, and then
union bound over all 2(2i−1)t leaves, we get that on the ith iteration, our desired single
depth simplification happens with probability 2 · 2−t. If the desired simplifications happen
on all iterations, we result in a ((2d − 1)t, G ◦ DTw)-decision tree with probability at most∑d−1

i=0 4 · 2−t = 4d · 2−t (via a union bound over the d iterations) and with a restriction from
Rp where p =

∏
pi = 1

128(m2k)1/w · (128w(m2k)1/w)−d+1. The conclusion follows. ◀

With this theorem, we can let G be a G(k) gate to get the following corollary.

▶ Corollary 32. Let C be a GC0
d(k) circuit of size m and let p = 1

40(128(k+log m))d−1 . Then

Pr
ρ∼Rp

[DT(C|ρ) ≥ t] ≤ 2 · 2− t

2d−1
+k

Proof. Applying Theorem 31 to C with w = k +log m, it follows for p1 = 1
128(128(k+log m))d−2 ,

Pr
ρ∼Rp1

[C|ρ is not computed by a ((2d−1 − 1)t, G(k) ◦ DTk+log m)-decision tree] ≤ 4d · 2−t.

Fix a ρ such that C simplifies to such a tree, T . By Lemma 30, the leaf circuits simplify
to G(k) ◦ {AND, OR}k+log m circuits. Let ℓ be a leaf, and let Cℓ be the associated leaf-circuit.
By Theorem 20, we know that for p2 = 1/40w, Prτ∼Rp2

[DT(Cℓ|τ) ≥ 2d−1t] ≤ 2−2d−1t2k.
Union bounding over all ≤ 2(2d−1)t leaves ℓ, it follows that

Pr
ρ∼Rp1 ,τ∼Rp2

[C|ρ◦τ is not computed by a ((2d−1 − 1)t, DT2d−1t)-decision tree]

≤ 2(2d−1)t · 2−2d−1t2k + 4d · 2−t

≤ 2 · 2−t+k. (7)

CCC 2023

18:20 Tight Correlation Bounds for Circuits Between AC0 and TC0

Because ρ ◦ τ ∼ Rp1p2 , p := p1p2 = 1
40(128(k+log m))d−1 , and a ((2d−1 − 1)t, DT2d−1t)-tree

is simply a DT2d−1, (7) implies

Pr
ρ∼Rp

[DT(C|ρ) ≥ (2d − 1)t] ≤ 2 · 2−t+k.

The desired result then follows after a change of variables from t→ t/(2d − 1). ◀

4 Applications of The GC0(k) Simplification Theorem

4.1 Exponential Lower Bounds Against Parity
Given Theorem 20 and Corollary 32, we can establish correlation bounds of GC0

d(k) circuits
against PAR (parity).

▶ Theorem 33. Let C ∈ GC0
d(k) have size m and let PAR be the parity function. Then the

correlation of C and PAR is

Ex∼{0,1}n [(−1)C(x)+PAR(x)] ≤ 2−Ω(n/(k+log m)d−1)+k.

Proof. The uniform distribution is equivalent to performing a fair random restriction (a
random restriction where non-star variables are set to a uniform bit), and then filling in
the ⋆s with uniform bits. We will show that under a fair random restriction, C will become
constant with high probability while PAR becomes a parity over the live variables. Averaging
over these live variables then gives a correlation of zero. The total correlation is then the
probability C doesn’t become constant.

Let p = 1
40(128(k+log m))d−1 . Applying Corollary 32, we see that

Pr
ρ∼Rp

[DT(C|ρ) ≥ pn/4] ≥ 2 · 2− pn

4(2d−1)
+k

.

By a Chernoff bound, we know ρ will have ≥ pn/2 stars with ≥ 1− 2−pn/8 probability. Let
E be the event both of these events happen, and fix such a ρ. Consider performing a random
walk down the depth ≤ pn/4 decision tree (start at the root and iteratively pick which
of the 2 children to travel to uniformly, effectively filling in ≤ pn/4 of the variables with
uniform bits), which induces a random restriction τ . No matter which path restriction τ was
taken, C|ρ◦τ becomes constant, while PAR|ρ◦τ becomes a parity over ≥ pn/2− pn/4 = pn/4
variables. The correlation of these two functions is trivially 0. Therefore,

Ex∼{0,1}n [(−1)C(x)+PAR(x)]

= |EρEx[(−1)C|ρ(x)+PAR|ρ(x)]|

≤ Pr[¬E] + Eρ[|Ex[(−1)C|ρ(x)+PAR|ρ(x)]|
∣∣E]

≤ 2 · 2− pn

4(2d−1)
+k + 2−pn/8Eρ[Eτ |Ex[(−1)C|ρ◦τ (x)+PAR|ρ◦τ (x)]|

∣∣E]

≤ 2−Ω(n/(k+log m)d−1)+k. ◀

As an application, we can observe that for 0 ≤ k ≤ .1n1/d one can set m = 2Θ((n/k)
1

d−1)

in the above lemma such that the correlation is < 1/2, yielding us the following corollary.

▶ Corollary 34. For some absolute constant C, integer d, and 0 ≤ k ≤ .1n1/d, GC0
d(k)

circuits computing PARn requires size 2Ω((n/k)
1

d−1).

V. M. Kumar 18:21

This is an interesting result in multiple ways. First, notice the dependence of the lower bound
on the “k” parameter is extremely tight and the corollary becomes absurdly false if k = n1/d.
This is seen by the fact PARn1/d ∈ G(n1/d), and so one can create a size O(n1−1/d) GC0

d(n1/d)
formula computing PARn simply by having the ith depth from the bottom have n1−i/d

PARn1/d gates, each of which takes in inputs from n1/d gates below it. Hence we observe a
“sharp threshold” behavior where a difference in constants can change an exponential lower
bound to a sublinear one.

We also observe that this lower bound almost matches the classic 2Ω(n
1

d−1) construction
for AC0

d circuits calculating parity. Thus, augmenting AC0 with unbounded fan-in gates
which have the power to calculate the majority of polynomially many bits has no effect on
its ability to calculate parity, even thought we know such gates require exponentially sized
AC0

d circuits. In fact, by an argument resembling Shannon’s classic circuit lower bound, there
exists gates in G(k) which require size 2Ω(n1/2d) AC0

d circuits.
We can also show that the size lower bound in Corollary 34 and the correlation bound in

Theorem 33 is tight. In particular, the gap between the 2Ω(n
1

d−1) lower bound for AC0 and
2Ω(n

1
d) bound established for GC0(.1n1/d) cannot be bridged. We defer the formal proofs to

Appendix A.2.

4.2 Correlation Bounds for GC0(k) Circuits With Few Arbitrary
Threshold Gates

In this section, we prove that state of the art correlation bounds against AC0 circuits [27] with
a small number of threshold gates extends to if we instead start with GC0(log2 n) circuits.
We first give an overview of their proof. As in previous works studying this correlation
[23, 33, 17, 27], the hard function we uncorrelate with is

RWm,k,r(x) =
m⊕

i=1

k∧
j=1

r⊕
ℓ=1

xijk

A uniform string can be sampled by performing a random restriction and then filling the ⋆s
with uniform bits. Driven by this, the overlying strategy is to apply a random restriction, and
show the circuit collapses while the RW function maintains integrity. It turns out because
our multi-switching lemma gives no loss in parameters (up to constants), we can apply the
exact same argument in [27], except replace the AC0 simplification lemma (Corollary 3.2
of [27]) with our more general Theorem 31.

▶ Theorem 35. Fix u. Let v = .005 log n and q =
√

n/(v + 1) There exists a func-
tion RWq,v,q ∈ P and small enough constant τ such that for all circuits ANYu ◦ THR ◦
GC0

d(Ω(log2 n)) circuits F where each of the u THR ◦ GC0
d subcircuits of F has size at most

s = nτ log n, we have

|Ex∼Un
[(−1)RW(x)+C(x)] ≤ 2−Ω(n.499/u)

Proof. We immediately apply Theorem 31 to F with G being the top ANYu ◦ THR circuit,
m = u · 2(ε/100d) log2 n, w = ε log m, t = q/2 and k = (ε/100d) log2 n to get that for ρ′ ∼ Rp,
where p = n−ε/50,

Pr[F |ρ′ is an (m/2, ANYu ◦ THR ◦ DTw)-decison tree] ≤ 1− 4d · 2−q/2.

CCC 2023

18:22 Tight Correlation Bounds for Circuits Between AC0 and TC0

This computational model is now void of G(k) gates, and we can essentially port in the rest
of [27] to finish. By the “Second Step” and “Third Step” under Section 2 of [27], one can
compose ρ′ with another restriction to get a final random restriction ρ that simplifies the
tree further and prunes the fan-in to an ANYu ◦ THR ◦ ANDv circuit.

It was shown in Lemma 4.3 of [27] that the same random restriction ρ will have RW|ρ
equal(after restricting additional bits and negating input bits and/or the output) GIPq/2,v+1

except with probability 2−Ω̃(pq). Theorem 21 in [27] then states that an ANYu ◦THR ◦ANDv

circuits can be calculated by a randomized NOF (v+1)-party protocol with error γ = 2−q.99/u

using O(uv3 log n log(n/γ)) = O(q.99v3 log n) bits. Finally, by Theorem 14 in [27], we can
conclude the correlation between GIPq/2,v+1 and ANYu ◦ THR ◦ ANDv is at most 2−Ω(q.99/u).
Hence the overall correlation can be bounded, via union bound, by the sum of the error
probabilities and the correlation of GIPq/2,v+1 and ANYu ◦ THR ◦ ANDv, yielding

|Ex∼Un
[(−1)RW(x)+C(x)] ≤ 4d · 2−q/2 + 2−Ω̃(pq) + 2−Ω(q.99/u) = 2−Ω(n.49/u)

as desired. ◀

With this theorem, we can prove the actual correlation bound for GC0(k) circuits with
arbitrary gates.

▶ Theorem 36. Let C be a GC0(Ω(log2 n)) circuit, g of whose gates are arbitrary THR gates.
Then

E[(−1)C(x)+RW(x)] ≤ 2−Ω(n.499
g −g).

In particular, plugging in g = Θ(n.249) tells us

E[(−1)C(x)+RW(x)] ≤ 2−Ω(n.249)

Proof. This follows from Theorem 35 exactly like how Theorem 3 follows from Lemma 6
in [17]. ◀

▶ Remark 37. We note that an argument analogous to the above can be used to show
2−Ω(n.499) correlation bounds against GC0(Ω(log2 n)) circuits with n.499 gates, via the same
argument presented in [27].

It is worth noting that if we had tried performing this argument by expanding the size
nΩ(log n) GC0(log2 n) circuit naively into an AC0 circuit, not only would we get a loss in
parameters, but the argument will not go through. The proof crucially relied on correlation
bounds against v = .005 log n party protocols. Had we asymptotically increased the size
of our circuit by writing it as an AC0 circuit, then after applying random restrictions to
prune the fan-in of our circuit, we will be left with trying to uncorrelate against arbitrary
ω(log n)-party protocols, a longstanding open problem (Problem 6.21 in [14]).

4.3 Derandomizing the Multi-Switching Lemma and PRGs for GC0(k)
Using the same techniques appearing in [12, 18], we can completely derandomize our switching
and multi-switching lemma. We defer the proof to the appendix (Theorem 62).

▶ Theorem 38. Let F = {F1, . . . , Fm} be a list of size m G(k) ◦ {AND, OR}w circuits. Let
(Λ, z) be a joint random variable such that

Λ is a (t + w)-wise p-bounded subset of [n]
Conditioned on any instance of Λ, z ε-fools CNF of size ≤ m2.

V. M. Kumar 18:23

Then

Pr
Λ,z

[F|ρ(Λ,x) has no r-partial depth-t DT] ≤ 4(m2k)t/r(64pw)t + (64wm)t+w(2m)2kt/r · ε

Proof. See the Theorem 62 in the appendix. ◀

Using the derandomized multi-switching lemma, we can use the partition-based template
in order to create PRGs for GC0(k). The arument to reduce any constant depth to depth 2
will be a very similar argument. [18] simply uses a CNF PRG to tackle the base case of AC0

2
circuits, but we cannot do so with a G(k) ◦ ANDw circuit unless we want to expand it out as
a CNF and incur a multiplicative k loss in our seed length. We instead use the derandomized
switching lemma one more time to simplify GC(k) ◦ ANDw to a DTlog m and then fool this
with an (ε/m, log m)-wise independent seed. We quickly prove this latter statement in the
following lemma.

▶ Lemma 39 (PRG for Depth t Decision Trees). There exists a ε-error PRG with O(log log n+
t + log(1/ε)) seed length for DTt.

Proof. Let D be a (ε/2t, t)-wise independent distribution, samplable using O(log log n + t +
log(2t/ε)) = O(log n + t + log(1/ε)) bits. For arbitrary T ∈ DTt, label the leaves L1, . . . , L2t ,
and let the value of leaf Li be ℓi. Then

T (x) =
2t∑

j=1
ℓj · 1(T (x) reaches Lj).

Note that ℓj · 1(T (x) reaches Lj) depends on at most t bits, and so D will ε/2t-fool it.
Therefore,

|Ex∼Un
[T (x)]− Ex∼D[T (x)]|

≤
2t∑

j=1
|Ex∼U [ℓj · 1(T (x) reaches Lj)]− Ex∼D[ℓj · 1(T (x) reaches Lj)]|

≤
2t∑

j=1
ε/2t

= ε. ◀

With this, we are now ready to prove our final PRG for GC0(log m).

▶ Theorem 40. For m, n ∈ N and w ≤ log m, there is an ε-error PRG with O((w logd−1(m)+
log2(m)) log(m/ε) log log m) seed length for GC0

d(log m) ◦ ANDw circuits.

Proof. Let ℓ = 512w and t = 10 log(m/ε).
Let H : [n] → [ℓ] be a 2t-wise independent hash function which needs O(t log n) =
O(log n log(m/ε)) bits. We will let Hi be an n-bit string such that (Hi)j = 1 iff H(j) = i.
Let ε′ = ε/(ℓ ·2t+1) and set X1, . . . , Xℓ to be strings that ε′-fool GC0

d−1(log m)◦ANDlog m

circuits of size 4m2 if d ≥ 2, which by the inductive hypothesis uses

O(logd−1(m) log(m/ε) log log m)

random bits per Xi. If d = 1, use the PRG from Lemma 39 giving a seed length, which
needs O(log(m/ε)) seed per Xi.

CCC 2023

18:24 Tight Correlation Bounds for Circuits Between AC0 and TC0

Let Y be a string that ε/((64mw)t+w+1(2m)2t)-fools CNF of size m2, samplable using

O(log m log((mw)t+wmt/ε) log log m) = O(log(m/ε) log2 m log log m)

bits.

The PRG will sample the above strings and output the following computation

Y ⊕ (X1 ∧H1)⊕ · · · ⊕ (Xℓ ∧Hℓ)

where ∧ and ⊕ are the bitwise AND and XOR operations, respectively. Therefore, we get a
total seed length of

O(log n log(m/ε)+ℓ log(m/ε) + log(m/ε) log2 m log log m)
= O(log(m/ε) log2 m log log m)

if d = 1 and

O(log n log(m/ε)+ℓ logd−1(m) log(m/ε) log log m + log(m/ε) log2 m log log m)
= O((w logd−1(m) + log2(m)) log(m/ε) log log m).

Let C be an arbitrary GC0
d(log m) ◦ ANDw circuit, and let U1, . . . Uℓ be independent and

uniform n-bit strings. Like in [18] we use a hybrid argument to prove the theorem using the
hybrid distributions

Di = Y ⊕
⊕

1≤j≤i

(Ui ∧Hi)⊕
⊕

i<j≤ℓ

(Xi ∧Hi)

for 0 ≤ i ≤ ℓ. Noting D0 is the PRG output, while Dℓ is a uniform string, it suffices to show

|Ex∼Di−1 [C(x)]− Ex∼Di
[C(x)]| ≤ ε/ℓ (8)

for all 1 ≤ i ≤ ℓ, from which summing over all i and applying the triangle inequality gets the
desired result.

Notice each Hi is 2t-wise 1
ℓ -bounded. Conditioned on H , note that Zi := Y ⊕

⊕
1≤j<i(Ui∧

Hi)⊕
⊕

i<j≤ℓ(Xi ∧Hi) ε/((64mw)t+w+1(2m)2t)-fools CNF of size m2 since Y does. Let F
be the collection of all bottom depth-2 G(k) ◦ {ANDw, ORw} subcircuits of C. Therefore,
if we let E be the event that F|ρ(Hi,Zi) has no log m-partial depth-t DT, by Theorem 38 it
follows

Pr
H,Y,U<i,X>i

[E]

≤ 4(m2log m)t/ log m(64w/ℓ)t + (64mw)t+w(2m)2t log m/ log m · ε

(64mw)2t(2m)2t

≤ 4 · 22t(1/16)t + ε

(64mw)40 log(m/ε)−log m

≤ 4(1/4)t + ε

4ℓ

≤ ε

2ℓ

Conditioning on ¬E , H, Y, U<i, X>i, we see upon replacing all depth 2 subcircuits with
DTts and applying Lemma 30, C|ρ(Hi,Zi) is computable by a depth-t DT where each leaf
Lj is an GC0

d−1(k) ◦ {AND, OR}w circuit of size ≤ m · 2log m + m ≤ 2m2, and will become a

V. M. Kumar 18:25

DTlog m tree if d = 1. In either case, we see by construction that Xi will fool it. Formally,
we note that conditioned on the good events above, we have Cρ(Hi,Zi)(y) =

∑2t

j=1 Lj(y) ·
1{T (y) reaches Lj}. By construction of Xi,

|EXi
[Lj(Xi + Zi) · 1{T (Xi + Zi) reaches Lj}]

− EUi
[Lj(Ui + Zi) · 1{T (Ui + Zi) reaches Lj}]| ≤

ε

ℓ · 2t+1

Summing over all 1 ≤ j ≤ 2t, applying the Triangle Inequality, and using linearity of
expectation, we see

EXi [Cρ(Hi,Zi)(Xi + Zi)]− EUi [Cρ(Hi,Zi)(Ui + Zi)]| ≤
ε

2ℓ
.

Therefore,

|Ex∼Di−1 [C(x)]− Ex∼Di
[C(x)]| ≤ Pr[E] + Pr[¬E] · ε

2ℓ
≤ ε

ℓ

and (8) is proven. ◀

From this, we immediately get PRGs for size-m GC0
d(log m) circuits.

▶ Theorem 41. For every m, n, d and ε > 0, there is an ε-PRG for size-m GC0
d(log m) with

seed length O((logd−1(m) + log2(m)) log(m/ε) log log m)

Proof. Add trivial fan-in 1 gates to the bottom so that we effectively have a GC0
d(log m)◦AND1

circuit. By Theorem 40, we can fool this with seed length

O((logd−1(m) + log2(m)) log(m/ε) log log m). ◀

4.4 Fourier Spectrum Bounds for GC0(k)
Linial, Mansour, Nisan, and Tal showed that many notions of the Fourier spectrum of a
function class is intimately related [16, 19, 30]. [30] writes out four key properties and
conveniently describes the implications existing between them. We report a slightly altered
version here.

▶ Theorem 42 ([16, 19, 30]). Say for a class of functions, C we have the following property.
ESFT: Exponentially small Fourier tails. For all f ∈ C,

W ≥k[f] ≤ Ce−Ω(k/t).

for some constant C.
Then, C also satisfies the following for some constant C ′.

SLPT: Switching lemma type property. For all f ∈ C, d, p,

Pr
ρ∼Rp

[deg(C|ρ) ≥ d] ≤ C ′ ·O(pt)d.

InfK: Bounded total degree-k influence. For all f ∈ C,0 ≤ k ≤ n,

Infk[f] ≤ C ′ ·O(t)k.

L1: Bounded L1 norm at the kth level. For all f ∈ C, 0 ≤ k ≤ n,∑
|S|=k

|f̂(x)| ≤ C ′ ·O(t)k

FMC: Fourier mass concentration. For all f ∈ C, f is ε-concentrated on tO(t log(1/ε))

coefficients.

CCC 2023

18:26 Tight Correlation Bounds for Circuits Between AC0 and TC0

Due to the above unification result, it appears like we can bootstrap Corollary 32 to give
us a plethora of information about the Fourier spectrum of GC0(k). Unfortunately, upon
closer inspection, the Corollary doesn’t quite give the exact property of SLPT. We instead
show that GC0(k) has ESFT. Our proofs will use the following lemma.

▶ Lemma 43 ([16]). For f : {±1}n → {±1}, 0 ≤ ℓ ≤ n, and p ∈ [0, 1],

W ≥ℓ[f] ≤ 2Eρ∼Rp
W ≥kp[f |ρ]

We first start off with depth 2 circuits.

▶ Lemma 44. Let f be a G(k) ◦ {AND, OR}w. Then

W ≥ℓ[f] ≤ 2 · 2−ℓ/80w+k

Proof. Let p = 1/40w and t = ℓ/80w. By Theorem 20, if ρ ∼ Rp, f |ρ becomes a depth-t DT
with ≥ 1− (20w/40w)t2k = 1− 2−t+k probability. Such trees have no Fourier mass above
level t. Say ρ is good if f |ρ does indeed become a DT. Using Lemma 43 it follows

W ≥ℓ[f] ≤ 2Eρ∼Rp
[W ≥pℓ[f |ρ]]

≤ 2Eρ∼Rp [W ≥ℓ/40w[f |ρ]|ρ is good] + 2 · 2−t+k

≤ 2 · 2−ℓ/80w+k. ◀

We can now use this as a base case to prove ESFT for GC0. We will need to utilize the
following lemma.

▶ Lemma 45 ([30]). Let f : {±1}n → {±1}, 0 ≤ ℓ ≤ n, and let T be a depth d decision tree
such that for any leaf ℓ and the corresponding restriction ρℓ induced by the root-to-leaf path,
we have W ≥ℓ[f |ρℓ

] ≤ ε. Then W ≥ℓ+d[f] ≤ ε.

We now state and prove the theorem. Define the effective size of a Boolean circuit to be
the number of gates in the circuit at distance 2 or more from the inputs.

▶ Theorem 46. Let f be a GC0
d(k) ◦ {AND, OR}w circuit with effective size m. Then

W ≥ℓ[f] ≤ 4d · 2− ℓ

80w(128(k+log m))d−1 +k

Proof. We apply induction. The base case of d = 1 is taken care of by Lemma 44.
We now prove the inductive step for depth d. Sample ρ ∼ Rp with

p = 1
128w(m2k)1/(k+log m) = 1

128w
,

and let t = pℓ/2 = ℓ/256w. By Theorem 28, all the bottom depth-2 G(k) ◦ {AND, OR}w sub-
circuits of f |ρ can be calculated by a (k +log m)-partial depth-t decision tree with probability
≥ 1−4 ·2−t. By Lemma 30, this implies f |ρ becomes a (t, GC0

d−1(k)◦{AND, OR}k+log m)-tree
T . Furthermore, each leaf circuit has effective size ≤ m. Call ρ good if f |ρ simplifies to such
a tree. Then

W ≥ℓ[f] ≤ 2Eρ∼Rp [W ≥pℓ[f |ρ]] ≤ 2Eρ∼Rp [W ≥pℓ[f |ρ]|ρ is good] + 8 · 2−t.

Fix a good ρ. For a leaf L of T , let τL be the restriction induced by the path to L in T .
We know by Lemma (cite) that

W ≥pℓ[f |ρ] ≤ max
leaf L

W ≥pℓ−t[f |ρ◦τL
] ≤ max

leaf L
W ≥pℓ/2[f |ρ◦τL

].

V. M. Kumar 18:27

As f |ρ◦τL
is a GC0

d−1(k) ◦ {AND, OR}k+log m circuit for every L we can then use the inductive
hypothesis to bound

max
leaf L

W ≥pℓ/2[f |ρ◦τL
] ≤ 4d−1 · 2− pℓ

80(k+log m)(128(k+log m))d−2 +k = 4d−1 · 2− ℓ

80w(128(k+log m))d−1 +k
.

Putting this all together, we get

W ≥ℓ[f] ≤ 2Eρ∼Rp
[W ≥pℓ[f |ρ]|ρ is good] + 8 · 2−t

≤ 2 · 4d−1 · 2− ℓ

80w(128(k+log m))d−1 +k + 8 · 2−ℓ/256w

≤ 4d · 2− ℓ

80w(128(k+log m))d−1 +k
◀

We can bootstrap Theorem 46 with Theorem 42 to yield the following properties about
GC0(k)

▶ Theorem 47. Let f be a size-m GC0
d(k) circuit and define t := (k + log m)d−1. Then the

following is true for some C

1. ESFT: W ≥ℓ[f] ≤ C · 2k · 2−Ω(ℓ
t).

2. SLTP: For all 0 < p < 1, Prρ∼Rp [deg(f |ρ) ≥ ℓ] ≤ C ·O(pkt)ℓ.

3. InfK: Infℓ[f] ≤ C ·O(kt)ℓ.

4. L1:
∑

|S|=ℓ |f̂(x)| ≤ C ·O(kt)ℓ.

5. FMC: f is ε-concentrated on 2O((k+log(1/ε))t log t) coefficients.
where f and any hidden constants only depend on d.

Proof. Add a trivial (d + 1)-st layer of AND1 gates at the base of f and apply Theorem 46
to deduce that

W ≥ℓ[f] ≤ 4d · 2− ℓ

80(128(k+log m))d−1 +k
,

proving the first item. Now since we know W ≥ℓ[C] ≤ 1 (by Parseval’s) and k ≥ 1, it follows
that

W ≥ℓ[f] ≤ (W ≥ℓ[C])1/k ≤ Cd · 2−Ω(ℓ
kt).

Therefore, the second, third, and fourth items follow by applying Theorem 42 (as well as a
version of the fifth item with weaker parameters). We now prove Item 5.

Notice that for w := t ·O(k + log(1/ε)), we have by Item 1 that W ≥w[f] ≤ ε/2. Now by
Item 4,

∑
|S|<w

|f̂(S)| ≤
w−1∑
i=0

O(kt)i ≤ (C ′kt)w. (9)

Now let F = {S : |S| < w and |f̂(S)| ≥ ε/2
(C′kt)w }. Notice that∑

S∈F
f̂(S)2 = 1−

∑
|S|≥w

f̂(S)2 −
∑

|S|<w,S /∈F

f̂(S)2

≥ 1− ε/2− ε/2
(C ′kt)w

∑
|S|<w

|f̂(S)|

≥ 1− ε.

CCC 2023

18:28 Tight Correlation Bounds for Circuits Between AC0 and TC0

By Equation (9), the maximum number of terms in F can be at most

(C ′kt)w/

(
ε/2

(C ′kt)w

)
= 2(C ′kt)2w/ε = 2O(w log(kt)+log(1/ε)) = 2O((k+log(1/ε))t log t)

and thus Item 5 is proved. ◀

As a first application, the work of Kushilevitz and Mansour [13] allows us to translate
FMC to learnability results.

▶ Lemma 48 ([13]). Let f be a Boolean function such that there exists a t-sparse multivariate
polynomial g (over the Fourier basis) such that Ex∼Un

[(f(x)− g(x))2] ≤ ε. There exists a
randomized algorithm, whose running time is polynomial in t, n, 1/ε, log(1/δ) such that given
blackbox access to f and δ > 0, outputs a function h such that over the randomness of the
algorithm,

Pr[Ex∼Un
[(f(x)− h(x))2] ≤ O(ε)] ≥ 1− δ.

Using this lemma, we can derive a learning algorithm for GC0(k).

▶ Theorem 49. There exists an algorithm such that given blackbox access to any C ∈ GC0
d(k)

of size m and δ > 0, outputs a function h such that over the randomness of the algorithm,

Pr[Ex∼Un
[(f − h)2] ≤ O(ε)] ≥ 1− δ.

Furthermore, this algorithm runs in poly(n, 2Õ((k+log(1/ε))(k+log m)d−1), 1/ε, log(1/δ))

Proof. From Theorem 47, for any C ∈ GC0
d(k), there exists g of sparsity

t = 2Õ((k+log(1/ε))(k+log m)d−1),

created by taking the Fourier expansion of C and only keeping the ε-concentrated coefficients
S ⊂ 2[n], such that

Ex∼{±1}n [(C(x)− g(x))2] ≤ Ex∼{±1}n

(∑
S /∈S

Ĉ(S)xS

)2
 =

∑
S /∈S

Ĉ(S)2 ≤ ε.

The result then follows by Lemma 48. ◀

We also can prove a new correlation bound result with this Fourier spectrum. It is known
that MAJ is a symmetric function that has Od(logd−1(m)/

√
n) correlation against size-m

AC0
d[⊕] circuits. A natural question to ask is whether Majority is special in this regard, or if a

random symmetric function (use n + 1 coin tosses to assign a bit to each Hamming level) will
display Od(logd−1(m)/nα) correlation against size-m AC0

d[⊕] circuits for some α. Tal ([30],
Theorem 6.1) used ESFT and L1 of AC0 to prove that random symmetric functions (or more
specifically balanced symmetric functions) display Od(logd−1(m)/

√
n) correlation against

size-m AC0
d circuits, so it is natural to believe that this should similarly be true against

AC0[⊕]. Unfortunately, since PAR has all its Fourier weight at level n, this proof approach
is doomed to fail for AC0[⊕] circuits, as the class doesn’t demonstrate ESFT. However, we
can now give partial progress towards this goal by showing a random symmetric function
uncorrelates with GC0(k) circuits, as this class contains gates which calculate parity as long
as the Hamming weight of the input is at most k. This result can be seen as finding out how
general of a circuit class we can stretch the Fourier argument before we reach the roadblock
on this approach demonstrated by PAR.

V. M. Kumar 18:29

▶ Theorem 50. Let f ∈ GC0
d(k), and let g be a symmetric function, both mapping {±1}n →

{±1}, and let (k + log m)d−1 ≤ O
(

n
k+log n

)1/3
. Then

corr(f, g) := Ex[f(x)g(x)] ≤ |ĝ(∅)|+ Cdk(k + log m)d−1
√

n

Proof. We note for ℓ′ to be picked later, we can decompose

corr(f, g) = |Ex[f(x)g(x)]|

=

∣∣∣∣∣∣
∑

S⊂[n]

f̂(S)ĝ(S)

∣∣∣∣∣∣
≤ |ĝ(∅)|+

∑
|S|<ℓ′

|f̂(S)ĝ(S)|+
∑

|S|≥ℓ

|f̂(S)ĝ(S)|. (10)

We will bound the first summation using L1, and the second summation by ESFT. The
second summation can be bounded as follows using Cauchy-Schwarz.∑

|S|≥ℓ

|f̂(S)ĝ(S)| ≤
√

W ≥ℓ′ [f] ·W ≥ℓ′ [g] ≤
√

4d · 2− ℓ′
80(128(k+log m))d−1 +k ≤ 1/

√
n (11)

if we set ℓ′ = cd(k + log n)(k + log m)d−1 for some constant cd only depending on d. Now
to bound the first summation, note since g is symmetric, ĝ(S) is constant over all S of same
cardinality. Therefore,

|ĝ(S)| =
√

ĝ(S)2 =

√√√√ 1(
n

|S|
) ∑

S′;|S′|=|S|

ĝ(S′)2 ≤
√

1(
n

|S|
) .

Hence using L1 from Theorem 47, we can bound

∑
|S|<ℓ′

|f̂(S)ĝ(S)| ≤
∑

1≤ℓ<ℓ′

√
1(
n
ℓ

) ∑
|S|=ℓ

|f̂(S)| ≤
∑

1≤ℓ<ℓ′

(
Cdk(k + log m)d−1√

n/ℓ

)ℓ

(12)

where Cd is some constant depending on d. We bound this sum by a geometric series of the
same first term and with common ratio 1/2. Indeed, we see that the ratio of consecutive
terms will be(

Cdk(k+log m)d−1√
n/(ℓ+1)

)ℓ+1

(
Cdk(k+log m)d−1√

n/ℓ

)ℓ
= Cdk(k + log m)d−1

√
n

√
(ℓ + 1)ℓ+1

ℓℓ
≤ Cdk(k + log m)d−1

√
n

√
eℓ′ ≤ 1/2

where the last inequality follows from the assumption (k+log m)d−1 ≤ O
(

n
k+log n

)1/3
. Hence

the quantity in Equation (12) can be upper bounded by twice the first term, so∑
|S|<ℓ′

|f̂(S)ĝ(S)| ≤ Cdk(k + log m)d−1
√

n
.

Hence from (10),

corr(f, g) ≤ |ĝ(∅)|+ 1√
n

+ Cdk(k + log m)d−1
√

n
. ◀

CCC 2023

18:30 Tight Correlation Bounds for Circuits Between AC0 and TC0

5 Open Problems

We conclude with some directions for future research.
Our tightness result in Theorem 52 uses a function in G(k) ◦ ANDw, but it is not known
whether a k-OR ◦ ANDw circuit can saturate the bound. In particular, is Theorem 20
tight for AC0(k) or TC0(k) circuits?
It was already noted that Corollary 34 is tight in essentially every way possible for
GC0(k) circuits. However, all our tightness results (Theorem 52) use constructions that
abuse the generality of GC(k). Are there constructions exhibiting tightness which are
in TC0(k) or AC0(k)? Alternatively, can we obtain stronger size lower bounds if we
were only concerned with AC0(k) or even TC0(k) circuits? Either finding a pathological
construction in AC0(k)/TC0(k) or proving stronger lower bounds for these weaker circuit
class would be interesting.
We touched up on how a result of Allender and Koucký ([2], Theorem 3.8) states that
there exists an absolute constant CAK such that MAJn can be written as an AC0(nε)
circuit with depth ≤ CAK/ε and size O(n1+ε). [2] actually only use AND2, OR2, and
MAJnε gates. If we were allowed all the gate classes in AC0(nε), could we find a better
construction (more specifically a lower depth blowup)? That way, we would get a stronger
reduction from proving bounds on TC to AC0(nε) where we only need to show size lower
bounds on smaller depth AC0(nε) circuits.
Are there any other applications of the generalized switching lemma? Due to the versatility
of this theorem, it can essentially be plugged in wherever the classical switching lemma
was used to get more general results. Perhaps this can generalize other results or even
push a switching lemma argument that initially wouldn’t go through (the remark after
Theorem 52 gives an example of the general switching lemma giving stronger bounds
than the classical one).

References
1 Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. ACM

Trans. Comput. Theory, 1(1), February 2009. doi:10.1145/1490270.1490272.
2 Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility. J.

ACM, 57(3), March 2010. doi:10.1145/1706591.1706594.
3 N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple construction of almost k-wise

independent random variables. In Proceedings [1990] 31st Annual Symposium on Foundations
of Computer Science, pages 544–553 vol.2, 1990. doi:10.1109/FSCS.1990.89575.

4 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the p?=np question. SIAM
Journal on Computing, 4(4):431–442, 1975. doi:10.1137/0204037.

5 Norbert Blum. A boolean function requiring 3n network size. Theor. Comput. Sci., 28:337–345,
1984. doi:10.1016/0304-3975(83)90029-4.

6 Lijie Chen and Roei Tell. Bootstrapping results for threshold circuits “just beyond” known
lower bounds. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, pages 34–41, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3313276.3316333.

7 Johan Håstad. On the correlation of parity and small-depth circuits. SIAM Journal on
Computing, 43(5):1699–1708, 2014. doi:10.1137/120897432.

8 Pooya Hatami, William M. Hoza, Avishay Tal, and Roei Tell. Fooling constant-depth threshold
circuits (extended abstract). In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 104–115, 2022. doi:10.1109/FOCS52979.2021.00019.

https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1145/1706591.1706594
https://doi.org/10.1109/FSCS.1990.89575
https://doi.org/10.1137/0204037
https://doi.org/10.1016/0304-3975(83)90029-4
https://doi.org/10.1145/3313276.3316333
https://doi.org/10.1137/120897432
https://doi.org/10.1109/FOCS52979.2021.00019

V. M. Kumar 18:31

9 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for ac0. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’12, pages 961–972, USA, 2012. Society for Industrial and Applied Math-
ematics.

10 Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. Size–depth tradeoffs for
threshold circuits. SIAM Journal on Computing, 26(3):693–707, 1997. doi:10.1137/
S0097539792282965.

11 Daniel M. Kane and Ryan Williams. Super-linear gate and super-quadratic wire lower bounds
for depth-two and depth-three threshold circuits. In Proceedings of the Forty-Eighth Annual
ACM Symposium on Theory of Computing, STOC ’16, pages 633–643, New York, NY, USA,
2016. Association for Computing Machinery. doi:10.1145/2897518.2897636.

12 Zander Kelley. An improved derandomization of the switching lemma. In Samir Khuller and
Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 272–282. ACM, 2021.
doi:10.1145/3406325.3451054.

13 Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spectrum.
SIAM Journal on Computing, 22(6):1331–1348, 1993. doi:10.1137/0222080.

14 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1996. doi:10.1017/CBO9780511574948.

15 Jiatu Li and Tianqi Yang. 3.1n - o(n) circuit lower bounds for explicit functions. In Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pages
1180–1193, New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/
3519935.3519976.

16 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier transform,
and learnability. J. ACM, 40(3):607–620, July 1993. doi:10.1145/174130.174138.

17 Shachar Lovett and Srikanth Srinivasan. Correlation bounds for poly-size ac0 circuits with
n(1-o(1)) symmetric gates. In Leslie Ann Goldberg, Klaus Jansen, R. Ravi, and José D. P.
Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 640–651, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

18 Xin Lyu. Improved pseudorandom generators for ac0 circuits. In Proceedings of the 37th
Computational Complexity Conference, CCC ’22, Dagstuhl, DEU, 2022. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CCC.2022.34.

19 Yishay Mansour. An o(nlog log n) learning algorithm for dnf under the uniform distribution.
In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT
’92, pages 53–61, New York, NY, USA, 1992. Association for Computing Machinery. doi:
10.1145/130385.130391.

20 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. doi:
10.1017/CBO9781139814782.

21 Igor Carboni Oliveira, Rahul Santhanam, and Srikanth Srinivasan. Parity Helps to Compute
Majority. In Amir Shpilka, editor, 34th Computational Complexity Conference (CCC 2019),
volume 137 of Leibniz International Proceedings in Informatics (LIPIcs), pages 23:1–23:17,
Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.CCC.2019.23.

22 Aaron Potechin. On the approximation resistance of balanced linear threshold functions. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, pages 430–441, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3313276.3316374.

23 Alexander Razborov and Avi Wigderson. n(log n) lower bounds on the size of depth-3 threshold
cicuits with and gates at the bottom. Information Processing Letters, 45(6):303–307, 1993.
doi:10.1016/0020-0190(93)90041-7.

CCC 2023

https://doi.org/10.1137/S0097539792282965
https://doi.org/10.1137/S0097539792282965
https://doi.org/10.1145/2897518.2897636
https://doi.org/10.1145/3406325.3451054
https://doi.org/10.1137/0222080
https://doi.org/10.1017/CBO9780511574948
https://doi.org/10.1145/3519935.3519976
https://doi.org/10.1145/3519935.3519976
https://doi.org/10.1145/174130.174138
https://doi.org/10.4230/LIPIcs.CCC.2022.34
https://doi.org/10.1145/130385.130391
https://doi.org/10.1145/130385.130391
https://doi.org/10.1017/CBO9781139814782
https://doi.org/10.1017/CBO9781139814782
https://doi.org/10.4230/LIPIcs.CCC.2019.23
https://doi.org/10.4230/LIPIcs.CCC.2019.23
https://doi.org/10.1145/3313276.3316374
https://doi.org/10.1016/0020-0190(93)90041-7

18:32 Tight Correlation Bounds for Circuits Between AC0 and TC0

24 Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical notes of the Academy of Sciences of the USSR,
41:333–338, 1987.

25 Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer and System
Sciences, 55(1):24–35, 1997. doi:10.1006/jcss.1997.1494.

26 Rocco A. Servedio. Every linear threshold function has a low-weight approximator. In
Proceedings of the 21st Annual IEEE Conference on Computational Complexity, CCC ’06,
pages 18–32, USA, 2006. IEEE Computer Society. doi:10.1109/CCC.2006.18.

27 Rocco A. Servedio and Li-Yang Tan. Luby-Velickovic-Wigderson Revisited: Improved Cor-
relation Bounds and Pseudorandom Generators for Depth-Two Circuits. In Eric Blais,
Klaus Jansen, José D. P. Rolim, and David Steurer, editors, Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2018), volume 116 of Leibniz International Proceedings in Informatics (LIPIcs), pages
56:1–56:20, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.APPROX-RANDOM.2018.56.

28 Rocco A. Servedio and Li-Yang Tan. Improved pseudorandom generators from pseudorandom
multi-switching lemmas. Theory of Computing, 18(4):1–46, 2022. doi:10.4086/toc.2022.
v018a004.

29 R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity.
In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC
’87, pages 77–82, New York, NY, USA, 1987. Association for Computing Machinery. doi:
10.1145/28395.28404.

30 Avishay Tal. Tight Bounds on the Fourier Spectrum of AC0. In Ryan O’Donnell, editor,
32nd Computational Complexity Conference (CCC 2017), volume 79 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 15:1–15:31, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CCC.2017.15.

31 Luca Trevisan and Tongke Xue. A derandomized switching lemma and an improved deran-
domization of ac0. In 2013 IEEE Conference on Computational Complexity, pages 242–247,
2013. doi:10.1109/CCC.2013.32.

32 Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012. doi:10.1561/0400000010.

33 Emanuele Viola. Pseudorandom bits for constant-depth circuits with few arbitrary symmetric
gates. SIAM Journal on Computing, 36(5):1387–1403, 2007. doi:10.1137/050640941.

A Deferred Proofs

A.1 Showing TC0(k) ⊂ GC0(k)

Here, we prove that circuits created by biased LTF gates are indeed contained in GC0(k).

▶ Theorem 51. Any THR gate f with balance ≤ k (see Definition 3) is, upon negating
certain input bits, in G(k).

Proof. Let f : {0, 1}n → {±1} be defined as f(x) = sgn(
∑n

i=1 wi(−1)xi − θ). By negating
input bits, we can assume each wi ≥ 0. Furthermore, since the definition of G(k) is
symmetric (solely depends on the sum of input bits), we can assume WLOG that 0 ≤ w1 ≤
· · · ≤ wn. Since f has balance ≤ k, we know that −

∑
i≤k wi +

∑
i>k wi < θ. Assuming

−
∑

i≤k wi +
∑

i>k wi < |θ|, we will show f is an orlike G(k) gate (an analogous proof will
show the case for −θ and andlike).

https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1109/CCC.2006.18
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.56
https://doi.org/10.4086/toc.2022.v018a004
https://doi.org/10.4086/toc.2022.v018a004
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://doi.org/10.1109/CCC.2013.32
https://doi.org/10.1561/0400000010
https://doi.org/10.1137/050640941

V. M. Kumar 18:33

Consider x such that
∑

xi ≥ k. Let Sx ⊂ [n] denote the set where i ∈ Sx iff xi = 1. It
follows that

f(x) = sgn

−∑
i∈Sx

wi +
∑
i/∈Sx

wi − θ

= sgn

−∑
i≤k

wi +
∑
i>k

wi − θ + 2
∑

i∈[k]\Sx

wi − 2
∑

i∈[k+1,n]∩Sx

wi

 (13)

We know by assumption that −
∑

i≤k wi +
∑

i>k wi − θ ≤ 0. Since |Sx| ≥ k,

|[k] \ Sx| = k − |k ∩ Sx| ≤ |[k + 1, n] ∩ Sx|,

and each element in [k]\Sx is strictly smaller than each element in [k + 1, n]∩Sx. Combining
these observations with the fact w1 ≤ · · · ≤ wn, it follows

2
∑

i∈[k]\Sx

wi − 2
∑

i∈[k+1,n]∩Sx

wi ≤ 0.

Therefore,

−
∑
i≤k

wi +
∑
i>k

wi − θ + 2
∑

i∈[k]\Sx

wi − 2
∑

i∈[k+1,n]∩Sx

wi ≤ 0.

Combining this with (13) it follows f(x) = −1 for any x with
∑

xi ≥ k. Hence f is an orlike
G(k) gate as desired. ◀

A.2 Tightness of the GC0(k) Switching Lemma and Correlation Bounds
In this section, we give constructions which show that various bounds we establish are indeed
tight. We first show that the switching lemma we established is tight.

▶ Theorem 52. Let p, w, t, k be parameters such that pkw < 1/2 and t > k/2. There exists
a G(k) ◦ ANDw circuit C such that

Pr
ρ∼Rp

[DT(C|ρ) ≥ t] ≥ 2k/2(.5pw)t

Proof. We will take C = PARkw. To see that this is computable in G(k) ◦ ANDw, write

PARkw(x) = PARk(PARw(x1, . . . , xw), . . . , PARw(x(k−1)w+1, . . . , xkw)).

Now, write out each bottom layer PARw as a size w2w−1 CNF which takes the ORs of the
2w−1 AND clauses corresponding to w-bit inputs with an odd number of ones. Notice that
for any assignment,

at most one of the 2w−1 clauses under each OR can simultaneously be satisfied,
which implies at most k of the bottom layer clauses can be simultaneously satisfied.

By the first bullet point, we can turn the OR gates into PAR gates, turning C into a
PARk2w−1 ◦ANDw circuit. By the second bullet point, we can replace the top PARk2w−1 gate
with the gate G ∈ G(k) which calculates parity if at most k input bits are one, and outputs 0
otherwise. Consequently, C can be calculated by a G(k) ◦ ANDw circuit.

CCC 2023

18:34 Tight Correlation Bounds for Circuits Between AC0 and TC0

We can now directly calculate the simplification probability. Notice that if ≥ t variables
are alive in ρ, then C|ρ must have decision tree depth ≥ t (since even if d− 1 input bits are
known, parity remains ambiguous). Hence we calculate

Pr
ρ∼Rp

[DT(C|ρ) ≥ t] ≥
kw∑
i=t

(
kw

i

)
pi(1− p)kw−i

≥ (1− p)kw

(
kw

t

)t(
p

1− p

)t

≥ (1− pkw)2k/2
(

pw

1− p

)t

≥ 2k/2(.5pw)t

where the third inequality follows from the fact (k/t)t is increasing in t for t > k/2 ◀

▶ Remark 53. Notice that if PARn was written as a width n-CNF and the classical switching
lemma was applied, we would get a “failure to simplify” probability bound of ≤ (5pn)t.
However, if we rewrite PARn as a G(t log(n/t))◦ANDn/t log(n/t) circuit in a similar manner as
above, and use Theorem 20, we get a bound of ≤ (20pn/t log(n/t))t2t log(n/t) ≤ (20pn2/t2)t,
which is asymptotically stronger when t = ω(

√
n). This shows that we can potentially

obtain tighter parameters by expressing functions as a more compact GC0(k) circuit and
applying Theorem 20 rather than using the classical switching lemma on a larger AC0 circuit
computing the same function.

We will now show that the circuit lower bound established in Corollary 34 is tight. We
thank an anonymous reviewer for pointing us to this construction.

▶ Theorem 54. There exists a size-2O((n/k)
1

d−1) GC0
d(k) circuit which computes PARn.

Proof. Split the input string into k blocks of size n/k bits each. We can compute the parity
of each of the n/k-size blocks straightforwardly using a depth d − 1 circuit made out of
PAR

(n/k)
1

d−1
gates; iteratively group the bits into blocks of (n/k)

1
d−1 , and use a gate to take

the parity of each block, thereby creating a depth d− 1 tree of PAR
(n/k)

1
d−1

gates. Finally,
we can take a PARk of these k depth-(d− 1) circuits to get a depth d circuit which computes
the parity of all n bits. We now focus on converting this parity-riddled circuit to a GC0(k)
one.

Consider the top depth-2 subcircuit, which is a PARk ◦ PAR
(n/k)

1
d−1

circuit. Notice that
PARk ∈ G(k) and PAR

(n/k)
1

d−1
is trivially computable by a decision tree in DT

(n/k)
1

d−1
.

Therefore by Lemma 30, this top subcircuit can be replaced by a size 2O((n/k)
1

d−1) G(k) ◦
OR

(n/k)
1

d−1
. Consequently, we have converted our original depth-d circuit into a new one

where the first 2 layers are made from gates in G(k).
We now use the fact that any PAR

(n/k)
1

d−1
can be expressed as a size 2O((n/k)

1
d−1) CNF

or DNF to convert the remaining PAR
(n/k)

1
d−1

gates to AND/OR gates while preserving the
depth. Convert the third layer PAR

(n/k)
1

d−1
gates to a DNF (OR of ANDs), and then collapse

the 2nd and 3rd layer as they both consist solely of OR gates. The third layer now consist
of AND gates, so replace the fourth layer PAR

(n/k)
1

d−1
gates with a CNF (AND of ORs) to

again induce a collapse of the consecutive AND layers. Repeat this procedure down to the
bottom of the circuit.

V. M. Kumar 18:35

Clearly after this procedure, all gates are in G(k) (in fact, all but the top gate are AND
or OR). Notice that at each stage, we increased the circuit depth by 1 when plugging in the
DNF/CNF, but then reduced the circuit depth when collapsing layers of the same gate type.
Hence the final circuit is still of depth d. We already calculated the top depth-2 subcircuit is
of size 2O((n/k)

1
d−1). Assuming we didn’t collapse any gates, we would have replaced each of

the o(n1−ε) parity gates with a size-2O((n/k)
1

d−1) circuit, so clearly the final circuit size is at
most

2O((n/k)
1

d−1) + o(n/k) · 2O((n/k)
1

d−1) ≤ 2O((n/k)
1

d−1).

Therefore at the end of this procedure, we get our desired circuit. ◀

We now show that not only is the size lower bound tight, but the average case correlation
bound established in Theorem 33 as well.

▶ Theorem 55. Assume m ≥ kd. There is a GC0(k) circuit C of size ≤ m such that

Ex[(−1)C(x)+PAR(x)] ≥ 2Ω(k) · 2−O(n/(k+log m)d−1)

Proof. Let M = max{k, cd log m}, where cd is a constant such that the parity over
(c log m)d−1 bits can be computed by an AC0

d circuit of size ≤ m. Split the input into⌈
n/Md−1⌉ blocks of size ≤Md−1. If M = cd log m, each block can be calculated by an AC0

d

circuit of size m, and if M = k, each block can be calculated by a ≤ kd ≤ m-size GC0
d−1(k)

circuit using a tree of PARks. Now if
⌈
n/Md−1⌉ = 1, this circuit computes the parity of all

n bits and we are done, so assume
⌈
n/Md−1⌉ ≥ 2.

Join all the
⌈
n/Md−1⌉ subcircuits by the gate G defined to compute parity if the Hamming

weight of the input is at most k, and to equal 0 otherwise. Clearly G ∈ G(k). Therefore, if
the subcircuits were constructed to be in AC0

d, we can collapse the top two layers into one
using Lemma 30 (similar to Theorem 54), giving us a GC0

d(k) circuit. If the subcircuits were
GC0

d−1(k), we trivially get a GC0
d(k) gate after adding G. In the case more than k of the⌈

n/Md−1⌉ input blocks have parity 1, our circuit will be constant, and thus will agree with
parity about half the time. Let us crudely lower bound the correlation in this case to be 0.
When ≤ k have parity 1, the top gate computes parity exactly. Therefore our correlation is
simply the probability at most k of the input blocks have parity 1, which is simply

2−⌈n/Md−1⌉∑
i≤k

(⌈
n/Md−1⌉

k

)
≥ 2−⌈n/Md−1⌉ · 2Ω(k) ≥ 2Ω(k) · 2−O(n/(k+log m)d−1).

This gives our correlation lower bound as desired. ◀

A.3 Proof of the GC0(k) Multi-Switching Lemma
We prove the multi-switching lemma here.

▶ Theorem 56 (Proof of Theorem 28). Let F = {F1, . . . , Fm} be a list of G(k) ◦ ANDw

circuits on {0, 1}m. Then

Pr
ρ∼Rp

[F|ρ does not have r-partial depth-t DT] ≤ 4(64(2km)1/rpw)t

CCC 2023

18:36 Tight Correlation Bounds for Circuits Between AC0 and TC0

Proof. We follow the proof in [18] exactly, where the only difference is that the “Canonical
Partial Decision Tree” (CPDT) will use the modified CDT we created in Algorithm 1, the
definition of global witnesses (resp. global partial witnesses) will now use the witnesses (resp.
partial witnesses) that we defined in Definition 22 (resp. Definition 24), and the “Global
Witness Searcher” will run the modified witness searcher we created in Algorithm 2.

Consider the following CPDT procedure.

Algorithm 3 Canonical Partial Decision Tree.

Input: A list of G(k) ◦ {AND, OR}w circuits F = {F1, . . . , Fm}, black-box access to
a string β ∈ {0, 1}n, and an auxiliary string z ∈ {0, 1}n.

initialize:
x← (⋆)n.
j ← 1.
counter← 0.

while counter < t do
Find the smallest i ≥ j such that DT(Fi|x) > w. If no such i exists, exit the loop.
y ← (⋆)n.
I ← ∅.
while Fi|x◦y(⋆) is not constant and counter < t do

Ci,q ← the term that TFi|x◦y
from Algorithm 1 will query.

Bi,q ← the set of unknown variables in Ci,q|x◦y.
yBi,q

← zBi,q
.

I ← I ∪Bi,q.
counter← counter + |Bi,q|.

end
Query βI , and set xI ← βI .
j ← i.

end
return x

With this, we can define the following notion of a “global witness” to intuitively be a
transcript on adversarially chosen inputs.

▶ Definition 57. Let t, w be two integers. Consider a list of G(k) ◦ {AND, OR}w circuits
F = {F1, . . . , Fm}. Suppose ρ ∈ {0, 1, ⋆}n is a restriction. Let (R, Li, Si, Wi, βi) be a tuple,
where

1 ≤ R ≤ t
r is an integer;

1 ≤ L1 ≤ L2 ≤ · · · ≤ LR ≤ m is a list of R non-decreasing indices;
S1. . . . , SR is a list of R integers such that

∑R
i=1 Si ∈ [t, t + w];

W1, . . . , WR is a list of witnesses (as per Definition 22). For every i ∈ [R], Wi has size
Si;
β1, . . . , βR are R strings where |βi| = Si for every i ∈ [R].

We call the tuple a (r, t)-global witness for ρ, if it satisfies the following.
1. Set ρ1 = ρ. W1 is a S1-witness for FL1 |ρ1 .
2. For every i ≥ 2, let Ii−1 ⊆ [n] be the set of variables involved in Wi−1. Note that
|Ii−1| = Si−1 since the size of Wi−1 is Si−1. Identify βi−1 as a partial assignment in
{0, 1, ⋆}n where only the part βi−1,Ii−1 is set and other coordinates are filled in with ⋆.
Construct ρi = ρi−1 ◦ βi−1. Then Wi is a Si-witness for FLi

|ρi
.

The size of the global witness is defined as
∑R

i=1 Si.

V. M. Kumar 18:37

▶ Lemma 58. Consider a list of G(k) ◦ {AND, OR}w circuits F = {F1, . . . , Fm}. Suppose
ρ ∈ {0, 1, ⋆}n is a restriction such that F|ρ does not have w-partial depth-t decision tree.
Then there exists an (r, t)-global witness for ρ.

Proof. Same as the proof of Corollary 1 in [18]. ◀

We now define partial global witnesses, as there are far too many global witnesses to
union bound over.

▶ Definition 59. Let t, w be two integers. Consider a list of G(k) ◦ {AND, OR}w circuits
F = {F1, . . . , Fm}. Suppose ρ ∈ {0, 1, ⋆}n is a restriction. Let (R, Li, Si, Pi, βi) be a tuple,
where

1 ≤ R ≤ t
r is an integer;

1 ≤ L1 ≤ L2 ≤ · · · ≤ LR ≤ m is a list of R non-decreasing indices;
S1. . . . , SR is a list of R integers such that

∑R
i=1 Si ∈ [t, t + w];

P1, . . . , PR is a list of partial witnesses. For every i ∈ [R], Pi has size Si.
β1, . . . , βR are R strings where |βi| = Si for every i ∈ [R].

We call (R, Li, Si, Pi, βi) a (r, t)-global partial witness for ρ, if we can complete Pi to get a
witness Wi for every i ∈ [R], such that (R, Li, Si, Wi, βi) is a global witness for ρ.

By a simple induction, one can show the following claim.

▷ Claim 60. Given a global partial witness for ρ, there is exactly one way to complete it
and get a global witness for ρ.

We now construct a global witness searcher that will reconstruct a global witness from a
partial one using advice, and present it as Algorithm 4.

Algorithm 4 Global Witness Searcher.

Input: A list of DNFs F = {F1, . . . , Fm}, a global partial witness (R, Li, Si, Pi, βi),
and an advice z ∈ {0, 1}n.

initialize:
c← 1.
ρ(1) ← ρ.

while c ≤ R do
Run Algorithm 2 on (FLc

, ρ(c), Pc, y). If it reports ERROR, report ERROR and
terminate the procedure. Otherwise let Wc be the witness returned.

Ic ← the set of variables involved in Wc.
Identify βc as a partial assignment, where only βIc is fixed.
ρ(c+1) ← ρ(c) ◦ βc.
c← c + 1.

end
return x

We note the following important lemma about the searcher, which we denote S.

▶ Lemma 61. Let P be a size S global partial witness. Say ρ is good if P is a global partial
witness for ρ, then

Pr
z

[S(z, P) is a global witness for ρ(Λ, z)|ρ is good] = 2−S

CCC 2023

18:38 Tight Correlation Bounds for Circuits Between AC0 and TC0

Proof. Same as proof of Lemma 8 in [18], but we instead appeal to Lemma 26 whenever
Lyu’s proof refers to Lemma 6. ◀

By this lemma, we have

Pr
Λ,z

[ρ(Λ, z) is good for P] = EΛ
Prz[S(z, P) is a global witness for ρ(Λ, z)]

Prz[S(z, P) is a global witness for ρ(Λ, z)|ρ is good]
= 2SEΛ Pr

z
[S(z, P) is a global witness for ρ(Λ, z)]

≤ 2SEz Pr
Λ

[S(z, P) is a global witness for ρ(Λ, z)]

≤ (2p)s (14)

where the last inequality follows from the fact that ρ needs to keep the S variables specified
by the global witness alive in order to have any hope of being witnessed by it. By the
(t + w)-wise p-boundedness of Λ, this happens with probability ≤ pS .

Finally, if we let NS be the number of global witnesses of size S, we can see by using
Lemma 58 and Claim 60, along with (14) that

Pr
ρ

[F|ρ has no r-partial depth-t DT] ≤
∑

P

Pr
ρ

[P is a global partial witness for ρ]

≤
t+w∑
S=t

NS(2p)S (15)

We can upper bound NS as follows.
There are ≤ t

r ·
(

m
t/r

)
≤ 2mt/r ways to pick (R, Li)

There are ≤ 2S choices for (Si) (since there are ≤ 2n−1 ways to write n as an ordered
partition)
From Theorem 20, we know that there are (8w)S2k partial witnesses of size S, giving a
total amount of ≤

∏
i(8w)Si2k = (8w)S2kR ≤ (8w)S2kt/r

There are clearly 2
∑

Si = 2S possibilities for (βi).

Combining all this tells us that NS ≤ 2mt/r(32w)S2kt/r. Hence, from (15), we deduce

Pr
ρ

[F|ρ has no r-partial depth-t DT] ≤
t+w∑
S=t

NS(2p)S

≤ mt/r2kt/r
t+w∑
S=t

(32pw)S

≤ 4(64(2km)1/rpw)t ◀

▶ Theorem 62 (Proof of Theorem 38). Let F = {F1, . . . , Fm} be a list of size m G(k) ◦
{AND, OR}w circuits. Let (Λ, z) be a joint random variable such that

Λ is a (t + w)-wise p-bounded subset of [n]
Conditioned on any instance of Λ, z ε-fools CNF of size ≤ m2.

Then

Pr
Λ,z

[F|ρ(Λ,x) has no r-partial depth-t DT] ≤ 4(m2k)t/r(64pw)t + (64wm)t+w(2m)2kt/r · ε

V. M. Kumar 18:39

Proof. All steps of the proof of Theorem 28 follow identically until we reach the step

Pr
Λ,z

[F |ρ(Λ,x) has no w-partial depth-t DT]

= Pr
∑

(R,L,Si,Pi,βi)

Pr
Λ,z

[(R, L, Si, Pi, βi) is a global partial witness for ρ(Λ, z)]

From Claim 60, we can deduce the event decomposes

1{(R, Li, Si, Pi, βi) is a global partial witness for ρ(Λ, z)}

=
∑

Wi:completion of Pi

1{(R, Li, Si, Wi, βi) is a global witness for ρ(Λ, z)}.

For a fixed Λ and (R, Li, Si, Wi, βi), we can let

h
(R,Li,Si,Wi,βi)
Λ (z) = 1{(R, Li, Si, Wi, βi) is a global witness for ρ(Λ, z)}.

We will now show that h is a predicate computable by a small size CNF, so that z will
fool it. h is true iff Wi is a witness for FLi

|ρ(Λ,z)◦β1...βi−1 for all 1 ≤ i ≤ R. Now for each i,
one can verify Wi = (r′, ℓi, si, Bi, αi) is a witness by a size m CNF as follows.

For all j < ℓ1, Cj is falsified by ρ(Λ, z). This is true iff (¬C1) ∧ (¬C2) ∧ · · · ∧ (¬Cℓ1).
Notice ¬Ci becomes an OR clause by De Morgan’s Law
Cj1 is satisfied, which is an AND of variables.
Cj is falsified by ρ(Λ, z) ◦ α1 for ℓ1 < j < ℓ2, which is true iff (¬Cℓ1+1) ∧ · · · ∧ (¬Cℓ2−1).
Each ¬Ci is an OR clause
and so on and so forth until we verify Cjr′ .

Each bullet points gives a disjunction of (maybe trivial) conjunctions, so for all bullet
points to hold, we simply take the AND of all of them, resulting in a CNF whose size is
bounded by m (since our CNF is essentially FLi

but with some gates and negations changed.
Hence, if we want to verify Wi simultaneously over all i, we take the AND of all R ≤ m

CNFs to get a size m2 CNF. Hence, z ε-fools h. From Theorem 20, we know over a uniform
string x,∑

(R,Li,Si,Wi,βi)

EΛExh
(R,Li,Si,Wi,βi)
Λ (x) ≤ 4(m2k)t/r(64pw)t

Therefore, over z, we have

Pr
Λ,z

[F |ρ(Λ,x) has no w-partial depth-t DT] =
∑

(R,Li,Si,Wi,βi)

EΛEzh
(R,Li,Si,Wi,βi)
Λ (z)

≤
∑

(R,Li,Si,Wi,βi)

EΛ(ε + Exh
(R,Li,Si,Wi,βi)
Λ (x))

≤ 4(m2k)t/r(64pw)t +
∑

(R,Li,Si,Wi,βi)

ε.

The number of tuples (R, Li, Si, Wi, βi) can be bounded as follows.
From the proof of Theorem 56, we know there are 2mt/r2kt/r(32w)S many global partial
witnesses of size S.
We now multiply by the number of (ℓi) possible for each partial Pi of size Si, which is at
most

(
m

t+k

)
< mSi+k. Hence, the total number of (Wi) over all 1 ≤ i ≤ R is∏

i

mSi+k = mS+kR ≤ mS+kt/r

CCC 2023

18:40 Tight Correlation Bounds for Circuits Between AC0 and TC0

Hence the total number of size-S tuples is upper bounded by 2mt/r2kt/r(32w)SmS+kt/r ≤
(32mw)S(2m)2kt/r. Summing over all t ≤ S ≤ t + w gives us a grand total of

t+w∑
S=t

(32mw)S(2m)2kt/r ≤ (64mw)S(2m)2kt/r.

Therefore,

Pr
Λ,z

[F |ρ(Λ,x) has no r-partial depth-t DT] ≤ 4(m2k)t/r(64pw)t + (64mw)t+w(2m)2kt/r · ε.◀

Criticality of AC0-Formulae
Prahladh Harsha # Ñ

Tata Institute of Fundamental Research, Mumbai, India

Tulasimohan Molli # Ñ

Tata Institute of Fundamental Research, Mumbai, India

Ashutosh Shankar # Ñ

Tata Institute of Fundamental Research, Mumbai, India

Abstract
Rossman [In Proc. 34th Comput. Complexity Conf., 2019] introduced the notion of criticality. The
criticality of a Boolean function f : {0, 1}n → {0, 1} is the minimum λ ≥ 1 such that for all positive
integers t and all p ∈ [0, 1],

Pr
ρ∼Rp

[DTdepth(f |ρ) ≥ t] ≤ (pλ)t,

where Rp refers to the distribution of p-random restrictions.
Håstad’s celebrated switching lemma shows that the criticality of any k-DNF is at most O(k).

Subsequent improvements to correlation bounds of AC0-circuits against parity showed that the
criticality of any AC0-circuit of size S and depth d + 1 is at most O(log S)d and any regular AC0-
formula of size S and depth d + 1 is at most O(1

d
· log S)d. We strengthen these results by showing

that the criticality of any AC0-formula (not necessarily regular) of size S and depth d + 1 is at most
O(log S

d
)d, resolving a conjecture due to Rossman.

This result also implies Rossman’s optimal lower bound on the size of any depth-d AC0-formula
computing parity [Comput. Complexity, 27(2):209–223, 2018.]. Our result implies tight correlation
bounds against parity, tight Fourier concentration results and improved #SAT algorithm for AC0-
formulae.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases AC0 circuits, AC0 formulae, criticality, switching lemma, correlation bounds

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.19

Related Version arXiv Version: https://arxiv.org/abs/2212.08397

Funding Research supported by the Department of Atomic Energy, Government of India, under
project 12-R&D-TFR-5.01-0500.
Prahladh Harsha: Research supported in part by the Google India Research Award.
Tulasimohan Molli: Research partially supported through the MATRICS grant MTR/2019/001226
(PI: Jaikumar Radhakrishnan) of the Science and Engineering Research Board (SERB), Department
of Science and Technology, Government of India.

Acknowledgements The first and the second authors spent several years thinking about this problem
and we are indebted to several people along the way. First and foremost, we thank Jaikumar
Radhakrishnan and Ramprasad Saptharishi for spending innumerable hours in the various stages
of this project going over several failed attempts and potential proofs and giving us very helpful
feedback along the way. We are grateful to Ben Rossman for discussions in the early stages of this
project as well as pointing out an error in the previous version of this proof. We would also like to
thank Srikanth Srinivasan, Siddharth Bhandari, Yuval Filmus and Mrinal Kumar for their comments
and feedback.

© Prahladh Harsha, Tulasimohan Molli, and Ashutosh Shankar;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 19; pp. 19:1–19:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:prahladh@tifr.res.in
https://www.tifr.res.in/~prahladh/
https://orcid.org/0000-0002-2739-5642
mailto:tulasimohanm@gmail.com
https://sites.google.com/view/tulasimohanmolli/home
mailto:ashushankar98@gmail.com
https://sites.google.com/view/ashutoshs
https://doi.org/10.4230/LIPIcs.CCC.2023.19
https://arxiv.org/abs/2212.08397
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Criticality of AC0-Formulae

1 Introduction

Understanding the power of various models of computation is the central goal of complexity
theory. With respect to small-depth AND-OR circuits, the early works of Furst, Saxe and
Sipser [4], Sipser [15], Ajtai [1], Yao [18] and Håstad [5] using random restrictions and
Razborov [9] and Smolensky [16] using the polynomial method laid out a promising direction.

Furst, Saxe and Sipser [4] and Ajtai [1] independently proved that the parity function
requires super-polynomial sized constant depth AND-OR circuits to compute it. This was
then later improved by Yao [18] and Håstad [5] who proved that any depth-(d + 1), AND-OR
circuit computing parity on n bits requires size 2nΘ(1/d) . The pièce de résistance of these
results is the switching lemma method introduced by Furst, Saxe and Sipser [4]. Informally
stated, it states that any k-DNF1 reduces (aka switches) to a low-width CNF with high
probability, when acted upon by a p-random restriction. Very soon (in Håstad’s paper
itself [5]), it was discovered that it was more convenient and useful to state the switching
lemma in terms of the depth of decision trees. This leads us to Håstad’s switching lemma,
one of the most celebrated theorems in theoretical computer science. Let f be a k-DNF
and Rp denote the distribution of p-random restrictions (p ∈ [0, 1]) where each variable
independently is left unrestricted with probability p and otherwise set uniformly to 0 or 1.
Then,

Pr
ρ∼Rp

[DTdepth(f |ρ) ≥ s] ≤ (5pk)s .

Despite the immense success of these methods in proving optimal lower bounds for
small-depth AND-OR circuits and related models, they did not help in understanding limits
of considerably stronger computational models. It was soon discovered that “other techniques”
are needed to tackle these stronger models and this was made formal in the natural proof
approach by Razborov and Rudich [11]. About a decade ago, interest in an improved
switching lemma was revived while trying to understand optimal correlation bounds of small
depth AND-OR circuits with the parity function. While the early results of Ajtai [1] were
only able to show a correlation bound of exp(−Ω(n1−ε)), Beame, Impagliazzo and Srinivasan
[3] proved a considerably smaller correlation bound of exp(−Ω(n/22d(log S)4/5)) for depth-d
AND-OR circuits of size S with the parity function over n bits. This was then improved by
Impagliazzo, Matthews and Paturi [7] and Håstad [6] who proved the optimal correlation
bound of exp(−Ω(n/(log S)d)) for depth-(d + 1) AND-OR circuits of size S with the n-bit
parity function. Håstad proved this optimal correlation bound by proving the multi-switching
lemma, a significant strengthening of his earlier switching lemma. The multi-switching lemma
is best described in terms of criticality, a notion introduced subsequently by Rossman [14].

The criticality of a Boolean function f : {0, 1}n → {0, 1} is the minimum λ ≥ 1 such that

Pr
ρ∼Rp

[DTdepth(f |ρ) ≥ s] ≤ (pλ)s.

Thus, Håstad’s switching lemma in terms of criticality states that k-DNFs (and k-CNFs) have
criticality O(k). The Multi-switching lemma (stated using Rossman’s reformulation in terms
of criticality [12, 14]) states that a depth-(d + 1) AND-OR circuit of size S has criticality
O(log S)d. Bounds on criticality besides implying optimal correlation bounds against parity
yield improved decision tree size bounds, ℓ2 and ℓ1-Fourier concentration bounds (as noted
by Rossman [14]).

1 A k-DNF is a Boolean formula in disjunctive normal form (DNF) in which each term has at most k
literals. A k-CNF is defined similarly.

P. Harsha, T. Molli, and A. Shankar 19:3

AND-OR formulae

What is the criticality of depth-(d+1) AND-OR formulae of size S? Recall that the difference
between circuits and formulae is that gates are allowed to have fan-out more than 1 in circuits
where each gate in a formula has fan-out at most 1. The standard transformation from
depth-(d + 1) AND-OR circuits to depth-(d + 1) AND-OR formulae transforms size-S circuits
to size-Sd formulae. If one believes that the “best” AND-OR formulae for parity is obtained
via the above transformation, then the “expected” bounds for AND-OR formulae would be
the ones for AND-OR circuits with the parameter S replaced by S1/d. This expectation is
substantiated by the following two results of Rossman. Rossman [13] showed that any depth-
(d+1) AND-OR formula (not necessarily regular) that computes the n-bit parity requires size
at least S = 2Ω(d(n

1/d−1)) (corresponding to the analogous result for AND-OR circuits due to
Håstad that S = 2Ω(n

1/d)). In a different work, Rossman [14] showed that if one restricts
to regular formulae, formulae in which all gates at the same height have equal fan-in, then
depth (d + 1) regular AND-OR formulae of size S have criticality O

(
log S1/d

)d = O
(

log S
d

)d

(corresponding to the analogous criticality bound of O (log S)d for AND-OR circuits). Given
these results, Rossman conjectured [14, Conjecture 1] that any (not necessarily regular)

depth (d + 1) AND-OR formula of size S has criticality O
(

log S
d

)d

. This conjecture, if true,
besides proving optimal criticality bounds for AND-OR formulae, would yield a common
strengthening and unification of all the aforementioned results (criticality bounds for regular
AND-OR formulae and arbitrary AND-OR circuits as well as tight AND-OR formula lower
bounds against parity). The main result of this paper is a postive resolution of Rossman’s
conjecture that any (not necessarily regular) depth (d + 1) AND-OR formula of size S has

criticality O
(

log S
d

)d

. More precisely,

▶ Theorem 1.1. Let F be an AND-OR formula of depth d + 1 and size at most S, then for
any p ∈ [0, 1]

Pr
ρ∼Rp

[DTdepth(F |ρ) ≥ s] ≤
(

p ·O

(
32d

(
log S

d
+ 1
)d
))s

.

As an immediate corollary of the above criticality result and [14, Theorem 14], we get
the following results for general AND-OR formulae of depth (d + 1). Rossman had proved
similar results for regular AND-OR formulae of depth (d + 1) [14].

▶ Corollary 1.2. Let f : {0, 1}n → {0, 1} be computable by an AND-OR formula of depth
d + 1 and size at most S. Then
1. Decision tree size bounds: DTsize(f) ≤ O

(
2(1−1/O(1

d
log S)d)n

)
,

2. Correlation bound with parity: Cor(f,⊕n) ≤ O
(

2−n/O(1
d log S)d)

,

3. Degree bounds: Prρ∼Rp
[deg(F |ρ) ≥ s] ≤

(
p ·O

(
32d

(1
d log S + 1

)d
))s

.

4. ℓ2-Fourier concentration (Linial-Mansour-Nisan [8]):
∑
|S|≥k f̂(S)2 ≤ 2e · e−k/O(1

d log S)d

,

5. ℓ1-Fourier concentration (Tal [17]):
∑
|S|=k

∣∣∣f̂(S)
∣∣∣ ≤ O

(1
d log S

)dk.

As indicated before, Theorem 1.1 unifies all previous results for AC0 circuits and formulae
in this context. It also yields satisfiability results for AC0-formulae along the lines of the
Impagliazzo, Matthews and Paturi result [7] (see Section 6 for more details).

CCC 2023

19:4 Criticality of AC0-Formulae

Proof Overview
The proof of Theorem 1.1 is an adaptation of Rossman’s proof in the regular case [14] to
the general setting. Like in Rossman’s proof in the regular setting, we construct a canonical
decision tree (CDT) for the depth-d formula. This CDT under a restriction is constructed
in an inductive fashion by progressively refining the restriction. The reason we get the
right bound for AND-OR formulae is because our proof (in particular, the construction of
the CDT) is top-down respecting the structure of the formula. This is also the case with
Rossman’s formula bound [13] and Rossman’s proof in the regular setting [14]. Note that the
CDT constructed from the multi-switching lemma is bottom-up on the other hand. Unlike
Rossman’s proof [14], our proof can handle general formulae and not just regular ones, due
to the use of downward-closed sets. We explain this in more detail below.

The main theorem is proved via the following statement (see Lemma 5.6 for the exact
statement), which we prove inductively. For any s-length bitstring a ∈ {0, 1}s,

Pr
ρ

[There exists path in CDT(F, ρ) labelled by instruction-set a | ρ ∈ T] ≤ (p · λ(F))s,

where T is any family of downward-closed set of restrictions and λ(F) is the desired criticality
bound that we wish to prove. The crucial difference from Rossman’s proof in the regular
setting is we prove the above statement subject to ρ belonging to any downward-closed set.
As in Rossman’s proof, the event “There exists a path” is broken into several subevents, Et

for t ranging over a polynomially large set and each of the events Et is typically a conjunction
of 3 events At,Bt and Ct. The required probability can then bounded by an expression as
follows:∑

t

Pr [At ∩ Bt ∩ Ct | T] =
∑

t

Pr [At | T] · Pr [Bt | At ∩ T] · Pr [Ct | At ∩ Bt ∩ T] .

The advantage of using conditioning is that some of these intermediate probabilities (c.f.,
Pr [Ct | At ∩ Bt ∩ T]) can be bound using the inductive assumption provided the conditioned
events are themselves downward-closed. The events At and Bt are chosen such that this is
indeed the case. The sum over t is then handled via convexity. The use of downward-closed
sets to prove the inductive claim is inspired from Håstad’s use of downward-closed sets in
his proof of the multi-switching lemma [6]. However, the situation for depth-d formulae is
considerably more involved than the DNF/CNF setting and both the choice of the events as
well as bounding these conditional probabilities require considerable care and subtlety (see
Section 4 and Claim 5.8). The use of downward-closed sets considerably simplifies the proof
and yields an arguably simpler proof of the criticality bound, even in the regular setting [14].
While our theorem yields both the criticality result for AND-OR circuits [6] and Rossman’s
optimal AND-OR formula lower against parity [13], the proof is quite different from the
corresponding proofs and more along the lines of Rossman’s proof in the regular setting with
the crucial additional element being the use of downward-closed sets.

Organization
The rest of the paper is organized as follows. We begin with some preliminaries in Section 2,
where we recall the standard notions of restrictions, decision trees and introduce variants of
these notions such as restriction trees etc., which will be of use later. We then define canonical
decision trees for depth-d formulae in Section 3, identical to the corresponding notion in the
regular setting due to Rossman [14]. We then demonstrate the downward-closedness of some
properties related to CDTs in Section 4 and finally prove the main theorem in Section 5. In
Section 6, we use the main lemma to give a randomized #SAT algorithm for arbitrary AC0

formulae generalizing the corresponding algorithm due to Rossman in the regular setting [14].

P. Harsha, T. Molli, and A. Shankar 19:5

2 Preliminaries

For a positive integer n ∈ N, [n] refers to the set {1, 2, . . . , n}. All logarithms in this paper
are to base 2.

While studying distributions D over some finite set Σ, we will use bold letters (i.e., σ)
to distinguish a random sample according to D from a fixed element σ ∈ Σ. Given any
distribution D on a finite set Σ, we let µD : S → [0, 1] denote the corresponding probability
mass function (i.e., µD(σ) = Prσ∼D [σ = σ]). We will drop the subscript D from µD typically.

We begin by recalling the definition of an AC0-formula.

▶ Definition 2.1 (AC0-formulae). Let d be a non-negative integer. Let V be a set of variable
indices. An AC0-formula F of depth-d over variables V is (inductively) defined as follows: A
depth-0 formula is the constant 0 or 1 or a literal xv or ¬xv where v is a variable index. For
d ≥ 1, a depth-d AC0-formula is either an OR-formula or an AND-formula which are defined
below. A depth-d OR-formula is of the form F1 ∨ F2 ∨ · · · ∨ Fm where the Fi’s are either
depth-d′ AND-formulae for some 1 ≤ d′ < d or depth-0 formulae. A depth-d AND-formula
F = F1 ∧ F2 · · · ∧ Fm is defined similarly.

Depth-1 AND-formulae and OR-formulae are usually referred to as terms and clauses
respectively, while depth-2 AND-formulae and OR-formulae are called DNFs and CNFs
respectively.

The size of a formula is given by the number of depth-1 sub-formulae2. More precisely,
size(F) is inductively defined as

size(F) :=

0 if depth(F) = 0
1 if depth(F) = 1∑m

i=1 size(Fi) if F = F1 ∨ F2 ∨ · · · ∨ Fm or F1 ∧ F2 · · · ∧ Fm.

The variable index set V of a given formula F unless otherwise specified is always assumed
to be [n].

We will sometimes identify a formula F with the Boolean function it computes. We say
“F ≡ 1” if this Boolean function is a tautology and “F ≡ 0” if it is a contradiction.

2.1 Restrictions, Decision Trees and Restriction Trees
We will be chiefly concerned with restrictions.

▶ Definition 2.2 (restriction). Given a variable index set V , a restriction ρ is a function
ρ : V → {0, 1, ∗} or equivalently a partial function from V to {0, 1}. We refer to the domain
of this partial function as dom(ρ) and the remaining set of unrestricted variables, namely
V \ dom(ρ), as stars(ρ).

We say that two restrictions ρ1 and ρ2 are consistent if for every v ∈ dom(ρ1)∩ dom(ρ2),
we have ρ(v1) = ρ(v2).

We can define a partial ordering among restrictions as follows: we say ρ1 ≼ ρ2 if (1)
stars(ρ1) ⊆ stars(ρ2) and (2) ρ1 and ρ2 are consistent. In words, ρ1 only “sets more variables”
than ρ2. Sometimes, we will only be interested in this order with respect to a particular subset
T of the variable index set V . In this case, we say

ρ1 ≼T ρ2 if (1) stars(ρ1) ∩ T ⊂ stars(ρ2) ∩ T and (2) ρ1 and ρ2 are consistent.

2 Traditionally, the size is defined by the number of leaves or depth-0 formulas but for this paper, it would
be more convenient to work with this definition.

CCC 2023

19:6 Criticality of AC0-Formulae

Given a formula F and a restriction ρ, the restricted formula F |ρ refers to the formula
obtained by relabeling literals involving variable indices in dom(ρ) according to ρ (we make
no further simplification to the formula). Given two consistent restrictions ρ1, ρ2, F |ρ1,ρ2

refers to the formula (F |ρ1)|ρ2 (which is identical to (F |ρ2)|ρ1).

It will sometimes be convenient to consider an ordering among the variables in the domain
of a restriction, especially when studying restrictions arising from decision trees.

▶ Definition 2.3 (ordered restriction). An ordered restriction on a variable set V is a sequence
of the form α = (xv1 → b1, . . . , xvt

→ bt) where t ∈ N, bi ∈ {0, 1}, and v1, . . . , vt are distinct
elements of V . We will use dom(α) to refer to the set {v1, . . . , vt}. (We will typically use α

or β for ordered restrictions.)
Any ordered restriction inducesrestriction ρ with dom(ρ) = {v1, . . . , vt}. Similarly, given

a restriction ρ on V , and an ordering on dom(ρ), we have a natural representation of ρ as
an ordered restriction on V .

The following is the standard definition of a decision tree except that we allow the internal
nodes of the tree to have (out-)degree either 1 or 2.

▶ Definition 2.4 (decision tree). A decision tree is a a finite rooted binary tree where
each internal node is labelled by a variable, has one or two children and the edges to its
children have distinct labels from the set {0, 1},
the leaves are labelled by 0 or 1, and
the variables appearing in any root-to-leaf path are distinct.

For each node v (including leaf node), the root-to-node path in the decision tree naturally
corresponds to an ordered restriction, which we denote by αv (this restriction is non-trivial
for every non-root node).

The depth of a decision tree Γ, denoted by depth(Γ), is defined as the maximum number
of degree-2 nodes along any root-to-leaf path in T . Note that this may be shorter than the
length of the corresponding ordered restriction, which includes the degree-1 nodes also.

A decision tree is said to compute a Boolean function F : {0, 1}V → {0, 1} under a
restriction ρ if the following conditions hold

any internal vertex labelled by a variable index, say v, that is in dom(ρ) has degree one,
with the edge to the only child labelled with ρ(v),
any internal vertex labelled by a variable index in stars(ρ) has degree two and
for every leaf v, we have F |ρ,αv

≡ label(v).

An “honest-to-god” decision tree (with all internal nodes having degree two) can be
obtained from the above decision tree by contracting the degree-1 edges. However, we will
find it convenient to keep this information about degree-1 nodes while constructing decision
trees for functions under a restriction. Note that if a decision tree T computes a function F

under the restriction ρ, then the contracted decision tree T ′ computes the function F |ρ.
To prove the criticality bound for a given formula F , we construct a canonical decision

tree (CDT) for F under a (random) restriction ρ. This CDT is constructed in an inductive
fashion by constructing the CDT’s for F ’s sub-formulae first and then using these CDT’s to
construct F ’s CDT. While doing so, we progressively refine the restriction so that the final
restriction under which the CDT is constructed is the target restriction ρ. This naturally
leads us to the notion of restriction trees, which is essentially a family of restrictions, one for
each sub-formula of a given formula, such that the restrictions get refined as we move from
child to parent in the formula tree.

P. Harsha, T. Molli, and A. Shankar 19:7

▶ Definition 2.5 (restriction tree). Let F be a formula on the variable index set V and TF the
set of all sub-formulae of F . The elements of TF have a natural bijection with the underlying
formula tree of F . A restriction tree for F , denoted by ρ̃, associates a restriction with each
node in TF , formally ρ̃ : TF → {0, 1, ∗}V , such that for G, H ∈ TF where G is a sub-formula
of H, we have ρ̃(H) ≼ ρ̃(G). In other words, the sequence of restrictions on any leaf-to-root
path sets increasingly more variables as we approach the root.

For any sub-formula G of F , we let ρ̃|G denote the restriction of ρ̃ to the set TG of
sub-formulae of G.

We will use the “tilde” notation to distinguish between restrictions ρ and restriction trees
ρ̃. Observe that, by definition, every restriction ρ in a restriction tree ρ̃ corresponding to a
formula F satisfies ρ ≼ ρ̃(F) and are hence consistent with each other.

2.2 Representation of restrictions and restriction trees
Recall that a restriction ρ is a partial function from the set V of variables to {0, 1}. Sometimes
(especially when dealing with random restrictions), it will be convenient to work with a
(redundant) representation of ρ given by the pair (σ, S) where σ : V → {0, 1} is a global
assignment consistent with ρ and S = stars(ρ). Note this is representation is redundant as
we only need σ|S to specify ρ. When sampling restrictions, it will be easier to sample the
pair (σ, S) from some distribution and set ρ := ρ(σ,S) to be the restriction given by

ρ(σ,S)(v) =
{

σ(v) if v /∈ S,

∗ if v ∈ S.

This representation naturally extends to restriction trees ρ̃ : TF → {0, 1, ∗} which are
given by a pair (σ, S̃) where σ : V → {0, 1} is a global assignment consistent with all the
restrictions in the restriction tree and S̃ : TF → 2V is defined as S̃(G) := stars(ρ̃(G)).
Notice that any S̃ satisfies the monotonicity property that if G is a sub-formula of H in
TF , we have S̃(H) ⊆ S̃(G). Given any such S̃ that satisfies the monotonicity property and
a global assignment σ : V → {0, 1}, the corresponding restriction tree ρ̃(σ,S̃) is given by
ρ̃(σ,S̃)(G) := ρ(σ,S̃(G)) for all G ∈ TF .

3 Canonical decision tree

In this section, we construct a canonical decision tree (CDT) for a formula F . This definition
is identical to Rossman’s definition [14, Definition 19] (except that Rossman defines it
completely in terms of ordered restrictions while we define it using decision trees which have
both degree-1 and degree-2 internal nodes).

Let us first recall the CDT construction for DNFs in the proof of Håstad’s classical
switching lemma [2, 10, 6]. Let F = T1 ∨ · · · ∨ Tm be a DNF and ρ a restriction on the
variables of F . To construct CDT(F, ρ) we do the following:
1. Find the first term T (from left to right), not forced to 0 by ρ. If there is no such term,

return the tree comprising of a single leaf node labelled 0.
2. If T |ρ ≡ 1, return the tree comprising of a single leaf node labelled 1.
3. Let Y be the set of ρ-unrestricted variables in T . Let Γ be the CDT(T, ρ) constructed

from the complete balanced binary tree of depth |Y | indexed by the variables of Y and
labelling the 2|Y | leaves appropriately.

4. For each leaf v of Γ, inductively replace v with CDT(F |αv , ρ) where αv is the (ordered)
restriction corresponding to leaf v.

CCC 2023

19:8 Criticality of AC0-Formulae

x1

0 x2

0 x3

0 1
(a) Optimal DT for x1 ∧ x2 ∧ x3.

x1

x2 x2

x3 x3 x3 x3

0 0 0 0 0 0 0 1
(b) Completed balanced DT for x1∧x2∧x3.

Figure 1 Illustration of DT(x1 ∧ x2 ∧ x3) used in the CDT construction in the proof of Håstad’s
Switching Lemma.

The construction of CDTs for depth-d formulae will be inspired by the above CDT
construction for DNFs. Note that in Item 3, we used a complete binary tree instead of the
best decision tree for the term T (see Figure 1). The rationale for doing this is because while
proving the switching lemma, we wanted to attribute a 0-leaf in Γ to a 1-leaf which shares
the same set of variables. We will need a similar property in our construction. To this end,
we perform a balancing operation which ensures that every 0-leaf has a corresponding 1-leaf
such that the two associated ordered restrictions share the same set of variables (this is the
0-balancing operation defined below. The 1-balancing operation is similar with the roles of 0
and 1 reversed).

3.1 0-Balancing and 1-Balancing
Given a decision tree Γ for a Boolean function F , the 0-balanced version Γ′ is constructed
as follows. We first pull-up the zeros, in other words, if there is any subtree all of whose
leaves are labelled 0, we contract the entire subtree to a single leaf node labelled 0. The
construction then proceeds in d rounds where d is the length of the longest root-to-leaf path
in Γ (note this is not necessarily the depth of Γ due to the presence of degree-1 nodes). This
process leaves the 1-leaves in Γ unaltered. As we proceed, we also construct a map assoc
which associates each leaf (both 0 and 1 leaves) in Γ′ with a 1-leaf in Γ′. To begin with, this
map assoc associates each 1-leaf to itself (i.e, if u is a 1-leaf, then assoc(u) = u).

In the ith round, we consider all 0-leaves in Γ at distance (d− i) from the root. Let u be
one such 0-leaf and Tu the subtree rooted at the sibling of u. Observe that Tu necessarily
has some leaf labelled 1, else the entire subtree rooted at the parent of u would have been
contracted to a single leaf node labelled 0. We then mirror the entire subtree Tu at the leaf
node u and relabel all the leaves of this mirrored subtree with 0. These are the 0-leaves
of Γ′. For each such newly created 0-leaf w (in the mirrored subtree Tu), let w′ be the
corresponding leaf in the tree Tu. Set assoc(w)← assoc(w′).

See Figure 2 for an illustration of the 0-balancing process. Observe that if we 0-balance
the best decision tree for a term, we obtain the complete balanced tree (see Figure 1).

At the end of this process, observe that Γ is transformed into another decision tree Γ′
such that the following hold.

If Γ computes a function F under some restriction ρ, so does Γ′.
The 1-leaves in Γ′ are in 1-1 correspondence with the 1-leaves in Γ. Furthermore, the
two 1-leaves (the one in Γ and its associated 1-leaf in Γ′) correspond to identical ordered
restrictions.
Every 0-leaf w in Γ′ has an associated 1-leaf in Γ′ given by assoc(w). Furthermore,
the corresponding ordered restrictions (namely αΓ′

w and αΓ′

assoc(w)) share the same set of
variables which are queried in the same order along both these root-to-leaf paths.

P. Harsha, T. Molli, and A. Shankar 19:9

x1

0 x5

x2

0 1

0

(a) initial.

x1

0 x5

x2

0 1

0

w1 w2

(b) first round
assoc(w1)← w2.

x1

0 x5

x2

0 1

x2

0 0
w3

(c) second round
assoc(w3)←
assoc(w1)← w2.

x1

x5 x5

x2

0 1

x2

0 0

x2 x2

0 0 0 0
w7

(d) third round
assoc(w7)← assoc(w3)←
assoc(w1)← w2.

Figure 2 Illustration of 0-balancing process.

Let us now try to understand what are the 0-leaves constructed in the 0-balancing process.
Let w be any 0-leaf in Γ′ and w′ = assoc(w) be the corresponding 1-leaf. Furthermore,
let α := αΓ′

w = (v1 7→ c1, . . . , vt 7→ ct) and β := αΓ′

w′ = (v1 7→ d1, . . . , vt 7→ dt). First, we
must have that dom(α) = dom(β) and that the variables in this common domain must be
queried in the same order. Furthermore, whenever α differs from β, the ordered restriction
formed by following β up to the step prior to this particular point of disagreement and then
taking a step according to α must cause the formula F |ρ to evaluate to 0. This occurs as
the mirroring operation is performed only at such nodes. More precisely, let αi denote the
ordered restriction (v1 7→ d1, v2 7→ d2, . . . , vi−1 7→ di−1, vi 7→ ci). Note, αi is the ordered
restriction of length i which is identical to β in the first i− 1 variables and then is similar to
α on the ith variable. The ordered restrictions α and β satisfy the following:

∀i ∈ [t], ci ̸= di =⇒ F |ρ,αi ≡ 0.

Furthermore, the converse also holds. That is, let β correspond to an ordered restriction of
some 1-leaf in Γ′, then the ordered restriction α (with the same domain and same order of
querying) corresponds to a 0-node in Γ′ only if the above condition holds.

Since this is an important point, we summarize the above discussion in the following
definition and claim.

▶ Definition 3.1. Let F be a Boolean function, ρ a restriction and α = (v1 7→ c1, . . . , vt 7→
ct), β = (v1 7→ d1, . . . , vt 7→ dt) be two ordered restrictions (on the same domain and order
of querying). We say α ∈ ASSOC0(F, ρ, β) iff

∀i ∈ [t], ci ̸= di =⇒ F |ρ,αi ≡ 0

where αi refers to the ordered restriction (v1 7→ d1, v2 7→ d2, . . . , vi−1 7→ di−1, vi 7→ ci).

▷ Claim 3.2. Let Γ compute the formula F under the restriction ρ and Γ′ be the 0-balanced
version of Γ. Let w be a 1-leaf in Γ (and hence also Γ′) and β be the corresponding ordered
restriction. Then α is an ordered restriction corresponding to a 0-leaf w′ with assoc(w′) = w

iff α ∈ ASSOC0(F, ρ, β).

1-balancing is defined similarly with the roles of 0 and 1 reversed.

3.2 CDT Definition
We are now ready to define the canonical decision tree (CDT). As indicated before, this
definition is identical to [14, Definition 19].

CCC 2023

19:10 Criticality of AC0-Formulae

▶ Definition 3.3. Given a formula F on variable set V and associated restriction tree
ρ̃ : TF → {0, 1, ∗}V , we define the canonical decision tree, denoted by CDT(F, ρ̃), inductively
(on depth and the number of variables) as follows:
1. If F is a constant 0 or 1, then CDT(F, ρ̃) is the unique tree with a single leaf node labelled

by the appropriate constant.
2. If F is a literal x or ¬x, then

if x is set by ρ̃(F) to a constant, then CDT(F, ρ̃) is the unique tree with a single node
labelled by the appropriate constant.
Otherwise if x is unset by ρ̃(F), then CDT(F, ρ̃) is the tree with 3 nodes where the root
is labelled by x and the two children are labelled appropriately by 0 or 1.

3. If F = F1 ∨ · · · ∨ Fm, then
If F1|ρ̃(F) ≡ F2|ρ̃(F) ≡ · · · ≡ Fm|ρ̃(F) ≡ 0, then CDT(F, ρ̃) is the unique tree with a
single leaf node labelled 0.
Else, there is some 1 ≤ ℓ ≤ m such that F1|ρ̃(F) ≡ · · · ≡ Fℓ−1|ρ̃(F) ≡ 0 and Fℓ|ρ̃(F) ̸≡
0.
If Fℓ|ρ̃(F) ≡ 1, then CDT(F, ρ̃) is the unique tree node with a single leaf node labelled
1.
If Fℓ|ρ̃(F) ̸≡ constant, then do the following steps to construct CDT(F, ρ̃)

a. Let Γ be CDT(Fℓ, ρ̃|Fℓ
) constructed inductively (since depth(Fℓ) < depth(F)).

b. Apply the restriction ρ̃(F) to Γ to get Γ′ and remove all the sub-trees which are
inconsistent with ρ̃(F)3.

c. 0-balance Γ′ to get Γ′′.
d. For each 0-leaf u of Γ′′, replace u by CDT(F |αu

, ρ̃) where αu is the ordered restriction
corresponding to u in Γ′′.

The case when F = F1 ∧ · · · ∧ Fm is a conjunction of sub-formulas is handled similarly
(with the roles of 0 and 1 reversed).

Given any s-long bit-string a = (a1, a2, . . . , as), we can walk along the CDT using a as
an “instruction set”. In other words, we walk from the root to a node of the tree by using
a to make choices at the degree-2 nodes and otherwise following the degree one-edges. If
this walks ends at a node w (possibly leaf node) of the CDT, we denote the corresponding
ordered restriction αw by CDT(a)(F, ρ̃), else CDT(a)(F, ρ̃) is undefined. When this node is a
leaf node, then it is labelled either 0 or 1. In this case, we further enhance this definition as
follows.

▶ Definition 3.4. Let F be a formula and ρ̃ an associated restriction tree. For any bit-string
a = (a1, . . . , as) and z ∈ {0, 1}, define

CDT(a)
z (F, ρ̃) =

{
αw if walk according to instruction set “a” ends on leaf w labelled b,
⊥ otherwise.

3.3 Unpacking the CDT
Fix a formula F on n variables and an associated restriction tree ρ̃ : TF → {0, 1, ∗}n. Let
a = (a1, . . . , as) be an s-bit-string with s ≥ 1. Let us assume F = F1 ∨ F2 ∨ · · · ∨ Fm is a
disjunction. In this section, we try to understand when CDT(a)

0 (F, ρ̃) exists.

3 This step introduces degree 1 nodes in the decision tree.

P. Harsha, T. Molli, and A. Shankar 19:11

x1

x3 x5

0 x4 x2 0

0 1 0 1
(a) original DT.

x1

x3 x5

0 x4 x2 0

0 0 1

(b) x4 ← 0.

x1

x5 x5

x2

0 1

x2

0 0

x2 x2

0 0 0 0

x1

0 x5

x2

0 1

0

(c) 0-balancing.

Figure 3 Illustration of Items 3a–3c in CDT construction.

Suppose CDT(a)
0 (F, ρ̃) exists and is the ordered restriction α. Then, the following must

be true.
There exists a unique ℓ ∈ [m] such that for all ℓ′ < ℓ, we have Fℓ′ |ρ̃(F) ≡ 0 and
Fℓ|ρ̃(F) ̸≡ constant.
Let Γ be CDT(Fℓ, ρ̃|Fℓ

). Let Γ′ be the tree obtained by restricting Γ by ρ̃(F) and Γ′′ be
the 0-balancing of Γ′. There must be some 1 ≤ r ≤ s such that, a walk to a leaf of Γ′′
using instruction set a≤r leads us to a leaf v′ in Γ′′. Let α′ be the ordered restriction
corresponding to leaf v′ (which ought to be a prefix of α) .
CDT(a>r)

0 (F |α′ , ρ̃) exists, and is α′′ say. In that case, α = (α′, α′′).

Let us peer deeper into the balancing operation. Since Γ′′ is the 0-balancing of Γ′, we must
have that assoc(v′) = u for some 1-leaf u of Γ′′ and this u is a 1-leaf of Γ = CDT(Fℓ, ρ̃|Fℓ

) as
well. Let β be the ordered restriction corresponding to u in Γ′′. In fact, β must be consistent
with ρ̃(F) as this path in CDT(Fℓ, ρ̃|Fℓ

) = Γ survived in Γ′ as well. Thus, there is some
instruction set b ∈ {0, 1}t, for some t ≥ r, such that CDT(b)

1 (Fℓ, ρ̃|Fℓ
) = β.

Let us focus on the differences between the ordered restriction α′ and β. We know there
were t degree-2 nodes on the path to β in CDT(Fℓ, ρ̃ℓ), and there were r degree-2 nodes on
the path to α′ in Γ′′. Thus, among the t degree-2 nodes on the path to β, we must have that
t− r of them belong to dom(ρ̃(F)) (with β being consistent with ρ̃(F)) and the path to α′

uses a≤r as instructions for the other r nodes (instead of whatever route was taken by the
path to β).

CCC 2023

19:12 Criticality of AC0-Formulae

We summarize this discussion in the following lemma. We will be using this lemma for a
random restriction tree ρ̃ (chosen according to a suitable distribution). To distinguish the
quantities that depend on this random variable from the rest, we use bold font to indicate
all the quantities (including ρ̃ itself) that are functions of ρ̃.

▶ Lemma 3.5 (Unpacking CDT(a)
0 (F, ρ̃)). Let F = F1 ∨ · · · ∨ Fm be a formula and ρ̃ : TF →

{0, 1, ∗}n an associated restriction tree. Let s ≥ 1 and a ∈ {0, 1}s.
Then CDT(a)

0 (F, ρ̃) exists if and only if there exist
ℓ ∈ [m]
non-negative integer r ∈ [s],
non-negative integer t ≥ r

a bit-string b ∈ {0, 1}t and
Q ∈

([t]
r

)
such that the following three conditions A,B, C are met.
A(ℓ, t, b):(i) Fℓ′ |ρ̃(F) ≡ 0 for all ℓ′ < ℓ,

(ii) CDT(b)
1 (Fℓ, ρ̃|Fℓ

) exists (and is β say).
(iii) β is consistent with ρ̃(F),

B(ℓ, t, b, r, Q, a≤r):(i) Q identifies stars(ρ̃(F)) within dom(β) ∩ stars(ρ̃(Fℓ)).
(ii) Let α′ is the ordered restriction obtained by modifying β by replacing the assignment

of the r variables in dom(β) ∩ stars(ρ̃(Fℓ)) identified by Q by a≤r. We denote this
process as “α′ stars ρ̃(Fℓ)←−−−−−−−

Q←a≤r

β”. Then α′ ∈ ASSOC0(Fℓ, ρ̃(F), β)

C(ℓ, t, b, r, Q, a): CDT(a>r)
0 (F |α′ , ρ̃) exists (is α′′ say).

Furthermore, when CDT(a)
0 (F, ρ̃) exists, we have CDT(a)

0 (F, ρ̃) = (α′, α′′).

When clear from context, we will drop the arguments ℓ, t, b, r, Q, a from the properties
A,B and C.

4 Downward closure property

Let ρ, ρ′ be two restrictions on the variable set V and let T ⊆ V any subset of the variables.
Recall that we say that ρ′ ≼T ρ if (1) stars(ρ′) ∩ T ⊆ stars(ρ) ∩ T and (2) ρ1 and ρ2 are
consistent. We say that a set F of restrictions is downward-closed with respect to the set of
variables T if the following holds for any pair of restrictions ρ, ρ′

ρ ∈ F and ρ′ ≼T ρ =⇒ ρ′ ∈ F .

We now extend this definition of downward-closed sets to restriction trees.

▶ Definition 4.1 (downward-closed set of restriction trees). Let F be a formula on the variable
set V and ρ̃, ρ̃′ : TF → {0, 1, ∗}V be two associated restriction trees. Let S ⊆ V . We say
ρ̃′ ≼S ρ̃ iff for all G ∈ TF , we have ρ̃′(G) ≼S ρ̃(G).

We call a set T of restriction trees downward-closed with respect to the variable set S if
the following holds for any pair of restriction trees

ρ̃ ∈ T and ρ̃′ ≼S ρ̃ =⇒ ρ̃′ ∈ T .

If S = V (the full set of variables), then we drop the subscript S in the above definitions.

It is evident that if T and T ′ are two downward-closed set of restriction trees with respect to
a variable set, so is their intersection. The key property that enables our proof of the main
lemma is the following downward-closure property.

P. Harsha, T. Molli, and A. Shankar 19:13

▶ Lemma 4.2. Let F = F1 ∨ F2 ∨ · · · ∨ Fm be a formula on variable set V and ρ̃ : TF →
{0, 1, ∗}|V | be an associated restriction tree. Let s ∈ Z>0, a ∈ {0, 1}s and α be an ordered
restriction such that

CDT(a)
0 (F, ρ̃) = α.

Suppose ρ̃′ : TF → {0, 1, ∗}|V | is another restriction tree satisfying
ρ̃′ ≼ ρ̃ and
ρ̃′(G)|dom(α) = ρ̃(G)|dom(α) for all G ∈ TF ,

then CDT(a)
0 (F, ρ̃′) = α.

Similarly, when F = F1 ∧ F2 ∧ · · · ∧ Fm, the same holds for “CDT(a)
1 (F, ρ̃) = α”.

Note that the lemma implies that the set TF,a,α := {ρ̃ : CDT(a)
0 (F, ρ̃) = α} is downward-closed

with respect to the variable set V \ dom(α).

Proof. We are given that ρ̃′ and ρ̃′ behave identically on dom(α), and ρ̃′ only sets more
variables (all of them outside of dom(α)) than ρ̃. The proof is by induction on the depth
and number of variables in the formula.

Base case. The base case is when F |ρ̃(F) is a literal or a constant. The lemma is clearly
true in this case as ρ̃′ only sets more variables than ρ̃ and does not change the variables in
dom(α).

Induction step. Let F be a formula of depth d on the variable set [n]. Assume the lemma
is true for all formulae of either depth less than d or involving less than n variables.

By the Unpacking lemma (Lemma 3.5), we have that CDT(a)
0 (F, ρ̃) = α if and only if

there exist ℓ, r, t, b, Q and ordered restrictions α′, α′′, β such that the following are true.
(i) Fℓ′ |ρ̃(F) ≡ 0 for all ℓ′ < ℓ,
(ii) CDT(b)

1 (Fℓ, ρ̃|Fℓ
) = β,

(iii) β is consistent with ρ̃(F),
(iv) Q identifies stars(ρ̃(F)) within dom(β) ∩ stars(ρ̃(Fℓ)).
(v) α′ ∈ ASSOC0(Fℓ, ρ̃(F), β) where α′

stars ρ̃(Fℓ)←−−−−−−
Q←a≤r

β (i.e., α′ is the ordered restriction

obtained by modifying β by replacing the assignment of the r variables in dom(β) ∩
stars(ρ̃(Fℓ)) identified by Q by a≤r). Note that α′ ∈ ASSOC0(Fℓ, ρ̃(F), β) ensures that
α′ is a 0-path in the decision tree Γ′′ where Γ′′ is defined as follows:

Γ = CDT(Fℓ, ρ̃Fℓ
) Apply ρ̃(F)

⇝ Γ′ 0-balance
⇝ Γ′′.

(vi) CDT(a>r)
0 (F |α′ , ρ̃) = α′′.

(vii) α = (α′, α′′).

We will demonstrate that for the same ℓ, r, t, b, Q and ordered restrictions α′, α′′, β all
the above conditions continue to hold good when ρ̃ is replaced by ρ̃′. This will prove that
CDT(a)

0 (F, ρ̃′) = α.
Item vii is trivially true as this is independent of ρ̃ or ρ̃′. The other conditions are met

for the following reasons. We first observe that since α′ ∈ ASSOC0(Fℓ, ρ̃(F), β), we have
dom(β) = dom(α′) ⊆ dom(α).

Items i and iii continue to hold good when when more variables are set from ρ̃ to ρ̃′.

CCC 2023

19:14 Criticality of AC0-Formulae

Items ii and vi are true when ρ̃ is replaced by ρ̃′ due to the inductive assumption (since
Fℓ is a formula of smaller depth, F |α′ is a formula on fewer variables and ρ̃′ does not
alter the variables in dom(β) = dom(α′) or dom(α′′)).
Since the variables in dom(β) = dom(α′) ⊆ dom(α) are unaltered by ρ̃′, we have

stars(ρ̃(F)) ∩ dom(β) = stars(ρ̃′(F)) ∩ dom(β),
stars(ρ̃(Fℓ)) ∩ dom(β) = stars(ρ̃′(Fℓ)) ∩ dom(β).

Hence, if Q identifies the starred variables stars(ρ̃(F)) within dom(β) ∩ stars(ρ̃(Fℓ)), it
also identifies stars(ρ̃′(F)) within dom(β) ∩ stars(ρ̃′(Fℓ)). Thus, Item iv holds.
As for Item v, since dom(β) ∩ stars(ρ̃(Fℓ)) = dom(β) ∩ stars(ρ̃′(Fℓ)) and α′

stars ρ̃(Fℓ)←−−−−−−
Q←a≤r

β,

we also have α′
stars ρ̃′(Fℓ)←−−−−−−−

Q←a≤r

β. It is now easy to verify from the definition of ASSOC0 (Def-

inition 3.1), if α′ ∈ ASSOC0(Fℓ, ρ̃(F), β), then we also have α′ ∈ ASSOC0(Fℓ, ρ̃′(F), β)
since we are only setting more variables. Thus Item v also holds.

Thus, we have proved the claim. ◀

All of the above works even when dealing with the representation of restrictions given by
pairs (σ, S) (see Section 2.2). In this case, the notion of downward closure is the standard
definition of downward closure of sets. Lemma 4.2 merely re-stated in this language is the
following

▶ Lemma 4.3. Let F = F1 ∨ F2 ∨ · · · ∨ Fm be a formula on variable set V and (σ, S̃) be
a representation of associated restriction tree ρ̃ : TF → {0, 1, ∗}|V | (i.e, ρ = ρ(σ,S̃)). Let
s ∈ Z>0, a ∈ {0, 1}s and α be an ordered restriction such that

CDT(a)
0 (F, ρ̃) = α.

Suppose (σ, S̃′) is a representation of another restriction tree ρ̃′ : TF → {0, 1, ∗}|V | satisfying
S̃′(G) ⊆ S̃(G) for all G ∈ TF and
S̃′(G) ∩ dom(α) = S̃(G) ∩ dom(α) for all G ∈ TF ,

then CDT(a)
0 (F, ρ̃′) = α.

Similarly, when F = F1 ∧ F2 ∧ · · · ∧ Fm, the same holds for “CDT(a)
1 (F, ρ̃) = α”.

We will complete this discussion by extending the definition of downward-close to this
representation of restrictions.

▶ Definition 4.4. Let T be any subset of the variable set V . For any pair of sets S, S′ ⊆ V , we
say that S′ ⊆T S if S′∩T ⊆ S∩T and S′\T = S \T . Similarly, for any pair S̃, S̃′ : TF → 2V ,
we say that S̃′ ⊆T S̃ if for ∀G ∈ TF , S̃′(G) ⊆T S̃(G).

A set of restrictions F ⊆ {0, 1}V ×2V (given by their representations) is downward closed
with respect to variable set T if the following holds for every pair of representations (σ, S)
and (σ′, S′):

(σ, S) ∈ F and S′ ⊆T S and σ|S ≡ σ′|S =⇒ (σ′, S′) ∈ F .

Similarly, a set of restriction trees T (given by their representations) is downward closed
with respect to the variable set T if the following holds for any pair of restriction trees (σ, S̃)
and (σ′, S̃′)

(σ, S̃) ∈ T and S̃′ ⊆T S̃ and σ|
S̃(F)

≡ σ′|
S̃(F)

=⇒ (σ′, S̃′) ∈ T .

Thus, Lemma 4.3 implies that the set TF,a,α := {(σ, S̃) : CDT(a)
0 (F, ρ̃(σ,S̃)) = α} is downward-

closed with respect to the variable set V \ dom(α).

P. Harsha, T. Molli, and A. Shankar 19:15

5 Bounds on criticality

In this section, we prove Theorem 1.1 (the criticality result for AC0 formulae). To this end,
we first define λ(F), the bound on criticality that we eventually prove. We then define a
sampling procedure to sample random restriction trees ρ̃ for a given formula F such that
the marginal distribution ρ̃(F) (i.e, the distribution of the restriction corresponding to the
entire formula) is the standard p-random restriction. Finally, we state and prove the main
inductive lemma (Lemma 5.6) that proves Theorem 1.1.

We begin by defining λ(F) for any AC0-formula.

▶ Definition 5.1 (lambda). For a positive integer S ∈ Z>0 and non-negative integer d ∈ Z≥0,
define

λS,d := 32d+1
(

log S

d
+ 1
)d

= 32d+1
(

log(2d · S)
d

)d

.

Given an AC0 formula F of depth d + 1 and size S, define λ(F) := λS,d+1.

Note, that the above expression simplifies to 32 for depth-1 formulae (i.e., terms and clauses),
where we have used the convention that 0

0 = 1.

▷ Claim 5.2. 8λS,d ≤ λS,d+1

Proof. 8λS,d ≤ 8 · 32d+1
(

log 2d+1S
d

)d

= λS,d+1
4·log 2d+1S

(d+1)d+1

dd ≤ λS,d+1
4

e(d+1)
d+1+log S ≤ λS,d+1. ◁

5.1 Sampling restriction trees
We begin by recalling the definition of the classical p-biased distribution and the p-random
restriction Rp distribution over restrictions.

▶ Definition 5.3 (p-biased distribution). For p ∈ [0, 1] and variable set V , the p-biased
distribution µp(V) is the distribution on the power set 2V where a set S ∈ 2V is sampled as
follows:

For each v ∈ V , independently set “v ∈ S” with probability p.
We will express this succinctly as “S ←p 2V ”.

▶ Definition 5.4 (p-random restriction). For p ∈ [0, 1] and a variable set V , Rp([n]) is
the distribution on representations of restrictions obtained by independently sampling a
uniformly random string σ ← {0, 1}V and a set S ←p 2V and outputting the pair (σ, S).
The corresponding random restriction ρ is given by ρ← ρ(σ,S).

We now extend this definition to distribution over restriction trees. Given a formula F ,
we say that p̃ : TF → [0, 1] is a valid set of probabilities if whenever G is a sub-formula of H,
we have p̃(G) ≥ p̃(H).

▶Definition 5.5 (R̃p-distribution). Let F be a formula on the variable set V and p̃ : TF → [0, 1]
be a valid set of probabilities. The distribution R̃p̃(F) on representations of restriction trees
is the the one obtained from the following sampling algorithm.
1. Choose a uniformly random string σ ← {0, 1}V .
2. For each G ∈ TF , choose independently a random SG ←qG

2V where

qG := p̃(G)− p̃(parent(G))
1− p̃(parent(G)) .

(Here, we follow the convention that p̃(parent(F)) = 0).
Note v /∈ SG with probability (1−p̃(G))/(1−p̃(parent(G))).

CCC 2023

19:16 Criticality of AC0-Formulae

3. For each G ∈ TF , let G0 := G, G1, . . . , Gk := F be the sequence of formulae from G to
the root F in the formula tree TF . Set S̃(G)← SG0 ∪ SG1 ∪ · · · ∪ SGk

.
4. Output the pair (σ, S̃).

The corresponding random restriction tree ρ̃ is given by ρ̃← ρ̃(σ,S̃).
For any p ∈ [0, 1/λ(F)], let R̃p(F) denote the distribution R̃p̃(F) where p̃ is defined as

follows p̃(F) = p and for all G ∈ TF other than F , we have p̃(G) = 1/8λ(G).4

It follows from the definition of R̃p̃(F) that the marginal distribution ρ̃(G) on any
sub-formula G ∈ TF is distributed exactly according to the distribution Rp̃(G).

5.2 Main Lemma
We are now ready to state the main lemma of the paper.

▶ Lemma 5.6. Let d ≥ 0 and F = F1 ∨ F2 ∨ · · · ∨ Fm be an AC0 formula of size S and
depth d + 1 on n variables. Let T be any set of downward-closed set of representations of
restriction trees with respect to the variables of the formula F , then for all integers s ≥ 1
and a ∈ {0, 1}s,

Pr
(σ,S̃)∼R̃p(F)

[
CDT(a)

0 (F, ρ̃(σ,S̃)) exists | (σ, S̃) ∈ T
]
≤ (p · λ(F))s.

The statement for conjunctions F = F1 ∧ F2 ∧ · · · ∧ Fm is identical with CDT(a)
0 replaced by

CDT(a)
1 .

Theorem 1.1 stated in the introduction clearly follows from the above lemma. The above
lemma is stronger than what is needed for Theorem 1.1 as it proves the statement even when
conditioned under any downward-closed set of restriction trees. This stronger statement is
needed for the inductive proof to go through.

Proof. The proof is by induction on the depth d of the formula and the number of variables
in the formula F .

Let us begin with the base case (depth-1 AC0-formulae). The proof of this is similar
to the proof of [6, Lemma 3.4]. The proof of the base case is written in a slightly more
complicated fashion than it needs to be as it then serves as a warmup to one of the key
claims (Claim 5.8) in the proof of the induction step (the base case).

Base case. The base case is when F is a depth-1 formula and we need to bound the
probability by (32p)s since in this case λ(F) = 32. A depth-1 formula is a term or a clause.
Without loss of generality let’s assume that F is a clause of the form x1 ∨ · · · ∨ xm, where
the xi’s are distinct variables.

For a given a ∈ {0, 1}s, let (σ, S̃) be such that “CDT(a)
0 (F, ρ̃(σ,S̃)) exists” and (σ, S̃) ∈ T .

Then there exists a unique subset of variables Q
(a)
(σ,S̃) ⊂ [m] of size s such that S̃(F) ∩ [m] =

Q
(a)
(σ,S̃) and for all variables i ∈ [m] \Q

(a)
(σ,S̃), we have σ(xi) = 0. For any b ∈ {0, 1}s, define

σ(b) to be the global assignment that agrees with σ outside Q
(a)
(σ,S̃) and is equal to b within

Q
(a)
(σ,S̃). Since Q

(a)
(σ,S̃) ⊆ S̃(F) and T is downward-closed, we have that these 2s different

4 For this to be well-defined, we need λ(F) ≥ 8λ(G) for any sub-formula G of F . This follows from
Claim 5.2

P. Harsha, T. Molli, and A. Shankar 19:17

representations (σ(b), S̃) are also in T . Furthermore, since ρ̃(σ,S̃) = ρ̃(σ(b),S̃), we have that
all these 2s representations also satisfy “CDT(a)

0 (F, ρ̃(σ(b),S̃)) exists”. We can hence conclude
that

Pr
(σ,S̃)∼R̃p(F)

[
CDT(a)

0 (F, ρ̃(σ,S̃)) exists | (σ, S̃) ∈ T
]

≤ 2s · Pr
(σ,S̃)∼R̃p(F)

[
CDT(a)

0 (F, ρ̃(σ,S̃)) exists and ∀i ∈ Q
(a)
(σ,S̃), σ(xi) = 1 | (σ, S̃) ∈ T

]
.

(1)

Let Ea =
{

(σ, S̃) : CDT(a)
0 (F, ρ̃(σ,S̃)) exists and ∀i ∈ Q

(a)
(σ,S̃), σ(xi) = 1

}
. We need to

bound the quantity µ(Ea ∩ T)/µ(T). For every (σ, S̃) ∈ Ea ∩ T , define the set N(σ, S̃) as
outlined below.

N(σ, S̃) :=
{

(σ, S̃′) : S̃′ ⊆
Q

(a)
(σ,S̃)

S̃

}
. (2)

(Recall the definition of the notation “S̃′ ⊆T S̃” from Definition 4.4).
It follows from the definition of N(σ, S̃) and the distribution R̃p(F), that

µ(σ, S̃) = ps · µ(N(σ, S̃)). (3)

We now make the following observations about N(σ, S̃).
Since T is downward closed and (σ, S̃) ∈ T , we have N(σ, S̃) ⊆ T .
Exactly one element of N(σ, S̃), namely (σ, S̃), satisfies Ea.
For distinct (σ, S̃), the corresponding N(σ, S̃) are disjoint.

We can now bound Pr [Ea | T] using the above observations as follows:

Pr [Ea | T] = µ(Ea ∩ T)
µ(T) =

∑
(σ,S̃)∈Ea∩T µ(σ, S̃)∑

(σ,S̃)∈Ea∩T µ(N(σ, S̃)) + µ
(
T \

⋃
(σ,S̃)∈Ea∩T N(σ, S̃)

)
≤

∑
(σ,S̃)∈Ea∩T µ(σ, S̃)∑

(σ,S̃)∈Ea∩T µ(N(σ, S̃))
= ps.

Combining the above bound with (1), we thus have

Pr
(σ,S̃)∼R̃p(F)

[
CDT(a)

0 (F, ρ̃(σ,S̃)) exists | (σ, S̃) ∈ T
]
≤ (2p)s,

concluding the base case of the induction.

Induction step. Let us assume without loss of generality that F = F1 ∨ · · · ∨ Fm and the
main lemma holds for all formulae of smaller depth (in particular the Fi’s) and all formulae
with smaller number of variables (in particular F |β for any non-trivial restriction β). By the
Unpacking Lemma (Lemma 3.5) and a union bound we have that

Pr
(σ,S̃)

[
CDT(a)

0 (F, ρ̃(σ,S̃)) exists | (σ, S̃) ∈ T
]
≤

∑
r,ℓ,t,Q,b

Pr
(σ,S̃)

[A ∩ B ∩ C | T] , (4)

where A,B and C are as defined in Lemma 3.5.
For each fixing of ℓ, r, t, b, Q and a, we will bound the summand Pr [A ∩ B ∩ C | T] in the

above expression. Consider a (σ, S̃) ∈ A ∩ B ∩ C ∩ T . Let β = CDT(b)
1 (Fℓ, ρ̃(σ,S̃)|Fℓ

) which is
guaranteed to exist as (σ, S̃) ∈ A. By property B, we have that there exist exactly r variables

CCC 2023

19:18 Criticality of AC0-Formulae

in dom(β) ∩ stars(ρ̃(σ,S̃)|Fℓ
) = dom(β) ∩ S̃(Fℓ) which belong to stars(ρ̃(σ,S̃)) = S̃(F). Let us

refer to this set of variables as Q(σ,S̃). This part of the proof is similar to the base case. For
any b ∈ {0, 1}s, define σ(b) to be the global assignment that agrees with σ outside Q(σ,S̃) and
is equal to b within Q(σ,S̃). Since Q(σ,S̃) ⊆ S̃(F) and T is downward-closed, we have that
these 2r different representations (σ(b), S̃) are also in T . Furthermore, since ρ̃(σ,S̃) = ρ̃(σ(b),S̃),
we have that all these 2r representations also satisfy A ∩ B ∩ C. We can hence conclude that

Pr
(σ,S̃)

[A ∩ B ∩ C | T] ≤ 2r · Pr
(σ,S̃)

[A′ ∩ B ∩ C | T] , (5)

where A′(ℓ, t, b) is a modification of A (with respect to Item iii) as follows:
A′(ℓ, t, b):(i) Fℓ′ |ρ̃(F) ≡ 0 for all ℓ′ < ℓ,

(ii) CDT(b)
1 (Fℓ, ρ̃|Fℓ

) exists (and is β say).
(iii) β is consistent with σ,

We thus, have

Pr
[
CDT(a)

0 (F, ρ̃) exists | (σ, S̃) ∈ T
]
≤

∑
r,ℓ,t,Q,b

2r · Pr
(σ,S̃)

[A′ ∩ B ∩ C | T] . (6)

For each fixed choice r, ℓ, t, b, Q, the summand in the above expression can be factorized as

Pr [A′ | T] · Pr [B | A′ ∩ T] · Pr [C | A′ ∩ B ∩ T] . (7)

The following three claims bound each of the terms in the above product.

▷ Claim 5.7. For a fixed a, ℓ, r, t, b and Q, we have

Pr
(σ,S̃)

[
CDT(a>r)

0 (F |α′ , ρ̃(σ,S̃)) exists | A′(ℓ, t, b) ∩ B(ℓ, t, b, r, Q, a≤r) ∩ T
]
≤ (p · λ(F))s−r.

Proof. We first note that the formula being considered in the above expression, namely F |α′ ,
is itself random since the ordered restriction α′ is random. To deal with this, we prove the
above bound for each fixing of α′. More precisely, we rewrite the above expression as follows
(here we not only fix α′, but also β).

Eα′,β

Pr̃
ρ

[
CDT(a>r)

0 (F |α′ , ρ̃) exists | A′ ∩ B ∩ T ∩ Eα′,β

]
︸ ︷︷ ︸

 ,

where the expectation over α′ and β is over the appropriate marginal distribution and Eα′,β

is the set of representations of restriction trees (σ, S̃) that satisfy α′ = α′ and β = β. We
will prove that for any fixing of α and β, the indicated quantity in the above expression is at
most (p · λ(F))s−r, which would imply the claim.

Consider any fixing (α′, β) of (α′, β). We first observe that since α′ is a non-trivial
ordered restriction (which is true since r ≥ 1), the variable set of the formula F |α′ is less than
that of F and hence we can apply the inductive assumption provided the set A′∩B∩T ∩Eα′,β

is downward closed with respect to the variables of F |α′ . Below, we verify that this is indeed
the case.
A′(ℓ, t, b) ∩ Eα′,β: We will show that each of the 3 items of A′ ∩Eα′,β are downward-closed.

(i). A′i and A′iii are clearly downward-closed.
(ii). A′ii ∩ Eα′,β is the event that “CDT(b)

1 (Fℓ, ρ̃(σ,S̃)|Fℓ
) = β”. This is downward-closed

on the variable set [n] \ dom(β) = [n] \ dom(α′) by Lemma 4.3.

P. Harsha, T. Molli, and A. Shankar 19:19

B(ℓ, t, b, r, Q.a≤r) ∩ Eα′,β: Bi and Bii: Both these conditions continue to hold good as
long as the variables in dom(β) = dom(α′) are unaltered. Since we care only about
downward-closure on the variable set [n]\dom(α′), we are fine (note this is not necessarily
downward-closed on the entire set of variables).

Combined with the fact that T is downward-closed, we have A′ ∩B ∩ T ∩ Eα′,β is downward-
closed on [n] \ dom(α′) and hence by the inductive assumption, we have the required bound.

◁

▷ Claim 5.8. For fixed a, ℓ, r, t, b and Q, we have Pr [B | A′ ∩ T] ≤ (8 · p · λ(Fℓ))r.

As indicated earlier, the proof of this claim is similar in spirit to the proof of the base case,
which in turn is similar to the proof of [6, Lemma 3.4]. Things are however considerably
more involved here and one has to do a careful conditioning argument to obtain the bound.

Proof. It suffices if for each fixed choice of a, ℓ, r, t, b and Q, we prove

Pr
(σ,S̃)∼R̃p(F)

[
Q identifies S̃(F) within dom(β) ∩ S̃(Fℓ) | A′(ℓ, t, b) ∩ T

]
≤ qr,

where q := (p/(1/8λ(Fℓ))) = (8 · p · λ(Fℓ)).
Consider any (σ, S̃) that satisfies the 3 properties (1) Q identifies S̃(F) within dom(β)∩

S̃(Fℓ), (2) A′(ℓ, t, b) and (3) T . As before let Q(σ,S̃) be the set of r variables in S̃(Fℓ)∩dom(β)
which belong to S̃(F). For every such (σ, S̃), we define the set N(σ, S̃) of representations of
restrictions trees as follows.

N(σ, S̃) :=
{

(σ, S̃′) : S̃′(G) ⊆Q(σ,S̃)
S̃(G) for every G ∈ TF \ TFℓ

and

S̃′(H) = S̃(H) for every H ∈ TFℓ

}
. (8)

It follows from the definition of N(σ, S̃) and the distribution R̃p(F), that

µ(σ, S̃) = qr · µ(N(σ, S̃)). (9)

We now make the following observations about N(σ, S̃).
Exactly one element of N(σ, S̃), namely (σ, S̃), satisfies property (1).
For distinct (σ, S̃), the corresponding N(σ, S̃) are disjoint.
Since T is downward closed and (σ, S̃) ∈ A′ ∩ T , we have N(σ, S̃) ⊆ A′ ∩ T .

Putting these facts together, we have the following bound on the probability that we wish to
bound.

Pr
(σ,S̃)

[
Q identifies S̃(F) within dom(β) ∩ S̃(Fℓ) | A′(ℓ, t, b) ∩ T

]
≤

∑
(σ,S̃) µ(σ, S̃)∑

(σ,S̃) µ(N(σ, S̃))
= qr,

where the summation (in both the numerator and denominator) in the second step above is
over all (σ, S̃) that satisfy all three properties. This completes the proof of the claim. ◁

▷ Claim 5.9. For fixed a, ℓ, t and b, we have η(ℓ, t, b) := Pr [A′(ℓ, t, b) | T] ≤
(1

8
)t

.

CCC 2023

19:20 Criticality of AC0-Formulae

Proof.

η(ℓ, t, b) = Pr
(σ,S̃)∼R̃p(F)

[A′(ℓ, t, b) | T] ≤ Pr
(σ,S̃)∼R̃p(F)

[
CDT(b)

1 (Fℓ, ρ̃(σ,S̃)|Fℓ
) exists | T

]
= Pr

(σ,S̃ℓ)∼R̃p̃(Fℓ)(Fℓ)

[
CDT(b)

1 (Fℓ, ρ̃(σ,S̃ℓ)) exists | T
]

≤ (p̃(Fℓ) · λ(Fℓ))t =
(

1
8λ(Fℓ)

· λ(Fℓ)
)t

=
(

1
8

)t

.

The last inequality follows from the induction assumption since Fℓ has depth strictly smaller
than that of F . ◁

Plugging the results of these claims back into the the expression in (7), we have

η(ℓ, t, b) · (16 · p · λ(Fℓ))r · (p · λ(F))s−r ≤
(

1
8

)t

· (8 · p · λ(Fℓ))r · (p · λ(F))s−r

We need to bound the sum of this expression when summed over all r, ℓ, t, b, Q as given
by (6). However, even if we just over all possible ℓ the sum turns out to be prohibitively
expensive. To keep this sum over ℓ (and also r, t, b, Q) under control, we further observe
that the events A′(ℓ, t, b) are mutually disjoint over disjoint ℓ, t, b. This lets us conclude the
following claim.

▷ Claim 5.10.
∑

ℓ,t,b η(ℓ, t, b) =
∑

ℓ,t,b Pr(σ,S̃)∼R̃p(F) [A′(ℓ, t, b) | T] ≤ 1.

Proof. We observe that given a (σ, S̃), there is at most one ℓ such that Fℓ′ |ρ̃(F) ≡ 0 and
Fℓ|ρ̃(F) ̸≡ 0. Fix such an ℓ (if one exists). Given this ℓ, there is exactly one root-to-
leaf path in CDT(Fℓ, ρ̃|Fℓ

) that is consistent with σ. Let this be β (if one exists). Let
t := | dom(β) ∩ stars(ρ̃(Fℓ))| and b ∈ {0, 1}t the assignment to the t degree-2 variables along
the ordered restriction β. Thus, (σ, S̃) uniquely determines (ℓ, t, b) such that A′(ℓ, t, b) hold.
Hence, η(ℓ, t, b) is a sub-distribution. ◁

We now have all the ingredients to bound the quantity of concern. The rest of the proof is
a roller-coaster ride along the Jensen highway. We now bound the quantity in (6) as follows:

Pr
(σ,S̃)

[
CDT(a)

0 (F, ρ̃(σ,S̃)) exists | (σ, S̃) ∈ T
]

≤
∑

r,ℓ,t,b,Q

2r · η(ℓ, t, b) · (8 · p · λ(Fℓ))r · (p · λ(F))s−r

≤
∑

r,ℓ,t,b

η(ℓ, t, b) · (16 · p · λ(Fℓ))r · (p · λ(F))s−r · tr

= (p · λ(F))s ·
∑
r,ℓ

(16 · λ(Fℓ)
λ(F)

)r

· ν(ℓ) ·
∑
t,b

η(ℓ, t, b)
ν(ℓ) · tr

︸ ︷︷ ︸
 (10)

where ν(ℓ) :=
∑

t,b η(ℓ, t, b). We only sum over those ℓ that satisfy ν(ℓ) > 0. Observe that∑
ℓ ν(ℓ) =

∑
ℓ,t,b η(ℓ, t, b) ≤ 1. We first bound the quantity indicated (using underbraces) in

the above expression using Jensen’s inequality and Claim 5.9 as follows.

▷ Subclaim 5.11.
∑

t,b
η(ℓ,t,b)

ν(ℓ) · t
r ≤

(
log
(

1
ν(ℓ)

))r

.

P. Harsha, T. Molli, and A. Shankar 19:21

Proof. Rewriting tr as (log 2t)r, the lefthand side can be written as
∑

t,b
η(ℓ,t,b)

ν(ℓ) · (log 2t)r.
Since

∑
t,b

η(ℓ,t,b)
ν(ℓ) = 1, we can apply Jensen’s inequality to the concave function x 7→ (log x)r

to obtain

∑
t,b

η(ℓ, t, b)
ν(ℓ) ·

[
log 2t

]r
≤

log

∑
t,b

η(ℓ, t, b)
ν(ℓ) · 2t

r

≤

log

∑
t,b

1
ν(ℓ) · 4t

r

[Since η(ℓ, t, b) ≤ 8−t from Claim 5.9]

≤

[
log
(

1
ν(ℓ)

∑
t

1
2t

)]r

[Since there are at most 2t b’s]

≤
[
log 1

ν(ℓ)

]r

◁

Substituting this bound back into the expression (10) above, we obtain

Pr
[
CDT(a)

0 (F, ρ̃) exists | T
]

≤ (p · λ(F))s ·
∑

r

(16
λ(F)

)r

·
∑

ℓ

ν(ℓ) ·

λ(Fℓ) · log
(

1
ν(ℓ)

)
︸ ︷︷ ︸

r
We now apply AM-GM inequality and the definition of λ(Fℓ) to bound the indicated quantity.

▷ Subclaim 5.12. Let Sℓ := size(Fℓ). Then, λ(Fℓ) · log
(

1
ν(ℓ)

)
≤ 32d

[
log(2d−1·Sℓ/ν(ℓ))

d

]d

.

Proof. If d = 1, then Sℓ = 1 (recall the “size” defined in Definition 2.1), λ(Fℓ) = 32 (recall
Definition 5.1). Thus, both sides of the above claim simplify to 32 · log(1/ν(ℓ)).

For larger d,

λ(Fℓ) · log
(

1
ν(ℓ)

)
= 32d

(
log 2d−1 · Sℓ

d− 1

)d−1

· log
(

1
ν(ℓ)

)
[Since Fℓ ∈ AC0[Sℓ, d]]

≤ 32d

 log(2d−1 · Sℓ) + log
(

1
ν(ℓ)

)
d

d

[Applying AM-GM inequality]

= 32d

[
log
(

2d−1·Sℓ/ν(ℓ)
)

d

]d

. ◁

CCC 2023

19:22 Criticality of AC0-Formulae

Plugging this bound back into our expression, we have

Pr
[
CDT(a)

0 (F, ρ̃) exists | T
]

≤ (p · λ(F))s ·
∑

r

(16 · 32d

λ(F)

)r

·
∑

ℓ

ν(ℓ) ·

 log
(

2d−1·Sℓ

ν(ℓ)

)
d

dr

︸ ︷︷ ︸

We bound the indicated quantity using yet another application of Jensen’s inequality using
the fact that

∑
ℓ ν(ℓ) ≤ 1 as follows.

▷ Subclaim 5.13.
∑

ℓ ν(ℓ) ·

 log
(

2d−1·Sℓ
ν(ℓ)

)
d

dr

≤
[

log(2d·S)
d

]dr

.

Proof. Recall that
∑

ℓ ν(ℓ) ≤ 1. Consider the random variable Y defined as follows:

Y ←

{
2d−1·Sℓ

ν(ℓ) with probability ν(ℓ) for each ℓ such that ν(ℓ) ̸= 0,

1 with probability 1−
∑

ℓ ν(ℓ).

and the concave function x
f7−→
(

log x
d

)dr

. Applying Jensen’s inequality, we obtain

E[f(Y)] ≤ f(EY) =
[

log
(
(
∑

ℓ 2d−1 · Sℓ) + (1−
∑

ℓ ν(ℓ))
)

d

]dr

≤

[
log
(
2d−1 · S + 1

)
d

]dr

[Since S =
∑

ℓ

Sℓ]

≤

[
log
(
2d · S

)
d

]dr

[Since S ≥ 1] ◁

Plugging this bound back into our expression and recalling that λ(F) = 32d+1 ·
(

log 2d·S
d

)d

,
we obtain

Pr
[
CDT(a)

0 (F, ρ̃) exists | ρ̃ ∈ T
]
≤ (p · λ(F))s ·

∑
r

1
2r
≤ (p · λ(F))s,

which completes the proof of our main lemma. ◀

6 Satisfiablity algorithms

In this section, we a give a randomized #SAT algorithm for general AC0 formulae, matching
the Impagliazzo-Matthews-Paturi result for AC0 circuits. Rossman [14] had obtained a
similar result for regular formulae. The proof below is a verbatim adaptation of Rossman’s
corresponding result [14, Theorem 30] for regular formulae to the general setting.

▶ Theorem 6.1. There is a randomized, zero-error algorithm which, given an AC0 formula F

of depth d + 1 and size S on n variables, outputs a decision tree for F of size O
(
Sn · 2(1−ε)n

)
where ε = 1/O

((1
d log S

)d
)

. This algorithm also solves the #SAT problem, that is, it counts
the number of satisfying assignments for F .

P. Harsha, T. Molli, and A. Shankar 19:23

Proof. Given any depth d formula, and restriction tree ρ̃, the decision tree algorithm from
Definition 3.3 computes CDT(F, ρ̃) in time O (n) ·

∑
G∈TF

size(CDT(G, ρ̃|G)). Given an AC0

formula, consider the following tree of subsets D̃ : TF → [n] such that for each G, H ∈ TF ,
such that G is a parent of H, D̃(H) ⊆ D̃(G). For each such D̃, we get a decision tree for
F as follows: We first construct a decision tree Γ by querying all the variables in D̃(F)
and labelling each leaf with the corresponding restriction on D̃(F). For each such leaf σ

(i.e, for each choice σ : D̃(F)→ {0, 1}), we get a corresponding restriction tree ρ̃D̃,σ in the
natural manner. For each such σ, construct CDT(F, ρ̃D̃,σ) and plug it in instead of the leaf
corresponding to σ in the complete binary tree Γ. Clearly, this resultant tree ΓD̃ is a decision
tree for F .

We construct a (random) ΓD̃ by sampling a D̃ as follows: randomly choose a τ ∈R [0, 1]n
and set D̃(G) := {i : τ i ≤ 1− 1/8λ(G)} for each G ∈ TF . Therefore the expected running
time of the algorithm which computes the decision tree for F is

O(n) ·
∑

G∈TF

Eτ

 ∑
σ : D̃(F)→{0,1}

size(CDT(G, ρ̃D̃,σ|G))

while the expected size of the decision tree is Eτ

[∑
σ : D̃(F)→{0,1} size(CDT(F, ρ̃D̃,σ))

]
.

We bound these expression as follows. For each G ∈ TF , size of the decision tree CDT(G, ρ̃)
is given by the expression,

Eτ

 ∑
σ : {0,1}D̃(F)

size(CDT(F, ρ̃D̃,σ))

 = Eτ

[
2|D̃(F)| · Eσ

[
size(CDT(F, ρ̃D̃,σ))

]]
≤ 2n(1−1/16λ(F)) · Eτ ,σ

[
size(CDT(F, ρ̃D̃,σ))

]
︸ ︷︷ ︸+2n · e−(1

2)2· 12 ·
n

8λ(G)

where in the last expression, we have used the Chernoff Bound Pr[
∑

Xi ≤ (1−δ)µ] ≤ e−δ2µ/2

to bound the probability Pr[|[n] \ D̃(F)| ≤ (1− 1/2)µ] where µ = E[|[n] \ D̃(F)|] = n/8λ(F).
We can now further simplify the expression indicated in the underbraces as follows:

Eτ ,σ

[
size(CDT(F, ρ̃D̃,σ))

]
=
∑
t≥0

∑
a∈{0,1}t

∑
b∈{0,1}

Pr
ρ̃D̃,σ

[
CDT(a)

b (F, ρ̃D̃,σ) exists
]

≤ 1 +
∞∑

t=1
2t

(
1
8

)t

= 4
3 .

We thus conclude that the expected size of the decision tree is at most 2n(1− 1
Cλ) for a

suitably large constant C. ◀

References

1 Miklós Ajtai. Σ1
1-formulae on finite structures. Ann. Pure Appl. Logic, 24(1):1–48, July 1983.

doi:10.1016/0168-0072(83)90038-6.
2 Paul Beame. A switching lemma primer. Technical Report UW-CSE-95-07-01, University of

Washington, 1994. URL: http://www.cs.washington.edu/homes/beame/papers/primer.ps.
3 Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. Approximating AC0 by small

height decision trees and a deterministic algorithm for #AC0-SAT. In Venkatesan Guruswami,
editor, Proc. 27th IEEE Conf. on Comput. Complexity, pages 117–125, 2012. doi:10.1109/
CCC.2012.40.

CCC 2023

https://doi.org/10.1016/0168-0072(83)90038-6
http://www.cs.washington.edu/homes/beame/papers/primer.ps
https://doi.org/10.1109/CCC.2012.40
https://doi.org/10.1109/CCC.2012.40

19:24 Criticality of AC0-Formulae

4 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984. (Preliminary version in 22nd
FOCS, 1981). doi:10.1007/BF01744431.

5 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Silvio Micali, editor,
Randomness and Computation, volume 5 of Advances in Computing Research, pages 143–170.
JAI Press, Greenwich, Connecticut, 1989. (Preliminary version in 18th STOC 1986). URL:
http://www.csc.kth.se/~johanh/largesmalldepth.pdf.

6 Johan Håstad. On the correlation of parity and small-depth circuits. SIAM J. Comput.,
43(5):1699–1708, 2014. doi:10.1137/120897432.

7 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm for
AC0. In Yuval Rabani, editor, Proc. 23rd Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 961–972, 2012. doi:10.1137/1.9781611973099.77.

8 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform,
and learnability. J. ACM, 40(3):607–620, 1993. (Preliminary version in 30th FOCS, 1989).
doi:10.1145/174130.174138.

9 Alexander A. Razborov. Нжние оценки размера схем ограниченной глубины в полном
базисе, содержащем функцию логического сложения (Russian) [Lower bounds on the size
of bounded depth circuits over a complete basis with logical addition]. Mathematicheskie
Zametki, 41(4):598–607, 1987. (English translation in Mathematical Notes of the Academy of
Sciences of the USSR, 41(4):333–338, 1987). doi:10.1007/BF01137685.

10 Alexander A. Razborov. Bounded arithmetic and lower bounds in Boolean complexity. In
Peter Clote and Jeffrey B. Remmel, editors, Feasible Mathematics II, volume 13 of Progress
in Computer Science and Applied Logic, pages 344–387. Birkhäuser, 1995. doi:10.1007/
978-1-4612-2566-9_12.

11 Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–35,
1997. (Preliminary version in 26th STOC, 1991). doi:10.1006/jcss.1997.1494.

12 Benjamin Rossman. An entropy proof of the switching lemma and tight bounds on the
decision-tree size of AC0. (manuscript), 2017. URL: https://users.cs.duke.edu/~br148/
logsize.pdf.

13 Benjamin Rossman. The average sensitivity of bounded-depth formulas. Comput. Com-
plexity, 27(2):209–223, 2018. (Preliminary version in 56th FOCS, 2015). doi:10.1007/
s00037-017-0156-0.

14 Benjamin Rossman. Criticality of regular formulas. In Amir Shpilka, editor, Proc. 34th
Comput. Complexity Conf., volume 137 of LIPIcs, pages 1:1–1:28. Schloss Dagstuhl, 2019.
doi:10.4230/LIPIcs.CCC.2019.1.

15 Michael Sipser. Borel sets and circuit complexity. In David S. Johnson, Ronald Fagin, Michael L.
Fredman, David Harel, Richard M. Karp, Nancy A. Lynch, Christos H. Papadimitriou,
Ronald L. Rivest, Walter L. Ruzzo, and Joel I. Seiferas, editors, Proc. 15th ACM Symp. on
Theory of Computing (STOC), pages 61–69, 1983. doi:10.1145/800061.808733.

16 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Alfred V. Aho, editor, Proc. 19th ACM Symp. on Theory of Computing (STOC),
pages 77–82, 1987. doi:10.1145/28395.28404.

17 Avishay Tal. Tight bounds on the Fourier Spectrum of AC0. In Ryan O’Donnell, editor, Proc.
32nd Comput. Complexity Conf., volume 79 of LIPIcs, pages 15:1–15:31. Schloss Dagstuhl,
2017. doi:10.4230/LIPIcs.CCC.2017.15.

18 Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In Manuel Blum, John Hopcroft, Jeff Lagarias, Tom Leighton, Charles Rackoff, Larry
Ruzzo, Larry Stockmeyer, Robert Tarjan, and Frances Yao, editors, Proc. 26th IEEE Symp.
on Foundations of Comp. Science (FOCS), pages 1–10, 1985. doi:10.1109/SFCS.1985.49.

https://doi.org/10.1007/BF01744431
http://www.csc.kth.se/~johanh/largesmalldepth.pdf
https://doi.org/10.1137/120897432
https://doi.org/10.1137/1.9781611973099.77
https://doi.org/10.1145/174130.174138
https://doi.org/10.1007/BF01137685
https://doi.org/10.1007/978-1-4612-2566-9_12
https://doi.org/10.1007/978-1-4612-2566-9_12
https://doi.org/10.1006/jcss.1997.1494
https://users.cs.duke.edu/~br148/logsize.pdf
https://users.cs.duke.edu/~br148/logsize.pdf
https://doi.org/10.1007/s00037-017-0156-0
https://doi.org/10.1007/s00037-017-0156-0
https://doi.org/10.4230/LIPIcs.CCC.2019.1
https://doi.org/10.1145/800061.808733
https://doi.org/10.1145/28395.28404
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://doi.org/10.1109/SFCS.1985.49

Radical Sylvester-Gallai Theorem for Tuples of
Quadratics
Abhibhav Garg #

Cheriton School of Computer Science, University of Waterloo, Canada

Rafael Oliveira1 #

Cheriton School of Computer Science, University of Waterloo, Canada

Shir Peleg #

Blavatnik School of Computer Science, Tel Aviv University, Israel

Akash Kumar Sengupta #

Department of Mathematics, Columbia University, New York, NY, USA

Abstract
We prove a higher codimensional radical Sylvester-Gallai type theorem for quadratic polynomials,
simultaneously generalizing [20, 36]. Hansen’s theorem is a high-dimensional version of the classical
Sylvester-Gallai theorem in which the incidence condition is given by high-dimensional flats instead
of lines. We generalize Hansen’s theorem to the setting of quadratic forms in a polynomial ring,
where the incidence condition is given by radical membership in a high-codimensional ideal. Our
main theorem is also a generalization of the quadratic Sylvester–Gallai Theorem of [36].

Our work is the first to prove a radical Sylvester–Gallai type theorem for arbitrary codimension
k ≥ 2, whereas previous works [36, 29, 30, 28] considered the case of codimension 2 ideals. Our
techniques combine algebraic geometric and combinatorial arguments. A key ingredient is a structural
result for ideals generated by a constant number of quadratics, showing that such ideals must be
radical whenever the quadratic forms are far apart. Using the wide algebras defined in [28], combined
with results about integral ring extensions and dimension theory, we develop new techniques for
studying such ideals generated by quadratic forms. One advantage of our approach is that it does
not need the finer classification theorems for codimension 2 complete intersection of quadratics
proved in [36, 16].

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Theory
of computation → Computational geometry

Keywords and phrases Sylvester-Gallai theorem, arrangements of hypersurfaces, algebraic complexity,
polynomial identity testing, algebraic geometry, commutative algebra

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.20

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/074/

Acknowledgements The authors would like to thank Amir Shpilka for several useful discussions
throughout the course of this work and for an anonymous reviewer for very helpful comments which
helped improve the presentation, as well as to give an alternative proof of Lemma 64, which we give
in Appendix A.

1 Introduction

Let v1, . . . , vm be a set of points in Rn with the property that the line joining any two points
passes through a third point. The Sylvester–Gallai theorem states that v1, . . . , vm must all
be collinear. This result was conjectured by Sylvester [39], and proved independently by
Melchior [27] and Gallai [15].

1 corresponding author

© Abhibhav Garg, Rafael Oliveira, Shir Peleg, and Akash Kumar Sengupta;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 20; pp. 20:1–20:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a65garg@uwaterloo.ca
https://orcid.org/0000-0001-9084-7499
mailto:rafael@uwaterloo.ca
https://orcid.org/0000-0001-8917-8689
mailto:shirpele@tauex.tau.ac.il
mailto:akashs@math.columbia.edu
https://doi.org/10.4230/LIPIcs.CCC.2023.20
https://eccc.weizmann.ac.il/report/2023/074/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

The inflection points of a cubic curve are a set of nine points in C2 such that the line
joining any two of them passes through a third ([9]). However, these points are not collinear.
In fact, Kelly [24] suggested that this was the motivation behind Sylvester’s conjecture, to
check if all inflection points can have real coordinates. In the same paper, Kelly observed
that Hirzebruch’s work on line arrangements [21] directly implies that every configuration
of points in Cn satisfying the Sylvester–Gallai condition must be coplanar, and thereby
answered a question of Serre [35]. This shows that the Sylvester–Gallai theorem crucially
depends on the underlying field. If the underlying field is finite, then such configurations no
longer have finite dimension. In light of these results, we fix our underlying field to C in this
work, though our results hold for algebraically closed fields of characteristic zero.

A number of variations and generalisations of the Sylvester–Gallai theorem have been
studied in combinatorial geometry such as a robust version [5], colored version [13], higher
dimensional flats [20, 5] and many more. The main underlying theme in all such results is
that the local linear relations between the points in a Sylvester–Gallai configuration must
imply that such configurations can only happen in low dimension, which is a global condition
on the configuration. Once one translates such geometric relations into algebraic terms,
one sees that the study of Sylvester-Gallai configurations is a study about cancellations in
algebraic geometry. In summary, Sylvester-Gallai type questions ask the following: given a
set of algebraic geometric objects (e.g. vectors, linear forms or polynomials), whether “many”
local cancellations or syzygies (such as the SG incidence conditions) imply global constraints
on the configuration (such as being low-dimensional or dependence on a low number of
variables).

Many results in algebraic and boolean complexity, as well as in cryptography, show that
cancellations are very powerful in computation [32, 33, 41, 17, 42, 22, 26, 6]. Therefore, it
is no surprise that proofs of Sylvester-Gallai theorems, which deal with limitations on the
power of cancellations, have required sophisticated tools.

The variations alluded to above have applications in several areas of theoretical computer
science, such as algebraic complexity (Polynomial Identity Testing and Reconstruction) and
coding theory (Locally Correctable Codes). We now discuss some of these variations and
their connections to TCS, and direct readers to [7] for more on classical Sylvester–Gallai
problems.

Robust Sylvester-Gallai theorems. In this variation, one is given a constant 0 < δ < 1, and
one requires the points v1, . . . , vm ∈ Cn to satisfy the following condition: for every vi, there
are δm many points vj such that the line joining vi, vj contains a third point in the set. The
robust Sylvester-Gallai theorem states that such configurations lie on a constant dimensional
subspace.

These configurations were first studied in [40], where the above theorem was proved for
all values of δ that are close to 1. Subsequently, in [5], the authors proved the theorem for
all values of δ, and showed that such configurations have dimension O(1/δ2). In [12], this
result was further improved, and the authors showed that such configurations have dimension
O (1/δ).

These configurations are useful in the study of locally correctable codes [5] and circuit
reconstruction [37].

High dimensional Sylvester-Gallai theorems. Another variation of the Sylvester-Gallai
theorem involves considering higher dimensional linear spaces instead of lines. For example,
suppose now that for any vi, vj , vk that are not collinear, we require the 2-dimensional

A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:3

affine space spanned by vi, vj , vk to contain a fourth point in the configuration. The higher
dimensional Sylvester-Gallai theorem states that such configurations also lie in a constant
dimensional affine subspace.

These configurations were first studied in [20], who proved the above theorem for affine
spaces of all dimensions (the above is the case of dimension two). Further, in [4] the authors
proved a robust version of the high dimensional Sylvester–Gallai theorem of [20].

These configurations have application in polynomial identity testing of depth three circuits
([23, 34]). The authors show that the linear forms in any depth three circuit computing the
zero polynomial satisfy a version of this Sylvester-Gallai theorem, and therefore have low
rank.

Higher degree generalisations and PIT. Motivated by the application of Syvester-Gallai
theorems for depth three PIT, Gupta [19] introduced non-linear Sylvester-Gallai configurations
and proposed Conjecture 1 below, generalizing the classical SG theorems to polynomials of
higher degree, where the incidence condition is given by radical membership. [19] shows that
a positive solution to Conjecture 1 yields deterministic poly-time PIT algorithms for depth
four circuits with bounded top and bottom fan-in (circuits of the form ΣkΠΣΠd).

Gupta divides nonzero ΣkΠΣΠd circuits into two classes, namely non-SG circuits and SG
circuits. Informally, non-SG circuits are those where there is not much cancellation among
the low degree polynomials computed at the bottom addition gate. These circuits form the
easy case for their PIT algorithm, and the author gives an unconditional polynomial time
algorithm to test if such circuits are nonzero. The analysis for non-SG circuits was recently
simplified in [18].

The hard case for PIT is when there are non-trivial cancellations among the low-degree
polynomials computed at the bottom addition gate. The author conjectures that such
cancellations can only occur if this set of polynomials have constant transcendence degree. If
this conjecture is true, then the Jacobian based method of [1] gives a poly-time deterministic
PIT algorithm.

We now state the main conjecture of [19]:

▶ Conjecture 1 (Conjecture 1, [19]). Let k, d, c ∈ N∗ be parameters, and let F1, . . . ,Fk be
finite sets of irreducible polynomials of degree at most d satisfying

∩iFi = ∅,
for every Q1, . . . , Qk−1, where each Qj is from a distinct set Fij

, there are polynomials
P1, . . . , Pc in the remaining set such that

∏
Pi ∈ rad (Q1, . . . , Qk−1).

Then the transcendence degree of ∪iFi is a function of k, d, c, independent of the number of
variables or the size of the sets Fi.

In Conjecture 1, the division into k sets and the fact that the product of the forms in the
remaining set are in the radical are both artefacts of the fact that the goal of the work was
to solve ΣkΠΣΠd PIT. Since the conjecture above is a far-reaching non-linear generalization
of Sylvester’s conjecture, it is important to study simpler versions of this conjecture which
are still wide open, just as was done in the linear case. With this in mind, towards the above
conjecture, Gupta lists a series of conjectures regarding configurations that more closely
resemble linear Sylvester-Gallai configurations, the first of which is the following.

▶ Conjecture 2 (Conjecture 2, [19]). Let Q1, . . . , Qm ∈ C [x1, . . . , xn] be irreducible, ho-
mogeneous, and of degree at most d such that for every pair Qi, Qj there is k ≠ i, j such
that Qk ∈ rad (Qi, Qj). Then the transcendence degree of Q1, . . . , Qm is Od(1) (where the
constant depends on the degree d).

CCC 2023

20:4 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

Conjecture 2 is a beautiful mathematical generalization of the classical SG theorem as
well as a stepping stone towards a full resolution of the PIT problem. So far Conjecture 2 is
known for degrees 2 and 3 [36, 28] and it is open in general.

Since Conjecture 1 deals with radical ideals generated by k − 1 polynomials (and hence
of potentially higher codimension), it is important to generalize Conjecture 2 to a conjecture
about radical ideals generated by k elements. Just as in the linear case (see [20]), some
care must be taken when defining higher-codimensional Sylvester-Gallai configurations,
and we address this formally in Section 3. Now, we present an informal version of the
higher-codimensional SG conjecture, which will be the main focus of this work.2

▶ Conjecture 3 (Higher-codimensional SG conjecture). Let F ⊂ C [x1, . . . , xn] be a finite set
of irreducible homogeneous forms of degree at most d. Suppose for every F1, . . . , Fk+1 ∈ F ,
either Fk+1 ∈ rad (F1, . . . , Fk) or there exists R ∈ F such that R ∈ rad (F1, . . . , Fk+1) \
(rad (F1, . . . , Fk) ∪ (Fk+1)). Then dim spanC {F} = Od,k(1) (where the constant depends on
the degree d and the codimension parameter k).

Note that the Sylvester-Gallai conditions in the above conjectures look different from the
previous ones: we talk about membership in radical ideals as opposed to containment in affine
spans. A discussion on why this is an appropriate generalisation of the linear Sylvester-Gallai
condition can be found in [19].

Our main result, a proof of Conjecture 3 in the case where d = 2, is a step towards
Conjecture 1 for the parameters (k, d, c) = (k, 2, c) for any choice of k, c ∈ N.

1.1 Main Result & Technical Contributions
In this subsection we informally state our main result, the higher codimensional analogue of
the radical Sylvester–Gallai theorem. As is the case with the higher codimensional linear
setting, the formal statement (Theorem 37) requires some additional definitions and is given
in Section 3.3

▶ Theorem 4 (Main theorem, informal). Let F ⊂ C[x1, · · · , xn] be a finite set of irreducible
forms of degree at most 2. Suppose for every F1, . . . , Fk+1 ∈ F , either Fk+1 ∈ rad (F1, . . . , Fk)
or there exists R ∈ F such that R ∈ rad (F1, . . . , Fk+1) \ (rad (F1, . . . , Fk) ∪ (Fk+1)). Then
dim spanC {F} = Ok(1).

▶ Remark 5. Note that our theorem, with k = 1, recovers the main theorem in [36].

Geometrically, the above statement says that the algebraic set defined by every set of
k + 1 forms in the configuration lies in the variety defined by another form. Since such
algebraic sets have codimension at most k + 1, we call our configurations higher codimension
Sylvester-Gallai configurations.

In previous works [36, 29, 30, 31, 16, 28], which deal with (variants of) the case where
k = 1, the approach used to prove a theorem of the above type required a structure theorem
that would categorize ideals of the form (F1, F2) where each Fi is either a quadratic or a
cubic form. These structure theorems used two main facts about ideals of the form (F1, F2):
1. they are complete intersections, and therefore Cohen-Macaulay (which implies unmixed).
2. they have small degree (four in the quadratic case and nine in the cubic case).

2 The conjecture stated here is implied by our formal conjecture in Section 3.
3 Theorem 37 in fact implies the result that we are stating in this page.

A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:5

These two facts, along with properties of Hilbert-Samuel multiplicity, yield a list of special
minimal primes and multiplicities such ideals can have, whenever they are not radical.
Combined with existing literature and some new results on prime (and primary) ideals of
codimension 2, the structure theorems are derived, and then used in the proof of their main
theorem.

In our setting, neither of the above facts hold in general. The ideals we consider are
generated by k quadratics, and therefore can have degree up to 2k. Further, these ideals
may no longer be complete intersections, and therefore can have embedded primes and even
minimal primes of any codimension between 2 and k. This rules out the feasibility of using
very fine-grained structure theorems as was done in previous works.

In a recent breakthrough, [2] proved that if one has quadratics F1, . . . , Fk which are “far
enough apart,” then the ideal (F1, . . . , Fk) is a complete intersection and prime (and hence
radical). However, as discussed above, in our case this result alone is not enough for us to
prove all we need: in many cases of interest, the forms in our configuration will not be far
enough apart and the result from [2] will not apply.

To handle the remaining cases, we build on the techniques of [28] and prove a more
general structural result on ideals generated by k quadratic forms. Our structural result
(Lemma 64) states that given certain conditions on the quadratic forms F1, . . . , Fk, even
though they may not be far enough apart, one can still prove that the ideal (F1, . . . , Fk)
is radical and has well-behaved minimal primes. The precise conditions of Lemma 64 are
somewhat technical, and are developed in Section 6.1 with the definition of integral sequences
of forms. An easier version of our structural lemma can be stated as follows:

▶ Lemma 6 (Basic Lemma 64). Let F1, . . . , Fk ∈ C[x1, . . . , xn, y1, . . . , yk] be irreducible
quadratic forms such that Fi ∈ C[x1, . . . , xn, yi] is monic in yi. Then, the ideal I :=
(F1, . . . , Fk) is radical and for any minimal prime p ⊃ I, we have p ∩ C[x1, . . . , xn] = (0).

Lemma 64, and the more basic version above, can be seen as general structural results,
which say that either a given ideal is radical, or the generators are “related” (i.e. the “extra
variables” y1, . . . , yk must be related). This is a weaker structural result than the ones in
the previous works, but holds in a more general setting, and is likely to generalise to higher
degree configurations.

The proof of Lemma 64 involves tools from dimension theory, as well as the discriminant
lemma, and the transfer principles from [28]. All of these concepts can be found in Section 4.

1.2 High level proof ideas
Our high level strategy is the that in order to bound dim spanC {F}, it is enough to prove
that F is contained in a small graded algebra. To deal with the issues raised in the previous
subsection, our strategy will be to prove that any such SG configuration F must be contained
in a special ideal, which satisfies two properties:
1. the ideal is generated by a vector space V := V1 + V2 with dim V = Ok(1), where V1 is a

vector space of linear forms and V2 is a vector space of quadratics
2. Any nonzero quadratic in V2 is of very high rank (relative to dim V).
With this result, we reduce the radical Sylvester-Gallai question to a linear, high-codimensional
Sylvester-Gallai question, and apply the theorems from [5, 12, 11] to obtain that F must be
contained in a small algebra. This is done in Section 7.3.

To prove that such special ideals exist, we proceed in two steps, each guided by a different
conceptual principle. In the first step, we construct a small graded vector space W such that
all forms in F are “close to” the algebra C[W]. That is, there exists a constant B such that
for each form F ∈ F , there exist constantly many linear forms y1, . . . , yr, where r ≤ B, such

CCC 2023

20:6 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

that F ∈ C[W, y1, . . . , yr]. Note that both the linear forms yi and the constant r depend on
the form F , and the point here is to obtain a global upper bound on the values that r can
take. We name such algebra C[W] core algebra (see Section 7.1).

In the second step, given F and a core algebra, we want to construct the special ideal
V satisfying properties 1 and 2 above such that F ⊂ (V). To do this, we use Lemma 64 to
show that for any sequence F1, . . . , Fk such that (F1, . . . , Fk) is not a radical ideal, it must
be the case that the “extra variables” of the forms F1, . . . , Fk must be (very) dependent.
Thus we get a win-win type of result here: either the ideal (F1, . . . , Fk) is radical (which
gives us some linear dependencies amongst the forms of F), or the linear forms coming from
the extra variables must have very strong linear dependencies (and hence we can control
their total dimension).

We now give an overview of each step.

Step 1 – constructing core algebras (Section 7.1). given a quadratic form Q and a vector
space W , we say that Q is B-close to C[W] if there is a vector space Y of linear forms with
dim Y ≤ B such that Q ∈ C[W,Y].4 That is, Q is a polynomial in few (linear) variables
whenever we are allowed to have coefficients in C[W]. We say that F is B-close to C[W]
if every form in F is B-close to C[W]. A core algebra is an algebra C[W] such that F is
B-close to C[W] for some constant B.

The key inspiration for constructing such core algebras comes from the work [2], where
the authors prove that if the quadratic forms F1, . . . , Fk+1 are “sufficiently far apart,” then
they form a prime sequence (which is a much stronger condition than complete intersection).
Thus, either a given set of quadratic forms is a prime sequence, or one of the quadratics is
“close” (that is, of low rank) to the vector space generated by the other quadratics.

One consequence of being a prime sequence is that the ideal (F1, . . . , Fk+1) will be a
prime ideal (hence radical) and a complete intersection. If we have too many quadratic forms
which are far apart, then the radical SG condition will imply that dependencies among the
quadratics are linear dependencies, and therefore we can apply [5, 12] and construct our core
algebra.

Here we get our first win-win: either many forms are far apart, in which case we will get
linear dependencies (and thereby a vector space of low dimension) or we can construct a
small vector space W such that F is close to C[W].

Since we want to control the quadratic forms of high rank (which we call strong forms),
the proof of the construction of W requires an auxiliary SG configuration, dealing only
with dependencies of high rank quadratics. We term these strong SG configurations (see
Section 6.2 for details) and our proof is via a careful induction on the codimension of such
configurations. Due to the fact that we are now dealing with both linear and quadratic forms,
and our condition is a radical membership condition, the proof of this step is more involved
and more delicate than the inductive approach used in [5, Section 5].

The technical reason why this step is more delicate than the induction on codimension
done in [5, Section 5], is due to the fact that quotienting by a quadratic form will lead us to
working with rings which are not necessarily polynomial rings, as well as the fact that we
still have to handle non-linear radical dependencies and quadratic forms of low rank.

Step 2 – from core algebras to special ideals (Section 7.2). once we have constructed
our core algebra C[W], we now have a global constant bound B such that all forms in F are
B-close to C[W]. In this setting, our structural lemma (Lemma 64) applies and we are able

4 We extend this definition to linear forms by saying that any linear form is 1-close to any algebra.

A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:7

to prove that either the quadratic forms are a linear Sylvester-Gallai configuration (which
happens if many ideals (F1, . . . , Fk+1) are radical), or the extra variables of the quadratic
forms must be (very) dependent. The proof of the aforementioned fact (in Section 7.2) is
done by an iterative process to construct our special ideal. We couple Lemma 64 with two
potential functions to prove termination of the iterative process providing the special ideal,
in a similar way that [36, 16] use their potential functions.

Wide algebras
Both steps 1 and 2 use the notion of forms being close to an algebra. In Section 5, we make
this notion clear, and establish what properties are needed from such algebras to make sure
that we preserve the geometric properties of polynomial rings. Since we are dealing with
quadratic forms, we need a slightly simpler version of the wide algebras introduced in [28].

1.3 Related work
As stated above, the main motivation for studying higher degree versions of the Sylvester-
Gallai theorem comes from the relation established to depth four PIT in [19]. The d = 2 case
of Conjecture 2 was proved in [36], which also kick started this line of work. Subsequently,
in [29], the authors prove a product version of Conjecture 2 where the radical of the ideal
generated by every pair of quadratics contains the product of all other quadratics. In [30], the
authors strengthen this further, and prove Conjecture 1 in the case when k = 3, d = 2, c = 4.
This also implies polynomial time PIT for Σ3ΠΣΠ2 circuits. In [16] and [31] the authors
independently proved a robust version of Conjecture 2 in the case when d = 2.

In [28], the authors prove Conjecture 2 in the case when d = 3. Our current work develops
techniques building upon the intermediate results proved in [28]. In particular, the wide
vector spaces we use are special cases of the wide vector spaces used in [28]. Further, our
“structure theorems” are proved using the discriminant lemma from [28].

Progress on depth four PIT. There has been some recent progress on the PIT problem for
depth four circuits with bounded top and bottom fan-in, the same model that is the focus
on [19]. In [10], the authors give a quasipolynomial time PIT algorithm for such circuits.
The authors use the Jacobian method of [1] to find a variable reduction map that preserves
the algebraic independence of the inputs to the top addition gate. They are able to construct
this map explicitly by first massaging the input circuits to change them to easier models,
and then showing that the Jacobian can be computed by a read once oblivious arithmetic
branching program (ROABP), for which hitting sets are known. Their methods are analytic
in nature, and rely on the logarithmic derivative and its power series expansion.

In [25], the authors combine their lower bounds for bounded depth circuits with the
methods of [8] to obtain subexponential time PIT algorithms for the same circuit families.
Note that the methods of [8] cannot give a polynomial time PIT algorithm no matter how
strong the lower bound assumptions are. Even getting a quasipolyomial time PIT from these
methods for depth four circuits requires much stronger lower bounds than are currently
known. However, these methods are more general, and work for all constant depth circuits.

The Sylvester–Gallai approach to PIT is the only one so far that can yield a deterministic
poly–time algorithm. In both the works above, the methods used are quite distinct from
the methods based on the Sylvester-Gallai theorem. In particular, they avoid dealing with
cancellations, and therefore are unable to exploit the global structure that many local
cancellations give rise to.

CCC 2023

20:8 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

2 Preliminaries

In this section we establish notation and preliminary facts we will need for the rest of the
paper. Let S = C [x1, . . . , xN] denote the polynomial ring, graded by degree S =

⊕
i≥0 Si.

Given a vector space V ⊂ S, we use Vi to denote the degree i piece, that is, Vi = V ∩ Si. We
say that a vector space is graded if V = ⊕Vi.

We use form to refer to a homogeneous polynomial. Given two forms A,B we say that
A,B are non-associate if A ̸∈ (B) and B ̸∈ (A). If A,B are of the same degree, this is
equivalent to them being linearly independent.

2.1 Rank and linear spaces of quadratic forms
We now define a notion of the rank of quadratic forms, in accordance to [36].

▶ Definition 7 (Rank of a quadratic form). Let Q be a quadratic form. The rank of Q,
denoted rankQ, is the smallest s ∈ N such that we can write Q =

∑s
i=1 aibi with ai, bi ∈ S1.

If rankQ = s, then a decomposition Q =
∑s

i=1 aibi with ai, bi ∈ S1 is called a minimal
representation of Q.

▶ Proposition 8. If ϕ : S1 → S1 is an invertible linear map and ψ : S → S is the map
extending ϕ, then for any Q ∈ S2 we have rankQ = rankψ(Q). If U ⊆ S1 is a vector space
of dimension k, and Q is the image of Q in S/ (U), then rankQ ≥ rankQ− k.

Proof. Suppose rankQ = r and Q =
∑r

i=1 aibi. We have ψ(Q) =
∑r

i=1 ψ(ai)ψ(bi) therefore
rankψ(Q) ≤ r. If rankψ(Q) = r′ and ψ(Q) =

∑r′

i=1 cidi then Q =
∑r′

i=1 ψ
−1(ci)ψ−1(di),

which shows that rankQ = rankψ(Q).
Suppose u1, . . . , uk is a basis for U , and suppose Q =

∑r′

i=1 aibi. Then Q =
∑r

i=1 aibi +∑k
j=1 uivi for some vi ∈ S1. Therefore rankQ ≤ rankQ+ k. ◀

▶ Remark 9. Let Q =
∑

i aiix
2
i +

∑
i<j 2aijxixj be a quadratic form in S. Recall that there

is an one-to-one correspondence between quadratic forms Q ∈ S2 and symmetric bilinear
forms. Let M be the symmetric matrix corresponding to the symmetric bilinear form of Q.
Note that the (i, j)-the entry of M is given by aij . If M is of rank r, then after a suitable
linear change of variables, we can write Q = x2

1 + · · · + x2
r. Since the rank of a quadratic

form is invariant under a linear change of variables(Proposition 8), we have rank(Q) = ⌈r/2⌉,
if M is of rank r.

In the next sections, we will need to use the following notion of a vector space of a
quadratic form, which is a slight modification on the definition first given in [36]. The only
modification that we make is that we preserve the quadratic form if its rank is high enough.

▶ Definition 10 (Vector space of a quadratic form). Let Q be a quadratic form of rank s, so
that Q =

∑s
i=1 aibi. Define the vector space Lin (Q) := spanC {a1, . . . , as, b1, . . . , bs}. Define

L (Q) as:

L (Q) =
{

spanC {Q} , if s ≥ 5
Lin (Q) , otherwise.

We also extend the definition of Lin to linear forms in the natural way as follows.

▶ Definition 11. For a linear form ℓ ∈ S1 define L (ℓ) := spanC {ℓ}.

A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:9

Note that L (Q) is always a vector space of O (1) dimension (in fact, it is of dimension at
most 10), while Lin (Q) can have non constant dimension. While a minimal representation
Q =

∑s
i=1 aibi is not unique, the vector space Lin (Q) is unique and hence well-defined. The

following lemma, which appears in [29, Fact 2.15] characterizes Lin (Q) as the smallest vector
space of linear forms defining the algebras that contain Q.

▶ Lemma 12. If Q =
∑r

i=1 xiyi with xi, yi ∈ S1 then Lin (Q) ⊆ spanC {xi, yj |i, j ∈ [r]}.

▶ Remark 13. The space Lin (Q) can also be defined as the space of first order partial
derivatives of Q (see Lemma 16). However, we decided to not state this definition in this
manner as this definition does not generalize well to forms of higher degree, as it is done in
the works [2, 28].

We now state some useful results related to the rank and linear spaces of quadratics,
some of which appear in [29, 16].

▶ Lemma 14. Suppose Q ∈ S2 is such that rankQ = r. Then dim Lin (Q) = 2r or
dim Lin (Q) = 2r − 1. In the second case, we can write Q = a2

r +
∑r−1

i=1 aibi.

Proof. Suppose v1, . . . , vd is a basis for Lin (Q) for some d ≤ 2r. We then have Q ∈
C [v1, . . . , vd]. By Remark 9, we can write Q =

∑d′

i=1 u
2
i for some d′ ≤ d, where each

ui ∈ spanC {v1, . . . , vd}. By Lemma 12 we have Lin (Q) ⊆ spanC {u1, . . . , ud′} whence d′ = d.
If d is even then we get d/2 ≥ r. Since we also have d ≤ 2r we get d = 2r. If d is odd, we
must have (d − 1)/2 + 1 ≥ r. Since we also have d ≤ 2r we get d = 2r − 1. In this case,
u2

d +
∑d/2−1

j=1 (u2j−1 + u2j)(u2j−1 − u2j) is a minimal representation of Q, proving the last
statement. ◀

▶ Remark 15. By the above lemma, given any Q ∈ S2 such that rankQ = r we can write
Q =

∑r
i=1 aibi such that a1, . . . , ar, b1, . . . , br−1 are linearly independent, and either br = ar

or br is independent of a1, . . . , ar, b1, . . . , br−1.

▶ Lemma 16. Let Q ∈ S = C [x1, . . . , xN] be a quadratic form. Then Lin (Q) =
spanC

{
∂Q
∂x1

, · · · , ∂Q
∂xN

}
is the space of all first order partial derivatives of Q.

Proof. Suppose rankQ = r and
∑r

i=1 aibi be a decomposition of Q as in Remark 15. Then
note that ∂Q

∂ai
= bi and ∂Q

∂bi
= ai for all i ≤ r − 1. If br = ar, then ∂Q

∂ar
= 2ar, and

otherwise we have ∂Q
∂ar

= br and ∂Q
∂br

= ar. Therefore Lin (Q) ⊂ spanC

{
∂Q
∂x1

, · · · , ∂Q
∂xN

}
.

Since Q =
∑r

i=1 aibi, we have ∂Q
∂xj

∈ Lin (Q) for all j ∈ [N]. ◀

The following lemma from [29] shows that adding a product of new variables increases the
rank of a quadratic. In Lemma 18, we extend this to sums of quadratics in distinct variables.

▶ Lemma 17 ([29, Claim 2.7]). Suppose Q ∈ C [x1, . . . , xm] is a polynomial of rank r. If
y, z are new variables then rank(Q + yz) = r + 1. In particular, Lin (Q+ yz) = Lin (Q) +
spanC {y, z}.

▶ Lemma 18. Suppose P ∈ C [x1, . . . , xm] and Q ∈ C [y1, . . . , yn] are two quadratics in
distinct variables. Then Lin (P +Q) = Lin (P) + Lin (Q).

Proof. Note that we have ∂(P +Q)
∂xi

= ∂P
∂xi

and ∂(P +Q)
∂yj

= ∂Q
∂yj

for all i ∈ [m] and j ∈ [n].
Therefore, by Lemma 16, we have that Lin (P +Q) = Lin (P) + Lin (Q). ◀

CCC 2023

20:10 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

▶ Lemma 19. Let W ⊆ S1 be a vector space. Suppose Q ∈ S2 is such that rankQ = r in
S and rankQ = r′ < r where Q is the image of Q in S/ (W). Then W ∩ Lin (Q) ≠ {0}. In
particular if Q ∈ (W) then W ∩ Lin (Q) ̸= 0.

Proof. Suppose Q =
∑r

i=1 aibi is the minimal representation guaranteed by Remark 15.
Assume towards a contradiction that Lin (Q) ∩W = {0}. Since a1, . . . , ar, b1, . . . , br−1 are
independent in S, and either br = ar or br is independent of a1, . . . , ar, b1, . . . , br−1, by
assumption the same holds in S/ (W). We can now repeatedly apply Lemma 17 to deduce
that rank(arbr +

∑r−1
i=1 aibi) = r, contradicting assumption. ◀

2.2 General Projections
We now recall the definition and properties of projection maps from [36, 29, 28].

▶ Definition 20 (Projection maps). Let S = C[x1, · · · , xn] be a polynomial ring. Let W ⊂ S1
be a subspace of linear forms and y1, · · · , yt be a basis of W . Let y1, · · · , yn be a basis of S1
that extends the basis y1, · · · , yt of W . Let z be a formal variable not in {y1, · · · , yn}. For
α = (α1, · · · , αt) ∈ Ct, we define the projection map φα,W as the C-algebra homomorphism
φα,W : S → C[z, yt+1, · · · , yn] = S[z]/(W) defined by

yi 7→

{
αiz, if 0 ≤ i ≤ t

yi, otherwise

For simplicity we will often drop the subscripts W or α, and write φα or φ for a projection
map when there is no ambiguity about the vector space W or the vector α.

General projections. Fix a vector space W ⊂ S1 as in Definition 20. We will say that a
property holds for a general projection φα, if there exists a non-empty open subset U ⊂ Ct

such that the property holds for all φα with α ∈ U . Here U ⊂ Ct is open with respect to
the Zariski topology, hence U is the complement of the zero set of finitely many polynomial
functions on Ct. The general choice of the element α defining a general projection φα allows us
to say that such projection maps will avoid any finite set of polynomial constraints. As shown
in [36, 29], general projection maps preserve several important properties of polynomials.

▶ Proposition 21 ([28, Proposition 2.6]). Let F ∈ S be a polynomial and W ⊂ S1 be a vector
space of linear forms.
(a) If F ̸∈ C[W], then φ(F) ̸∈ C[z] for a general projection φ : S → S[z]/(W).
(b) If F ̸= 0, then φ(F) ̸= 0 for a general projection.
(c) Suppose F is a form which does not have any multiple factors and F ∈ (W). If

φ(F) = zkG where G ̸∈ (z), then G does not have any mulitple factors.

The next proposition is from [29, Claim 2.23].

▶ Proposition 22. Let F,G ∈ S be two polynomials which have no common factor and
W ⊂ S1 a subspace of linear forms. For a general projection φ : S → S[z]/(W), we have
gcd(φ(F), φ(G)) ∈ C[z]. In particular, if F,G are homogeneous then gcd(φ(F), φ(G)) = zk

for some k ∈ N.

The following result shows that general projections preserve linear independence for
polynomials outside the algebra generated by W .

▶ Corollary 23 ([28, Corollary 2.8]). Let F,G ∈ S be linearly independent irreducible forms
and W ⊂ S1 be a vector space of linear forms. If F,G ̸∈ C[W] then φ(F), φ(G) are linearly
independent, for a general projection φ : S → S[z]/(W) .

A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:11

The next proposition follows from [29, Claim 2.26].

▶ Proposition 24. Let W ⊂ S1 be a vector space of linear forms. Let F ⊂ S2 be a finite set of
quadratic forms. Suppose there is an integer D > 0 such that dim spanC

{⋃
F ∈F L (φ(F))

}
≤

D for a general projection φ : S → S[z]/(W). Then dim spanC
{⋃

F ∈F L (F)
}

≤ (D + 1) ·
dimW .

The proposition above can be sharpened if we have extra information about the linear
forms in F . We state this sharpening in the next proposition

▶ Proposition 25. Let W ⊂ S1 be a vector space of linear forms and F ⊂ S2 be a finite
set of quadratic forms such that F ∩ (W) and s(F) < s for each F ∈ F . Suppose there
is an integer D > 0 such that dim spanC

{⋃
F ∈F L (φ(F))

}
≤ D for a general projection

φ : S → S[z]/(W). Then we have dim spanC
{⋃

F ∈F L (F)
}

≤ (D + 1) · s.

3 Sylvester–Gallai configurations

We now formally define the Sylvester-Gallai configurations that we deal with in this work.
Before we do this, we state the current known bounds on dimensions of linear Sylvester–Gallai
configurations, these will be useful in our proofs.

3.1 Linear Sylvester–Gallai configurations
For this subsection, we let L be a finite set of pairwise non-associate linear forms and δ ∈ (0, 1]
be a constant. We begin by defining ordinary and elementary spaces, as was done in [20, 5].

▶ Definition 26 (Ordinary spaces). Let ℓ1, . . . , ℓk ∈ L, and let V = spanC {ℓ1, . . . , ℓk}. The
space V is called ordinary with respect to L if there are ℓ′

1, . . . , ℓ
′
k−1 ∈ S1, and ℓ ∈ L such

that V ∩ L ⊆ spanC {ℓ′
1, . . . , ℓ

′
k−1} ∪ {ℓ}.

▶ Definition 27 (Elementary spaces). Let ℓ1, . . . , ℓk ∈ L, and let V = spanC {ℓ1, . . . , ℓk}. The
space V is called elementary with respect to L if V ∩ L = {ℓ1, . . . , ℓk}.

▶ Definition 28. The set L is a δ − SG∗
k configuration if for every linearly independent

ℓ1, . . . , ℓk ∈ L, there are δ · |L| forms ℓ in L such that either
1. ℓ ∈ spanC {ℓ1, . . . , ℓk},
2. or the linear space spanC {ℓ1, . . . , ℓk, ℓ} contains a form in L \ (spanC {ℓ1, . . . , ℓk} ∪ {ℓ}).

▶ Definition 29. The set L is a δ − SGk configuration if for every linearly independent
ℓ1, . . . , ℓk ∈ L there are δ · |L| forms ℓ ∈ L such that either
1. ℓ ∈ spanC {ℓ1, . . . , ℓk},
2. or the linear space spanC {ℓ1, . . . , ℓk, ℓ} is not elementary.

Given the above definitions, the following theorem was proved in [12, Theorem 1.14],
improving on [5].

▶ Theorem 30. If L is a δ − SG∗
k configuration then dim spanC {L} = O (k/δ). If L is

a δ − SGk configuration then dim spanC {L} = O
(
Ck/δ

)
where C is a universal constant

independent of k.

In the case when k = 1, Definition 28 and Definition 29 coincide, and match the usual
notion of robust linear Sylvester–Gallai configurations. In this case, the constant C is explicit.

▶ Theorem 31 ([11, Theorem 1.6]). If L is a δ−SG1 configuration then dim spanC {L} ≤ 4/δ.

CCC 2023

20:12 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

▶ Remark 32. Note that in [5, 12], the SG configurations are described in terms of points in
Cn, instead of linear forms in S. Both settings are equivalent via duality between points in
Cn and linear forms in S1.

3.2 Radical Sylvester-Gallai configurations
We now define the higher dimension analogues of the above configurations. Let F be a finite
set of irreducible forms of degree at most d that are pairwise non-associate.

▶ Definition 33 (Relevant sets). Let P = {P1, . . . , Pt} be a set of forms in S≤d. We say that
P is relevant if for every 1 ≤ i ≤ t, Pi ̸∈ rad (P \ Pi).

A relevant set of forms of size k is called a k-relevant set.

Geometrically, a set P is relevant if no subset of P define the same variety as P . We can
now extend Definition 28 and Definition 29 to configurations with forms of higher degree.

▶ Definition 34 (k-ordinary set). Let P ⊂ F be a k-relevant set. We say that P is k-ordinary
with respect to F if there are forms F1, . . . , Fk ∈ F such that

rad (P) ∩ F ⊂ rad (F1, . . . , Fk−1) ∪ {Fk} .

▶ Definition 35 (k-elementary set). Let P ⊂ F be a k-relevant set. We say that P is
k-elementary with respect to F if rad (P) ∩ F = P.

▶ Definition 36 (Radical Sylvester Gallai condition for tuples). Let F := {F1, . . . , Fm} ⊂ S≤d

be a finite set of irreducible forms and k ∈ N. We say that F is a δ− SG∗
k(d) configuration if

for every i ̸= j we have Fi ̸∈ (Fj) and for every k-relevant subset P ⊂ F , there are δ(m− k)
many forms F ∈ F \ P such that either

F ∈ rad (P) or
rad (F,P) ∩ F contains a form R not in rad (P) ∪ {F}.

Note that the robust SG problem from [31, 16] is the δ−SG∗
1(2). The higher codimensional

radical SG problem for quadratics that we address here can be stated as follows: what is
the maximum vector space dimension of any 1 − SG∗

k (2) configuration? Our main theorem,
which we now formally state, gives an answer to this question.

▶ Theorem 37 (Radical SG Theorem for tuples of quadratics). Let F be a 1 − SG∗
k(2)

configuration. There is a universal constant c > 0 such that dim(spanC {F}) ≤ 3c·4k .

4 Commutative algebraic preliminaries

4.1 Basic Definitions
In this section we recall the necessary definitions and results needed from commutative
algebra and algebraic geometry [3, 14].

▶ Definition 38 (Regular sequence). Let R be a commutative ring with unity. A sequence of
elements f1, f2, · · · fn ∈ R is called a regular sequence if
(1) (f1, f2, · · · , fn) ̸= R, and
(2) for all i ∈ [n], we have that fi is a non-zero divisor on R/(f1, · · · , fi−1)R.

A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:13

Ideals generated by regular sequences are well-behaved. For example, if f1, · · · , fm is a
regular sequence in S = C[x1, · · · , xn], we know that the ideal I = (f1, · · · , fm) is Cohen-
Macaulay [14, Proposition 18.13]. Cohen-Macaulayness imposes a simple and well-behaved
structure on the primary decomposition of I. In particular, every associated prime of I is
a minimal prime and the height/codimension of every minimal prime of I is the same, i.e.
Cohen-Macaulay ideals are unmixed and equidimensional [14, Corollaries 18.11, 18.14].

We note that if f1, · · · , fm is a regular sequence of forms in S, then f1, · · · , fm are
algebraically independent. Therefore the subalgebra generated by f1, · · · , fm is isomorphic
to a polynomial ring. In particular, the ring homomorphism C[y1, · · · , ym] → S defined by
yi 7→ fi is an isomorphism onto its image.

Even though the C-algebra C[f1, . . . , fm] ⊂ S is isomorphic to a polynomial ring, its
elements may not behave well when seen as elements of S. We next present a sufficient
condition which will ensure to us that the subalgebra is well behaved with respect to S, in a
way which we formalize later in Section 5.

▶ Definition 39 (Rη-property). Let η be a non-negative integer. We say that a Noetherian
ring R satisfies the Rη property if the local ring Rp is a regular local ring for all prime ideals
p ⊂ R such that height(p) ≤ η.

We recall the definition of an Rη-sequence below [2]. A subalgebra generated by an
Rη-sequence has several inetresting properties such as intersection flatness, which were
essential in [2, 28].

▶ Definition 40. Let η ∈ N and R a Noetherian ring. A sequence of elements f1, . . . , fn ∈ R

is called a prime sequence (respectively an Rη-sequence) if
1. f1, · · · , fn is a regular sequence, and
2. R/(f1, · · · , fi) is an integral domain (respectively, satisfies the Rη property) for all i ∈ [n].

▶ Remark 41. Note that a prime sequence in a ring R is also an R-regular sequence. Further,
if R is a polynomial ring and η ≥ 1, then any Rη-sequence is also a prime sequence.

4.2 Discriminant lemma

The following result provides an elimination theoretic criterion for a complete intersection
ideal to be radical. It is a direct application of [28, Lemma 3.22].

▶ Lemma 42. Let A = K[x1, . . . , xr, y1, . . . , ys], B := K[y1, . . . , ys]. Let F1, · · · , Fk, P be a
regular sequence of irreducible forms in A where F1, · · · , Fk ∈ B. Suppose P ∈ A\(y1, . . . , ys).
If I = (F1, · · · , Fk) ⊂ B is radical and discx1 (P) ̸∈ q · S where q is any minimal prime of I
in B, then the ideal (F1, · · · , Fk, P) is radical in A

Proof. Let p be a minimal prime of the ideal (F1, · · · , Fk, P) in A. Since F1, · · · , Fk, P is a
regular sequence we have codim (p) = r + s− k − 1. Let q = p ∩ B. Note that q is a prime
ideal containing F1, · · · , Fk in B. Therefore codim (q) ≥ s − k. If codim (q) > s − k, then
codim (q · A) > r + s− k. Since q · A ⊂ p, we must have q · A = p, which is a contradiction
as P ∈ p, whereas P ̸∈ (y1, · · · , ys). Therefore we must have that codim (q) = s− k. Then q

is a minimal prime of (F1, · · · , Fk) in B and by [28, Lemma 3.22] we conclude that the ideal
(F1, · · · , Fk, P) is radical in A. ◀

CCC 2023

20:14 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

5 Wide vector spaces and relative linear spaces

5.1 Wide vector spaces and algebras
We now define the main object that we will use in order to prove that Sylvester-Gallai
configurations are low dimensional: wide Ananyan-Hochster vector spaces. Such spaces
were used in [28] to give a positive solution to the radical SG problem for cubic forms. Our
definition is slightly simpler than the one from [28, Definition 4.8], as we don’t need the
multiplicative factor used there.

▶ Definition 43 (Wide vector spaces). A vector space V = V1 + V2 where Vi ⊂ Si is said to
be r-wide if, for any nonzero Q ∈ V2 we have rankQ ≥ dim V + r. In this case, we also say
that C[V] is an r-wide algebra.

We note that an r-wide vector space is a special case of the (w, t)-wide AH vector spaces
from [28]. An r-wide vector space is precisely a (r, 1)-wide AH vector space according to [28].

▶ Proposition 44 ([28], Proposition 4.11). Suppose U = U1 + U2 is a vector space in S and
suppose r ∈ N. There exists an r-wide vector space V = V1 + V2 with C [U] ⊆ C [V] such that
dim V2 ≤ dimU2 and dim V1 ≤ 3dim U2+1 · (r + dimU).

We now list some basic properties regarding these spaces. The first three of these are
algebraic properties that show how these spaces are useful, and the next three show how we
can build and modify these spaces, and how they behave with respect to projection.

▶ Theorem 45 ([2], Theorem 1.10). Let V ⊂ S2 be a vector space of dimension d such that
rankQ ≥ d− 1 + ⌈η/2⌉. Then every sequence of linearly independent elements of V is an
Rη sequence.

▶ Corollary 46. Suppose V = V1 + V2 is a r-wide vector space with r ≥ 1. If ℓ1, . . . , ℓa is
a linearly independent sequence in V1 and Q1, . . . , Qb is a linearly independent subset of
V2, then the sequence ℓ1, . . . , ℓa, Q1, . . . , Qb is a prime sequence. In particular, the ideal
(Q1, . . . , Qb) is a prime ideal in the quotient ring S/ (ℓ1, . . . , ℓa).

Proof. That ℓ1, . . . , ℓa form a prime sequence follows from the fact that they are independent
linear forms. Let U := spanC

{
Q1, . . . , Qb

}
be the vector space spanned by Q1, . . . , Qb in

S/ (ℓ1, . . . , ℓa). Every nonzero form in U has rank at least dim V1 + dim V2 + r − a, which
is greater than dimU . Therefore, by Theorem 45, the forms ℓ1, . . . , ℓa, Q1, . . . , Qb form a
R1 sequence. By [2, Discussion 1.3], such a sequence is also a prime sequence. The last
statement follows by the definition of prime sequences (Definition 40). ◀

▷ Claim 47. Suppose V := V1 + V2 is r-wide with Vi ⊂ Si. If Q ∈ C [V] is a quadratic form
of rank less than r, then Q ∈ C [V1]. If P ∈ (V) is a quadratic form of rank less than r, then
P ∈ (V1).

Proof. Suppose Q = Q2 + Q1 with Qi ∈ C [Vi]. We have Q2 = Q − Q1 whence rankQ2 ≤
r + dim V1. Therefore Q2 = 0. Similarly, suppose P = P1 + P2 with P2 ∈ V2 and P1 ∈ (V1).
We have P2 = P − P1 whence rankP2 ≤ r + dim V1. Therefore P2 = 0. ◁

▶ Remark 48. Suppose V = V1 + V2 is a r-wide vector space, and suppose U ⊂ S1 is a vector
space of dimension k. We have dim V + U ≤ dim V + k. Further, we have (V + U)2 = V2.
For every Q ∈ (V +U)2 we therefore have rankQ ≥ (r− k) + dim(V +U). Therefore V +U

is a r − k-wide vector space.

A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:15

▶ Remark 49. Suppose V = V1 + V2 is a r-wide vector space and φ := φα,V1 is a projection
mapping as defined in Definition 20. If Q ∈ V2 is such that rankφ(Q) = a in S [z] / (V1) then
a − 1 ≤ rankQ ≤ a in S/ (V1). Since V is r-wide, this proves that a ≥ r + dim V2. Since
dimϕ(V1) = 1, and since dimϕ(V2) ≤ dim V2, we get a ≥ r − 1 + (dimϕ(V1) + dimϕ(V2).
This shows that ϕ(V) is at least r − 1 wide.

The following lemmas show that radical membership among linear forms and certain
elements in the ideal (V) imply relationships between the “low rank” and “high rank” parts
individually.

▶ Lemma 50. Let F1, . . . , Fk ∈ S≤2 be irreducible forms. Let V = V1 + V2 be r-wide with
r ≥ k + 2 and let z ∈ V1. Suppose each Fi is either of the form Fi = xi with xi ∈ S1 or of
the form Fi = Qi + zxi with Qi ∈ V2 and xi ∈ S1. If

Fk ∈ rad (F1, . . . , Fk−1)

then zxk ∈ (x1, . . . , xk−1) and Qk ∈ spanC {Q1, . . . , Qk−1} where Qi = 0 if Fi ∈ S1.

Proof. Let U := (x1, . . . , xk). In the ring S/U , the vector space V is (r − k)-wide by
Remark 48. By Corollary 46, (Q1, . . . , Qk−1) is a prime ideal in S/U . Therefore we have
Qk =

∑k−1
i=1 αiQ in S/ (U) for αi ∈ C. This implies Qk =

∑k−1
i=1 αiQi + E in S, where

E ∈ (U). Since rankE ≤ dimU ≤ k, and since V is r-wide, we must have E = 0, proving
the first required statement.

Let I := (Q1, . . . , Qk−1, x1, . . . , xk−1). Since (U) is prime, and (Q1, . . . , Qk−1) is prime in
S/ (U), the ideal I is prime. Since Qk ∈ spanC {Q1, . . . , Qk−1} and since Fi ∈ I for i ≤ k− 1,
we have zxk ∈ I. Since W is r-wide, this implies zxk ∈ (x1, . . . , xk−1), completing the
proof. ◀

▶ Lemma 51. Let F1, . . . , Fk ∈ S≤2 be irreducible forms. Let V = V1 + V2 be r-wide with
r ≥ k + 2 and let z ∈ V1. Suppose each Fi is either of the form Fi = xi with xi ∈ S1 or of
the form Fi = Qi + zxi with Qi ∈ V2 and xi ∈ S1. Suppose further that z, x1, . . . , xk−1 are
linearly independent. If

Fk ∈ rad (F1, . . . , Fk−1) ,

and if xk ∈ (x1) in S/ (z), then F1 = Fk.

Proof. First assume that Q1 ̸= 0. By relabelling F2, . . . , Fk we can assume that
spanC {Q1, . . . , Qk−1} = spanC {Q1, . . . , Qt} for some t ≤ k − 1. For each i ∈ [t+ 1, k − 1],
suppose Qi =

∑t
j=1 βijQj . For each such i, let yi := xi −

∑t
j=1 βijxj . Note that

x1, . . . , xt, yt+1, . . . , yk−1 are linearly independent in S/ (z). We have (F1, . . . , Fk−1) =
(F1, . . . , Ft, zyt+1, . . . , zyk−1). Let J = (yt+1, . . . , yk−1). By Remark 48 the vector space
V is r − k-wide in S/J , therefore rank(Q1, . . . , Qt) ≥ t + r − k, and consequently
rank(F1, . . . , Ft) ≥ t + r − k − 1. By Theorem 45, the ideal (F1, . . . , Ft) is prime in S/J ,
therefore (F1, . . . , Ft) + J is a prime ideal containing rad (F1, . . . , Fk−1).

Let xk = x1 +αz. Suppose Fk ∈ S2. By Lemma 50 we have Qk ∈ spanC {Q1, . . . , Qt}, say
Qk =

∑t
j=1 γiQi. We have Fk−

∑t
j=1 γiQi = z(αz+x1−

∑t
j=1 γjxj) ∈ (F1, . . . , Ft)+J . Since

the latter ideal is a graded prime ideal, we have either z ∈ J or (αz+x1 −
∑t

j=1 γjxj) ∈ J . By
the linear independence assumption on the xi, this is only possible if (αz+x1−

∑t
j=1 γjxj) = 0.

This implies α = 0 and γ1 = 1 and γj = 0 for j ≥ 2. This implies F1 = Fk as required.
Suppose now that Fk ∈ S1. We then have Fk ∈ (F1, . . . , Ft)+J , and therefore x1+αz ∈ J ,

which contradicts the linear independence assumption.

CCC 2023

20:16 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

We are left with the case when Q1 = 0. After rearranging the forms, let Q2, . . . , Qt

be such that spanC {Q1, . . . , Qk−1} = spanC {Q2, . . . , Qt}, and let yi be defined as in the
previous case. Note that y1 = x1. Let J := (y1, yt+1, . . . , yk+1). The ideal (F2, . . . , Ft) + J

is a prime ideal containing rad (F1, . . . , Fk−1). As before suppose xk = x1 + αz.
Suppose Fk ∈ S2 so Qk =

∑t
j=2 γiQi. We have Fk −

∑t
j=2 γiFi = z(x1+αz−

∑t
j=2 γixi ∈

(F2, . . . , Ft) + J . Therefore, either z ∈ J , or x1 + αz −
∑t

j=2 γixi ∈ J . By the linear
independence assumption, this implies αi = 0 for i = 2, . . . , t contradicting the fact that
Fk ∈ S2.

Suppose Fk ∈ S1. In this case we have F1 − Fk = αz ∈ (F2, . . . , Ft) + J , which
implies αz ∈ J . By the independence assuption, we must have α = 0, whence F1 = Fk as
required. ◀

5.2 Relative linear spaces
Now that we have proved some properties of wide vector spaces, we introduce the notion of
relative linear spaces and establish some properties which will be useful to us in the next
section. This notion of relative linear spaces was used in [16] in their proof of the robust SG
theorem for quadratics.

▶ Definition 52 (Forms close to a vector space). Given a vector space V = V1 + V2 where
Vi ⊆ Si, we say that a quadratic form P is s-close to V if there is a form Q ∈ C[V] such
that rank(P −Q) ≤ s. If a form P is not r-close to V , for any r ≤ s, we say that P is s-far
from V .

Given a linear form ℓ, we say ℓ is 1-close to V if ℓ ̸∈ V1.

▶ Remark 53. Given a set of forms F , we will say that F is s-close to V if all forms in F are
at most s-close to V .

▶ Proposition 54 (Quadratics close to wide vector spaces). Let V = V1 + V2 be an r-wide
vector space and s < r/2. If P is s-close to V , then for any Q,Q′ ∈ C[V] such that
rank(P −Q) = rank(P −Q′) = s, we have that

Lin (P −Q) + V1 = Lin (P −Q′) + V1.

In other words, (Lin (P −Q) + V1)/V1 = (Lin (P −Q′) + V1)/V1 for any two decompositions.

Proof. Let R = P −Q and R′ = P −Q′. Thus, we have that R−R′ = Q′ −Q ∈ C[V] and
we have rank(Q′ −Q) = rank(R−R′) ≤ rank(R) + rank(R′) ≤ 2s < r. Hence, by Remark
47, we have that Q′ − Q ∈ C[V1]. Now, from R = R′ + (Q′ − Q) and Q′ − Q ∈ C[V1], we
have that Lin (R) ⊆ Lin (R′) + V1, and similarly, we have that Lin (R′) ⊆ Lin (R) + V1. ◀

▶ Definition 55 (Relative space of linear forms). Let r,B be integers such that r > 2B + 1. If
V is an r-wide vector space and P is s-close to V for s < r/2 we can define

LV (P) :=

L (P) + V1, if P ∈ S1

Lin (P −Q) + V1, if P ∈ S2, s ≤ B

spanC {P} , otherwise

where Q ∈ C[V] is a form such that rank(P −Q) = s. We also define the quotient space

LV (P) :=
{
LV (P) /V1, if s ≤ B

0, otherwise

A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:17

Further, we define PH
V to be the unique polynomial in V2 such that P − PH

V is s-close to V1.
Finally we define PL

V = P −PH
V . Note that LV (P) = LV

(
PL

V

)
. The superscript H indicates

that PH
V is the high-rank part of P with respect to V and the superscript L indicates that PL

V

is the low-rank part of P with respect to V .

Note that while the definition of LV (P) depends on the parameter B, we suppress this
from the notation for brevity. It will be clear from context the value of the parameter B
whenever we use LV (P).

Here are some useful results about relative linear spaces, and how they change when V is
modified. Lemma 58 characterises exactly when dimLV (F) is unchanged when LV (G) is
added to V1. As the lemma shows, this happens when F and G do not share any common
variables other than those that occur in V .

▶ Proposition 56. Suppose V is a r-wide space and P is s-close to V for 2s < r. If P ∈ (V)
then PH

V ∈ V2 and PL
V ∈ (V1).

Proof. Since P is s-close to V we can write P = PH
V +PL

V . Since PH
V ∈ V2, we have PL

V ∈ (V)
by assumption. We can write PL

V = P2 +P1 with P1 ∈ (V1) and P2 ∈ V2. In S/ (V1) we have
P2 = 0. Since V is r-wide, this implies P2 = 0 in S. Therefore PL

V ∈ (V1). ◀

▶ Proposition 57. Suppose V = V1 + V2 is a r-wide vector space with r > 2B + 1, and
suppose P ∈ S2 is B-close to V . Then Y := LV (P) + V2 is a r − 2B wide vector space.
If further r > 4B + 1 then for any other polynomial Q that is also B close to V we have
QH

V = QH
Y .

Proof. The first statement follows since Y is obtained by adding at most 2B linear forms to
a basis of V . We now have Q = QH

V +QL
V = QH

Y +QL
Y whence QH

V −QH
Y = QL

Y −QL
V . Here,

we use the fact that B < 4r + 1 to ensure that QH
Y , Q

L
Y are well defined. Since both QL

Y , Q
L
V

have rank at most B in S/ (Y) we obtain that QH
V = QH

Y . ◀

▶ Lemma 58. Suppose V = V1 + V2 is a r-wide vector space with r > 4B + 1, and suppose
F,G ∈ S2 are both B close to V . Let Y := LV (G) + V2. Then the following hold.
1. LY (F) = LV (G) + LV (F).
2. dimLV (F) = dimLY (F) if and only if LV (F) ∩ LV (G) = {0}.
3. If F ̸∈ (V) and dimLV (F) = dimLY (F) then F ̸∈ (Y).

Proof. By Proposition 57 we have H := FH
V = FH

Y . Let P,R be such that F −H − P = R

with P ∈ C [V1] and LV (F) = Lin (R) + V1. Let P ′, R′ be such that F −H − P ′ = R′ with
P ′ ∈ C [Y1] and LY (F) = Lin (R′) + Y1. We have the equation R′ + P ′ = R + P , which
implies that Lin (R′) + Y1 = Lin (R) + Y1. Since V1 ⊂ Y1, we have

Lin (R′) + Y1 = Lin (R) + V1 + Y1. (1)

Substituting LV (F) ,LY (F) in Equation (1) and using the fact that Y1 = LV (G) we get
LY (F) = LV (G) + LV (F).

Equation (1) also implies

LY (F) = Lin (R′) + Y1

Y1
= LV (F) + Y1

Y1
= LV (F)

LV (F) ∩ Y1

therefore

dimLV (F) = dimLY (F) ⇐⇒ dim V1 = dim (LV (F) ∩ Y1)
⇐⇒ V1 = LV (F) ∩ Y1 (since V1 ⊆ LV (F) ∩ Y1)
⇐⇒ {0} = LV (F) ∩ LV (G) ,

proving the second item.

CCC 2023

20:18 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

Assume now that F ∈ (Y). By Proposition 56 we have F − H ∈ (Y1). Further,
by assumption we have F − H ̸∈ (V1). In S/ (V1) we have 0 ̸= F −H = R ∈ (Y1)
which in turn implies that Lin

(
R

)
∩ Y1 ̸= {0} by Lemma 19. We have R =

∑
aibi for

linear forms a1, . . . , at, b1, . . . , bt where ai, bj span LV (F). Therefore Lin
(
R

)
=

∑
aibi,

whence Lin
(
R

)
⊆ LV (F). This shows that LV (F) ∩ LV (G) ≠ 0, which by item 2 implies

dimLV (F) ̸= dimLY (F), contradicting the assumption. ◀

Note that the condition LV (F) ∩ LV (G) = {0} is symmetric in F and G. Therefore, we
have that dimLV (F) = dimLLV (G)+V2 (F) if and only if dimLV (G) = dimLLV (F)+V2 (G).
Further, in this case we have F ̸∈ (LV (G) , V2) and also G ̸∈ (LV (F) , V2) if F,G ̸∈ (V).
In the next subsection, we introduces the notion of integral sequences that generalises the
above.

6 Integral sequences and strong sequences

In this section we define two special types of sequences of forms, namely integral sequences
and strong sequences. We will use the strong sequences to construct our core algebra, that
is, to prove that there is a small algebra such that all quadratics are close to it. We will then
use integral sequence to handle the case where all the quadratics are close to a core algebra.
We will prove that the ideals generated by integral and strong sequences are always radical
and prime, respectively.

6.1 Integral sequences
Item 2 of Lemma 58 gives us a condition for when the relative linear spaces of two linear
forms are disjointed. Intuitively, this is equivalent to the forms depending on disjoint sets of
variables, other than those occurring in V . This is made formal in Corollary 62. The notion
of integral sequences extends this to more that two forms. As in Lemma 58, we will require
the forms to be close to a wide vector space for the notion to be well defined.

▶ Definition 59 (Integral Sequences). Let r,B, t be integers with r > 4tB + 1. Suppose
V = V1 + V2 is a r-wide vector space. Let F1, . . . , Ft ∈ F be a sequence of forms that are
B-close to V . Let U0 := V and let Ui := LUi−1 (Fi) + V2. The sequence F1, . . . , Ft is called
an integral sequence over V if for each i we have

dimLV (Fi) = dimLUi−1 (Fi), and
Fi ̸∈ (V)

When V is clear from context we just call F1, . . . , Ft an integral sequence.

In the rest of this section, we will assume that r > 4tB + 1.

▶ Proposition 60. Suppose V is a r-wide vector space. Suppose F1, . . . , Ft are a sequence of
forms, and suppose Ui := LUi−1 (Fi) + V2 with U0 := V . Then
1. Ut =

∑t
j=1 LV (Fj) + V2.

2. dimLV (Fi) = dimLUi−1 (Fi) for every 2 ≤ i ≤ t if and only if for every 2 ≤ i ≤ t we
have

LV (Fi) ∩

i−1∑
j=1

LV (Fj)

 = {0} .

3. If additionally Fi ̸∈ (V) for every 1 ≤ i ≤ t, then Fi ̸∈ (Ui−1) for 2 ≤ i ≤ t.

A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:19

Proof. We prove the statements by induction on t. We will prove the additional statement
that LUt−1 (Ft) =

∑t
i=1 LV (Ft). Each of the three items are true by definition when t = 1.

Suppose the statements are true for t− 1.
Now the space Ut−2 is 4B + 1 wide by Remark 48. Applying Lemma 58 to Ut−2, Ft,

and Ft−1 we can deduce that LUt−1 (Ft) = LUt−2 (Ft) + LUt−2 (Ft−1). The space Ut−3 is
also 4B + 1 wide, therefore applying Lemma 58 to Ut−3, Ft, and Ft−2 we can deduce that
LUt−2 (Ft) = LUt−3 (Ft) + LUt−3 (Ft−2). Repeating this and substituting, we deduce that
LUt−1 (Ft) = LV (Ft) +

∑t
i=2 LUt−i

(Ft−i+1). By the induction hypothesis, we get that
LUt−i (Ft−i+1) =

∑t−i
j=1 LV (Fj). Therefore we get LUt−1 (Ft) =

∑t
i=1 LV (Fi). The first item

now follows by adding V2 to both sides.
Suppose now that dimLV (Fi) = dimLUi−1 (Fi) for every 2 ≤ i ≤ t − 1. Sup-

pose dimLV (Ft) = dimLUt−1 (Ft). This implies dimLUt−1 (Ft) = dimLUt−2 (Ft), since
V ⊂ Ut−2 ⊂ Ut−1. By item 2 of Lemma 58 applied to Ut−2, Ft−1, Ft we can deduce that
LUt−2 (Ft) ∩LUt−2 (Ft−1) = {0}. Using the fact that LUt−1 (Ft) =

∑t
i=1 LV (Fi), this is equi-

valent to LV (Fi) ∩
(∑i−1

j=1 LV (Fj)
)

= {0}. Conversely, starting with this assumption we can
deduce that dimLUt−1 (Ft) = dimLUt−2 (Ft). Note that F1, . . . , Ft−2, Ft also satisfy the con-
ditions of item 2. Therefore, by induction we can deduce that dimLUt−2 (Ft) = dimLV (Ft).
This completes the proof of item 2.

Applying the induction hypothesis to F1, . . . , Ft−2, Ft, we can deduce that Ft ̸∈ (Ut−2).
We can now apply Lemma 58 to Ut−2, Ft and Ft−1 to deduce that Ft ̸∈ (Ut−1), proving
item 3. ◀

▶ Corollary 61. If F1, . . . , Ft is a integral sequence, then so is any permutation of F1, . . . , Ft.

Proof. The second condition for integral sequences holds irrespective of the order of the
forms. By Proposition 60, the first condition for integral sequences is equivalent to

LV (Fi) ∩

i−1∑
j=1

LV (Fj)

 = {0}

for every 2 ≤ i ≤ t. This in turn is equivalent to dim
∑t

j=1 LV (Fj) =
∑t

j=1 dimLV (Fj),
which is independent of the order of the forms. ◀

▶ Corollary 62. Let F1, . . . , Ft be an integral sequence with respect to V and A :=
C

[
V2,

∑t
i=1 LV (Fi)

]
. There exist vector spaces of linear forms Y1, . . . , Yt ⊂ A such

that Yi ∩ (V + Y1 + · · · + Yi−1) = (0) for all i and Fi ∈ C [V, Yi]. Furthermore,
Fi ̸∈ (V, Y1, · · · , Yi−1, Yi+1, · · · , Yt).

Proof. By Proposition 60 we can take Yj := LV (Fj) . By Corollary 61, we may switch Fi and
Ft. Then by Proposition 60 part (3), we see that Fi ̸∈ (V, Y1, · · · , Yi−1, Yi+1, · · · , Yt). ◀

▶ Lemma 63. Suppose V is a r-wide vector space and F1, . . . , Ft is an integral sequence
with respect to V . Suppose F0 ∈ C [V] \ {0}. Then F0, F1, . . . , Ft is a regular sequence in S.

Proof. Note that by Corollary 62 we may assume that there exist vector spaces of linear
forms Y1, . . . , Yt of A such that Yi ∩ (V + Y1 + · · · + Yi−1) = (0) and Fi ∈ C [V, Yi]. Let
U = V + Y1 + · · · + Yt and A = C[U]. Since V is r-wide and r > 4Bt+ 1, we know that U is
2Bt+ 1-wide, and hence has a basis consisting of a prime sequence. Thus A → S is a free
extension (see [2, Section 2]) and hence any regular sequence in A is also a regular sequence
in S (see [38, Tag 00LM]). Therefore it is enough to prove that F0, F1, · · · , Ft is a regular
sequence in A = C[U].

CCC 2023

https://stacks.math.columbia.edu/tag/00LM

20:20 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

Note that the element F0 is a regular sequence in A = C[V +Y1 + · · · +Yt]. We will prove
by induction that if F0, · · · , Fi is a regular sequence in A, then so is F0, · · · , Fi+1. Suppose
F0, · · · , Fi is a regular sequence in A (and hence in Ai = C[V + Y1 + · · · + Yi]). If Fi+1 is a
zero divisor in A/(F0, · · · , Fi), then Fi+1 is in a minimal prime p of (F0, · · · , Fi) in A. Since
Ai → A is a free extension and Ai is generated by a prime sequence in S, we must have
that p = q · A for some minimal prime (F0, · · · , Fi) ⊂ q in Ai. Note that by Proposition 60
we know that Fi+1 ̸∈ (V + Y1 + · · · + Yi). This is a contradiction since Fi+1 ∈ q · A and
q ⊂ (V + Y1 + · · · + Yi). ◀

▶ Lemma 64. Suppose V is a r-wide vector space and F1, . . . , Ft is an integral sequence
with respect to V . Then (F1, . . . , Ft) is radical and for any minimal prime p ⊃ (F1, . . . , Ft)
we have that p ∩ C[V] = (0).

Proof. Note that by Corollary 62 we may assume that there exist vector spaces of linear
forms Y1, . . . , Yt of A such that Yi ∩ (V + Y1 + · · · + Yi−1) = (0) and Fi ∈ C [V, Yi]. By
Lemma 63, we know that F1, · · · , Ft is a regular sequence. Hence ht(p) = t for any minimal
prime p ⊃ (F1, . . . , Ft). Let F0 be a non-zero element in C[V]. Then F0, · · · , Ft is again
a regular sequence and hence ht(F0, · · · , Ft) = t + 1. This implies F0 ̸∈ p, as ht(p) = t

implies that p contains no regular sequence of length t + 1. Therefore we must have that
p ∩ C[V] = (0).

Now we will show that (F1, · · · , Ft) is a radical ideal in S. Let A = C[V + Y1 + · · · + Yt].
Since A → S is a free extension and the generators of A form a prime sequence in S, it is
enough to prove that (F1, · · · , Ft) is radical in A.

For each i, we assume that Fi is monic in yi ∈ Yi after a possible change of coordinates in Yi.
There exists such a variable since Fi ̸∈ (V). Let Ui := Yi/spanC {yi} and Z = V +U1+· · ·+Ut.
Then A = C[Z, y1, · · · , yt]. We will show by induction that (F1, · · · , Ft) is radical.

Note that (F1) is prime. Assume the statement holds for i − 1. We have discyi
(Fi) ∈

C [V,Ui]. Note that p ∩ C [V,Ui] = (0) for every minimal prime p of (F1, . . . , Fi−1), as
Fi−1 ̸∈ (V, Y1, · · · , Yi−2, Yi) by Corollary 62. Therefore Lemma 42 implies (F1, . . . , Fi) is
radical. ◀

▶ Corollary 65. Suppose F1, . . . , Ft is an integral sequence with respect to V . Then F1, . . . , Ft

form a t-relevant set.

Proof. The sequence F1, . . . , Ft−1 is an integral sequence, and therefore by Lemma 63 it is a
regular sequence. Since any regular sequence is a relevant set, we are done. ◀

6.2 Strong sequences

Integral sequences are only defined when the forms are close to a wide vector space. One
special case is when every form is of low rank, and therefore every form is close to the vector
space {0}. To deal with forms that are not close to a vector space (which is the general case),
we introduce the notion of strong sequences.

We first extend the notion of the rank of a quadratic form to vector spaces of quadratic
forms.

▶ Definition 66. Let V2 ⊂ S2 be a vector space. Define minrank (V) as
minQ∈V2,Q ̸=0 rankQ. If Q1, . . . , Qt are quadratic forms then define minrank (Q1, . . . , Qt) =
minrank (spanC {Q1, . . . , Qt}).

A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:21

▶ Definition 67. Let k, t ∈ N be such that t ≤ k + 1. Given forms Q1, . . . , Qt ∈ S2
we say that Q1, . . . , Qt is a k-strong sequence if Q1, . . . , Qt are linearly independent and
minrank (Q1, . . . , Qt) ≥ k + 5.

▶ Remark 68. By Theorem 45, if Q1, . . . , Qt is k-strong then Q1, . . . , Qt is a R3 sequence.
By the discussion in [2, Discussion 1.3], the ideal (Q1, . . . , Qt) is prime and the ring
S/ (Q1, . . . , Qt) is a UFD.

▶ Lemma 69. Suppose F2 ⊂ S2, and suppose Q1, . . . , Qt is a maximal k-strong sequence in
F2 with t ≤ k. For any r ≥ 2(k + 5) there exists a r-wide vector space W with dimW1 ≤
7 · r · 3t, dimW2 ≤ t such that every Q ∈ F2 is k + 4-close to W .

Proof. Let U := spanC {Q1, . . . , Qt}. By Proposition 44, there exists r-wide vector space W
such that U ⊂ C[W], dimW1 ≤ 3t+1 ·(r+t) and dimW2 ≤ t. Let Q ∈ F2 be a form. Consider
the sequence Q1, . . . , Qt, Q, which has length at most k + 1. By assumption, Q1, . . . , Qt, Q

is not a k-strong sequence. Therefore, we have either minrank (Q1, . . . , Qt, Q) ≤ k + 4 or
Q ∈ spanC {Q1, . . . , Qt}.

Suppose P = βQ +
∑
αiQi is such that rankP = minrank (Q1, . . . , Qt, Q) ≤ k + 4.

Since Q1, . . . , Qt is k-strong we have β ̸= 0. Therefore after scalar multiple we have
Q =

∑
αiQi + P , and Q is k + 4-close to W . If Q ∈ spanC {Q1, . . . , Qt} then Q ∈ W and

therefore Q is k + 4-close to W . ◀

We now define the notion of strong Sylvester-Gallai configurations. We show that a
constant fraction of the forms in any such configuration is close to a vector space of constant
dimension.5

▶ Definition 70. Let F2 ⊂ S2 be a finite set of forms. Let 0 < ϵ ≤ 1 and k, t ∈ N with
t ≤ k. We say that F2 is a strong (ϵ, k) − SG∗

t (2) configuration if for every k-strong sequence
Q1, . . . , Qt with Qi ∈ F2, there are ϵ(|F2| − 1) forms Qt+1 ∈ F2 such that either:
1. Q1, . . . , Qt, Qt+1 is not a k-strong sequence, or
2. there is a form R ∈ F2 such that R ∈ (Q1, . . . , Qt+1) \ (Q1, . . . , Qt) ∪ (Qt+1).

▶ Lemma 71. Let F2 ⊂ S2 finite, with m := |F2|. Let 0 < ϵ ≤ 1 and k, t ∈ N with 2 ≤ t ≤ k.
If F2 is a strong (ϵ, k) − SG∗

t (2) configuration then either
1. F2 is a strong (ϵ/4, k) − SG∗

t−1(2) configuration, or
2. there exist a vector space W with dimW1 ≤ 7 · r · 3t+1+16/ϵ, dimW2 ≤ t+ 1 + 16/ϵ such

that at least ϵm/4 forms in F2 are k + 4 close to W .

Proof. Let ϵ′ := ϵ/4. Suppose F2 is not a strong (ϵ′, k) − SG∗
t−1(2) configuration. If there

exist no k-strong sequences of length t− 1, then there exists some maximal k-strong sequence
of length at most t− 2, and the required space W exists by Lemma 69. We can therefore
assume that there exists a k-strong sequence Q1, . . . , Qt−1, and a set B ⊂ F2 of size at least
(1 − ϵ′)m such that for every Q ∈ B we have that Q1, . . . , Qt−1, Q is a k-strong sequence, and

F2 ∩ (Q1, . . . , Qt−1, Q) \ (Q1, . . . , Qt−1) = {Q}. (2)

5 As we mentioned in Section 1, we need this notion of strong SG configurations since in our setting we
cannot quotient by quadratic forms, as the quotient ring will not be a polynomial ring and the previous
results on SG configurations may not apply. In particular, this is where our approach is more complex
than [5], as in their case their quotients were all isomorphic to polynomial rings.

CCC 2023

20:22 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

Let V := spanC {Q1, . . . , Qt−1}. Forms P1, P2 ∈ B are pairwise independent over S2/V , since
if (P1) = (P2) in S2/V , then P2 ∈ (Q1, . . . , Qt−1, P1) \ (Q1, . . . , Qt−1) ∪ (P1), contradicting
P1 ∈ B.

Let P ∈ B. The sequence Q1, . . . , Qt−1, P is k-strong by definition of B. Since F2 is a
strong (ϵ, k) − SG∗

t (2) configuration, there are P1, . . . , Ps ∈ F2 with s ≥ ϵm such that either
Q1, . . . , Qt−1, P, Pi is not k-strong, or there is Ri ∈ F2 such that Ri ∈ (Q1, . . . , Qt−1, P, Pi) \
(Q1, . . . , Qt−1, P) ∪ (Pi).

Let G := {Pi |Q1, . . . , Qt−1, P, Pi is not a k-strong sequence}. Let W be the r-wide
vector space obtained by applying Proposition 44 to V + spanC {P}, we have dimW1 ≤
7 · r · 3t, dimW2 ≤ t. Every form in G is k + 4-close to W . Hence, if |G| ≥ ϵ′m then we are
done.

We are left with the case that |G| ≤ ϵ′m. After relabelling, let P1, . . . , Ps′ be the forms
that are in B \ G. Since |B| ≥ (1 − ϵ′)m and |G| ≤ ϵ′m we have s′ ≥ (ϵ− 2ϵ′)m.

Now for each i ≤ s′, there is a form Ri ∈ F2∩(Q1, . . . , Qt−1, P, Pi)\(Q1, . . . , Qt−1, P)∪(Pi)
say Ri =

∑
αjQj +βP +Pi. Since Pi ∈ B we have β ̸= 0. Suppose P1, . . . , Ps′′ are such that

B ∩ ((Q1, . . . , Qt−1, P, Pi) \ (Q1, . . . , Qt−1, P)) = {Pi} . (3)

If Ri = αRj with α ̸= 0 for i, j ≤ s′′, then we have αPj =
∑
α′

iQi + Pi + β′P , contradicting
Equation (3) for Pi. Therefore we have s′′ ≤ |F2 \ B| ≤ ϵ′m. Hence, there are at least ϵ′m
forms Pi such that |spanC {P, Pi} ∩ B| ≥ 3 in S2/V . Since this holds for every P ∈ B, the set
B is a (ϵ′, 2)-linear-SG configuration in S2/V . By Theorem 31 we have that dim spanC {B} ≤
4/ϵ′ in S2/V and that dim spanC {B} + V ≤ t + 1 + 4/ϵ′. Applying Proposition 44 to
spanC {B} + V gives us a r-wide vector space W with dimW1 ≤ 7 · r · 3t+1+4/ϵ′

, dimW2 ≤
t+ 1 + 4/ϵ′ and B ⊂ W . ◀

▶ Lemma 72. Let F2 ⊂ S2 finite, with m := |F2|. Suppose F2 is a strong (ϵ, k) − SG∗
1(2)

configuration. Then there is a r-wide vector space W with dimW1 ≤ 7 · r · 32+16/ϵ, dimW2 ≤
2 + 16/ϵ such that at least ϵm/4 forms in F2 are k + 5 close to W .

Proof. Let ϵ′ := ϵ/4. Let B be the set of forms in F2 of rank at least k+5. If |B| ≤ (1− ϵ′)m,
then there are at least ϵ′m forms that are k + 5 close to the zero vector space and we are
done with W = 0. We are left with the case when |B| ≥ (1 − ϵ′)m.

Let P ∈ B. Let G := {Pi |P, Pi is not a k-strong sequence}. Let W be the r-wide vector
space obtained by applying Proposition 44 to spanC {P}, we have dimW1 ≤ 21·r, dimW2 ≤ 1.
Every form in G is k + 4 close to W . If therefore |G| ≥ ϵ′m then we are done. We are left
with the case that |G| ≤ ϵ′m.

Suppose P1, . . . , Pr′ are the forms in B \ G such that P, Pi is a k-strong sequence and
there exist Ri ∈ (P, Pi) \ (P) ∪ (Pi). We have r′ ≥ 2ϵ′m. Suppose P1, . . . , Pr′′ are such that
(P, Pi) ∩ B = {P, Pi}. If Ri = βRj for i, j ≤ r′′ then Pj ∈ spanC {P, Pi}, contradicting choice
of Pi. Therefore there are at least ϵ′m many forms Pi such that |(P, Pi) ∩ B| ≥ 3. Since this
holds for every P , we have that B is a (ϵ′, 2)-linear-SG, and by Theorem 31 we have that
dim spanC {B} ≤ 4/ϵ′. If W is the r-wide space obtained by applying Proposition 44 to B
then dimW1 ≤ 7 · r · 34/ϵ′

, dimW2 ≤ 2 + 4/ϵ′ and B ⊂ W , completing the proof. ◀

▶ Corollary 73. Suppose F = F1 ⊔ F2 be a 1 − SG∗
k(2) configuration with |F2| = m2. Then

there exist a r-wide vector space W with dimW1 ≤ 7·r ·3k+1+16·4k−1
, dimW2 ≤ k+1+16·4k−1

such that at least m2/4k forms in F2 are k + 5 close to W .

Proof. We first show that F2 is a strong (1, k) − SG∗
k(2) configuration. Suppose Q1, . . . , Qk

is a k-strong sequence. Every subset of Q1, . . . , Qk is also a k-strong sequence, and hence
generates a prime ideal by Remark 68. By definition Q1, . . . , Qk are linearly independent,

A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:23

therefore Q1, . . . , Qk form a k-relavent set. For every Qk+1 ∈ F2, if Q1, . . . , Qk+1 is a
k-strong sequence, then (Q1, . . . , Qk+1) is prime and Qk+1 ̸∈ rad (Q1, . . . , Qk). Therefore
there exists R ∈ F such that R ∈ (Q1, . . . , Qk+1) \ (Q1, . . . , Qk) ∪ (Qk+1). Since Qi ∈ F2 it
must be that R ∈ F2. This shows that F2 is a strong (1, k) − SG∗

k(2) configuration.
Now let t ≥ 1 be the smallest number such that F2 is a strong

(
4k−t, k

)
− SG∗

t (2)
configuration. By the previous paragraph, we have t ≤ k. If t = 1, the required vector space
exists by Lemma 72. If t > 1, we apply Lemma 71. Since F2 is not a strong

(
4k−t−1, k

)
−

SG∗
t−1(2) configuration, case 1 of Lemma 71 does not hold, Therefore there exists a vector

space W with dimW1 ≤ 7 · r · 3t+1+16·4k−t

, dimW2 ≤ t + 1 + 16 · 4k−t such that at least
4k−t−1 ·m2 forms in F2 are k + 4 close to W . ◀

7 Proof of Sylvester-Gallai Theorem

In this section, we prove our main theorem: 1 − SG∗
k(2) configurations have constant vector

space dimension. Throughout this section we denote our 1 − SG∗
k(2) configuration by

F = F1 ⊔ F2 where Fd is the set of forms of degree d in our configuration. Additionally, we
define m := |F|, m1 := |F1| and m2 := |F2|.

Our proof has three main steps. In Section 7.1 we show that given F , we can find a
constant dimensional wide vector space W such that F is close to W . We call any such
C-algebra C[W] a core algebra of our configuration F . This step uses the notion of strong
sequences. In Section 7.2 we show that given such a vector space W , we can extend it to
obtain a constant dimensional wide vector space W ⊂ V such that F2 ⊂ (V). This step
uses the notion of integral sequences. In Section 7.3 we show that our main theorem follows
given such a vector space V . This step uses general projections and the bound for linear SG
configurations from [5, 12].

Define functions λ2(r, k) := k+ 1 + 16 · 4k−1, λ1(r, k) := 7 · r · 3λ2(r,k) and B(k) := 3k+ 15.
For the rest of this section, we set the parameter B in the definition of LV (P) to B(k). Note
that while this parameter depends on k, it is independent of |F|.

7.1 Constructing core algebras

We begin by showing that, to put all forms close to a wide algebra, it is enough to construct
a small wide algebra which contains a constant fraction of the quadratics. More precisely, the
next lemma allows us to increase the fraction of forms close to a given vector space without
increasing the size of the vector space too much, so long as we start with a wide vector space
which contains a constant fraction of the quadratics.6

Before we state and prove the lemma, the following notation will be very useful in this
subsection: if γ ∈ N, G is a set of forms and W is a graded vector space, we let

G(γ,W) := {P ∈ G | P is γ-close to W}.

▶ Lemma 74 (Increasing algebra intersection). Let 0 < δ ≤ 1, r, γ, k ∈ N be such that
r > 2γ ≥ k + 5 and W be a r-wide vector space. If |F(γ,W)| ≥ δm then there is a r-wide
vector space Y with dim Y1 ≤ 3k · (dimW + r), dim Y2 ≤ dimW2 + k such that either
|F(γ, Y)| ≥ 3δm/2, or F = F(3γ, Y).

6 This is similar in spirit to [5, Proposition 7.11] and [16, Lemma 5.15].

CCC 2023

20:24 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

Proof. Note that F1 ⊆ F(γ,W). Let H := F2 \ F(3γ,W). In other words, H is the set
of forms that are 3γ-far from W . Let H1, . . . ,Ht ∈ H be the longest sequence of linearly
independent forms such that
1. minrank (H1, . . . ,Ht) ≥ k + 5, and
2. No nonzero form in spanC {H1, . . . ,Ht} is 2γ-close to W .

Suppose t < k. Let Y be the r-wide vector space obtained by applying Proposition 44 to
W + spanC {H1, . . . ,Ht}. Since H1, . . . ,Ht is the longest linearly independent sequence that
satisfies the above conditions, for every other H ∈ H, it must be that

either H ∈ spanC {H1, . . . ,Ht}, or
minrank (H,H1, . . . ,Ht) ≤ k + 4, or
there exists R ∈ spanC {H,H1, . . . ,Ht} \ spanC {H1, . . . ,Ht} such that R is 2γ-close to
W .

In each of these three cases, it follows that H ∈ F(3γ, Y). Therefore in this case, Y is the
required vector space.

We are now in the case where t ≥ k. Consider the k elements H1, . . . ,Hk. Note
that H1, . . . ,Hk are linearly independent, and also satisfy minrank (H1, . . . ,Hk) ≥ k + 5.
Therefore, H1, . . . ,Hk is a k-strong sequence. By Remark 68, the ideal (H1, . . . ,Hk) is prime
and k-relevant, and S/ (H1, . . . ,Hk) is a UFD. Let Y be the r-wide vector space obtained by
applying Proposition 44 to W + spanC {H1, . . . ,Hk}, so dim Y1 ≤ 3k · (dimW + r), dim Y2 ≤
dimW2 + k.

Now for each Gi ∈ F(γ,W) we have Gi ̸∈ (H1, . . . ,Hk). In the graded UFD
S/ (H1, . . . ,Hk), the image of Gi must be irreducible: if not then Gi = ab +

∑
αjHj

in S, with a, b ∈ S1, contradicting the fact that spanC {H1, . . . ,Hk} does not con-
tain forms 2γ-close to W . The ideal (H1, . . . ,Hk, Gi) is therefore prime, and we have
Ri ∈ (H1, . . . ,Hk, Gi) \ (H1, . . . ,Hk) since F is a 1 − SG∗

k(2) configuration. We have
Ri ∈ F(γ, Y).

If Ri ∈ F1 then we must have Ri ∈ (Gi), contradicting the pairwise independence of
elements of F2, therefore Ri ∈ F2. After scaling we have either Ri −Gi ∈ spanC {H1, . . . ,Hk}
(if Gi ∈ F2) or Ri − aGi ∈ spanC {H1, . . . ,Hk} (if Gi ∈ F1). Therefore Ri ̸∈ F(γ,W) since
otherwise spanC {H1, . . . ,Hk} contains a form 2γ-close to W . If Gj is another form such
that Ri = Rj , then Ri − Gj or Ri − bGj is in spanC {H1, . . . ,Ht}, and it must be that
Gi, Gj ∈ F1 and aGi = bGj so Gj ∈ (a) , Gi ∈ (b). This shows that |{Ri}i| ≥ δm/2. Since
F(γ,W) ∪ {Ri}i ⊆ F(γ, Y), we are done. ◀

We are now ready to prove the main lemma of this subsection.

▶ Lemma 75 (Constructing core algebras). Suppose F is a 1−SG∗
k(2) configuration. For any r

there exists a r-wide vector space W with dimW1 ≤ 2·3k2 ·λ1(r, k) and dimW2 ≤ 4k2+λ2(r, k)
such that F = F(B(k),W).

Proof of Lemma 75. We build a sequence of vector spaces W (i) such that either F =
F(B(k),W (i)) or

∣∣F(k + 5,W (i))
∣∣ ≥ (3/2)i ·m/4k.

Set W (0) to be the r-wide vector space obtained by Corollary 73. By Corollary 73, at
least m2/4k forms in F2 are k+ 5 close to W (0). Further, every form in F1 is 1-close to W (0).
Since m1 +m2/4k ≥ m/4k, we have

∣∣F(k + 5,W (0)
∣∣ ≥ m/4k. Therefore, W (0) satisfies the

above property. We have dimW
(0)
i ≤ λi(r, k).

Given W (i), if F = F(B(k),W (i)) then terminate. If not, then apply Lemma 74 to
W (i) with γ = k + 5 and δ = (3/2)i · 1/4k to obtain W (i+1). By Lemma 74, either
F = F(B(k),W (i+1) = F or

∣∣F(k + 5,W (i+1))
∣∣ ≥ (3/2)i+1 · m/4k. Therefore W (i+1) also

has the required property.

A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:25

The above process must terminate when (3/2)i · 1/4k ≥ 1, which holds when i > 4k.
Further, by induction we have dimW

(4k)
1 ≤ 3k2

λ1(r, k) + 3k2 · 2k · r ≤ 2 · 3k2 · λ1(r, k) and
dimW2 ≤ 4k2 + λ2(r, k). Therefore W (4k) is the required space. ◀

7.2 Finding small ideal containing the quadratic forms
In this section we show that all quadratics in any 1 − SG∗

k(2) must be contained in an ideal
generated by a small number of forms. The main idea is that given any wide vector space,
there exist short maximal integral sequences with respect to the vector space. Recall that
the we set the parameter B in the definition of relative linear spaces to B(k) := 3k + 15.

▶ Lemma 76. Suppose r ≥ 4(k + 2)B(k) + 1. Suppose F is a 1 − SG∗
k(2) configuration, and

suppose W is a r-wide vector space such that every F ∈ F is B(k)-close to W . Then there
exists a maximal integral sequence with respect to inclusion of length at most k with respect
to W .

Proof. For each F ∈ F let FL
W be the image of FL

W in S/ (W1). Define potential function Φ
on integral sequences as

Φ(G1, . . . , Gc) :=
c∑

i=1
dim Lin

(
(Gi)L

W

)
.

If F ⊂ (W) then there are no integral sequences with respect to W , and the statement
holds vacuously, therefore we can assume that F \ (W) ̸= ∅. Combined with the fact that
W is r-wide, and that every form in F is B(k)-close to W , there exists nonempty integral
sequences with respect to W . Among all integral sequences of length at most k + 1, pick
F1, . . . , Fc such that the above potential function is maximised. If c ≤ k, then F1, . . . , Fc

is maximal: if not, and if F1, . . . , Fc+1 is an integral sequence that extends F1, . . . , Fc then
Φ(F1, . . . , Fc+1) > Φ(F1, . . . , Fc), contradicting maximality.

We are left with the case where c = k + 1. We will find an integral sequence of length at
most k with the same potential function value, and therefore the new integral sequence will
be maximal. The sequence F1, . . . , Fk is an integral sequence, therefore by Lemma 64 we
have that (F1, . . . , Fk) is a radical ideal. Further, by Corollary 65 we have that F1, . . . , Fk is
a k-relevant set. Similarly, F1, . . . , Fk+1 is a k+ 1-relevant set, therefore Fk+1 ̸∈ (F1, . . . , Fk).

Since F is a 1−SG∗
2(2), we have R ∈ (F1, . . . , Fk+1)\(F1, . . . , Fk), that is, R =

∑k+1
j=1 αjFj

with αk+1 ̸= 0. Without loss of generality, suppose αj = 0 for j = 1, . . . , b and αj ̸= 0 for
j = b+ 1, . . . , k + 1. Since the polynomials in F are pairwise linearly independent we have
b < k.

Now R = RH
W + RL

W =
∑

j>b αiFi =
∑

j>b αi((Fi)H
W + (Fi)L

W). Since the space
W is r-wide, we have RH

W =
∑

j>b αi(Fi)H
W and RL

W =
∑

j>b αi(Fi)L
W . By Corol-

lary 62, after a change of basis we can assume that there are disjoint sets of vari-
ables Y, Y1, . . . , Yk such that W1 is spanned by Y and (Fi)L

W ∈ C [Y, Yi]. We have
Lin

(
RL

W

)
⊆ C [Y, Yb+1, . . . , Yk+1], whence F1, . . . , Fb, R is an integral sequence by Pro-

position 60. Further RL
W =

∑
j>b αj(Fj)L

W , and since (Fi)L
W ∈ C [Yi], by Lemma 18 we can

deduce that dim Lin
(
RL

W

)
=

∑
j>b dim Lin

(
(Fj)L

W

)
. Therefore F1, . . . , Fb, R is an integral

sequence of length at most k with Φ(F1, . . . , Fb, R) = Φ(F1, . . . , Fk+1). This proves that
F1, . . . , Fb, R is a maximal integral sequence. ◀

▶ Lemma 77. Suppose F is a 1 − SG∗
k(2) configuration. Suppose r ≥ 8(k + 2)B(k)2 + 1.

There exists a
(
r − 4kB(k)2)

-wide vector space W with dimW1 ≤ 3 · 3k2 · λ1(r, k) and
dimW2 ≤ 4k2 + λ2(r, k) such that F2 ⊂ (W).

CCC 2023

20:26 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

Proof. For any r-wide vector space U such that every polynomial F ∈ F is B(k) close to U ,
define potential function Ψ as

Ψ(U) = max
F ∈F2\(U)

dimLU (F) .

If Ψ(U) = 0 for some such U , then F2 ⊂ (U).
We now construct W iteratively. Let W (0) be the r-wide vector space whose existence is

guaranteed by Lemma 75. Since every F ∈ F is B(k)-close to W (0) we have Ψ(W (0)) ≤ 2B(k).
The vector space W (0) is r-wide, and r ≥ 4(k + 2)B(k) + 1, therefore by Lemma 76 we
can find a maximal integral sequence F1, . . . , Fc with respect to W (0) with c ≤ k. Set
W (1) =

∑c
i=1 LW (0) (Fi) +W

(0)
2 . That F1, . . . , Fc is maximal implies the following: for every

G ∈ F2 \
(
W (0)) we have dimLW (0) (G) > dimLW (1) (G). Therefore Ψ(W (1)) < Ψ(W (0)).

By Lemma 58, the vector space W (1) is r− 2kB(k)-wide since W (1)
1 is obtained by adding at

most 2kB(k) linear forms to W (0)
1 . In general, given W (i) we use Lemma 76 to find a maximal

integral sequence Fi1, . . . , Fic, and set W (i+1) :=
∑c

j=1 LW (i) (Fij) + W
(i)
2 . Maximality of

the sequence implies Ψ(W (i+1)) < Ψ(W (i)). By the bound on r, at every step W (i) is at
least 4(k + 2)B(k) + 1-wide. After at most 2B(k) steps we find a t such that Ψ(W (t)) = 0.

By Lemma 75 we have dimW
(0)
1 ≤ 2 · 3k2

λ1(r, k). Since W (i+1) is obtained by adding
2B(k)k linear forms to W (i) we get dimW

(t)
1 ≤ 2 · 3k2

λ1(r, k) + 4B(k)2k ≤ 3 · 3k2
λ1(r, k).

Further we have dimW
(i)
2 = dimW

(i−1)
2 for all i, therefore dimW

(t)
2 = dimW

(t)
0 ≤ 4k2 +

λ2(r, k). This completes the proof. ◀

7.3 Basic configuration
In this section we prove Theorem 37 for the special case where all the quadratics are in the
ideal generated by an r-wide algebra.

▶ Lemma 78. Suppose F is a 1 − SG∗
k(2) configuration. Suppose there is an r-wide linear

subspace W with r ≥ k + 5 such that F2 ⊂ (W). Then there is linear subspace W ′
1 with

dim(W ′
1) =

(
C ′k)

· dimW1, such that F ⊆ W2 + C[W ′
1].

Proof. Let φ := φα,W1 be a projection mapping as defined in Definition 20. By Remark 49,
the space φ(W) is a r− 1-wide vector space. Let ∆ := dimW1. As F2 ⊆ (W), every F ∈ F2
satisfies φ(F) = αφ(FH

W) + z · ℓ for some linear form ℓ ∈ S [z]1.
Let L be the union of all the linear forms that occur in the above way, and all the linear

forms in F . Formally, L :=
{
ℓ | φ(F) = αφ(FH

W) + z · ℓ, F ∈ F2
}

∪φ(F1). Let L/ (z) denote
the image of L in the vector space (S [z] / (z))1, that is, the linear forms modulo z. We show
that L/(z) is a 1 − SGk(1) configuration.

Let ℓ1, . . . , ℓk ∈ L/(z) be independent. Let ℓk+1 ∈ L/(z). We need to show that one of
the following cases holds:
1. ℓ̄k+1 ∈ spanC

{
ℓ1, . . . , ℓk

}
.

2. there is ḡ ∈ spanC
{
ℓ1, . . . , ℓk+1

}
\ {ℓ1, . . . , ℓk} with ḡ ∈ L/ (z).

Consider the corresponding F1, . . . , Fk+1 ∈ F such that φ(Fi) = αiπ(Fi
H
W) + z · ℓi, with

ℓi/(z) = ℓ̄i, or, if Fi ∈ F1 then Fi = ℓi.
The first step is to show that F1, . . . , Fk form a k-relevant set. Without loss of gener-

ality, assume that F1 ∈ rad (F2, . . . , Fk). We have φ(F1) ∈ rad (φ(F2), . . . , φ(Fk)), and by
Lemma 50 we have zℓ1 ∈ (ℓ2, . . . , ℓk). Since the ideal ℓ2, . . . , ℓk is prime, and since ℓ2, . . . , ℓk

are independent, we get ℓ1 ∈ spanC {ℓ2, . . . , ℓk} contradicting choice of ℓ1, . . . , ℓk. Therefore
F1, . . . , Fk is k-relevant.

A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:27

By the same argument, if Fk+1 ∈ rad (F1, . . . , Fk) then ℓk+1 ∈ spanC
{
ℓ1, . . . , ℓk

}
. We are

left with the case when Fk+1 ̸∈ rad (F1, . . . , Fk). Since F is a 1 − SG∗
2(2) configuration, there

exists R ∈ rad (F1, . . . , Fk+1) \ rad (F1, . . . , Fk). Let g be such that φ(R) = αiφ(RH
W) + z · g

if R ∈ F2, and R = g otherwise. We have φ(R) ∈ rad (φ(F1), . . . , φ(Fk+1)). By Lemma 50,
we have zg ∈ spanC

{
ℓ1, . . . , ℓk+1

}
which implies g ∈ spanC

{
ℓ1, . . . , ℓk+1

}
. Finally, by

Lemma 51, we have that g ̸∈
(
ℓi

)
for any i. This completes the proof that L/ (z) is a

1 − SGk(1) configuration.
By Theorem 30 we have

dim(LW (φ(F)) = dim(L/(z)) + 1 ≤ C ′k,

for some universal constant C ′. Applying Proposition 24 it follows that dim(LW (F)) ≤ C ′k ·∆.
In particular, it follows that there is a linear space of linear forms W ′

1, with dim(W ′
1) ≤ C ′k ·∆,

satisfying F ⊆ W2 + C[W ′
1], completing the proof. ◀

7.4 Proof of main theorem
We now prove the main theorem, which we restate for convenience.

▶ Theorem 37 (Radical SG Theorem for tuples of quadratics). Let F be a 1 − SG∗
k(2)

configuration. There is a universal constant c > 0 such that dim(spanC {F}) ≤ 3c·4k .

Proof. Let r := 8(k+ 2)B(k)2 + k+ 6. By Lemma 77, there exists a k+ 5-wide vector space
W with dimW1 ≤ 3 ·3k2 ·λ1(r, k) and dimW2 ≤ 4k2 +λ2(r, k) such that F2 ⊆ (W). Applying
Lemma 78 with this W , we obtain a vector space W ′

1 ⊆ S1 with dimW ′
1 ≤ 3 ·3k2 ·λ1(r, k) ·C ′k

such that F ⊆ W2 + C [W ′
1]. If Y ⊆ S2 is the space spanned by pairwise products of forms

in W ′
1, then F ⊆ W2 + Y and dim Y ≤ 9 · 9k2 · λ2

1(r, k) · C ′2k. Substituting for λ1, λ2 gives
us the required result. ◀

▶ Remark 79. Suppose the set F does not have any k-relevant sequences. In this case, F is
vacuously an 1 − SG∗

k(2) configuration. There are no k-strong sequences in F of length k,
since any such sequence is a k-relevant set. Therefore every form in such a configuration
is k + 5-close to a r-wide vector space W of dimension 7 · r · 3k by Lemma 69. Further,
such a configuration has no integral sequences of length k + 1. Therefore, by the arguments
in Lemma 76 and Lemma 77, by adding 4kB(k)2 linear forms to W , we get a wide vector
space Y such that F ⊆ Y . If we project to Y1 and pick out the linear forms corresponding
to each element of F as in Lemma 78, then there are no set of k + 1 linearly independent
forms by Lemma 50. Therefore, we can deduce by the properties of the projection map that
dim spanC {F} = 2O(k) in this case.

8 Conclusion

In this work, we prove a higher codimension analogue of the quadratic Sylvester–Gallai
theorem, generalising the results of [36, 20]. Our ability to handle ideals of higher codimension
shows our approach is a promising one towards a full derandomisation of PIT for ΣkΠΣΠ2

circuits.
To prove our main theorem, we build upon the results of [2, 28] and use the wide

algebras developed in these works to control the cancellations in SG configurations. One key
difference between this work and previous works [36, 29, 30, 31, 16, 28] is that we prove our
Sylvester-Gallai theorem without a fine classification of the ideals we deal with.

CCC 2023

20:28 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

Our work leaves several open questions which are of interest to combinatorialists, al-
gebraic geometers, and complexity theorists. On the combinatorial and geometric side,
understanding the different generalizations of Sylvester’s problems to higher codimension
(such as the elementary SG configurations defined in [20] and also studied in [5]) is a problem
of independent interest, as well as the generalization to higher codimension of the “product”
version of Sylvester’s question, defined in [19, 29]. And of course, fully derandomizing PIT
for ΣkΠΣΠ2 is still a major open question.

References
1 Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Jacobian hits cir-

cuits: Hitting sets, lower bounds for depth-d occur-k formulas and depth-3 transcendence degree-
k circuits. SIAM Journal on Computing, 45(4):1533–1562, 2016. doi:10.1137/130910725.

2 Tigran Ananyan and Melvin Hochster. Strength conditions, small subalgebras, and stillman
bounds in degree ≤ 4. Transactions of the American Mathematical Society, 373(7):4757–4806,
2020.

3 M. F. Atiyah and I. G. MacDonald. Introduction to Commutative Algebra. Addison Wesley
Publishing Company, 1969.

4 Boaz Barak, Zeev Dvir, Avi Wigderson, and Amir Yehudayoff. Fractional sylvester-gallai
theorems. Proceedings of the National Academy of Sciences, 110, 2013.

5 Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. Rank bounds for design matrices
with applications to combinatorial geometry and locally correctable codes. In Proceedings of
the Forty-Third Annual ACM Symposium on Theory of Computing, STOC ’11, pages 519–528,
2011. doi:10.1145/1993636.1993705.

6 David Bayer and Michael Stillman. On the complexity of computing syzygies. Journal of
Symbolic Computation, 6(2):135–147, 1988. doi:10.1016/S0747-7171(88)80039-7.

7 Peter Borwein and William OJ Moser. A survey of sylvester’s problem and its generalizations.
Aequationes Mathematicae, 40(1):111–135, 1990.

8 Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Hardness vs randomness for bounded
depth arithmetic circuits. In 33rd Computational Complexity Conference (CCC 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

9 Leonard Eugene Dickson. The points of inflexion of a plane cubic curve. The Annals of
Mathematics, 16(1/4):50–66, 1914.

10 Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Deterministic identity testing paradigms
for bounded top-fanin depth-4 circuits. In Proceedings of the 36th Computational Complexity
Conference, CCC ’21, 2021. doi:10.4230/LIPIcs.CCC.2021.11.

11 Zeev Dvir, Ankit Garg, Rafael Oliveira, and József Solymosi. Rank bounds for design matrices
with block entries and geometric applications. Discrete Analysis, 2018.

12 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Improved rank bounds for design matrices
and a new proof of kelly’s theorem. In Forum of Mathematics, Sigma, volume 2. Cambridge
University Press, 2014.

13 Michael Edelstein and Leroy M Kelly. Bisecants of finite collections of sets in linear spaces.
Canadian Journal of Mathematics, 18:375–380, 1966.

14 David Eisenbud. Commutative Algebra with a View Toward Algebraic Theory. Springer-Verlag,
New York, 1995.

15 Tibor Gallai. Solution of problem 4065. American Mathematical Monthly, 51:169–171, 1944.
16 Abhibhav Garg, Rafael Oliveira, and Akash Kumar Sengupta. Robust Radical Sylvester-Gallai

Theorem for Quadratics. In 38th International Symposium on Computational Geometry
(SoCG 2022), volume 224 of Leibniz International Proceedings in Informatics (LIPIcs), pages
42:1–42:13, 2022. doi:10.4230/LIPIcs.SoCG.2022.42.

17 Siyao Guo, Tal Malkin, Igor C Oliveira, and Alon Rosen. The power of negations in crypto-
graphy. In Theory of Cryptography Conference, pages 36–65. Springer, 2015.

https://doi.org/10.1137/130910725
https://doi.org/10.1145/1993636.1993705
https://doi.org/10.1016/S0747-7171(88)80039-7
https://doi.org/10.4230/LIPIcs.CCC.2021.11
https://doi.org/10.4230/LIPIcs.SoCG.2022.42

A. Garg, R. Oliveira, S. Peleg, and A. K. Sengupta 20:29

18 Zeyu Guo. Variety Evasive Subspace Families. In Valentine Kabanets, editor, 36th Computa-
tional Complexity Conference (CCC 2021), volume 200 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 20:1–20:33, 2021. doi:10.4230/LIPIcs.CCC.2021.20.

19 Ankit Gupta. Algebraic geometric techniques for depth-4 pit & sylvester-gallai conjectures for
varieties. In Electron. Colloquium Comput. Complex., volume 21, page 130, 2014.

20 Sten Hansen. A generalization of a theorem of sylvester on the lines determined by a finite
point set. Mathematica Scandinavica, 16(2):175–180, 1965.

21 Friedrich Hirzebruch. Arrangements of lines and algebraic surfaces. In Arithmetic and geometry,
pages 113–140. Springer, 1983.

22 Pavel Hrubeš and Amir Yehudayoff. Monotone separations for constant degree polynomials.
Information Processing Letters, 110(1):1–3, 2009.

23 Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth 3 circuits.
In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages 198–207.
IEEE, 2009.

24 Leroy Milton Kelly. A resolution of the sylvester-gallai problem of j.-p. serre. Discrete &
Computational Geometry, 1(2):101–104, 1986.

25 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds
against low-depth algebraic circuits. In 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science (FOCS), pages 804–814. IEEE, 2022.

26 Ernst W Mayr and Albert R Meyer. The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in mathematics, 46(3):305–329, 1982.

27 Eberhard Melchior. Uber vielseite der projektiven ebene. Deutsche Math, 5:461–475, 1940.
28 Rafael Oliveira and Akash Sengupta. Radical sylvester-gallai theorem for cubics. FOCS, 2022.
29 Shir Peleg and Amir Shpilka. A Generalized Sylvester-Gallai Type Theorem for Quadratic

Polynomials. In 35th Computational Complexity Conference (CCC 2020), pages 8:1–8:33, 2020.
doi:10.4230/LIPIcs.CCC.2020.8.

30 Shir Peleg and Amir Shpilka. Polynomial time deterministic identity testing algorithm for
Σ[3]ΠΣΠ[2] circuits via edelstein-kelly type theorem for quadratic polynomials. In STOC ’21:
53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June
21-25, 2021, pages 259–271. ACM, 2021. doi:10.1145/3406325.3451013.

31 Shir Peleg and Amir Shpilka. Robust sylvester-gallai type theorem for quadratic polynomials.
In 38th International Symposium on Computational Geometry, SoCG 2022, volume 224 of
LIPIcs, pages 43:1–43:15, 2022. doi:10.4230/LIPIcs.SoCG.2022.43.

32 Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth. Journal of
the ACM (JACM), 39(3):736–744, 1992.

33 Alexander A Razborov. On submodular complexity measures. Boolean Function Complexity,(M.
Paterson, Ed.), pages 76–83, 1992.

34 Nitin Saxena and Comandur Seshadhri. From sylvester-gallai configurations to rank bounds:
Improved blackbox identity test for depth-3 circuits. Journal of the ACM (JACM), 60(5):1–33,
2013.

35 Jean-Pierre Serre. Advanced problem 5359. Amer. Math. Monthly, 73(1):89, 1966.
36 Amir Shpilka. Sylvester-gallai type theorems for quadratic polynomials. Discrete Analysis,

page 14492, 2020.
37 Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In 31st Conference

on Computational Complexity (CCC 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2016.

38 The Stacks Project Authors. Stacks Project. Open Source, 2015. URL: http://stacks.math.
columbia.edu.

39 James Joseph Sylvester. Mathematical question 11851. Educational Times, 59(98):256, 1893.
40 Endre Szemerédi and William T. Trotter. Extremal problems in discrete geometry. Combinat-

orica, 3(3):381–392, 1983.

CCC 2023

https://doi.org/10.4230/LIPIcs.CCC.2021.20
https://doi.org/10.4230/LIPIcs.CCC.2020.8
https://doi.org/10.1145/3406325.3451013
https://doi.org/10.4230/LIPIcs.SoCG.2022.43
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu

20:30 Radical Sylvester-Gallai Theorem for Tuples of Quadratics

41 Éva Tardos. The gap between monotone and non-monotone circuit complexity is exponential.
Combinatorica, 8(1):141–142, 1988.

42 Leslie G Valiant. Negation can be exponentially powerful. In Proceedings of the eleventh
annual ACM symposium on theory of computing, pages 189–196, 1979.

A Alternative proof of Lemma 64

We give here an alternative proof suggested by an anonymous reviewer (with proper formal-
izations).

Alternative Proof of Lemma 64. Let I := (F1, . . . , Ft). Since the inclusion A :=
C[V, Y1, . . . , Yt] → S is a free extension, it is enough to prove that I is radical in A. Moreover,
since A is isomorphic to a polynomial ring, by Corollary 62 we can assume that our poly-
nomial ring is A := C[Z, y1, y2, . . . , yt] where Fi ∈ C[Z, yi]. By Lemma 63, we know that
F ∈ C[Z] \ {0} is regular with F1, . . . , Ft, and hence it is not in any minimal prime of I.
Thus, F is not a zero divisor over A/I.

Since B := C(Z)[y1, . . . , yt] is the localization of A over C[Z] \ {0}, by the above, we
have that I is radical in A iff I · B is radical in B. Let R := C(Z)[y1, . . . , yt]. It is easy
to see that I · B is radical in B if I · R is radical over R. To see that I · R is a radical
ideal, note that Fi ∈ C[Z, yi] irreducible implies that discyi (Fi) ∈ C[Z] \ {0} and hence
Fi = (yi −αi)(yi − βi) over R, with αi ̸= βi. Thus, I ·R is the intersection of maximal ideals
and therefore radical. ◀

Reducing Tarski to Unique Tarski
(In the Black-Box Model)
Xi Chen #

Columbia University, New York, NY, USA

Yuhao Li #

Columbia University, New York, NY, USA

Mihalis Yannakakis #

Columbia University, New York, NY, USA

Abstract
We study the problem of finding a Tarski fixed point over the k-dimensional grid [n]k. We give a
black-box reduction from the Tarski problem to the same problem with an additional promise that
the input function has a unique fixed point. It implies that the Tarski problem and the unique
Tarski problem have exactly the same query complexity. Our reduction is based on a novel notion of
partial-information functions which we use to fool algorithms for the unique Tarski problem as if
they were working on a monotone function with a unique fixed point.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Exact and approximate computation of equilibria

Keywords and phrases Tarski fixed point, Query complexity, TFNP

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.21

Related Version ECCC Report: https://eccc.weizmann.ac.il/report/2023/073/

Funding Xi Chen: Supported by NSF grants IIS-1838154, CCF-2106429 and CCF-2107187.
Yuhao Li: Supported by NSF grants CCF-1563155, CCF-1703925, IIS-1838154, CCF-2106429 and
CCF-2107187.
Mihalis Yannakakis: Supported by NSF grants CCF-2107187 and CCF-2212233.

Acknowledgements We would like to thank anonymous CCC reviewers for their helpful comments
to improve the presentation of the paper.

1 Introduction

We start with the definition of monotone functions and state Tarski’s fixed point theorem [12]:

▶ Definition 1 (Monotone functions). Let (L,⪯) be a complete lattice. A function f : L → L
is said to be monotone if f(a) ⪯ f(b) for all a, b ∈ L with a ⪯ b.

▶ Theorem 2 (Tarski). For any complete lattice (L,⪯) and any monotone function f : L → L,
there must be a point x ∈ L such that f(x) = x, i.e., x is a fixed point. In fact, the fixed
points form a sublattice, with a greatest and a smallest element.

Tarski’s fixed point theorem has extensive applications in many fields, including for
example verification, semantics, game theory and economics. For example in game theory
there is an important class of games, called supermodular games (or games with strategic
complementarities) which model economic settings where a player’s best response is a
monotone function (or correspondence) of the other players’ actions [13, 14, 10]. These
games always have pure equilibria (in fact a lattice of pure equilibria) by Tarski’s theorem.
Computing a pure equilibrium in such a game corresponds to finding a Tarski fixed point.
In fact, as shown in [4], finding a pure equilibrium in supermodular games is essentially
equivalent to finding a fixed point of monotone functions.

© Xi Chen, Yuhao Li, and Mihalis Yannakakis;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 21; pp. 21:1–21:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xichen@cs.columbia.edu
mailto:yuhaoli@cs.columbia.edu
mailto:mihalis@cs.columbia.edu
https://doi.org/10.4230/LIPIcs.CCC.2023.21
https://eccc.weizmann.ac.il/report/2023/073/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Reducing Tarski to Unique Tarski (In the Black-Box Model)

There are several other types of games that reduce to the Tarski problem. For example,
Condon’s simple stochastic games [2] have been intensely studied both in theoretical computer
science as well as in the verification field (and they subsume other well-studied problems, such
as parity games); their complexity remains a notorious open problem. The problem can be
reduced to the Tarski problem of finding a fixed point of a given monotone function f , and in
fact in this case we can even guarantee that the function has a unique fixed point. A similar
property holds for the broader class of stochastic games defined originally by Shapley [11],
and studied extensively since then. These games have in general irrational solutions, but it
can be shown again that approximating the solution to any desired accuracy reduces to the
problem of computing a fixed point of a monotone function that is furthermore guaranteed to
have a unique fixed point (see [4] for more details). More generally, uniqueness of solutions
is a desirable property in many applications in game theory, economics, and other fields. For
sufficient conditions that ensure the uniqueness of Tarski fixed points, see [9] and references
therein.

Thus, these facts raise the question, how hard is it to find a fixed point of a given
monotone function? And if we know that the function has a unique fixed point, does this
make the problem easier?

In this paper, we study the deterministic query complexity of finding a fixed point of
a monotone function f over the complete lattice of a k-dimensional grid ([n]k,⪯), where
[n] denotes {1, . . . , n} and ⪯ denotes the natural partial order over Zk: a ⪯ b if and only
if ai ≤ bi for every i ∈ [k]. So a monotone function f : [n]k → [n]k satisfies f(a) ⪯ f(b)
for all a, b ∈ [n]k with a ⪯ b, and we write Fix(f) to denote the set of fixed points x of f

satisfying f(x) = x. In the applications, n is typically exponential in the input size and k is
polynomial. Thus, polynomial complexity in this context means polynomial in log n and k.
Under the query model, an algorithm has oracle access to an unknown monotone function
f : [n]k → [n]k. In each round, it can send a query x ∈ [n]k to the oracle to reveal f(x), and
it succeeds after making a query x that returns f(x) = x. We write Tarski(n, k) to denote
this problem.

Our understanding of the query complexity of Tarski(n, k) remains rather limited. On
the upper bound side, there are two basic algorithms. Tarski’s algorithm (or Kleene iteration
in a different literature) starts from the bottom element 1k of the lattice (or the top element
nk) and applies repeatedly f until it reaches a fixed point; the query complexity is Θ(nk) in
the worst case. Another algorithm by [3] applies a binary search strategy in a recursive way
and has query complexity O(logk n). More recently, [7] gave an algorithm for Tarski(n, k)
with O(log⌈2k/3⌉ n) queries, which was further improved to O(log⌈(k+1)/2⌉ n) in [1]. Both
algorithms of [7] and [1] are based on decomposition theorems that lead to more efficient
recursive schemes for Tarski fixed points.

On the lower bound side, [4] showed that Tarski(n, 2) requires Ω(log2 n) queries. Their
lower bound uses the family of “herringbone” functions which have a unique fixed point.
Therefore, the same Ω(log2 n) lower bound also holds for the unique Tarski fixed point
problem over [n]2, where the input function is not only monotone but also promised to have
a unique fixed point. Let UniqueTarski(n, k) denote the unique Tarski problem over [n]k.
Given that UniqueTarski(n, 2) is as hard as Tarski(n, 2), is it the case for general k? or
maybe UniqueTarski(n, k) is easier than Tarski(n, k) for larger k? This was posed as an
open question in [4].

Our main result is a black-box reduction from Tarski(n, k) to UniqueTarski(n, k),
which shows that the phenomenon observed in [4] between query complexities of Tarski(n, 2)
and UniqueTarski(n, 2) holds for general k.

X. Chen, Y. Li, and M. Yannakakis 21:3

▶ Theorem 3. Let qT(n, k) be the query complexity of Tarski(n, k) and qUT(n, k) be the
query complexity of UniqueTarski(n, k). Then qT(n, k) = qUT(n, k).

Remark. In fact, we will show that the query complexity of Tarski(n, k) is exactly the
same as that of a seemingly even easier (more structural) problem: finding a fixed point of a
monotone function over [n]k with the promise that every slice has a unique fixed point. See
Lemma 16 for more details.

Note that the query complexity of UniqueTarski(n, k) is trivially at most that of
Tarski(n, k). In the rest of the paper, we prove the other direction by giving a reduction
from Tarski(n, k) to UniqueTarski(n, k) via a novel framework we call partial information
reductions. We believe that this framework is of independent interest and we expect that it
can be applied to a wider range of search problems concerning their query complexities.

1.1 Sketch of the Reduction
Unlike standard reductions that map from instances to instances, our reduction transforms
any given algorithm for UniqueTarski (denoted by U) to an algorithm for Tarski (our
main algorithm, Algorithm 1) while keeping the query complexity the same. To the best of
our knowledge, we have not seen such a non-standard black-box reduction before, and we
view this as a conceptual contribution of this work. We would like to highlight the following
high-level roadmap: Algorithm 1 will simulate U , but provide it with modified answers to
its queries to the oracle. These modified answers are constructed adaptively on-the-fly, and
depend on what previous queries U has made. It may seem dangerous to modify the answers
to the queries in the first place, but our reduction makes sure that the answers fed to U are
always safe, in the sense that they always correspond to some monotone function with a
unique fixed point, and any fixed point that is found by U must also be a fixed point of the
original monotone function. Let’s explain the reduction in more detail next.

Let U be a deterministic query algorithm for UniqueTarski(n, k) with query complexity
q(n, k). Given any monotone function g : [n]k → [n]k that has a unique fixed point x∗, U
always finds x∗ by querying it within the first q(n, k) queries. At a high level, we would like
to simulate U to find a fixed point of any monotone function f : [n]k → [n]k as an input to
Tarski(n, k). But clearly we cannot run U on f directly since the latter may have multiple
fixed points and it is likely that after some queries, answers that U receives are not consistent
with any monotone function with a unique fixed point, in which case U may fail to find a
fixed point within q(n, k) queries. (See Figure 2 in Section 4 for an example.)

Instead, our reduction needs to serve as a surrogate between f and U to achieve the
following two goals that are seemingly contradictory to each other:

(i) On the one hand, we need to fool U by making sure that answers it receives during
the whole process are consistent with some monotone function that has a unique fixed
point.
So from U ’s point of view, the function it interacts with can totally be a monotone
function with a unique fixed point. Let’s refer to this function, which is made up by
our reduction, by g. Given that we cannot always return f(x) to each query x of U ,
the true input function f can potentially disagree significantly with the fake function g

that U interacts with (see the comparison of Figure 2b and 4d);
(ii) On the other hand, the way we answer queries to U (or the way we make up this fake

function g) needs to achieve that, whenever U finds a fixed point of the fake function g

(which always happens within q(n, k) queries if the first goal is met), the same point
must be a fixed point of the true input function f as well.

We achieve these goals using partial information functions (or PI functions in short).

CCC 2023

21:4 Reducing Tarski to Unique Tarski (In the Black-Box Model)

A PI function p over [n]k is a map from [n]k to {−1, 0, 1,≤,≥, ⋄}k. Intuitively a PI
function p reveals some partial information of an unknown function h : [n]k → [n]k. (For
example, p(x)i = 1 implies that h(x)i > xi, p(x)i =≥ implies that h(x)i ≥ xi and p(x)i = ⋄
implies no information about h(x)i; the connection will become cleaner after we introduce
the notion of simple functions at the beginning of Section 2.) Moreover, we say a PI function
p is monotone if it reveals some partial information of an unknown monotone function so
one should not be able to infer from p any violation to monotonicity; see Definition 7.

Let f : [n]k → [n]k be the input monotone function. Our main algorithm, Algorithm 1
solves Tarski(n, k) on f by simulating U round by round as follows: During the t-th round,
t = 1, 2, . . .,
1. Algorithm 1 runs U to obtain the t-th point qt ∈ [n]k that U would like to query;
2. Algorithm 1 queries f to obtain f(qt) and uses it to obtain the answer at ∈ [n]k to the

query. (As discussed earlier, at is not necessarily the same as f(qt); picking at based on
f(qt) and the query history is the part that heavily relies on the use of PI functions.)

3. Finally Algorithm 1 sends at to U as the result of its t-th query, and moves onto round
t + 1 (unless f(qt) = qt so a fixed point of f has already been found).

Algorithm 1 picks answers at to queries of U by maintaining a monotone PI function p

to connect f with U . After receiving the t-th query qt from U , Algorithm 1 uses f(qt) to
update the current PI function and then uses the updated PI function to set the answer
at to U . The design of the updating rule for the PI function (see the main subroutine
Generate-PI-Function in Section 3) to achieve both goals (i) and (ii) discussed earlier is
the most challenging part of the paper.

2 Partial-Information Functions

For a, b ∈ Zk with a ⪯ b, we write La,b to denote the set of points x ∈ Zk with a ⪯ x ⪯ b.
We say a function f : [n]k → [n]k is a simple function if it satisfies |f(x)i − xi| ≤ 1 for

all x ∈ [n]k and i ∈ [k] (i.e., f(x)i − xi ∈ {−1, 0, 1}). Let sgn(a) for a number a be 1, 0,−1
respectively if a > 0, a = 0, a < 0. We include the following folklore observations:

▶ Observation 4. For any monotone function f : [n]k → [n]k, let g : [n]k → [n]k be defined as

g(x)i := xi + sgn(f(x)i − xi), for all x ∈ [n]k and i ∈ [k].

Then g is a monotone simple function and satisfies Fix(g) = Fix(f).

It follows that for both Tarski and UniqueTarski, we may assume without loss of
generality that the input monotone function f : [n]k → [n]k is simple.

▶ Observation 5. A simple function f : [n]k → [n]k is monotone if and only if it satisfies
the following conditions:
(1) f(x)i = xi + 1 implies f(y)i = yi + 1 and f(y + ei)i ≥ yi + 1 for all y with x ⪯ y and

xi = yi;
(2) f(x)i = xi − 1 implies f(y)i = yi − 1 and f(y − ei)i ≤ yi − 1 for all y with x ⪰ y and

xi = yi; and
(3) f(x)i = xi implies (a) f(y)i ≤ yi for all y with x ⪰ y and xi = yi, and (b) f(y)i ≥ yi

for all y with x ⪯ y and xi = yi.

Observation 5 provides an alternative way to check the monotonicity of a simple function.
It will mainly serve to verify the monotonicity of the following introduced partial-information
functions. All functions from [n]k → [n]k we deal with from now on are assumed to be simple;
for convenience, we will skip the word “simple” in the rest of the paper.

X. Chen, Y. Li, and M. Yannakakis 21:5

⋄

≤ ≥

−1 0 1

Figure 1 The information partial order. Arrow means “dominates” or “more informative”.

Now we define partial-information (PI) functions. A PI function over [n]k is a function
from [n]k to {−1, 0, 1,≤,≥, ⋄}k. Intuitively a PI function reveals some partial information on
the values of an underlying function f : [n]k → [n]k; the next definition illustrates meanings
of symbols in {−1, 0, 1,≤,≥, ⋄}:

▶ Definition 6 (Consistency). A function g : [n]k → [n]k and a PI function p : [n]k →
{−1, 0, 1,≤,≥, ⋄}k are consistent if the following conditions hold for all x ∈ [n]k and i ∈ [k]:

p(x)i = −1 implies g(x)i − xi = −1;
p(x)i = 0 implies g(x)i − xi = 0;
p(x)i = 1 implies g(x)i − xi = 1;
p(x)i =≤ implies g(x)i − xi ∈ {−1, 0};
p(x)i =≥ implies g(x)i − xi ∈ {0, 1}; and
p(x)i = ⋄ implies nothing about g(x)i.

We introduce a natural partial order over symbols in {−1, 0, 1,≤,≥, ⋄}, illustrated in
Figure 1. We say α dominates β (or α is more informative than β, denoted by α⇒ β), for
some α, β ∈ {−1, 0, 1,≤,≥, ⋄}, if either α = β or there is a path from α to β. With this
notation, we have that g : [n]k → [n]k is consistent with a PI function p iff g(x)i−xi ⇒ p(x)i

for all x ∈ [n]k and i ∈ [k]. Given two PI functions p′, p : [n]k → {−1, 0, 1,≤,≥, ⋄}k, we say
p′ dominates p (or p′ is more informative than p, denoted by p′ ⇒ p) if p′(x)i ⇒ p(x)i for all
x ∈ [n]k and i ∈ [k].

Given that we are interested in monotone functions f : [n]k → [n]k, we introduce the
notion of monotone PI functions below. Intuitively a PI function p is monotone if it reveals
some partial information of a monotone function (so one cannot infer from p any violation to
monotonicity):

▶ Definition 7 (Monotone PI Functions). A PI function p : [n]k → {−1, 0, 1,≤,≥, ⋄}k is said
to be monotone if it satisfies the following conditions: For any x ∈ [n]k and i ∈ [k],
(1) p(x)i = 1 implies p(y)i = 1 and p(y + ei)i ∈ {1, 0,≥} for all y with x ⪯ y and xi = yi;
(2) p(x)i = −1 implies p(y)i = −1 and p(y − ei)i ∈ {−1, 0,≤} for all y with x ⪰ y and

xi = yi;
(3) p(x)i = 0 implies (a) p(y)i ∈ {0,−1,≤} for all y with x ⪰ y and xi = yi, and

(b) p(y)i ∈ {0, 1,≥} for all y with x ⪯ y and xi = yi;
(4) p(x)i =≤ implies p(y)i ∈ {−1,≤} for all y with x ⪰ y and xi = yi;
(5) p(x)i =≥ implies p(y)i ∈ {1,≥} for all y with x ⪯ y and xi = yi;
(6) If xi = 1, then p(x)i ∈ {0, 1,≥}; and
(7) If xi = n, then p(x)i ∈ {0,−1,≤}.
A PI function is weakly monotone if it satisfies (1)–(5) above, but not necessarily (6) and (7).

Note that items (6) and (7) are only about the boundary constraints. Weak monotonicity
will only appear for the simplicity of the proofs below and there are no technical details
behind them.

CCC 2023

21:6 Reducing Tarski to Unique Tarski (In the Black-Box Model)

The next lemma shows that every monotone PI function is consistent with at least one
monotone function. (Looking ahead, later in Section 3.2 we will give a sufficient condition for
a monotone PI function to be consistent with at least one monotone function with a unique
fixed point.)
▶ Lemma 8. For every monotone PI function p over [n]k, there exists a monotone function
g : [n]k → [n]k that is consistent with p.
Proof. Given p we define g : [n]k → [n]k as follows:

g(x)i :=
{

xi + p(x)i if p(x)i ∈ {−1, 0, 1};
xi otherwise.

We will prove g is a monotone function that is consistent with p by Observation 5.
Fix any point x and coordinate i.
Suppose that g(x)i = xi + 1, then we have p(x)i = 1. Since p(x)i = 1 implies p(y)i = 1

and p(y + ei)i ∈ {1, 0,≥} for all y such that x ⪯ y and xi = yi, we have g(x)i = xi + 1
implies g(y)i = yi + 1 and g(y + ei)i ≥ yi + 1 for all y such that x ⪯ y and xi = yi.

The proof of the case that g(x)i = xi − 1 is symmetric.
Suppose that g(x)i = xi, then we have p(x)i ∈ {0,≤,≥, ⋄}. This implies that (a) p(y)i ̸= 1

for all y such that x ⪰ y and xi = yi, and (b) p(y)i ̸= −1 for all y such that x ⪯ y and
xi = yi. So we have (a) g(y)i ≤ yi for all y such that x ⪰ y and xi = yi, and (b) g(y)i ≥ yi

for all y such that x ⪯ y and xi = yi. ◀

Given two elements α, β ∈ {−1, 0, 1,≤,≥, ⋄}, if their least upper bound (or join) in
the partial order exists, we write α ∩ β to denote it and say that α ∩ β is well defined;
otherwise (when their least upper bound does not exist), we say α ∩ β is not well defined.
(For example, ≥ ∩ ≤= 0 and ≥ ∩−1 is not well defined.) Given two PI functions p1, p2 :
[n]k → {−1, 0, 1,≤,≥, ⋄}k, we define their intersection p1 ∩ p2 to be the PI function p such
that p(x)i = p1(x)i ∩ p2(x)i for all x ∈ [n]k and i ∈ [k]. The intersection p1 ∩ p2 is well
defined only when p1(x)i ∩ p2(x)i is well defined for all x ∈ [n]k and i ∈ [k].

The reason that we introduce the operation of intersections is the following lemma which
we will often use to modify a given monotone PI function:
▶ Lemma 9. Let p1 be a monotone PI function and p2 be a weakly monotone PI function,
both over [n]k, such that p1 ∩ p2 is well defined. Then p1 ∩ p2 is also a monotone PI function
and it satisfies p1 ∩ p2 ⇒ p1.
Proof. The part about p1 ∩ p2 ⇒ p1 is trivial.

Note that p1 ∩ p2 satisfies (6) and (7) in Definition 7 since p1 is a monotone PI function.
So in what follows, we will verify (1)-(5) for p1 ∩ p2.

To show p1 ∩ p2 satisfies (1), fix x ∈ [n]k and i ∈ [k]. If p1 ∩ p2(x)i = 1, then either
p1(x)i = 1 or p2(x)i = 1. Suppose that pτ (x)i = 1 for τ ∈ {1, 2}. Then we have pτ (y)i = 1
and pτ (y + ei)i ∈ {1,≥} for all y ⪰ x and yi = xi. So we have p1 ∩ p2(y)i = 1 and
p1 ∩ p2(y + ei)i ∈ {1,≥} for all y ⪰ x and yi = xi.

Items (2)-(5) can be verified similarly. ◀

Given a monotone function f : [n]k → [n]k and a monotone PI function p over [n]k, we
define a function f |p : [n]k → [n]k as follows: For any x ∈ [n]k and i ∈ [k], let

f |p(x)i =

xi + p(x)i if p(x)i ∈ {−1, 0, 1};
max(f(x)i, xi) if p(x)i =≥;
min(f(x)i, xi) if p(x)i =≤;
f(x)i, if p(x)i = ⋄.

X. Chen, Y. Li, and M. Yannakakis 21:7

Note that f |p is a function that is consistent with p (but may disagree with f in general).
Looking ahead, our algorithm for Tarski running on f will maintain a monotone PI function
p and (essentially) use f |p to answer the next query from an algorithm for UniqueTarski it
simulates. As it will become clear in Section 3, using f |p (with a carefully updated p) instead
of f to answer queries is crucial in making sure answers to the algorithm for UniqueTarski
are consistent with a monotone function with a unique fixed point (given that the input
function f to Tarski can have multiple fixed points in general).

We record the following lemma about f |p:

▶ Lemma 10. Let f be a monotone function and p be a monotone PI function, both over
[n]k. Then f |p : [n]k → [n]k is also a monotone function and is consistent with p.

Proof. The part about f |p being consistent with p is easy, since f |p(x)i − xi = p(x)i when
p(x)i ∈ {−1, 0, 1}; f |p(x)i−xi ∈ {0, 1} when p(x)i =≥; f |p(x)i−xi ∈ {0,−1} when p(x)i =≤;
and f |p(x)i − xi ∈ {−1, 0, 1} when p(x)i = ⋄.

Note that since f is a function from [n]k to [n]k and p is a monotone PI function that
satisfies the boundary conditions (6) and (7), we have 1 ≤ f |p(x)i ≤ n for all x and i.

To show f |p is monotone, given any x ∈ [n]k and i ∈ [k], we consider three cases where
f |p(x)i = xi + 1, f |p(x)i = xi − 1, and f |p(x)i = xi.

Suppose that f |p(x)i = xi + 1. Then either f(x)i − xi = 1 or p(x)i = 1. If f(x)i − xi = 1
and p(x)i ∈ {1,≥, ⋄}, then we have (i) f(y)i − yi = 1 and f(y + ei)i ≥ yi + 1, and (ii)
p(y)i ∈ {1,≥, ⋄} and p(y + ei)i ̸= −1 for all y ⪰ x with yi = xi, which imply f |p(y)i − yi = 1
and f(y + ei)i ≥ yi + 1. The proof is similar in the case p(x)i = 1.

The proof of the case f |p(x)i = xi − 1 is symmetric.
Suppose that f |p(x)i = xi. Then one of the following four cases meets: (1) f(x)i = xi

and p(x)i ∈ {≤,≥, ⋄}; (2) p(x)i = 0; (3) f(x)i − xi = 1 and p(x)i =≤; (4) f(x)i − xi = −1
and p(x)i =≥. Let’s prove the first case and others are similar. Suppose that f(x)i = xi

and p(x)i ∈ {≤,≥, ⋄}, then we have f(y)i ≤ yi for all y ⪯ x with yi = xi and f(y)i ≥ yi for
all y ⪰ x with yi = xi. Since p(x)i ∈ {≤,≥, ⋄}, we have p(y)i ̸= 1 for all y ⪯ x with yi = xi

and p(y)i ̸= −1 for all y ⪰ x with yi = xi. This finishes the proof. ◀

Before moving to the main reduction, we need to introduce the notion of slices. We note
that the notion of slices was also used in the literature.

▶ Definition 11 (Slices). A slice of [n]k is specified by a tuple s ∈ ([n] ∪ {∗})k. Given s, we
write Ls to denote the set of points x such that xi = si for all i such that si ̸= ∗.

Given a monotone PI function p and a slice s, we say a point x ∈ Ls is a postfixed point
of p on the slice s if p(x)i ∈ {1, 0,≥} for all i with si = ∗ and a point x ∈ Ls is a prefixed
point of p on the slice s if p(x)i ∈ {−1, 0,≤} for all i with si = ∗.

We use Posts(p) to denote the set of postfixed points of p on s and Pres(p) to denote
the set of prefixed points of p on s.

▶ Lemma 12. Given a monotone PI function p, for any slice s, Posts(p) is a join-semilattice
and Pres(p) is a meet-semilattice.

Proof. Fix a slice s and consider any two points x, y ∈ Posts(p). Then we have p(x)i, p(y)i ∈
{1, 0,≥} for all i with si = ∗. Let z = x∨y be the join of x and y, namely, the coordinatewise
maximum of x and y. Then we have x ⪯ z and y ⪯ z and either zi = xi or zi = yi for all i

with si = ∗. So by the monotonicity of p, we have p(z)i ∈ {1, 0,≥}.
The proof of that Pres(p) is a meet-semilattice is similar. This finishes the proof. ◀

CCC 2023

21:8 Reducing Tarski to Unique Tarski (In the Black-Box Model)

Lemma 12 guarantees that the join of Posts(p) is well defined and the meet of Pres(p) is
well defined. We write Js(p) to denote the join of Posts(p) and Ms(p) to denote the meet of
Pres(p). When the context is clear, we may omit p for the simplicity of notations.

▶ Proposition 13. Given a monotone PI function p, for any slice s, we have p(Js)i ∈ {0,≥}
for all i with si = ∗ and p(Ms)i ∈ {0,≤} for all i with si = ∗.

Proof. Consider any point x ∈ Posts. Suppose that there exists i with si = ∗ such that
p(x)i = 1, then we have x + ei ∈ Posts as well. This means x can not be Js. So we have
p(Js)i ∈ {0,≥} for all i with si = ∗. The proof of p(Ms) is similar. ◀

3 The Partial-Information Reduction and Proof of Theorem 3

We prove Theorem 3 in this section. Let U be any query algorithm for UniqueTarski(n, k)
with query complexity q(n, k). We show that our main algorithm, Algorithm 1, can employ
U to solve Tarski(n, k) with the same number of queries.

Let’s continue from the sketch presented in Section 1.1 and elaborate more on how
Algorithm 1 works. Algorithm 1 computes the answer at to the t-th query qt of U by
maintaining a sequence of monotone PI functions p0, p1, . . ., where p0 is the initial monotone
PI function set by the boundary conditions (see line 2 of Algorithm 1) and pt is the monotone
PI function it maintains at the end of the t-th round. During the t-th round, Algorithm 1
first continues to run U to obtain the t-th query qt. It then queries f to obtain f(qt) and
uses the latter to update the PI function pt−1 to pt. Finally the answer at to U is set to be
f |pt(qt) ∈ [n]k.

The correctness of Algorithm 1 relies on the following list of properties of pt: For every t,
pt is a monotone PI function such that
1. pt(qj) + qj = aj for all j ∈ [t] (i.e., pt agrees with answers to all queries U has made so

far);
2. There is a monotone function g that is consistent with pt and has a unique fixed point;
3. Any fixed point of f |pt must be a fixed point of f .
To see that Algorithm 1 always finds a fixed point of f within q(n, k) queries, we note that
item 3 above implies that qt is a fixed point of f if at = f |pt(qt) is the same as qt. So the only
bad case is that at ̸= qt for all t = 1, . . . , q(n, k). However, this cannot happen because after
q(n, k) rounds, by item 2, there is a monotone function g that is consistent with pq(n,k) and
has a unique fixed point, and by item 1, g(qj) = aj for all j ∈ [q(n, k)]. So g is a monotone
function that has a unique fixed point, on which U fails to find a fixed point (since aj ̸= qj

for all j ∈ [q(n, k)]).

3.1 Subroutine Generate-PI-Function

The main challenge is about how to update the PI function pt−1 to pt during the t-th round
to maintain properties listed above for the correctness of the algorithm. This is done by
making calls to a subroutine called Generate-PI-Function (see Algorithm 1; in general it
may take k calls to Generate-PI-Function to obtain pt during the t-th round).

The subroutine Generate-PI-Function(p, q, ℓ, b) takes four inputs, namely, a PI function
p, a point q ∈ [n]k, an index ℓ ∈ [k], and a sign b ∈ {−1, 0, 1}, and returns a new PI
function. Before stating the main technical theorem about Generate-PI-Function, we need
the following definition:

▶ Definition 14. We say a monotone PI function p is safe if, for every slice s ∈ ([n]∪ {∗})k,
it satisfies

X. Chen, Y. Li, and M. Yannakakis 21:9

(1) for any point x ∈ Ls and x ≺ Js(p), p(x)i ∈ {−1, 0, 1} for all i with xi < Js(p)i and
p(x)i = 1 for some i with xi < Js(p)i; and

(2) for any point x ∈ Ls and x ≻Ms(p), p(x)i ∈ {−1, 0, 1} for all i with xi > Ms(p)i and
p(x)i = −1 for some i with xi > Ms(p)i.

We are now ready to state our main technical theorem:
▶ Theorem 15 (Main Technical Theorem). Given a monotone and safe PI function p, q ∈ [n]k,
ℓ ∈ [k], and b ∈ {−1, 0, 1} such that (p(q)ℓ, b) satisfies the following condition:

p(q)ℓ ∈ {≥, ⋄} if b = 1; p(q)ℓ ∈ {≤, ⋄} if b = −1; p(q)ℓ ∈ {≤,≥, ⋄} if b = 0, (1)

the function pr returned by Generate-PI-Function(p, q, ℓ, b) satisfies the following properties:
1. pr is also a monotone PI function;
2. pr ⇒ p;
3. pr(q)ℓ = b; and
4. pr remains safe.
Additionally, if f : [n]k → [n]k is a monotone function such that Fix(f |p) ⊆ Fix(f) and
f |p(q)ℓ = qℓ + b, then we have Fix(f |pr) ⊆ Fix(f |p) ⊆ Fix(f).

We prove Theorem 15 in the rest of the section. An important property of safe, monotone
PI functions is given in the following lemma which we prove in the next subsection.
▶ Lemma 16. If p is a monotone and safe PI function, then there is a monotone function g

that is consistent with p and has a unique fixed point in every slice s. In particular, g has a
unique fixed point in the whole lattice.

We can use Theorem 15 and Lemma 16 to prove the main theorem:

Proof of Theorem 3. Let f be the input function. We first note that every time Algorithm 1
obtains p(t,i) from p(t,i−1), either p(t,i) is the same as p(t,i−1) or p(t,i) is set to be

Generate-PI-Function
(
p(t,i−1), q, i, b

)
for some q, i, b that satisfy b = f |p(t,i−1)(q)i − qi and (1):

p(t,i−1)(q)i ∈ {≥, ⋄} if b = 1; p(t,i−1)(q)i ∈ {≤, ⋄} if b = −1; p(t,i−1)(q)i ∈ {≤, ≥, ⋄} if b = 0,

Given that p(1,0) = p0 is monotone and safe, it follows directly from an induction using
Theorem 15 that every PI function p in the following list:

p(1,0), . . . , p(1,k), p(2,0), . . . , p(2,k), . . . , p(t,0), . . . , p(t,k), . . .

is monotone and safe, and satisfies Fix(f |p) ⊆ Fix(f). Furthermore, every PI function p in
the list dominates all of its predecessors and p(t,i)(qt)i ∈ {−1, 0, 1} for all t, i. Combining
the latter with at = f |pt(qt), as well as that pt = p(t,k) dominates all of its predecessors, we
have at − qt = pt(qt). It follows that aj − qj = pt(qj) for all j ≤ t.

Let N = q(n, k). Consider the following two cases:
1. If at = qt for some t ∈ [N], then given that at = f |pt(qt) and Fix(f |pt) ⊆ Fix(f), we

have that qt is a fixed point of f . In this case Algorithm 1 succeeds within q(n, k) queries;
2. Otherwise, we have at ̸= qt for all t ∈ [N]. In this case, given that pN is both monotone

and safe, Lemma 16 implies that there exists a monotone function g that is consistent
with pN and has a unique fixed point. However, given that aj−qj = pN (qj) for all j ≤ N ,
we have that qj ̸= aj = g(qj) for all j ∈ [N]. As a result, U fails to find a fixed point of g

within its N queries q1, . . . , qN , which it should given that g is a monotone function with
a unique fixed point, a contradiction.

This finishes the proof of the theorem. ◀

CCC 2023

21:10 Reducing Tarski to Unique Tarski (In the Black-Box Model)

Algorithm 1 Algorithm for Tarski(n, k) via the algorithm U for UniqueTarski(n, k).

1 Let U be an algorithm for UniqueTarski(n, k).
2 Let p0 be an empty PI function with the initial boundary conditions, i.e., p0(x)i =≥

if xi = 1; p0(x)i =≤ if xi = n; and p0(x)i = ⋄ otherwise for all x ∈ [n]k and i ∈ [k].
3 Let t← 1 be the round number.
4 do
5 Let qt be the point queried by U and make one query to get f(qt).
6 Let p(t,0) ← pt−1.
7 for each i from 1 to k do
8 If p(t,i−1)(qt)i ∈ {−1, 0, 1}, let p(t,i) ← p(t,i−1).
9 Otherwise, let

p(t,i) ← Generate-PI-Function(p(t,i−1), qt, i, f |p(t,i−1)(qt)i − qt
i).

10 Let pt ← p(t,k) and use at ← f |pt(qt) as the answer to the algorithm U .
11 If qt = at, then return qt as the fixed point and terminate.
12 Else, let t← t + 1.
13 while;

Subroutine 2 Generate-PI-Function(p, q, ℓ, b).

1 If b = 1, then return Generate-PI-Function-Plus(p, q, ℓ).
2 If b = −1, then return Generate-PI-Function-Minus(p, q, ℓ).
3 If b = 0, then return Generate-PI-Function-Zero(p, q, ℓ).

Subroutine 3 Generate-PI-Function-Plus(p, q, ℓ).

1 Initialize p′ ← p.
2 Let p′(x)ℓ ← 1 and p′(x + eℓ)ℓ ← p′(x + eℓ)ℓ∩ ≥ for all x such that x ⪰ q and xℓ = qℓ.
3 Initialize p+(x)i ← ⋄ for all x and i as a weak PI function.
4 for each x ∈ [n]k and each i ∈ [k] do
5 if there exists y such that (a) x ⪯ y; (b) xi < yi; and (c) xj = yj for all j with

p′(y)j ̸∈ {1, 0,≥} then
6 If p′(x)i ∈ {1,≥, ⋄}, let p+(x)i ← 1 and p+(x + ei)i ← p+(x + ei)i∩ ≥.
7 If p′(x)i ∈ {0,≤}, let p+(x)i ←≥.

8 Let pr ← p′ ∩ p+.
9 return pr.

3.2 Consequences of PI Function Being Safe
The motivation to focus on Definition 14 is that they have nice properties given in the
following lemmas.

▶ Lemma 17. Suppose that a PI function p is monotone and safe, then we have
1. Js(p) ⪯Ms(p) for all slices s; and
2. g(x) ̸= x for any monotone function g that is consistent with p and any x such that there

exists s with x ̸∈ LJs,Ms .

Proof. We will prove the following claim, by which we will deduce this lemma.

X. Chen, Y. Li, and M. Yannakakis 21:11

Subroutine 4 Generate-PI-Function-Minus(p, q, ℓ).

1 Initialize p′ ← p.
2 Let p′(x)ℓ ← −1 and p′(x− eℓ)ℓ ← p′(x− eℓ)ℓ∩ ≤ for all x such that x ⪯ q and

xℓ = qℓ.
3 Initialize p−(x)i ← ⋄ for all x and i as a weak PI function.
4 for each x ∈ [n]k and each i ∈ [k] do
5 if there exists y such that (a) x ⪰ y; (b) xi > yi; and (c) xj = yj for all j with

p′(y)j ̸∈ {−1, 0,≤} then
6 If p′(x)i ∈ {−1,≤, ⋄}, let p−(x)i ← −1 and p−(x− ei)i ← p−(x− ei)i∩ ≤.
7 If p′(x)i ∈ {0,≥}, let p−(x)i ←≤.

8 Let pr ← p′ ∩ p−.
9 return pr.

Subroutine 5 Generate-PI-Function-Zero(p, q, ℓ).

1 Initialize pr ← p.
2 If qℓ > 1 and p(q − eℓ)ℓ ̸= 1, let pr ← Generate-PI-Function-Plus(pr, q − eℓ, ℓ).
3 If qℓ < n and p(q + eℓ)ℓ ̸= −1, let pr ← Generate-PI-Function-Minus(pr, q + eℓ, ℓ).
4 return pr.

▷ Claim 18. Given the PI function p is monotone and safe, we have
(a) for any point x ∈ Ls and x ̸⪯Ms(p), there exists i with si = ∗ and p(x)i = −1; and
(b) for any point x ∈ Ls and x ̸⪰ Js(p), there exists i with si = ∗ and p(x)i = 1.

Proof. We will show that the first item in Definition 14 implies item (b), and the second
item in Definition 14 implies item (a). Fix a slice s, a point x ∈ Ls and x ̸⪰ Js(p). We will
prove there exists i with si = ∗ and p(x)i = 1. The proof for the item (a) is similar.

Construct a sub-slice s′ as follows:

s′
i :=

si si ̸= ∗;
xi si = ∗ and xi ≥ Js(pr)i;
∗ otherwise (si = ∗ and xi < Js(pr)i).

Then we have s′
i = ∗ implies si = ∗ and x ∈ Ls′ . Let z be the join of x and Js(p). Note

that z ∈ Ls′ as well. In addition, we have xi < zi for all i with s′
i = ∗.

We will prove that z ∈ Posts′(p), so we will have z ⪯ Js′(p), which implies xi < Js′(p)i

for all i with s′
i. Since p is safe, we conclude that there exists i with s′

i = ∗ and p(x)i = 1.
Such an i also satisfies si = ∗.

The statement z ∈ Posts′(p) follows from the observation that whenever s′
i = ∗, we have

si = ∗ and zi = Js(p)i. Since p(Js)i ∈ {≥, 0}, we have p(z)i ∈ {1, 0,≥}. ◁

We show that each of items (a) and (b) is strong enough to deduce the first item
(Js(p) ⪯Ms(p) for all s). (This will be used in the proof of Lemma 22 below). Take item
(b) as an example: Given any point x ∈ Ls such that x ̸⪯Ms(p), since there exists i with
si = ∗ and p(x)i = −1, we have x ̸∈ Pres(p) by definition. So Js(p) must be somewhere that
is ⪯Ms(p).

For the second item, consider any point x such that there exists s with x ̸∈ LJs,Ms . Then
we know either x ̸⪯Ms(p) or x ̸⪰ Js(p). Since there exists i with p(x)i = −1 or p(x)i = 1,
we have g(x) ̸= x as long as g is a monotone function that is consistent with p. ◀

CCC 2023

21:12 Reducing Tarski to Unique Tarski (In the Black-Box Model)

We also present the proof of Lemma 16 in this subsection.

Proof of Lemma 16. We will refine p to a more informative monotone PI function p′ such
that every monotone function that is consistent with p′ has in each slice s only one fixed
point, Ms(p).

Consider a slice s, and let Ms = Ms(p) be the lowest prefixed point of p in the slice. By
Claim 18, for every point x ∈ Ls, if x ̸⪯ Ms, there exists i with si = ∗ and p(x)i = −1.
Consider a point x ∈ Ls where x ⪯ Ms, x ≠ Ms. If i is a coordinate with si = ∗ and
xi = (Ms)i then p(x)i ∈ {0,−1,≤} since p(Ms)i ∈ {0,−1,≤}. Since Ms is the lowest
prefixed point in Ls, there is a coordinate i such that si = ∗ and p(x)i ̸∈ {0,−1,≤}, therefore
p(x)i ∈ {1,≥, ⋄} and xi < (Ms)i.

Define p′ as follows. Initialize p′(x) = p(x) for all x ∈ [n]k. For each slice s and every point
x ∈ Ls where x ⪯Ms, x ̸= Ms, and each coordinate i such that si = ∗ and p(x)i ∈ {1,≥, ⋄},
set p′(x)i = 1, and for every y ⪰ x with yi = xi set p′(y)i = 1 and p′(y +ei)i = p′(y +ei)i∩ ≥.
(Note that p′(y + ei)i may be also updated due to other points x′, including possibly being
set to 1.)

We first claim that p′ is a well defined PI function and dominates (is more informative
than) p. Note that p′ changes the value of p(z)i for some points z and some coordinates
i by either setting the value to 1 or taking the join with ≥. Thus, to show the claim it
suffices to show that (i) p′ does not set the value to 1 for any point z and coordinate i such
that p(z)i ∈ {−1, 0,≤}, and (ii) it does not take the join with ≥ for any z and i such that
p(z)i = −1. To see this, consider any slice s, a point x ∈ Ls with x ⪯ Ms, x ̸= Ms, and a
coordinate i such that si = ∗ and p(x)i ∈ {1,≥, ⋄}. Since p(x)i ∈ {1,≥, ⋄}, the new value
p′(x)i = 1 dominates p(x)i. Consider any other point y ⪰ x with yi = xi. If p(y)i was in
{−1, 0,≤}, then p(x)i would also be in {−1, 0,≤} by Definition 7. We infer therefore that
p(y)i ∈ {1,≥, ⋄}, thus p′(y)i = 1 dominates p(y)i. Also, if p(y + ei)i was −1 then p(x)i

would be in {−1, 0,≤}. We infer therefore that p(y + ei)i ̸= −1, thus the join with ≥ exists,
it dominates p(y + ei)i, and is not −1. We conclude that p′ is well defined and dominates p.

We then claim that p′ is monotone. Consider any slice s, a point x ∈ Ls with x ⪯ Ms,
x ̸= Ms, and a coordinate i such that si = ∗ and p(x)i ∈ {1,≥, ⋄}. Then we know p′(x)i = 1.
Consider any other point y ⪰ x with yi = xi, we have p(y)i ∈ {1,≥, ⋄}, so p′(y)i would also
be 1. Also, since p(y + ei)i is not −1, we conclude that p′(y + ei)i ⇒ p(y + ei)i∩ ≥. Since
p′(y + ei)i is well defined, we infer therefore that p′(y + ei)i ∈ {≥, 0, 1}. For other points x

and coordinates i, we have p′(x)i = p(x)i and p′(x)i satisfying Definition 7 follow from the
monotonicity of p and p′ ⇒ p. We conclude that p′ is monotone.

The PI function p′ has the property that for every slice s and for every point x ∈ Ls with
x ̸= Ms, there exists a coordinate i such that either p′(x)i = −1 (this is the case if x ̸⪯Ms)
or p′(x)i = 1 (this is the case if x ⪯Ms). We conclude that any monotone function that is
consistent with p′ has only one fixed point in each slice s, namely, Ms. Since p′ dominates p,
any such monotone function is also consistent with p. In particular, there exists at least one
such monotone function, as constructed in Lemma 8. ◀

3.3 Preserving Monotonicity and Safety
In this subsection, we will prove items (1)–(4) of Theorem 15.

▶ Lemma 19 (Monotonicity Preserving of Subroutine 3). Given a monotone PI function p, a
point q ∈ [n]k and a coordinate ℓ ∈ [k] such that p(q)ℓ ∈ {≥, ⋄} (which implies qℓ < n), we
have the PI function pr returned by Generate-PI-Function-Plus(p, q, ℓ) remains monotone.
Furthermore, we have pr ⇒ p.

X. Chen, Y. Li, and M. Yannakakis 21:13

Proof. We start by proving the monotonicity of p′ on line 2. Since p(q)ℓ ∈ {≥, ⋄}, we have
p(x)ℓ ∈ {1,≥, ⋄} and p(x + eℓ)ℓ ∈ {0, 1,≤,≥, ⋄} for all x such that x ⪰ q and xℓ = qℓ. So
p(x + eℓ)ℓ∩ ≥ is well defined. The monotonicity of p′ follows from the observation that we
changed p′(q)ℓ ← 1 and maintained the consequences it should imply. Clearly, p′ ⇒ p.

After that, we will maintain a new function p+ from line 3 to line 7. Note that we will
update pr ← p′ ∩ p+ on line 8 and return it. So by Lemma 9, it suffices for us to prove p+ is
a weakly monotone PI function, and p′(x)i ∩ p+(x)i is well defined for all x and i at the end
of the for loop.

To this end, we will prove that, at the end of the for loop, item (1) in Definition 7 is true
for every point x and coordinate i such that p+(x)i = 1; and item (5) in Definition 7 is true
for every point x and coordinate i such that p+(x)i =≥. Before getting into details, we first
provide a clearer picture of the condition of if on line 5.

▷ Claim 20. Given a coordinate i and two points x ⪯ x′ such that xi = x′
i, if the if condition

on line 5 is true for x and i, then the if condition on line 5 is also true for x′ and i.

Proof. By definition, we know there exists y such that (a) x ⪯ y; (b) xi < yi; and (c)
xj = yj for all j with p′(y)j ̸∈ {1, 0,≥}. Now we explicitly show there also exists such a
y′ for x′. Let y′ be the join of x′ and y (i.e., y′

j = max(x′
j , yj) for all j). Then obviously

we have (a) x′ ⪯ y′. Since xi = x′
i, we have (b) y′

i = yi > xi = x′
i. For the last property

(c), note that y ⪯ y′. By the monotonicity, as long as y′
j = yj and p′(y)j ∈ {1, 0,≥}, we

have p′(y′)j ∈ {1, 0,≥}. The contrapositive tells us for every j such that p′(y′)j ̸∈ {1, 0,≥},
either y′

j ̸= yj (then y′
j = max(x′

j , yj) = x′
j) or p′(y)j ̸∈ {1, 0,≥} (then xj = yj , so

y′
j = max(x′

j , yj) = max(x′
j , xj) = x′

j), which is the statement of (c).
This finishes the existence of y′ for x′ and i. ◁

We divide the proof into two cases:
Case 1: item (1) in Definition 7. Fix a coordinate i and two points x ⪯ x′ such that

xi = x′
i. Suppose that p+(x)i = 1 (which means p′(x)i ∈ {1,≥, ⋄}). By monotonicity, we

have p′(x′)i ∈ {1,≥, ⋄} as well. Since the if condition on line 5 is true for x, by Claim 20,
we know that the if condition is also true for x′. Combining with p′(x′)i ∈ {1,≥, ⋄}, we
know that p+(x′)i ← 1 and p+(x′ + ei)i is updated by p+(x′ + ei)i∩ ≥ on line 6, which
means p+(x′)i = 1 and p+(x′ + ei)i ∈ {1,≥} at the end of the for loop.

Case 2: item (5) in Definition 7. Fix a coordinate i and two points x ⪯ x′ and xi = x′
i.

Suppose that p+(x)i =≥. We will prove p+(x′)i ∈ {1,≥} at the end of the for loop.
There are two possibilities: p+(x)i is updated on line 6 or line 7. If p+(x)i is updated on
line 6, then we have p+(x′ − ei)i = 1 and p+(x′)i ∈ {1,≥}. If p+(x)i is updated on line 7
(which means p′(x)i ∈ {0,≤}), then we have p′(x′)i ̸= −1. Meanwhile, by Claim 20, we
know that the if condition on line 5 is true. So p+(x′)i will be updated by either 1 or ≥.

This finishes the proof that p+ is a weakly monotone PI function before line 8.
The final step is to show that p′(x)i ∩ p+(x)i is well defined for all x and i, which follows

from the observation that p+(x)i = 1 only if p′(x)i ∈ {1,≥, ⋄} and p+(x)i =≥ only if
p′(x)i ∈ {0, 1,≤,≥, ⋄} for all x and i. ◀

Symmetrically, we conclude the following lemma.

▶ Lemma 21 (Monotonicity Preserving of Subroutine 4). Given a monotone PI function p, a
point q ∈ [n]k and a coordinate ℓ ∈ [k] such that p(q)ℓ ∈ {≤, ⋄} (which implies qℓ > 1), we
have the function pr returned by Generate-PI-Function-Minus(p, q, ℓ) remains monotone.
Furthermore, we have pr ⇒ p.

CCC 2023

21:14 Reducing Tarski to Unique Tarski (In the Black-Box Model)

▶ Lemma 22 (Safety Preserving of Subroutine 3). Given a monotone and safe PI function
p : [n]k → {−1, 0, 1,≤,≥, ⋄}k, a point q and a coordinate ℓ such that p(q)ℓ ∈ {≥, ⋄}, we have
the PI function pr returned by Generate-PI-Function-Plus(p, q, ℓ) remains safe.

Proof. Since p(q)ℓ ∈ {≥, ⋄}, we know that pr returned by Generate-PI-Function-
Plus(p, q, ℓ) is also monotone and pr ⇒ p by Lemma 19.

Note that in the subroutine Generate-PI-Function-Plus, pr is obtained by only adding
1 and ≥ on the function p. So we have Ms(pr) = Ms(p) for every slice s. By the same reason,
p is safe, and pr ⇒ p, we have for any point x ∈ Ls with x ≻Ms(pr), pr(x)i ∈ {−1, 0, 1} for
all i with xi > Ms(pr)i and pr(x)i = −1 for some i with xi > Ms(pr)i for all slices s. As
a corollary, we have Js(pr) ⪯Ms(pr) for all s, derived from the proof of Lemma 17. (This
corollary will be used in this proof later).

So we will focus on proving the first item in Definition 14 for pr, namely, we will prove
for any point x ∈ Ls with x ≺ Js(pr), pr(x)i ∈ {−1, 0, 1} for all i such that xi < Js(pr)i and
pr(x)i = 1 for some i with xi < Js(pr)i.

We first prove the first part: for any point x ∈ Ls and x ≺ Js(pr), pr(x)i ∈ {−1, 0, 1} for
all i such that xi < Js(pr)i. Fix arbitrarily a slice s, a point x ∈ Ls such that x ≺ Js(pr)
and i such that xi < Js(pr)i. We will show that the if condition on line 5 is true for
x and i. (Note that we need to show there exists a point y such that (a) x ⪯ y; (b)
xi < yi; and (c) xj = yj for all j with p′(y)j ̸∈ {1, 0,≥}. One may try to directly use
Js(pr) to serve as that y. But note that the definition of Js(pr) only guarantees that
xj = yj for all j with pr(y)j ̸∈ {1, 0,≥} instead of what we need in (c) (which concerns
p′(y)). So extra effort is needed here.)

Let Y := {y | there exists i′ such that Js(pr)− ei′ ⪯ y, (Js(pr)− ei′)i′ < yi′ and (Js(pr)−
ei′)j = yj for all j with p′(y)j ̸∈ {1, 0,≥}}. Let y∗ be the join of Y ∪ {Js(pr)}. Then we
prove the following claim.

▷ Claim 23. y∗ could serve as the y for the if condition on line 5 for x and i.

Proof. Since x ⪯ Js(pr) and xi < Js(pr)i, we have x ⪯ y∗ and xi < y∗
i . So in what follows,

we will show p′(y∗)j ∈ {1, 0,≥} for all j such that xj < y∗
j .

If Y = ∅, then we know that p+(Js(pr))i = ⋄ for all i (since any y ∈ Y along with the i′

should active the condition on line 5, which will update (Js(pr))i′). So we have pr(Js(pr))i =
p′(Js(pr))i for all i, which implies xj = Js(pr)j for all j with p′(Js(pr))j ̸∈ {1, 0,≥}. This
means y∗ = Js(pr) itself could serve as the y for the if condition on line 5 for x and i.

Now let’s consider the case Y ̸= ∅ and let j be such that xj < y∗
j . Let y ∈ Y be such

that yj = y∗
j (which must exist since Js(pr) ⪯ y for all y ∈ Y). Since Js(pr)j ≤ y∗

j , we have
(Js(pr)− ej)j < yj . So we have p′(y)j ∈ {1, 0,≥}, which implies p′(y∗)j ∈ {1, 0,≥} as well.

This finishes the proof. ◁

Claim 23 tells us that y∗ could serve as the y for the if condition on line 5 for x and i.
So we know that p+(x)i ∈ {1,≥}. Furthermore, p+(x)i =≥ only if p′(x)i ∈ {0,≤}, which
implies pr(x)i ∈ {−1, 0, 1}.

We then prove the second part: for any point x ∈ Ls and x ≺ Js(pr), pr(x)i = 1 for
some i with xi < Js(pr)i. Fix arbitrarily a slice s and a point x ∈ Ls such that x ≺ Js(pr).
Assume for the sake of contradiction that pr(x)i ∈ {−1, 0} for all i with xi < Js(pr)i. Then
construct a new slice s′ as follows:

s′
i :=

si si ̸= ∗;
xi si = ∗ and xi = Js(pr)i;
∗ otherwise (si = ∗ and xi < Js(pr)i).

X. Chen, Y. Li, and M. Yannakakis 21:15

Then clearly x, Js(pr) ∈ Ls′ and xi < (Js(pr))i for all i with s′
i = ∗. Note that pr(Js(pr))i ∈

{≥, 0} for all i with s′
i = ∗. However, we have pr(x)i ∈ {−1, 0} for all i with s′

i = ∗ by
assumption. This means Js′(pr) ̸⪯Ms′(pr), which leads to a contradiction.

This finishes the proof. ◀

Again, symmetrically, we conclude the following lemma.

▶ Lemma 24 (Safety Preserving of Subroutine 4). Given a monotone and safe PI function
p : [n]k → {−1, 0, 1,≤,≥, ⋄}, a point q and a coordinate i such that p(q)i ∈ {≤, ⋄}, we have
the PI function pr returned by Generate-PI-Function-Minus(p, q, i) remains safe.

Before proving the analogs for Generate-PI-Function-Zero, we first derive a simple
but crucial characterization for any 1-dimensional slice s from the safety.

▷ Claim 25. Given a monotone and safe PI function p, and any 1-dimensional slice s with
its free coordinate j, we have

p(x)j = 1 for all x ∈ Ls and x ≺ Js; and
p(x)j = −1 for all x ∈ Ls and x ≻Ms.

In addition, if Js = Ms then p(Js)j = p(Ms)j = 0; otherwise (Js ≺Ms), we have
p(x)j = ⋄ for all Js ≺ x ≺Ms; and
p(Js)j =≥ and p(Ms)j =≤.

Proof. Note that in 1-dimensional slice, for any point x ∈ Ls, x ̸⪰ Js is actually equivalent
to x ≺ Js. So by the first item of the Definition 14, we have p(x)j = 1 for all x ∈ Ls and
x ≺ Js. Symmetrically, we also have p(x)j = −1 for all x ∈ Ls and x ≻Ms.

Given that Js ⪯Ms by Lemma 17, we divide the proof into two simple cases.
Case 1: Js = Ms. Note that by Proposition 13, we have p(Js)j ∈ {0,≥} and p(Ms)j ∈
{0,≤}. Take the intersection then we have p(Js)j = p(Ms)j = 0;

Case 2: Js ≺ Ms. Given s is a 1-dimensional slice and Js(p) ≺ Ms(p), for any point
Js(p) ≺ x ≺Ms(p), the only way that is consistent with the definition of Js(p) and Ms(p)
is to have p(x)j = ⋄.

Then we move to p(Js)j . By Proposition 13, we have p(Js)j ∈ {0,≥}. Since Js ≺ Ms,
we know that p(Js)j =≥. Symmetrically, we have p(Ms)j =≤. ◁

Now we are ready to present the analogs for Generate-PI-Function-Zero.

▶ Lemma 26 (Monotonicity and Safety Preserving of Subroutine 5). Given a monotone and
safe PI function p : [n]k → {−1, 0, 1,≤,≥, ⋄}, a point q, and a coordinate ℓ such that p(q)ℓ ∈
{≤,≥, ⋄}, we have the PI function pr returned by Generate-PI-Function-Zero(p, q, ℓ) re-
mains monotone and safe. Furthermore, we have pr ⇒ p.

Proof. We first prove two easy cases.

Case 1: p(q)ℓ =≥. We note that in this case, line 2 (the call of Generate-PI-
Function-Plus) will be skipped, since we have either qℓ = 1 or p(q − eℓ)ℓ = 1 given p is
safe. So when we run line 3, either it is also skipped then nothing gets changed or this
lemma can be deduced directly by Lemma 21 and Lemma 24, whose conditions can be
verified easily.

Case 2: p(q)ℓ =≤. This case follows from a similar reason. It is easy to show line 3 (the
call of Generate-PI-Function-Minus) will be skipped and this lemma can be deduced
directly by Lemma 19 and Lemma 22.

CCC 2023

21:16 Reducing Tarski to Unique Tarski (In the Black-Box Model)

The following claim essentially proves the last trickier case.

▷ Claim 27. Suppose that we are given a monotone and safe PI function p : [n]k →
{−1, 0, 1,≤,≥, ⋄}, a point q and a coordinate ℓ such that 1 < qℓ < n and p(q)ℓ = ⋄. Let
pr be the PI function returned by Generate-PI-Function-Plus(p, q − eℓ, ℓ), then we have
pr(q)ℓ =≥ (so that pr(q + eℓ)ℓ ∈ {≤, ⋄}).

Proof. Note that p′(q)ℓ =≥ at the end of line 2. So it suffices for us to prove that p+(q)ℓ ̸= 1
at the end of for loop.

Assume that p+(q)ℓ = 1 for the sake of contradiction. Then we know there exists y such
that (a) q ⪯ y; (b) qℓ < yℓ; and (c) qj = yj for all j with p′(y)j ̸∈ {1, 0,≥}. Since qℓ < yℓ,
we have p′(y)j = p(y)j for all j. So we have (a) q ⪯ y; (b) qℓ < yℓ; and (c) qj = yj for all j

with p(y)j ̸∈ {1, 0,≥}. Define the slice s as follows:

sj :=
{

yj qj = yj ;
∗ otherwise .

Then we have q, y ∈ Ls and y ∈ Posts(p). Since q ⪯ y and qℓ < yℓ, by the first property in
Definition 14, we know that p(q)ℓ ̸= ⋄, which contradicts the condition that p(q)ℓ = ⋄.

This finishes the proof. ◁

Case 3: p(q)ℓ = ⋄.

This implies that 1 < qℓ < n. At the end of line 2, by Lemma 19 and Lemma 22, we have
pr remains monotone and safe. Furthermore, pr ⇒ p. Now by Claim 27, we know that
pr(q)ℓ =≥, which means pr(q + eℓ) ∈ {≤, ⋄} by Claim 25.

So at the end of line 3, by Lemma 21 and Lemma 24 (which need the condition of
pr(q + eℓ) ∈ {≤, ⋄}), we have pr remains monotone and safe. Furthermore, pr ⇒ p.

This finishes the proof. ◀

▶ Lemma 28. Given a monotone and safe PI function p, a point q ∈ [n]k, a coordinate
ℓ ∈ [k], and b ∈ {−1, 0, 1} such that (p(q)ℓ, b) satisfies the following condition:

p(q)ℓ ∈ {≥, ⋄} if b = 1; p(q)ℓ ∈ {≤, ⋄} if b = −1; p(q)ℓ ∈ {≤,≥, ⋄} if b = 0,

the function pr returned by Generate-PI-Function(p, q, ℓ, b) satisfies pr(q)ℓ = b.

Proof. When b = 1, we have p′(q)ℓ = 1 at the end of line 2. Since pr ⇒ p′, we have pr(q)ℓ = 1
as well. The case of b = −1 is similar.

If qℓ = 1, qℓ = n, or p(q)ℓ ̸= ⋄, then pr(q)ℓ = 0 can be derived by previous cases since at
most one of Generate-PI-Function-Plus and Generate-PI-Function-Minus is called. For
the case 1 < qℓ < n and p(q)ℓ = ⋄, by Claim 27, we have both Generate-PI-Function-Plus
and Generate-PI-Function-Minus are called and pr(q − eℓ)ℓ = 1 and pr(q − eℓ)ℓ = −1,
which forces pr(q)ℓ = 0 since p is monotone. ◀

3.4 Not Creating New Fixed Points
▶ Lemma 29 (Fixed Points of Subroutine 3). Given a monotone function f : [n]k → [n]k, a
PI function p, a point q and a coordinate ℓ such that

p is monotone and safe;
p(q)ℓ ∈ {≥, ⋄};
f |p(q + eℓ)ℓ ≥ qℓ + 1; and
Fix(f |p) ⊆ Fix(f),

the function pr returned by Generate-PI-Function-Plus(p, q, ℓ) satisfies Fix(f |pr) ⊆
Fix(f |p) ⊆ Fix(f).

X. Chen, Y. Li, and M. Yannakakis 21:17

Proof. Note that whenever we have pr(x)i ≠ p(x)i for some x and i, it must be the case that
pr(x)i = 1 or pr(x)i = p(x)i∩ ≥. If pr(x)i = 1, then we have f |pr (x) ̸= x, which means x is
not a fixed point of f |pr . So we only need to analyze the case that p(x)i ≠ pr(x)i = p(x)i∩ ≥.

Fix arbitrary z and i such that p(z)i ̸= pr(z)i = p(z)i∩ ≥. First consider the updating
rule on line 2, in which case i = ℓ and z = x + eℓ for some x ⪰ q and xℓ = qℓ, then we have
f |p(z)ℓ ≥ zℓ by the third condition. Note that it suffices for us to know f |p(x)i ≥ xi, since it
implies that either f |p(x)i = f |pr (x)i or f |pr (x)i = xi + 1 since pr(x)i ∈ {0, 1,≥} given that
pr(x)i = p(x)i∩ ≥.

Next, we consider the case that p+(z)i is updated on line 6 and 7, where we will show
f |pr (x) ̸= x. Let y be such that (a) z ⪯ y; (b) zi − 1 < yi (zi ≤ yi); and (c) zj = yj for all j

with p(y)j ̸∈ {1, 0,≥} on line 5. Define a slice s as follows:

sj :=
{

yj p(y)j ̸∈ {1, 0,≥};
∗ otherwise.

Then we have z, y ∈ Ls and z ⪯ Js(p) (given that z ⪯ y and y ⪯ Js(p)). Further note
that z ≠ Js(p), otherwise we have p(z)i = pr(z)i = p(z)i∩ ≥. So it suffices for us to argue
f |p(z) ̸= z for all z ≺ Js(p), which follows from that p is safe and Lemma 17.

This finishes the proof. ◀

We conclude the analog for Generate-PI-Function-Minus.

▶ Lemma 30 (Fixed Points Preserving of Subroutine 4). Given a monotone function f : [n]k →
[n]k, a PI function p, a point q and a coordinate ℓ such that

p is monotone and safe;
p(q)ℓ ∈ {≤, ⋄};
f |p(q − eℓ)ℓ ≤ qℓ − 1; and
Fix(f |p) ⊆ Fix(f),

the function pr returned by Generate-PI-Function-Minus(p, q, ℓ) satisfies Fix(f |pr) ⊆
Fix(f |p) ⊆ Fix(f).

▶ Lemma 31 (Fixed Points of Subroutine 5). Given a monotone function f : [n]k → [n]k, a
PI function p, a point q and a coordinate ℓ such that

p is monotone and safe;
p(q)ℓ ∈ {≤,≥, ⋄};
f |p(q)ℓ = qℓ; and
Fix(f |p) ⊆ Fix(f),

the function pr returned by Generate-PI-Function-Zero(p, q, ℓ) satisfies Fix(f |pr) ⊆
Fix(f |p) ⊆ Fix(f).

Proof. Let us consider the non-trivial case where both subroutines
Generate-PI-Function-Plus and Generate-PI-Function-Minus are called. Other-
wise, this lemma can be derived by either Lemma 29 or Lemma 30 (given that f |p(q)ℓ = qℓ).

Suppose that both subroutines are called, then we have 1 < qℓ < n and p(q)ℓ = ⋄. Since
f |p(q)ℓ = qℓ, we have f(q)ℓ = qℓ.

By Claim 27, we know that at the end of line 2, we have pr(q)ℓ =≥ and pr(q+eℓ)ℓ ∈ {≤, ⋄}.
At this time, we still have f |pr (q)ℓ = qℓ as well as other properties in the condition of this
lemma by Lemmas 19, 22, and 29. So this lemma can be derived by Lemmas 21, 24, and 30.

This finishes the proof. ◀

CCC 2023

21:18 Reducing Tarski to Unique Tarski (In the Black-Box Model)

4 An Illustrating Example

In this section, we illustrate how our reduction works in one concrete but tricky example.
Recall that we have to make sure our Algorithm 1 works for any monotone function and
any algorithm solving UniqueTarski. For simplicity, we pick the following 2D example:
a monotone function f : [6]2 → [6]2 with f(3, 4) = (4, 3) and f(4, 3) = (3, 4) as shown in
Figure 2a, as well as an algorithm U for UniqueTarski, which will first query (3, 4), given
the answer f(3, 4) = (4, 3), then query (4, 3).

(a) A monotone function f : [6]2 → [6]2 with
f(3, 4) = (4, 3) and f(4, 3) = (3, 4).

(b) The standard partial information derived by
(3, 4) and (4, 3), described in the light blue color.
The solid arrows mean −1 or 1 and the dashed
arrows mean ≤ or ≥ (the same rule applies below).

Figure 2 A 2D example for which after two queries the algorithm U for UniqueTarski will fail.

(a) The partial information by adding f(3, 4)1 = 4. (b) The safe PI function constructed by Algorithm 1.
The new information is described in the green color
(the same rule applies below).

(c) The partial information by adding f(3, 4)2 = 3. (d) The safe PI function constructed by Algorithm 1.

Figure 3 The evolution of PI function when adding f(3, 4)1 = 4 and f(3, 4)2 = 3.

X. Chen, Y. Li, and M. Yannakakis 21:19

(a) The partial information by adding f(4, 3)1 = 3. (b) The safe PI function constructed by Algorithm 1.

(c) The partial information by adding f(4, 3)2 = 4. (d) The safe PI function constructed by Algorithm 1.

Figure 4 The evolution of PI function when adding f(4, 3)1 = 3 and f(4, 3)2 = 4.

Note that the function (actually partial function) in Figure 2a does not violate monoton-
icity. But clearly, no monotone function that is consistent with Figure 2a has a unique fixed
point. This is because the partial information derived from f(3, 4) = (4, 3) and f(4, 3) = (3, 4)
is sufficient to conclude the existence of fixed points in both the bottom left corner and top
right corner, as shown in Figure 2b. Observe that if the algorithm U is not fooled, it could
immediately reject the function f and return “the underlying function has multiple fixed
points” once it gets the true answer f(4, 3) = (3, 4).

Perhaps surprisingly, our reduction will modify the answer the algorithm U gets when
querying (3, 4), by creating safe PI functions p that satisfy Fix(f |p) ⊆ Fix(f) (the formal
statement is in Theorem 15).

We show how the PI function evolves step by step in Figure 3 and 4. The figures on
the left-hand side are obtained by adding one piece of information (namely, f(3, 4)1 = 4,
f(3, 4)2 = 3, f(4, 3)1 = 3, and f(4, 3)2 = 4). The figures on the right-hand side are obtained
by the Subroutine Generate-PI-Function. Note that in the last step after Figure 4b, we
will try to add the last piece of information f(4, 3)2 = 4. However, since p(4, 3)2 =≤ already,
the algorithm U will get f |p(4, 3)2 = 3.

It is easy to verify that all PI functions of the figures on the right-hand side are safe and
satisfy Fix(f |p) ⊆ Fix(f). In particular, for Figure 4d, every point outside the bottom left
corner is certainly not a fixed point of f |p, and the fixed point(s) in the bottom left corner is
not affected.

CCC 2023

21:20 Reducing Tarski to Unique Tarski (In the Black-Box Model)

5 Promise Problem versus TFNP Version

The problems Tarski(n, k) and UniqueTarski(n, k) are promise problems. In the former,
we want to compute a fixed point of the given function under the promise (condition) that it
is monotone; in the latter the function is promised to be monotone and have a unique fixed
point.

From a promise problem, one can define a total search problem, where on any given
arbitrary input one seeks either a desired solution as in the promise problem, or a violation
certificate showing that the input does not satisfy the promise. The total search version of
the Tarski problem is formally the following search problem.

▶ Definition 32 (Total search version of Tarski(n, k)). Given a function f : [n]k → [n]k,
find one of the following:

a point x ∈ [n]k such that f(x) = x; or
two points x, y ∈ [n]k such that x ⪯ y and f(x) ̸⪯ f(y).

In the black box setting, the function f is given by a black box (an oracle). In the white box
setting, the function f is given by a poly(k, log n)-size circuit C with k ∗ ⌈log n⌉ input gates
and k ∗ ⌈log n⌉ output gates.

The total search version of Tarski in the white box setting is in TFNP, in fact it is PLS
∩ PPAD. Any algorithm for the total search version of a promise problem (whether in the
white box or the black box setting) can be obviously used also to solve the promise problem,
so the total version is always at least as hard as the promise problem. In general the converse
may not hold, since in the total search version, the algorithm is not allowed to simply fail if
the input does not satisfy the promise, but it must provide a violation certificate (and in
general the complexity of the total problem may depend on the type of certificate that is
required). In the case of the Tarski problem in the black box setting however it is easy to
see that the total version is no harder than the promise problem. This is because of the
following property.

▶ Lemma 33. Let Q = {q1, . . . , qm} be a set of query points in [n]k and A = {a1, . . . , am}
the corresponding answers of the black box. There is a monotone function f that is consistent
with all the answers (i.e such that f(qi) = ai for all i ∈ [m]) if and only if there is no pair
i, j such that qi ⪯ qj and ai ̸⪯ aj.

Proof. If there is a pair i, j such that qi ⪯ qj and ai ̸⪯ aj then clearly there is no monotone
function f that is consistent with the answers. Suppose now that there is no such pair.
Define the function f as follows: For every point x ∈ [n]k and every coordinate i, set
f(x)i = min{aj

i | x ⪯ qj}; if the set on the right-hand side is empty then set f(x)i = n. We
have to show that f is monotone and is consistent with the answers.

Consider any two points x ⪯ y and any coordinate i. Then y ⪯ qj implies x ⪯ qj , thus
f(x)i = min{aj

i | x ⪯ qj} ≤ f(y)i = min{aj
i | y ⪯ qj}. Therefore, f is monotone.

By the definition of f , for any query point qt and coordinate i, f(qt)i = min{aj
i | qt ⪯

qj} ≤ at
i. If f(qt)i < at

i then there is another query point qj such that qt ⪯ qj and aj
i < at

i,
hence at ̸⪯ aj . ◀

▶ Corollary 34. In the black-box setting, suppose that Tarski(n, k) (the promise problem)
can be solved in q(n, k) queries and t(n, k) time, then total search version of Tarski(n, k)
can be solved in q(n, k) queries and O(t(n, k) + q(n, k)2 · k) time.

X. Chen, Y. Li, and M. Yannakakis 21:21

Proof. Run the algorithm for the promise problem. Either the algorithm will find a fixed
point within the query and time complexity of the promise problem, or two of the query
points provide a violation certificate. ◀

We showed that Tarski(n, k) reduces to UniqueTarski(n, k) with the same query
complexity. Therefore, we have.

▶ Corollary 35. Any black-box algorithm for UniqueTarski(n, k) (the promise problem) can
be used to solve also the total search version of Tarski(n, k) with the same query complexity.

We can define a total search version of UniqueTarski(n, k) that includes as a possible
answer also a violation certificate of uniqueness. One way to define it is as follows.

▶ Definition 36 (Total search version of UniqueTarski(n, k)). Given a function f : [n]k →
[n]k, find one of the following:

a point x ∈ [n]k such that f(x) = x; or
two points x, y ∈ [n]k such that x ⪯ y and f(x) ̸⪯ f(y); or
two points x, y ∈ [n]k such that x ⪯ f(x), y ⪰ f(y) and x ̸⪯ y.

In the black box setting, the function f is given by a black box (an oracle). In the white box
setting, the function f is given by a poly(k, log n)-size circuit C with k ∗ ⌈log n⌉ input gates
and k ∗ ⌈log n⌉ output gates.

Note that if f is monotone and x ⪯ f(x) then f has a fixed point in Lx,nk , and if y ⪰ f(y)
then f has a fixed point in L1k,y. If x ̸⪯ y then L1k,y and Lx,nk are disjoint, and hence f

has at least two fixed points. Clearly, the total search version of Tarski(n, k) is at least as
hard as that of UniqueTarski(n, k), both in the white box and the black box setting, since
the latter includes one more option for an acceptable output. It is not much harder however.
Let T-Tarski(n, k) and T-UniqueTarski(n, k) denote the total search versions of the two
problems, as defined above.

▶ Theorem 37. If T-UniqueTarski(n, k) can be solved in q(n, k) queries in the black box
setting, then T-Tarski(n, k) can be solved in q(n, k) queries. If T-UniqueTarski(n, k) can
be solved in time t(n, k) in the black box (respectively, white box) setting, then T-Tarski(n, k)
can be solved in time O(t(n, k) ∗ (k · log n)) in the black box (resp. white box) setting.

Proof. The statement in the first sentence follows from Corollary 35. Next, we show the
statement in the second sentence.

Given a black-box or white-box algorithm U for T-UniqueTarski(n, k), the algorithm
for T-Tarski(n, k) in the same setting is as follows. Use the algorithm U to find a solution
of T-UniqueTarski(n, k). If the solution is a fixed point (i.e., a point x ∈ [n]k such that
f(x) = x) or a violation certificate of monotonicity (i.e., two points x, y ∈ [n]k such that
x ⪯ y and f(x) ̸⪯ f(y)) then we are done, since they are also solution of T-Tarski(n, k).
Otherwise, we find a solution that is a violation certificate of uniqueness (i.e., two points
x, y ∈ [n]k such that x ⪯ f(x), y ⪰ f(y) and x ̸⪯ y). Then there exists i such that xi > yi,
which means either xi > n/2 or yi ≤ n/2. If xi > n/2, then we shrink the search space to
Lx,nk and recursively call U to find a solution in Lx,nk ; If yi ≤ n/2, then we shrink the search
space to L1k,y and recursively call U to find a solution in L1k,y. The function f may map a
point q in the reduced space to a point outside the space; in that case the point q together
with either the top or the bottom point of the reduced space form a violation certificate for
monotonicity. In the black box setting, if the algorithm ever queries such a point q then we
immediately get a violation of monotonicity and can terminate. In the white box setting,

CCC 2023

21:22 Reducing Tarski to Unique Tarski (In the Black-Box Model)

when we recurse to the reduced space, we replace the circuit for f with a modified circuit for
a function f ′ which restricts the coordinates of the output point to lie in the reduced space.
When the recursive call returns a solution to T-Tarski for the reduced space, i.e. either a
fixed point x of f ′ or a pair of points x, y that certify that f ′ is not monotone, then we test
if f and f ′ have the same value on these points. If they do, then they constitute a solution
for f in the original space; if one of them does not, then that point with the bottom or the
top element provide a certificate for the violation of monotonicity of f .

The search space goes down by a factor of two after each call of U . So after at most
k · log n many rounds, we can find a solution of T-Tarski(n, k). ◀

6 Discussion and Open Problems

Our results resolve an open question in [4] and could potentially shed new light on the
upper bounds and lower bounds of the query complexity of Tarski(n, k). As we showed,
Tarski(n, k) is no harder, with respect to query complexity, than the special case of monotone
functions that have a unique fixed point in the lattice, and even further, have a unique fixed
point in every slice of the lattice. There is a lot of structure in such monotone functions. In
a function f with a unique fixed point, the least fixed point and the greatest fixed point
coincide. There is a path connecting the bottom element 1k of the lattice with the top
element nk, the fixed point lies on this path, and the function f on all points in this path
point in the direction of the fixed point. The same structure holds for every slice if the
function has a unique fixed point on all slices. This structure may well be useful in helping
to design an algorithm with low complexity. On the lower bound side, it may also provide a
useful framework; indeed the lower bound constructions for two dimensions in [4] use this
structure. Can we use uniqueness to improve the bounds on the query complexity of Tarski?

A second question concerns the time complexity of the algorithms in the black box setting.
Our reduction involves the maintenance of a partial information function p that is defined
over the whole lattice. A straightforward implementation would take of course exponential
time. Note however that we do not need to compute p on the whole domain; we only need to
be able to compute p on demand on specific points, namely the query points of the Unique
Tarski algorithm. Is it possible to implement the algorithm so that it runs in polynomial time
in the number of queries? More generally, does the black-box time complexity of Tarski(n, k)
reduce also to that of UniqueTarski(n, k)?

Regarding the white-box complexity, we know that the total search version of Tarski(n, k)
is in PLS ∩ PPAD [4] and thus by the results of [5, 8], it is in the classes CLS
(Continuous-Local-Search) and EOPL (End-of-Potential-Line). Is the total search version of
UniqueTarski in the class UEOPL (Unique-EOPL) [6]? Is it hard for UEOPL?

References
1 Xi Chen and Yuhao Li. Improved upper bounds for finding tarski fixed points. In Proceedings

of the 23rd ACM Conference on Economics and Computation, pages 1108–1118, 2022.
2 Anne Condon. The complexity of stochastic games. Information and Computation, 96(2):203–

224, 1992.
3 Chuangyin Dang, Qi Qi, and Yinyu Ye. Computational models and complexities of tarski’s

fixed points. Technical report, Stanford University, 2011.
4 Kousha Etessami, Christos Papadimitriou, Aviad Rubinstein, and Mihalis Yannakakis. Tarski’s

theorem, supermodular games, and the complexity of equilibria. In 11th Innovations in
Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

X. Chen, Y. Li, and M. Yannakakis 21:23

5 John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani. The complexity of
gradient descent: CLS = PPAD ∩ PLS. In STOC ’21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 46–59. ACM, 2021.

6 John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of potential line.
J. Comput. Syst. Sci., 114:1–35, 2020.

7 John Fearnley, Dömötör Pálvölgyi, and Rahul Savani. A faster algorithm for finding tarski
fixed points. ACM Transactions on Algorithms (TALG), 18(3):1–23, 2022.

8 Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert
Robere, and Ran Tao. Further collapses in TFNP. In 37th Computational Complexity
Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages
33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

9 Massimo Marinacci and Luigi Montrucchio. Unique tarski fixed points. Math. Oper. Res.,
44(4):1174–1191, 2019. doi:10.1287/moor.2018.0959.

10 Paul Milgrom and John Roberts. Rationalizability, learning, and equilibrium in games
with strategic complementarities. Econometrica: Journal of the Econometric Society, pages
1255–1277, 1990.

11 L. Shapley. Stochastic games. Proc. Nat. Acad. Sci., 39(10):1095–1100, 1953.
12 Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific journal of

Mathematics, 5(2):285–309, 1955.
13 Donald M Topkis. Equilibrium points in nonzero-sum n-person submodular games. Siam

Journal on control and optimization, 17(6):773–787, 1979.
14 Donald M Topkis. Supermodularity and Complementarity. Princeton University Press, 1998.

CCC 2023

https://doi.org/10.1287/moor.2018.0959

A Distribution Testing Oracle Separating QMA and
QCMA
Anand Natarajan # Ñ

Massachusetts Institute of Technology, Cambridge, MA, USA

Chinmay Nirkhe # Ñ

IBM Quantum, Cambridge, MA, USA

Abstract
It is a long-standing open question in quantum complexity theory whether the definition of non-
deterministic quantum computation requires quantum witnesses (QMA) or if classical witnesses
suffice (QCMA). We make progress on this question by constructing a randomized classical oracle
separating the respective computational complexity classes. Previous separations [3, 13] required
a quantum unitary oracle. The separating problem is deciding whether a distribution supported
on regular un-directed graphs either consists of multiple connected components (yes instances)
or consists of one expanding connected component (no instances) where the graph is given in
an adjacency-list format by the oracle. Therefore, the oracle is a distribution over n-bit boolean
functions.

2012 ACM Subject Classification Theory of computation → Quantum computation theory

Keywords and phrases quantum non-determinism, complexity theory

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.22

Related Version Full Version: arXiv:2210.15380 [22]

Acknowledgements We thank Srinivasan Arunachalam, Andrew Childs, Elizabeth Crosson, Yi-Kai
Liu, Aram Harrow, Zhiyang He, Robin Kothari, William Kretschmer, Yupan Liu, Kunal Marwaha,
Mehdi Soleimanifar, Umesh Vazirani, and Elizabeth Yang for helpful discussions. Some of the
early ideas of this result were developed while Chinmay Nirkhe was at the University of California,
Berkeley. This work was partially completed while both authors were participants in the Simons
Institute for the Theory of Computing program The Quantum Wave in Computing: Extended
Reunion.

1 Introduction

There are two natural quantum analogs of the computational complexity class NP. The first
is the class QMA in which a quantum polynomial-time decision algorithm is given access
to a poly(n) qubit quantum state as a witness for the statement. This class is captured by
the QMA-complete local Hamiltonian problem [17] in which the quantum witness can be
interpreted as the ground-state of the local Hamiltonian. The second is the class QCMA
in which the quantum polynomial-time decision algorithm is given access instead to a
poly(n) bit classical state. While it is easy to prove that QCMA ⊆ QMA as the quantum
witness state can be immediately measured to yield a classical witness string, the question
of whether QCMA ?= QMA, first posed by Aharonov and Naveh [4], remains unanswered. If
QCMA = QMA, then every local Hamiltonian would have an efficient classical witness of
its ground energy; morally, this can be thought of as an efficient classical description of its
ground state. The relevance of local Hamiltonians to condensed matter physics makes this
question a central open question in quantum complexity theory [2].

© Anand Natarajan and Chinmay Nirkhe;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 22; pp. 22:1–22:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anandn@mit.edu
http://www.mit.edu/~anandn
https://orcid.org/0000-0003-3648-3844
mailto:nirkhe@ibm.com
https://nirkhe.github.io
https://orcid.org/0000-0002-5808-4994
https://doi.org/10.4230/LIPIcs.CCC.2023.22
https://arxiv.org/abs/2210.15380
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 A Distribution Testing Oracle Separating QMA and QCMA

Because P ⊆ QCMA ⊆ QMA ⊆ PSPACE, any unconditional separation of the two
complexity classes would imply P ̸= PSPACE and seems unlikely without remarkably ingenious
new tools. A more reasonable goal is an oracle separation between the two complexity classes.
The first oracle separation, by Aaronson and Kuperberg [3], showed that there exists a
black-box unitary problem for which quantum witnesses suffice and yet no polynomial sized
classical witness and algorithm can solve the problem with even negligible success probability.
A second black-box separation was discovered a decade later by Fefferman and Kimmel [13].
The Fefferman and Kimmel oracle is a completely positive trace perseving (CPTP) map called
an “in-place” permutation oracle. Both oracles [3, 13] are inherently quantum1. Whereas, the
“gold-standard” of oracle separations – namely black-box function separations (also known as
classical oracle separations) – only require access to a classical function that can be queried
in superposition2.

1.1 Graph oracles
The major result of this work is to prove that there exists a distribution over black-box
function problems separating QMA and QCMA. Each black-box function corresponds to the
adjacency list of a N

def= 2n vertex constant-degree colored graphs3 G = (V, E). Roughly
speaking, a graph is a YES instance if the second eigenvalue of its normalized adjacency
matrix is 1 (equivalently, if it has at least two connected components) and a graph is a NO
instance if it second eigenvalue is at most 1− α for some fixed constant α (equivalently, the
graph has one connected component and is expanding). We call this problem the expander
distinguishing problem.

Distribution oracles

A distribution over functions (equivalently, a distribution over graphs) is a YES instance if it
is entirely supported on YES graphs and a distribution over functions is a NO instance if it
is entirely supported on NO graphs.

In this work, we construct, for every n, families of YES and NO distributions over graphs
such that following hold for the promise problem of distinguishing a graph sampled from a
YES distribution from a graph sampled from a NO distribution.
1. There is a QMA proof system that solves this problem, where the verifier runs in quantum

polynomial time and has black-box query access to the sampled graph, and the honest
prover’s (quantum) witness depends only on the distribution, not on the specific sample.

2. No QCMA proof system can solve this problem, provided the prover’s (classical) witness
is only allowed to depend on the distribution, and not on the sample.

Our work is not the first to consider oracles that sample from distributions over functions.
The in-place oracle separation of [13] between QMA and QCMA used oracles that sampled
random permutations. For a somewhat different problem, of separating bounded-depth

1 It might be reasonable to wonder if the unitary oracles can be converted into classical oracles by
providing oracle access to the exponentially long classical descriptions of the respective matrices. This
is not known to be true because it is unclear how to use access to the classical description to solve the
QMA problem.

2 One reason this model is natural is that if we were given a circuit of size C to implement this classical
function, then we would automatically get a quantum circuit of size C to implement the oracle, simply
by running the classical circuit coherently. This is not true for the “in-place” permutation oracle model,
assuming that one-way functions exist.

3 A similar problem was previously conjectured to be an oracle separation for these complexity classes by
Lutomirski [21].

A. Natarajan and C. Nirkhe 22:3

Table 1 List of known oracle separations.

Authors Separating black box object Proof techniques used

Aaronson & Kuperberg [3] n-qubit unitaries Adversary method
Fefferman & Kimmel [13] n-qubit CPTP maps Combinatorial argument,

Adversary method

This work Distributions over n-bit boolean functions
Combinatorial argument,

Adversary method,
Polynomial method

Conjectured n-bit boolean function ?

quantum-classical circuits, [8] introduced a related notion called a “stochastic oracle” – the
main difference between this and our model is that a stochastic oracle resamples an instance
every time it is queried.

Comparison with previous oracle separations between QMA and QCMA

Table 1 summarizes our work in relation to previous oracle separations. In terms of results,
we take a further step towards the standard oracle model – all that remains is to remove
the randomness from our oracle. In terms of techniques, we combine the use of counting
arguments and the adversary method from previous works with a BQP lower bound for a
similar graph problem, due to [6]. This lower bound was shown using the polynomial method.
We view the judicious combination of these lower bound techniques – as simple as it may
seem – as one of the conceptual contributions of this paper.

Intuition for hardness

The expander distinguishing problem is a natural candidate for a separation between QMA
and QCMA because it is an “oracular” version of the sparse Hamiltonian problem, which is
complete for QMA [10, Problem H-4]. To see this, we recall some facts from spectral graph
theory. The top eigenvalue of the normalized adjacency matrix A for regular graphs is always
1 and the uniform superposition over vertices is always an associated eigenvector. If the
graph is an expander (the NO case of our problem), the second eigenvalue is bounded away
from 1, but if the graph is disconnected (the YES case of our problem), then the second
eigenvalue is exactly 1. Thus, our oracle problem is exactly the problem of estimating the
minimum eigenvalue of I−A (a sparse matrix for a constant-degree graph), on the subspace
orthogonal to the uniform superposition state. Viewing I−A as a sparse Hamiltonian, we
obtain the connection between our problem and the sparse Hamiltonian problem.

One reason to show oracle separations between two classes is to provide a barrier against
attempts to collapse the classes in the “real” world. We interpret our results as confirming
the intuition that any QCMA protocol for the sparse Hamiltonian must use more than just
black-box access to entries of the Hamiltonian: it must use some nontrivial properties of the
ground states of these Hamiltonians. In this sense, it emulates the original quantum adversary
lower bound of [9] which showed that any BQP-algorithm for solving NP-complete problems
must rely on some inherent structure of the NP-complete problem as BQP-algorithms cannot
solve unconstrained search efficiently.

Naturalness of the randomized oracle model

Some care must be taken whenever one proves a separation in a “nonstandard” oracle model
– see for instance the “trivial” example in [1] of a randomized oracle separating MA1 from
MA. We believe that our randomized oracle model is natural for several reasons. Firstly, as
mentioned above, randomization was used in the quantum oracle of [13] for essentially the

CCC 2023

22:4 A Distribution Testing Oracle Separating QMA and QCMA

same reason: to impose a restriction on the witnesses received from the prover. Secondly,
it is consistent with our knowledge that our oracle separates QMA from QCMA even when
the randomness is removed (and indeed we conjecture this is the case, as described below.)
Thirdly, the randomization still gives the prover access to substantial information about the
graph: in particular, the prover knows the full connected component structure of the graph.
As we show, this information is enough for the prover to give a quantum witness state, that
in the YES case convinces the verifier with certainty. Our result shows that even given full
knowledge of the component structure, the prover cannot construct a convincing classical
witness – we believe this sheds light on how a QMA witness can be more powerful than a
QCMA witness.

1.2 Overview of proof techniques
Quantum witnesses and containment in oracular QMA

A quantum witness for any YES instance graph is any eigenvector |ξ⟩ of eigenvalue 1 that is
orthogonal to the uniform superposition over vertices. The verification procedure is simple:
project the witness into the subspace orthogonal to the uniform superposition over vertices,
and then perform one step of a random walk along the graph, by querying the oracle for
the adjacency matrix in superposition. Verify that the state after the walk step equals |ξ⟩.
This is equivalent to a 1-bit phase estimation of the eigenvalue. If a graph is a NO instance,
then there does not exist any vector orthogonal to the uniform superposition (the unique
eigenvector of value 1) that would pass the previous test.

Whenever, the graph has a connected component of S ⊊ V , then an eigenvector orthogonal
to the uniform superposition of eigenvalue 1 exists. When |S| ≪ N , this eigenvector is very
close to |S⟩, the uniform superposition over basis vectors x ∈ S. Notice that this state only
depends on the connected component S and not the specific edges of the graph. Furthermore,
the state |S′⟩ for any subset S′ that approximates S forms a witness that is accepted with
high probability.

Lower bound on classical witnesses

The difficulty in this problem lies in proving a lower bound on the ability for classical witnesses
to distinguish YES and NO instances. To prove a lower bound, we argue that any quantum
algorithm with access to a polynomial length classical witness must make an exponential
number of (quantum) queries to the adjacency list of the graph in order to distinguish YES
and NO instances. This, in turn, lower bounds the time complexity of any QCMA algorithm
distinguishing YES and NO instances but is actually slightly stronger since we don’t consider
the computational complexity of the algorithm between queries.

Proving lower bounds when classical witnesses are involved is difficult because the witness
could be based on any property of the graph. For example, the classical witness could describe
cycles, triangles, etc. contained in the graph – while it isn’t obvious why such a witness
would be helpful, proving that any such witness is insufficient is a significant challenge. One
way to circumvent this difficulty is to first show a lower bound assuming some structure
about the witness4, and then “remove the training wheels” by showing that the assumption
holds for any good classical witness.

4 Assuming structure about a witness is a common technique in theoretical computer science and in
particular lower bounds for classical witnesses of quantum statements. For example, lower bounds
against natural proofs [19]. Another example is the NLTS statement [7] which is about lower bounds for
classical witnesses for the ground energy of a quantum Hamiltonian of a particular form: constant-depth
quantum circuits.

A. Natarajan and C. Nirkhe 22:5

Lower bound against “subset witnesses”

One structure we can assume is that the witness only depends on the set of vertices contained
in the connected component S. This is certainly the case for the ideal quantum witness state.
Our result shows that any polynomial-length witness only depending on the vertices in S

requires an exponential query complexity to distinguish YES and NO instance graphs.
The starting point for this statement is the exponential query lower bound in the absence

of a witness (i.e. for BQP) for the expander distinguishing problem proven by Ambainis,
Childs and Liu [6], using the polynomial method. In [6], the authors define two distributions
over constant-degree regular colored graphs: the first is a distribution P1 over random graphs
with overwhelming probability of having a second normalized eigenvalue at most 1− ϵ0. The
second is a distribution Pℓ over random graphs with overwhelming probability of having ℓ

connected components. Since, almost all graphs in P1 are NO graphs and all graphs in Pℓ are
YES graphs, any algorithm distinguishing YES and NO instances must be able to distinguish
the two distributions. We first show that a comparable query lower bound still holds even
when the algorithm is given a witness consisting of polynomially many random points F

from any one connected component.
Next, we show that if there were a QCMA algorithm where the optimal witness depends

only on the set of vertices S in one of the connected components, by a counting argument,
there must exist a combinatorial sunflower of subsets S that correspond to the same witness
string. A sunflower, in this context, is a set of subsets such that each subset contains a
core F ⊂ V and every vertex of V \ F occurs in a small fraction of subsets. This implies
that there exists a BQP algorithm which distinguishes YES instances corresponding to the
sunflower from all NO instances. Next, we show using an adversary bound [5], a quantum
query algorithm cannot distinguish the distribution of YES instances corresponding to the
sunflower from the uniform distribution of YES instances such that the core F is contained
in a connected component (the ideal sunflower).

This indistinguishability, along with the previous polynomial method based lower bound,
proves that QCMA algorithm – whose witness only depends on the vertices in the connected
component – for the expander distinguishing problem must make an exponential number of
queries to the graph.

Removing the restriction over witnesses

Our proof, thus far, has required the restriction that the witness only depends on the vertices
in the connected component. In some sense, this argues that there is an oracle separation
between QMA and QCMA if the prover is restricted to being “near-sighted”: it cannot see
the intricacies of the edge-structure of the graph, but can notice the separate connected
components of the graph. If the near-sighted prover was capable of sending quantum states
as witnesses, then she can still aid a verifier in deciding the expander distinguishing problem,
whereas if she could only send classical witnesses, then she cannot aid a verifier.

It now remains to remove the restriction that the witness can only depend on the
vertices in the connected component. We do this by introducing randomness into the
oracle, precisely designed to “blind” the prover to the local structure of the graph. In the
standard oracle setting, the verifier and prover both get access to an oracle x ∈ {0, 1}N , and
the prover provides either a quantum witness, |ξ(x)⟩ ∈ (C2)⊗poly(n) or a classical witness,
ξ(x) ∈ {0, 1}poly(n). The verifier then runs an efficient quantum algorithm V x which takes as
input |ξ(x)⟩ (or ξ(x), respectively) and consists of quantum oracle gates applying the unitary
transform defined as the linear extension of

CCC 2023

22:6 A Distribution Testing Oracle Separating QMA and QCMA

|i⟩ 7→ (−1)xi |i⟩ for i ∈ [N]. (1)

We now modify this setup slightly. Instead of a single oracle x, we consider a distribution B
over oracles. The prover constructs a quantum witness |ξ(B)⟩ (or a classical witness ξ(B),
respectively) based on the distribution B. The verifier then samples a classical oracle x← B
from the distribution, and then runs the verification procedure V x which takes as input
|ξ(B)⟩ (or ξ(B), respectively) and applies quantum oracle gates corresponding to x. The
success probability of the verifier is taken over the distribution B and the randomness in the
verification procedure.

Prover Verifier
B

|ξ⟩ = |ξ(B)⟩
(or ξ = ξ(B))

|ξ⟩ (or ξ)

x ← B

V x(|ξ⟩)
(or V x(ξ))

Figure 1 Cartoon of interaction between Prover and Verifier for a distribution over classical
boolean functions.

From our previous observations, graphs with the same connected component S have the
same ideal witness state. So, if the distribution B is supported on all graphs with the same
connected component S, then the ideal witness state suffices. Furthermore, in the case of the
classical witness system, the witness can only depend on S and the previously stated lower
bound applies. This motivates the oracle problem of distinguishing distributions, marked
either YES or NO, over 2n bit strings (or equivalently n-bit functions).

1.3 Statement of the result
▶ Theorem 1. For every sufficiently large integer n that is a multiple of 200, there exist
distributions over 100-regular 100-colored graphs on N = 2n vertices labeled either YES or
NO such that

Each YES distribution is entirely supported on YES instances of the expander-distinguishing
problem and, likewise, each NO distribution is entirely supported on NO instance of the
expander-distinguishing problem.
There exists a poly(n) time quantum algorithm Vq taking a witness state |ξ⟩ as input and
making O(1) queries to the quantum oracle such that

1. For every YES distribution B, there exists a quantum witness |ξ⟩ ∈ (C2)⊗n such that

E
x←B

Pr[V x
q (|ξ⟩) accepts] = 1. (2)

2. For every NO distribution B, for all quantum witnesses |ξ⟩ ∈ (C2)⊗n,

E
x←B

Pr[V x
q (|ξ⟩) accepts] ≤ 0.01. (3)

A. Natarajan and C. Nirkhe 22:7

Any quantum algorithm Vc accepting a classical witness of length q(n) satisfying the
following two criteria either requires q(n) to be exponential or must make an exponential
number of queries to the oracle5.

1. For every YES distribution B, there exists a classical witness ξ = ξ(B) ∈ {0, 1}q(n)

E
x←B

Pr[V x
c (ξ) accepts] ≥ 0.99. (4)

2. For every NO distribution B, for all classical witnesses ξ ∈ {0, 1}q(n),

E
x←B

Pr[V x
c (ξ) accepts] ≤ 0.01. (5)

Although our main theorem is formulated as a query lower bound, it can be converted to a
separation between the relativized classes of QMA and QCMA via a standard diagonalization
argument. Similarly, it was pointed out to us [14] that it proves a separation between the
relativized classes of BQP/qpoly and BQP/poly, following the technique of [3].

1.4 Implications and future directions
There are several future questions raised by this work that we find interesting:

Oracle and communication separations

The most natural question is, of course, whether the oracle’s randomness can be removed to
obtain a separation in the standard model. We conjecture that our problem yields such a
separation, but a new technique seems necessary to prove it. See Section 9 for more details
on the technical barriers to derandomizing our construction.

Another natural question is to show a communication complexity separation between QMA
and QCMA. This has been shown for one-way communication by Klauck and Podder [18]
but their problem does not yield a separation for two-way communication. Could our query
separation be lifted to the communication world by use of the appropriate gadget?

The class QMA(2) is another relative of QMA which is perhaps even more enigmatic than
QCMA. In QMA(2), the witness state is promised to be an unentangled between the first and
second half of the qubits. We do not even know of a quantum (unitary) oracle separation
between QMA(2) and QMA, nor do we have a natural candidate problem. Could we at least
formulate such a candidate by considering “oracular” versions of QMA(2)-complete problems,
in analogy to what we do in this work for QCMA.

Search-to-decision

In [15], Irani, Natarajan, Nirkhe, Rao and Yuen studied the complexity of generating a witness
to a QMA problem (equivalently, generating a ground state of a local Hamiltonian) when given
oracle access to a QMA oracle. This paradigm, called search-to-decision, is commonplace
in classical complexity theory (for example, P, NP, MA, etc. all have search-to-decision
reductions) and yet [15] gives evidence that QMA likely does not exhibit a search-to-decision
reduction. They prove this by showing an oracle relative to which QMA search-to-decision
reductions are provably impossible. The oracle used is identical to that of Aaronson and

5 We leave it open whether the completeness-soundness gap in this lower bound can be improved to an
inverse polynomial. Naive gap amplification for QCMA do not work in the distribution testing oracle
setting; see the note below Definition 4 for details.

CCC 2023

22:8 A Distribution Testing Oracle Separating QMA and QCMA

Kuperberg [3] to separate QMA and QCMA. [15] acknowledge this noncoincidence and
conjecture whether any QMA and QCMA separating oracle yields a QMA search-to-decision
impossibility result. Similar to the reasons for why the gold-standard of oracle separation
between QMA and QCMA is a n-bit boolean function, the ideal oracle for proving QMA
search-to-decision impossibility is also a n-bit boolean function. Does the oracle presented
here also yield a search-to-decision impossibility?

Implications for Quantum PCPs

The quantum PCP conjecture [4] is one of the biggest open questions in quantum complexity
theory. In a recent panel [24] on the quantum PCP conjecture and the NLTS theorem
[7], an interesting question was posed of whether MA or QCMA (lower or upper) bounds
can be placed on the complexity of the promise-gapped local Hamiltonian problem. We
recommend [23] for an introduction to the subject. Because the oracle presented in this result
corresponds to a sparse Hamiltonian with a problem of deciding if the second eigenvalue of the
Hamiltonian is 1 or < 1−α/d = 1−Ω(1), one might wonder if this provides oracular evidence
that quantum PCPs are at least QCMA-hard. Unfortunately, to the best of our knowledge,
this is not a reasonable conclusion. While we give evidence that the promise-gapped sparse
Hamiltonian problem is likely QCMA-hard, the reduction from the sparse Hamiltonian
problem to the local Hamiltonian problem does not imply that the promise-gapped local
Hamiltonian problem is likely QCMA-hard. The only algorithm known for checking a witness
for the sparse Hamiltonian problem is Hamiltonian simulation on the witness which is not a
local algorithm.

Connections to Stoquastic Hamiltonians

Since the oracles studied in this work correspond to the adjacency lists of graphs, they can
be viewed as sparse access to a Hamiltonian H which is the Laplacian of a graph (recall
that if the adjacency matrix is A, then the Laplacian is I−A/d). Such Hamiltonians have
a special structure not present in general Hamiltonians: they are stoquastic, meaning that
the off-diagonal entries are nonpositive. The local Hamiltonian (LH) problem for stoquastic
Hamiltonians is significantly easier than the general LH problem, and in some cases is even
contained in MA as shown by Bravyi and Terhal [12]. It is worth noticing why this is not in
tension with our result – in particular, why this does not imply that our oracle problem is
contained in oracular MA.

Crucially, the MA-containment for stoquastic LH holds only for the ground state: this
is because of the Perron-Frobenius theorem, which implies that ground states of such
Hamiltonians have nonnegative coefficients. However, in our case, we want the first
excited state: the state of minimum energy for H restricted to the subspace orthogonal
to the uniform superposition. It was shown by [16] that all excited state energies are
QMA-hard to calculate for a stoquastic Hamiltonian.
The MA containment also uses the locality of the Hamiltonian, which in turn imposes a
strong structure on the adjacency matrix of the graph. The random graphs we consider
will not have this structure. (While it was shown by [11] showed an AM algorithm for
calculating the ground energy stoquastic and sparse Hamiltonians, again this does not
apply to higher excited states.)
At an intuitive level, in graph language, the LH problem for stoquastic Hamiltonians is to
find a component of the graph where the average value of some potential function (given
by the diagonal entries of H) is minimized. An MA verifier can solve this by executing a

A. Natarajan and C. Nirkhe 22:9

random walk, given the right starting point by Merlin. In contrast, our problem is to
determine whether the graph as a whole is connected – a global property which an MA
verifier cannot determine.

2 Organization of the paper

The remainder of the paper is the proof of Theorem 1. The proof is divided into smaller
components and these intermediate results are joined together in Section 8. In Section 3,
we state some basic definitions and formally define the expander distinguishing problem. In
Section 4, we describe the distributions over graphs that constitute YES and NO instances. In
Section 5, we prove that there is an efficient QMA algorithm for the expander distinguishing
problem. In particular, there is a single quantum witness that serves all the graphs in each of
the YES distributions. In Section 6, we use the adversary method and counting arguments to
prove that any QCMA algorithm for the expander distinguishing problem for the constructed
distributions implies a BQP algorithm for distinguishing YES instances with a connected
component corresponding to an ideal sunflower from a generic NO instance. In Section 7,
we argue using the polynomial method that such an algorithm is impossible without an
exponential query complexity. In Section 9, we present some concluding remarks about our
construction and its relation to other notions of computational complexity.

3 Preliminaries

3.1 Notation and quantum information basics
We will assume that the reader is familiar with the basics of quantum computing and quantum
information. We will use N

def= 2n throughout this paper and we will only consider graphs
of N vertices. The adjacency list of a d-regular d-colored graph on N vertices takes dnN

bits to describe. For any m, we abbreviate the set of integers {1, 2, . . . m} as [m]. For a set
A ⊆ [N], we will use |A⟩ to denote the state 1√

A

∑
j∈A |j⟩, the subset state corresponding to

A. Unless otherwise, specified we assume ∥·∥ is the Euclidean norm ∥·∥2 for a vector, and
the spectral norm for a matrix, which is the largest singular value.

3.2 Expander graphs
▶ Definition 2. A graph G is a spectral α-expander (equiv. is α-expanding) if the second
highest eigenvalue λ2 of the normalized adjacency matrix of G satisfies λ2 ≤ 1 − α. We
say that a connected component S of the graph is α-expanding if the restricted graph to the
vertices of S is α-expanding.

▶ Lemma 3. Let G be a d-regular α-expander. Consider the random walk that starts in any
distribution over the vertices, and at each time step, stays in place with probability 1/2, and
moves along an edge of the graph with probability 1/2. Then for any vertex v, after ℓ steps,
the probability Pr[v] that the walk is in v satisfies∣∣∣∣Pr[v]− 1

N

∣∣∣∣ ≤ (1− α

2

)ℓ

. (6)

In particular, when ℓ = O(c log N/α) we can get the RHS to be 1/N c.

Proof. Proof is available in the full version [22]. ◀

CCC 2023

22:10 A Distribution Testing Oracle Separating QMA and QCMA

3.3 Non-deterministic oracle problems

▶ Definition 4 (Quantum oracle problems). For a n-bit boolean function O, we say an oracle
decision problem LO is in QMAO(ϵ) if there exists a uniform family of quantum circuits AO

such that
1. For every YES instance O, there exists a quantum state |ξ⟩ of poly(n) qubits such that

AO(|ξ⟩) accepts with probability ≥ 1− ϵ.
2. For every NO instance O, for all quantum states |ξ⟩ of poly(n) qubits, AO(|ξ⟩) accepts

with probability ≤ ϵ.
QCMAO(c, s) is defined similarly, except the state |ξ⟩ is promised to be classical. The classes
QMAO and QCMAO are defined as QMAO(1/3) and QCMAO(1/3), respectively.

We note that due to parallel repetition, QMAO(ϵ = 1
2−1/poly(n)) = QMAO = QMAO(ϵ =

2−poly(n)). Likewise, for QCMAO. This justifies removing the constant ϵ from the definition.
We now define the same problem for oracles equaling distributions over n-bit boolean
functions.

▶ Definition 5 (Random classical oracles). A random oracle R is a distribution over classical
oracles {O}. We say an oracle decision problem LR is in QMAR(ϵ) if there exists a uniform
family of quantum circuits AO such that
1. For every YES instance R, there exists a quantum state |ξ⟩ of poly(n) qubits such that

E
O∈R

Pr
[
AO(|ξ⟩) accepts

]
≥ 1− ϵ. (7)

2. For every NO instance O, for all quantum states |ξ⟩ of poly(n) qubits,

E
O∈R

Pr
[
AO(|ξ⟩) accepts

]
≤ ϵ. (8)

QCMAR(c, s) is defined similarly, except the state |ξ⟩ is promised to be classical.

Ideally, we would define the classes QMAR and QCMAR are defined as QMAR(1/3) and
QCMAR(1/3), respectively. However, the parallel repetition argument for boolean function
oracles cannot be extended to distributions over boolean functions. This is because the ϵ

error that an algorithm is the expectation of the success probability of the algorithm over
the distribution. It is possible that the algorithm runs on every instance in the distribution
with error ϵ or it is possible that the algorithm succeeds with 0 error on a 1− ϵ fraction of
the distribution and fails on the remaining ϵ fraction. In the first case, the success of the
algorithm can be improved with parallel repetition while it cannot in the second case6.

3.4 Graph oracles

▶ Definition 6 (Colored Graphs). Given a d-colored d-regular graph G = (V, E) on N vertices,
we say G contains a triple (j1, j2, κ) ∈ V 2 × [d] if the edge (j1, j2) exists in G and is colored
with color κ.

6 We note that this subtlety is overlooked in Fefferman and Kimmel [13] but we believe that their result
without parallel repetition is correct. Furthermore, the adversary bounds used in [13] do not address this
issue but can be rectified using the adversary bound stated in Theorem 13 which deals with average-case
distinguishing.

A. Natarajan and C. Nirkhe 22:11

▶ Definition 7 (Adjacency graph oracles). Let G be a d-colored d-regular undirected graph.
The graph G = (V, E) can be described by an adjacency function

G : V × [d]→ V (9)

where the output of (j, κ) returns the neighbor of j along the edge colored with κ. Quantum
access to the function G is provided by the following oracle unitary:

|j, κ, z⟩ G7→ |j, c, z ⊕G(j, κ)⟩ . (10)

We call the function G the adjacency graph oracle corresponding to G.

▶ Definition 8 (Expander distinguishing problem). The (α, ζ)-expander distinguishing problem
is a promise oracle language where the input is an oracle G for a d-colored d-regular undirected
graph G on N vertices. The problem is to distinguish between the following two cases, promised
that one holds:

YES: the graph G has a connected component S of size at most |S| ≤ ζ.
NO: the graph G is an α-expander.

In this paper, we will think of α as a constant and ζ ∼ N9/10. To simplify notation, since
the oracles considered in this result always correspond to graphs G, we express the algorithm
as AG rather than AO.

4 Random distributions over graphs with many connected components

In this subsection, we describe distributions over graphs where the graphs with high probability
consist of ℓ connected components. It should not be surprising that the distribution is almost
identical to the distribution used by Ambainis, Childs, and Liu [6] in their proof that the
expander distinguishing problem requires an exponential number of quantum queries for
any quantum query algorithm in the absence of a proof. This is because we will reduce any
QCMA algorithm to an efficient query algorithm for some expander distinguishing problem.

The lower bound in [6] is crucially a lower bound on the polynomial degree of any
polynomial that distinguishes two graph distributions. From there, it isn’t too much to argue
that these graph distributions are very close to YES and NO instances as prescribed in the
expander distinguishing problem; therefore any algorithm solving the expander distinguishing
problem must be able to distinguish these two graph distributions. Our first goal is to amplify
the argument of [6] to a more restricted class of graphs.

4.1 Graphs distributions inspired by [6]
The goal of the construction is a distribution which depends on an integer ℓ and a subset
F ⊂ V . The integer ℓ will roughly correspond to the number of connected components
(henceforth denoted C1, . . . , Cℓ) in the graph and we insist that F ⊂ C1. Every v ∈ V \ F

appears in each subset Ci with equal probability of 1/ℓ. The actual construction will be
slightly more complicated than this but, morally, this is what we hope to achieve from the
distribution.

Formal construction

Let N be an integer and for integer M ≥ N , integer ℓ dividing M and a subset F ⊂ V define
the distribution PM,ℓ(F) over graphs on N vertices as follows:
1. Start by constructing a graph G′ on M vertices: Partition V ′ into ℓ equally sized sets of

vertices V1, . . . , Vℓ. On each subset Vk, create a random colored subgraph by randomly
choosing d perfect matchings (each with a different color 1, . . . , d) and taking their union.

CCC 2023

22:12 A Distribution Testing Oracle Separating QMA and QCMA

2. To construct the graph G on N vertices: We first choose an injective map ι : V ↪→ V ′.
First, we pick a function k : V → [ℓ]. We pick k as a uniformly random function
conditioned on the fact that k(j) = 1 for each j ∈ F . Let ι(j) be a random vertex
from Vk(j) without replacement to satisfy injectivity. If all vertices from Vk(j) have been
selected with replacement, output the graph on N vertices with no edges (i.e. abort).

3. Induce a graph G on V from G′ and the map ι – i.e. an edge (j1, j2, κ) ∈ V 2 × [d] exists
if (ι(j1), ι(j2), κ) ∈ V ′

2 × [d] is an edge.
4. For a vertex j and a color κ, if the previous induced edges did not introduce a κ-colored

edge from j, then add edge (j, j, κ).
5. The distribution over graphs G is henceforth called PM,ℓ(F); when F = ∅, we write it as

PM,ℓ.

Notationally, for edges e = (u, v, κ) ∈ G, we will use ι(e) = (ι(u), ι(v), κ) ∈ G′. Further-
more, we will extend ι naturally to subgraphs and subsets of vertices and edges.

▶ Remark 9. For any F , PM,1(F) = PM,1(∅) def= PM,1.

4.2 Setting of constants
The lower bounds we prove for the QCMA algorithm are by no means tight (up to constants).
We make no attempt to perfect the choice of constants as our only goal is to prove an
exponential lower bound on the size of the any quantum witness or the number of queries
required to solve the expander distinguishing problem. For this reason, we pick the following
constants:

Chosen constants

The degree of the graph G′ is set to be d = 100. We assume ℓ = N1/10, γ = N−1/10 and
M = (1 + γ)N .

Induced constants

In Definition 8, we define an (α, ζ)-expander distinguishing problem. We will only consider
α = 1/(2 ·108) (which is a consequence of Lemma 10 and the chosen constants). Notationally,
we will use z

def= N/ℓ = N9/10. We will use ζ = (1 + γ)z = M/ℓ.

Conventions

Typically, we will assume (for the purposes of contradiction) that |F | ≤ N1/100 but as that
is a term we wish to bound, we explicitly state it each time. Anytime a set S is described, it
will be of size ζ, but we will also state this.

4.3 Concentration bounds for random distributions over graphs
We will need the following concentration lemma about the generated distributions. The lemma
proves that PM,1 is approximately a YES instance and that PM,ℓ(F) is approximately a NO
instance. Overall, this lemma proves that any algorithm solving the expander distinguishing
problem must do very well on identifying the distribution PM,1 as a NO instance and
identifying the distributions PM,ℓ(F) as a YES instance. The proof of this lemma is provided
in Appendix of the full version [22].

A. Natarajan and C. Nirkhe 22:13

▶ Lemma 10 (Adaptation of Lemma 16 of [6]). Assume |F | ≤ N1/100. Then with probability at
least ≥ 1−O(N−3), a graph drawn from distribution PM,ℓ(F) consists of exactly ℓ connected
components each α-expanding and consisting of between (1− γ)z and (1 + γ)z vertices.

Likewise, the probability that a graph drawn from the distribution PM,1 is α-expanding is
≥ 1−O(N−3).

Note that being expanding necessarily implies connectivity. Note that when F = ∅ or ℓ = 1,
there are simpler proofs with tighter bounds but the bound proven here for the general
statement is sufficient for our result.

The second concentration lemma that we will use is that PM,ℓ is approximately equal to
sampling a set F of size ≤ N1/100 and then sampling a graph from PM,ℓ(F). The proof of
this lemma is also provided in Appendix of the full version [22].

▶ Lemma 11. Let m be ≤ N1/100. Let D1 be the distribution on pairs (G, F) obtained by
sampling G ∼ PM,ℓ, choosing a uniformly random vertex v ∈ G, and then choosing F to be a
uniformly random subset of the connected component of G containing v of size m. Let D2
be the distribution on pairs (G, F) obtained by first choosing F to be a uniformly random
subset of V with size m, and then sampling G ∼ PM,ℓ(F). Then these distribution are close
in statistical distance:

∥D1 −D2∥ ≤ 3N−9/200. (11)

5 QMA protocol

In this section we show that the expander distinguishing problem (over a fixed graph – i.e.,
no distribution) can be solved with a polynomial number of queries (indeed, with just two
queries) if a quantum witness is provided. Our algorithm has the added benefit of being
time-efficient, so we have shown that this problem is contained in QMAG. In Section 8, we
prove that there still exists a QMA protocol if we consider distribution oracles.

▶ Lemma 12. There is a QMAG protocol AQMA that solves the (α, ζ)-expander distinguishing
problem with the following properties:
1. Query complexity: the algorithm makes two queries to G.
2. Completeness: In the YES case, there exists a witness state that the verifier accepts

with certainty.
3. Soundness: In the NO case, no witness state is accepted by probability greater than

1− α/4.
4. Nice witnesses: In the YES case, if S ⊊ V is a connected component of the graph G,

then the state

|S⟩ = 1√
|S|

∑
v∈S

|v⟩

is accepted with probability at least 1 −
√
|S|/N . In particular, since there exists a

connected component of size at most ζ, there is a state of this form that is accepted with
probability 1−

√
ζ/N .

Proof. At a high level, the verifier performs one-bit phase estimation of the adjacency matrix
of G on the witness state; this verifies that the witness was an eigenvector of optimal eigenvalue
of the graph’s adjacency matrix. A complete proof is available in the full version [22]. ◀

CCC 2023

22:14 A Distribution Testing Oracle Separating QMA and QCMA

6 Adversary method

In this section, we use the adversary method of Ambainis to argue that any successful QCMA
algorithm implies a BQP algorithm for distinguishing the distribution PM,ℓ(F) and Pm,1 for
|F | ≤ N1/100. In Section 6.1, we state the adversary method result and in the following
sections we prove the statement.

6.1 Ambainis’ proof of the adversary method
The adversary method of Ambainis [5] is a convenient way of arguing lower bounds on the
query complexity of oracular quantum algorithms. The adversary method lower bounds the
complexity of any algorithm which (with high probability) computes f(a) for a function
f : {0, 1}N → {0, 1}. The quantum algorithm is allowed access to a ∈ {0, 1}N by a oracle
gate O which applies linearly the transform |i⟩ 7→ (−1)ai |i⟩ for i ∈ {0, 1}n (here N = 2n). In
doing so, the adversary method is a convenient way of producing BQP (query) lower-bounds.

To use it in our distributional setting, we make two modifications to the adversary
bound. The first is to relax the notion of correctness. The lower bound of Ambainis is for
a lower-bound for any algorithm which, for each a ∈ {0, 1}N , outputs f(a) correctly with
probability 1− ϵ for ϵ < 1

2 . We instead consider an average-case notion of success in which

E
a∈{0,1}N

Pr
A

[Aa ̸= f(a)] ≤ ϵ2. (12)

By Markov’s inequality, this implies

Pr
a∈{0,1}N

[
Pr
A

[Aa ̸= f(a)] ≥ ϵ
]
≤ ϵ, (13)

or in other words, most a are (with high probability) correctly identified.
The second modification is to restrict the set of locations that the algorithm is allowed

to query the oracle. The reason for this is somewhat subtle. Essentially, the original lower
bound of Ambainis was designed for decision problems with deterministic oracles, and relies
on constructing a relation between two disjoint sets of oracle instances, one consisting only of
YES instances and the other only of NO instances. However, in our setting, we are interested
in distinguishing two distributions over oracles that may have overlapping support. In order
to define disjoint YES and NO sets of instances even when the distributions overlap, we add
to each oracle string a a set of flag bits b that indicate which of the two distributions the
string a was sampled from. Naturally, any reasonable model cannot permit the algorithm to
query the flag bits: otherwise, it would be easy to distinguish even two statistically close
distributions with few queries.

More formally, we consider a generalization where the oracle string is a tuple (a, b) ∈
{0, 1}N × {0, 1}M and f : {0, 1}N+M → {0, 1} but the algorithm can only query positions
of a. In this model, with the average-case notion of success defined above, we obtain the
following adversary lower bound for distributions:

▶ Theorem 13. Let f : {0, 1}N+M → {0, 1} be a function and let X, Y ⊂ {0, 1}N × {0, 1}M

be two subsets such that X ⊂ f−1(0) and Y ⊂ f−1(1). Let R ⊂ X×Y be a relation such that
1. For every x ∈ X, let Rx ⊂ Y equal Rx = {y : (x, y) ∈ R} such that m ≤ |Rx| ≤ m.
2. For every y ∈ Y , let Ry ⊂ X equal Ry = {x : (x, y) ∈ R} such that m′ ≤ |Ry| ≤ m′.
3. For every x = (a, b) ∈ X and i ∈ [N], let ℓx,i be the number of y = (c, d) ∈ Y such that

(x, y) ∈ R and ai ̸= ci. Likewise, for every y = (c, d) ∈ Y and i ∈ [N], let ℓy,i be the
number of x = (a, b) ∈ X such that (x, y) ∈ R and ai ̸= ci. Let ℓmax be the maximum
product ℓx,iℓy,i over (x, y) ∈ R and i ∈ [N] such that ai ̸= ci.

A. Natarajan and C. Nirkhe 22:15

Then any quantum algorithm A which only queries the first N bits of the oracle and computes
f such that

E
x=(a,b)∈X

Pr
A

[Aa ̸= 0] ≤ ϵ2 and E
y=(c,d)∈Y

Pr
A

[Ac ̸= 1] ≤ ϵ2 (14)

uses

≥
(

1− 2
√

ϵ(1− ϵ)
)√ (m− 2ϵm)

(
m′ − 2ϵm′

)
ℓmax

queries. (15)

▶ Corollary 14. Let X and Y be two subsets of {0, 1}N+M satisfying the three conditions listed
in Theorem 13. Then, any query algorithm (1− δ)-distinguishing the uniform distributions
over X and Y , must use eq. (15) queries for ϵ = 2δ.

The proofs of both statements are presented in the Appendix of the full version [22].

6.2 Setup from QCMA algorithm
In this subsection, we show that if there is a QCMA algorithm for solving the expander
distinguishing problem then there exists a sunflower ❀ (defined below) of YES instances which
correspond to the same optimal witness wt⋆. If we hardcode wt⋆ into the QCMA algorithm,
we generate a quantum query algorithm that, with no access to a prover, accepts instances
corresponding to ❀ and rejects all NO instances.

▶ Definition 15 (Sunflower). A collection of subsets ❀ ⊂
(

V
ζ

)
is (µ, ζ, t)-sunflower if there

exists a subset F ⊂ V with |F | ≤ t satisfying the following two conditions:
1. For all S ∈ ❀, F ⊆ S.

2. For all x ∈

(⋃
S∈❀

S

)
\ F , the Pr

S∈❀
[x ∈ S] ≤

(
ζ

N

)1−µ

.

We call the set F the core of the sunflower.

YES instances corresponding to subsets

For any graph G and subset S of size ζ, define G ◁ S if G has a connected component Ci ⊆ S.
Let S◁ be the set of G such that G ◁ S. For each subset S of size ζ, define BS to be the
restriction of the distribution PM,ℓ to graphs in S◁. The intuition is that the ideal witness will
be a good witness for BS since the connected components of PM,ℓ are of a size concentrated
around z.

There is a small complication, which we address now, in that the distribution PM,ℓ is
not a uniform distribution over a set of graphs. To rectify this, we can always assume that
the oracle corresponding to a graph G sampled to PM,ℓ consists of a queryable component
corresponding to the adjacency list of G and a non-queryable component corresponding to
the random coins rG that were flipped in order to generate G according to PM,ℓ. We will
also define BS as the restriction of the extended oracle. Therefore, both PM,ℓ and BS are
uniform distributions over some support.

Lastly, the distributions BS are not exactly YES distributions since their support is not
entirely on YES graphs of the expander distinguishing problem. However, similar to Lemma
10, we will show that BS is almost entirely supported on YES graphs. Therefore, it suffices
to use BS as a proxy for YES instances until the very end where we handle this subtlety.

CCC 2023

22:16 A Distribution Testing Oracle Separating QMA and QCMA

▶ Corollary 16. For every graph G ∈ S◁ such that G has a connected component Ci with
|Ci| ≥ (1− γ)z,

Pr[AG
QMA(|S⟩) = 1] ≥ 1− 3√γ. (16)

Proof. Proof is available in the full version [22]. ◀

▶ Corollary 17. Let M = (1 + γ)N and γ = N−1/10 and ℓ = N−1/10. For every S of size
(1 + γ)z, the distribution BS is a YES instance and

E
G←BS

[
Pr
[
AG

QMA(|S⟩) = 1
]]
≥ 1− 3√γ −O(N−3). (17)

Proof. Proof is available in the full version [22]. ◀

QCMA algorithm implies a quantum low-query algorithm for some sunflower ❀

▶ Lemma 18. For some ϵ > 0, assume there exists a k-query non-deterministic quantum
algorithm which accepts a q-length classical witness and accepts every distribution BS for
subset S of size ζ with probability 1−ϵ and accepts any NO distribution BNO with probability at
most ϵ. Then for µ > 0, there exists a (µ, ζ, 2q/(µ log ℓ))-sunflower ❀ and a k-query quantum
algorithm that accepts every distribution BS for S ∈ ❀ and accepts any NO distribution BNO
with probability at most ϵ.

Proof. Proof is available in the full version [22]. ◀

6.3 Query lower bound for distinguishing sunflowers and fixed
distributions

Let F
def=
(

V
ζ

)
∩ {S : F ⊆ S}. This is the ideal sunflower with a core of F . We will show by

an adversary bound that the sunflower ❀ and the ideal sunflower F are indistinguishable
by quantum query algorithms with few queries. Consider the distribution H❀ defined by
sampling an S ∈ ❀ and then sampling a graph from BS . Similarly, define the distribution
H F but by first sampling an S ∈ F . We want to show that any quantum query algorithm
requires exponentially many queries to distinguish H❀ and H F . The main result of this
subsection is the following lemma.

▶ Lemma 19. For δ < 1/4, any quantum query algorithm (1− δ)-distinguishing the distribu-
tions H❀ and H F where ❀ is a (µ, ζ, t)-sunflower and F is the corresponding core requires

≥ 1
2

(
1− 2

√
2δ(1− 2δ)

)
(1− 4δ) ·

√(
N

ζ

)1−µ

queries. (18)

6.3.1 A warmup lemma for distinguishing graphs
The main challenge in proving Lemma 19 is the complicated structure inherent in graphs.
However, if we work instead directly with the sets S, the problem is much simpler, and
was already solved in [13, Lemma 11]. They showed that given membership query access
(equivalently, the indicator function for the set), it requires exponentially many quantum
queries to distinguish a sample from ❀ from a sample from F .

We will work up to the result we wish to prove by gradually adding more structure to
the objects being queried until we reach graphs. We will start by working with permutations
that map the set S to a known set, and show that any algorithm with query access to the
permutation and its inverse requires exponentially many queries.

A. Natarajan and C. Nirkhe 22:17

To be precise, let U = [ζ]. Let Π❀ be the set of all permutations and inverses (π, π−1)
such that π(S) = U for some S ∈ ❀. Similarly, define Π F . We shall abuse notation and also
use Π❀ and Π F to refer to the uniform distributions over these sets of permutations. We
first claim that no quantum query algorithm can distinguish the distributions Π❀ and Π F

without an exponential number of queries. Note that the algorithm is allowed to query both
the permutation and its inverse7.

▶ Lemma 20. Any quantum query algorithm (1− δ)-distinguishing the distributions Π❀ and
Π F where ❀ is a (µ, ζ, t)-sunflower and F is the corresponding core requires

≥
(

1
2 − 2

√
2δ(1− 2δ)

)
(1− 4δ) ·

√(
N

ζ

)1−µ

queries. (19)

Proof. Proof is available in the full version [22]. ◀

A short corollary of Lemma 20 is that there is a similar query lower bound for distinguishing
distributions over graphs. Let G be a distribution over graphs with a connected component
of U = [ζ]. Let G❀ be the distribution over graphs formed by sampling a permutation pair
(π, π−1) from Π❀, a graph G from G and outputting the graph π−1(G). By construction, G❀

is a distribution over graphs with a connected component of S for S ∈ ❀. Likewise, define
the distribution GF .

▶ Corollary 21. For δ < 1/4, any quantum query algorithm (1 − δ)-distinguishing the
distributions G❀ and GF where ❀ is a (µ, ζ, t)-sunflower and F is the corresponding core
requires

≥ 1
2

(
1− 2

√
2δ(1− 2δ)

)
(1− 4δ) ·

√(
N

ζ

)1−µ

queries. (20)

Proof. The intuition is that any algorithm A for distinguishing G❀ and GF , can be used as
a subroutine in a (not necessarily time-efficient) algorithm A′ for distinguishing Π❀ and Π F

in twice as many queries. A full proof is available in the full version [22]. ◀

6.3.2 Improving to more general permutations
While Lemma 20 and Corollary 21 are simple enough to prove, they are insufficient at proving
indistinguishability for the graph distributions H❀ and H F defined at the start of this
section. This is because, unlike the distribution G❀, the distribution H❀ cannot be defined in
terms of independently sampling a graph G and a set S. For one, the sizes of the connected
components in H❀ do not exactly equal z; instead, the concentrate tightly around z. It was
precisely the independence of the graphs and sets that made Corollary 21 easy to prove.

To fix the argument, we prove the following variations of Lemma 20 and Corollary 21.
For a sunflower ❀ with core F and any k such that |F | ≤ k ≤ ζ, let Π(k)

❀ be the distribution
formed by the following procedure:
1. Sample a set S from ❀.
2. Sample uniformly randomly a subset C ⊂ S of size k.
3. Sample uniformly randomly a permutation π : V → V such that π(C) = [k].
4. Output (π, π−1).
Define the distribution Π(k)

F
similarly where we change the first step to sampling from F .

7 This can be equivalently modeled by having a separate in-place oracle for the permutation and its
inverse, or having a single “standard” oracle for the permutation.

CCC 2023

22:18 A Distribution Testing Oracle Separating QMA and QCMA

▶ Lemma 22. Any quantum query algorithm (1− δ)-distinguishing the distributions Π(k)
❀

and Π(k)
F

where ❀ is a (µ, ζ, t)-sunflower and F is the corresponding core requires

≥
(

1− 2
√

2δ(1− 2δ)
)

(1− 4δ) ·

√(
N

ζ

)1−µ

queries. (21)

Proof. This proof is equivalent to that of Lemma 20 except we use U = [k]. Note, the listed
bound has no dependence on k; this is because k ≤ ζ and we express here the weaker bound
with ζ. ◀

Likewise, a short corollary of Lemma 22 is the following. Construct the distribution G(k)
❀ by

the following procedure:
1. Sample a graph G from the restriction of the distribution PM,ℓ to graphs with a connected

component of exactly [k].
2. Sample a permutation (π, π−1) from Π(k)

❀ .
3. Output (π−1(G), rG) where rG is the random coin flips that would have generated G

when sampling according to PM,ℓ. The oracle will be divided into a queryable component
of (π−1(G)) and a un-queryable component of rG.

▶ Corollary 23. For δ < 1/4, any quantum query algorithm (1 − δ)-distinguishing the
distributions G(k)

❀ and G(k)
F

where ❀ is a (µ, ζ, t)-sunflower and F is the corresponding core
requires

≥ 1
2

(
1− 2

√
2δ(1− 2δ)

)
(1− 4δ) ·

√(
N

ζ

)1−µ

queries. (22)

Proof. The corollary follows from Lemma 22 via a reduction from permutations to graphs
exactly as in the proof of Corollary 21 from Lemma 20. ◀

6.3.3 Completing the proof
Proof of Lemma 19. Notice that for any k ̸= k′, the support of G(k)

❀ is disjoint from the
support of G(k′)

❀ , and likewise for G(k)
F

and G(k′)
F

. Let us again abuse notation and use G(k)
❀

to denote the support of the corresponding distribution. For each k, the lower bound from
Corollary 23 is shown via an adversary bound with a relation Rk, and parameters m, m′, ℓmax,
and moreover these parameters are the same for all k. Thus, we may construct a relation
R between

⋃
k G

(k)
❀ and

⋃
k G

(k)
F

by simply taking the union R =
⋃

k Rk. This relation
maintains the same parameters m, m′, ℓmax due to the disjointness of supports for different
k. Lastly, notice that

⋃
k G

(k)
❀ is equal to the support of H❀ as described in the statement

of Lemma 19. Likewise, for H F . Since H❀ and H F are uniform distributions over their
support, by Corollary 14 using the relation R that we have constructed, the distributions are
indistinguishable without the stated number of queries. ◀

6.4 Statistical indistinguishability between random distributions
The final step of this section is to show that no algorithm can distinguish the distributions H F

and PM,ℓ(F) with more than a negligible probability. This will be because these distributions
are statistically close and this can be proven by a Chernoff tail bound.

▶ Lemma 24. The statistical distance between H F and PM,ℓ(F) is O(N−3).

A. Natarajan and C. Nirkhe 22:19

Proof. Notice that the distribution H F is equivalent to sampling a graph from PM,ℓ(F)
conditioned on consisting of ℓ connected components each with size ∈ [(1− γ)z, (1 + γ)z]. By
Lemma 10, with all but O(N−3) probability, a graph from PM,ℓ(F) satisfies this condition.
Therefore, the statistical distance between these distributions is bounded by O(N−3). ◀

7 Polynomial method lower bound

In this section, we prove that any quantum query algorithm cannot distinguish the graph
distributions PM,1 and PM,ℓ(F). When F = ∅, this is equivalent to the problem studied
by [6] in their quantum query lower bound:

▶ Theorem 25 (Restatement of Theorem 2 of [6]). For any sufficiently small constant ϵ1 > 0,
any deterministic quantum query algorithm A distinguishing the distributions PM,1 and PM,ℓ

for any 1 < ℓ < N1/4 by probability ϵ1. I.e.

E
G←PM,1

[
Pr
A

[
AG = 1

]]
− E

G←PM,ℓ

[
Pr
A

[
AG = 1

]]
≥ ϵ1 (23)

must make at least Ω(N1/4/ log N) queries. Here the Ω notation hides a dependence on ϵ1.

The proof used in that result is very technical and builds on the polynomial method.
Fortunately, we can show our query lower bound via a reduction to the [6] result. The
reduction requires taking a short walk which mixes well by the expander mixing lemma.

▶ Lemma 26. Suppose there exists some F0 and a q1-query quantum algorithm that ϵ1-
distinguishes the distributions PM,1 = PM,1(F0) and PM,ℓ(F0) for ℓ > 1. Then there exists
a q2-query quantum algorithm that ϵ2-distinguishes the distributions PM,1 and PM,ℓ with
q2 = q1 + O(N3/100) and ϵ2 = ϵ1 −O(N−9/200).

Intuitively, what this lemma says is that the set of points F0 (which are in the same connected
component) is not a helpful witness. Concretely, such a witness is negligibly more helpful
than no witness at all. This is because, in the case of PM,1 or PM,ℓ, the connected components
are expanding and therefore the verifier can easily select a random subset of the points from
a single connected component without any assistance from the prover. This can be shown
via an application of the expander mixing lemma. Therefore, if a query algorithm exists for
distinguishing PM,1 and PM,ℓ(F), it can be used as a subroutine for distinguishing PM,1 and
PM,ℓ without any witness.

Furthermore, due to Ambainis, Childs, and Liu [6], we know Theorem 25 – i.e. that
distinguishing the distributions without witnesses has a query lower bound. Therefore, the
problem has a query lower bound even when a set of points F from a connected component
are provided:

▶ Corollary 27. For any F0 with |F0| ≤ N1/100, any sufficiently small constant ϵ1, and any ℓ

with 1 < ℓ < N1/4, any quantum query algorithm to ϵ1-distinguish PM,1 and PM,ℓ(F0) must
make Ω(N1/4/ log N) queries.

Proof. Suppose an algorithm making q = o(N1/4/ log N) queries existed. Then by Lemma 26
there exists an algorithm making q′ = q + O(N3/100) = o(N1/4/ log N) queries that distin-
guishes between PM,1 and PM,ℓ as well. However, this is impossible by Theorem 25. ◀

The remainder of this section is the proof of Lemma 26.

CCC 2023

22:20 A Distribution Testing Oracle Separating QMA and QCMA

Let A0 be the hypothesized algorithm making q1 queries to ϵ1-distinguish PM,1 and PM,ℓ(F0).
We first claim that for any F with |F | = |F0|, there exists an algorithm A1 that, given as
classical input a list of all the vertices in F , and as oracle input an oracle G where G is a
sample from either PM,1 or PM,ℓ(F), can ϵ1-distinguish between these two cases using q1
queries to G. The algorithm A1 is as follows:
1. Given F , compute a permutation π on V that maps F to F0. (This step is not efficient

in terms of runtime, but makes no queries to the oracle G.)
2. Run A0 with every query to G replaced by a query to π(G). Return the answer given by
A0.

The correctness of the algorithm follows from the fact that π maps the distribution PM,ℓ(F)
exactly to PM,ℓ(F0). Therefore, for all F such that |F | = |F0|,

E
G←PM,ℓ(F)

[
Pr
A1

[A1(F, G) = 1]
]
− E

G←PM,1

[
Pr
A1

[A1(F, G) = 1]
]
≥ ϵ1. (24)

As this holds for all such F ,

E
F

E
G←PM,ℓ(F)

[
Pr
A1

[A1(F, G) = 1]
]
−E

F
E

G←PM,1

[
Pr
A1

[A1(F, G) = 1]
]
≥ ϵ1. (25)

Next, we will show that the input of F can be removed from the algorithm: given just
access to G, it is possible to compute a suitable F without making too many queries to the
oracle. Specifically, we define the algorithm A2 to distinguish between PM,1 and PM,ℓ given
only oracle access to G.
1. For a choice of t to be defined later, construct a set F1 by starting at a random vertex v0

and taking a 100t ·N1/100-step random walk along the graph as described in Lemma 3.
If |F1| ≥ |F |, pick the first |F | points from F1 as the set F ′. If not, output 0 (i.e. abort).

2. Run A1 on input F ′ with oracle access to G.

We will argue that for an appropriately chosen t, this algorithm achieves the success
probability and query complexity claimed in the theorem. To do so, we will argue in two
stages.
1. First, we argue that the distribution of F ′ chosen by random walk is very close to F ′

chosen uniformly at random from subsets of a connected component of G. This analysis
uses the expander mixing lemma.

2. Second, we argue that the distribution over pairs (G, F ′) obtained after the first step of
A2 is statistically indistinguishable from the distribution over pairs (G, F) sampled by
first choosing a uniformly random F ⊆ V and then choosing a random G ← PM,ℓ(F).
This will make use of Lemma 11, shown in the appendix of the full version [22] of this
paper. By eq. (25), the algorithm A1 can ϵ1-distinguish inputs distributed in this manner,
and thus the second step of A2 can ϵ2-distinguish inputs of PM,1 and PM,ℓ for ϵ2 just
slightly smaller than ϵ1.

In our analysis, we will denote probabilities over the distribution of (G, F ′) generated
by A2 by Pr

A2
[·] and probabilities over the distribution of (G, F) obtained by first sampling

F ⊆ V , and then sampling G ← PM,ℓ(F) by Pr
F then G

[·]. The notation Pr
unif

[·] denotes the
distribution over F obtained by first picking a uniformly random vertex v in G, and then
picking F to be a uniformly random subset of the connected component of G containing v

with size |F0|.

A. Natarajan and C. Nirkhe 22:21

7.1 From random walk sampling to uniform sampling
Henceforth, define expander walk sampling as the sampling procedure of selecting a uniformly
random vertex as the initial vertex v1, then subsequently taking t steps of a lazy random
walk (as defined in the expander mixing lemma, Lemma 3) to choose v2, and so forth. In
this case, the graph and the integer t will be clear from context.

We start by showing a sequence of claims that establish that if the expander walk sampling
procedure for generating F ′ starts in a connected component C of G with size |C| = K and
expansion α, then the distribution over sets F ′ generated by the random walk is close to
uniformly sampling points from C. Our main result here will be Claim 30.

▷ Claim 28. Let δ = (1− α/2)t and let r be a natural number with rKδ < 1. The for any
sequence of r vertices v1, . . . , vr, the probability Pr

unif
[·] that this sequence was obtained by iid

random sampling and the probability Pr
walk

[·] that it was obtained by expander walk sampling
differ by∣∣∣Pr

unif
[v1, . . . , vr]− Pr

walk
[v1, . . . , vr]

∣∣∣ ≤ (1
K

)r

·
(

rKδ + (rKδ)2 1
1− rKδ

)
. (26)

Proof. Proof is available in the full version [22]. ◁

The following claim will be used to bound the probability that the expander walk sampling
procedure aborts, by instead bounding the probability that iid sampling fails to generate
enough distinct points.

▷ Claim 29. The probability that T ≥ 100|F | iid samples from C contain fewer than |F |
distinct vertices is at most exp(−T/16).

Proof. Proof is available in the full version [22]. ◁

We now combine these two claims and apply them to our setting. Define the event
[F ′ ← G] if F ′ is the set of vertices selected from the graph G. Define the distribution Prunif [·]
corresponding to first choosing a connected component C with probability proportional to
|C|, taking r uniform iid samples from the connected component C and setting F ′ to be the
first |F | distinct sampled points. Likewise, define the distribution PrA2 corresponding to
choosing a random vertex v in G, taking C to be the connected component containing v,
taking r samples according to an expander random walk in C initialized at v with t steps
between samples, and then setting F ′ to be the first |F | distinct sampled points. Set K to
be the maximum size of a connected component in G and let δ = (1 + α/2)t. Then we have
the following distance bound between the distributions.

▷ Claim 30. Suppose r, K, δ are such that rKδ ≤ 10/11. For any F ′ of size |F ′| = |F |, let
δC(F ′) = Prunif [F ′ ← G]−PrA2 [F ′ ← G]. Then

|δG(F ′)| ≤
(

rKδ + (rKδ)2 1
1− rKδ

)
≤ 10rKδ. (27)

Moreover, Pr
A2

[abort] ≤ 10rKδ + exp(−T/16).

Proof. Proof is available in the full version [22]. ◁

7.2 From PrA2[·] to PrF then G[·]
We will now proceed to the main argument showing that the pairs (G, F) sampled by A2 are
distributed close to the distribution expected by A1.

CCC 2023

22:22 A Distribution Testing Oracle Separating QMA and QCMA

G has expanding components with high probability

To start off, first note that by Lemma 10, with probability at least 1 − O(N−3) a graph
drawn from PM,ℓ(F), for any F of size ≤ N1/100, will consist of ℓ connected-components
which are α-expanders and have size between [(1 − γ)z, (1 + γ)z]. Since ϵ1 is a constant,
for sufficiently large N , we can restrict to the situation that the graph is of this form and
account for this factor in the end. Henceforth set K0 = (1 + γ)z; we are guaranteed that
every component has size at most K0.

Relating the probabilities

In the case that each connected component is an α-expander, observe that the probability
of every valid pair (G, F ′) is approximately a constant p independent of G and F ′. Also
recall that the event F ′ ← G is the event that F ′ is the set of vertices selected from G.
Moreover, recall the distributions D1 and D2 from Lemma 11, and notice that D2 is exactly
the distribution PrF then G defined above. We define

δ1,2(G, F ′) def= Pr
D1

[(G, F ′)]−Pr
D2

[(G, F ′)], (28)

δG(F ′) def= Pr
A2

[F ′ ← G]− Pr
unif

[F ′ ← G]. (29)

We will now start with the PrA2 distribution and bound its distance from PrF then G.

Pr
A2

[(G, F ′)] = Pr
PM,ℓ

[G] ·Pr
A2

[F ′ ← G] (30)

= Pr
PM,ℓ

[G] ·
(

Pr
unif

[F ′ ← G] + δG(F ′)
)

= Pr
D1

[(G, F ′)] + δG(F ′) · Pr
PM,ℓ

[G] (31)

= Pr
D2

[(G, F ′)] + δ1,2(G, F ′) + δG(F ′) · Pr
PM,ℓ

[G] (32)

= Pr
F then G

[(G, F ′)] + δ1,2(G, F ′) + δG(F ′) · Pr
PM,ℓ

[G]. (33)

We may now bound the total variational distance between the two sides.∥∥∥∥Pr
A2

[·]− Pr
F then G

[·]
∥∥∥∥ = 1

2
∑

(G,F ′)

∣∣∣∣Pr
A2

[(G, F ′)]− Pr
F then G

[(G, F ′)]
∣∣∣∣ (34)

≤ 1
2
∑

(G,F ′)

(
|δ1,2(G, F ′)|+ Pr

PM,ℓ

[G] · |δG(F ′)|
)

(35)

≤ ∥D1 −D2∥+ 1
2

(
K0

|F ′|

)
·max

G,F ′
|δG(F ′)| (36)

≤ 3N−9/200 + K
|F |
0 · (10rK0δ) (37)

= 3N−9/200 + ((1 + γ)z)|F |+1 · (10 · (100|F |) · (1− α/2)t) (38)

≤ 3N−9/200 +
(

2N9/10
)N1/100+1

· 1000N1/100 · (1− α/2)t (39)

= 3N−9/200 + 2000 · 2N0.01
·N0.9N0.01+0.91 · (1− α/2)t. (40)

A total distance bound of O(N−9/200) can be achieved if

2N0.01
·N0.9N0.01+0.91 · (1− α/2)t ≤ N−9/200 (41)

N0.01 + (0.9N0.01 + 0.91) · log N + t · log(1− α/2) ≤ − 9
200 log N (42)

A. Natarajan and C. Nirkhe 22:23

(
N0.01

(
1

log N
+ 0.9

)
+ 0.955

)
log N

log(1/(1− α/2)) ≤ t. (43)

So setting t = Θ(N0.02) is sufficient.
Given this choice of t, let us know calculate the chance that the sampling of F ′ aborts.

By Claim 30, this is at most 10rKδ + exp(−T/16) = O(N−9/200) + exp(−100N0.01/16) =
O(N−9/200)

Thus, the total error probability of A2 equals the error probability of A1 up to

O(N−3)︸ ︷︷ ︸
Sample a bad graph

+ O(N−9/200)︸ ︷︷ ︸
Changing A2 to F then G

+ O(N−9/200)︸ ︷︷ ︸
Sampling F ′ aborts

, (44)

yielding ϵ2 = ϵ1 − O(N−9/200) as claimed in theorem. And the total query complexity
assuming not aborting can be calculated as follows. Recall that t was chosen to be Θ(N0.02).
The total number of additional queries over A1 is thus the number of steps in the walk which
is 100N1/100 · t ≤ O(N0.03). Thus, this algorithm has total query complexity q + O(N0.03)
and distinguishes with probability ϵ2 as claimed.

8 Wrapping up the proof of Theorem 1

First, we need to note that the distributions BS and PM,1 which we used as proxies for
YES and NO instances are not fully supported on YES and NO instance graphs, respectively.
However, they are very close. For every S ⊂ [N] of size ζ, let B̃S be the restriction of
the distribution BS (defined in Section 6.2) to graphs with ℓ connected components each
consisting of between (1− γ)z and (1 + γ)z vertices. By Corollary 17, the statistical distance
between BS and B̃S is O(N−3). The YES instances for Theorem 1 are the {B̃S}.

We consider a single NO instance of P̃M,1 where P̃M,1 is the restriction of PM,1 to graphs
which are α-expanders. The statistical distance between these two distributions is O(N−3)
by Lemma 10.

Furthermore, we can verify that the supports of P̃M,1 and B̃S are far apart in Hamming
distance. Consider graphs G1 and Gℓ from either support, respectively. Consider a connected
component C from Gℓ. In the graph Gℓ, all the edges on C stay within Gℓ, but since G1
is an α-expander and also a 1/102-edge expander (see proof of Lemma 10)), then in G1, a
≥ 1/104 fraction of the edges emanating from C leave C. As this holds for all components C

since |C| ≪ N/2, then the Hamming distance between the adjacency lists of G1 and Gℓ is
Ω(N). As this holds for all graphs G1 and Gℓ, then the Hamming distance bound between
the supports hold.

8.1 QMA algorithm

For completeness, from Corollary 17, we know that the algorithm AQMA with witness state
|S⟩ answers distribution B̃S with probability at least ≥ 1−O(N−1/20). For soundness, from
Lemma 10, we know that P̃M,1 is an 1/(2 · 108)-expander with probability ≥ 1−O(N−3).
Therefore, by Lemma 12, the algorithm AQMA accepts with probability at most

≤ 1− 1
4 ·

1
(2 · 108) + O(N−3) ≤ 1− 1

9 · 108 . (45)

By parallel repetition 9 · 106 = O(1) times, we yield a quantum algorithm with ≤ 0.01
soundness.

CCC 2023

22:24 A Distribution Testing Oracle Separating QMA and QCMA

8.2 QCMA algorithm
We argue now that any QCMA algorithm with completeness 0.99 and soundness 0.01 either
requires an exponentially long proof or an exponential number of quantum queries. This is
done by arguing that any algorithm with a short proof and few queries cannot have such
a large completeness and soundness gap. Assume, therefore, that there exists a QCMA
algorithm with a

q ≤ n ·N1/100

2000 -bit proof and f = O(N1/50) quantum queries (46)

and a completeness and soundness gap of ≥ 0.98. By Lemma 18, there exists a(
1

100 , ζ,
2000q

n

)
-sunflower ❀ (47)

with core F and a f -query deterministic quantum algorithm A that accepts each distribution
B̃S for S ∈ ❀ with probability ≥ 0.99 and accepts P̃M,1 with at most ≤ 0.01 probability. It
also accepts that accepts each distribution BS for S ∈ ❀ with probability ≥ 0.99−O(N−3)
and accepts PM,1 with at most ≤ 0.01 + O(N−3) probability. Then with the assumed
number of queries, we can apply Lemma 19 with δ = 1/10 to argue that A must accepts the
distribution HΩF

with probability ≥ 0.09−O(N−3). Next, by Lemma 24, A must accept the
distribution PM,ℓ(F) with probability ≥ 0.09− 2 ·O(N−3) ≥ 0.08. We conclude by applying
Corollary 27. Therefore, A must accept the distribution PM,1 with probability > 0.02, a
contradiction.

9 Concluding remarks

9.1 Relation to the Fefferman and Kimmel [13] construction
One can think of the result stated in this work as applying the QCMA lower bounding
techniques developed by Fefferman and Kimmel [13] to the expander distinguishing problem
originally studied by Ambainis, Childs, and Liu [6].

At a high level, in the in-place permutation oracle QMA and QCMA separation of [13], the
goal was to distinguish between permutations π : [N]→ [N] such that π−1([

√
N]) is mostly

(2/3) supported on odd numbers from permutations mostly supported on even numbers. The
original idea in Fefferman and Kimmel was that if the oracle π was provided as a classical
oracle (an Nn-bit list [π(1), π(2), . . . , π(N)]) then the subset state |ξideal⟩ = |π−1([

√
N])⟩

would be a good quantum witness. By measuring the last qubit of a witness |ξ⟩, the verifier
can decide if the set π−1([

√
N]) is supported mostly on either odd numbers or even numbers.

What remains to verify is that the witness |ξ⟩ provided is indeed |ξideal⟩. The hope would be
to use the oracle for π to verify the statement as the sate |[

√
N]⟩ can be easily verified by

measuring in the Hadamard basis.
However, due to the index-erasure problem, a classical oracle for verifying that |ξ⟩ = |ξideal⟩

would need to allow implementation of both π and π−1. However, if the oracle π−1 is provided,
then there is a BQP algorithm for this problem. Simply, pick a random j ∈ [

√
N] and then

check if π−1(j) is odd or even. The solution in [13] was to define the oracle instead as an
“in-place oracle” for π, meaning a unitary defined as

∑
j |π(j)⟩⟨j|. Then the verifier can verify

that |ξ⟩ = |ξideal⟩ and yet the BQP algorithm no longer holds.
Fefferman and Kimmel had to make one more modification to prove a QMA and QCMA

oracle separation: they considered distributions over in-place oracles which mapped to the
same ideal quantum witness |ξideal⟩. This was because it seems to be beyond current techniques

A. Natarajan and C. Nirkhe 22:25

to prove classical lower bounds without forcing a large structured set of permutations to all
share the same witness – otherwise, for all we know, there might be a mathematical fact
about permutations which yields a short classical certificate for any individual permutation.
So the oracle is defined as a distribution over unitaries – i.e. a completely positive trace
preserving (CPTP) map.

Notice that this work takes much inspiration form [13]; the quantum witnesses for both
our work and [13] are subset states and we also consider distributions over oracles with the
same (or similar) ideal quantum witness. This is because we are unsure how to prove that
there is no property of a specific regular graph which yields a short classical witness. We
elaborate on why such an impossibility result is hard to prove in the next subsection. What
our result principally improves on is that the underlying oracle can be a classical string
instead of a unitary.

9.2 Difficulties in proving stronger statements

Recall that our QMA upper bound does not require the setup of distributions over oracles –
it was only included to prove the QCMA lower bound. How much harder is it (or is it even
possible) to prove a QCMA lower bound without considering distributions?

As pointed out to us by William Kretschmer [20], if one considers average-case algorithms
instead of worst-case algorithms, then this problem is ∈ RNPG, the average-case analog of
NPG. This is because the average-case version of the expander distinguishing problem is to
distinguish the distributions PM,ℓ and PM,1. And there is a simple randomized algorithm for
this problem with a classical witness. Let us recall that for a d-regular graph, the expected
number of triangles in a connected component is Θ(d3) independent of the number of vertices
in the component. A similar analysis can be done for PM,ℓ and PM,1, to show that a random
graph from PM,ℓ has Θ(ℓd3) triangles whereas PM,1 has Θ(d3) triangles. Therefore, a classical
witness for the statement that the graph (with high probability) is drawn from PM,ℓ (instead
of PM,1) is a list of 100 ·Θ(d3) triangles from the graph. This witness is easily verifiable and
correctly distinguishes with high probability.

Notice that this RNPG algorithm does not solve the expander distinguishing problem in
the worst-case; since graphs exist in both distributions which are triangle-free (with constant
probability). Furthermore, it cannot distinguish the distributions considered in Theorem 1
because the proof relies on finding triangles which is property of the graph not deducible
from only knowing the connected components.

But it does highlight a principal roadblock in extending Theorem 1 to distinguishing
oracles that are not distributions. It is entirely possible that there exists a property of graphs
revealed by looking at the edges that distinguishes graphs with many connected components
from graphs with a single expanding connected component. To the best of our knowledge,
we do not know of any such property but proving that none exist is beyond the techniques
shown here.

Lastly, if we consider the expander distinguishing problem when in the YES case we are
promised that every connected component has size at most 0.99N , then this problem is in
coAMG. When the graph is a NO instance, the verifier can select two random points and the
prover can always find a path of length O(log N) = O(n) between the two. However, when
the graph is disconnected and no component is too big, with probability ≥ 1/50, no path
exists.

Therefore, our constructed oracle very finely separates the classes QMA and QCMA in
the sense that small perturbations of the problem might be very easy.

CCC 2023

22:26 A Distribution Testing Oracle Separating QMA and QCMA

References
1 Scott Aaronson. On perfect completeness for QMA. Quantum Information & Computation,

9(1):81–89, 2009. arXiv:0806.0450.
2 Scott Aaronson. Open problems related to quantum query complexity. ACM Transactions on

Quantum Computing, 2(4), December 2021. doi:10.1145/3488559.
3 Scott Aaronson and Greg Kuperberg. Quantum versus classical proofs and advice. In Twenty-

Second Annual IEEE Conference on Computational Complexity (CCC’07), pages 115–128,
2007. doi:10.1109/CCC.2007.27.

4 Dorit Aharonov and Tomer Naveh. Quantum NP – A survey, 2002. arXiv:arXiv:quant-ph/
0210077.

5 Andris Ambainis. Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci.,
64(4):750–767, June 2002. doi:10.1006/jcss.2002.1826.

6 Andris Ambainis, Andrew M. Childs, and Yi-Kai Liu. Quantum property testing for bounded-
degree graphs. In Leslie Ann Goldberg, Klaus Jansen, R. Ravi, and José D. P. Rolim, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 365–376, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

7 Anurag Anshu, Nikolas Breuckmann, and Chinmay Nirkhe. NLTS hamiltonians from good
quantum codes, 2022. arXiv:2206.13228.

8 Atul Singh Arora, Alexandru Gheorghiu, and Uttam Singh. Oracle separations of hybrid
quantum-classical circuits. CoRR, 2022. arXiv:2201.01904.

9 Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh V. Vazirani. Strengths
and weaknesses of quantum computing. SIAM J. Comput., 26(5):1510–1523, 1997. doi:
10.1137/S0097539796300933.

10 Adam D. Bookatz. QMA-complete problems. CoRR, 2012. doi:10.48550/arXiv.1212.6312.
11 Sergey Bravyi, David P. Divincenzo, Roberto Oliveira, and Barbara M. Terhal. The complexity

of stoquastic local hamiltonian problems. Quantum Info. Comput., 8(5):361–385, May 2008.
12 Sergey Bravyi and Barbara Terhal. Complexity of stoquastic frustration-free hamiltonians.

SIAM J. Comput., 39(4):1462–1485, November 2009.
13 Bill Fefferman and Shelby Kimmel. Quantum vs. classical proofs and subset verification. In

Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd International Symposium on
Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool,
UK, volume 117 of LIPIcs, pages 22:1–22:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.MFCS.2018.22.

14 Honghao Fu. Personal Communication, October 2022.
15 Sandy Irani, Anand Natarajan, Chinmay Nirkhe, Sujit Rao, and Henry Yuen. Quantum

search-to-decision reductions and the state synthesis problem, 2021. arXiv:2111.02999.
16 Stephen P Jordan, David Gosset, and Peter J Love. Quantum-merlin-arthur-complete problems

for stoquastic hamiltonians and markov matrices. Physical Review. A, 81(3), March 2010.
doi:10.1103/PHYSREVA.81.032331.

17 A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30,
2003. doi:10.1016/S0003-4916(02)00018-0.

18 Hartmut Klauck and Supartha Podder. Two results about quantum messages. In International
Symposium on Mathematical Foundations of Computer Science, pages 445–456. Springer, 2014.

19 Dexter Kozen. Lower bounds for natural proof systems. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS ’77, pages 254–266, USA, 1977. IEEE
Computer Society. doi:10.1109/SFCS.1977.16.

20 William Kretschmer. Personal Communication, July 2022.
21 Andrew Lutomirski. Component mixers and a hardness result for counterfeiting quantum

money, 2011. arXiv:1107.0321.
22 Anand Natarajan and Chinmay Nirkhe. A distribution testing oracle separation between QMA

and QCMA. CoRR, 2023. arXiv:2210.15380.

https://arxiv.org/abs/0806.0450
https://doi.org/10.1145/3488559
https://doi.org/10.1109/CCC.2007.27
https://arxiv.org/abs/arXiv:quant-ph/0210077
https://arxiv.org/abs/arXiv:quant-ph/0210077
https://doi.org/10.1006/jcss.2002.1826
https://arxiv.org/abs/2206.13228
https://arxiv.org/abs/2201.01904
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.1137/S0097539796300933
https://doi.org/10.48550/arXiv.1212.6312
https://doi.org/10.4230/LIPIcs.MFCS.2018.22
https://arxiv.org/abs/2111.02999
https://doi.org/10.1103/PHYSREVA.81.032331
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1109/SFCS.1977.16
https://arxiv.org/abs/1107.0321
https://arxiv.org/abs/2210.15380

A. Natarajan and C. Nirkhe 22:27

23 Chinmay Nirkhe. Lower bounds on the complexity of quantum proofs. PhD thesis, EECS
Department, University of California, Berkeley, November 2022. URL: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2022/EECS-2022-236.html.

24 Chinmay Nirkhe. NLTS Hamiltonians from codes, 2022. Simons Institute for the Theory
of Computing Quantum Colloquium. Panel Umesh Vazirani, Dorit Aharanov, Matthew
Hastings, Anand Natarajan, and Chinmay Nirkhe. URL: https://simons.berkeley.edu/
events/quantum-colloquium-nlts-hamiltonians-codes.

CCC 2023

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-236.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-236.html
https://simons.berkeley.edu/events/quantum-colloquium-nlts-hamiltonians-codes
https://simons.berkeley.edu/events/quantum-colloquium-nlts-hamiltonians-codes

Translationally Invariant Constraint Optimization
Problems
Dorit Aharonov #

Department of Computer Science and Engineering, Hebrew University, Jerusalem, Israel

Sandy Irani #

Department of Computer Science, University of California Irvine, CA, USA
The Simons Institute for the Theory of Computing, University of California Berkeley, CA, USA

Abstract
We study the complexity of classical constraint satisfaction problems on a 2D grid. Specifically, we
consider the computational complexity of function versions of such problems, with the additional
restriction that the constraints are translationally invariant, namely, the variables are located at
the vertices of a 2D grid and the constraint between every pair of adjacent variables is the same
in each dimension. The only input to the problem is thus the size of the grid. This problem is
equivalent to one of the most interesting problems in classical physics, namely, computing the lowest
energy of a classical system of particles on the grid. We provide a tight characterization of the
complexity of this problem, and show that it is complete for the class FPNEXP. Gottesman and
Irani (FOCS 2009) also studied classical constraint satisfaction problems using this strong notion of
translational-invariance; they show that the problem of deciding whether the cost of the optimal
assignment is below a given threshold is NEXP-complete. Our result is thus a strengthening of
their result from the decision version to the function version of the problem. Our result can also be
viewed as a generalization to the translationally invariant setting, of Krentel’s famous result from
1988, showing that the function version of SAT is complete for the class FPNP.

An essential ingredient in the proof is a study of the computational complexity of a gapped
variant of the problem. We show that it is NEXP-hard to approximate the cost of the optimal
assignment to within an additive error of Ω(N1/4), where the grid size is N × N . To the best of our
knowledge, no gapped result is known for CSPs on the grid, even in the non-translationally invariant
case. This might be of independent interest. As a byproduct of our results, we also show that a
decision version of the optimization problem which asks whether the cost of the optimal assignment
is odd or even is also complete for PNEXP.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Constraint satisfaction, Tiling, Translational-invariance

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.23

Related Version Full Version: https://arxiv.org/abs/2209.08731

Acknowledgements We are grateful to the Simons Institute for the Theory of Computing, at whose
program on the “The Quantum Wave in Computing” this collaboration began.

1 Introduction

More than half a century ago, Cook and Levin inaugurated the field of NP-completness.
The fact that the Constraint Satisfaction Problem (CSP) is NP-complete has been the
cornerstone of our understanding and approach to important optimization problems arising
in countless applications. However, the importance of CSP and its NP-completeness stems
not only from its central role in studying the complexity of optimization problems; in fact,
the computational complexity of CSP is of major importance to physics as well.

In classical many body physics, the most basic notion is the local Hamiltonian, which
expresses the total energy of a system of particles. It turns out that this local Hamiltonian
can be viewed as a CSP. The energy of the system is written in such a Hamiltonian as the

© Dorit Aharonov and Sandy Irani;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dorit.aharonov@gmail.com
mailto:irani@ics.uci.edu
https://doi.org/10.4230/LIPIcs.CCC.2023.23
https://arxiv.org/abs/2209.08731
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Translationally Invariant Constraint Optimization Problems

sum of terms, each of which describes the energy interaction between constant-sized clusters
of particles. These terms can be viewed as local constraints and finding whether the lowest
energy state of such a system is below a given threshold or above it, is a special case of CSP.
The classical local Hamiltonian problem was famously shown to be NP-complete in many
cases by Barahona and others [6, 13], and the understanding of its complexity for a variety
of Hamiltonians such as the Ising model, the Potts model, and more, has had a fundamental
impact in several research areas in physics, including statistical mechanics and mathematical
physics.

The theory of NP-completeness also has a natural generalization to the quantum setting.
Like classical NP-completeness, the study of quantum NP-completeness has had a tremendous
impact on our understanding of the relevant field in physics, namely condensed matter physics.
More specifically, the Cook-Levin theorem was generalized by Kitaev [14] roughly 25 years
ago to show that the following problem is QMA-complete: Given a local Hamiltonian with
quantum energy interactions describing the energy in a quantum many-body system, decide
whether the ground energy is above some value or below another. This problem had been
intensely studied in recent years [14, 9, 16, 2]; importantly, over the past two decades, the
study of local Hamiltonians and their computational complexity has led to the birth of a new
field called “Hamiltonian complexity”, which studies problems related to condensed matter
physics, through the computational lens [9]. Both in classical statistical mechanics as well as
in condensed matter and many-body quantum physics, the importance of the computational
perspective has become one of the fundamental underpinnings of research today.

From the physics point of view, however, the general CSP setting commonly studied in
computer science, in which each constraint is specified separately and independently based
on the particular optimization problem of interest, seems quite contrived. By and large,
physicists study local Hamiltonians, be them classical or quantum, in a translational-invariant
(TI) setting. In this scenario, the particles are located at the vertices of a geometric lattice
and all the terms acting on adjacent pairs of particles along a particular dimension are
the same. Quantum and classical Hamiltonians are used to model the energy interactions
of particles in a material. If the material is uniform, then it is natural that the energy
interaction between particles would be the same throughout. Thus, in order for a theory of
CSPs to be relevant in physics, it must consider this translational-invariance requirement,
which introduces many new complexity challenges.

The model most relevant to physics is TI in a very strong sense: the dimension of the
individual particles and the Hamiltonian term acting on each pair of adjacent particles in a
lattice are fixed parameters of the problem. When considering finite systems, the only input
is an integer N indicating the size of the system. This set-up corresponds to the fact that in
physics, different Hamiltonians represent completely different physical systems. For example,
studying the ground energy (or some other quantity) in the so-called AKLT model [1] is
considered to be a completely different problem than studying the same quantity in, say, the
Ising model1.

Important progress on the computational complexity of translationally-invariant CSPs
has been made in recent years. In particular, Gottesman and Irani [12] studied TI CSPs
both in the classical and in the quantum setting, and showed hardness results in both cases.
Since the size of the grid can be given by logarithmically many bits, and there is no other
input, one encounters an exponential factor compared to the standard version of CSP. Thus

1 Some of the recent work on the quantum TI local Hamiltonian problem [7] adopt a weaker notion in
which the input also includes the Hamiltonian term that is applied to each pair of particles, allowing
the Hamiltonian to be tuned to the size of the system. This model is mainly considered in quantum
Hamiltonian complexity, but have not been a topic of study in physics.

D. Aharonov and S. Irani 23:3

the results in [12] show NEXP- and QMAEXP -completeness for the classical and quantum
variants of the problem, respectively. A tightly related line of work studies TI infinite
systems [3, 21, 8] and considers computability and computational complexity in that domain,
namely in the so-called thermodynamic limit. Although the focus in the current work is on
finite systems, constructions for finite systems have played an important role for the results
in the thermodynamic limit. In particular, all the results in [3, 21, 8] use a finite construction
layered on top of a certain type of aperiodic tiling of the infinite grid.

However, all the results mentioned above have studied a decision version of the CSP
problem. In contrast, in classical as well as in quantum physics, when considering the local
Hamiltonian, the main problem of interest is the problem of finding the lowest possible energy
for the Hamiltonian over all possible states – namely, the ground energy, which is one of the
most important notions in physics. Thus, when considering CSPs with a physics motivation
in mind, it seems that the function version of the CSP is a more relevant version of the
problem than the decision version. In this setting, the question is not whether all constraints
can be satisfied, but what is the maximum number of constraints that can be satisfied by
any assignment, or, in a weighted variant, what is the cost of the optimal assignment which
minimizes the weighted sum of violated constraints. We note that computing the cost of
the optimal solution is in fact also the more natural version of CSPs in many combinatorial
applications (to give just two examples, max-cut and max independent set).

What is known about the computational complexity of the function version of CSPs?
In 1988, Krentel [15] proved that the function problem for constraint satisfaction is FPNP-
complete. Krentel’s proof is significantly more involved technically than that of the Cook-
Levin’s theorem which characterizes the complexity of the decision variant of CSPs. In stark
contrast to the theory of decision problems and NP-completeness, the function version of
CSP seems to have received significantly less attention in the TCS literature.

In particular, to the best of our knowledge, the computational complexity of function
CSPs in the TI setting, has remained open. In this paper we provide a tight characterization
of its complexity, and show that the function version of TI CSP on a 2-dimensional grid is
complete for FPNEXP. This result thus strengthens Krentel’s construction for general CSPs
to apply even TI systems for two and higher dimensions. The result is also a generalization
of Gottesman-Irani who prove hardness for 2D TI systems for the standard decision problem,
where one only needs to determine if the ground energy is below a given threshold. One of
the key technical challenges in our result is to effectively create large (Θ(N ϵ)) costs on an
N × N grid using only two constant-sized terms which apply one in the horizontal and one in
the vertical direction. Thus, as a stepping stone to the more complex result for the function
version of TI 2D CSPs, we show a fault-tolerant result which we believe is of interest on its
own, namely that it is NEXP-complete to even approximate the ground energy of 2D TI
CSPs to within an additive Θ(N1/4).

2 Problem Definitions, Results and Main Challenges

It is most convenient to present our results using the language of the weighted tiling problem,
where we focus here on the two dimensional case2. In this tiling problem, one is asked to tile
an N × N 2D grid with a set of 1 × 1 tiles. The tiles come in different colors and only some
pairs of colors can be placed next to each other in either the horizontal or vertical directions.
More precisely, a set of tiling rules T is a triple (T, δH , δV), where T is a finite set of tile types

2 Our version of tiling is equivalent to the more common Wang tiles [19].

CCC 2023

23:4 Translationally Invariant Constraint Optimization Problems

T = {t1, . . . , td}, and δH and δV are functions from T × T to Z. For (t, t′) ∈ T × T , δh(t, t′)
is the cost of putting a tile of type t immediately to the left of a tile of type t′ and δv(t, t′) is
the cost of putting a tile of type t immediately above a tile of type t′. Let λ0(T (N)) be the
minimum cost of tiling an N × N grid with tiling rules T . The goal is to tile the grid with
minimal total cost. Note that this problem is directly analogous to a classical Hamiltonian
in 2D. We first define a function version of the problem.

▶ Definition 1. T -FWT (Function Weighted Tiling)
Input: An integer N specified with ⌊log N + 1⌋ bits
Output: λ0(T (N))

▶ Theorem 2. (Main) There exists a set of tiling rules T such that T -FWT is FPNEXP-
complete.

We note that the fact that the function problem is complete for 2D immediately implies
that it is complete for any grid of dimension at least 2 since the 2D construction can be
embedded into a higher dimensional grid. The 1D CSP case is poly-time computable using
dynamic programming.

The upper bound in Theorem 2 is easy: it can be achieved by binary search with access
to an oracle for the decision problem. For the lower bound, one encounters a challenge.
The reduction must encode in the tiling rules the computation of a polynomial time TM
(TM) with access to a NEXP oracle. If an instance given to the oracle is a yes instance, the
computation of the verifier can be encoded into the tiling rules. However no instances cannot
be directly verified in this way. Krentel’s proof that the function problem of weighted SAT is
FPNP-complete [15] overcomes this challenge; let us recall it and then explain the problem
in carrying it over to the TI setting. Krentel uses an accounting scheme [15, 17] that applies
a cost to every string z representing guesses for the sequence of responses to all the oracle
queries made. The accounting scheme needs to ensure that the minimum cost z is equal to
the correct sequence of oracle responses, z̃. yes and no guesses are treated differently, due to
the fact that the verifier can check yes instances (and thus incorrect yes guesses can incur a
very high cost), but no guesses, cannot be directly verified. In Krentel’s scheme, no guesses
incur a more modest cost, whether correct or not, and their cost must decrease exponentially.
This is because the oracle queries are adaptive; an incorrect oracle response could potentially
change all the oracle queries made in the future and so it is important that the penalty for
an incorrect guess on the ith query is higher than the cost that could potentially be saved
on all future queries. The weights on clauses that implement this accounting scheme are
multiplied by a large power of two to ensure that they are the dominant factor in determining
the optimal assignment.

The difficulty in applying Krentel’s accounting scheme in the TI setting is that the costs
must grow with the size of the input. Therefore, it is not possible to apply the costs directly
into the tiling rules which are of fixed constant size. A natural attempt to circumvent the
problem is to assign the required large penalty by many tiles, each of which would acquire a
constant penalty; however, the problem in implementing this approach is that Cook-Levin
type reductions from computations to tilings are very brittle, as a single error can potentially
derail the entire computation. For example, imagine inserting a row that does not have a
TM head. There will be a single fault where the head disappears from one row to the next,
but every row thereafter will contain the unchanging contents of the TM tape without a
head to execute a next step. This imposes a challenge since when enforcing large costs by
using many tiles, or constraints, we need to make sure that many of these constraints are
indeed violated in order to incur the required large penalty.

D. Aharonov and S. Irani 23:5

We provide a construction which circumvents this issue by exhibiting some fault tolerance
properties. We thus prove what can be viewed as a gapped version or a hardness of approxi-
mation result, which is then a natural stepping stone to implementing the more intricate
function required in Krentel’s accounting scheme. To this end we define an approximation
version of weighted tiling:

▶ Definition 3. (T , f)-GWT (Gapped Weighted Tiling)
Input: An integer N specified with ⌊log N + 1⌋ bits. Two integers a and b such that
b − a ≥ f(N).
Output: Determine whether λ0(T (N)) ≤ a or λ0(T (N)) ≥ b.

▶ Theorem 4. There exists a set of tiling rules T such that (T , f)-GWT is NEXP-complete
for a function f(n) = Ω(N1/4).

This shows that it is NEXP-hard to even approximate the cost of the optimal tiling to
within an additive error that is Ω(N1/4). This can be viewed as a gapped version of the
results of [12]; the proof constructs a reduction mapping the computation into a tiling such
that even in the presence of O(N1/4) faults, the computation encoded by the tiling is able to
proceed and produce approximately correct results.

Theorem 4 is of potential interest on its own. It might resemble a PCP type result, but
the model we consider differs from the standard PCP setting in two ways: the first is that
the underlying graph is a grid, rather than a graph with much higher connectivity, and the
second is translational-invariance. It is not possible to obtain a hardness of approximation
result with an additive error that is linear in N (as one has in the PCP theorem) on any
finite dimensional lattice because such graphs do not have the necessary expansion properties.
For example, in 2D, one could divide the grid into b × b squares for b = Θ(

√
log N) and

solve each square optimally in polynomial time. The resulting solution would be within an
additive N/

√
log N of the optimal solution. To the best of our knowledge, no gapped version

was proven before for CSP problem set on a constant dimensional grid, even without the TI
restriction.

Finally, our results provide tight characterizations of the complexity of the following
decision problem;

▶ Definition 5. T -PWT (Parity Weighted Tiling)
Input: An integer N specified with ⌊log N + 1⌋ bits
Output: Determine whether λ0(T (N)) is odd or even.

The proof is very similar to the proof of Theorem 2. The result on Parity Weighted Tiling
illustrates that decision problems related to CSP can be complete for an oracle class just like
the function problem. The crucial difference between the threshold decision problem (is the
cost of the optimal solution less than t?) which is NEXP-complete and the parity problem
which is PNEXP-complete is that the parity problem still seems to require determining the
optimal cost. This seems to make the characterization of its complexity as challenging as for
the function version of the problem.

Organization. We next proceed to an overview of the proofs. We start with the setup of
tiling rules and layers in Section 3. Overviews of the proofs of the Theorems are given in
subsection 4. We end with related work and open questions in Section 5. The complete
proofs are given in the full version of the paper [4].

CCC 2023

23:6 Translationally Invariant Constraint Optimization Problems

3 Tiling Rules and Layers

We assume that there is a special tile denoted by □ which must be placed around the
perimeter of the grid to be tiled. Moreover, no □ tile can be placed in the interior of the
grid. We will return later to enforcing this condition in the context of the different problems.
The tiles on the interior will be composed of multiple layers where each layer has its own set
of tile types. A tile type for an internal tile in the overall construction is described by a tile
type for each of the layers.

For ease of exposition, we allow our tiling rules to also apply to local squares of four tiles.
This can easily then be translated to two-local constraints on tiles, as in our definition of the
tiling problem. This simple transition is described in more detail in the full version. For the
remainder of the paper our tiling rules include constraints on local squares of four tiles, as
well as pairs of horizontal tiles.

If the four tiles in a square are all interior tiles, then each possible pattern of four square
tiles within a layer will be designated as legal or illegal. The overall cost of placing four
interior tiles in a local square together will be function of whether the square for each layer
is legal or illegal. For the Gapped Weighted Tiling, the cost will be just the number of layers
for which the square pattern is illegal. For the Function Weighted Tiling and Weighted Tiling
Parity, illegal squares at different layers will contribute different amounts to the cost.

In general, a no-cost tiling of each Layer represents a computational process where each
row represents the state of a TM. The computation reverses direction from one layer to the
next. The rows of a tiling of an N × N grid will be numbered r0 through rN−1 from bottom
to top. When referring to the rows in a particular layer, we will exclude the border rows and
order the rows according to the computation direction. So the first row of Layer 1, which
proceeds from bottom to top, is row r1 and the last row of Layer 1 is rN−2. Layer 2 proceeds
from top to bottom, so the first row for Layer 2 is rN−2 and the last row is r1.

For the most part, the rules governing the tiling apply to the tile types within each
individual layer. The different layers only interact at the lower and upper border of the grid.
This is how the output of one process (on Layer i) is translated into the input for the next
process (on Layer i + 1). For example, a square may be illegal if the two lower tiles are □ □,
and the two upper tiles violate certain constraints between the Layer i and Layer i + 1 types.
Some of the layers will also have additional constraints on which tiles can be next to each
other in the horizontal direction. Each type of violated constraint is given a name described
below.

▶ Definition 6 (Faults in a Tiling). An occurrence of any of the illegal patterns described
in the constructions is called a fault. A tiling with no faults, will correspond to a fault-free
computation.

There will be some additional costs (described later) associated with a computation
ending in a rejecting state. These are not considered faults because they can happen in
correct computations. Figure 1 illustrates the different types of tiling constraints.

Illegal Computation Squares: For each layer, every pattern of four tile types will be desig-
nated as a legal computation square or an illegal computation square. In general, these
rules enforce that the tiling within the layer represents a consistent execution of a TM.
The full version of the paper [4] gives a set of rules to translate the rules of a TM into
legal and illegal computation squares.

Illegal Pairs: Some of the layers will have additional constraints on which tiles can be placed
next to each other in the horizontal direction. Each ordered pair of tiles types for that
layer will be designated as a legal pair or an illegal pair.

D. Aharonov and S. Irani 23:7

Illegal Initialization Squares: For each layer, there are also some initialization rules that
constrain the initial configuration of the TM. If the layer runs bottom to top, then these
rules apply to r0, which consists of all □ tiles, and the first row of the layer. For example,
if tile t1 can not be immediately to the left of t2 in the first row of Layer i, then the
square with □ □ directly below t1 t2 is an illegal initialization square for Layer i. If the
TM for the layer runs top to bottom, then the square with □ □ directly above t1 t2 in
Layer i is illegal.

Illegal Translation Squares: Finally, we add rules that control how the last row of Layer i

is translated to the first row of Layer i + 1. If Layer i runs top to bottom, then the rules
apply to rows r0 and r1. For example, if tile t in Layer i cannot be translated to t′ in
Layer i + 1, then any square with a □ directly below a tile whose Layer i type is t and
whose Layer i + 1 type is t′ would be illegal. The translation rules can also apply to pairs
of adjacent tiles. E.g., it could be illegal to have a square whose bottom two tiles are
□ □ and whose top two tiles have t1 t2 in Layer i and t3 t4 in Layer i + 1.

(a) Compu-
tation.

(b) Illegal
pairs.

(c) Transla-
tion.

(d) Initial-
ization.

Figure 1 Interior tiles have four layers. Border tiles have one layer and are labeled with the □
symbol. (a) An illegal computation square for Layer 2. The constraint applies to the four tile types
for Layer 2 shown in gray. (b) An illegal pair for Layer 2. The constraint applies to the two adjacent
tile types for Layer 2 shown in gray. (c) An illegal translation square from Layer 2 to Layer 3. The
constraint applies to two border tiles and the tile types for Layers 2 and 3 for the other two interior
tiles. (d) An illegal initialization square for Layer 2. The constraint applies to two border tiles and
the Layer 2 tile types for the other two interior tiles.

4 Overview of Proofs

Thoeorem 4: Gapped Weighted Tiling. Recall that the standard encoding of a TM into
tiling rules is very brittle in that a single fault can derail the entire computation. The most
straight forward way to overcome this is using a construction which embeds many repetitions
of the computation, so that many faults would be required to derail a large number of
those computations. Multiple computations thus need to be set up and initiated, using
a single faulty TM with TI rules. In our construction, this is achieved by a first stage of
the computation (implemented in Layer 1, as we describe below), which, roughly, creates
intervals in the top row of Layer 1, such that the independent repetitions of the computations
will occur in different strips on the grid; the boundaries of the strips are determined by those
intervals. The difficulty is how to implement the initial set up using a single TM, in a fault
tolerant way. We now describe the details.

The tiling rules for the first two layers, as well as the reduction mapping x to N are
independent of the language L ∈ NEXP, the language we are reducing from. Let V denote
the exponential time verifier for L. In general tiles will be either tape tiles which encode a
single symbol from the TM’s tape alphabet or head tiles which encode both the state of the
TM as well as the current tape symbol to which the head is pointing.

CCC 2023

23:8 Translationally Invariant Constraint Optimization Problems

The TM computation represented in Layer 1 starts with two non-blank symbols and
proceeds to write a sequence of intervals on the tape, where an interval is a sequence of B

symbols bracketed on either side by a delimiter tile from the set {X, X,◁,▷}. The TM just
repeatedly executes a single loop which we refer to as the Outer Loop. In one iteration of
the Outer Loop, an additional B symbol is inserted into every interval and a new interval
with no B’s in the middle is added to the right end of the non-blank symbols. In a fault-free
execution of the TM, after m iterations of the loop, there are m + 1 intervals. The number of
symbols in each interval (including the delimiter tiles on either end) is m + 2, m + 1, m, . . . , 2.
For m = 4, the row should look like:

□ (q/ ◁) B B B X B B X B X ▷ # # · · · # □

When the top row of Layer 1 is translated to Layer 2, the head tile for the Layer 1 TM is
translated to a tape tile (so the state information is lost) and a head tile is inserted on the
left end of every interval. For example, an interval X B B B · · · B X at the end of Layer 1
is translated to X (qs/S) B B · · · B T X in the first row of Layer 2. In Layers 2 and 3 the
sizes and locations of the intervals do not change within a row unless the interval contains
an illegal square. Thus, a single interval over all the rows of Layer 2 forms a vertical strip of
tiles, and a separate, independent computation takes place within each strip. See Figure 2
for an example. Once the intervals are created on Layer 1, each computation on Layers 2
and 3 is fault-free unless the strip contains an illegal square. Thus, the number of illegal
squares is at least the number of strips that fail to complete their computation correctly.

In Layer 2, the computation is just a binary counter TM that continually increments
a binary counter. All the strips that do not contain an illegal square will have the same
string x represented in the final row of Layer 2. The string x then serves as the input to the
computation in Layer 3. The binary counter TM in Layer 2 runs for exactly N − 3 steps.
The reduction is the function that maps x to N , where the string x is written on the tape of
a binary counting TM after N − 3 steps. The full version [4] gives an exact formula mapping
x to N and shows that the value of the number represented by the string x is Θ(N), the
dimension of the grid. The idea of using a binary counting TM to translate the size of the
grid to a binary input for a computation was used previously in [12]. Although since the
construction in [12] had a gap of 1, only a single execution of the verifier was needed. Since
we are trying to produce a gap of f(N), we need at least f(N) separate computations each
of which simulates the verifier on input x.

Each interval X (qs/S) x B · · · B T X is translated unchanged to Layer 3. The
computation in each strip in Layer 3 simulates the verifier on input x using a witness that is
guessed in the tiling. There is a final cost for any rejecting computation. If x ∈ L, it will be
possible to tile each strip at 0 cost. If x ̸∈ L, every strip will contain an illegal square or will
incur a cost for the correct rejecting computation. Thus, the gap is essentially created by
these parallel computations, each of which contributes a constant cost if x ̸∈ L.

Since the sizes of the intervals go down to 0, some of the intervals will be too narrow to
complete the computation in either Layers 2 or 3. If the head ever hits the right end of its
interval, it transitions to an infinite loop, causing no additional cost. A standard padding
argument (provided in detail in the full version [4]) guarantees that an interval need only be
Θ(N1/4) wide to complete the computations in Layers 2 and 3. The analysis of Layer 1 then
needs to guarantee that despite the faults, there will be sufficiently many sufficiently wide
intervals.

The main challenge in the proof is in making the computation in Layer 1 fault-tolerant,
meaning that each illegal pair or square cannot derail the computation too much. The
horizontal rules in Layer 1 are critical for enforcing that this cannot happen. We show that
a row in the tiling that has no illegal pairs corresponds to a sensible configuration of the TM.

D. Aharonov and S. Irani 23:9

In particular such a row has exactly one head tile that lies in between the ◁ and ▷ tiles.
Note that faults can still alter the computation in potentially strange ways. Nonetheless,
we also show that starting from a row with no illegal pairs, the Layer 1 TM will be able
to make progress, and after a sequence of fault-free steps (corresponding to a sequence of
rows containing no illegal squares), the computation will perform a complete iteration of the
loop. Since the number of illegal pairs and squares is bounded by O(N1/4), there are enough
complete iterations of the loop to ensure that the last row of Layer 1 has enough intervals
that are wide enough to complete the computations in Layers 2, 3.

By far the most technically involved part of the paper is the analysis of Layer 1. All
of the results make use of a tight characterization of the difference between the final row
in Layer 1 of a fault-free tiling and the final row of a tiling with faults. In fact, the result
on Gapped Weighted Tiling could be established with looser bounds, but we provide the
analysis once in a form that can be used for all the results in the paper. Section 4 describes
more fully how this tight characterization is accomplished.

Theorem 2: Weighted Tiling Function. The hardness reduction for Function Weighted
Tiling reduces from an oracle class. The function f is computed by a polynomial time TM
M with access to an oracle for language L′ ∈ NEXP. Let V denote the exponential time
verifier for L′. Using a standard padding argument (see for example Lemma 2.30 from [3])
we can assume that for a constant c of our choice, for every |x| = n, there is a n ≤ cn, such
that the size of f(x) is at most n, and M makes at most n oracle calls to L′. Let z denote
an n-bit string denoting the responses to the oracle queries made on input x. With x and z

fixed, the set of inputs to the oracle (o1, . . . , on) is also determined. V (oj) is an indicator
function denoting whether oj is in L′. Note that since L′ is in NEXP, if V (oj) = 1, there
exists a witness that will cause the verifier to accept and if V (oj) = 0, V will always reject
regardless of the witness. Define:

C(x, z) =
n∑

j=1

[
(1 − zj) · 2n−j + zj · (1 − V (oj)) · 2n

]
(1)

Let f(x, z) be the output of TM M on input x with oracle responses z. Note that since
|f(x, z)| ≤ n, f(x, z) ≤ 2n. The construction will ensure that the minimum cost tiling for
a particular x and z will be 2n+5C(x, z) + 23 · f(x, z). Note that C(x, z) represented in the
n high-order bits of the cost has the necessary structure where the costs for a no oracle
response decrease exponentially in j, the index of the oracle query. The cost for a yes guess
will be 0 if the input to the oracle oj is in fact in L′ (i.e., V (oj) = 1) and will be a very
large cost of 22n+5 if oj is not in L′. This function will guarantee that the overall cost is
minimized when z is the correct string of oracle responses. In addition, the low order bits
encode the output of the function f(x, z). So if the minimum cost tiling can be computed,
this will correspond to f(x), which is f(x, z̄), where z̄ is the string of correct oracle responses.
The factor of 8 ensures that even if the minimum cost is off by ±3, the value of f(x) can
still be recovered.

So far what we have described just implementing the original accounting scheme devised
by Krentel. The challenge is to implement this cost function in 2D with TI terms. Note that
since the tiling rules are fixed parameters of the problem, it is not possible to encode the cost
function directly into the penalty terms. As with the Gapped Weighted Tiling problem the
function is collectively computed by a set of parallel processes within each strip created by
the intervals from Layer 1. However, instead of a threshold function which is either +f(N)
or 0, the parallel processes must collectively compute the more intricate function described
above, which requires that the individual processes have some additional information.

CCC 2023

23:10 Translationally Invariant Constraint Optimization Problems

We will describe first what happens in a fault-free computation (with no illegal pairs
or computation squares) and then describe how fault-tolerance is enforced and proven. A
schematic view of the construction ins given in Figure 2. The construction for Layers 1 and
2 are exactly the same as for the Gapped Weighted Tiling problem. Layer 1 creates a set of
intervals. We definite the function µ(N) to denote the number of intervals on the tape if the
TM for Layer 1 executes N − 3 steps. If after N − 3 steps, the computation just happens to
finish at the end of an execution of the Outer Loop then the intervals have sizes (from left to
right) µ(N) + 1, µ(N), . . . , 2. If the computation finishes in the middle of an execution of the
Outer Loop, the actual sequence of interval sizes will be close to µ(N) + 1, µ(N), . . . , 2. The
largest interval could have size µ(N) + 2 and there may be a couple missing values in the
range where the current interval is being increased. A complete description of the possible
deviations is given in the full version [4]. µ(N) is Θ(N1/4) and we show using a standard
padding argument that for the constant c of our choice, all of the computations require at
most cµ(N) space. This allows us to establish that at least half of the intervals will be large
enough to complete the required computations.

As in the previous construction, Layer 2 then executes a binary counting TM which
results in the string x written to the left of each interval which is large enough to complete
the computation. Note that Layer 1 is a global TM which executes a single process across
the entire grid, while Layer 2 represents local computations within each strip. When x is
translated from Layer 2 to Layer 3 it is augmented with a guess string z for the oracle queries.
x. However, there is no guarantee that the guess for each interval is the same. Note that
z can be arbitrary but it must be consistently the same for each interval. Layer 3 then
executes a global TM which imposes a high penalty if the z strings in each strip are not all
the same. This penalty is higher than the cost function for any z, so the lowest cost tiling
will correspond to a configuration in which each strip has the same x and z.

Finally, in Layer 4, there is a local computation in each interval, each of which makes a
+1 or 0 contribution towards the overall cost. The computation within each interval requires
a unique tag in order to determine which term of the cost it will contribute to. The tag
comes from the size of the interval. The computation begins with counting the number of
locations in the interval. This can be accomplished by having the head shuttle back and
forth between the two ends of the interval implementing both a unary and binary counter
until the unary counter extends across the entire interval. The head returns to the left end
of the interval and begins the next phase of the computation. Since the size of an interval is
at most O(N1/4) this phase of the computation will take at most O(N1/2) steps.

Now each computation has the same pair (x, z) and a its own integer r indicating the
size of the interval. From x, the values of N and µ(N) can be determined. In a fault-free
computation, the sizes of the intervals will decrease from left to right. Moreover, all interval
sizes are in the set {µ(N) + 2, µ(N) + 1, . . . , 2} with at most one missing value from that
set and at most two duplicates. Thus, the value µ(N) − r + 2, will be an almost unique
identifier for each interval, starting with 0 or 1 on the left and increasing to the right. Using
this tag, each interval determines which portion of the cost it will contribute to. The number
of intervals assigned to compute a particular term in the cost will depend on the value of
the term since each interval can contribute at most 1 to the overall cost. If an interval is
assigned to check a yes guess (zk = 1) the computation uses x and z to determine the kth

input to the oracle ok, guesses a witness and simulates V on input ok with the guessed
witness. There is a cost of +1 if V rejects and 0 if V accepts. If ok is in fact in L′, there is a
witness which will allow for a zero cost tiling withing that interval. If ok ̸∈ L, then every
witness will lead to a +1 cost. Thus, the optimal set of witnesses will result in the minimum

D. Aharonov and S. Irani 23:11

(a) In Layer 1 a single fault-tolerant TM creates
the intervals that mark off the width of each strip
where independent computations will take place
in subsequent layers. The top row of Layer 1
is mapped onto the top row of Layer 2. The
computation proceeds upwards from bottom to
the top.

(b) In Layer 2, an independent computation takes
place in each strip. The computation proceeds
from top to bottom. Each strip executes a binary
counter TM, so the height of the square is trans-
lated into a string x, which serve as the input to
the computational problem.

(c) The bottom row of Layer 2 containing the
string x is translated to Layer 3. In addition the
tiling contains a guess y for the responses to the
oracle query. Layer 3 then executes a global TM
that proceeds from bottom to top. The computa-
tion results in a high cost if the guess strings y in
each strip are not all the same.

(d) The independent computations in each strip
collectively incur a total cost of 2n+5C(x, z) + 23 ·
f(x, z), where C(x, z) is denoted in Equation (1).

Figure 2 Schematic image showing the four layers in the construcion.

value for 2n+5C(x, z). In addition, exactly 23f(x, z) of the intervals will just transition to
the rejecting state, incurring a cost of +1. The total cost due to those intervals is 23f(x, z).
For the remaining intervals, no cost is incurred.

The cost of a computation fault (illegal pair or square) is a constant that is larger than the
cost of ending in a rejecting computation. Therefore, for each independent computation (in
Layers 2 and 4) the optimal tiling will correspond to a correct computation which may or may
not incur a cost for ending in a rejecting state. Technically, the most challenging part of the
proof is to show that the process on Layer 1 which creates the intervals is fault-tolerant. The
proof for Function Weighted Tiling requires stronger conditions than for Gapped Weighted

CCC 2023

23:12 Translationally Invariant Constraint Optimization Problems

Tiling since we not only have to show that there are a large number of large intervals at the
end of Layer 1 but we need to establish that the sequence of interval sizes is close to what
one would have in a fault-free computation. To this end, we use a potential function A which
captures how much a sequence of interval sizes (s1, s2, . . . , sm) deviates from the expected
sequence (m + 1, m, m − 1, . . . , 2). The main part of the proof is to show that each illegal
square or pair can cause the value of A to increase by at most a constant amount. At the
end of Layer 1, the ideal sequence of interval sizes is (µ(N) + 1, µ(N), . . . , 2). Every interval
size that is missing from the actual sequence of interval sizes has caused A to increase by at
least a fixed amount which in turn corresponds to faults incurred in the computation. Thus,
we show that it is more cost-effective to complete the computation correctly (and not incur
the higher cost of a fault) and incur the smaller potential cost of a rejecting computation.

The most important measure of progress of the tiling/computation in Layer 1 is the
number of times the encoded TM completes an iteration of the Outer Loop in which the size
of every interval increases by 1 and a new interval of size 2 is added. Faults can potentially
cause an iteration of the Outer Loop to take longer as they may force the head to shuttle
back and forth more times which in turn could result in fewer iterations. Even in a fault-free
computation, the number of steps per iteration increases with each iteration because there
are more intervals. The analysis in the full version provides a lower bound on the number
of times the loop is completed in relation to the number of completed loops in a fault-free
computation. The proof is a delicate inductive argument which uses the fact that the increase
in the running time of a loop is not accelerated too much with each additional fault.

Proof Overview for Parity Weighted Tiling. The proof for parity weighted tiling is very
similar to the function problem. Suppose that a language L ∈ PNEXP is computed by a
TM M with access to an oracle for L′ ∈ NEXP. Let M(x, z) be the indicator function that
is 0 if M(x, z) accepts and 1 if M(x, z) rejects. The overall cost computed by the collective
computations is: 4C(x, z) + M(x, z). The left-most interval computes M(x, z) and results in
a +1 cost in the case that M rejects. The remaining intervals which collectively compute
Krentel’s cost function all impose costs of +2 or 0. Thus the expression 4C(x, z) + M(x, z)
will guarantee that the minimum C(c, z) corresponds to the correct guess z̄. Furthermore,
the rightmost bit will be M(x, z) which will cause the minimum cost to be odd or even,
depending on whether M accepts.

5 Discussion, Related Work, and Open Problems

Despite the fact that the function version of classical local-Hamiltonians describes the task
of the computational (classical) physicist much more naturally than decision problems,
complexity of function problems was hardly studied even in the non-TI setting, in the
literature of classical theory of computer science.

Recently, related results were discovered in the domain of quantum computational
complexity. In particular, in [3], Aharonov and Irani use a construction for the function
version of (finite) quantum local Hamiltonian as a component for a hardness result for the
infinite 2D grid. More specifically, they prove that the problem of estimating the ground
energy of a local Hamiltonian on a finite 2D grid, is hard for FPNP. Importantly, their
results do not imply the hardness result presented in this paper, and it seems impossible
to extend their proof to deduce the classical hardness result of Theorem 2. Like [3] we
implement Krentel’s cost function using a fixed Hamiltonian term, but since their construction
is quantum (as opposed to the classical construction in this paper), they are able to prove the

D. Aharonov and S. Irani 23:13

result using a completely different set of tools which do not carry over to the classical case.
In quantum constructions, the lowest energy is an eigenvalue of a general Hermitian matrix
and the matrix can be constructed to fine tune the ground energy to an inverse polynomial
precision. In classical constructions, the total energy will be a sum over terms where each
term is chosen from a constant-sized set of values determined by the finite horizontal and
vertical tiling rules. This allows far less control in the classical setting over the precision of
the minimum cost tiling.

Incidentally, note that the results for the quantum case proven in [3] are not tight, which
follows from the fact that they use a quantum construction to obtain hardness for FPNEXP,
a classical complexity class. It seems challenging to make the characterization tight in the
quantum case. In contrast to the class NP, the class QMA is a class of promise-problems
and in simulating a PQMA machine, there is no guarantee that the queries sent to the QMA
oracle will be valid queries. The cost/energy applied for a particular query will depend on the
probability that a QMA verifier accepts on the provided input. If the input is invalid, then
the probability of acceptance can be arbitrary. Thus, Krentel’s cost function will potentially
be an uncontrolled quantity. Typically in a reduction where we want to embed the output of
a function into the value of the minimum energy, the low order bits of the energy are used
to encode the output of the function. It’s not clear how to do this without being able to
control the binary representation of the minimum energy. Note that by embedding a classical
computation in the Hamiltonian, the issue of invalid queries is circumvented.

Both [3] and [21] study the complexity of computing the ground energy density of infinite
TI Hamiltonians to within a desired precision making use of the technique introduced
by Cubitt, Prerez-Garcia, and Wolf which embeds finite Hamiltonian constructions of
exponentially increasing sizes, into the 2D infinite lattice, using Robinson tiles. Robinson
tiling rules [18] force an aperiodic structure on the tiling of the infinite plane, with squares of
exponentially increasing size. The quantum construction of [3] layers a TI 1D Hamiltonian on
top of one of the sides of all the squares. The classical construction of [21] layers a classical
finite construction on each square. Neither work obtains tight results due to the same issue
with invalid queries, although the two papers compromise in completely different ways. The
primary technical innovation introduced in [21] is to devise a more robust version of Robinson
tiles which ensures that the lowest energy state corresponds to a correct Robinson tiling, even
though the cost of the classical finite construction layered on top may introduce a penalty. If
it were possible to obtain an even more robust version of Robinson tiles, one potentially could
layer the finite construction from the current paper on top the more robust constructions in
the hopes of showing that computing the ground energy density of a classical TI Hamiltonian
in the thermodynamic limit is complete for EXPNEXP under Karp reductions.

The results in this paper are also related to the work of Ambainis [5] which characterizes
the complexity of measuring local observables of ground states of local Hamiltonians (APX-
SIM), showing that the problem is complete for PQMA[log n]. PQMA[log n] contains those
problems that can be solved by a polynomial time classical TM with access to O(log n)
queries to a QMA oracle. This type of question (determining a property of the ground
state) is similar to our classical result about determining whether the cost of the optimal
tiling is odd or even. The results on APX-SIM [5, 11, 10] are not hindered by the issue of
invalid queries because the quantity being measured is not the actual energy itself. Note
that the important point here is the property that distinguishes the state to be measured
(minimum energy) is different than the local observable applied to the measured state. By
contrast, computing the energy of the lowest energy state appears to be more difficult. The
issue of invalid queries appears to be an obstacle, even when the Hamiltonian terms are
position-dependent as in the constructions of [11, 10], as well as in the TI constructions
in [3, 20].

CCC 2023

23:14 Translationally Invariant Constraint Optimization Problems

Finally, it was mentioned earlier that the approximation problem considered here differs
from the standard PCP setting in that the underlying graph is a grid and the terms are TI.
It remains an open question as to whether there is a family of TI instances of constraint
satisfaction on general graphs for which it is hard to estimate the optimal solution to within
an additive Θ(N).

References
1 Ian Affleck, Tom Kennedy, Elliott H. Lieb, and Hal Tasaki. Rigorous results on valence-

bond ground states in antiferromagnets. Phys. Rev. Lett., 59:799–802, August 1987. doi:
10.1103/PhysRevLett.59.799.

2 Dorit Aharonov, Daniel Gottesman, Sandy Irani, and Julia Kempe. The power of quantum
systems on a line. Communications in Mathematical Physics, 287(1):41–65, January 2009.
doi:10.1007/s00220-008-0710-3.

3 Dorit Aharonov and Sandy Irani. Hamiltonian complexity in the thermodynamic limit. In
Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 750–763. ACM,
2022. doi:10.1145/3519935.3520067.

4 Dorit Aharonov and Sandy Irani. Translationally invariant constraint optimization problems,
2022. arXiv:2209.08731.

5 Andris Ambainis. On physical problems that are slightly more difficult than qma. In
2014 IEEE 29th Conference on Computational Complexity (CCC), pages 32–43, 2014. doi:
10.1109/CCC.2014.12.

6 F Baharona. On the computational complexity of ising spin glass models. Journal of Physics
A: Mathematical and General, 15(10):3241–3253, 1982.

7 Johannes Bausch, Toby Cubitt, and Maris Ozols. The complexity of translationally invariant
spin chains with low local dimension. Annales Henri Poincaré, 18(11):3449–3513, October
2017. doi:10.1007/s00023-017-0609-7.

8 Toby S. Cubitt, David Perez-Garcia, and Michael M. Wolf. Undecidability of the spectral gap.
Nature, 528(7581):207–211, December 2015. doi:10.1038/nature16059.

9 Sevag Gharibian, Yichen Huang, Zeph Landau, and Seung Woo Shin. Quantum hamiltonian
complexity. Foundations and Trends® in Theoretical Computer Science, 10(3):159–282, 2015.
doi:10.1561/0400000066.

10 Sevag Gharibian, Stephen Piddock, and Justin Yirka. Oracle complexity classes and local
measurements on physical hamiltonians. arXiv, 2019. arXiv:1909.05981.

11 Sevag Gharibian and Justin Yirka. The complexity of simulating local measurements on
quantum systems. Quantum, 3:189, September 2019. doi:10.22331/q-2019-09-30-189.

12 Daniel Gottesman and Sandy Irani. The quantum and classical complexity of translationally
invariant tiling and hamiltonian problems. Theory of Computing, 9(2):31–116, 2013. doi:
10.4086/toc.2013.v009a002.

13 Sorin Istrail. Statistical mechanics, three-dimensionality and np-completeness. i. universality
of intractability for the partition function of the ising model across non-planar lattices. In
Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May
21-23, 2000, Portland, OR, USA, pages 87–96, January 2000. doi:10.1145/335305.335316.

14 A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Computation. American
Mathematical Society, USA, 2002.

15 Mark W. Krentel. The complexity of optimization problems. In Alan L. Selman, editor,
Structure in Complexity Theory, pages 218–218, Berlin, Heidelberg, 1986. Springer Berlin
Heidelberg.

16 R. Oliveira and B. Terhal. The complexity of quantum spin systems on a two-dimensional
square lattice. arXiv, 2005. arXiv:quant-ph/0504050.

17 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1007/s00220-008-0710-3
https://doi.org/10.1145/3519935.3520067
https://arxiv.org/abs/2209.08731
https://doi.org/10.1109/CCC.2014.12
https://doi.org/10.1109/CCC.2014.12
https://doi.org/10.1007/s00023-017-0609-7
https://doi.org/10.1038/nature16059
https://doi.org/10.1561/0400000066
https://arxiv.org/abs/1909.05981
https://doi.org/10.22331/q-2019-09-30-189
https://doi.org/10.4086/toc.2013.v009a002
https://doi.org/10.4086/toc.2013.v009a002
https://doi.org/10.1145/335305.335316
https://arxiv.org/abs/quant-ph/0504050

D. Aharonov and S. Irani 23:15

18 Raphael Robinson. Undecidability and nonperiodicity for the tilings of the plane. Invent.
Math., 12:177–209, 1971.

19 Hao Wang. Proving theorems by pattern recognition. Communications of the ACM, 3(4):220–
234, 1960.

20 James D. Watson, Johannes Bausch, and Sevag Gharibian. The complexity of translationally
invariant problems beyond ground state energies. arXiv, 2020. arXiv:2012.12717.

21 James D. Watson and Toby S. Cubitt. Computational complexity of the ground state energy
density problem. arXiv, 2021. arXiv:2107.05060.

CCC 2023

https://arxiv.org/abs/2012.12717
https://arxiv.org/abs/2107.05060

An Exponential Separation Between Quantum
Query Complexity and the Polynomial Degree
Andris Ambainis #

Faculty of Computing, University of Latvia, Riga, Latvia

Aleksandrs Belovs #

Faculty of Computing, University of Latvia, Riga, Latvia

Abstract
While it is known that there is at most a polynomial separation between quantum query complexity
and the polynomial degree for total functions, the precise relationship between the two is not clear
for partial functions.

In this paper, we demonstrate an exponential separation between exact polynomial degree and
approximate quantum query complexity for a partial Boolean function. For an unbounded alphabet
size, we have a constant versus polynomial separation.

2012 ACM Subject Classification Theory of computation → Quantum query complexity

Keywords and phrases Polynomials, Quantum Adversary Bound, Separations in Query Complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.24

Funding This work has been supported by the ERDF project number 1.1.1.5/18/A/020 “Quantum
algorithms: from complexity theory to experiment.”

Acknowledgements We thank Scott Aaronson for writing the open problem survey [2] which attracted
our attention to this problem. We also thank the anonymous reviewers at the CCC conference for
their numerous valuable suggestions on the presentation of the paper.

1 Introduction

A polynomial method is an established tool for proving lower bounds for classical [19, 20] and
quantum [9] query complexity. In the quantum case, this method is based on an observation
that a quantum query algorithm can be turned into an approximating polynomial whose
degree is at most twice the query complexity of the algorithm. Showing that a function cannot
be approximated by a low-degree polynomial implies that it cannot be solved query-efficiently
on a quantum computer. This method was used early on to establish important results
like the precise characterisation of quantum query complexity of total symmetric Boolean
functions [9] and the optimal lower bound for the collision problem [5]. It was also used
recently to prove strong lower bounds on k-distinctness and image size testing [14, 17].

The question of how good this lower bound technique is has gathered attention. Nisan
and Szegedy [20] proved that Q(f) = O

(
deg(f)8)

for total Boolean f , where deg(f) is the
exact degree, and Q(f) is the quantum query complexity.1 This was subsequently improved
to Q(f) = O

(
deg(f)4)

(attributed to Nisan and Smolensky in [13]), and Q(f) = O
(
deg(f)3)

by Midrijānis [18].2 Concerning the approximate degree d̃eg(f), Beals, Buhrman, Cleve,

1 Actually, it was shown that D(f) = O
(
deg(f)8

)
, where D(f) is the deterministic decision tree complexity.

Here we use that D(f) upper bounds approximate (and, actually, even exact) quantum query complexity.
Similar comments apply to other upper bounds below.

2 Stated as D(f) = O
(
deg(f)4

)
and D(f) = O

(
deg(f)3

)
, respectively.

© Andris Ambainis and Aleksandrs Belovs;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 24; pp. 24:1–24:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ambainis@lu.lv
mailto:aleksandrs.belovs@lu.lv
https://doi.org/10.4230/LIPIcs.CCC.2023.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Separation Between Quantum Query Complexity and Polynomial Degree

Mosca, and de Wolf [9] showed that Q(f) = O
(
d̃eg(f)6)

for total Boolean functions.3 This
was improved by Aaronson, Ben-David, Kothari, Rao, and Tal [4] to Q(f) = O

(
d̃eg(f)4)

for
all total Boolean functions.4

On the other hand, Ambainis [7] constructed a total Boolean function with superlinear
but subquadratic separation between the exact degree deg(f) and quantum query complexity
Q(f). This also implies a similar separation between d̃eg(f) and Q(f) as d̃eg(f) ≤ deg(f).
Aaronson, Ben-David, and Kothari [3] demonstrated an almost quartic separation between
Q(f) and d̃eg(f) as well as an almost quadratic separation between Q(f) and deg(f) for a
total Boolean function. The former separation is optimal due to the aforementioned result
by Aaronson et al. [4].

In order to prove a separation between quantum query complexity and the polynomial
degree, one has to use a different tool than the polynomial method to prove lower bounds
on quantum query complexity. A popular alternative is the adversary method. Indeed,
Ambainis [7] used his, recent at the time, adversary method [6]. Aaronson et al. [3] used
their cheat sheet technique, but also relied on the lower bound for the k-sum problem [12],
which used the negative-weight adversary [15], as well as other tools.

Note that all these results consider total Boolean functions. Up to our knowledge, the
question of obtaining a separation between quantum query complexity and the polynomial
degree for partial functions has not been studied. This is interesting, as partial functions
usually allow for much larger separations. This question was raised as an open problem in a
recent survey by Aaronson [2].

And indeed, Q(f) versus deg(f) is not an exception, as we will prove the following two
results in our paper (see Section 2.1 for the precise definition of the polynomial degree):

▶ Theorem 1. For every q ≥ n12, there exists a partial function f : D → {0, 1} with
D ⊆ [q]3n with the following properties:

its exact polynomial degree is at most 9;
its quantum query complexity is Ω(n1/3).

Take q as the smallest power of 2 exceeding n12. By replacing each variable of the function
with log q Boolean variables, we get the following corollary.

▶ Corollary 2. There exists a family of partial Boolean functions f : D → {0, 1} with
D ⊆ {0, 1}n satisfying the following two properties:

its exact polynomial degree is O(log n);
its quantum query complexity is Ω̃(n1/3).

In Section 3, we formulate the problem and prove the upper bound on its polynomial
degree. In Section 4, we prove the lower bound on its quantum query complexity. We also
use the adversary method in our proof of the lower bound. The corresponding function is
closely related to a function studied previously by Belovs and Rosmanis [11].

Finally, let us note that we have to use the negative-weight formulation of the adversary
bound in our separation, and not the easier-to-apply positive-weight, which was used, for
instance, by Ambainis in his aforementioned separation [7]. This is because of the result by
Anshu, Ben-David, and Kundu [8] stating at most quadratic separation between positive-
weight quantum adversary and the polynomial degree even for partial functions.

3 Again, stated as D(f) = O
(
d̃eg(f)6

)
. It is also often cited as D(f) = O

(
Q(f)6

)
4 Although the result is stated as D(f) = O

(
Q(f)4

)
, what is actually proven in the paper is D(f) =

O
(
d̃eg(f)4

)
. See also the corresponding cell in Table 1 of the paper.

A. Ambainis and A. Belovs 24:3

2 Preliminaries

For a positive integer m, let [m] denote the set {1, 2, ..., m}. Notation Zm denotes the additive
group modulo m. For a predicate P , we write 1P to denote the indicator variable that is 1 is
P is true, and 0 otherwise.

For an X × Y -matrix A, x ∈ X, and y ∈ Y , we denote by A[[x, y]] its (x, y)-th entry. For
X ′ ⊆ X and Y ′ ⊆ Y , A[[X ′, Y ′]] denotes the corresponding submatrix. Similar notation is
also used for vectors. Next, ∥·∥ denotes the spectral norm (the largest singular value), and ◦
denotes the Hadamard (i.e., entry-wise) product of matrices.

We say that a linear operator A : L → K is an isometry from L′ into K if its coimage is
L′ ⊆ L and ∥Av∥ = ∥v∥ for all v ∈ L′. In other words, all the singular values of A are 1, and
the span of its right singular vectors is L′.

2.1 Polynomials
For a (partial) Boolean function f : D → {0, 1} with D ⊆ {0, 1}n, a representing polynomial
is defined as a real multivariate polynomial P in variables x1, . . . , xn, treated as elements of
R, such that

P (x1, . . . , xn) = f(x1, . . . , xn) for every x ∈ D;
0 ≤ P (x1, . . . , xn) ≤ 1 for all x ∈ {0, 1}n.

The motivation behind this definition is that, as shown in [9], every quantum query algorithm
evaluating f in T queries exactly can be turned into a representing polynomial for f of degree
at most 2T .

The notion of representing polynomial can be generalised for functions with larger input
alphabets as well. Let f : D → {0, 1} with D ⊆ [q]n be a (partial) function with alphabet
size q. Then, we can define its representing polynomial (see, e.g., [1]) as a polynomial in
nq Boolean variables 1xi=a, where i ranges over [n] and a over [q]. Namely, it is a real
multivariate polynomial P satisfying the following properties:

P (1x1=1, . . . , 1xn=q) = f(x1, . . . , xn) for every x ∈ D;
0 ≤ P (1x1=1, . . . , 1xn=q) ≤ 1 for all x ∈ [q]n.

The motivation is similar to the Boolean case.
It may seem that the two definitions do not match for q = 2, but in this case we have the

identity 1xi=2 = 1 − 1xi=1, which allows us to remove the variables 1xi=2, giving essentially
the same definition.

The exact polynomial degree of a function f is the minimal degree of its representing
polynomial. Similarly, one can define an approximating polynomial and the approximate
degree, but we will not need these notions in the paper.

Assume for simplicity that q = 2ℓ is a power of two. In this case, we can convert a function
f with domain in [q]n into a function f̃ with domain in {0, 1}nℓ by replacing each a ∈ [q]
by a bit-string (a1, . . . , aℓ) ∈ {0, 1}ℓ and each variable xi ∈ [q] with ℓ Boolean variables
xi,1, . . . , xi,ℓ. We have

1xi=a = 1xi,1=a11xi,2=a2 · · · 1xi,ℓ=aℓ
.

Therefore, every representing polynomial for f of degree d can be turned into a representing
polynomial for the function f̃ of degree dℓ.

2.2 Adversary Bound
In the paper, we only use the (negative-weight) adversary bound for decision problems, which
is defined as follows.

CCC 2023

24:4 Separation Between Quantum Query Complexity and Polynomial Degree

Let f : D → {0, 1} with D ⊆ [q]n. An adversary matrix for f is a real f−1(1) × f−1(0)-
matrix Γ. For any j ∈ [n], the f−1(1) × f−1(0)-matrix ∆j is defined by

∆j [[x, y]] =
{

0, if xj = yj ;
1, if xj ̸= yj .

(1)

▶ Theorem 3 (Adversary bound [15, 16]). In the above notation, the quantum query complexity
of the function f is Θ

(
ADV±(f)

)
, where ADV±(f) is the optimal value of the semi-definite

program

maximise ∥Γ∥ (2a)
subject to ∥∆j ◦ Γ∥ ≤ 1 for all j ∈ [n]. (2b)

Here maximisation is over all adversary matrices Γ for f .

We can choose any adversary matrix Γ and scale it down so that the condition ∥∆j ◦ Γ∥ ≤ 1
holds. Thus, we can use the condition ∥∆j ◦ Γ∥ = O(1) instead of ∥∆j ◦ Γ∥ ≤ 1.

Working with the matrix ∆j ◦ Γ might be cumbersome, so the following trick can be
applied. We write Γ ∆j7−→ Γj if Γ ◦ ∆j = Γj ◦ ∆j . In other words, we modify the entries Γ[[x, y]]
with xj = yj to obtain Γj . As shown in [16], ∥∆j ◦ Γ∥ ≤ 2∥Γj∥, hence we can replace ∆j ◦ Γ
with Γj in (2b).

3 The Problem and the Polynomial Upper Bound

The function for which we give the separation is defined in the following way.
Assume we have 3n input variables x1, x2, . . . , x3n ∈ [q]. We treat them as the elements

of Zq. Divide the set of indices into three subsets: A = {1, . . . , n}, B = {n + 1, . . . , 2n} and
C = {2n + 1, . . . , 3n}. Consider the following system of n3 linear equations modulo q:

xa + xb + xc = ra,b,c, for a ∈ A, b ∈ B and c ∈ C, (3)

where ra,b,c ∈ Zq are some fixed values. We call the individual equations in (3) tripartite
equations, and the whole system of n3 equations the tripartite system.

▶ Definition 4. In the threshold satisfiability problem, given x1, x2, . . . , x3n, the task is to
distinguish the following two cases:

there is no equation satisfied in the tripartite system (3) (negative case); and
there are exactly n equations satisfied in the tripartite system (3) (positive case).

Note that threshold satisfiability problem depends on parameters ra,b,c, which are not
parts of the input, but specify a particular instance of the problem.

Although the tripartite system (3) has n3 equations, the largest number of simultaneously
satisfiable equations usually is much smaller.

▶ Proposition 5. Assume q ≥ n12. Then, there exists a choice of ra,b,c ∈ Zq such that, for
every input x, less than 4n of the equations in (3) are satisfied.

Proof. This is a simple application of the probabilistic method. In the following, all the
probabilities are with respect to the uniform distribution over ra,b,c.

Let S be a subset of the equations in (3) of size 4n. As the number of variables is 3n, we
get that

Pr
[
All the equations in S can be satisfied

]
≤ q3n−|S| = q−n.

A. Ambainis and A. Belovs 24:5

Therefore, by the union bound, the probability that it possible to satisfy at least 4n equations
in (3) is at most(

n3

4n

)
q−n < n12nq−n ≤ 1

by our choice of q. ◀

We will call such a choice of the right-hand sides ra,b,c good.

▶ Theorem 6. If ra,b,c are good, the exact polynomial degree of the threshold satisfiability
function is at most 9.

Proof. Consider the following function

K(x) =
∑

a∈A, b∈B, c∈C

1xa+xb+xc=ra,b,c
,

which counts the number of satisfied equations in (3). We have that

1xa+xb+xc=r =
∑

s,t∈Zq

1xa=s1xb=t1xc=r−s−t,

hence, the degree of K is 3. Take the univariate cubic polynomial

T (z) = 1
4z3 − 3

2z2 + 9
4z.

The following is a plot of this polynomial. It has the following properties: T (0) = 0, T (1) = 1
and 0 ≤ T (z) ≤ 1 for all 0 ≤ z ≤ 4.

0 0.5 1 1.5 2 2.5 3 3.5 40
0.2
0.4
0.6
0.8

1

The polynomial T
(

K(x)
n

)
satisfies all the requirements. ◀

4 Quantum Lower Bound

We prove a slightly stronger result, as we prove a lower bound for an easier function. For
s, t ∈ [n], let

µs,t =
{

(j, n + 1 + (j + s mod n), 2n + 1 + (j + t mod n))
∣∣ j ∈ [n]

}
. (4)

Each µs,t is a tripartite matching between A = {1, . . . , n}, B = {n + 1, . . . , 2n} and
C = {2n + 1, . . . , 3n}. We call it a shifted tripartite matching. We use

M = {µs,t | s, t ∈ [n]}.

to denote the set of all shifted tripartite matchings (for a fixed value of n).

CCC 2023

24:6 Separation Between Quantum Query Complexity and Polynomial Degree

▶ Definition 7. In the tripartite shift problem, given x1, x2, . . . , x3n, the task is to distinguish
the following two cases:

there is no equation satisfied in the tripartite system (3) (negative case); and
there exists a shifted tripartite matching µ ∈ M such that an equation xa +xb +xc = ra,b,c

from (3) is satisfied if and only if (a, b, c) ∈ µ (positive case).

Since each shifted tripartite matching specifies n tripartite equations, the tripartite shift
problem is a restriction of the threshold satisfiability problem. Therefore, any lower bound
for the former is a lower bound for the latter.

A closely related problem was studied in [11]. It was like in Definition 7, but with the
following two modifications:

all ra,b,c = 0; and
in the positive case, it is not required that xa + xb + xc ̸= ra,b,c for (a, b, c) /∈ µ.

Therefore, our result is a strengthening of [11]. We obtain a similar lower bound.

▶ Theorem 8. If q ≥ 4n3, the quantum query complexity of the tripartite shift problem is
Ω(n1/3) for any choice of ra,b,c.

Essentially the same proof goes through. Since the differences are nonetheless substantial,
we reproduce the proof in the remaining part of this section.

4.1 Input-Related Sets
We begin with defining some input-related sets. Let

Ñ = [q]3n be the set of all inputs;
N be the set of negative inputs; and
P be the set of positive inputs.

For (a, b, c) ∈ A × B × C, let

P̃ a,b,c =
{

x ∈ [q]{a,b,c} | xa + xb + xc = ra,b,c

}
,

be the solution set of the corresponding tripartite equation. For µ ∈ M , let

P̃ µ =
∏

(a,b,c)∈µ

P̃ a,b,c. (5)

In other words, x ∈ [q]3n belongs to P̃ µ if and only if all the equations of the tripartite
system (3) with (a, b, c) ∈ µ are satisfied. Some of the remaining equations may be satisfied
as well. Finally,

P̃ =
⊔

µ∈M

P̃ µ.

We use the disjoint union here because an input x ∈ [q]3n can belong to several P̃ µ at once.
We can define P̃ more precisely as the set of pairs

{
(µ, x) | µ ∈ M, x ∈ P̃ µ

}
. We consider P

as a subset of P̃ , which is well-defined since x ∈ P belongs to exactly one P̃ µ. The reason
for introducing the set P̃ is the decomposition property (5), which P lacks.

As one can guess from the notation, we use Ñ and P̃ as proxies for N and P , respectively.
We show that their sizes do not differ too much.

▷ Claim 9. Under the assumption q ≥ 4n3, we have |N | ≥ 3|Ñ |/4 and |P | ≥ 3|P̃ |/4.

A. Ambainis and A. Belovs 24:7

Proof. We first prove the claim for N and Ñ . Take x ∈ Ñ = [q]3n uniformly at random.
There are n3 equations in (3). The probability x satisfies one fixed equation from this list is
1/q. By the union bound, the probability x satisfies some equation from the list is n3/q ≤ 1/4.
This proves |N | ≥ 3|Ñ |/4.

We can write P =
⊔

µ∈M P µ, where P µ = P ∩ P̃ µ is the set of inputs satisfying precisely
the equations (3) with (a, b, c) ∈ µ. We prove |P µ| ≥ 3|P̃ µ|/4, from which the claim follows.
To do so, we can use the same reasoning as above, because the probability a uniformly
random x ∈ P̃ µ satisfies a fixed equation from (3) with (a, b, c) /∈ µ is also 1/q. ◁

4.2 Overview of the Proof
Now let us describe the general structure of the proof. It follows the proof from [11], and is
based on the ideas from [10]. The following collection α = α(µ, S) of real coefficients will be
important:

α(µ, S), where µ ∈ M and S ⊆ [3n] is such that
∣∣S ∩ {a, b, c}

∣∣ ≤ 1 for all (a, b, c) ∈ µ. (6)

If S satisfies the condition in (6), we say that S is good for µ. We will implicitly assume that
α(µ, S) = 0 if S is not good for µ.

Let us define

∥α∥ = max
S⊆[3n]

√∑
µ∈M

α(µ, S)2. (7)

And, for j ∈ [3n], we define the following operation ∂j on α:

∂jα(µ, S) =
{

α(µ, S) − α(µ, S ∪ {j}), if j /∈ S;
0, if j ∈ S.

For α as in (6), we will define a P̃ × Ñ matrix G(α). It satisfies the following two
properties

∥G(α)∥ = ∥α∥ and G(α) ∆j7−→ G(∂jα) for all j ∈ [3n]. (8)

The piece of notation ∥α∥ in (7) was chosen precisely because of the first equation above.
We will construct an explicit α that satisfies the following conditions:

∥α∥ = n1/3 and ∥∂jα∥ = O(1) for all j ∈ [3n]. (9)

We define the adversary matrix Γ as G(α)[[P, N]]. On the one hand, Γ ∆j7−→ G(∂jα)[[P, N]],
which has norm O(1) by the above. On the other hand, ∥G(α)∥ = n1/3, and using that P

and N are close to P̃ and Ñ , respectively, we get that ∥Γ∥ = Ω(n1/3). Theorem 8 follows
then from Theorem 3.

4.3 Fourier Basis
We denote H = Cq and, for a set T , use notation HT = C[q]T = H⊗T . We often write Ha,b,c

instead of H{a,b,c} and similarly for related notions.
Let χ0, . . . , χq−1 be the Fourier basis of H. Recall that it is an orthonormal basis given

by χi[[j]] = 1√
q ωij

q , where ωq = e2πi/q. The most important of them is

χ0 = 1
√

q

1
1
...
1

 .

CCC 2023

24:8 Separation Between Quantum Query Complexity and Polynomial Degree

The Fourier basis of HT is given by tensor products χs =
⊗

j∈T χsj , where each sj ∈
{0, . . . , q − 1}. The support of χs is {j ∈ T | sj ̸= 0}.

Define two orthogonal projectors in H:

Π0 = χ0χ∗
0 and Π1 = I − Π0 =

q−1∑
i=1

χiχ
∗
i .

An important relation is

Π0
∆7−→ Π0 and Π1

∆7−→ −Π0, (10)

where ∆ is as in (1) and acts on the sole variable, and ∆7−→ is consequently defined as at the
end of Section 2.2. For S ⊆ T , define the projector ΠT

S in the space HT by

ΠT
S =

⊗
j∈T

Π1j∈S
. (11)

Let HT
S be its image. It is equal to the span of all the Fourier basis elements of HT with

support equal to S. For a fixed T , the set of all HT
S gives an orthogonal decomposition of

HT .
We have the following properties of ΠT

S . First, from the definition, we get the union
property

ΠT
S ⊗ ΠT ′

S′ = ΠT ∪T ′

S∪S′ (12)

whenever T and T ′ are disjoint. Next, by (10), we get the reduction property

ΠT
S

∆j7−→

{
ΠT

S , if j /∈ S;
−ΠT

S\{j}, if j ∈ S.
(13)

4.4 The Building Blocks
Now let us describe the building blocks our matrices are comprised of. Assume that
(a, b, c) ∈ A × B × C, and S ⊂ {a, b, c} is of size |S| ≤ 1. We define

Ψa,b,c
S = √

q Πa,b,c
S [[P̃ a,b,c, [q]{a,b,c}]]. (14)

These are the matrices from (11) with T = {a, b, c} whose rows have been restricted to
the solution set P̃ a,b,c of the corresponding tripartite equation. The factor √

q is due to
normalisation purposes.

▷ Claim 10. The operator Ψa,b,c
S is an isometry from Ha,b,c

S into CP̃ a,b,c . Moreover, the
operators Ψa,b,c

∅ , Ψa,b,c
{a} , Ψa,b,c

{b} , and Ψa,b,c
{c} have pairwise orthogonal ranges.

Proof. From the definition, it is clear that the coimage of Ψa,b,c
S is contained in the coimage of

Πa,b,c
S , which is Ha,b,c

S . The operators Ψa,b,c
∅ , Ψa,b,c

{a} , Ψa,b,c
{b} , and Ψa,b,c

{c} map the corresponding
Fourier basis elements

χ0 ⊗ χ0 ⊗ χ0, χsa ⊗ χ0 ⊗ χ0, χ0 ⊗ χsb
⊗ χ0, χ0 ⊗ χ0 ⊗ χsc ,

where sa, sb, sc are non-zero, into the vectors

A. Ambainis and A. Belovs 24:9

√
q(χ0 ⊗ χ0 ⊗ χ0)[[P̃ a,b,c]], √

q(χsa ⊗ χ0 ⊗ χ0)[[P̃ a,b,c]],
√

q(χ0 ⊗ χsb
⊗ χ0)[[P̃ a,b,c]], √

q(χ0 ⊗ χ0 ⊗ χsc
)[[P̃ a,b,c]],

(15)

respectively. It remains to prove that all these vectors together form an orthonormal system
in CP̃ a,b,c .

We can identify x ∈ P̃ a,b,c with x ∈ [q]{a,b} as the third element xc is uniquely determined
by xc = ra,b,c − xa − xb. Therefore, we may treat the vectors from (15) as belonging to Ha,b.
Under this assumption, the first three vectors in (15) become

χ0 ⊗ χ0, χsa
⊗ χ0, and χ0 ⊗ χsb

. (16)

(Here we used the √
q prefactor to compensate for one missing χ0.) Considering the last

vector, its entry corresponding to x ∈ P̃ a,b,c is

1
q ωscxc

q = 1
q ω

sc(ra,b,c−xa−xb)
q = ω

scra,b,c
q

q ω−scxa−scxb
q .

Hence, the last vector of (15) becomes

ω
scra,b,c
q χ−sc

⊗ χ−sc
. (17)

Clearly, the vectors in (16) and (17) form an orthonormal system. ◁

Now, let µ ∈ M , and S ⊆ [3n] be good for µ, i.e., |S ∩ {a, b, c}| ≤ 1 for every (a, b, c) ∈ µ.
We define the operator

Ψµ
S = qn/2Π[3n]

S [[P̃ µ, Ñ]] =
⊗

(a,b,c)∈µ

Ψa,b,c
S∩{a,b,c}, (18)

where the equality follows from the union property (12) and the definition (5) of P̃ µ.

▷ Claim 11 (Orthogonal Isometry Claim). The operator Ψµ
S is an isometry from H[3n]

S into
CP̃ µ . Moreover, for a fixed µ, the ranges of Ψµ

S are pairwise orthogonal.

Proof. This follows from Claim 10 and the second definition of Ψµ
S in (18). ◁

Also, from (13) and the first definition of Ψµ
S in (18), we get the reduction property

Ψµ
S

∆j7−→

{
Ψµ

S , if j /∈ S;
−Ψµ

S\{j}, if j ∈ S.
(19)

4.5 The Matrix G(α)
Now we are able to define the matrix G(α) for α from (6). It is a P̃ × Ñ -matrix defined as
the vertical stack of matrices

G(α) =

Gµ1,1(α)
...

Gµn,n(α)

 , (20)

where we have one block

Gµ(α) =
∑

S⊆[3n]

α(µ, S)Ψµ
S

CCC 2023

24:10 Separation Between Quantum Query Complexity and Polynomial Degree

for each shifted tripartite matching µ ∈ M . Recall that we implicitly assume that α(µ, S) = 0
if S is not good for µ, therefore, the Ψµ

S that appear in the latter sum are well-defined (satisfy
the conditions above (18)).

For two α and α′ as in (6), we can define α + α′ element-wise, and G(α) is linear in α:
G(α + α′) = G(α) + G(α′).

▷ Claim 12. Thus defined matrix G(α) satisfies the claims in (8): ∥G(α)∥ = ∥α∥ and
G(α) ∆j7−→ G(∂jα) for all j ∈ [3n].

Proof. Let us start with the first claim. We can write G(α) =
∑

S G(α|S), where

α|S(µ, S′) =
{

α(µ, S′), if S′ = S

0, otherwise.
(21)

We have that Gµ(α|S) = α(µ, S)Ψµ
S . Since by the Orthogonal Isometry Claim 11, each Ψµ

S is
an isometry from H[3n]

S , we get∥∥G(α|S)
∥∥ =

√∑
µ∈M

α(µ, S)2.

By the same Claim 11, the ranges and coimages of all G(α|S) are pairwise orthogonal. Hence,
∥G(α)∥ = maxS

∥∥G(α|S)
∥∥ = ∥α∥ as defined in (7).

By the reduction property (19), the second claim holds for each block of G(α), that is:

Gµ(α) ∆j7−→ Gµ(∂jα).

Therefore, it holds for the whole matrix G(α). ◁

4.6 Construction of α

We define

α(µ, S) = 1
n

max
{

n1/3 − |S|, 0
}

(22)

if S is good for µ. Otherwise, we assume α(µ, S) = 0.

▷ Claim 13. The α as defined in (22) satisfies the conditions in (9): ∥α∥ = n1/3 and
∥∂jα∥ = O(1) for all j ∈ [3n].

Proof. The value ∥α∥ = n1/3 is attained at S = ∅.
Now let us prove the second property. It suffices to check that, for all S and j ∈ [3n] \ S,∑

µ∈M

(
α(µ, S) − α(µ, S ∪ {j})

)2 = O(1). (23)

Fix S and j. If |S| ≥ n1/3, then (23) is zero, so we may assume |S| ≤ n1/3. There are n2

choices of µ ∈ M . They fall into three categories:
S is not good for µ. Then, S ∪ {j} is also not good for µ and

α(µ, S) − α(µ, S ∪ {j}) = 0.

S ∪ {j} is good for µ. Then, S is also good for µ, and∣∣α(µ, S) − α(µ, S ∪ {j})
∣∣ ≤ 1

n
.

(The ≤ case may hold for |S| =
⌊
n1/3⌋

. Otherwise, we have equality.)

A. Ambainis and A. Belovs 24:11

S is good for µ, but S ∪ {j} is not good for µ. In this case, we have an upper bound of∣∣α(µ, S) − α(µ, S ∪ {j})
∣∣ =

∣∣α(µ, S)
∣∣ ≤ n−2/3.

Let us estimate for how many µ the third option above holds. This happens only if
there is (a, b, c) ∈ µ such that j ∈ {a, b, c} and

∣∣S ∩ {a, b, c}
∣∣ = 1. Assume for concreteness

j = a ∈ A = {1, . . . , n}, the other two cases being similar. Let µ = µs,t as defined in (4). We
get that the third option holds only if

either n + 1 + (j + s mod n) or 2n + 1 + (j + t mod n) belongs to S.

There are at most |S|n ≤ n4/3 choices of s and t that satisfy the above condition. Therefore,∑
µ∈M

(
α(µ, S) − α(µ, S ∪ {j})

)2 ≤ n2 · 1
n2 + n4/3 · n−4/3 = O(1). ◁

4.7 Finishing the Proof
As mentioned previously, we define the adversary matrix as

Γ = G(α)[[P, N]]

with the choice of α from (22). Then, Γ ∆j7−→ G(∂jα)[[P, N]] and for the latter matrix by (8)
and (9), we have∥∥G(∂jα)[[P, N]]

∥∥ ≤
∥∥G(∂jα)

∥∥ = ∥∂jα∥ = O(1).

It remains to lower bound ∥Γ∥. We can write α = α′ + α′′ where α′ = α|∅ as in (21) and
α′′ = α − α′. Let uP , u

P̃
, uN , and u

Ñ
denote the uniform unit vectors in CP , CP̃ , CN and

CÑ , respectively. That is, uP [[x]] = 1/
√

|P | for all x ∈ P , and similarly for other vectors.
We have

∥Γ∥ ≥ u∗
P ΓuN = u∗

P

(
G(α′)[[P, N]]

)
uN + u∗

P

(
G(α′′)[[P, N]]

)
uN . (24)

We bound both terms separately.
By construction, G(α′) is an P̃ × Ñ matrix which is a vertical stack of matrices (20),

where each block is n−2/3Ψµ
∅ . Each Ψµ

∅ has all its entries equal (to q−5n/2). Thus,

u∗
P̃

G(α′)u
Ñ

= ∥G(α′)∥ = ∥α′∥ = n1/3.

Using Claim 9, we get

u∗
P

(
G(α′)[[P, N]]

)
uN =

√
|P | · |N |
|P̃ | · |Ñ |

u∗
P̃

G(α′)u
Ñ

≥ 3n1/3

4 . (25)

Now consider the second term. First, we have

∥G(α′′)∥ = ∥α′′∥ < n1/3.

Next, by Claim 11, the vector u
P̃

is orthogonal to the range of G(α′′). Therefore,

u∗
P̃

G(α′′)[[P̃ , N]] = 0.

CCC 2023

24:12 Separation Between Quantum Query Complexity and Polynomial Degree

We will use the vector ũ =
√

|P̃ |/|P |u
P̃

. It has the property ũ[[P]] = uP . Also, by
Claim 9,

∥∥ũ[[P̃ \ P]]
∥∥ ≤ 1/

√
3. Thus,

u∗
P

(
G(α′′)[[P, N]]

)
uN = ũ∗(

G(α′′)[[P̃ , N]]
)
uN − ũ[[P̃ \ P]]∗

(
G(α′′)[[P̃ \ P, N]]

)
uN

≥ −
∥∥ũ[[P̃ \ P]]

∥∥ ·
∥∥G(α′′)[[P̃ \ P, N]]

∥∥ ≥ −n1/3/
√

3.
(26)

Combining Eq. (24), (25) and (26), we get

∥Γ∥ ≥
(3

4 − 1√
3

)
n1/3 = Ω(n1/3).

5 Discussion

The choice of the problem (3) has been chiefly motivated by the availability of a relatively
simple lower bound in [11]. In principle, it is possible to analyse other problems. For instance,
consider a problem of the form

xa + xb = ra,b, for a ̸= b in [2n], (27)

and take M as consisting of all perfect matchings in [2n].
If + is the bit-wise xor and all ra,b are zeroes, we get the collision problem. The lower

bound on its quantum query complexity is Ω(n1/3) and it was obtained by Aaronson and
Shi [5] using the polynomial method. We see no reason to expect the non-homogeneous case
(with ra,b non-zero) to be any simpler, but the argument of Section 3 shows that it completely
breaks down Aaronson’s and Shi’s lower bound. For the adversary method, which we used in
Section 4, there was essentially no difference between the homogeneous case of [11] and the
non-homogeneous case of the current paper. The right-hand sides ra,b,c of (3) manifested
themselves as the phases in (17), which are irrelevant to the proof. It would be interesting to
establish lower bounds for the problem in (27). This would improve the constants in our
lower bounds.

Concerning Corollary 2, it is not clear whether O(log n) can be improved to something
better, thus resulting in a superexponential separation.

References
1 Scott Aaronson. Quantum lower bound for the collision problem. In Proc. of 34th ACM STOC,

pages 635–642, 2002. doi:10.1145/509907.509999.
2 Scott Aaronson. Open problems related to quantum query complexity. ACM Transactions on

Quantum Computing, 2(4):1–9, 2021. doi:10.1145/3488559.
3 Scott Aaronson, Shalev Ben-David, and Robin Kothari. Separations in query complexity

using cheat sheets. In Proc. of 48th ACM STOC, pages 863–876, 2016. doi:10.1145/2897518.
2897644.

4 Scott Aaronson, Shalev Ben-David, Robin Kothari, Shravas Rao, and Avishay Tal. Degree vs.
approximate degree and quantum implications of Huang’s sensitivity theorem. In Proc. of
53rd ACM STOC, pages 1330–1342, 2021. doi:10.1145/3406325.3451047.

5 Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element
distinctness problems. Journal of the ACM, 51(4):595–605, 2004. doi:10.1145/1008731.
1008735.

6 Andris Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and
System Sciences, 64(4):750–767, 2002. doi:10.1006/jcss.2002.1826.

https://doi.org/10.1145/509907.509999
https://doi.org/10.1145/3488559
https://doi.org/10.1145/2897518.2897644
https://doi.org/10.1145/2897518.2897644
https://doi.org/10.1145/3406325.3451047
https://doi.org/10.1145/1008731.1008735
https://doi.org/10.1145/1008731.1008735
https://doi.org/10.1006/jcss.2002.1826

A. Ambainis and A. Belovs 24:13

7 Andris Ambainis. Polynomial degree vs. quantum query complexity. In Proc. of 44th IEEE
FOCS, pages 230–239, 2003. doi:10.1109/SFCS.2003.1238197.

8 Anurag Anshu, Shalev Ben-David, and Srijita Kundu. On query-to-communication lifting for
adversary bounds. In Proc. of 36th IEEE CCC, volume 200 of LIPIcs, pages 30:1–30:39, 2021.
doi:10.4230/LIPIcs.CCC.2021.30.

9 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. doi:10.1145/502090.
502097.

10 Aleksandrs Belovs and Ansis Rosmanis. On the power of non-adaptive learning graphs.
Computational Complexity, 23(2):323–354, 2014. doi:10.1007/s00037-014-0084-1.

11 Aleksandrs Belovs and Ansis Rosmanis. Quantum lower bounds for tripartite versions of the
hidden shift and the set equality problems. In Proc. of 13th TQC, volume 111 of LIPIcs, pages
3:1–3:15. Dagstuhl, 2018. doi:10.4230/LIPIcs.TQC.2018.3.

12 Aleksandrs Belovs and Robert Špalek. Adversary lower bound for the k-sum problem. In Proc.
of 4th ACM ITCS, pages 323–328, 2013. doi:10.1145/2422436.2422474.

13 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:
a survey. Theoretical Computer Science, 288:21–43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

14 Mark Bun, Robin Kothari, and Justin Thaler. The polynomial method strikes back: Tight
quantum query bounds via dual polynomials. In Proc. of 50th ACM STOC, pages 297–310,
2018. doi:10.1145/3188745.3188784.

15 Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adversaries stronger. In
Proc. of 39th ACM STOC, pages 526–535, 2007. doi:10.1145/1250790.1250867.

16 Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy. Quantum
query complexity of state conversion. In Proc. of 52nd IEEE FOCS, pages 344–353, 2011.
doi:10.1109/FOCS.2011.75.

17 Nikhil S. Mande, Justin Thaler, and Shuchen Zhu. Improved approximate degree bounds
for k-distinctness. In Proc. of 15th TQC, volume 158 of LIPIcs, pages 2:1–2:22, 2020. doi:
10.4230/LIPIcs.TQC.2020.2.

18 Gatis Midrijānis. Exact quantum query complexity for total Boolean functions. quant-
ph/0403168, 2004.

19 Noam Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing, 20(6):999–1007,
1991. doi:10.1137/0220062.

20 Noam Nisan and Mario Szegedy. On the degree of Boolean functions as real polynomials.
Computational Complexity, 4(4):301–313, 1994. doi:10.1007/BF01263419.

CCC 2023

https://doi.org/10.1109/SFCS.2003.1238197
https://doi.org/10.4230/LIPIcs.CCC.2021.30
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.1007/s00037-014-0084-1
https://doi.org/10.4230/LIPIcs.TQC.2018.3
https://doi.org/10.1145/2422436.2422474
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1145/3188745.3188784
https://doi.org/10.1145/1250790.1250867
https://doi.org/10.1109/FOCS.2011.75
https://doi.org/10.4230/LIPIcs.TQC.2020.2
https://doi.org/10.4230/LIPIcs.TQC.2020.2
https://doi.org/10.1137/0220062
https://doi.org/10.1007/BF01263419

Trade-Offs Between Entanglement and
Communication
Srinivasan Arunachalam #

IBM Quantum, Almaden, CA, USA

Uma Girish # Ñ

Princeton University, NJ, USA

Abstract
We study the advantages of quantum communication models over classical communication models
that are equipped with a limited number of qubits of entanglement. In this direction, we give explicit
partial functions on n bits for which reducing the entanglement increases the classical communication
complexity exponentially. Our separations are as follows. For every k ≥ 1:

Q∥∗ versus R2∗: We show that quantum simultaneous protocols with Θ̃(k5 log3 n) qubits of
entanglement can exponentially outperform two-way randomized protocols with O(k) qubits of
entanglement. This resolves an open problem from [11] and improves the state-of-the-art separations
between quantum simultaneous protocols with entanglement and two-way randomized protocols
without entanglement [12, 18].

R∥∗ versus Q∥∗: We show that classical simultaneous protocols with Θ̃(k log n) qubits of
entanglement can exponentially outperform quantum simultaneous protocols with O(k) qubits of
entanglement, resolving an open question from [15, 12]. The best result prior to our work was a
relational separation against protocols without entanglement [15].

R∥∗ versus R1∗: We show that classical simultaneous protocols with Θ̃(k log n) qubits of
entanglement can exponentially outperform randomized one-way protocols with O(k) qubits of
entanglement. Prior to our work, only a relational separation was known [11].

2012 ACM Subject Classification Theory of computation → Communication complexity; Theory of
computation → Quantum communication complexity

Keywords and phrases quantum, communication complexity, exponential separation, boolean hidden
matching, forrelation, xor lemma

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.25

Related Version Full Version: https://arxiv.org/abs/2306.01233

Acknowledgements We thank Vojtech Havlicek and Ran Raz for many discussions during this
project. We also thank Ran Raz for feedback on the presentation.

1 Introduction

One of the central goals in complexity theory is to understand the power of different
computational resources. In the past four decades, communication complexity has provided
a successful toolbox to establish various results in different areas of research in theoretical
computer science such as circuit complexity [26, 25], streaming algorithms [24], property
testing [6], extension complexity [10], data structures [29], proof complexity [21]. In the
standard two-player model of communication complexity introduced by Yao [40] there are
two parties Alice and Bob whose goal is to compute a partial function F : X ×Y → {−1, 1, ⋆}.
Alice receives x ∈ X (unknown to Bob) and Bob receives y ∈ Y (unknown to Alice) and their
goal is to compute F (x, y) for all (x, y) ∈ F −1(1) ∪ F −1(−1), while minimizing the amount
of communication. In this setting, there are three models of communication in increasing
order of strength:

© Srinivasan Arunachalam and Uma Girish;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 25; pp. 25:1–25:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Srinivasan.Arunachalam@ibm.com
mailto:ugirish@cs.princeton.edu
http://www.cs.princeton.edu/~ugirish
https://doi.org/10.4230/LIPIcs.CCC.2023.25
https://arxiv.org/abs/2306.01233
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Trade-Offs Between Entanglement and Communication

(i) Simultaneous message passing (SMP) model: Alice and Bob send a message to a referee
Charlie, whose goal is to output F (x, y).

(ii) One-way model: Alice sends a message to Bob, whose goal is to output F (x, y).
(iii) Two-way model: Alice and Bob can exchange several rounds of messages and their goal

is to output F (x, y).
In all these models, the complexity of the protocol is the total number of bits used to describe
the message. It is not hard to see that the communication complexity in model (i) is at least
the complexity in model (ii) which in turn is at least the complexity in model (iii).

One variant of these models is when the players are allowed to use quantum resources,
for instance, the players could send quantum messages or share entanglement. Over the
past two decades, several works have established the advantage of quantum over classical
communication complexity in various settings. In a sequence of works [8, 7, 34, 15, 14, 27, 13],
it has been shown that quantum communication can exponentially outperform classical
communication. In particular, a few works [16, 12, 18] have demonstrated communication
tasks that are easy to solve in the SMP model if the players share entanglement, however,
every interactive randomized protocol without entanglement has exponentially larger cost.
This leads to a natural and fundamental question (which has been asked many times
before [22, 9, 37, 11]): How much entanglement do quantum protocols really need? Given
any small-cost quantum protocol, can we simulate it by a small-cost quantum protocol that
uses only a small amount of entanglement? Answering this question is one of the central
questions in quantum communication complexity; in fact giving any upper bound on the
number of qubits in a potentially helpful shared state has been open for decades.

A similar question of how much shared randomness is necessary in classical commu-
nication complexity is well understood. In a famous result, Newman [31] showed that to
solve communication tasks on n-bit inputs, with an additive overhead of O(log n) bits in
communication one can assume that the players only have private randomness. Jain et al. [23]
showed that blackbox arguments similar to the one in [31] cannot be used to reduce the
entanglement in a quantum protocol. Motivated by the question of how much entanglement
protocols need, we study a fine-grained variant of this question, which will be the topic of
this work.

Can we reduce the entanglement in a quantum communication protocol from k qubits
to k/ log n qubits using a classical protocol of only polynomially larger cost?

In this direction, Shi [37] showed that we can remove any amount of entanglement using a
classical communication protocol of exponentially larger cost. Subsequently, [11, 22] showed
that this exponential blowup is inevitable, in particular they constructed a relational problem
for which we cannot reduce the entanglement with just a polynomial overhead using one-way
communication alone. Their works left open the question of reducing entanglement in a
quantum protocol computing a partial function, using two-way classical communication
between the players.1

1.1 Main Result
In this work, we provide a strong negative answer to this question. We give partial functions for
which, reducing the entanglement by even a logarithmic factor, increases the communication
cost by an exponential factor. To discuss our results, we set up some notation first. Let R∥∗

1 Relational separations are known as the “weakest” form of separations between communication models.
A partial function separation immediately implies a relational separation, however, the converse is
false [17].

S. Arunachalam and U. Girish 25:3

(resp. Q∥∗) denote the SMP communication model where Alice and Bob share entanglement
and send classical (resp. quantum) messages to the referee. Let R1∗, R2∗ be the one-way
and two-way models of classical communication where Alice and Bob share entanglement.
The models R1 and R2 are similarly defined with the difference being that Alice and Bob
don’t share entanglement. The model Q∥pub is also defined similarly to Q∥∗ but without
entanglement, additionally, the players are allowed public randomness. We first summarize
our results informally below. All these results hold for every k ≥ 1 which is any parameter
that is allowed to depend on n.

Our first result shows that for simultaneous quantum protocols, more entanglement
cannot be simulated by two-way classical communication with less entanglement (and a
polynomial overhead).

▶ Result 1. There is a partial function on Õ(kn) bits that can be computed in Q∥∗ with
Õ(k5 log3 n) qubits of communication and entanglement, but if the players only share O(k)
qubits of entanglement, requires Ω(n1/4) bits of communication in the R2 ∗ model.

There are two ways to view this result: (i) It shows that in the rather weak quantum
SMP model, reducing the entanglement by a polylogarithmic factor increases the classical
communication by an exponential factor, even if Alice and Bob are allowed to interact. This
answers an open question in [11]. (ii) This result can also be viewed in the context of quantum
versus classical separations in communication complexity. As we mentioned earlier, numerous
works [8, 34, 14, 27, 13] have shown that quantum provides exponential savings for partial
functions in various settings. The state-of-the-art separations between quantum and classical
communication complexity for partial functions are due to [12, 18]; they show separations
between Q∥∗ and R2. One drawback of the aforementioned works, in the context of our work,
is that the lower bound can only be made to work for protocols where Alice and Bob share
≪ log n qubits of entanglement. We improve upon this by showing separations between Q∥∗

(with more entanglement) and R2∗ (with less entanglement). Our result can thus be seen as
the current best-known separation between quantum and classical communication complexity
for partial functions. In particular, we give a lower bound technique against R2∗ protocols
with O(logc n) qubits of entanglement for every c ∈ N. To the best of our knowledge, there
were no known lower bound techniques that distinguished R2∗ (with more entanglement) and
R2∗ (with less entanglement) once the number of qubits of entanglement is ≫ log n, even for
relational problems.

Our second result shows that for SMP protocols where the players share entanglement but
only send classical messages, entanglement cannot be reduced even by quantum simultaneous
protocols or by one-way classical protocols (with a polynomial overhead).

▶ Result 2. There is a partial function on Õ(kn) bits that can be computed in R∥∗ using
Õ(k log n) bits of communication and Õ(k log n) qubits of entanglement, but if the players
share O(k) qubits of entanglement, requires Ω(n1/3) qubits of communication in the Q∥∗

model and Ω(
√

n) bits in the R1∗ model.

We remark that the trade-offs obtained in this result are more fine-grained in comparison
to Result 1, i.e., our separations hold even if we reduce the entanglement by a O(log n)-factor.
Prior to our work, the best known separation between R∥∗ (with more entanglement) and Q∥∗

(with less entanglement) was a relational separation between R∥∗ and Q∥pub [15]. Their work
left open two questions: (i) Does there exist a partial function separating R∥∗ and Q∥pub?
The weaker question of showing a functional separation between Q∥∗ and Q∥pub was also
open and recently asked by [12]. (ii) Is there a relational separation between Q∥∗ (with more

CCC 2023

25:4 Trade-Offs Between Entanglement and Communication

entanglement) and Q∥∗ (with less entanglement)? Our result answers both these questions.
Firstly, we prove separations for partial functions improving upon the relational separations;
secondly, we also show lower bounds for Q∥∗ with limited entanglement. With regards to
separations between R∥∗ (with more entanglement) and R1∗ (with less entanglement), prior
to our work these were established in [11, 22], again for relational problems. Gavinsky [11]
left open the question of showing a similar separation for partial functions and our work
resolves this.

In the next two sections, we discuss the problems witnessing these separations followed
by the proof sketches. Our first result is based on the Forrelation problem and the second
result is based on the Boolean Hidden Matching problem.

1.2 Result 1: Separations based on the Forrelation problem

1.2.1 Problem Definition: The Forrelation Problem
The Forrelation problem was first introduced by Aaronson in the context of query complex-
ity [1] and subsequently has been studied again in the context of separating quantum and
classical computation [35, 2]. Variants of the Forrelation problem have been used to show
various quantum versus classical separations in communication complexity [18, 3, 36, 19].
The state-of-the-art separations for quantum versus classical communication complexity of
partial functions are between Q∥∗ and R2; one such separation is due to [18] and is based on
the Forrelation problem, which we define now.

▶ Definition 1 (Forrelation Function). Let n ∈ N, n ≥ 2 be a power of two. Let Hn be the
(unitary) n × n Hadamard matrix. For z1, z2 ∈ {−1, 1}n/2, define the forrelation function as

forr(z1, z2) = 1
n

⟨z2, Hn(z1)⟩.

Let ε ∈ (0, 1] be a parameter. We typically set ε = Θ
(

1
log n

)
if it is not specified. We are

interested in the communication complexity version of the Forrelation problem defined below.

▶ Definition 2 (The Forrelation Problem). In the Forrelation problem, Alice is given x ∈
{−1, 1}n, Bob is given y ∈ {−1, 1}n. Their goal is to compute forr(x, y) given by

forr(x, y) =
{

−1 forr(x ⊙ y) ≥ ε/4
1 forr(x ⊙ y) ≤ ε/8.

Here, ⊙ denotes the pointwise product. Let k ∈ N be a parameter satisfying k = o(n1/50).
We are interested in the XOR of k copies of the Forrelation problem. This problem was first
studied in [19] in the context of XOR lemmas.

▶ Definition 3 (⊕k-Forrelation Problem). This problem is the XOR of k independent instances
of the Forrelation problem where ε = 1

60k2 ln n . To be precise, Alice and Bob receive x =
(x(1), . . . , x(k)) and y = (y(1), . . . , y(n)) where x(i), y(i) ∈ {−1, 1}n for all i ∈ [k], and they
need to compute

forr(⊕k)(x, y) =
k∏

i=1
forr

(
x(i), y(i)

)
.

S. Arunachalam and U. Girish 25:5

1.2.2 Main Theorem
We now state our main theorem. For n ∈ N, let k ∈ N be a parameter satisfying k = o(n1/50).

▶ Theorem 1. The ⊕k-Forrelation problem can be solved with Õ(k5 log3 n) qubits of commu-
nication in the Q∥∗ model if Alice and Bob share Θ̃(k5 log3 n) EPR pairs. However, if they
share O(k) qubits of entanglement, then this problem requires Ω(n1/4) bits of communication
even in the R2∗ model.

We make a few remarks. Firstly, the upper bound holds provided Alice and Bob share
Θ̃(k5 log3 n) EPR pairs, however, the lower bound holds for all possible entangled states
on O(k) qubits, not necessarily EPR pairs. (See Section 2.2 for a formal description of the
models and EPR pairs.) Secondly, although Theorem 1 is stated for bounded-error models,
our lower bound also holds for protocols with advantage 2−o(k). To prove our lower bound,
our main technical contribution is to show a Fourier growth bound for R2∗ protocols with
limited entanglement.2 In the following lemma, Oℓ(t) is a shorthand notation for O(t · 2O(ℓ)).

▶ Lemma 1. Let C : {−1, 1}n × {−1, 1}n → [−1, 1] be an R2∗ protocol of cost c where Alice
and Bob share an entangled state on at most 2d qubits for some parameter d ∈ N. Let H be
the XOR-fiber of C as in Definition 7. Then, for all ℓ ∈ N, we have

L1,ℓ(H) ≜
∑

|S|=ℓ

∣∣∣Ĥ(S)
∣∣∣ ≤ 25d · Oℓ(cℓ).

We also study lower bounds for the Forrelation problem in the quantum simultaneous
model. Prior to our work, there was no partial function separating Q∥∗ with more entangle-
ment and Q∥∗ with less entanglement. In particular, it was unknown whether the Forrelation
problem can be solved in the Q∥pub model with small cost and no entanglement. Our result
shows that this is not the case, and that the Forrelation problem separates Q∥∗ from Q∥pub,
resolving an open problem from [12].

▶ Theorem 2. The Forrelation problem requires Ω(n1/4) qubits of communication in the
Q∥pub model.

This is also proved using a Fourier growth bound.

▶ Lemma 2. Let C : {−1, 1}n × {−1, 1}n → [−1, 1] be a Q∥pub protocol of cost c and let H

be its XOR-fiber as in Definition 7. Then, for all ℓ ∈ N, we have

L1,ℓ(H) ≤ Oℓ

(
cℓ

)
.

We remark that our techniques can also show that for the ⊕k-Forrelation problem, if
Alice and Bob only share O(k) EPR pairs, they require Ω(n1/4) qubits of communication in
the Q∥∗ model. We don’t show the details of this proof, instead, we prove a stronger result,
namely Theorem 3. We give an example of a partial function such that with Θ(k log n) EPR
pairs, it is solvable in the R∥∗ model with cost O(k log n), however, with only O(k) qubits of
entanglement requires cost Ω(n1/3) even in the Q∥∗ model.

2 For the introduction, we will loosely say “Fourier growth of communication protocols”, when strictly
speaking, we are referring to Fourier growth of XOR-fibers and other functions associated with commu-
nication protocols.

CCC 2023

25:6 Trade-Offs Between Entanglement and Communication

1.3 Result 2: Separations based on Boolean Hidden Matching

1.3.1 Problem Definition: The Boolean Hidden Matching Problem
We first define the Boolean Hidden Hatching problem. The (relational) Hidden Matching
problem was first defined by Bar Yossef et al. [4]. The Boolean Hidden Matching problem
was defined by Gavinsky et al. [14] in the context of one-way communication complexity and
was used to separate the R∥∗ and R1 models. Subsequently this problem and its variants
have found several applications, especially in proving streaming lower bounds starting with
the seminal work of Kapralov et al. [24]. The Boolean Hidden Matching problem, denoted
BHMm,n, is defined as follows. Let n, m ∈ N be parameters and m = αn for a small enough
constant α ≪ 1.

▶ Definition 4 (Boolean Hidden Matching). Alice gets x ∈ {−1, 1}n, Bob gets a matching
on [n] with m edges and a string y ∈ {−1, 1}m. Their goal is to compute BHMm,n(x, y, M)
given by

BHMm,n(x, y, M) =
{

−1 if Mx = y

1 if Mx = y.

Here, we use Mx ∈ {−1, 1}m to denote the vector whose k-th coordinate is xik
· xjk

for
k ∈ [m], where the edges of M are (i1, j1), . . . , (im, jm) ∈ [n]2. We also use y to denote −y.

Below we will be concerned with computing the XOR of k independent copies of BHMm,n.

▶ Definition 5 (⊕k-Boolean Hidden Matching Problem). This problem is the XOR of k

independent instances of the Boolean Hidden Matching problem. To be precise, Alice receives
x = (x(1), . . . , x(k)) and Bob receives y = (y(1), . . . , y(k)) and M1, . . . , Mk where x(i) ∈
{−1, 1}n, y(i) ∈ {−1, 1}m and Mi is a matching on [n] with m edges for all i ∈ [k]. They
need to compute

BHM(⊕k)
m,n (x, y) =

k∏
i=1

BHMm,n

(
x(i), y(i), Mi

)
.

1.3.2 Main Theorem
We now state our main theorem. Here, α ≪ 1 is some absolute constant and k ∈ N is a
parameter, possibly depending on n ∈ N.

▶ Theorem 3. The ⊕k-Boolean Hidden Matching problem can be solved with Õ(k log n) bits
of communication in the R∥∗ model if Alice and Bob share Θ̃(k log n) EPR pairs. However,
if Alice and Bob only share O(k) qubits of entanglement, then this problem requires

Ω(k
√

n) bits of communication in the R1∗ model,
Ω(kn1/3) qubits of communication in the Q∥∗ model.
Similarly to Theorem 1, we make a few remarks. Firstly, the upper bound holds provided

Alice and Bob share Θ̃(k log n) EPR pairs, however, the lower bound holds for all possible
entangled states on O(k) qubits, not necessarily EPR pairs. Secondly, although Theorem 3
is stated for bounded-error models, our lower bound also holds for protocols with advantage
2−o(k). The main technical contribution of this part is to argue that R1 and Q∥pub protocols
satisfy an XOR lemma with respect to computing the Boolean Hidden Matching problem.

S. Arunachalam and U. Girish 25:7

XOR Lemmas

XOR lemmas study the relation between the computational resources of F and the k-fold XOR
of F on k independent inputs. In particular, XOR lemmas for communication complexity
are of the following format: If cost-t protocols have advantage at most 2/3 in computing
F , then cost-o(tk) protocols have advantage at most 2−Θ(k) in computing the k-fold XOR
of F . XOR lemmas provide a framework to construct hard objects in a black-box way and
have applications to several areas in theoretical computer science such as one-way functions,
pseudorandom generators and streaming algorithms. We prove an XOR lemma for R1 and
Q∥pub protocols with respect to computing the Boolean Hidden Matching problem.

▶ Lemma 3. Let C be any Q∥pub protocol of cost c. Then its advantage in computing the

⊕k-Boolean Hidden Matching problem is at most Ok

(
(c/k)3

n

)k/2
+ Ok(n−k/2).

▶ Lemma 4. Let C be any R1 protocol of cost c. Then its advantage in computing the
⊕k-Boolean Hidden Matching problem is at most Ok

(
(c/k)2

n

)k/2
+ Ok(n−k/2).

Until very recently [41], we didn’t have an XOR lemma for R1 and as far as we are aware
we do not have any XOR lemmas for the quantum communication model. However we
do have direct product and direct sum theorems for classical and quantum communication
models (which are strictly weaker than XOR lemmas) and in fact this was used in the prior
work of [15, 22]. Our main technical contribution here is an XOR lemma for R1 and Q∥pub

protocols for the Boolean Hidden Matching problem. Only during completion of this project,
we were made aware of a recent work by Yu [41] proving an XOR lemma for all constant
round classical protocols (hence implying Lemma 4). Given the technicality of his proof, in
our paper we present a simple proof for an XOR lemma for the R1 model for the Boolean
Hidden Matching problem.

1.4 Proof Sketch
One of the difficulties of proving lower bounds against classical models equipped with
entanglement is that these models are quite powerful; using the quantum teleportation
protocol, any quantum protocol with q qubits of communication can be classically simulated
using q EPR pairs. Thus, all known partial functions that separate quantum and classical
communication complexity are easy to classically simulate in the presence of O(logc n) EPR
pairs for some small constant c > 0.

One approach to show a fine-grained separation between protocols with more entanglement
and protocols with less entanglement is the following. Consider any communication task
F that exhibits an exponential separation between quantum and classical communication
complexity. We have many examples of such tasks that are easy with O(log n) EPR pairs
but exponentially harder in the absence of entanglement. Consider the problem of solving k

independent and parallel instances of F . Here, the players receive k pairs of inputs (xi, yi)
and need to compute F (xi, yi) for every i ∈ [k]. We denote this problem by F (k). The hope
is that entanglement obeys a direct sum theorem of sorts, that is, if the players need at least
Ω(log n) qubits of entanglement to solve the original task, then to solve k independent and
parallel instances, they need at least Ω(k log n) qubits of entanglement. In particular, we
might hope that protocols that compute F (k) using only O(k) qubits of entanglement require
exponentially larger cost. There is a way to make this idea work and this was done in [11].
We describe this idea. Assume by contradiction that we have a small-cost protocol computing
F (k) using only O(k) qubits of entanglement.

CCC 2023

25:8 Trade-Offs Between Entanglement and Communication

Step 1: Remove entanglement. The first step is to remove all entanglement from this
protocol. To do this, we replace the entangled state on O(k) qubits by the maximally mixed
state on O(k) qubits. Since the maximally mixed state is unentangled, the resulting protocol
effectively uses no entanglement. Furthermore, the mixed state can be viewed as a probability
distribution over states, where the original entangled state occurs with probability 2−Θ(k). It
follows that this protocol succeeds with probability at least 2−Θ(k).

Step 2: Direct Product Theorems. The second step is to prove a direct product theorem
in the absence of entanglement. Direct product theorems in communication complexity are
of the following form: If for cost-t protocols, the probability of solving one instance of F is at
most 2/3, then for cost-o(tk) protocols, the probability of solving k parallel and independent
instances of F is at most 2−Θ(k). Establishing such theorems is highly non-trivial and for
one-way protocols, this was done by [11, 22].

Following this framework, the work of [11] gives examples of relational problems that
are easy to solve with Θ(k log n) EPR pairs but difficult with only O(k) EPR pairs. One
drawback of this approach is that the task F (k) has many output bits, regardless of whether F

is a partial function or a relational problem. To get separations for functions with single-bit
outputs, we need to modify this approach. We ask the players to solve the XOR of k

independent instances of F . Here, the players receive k pairs of inputs (xi, yi) and they need
to compute

∏
i∈[k] F (xi, yi). We denote this problem by F (⊕k). We will show that there is

no small-cost protocol solving F (⊕k) using only O(k) qubits of entanglement. To do this, we
assume by contradiction that there exists such a protocol.

Step 1: Remove entanglement. We produce a small-cost protocol for F (⊕k) that uses
no entanglement and has success probability at least 1/2 + 2−Θ(k), i.e., the advantage is at
least 2−Θ(k).

Step 2: XOR Lemmas. We establish an XOR lemma for protocols without entanglement.
We show that if for cost-t protocols, the probability of solving one instance is at most 2/3,
then for cost-o(tk) protocols, the probability of solving the XOR of k independent instances
is at most 1/2 + 2−Θ(k), i.e., the advantage is at most 2−Θ(k).

Together, this would establish the desired result. We now discuss some of the difficulties
in executing these steps and present our solutions. We first present the details of step 2 and
then step 1.

Details of Step 2. One difficulty with step 2 is that XOR lemmas are stronger than direct
product theorems and are thus harder to establish. In this work, we present XOR lemmas
that are tailored for particular functions. The functions we will be interested in are the
Forrelation problem and the Boolean Hidden Matching problem. For the former problem,
XOR lemmas for R2 protocols were established in [19]. For the Boolean Hidden Matching
problem, we show an XOR lemma for the R1 and Q∥pub models (Lemma 4 and Lemma 3).
We now describe this part in more detail.

Let F be the Boolean Hidden Matching problem. One central ingredient in our XOR
lemmas for F is the construction of hard distributions. The result of [14] shows hard
distributions Y and N on the yes and no instances of F respectively, such that no small-
cost protocol can distinguish these distributions with 1/3 advantage. We produce hard
distributions µ

(k)
−1 and µ

(k)
1 for the F (⊕k) problem such that no small-cost protocol can

S. Arunachalam and U. Girish 25:9

distinguish them with advantage 2−Θ(k). To get bounds of the form 2−Θ(k), it turns out that
our distributions need to agree on moments of size at most Θ(k). Motivated by this, we
define the following distributions.

µ
(k)
1 := 1

2k−1

∑
K⊆[k]

|K| is even

YKNK and µ
(k)
−1 := 1

2k−1

∑
K⊆[k]

|K| is odd

YKNK ,

Here, YKNK is a product of k independent distributions, where the i-th distribution is Y
if i ∈ K and is N . We show that the distributions µ

(k)
1 and µ

(k)
−1 are indeed distributions

on the no and yes instances respectively of the F (⊕k) problem, furthermore, they agree on
all moments of size at most k. To complete the argument, we need to show that small-cost
protocols cannot distinguish these distributions with more than 2−Θ(k) advantage. This is
fairly technical and involves the use of Fourier analysis. For R1 protocols, the k = 1 version of
this was proved in [14]. Their work in particular makes use of the level-k inequality. We build
on their work for R1 protocols and prove the desired XOR lemma for larger k (Lemma 4). For
Q∥pub protocols, we are not aware of any works that study the communication complexity of
F or that analyze the Fourier spectrum of such protocols, which is a contribution in this
paper. In particular we prove Fourier growth bounds for Q∥pub protocols (Lemma 2) as well
as an XOR lemma for the Boolean Hidden Matching problem (Lemma 3). For these, we
make use of a matrix version of the level-k inequality [5].

Details of Step 1. One difficulty with step 1 is that the trick of replacing an entangled
state by the maximally mixed state no longer works. It is possible for a protocol to be correct
when using a particular entangled state, but wrong for every orthogonal state. In this case,
executing the protocol on the maximally mixed state would bias the output towards the
wrong answer. Thus, carrying out step 1 is non-trivial and in particular, difficult to do for
R2∗ protocols. We take an alternate approach for R2∗ protocols to sidestep this difficulty,
which we will describe later. We are able to carry out step 1 for R1∗ and Q∥∗ protocols.
Given a cost c protocol for a function in the R1∗ model or Q∥∗ model using at most 2d qubits
of entanglement, we produce a cost c + O(d) protocol in the R1 or Q∥ model3 respectively;
these protocols use no entanglement and have advantage 2−Θ(d). We now give an illustrative
example of this simulation.

Consider a simple Q∥∗ protocol where the entangled state consists of d EPR pairs and
Alice and Bob apply a unitary operator to their part of the entangled state and send all
their qubits to Charlie. If Alice’s and Bob’s unitary operators map |i⟩ to |ui(x)⟩ and |vi(y)⟩
respectively, then the state received by the referee is the pure state

∑
i∈{−1,1}d |ui(x)⟩ |vi(y)⟩

(ignoring the normalization). We now construct a Q∥ protocol that produces the same state
with probability 2−Θ(d), furthermore, Charlie is able to detect when this state was successfully
produced. We have Alice and Bob send the pure states

∑
i |i⟩ |ui(x)⟩ and

∑
j |j⟩ |vj(y)⟩

respectively to Charlie. Charlie first projects onto states such that i = j and obtains the pure
state

∑
i∈{−1,1}d |i, i⟩ |ui(x)⟩ |vi(y)⟩ with probability 2−d. He then applies Hadamard on the

first 2d qubits and measures. He obtains the outcome |02d⟩ with probability 2−2d in which
the resulting state is the pure state

∑
i |ui(x)⟩ |vi(y)⟩ as in the original Q∥∗ protocol. We use

similar ideas to remove entanglement from arbitrary Q∥∗ protocols. To remove entanglement
from an R1∗ protocol, we need to take a different approach which involves Alice sending Bob
a random coordinate of a certain density matrix. We omit the details.

3 We use Q∥ to denote the private-coin version of the Q∥pub model.

CCC 2023

25:10 Trade-Offs Between Entanglement and Communication

Alternate Approach to Step 1 for R2∗ Protocols. We now present an alternative to step 1
for R2∗ protocols. The idea is to prove Fourier growth bounds for R2∗ protocols. The results
of [19] imply that for protocols whose level-2k Fourier growth is at most α, their advantage
in solving the ⊕k-Forrelation problem is at most α · n−k/2 + o(n−k/2). We directly establish
a Fourier growth bound on R2∗ protocols. In particular, we show that for R2∗ protocols
of communication cost c that use d qubits of entanglement, their level-ℓ Fourier growth
is at most poly(2d) · Oℓ(cℓ) (Lemma 1). Choosing ℓ = 2k, d = Θ(k) and c = Θ(n1/4) for
appropriate constants, we have that the advantage is at most poly(2d) · Oℓ(cℓ) · n−k/2 ≪ 1.
This would complete the proof. We now describe how we prove the Fourier growth bound on
R2∗ protocols (Lemma 1).

(1) We first show that if the players share a 2d-qubit entangled state, then we can decompose
the state into a small linear combination of poly(2d) many two-qubit quantum states that
are either unentangled, or locally equivalent to |Φ+⟩⟨Φ+|, the EPR state. (By locally
equivalent we mean that the players can transform one state into the other using local
unitaries and no communication.) This gives us the pre-factor of poly(2d) in Lemma 1.

(2) We analyze protocols where Alice and Bob share the EPR state and bound the Fourier
growth of such protocols. Observe that if they share an unentangled state, the protocol is
essentially an R2 protocol and the work of [18] showed Fourier growth for such protocols.
We strengthen this result by proving similar Fourier growth for R2∗ protocols where Alice
and Bob share the EPR state. To do this, we study the structure of such protocols. We first
show that the expected output of any R2∗ protocol of cost c where Alice and Bob share the
EPR state can be written as

C(x, y) =
∑

z∈{−1,1}c

αz · Tr((Ez(x) ⊗ Fz(y)) · ρ).

where Ez(x) and Fz(y) are positive semidefinite matrices,
∑

z∈{−1,1}c Ez(x) ⊗ Fz(y) = I,
αz ∈ {−1, 1}, and ρ = |Φ+⟩⟨Φ+| ⊗ |02m⟩⟨02m|AB for some m ∈ N that is possibly large. We
give some intuition on this expression. The qubits |0m⟩⟨0m|A and |0m⟩⟨0m|B in ρ correspond
to Alice and Bob’s private memory respectively and ρ captures the initial state of all the
qubits in the system. The matrices Ez(x) ⊗ Fz(y) arise out of Alice’s and Bob’s sequence of
quantum operations (i.e., POVMs) in the R2∗ protocol and the quantity Tr(Ez(x) ⊗ Fz(y) · ρ)
captures the probability of the transcript being z ∈ {−1, 1}c. The number αz ∈ {−1, 1} is 1
if and only if the transcript z results in the players outputting 1.

We now write out the Fourier expansion of the XOR fiber H(z) = Ex∼{−1,1}n [C(x, x+z)].
Using the convolution property of Fourier coefficients, we can express the Fourier coefficients
of H(z) in terms of the Fourier coefficients of Ez(x), Fz(y). In particular, we get

∑
|S|=ℓ

|Ĥ(S)| =
∑

|S|=ℓ

∣∣∣∣∣∣
∑

z∈{−1,1}c

αz · Tr
((

Êz(S) ⊗ F̂z(S)
)

· ρ
)∣∣∣∣∣∣ .

We now use the fact that ρ has exactly four non-zero entries. This zeroes out all but four
coordinates of Êz(S) ⊗ F̂z(S) in the above expression. At this point, we use the level-k
inequality by Lee [28] to bound each of the coordinates separately in terms of the entries of
Ez(x) and Fz(y). Using the fact that {Ez(x) ⊗ Fz(y)}z forms a POVM, we can bound the
coordinates of these matrices and combine them with the bounds we obtain from the level-k
inequality in a nice way.

S. Arunachalam and U. Girish 25:11

1.5 Organization
In this version of the paper, we only prove the XOR lemmas for the Boolean Hidden Matching
Problem in the R1 and Q∥pub models. For more details and the rest of the proofs, see the
full version of this paper.

2 Preliminaries

Sets. For n ∈ N, let [n] = {1, . . . , n}. We use 1 to denote the indicator function, i.e., for
a predicate E, 1[E] is 1 if E is satisfied and 0 otherwise. For a subset S ⊆ [n], we use
S := [n] \ S to denote the complement of S. We denote the n × n identity matrix by In, and
we omit the subscript if it is implicit.

Big O Notation. For simplicity in notation, for every f, g : R≥0 → R≥0 and ℓ ∈ N, we say
that g = Oℓ(f) if for some constant c > 0, we have g = O

(
f · 2c·ℓ). We say that f = Õ(g)

(respectively f = Ω̃(g)) if for some constant c > 0, we have f = O(g · logc(g)) (respectively
f = Ω(g · log−c(g))). We say that f = Θ̃(g) if f = Õ(g) and f = Ω̃(g).

Probability Distributions. Let Σ be an alphabet and D be a probability distribution over Σ.
We use x ∼ D to denote x sampled according to D. We use supp(D) to denote the support
of the distribution D. We use x ∼ Σ to denote a uniformly random sample from Σ. For
a function G : Σ → Rn, we use Ex∼D[G(x)] to denote the expected value of G when the
inputs are drawn according to D. Let k ∈ N, S ⊆ [k] and D, D′ be two distributions over
Σ. We use DSD′

S
to denote the distribution over Σk which is a product of k independent

distributions over Σ, where the ith distribution is D if i ∈ S and D′ if i /∈ S for all i ∈ [k].
For distributions, D, D′, define the total variation distance as ∥D − D′∥1 :=

∑
i |D(i) − D′(i)|.

Norms. Let k ∈ N. For a vector v ∈ Rn, we use ∥v∥k :=
(∑

i∈[n] |vi|k
)1/k

to denote

the ℓk-norm of v. For any matrix M ∈ Rn×n, we use |M | to denote
√

MM† and we
denote by ∥M∥1 the trace norm of M , that is ∥M∥1 := Tr(

√
MM†) = Tr(|M |). We use

∥M∥op := max∥v∥2=1(vT Mv) to denote the operator norm of M .

2.1 Quantum information
Quantum States. Let d ∈ N and let H be a Hilbert space of dimension 2d. This is a vector
space defined by the R-span of the orthonormal basis {|x⟩ : x ∈ {0, 1}d}. We also identify
this basis with {|i⟩ : i ∈ [2d]} using the lexicographic ordering as the correspondence. We use
|0d⟩ to denote the vector |0, . . . , 0⟩ with d zeroes. Let P(H) be the set of positive semidefinite
matrices in R2d×2d . Let S(H) be the set of density operators on H, that is, matrices in P(H)
with trace 1. We typically use ρ and σ to refer to elements of S(H). The state of a quantum
system on d qubits is described by a density operator ρ ∈ S(H). For states that are shared
between Alice and Bob, we use the subscript A and B on qubits to denote whether Alice or
Bob own those qubits.

Quantum State Evolution. Let H, H′ be Hilbert spaces. The evolution of a quantum state
is described by a map E : S(H) → S(H′) which is CPTP (i.e., completely positive and trace
preserving). We use the notation E(ρ) to denote the image of ρ under E. In particular, we
will be interested in measurement operators. Any quantum measurement with k outcomes

CCC 2023

25:12 Trade-Offs Between Entanglement and Communication

is specified by k matrices M1, . . . , Mk ∈ P(H) such that
∑

i∈[k] M†
i Mi = I. The probability

of getting outcome i ∈ [k] is precisely Tr(MiρM†
i) and the post measurement state upon

obtaining the outcome i is MiρM†
i

Tr(MiρM†
i

)
. We have a correspondence between {0, 1} and {1, −1}

defined by 0 → 1, 1 → −1, hence, we will sometimes refer to measurement outcomes “1” and
“0” as “-1” and “1” respectively.

Distance between States. Let ρ, σ ∈ S(H) be density operators. We define the trace
distance between ρ and σ to be ∥ρ−σ∥1

2 . We will use the following standard facts about the
trace distance. Firstly, the trace distance satisfies triangle inequality. Secondly, the trace
distance between ρ and σ is equal to the maximum probability with which these states can
be distinguished using any single projective measurement. Thirdly, the following inequality
holds as a consequence of the Von-Neumann Inequality.

▶ Fact 6. For any matrices M, ρ ∈ Rn×n, we have Tr(Mρ) ≤ ∥M∥op · ∥ρ∥1.

2.2 Communication Complexity

The goal in communication complexity is for Alice and Bob to compute a function F :
X × Y → {−1, 1, ⋆}. We interpret −1 as a yes and 1 as a no. We say F is a total function
if F (x, y) ∈ {−1, 1} for all x ∈ X and y ∈ Y , otherwise F is a partial function. In this paper
we will be mostly concerned with partial functions and denote dom(F) = F −1({−1, 1}).
Here Alice receives an input x ∈ X (unknown to Bob) and Bob receives an input y ∈ Y
(unknown to Alice) promised that (x, y) ∈ dom(F) and their goal is to compute F (x, y)
with high probability, i.e., probability at least 2/3. More formally, for any protocol P,
we let cost(P, x, y) be the communication cost of P when Alice and Bob are given x, y

as inputs. We say that P computes F , if, for every (x, y) ∈ dom(F), the output of the
protocol is F (x, y) with probability at least 2/3 (where the probability is taken over the
randomness/measurements of the protocol). The communication complexity of F is defined as

min
P computes F

max
(x,y)∈dom(F)

cost(P, x, y).

The messages sent are referred to as the transcript of the protocol. We discuss a few models
of communication of interest to us.

Simultaneous Message Passing Model. This is a general model of communication called
the simultaneous message passing (SMP) model. In this model, Alice and Bob each send
a single (possibly quantum or randomized) message to a referee Charlie. The goal is for
Charlie to output F (x, y) with high probability, i.e., at least 2/3 probability. We measure
the cost of a communication protocol by the total number of bits (or qubits) received by
Charlie. There are many types of simultaneous protocols.

Quantum versus Classical protocols. We use R∥ to denote the SMP model where the
players can only send classical messages to Charlie. We use Q∥ to denote the SMP model
where the players can send a quantum message to Charlie.

Public-coin versus Private-coin Protocols. If we allow the players to use public coins, we
use the superscript “pub”. For instance, Q∥pub denotes the public-coin quantum SMP model
and Q∥ denotes the private-coin quantum SMP model. Unless otherwise specified, all protocols
are private coin protocols.

S. Arunachalam and U. Girish 25:13

One-Way Model. In this model, Alice sends a single message to Bob, who should output
F (x, y) with probability at least 2/3. The cost of the protocol is the size of message Alice
sends. By a classical result of Newman [31], we can assume that all one-way protocols are
private-coin protocols with an O(log n) additive overhead in the communication complexity.
We use R1 to denote the one-way model of communication where Alice sends a classical
message to Bob.

Two-Way Model. Here Alice and Bob are allowed to exchange messages, and Alice should
finally output F (x, y) with probability at least 2/3. The cost of the protocol is the total size
of the transcript. As before, by a result of Newman [31], we can assume that all two-way
protocols are private-coin protocols with an O(log n) additive overhead in the communication
complexity. We use R2 to denote the model of two-way communication where Alice and Bob
exchange classical messages.

We now discuss protocols where Alice and Bob can share an entangled state that is
independent of their inputs. One important type of entangled state is the EPR pair: This
is the state |Φ+⟩⟨Φ+| where |Φ+⟩ = 1√

2 (|0⟩A |0⟩B + |1⟩A |1⟩B). Here, the subscript on the
qubit denotes which player owns the qubit. The upper bound in all our theorems will be
established using quantum protocols where the players share a certain number of EPR pairs.
We typically specify the dimension of the state shared by Alice and Bob.

Protocols with entanglement. We use R∥∗ to denote the simultaneous model of com-
munication where Alice and Bob share an entangled state and send classical messages to
the referee. The model Q∥∗ is similarly defined, but Alice and Bob can send quantum
messages to the referee. We use R1∗ to denote the one-way model where Alice and Bob share
entanglement and Alice sends a classical message to Bob. We use R2∗ to denote the two-way
model where Alice and Bob share entanglement and the messages are classical. In this model,
by the quantum teleportation protocol, the players can exchange a limited number of qubits.
Conversely, if the players can exchange a limited number of qubits, then Alice can create
EPR pairs by herself and send the corresponding qubits to Bob.

For ease of readability, we summarize all the communication models in the table below.

Table 1 Table of Simultaneous Communication Models.

Private Coins Public Coins Entanglement
Classical Messages R∥ R∥pub R∥∗

Quantum Messages Q∥ Q∥pub Q∥∗

Table 2 Table of One-Way & Two-Way Communication Models.

One-way Two-way
Private Coins Private Coins

(≡ Public Coins) (≡ Public Coins)
Classical Messages R1 R2
Classical Messages R1∗ R2∗

& Entanglement

CCC 2023

25:14 Trade-Offs Between Entanglement and Communication

2.3 XOR-Fibers of Communication Protocols
▶ Definition 7. Given a communication protocol C : {−1, 1}n × {−1, 1}n → [−1, 1], the
XOR-fiber of C is a function H : {−1, 1}n → [−1, 1] defined at z ∈ {−1, 1}n by H(z) =
Ex∼{−1,1}n [C(x, x ⊙ z)], where ⊙ denotes point-wise product.

The communication complexity of XOR functions are well-studied and have connections
to the log-rank conjecture, parity decision trees, lifting theorems and separations between
quantum and classical communication complexity [30, 20, 39, 38, 42]. XOR-fibers of com-
munication protocols naturally arise in the study of communication complexity of XOR
functions. Although we are not aware of any published works defining the term “XOR-fiber”,
this concept has been studied in many works, most notably [18] and [33].

2.4 Fourier analysis
Fourier Analysis on the Boolean Hypercube. We discuss some of the basics of Fourier
analysis. Let f : {−1, 1}n → R be a function. The Fourier decomposition of f is

f(x) =
∑

S⊆[n]

f̂(S)χS(x),

where χS(x) =
∏

i∈S xi. The Fourier coefficients of f are defined as f̂(S) = Ex∼{−1,1}n [f(x) ·
χS(x)]. For ℓ ∈ N, the level-ℓ Fourier mass of f is denoted by L1,ℓ(f) and is defined as
follows.

L1,ℓ(f) =
∑

|S|=ℓ

∣∣∣f̂(S)
∣∣∣

By Fourier growth bounds, we typically mean upper bounds on L1,ℓ(f). We will need the
following technical lemma, often called the level-k inequality.

▶ Lemma 8 ([28, Lemma 10]). Let f : {−1, 1}n → [−1, 1] be a function with Ex[|f(x)|] = α.
Then for every ℓ ∈ N,∑

|S|=ℓ

f̂(S)2 ≤ 4α2 · (2e · ln(e/α1/ℓ))ℓ.

Although Lemma 10 in [28] is only stated for functions with range [0, 1], the same proof
technique can be applied for functions with range [−1, 1]. We remark that the bound often
invoked [32, 14] is with the upper bound of O(α2 · lnℓ(1/α)) (i.e., without the 1/ℓ exponent
on α) which only holds for ℓ ≤ 2 ln(1/α). However this improved upper bound, proven
recently in [28], holds for all ℓ ∈ N. This makes our proofs much simpler and saves some
logarithmic factors.

Fourier analysis for Matrix-Valued Functions. The Fourier coefficients of a matrix-valued
function f : {−1, 1}n → Rm×m are defined by

f̂(S) := E
x∼{−1,1}n

[f(x) · χS(x)]

for all S ⊆ [n]. We also use a matrix version of the level-k inequality.

S. Arunachalam and U. Girish 25:15

▶ Lemma 9 ([5, Theorem 7]). Let H be a Hilbert space of dimension 2c and let f : {−1, 1}n →
S(H) be a density-matrix valued function. Then, for any ℓ ∈ N such that ℓ ≤ 2 ln(2)c,∑

|S|=ℓ

Tr2 (
|ρ̂S |

)
≤ ((2e ln 2) · c/ℓ)ℓ

.

Let H′ be a Hilbert space that contains H of dimension c′ ≥ c . We can view f as a function
f : {−1, 1}n → S(H′) by simply appending zeroes to the output matrix. Given any ℓ ∈ N
that is possibly larger than c, set c′ := c + ⌈ ℓ

2 ln 2 ⌉ so that ℓ ≤ 2 ln(2) · c′. Using this setting
of parameters and Lemma 9, we have the following corollary.

▶ Corollary 10. Let H be a Hilbert space of dimension 2c and let f : {−1, 1}n → S(H) be a
density-matrix valued function. Then, for any ℓ ∈ N,∑

|S|=ℓ

Tr2 (
|ρ̂S |

)
≤ Oℓ

(
(c/ℓ)ℓ

)
+ Oℓ(1).

3 XOR Lemma for Q∥pub for the Boolean Hidden Matching Problem

Our main technical result in this section is an XOR lemma for Q∥pub protocols with regards
to the Boolean Hidden Matching problem.

▶ Lemma 3. Let C be any Q∥pub protocol of cost c. Then its advantage in computing the

⊕k-Boolean Hidden Matching problem is at most Ok

(
(c/k)3

n

)k/2
+ Ok(n−k/2).

To prove this lemma, we will make use of some properties which are very similar to those
proved in [14]. The proofs of the facts are deferred to the full version of the paper. Let
M be the uniform distribution on matchings on [n] of size m = αn and U be the uniform
distribution on {−1, 1}n.

▶ Definition 11 (M matches S). Let S ⊆ [nk] and M ∈ supp(M⊗k). We say that M

matches S if M is an induced perfect matching on S. If M matches S, we use M(S) ⊆ [mk]
to denote the subset of edges of this induced perfect matching.

Observe that the map T = M(S) defines a bijection between sets S that are matched by
M and subsets T ⊆ [mk]. Furthermore, |T | = |S|/2 and for any i ∈ [k], |Ti| is odd if and
only if |Si|/2 is odd. We now define some sets that will be important in the proof.

▶ Definition 12. Let Sn,k := {S ⊆ [nk] : ∀i ∈ [k], |Si|/2 is an odd integer} and Tn,k :=
{T ⊆ [mk] : ∀i ∈ [k], |Ti| is an odd integer}. Define Sℓ

n,k := {S ∈ Sn,k : |S| = 2ℓ} and
T ℓ

n,k := {T ∈ Tn,k : |T | = ℓ} for all ℓ ∈ [mk].

The aforementioned map T = M(S) provides a bijection between sets S ∈ Sℓ
n,k that are

matched by M and sets T ∈ T ℓ
n,k. The following facts can be proved using techniques in [14].

The details are deferred to the full version of the paper.

▶ Fact 13. Let S ⊆ [nk] and M ∈ supp(M⊗k). Then, for any w ∈ {−1, 1}mk, the quantity

E
x∼U⊗k

[1[Mx = w] · χS(x)]

is non-zero if and only if M matches S. Furthermore, if it is non-zero, it equals 2−mk ·
χM(S)(w).

CCC 2023

25:16 Trade-Offs Between Entanglement and Communication

▶ Fact 14. Let S ⊆ [nk] with |S| = 2ℓ. Then,

Pr
M∼M⊗k

[M matches S] ≤ Oℓ

(
ℓℓ

(nk)ℓ

)
.

We now prove our main lemma of this subsection.

Proof of Lemma 3. We assume that (c/k)3/2 ≤ τ · n1/2 for some small constant τ > 0,
otherwise the statement of the lemma is vacuously true. We will construct distributions on
the yes and no instances of the ⊕k-Boolean Hidden Matching problem such that no small
cost Q∥ protocol can distinguish them with considerable advantage. Consider the following
two distributions.

N is a distribution on no-instances of BHMm,n: A random sample of N is of the form
(x, M, y) where x ∼ U , M ∼ M and y := Mx.
Y is a distribution on yes-instances of BHMm,n defined similarly to N except that
y := Mx.

Define two distribution µ
(k)
1 , µ

(k)
−1 on inputs to the ⊕k-Boolean Hidden Matching problem

as follows.

µ
(k)
1 := 1

2k−1

∑
K⊆[k]

|K| is even

YKNK and µ
(k)
−1 := 1

2k−1

∑
K⊆[k]

|K| is odd

YKNK . (1)

Recall that YKNK is a product of k independent distributions, where the i-th distribution
is Y if i ∈ K and is N if i /∈ K. Clearly µ

(k)
−1 and µ

(k)
1 are distributions on the yes and no

instances respectively of the ⊕k-Boolean Hidden Matching problem.
Consider any Q∥ protocol with c qubits of communication and let H be a Hilbert space

of dimension 2c. Such a protocol can be described by density matrices ρ(x) ∈ S(H) and
σM (y) ∈ S(H) for every x ∈ {−1, 1}nk, y ∈ {−1, 1}mk and M ∈ supp(M⊗k). The state
received by Charlie on these inputs is precisely ρ(x) ⊗ σM (y). We will show that the trace
distance between the states E(x,M,y)∼µ

(k)
1

[ρ(x) ⊗ σM (y)] and E(x,M,y)∼µ
(k)
−1

[ρ(x) ⊗ σM (y)]

is at most Ok

(
(c/k)3k/2

nk/2

)
. Since the trace distance measures the maximal distinguishing

probability between the two states, this, along with Yao’s principle would complete the proof.
Towards this, define

∆ := E
(x,M,y)∼µ

(k)
1

[ρ(x) ⊗ σM (y)] − E
(x,M,y)∼µ

(k)
−1

[ρ(x) ⊗ σM (y)] .

Using the definition of µ
(k)
1 and µ

(k)
−1 in Eq. (1), we have

∆ ≜
∑

K⊆[k]

(−1)|K|

2k−1 · E
x∼U⊗k

M∼M⊗k

[
ρ(x) ⊗ σM

(
(Mx)K(Mx)K

)]
.

We introduce a variable w ∈ {−1, 1}mk to represent Mx so that

∆ =
∑

w∈{−1,1}mk

K⊆[k]

(−1)|K|

2k−1 · E
x∼U⊗k

M∼M⊗k

[
ρ(x) ⊗ σM

(
wKwK

)
· 1[Mx = w]

]
.

We expand ρ(x) in the Fourier Basis to obtain

∆ =
∑

w∈{−1,1}mk

K⊆[k]
S⊆[nk]

(−1)|K|

2k−1 · E
x∼U⊗k

M∼M⊗k

[
ρ̂(S) ⊗ σM

(
wKwK

)
· [1[Mx = w] · χS(x)]

]
.

S. Arunachalam and U. Girish 25:17

Consider the term E
x∼U⊗k

[1[Mx = w] · χS(x)]. By Fact 13, this term is non-zero if and

only if M matches S, in which case the term evaluates to 2−mk · χM(S)(w). Substituting this
in the equation above, we have that ∆ equals∑

w∈{−1,1}mk

K⊆[k]
S⊆[nk]

(−1)|K|

2k−1 E
M∼M⊗k

[
ρ̂(S) ⊗ σM

(
wKwK

)
· 2−mk · χM(S)(w) · 1[M matches S]

]
.

(2)

We now expand σM

(
wKwK

)
in the Fourier basis with respect to w. Consider∑

K⊆[k]

(−1)|K| · σM

(
wKwK

)
=

∑
K⊆[k]

(−1)|K| ·
∑

T ⊆[mk]

σ̂M (T) · χT (wK , wK)

=
∑

K⊆[k]
T ⊆[mk]

(−1)|K| · σ̂M (T) · χT (w) · (−1)
∑

i∈K
|Ti|

=
∑

T ⊆[mk]

σ̂M (T) · χT (w) ·
∑

K⊆[k]

[
(−1)|K|+

∑
i∈K

|Ti|]
.

For i ∈ [k], let ti = −1 if |Ti| is odd and ti = 1 if |Ti| is even. Observe that

E
K⊆[k]

[
(−1)|K|+

∑
i∈K

|Ti|] = E
K⊆[k]

[
χK(−t1, . . . , −tk)

]
=

{
1 if ∀i ∈ [k], ti = −1,

0 otherwise.

Hence, the quantity
∑

K⊆[k]
[
(−1)|K|+

∑
i∈K

|Ti|] is non-zero if and only if |Ti| is odd for
all i ∈ [k]. Furthermore, if it is non-zero, then it equals 2k. Recall that we defined
Tnk := {T ⊆ [mk] : ∀i ∈ [k], |Ti| is odd} in Definition 12. Using this, we have∑

K⊆[k]

(−1)|K| · σM

(
wKwK

)
= 2k ·

∑
T ∈Tn,k

σ̂M (T) · χT (w). (3)

Substituting this in Eq. (2), we have that ∆ equals

2
∑

w∈{−1,1}mk

S⊆[nk]

E
M∼M⊗k

ρ̂(S) ⊗
∑

T ∈Tn,k

σ̂M (T) · 2−mk · χM(S)(w) · χT (w) · 1[M matches S]

= 2
∑

S⊆[nk]

E
M∼M⊗k

ρ̂(S) ⊗
∑

T ∈Tn,k

σ̂M (T) · E
w∼{−1,1}mk

[χM(S)+T (w)] · 1[M matches S]

 .

Observe that if M matches S, then Ew∼{−1,1}mk

[
χM(S)+T (w)

]
equals 1 if T = M(S) and

0 otherwise. Recall that the sets S ⊆ [nk] such that M matches S and M(S) ∈ Tn,k are
precisely those sets in Sn,k that are matched by M . Hence,

∆ =
∑

S∈Sn,k

ρ̂(S) ⊗ EM [σ̂M (M(S)) · 1[M matches S]] .

We now upper bound ∥∆∥1 by triangle inequality as follows.

∥∆∥1 ≤
∑

S∈Sn,k

∥ρ̂(S)∥1 ⊗ EM [∥σ̂M (M(S))∥1 · 1[M matches S]] .

CCC 2023

25:18 Trade-Offs Between Entanglement and Communication

We partition Sn,k and Tn,k into ⊔ℓSℓ
nk and ⊔ℓT ℓ

n,k based on the size of the sets as in Defini-
tion 12. Observe that every set in Sn,k has size at least 2k and every set in Tn,k has size at
least k. Thus,

∥∆∥1 ≤
mk∑
ℓ=k

∑
S∈Sℓ

k,n

∥ρ̂(S)∥1 ⊗ EM

[
∥σ̂M (M(S))∥1 · 1[M matches S]

]
. (4)

We now apply Cauchy-Schwarz to conclude that

E
M∼M⊗k

[
∥σ̂M (M(S))∥1 · 1[M matches S]

]
≤

√
E

M∼M⊗k

[
∥σ̂M (M(S))∥2

1 · 1[M matches S]
]

·
√

Pr
M∼M⊗k

[M matches S].

Fact 14 implies that for any S ∈ T ℓ
n,k, we have Pr

M∼M⊗k
[M matches S] ≤ Oℓ

(
ℓℓ

(nk)ℓ

)
. Substi-

tuting this in Eq. (4) implies that

∥∆∥1 ≤
mk∑
ℓ=k

∑
S∈Sℓ

nk

∥ρ̂(S)∥1 ·
√
EM

[
∥σ̂M (M(S))∥2

1 · 1[M matches S]
]

· Oℓ

(
ℓℓ/2

(nk)ℓ/2

)
.

Again, by Cauchy-Schwarz, we have

∥∆∥1 ≤
mk∑
ℓ=k

√√√√ ∑
S∈Sℓ

n,k

∥ρ̂(S)∥2
1·

√√√√ ∑
S∈Sℓ

n,k

EM

[
∥σ̂M (M(S))∥2

1 · 1[M matches S
]
·Oℓ

(
ℓℓ/2

(nk)ℓ/2

)
.

By the aforementioned correspondence between sets S ∈ Sℓ
n,k such that M matches S and

sets T ∈ T ℓ
n,k, we have

∥∆∥1 ≤
mk∑
ℓ=k

√√√√ ∑
S∈Sℓ

n,k

∥ρ̂(S)∥2
1 ·

√√√√ ∑
T ∈T ℓ

n,k

EM

[
∥σ̂M (T)∥2

1

]
· Oℓ

(
ℓℓ/2

(nk)ℓ/2

)
. (5)

We now apply the Matrix level-k inequality in Corollary 10 to the functions ρ : {−1, 1}n →
S(H) and σM : {−1, 1}m → S(H) where H is a Hilbert space of dimension 2c. Corollary 10
implies that∑

|S|=2ℓ

∥ρ̂(S)∥2
1 ≤ Oℓ

(
(c/ℓ)2ℓ

)
+ Oℓ(1) and

∑
|T |=ℓ

∥σ̂M (T)∥2
1 ≤ Oℓ

(
(c/ℓ)ℓ

)
+ Oℓ(1).

Substituting this in Eq. (5), we get

∥∆∥1 ≤
mk∑
ℓ=k

√ ∑
S:|S|=2ℓ

∥ρ̂(S)∥2
1 ·

√ ∑
T :|T |=ℓ

EM

[
∥σ̂M (T)∥2

1

]
· Oℓ

(
ℓℓ/2

(nk)ℓ/2

)

≤
mk∑
ℓ=k

max
(

Oℓ

(
c3ℓ/2

ℓ3ℓ/2

)
, Oℓ(1)

)
· Oℓ

(
ℓℓ/2

(nk)ℓ/2

)

≤
mk∑
ℓ=k

Oℓ

(
c3ℓ/2

ℓℓ(nk)ℓ/2

)
+

mk∑
ℓ=k

Oℓ

(
ℓℓ/2

(nk)ℓ/2

)
.

S. Arunachalam and U. Girish 25:19

Since ℓ ≤ mk = α · nk for a sufficiently small constant α > 0, the function ℓℓ/2/(nk)ℓ/2 is
exponentially decaying for ℓ ∈ [k, mk] and hence the second term is at most Ok

(
n−k/2)

. Our
assumption that (c/k)3/2 ≤ τ · n1/2 for a sufficiently small constant τ > 0 implies that the
function c3ℓ/2/(ℓℓ(nk)ℓ/2) is exponentially decaying for ℓ ∈ [k, mk] and hence, the first term
above is at most Ok

(
(c/k)3k/2

nk/2

)
. Together, we have

∥∆∥1 ≤ Ok

(
(c/k)3k/2

nk/2

)
+ Ok(n−k/2).

This completes the proof of Lemma 3. ◀

4 XOR Lemma for R1 for the Boolean Hidden Matching Problem

In this subsection, we prove Lemma 4 which we restate here for convenience.

▶ Lemma 4. Let C be any R1 protocol of cost c. Then its advantage in computing the
⊕k-Boolean Hidden Matching problem is at most Ok

(
(c/k)2

n

)k/2
+ Ok(n−k/2).

Proof of Lemma 4. The proof of this lemma will be similar to the proof of Lemma 3 and
hence we will follow similar notation. Let z ∈ {−1, 1}c be any c-bit message sent by Alice
and let Az ⊆ {−1, 1}nk be the set of Alice’s inputs for which Alice would have sent z to
Bob. Let g(x) = 1[x ∈ Az]. Fix any M ∈ supp(M⊗k). Similar to Lemma 3, let N M (y) be
the distribution on y ∈ {−1, 1}mk induced by sampling x ∼ Az and letting y = Mx. Let
YM (y) be similarly defined with y := Mx. So we have that N M (y) = |{x∈Az|Mx=y}|

|Az| and

YM (y) = |{x∈Az|Mx=y}|
|Az| for all y ∈ {−1, 1}mk. Define

µ
(k)
1 := 1

2k−1

∑
K⊆[k]

|K| is even

YM
K N M

K
and µ

(k)
−1 := 1

2k−1

∑
K⊆[k]

|K| is odd

YKN M
K

. (6)

Below we show that for a typical M ∼ M⊗k, these two distributions are close in total
variational distance. By arguments similar to [14], this would complete the proof. To this
end, let

∆Az
:= E

M∼M⊗k

[∥∥∥µ
(k)
1 − µ

(k)
−1

∥∥∥
1

]
.

By Eq. (6), we have µ
(k)
1 − µ

(k)
−1 = 21−k ·

∑
K⊆[k](−1)|K|YM

K N M
K

. Hence

∆2
Az

≤ 2mk · EM

[∥∥∥µ
(k)
1 − µ

(k)
−1

∥∥∥2

2

]
= 2mk · EM

2−2k+2 ·

∥∥∥∥∥∥
∑

K⊆[k]

YM
K N M

K
(−1)|K|

∥∥∥∥∥∥
2

2

 ,

where the first inequality is by the Cauchy-Schwarz inequality. By Parseval’s theorem, we
have

∆2
Az

≤ 22mk−2k+2 · EM

 ∑
T ⊆[mk]

T ̸=∅

 ∑
K⊆[k]

̂YM
K N M

K
(T)(−1)|K|

2
 . (7)

CCC 2023

25:20 Trade-Offs Between Entanglement and Communication

Observe that

̂YM
K N M

K
(T)

= 1
2mk

∑
y∈{−1,1}mk

(
YM

K N M
K

)
(y) · χT (y)

= 1
2mk · |Az|

(∣∣{x ∈ Az|χT

(
(Mx)K(Mx)K

)
= 1

}∣∣
−

∣∣{x ∈ Az

∣∣ χT

(
(Mx)K(Mx)K

)
= −1

}∣∣)
= 1

2mk · |Az|

(∣∣∣{x ∈ Az

∣∣∣ χT (Mx) = (−1)
∑

i∈K
|Ti|

}∣∣∣
−

∣∣∣{x ∈ Az

∣∣∣ χT (Mx) ̸= (−1)
∑

i∈K
|Ti|

}∣∣∣)
= 1

2mk

∑
y∈{−1,1}mk

N ⊗k(y) · χT (y) · (−1)
∑

i∈K
|Ti|

= N̂ ⊗k(T) · (−1)
∑

i∈K
|Ti|

.

By an argument analogous to [14, Eq. (3)], we have N̂ ⊗k(T) = 2nk

|Az|·2mk · ĝ(M†T). Hence

∑
K⊆[k]

̂YM
K N M

K
(T) · (−1)|K| = 2nk

2mk · |Az|
· ĝ(M†T) ·

∑
K⊆[k]

(−1)|K|+
∑

i∈K
|Ti|

. (8)

As we saw in Eq. (3), the term
∑

K⊆[k](−1)|K|+
∑

i∈K
|Ti| is 2k if |Ti| is odd for all i ∈ [k]

and zero otherwise. Hence, the R.H.S. of Eq. (8) is non-zero only if T ∈ Tn,k (defined
in Definition 12), and in this case equals 2nk

2mk·|Az| · ĝ(M†T) · 2k. Substituting this in Eq. (7),
we have that ∆2

Az
equals

22mk−2k+2 · EM

 ∑
T ∈Tn,k

22nk+2k

22mk · |Az|2
ĝ(M†T)2

 = 4 · EM

 ∑
T ∈Tn,k

22n

|Az|2
ĝ(M†T)2

 .

Recall the correspondence between Tn,k and Sn,k as in Definition 12. For every S ∈ Sn,k,
there is at most one T ∈ Tn,k such that M†T = S, furthermore, such a T exists if and only
if M matches S. Hence we have that

∆2
Az

≤ 4 · EM

 ∑
S∈Sn,k

22n

|Az|2
ĝ(S)2 · 1[M matches S]

= 4 ·

mk∑
ℓ=k

∑
S∈Sℓ

n,k

22n

|Az|2
ĝ(S)2 · Pr

M
[M matches S]

≤
mk∑
ℓ=k

 ∑
|S|=2ℓ

22n

|Az|2
ĝ(S)2

 · Oℓ

(
ℓℓ

(nk)ℓ

)
,

where we used Fact 14. Let µ(Az) = |Az|
2n . Applying Lemma 8, we have

∆2
Az

≤
mk∑
ℓ=k

(
2e · ln

(
e

µ(Az)1/(2ℓ)

))2ℓ

· Oℓ

(
ℓℓ

(nk)ℓ

)
.

S. Arunachalam and U. Girish 25:21

We now take square root on both sides (and use concavity of the square root function) to get

∆Az ≤
mk∑
ℓ=k

(
2e · ln

(
e

µ(Az)1/(2ℓ)

))ℓ

· Oℓ

(
ℓℓ/2

(nk)ℓ/2

)
.

We now multiply both sides by µ(Az) and add over all 2c possibilities for the transcript
z ∈ {−1, 1}c.

∆ :=
∑

z∈{−1,1}c

∆Az
≤

∑
z∈{−1,1}c

µ(Az) ·
mk∑
ℓ=k

(
2e · ln

(
e

µ(Az)1/(2ℓ)

))ℓ

· Oℓ

(
ℓℓ/2

(nk)ℓ/2

)
.

We now use the concavity of the function h′(γ) = γ · ln(e/γ1/2ℓ)ℓ for γ ∈ [0, 1] and all ℓ ∈ N,
to conclude that

∆ ≤
mk∑
ℓ=k

 ∑
z∈{−1,1}c

µ(Az)

 ·

2e · ln

 e · 2c/(2ℓ)(∑
z∈{−1,1}c µ(Az)

)1/(2ℓ)

ℓ

· Oℓ

(
ℓℓ/2

(nk)ℓ/2

)
.

We use the fact that
∑

z∈{−1,1}c µ(Az) = 1 to conclude that

∆ ≤
mk∑
ℓ=k

(
2e · ln

(
e · 2c/(2ℓ)

))ℓ

· Oℓ

(
ℓℓ/2

(nk)ℓ/2

)

≤
mk∑
ℓ=k

Oℓ

(
ℓℓ/2

(nk)ℓ/2

)
+

mk∑
ℓ=k

Oℓ

(
cℓ

(ℓnk)ℓ/2

)
.

As before, the first term is at most O(n−k/2). The assumption that c · k ≤ τ · n1/2 for a
small enough constant τ > 0 implies that the function cℓ

(ℓnk)ℓ/2 is exponentially decaying for

ℓ ∈ [k, mk]. Hence, the second term is at most Oℓ

(
(c/k)k

nk/2

)
. This, along with the techniques

of [14] completes the proof of Lemma 4. ◀

References
1 Scott Aaronson. BQP and the polynomial hierarchy. In Proceedings of the forty-second ACM

symposium on Theory of computing, pages 141–150, 2010.
2 Scott Aaronson and Andris Ambainis. Forrelation: A problem that optimally separates

quantum from classical computing. In Proceedings of the forty-seventh annual ACM symposium
on Theory of computing, pages 307–316, 2015.

3 Nikhil Bansal and Makrand Sinha. k-forrelation optimally separates quantum and classical
query complexity. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1303–1316, 2021.

4 Ziv Bar-Yossef, Thathachar S Jayram, and Iordanis Kerenidis. Exponential separation of
quantum and classical one-way communication complexity. SIAM Journal on Computing,
38(1):366–384, 2008.

5 Avraham Ben-Aroya, Oded Regev, and Ronald de Wolf. A hypercontractive inequality for
matrix-valued functions with applications to quantum computing and ldcs. In 2008 49th
Annual IEEE Symposium on Foundations of Computer Science, pages 477–486. IEEE, 2008.

6 Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communication
complexity. computational complexity, 21(2):311–358, 2012.

CCC 2023

25:22 Trade-Offs Between Entanglement and Communication

7 Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. Quantum fingerprinting.
Physical Review Letters, 87(16):167902, 2001.

8 Harry Buhrman, Richard Cleve, and Avi Wigderson. Quantum vs. classical communication and
computation. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pages 63–68, 1998.

9 Matthew Coudron and Aram W. Harrow. Universality of EPR pairs in entanglement-assisted
communication complexity, and the communication cost of state conversion. In 34th Com-
putational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA,
volume 137 of LIPIcs, pages 20:1–20:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

10 Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de Wolf.
Exponential lower bounds for polytopes in combinatorial optimization. Journal of the ACM
(JACM), 62(2):1–23, 2015.

11 Dmitry Gavinsky. On the role of shared entanglement. Quantum Inf. Comput., 8(1):82–95,
2008. doi:10.26421/QIC8.1-2-6.

12 Dmitry Gavinsky. Quantum versus classical simultaneity in communication complexity. IEEE
Transactions on Information Theory, 65(10):6466–6483, 2019.

13 Dmitry Gavinsky. Bare quantum simultaneity versus classical interactivity in communication
complexity. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pages 401–411, 2020.

14 Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald de Wolf. Exponential
separations for one-way quantum communication complexity, with applications to cryptography.
In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages
516–525, 2007.

15 Dmitry Gavinsky, Julia Kempe, Oded Regev, and Ronald de Wolf. Bounded-error quantum
state identification and exponential separations in communication complexity. In Proceedings
of the thirty-eighth annual ACM symposium on Theory of Computing, pages 594–603, 2006.

16 Dmytro Gavinsky. Classical interaction cannot replace quantum nonlocality, 2009. doi:
10.48550/arXiv.0901.0956.

17 Dmytro Gavinsky, Julia Kempe, and Ronald de Wolf. Strengths and weaknesses of quantum
fingerprinting. CoRR, 2006. doi:10.48550/arXiv.QUANT-PH/0603173.

18 Uma Girish, Ran Raz, and Avishay Tal. Quantum versus randomized communication com-
plexity, with efficient players. computational complexity, 31(2):17, 2022.

19 Uma Girish, Ran Raz, and Wei Zhan. Lower bounds for XOR of forrelations. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM, volume 207 of LIPIcs, pages 52:1–52:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

20 Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for XOR functions.
SIAM J. Comput., 47(1):208–217, 2018.

21 Trinh Huynh and Jakob Nordstrom. On the virtue of succinct proofs: Amplifying communica-
tion complexity hardness to time-space trade-offs in proof complexity. In Proceedings of the
forty-fourth annual ACM symposium on Theory of computing, pages 233–248, 2012.

22 Rahul Jain, Hartmut Klauck, and Ashwin Nayak. Direct product theorems for communication
complexity via subdistribution bounds. In Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, pages 599–608, 2007.

23 Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. Prior entanglement, message com-
pression and privacy in quantum communication. In 20th Annual IEEE Conference on
Computational Complexity (CCC’05), pages 285–296. IEEE, 2005.

24 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for approxim-
ating max-cut. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1263–1282. SIAM, 2014.

https://doi.org/10.26421/QIC8.1-2-6
https://doi.org/10.48550/arXiv.0901.0956
https://doi.org/10.48550/arXiv.0901.0956
https://doi.org/10.48550/arXiv.QUANT-PH/0603173

S. Arunachalam and U. Girish 25:23

25 Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower bounds via
the direct sum in communication complexity. Computational Complexity, 5(3):191–204, 1995.

26 Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM J. Discret. Math., 3(2):255–265, 1990. doi:10.1137/0403021.

27 Bo’az Klartag and Oded Regev. Quantum one-way communication can be exponentially
stronger than classical communication. In Proceedings of the Forty-Third Annual ACM
Symposium on Theory of Computing, STOC ’11, pages 31–40. Association for Computing
Machinery, 2011. doi:10.1145/1993636.1993642.

28 Chin Ho Lee. Fourier bounds and pseudorandom generators for product tests. In 34th
Computational Complexity Conference, CCC, volume 137 of LIPIcs, pages 7:1–7:25. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

29 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and
asymmetric communication complexity. In Proceedings of the twenty-seventh annual ACM
symposium on Theory of computing, pages 103–111, 1995.

30 Ashley Montanaro and Tobias Osborne. On the communication complexity of xor functions,
2010. arXiv:0909.3392.

31 Ilan Newman. Private vs. common random bits in communication complexity. Information
processing letters, 39(2):67–71, 1991.

32 Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.
33 Ran Raz. Fourier analysis for probabilistic communication complexity. Comput. Complex.,

5(3/4):205–221, 1995. doi:10.1007/BF01206318.
34 Ran Raz. Exponential separation of quantum and classical communication complexity. In

Proceedings of the thirty-first annual ACM symposium on Theory of computing, pages 358–367,
1999.

35 Ran Raz and Avishay Tal. Oracle separation of BQP and PH. ACM Journal of the ACM
(JACM), 69(4):1–21, 2022.

36 Alexander A. Sherstov, Andrey A. Storozhenko, and Pei Wu. An optimal separation of
randomized and quantum query complexity. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 1289–1302. ACM, 2021. doi:10.1145/3406325.3451019.

37 Yaoyun Shi. Tensor norms and the classical communication complexity of nonlocal quantum
measurement. In Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing, pages 460–467, 2005.

38 Yaoyun Shi and Zhiqiang Zhang. Communication complexities of xor functions. arXiv preprint,
2008. arXiv:0808.1762.

39 Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. Fourier sparsity, spectral
norm, and the log-rank conjecture. In 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pages 658–667, 2013. doi:10.1109/FOCS.2013.76.

40 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (prelim-
inary report). In Proceedings of the eleventh annual ACM symposium on Theory of computing,
pages 209–213, 1979.

41 Huacheng Yu. Strong XOR lemma for communication with bounded rounds : (extended
abstract). In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS,
pages 1186–1192. IEEE, 2022.

42 Shengyu Zhang. Efficient quantum protocols for xor functions. In Proceedings of the twenty-fifth
annual ACM-SIAM symposium on Discrete algorithms, pages 1878–1885. SIAM, 2014.

CCC 2023

https://doi.org/10.1137/0403021
https://doi.org/10.1145/1993636.1993642
https://arxiv.org/abs/0909.3392
https://doi.org/10.1007/BF01206318
https://doi.org/10.1145/3406325.3451019
https://arxiv.org/abs/0808.1762
https://doi.org/10.1109/FOCS.2013.76

New Sampling Lower Bounds via the Separator
Emanuele Viola #

Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA

Abstract
Suppose that a target distribution can be approximately sampled by a low-depth decision tree, or
more generally by an efficient cell-probe algorithm. It is shown to be possible to restrict the input
to the sampler so that its output distribution is still not too far from the target distribution, and at
the same time many output coordinates are almost pairwise independent.

This new tool is then used to obtain several new sampling lower bounds and separations, including
a separation between AC0 and low-depth decision trees, and a hierarchy theorem for sampling. It is
also used to obtain a new proof of the Patrascu-Viola data-structure lower bound for Rank, thereby
unifying sampling and data-structure lower bounds.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases Sampling, data structures, lower bounds, cell probe, decision forest, AC0,
rank, predecessor

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.26

Related Version Full Version:
https://eccc.weizmann.ac.il/report/2023/073/revision/3/download

Funding Emanuele Viola: Supported by NSF CCF award 2114116.

Acknowledgements We thank the anonymous reviewers for detailed and helpful feedback.

1 Introduction and our results

Obtaining computational lower bounds is a fundamental agenda in theoretical computer
science, see for example the textbooks [25, 3]. One of the most famous lower bounds is the
AC0 lower bound for computing the parity function, which separates small AC0 circuits from
models that can compute parity. Another direction that has received much attention is the
relationship between AC0 and low-depth decision trees. The simple Or function on n bits
requires decision trees of depth n to be computed exactly, but the picture is more subtle
and useful when we consider average-case computation, that is we allow errors on a small
fraction of inputs. Indeed, switching lemmas [17, 1, 45, 22, 35, 34, 4, 24, 23] (see [44] for an
exposition and discussion) can be interpreted as non-trivial simulations of small AC0 circuits
by decision trees. On the other hand, functions such as Tribes (see, e.g., [30]), computable
by a polynomial-size DNF circuits, require large-depth decision trees, even on average.

In this work we study lower bounds and separations in the setting of sampling. This is a
challenging generalization of average-case complexity, where we seek to bound the resources
required to sample approximately a target distribution, given random bits. The study of
sampling lower bounds [39, 28, 41, 15, 5, 8, 40, 43, 9] has seen significant activity and progress
in the last ten years; for a survey talk see [37]. This study has also had impact on other
areas. For example, it has had an impact on breakthrough constructions of two-source
extractors: the papers [10, 26, 12, 11, 7] build on models or results from the study of sampling
lower bounds. Also, sampling lower bounds have been used to obtain data-structure lower
bounds [39]. In fact, jumping ahead, this paper will further develop this connection to data
structures.

© Emanuele Viola;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 26; pp. 26:1–26:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:viola@ccs.neu.edu
https://doi.org/10.4230/LIPIcs.CCC.2023.26
https://eccc.weizmann.ac.il/report/2023/073/revision/3/download
https://eccc.weizmann.ac.il/report/2023/073/revision/3/download
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 New Sampling Lower Bounds via the Separator

Sampling lower bounds for AC0, roughly corresponding to the classical result mentioned
above that Parity is not in AC0, have been obtained in [28, 41, 5, 43]. All these lower bounds
share common techniques. Interestingly, essentially no technique was known to obtain
separations within AC0. The main goal and motivation for this paper is thus to develop
new techniques for sampling lower bounds, and apply them to obtain separations within
AC0, in particular separating decision-tree from AC0 samplers and obtaining a hierarchy
theorem (see Corollary 9). In addition, the new technique is used to “unify” sampling and
data-structure lower bounds, that is, to obtain data-structure lower bounds as a consequence
of sufficiently strong sampling lower bounds.

The model
The main computational model in this work is a generalization of the decision-tree model
known as the cell-probe model [46]. Here the input is divided into words (a.k.a. cells) of
w bits, the output is a tuple of queries, and each query can be computed by making q

probes into the input, adaptively. This model is extensively studied in algorithms, where w

corresponds to the register size and q to time. We note that for w = 1 each output query is
computed by a decision tree of depth q. For larger w each query is also computed by a tree
but each internal node probes a word and has 2w children. Because the output is a tuple
of queries, we have several trees of depth q, one for each output query, and so we refer to
the algorithm as to a depth-q forest. We place no restriction on the number of input words,
which we indicate with N. But for concreteness one can replace N with any large enough
integer – as we do later in the proofs. We summarize the model and its key parameters:

▶ Definition 1. We say that f : WN → Σm is a depth-q forest with word size w and output
alphabet Σ if W = {0, 1}w and f = (f1, f2, . . . , fm) where each fi : WN → Σ is a depth-q
decision tree where the variables are over W , each internal node has |W | children, and the
leaves are labeled with elements from Σ.

The main goal of this paper is to show that a target distribution S over Σm is hard to
sample by a low-depth forest. We measure the distance between distributions X and Y over
D using statistical (a.k.a. total variation, L1) distance

∆(X, Y) := max
T ⊆D

|P[X ∈ T] − P[Y ∈ T]|.

So the lower-bound goal is to show ∆(f(UWN), S) is large for any low-depth forest f , where
UWN is the uniform distribution over WN. In general for a set H we write UH for the uniform
distribution over H, and simply U when H is clear from the context.

Previous sampling lower bounds
Before this work, essentially the only sampling lower bounds in the cell-probe model, or even
in the decision-tree model, were those that followed from the sampling lower bounds for AC0
circuits [28, 41, 5, 43] – using the fact that a depth-q tree can be written as a DNF with width
qw. This was unsatisfactory for several reasons. First, such results obviously cannot be used
to prove separations within AC0. By contrast, this paper obtains such separations. Second,
the AC0 lower bounds only hold for sampling pseudorandom objects, such as extractors or
error-correcting codes. By contrast, the lower bounds in this paper apply to fundamental
data-structure problems that do not have pseudorandom properties, and this allows us to
unify sampling and data-structure lower bounds.

E. Viola 26:3

1.1 Our results
In this work we prove new sampling lower bounds and use them to derive a number of new
separations. We emphasize that our results are new even for decision trees, corresponding
to word size w = 1. However, we obtain stronger results by considering larger word size.
Similarly, the lower bounds we prove were not known even for statistical distance Ω(1). But
in fact we prove stronger bounds, where the statistical distance is exponentially close to 1.
Via technically simple connections, the first of which was pointed out in [39], this generality
enables several applications discussed below. In particular, jumping ahead, it will allow
us to unify sampling and data-structure lower bounds. Indeed, our lower bounds hold for
fundamental problems in data structures.

First we obtain a sampling lower bound for the distribution Rank(U{0,1}m) where Rank
is defined next.

▶ Definition 2. For x ∈ {0, 1}m define Rank(x) as the string y ∈ {0, 1, . . . , m}m where
yi :=

∑
j≤i xj is the rank of i.

▶ Example 3. Rank(0, 1, 0, 1) = (0, 1, 1, 2).

▶ Theorem 4. Let f : WN → {0, 1, . . . , m}m be a depth-q forest with word size w ≥ log m.
Then ∆(f(UWN),Rank(U{0,1}m)) ≥ 1 − 2 · 2−m/wO(q) .

Throughout this paper, the notation O(.) and Ω(.) denotes absolute constants.
It follows from [47], which builds on [31], that this bound is tight. In particular, we can

sample Rank(U) with depth q = O(log m)/ log w and constant statistical distance
This result can also be interpreted as a negative result for sampling random walks on

graphs. Consider the graph G over {0, 1, . . . , m} where the neighbors of Node i are {i, i + 1}.
Note that Rank(U) is the sequence of nodes visited during the walk with edge choices U .
Theorem 4 proves a lower bound for sampling this random walk. Note that as the graph is
fixed, this result applies even if the algorithm depends on the graph.

Next we consider the predecessor problem.

▶ Definition 5. For x ∈ {0, 1}m define Pred(x) as the string y ∈ {0, 1, . . . , m}m where
yi := max{j : j ≤ i and xj = 1} is the predecessor of i. (Say yi = 0 if there is no j ≤ i with
xj = 1.)

Unlike Rank, it turns out that Pred can be sampled efficiently. Specifically, there is a
depth-O(1) forest sampling Pred(U) with statistical distance 1/poly(m). This is just because
the predecessor of i can be computed by inspecting the bit positions from i − q log n to i of
x, except with error probability 1/nq.

Loosely inspired by works in data-structure lower bounds [32], we prove a lower bound
for Pred(X) under a distribution X which is tailored for the applications below. This lower
bound is really a lower bound for a “direct-product” version of Pred, where r instances have
to be solved simultaneously. In fact, the bound holds even for the colored version, where
items have colors and we just need to return the color of the predecessor. Next we define
this problem and state our results for it.

▶ Definition 6. For an r × m matrix M with entries in {−, Ô, ∗̂} we define the r × m

Colored-Multi-Predecessor matrix CMPred(M) with entries in {Ô, ∗̂, O, *} as follows. For
any i, j we define CMPred(M)i,j to be:

Mi,j if Mi,j ̸= −,
* if the predecessor of j on row i is *̂ (that is, there is j′ < j such that Mi,j′ = *̂ and for
every k such that j′ < k < j we have Mi,k = −), and
O otherwise.

CCC 2023

26:4 New Sampling Lower Bounds via the Separator

The distribution Π on r × m matrices is defined as follows, for m divisible by wr. Divide
row i = 1, 2, . . . , r in consecutive blocks of wi elements. For each block, pick a uniform
element, and assign to it a uniform element from {Ô, *̂}. All the other elements are set to −.

▶ Example 7. CMPred
([

− *̂ − Ô

− − *̂ −

])
=
[

O *̂ * Ô

O O *̂ *

]
.

Working with the alphabet {Ô, ∗̂, O, *} allows us to reconstruct M from CMPred(M),
slightly simplifying the argument.

▶ Theorem 8. There exists a constant c such that for r = cq the following holds.
Let f : WN → ({Ô, *̂, O, *}r)m be a depth-q forest with word size w ≥ log m.
Let Π be an r × m random matrix as in Definition 6.
Then ∆(f(UWN), CMPred(Π)) ≥ 1 − 2 · 2−m/wO(q) .

Motivation for studying CMPred(Π): New separations

The problem CMPred(Π) is designed to be easy to sample with a little more resources than
we prove lower bounds for. Thus the theorem gives two separations. First, we obtain a
probe-hierarchy for sampling: for any q there is an explicit problem that can be sampled
exactly with O(q) probes, but only very poorly with q. Second, the same problem can be
also sampled by an explicit, polynomial-size DNF, thus giving a separation between sampling
by cell probes and DNFs. Such results were not known even for word size w = 1, statistical
distance 0.01 rather than close to 1, and AC0 instead of DNF.

Proving hierarchies and separations among various restricted computational models is a
main research agenda of theoretical computer science. We consider them in the context of
sampling. For example, it is a classical result that small DNF circuits can compute functions
that require decision trees of large depth, even on average. Our results strengthen this
separation substantially.

▶ Corollary 9. For every m, q, w such that w ≥ log m the following holds.
There exists a distribution S ⊆

(
{0, 1}O(q)

)m

such that for any depth-q forest f with word

size w we have ∆(f(UWN), S) ≥ 1 − 2 · 2−m/wO(q) . But S can be sampled (with distance 0)
by both
(1) An explicit depth-O(q) forest with word size w; and
(2) An explicit poly(m)-size DNF.

The distribution in this corollary is CMPred(Π) with r = O(q). To sample it, we can
identify row i of Π with a string of log2(2 · wi)m/wi bits, indicating the choice of color and
element (2 · wi ≤ O(m) possibilities) for each of the m/wi blocks. Color i of query j can be
computed from these bits probing O(1) words. Repeating this for i = 1, 2, . . . , r gives (1) in
the corollary. (2) is similar.

Previous attempts to establish a separation between forests and AC0 circuits resulted in
(i) Theorem 1.4 in [39] which applies to randomness-efficient samplers, achieves constant
statistical distance, and has w = 1, and (ii) Theorem 3 in [43] which applies to non-adaptive
samplers. It is an open question whether Rank can be sampled by polynomial-size AC0
circuits. Recent results [47] building on [31] imply that it can be sampled with O(log m)
probes and constant statistical distance, which gives quasi-polynomial size AC0.

E. Viola 26:5

Data structures
A (static) data-structure problem is a map f : {0, 1}n → Σm, where m queries over alphabet
Σ are to be answered about n bits of data. A data-structure with word size w for this problem
are two functions g : {0, 1}n → {0, 1}n+r

, h : {0, 1}n+r → Σm where g is arbitrary and h

is a depth-q forest with word size w such that f = h ◦ g. That is, we seek to store the n

bits of data into n + r bits so that the queries can be computed fast. Note that the n + r

bits are divided in words of w bits. We call r the redundancy of the data structure, and we
focus on the succinct regime r = o(n). Many papers are devoted to proving lower bounds
in this regime, including [18, 38, 19, 33, 27]; and it is shown in [42] that improving on the
long-standing bounds in [18] would yield new circuit lower bounds.

The paper [39] pointed out a technically simple connection between samplers and data-
structures: any data structure can be used to sample the distribution f(U) by a depth-q
forest with statistical distance 1 − 2−r. Simply fill the n + r bits uniformly and run the
query algorithms. A data structure is equivalent to the special case of samplers which just
use n + r input bits. But samplers can use any number of input bits, and many samplers in
the literature do use (1 + Ω(1))n input bits, for example to sample noise vectors, subsets, or
permutations, cf. [39].

Hence, the sampling lower bounds above imply data-structure lower bounds. Theorem 4
gives a new proof of the data-structure lower bound for Rank from [33], which was recently
shown to be tight in [47], building on [31]. This new proof shows that the lower bound
applies even to samplers. Informally, this suggests that the “reason” why the lower bound
for Rank holds is not that the input is “compressed,” but rather that low-depth forests simply
cannot generate the type of dependencies in Rank, regardless of their input.

The program of proving data-structure lower bounds via sampling was suggested a decade
ago [39], but the only previous cell-probe lower bound obtained this way is for error-correcting
codes and follows from the AC0 lower bounds [28, 6]. This paper shows that this program is
feasible for problems such as Rank.

Similarly, we obtain a data-structure lower bound for CMPred. Also, the sampling
hierarchy in Corollary 9 translates to a data-structure hierarchy. Hierarchies in data structures
have been considered since the 90’s. [29] gives a non-explicit problem where decreasing the
redundancy by one bit makes the probe time jump from constant to linear. We give explicit
problems where increasing the probe time q by a constant factor makes the redundancy
shrink from almost linear to zero. Previous bounds such as [33] imply such a result for q

about log m. We achieve a broader range including q = O(1). To the best of our knowledge,
such a result does not appear in the literature.

▶ Corollary 10 (Data-structure hierarchy). For every q and m there exists an explicit function
f : {0, 1}m → ({0, 1}O(q))m which has a data structure with word size w, redundancy zero,
and making O(q) probes, but such that any data-structure with word size w making q probes
requires redundancy r ≥ m/wO(q).

The sampling viewpoint is not essential for the data-structure lower bound for CMPred
or for Corollary 10: just like Rank, they can be proved without referring to sampling.

Communication protocols
Above we considered one application of proving sampling lower bounds with large error,
close to 1, namely data-structure lower bounds. The large statistical distance corresponded
to redundancy. In this paper we put forth another application to communication protocols.

CCC 2023

26:6 New Sampling Lower Bounds via the Separator

Here the large statistical distance corresponds to communication. We consider the following
communication protocols: we associate to each output query a party. In addition to probing
input cells as before, the parties also communicate. While sampling protocols have been
studied before, see e.g. [2, 20], our setting where each party is charged to access input cells
does not seem to have been studied before. Next we define it and then state our result.
The result is an easy corollary and our main goal here is to give another interpretation of
sampling lower bounds with large statistical distance.

▶ Definition 11. A sampler protocol over Σm with word size w, q probes, and c total
communication is a communication protocol among m parties. The parties share a public
random string of cells of w bits each. At each point in time, the protocol specifies which Party
i is to go next. Party i can either probe a cell, broadcast communication, or output a value
in Σ and stop. The action of Party i at time t depends only on the values of the cells Party i

probed in previous times, and on the communication transcript. The output of the protocol is
the tuple of elements output by the parties. The number of probes made by each party is at
most q, while c is a bound on total communication.

To get a sense of the parameters, consider for example Rank(U). We can sample it
with no error with 1 probe and communication m/w (each party probes a different cell and
broadcasts it – then the players sample exactly). And as we remarked earlier, it can also be
sampled with o(log m) probes and no communication, up to constant error. We obtain the
following lower bound, which interpolates between these two extremes.

▶ Corollary 12. Let Π be a sampler protocol with word size w, q probes, and communication c

whose output has statistical distance δ from Rank(U). Then c ≥ m/wO(q) + log(1 − δ) − O(1).

2 Techniques

Our results rely on a new proof technique which we call the cell-probe sampling separator, or
just separator for brevity, and which is a main technical contribution of this work. Roughly
speaking, this separator result says that if f : WN → Σm is a low-depth forest whose output
distribution is close to a target distribution S over Σm, then we can restrict the input space
to a subset D ⊆ WN such that when the input to f comes from D, many trees in the
output distribution f(D) are nearly pairwise independent, and at the same time the output
distribution is still not very far from the target S. This latter feature will be formalized by
requiring that f(D) is supported on a subset of the support of S, and has entropy almost
equal to that of S.

A critical feature of the separator is that the number of trees that are guaranteed to be
almost pairwise independent in f(D) is much larger than the entropy gap between f(D)
and S. Formally, for a sufficiently spaced-out increasing sequence of integers t0, t1, . . ., the
separator will guarantee that for some value k there is a set Dk = D and tk trees that are
nearly pairwise independent over f(Dk), while the entropy gap is only about tk−1. (The
separator can also guarantee almost ℓ-wise independence for ℓ > 2, but we only need ℓ = 2
in our results.)

After some definitions we state the separator.

▶ Definition 13 (Almost pairwise independence). Jointly distributed random variables X, Y

are ϵ-independent if (X, Y) is ϵ-close in statistical distance to (X, Y ′) where Y ′ has the same
distribution of Y and is independent from X.

The min-entropy H∞(X) of a random variable X is mina log2(1/P[X = a]).

E. Viola 26:7

Notation
To avoid clutter in the more technical exposition of the results, we adopt the convention that
for a set S we also denote by S the uniform distribution US over S. The meaning will be
clear from the context. For example, we shall simply write ∆(f(WN), S) for ∆(f(UWN), US).

▶ Theorem 14 (Cell-probe sampling separator). There exists an integer c ≥ 1 such that the
following holds:
Hypothesis: Let f : WN → Σm be a depth-q forest with word size w. Let α ≤ 1/c. Let

t0, t1, . . . be a sequence of integers with ti ≥ ti−1 · cqw/α for every i. Let S ⊆ Σm be a
set and suppose that ∆(f(WN), S) ≤ 1 − 2−t0 where 2−t0 ≥

√
8/|S|.

Conclusion: There exists k, 1 ≤ k ≤ O(q/α), Dk ⊆ WN, and tk indices T ⊆ [m] such that:
(0) H∞(f(Dk)) ≥ H∞(S) − tk−1 · O(qw/α)2;
(1) The support of f(Dk) is contained in S;
(2) For every i, j ∈ T the random variables (fi(Dk), fj(Dk)) are O(α)-independent.

For example, we can set ti = m/wa(q/α)−bi which for suitable a, b and q, w ≤ log m

satisfies the hypothesis.

Proof sketch of the separator
First we need to understand what it means for ∆(f(WN), S) to be at most 1 − ϵ. One special
case in which this happens is if the distribution f(WN) is equal to the uniform distribution
over S with probability ϵ, and otherwise is say a fixed value. Our first Lemma 15 shows that
this special case, more or less, is in fact the general case. Specifically, we can condition the
input to f on an event of probability about ϵ so that, if D is the resulting set of inputs, f(D)
is supported inside of S, and the entropy of f(D) is almost maximum.

At this point we forget S and our goal is to further restrict D so that we have many
pairwise independent queries, and at the same time we do not lose too much in entropy.

First we apply the so-called fixed-set lemma from [21]. This lemma shows that it is possible
to moderately restrict D to a subset D1 ⊆ D so that no low-depth tree can distinguish D1
from a product distribution R.

At this point, we ask if in f(D1) there are many (t1) queries (a.k.a. trees) such that any
two of them intersect probes with probability ≤ α. Here we say that two trees intersect
probes if there exists i such that both trees probe word i.

If the answer is positive: we argue that we are done. Let us explain why that is the case.
First, we can write the probability that two queries probe the same word as a low–depth
tree. By the fixed-set lemma, this probability is the same over D1 and over the product
distribution R. However, over a product distribution two queries are independent unless they
probe the same word, hence over R two queries are α-independent, and it follows that the
same is true over D1.

We note that our use of the fixed-set lemma is different from [21]. In the latter paper it
was used to argue that the input to a tree looks uniform. By contrast, we use it to establish
pairwise independence among trees, and critically we use it to bound the probability that
two trees probe the same word.

If the answer is negative: In this case, by a version of simple “covering arguments” which
are widespread since at least the sunflower lemma [16], there is a small set T of trees such
that any other tree intersects probes with some tree in the set with probability ≥ α. Now
the idea is to fix the probes of the trees in T to obtain a new input D2 over which the total
expected probe time is reduced. Then again we can apply the fixed-set lemma, and iterate
the argument.

CCC 2023

26:8 New Sampling Lower Bounds via the Separator

This fixing of the probes in T is inspired by a fixing that occurs in the data-structure
lower bound for Rank [33]. However, we note that our argument is different. The proof
in [33] selects trees in a structured way, with a precise sequence of “gaps.” By contrast,
our selection comes from the covering argument and is, at this stage, unstructured: we
simply count queries. More generally, the proof in [33] proceeds by an encoding argument,
as is typical in data-structure lower bounds, which is tailored to the problem at hand. The
separator avoids that and allows us to establish an intrinsic property of efficient samplers
and data structures.

This concludes the informal overview. The formal proof is in Section 3.

Comparison with switching lemmas
Switching lemmas [17, 1, 45, 22, 35, 34, 24, 23] show that small-width DNF simplify under
random restrictions. Since a depth-q decision tree over alphabet {0, 1}w can be written as a
DNF with width qw, switching lemmas apply to our model too. A main difference between
switching lemmas and our separator is that the former restrict the input space aggressively,
for example fixing all but a constant fraction of the input bits, while our separator restricts
the input moderately, for example fixing a small, sub-linear number of input words. This
distinction is critical, since our problems are easy for DNF.

Comets
Having established the separator, there remains to use it to prove lower bounds. Our approach
is based on a combinatorial object that we call comet. A d-comet is a triple of integers where
the first two, the comet’s tail, are ≥ d times farther apart than the last two, the comet’s
head. We can imagine the sun at position ∞: Blown by solar winds, comet tails point away
from the sun.

The following example shows two 4-comets: (5, 20, 23) and (40, 80, 90):

1 5 10 20 23 30 40 45 60 80 90 100 = m

We show in Section 4 that any large set of integers contains many non-overlapping
d-comets, for large enough d. In the proofs of the sampling lower bounds (Sections 6 and 7),
this result is applied to the tk trees given by the separator theorem. Because the entropy
gap of Dk and S is, as remarked earlier, much less than tk, it follows that we can find
among the trees a comet that is “random,” that is, roughly, the query outputs have a lot of
entropy. However, we prove that this is impossible, because over f(Dk) the queries are nearly
independent, but we show that they are not so in (any restriction of) the target distribution.
Here is where we use the geometry of comets: the long tail will impose correlations on the
head of the comet. The way this is formalized depends on the problem. For CMPred, we can
find blocks in Π which are just a little longer than comets’ heads, guaranteeing correlations
between the queries in the head. For Rank the argument is a little more complex because a
query depends on the entire prefix, so we shall need to guarantee that the bits corresponding
to the comet have sufficiently high entropy even conditioned on the prefix.

2.1 Conclusion and open problems
This paper adds new tools to the study of sampling lower bounds, especially the separator
theorem. Using them, a number of new lower bounds and separations are obtained. Several
natural questions remain open. One is separating adaptive from non-adaptive samplers.

E. Viola 26:9

Another is proving cell-probe lower bounds for sampling other distributions, such as per-
mutations, cf. [43]. The parameters of the separator do not seem strong enough for the latter
goal; in brief, one would need to set α too small.

These new tools can also be used to generalize previous data-structure lower bounds,
such as the one for Rank [33], to sampling lower bounds. This additional information could
be useful in understanding which techniques are suitable for further progress. For example,
Membership [29, 36] is a long-standing problem in data structures which asks to store a subset
of [m] of size say m/4 so that membership queries can be computed fast. It is interesting to
note that the corresponding sampling problem is easy: we can sample somewhat well the
uniform distribution over these subsets in time O(1) using 2m input bits. (Simply taking
the And of adjacent pairs of bits will generate exactly the uniform distribution over m

iid variables each coming up 1 with probability 1/4; and this distribution has statistical
distance only 1 − Ω(1/

√
m) from the subsets.) Hence, unlike Rank, a strong lower bound for

Membership must exploit that the input length is bounded, and this might indicate why this
problem is harder than Rank.

3 Proof of the separator Theorem 14

First we need to understand what it means to have slightly non-trivial statistical distance.
Let P be a distribution over Σm. One way in which P can have statistical distance ≤ 1 − ϵ

from S is if P is distributed like S with probability ϵ, and it is say fixed with probability
1 − ϵ. In this case, P has actually very high entropy (log2 |S|) conditioned on an event of
probability ϵ. The next lemma shows that this in fact always happens.

▶ Lemma 15. Let P be a distribution over Σm and let S ⊆ Σm. Suppose that ∆(P, S) ≤ 1−ϵ,
where ϵ ≥

√
8/|S|. Then there is a subset S0 ⊆ S of probability PP [S0] = Ω(ϵ) such that the

distribution P conditioned on P ∈ S0 has min-entropy ≥ H∞(S) − O(log 1/ϵ).

Proof. We also write P for the random variable distributed according to P . Collect all the
elements of S in increasing order of mass according to P until right before collecting cumulative
mass ϵ/2. Note we don’t collect all of S, for else P[P ∈ S] ≤ ϵ/2 and ∆(P, S) ≥ 1 − ϵ/2,
contradicting the hypothesis.

Let β be the mass of the next element of S. Let S0 be the collected elements, S1 the rest of
S, and T the complement of S. By definition, P[P ∈ S0] < ϵ/2, and so P[P ∈ S1

⋃
T] ≥ 1−ϵ/2.

Also for every x ∈ S1 we have P[P = x] ≥ β and so |S1| ≤ β−1. Combining these bounds
with the assumption we have

1 − ϵ ≥ ∆(P, S) ≥ P[P ∈ S1 ∪ T] − |S1|
|S|

≥ 1 − ϵ/2 − β−1

|S|

and so β ≤ 2/(ϵ|S|).
Because we did not include in S0 an element of mass β, and we only stop when we reach

ϵ/2, the mass of S0 is ≥ ϵ/2 − β ≥ ϵ/2 − 2/(ϵ|S|). If ϵ ≥
√

8/|S| this mass is at least ϵ/4.
For any x ∈ S0 using the above bound on β we obtain

P[P = x|P ∈ S0] = P[P = x]
P[P ∈ S0] ≤ β

ϵ/4 ≤ 8
ϵ2|S|

,

as desired. ◀

The above lemma allows us to “forget” about S and focus on f . We need to show that we
can restrict the input to a large subset such that many output trees are nearly independent.
This is the content of the following theorem. To avoid having to think about infinite sets, in

CCC 2023

26:10 New Sampling Lower Bounds via the Separator

the remainder of the proof we set the input to the sampler to W s for an integer s. This is
without loss of generality, since obviously any forest of fixed depth can only access a finite
number of input words.

We define the (entropy) loss of a subset D′ ⊆ D to be log2(|D|/|D′|). So if D′ contains
half the elements of D the loss is one.

▶ Theorem 16. There exists an integer c ≥ 1 such that the following holds:
Hypothesis: Let f : W s → Σm be a depth-q forest with word size w. Let α ≤ 1/c. Let

t0, t1, . . . be a sequence of integers with ti ≥ ti−1 · cqw/α for every i. Let D ⊆ W s be a
set with loss ≤ t0.

Conclusion: There exists k, 1 ≤ k ≤ O(q/α), Dk ⊆ D, and tk indices T ⊆ [m] such that:
(1) The loss of Dk ⊆ D is ≤ tk−1 · (qw/α)2;
(2) For every i, j ∈ T the random variables fi(Dk), fj(Dk) are O(α)-independent.

Let us first show how this gives the separator Theorem 14.

Proof of Theorem 14 from Theorem 16. We apply Lemma 15 to P = f(U). Given S0 ⊆ S

from the lemma, we let D ⊆ W s be the preimage of S0 according to f . By the lemma,
|D|/|W |s ≥ Ω(2−t0), that is, the loss of D ⊆ W s is t0 + O(1). Moreover, H∞(f(D)) ≥
log |S| − O(t0).

We now apply Theorem 16 to this set D and the sequence t0 + O(1), t1, t2 We can
adjust the constant c so that this satisfies the hypothesis. The theorem gives Dk ⊆ D with
loss ≤ tk−1 · (qw/α)2.

Observe that the support of f(Dk) is contained in S, because the support of f(D) is
S0 ⊆ S and Dk ⊆ D.

To verify the bound on H∞(f(Dk)), note that

P[f(D) = x] ≥ P[f(Dk) = x]|Dk|/|D|.

Taking inverses and then logs we obtain

log(1/P[f(D) = x]) ≤ log(1/P[f(Dk) = x]) + log(|D|/|Dk|).

The left-hand side is at least H∞(f(D)) ≥ log |S| − O(t0). While log(|D|/|Dk|) ≤
tk−1 · (qw/α)2. Hence,

log(1/P[f(Dk) = x]) ≥ log |S| − O(t0) − tk−1 · (qw/α)2,

for any x. The result follows. ◀

3.1 Proof of Theorem 16
The main technical lemma is the following one, which is like Theorem 16 but the requirement
of independence is replaced by others easier to work with.

▶ Lemma 17. Theorem 16 holds if we replace (2) with:

(2’) for every i, j ∈ T : the probability over Dk that fi(Dk) and fj(Dk) don’t make all distinct
probes is ≤ α, and

(2”) there exists a product distribution R over words (that is, the words are independent) such
that for every depth-2q tree g, g(Dk) and g(R) are α-close.

▶ Lemma 18. (2’) and (2”) in Lemma 17 imply (2) in Theorem 16.

E. Viola 26:11

Proof. Let X = Dk. Think of (fi(X), fj(X)) as the output of the tree g obtained by
appending fj to the leaves of fi. Note that g makes 2q probes, possibly repeated. By (2”),
there is a product distribution R such that g(X) and g(R) are α-close. Also, the probability
that g repeats a probe over X is α-close to the probability that it repeats it over R. Here we
use that this probability can be written as the probability that a tree d of depth 2q outputs
1, and that the output distributions of d over X and R are α-close. (Tree d is obtained from
g by replacing any repeated probe along any path with a leaf 1, and any other leaf with 0.)

By this and (2’) the probability that g repeats a probe over R is ≤ 2α. Because R is
product, as long as probes are not repeated the output distribution does not change if we
answer the first q probes with R1 and the next q probes with R2 where R1, R2 are iid copies
of R. This shows that (fi(X), fj(X)) is O(α)-close to (fi(R1), fj(R2)). Using again (2”), we
can replace each Ri with Xi, where X1, X2 are iid copies of X. This gives that (fi(X), fj(X))
is O(α)-close to (fi(X1), fj(X2)). Adjusting constants concludes the proof. ◀

3.2 Proof of Lemma 17
We shall be concerned with inputs in various subsets X ⊆ D. If an input word is constant
for every x ∈ X then it needs not be probed but can be “hardwired” in the trees. We shall
assume that the trees are always simplified accordingly. We denote by G(x, X) the total
number of probes made by all trees on input x, where the trees are simplified with respect
to X.

We use the following fixed-set lemma from [21]. We say that distributions X and Y are
α-indistinguishable by depth-q trees if for any such tree t, the statistical distance between
t(X) and t(Y) is ≤ α.

▶ Lemma 19 ([21], Lemma 3.14.). Let B ⊆ W s be a subset with loss ≤ b, where W = {0, 1}w.
There exists B1 ⊆ B and a product distribution R such that B1 and R are α-indistinguishable
by depth-2q decision trees. Moreover, the loss of B1 ⊆ W s is ≤ b · O(wq/α).

For completeness we include the proof in Appendix A.
We begin by applying this lemma to D obtaining D1 ⊆ D with loss t0 · O(wq/α). This is

the beginning of Iteration 1.
Our goal is to show that at the beginning of Iteration k there exists a subset Dk ⊆ D

enjoying the following properties:
(1) [in Theorem 16] the loss of Dk is ≤ tk−1 · (qw/α)2,

(2”) [in Lemma 17] there exists a product distribution R over words such that for every
depth-2q tree g, g(Dk) and g(R) are α-close.

(3) maxx∈Dk
G(x, Dk) ≤ m(q − α(k − 1)/4).

Note all these hold at the beginning of Iteration 1.

In an iteration, collect as many trees as possible such that for any two of them, the
probability over Dk that they intersect probes is ≤ α. If you have tk, then (2’) in Lemma 17
holds as well, concluding the proof.

Otherwise, you have a collection of tk trees such that any other tree will intersect a probe
with one of those t with probability ≥ α. We are going to use this to proceed to the next
iteration, i.e., increase the value of k by 1. Because G is non-negative, Property (3) above
implies that there can be at most O(q/α) iterations, as desired.

Write Y for the ≤ tkq words probed by the tk trees in Dk. This is done according to a
canonical order, and is a valid definition because the first probe of a tree is fixed, the second
is fixed once the answer to the first is, and so on.

CCC 2023

26:12 New Sampling Lower Bounds via the Separator

Support size

Let Dk,y be the inputs in Dk with Y = y. We have

EY [|Dk|/|Dk,Y |] =
∑

y

P[Y = y] |Dk|
|Dk,y|

=
∑

y

1 ≤ |W |tkq.

By Markov’s inequality PY [|Dk|/|Dk,Y | ≥ M] ≤ |W |tkq/M . And so with probability ≥
1 − |W |tkq/M over Y we have |Dk,Y | ≥ |Dk|/M .

Intersection

For a tree fi let Ii(x) equal 1 if on input x tree fi intersects probes with at least one of the
tk trees collected, and equal 0 otherwise. Note that for every input x and fixing y we have

G(x, Dk,y) ≤ G(x, Dk) −
∑

i∈[m]

Ii(x).

Because Px∈Dk
[Ii(x) = 1] ≥ α for every i, we have

Ex∈Dk

∑
i∈[m]

Ii(x)

 ≥ αm.

Because the inner sum is ≤ m, by Markov’s inequality we have that with probability
≥ α/2 over the choice of Y

Ex∈Dk.Y

∑
i∈[m]

Ii(x)

 ≥ αm/2,

and

Ex∈Dk.Y
G(x, Dk,Y) ≤ Ex∈Dk.Y

G(x, Dk) − αm/2.

Combining the arguments

Selecting M = 2|W |tkq/α above, and by a union bound, there is a value ȳ so that

Ex∈Dk,ȳ
[G(x, Dk,ȳ)] ≤ Ex∈Dk,ȳ

G(x, Dk) − αm/2;

and at the same time |Dk,ȳ| ≥ |Dk| · α|W |−tkq/2. That is, we increase the loss by

≤ log(1/α) + wtkq + 1.

Recall that the loss of Dk is tk−1 · (qw/α)2.
Note that Dk,ȳ is still uniform over its support, since it is Dk conditioned on a particular

choice for ≤ tkq words. Even though the words are chosen adaptively in Dk, once we
condition on a particular value, their locations are fixed.

E. Viola 26:13

Reducing G for every input
By Markov’s inequality,

Px∈Dk,ȳ
[G(x, Dk,ȳ) ≥ (Ex∈Dk,ȳ

G(x, Dk)−αm/2)(1+α/(4q))] ≤ 1
1 + α/(4q) ≤ 1−α/(8q).

Hence, for ≥ α/(8q) fraction of the inputs x in Dk,ȳ we have

G(x, Dk,ȳ) ≤ (Ex∈Dk,ȳ
G(x, Dk) − αm/2)(1 + α/(4q))

≤ m(q − α(k − 1)/4)(1 + α/(4q)) − αm/2
≤ m(q − αk/4),

using (3) in the second inequality. Let D′
k,ȳ be the set of these inputs. The above gives the

desired bound on maxx∈D′
k,ȳ

G(x, D′
k,ȳ), and note that the loss of D′

k,ȳ ⊆ Dk,ȳ is ≤ log(8q/α).

Fixed-set lemma
Finally, we apply the fixed-set lemma to D′

k,ȳ to obtain Dk+1; this gives (2”). This application
multiplies the loss by O(wq/α), bringing the loss of Dk+1 ⊆ D to

O(wq/α) · O(tk−1 · (qw/α)2 + log(1/α) + wtkq + 1).

We need this loss to be at most tk · (qw/α)2. Dividing by wq/α we need to verify that

O(tk−1 · (qw/α)2) + O(log 1/α) + O(wtkq) + O(1) ≤ tk · qw/α.

We claim that each term on the left-hand side is at most one-fourth of the right-hand
side. For the first term we use the hypothesis that tk ≥ tk−1 · cqw/α for a large enough c,
and for the third we use that α ≤ 1/c and pick c large enough. This gives (1).

Because Dk+1 ⊆ D′
k,ȳ, the bound on G still holds for Dk+1, and this gives (3).

4 Comets

In this section we define comets and prove a comet-finding lemma which will be used in our
sampling lower bound.

▶ Definition 20. A d-comet is a triple of indices (i, j, k) from [m] with i < j < k such that
j − i ≥ d(k − j). We call (j, k) the head and (i, j) the tail. The head length is k − j. A set
of comets {(ih, jh, kh)}h is disjoint if the intervals [ih, kh] are disjoint.

▶ Lemma 21 (Comet-finding). A subset of {1, 2, . . . , m} of size m/ℓb contains ≥ m/ℓb+c+O(1)

disjoint ℓc-comets where the head lengths are all in [ℓh, ℓh+1] for some integer h ≤ b+c+O(1),
for any m, b ≤ ℓ, c ≤ ℓ, and ℓ ≥ log m.

Proof. Let d = ℓc. First we claim that any subset of size n := d log m + 2 contains a d-comet.
Let the elements in the set be a1, a2, . . . in increasing order. If (a1, a2, a3) is not a d-comet
then a3 − a2 > (a2 − a1)/d, and so a3 − a1 = a3 − a2 + a2 − a1 ≥ (a2 − a1)(1 + 1/d).
Then again if (a1, a3, a4) is not a d-comet we have a4 − a3 ≥ (a3 − a1)/d and so a4 − a1 ≥
(a3 − a1)(1 + 1/d) ≥ (a2 − a1)(1 + 1/d)2. If we continue this way n − 2 times, we obtain
an ≥ (1 + 1/d)n−2 > m, which is a contradiction.

CCC 2023

26:14 New Sampling Lower Bounds via the Separator

Now divide the t := m/ℓb elements of the given set into consecutive blocks of size n. By
the previous paragraph, each block contains a comet. Hence we have ≥ t/n − 1 disjoint
d-comets.

At least half of these comets have heads of length ≤ O(mn/t) = ℓb+c+O(1), otherwise half
the comets have heads longer than that, and we run out of space. Let Ci be the subset of
these comets whose head length is in [ℓi, ℓi+1). We only need to consider i ≤ b + c + O(1).
Hence, there exists i = h and

Ω
(

t

n

)
1

b + c + O(1) ≥ m

ℓb+c+O(1)

disjoint comets with head lengths in [ℓh, ℓh+1), using that both b and c are ≤ ℓ. ◀

5 A lemma about entropy

In this section we quickly recall a basic result about entropy which will be used in our
sampling lower bounds. The entropy H of a random variable X is defined as H(X) :=∑

x Pr[X = x] · lg(1/ Pr[X = x]). The conditional entropy H(X|Y) := Ey∈Y H(X|Y = y)
(cf. Chapter 2 in [13]).

▶ Lemma 22. Let Z = (Z1, . . . , Zk) where Zi is supported over a set Si, and let
∑

i log |Si| =
M . Suppose H(Z) ≥ M − a. There is a set G ⊆ [k] of size |G| ≥ k − a/ϵ such that for any
i ∈ G we have

H(Zi|Z1Z2 . . . Zi−1) ≥ log |Si| − ϵ.

In particular, Zi is 4
√

ϵ close to uniform over Si.

Proof. By the chain rule for entropy ([13], Equation 2.21)

∑
i≤k

(log |Si| − H(Zi|Z1Z2 . . . Zi−1)) ≤ a.

Applying Markov inequality to the non-negative random variable log |Si|−H(Zi|Z1Z2 . . . Zi−1)
(for random i ∈ [k]), we have

Pi∈[k][log |Si| − H(Zi|Z1Z2 . . . Zi−1) ≥ ϵ] ≤ a/(k · ϵ),

yielding the desired G.
The “in particular” part holds because conditioning reduces entropy: H(Zi) ≥

H(Zi|Z1Z2 . . . Zi−1) ([13], Equations 2.60 and 2.92) and then applying Pinsker’s inequality
([14], Chapter 3; Exercise 17). ◀

6 Proof of Theorem 8

We can assume that q ≤ w, for else the statistical bound is trivial and the theorem is true.
We apply Theorem 14 with α = 1/10 and the sequence

ti := m/wc0(q/α)−c1i,

for constants c0, c1 to be set later. For large enough c1 this satisfies the hypothesis of the
theorem that ti ≥ ti−1 · cqw/α. We also need to show that 2−t0 ≥

√
8/|S|, where |S| is the

number of matrices Π in the definition of CMPred. This is true since |S| ≥ 2Ω(m/w).
Let k, Dk, and tk be as provided by the theorem. Recall that

H∞(f(Dk)) ≥ H(Π) − tk−1 · O(qw/α)2.

E. Viola 26:15

Finding comets among trees
The theorem provides t := tk = m/wc0(q/α)−c1k trees. Applying the Comet-Finding Lemma 21
with c = 3 and ℓ = w ≥ log m gives a set of

t′ := m/wc0(q/α)−c1k+O(1)

disjoint w3-comets, where the head lengths are in [wh, wh+1) for some h ≤ c0(q/α) + O(1).
Note that to apply the lemma we need that c0(q/α) ≤ w. This is guaranteed since w ≥ log m

and q = O(log m)/ log log m for else the conclusion of the theorem holds trivially.
We shall get a contradiction looking at the row of the matrix corresponding to blocks of

length wh+2; the other rows can be ignored.

A random comet
To each of the above t′ comets we associate three relevant, consecutive blocks. Of these, the
middle block is the first block that intersects the head of the comet. Note that:

the relevant blocks cover the head of the comet, since the blocks have length wh+2 while
the head has length ≤ wh+1.
the relevant blocks of different comets are disjoint, since the tails of each comet have
length ≥ wh · w3, while the blocks relevant to a comet are contained in an interval of
length 3wh+2 intersecting the head.

Note that from CMPred(Π) we can reconstruct Π, and moreover f(Dk) is in the range of
CMPred. Hence we can define

X := CMPred−1(f(Dk))

and we have H(X) = H(f(Dk)). Let Bi be the portion of X in the three blocks relevant
to comet i, in our current set of t′ comets. Recall that in row h+2 of the CMPred distribution
Π, each block is given by a variable uniform over a support of size 2 · wh+2. Hence Bi is a
random variable uniform over its support Supp(Bi) of size (2 · wh+2)3.

We want to argue that one such variable is close to uniform in our distribution f(Dk).
Indeed, recall from the beginning of the proof that

H(X) ≥ H∞(f(Dk)) ≥ H(Π) − tk−1 · O(qw/α)2.

Since H(X, Y) ≤ H(X) + H(Y) for any random variables X, Y , we have that,

H(B1, B2, . . . , Bt′) ≥ t′ log |Supp(Bi)| − tk−1 · O(qw/α)2.

By Lemma 22, each Bi is α-close to uniform, except for those in a “forbidden” set of size
tk−1 · O(q2w2/α4).

Now for the critical point, t′ is larger than the size of this forbidden set. This is true
because we only lost wO(1) factors, so it suffices to make the constant c1 large enough in the
definition of the sequence ti. Formally,

tk−1 · O(q2w2/α4) = (m/wc0(q/α)−c1(k−1)) · O(q2w2/α4)

which is smaller than t′ = m/wc0(q/α)−c1k+O(1) for c1 large enough. Here we are using
that q ≤ O(log m)/ log log m, w ≥ log m, α = Θ(1).

CCC 2023

26:16 New Sampling Lower Bounds via the Separator

Breaking correlation in the random comet
At this point we have a w3-comet (p, i, j) where the head length (j − i) is in [wh, wh+1] and

(1) The answers to queries i and j are α-independent, and
(2) the relevant blocks are α-close to uniform.

In the query answers consider just the color corresponding to row h + 2 for query i and j.
Let them be C(i) and C(j).

Because the relevant blocks are α-close to uniform, for any color c we have both P[C(i) =
c] ≤ 1/2 + α and P[C(j) = c] ≤ 1/2 + α. Also, because C(i) and C(j) are α-independent, we
have P[C(i) = C(j)] ≤ 1/2 + 2α.

However, C(i) and C(j) are in fact highly correlated. The only event in which P[C(i) ̸=
C(j)] is if the head of the comet contains an element. The head has length ≤ w

h+1 . The
blocks have length wh+2. If the variables in the blocks were uniform, the chance that the
head contains an element is ≤ 1/w. The block is only α-close to uniform, so this probability
is ≤ 1/w + α. Hence, P[C(i) = C(j)] ≥ 1 − 1/w − α. For α = 1/10, this is larger than the
above value of 1/2 − 2α, concluding the proof.

Reducing CMPred to Pred
We quickly recall this reduction to justify the claim made in the introduction that we
obtain a lower bound for Pred under a suitable distribution. Given x, y ∈ {0, 1}m we create
z ∈ {0, 1}m3

such that (Pred(x)i,Pred(y)i) depends only on (and therefore can be reduced
to computing) Pred(z)j . Let x ⊗ y be the m × m matrix where the i, j coordinate is xi · yj .
We can also think of this as a vector z in {0, 1}m2

listing the elements in the matrix in
row order. Note that (Pred(x)m,Pred(y)m) is the same as Pred(z)m2 written in base m.
However to compute (Pred(x)i,Pred(y)i) for i < m this doesn’t quite work. One simple fix
is to zero-out part of the matrix. Define x ⊗i y to be the same as x ⊗ y except that only
the top-left i × i sub-matrix may be non-zero; Then (Pred(x)i,Pred(y)i) can be obtained
from Pred(x ⊗i y)i·m2 . Hence we can reduce two instances x and y of Pred to the instance
(x ⊗1 y, x ⊗2 y, . . .). Repeat ℓ times for 2ℓ instances.

7 Proof of Theorem 4

We can assume that q ≤ log m, for else the statistical statistical bound is trivial and the
theorem is true. We apply the separator Theorem 14 with α = 1/1000 and the sequence

ti := m/wc0(q/α)−c1i,

for constants c0, c1 to be set later. For large enough c1 this satisfies the hypothesis of the
theorem that ti ≥ ti−1 · cqw/α. The hypothesis that 1 − 2−t0 ≥

√
8/|S| =

√
8/2m holds as

well since |S| = 2m.
Let k and Dk be as given by the theorem. Let

X := Rank−1f(Dk).

Note that this is a valid definition because f(Dk) is in the range of Rank, and the latter is
1-1. The separator theorem guarantees that H∞(f(Dk)) ≥ m − t′

k−1, where

t′
k−1 := tk−1 · O(q2w2/α4).

Hence also H(X) ≥ m − t′
k−1.

E. Viola 26:17

Comets
We now apply the comet-finding Lemma 21 to the tk = m/wc0(q/α)−c1k trees given by the
separator. For c = 1, the lemma gives a set of

t′
k := m/wc0(q/α)−c1k+O(1)

disjoint w-comets. We shall only use that they are 100-comets, and their head lengths will
not be relevant now. We want to find a comet whose outputs are “sufficiently random.”

Define a := t′
k−1 and b := t′

k.
Partition X into b consecutive blocks, where each block contains exactly one comet and

intersects no others. Let Z1, Z2, . . . , Zb be the blocks, and let |Zi| = si with
∑

i si = m.
Applying Lemma 22 we find ≥ b − a/ϵ blocks i such that H(Zi|Z1Z2 . . . Zi−1) ≥ si − ϵ. We
set ϵ = 1/w (a sufficiently small constant would be enough), and we verify that b − a/ϵ ≥ 1,
yielding at least one block i∗ such that

H(Zi∗ |Z1Z2 . . . Zi∗−1) ≥ si∗ − ϵ. (1)

The inequality b − a/ϵ ≥ 1 is true because we only lost wO(1) factors, so it suffices to
make the constant c1 large enough in the definition of the sequence ti. Formally,

b

a
= tk

tk−1
· 1

O(q2w2/α4) · wO(1) ≥ wc1

wO(1) > w100.

The inequalities holds for c1 large enough and using q ≤ log m, w ≥ log m, α = Θ(1).

Breaking correlation in the random comet
Hence we now have a comet (p, i, j) that is contained in an interval Zi∗ such that:

(1) Equation 1 holds, and
(2) fi(Dk), fj(Dk) are α-independent.

The next lemma directly contradicts this and concludes the proof.

▶ Lemma 23. Let X1, X2, . . . , Xm be 0 − 1 random variables, and (p, i, j) a c-comet for a
sufficiently large c. Let ℓ := i − p and d := j − i.

Suppose that

H(Xp+1, Xp+2, . . . , Xj |X1, X2, . . . , Xp) ≥ ℓ + d − 1/c.

Then there exists an integer t such that

PX

[
Rank(X)j ≥ t + ℓ/2 + d/2 + c1/3√

d
]

≥ 1/10, and

PX [Rank(X)i < t + ℓ/2] ≥ 1/10, but

PX

[
Rank(X)j ≥ t + ℓ/2 + d/2 + c1/3√

d
∧

Rank(X)i < t + ℓ/2
]

≤ 1/1000(≪ 1/10 · 1/10).

Proof. Let us start with the last inequality, because we can prove it without getting our
hands on t. The probability is at most

PX

[
j∑

k=i+1
Xk ≥ d/2 + c1/3

√
d

]
.

CCC 2023

26:18 New Sampling Lower Bounds via the Separator

By Pinsker’s inequality ([14], Chapter 3; Exercise 17) the distribution of
Xi+1, Xi+2, . . . , Xj is 4/

√
c close to the uniform U1U2 . . . Ud. Hence the above probabil-

ity is

≤ Pr
U

[
d∑

k=1
Uk ≥ d/2 + c1/3

√
d

]
+ 4/

√
c ≤ 1/2000 + 4/

√
c ≤ 1/1000.

where the second inequality follows from Chebyshev’s inequality for sufficiently large c.
We now verify the first two inequalities in the conclusion of the lemma. Let Y :=

X1, X2, . . . , Xp stand for the prefix, and Z := Xp+1, Xp+2, . . . , Xj for the ℓ + d high-entropy
variables. Let

A := {y ∈ {0, 1}p : H(Z|Y = y) ≥ ℓ + d − 2/c}

be the set of prefix values conditioned on which Z has high entropy. We claim that
P[Y ∈ A] ≥ 1/2. This is because, applying Markov Inequality to the non-negative random
variable ℓ + d − H(Z|Y = y) (for y chosen according to Y),

P[Y ̸∈ A] = Py∈Y [ℓ + d − H(Z|Y = y) > 2/c]
≤Ey∈Y [ℓ + d − H(Z|Y = y)]/(2/c)
=(ℓ + d − H(Z|Y))/(2/c) ≤ (1/c)/(2/c) = 1/2.

Note that for every y ∈ A we have, by definition, that the (ℓ + d)-bit random variable
(Z|Y = y) has entropy at least ℓ + d − 2/c, and so by Pinsker’s inequality ([14], Chapter 3;
Exercise 17) the random variable (Z|Y = y) is (ϵ := 4

√
2/c)-close to uniform over {0, 1}ℓ+d.

Therefore, for any subset S ⊆ A, the random variable

(Z|Y ∈ S) is ϵ-close to uniform over {0, 1}ℓ+d
. (2)

Now define t to be the largest integer such that

P [Y ∈ A ∧ Rank(X)p ≥ t] ≥ 1/4. (3)

Since by definition of t we have P[Y ∈ A ∧ Rank(X)p ≥ t + 1] < 1/4, we also have

P [Y ∈ A ∧ Rank(X)p ≤ t] ≥ 1/2 − 1/4 = 1/4. (4)

We obtain the desired conclusions as follows, denoting by U1, U2, . . . , uniform and independent
0 − 1 random variables. The first probability in the conclusion of the lemma is at least

P
[
Rank(X)j ≥ t + (ℓ + d)/2 +

√
ℓ/c1/6

]
because ℓ ≥ c ˙·d.

Writing Rank(X)j as the sum of the first p bits and the rest, the above probability is at
least

P[
∑

k≤ℓ+d

Zk ≥ (ℓ + d)/2 +
√

ℓ/c1/6|Y ∈ A ∧ Rank(X)p ≥ t] · P[Y ∈ A ∧ Rank(X)p ≥ t].

The second factor is ≥ 1/4 by (3). Also by (2) in the first factor we can replace the Zk

with uniform bits changing the probability by at most ϵ. Hence the first factor is at least

P[
∑

k≤ℓ+d

Uk ≥ (ℓ + d)/2 +
√

ℓ/c1/6] − ϵ.

E. Viola 26:19

In turn the probability is

≥ 1/2 −
√

ℓ/c1/6 · Θ(1/
√

ℓ) ≥ 1/2 − Θ(1/c1/6)

using an estimate of the central binomial coefficient provided e.g. in [13], Lemma 17.5.1.
Overall, the first probability in the conclusion of the lemma is(

1/2 − Θ(1/c1/6) − ϵ
)

(1/4) ≥ 1/10

for large enough c.
We now turn to the second probability in the conclusion of the lemma. Proceeding in a

similar way, this probability is at least

P

∑
k≤ℓ

Zk < ℓ/2
∣∣∣Y ∈ A ∧

∑
k

Yk ≤ t

 · P

[
Y ∈ A ∧

∑
k

Yk ≤ t

]

≥

P

∑
k≤ℓ

Uk < ℓ/2

− ϵ

 · (1/4) ≥ (1/2 − ϵ) · (1/4) ≥ 1/10

for all sufficiently large c. Here the second inequality uses (2) and (4). ◀

8 Proof of Corollary 12

We claim that there is a depth-q f : W s → Σm such that the statistical distance between
f(U) and S is at most 1 − Ω(1 − δ)/2c. Then the result follows from the sampling lower
bounds.

To prove the claim, consider fixing the communication transcript of the protocol to i.
Because the communication is fixed, each party can be implemented as a depth-q forest. If
the protocol dictates Party j to send a message that does not match i, Party j outputs any
value and stops. Let C = 2c and consider the C forests fi where each fi corresponds to the
protocols run with fixed communication transcript i. The result now follows from the next
lemma, letting Pi be the output distribution of fi, and Qi(x) the probability that f outputs
x using transcript i.

▶ Lemma 24. Let P be a distribution and S a set. Suppose P (x) =
∑C

i=1 Qi(x) where each
Qi(x) ∈ [0, 1] but

∑
x Qi(x) = 1 is not required. Suppose ∆(P, S) = δ. Define Pi to be the

probability distribution with Pi(x) = Qi(x) and the remainder 1 −
∑

x Qi(x) mass is put
arbitrarily.

Then there exists i such that ∆(Pi, S) ≤ 1 − ϵ where ϵ := 0.1 · (1 − δ)/C.

Proof. We use that

∆(A, B) =
∑

x:A(x)≥B(x)

A(x) − B(x).

Suppose there exists i such that∑
x:Qi(x)≤S(x)

Qi(x) ≥ ϵ.

Then ∆(Pi, S) =
∑

x:Pi(x)≤S(x) S(x) − Pi(x) ≤ 1 − ϵ and we are done.

CCC 2023

26:20 New Sampling Lower Bounds via the Separator

Let

Ti := {x ∈ S : Qi(x) ≥ 1/|S|} ⊆ S.

By above each Qi puts mass at most ϵ outside of Ti. Now we show that the mass
in Ti is concentrated on few points. Suppose |Ti| ≥ ϵ|S| for some i. Then ∆(Pi, S) =∑

x:S(x)≤Pi(x) Pi(x) − S(x) ≤ 1 −
∑

x∈Ti
1/|S| ≤ 1 − ϵ and we are done.

Now we can contradict the hypothesis. Let

T := {x ∈ S : P (x) ≥ 1/|S|} ⊆ S.

Note that Ti ⊆ T for every i. Hence each Qi contributes ≤ ϵ|S| elements to T via Ti, and
further contributes ϵ mass to distribute for others. With mass α we obtain ≤ α|S| elements
such that P (x) ≥ S(x). Hence |T | ≤ Cϵ|S| + Cϵ|S| = 2Cϵ|S|.

Let α, β, γ be respectively the masses that P puts outside of S, in T , and in S \ T . Note
that γ ≤ Cϵ, since each Qi puts ≤ ϵ mass on S \ Ti. We have

∆(P, S) =
∑

x:P (x)≥S(x)

P (x) − S(x) = α + β −
∑
x∈T

S(x) ≥ α + β − 2Cϵ.

We have α + β = 1 − γ ≥ 1 − Cϵ.
Hence we get

δ ≥ ∆(P, S) ≥ 1 − 3Cϵ,

as desired. ◀

References
1 Miklós Ajtai. Σ1

1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48,
1983.

2 Andris Ambainis, Leonard J. Schulman, Amnon Ta-Shma, Umesh V. Vazirani, and Avi
Wigderson. The quantum communication complexity of sampling. SIAM J. on Computing,
32(6):1570–1585, 2003.

3 Sanjeev Arora and Boaz Barak. Computational Complexity. Cambridge University Press, 2009.
A modern approach.

4 Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. Approximating ACˆ0 by small
height decision trees and a deterministic algorithm for #ACˆ0SAT. In Proceedings of the
27th Conference on Computational Complexity, CCC 2012, Porto, Portugal, June 26-29, 2012,
pages 117–125. IEEE Computer Society, 2012. doi:10.1109/CCC.2012.40.

5 Chris Beck, Russell Impagliazzo, and Shachar Lovett. Large deviation bounds for decision
trees and sampling lower bounds for AC0-circuits. Electronic Colloquium on Computational
Complexity (ECCC), 19:42, 2012.

6 Chris Beck, Russell Impagliazzo, and Shachar Lovett. Large deviation bounds for decision trees
and sampling lower bounds for AC0-circuits. In IEEE Symp. on Foundations of Computer
Science (FOCS), pages 101–110, 2012.

7 Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. Explicit two-source extractors for
near-logarithmic min-entropy. Electronic Colloquium on Computational Complexity (ECCC),
23:88, 2016. URL: http://eccc.hpi-web.de/report/2016/088, arXiv:TR16-088.

8 Itai Benjamini, Gil Cohen, and Igor Shinkar. Bi-lipschitz bijection between the boolean cube
and the hamming ball. In IEEE Symp. on Foundations of Computer Science (FOCS), 2014.

9 Eshan Chattopadhyay, Jesse Goodman, and David Zuckerman. The space complexity of
sampling. Electron. Colloquium Comput. Complex., page 106, 2021. URL: https://eccc.
weizmann.ac.il/report/2021/106, arXiv:TR21-106.

https://doi.org/10.1109/CCC.2012.40
http://eccc.hpi-web.de/report/2016/088
https://arxiv.org/abs/TR16-088
https://eccc.weizmann.ac.il/report/2021/106
https://eccc.weizmann.ac.il/report/2021/106
https://arxiv.org/abs/TR21-106

E. Viola 26:21

10 Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient
functions. In ACM Symp. on the Theory of Computing (STOC), pages 670–683, 2016.

11 Gil Cohen. Making the most of advice: New correlation breakers and their applications.
In IEEE Symp. on Foundations of Computer Science (FOCS), pages 188–196, 2016. doi:
10.1109/FOCS.2016.28.

12 Gil Cohen and Leonard J. Schulman. Extractors for near logarithmic min-entropy. Electronic
Colloquium on Computational Complexity (ECCC), 23:14, 2016.

13 Thomas Cover and Joy Thomas. Elements of Information Theory (Wiley Series in Telecom-
munications and Signal Processing). Wiley-Interscience, 2006.

14 Imre Csiszar and Janos Korner. Information Theory: Coding Theorems for Discrete Memoryless
Systems. Academic Press, Inc., 1982.

15 Anindya De and Thomas Watson. Extractors and lower bounds for locally samplable sources.
In Workshop on Randomization and Computation (RANDOM), 2011.

16 P. Erdős and R. Rado. Intersection theorems for systems of sets. J. London Math. Soc.,
35:85–90, 1960. doi:10.1112/jlms/s1-35.1.85.

17 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

18 Anna Gál and Peter Bro Miltersen. The cell probe complexity of succinct data structures.
Theoretical Computer Science, 379(3):405–417, 2007.

19 Alexander Golynski. Cell probe lower bounds for succinct data structures. In 20th ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 625–634, 2009.

20 Mika Göös and Thomas Watson. A lower bound for sampling disjoint sets. ACM Trans.
Comput. Theory, 12(3):20:1–20:13, 2020. doi:10.1145/3404858.

21 Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishability by ad-
aptive procedures with advice, and lower bounds on hardness amplification proofs.
In IEEE Symp. on Foundations of Computer Science (FOCS), 2018. Available at
https://www.ccs.neu.edu/home/viola/papers/adaptivemajority.pdf.

22 Johan Håstad. Computational limitations of small-depth circuits. MIT Press, 1987.
23 Johan Håstad. On the correlation of parity and small-depth circuits. SIAM J. on Computing,

43(5):1699–1708, 2014.
24 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm

for AC0. In ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 961–972, 2012.
25 Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer, 2012.
26 Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic entropy. In

IEEE Symp. on Foundations of Computer Science (FOCS), 2016.
27 Mingmou Liu and Huacheng Yu. Lower bound for succinct range minimum query. In

Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, ACM Symp. on the Theory of Computing (STOC), pages 1402–1415. ACM,
2020. doi:10.1145/3357713.3384260.

28 Shachar Lovett and Emanuele Viola. Bounded-depth circuits cannot sample good codes.
Computational Complexity, 21(2):245–266, 2012.

29 Peter Bro Miltersen. Cell probe complexity – A survey, 1999. Invited talk/paper at Advances
in Data Structures (Pre-conference workshop of FSTTCS’99).

30 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
31 Mihai Pǎtraşcu. Succincter. In 49th IEEE Symp. on Foundations of Computer Science (FOCS).

IEEE, 2008.
32 Mihai Patrascu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Jon M.

Kleinberg, editor, ACM Symp. on the Theory of Computing (STOC), pages 232–240. ACM,
2006. doi:10.1145/1132516.1132551.

33 Mihai Pǎtraşcu and Emanuele Viola. Cell-probe lower bounds for succinct partial sums. In
21th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 117–122, 2010.

CCC 2023

https://doi.org/10.1109/FOCS.2016.28
https://doi.org/10.1109/FOCS.2016.28
https://doi.org/10.1112/jlms/s1-35.1.85
https://doi.org/10.1145/3404858
https://www.ccs.neu.edu/home/viola/papers/adaptivemajority.pdf
https://doi.org/10.1145/3357713.3384260
https://doi.org/10.1145/1132516.1132551

26:22 New Sampling Lower Bounds via the Separator

34 Alexander A. Razborov. Pseudorandom generators hard for k-DNF resolution and polynomial
calculus resolution. Ann. of Math., 181(2):415–472, 2015. doi:10.4007/annals.2015.181.2.1.

35 Nathan Segerlind, Sam Buss, and Russell Impagliazzo. A switching lemma for small restrictions
and lower bounds for k-DNF resolution. SIAM J. on Computing, 33(5):1171–1200, 2004.

36 Mikkel Thorup. Mihai patrascu: Obituary and open problems. Bulletin of the EATCS, 109:7–13,
2013. URL: http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/163/176.

37 Emanuele Viola. The Complexity of Distributions, Fall 2018 talk at the Simons Institute.
https://www.youtube.com/watch?v=O78b085HE3w.

38 Emanuele Viola. Bit-probe lower bounds for succinct data structures. SIAM J. on Computing,
41(6):1593–1604, 2012.

39 Emanuele Viola. The complexity of distributions. SIAM J. on Computing, 41(1):191–218,
2012.

40 Emanuele Viola. Extractors for turing-machine sources. In Workshop on Randomization and
Computation (RANDOM), 2012.

41 Emanuele Viola. Extractors for circuit sources. SIAM J. on Computing, 43(2):355–972, 2014.
42 Emanuele Viola. Lower bounds for data structures with space close to maximum imply circuit

lower bounds. Theory of Computing, 15:1–9, 2019. URL: https://theoryofcomputing.org/
articles/v015a018/v015a018.pdf.

43 Emanuele Viola. Sampling lower bounds: boolean average-case and permutations. SIAM
J. on Computing, 49(1), 2020. Available at https://www.ccs.neu.edu/home/viola/papers/
sampling-lower-bounds.pdf.

44 Emanuele Viola, 2022. https://emanueleviola.wordpress.com/2022/09/14/myth-creation
-the-switching-lemma/.

45 Andrew Yao. Separating the polynomial-time hierarchy by oracles. In 26th IEEE Symp. on
Foundations of Computer Science (FOCS), pages 1–10, 1985.

46 Andrew Chi-Chih Yao. Should tables be sorted? J. of the ACM, 28(3):615–628, 1981.
doi:10.1145/322261.322274.

47 Huacheng Yu. Optimal succinct rank data structure via approximate nonnegative tensor
decomposition. In Moses Charikar and Edith Cohen, editors, ACM Symp. on the Theory of
Computing (STOC), pages 955–966. ACM, 2019. doi:10.1145/3313276.3316352.

A Proof of the fixed-set Lemma 19

Begin with R equal to the uniform distribution over W s. If there are q words and q values
such that the probability of getting those values in B is larger than (1 + α)/W q then we fix
them to those values, in both B and R. Now we have subsets of W s−q, the loss has decreased
by an additive log2 1/(1 + α) = Ω(α), and we repeat the process.

Because the initial loss was b, this process stops after O(b/α) iterations. In the end, the loss
inside the final universe is at most b, since we never increase loss. With respect to the original
universe, because we fixed O(qb/α) words, the loss is at most O(wqb/α) + b ≤ b · O(wq/α).

Let B1 and R be the distributions when the process stops. Consider any tree g :
W s → {0, 1} of depth q. Let P be the collection of paths in g leading to the output 1.
Note that each path p ∈ P corresponds to q input words and q values for them. Write
PX [p] for the probability of following path p under distribution X. By above we have
PB1 [p] ≤ (1 + α)/W q = (1 + α)PR[p].

Hence

P[g(B1) = 1] =
∑
p∈P

PB1 [p] ≤
∑
p∈P

(1 + α)PR[p] = (1 + α)P[g(R) = 1].

And so in particular P[g(B1) = 1] ≤ P[g(R) = 1] + α.

https://doi.org/10.4007/annals.2015.181.2.1
http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/163/176
https://www.youtube.com/watch?v=O78b085HE3w
https://theoryofcomputing.org/articles/v015a018/v015a018.pdf
https://theoryofcomputing.org/articles/v015a018/v015a018.pdf
https://www.ccs.neu.edu/home/viola/papers/sampling-lower-bounds.pdf
https://www.ccs.neu.edu/home/viola/papers/sampling-lower-bounds.pdf
https://emanueleviola.wordpress.com/2022/09/14/myth-creation-the-switching-lemma/
https://emanueleviola.wordpress.com/2022/09/14/myth-creation-the-switching-lemma/
https://doi.org/10.1145/322261.322274
https://doi.org/10.1145/3313276.3316352

E. Viola 26:23

Repeating the argument with 0 and 1 swapped yields the lemma for trees with boolean
alphabet. To prove the lemma for a tree g′ with arbitrary alphabet, reduce to the case
of boolean alphabet in the following standard way. Suppose that the statistical distance
between g′(R) and g′(B1) is > α. This means that there exists a set T such that

|P[g′(R) ∈ T] − P[g′(B1) ∈ T]| > α.

Define tree g with boolean output as g(x) := 1 iff g′(x) ∈ T ; note this just amounts to
changing the labels of the leaves of g′. Now the left-hand side of the inequality above can be
written as

|P[g(R) = 1] − P[g(B1) = 1]|

and this contradicts the result for trees with boolean outputs and concludes the proof of the
lemma.

CCC 2023

A Ihara-Bass Formula for Non-Boolean Matrices
and Strong Refutations of Random CSPs
Tommaso d’Orsi # Ñ

Department of Computer Science, ETH Zürich, Switzerland

Luca Trevisan # Ñ

Department of Computing Sciences, Bocconi University, Milano, Italy

Abstract
We define a novel notion of “non-backtracking” matrix associated to any symmetric matrix, and we
prove a “Ihara-Bass” type formula for it.

We use this theory to prove new results on polynomial-time strong refutations of random
constraint satisfaction problems with 𝑘 variables per constraints (k-CSPs). For a random k-CSP
instance constructed out of a constraint that is satisfied by a 𝑝 fraction of assignments, if the
instance contains 𝑛 variables and 𝑛𝑘/2/𝜖2 constraints, we can efficiently compute a certificate that
the optimum satisfies at most a 𝑝 + 𝑂𝑘(𝜖) fraction of constraints.

Previously, this was known for even 𝑘, but for odd 𝑘 one needed 𝑛𝑘/2(log 𝑛)𝑂(1)/𝜖2 random
constraints to achieve the same conclusion.

Although the improvement is only polylogarithmic, it overcomes a significant barrier to these
types of results. Strong refutation results based on current approaches construct a certificate that a
certain matrix associated to the k-CSP instance is quasirandom. Such certificate can come from
a Feige-Ofek type argument, from an application of Grothendieck’s inequality, or from a spectral
bound obtained with a trace argument. The first two approaches require a union bound that cannot
work when the number of constraints is 𝑜(𝑛 ⌈𝑘/2⌉) and the third one cannot work when the number
of constraints is 𝑜(𝑛𝑘/2√log 𝑛).

We further apply our techniques to obtain a new PTAS finding assignments for 𝑘-CSP instances
with 𝑛𝑘/2/𝜖2 constraints in the semi-random settings where the constraints are random, but the
sign patterns are adversarial.

2012 ACM Subject Classification Theory of computation; Mathematics of computing → Probability
and statistics

Keywords and phrases CSP, k-XOR, strong refutation, sum-of-squares, tensor, graph, hypergraph,
non-backtracking walk

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.27

Related Version Full Version: arXiv:2204.10881

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreements No 815464
and 834861).

Acknowledgements Thanks to Pravesh Kothari for useful discussions about semi-random CSPs.

1 Introduction

If we take a random instance of 3SAT with 𝑛 variables and 𝑚 ≥ 𝑐𝑛 clauses where 𝑐 is a
sufficiently large constant, then almost surely the instance is not satisfiable. Indeed, an
instance of random 3SAT with 𝑛 variables and 𝑛/𝜖2 clauses is almost surely such that at
most a 7/8 + 𝑂(𝜖) fraction of clauses can be simultanously satisfied by the best assignment.
Finding a certificate that a specific random formula exhibits such behaviour is, however,
believed to be quite hard.

© Tommaso d’Orsi and Luca Trevisan;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 27; pp. 27:1–27:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tommaso.dorsi@inf.ethz.ch
https://n.ethz.ch/~dorsit
mailto:l.trevisan@unibocconi.it
https://lucatrevisan.github.io
https://doi.org/10.4230/LIPIcs.CCC.2023.27
https://arxiv.org/abs/2204.10881
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Strong Refutations of Random CSPs

In 2002, Feige [8] formulated the hypothesis that it is computationally intractable to
find strong refutations of random 3-SAT formulas when the number of clauses is slightly
superlinear in the number of variables. A strong refutation of a 3-SAT formula is a certificate,
verifiable in polynomial time, that every assignment fails to satisfy a constant fraction of
the clauses. Feige proved that his hypothesis has several consequences for the hardness of
approximation of various problems.

Because of its centrality to the theories of proof complexity and of average-case complexity,
and its connection to other questions in cryptography, computational complexity, and
statistical physics, the complexity of strong refutations for random 3SAT and other random
constraint satisfaction problems has been extensively studied since the 1980s.

Among several important algorithmic milestones, we mention the idea of using spectral
techniques to find refutations and strong refutations (introduced in [13, 12] and then refined
in subsequent work) and a reduction from the problem of finding strong refutations for
random 3SAT to the problem of finding strong refutations for random 3XOR (introduced
in [8] and then refined in subsequent work).

The state of the art concerning polynomial-time computable strong refutations of random
constraint satisfaction problems is a 2015 paper by Allen, O’Donnell and Witmer [2]. We refer
the reader to the introduction of [2] for an extended survey of algorithmic ideas and results
related to refutations of random constraint satisfaction problems. Allen, O’Donnell and
Witmer [2] show how to obtain strong refutations for random 𝑘-XOR constraint satisfaction
problems on 𝑛 variables and 𝑛𝑘/2(log 𝑛)𝑂(1) constraints. When 𝑘 is even, 𝑂(𝑛𝑘/2) constraints
suffice. Thanks to a reduction from arbitrary constraint satisfaction to 𝑘-XOR (of which we
provide a self-contained simpler proof in the full version of the paper), similar bounds hold
for any constraint satisfaction problem over 𝑘 variables.

To illustrate the difference between odd 𝑘 and even 𝑘, we briefly discuss how a strong
refutation for random 4-XOR and random 3-XOR instances is constructed.

In general, if we have an instance of 𝑘-XOR with 𝑚 constraints and 𝑛 variables, a strong
refutation is a certificate that

max
𝑥∈{−1,1}𝑛

∑
𝑖1 ,...,𝑖𝑘

𝑇𝑖1 ,...,𝑖𝑘 𝑥𝑖1 · · · 𝑥𝑖𝑘 ≤ 𝜖𝑚

where 𝑇 is a symmetric tensor of order 𝑘 such that 𝑇𝑖1 ,...,𝑖𝑘 = 0 if there is no constraint on the
𝑘-tuple of variables 𝑥𝑖1 , . . . , 𝑥𝑖𝑘 , and otherwise 𝑇𝑖1 ,...,𝑖𝑘 = ±1 depending on the right-hand-side
of the constraint.

When 𝑘 = 4, we can flatten the tensor to an 𝑛2 × 𝑛2 symmetric matrix 𝑀 (where
𝑀(𝑎,𝑏),(𝑐,𝑑) = 𝑇𝑎,𝑏,𝑐,𝑑) and we have

max
𝑥∈{−1,1}𝑛

∑
𝑖1 ,...,𝑖4

𝑇𝑖1 ,...,𝑖4𝑥𝑖1 · · · 𝑥𝑖4 = max
𝑥∈{−1,1}𝑛

(𝑥⊗2)T𝑀𝑥⊗2

Now we can relax the right-hand side to a maximization over arbitrary 𝑛2-dimensional
Boolean vectors and further relax to the ∞-to-1 norm:

max
𝑥∈{−1,1}𝑛

(𝑥⊗2)T𝑀𝑥⊗2 ≤ max
𝑦∈{−1,1}𝑛2

𝑦T𝑀𝑦 ≤ max
𝑦,𝑧∈{−1,1}𝑛2

𝑦T𝑀𝑧 = | |𝑀 | |∞→1

Finally, the last expression above can be upper bounded by 𝜖𝑚, by using Chernoff bounds
and a union bound over all the 22𝑛2 possible choices for 𝑦 and 𝑧, which is possible if 𝑚 is a
sufficiently large constant times 𝑛2/𝜖2. Finally, we can use Grothendieck’s inequality to get
us a certified upper bound of the ∞ → 1 norm in polynomial time up to a constant factor.

T. d’Orsi and L. Trevisan 27:3

For 3-XOR, the idea is to apply a Cauchy-Schwarz step to reduce the problem of bounding
a degree-4 problem, and then to flatten the resulting 4-tensor to an 𝑛2 × 𝑛2 matrix 𝑀 such
that

max
𝑥∈{−1,1}𝑛

∑
𝑖1 ,𝑖2 ,𝑖4

𝑇𝑖1 ,𝑖2 ,𝑖3𝑥𝑖1𝑥𝑖2𝑥𝑖3 ≤
√
𝑛 ·

√
max
𝑥∈{±1}𝑛

(𝑥⊗2)T𝑀𝑥⊗2 ≤
√
𝑛 ·

√
max

𝑦,𝑧∈{±1}𝑛2
𝑦T𝑀𝑧

Unfortunately, now it is not possible any more to bound the maximum on the above
right-hand via a union bound over 22𝑛2 cases. Indeed, for this to be possible, we would need
our distribution to have at least order of 𝑛2 bits of entropy, and so we would need to have
order of 𝑛2 constraints.

The alternative is to obtain a bound in terms of the spectral norm of 𝑀, using the fact
that

max
𝑦,𝑧∈{±1}𝑛2

𝑦T𝑀𝑧 ≤ 𝑛2 · | |𝑀 | | .

But for a sparse matrix to have a non-trivial bound on its spectral norm, we have to
have at least poly log 𝑛 non-zero entries per row on average1, and for this to happen the
number of constraints has to be at least of the order of 𝑛1.5poly log 𝑛. In the regime of
𝑛1.5poly log 𝑛 random 3-XOR constraints, a spectral norm bound on 𝑀 can be established
via trace methods, and this is how the results of [2] are proved in the case of odd 𝑘.

Semi-random CSPs

The complementary question to that of certifying strong refutations, concerns the design
of algorithms that satisfy as-many-as-possible clauses in the given CSP instance. As for
refutations, complexity theory paints a grim picture for (approximately) solving worst case
instances [18, 6, 11]. But, in the average case, polynomial time approximation schemes are
known [3, 1] when the number of clauses is of the order 𝑛𝑘/2(log 𝑛)𝑂(1) .

The algorithmic techniques behind these PTAS are closely related to those used for
refutations and, in particular, again boils down to studying the spectrum of the flattened
tensor representing the instance.

Remarkably, groundbreaking work [15], showed that a similar picture holds in the
significantly more general settings of smoothed CSPs: where both the literal negation
patterns and clauses are chosen arbitrarily, but then signs are randomly flipped with a small,
yet constant, probability.2.

1.1 Our Results

Strong refutations

Our first result breaks the 𝑛𝑘/2poly log 𝑛 barrier for strong refutations of random 𝑘-XOR
instances, with odd 𝑘.

1 This is similar to the phenomenon that the quasirandomness of a 𝐺𝑛,𝑝 random graphs can be certified
in terms of the non-trivial eigenvalues of the adjacency matrix only if the average degree is at least
logarithmic. We will return to the graph analogy shortly.

2 Smoothed CSPs were first introduced in [9]

CCC 2023

27:4 Strong Refutations of Random CSPs

▶ Theorem 1 (Strong refutations of random 𝑘-XOR). There exists an efficient algorithm that,
given an instance 𝓘 of random 𝑘-XOR with 𝑛𝑘/2/𝜖2 constraints, with probability at least
0.99, finds strong refutation of 𝓘 , that is, a certificate that

Opt𝓘 ≤ 1
2 + 𝑂(𝜖) .

Using the known reduction of general 𝑘-CSP to 𝑘-XOR, of which we provide a simple
self-contained proof, we have the following consequence.

▶ Theorem 2 (Strong refutations of random CSPs). Let 𝑃 : {−1,+1}𝑘 → {0, 1} be a Boolean
𝑘-ary predicate, and call 𝔼𝑃 the probability that 𝑃 is satisfied by a random assignment.
There exists a polynomial time algorithm that given a random instance 𝐶𝑆𝑃(𝑃) instances
𝓘 , over 𝑛 variables, with at least 𝑛𝑘/2/𝜖2 constraints, with probability at least 0.99, finds a
strong refutation of 𝓘 , that is, a certificate that

Opt𝓘 ≤ 𝔼𝑃 + 𝑂(𝜖) .

Robust approximation algorithms against adversarial sign patterns

Our techniques can be further applied to design efficient algorithms finding an assignment
with value Opt − 𝑂(𝜖) beyond the 𝑛𝑘/2 polylog 𝑛 barrier. Our sharp results not only works
for random instances, but also in the semi-random settings where: first, clauses are sampled
randomly, and second, given the instance, the sign pattern of each clause is adversarially
perturbed. Such perturbations are not captured by the smooth models of [9, 15] and hence
require different algorithmic challenges. In the special case of even 𝑘, [17] provided a PTAS
whenever 𝑝 ≥ 𝑛𝑘/2 polylog 𝑛 .

▶ Theorem 3 (Algorithm for k-XOR with adversarial patterns). Let 𝑛 , 𝑘 be positive integers,
𝜖 > 0 , 𝑛 and 𝑛−𝑘/2/𝜖2 < 1. Let ℐ be a 𝑘-XOR instance constructed through the following
process:

Sample a random 𝑘-XOR instance 𝓘
′ with at least 𝑛𝑘/2/𝜖2 constraints.

Given 𝓘
′, arbitrarily (possibly adversarially) replace the sign of each clause in 𝓘

′ .
There exists a randomized algorithm, running in time 𝑛𝑂(𝑘/𝜖2), that returns an assignment x̂
with value

Valℐ (x̂) ≥ Optℐ − 𝑂(𝜖) ,

with probability at least 0.99.

As in the case of strong refutations, Theorem 3 can be extended to 𝑘-CSPs.

▶ Theorem 4 (Algorithm for semi-random k-CSPs). Let 𝑛 , 𝑘 be positive integers, 𝜖 > 0 , 𝑛 and
𝑛−𝑘/2/𝜖2 < 1. Let 𝑃 : {−1,+1}𝑘 → {0, 1} be a Boolean 𝑘-ary predicate. Let ℐ be a 𝐶𝑆𝑃(𝑃)
instance constructed through the following process:

Sample a random 𝐶𝑆𝑃(𝑃) instance 𝓘
′ with at least 𝑛𝑘/2/𝜖2 constraints.

Given 𝓘
′, for each clause in 𝓘

′, replace the sign pattern with an arbitrary (possibly
adversarial) sign pattern.

There exists a randomized algorithm, running in time 𝑛𝑂(𝑘/𝜖2), that returns an assignment x̂
with value

Valℐ (x̂) ≥ Optℐ − 𝑂(𝜖) ,

with probability at least 0.99.

T. d’Orsi and L. Trevisan 27:5

1.2 Our Techniques

We develop new techniques to bound3

max
𝑥∈{±1}𝑁

𝑥TM𝑥 (1)

when M is a random 𝑁 ×𝑁 matrix with only a constant expected number of non-zero entries
per row and per column, and in which such entries are not independent.

A toy problem

Before we explain our ideas, consider the following question, which models some of the
difficulties that we encounter: suppose that we are given a random graph on 𝑁 vertices, and
such that every edge exists with probability 𝑑/𝑁 , where 𝑑 is a constant, but the edges are
only known to be poly log𝑁-wise independent, and not fully independent. Can we certify
that the graph has interesting quasirandom properties, for example can we certify that the
Max Cut optimum is at most a 1/2 + 𝑂(1/

√
𝑑) fraction of edges?

One approach could be to bound | |A −𝔼A| |∞→1 where A is the adjacency matrix of the
graph. If the graph has mutually independent random edges, that is, if it is sampled from an
Erdős-Reniy distribution 𝐺𝑁, 𝑑𝑁

, then we can use a union bound over 22𝑁 cases to argue that
with high probability

| |A −𝔼A| |∞→1 ≤ 𝑂(
√
𝑑𝑁)

which is certifiable in polynomial time, up to a constant factor loss, using Grothendieck’s
inequality and which certifies that the Max Cut optimum is at most 1/2 + 𝑂(1/

√
𝑑). Unfor-

tunately, if the edges are only polylog𝑁-wise independent, then it is not possible to take
such union bound.

Another option in the fully independent case is to use the results of Feige and Ofek [10],
which show that, after removing nodes of degree larger than, say, 10𝑑, the adjacency matrix of
the residual graph has second eigenvalue at most 𝑂(

√
𝑑) with high probability. Unfortunately

the proof of Feige and Ofek also relies on a union bound over 2𝑂(𝑁) cases, and so it cannot
work in the polylog𝑁-wise independent case.

A trace argument can be used to prove that, with high probability, we have

| |A −𝔼A| | ≤ 𝑂(
√
𝑑 log𝑁)

which provides a polynomial time certificate that the Max Cut optimum is at most 1/2 +
𝑂(

√
log𝑁/

√
𝑑), and the trace calculation only requires 𝑂(log𝑁)-wise independence. It does,

however, introduce an extra logarithmic factor, which is unavoidable because the spectral
norm of | |A −𝔼A| | is Ω̃(

√
log𝑁) when 𝑑 is constant.

It is conceivable that one could prove the result of Feige and Ofek (that the adjacency
matrix has second largest eigenvalue 𝑂(

√
𝑑) after the removal of high-degree vertices) through

a trace bound on the adjacency matrix of the truncated graph, although it seems very difficult
to deal with the conditional distribution of edges given that the edges survive the truncation.

3 We use boldface to denote random variables.

CCC 2023

27:6 Strong Refutations of Random CSPs

A solution to the toy problem

Although all standard techniques fail, there is a way to combine certain recent results to solve
our toy problem. The starting point is the fact that, given an undirected graph 𝐺 = (𝑉, 𝐸),
we can define the “non-backtracking” 2|𝐸 | × 2|𝐸 | matrix 𝐵 of 𝐺, and that this matrix satisfies
the Ihara-Bass equation

det(Id − 𝑥𝐵) = (1 − 𝑥2)|𝐸 |−|𝑉 | · det(Id − 𝑥𝐴 + 𝑥2(𝐷 − Id))

where 𝐴 is the adjacency matrix of the graph, 𝐷 is the diagonal matrix of degrees, and the
above equation holds as an identity of polynomials of degree 2|𝐸 | in 𝑥. See the survey of
Horton [16] for an exposition of these definitions and results.

Fan and Montanari [7] show that bounds on the spectral radius of 𝐵 imply useful PSD
inequalities on 𝐴. In particular, if 𝜆min is the smallest real eigenvalue of 𝐵, then we have

𝐴 ⪰ −|𝜆min | · Id − 1
|𝜆min |

· (𝐷 − Id)

In the context of their work on the Stochastic Block Model, Bordenave, Lalarge and Massoulié
[5] use a trace argument to prove a result that implies that 𝜆min ≥ −(1 + 𝑜(1)) ·

√
𝑑 in 𝐺𝑁, 𝑑𝑁

random graphs, and so all these results together imply that the Max Cut of a 𝐺𝑁, 𝑑𝑁 random
graph is with high probability at most 1/2 + (1 + 𝑜(1))/

√
𝑑, and that this upper bound is

efficiently certifiable, for example by the dual of the Goemans-Williamson relaxation.
The key point is that there was never a union bound over 2𝑂(𝑁) cases in the above

argument and that, in fact, everything works assuming polylog𝑁-wise independence of the
edges.4

From unweighted graphs to general symmetric matrices

Our goal is to develop an analog of this argument where we work with the 𝑛2 × 𝑛2 matrix
𝑀 that comes up in the analysis of 3-XOR (or, in general, with the 𝑛 ⌈𝑘/2⌉ × 𝑛 ⌈𝑘/2⌉ matrix
that comes up in the analysis of 𝑘-XOR when 𝑘 is odd) instead of the adjacency matrix 𝐴 of
the pseudorandom graph analysed above.

The first challenge in carrying out this program is that the original notion of non-
backtracking matrix is defined only with respect to 0/1 Boolean symmetric matrices, while
we want to study matrices with positive and negative entries that can be arbitrary integers.

A certain generalization of non-backtracking matrices was already introduced in [20, 7],
however for technical reasons we were not able to use it to carry out our program. We thus
introduce a novel theory of “non-backtracking” matrices associated to any given symmetric
matrix. In Section 3, given a symmetric 𝑁 ×𝑁 matrix 𝑀 with 𝑁𝑧 non-zero entries, we define
an 𝑁𝑧 × 𝑁𝑧 “non-backtracking” matrix 𝐵𝑀 associated to 𝑀, and we prove (see Theorem 7)
an Ihara-Bass-type identity

det(Id − 𝑥𝐵𝑀 + 𝑥(𝐿𝑀 − 𝐽𝑀)) = (1 − 𝑥2)𝑁𝑧/2−𝑁 · det(Id − 𝑥𝑀 + 𝑥2(𝐷𝑀 − Id))

4 Incidentally, this combination of Fan-Montanari ideas and Bordenave-Lalarge-Massouli’s bounds, also
implies that if 𝐴′ is the adjacency matrix of a graph 𝐺 sampled from a distribution in which edges have
probability 𝑑/𝑁 and are polylog𝑁 wise independent, and then truncated by removing all vertices of
degree more than, say, 10𝑑, then we have with high probability 𝐴′ ⪰ −𝑂(

√
𝑑) · 𝐼, proving a one-sided

version of the result of Feige and Ofek.

T. d’Orsi and L. Trevisan 27:7

where 𝐷𝑀 , 𝐿𝑀 and 𝐽𝑀 are certain matrices that are associated to 𝑀. When 𝑀 is Boolean,
𝐿𝑀 = 𝐽𝑀 and 𝐷𝑀 is the diagonal matrix such that (𝐷𝑀)𝑖 ,𝑖 =

∑
𝑗 𝑀𝑖 , 𝑗 , so our equation

becomes the standard Ihara-Bass equation in the case of Boolean 𝑀. Conveniently, closed
non-backtracking walks 𝑊 arising from the definition of 𝐵𝑀 take value in {±∏

(𝑖 , 𝑗)∈𝑊 𝑀𝑖 𝑗},
allowing one to easily mimic arguments used for standard non-backtracking matrices.

Now, given a bound on the spectral radius of 𝐵𝑀 − 𝐿𝑀 + 𝐽𝑀 , it is possible, with an
argument in the style of Fan and Montanari, to deduce a certifiable bound on the ∞-to-1
norm of 𝑀.

Bounding the spectral radius via weighted hyper-walks

Studying the spectral radius of 𝐵M − 𝐿M + 𝐽M –matrices associated to the matrix M coming
from random 𝑘-XOR instances– is the main technical challenge of this work.

Our bound relies on a trace argument of 𝐵M. However, compared to Bordenave, Lalarge
and Massoulié [5] our setup presents a number of new technical challenges.

One challenge comes from the extra terms that we have in the non-Boolean case. In
particular, our non-backtracking matrix 𝐵M has entries that are the absolute values of certain
entries of M. To compute an expectation of the trace of the symmetrization of a power of
𝐵M, we replace absolute values with squares, and bound the error that we incur because of
this.

Perhaps the most important challenge comes from the fact that the trace bound ultimately
boils down to a weighted count of certain closed “hypergraph walks” performed on the
hypergraph corresponding to constraints of the 𝑘-XOR instance. These objects arise from
our notion of non-backtracking walks on the symmetric matrix M obtained from the instance.
This count is performed by showing that such walks can be encoded with a small number of
bits. It is enough to count walks in which every hyperedge is repeated at least twice, and
the crux of the argument is that the second time we see a hyperedge we can encode that
hyperedge in a compact way. A naive way of doing that would point back to the previous step
in the walk in which that hyperedge appeared, and this costs log ℓ bits where ℓ is the length
of the walk. To obtain the right result, however, repeated hyperedges have to be represented
with an amortized constant number of bits per occurrence. The argument of Bordenave,
Lalarge and Massoulié [5] relies on the assumption, which is true with high probability, that
the graph is “tangle-free,” meaning that small subgraphs have at most one cycle. We have to
work with a looser notion of tangle-free hypergraph in order to prove that it holds with high
probability, but we are still able to obtain the desired bound.

From spectral bounds to algorithms

It is clear that an algorithm certifying tight bounds on Equation (1) for the matrix 𝑀

obtained from 𝑘-XOR instances can be used for strong refutations. Instead, to obtain
Theorem 3 additional ideas are needed.

Our starting point is the local-to-global rounding paradigm of [3]. As it is often the case,
the odd settings are significantly more challenging than the regimes with 𝑘 even. Hence
consider first a 2-XOR random instance 𝓘 . Up to the signs of the clauses, this may be
represented as a graph G over 𝑛 vertices. Now, for a distribution 𝜈 over assignments, one
may define the local and global correlations as

CCC 2023

27:8 Strong Refutations of Random CSPs

LCG(𝜈) = 𝔼
(a,b)∼𝐸(G)

���Cov𝜈

(
xa , xb

)���
GC(𝜈) = 𝔼

(a,b)∼[𝑛]×[𝑛]

���Cov𝜈

(
xa , xb

)��� .
If the local correlation is bounded by 𝜖, it is possible to obtain an assignment with value
Opt𝑰 − 𝑂(𝜖) simply looking at the first moment of 𝜈. Moreover, one can always transform 𝜈
into a distribution with small global correlation in polynomial time.

With these observations, the argument of [3] comes down to: (i) bounding the difference
between local and global correlation in terms of the spectral radius 𝜌G of the centered
adjacency matrix of the graph G, (ii) showing that one can always find, in time 𝑛𝑂(1/𝜖2), a
degree 𝑂(1) pseudo-distribution over the hypercube with global correlation at most 𝜖. As
we only required low-degree moments to obtain the desired assignment, the argument goes
through in this case as well.

To combine this approach with the bounds previously illustrated and extend the argument
to random 𝑘-XOR instances with 𝑚 ≥ Ω(𝑛𝑘/2/𝜖2) clauses, we need to introduce two novel
ingredients. First, we need new notions of local and global correlations which difference can
be bounded studying the matrix M arising from the instance. Second, we need to bound this
difference not in term of the eigenvalues of M but rather in terms of Equation (1).

A careful Cauchy-Schwarz application allows us to formulate notions of local and global
correlations in terms of M. Its squaring step, further allows us to get rid of absolute values,
thus providing an avenue to bound the difference between local and global correlation in
terms of max𝑥∈{±1}𝑛 𝑥

TM𝑥 .

Finally, since the adversarial perturbations in Theorem 3 cannot alter the “hypergraph
walks” required to prove our bound, we are able to generalize our result to these settings.

1.3 Perspective

Several results on the average-case complexity of Sum-of-Square relaxations rely on proving
that sparse matrices with non-independent entries are “quasirandom” in an appropriate
sense. We have introduced a new approach to prove results of this form, which applies to
very sparse matrices that have only a constant expected number of non-zero entries per row
and per column. We hope that our ideas will find further application, for example to the
context of semi-random instances of constraint satisfaction problems [14] or of higher-degree
Sum-of-Square relaxations of random constraint satisfaction problems [19, 21].

Our theory could also be useful to study problems on random weighted graphs.
Our certificates prove certain PSD inequalities, and can be seen as Semidefinite Duals of

certain Sum-of-Squares relaxations, but the computation of the certificate only requires an
eigenvalue computation of a certain matrix, and does not require the solution of an SDP.
There might be other ways to apply our theory so that one uses SDP relaxations only in the
analysis, but the algorithm itself is purely spectral.

1.4 Organization

In the rest of the paper we first introduce preliminary notions, including those of CSPs and
strong refutation, then present a proof of our generalized Ihara-Bass formula. We show the
proofs of our main Theorems in the full version of the paper.

T. d’Orsi and L. Trevisan 27:9

2 Preliminaries

We introduce some notation, useful facts and needed preliminary notions. We denote random
variables in bold. We use lower case letters 𝑎, 𝑏, 𝑐, 𝑑, . . . to denote indices or scalars (the
use willl be clear from context). We use the greek letters 𝛼, 𝛽, 𝜂 to denote multi-indices.
The cardinality of a multi-index 𝛼 is |𝛼 |. The 𝑖-th index in 𝛼 is 𝛼(𝑖). We may thus write a
monomial (with coefficient 𝑐) in indeterminates 𝑥1 , . . . , 𝑥𝑛 as 𝑐 · 𝑥𝛼. For two multi indices
𝛼, 𝛽 ∈ [𝑛]𝑘 we denote by (𝛼, 𝛽) the multi-index obtained concatenating 𝛼 and 𝛽. Multi-indices
𝛼, 𝛽 ∈ [𝑛]𝑘 satisfy 𝛼 = 𝛽 if at each position the corresponding indices are identical. We use
𝑆(𝛼) to denote the unordered multi-set of indices in 𝛼. We use 𝑛 to denote our ambient
dimension. For functions 𝑓 , 𝑔 : ℝ → ℝ we write 𝑓 = 𝑜(𝑔) and 𝑔 = 𝜔(𝑓) if lim𝑛→∞

𝑓 (𝑛)
𝑔(𝑛) = 0.

Matrices

For a matrix 𝑀 ∈ ℝ𝑛×𝑛 , we denote by 𝜆1(𝑀) ≥ . . . ≥ 𝜆𝑛(𝑀) its eigenvalues. Then
𝜌(𝑀) := max𝑖 |𝜆𝑖(𝑀)| is the spectral radius of 𝑀. W When the context is clear we simply
write 𝜆1 , . . . ,𝜆𝑛 . The spectral radius of a matrix satisfies the following inequality.

▶ Lemma 5 (Gelfand’s Formula). Let 𝑀 ∈ ℝ𝑛×𝑛 and let ∥·∥∗ be a norm. Then for any
positive integer 𝑧

𝜌(𝑀) ≤ ∥𝑀𝑧 ∥1/𝑧
∗ .

We write ∥𝑀∥ for the spectral norm of a matrix 𝑀, ∥𝑀∥F for its Frobenius norm ∥𝑀∥∞→1 :=
max𝑥,𝑦∈{±1}𝑛 ⟨𝑀, 𝑥𝑦T⟩ and ∥𝑀∥max := max𝑖 𝑗

��𝑀𝑖 𝑗

�� . Furthermore, we let

∥𝑀∥Gr = max {⟨𝑀, 𝑋⟩ | 𝑋 ⪰ 0, 𝑋𝑖𝑖 ≤ 1 ,∀𝑖 ∈ [𝑛]} .

We denote by |𝑀 | the matrix with entries (|𝑀 |)𝑖 𝑗 :=
��𝑀𝑖 𝑗

��. We write Id𝑡 for the 𝑡-by-𝑡 identity
matrix, 0 for the zero matrix and 𝐽 for the all-ones matrix.

Graphs

For a graph 𝐺, 𝑉(𝐺) and 𝐸(𝐺) denotes respectively its set of vertices and edges. ®𝐸(𝐺) :=
{(𝑢, 𝑣) : 𝑢 ≠ 𝑣 ∈ 𝑉(𝐺) , 𝑢𝑣 ∈ 𝐸(𝐺)} is the set of all its ordered pairs such that {𝑢, 𝑣} ∈ 𝐸(𝐺).
For 𝑒 ∈ ®𝐸(𝐺), 𝑠(𝑒) and 𝑡(𝑒) are respectively the source and target of the oriented edge. We
write 𝑒−1 for its inverse. We also write 𝐾𝑛 for the complete graph over 𝑛 vertices. For a graph
𝐺 with 𝑛 vertices, we write 𝐴(𝐺) ∈ ℝ𝑛×𝑛 for its adjacency matrix. For a vertex 𝑣 ∈ 𝑉(𝐺),
we denote by deg𝐺(𝑣) its degree. We denote by 𝑁𝐺,𝑡(𝑣) the set of vertices in 𝐺 at distance 𝑡
from 𝑣. We and drop the subscript 𝐺 when the context is clear. If the graph 𝐺 is weighted
with weights given by 𝑤 : 𝑉(𝐺) × 𝑉(𝐺) → ℝ, then 𝐴𝑢𝑣 = 𝑤({𝑢𝑣}). If 𝑒 ≠ 𝐸(𝐺), then we
assume 𝑤(𝑒) = 0. A walk 𝑊 in a graph 𝐺 is a sequence of vertices (𝑣1 , . . . , 𝑣𝑧+1). A walk
𝑣1 , . . . , 𝑣𝑧+1 is said to be non-backtracking if for any 𝑖 ≤ 𝑧 − 1, 𝑣𝑖 ≠ 𝑣𝑖+2.

2.1 CSPs, k-XOR and strong refutations
k-XOR

A random 𝑘-XOR instance 𝓘 with 𝑛 variables and 𝑝
(𝑛
𝑘

)
(1 ± 𝑜(1)) clauses can be generated

by picking a random symmetric tensor T, with independent entries, such that T𝛼 = 0 if the
indices in the multi-index 𝛼 ∈ [𝑛]𝑘 are not distinct and otherwise:

CCC 2023

27:10 Strong Refutations of Random CSPs

T𝛼 =

0 with probability 1 − 𝑝 ,
+1 with probability 𝑝/2 ,
−1 with probability 𝑝/2 .

We denote by 𝑚 the exact number of clauses in the instance. Then 𝓘 consists of the 𝑚 𝑘-XOR
predicates 𝑘-XOR(𝛼) = 1−𝑥𝛼(−T)𝛼

2 where T𝛼 is non-zero. We use ℱ𝑘-XOR(𝑛,𝑝) to denote such
distribution and 𝓘 ∼ ℱ𝑘-XOR(𝑛,𝑝) to denote a random instance. We let Val𝓘 (𝑥) be the fraction
of constrained satisfied by the assignment 𝑥 ∈ {±1}𝑛 and Opt𝓘 := max𝑥∈{±1}𝑛 Val𝑰 (𝑥). For
any assignment 𝑥 ∈ {±1}𝑛 we have

Val𝓘 (𝑥) = 1
2 + 1

𝑚(𝓘)
∑

𝛼∈[𝑛]𝑘

𝑥𝛼T𝛼

2 .

Notice that since 𝑚 will be (1 ± 𝑜(1))𝑝
(𝑛
𝑘

)
with overwhelming probability, we blur the

distinction between these parameters. Then the max 𝑘-XOR problem is that of finding an
assignment with value

max
𝑥∈{±1}𝑛

∑
𝛼∈[𝑛]𝑘

T𝛼𝑥
𝛼 . (2)

This is captured by the following proposition.

▶ Proposition 6. Let 𝓘 ∼ ℱ𝑘-XOR(𝑛,𝑝) and let T be the associated 𝑘-th order tensor. Then
with overwhelming probability

Opt𝓘 ≤ 1
2 + (1 + 𝑜(1))

((
𝑛

𝑘

)
· 𝑝

)−1
·
∑

𝛼∈[𝑛]𝑘
T𝛼𝑥

𝛼 .

Throughout the paper we assume 𝑘 to be an odd integer as for the even case sharp refutation
algorithms are already known (e.g see [2]).

A random 𝑘-XOR instance 𝓘 with 𝑛 variables and exactly 𝑚 clauses can be generated by
picking 𝑚 times a clause at random out of the

(𝑛
𝑘

)
possible 𝑘-XOR-clause. It is possible to

show that a refutation algorithm for 𝓘 ∼ ℱ𝑘-XOR(𝑛,𝑝) can also be used for refutation of 𝑘-XOR
instances sampled through this second process. For this reason, we blur the distinction
between these two processes. We direct the reader interested in a formal reduction to [2]
(Appendix D).

CSPs

Given a predicate 𝑃 : {−1, 1}𝑘 → {0, 1}, an instance ℐ of the CSP(P) problem over variables
𝑥1 , . . . , 𝑥𝑛 is a multi-set of pairs (𝑐, 𝛼) representing constraints of the form 𝑃(𝑐 ◦ 𝑥𝛼) :=
𝑃(𝑐1𝑥

𝛼(1) , . . . , 𝑐𝑘𝑥𝛼(𝑘)) = 1 where 𝛼 ∈ [𝑛]𝑘 is the scope and 𝑐 ∈ {±1}𝑘 is the negation pattern.
We can represent the predicate 𝑃 as a multi-linear polynomial of degree 𝑘 in indeterminates
𝑐1𝑥

𝛼(1) , . . . , 𝑐𝑘𝑥𝛼(𝑘),

𝑃(𝑐 ◦ 𝑥𝛼) =
∑
𝑑≤𝑘

𝑃𝑑(𝑐 ◦ 𝑥𝛼) ,

where 𝑃𝑑 denotes the degree 𝑑 part of the predicate. In particular 𝑃0 := 𝑃0(𝑐 ◦ 𝑥𝛼) denotes
the constant part of the polynomial, which does not depend on the assignment.

T. d’Orsi and L. Trevisan 27:11

The fraction of all possible assignments that satisfy 𝑃 is given by 𝔼z𝑢.𝑎.𝑟∼ {±1}𝑘 [𝑃(z)]. For
any assignment 𝑥 ∈ {±1}𝑛 and an instance ℐ over 𝑚 constraints we have

Valℐ (𝑥) = 1
𝑚

∑
(𝑐,𝛼)∈ℐ

𝑃(𝑐 ◦ 𝑥𝛼)

and Optℐ = max
𝑥∈{±1}𝑛

Valℐ (𝑥) .

A random CSP(P) instance 𝓘 with (1 + 𝑜(1))𝑚 = 𝑝 · 2𝑘 · 𝑛𝑘 constraints can be generated as
follows:

(i) Pick independently with probability 𝑝 each pair (c, 𝜶) where c is a random negation
pattern from {−1,+1}𝑘 and 𝛼 is a multi-index from [𝑛]𝑘 ,

(ii) For each such pair (c, 𝜶) add the constraint 𝑃(c ◦ 𝑥𝜶) = 1 to 𝓘 .
Notice that we do not rule out predicates with same multi-index but different negation
pattern as multi-indices in which an index appears multple time. We also do not assume 𝑃
to be symmetric. We denote such distribution by ℱCSP(P)(𝑛, 𝑝).

As in the case of 𝑘-XOR a random CSP(P) instance 𝓘 with 𝑛 variables and exactly 𝑚
clauses can be generated by picking 𝑚 times a clause and a negation pattern at random.
Again it is possible to show that a refutation algorithm for 𝓘 ∼ ℱCSP(P)(𝑛, 𝑝) can also be
used for refutation of instances sampled through this second process (see Appendix D in [2]).

Refutation and certification

We say that 𝒜 is a 𝛿-refutation algorithm for random CSP(P) if 𝒜 has the following
properties:

(i) on all instances ℐ the output of 𝒜 si either Optℐ ≤ 1 − 𝛿 or “fail”,
(ii) if Optℐ > 1 − 𝛿 then 𝒜 never outputs Optℐ ≤ 1 − 𝛿.

More generally, for an set of possible inputs 𝒮 and a property 𝑝 over instances in 𝒮, we say
that an algorithm 𝒜 certifies 𝑝 if:

(i) on all inputs ℐ ∈ 𝒮 the output of 𝒜 is either “ℐ satisfies 𝑝” or “fail”,
(ii) if ℐ ∈ 𝒮 does not satisfy 𝑝 then 𝒜 never outputs “ℐ satisfies 𝑝”.

In the context of random CSP(P) (and hence 𝑘-XOR), a strong refutation is a 𝛿-
refutation for 1 − 𝛿 ≤ 𝔼x𝑢.𝑎.𝑟∼ {±1}𝑘 [𝑃(x)] + 𝑜(1).

3 A generalized Ihara-Bass formula

In this section we present an extension of the Ihara-Bass theorem (see [16] and references
therein) to arbitrary real symmetric matrices. We remark that our extension differs from the
one in [7].

Throughout the section we assume to be given a symmetric matrix 𝐴 ∈ ℝ𝑛×𝑛 with 2𝑚
non-zero entries and zeroed diagonal. We use the following notation. We will use letters
𝑢, 𝑣 to denote indices in [𝑛] and 𝑒 , 𝑓 for indices in [2𝑚]. We conveniently think of 𝐴 as
the adjacency matrix of a weighted undirected graph 𝐺 with 𝑛 vertices and 2𝑚 oriented
edges. Then 𝑢𝑣 ∈ 𝐸(𝐺) if 𝐴𝑢𝑣 ≠ 0, moreover then the inverse edge 𝑣𝑢 is also in 𝐸(𝐺) since
𝐴𝑢𝑣 = 𝐴𝑣𝑢 by definition. Recall for an edge 𝑒 ∈ 𝐸(𝐺) we write 𝑒−1 for its inverse and for a
vertex 𝑣 ∈ 𝑉(𝐺) we write 𝑁+(𝑣) (respectively 𝑁−(𝑣)) for its set of outgoing (resp. incoming)
oriented edges in 𝐺. We write 𝜎𝑢𝑣 = sign(𝐴𝑢𝑣). To reason about the spectrum of 𝐴, we
introduce several matrices: the diagonal matrices

CCC 2023

27:12 Strong Refutations of Random CSPs

𝐷(𝐴) ∈ ℝ𝑛×𝑛 , with 𝐷𝑢𝑣(𝐴) =
{∑

𝑤 |𝐴𝑢𝑤 | 𝑢 = 𝑣

0 otherwise.

𝑄(𝐴) ∈ ℝ𝑚×𝑚 , with 𝑄𝑒 𝑓 (𝐴) =
{
|𝐴𝑒 | 𝑒 = 𝑓

0 otherwise.

the block matrices

𝐽(𝐴) =
(

0 Id𝑚
Id𝑚 0

)
∈ ℝ2𝑚×2𝑚

𝐿(𝐴) =
(

0 𝑄(𝐴)
𝑄(𝐴) 0

)
∈ ℝ2𝑚×2𝑚

and the source, target and non-backtracking matrices

𝑆(𝐴) ∈ ℝ𝑛×2𝑚 , with 𝑆𝑢𝑒(𝐴) =

𝜎𝑢𝑣

√
|𝐴𝑢𝑣 | if 𝑢 is the source of 𝑒 = 𝑢𝑣 and 𝑢 < 𝑣√

|𝐴𝑢𝑣 | if 𝑢 is the source of 𝑒 = 𝑢𝑣 and 𝑢 > 𝑣

0 otherwise.

𝑇(𝐴) ∈ ℝ𝑛×2𝑚 , with 𝑇𝑢𝑒(𝐴) =

𝜎𝑢𝑣

√
|𝐴𝑢𝑣 | if 𝑢 is the target of 𝑒 = 𝑣𝑢 and 𝑢 < 𝑣√

|𝐴𝑢𝑣 | if 𝑢 is the target of 𝑒 = 𝑣𝑢 and 𝑢 > 𝑣

0 otherwise.

𝐵(𝐴) ∈ ℝ2𝑚×2𝑚 , with 𝐵𝑒 𝑓 (𝐴) =

𝜎𝑒𝜎 𝑓

√��𝐴𝑒𝐴 𝑓

�� if 𝑒 𝑓 is a non-backtracking walk
𝑒 = 𝑢𝑣, f=𝑣𝑤 and 𝑣 < 𝑢, 𝑤

𝜎𝑒

√��𝐴𝑒𝐴 𝑓

�� if 𝑒 𝑓 is a non-backtracking walk
𝑒 = 𝑢𝑣, f=𝑣𝑤 and 𝑤 < 𝑣 < 𝑢

𝜎 𝑓

√��𝐴𝑒𝐴 𝑓

�� if 𝑒 𝑓 is a non-backtracking walk
𝑒 = 𝑢𝑣, f=𝑣𝑤 and 𝑢 < 𝑣 < 𝑤√��𝐴𝑒𝐴 𝑓

��
if 𝑒 𝑓 is a non-backtracking walk
𝑒 = 𝑢𝑣, f=𝑣𝑤 and 𝑣 > 𝑢, 𝑤

0 otherwise.

When the context is clear we simply write 𝐵 for 𝐵(𝐴) (analogously for the other matrices).
To gain intuition on these linear maps, it is instructive to consider the case when 𝐴 is the
adjacency matrix of an unweighted graph 𝐺. Then 𝐷 is the degree diagonal matrix with
𝐷𝑢𝑢 = 𝑑𝑒𝑔𝐺(𝑢), 𝐿 = 𝐽 and 𝐵 corresponds to the non-backtracking matrix of 𝐺.

Throughout the other sections of the paper, for a given non-backtracking matrix 𝐵 ∈
ℝ2𝑚×2𝑚 , we will consider the related extension matrix 𝐵∗ ∈ ℝ2𝑛2×2𝑛2 with entries

𝐵∗
𝑒 𝑓 =

{
𝐵𝑒 𝑓 if 𝑒 , 𝑓 ∈ 𝐸(𝐺)
0 otherwise.

For simplicity of the notation, we will often denote 𝐵∗ simply by 𝐵. The context will always
be clarified by the ambient dimension. We can now state the main result of the section.

T. d’Orsi and L. Trevisan 27:13

▶ Theorem 7 (Generalized Ihara-Bass Theorem). Let 𝑛, 𝑚 be integers and let 𝐴 ∈ ℝ𝑛×𝑛 be a
symmetric matrix with 𝑚 non-zero entries, all off-diagonal. Let 𝐵, 𝐿, 𝐽 , 𝐷 defined as above.
Then, for any 𝑢 ∈ ℝ,

det (Id2𝑚 − 𝑢(𝐵 + 𝐿 − 𝐽)) = (1 − 𝑢2)𝑚−𝑛 (Id𝑛 − 𝑢𝐴 + 𝑢2𝐷 − 𝑢2Id𝑛
)
.

Our proof of Theorem 7 closely resembles the proof of Bass [4]. We first observe that the
matrices above satisfy several useful identities, than tackle the theorem.

▶ Lemma 8. Using the definitions above:
i) 𝑆𝐽 = 𝑇 and 𝑇𝐽 = 𝑆 ,
ii) 𝐴 = 𝑆𝑇T ,

iii) 𝐷 = 𝑆𝑆T = 𝑇𝑇T ,

iv) 𝐵 + 𝐿 = 𝑇T𝑆 .

Proof. For i), notice that 𝑆𝐽 ∈ ℝ𝑛×2𝑚 and 𝑆𝐽𝑢𝑒 = ⟨𝑆𝑢,− , 𝐽−,𝑒⟩ = 𝑆𝑢𝑒−1 = 𝑇𝑢𝑒 , where in the
third step we used symmetry of 𝐴. A similar argument can be made to show 𝑇𝐽 = 𝑆. For ii)
observe that

𝐴𝑢𝑣 = ⟨𝑆𝑢,− , 𝑇𝑣,−⟩ =
∑
𝑒

𝑆𝑢𝑒𝑇𝑣𝑒

which is nonzero only when 𝑒 = 𝑢𝑣. In that case, by definition 𝐴𝑢𝑣 = 𝜎𝑢𝑣 |𝐴𝑢𝑣 | = 𝑆𝑢𝑒𝑇𝑣𝑒
since either 𝑢 < 𝑣 or 𝑢 > 𝑣. Consider now 𝑆𝑆T, the matrix is diagonal since each edge has at
most one source vertex, then

(𝑆𝑆T)𝑢𝑢 =
∑
𝑒

𝑆2
𝑢𝑒 =

∑
𝑣∈𝑁+(𝑢)

|𝐴𝑢𝑣 | = 𝐷𝑢𝑢 .

A symmetric derivation shows 𝐷𝑢𝑢 = (𝑇𝑇T)𝑢𝑢 . It remains to prove iv). It is trivial to check
that

(𝑇T𝑆)𝑒𝑒 = ⟨𝑇−,𝑒 , 𝑆−,𝑒⟩ =
∑
𝑢

𝑇𝑢𝑒𝑆𝑢𝑒 = 0 ,

since there are no self-loops in the graph. For distinct 𝑒 , 𝑓 ∈ [2𝑚]

(𝑇T𝑆)𝑒 𝑓 =
∑
𝑢

𝑇𝑢𝑒𝑆𝑢 𝑓 .

There is at most one non-zero element in the sum, corresponding to the case when 𝑢 is the
target vertex of 𝑒 and the source of 𝑓 , which means 𝑒 𝑓 is a walk of length 2 in 𝐺. If 𝑒 𝑓 is
a non-backtracking walk (that is, 𝑒 ≠ 𝑓 −1) then 𝐵𝑒 𝑓 = (𝑇T𝑆)𝑒 𝑓 and 𝐿𝑒 𝑓 = 0. Conversely, if
𝑒 = 𝑓 −1 then 𝐵𝑒 𝑓 = 0 and 𝐿𝑒 𝑓 = (𝑇T𝑆)𝑒 𝑓 . Finally, signs can be checked case by case. ◀

We are now ready to prove Theorem 7.

Proof of Theorem 7. In the following identities all matrices are (𝑛 + 2𝑚) × (𝑛 + 2𝑚) block
matrices where the first block has size 𝑛 × 𝑛. Let 𝑢 ∈ ℝ,(

Id𝑛 0
𝑇T Id2𝑚

) (
Id𝑛(1 − 𝑢2) 𝑆𝑢

0 Id2𝑚 − (𝐵 + 𝐿 − 𝐽)𝑢

)
(3)

=

(
Id(1 − 𝑢2) 𝑆𝑢

𝑇T(1 − 𝑢2) 𝑇T𝑆𝑢 + Id2𝑚 − (𝐵 + 𝐿 − 𝐽)𝑢

)
=

(
Id(1 − 𝑢2) 𝑆𝑢

𝑇T(1 − 𝑢2) Id2𝑚 + 𝐽𝑢

)
.

CCC 2023

27:14 Strong Refutations of Random CSPs

On the other hand(
Id𝑛(1 − 𝑢2) − 𝐴𝑢 + 𝐷𝑢2 𝑆𝑢

0 Id2𝑚 + 𝐽𝑢

) (
Id𝑛 0

𝑇T − 𝑆T𝑢 Id2𝑚

)
(4)

=

(
Id𝑛(1 − 𝑢2) − 𝐴𝑢 + 𝐷𝑢2 + 𝑆𝑇T𝑢 − 𝑆𝑆T𝑢2 𝑆𝑢

𝑇T − 𝑆T𝑢 + 𝐽𝑇T𝑢 − 𝐽𝑆T𝑢2 Id2𝑚 + 𝐽𝑢

)
=

(
Id𝑛(1 − 𝑢2) 𝑆𝑢

𝑇T(1 − 𝑢2) Id2𝑚 + 𝐽𝑢

)
.

Putting Equation (3) and Equation (4) together and taking determinants we get

(1 − 𝑢2)𝑛 det (Id2𝑚 − (𝐵 + 𝐿 − 𝐽)𝑢) = det
(
Id𝑛(1 − 𝑢2) − 𝐴𝑢 + 𝐷𝑢2) det (Id2𝑚 + 𝐽𝑢) .

Now notice that

Id2𝑚 + 𝐽𝑢 =

(
Id𝑚 Id𝑚𝑢

Id𝑚𝑢 Id𝑚

)
and thus det (Id2𝑚 + 𝐽𝑢) = (1 − 𝑢2)𝑚 . Rearranging, the result follows. ◀

3.1 Norm bounds via the Ihara-Bass formula
In this section we show how Theorem 7 can be used to study the spectrum of a real symmetric
matrix 𝐴 via the spectrum of related matrices. The central tool is the theorem below.

▶ Theorem 9. Let 𝐴 ∈ ℝ𝑛×𝑛 a symmetric matrix with zero diagonal. Let 𝐵 , 𝐿 , 𝐽 , 𝐷 be as
defined in Section 3. Let 𝜆min be the smallest eigenvalue of the matrix 𝐵 + 𝐿 − 𝐽 ∈ ℝ2𝑚×2𝑚.
Then for any 𝜆 ≤ 𝜆min

𝐴 ⪰ − |𝜆| Id𝑛 − |𝜆|−1 (𝐷 − Id𝑛) .

Proof. Let 𝜆min be the smallest real eigenvalue of 𝐵 + 𝐿 − 𝐽. By Theorem 7 we know −1 is
a real eigenvalue of 𝐵 + 𝐿 − 𝐽 and thus 𝜆min ≤ −1. Moreover, for every 𝜆 < 𝜆min we have
det

(
Id2𝑚 − 𝜆−1𝐵 + 𝜆−1𝐿 − 𝜆−1𝐽

)
≠ 0 otherwise 𝜆 would be an eigenvalue smaller than 𝜆min.

Define the matrix

𝑀𝜆 := Id𝑛 − 𝜆−1𝐴 + 𝜆−2(𝐷 − Id𝑛) .

By the same reasoning as in Theorem 7, det(𝑀𝜆) ≠ 0 as long as 𝜆 < 𝜆min. We make the
stronger claim

∀𝜆, 𝜆min : 𝑀𝜆 ≻ 0 .

To prove the above claim, suppose toward a contradiction that 𝜆′ < 𝜆min is such that 𝑀𝜆′

has a negative eigenvalue. Since 𝑀𝜆 tends to Id𝑛 when 𝜆 → −∞, there is a value 𝜆𝑃𝐷 < 𝜆′

such that 𝑀𝜆𝑃𝐷 is strictly positive definite. Consider now the smallest eigenvalue of 𝑀𝜆 for
values of 𝜆 in the range (𝜆𝑃𝐷 ,𝜆′). The smallest eigenvalue of 𝑀𝜆 varies continuously with 𝜆,
it is positive for 𝜆 = 𝜆𝑃𝐷 and it is negative for 𝜆 = 𝜆′, so it must be equal to zero for some
𝜆∗ ≤ 𝜆′ < 𝜆min. But this means that det(𝑀𝜆∗) = 0 and so 𝜆∗ is an eigenvalue of 𝐵 + 𝐿 − 𝐽,
which contradicts the definition of 𝜆min. We have thus established our claim. Rearranging
the result follows. ◀

T. d’Orsi and L. Trevisan 27:15

A crucial consequence of Theorem 9 is that, exploiting the diagonal structure of the
matrices 𝐷 , Id𝑛 one can bound the norm ∥𝐴∥∞→1 as a function of the smallest eigenvalue of
the associated non-backtracking matrix.

▶ Corollary 10. Let 𝐴 ∈ ℝ𝑛×𝑛 a symmetric matrix with zero diagonal. Let 𝜆min and
𝜆′

min be respectively the smallest eigenvalue of the matrix 𝐵(𝐴) + 𝐿(𝐴) − 𝐽(𝐴) ∈ ℝ2𝑚×2𝑚

and 𝐵(−𝐴) + 𝐿(𝐴) − 𝐽(𝐴) ∈ ℝ2𝑚×2𝑚, for 𝐵 , 𝐿 , 𝐽 , 𝐷 as defined in Section 3. Then, for any
𝜆 ≥ max

{
|𝜆min | ,

��𝜆′
min

��},

∥𝐴∥∞→1 ≤ 2 Tr
�� (𝜆Id𝑛 + 𝜆−1(𝐷(𝐴) − Id𝑛)

) ��
Proof. Define

𝑅 :=
��𝜆Id𝑛 + 𝜆−1(𝐷(𝐴) − Id𝑛)

�� .
By Theorem 9 for any 𝑥 ∈ {±1}𝑛 we have

��𝑥T𝐴𝑥
�� ≤ ��𝑥T𝑅𝑥

��. For any 𝑦 ∈ {±1}𝑛 we can write

2
��𝑥T𝐴𝑦

�� ≤ ��(𝑥 + 𝑦)T𝐴(𝑥 + 𝑦) − 𝑥T𝐴𝑥 − 𝑦T𝐴𝑦
��

≤
��(𝑥 + 𝑦)T𝐴(𝑥 + 𝑦)�� + ��𝑥T𝐴𝑥

�� + ��𝑦T𝐴𝑦
�� .

Now 𝑥 + 𝑦 ∈ {−2, 0,+2}𝑛 and thus��(𝑥 + 𝑦)T𝐴(𝑥 + 𝑦)�� ≤ 4 max
𝑧∈{±1}𝑛

𝑧T𝑅𝑧 ,

the result follows by definition of 𝑅. ◀

References
1 Vedat Levi Alev, Fernando Granha Jeronimo, and Madhur Tulsiani. Approximating constraint

satisfaction problems on high-dimensional expanders. In 2019 IEEE 60th Annual Symposium
on Foundations of Computer Science (FOCS), pages 180–201. IEEE, 2019.

2 Sarah R. Allen, Ryan O’Donnell, and David Witmer. How to refute a random CSP. In IEEE
56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, pages 689–708, 2015. doi:10.1109/FOCS.2015.48.

3 Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming
hierarchies via global correlation. In 2011 ieee 52nd annual symposium on foundations of
computer science, pages 472–481. IEEE, 2011.

4 Hyman Bass. The Ihara-Selberg zeta function of a tree lattice. International Journal of
Mathematics, 3(06):717–797, 1992.

5 Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Non-backtracking spectrum of
random graphs: Community detection and non-regular ramanujan graphs. In IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 1347–1357, 2015. doi:10.1109/FOCS.2015.86.

6 Siu On Chan. Approximation resistance from pairwise-independent subgroups. Journal of the
ACM (JACM), 63(3):1–32, 2016.

7 Zhou Fan and Andrea Montanari. How well do local algorithms solve semidefinite programs?
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 604–614. ACM, 2017.

8 Uriel Feige. Relations between average case complexity and approximation complexity. In
STOC 2002, pages 534–543, 2002.

9 Uriel Feige. Refuting smoothed 3cnf formulas. In 48th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’07), pages 407–417. IEEE, 2007.

CCC 2023

https://doi.org/10.1109/FOCS.2015.48
https://doi.org/10.1109/FOCS.2015.86

27:16 Strong Refutations of Random CSPs

10 Uriel Feige and Eran Ofek. Spectral techniques applied to sparse random graphs. Random
Struct. Algorithms, 27(2):251–275, 2005.

11 Dimitris Fotakis, Michael Lampis, and Vangelis Th Paschos. Sub-exponential approximation
schemes for csps: From dense to almost sparse. arXiv preprint, 2015. arXiv:1507.04391.

12 Joel Friedman and Andreas Goerdt. Recognizing more unsatisfiable random 3-SAT instances
efficiently. In Automata, Languages and Programming, 28th International Colloquium, ICALP
2001, Crete, Greece, July 8-12, 2001, Proceedings, volume 2076 of Lecture Notes in Computer
Science, pages 310–321. Springer, 2001.

13 Andreas Goerdt and Michael Krivelevich. Efficient recognition of random unsatisfiable k-SAT
instances by spectral methods. In STACS 2001, 18th Annual Symposium on Theoretical
Aspects of Computer Science, Dresden, Germany, February 15-17, 2001, Proceedings, volume
2010 of Lecture Notes in Computer Science, pages 294–304. Springer, 2001.

14 Venkatesan Guruswami, Pravesh K. Kothari, and Peter Manohar. Algorithms and certificates
for boolean CSP refutation: “smoothed is no harder than random”. arXiv, 2109.04415, 2021.
arXiv:2109.04415.

15 Venkatesan Guruswami, Pravesh K Kothari, and Peter Manohar. Algorithms and certificates
for boolean csp refutation: smoothed is no harder than random. In Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing, pages 678–689, 2022.

16 Matthew D Horton, HM Stark, and Audrey A Terras. What are zeta functions of graphs and
what are they good for? Contemporary Mathematics, 415:173–190, 2006.

17 Pravesh K. Kothari. Personal communication, 2022.
18 Dana Moshkovitz and Ran Raz. Two-query pcp with subconstant error. Journal of the ACM

(JACM), 57(5):1–29, 2008.
19 Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting random CSPs

below the spectral threshold. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 121–131. ACM, 2017.

20 Yusuke Watanabe and Kenji Fukumizu. Graph zeta function in the bethe free energy and
loopy belief propagation. Advances in Neural Information Processing Systems, 22, 2009.

21 Alexander S. Wein, Ahmed El Alaoui, and Cristopher Moore. The Kikuchi hierarchy and
tensor PCA. In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1446–1468, 2019.

https://arxiv.org/abs/1507.04391
https://arxiv.org/abs/2109.04415

Towards Optimal Depth-Reductions for Algebraic
Formulas
Hervé Fournier #

Université Paris Cité, IMJ-PRG, France

Nutan Limaye #

IT University Copenhagen, Denmark

Guillaume Malod #

Université Paris Cité, IMJ-PRG, France

Srikanth Srinivasan #

Aarhus University, Denmark

Sébastien Tavenas #

Université Savoie Mont Blanc, CNRS, France

Abstract
Classical results of Brent, Kuck and Maruyama (IEEE Trans. Computers 1973) and Brent (JACM
1974) show that any algebraic formula of size s can be converted to one of depth Oplog sq with only a
polynomial blow-up in size. In this paper, we consider a fine-grained version of this result depending
on the degree of the polynomial computed by the algebraic formula.

Given a homogeneous algebraic formula of size s computing a polynomial P of degree d, we show
that P can also be computed by an (unbounded fan-in) algebraic formula of depth Oplog dq and
size polypsq. Our proof shows that this result also holds in the highly restricted setting of monotone,
non-commutative algebraic formulas.

This improves on previous results in the regime when d is small (i.e., d “ sop1q). In particular,
for the setting of d “ Oplog sq, along with a result of Raz (STOC 2010, JACM 2013), our result
implies the same depth reduction even for inhomogeneous formulas. This is particularly interesting
in light of recent algebraic formula lower bounds, which work precisely in this “low-degree” and
“low-depth” setting.

We also show that these results cannot be improved in the monotone setting, even for commutative
formulas.

2012 ACM Subject Classification Theory of computation Ñ Algebraic complexity theory

Keywords and phrases Algebraic formulas, depth-reduction

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.28

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/009/

Funding Nutan Limaye: A part of this work was conducted during a research visit funded by
Université Paris Cité in summer 2022.
Srikanth Srinivasan: Supported by start-up package from Aarhus University, and benefited greatly
from a research visit sponsored by the Guest researchers faculty program at Université Paris Cité in
summer 2022.
Sébastien Tavenas: This work is supported by ANR-22-CE48-0007.

1 Introduction

In this paper, we study a basic question regarding computational tradeoffs between two
resources for the model of algebraic formulas.

© Hervé Fournier, Nutan Limaye, Guillaume Malod, Srikanth Srinivasan,
and Sébastien Tavenas;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 28; pp. 28:1–28:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:herve.fournier@imj-prg.fr
https://orcid.org/0009-0006-4425-8726
mailto:nuli@itu.dk
https://orcid.org/0000-0002-0238-1674
mailto:guillaume.malod@imj-prg.fr
https://orcid.org/0000-0003-2105-9979
mailto:srikanth@cs.au.dk
https://orcid.org/0000-0001-6491-124X
mailto:sebastien.tavenas@univ-smb.fr
https://orcid.org/0000-0002-0025-0005
https://doi.org/10.4230/LIPIcs.CCC.2023.28
https://eccc.weizmann.ac.il/report/2023/009/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Towards Optimal Depth-Reductions for Algebraic Formulas

An algebraic formula F for a multivariate polynomial P px1, . . . , xnq is simply an algebraic
expression for P made up of nested additions and multiplications. Equivalently, it can be
defined as a rooted directed tree where the leaves are labelled by variables and internal
nodes (or gates) compute either linear combinations or products of their children (a formal
definition can be found in Section 2 below). Unless otherwise stated, we do not bound the
number of children of a gate (in other words, we consider formulas of unbounded fan-in).

The two basic computational resources that describe the complexity of an algebraic
formula F are its size, which is the number of leaves in the underlying tree, and its depth,
which naturally is the depth of the tree. Polynomials1 that have efficient (i.e., polypnq-sized)
algebraic formulas form the algebraic complexity class VF. Like its Boolean counterpart NC1,
this is a natural and important complexity class.

Tradeoffs between size and depth in the setting of formulas and related models of
computation have been the focus of many previous works, starting from the early 1970s [28,
3, 4, 31, 25, 17, 21, 23, 1, 12, 29, 9, 11, 7, 15]. We describe a few such results here.

In the Boolean setting, Spira [28] and independently Khrapchenko (see [32]) showed
that any Boolean formula of size s can be converted to a Boolean formula of depth
Oplog sq while keeping the size bounded by sOp1q. These results were replicated in the
algebraic setting in results of Brent, Kuck and Marayuma [3] and Brent [4]. The constants
involved in the bounds for the depth and the size were improved in many follow-up
works [19, 20, 13, 5, 2].
This question has also been studied for the more general model of algebraic circuits,
where the underlying tree is replaced by a directed acyclic graph (DAG). A well-known
result of Valiant, Skyum, Berkowitz and Rackoff [31] showed that an algebraic circuit of
size s computing a polynomial of degree polypsq can be converted to a circuit of depth2

Oplog sq and size polypsq. These results were also shown to hold for multilinear3 circuits
by Raz and Yehudayoff [23].
The above results are known to be tight in various settings. In the monotone case4, Shamir
and Snir [25] showed the existence of an explicit polynomial P with a polypnq-sized circuit
such that any circuit of depth oplog nq for P is of superpolynomial size. Similar results
were obtained in the multilinear case by Raz [21] and Chillara, Limaye and Srinivasan [8]
(for multilinear circuits and formulas, respectively).
Beginning with the work of Agrawal and Vinay [1], a recent line of work [12, 29, 9, 11, 7, 14]
has shown that algebraic circuits and formulas can be converted to formulas of constant
depth with a sub-exponential blow-up in size. In contrast, our focus in this paper is
primarily on reducing depth as much as possible while keeping the size bounded by
polypsq, as in the results listed previously.

The question

In this paper, we ask the question of whether stronger depth-reduction results can be proved
given a bound d on the degree of the polynomial P px1, . . . , xnq computed by the algebraic
formula. In general, an algebraic formula of size s can compute a polynomial of degree at
most s. When d “ s (or d “ sΩp1q), the above results imply that an algebraic formula F for
P can be converted to another formula F 1 of depth Oplog dq without significant blow-up in
size. Does such a result hold for any d (or more specifically, when d “ sop1q)?

1 Strictly speaking, we should refer here to infinite sequences of polynomials, but we ignore this distinction.
2 In the bounded fan-in case, this would be depth Oplog2 sq instead.
3 A circuit or formula is multilinear if each of its gates computes a multilinear polynomial.
4 where the underlying field is R and all constants are non-negative, so cancellations do not occur.

H. Fournier, N. Limaye, G. Malod, S. Srinivasan, and S. Tavenas 28:3

Note that this question only makes sense for algebraic formulas of unbounded fan-in. If
the fan-in of each gate is bounded by a constant, then any formula of size s must have depth
at least Ωplog sq (and so, Brent, Kuck, and Marayuma’s result [3] is optimal). However, in
many settings (see e.g. the third motivation below), we want a finer analysis of the formula
depth that can be achieved by formulas of unbounded fan-in.

Motivation

While the question is fairly natural in our opinion, there are also many concrete reasons that
lead to this line of inquiry.

It is easy to see from the proof of Valiant, Skyum, Berkowitz, and Rackoff [31] that any
algebraic circuit can be depth-reduced to depth Oplog dq with only a polyps, dq blow-up
in size. So the natural generalization for small degrees is indeed true in the setting of
algebraic circuits.
It also follows from previous results that the depth bound of Oplog sq can be improved
when the degree is d “ oplog sq. This is due to a result of Raz [22]: any formula F for
a homogeneous polynomial P of degree d can be converted to a homogeneous formula5

F 1 efficiently. Further, it is easy to see that any homogeneous formula computing a
polynomial of degree d has depth Opdq “ oplog sq. So, in this regime for the degree,
standard depth-reduction results can be strengthened.
Finally, very recent results in algebraic complexity [16] have suggested a way of proving
lower bounds against low-depth algebraic formulas for computing low-degree polynomials,
which naturally raises the question of obtaining the best possible depth-reduction results
in this setting.
More specifically, Limaye, Srinivasan, and Tavenas [16] showed how to prove lower bounds
against algebraic formulas (and even circuits) of small depth. Their proof proceeds by
converting an algebraic formula of size s and depth ∆ to a homogeneous algebraic formula
of size polypsq and depth Op∆q, and then proving lower bounds against homogeneous
algebraic formulas of depth Op∆q. An important point regarding the first step is that it
only works in the “low-degree setting” of d “ Oplog s{ log log sq. The second step proves
lower bounds against homogeneous formulas of depth up to Oplog log dq.

To make this proof idea work for general (unbounded-depth) algebraic formulas, we would
like to be able to homogenize and depth-reduce algebraic formulas as much as possible.
The aforementioned result of Raz [22] already shows that we can homogenize algebraic
formulas efficiently in the low-degree setting. So it is natural to investigate the best
possible depth-reduction for homogeneous algebraic formulas in the low-degree setting.

Results

Our main result is a depth-reduction result for homogeneous formulas that efficiently reduces
the depth to Oplog dq, matching what was already known for algebraic circuits by the result
of [31].

▶ Theorem 1 (Main Result). Let F be a homogeneous algebraic formula of size s computing
a polynomial P of degree d ě 2. Then P is also computed by a homogeneous formula F 1 of
size polypsq and depth Oplog dq. Moreover, if F is monotone and/or non-commutative, then
so is F 1.

5 A homogeneous formula is one where each gate computes a homogeneous polynomial. This means that
the formula does not compute intermediate polynomials of degree larger than d.

CCC 2023

28:4 Towards Optimal Depth-Reductions for Algebraic Formulas

Here, a monotone algebraic formula is one that does not exploit cancellations in any way,
and a non-commutative formula describes a polynomial expression in a domain where the
input variables do not commute when multiplied with each other (formal definitions are
given in Section 2). These are both settings in which formula upper bounds are harder to
prove, and hence the depth-reduction result in this setting implies the result in the standard
setting. It can also be checked that the depth-reduction procedure above preserves other
interesting properties of the formula, such as multilinearity and set-multilinearity.

Using the aforementioned result of Raz that allows us to homogenize algebraic formulas
in the low-degree setting, we get the following depth-reduction even for inhomogeneous
formulas.

▶ Corollary 2. Let d “ Oplog nq. Then a homogeneous polynomial P defined on n variables
with degree d ě 2 has an algebraic formula of size polypnq if and only if it has an algebraic
formula of depth Oplog dq and size polypnq.

In particular, this means that to prove superpolynomial lower bounds against general
algebraic formulas in the low-degree setting, it suffices to prove such lower bounds against
homogeneous algebraic formulas of depth Oplog dq. As far as we know, nothing below the
trivial Opdq bound was known before for such an implication. This brings us much closer to
the regime of depths for which we have lower bounds [16].

The statements are even starker in the non-commutative setting, where it is a long-
standing problem to prove separations between Algebraic Branching Programs (ABPs) and
formulas. In recent work [30], it was shown how to prove such a result for depths that are
op
?

log dq. The results of this paper show that it suffices to prove such a result for depth
Oplog dq.6

Finally, we also show that our results cannot be improved asymptotically in terms of
depth, unless we use techniques that exploit cancellations in some way.

▶ Theorem 3 (Lower Bound). Let n and d “ dpnq be growing parameters such that dpnq ď
?

n.
Then there is a monotone algebraic formula F of size at most n and depth Oplog dq computing
a polynomial P P Frx1, . . . , xns of degree at most d such that any monotone formula F 1 of
depth oplog dq computing P must have size nωp1q.

It should be noted that a well-known result of Gupta, Kamath, Kayal and Saptharishi [9]
shows how to exploit cancellations to obtain better depth-reduction results. However, in
general this does not reduce the depth of a given formula by more than a constant factor
without incurring a significant blow-up in size.7 As a result, we believe that the above result
is a strong indication that our depth reduction result is tight up to a constant factor in the
depth.

2 Preliminaries

Basic notation

Throughout, unless otherwise specified, we work with polynomials over a field F. We will
work with the multivariate ring of polynomials Frx1, . . . , xns or its non-commutative analog
Fxx1, . . . , xny.

6 We note that Raz’s result, though only stated for the commutative setting, works just as well in the
non-commutative case.

7 More precisely, the result of [9] shows how to convert a low-degree homogeneous depth-4 formula to
an inhomogeneous depth-3 formula efficiently. In general, this can be used to reduce the depth of a
small-depth formula by a multiplicative factor of 2.

H. Fournier, N. Limaye, G. Malod, S. Srinivasan, and S. Tavenas 28:5

2.1 Algebraic formulas
We start with some brief definitions and results related to algebraic formulas. For much more
about this model, see the standard references [27, 24].

The model

An algebraic formula over the multivariate polynomial ring Frx1, . . . , xns is a rooted, directed
tree with edges directed towards the root. Leaves are labelled by variables x1, . . . , xn or by
the constant 1 and edges by non-zero field constants. Internal nodes (i.e., gates) by ` and ˆ

and compute linear combinations (based on the edge weights) or products of their children.
We will assume, with loss of generality, that if a node α has for child a leaf labelled by 1, then
α is a `-gate and that if a `-gate α has only children labelled by 1, then α is the output of
the formula.8 A non-commutative algebraic formula over the multivariate polynomial ring
Fxx1, . . . , xny is defined similarly, with the additional assumption that the children of any
ˆ-gate are linearly ordered, and the corresponding product is computed in this order.

Unless explicitly stated, the algebraic formulas we consider have unbounded fan-in (i.e., a
gate can have any number of inputs). The size of F will denote the number of leaves,9
the depth of F the longest leaf-to-root path. The product-depth and the sum-depth of F

are defined to be the maximum number of product gates and sum gates encountered on a
leaf-to-root path, respectively.

A parse tree of a formula F is a subformula of F which corresponds to the way a monomial
is built in the evaluation of F . Parse trees of F can be defined inductively as follows:

If F has a top `-gate, a parse tree of F is obtained by taking a parse tree of one of its
children together with the corresponding edge to the root of F ;
If F has a top ˆ-gate, a parse tree of F is obtained by a taking a parse tree of each of its
children, together with the incoming edges of the root of F ;
The only parse tree of a leaf is itself.

The polynomial computed by a parse tree is a single monomial, which is equal to the product
of the variables labelling its leaves, multiplied by the product of the scalars labelling its edges.
The polynomial computed by a formula F is easily seen to be the sum of the monomials
computed by all its parse trees.

A formula F is called monotone if any monomial computed by a parse tree of F has a
non-zero coefficient in the polynomial computed by F .

We now recall some well-known results from the literature regarding algebraic formulas.
It should be noted that these results (specifically Theorems 4, 5 and 10 later on) are usually
proved in the general setting of commutative formulas. However, it is easy to see that
the proofs of these results carry over to the monotone, non-commutative setting without
significant change.

Depth-reduction

Classical results [3, 4] show that any algebraic formula of small size can be simulated by one
of small depth and not much larger size. Formally,

8 This ensures that a formula can compute polynomials with a constant term but forbids using many
arithmetic operations just to compute constants.

9 This is within a constant factor of the number of gates, as long as each gate has fan-in at least 2 each
(which is without loss of generality).

CCC 2023

28:6 Towards Optimal Depth-Reductions for Algebraic Formulas

▶ Theorem 4. Let F be a (non-commutative or commutative) algebraic formula of size s

computing a polynomial P . Then there is an algebraic formula F 1 of size at most polypsq
and depth ∆ “ Oplog sq computing P . We may also assume that each gate in F 1 has fan-in
2. Furthermore, F is homogeneous and/or monotone, then so is F 1.

Homogeneity

Each gate in an algebraic formula has a syntactic degree defined in a natural way. Leaves
labelled by the constant 1 have syntactic degree 0, leaves labelled with a variable have
syntactic degree 1, ˆ-gates have a syntactic degree that is the sum of the syntactic degrees of
their children, and `-gates have a syntactic degree that is equal to the largest of the syntactic
degrees of their children. The syntactic degree of a formula is defined as the syntactic degree
of its output. Notice that in a formula the syntactic degree of any gate is bounded by the
syntactic degree of the formula.

We will further assume that no gate computes the zero polynomial.
A formula is homogeneous if each gate in the formula computes a homogeneous polynomial.

Equivalently, in terms of syntactic degrees, this means that all the children of a sum gate
have the same syntactic degree.

Raz [22] showed how to convert a possibly inhomogeneous formula F to a homogeneous
formula with a relatively small blow-up in size.

▶ Theorem 5. Let F be a (non-commutative or commutative) algebraic formula of size s and
product-depth ∆ computing a polynomial P such that all gates in F have fan-in 2. Then there
is a homogeneous algebraic formula F 1 of size at most O

´

s ¨
`∆`d`1

d

˘

¯

and product-depth ∆
computing P . In particular, if ∆ “ Oplog sq and d “ Oplog sq, then the formula F 1 has size
polypsq.

3 Main result

Proof Overview

While the proof of the main result is fairly short and (in our opinion) clean, we add some
remarks here to clarify why previous depth-reduction proofs are not applicable in our setting.

The first attempt in proving Theorem 1 would be to try to use the proof strategy behind
Theorem 4. Here, we start with a formula F of size s and find a subformula G of size roughly
s{2 rooted at some gate α of F . It is not hard to show that the polynomial computed by F

can be written as

F “ G ˆ H1 ` H2

where H1 and H2 are also computed by formulas of size s{2.10 We then apply induction
to these three subformulas to get the result. Unfortunately, this strategy does not use the
degree of the formula at all, and therefore only yields a formula of depth Oplog sq.

In the homogeneous setting, it is sometimes more natural to do induction on the degree
of the underlying formula, in which case G and H1 (in the decomposition above) would be
subformulas of degree roughly d{2. We get the following recursion on the worst-case size of
the depth-reduced version of F , which we denote by T ps, dq

T ps, dq ď T ps1, d{2q ` T ps ´ s1, d{2q ` T ps ´ s1, dq

10 Here, for simplicity, we are assuming that F is a commutative formula. In the non-commutative setting,
we would instead get F “ H 1

1GH2
1 ` H2.

H. Fournier, N. Limaye, G. Malod, S. Srinivasan, and S. Tavenas 28:7

where s1 denotes the size of G. Unfortunately, in this case, the formulas H1 and H2 could
have size nearly s, resulting in considerable size blow-up. Indeed, when s1 is much smaller
than s (say s1 “ sop1q), the above recursion only yields T ps, dq “ sOplog dq, which is a
superpolynomial size blow-up.

It may be possible to interleave recursions with respect to size and depth, but we were
unable to make this work.

Another possible strategy could be to follow the work of [31] which produces circuits of
the required depth. Unfortunately, the proof of [31] is a memoization procedure, which seems
to yield circuits even when applied to a formula F . Turning the resulting circuit of depth
Oplog dq into a formula seems to increase the size to sΩplog dq.

The approach we take is somewhat more global than the recursive strategies outlined
above. Our first motivating example is seemingly the worst-case example for depth-reduction:
a comb of depth greater than d with alternating sums and products. More formally, a comb
computes the following polynomial (up to identifying variables).

Cpxq “ x1 ` px2 ˆ px3 ` px4 ˆ ¨ ¨ ¨ qqq

Note that the above yields a formula of depth greater than d where d is the degree of
the underlying polynomial. However, we observe that such a comb actually computes a
polynomial with only a few monomials, and hence can be written trivially as a depth-2
řś

-formula without much of a size blow-up.
Building on this observation, the overall strategy is to decompose the formula into a top

part G, which is a (generalized) comb, whose leaves are subformulas of F to which we will
apply the same procedure recursively. We then write G as a

řś

-formula, and replace its
leaves with the depth-reduced versions of the subformulas. This gives the depth-reduced
version of F .

The correct definition of G is crucial, and somewhat subtle (at least to us), but with the
proper definitions in place, the proof goes through without much trouble.

3.1 Proof of Theorem 1
In this section we prove our main result (Theorem 1). We start by showing a simple
depth-reduction result for the case of skew formulas. A formula is said to be skew if every
multiplication gate in it has at most 1 non-trivial child (i.e., a non-leaf node).

We will say that a leaf in a skew-formula is a `-leaf if the parent of that leaf is a ` gate
and a ˆ-leaf otherwise. We show that any skew formula can be converted efficiently into a
depth-2 formula, i.e., a

řś

-formula.

▶ Lemma 6. Let G be a skew formula with sum-depth δ, wherein all the gates have fan-in 2
and the leaves are labelled by distinct variables. Then the polynomial computed by G is a
multilinear polynomial with at most 2δ monomials. Moreover any variable labelling in G

a `-leaf,
or a ˆ-leaf whose sibling is a leaf

appears in exactly one monomial. We will call them the non-duplicable variables.

Proof. We prove this by induction on the depth of the formula. The base case is when the
depth is 0 or 1. In both cases, the statement trivially holds.

For the induction case, assume that the depth is at least 2. Suppose G “ G1 ` G2.
The sum-depths of G1 and G2 are at most δ ´ 1. Let f1, f2 be the multilinear polynomials
computed by G1, G2, respectively. We know that the leaves of G are labelled with distinct

CCC 2023

28:8 Towards Optimal Depth-Reductions for Algebraic Formulas

variables. Hence, G1, G2 have the same property and the variable sets labelling the leaves of
G1 and G2 are disjoint. The depths of G1 and G2 are strictly smaller than the depth of G.
By the induction hypothesis we have that f1 and f2 have at most 2δ´1 monomials. Moreover,
any non-duplicable variable in G1 appears in at most one monomial in f1. Similarly, any
non-duplicable variable in G2 appears in at most one monomial in f2. Hence, the polynomial
computed by G, i.e., f1 ` f2, has at most 2δ monomials and each non-duplicable variable
appears in at most one monomial in it.

Suppose the top gate of G is a ˆ gate. As G is a skew formula it is either x ˆ G1 or
G1 ˆ x, where x is a variable. In particular since the depth of G is at least two, the variable
x is duplicable. Let f1 be the multilinear polynomial computed by G1. By our assumption,
the variable x does not appear in f1. The depth of G1 is strictly smaller than G. By the
induction hypothesis we have that f1 has at most 2δ monomials and any non-duplicable
variable in G1 appears in at most one monomial. As x can distribute over the monomials of
f1, we have that the polynomial computed by G is multilinear with at most 2δ monomials
and any non-duplicable variable appears in at most one monomial.

(Note that this can also be seen using parse trees, since the polynomial computed is the
sum of the monomials computed by the parse trees. The multilinearity is obvious. Note that
parse trees do not really “branch” at multiplication gates because of the skewness and are
therefore combs. To build a parse tree starting from the root we will have two choices for
each addition gate we encounter on the path, and there are at most δ, so we get at most 2δ

parse trees. The only parse tree containing a given non-duplicable variable is defined by the
path from the root to this leaf.) ◀

If a formula is homogeneous, it implies that for any gate α, the degree of the polynomial
computed by α coincides with the syntactic degree dα of α. Based on this remark, below we
prove a stronger statement than Theorem 1. Specifically, Theorem 1 is stated for homogeneous
formulas. But here, we show a depth-reduction for formulas for which the syntactic degree is
small.

▶ Theorem 7 (Refinement of Theorem 1). Let F be an algebraic formula of size s and of
syntactic degree dF ě 2. Then P is also computed by a formula F 1 of size polypsq and depth
Oplog dF q. Moreover, if F is homogeneous, monotone and/or non-commutative, then so
is F 1.

Proof. Let us start with a formula obtained from F after applying Theorem 4. That is,
we will assume that we have a formula of size polypsq such each gate in it has fan-in 2,
sum-depth and product-depth are bounded by Oplog sq. For notational simplicity, from now
on, F will refer to this new formula.

Let δ be a positive integer. For a formula G of syntactic degree dG ě 1 and sum-depth
∆pGq we define a potential function ϕδpGq as follows.

#

ϕδ,1pGq “ rlogpdGqs

ϕδ,2pGq “ r∆pGq{δs

and let

ϕδpGq “ ϕδ,1pGq ` ϕδ,2pGq.

We will show that the potential function bounds the depth of the depth-reduced formula
that we will construct. We will also use it to bound the size of the resulting formula.
Specifically, we prove the following lemma.

H. Fournier, N. Limaye, G. Malod, S. Srinivasan, and S. Tavenas 28:9

▶ Lemma 8. Let δ be a positive integer. Any formula F of fan-in 2, syntactic degree
d ě 1, sum-depth ∆, and size s can be parallelized into a formula F 1 (of arbitrary fan-in)
of product-depth at most ϕδpF q and size at most s ¨ 2δ logpdq. Further, if F is homogeneous,
monotone and/or non-commutative, so is F 1.

Since we ensured that the sum-depth is bounded by Oplog sq, taking δ “

Q

log s
log d

U

and
applying Lemma 8, we get that the final formula F 1 has size at most polypsq and product-depth
at most

ϕδpF q “ O

ˆ

rlog ds `

R

logpsq log d

log s

V˙

“ Oplog dq.

By collapsing sum gates that feed into other sum gates, we see that the depth of F 1 can be
assumed to be at most twice its product-depth, which is Oplog dq. This thus finishes the
proof of the theorem. ◀

We now prove Lemma 8.

Proof of Lemma 8. For any gate α in F , let Fα denote the subformula rooted at α and dα

be its syntactic degree. We do the proof by induction on ϕδpF q.
The base case ϕδpF q “ 0 trivially holds. Consider the following set of gates of F :

A “
␣

α | α is a not a leaf labelled 1 and ϕδpFαq ă ϕδpF q “ ϕδpFparentpαqq
(

.

For any gate α in A, the induction hypothesis tells us that we can construct a formula
F 1

α of product-depth at most ϕδpF q ´ 1 and size at most sα ¨ 2δ logpdαq computing the same
polynomial as Fα.

Let us consider the formula G obtained by replacing these gates from A in F by leaves
(labelled with distinct variables). Notice that for a product-gate β in F , at most one of
its children has syntactic degree larger than dβ{2, where dβ is the syntactic degree of β.
Consequently, G is a skew formula. The other child of β is a ˆ-leaf in G. Moreover, G has
sum-depth at most δ (since ϕδ,2 strictly decreases for gates below).

Hence, we can use Lemma 6 to simplify G: we get that the polynomial computed by G

is a multilinear polynomial in its leaves and has 2δ monomials. We can then write G as a
řś

-formula G1 such that each duplicable gate appears in at most 2δ monomials and each
non-duplicable gate in at most 1.

The new formula F 1 for F is obtained from G1 by replacing each variable leaf, which
corresponds to some gate α in F , by its depth-reduced version F 1

α constructed using the
induction hypothesis above.

The product-depth of F 1 is bounded by the product-depth of the gates α P A plus the
product-depth of G, which is equal to 1 after rewriting it as a

řś

-formula. That is, the
product-depth is at most pϕδpF q ´ 1q ` 1 “ ϕδpF q. By construction if G does not contain
leaves labelled by 1, then it is also the case for G1, otherwise, G1 still has at most one such
leaf. The size of the resulting formula is bounded by

ÿ

α non-duplicable

´

sα ¨ 2δ logpdαq
¯

`

˜

2δ ¨
ÿ

α duplicable

´

sα ¨ 2δ logpdαq
¯

¸

` 1G’ has a constant leaf.

Notice that if α is duplicable, it must be a ˆ-leaf with its sibling β not a leaf. This means
that dα ď dβ ď d since the syntactic degree is maximal at the root. Hence dα ď d{2 so the
contribution of duplicable gates is bounded by

ÿ

α duplicable
2δ

´

sα ¨ 2δplogpdq´1q
¯

ď
ÿ

α duplicable

´

sα ¨ 2δ logpdq
¯

.

CCC 2023

28:10 Towards Optimal Depth-Reductions for Algebraic Formulas

The contribution of non-duplicable gates is bounded by
ÿ

α non-duplicable
sα ¨ 2δ log d

since any gate in F has syntactic degree at most d. By the choice of A, the subformulas Fα

are disjoint so
ř

αPA sα ď s, with strict inequality if G1 has a constant leaf. Hence the size
of F 1 is bounded by s ¨ 2δ logpdq.

Finally, it is straightforward to verify that the construction preserves homogeneity,
monotonicity and/or non-commutativity. ◀

▶ Remark 9. It is easy to note that our depth reduction procedure does not increase the
syntactic degree of the formula.

We also observe that putting Theorem 1 together with Theorems 4 and 5 immediately
implies Corollary 2.

Proof of Corollary 2. Given a (possibly inhomogeneous) formula F of size s “ polypnq
computing a polynomial of degree d “ Oplog nq, we first apply standard depth-reduction
(Theorem 4) to get an equivalent formula F1 of size s1 “ polypnq and depth ∆1 “ Oplog nq

where each gate has fan-in 2. Applying Raz’s homogenization theorem (Theorem 5) to F1
yields an equivalent homogeneous formula F2 of size s2 “ polypnq and depth ∆2 “ Oplog nq.
We can now apply Theorem 1 to F2 to get an equivalent formula F 1 of size s1 “ polypnq and
depth ∆1 “ Oplog dq. ◀

3.2 Reducing the size blow-up
We note that the above strategy can be easily adapted to yield a small depth formula of size
s1 that is nearly linear in the size s of the original formula, at the expense of increasing the
depth by a large constant.

The proof is nearly identical to the proof of Theorem 1 above. The new ingredient is a
near-linear depth-reduction in the setting where there is no bound assumed on the degree
of the above formula. More precisely, Bshouty, Cleve and Eberly [5] (see also the work of
Bonet and Buss [2]) showed the following (we sketch Bonet and Buss’ proof in Appendix A
for completeness).

▶ Theorem 10 (Depth-reduction with near-linear size). The following holds for any ε ą 0. Let
F be a (non-commutative or commutative) algebraic formula of size s computing a polynomial
P . Then there is an algebraic formula F 1 of size at most s1`ε and depth ∆ “ 2Op1{εq ¨ log s

computing P . We may also assume that each gate in F 1 has fan-in 2. Furthermore, if F is
homogeneous and/or monotone, then so is F 1.

Using the above result, we can prove the following improved version of our depth-reduction.

▶ Theorem 11. Assume that F is a (commutative or non-commutative) formula of size s

and syntactic degree d ě 1 computing a polynomial P . Then P is also computed by a formula
F 2 of size at most s1`ε and depth ∆ “ 2Op1{εq ¨ log d. Furthermore, if F is a homogeneous
and/or monotone formula, then so is F 2.

Proof. If d4{ε ě s, then the depth-reduction of Theorem 10 already gives a satisfactory
solution. Indeed the size is bounded by s1`ε and the depth is bounded by

2Op1{εq log s ď
4
ε

2Op1{εq log d ď 2Op1{εq log d.

H. Fournier, N. Limaye, G. Malod, S. Srinivasan, and S. Tavenas 28:11

So we assume that s ą d4{ε. By first applying Theorem 10 (with ε{2 instead of ε),
we obtain a formula F 1 of size at most s1`ε{2, depth ∆1 “ 2Op1{εq ¨ log s, and fan-in 2
computing P .

Now, we apply Lemma 8, while setting δ “ tpε log sq{p2 log dqu. Notice that since ε log s ą

4 log d, it ensures that δ ą pε log sq{p4 log dq ą 1.
Then the strategy produces a formula F 2 of product-depth at most

ϕδpF
1q ď ϕδ,1pF

1q ` ϕδ,2pF
1q ă rlog ds ` 2Op1{εq log s

4 log d

ε log s
“ 2Op1{εq log d

and size at most

s1`ε{2 ¨ 2δ log d ď s1`ε{2sε{2.

This proves the theorem. ◀

3.3 Reducing the product fan-ins to 2

It is natural to ask if Theorem 1 can be proved while ensuring that the fan-in of each gate
is bounded by 2, as in Theorem 1 and Theorem 10. This is not possible, as a formula of
fan-in 2 and depth Oplog dq can only compute polynomials on at most polypdq variables,
while formulas of size s may have up to s variables. However, this does not rule out reducing
the fan-in of the product gates to 2. Indeed, the circuit depth-reduction of [31] does exactly
this. We show now that this can also be done for algebraic formulas with bounded syntactic
degree.

▶ Theorem 12. Let F be a (commutative or non-commutative) algebraic formula F of size
s, depth ∆, and syntactic degree d ě 1 computing a polynomial P . Then P can also be
computed by a formula F 1 of size s and depth ∆1 “ Op∆ ` log dq where each product gate
of F 1 has fan-in 2. Furthermore, if F is a homogeneous and/or monotone formula, then so
is F 1.

Plugging this in Theorem 7 gives a depth-reduction to formulas of depth Oplog dq and size
polypsq such that all product gates have fan-in at most 2. A similar result can be obtained
with a smaller blow-up in size by combining this statement with Theorem 11.

Proof. It suffices to prove a weaker version of the above theorem where each product gate
has fan-in at most 3. We can then replace each of the products of fan-in 3 by a tree of
product gates of fan-in 2 and size 3. This has the effect of increasing the depth at most by a
factor of 2, which does not affect the overall result.

So we will prove this slightly weaker version. In this setting, we will aim for a depth
∆1 “ ∆ ` log d.

This is done by induction on the depth ∆ of the formula. The case of ∆ “ 0 is trivial.
Let F be a formula of depth ∆ ą 0 and syntactic degree d.

Assume that the output gate of F is a sum gate, and F1, . . . , Ft are the subformulas of
F of depth ∆ ´ 1. By definition, each Fi has syntactic degree at most d. Applying the
induction hypothesis to each of the Fi yields a formula F 1

i with product gates of fan-in at
most 3. The formula F 1 can then be defined as the sum of these formulas.

CCC 2023

28:12 Towards Optimal Depth-Reductions for Algebraic Formulas

Now we come to the main case, which is when the output gate of F is a product gate.
Assume that F1, . . . , Ft are the subformulas of F of depth ∆ ´ 1 in the order11 that they
appear in F . Let di denote the syntactic degree of Fi. Define

m “ mintj |

j
ÿ

i“1
di ě d{2u.

Let Fℓ be the formula obtained from F by keeping only the subformulas F1, . . . , Fm´1, and
Fr be the formula obtained by keeping only Fm`1, . . . , Ft. We use the induction hypothesis
on Fℓ, Fm, and Fr to get formulas F 1

ℓ, F 1
m and F 1

r. Finally, we set

F 1 “ F 1
ℓ ˆ F 1

m ˆ F 1
r.

The size12 of F 1 is the sum of the sizes of F 1
ℓ, F 1

m and F 1
r, which is at most s by the induction

hypothesis. Let ∆1
ℓ, ∆1

m and ∆1
r denote the depths of F 1

ℓ, F 1
m and F 1

r respectively. The depth
of F 1 is

1 ` maxt∆1
ℓ, ∆1

m, ∆1
ru ď 1 ` maxt∆ ` logpd{2q, ∆ ´ 1 ` log d, ∆ ` logpd{2qu “ ∆ ` log d

where the second inequality uses the induction hypothesis, and the fact that Fℓ and Fr have
syntactic degree at most d{2 and Fm has depth at most ∆ ´ 1. ◀

4 Tightness

Given integers k ě 1 and r ě 2, we will define a polynomial Hpk,rq. Intuitively, we want to
define this polynomial as a standard universal polynomial for formulas. It is composed of
k-nested inner products, each one of size r. In the following we will drop the superscript in
Hpk,rq and write simply H instead.

The polynomial H will be defined over the set of p2rqk variables

txσ,τ | σ P r2sk, τ P rrsku.

Let us define recursively polynomials Hu,v for all pu, vq P r2sďk ˆ rrsďk such that |u| “ |v|:

Hu,v “ xu,v when |u| “ |v| “ k

Hu,v “

r
ÿ

a“1
Hu1,vaHu2,va otherwise.

The polynomial H is defined as the polynomial Hε,ε. Note that H is a polynomial of degree
d “ 2k and has rd´1 monomials.

From its definition, H is computed by a monotone formula M of size p2rqk and depth 2k,
with a `-gate at the top, alternating layers of `-gates and ˆ-gates, with `-gates of fan-in r

and ˆ-gates of fan-in 2, and leaves labelled with distinct variables.
For words u and v over the same alphabet, we write u Ą v if u is a prefix of v. There

is a natural one-to-one correspondance between prefixes of words of prrs ˆ r2sqk and nodes
of M , which is the following. Let σ “ σ1 . . . σk P r2sk, and τ “ τ1 . . . τk P rrsk. The word
τ1σ1 . . . τkσk corresponds to a path from the root of M to the leaf labelled xσ,τ , while

11 The order is important in the non-commutative setting.
12 Recall that the size of a formula is the number of its leaves.

H. Fournier, N. Limaye, G. Malod, S. Srinivasan, and S. Tavenas 28:13

proper prefixes of τ1σ1 . . . τkσk correspond to internal gates in M along this path. For
ℓ ă k, u “ u1 . . . uℓ P r2sℓ and v “ v1 . . . vℓ P rrsℓ, the node which corresponds to the word
v1u1 . . . vℓuℓ is the `-gate of M computing Hu,v.

The polynomial H is easily seen to be set-multilinear with respect to the sets of variables
tXσ | σ P r2sku where Xσ “ txσ,τ | τ P rrsku. This means that each monomial has exactly
one variable from each set Xσ.
▶ Remark 13. For |u| “ |v| “ ℓ ď k, u P r2sℓ and v P rrsℓ, the polynomial H

pk,rq
u,v is defined

over the set of variables

Xu,v “ txσ,τ | σ P r2sk, τ P rrsk, u Ą σ, v Ą τu

and is the polynomial Hpk´ℓ,rq (upto renaming of the variables). In particular, its degree is
d1 “ 2k´ℓ, it has rd1

´1 monomials and it is set-multilinear with respect to tXσ | σ P r2sk, u Ą

σu.
Before proving hardness of H for small-depth monotone formulas, we need to show that

the gates of a monotone formula computing H cannot compute too many monomials. This
is proved in Lemma 15 below.

▶ Proposition 14. Consider two variables xσ,τ and xσ1,τ 1 . If xσ,τ xσ1,τ 1 appears in a monomial
of H, and if σ and σ1 have a common prefix of length ℓ ă k, then τ and τ 1 have a common
prefix of length ℓ ` 1.

Proof. Observe that xσ1,τ1 . . . xσp,τp
is a monomial of H if and only if these variables form

the leaves of a parse tree of M . As observed above, the root-to-leaf path leading to the
variable xσi,τi

in M is obtained by taking in turn the first letter of τi, the first letter of σi,
the second letter of τi, etc.

If the product xσ,τ xσ1,τ 1 appears in a monomial of H, it must be possible to complete
the union of the two paths, from the root to xσ,τ and from the root to xσ1,τ 1 , into a parse
tree of the formula M .

If the longest common prefix of τ and τ 1 were of length at most ℓ, then the lowest common
ancestor of xσ,τ and xσ1,τ 1 in M would be a `-gate, which is not possible in a parse tree
where each `-gate has a single child. ◀

▶ Lemma 15. If F is a monotone formula which computes the polynomial H and if α is a
gate of F of degree dα, then the number of monomials of the polynomial computed at gate α

is at most rdα´1.

Proof. Since H has rd´1 monomials, the result is true when dα “ d by monotonicity. Assume
now that dα ă d.

Let

I “ tσ P r2sk | some variable of Xσ appears in αu.

For u P r2sďk, let Iu “ tσ P r2sk | u Ą σu. Let tu1, . . . , upu be the set of words w of minimal
length such that Iw Ď I. Then I is the disjoint union

Ť

ℓPrps Iuℓ
. Since dα ă d, I ‰ r2sk so

no uℓ is the empty word.
Consider some ℓ P rps. Let ūℓ be obtained by switching the last letter of uℓ. By minimality

of the length of uℓ, we must have Iūℓ
Ę I. Let σ be a word in Iūℓ

zI. Since F is monotone
and computes a set-multilinear polynomial, it is a set-multilinear formula and therefore the
polynomial computed at α must be multiplied by some variable xσ,τ . Let vℓ be the prefix of
length |uℓ| of τ . Consider any variable xσ1,τ 1 appearing in α such that uℓ Ą σ1. Since the
product xσ,τ xσ1,τ 1 must appear in a monomial of H by monotonicity, it must be that vℓ Ą τ 1

by Proposition 14.

CCC 2023

28:14 Towards Optimal Depth-Reductions for Algebraic Formulas

Any monomial m in the polynomial computed in gate α can be written in a unique way
m “ m1 ¨ ¨ ¨mp with mℓ set-multilinear with respect to tXσ | uℓ Ą σu. By the above, mℓ is a
monomial over the variables Xuℓ,vℓ

of degree |Iuℓ
|. By monotonicity, it should be possible to

complete leaves of M labelled with variables from mℓ into a parse tree of M appearing in H ,
which proves that mℓ is a monomial of Huℓ,vℓ

. There are at most r|Iuℓ
|´1 such submonomials

mℓ by Remark 13. It follows that the number of monomials of the polynomial computed in
node α is at most

p
ź

ℓ“1
r|Iuℓ

|´1 ď r|I|´1 “ rdα´1. ◀

We are ready to prove hardness of the polynomial H for monotone computation. We shall
make use of the following “product lemma”, which comes in different forms in e.g. [27, 10, 24].
▶ Lemma 16. A degree-d homogeneous formula F of size s and product-depth ∆ can be written
as a sum of Opsq polynomials, each of which is a product of Ωp∆d1{∆q many polynomials of
positive degree. Moreover, each of these polynomials is computed by some gate in F .
▶ Proposition 17. If F is a monotone formula of product-depth ∆ ď log d which computes
H, then its size is at least rΩp∆d1{∆

q.
Proof. Let t “ ∆d1{∆. Since F is monotone, it is homogeneous and by Lemma 16 can be
written as

F “

s1
ÿ

i“1

ti
ź

j“1
Fi,j

with s1 “ Opsq and ti “ Ωptq for all i, and Fi,j is of degree at least 1 and computed by some
gate in F .

Let di,j be the degree of Fi,j . By Lemma 15, each Fi,j computes at most rdi,j´1 monomials.
The number of monomials of

śtj

i“1 Fi,j is therefore bounded by
ti
ź

j“1
rdi,j´1 ď r

řti
j“1 di,j´ti ď rd´t

since
řti

j“1 di,j “ d. It follows that the number of monomials computed by F is at most
s ¨ rd´t. Since F computes H which has rd´1 monomials, we get s “ rΩptq. ◀

We can now get Theorem 3 from the introduction, which is restated here for convenience.

▶ Theorem 18. Let n and d “ dpnq be growing parameters such that dpnq ď
?

n. Then
there is a monotone algebraic formula F of size at most n and depth Oplog dq computing
a polynomial P P Frx1, . . . , xns of degree at most d such that any monotone formula F 1 of
depth oplog dq computing P must have size nωp1q.

Proof of Theorem 3. Choose parameters kpnq and rpnq such that P pnq :“ Hpk,rq has Θpnq

variables and degree Θpdq: let k “ log d and r “ 1
2 n1{ log d. Condition dpnq ď

?
n ensures

that r ě 2. The polynomial P has a monotone formula of size Opnq and depth Oplog dq. By
Proposition 17, any monotone formula of product-depth ∆ ď log d computing P has size

rΩp∆d1{∆
q “

ˆ

1
2n1{ log d

˙Ωp∆d1{∆
q

“ pn{dq

´

∆d1{∆
log d

¯

which is n
Ω
´

∆d1{∆
log d

¯

using the hypothesis dpnq ď
?

n. Since ∆d1{∆

log d Ñ `8 when ∆ “ o plog dq

this bound is nωp1q. ◀

H. Fournier, N. Limaye, G. Malod, S. Srinivasan, and S. Tavenas 28:15

5 Conclusion and Open questions

In this paper we investigated the possibility of reducing the depth of a formula of size s

computing a polynomial of degree d to Oplog dq while keeping the size sOp1q.
We showed (Theorem 1) that we can do such a transformation when F is homogeneous.

More generally, Theorem 7 states that we can achieve it as soon as the syntactic degree of F

is polynomially bounded in d.

Structure inside VF

Let us consider a sequence of polynomials pfnq whose number of variables and degree are
bounded polynomially in n (such a family is usually called a p-family, see for example [6]).
We can then consider three classes of such families:

homFrspnqs “ tpfnq | fn is computed by a homogeneous formula of size polypspnqqu,
lowSynDegFrspnqs “ tpfnq | fn is computed by a formula of size polypspnqq and of
syntactic degree polypdegpfnqqu

lowDepthFrspnqs “ tpfnq | fn is computed by a formula of size polypspnqq and of
depth Oplog degpfnqqu.

Clearly, we have the inclusion homFrspnqs Ď lowSynDegFrspnqs. Also, in this paper, we
have shown the inclusion lowSynDegFrspnqs Ď lowDepthFrspnqs. Consequently,

homFrpolypnqs Ď lowSynDegFrpolypnqs Ď lowDepthFrpolypnqs Ď VF,

and we do not know if these inclusions are strict or not.

The complexity of the Elementary Symmetric Polynomials

A particularly interesting special case of the questions above comes from the example of
the Elementary Symmetric Polynomials. Given parameters d, n with d ď n, recall that the
Elementary Symmetric polynomial Sd

npx1, . . . , xnq is the sum of all the multilinear monomials
of degree exactly d. A simple and elegant construction of Ben-Or (see [26]) shows that for any
d, the polynomial Sd

n has an inhomogeneous formula of depth-3 and size Opn2q. This puts this
family of polynomials in the class lowDepthFrpolypnqs. Further, Shpilka and Wigderson [26,
Theorem 5.3], showed that Sd

n has depth-6 formulas of syntactic degree at most polypdq,
putting it in the class lowSynDegFrpolypnqs.

However, as far as we know, there are no known polypnq-sized homogeneous formulas for
this family of polynomials.13 In fact, under some further restrictions, Hrubeš and Yehudayoff
showed [10] a superpolynomial homogeneous formula lower bound when d “ n{2. Removing
these restrictions would show a separation between homFrpolypnqs and lowSynDegFrpolypnqs.
On the other hand, if indeed the elementary symmetric polynomials have polypnq-sized
homogeneous formulas, then this can be used to argue14 the same for any polynomial
computed by a depth-3 formula of polynomial size, hinting at a possible collapse between
homFrpolypnqs and lowSynDegFrpolypnqs.

13 A strong form of this was conjectured by Nisan and Wigderson [18], which was subsequently refuted by
Hrubeš and Yehudayoff [10]. However, this still does not yield polynomial-sized homogeneous formulas
for all elementary symmetric polynomials.

14 see e.g. [16, Section III] for the standard argument

CCC 2023

28:16 Towards Optimal Depth-Reductions for Algebraic Formulas

Lower bounds for higher-depth formulas

Due to the recent lower bound results of [16], we know that there is an explicit homogeneous
polynomial P pXq of degree d on n variables that cannot be computed by any formula of
size polypnq and depth ε ¨ log log d, for some absolute constant ε ą 0. It turns out that the
polynomial P is computable by an algebraic branching program and therefore, lies in the
complexity class called VBP.

It is known that VF is contained in VBP. However, we do not know whether this
containment is strict or not. Our lower bound result helps us pose a refined version of this
question. Specifically, it shows that if the lower bound from [16] can be improved from
Ωplog log dq to ωplog dq, then we will have separated VF from VBP.

The fact that our depth reduction carries over to the non-commutative setting, makes
a compelling case for revisiting the VF vs. VBP question in the non-commutative setting.
Specifically, a recent result of [30] shows that there is an explicit non-commutative polynomial
P pXq of degree d on n variables that cannot be computed by any non-commutative formula of
size polypnq and depth ε ¨

?
log d. So, improving the lower bound in this case from Ωp

?
log dq

to ωplog dq would separate VF from VBP in the non-commutative setting.

References
1 Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In proceedings

of Foundations of Computer Science (FOCS), pages 67–75, 2008. doi:10.1109/FOCS.2008.32.
2 Maria Luisa Bonet and Samuel R. Buss. Size-depth tradeoffs for boolean formulae. Information

Processing Letters, 49(3):151–155, 1994. doi:10.1016/0020-0190(94)90093-0.
3 R. Brent, D. Kuck, and K. Maruyama. The parallel evaluation of arithmetic expressions

without division. IEEE Transactions on Computers, C-22(5):532–534, 1973. doi:10.1109/
T-C.1973.223757.

4 Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the
ACM, 21(2):201–206, April 1974. doi:10.1145/321812.321815.

5 Nader H. Bshouty, Richard Cleve, and Wayne Eberly. Size-depth tradeoffs for algebraic
formulas. SIAM J. Comput., 24(4):682–705, 1995. doi:10.1137/S0097539792232586.

6 Peter Bürgisser. Cook’s versus Valiant’s hypothesis. Theoretical Computer Science, 235(1):71–
88, 2000.

7 Suryajith Chillara, Mrinal Kumar, Ramprasad Saptharishi, and V. Vinay. The chasm at
depth four, and tensor rank: Old results, new insights. CoRR, abs/1606.04200, 2016. arXiv:
1606.04200.

8 Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. Small-depth multilinear formula
lower bounds for iterated matrix multiplication, with applications. In STACS, volume 96 of
LIPIcs, pages 21:1–21:15. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018.

9 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits:
A chasm at depth 3. SIAM Journal of Computing, 45(3):1064–1079, 2016. doi:10.1137/
140957123.

10 Pavel Hrubeš and Amir Yehudayoff. Homogeneous formulas and symmetric polynomials.
Comput. Complexity, 20(3):559–578, 2011. doi:10.1007/s00037-011-0007-3.

11 Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower bound for
regular arithmetic formulas. In David B. Shmoys, editor, Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 – June 03, 2014, pages 146–153. ACM, 2014.
doi:10.1145/2591796.2591847.

12 Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput. Sci.,
448:56–65, 2012. doi:10.1016/j.tcs.2012.03.041.

13 S Rao Kosaraju. Parallel evaluation of division-free arithmetic equations. In Proceedings of
the Eighteenth Annual ACM Symposium on Theory of Computing, pages 231–239, 1986.

https://doi.org/10.1109/FOCS.2008.32
https://doi.org/10.1016/0020-0190(94)90093-0
https://doi.org/10.1109/T-C.1973.223757
https://doi.org/10.1109/T-C.1973.223757
https://doi.org/10.1145/321812.321815
https://doi.org/10.1137/S0097539792232586
https://arxiv.org/abs/1606.04200
https://arxiv.org/abs/1606.04200
https://doi.org/10.1137/140957123
https://doi.org/10.1137/140957123
https://doi.org/10.1007/s00037-011-0007-3
https://doi.org/10.1145/2591796.2591847
https://doi.org/10.1016/j.tcs.2012.03.041

H. Fournier, N. Limaye, G. Malod, S. Srinivasan, and S. Tavenas 28:17

14 Mrinal Kumar, Rafael Mendes de Oliveira, and Ramprasad Saptharishi. Towards optimal depth
reductions for syntactically multilinear circuits. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132
of LIPIcs, pages 78:1–78:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ICALP.2019.78.

15 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds
against low-depth algebraic circuits. Electron. Colloquium Comput. Complex., TR21-081, 2021.
URL: https://eccc.weizmann.ac.il/report/2021/081.

16 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds
against low-depth algebraic circuits. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 804–814. IEEE,
2021. doi:10.1109/FOCS52979.2021.00083.

17 Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of the twenty-
third annual ACM symposium on Theory of computing, pages 410–418, 1991.

18 Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Computational Complexity, 6(3):217–234, 1997. doi:10.1007/BF01294256.

19 Franco P. Preparata and David E. Muller. The time required to evaluate division-free arithmetic
expressions. Inf. Process. Lett., 3(5):144–146, 1975. doi:10.1016/0020-0190(75)90028-9.

20 Franco P. Preparata and David E. Muller. Efficient parallel evaluation of boolean expression.
IEEE Trans. Computers, 25(5):548–549, 1976. doi:10.1109/TC.1976.1674647.

21 Ran Raz. Separation of multilinear circuit and formula size. Theory of Computing, 2(1):121–135,
2006. doi:10.4086/toc.2006.v002a006.

22 Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. Journal of the ACM,
60(6):40:1–40:15, 2013. doi:10.1145/2535928.

23 Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic circuits. Com-
putational Complexity, 17(4):515–535, 2008. doi:10.1007/s00037-008-0254-0.

24 Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github
survey, 2015. URL: https://github.com/dasarpmar/lowerbounds-survey/releases/.

25 Eli Shamir and Marc Snir. On the depth complexity of formulas. Math. Syst. Theory,
13:301–322, 1980. doi:10.1007/BF01744302.

26 Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero.
Computational Complexity, 10(1):1–27, 2001.

27 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5:207–388, March 2010.
doi:10.1561/0400000039.

28 Philip M. Spira. On time hardware complexity tradeoffs for Boolean functions. In Shu Lin,
editor, Proceedings of the Fourth Hawaii International Conference on System Sciences, pages
525–527. Western Periodicals Company, North Hollywood, California, 1971.

29 Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Information and
Computation, 240:2–11, 2015. doi:10.1016/j.ic.2014.09.004.

30 Sébastien Tavenas, Nutan Limaye, and Srikanth Srinivasan. Set-multilinear and non-
commutative formula lower bounds for iterated matrix multiplication. In STOC, pages
416–425. ACM, 2022.

31 Leslie G. Valiant, Sven Skyum, Stuart J. Berkowitz, and Charles Rackoff. Fast Parallel
Computation of Polynomials Using Few Processors. SIAM Journal of Computing, 12(4):641–
644, 1983. doi:10.1137/0212043.

32 SV Yablonskii and VP Kozyrev. Mathematical problems of cybernetics. Information Materials
of Scientific Council of Akad. Nauk SSSR on Complex Problem “Kibernetika”, 19:3–15, 1968.

CCC 2023

https://doi.org/10.4230/LIPIcs.ICALP.2019.78
https://doi.org/10.4230/LIPIcs.ICALP.2019.78
https://eccc.weizmann.ac.il/report/2021/081
https://doi.org/10.1109/FOCS52979.2021.00083
https://doi.org/10.1007/BF01294256
https://doi.org/10.1016/0020-0190(75)90028-9
https://doi.org/10.1109/TC.1976.1674647
https://doi.org/10.4086/toc.2006.v002a006
https://doi.org/10.1145/2535928
https://doi.org/10.1007/s00037-008-0254-0
https://github.com/dasarpmar/lowerbounds-survey/releases/
https://doi.org/10.1007/BF01744302
https://doi.org/10.1561/0400000039
https://doi.org/10.1016/j.ic.2014.09.004
https://doi.org/10.1137/0212043

28:18 Towards Optimal Depth-Reductions for Algebraic Formulas

A The Bonet-Buss depth-reduction

In this section, we give a proof of Theorem 10. This is essentially the same proof as in the
work of Bonet and Buss [2], but since the results in that paper are only stated for Boolean
formulas, we give the proof here for completeness.

We show that for some large enough absolute constant C ą 0, any polynomial P computed
by a formula F of size s can also be computed by a formula F 1 of size at most s1`ε, depth at
most 2Op1{εq ¨ log s, and fan-in 2. Further, if F is homogeneous/monotone/non-commutative,
then so is F 1. This latter claim will follow directly from the construction.

We assume here that each gate in F has fan-in 2 to begin with. We can make this
modification to F in the beginning at the expense of increasing the depth, and without
increasing the size.

We prove the claim by induction on the size s of the formula. Let T psq and Dpsq denote
the maximum size and depth (respectively) of F 1 thus obtained, assuming that F has size at
most s. Let k “ 2C{ε where C ą 0 is an absolute constant we will choose below. We assume
throughout that ε ă 1, which is without loss of generality.

The base case of the formula is when s ď k, in which case the claim is trivial, as any
formula of size s has depth at most s, which in this case is at most 2C{ε.

Now, assume that s ą k. In this case, we find a gate α such that the size of the subformula
Fα rooted at α has size at least s ´ s{k, while the children β and γ of α do not satisfy this
property. It is easy to observe that there is a unique α with this property. Let ˚ denote the
operation (either ` or ˆ) labelling α.

We replace α by a fresh variable y in F to get a formula Fy. Note that Fy has size at
most s1 “ 2s

k . Since Fy has at most one occurrence of y, we can write

Fy “ A ¨ y ¨ B ` C

where A is the product of all subformulas that multiply y on the left in F along the path to
the output, B is similarly the product of all subformulas that multiply y on the right, and C

is the polynomial computed by Fy when we set y to 0. Clearly, A, B and C have formulas
FA, FB and FC of size at most s1. Finally, we get the formula F 1 as in Figure 1.

`

ˆ F 1
C

ˆ F 1
B

F 1
A ˚

F 1
β F 1

γ

Figure 1 Constructing F 1.

Here, F 1
A, F 1

B , F 1
C , F 1

β , F 1
γ are the formulas obtained by recursively applying the same

procedure to FA, FB , FC , Fβ , Fγ .
We can bound the size and depth of the depth-reduced formula by induction. We have

Dpsq ď Dps ´ s{kq ` Op1q

H. Fournier, N. Limaye, G. Malod, S. Srinivasan, and S. Tavenas 28:19

leading easily to an overall depth bound of Opk log sq “ 2Op1{εq ¨ log s for any choice of the
constant C.

For the size, we have the following recursion.

T psq ď max
sβ ,sγ ,s1:

sβ ,sγďsp1´1{kq
s1ď2s{k

sβ`sγ`s1ďs

T psβq ` T psγq ` 3T ps1q

where sβ and sγ are the sizes of Fβ and Fγ respectively. We now use induction to bound
T psq as follows. (We omit the conditions on sβ , sγ and s1 for notational simplicity.)

T psq ď max
sβ ,sγ ,s1

s1`ε
β ` s1`ε

γ ` 3s1`ε
1

ď

ˆ

s

ˆ

1 ´
1
k

˙˙1`ε

`

´ s

k

¯1`ε

` 3
ˆ

2s

k

˙1`ε

where we used the fact that s1 ď 2s{k and the fact that, using the convexity of the map
x ÞÑ x1`ε, the function s1`ε

β ` s1`ε
γ is maximized when maxtsβ , sγu “ s´ s{k, meaning that

mintsβ , sγu ď s{k.

Continuing the computation, we get

T psq ď s1`ε

ˆˆ

1 ´
1
k

˙

`
1

k1`ε
` 3 4

k1`ε

˙

ď s1`ε ¨

ˆ

1 ´
1
k
`

C 1

k1`ε

˙

for some large enough absolute constant C 1. Setting k “ 2C{ε for a large enough absolute
constant C gives us T psq ď s1`ε, proving the inductive claim.

CCC 2023

Constant-Depth Circuits vs. Monotone Circuits
Bruno P. Cavalar #

University of Warwick, Coventry, UK

Igor C. Oliveira #

University of Warwick, Coventry, UK

Abstract

We establish new separations between the power of monotone and general (non-monotone) Boolean
circuits:

For every k ≥ 1, there is a monotone function in AC0 (constant-depth poly-size circuits) that
requires monotone circuits of depth Ω(logk n). This significantly extends a classical result of
Okol’nishnikova [49] and Ajtai and Gurevich [1]. In addition, our separation holds for a monotone
graph property, which was unknown even in the context of AC0 versus mAC0.

For every k ≥ 1, there is a monotone function in AC0[⊕] (constant-depth poly-size circuits
extended with parity gates) that requires monotone circuits of size exp(Ω(logk n)). This makes
progress towards a question posed by Grigni and Sipser [32].

These results show that constant-depth circuits can be more efficient than monotone formulas and
monotone circuits when computing monotone functions.

In the opposite direction, we observe that non-trivial simulations are possible in the absence of
parity gates: every monotone function computed by an AC0 circuit of size s and depth d can be
computed by a monotone circuit of size 2n−n/O(log s)d−1

. We show that the existence of significantly
faster monotone simulations would lead to breakthrough circuit lower bounds. In particular, if every
monotone function in AC0 admits a polynomial size monotone circuit, then NC2 is not contained
in NC1.

Finally, we revisit our separation result against monotone circuit size and investigate the limits
of our approach, which is based on a monotone lower bound for constraint satisfaction problems
(CSPs) established by Göös, Kamath, Robere and Sokolov [31] via lifting techniques. Adapting
results of Schaefer [67] and Allender, Bauland, Immerman, Schnoor and Vollmer [4], we obtain an
unconditional classification of the monotone circuit complexity of Boolean-valued CSPs via their
polymorphisms. This result and the consequences we derive from it might be of independent interest.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases circuit complexity, monotone circuit complexity, bounded-depth circuis,
constraint-satisfaction problems

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.29

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/069/

Funding This work received support from the Royal Society University Research Fellowship
URF\R1\191059, the EPSRC New Horizons Grant EP/V048201/1, and the Centre for Discrete
Mathematics and its Applications (DIMAP) at the University of Warwick.

Acknowledgements We thank Arkadev Chattopadhyay for several conversations about the AC0

versus mSIZE[poly] problem and related questions. We are also grateful to Denis Kuperberg for
explaining to us the results from [46, 47]. The first author thanks Ninad Rajgopal for helpful
discussions about depth reduction. Finally, we thank Gernot Salzer for the code used to generate
Figures 1, 2, and 3.

© Bruno P. Cavalar and Igor C. Oliveira;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 29; pp. 29:1–29:37

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Bruno.Pasqualotto-Cavalar@warwick.ac.uk
https://orcid.org/0000-0002-0458-8767
mailto:Igor.Oliveira@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.CCC.2023.29
https://eccc.weizmann.ac.il/report/2023/069/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Constant-Depth Circuits vs. Monotone Circuits

1 Introduction

A Boolean function f : {0, 1}n → {0, 1} is monotone if f(x) ≤ f(y) whenever xi ≤ yi for each
coordinate 1 ≤ i ≤ n. Monotone Boolean functions, and the monotone Boolean circuits1 that
compute them, have been extensively investigated for decades due to their relevance in circuit
complexity [58], cryptography [10], learning theory [14], proof complexity [45, 54], property
testing [28], pseudorandomness [22], optimisation [30], hazard-free computations [37], and
meta-complexity [36], among other topics. In addition, over the last few years a number of
results have further highlighted the importance of monotone complexity as a central topic
in the study of propositional proofs, total search problems, communication protocols, and
related areas (see [26] for a recent survey).

Some of the most fundamental results about monotone functions deal with their com-
plexities with respect to different classes of Boolean circuits, such as the monotone circuit
lower bound of Razborov [59] for Matching and the constant-depth circuit lower bound of
Rossman [64] for k-Clique. Particularly important to our discussion is a related strand of
research that contrasts the computational power of monotone circuits relative to general
(non-monotone) AND/OR/NOT circuits, which we review next.

Weakness of Monotone Circuits. The study of monotone simulations of non-monotone
computations and associated separation results has a long and rich history. In a sequence
of celebrated results, [59, 8, 7, 69] showed the existence of monotone functions that can be
computed by circuits of polynomial size but require monotone circuits of size 2nΩ(1) . In
other words, the use of negations can significantly speedup the computation of monotone
functions. More recently, Göös, Kamath, Robere and Sokolov [31] considerably strengthened
this separation by showing that some monotone functions in NC2 (poly-size O(log2 n)-depth
fan-in two circuits) require monotone circuits of size 2nΩ(1) . (An earlier weaker separation
against monotone depth nΩ(1) was established in [57].) Therefore, negations can also allow
monotone functions to be efficiently computed in parallel.

Similar separations about the limitations of monotone circuits are also known at the low-
complexity end of the spectrum: Okol’nishnikova [49] and (independently) Ajtai and Gurevich
[1] exhibited monotone functions in AC0 (i.e., constant-depth poly-size AND/OR/NOT cir-
cuits) that require monotone AC0 circuits (composed of only AND/OR gates) of super-
polynomial size.2 This result has been extended to an exponential separation in [24], which
shows the existence of a monotone function in AC0 that requires monotone depth-d circuits
of size 2Ω̃(n1/d) even if MAJ (majority) gates are allowed in addition to AND/OR gates.3

Strength of Monotone Circuits. In contrast to these results, in many settings negations do
not offer a significant speedup and monotone computations can be unexpectedly powerful. For
instance, monotone circuits are able to efficiently implement several non-trivial algorithms,
such as solving constraint satisfaction problems using treewidth bounds (see, e.g., [50,

1 Recall that in a monotone Boolean circuit the gate set is limited to {AND, OR} and input gates are
labelled by elements from {x1, . . . , xn, 0, 1}.

2 We refer to [13] for an alternate exposition of this result.
3 Separations between monotone and non-monotone devices have also been extensively investigated in

other settings. This includes average-case complexity [12], different computational models, such as span
programs [9, 62] and algebraic complexity (see [21] and references therein), and separations in first-order
logic [68, 46, 47]. We restrict our attention to worst-case separations for Boolean circuits in this paper.

B. P. Cavalar and I. C. Oliveira 29:3

Chapter 3]). As another example, in the context of cryptography, it has been proved that if
one-way functions exist, then there are monotone one-way functions [29]. Below we describe
results that are more closely related to the separations investigated in our paper.

In the extremely constrained setting of depth-2 circuits, Quine [55] showed that monotone
functions computed by size-s DNFs (resp., CNFs) can always be computed by size-s monotone
DNFs (resp., CNFs). Some results along this line are known for larger circuit depth, but
with respect to more structured classes of monotone Boolean functions. Rossman [63, 66]
showed that any homomorphism-preserving graph property computed by AC0 circuits is also
computed by monotone AC0 circuits.4 Under no circuit depth restriction, Berkowitz [11]
proved that the monotone and non-monotone circuit size complexities of every slice function
are polynomially related.5

Despite much progress and sustained efforts, these two classes of results leave open
tantalising problems about the power of cancellations in computation.6 In particular, they
suggest the following basic question about the contrast between the weakness of monotone
computations and the strength of negations:

What is the largest computational gap between the power of monotone and
general (non-monotone) Boolean circuits?

A concrete formalisation of this question dates back to the seminal work on monotone
complexity of Grigni and Sipser [32] in the early nineties. They asked if there are monotone
functions in AC0 that require super-polynomial size monotone Boolean circuits, i.e., if
AC0 ∩ Mono ⊈ mSIZE[poly]. In case this separation holds, it would exhibit the largest
qualitative gap between monotone and general Boolean circuits, i.e., even extremely parallel
non-monotone computations can be more efficient than arbitrary monotone computations.

1.1 Results
Our results show that, with respect to the computation of monotone functions, highly parallel
(non-monotone) Boolean circuits can be super-polynomially more efficient than unrestricted
monotone circuits. Before providing a precise formulation of these results, we introduce some
notation.

For a function d : N → N, let mDEPTH[d] denote the class of Boolean functions computed
by monotone fan-in two AND/OR Boolean circuits of depth O(d(n)). Similarly, we use
mSIZE[s] to denote the class of Boolean functions computed by monotone circuits of size
O(s(n)). More generally, for a circuit class C, we let mC denote its natural monotone analogue.
Finally, for a Boolean function f : {0, 1}n → {0, 1}, we use mSIZE(f) and mDEPTH(f) to
denote its monotone circuit size and depth complexities, respectively. We refer to Jukna [42]
for standard background on circuit complexity theory.

4 A function f : {0, 1}(n

2) → {0, 1} is called a graph property if f(G) = f(H) whenever G and H
are isomorphic graphs, and homomorphism-preserving if f(G) ≤ f(H) whenever there is a graph
homomorphism from G to H. It is easy to see that every homomorphism-preserving graph property is
monotone.

5 A function f : {0, 1}(n

2) → {0, 1} is a slice function if there is i ≥ 0 such that f(x) is 0 on inputs of
Hamming weight less than i and 1 on inputs of Hamming weight larger than i.

6 Any non-monotone circuit can be written as an XOR (parity) of distinct monotone sub-circuits (see, e.g.,
[33, Appendix A.1]), so negations can be seen as a way of combining, or cancelling, different monotone
computations. See also a related discussion in Valiant [71].

CCC 2023

29:4 Constant-Depth Circuits vs. Monotone Circuits

1.1.1 Constant-depth circuits vs. monotone circuits
Recall that the Okol’nishnikova-Ajtai-Gurevich [49, 1] theorem states that AC0 ∩ Mono ⊈
mAC0. In contrast, as our main result, we establish a separation between constant-depth
Boolean circuits and monotone circuits of much larger depth. In particular, we show that
constant-depth circuits with negations can be significantly more efficient than monotone
formulas.

▶ Theorem 1 (Polynomial-size constant-depth vs. larger monotone depth). For every k ≥ 1,
we have AC0 ∩ Mono ̸⊆ mDEPTH[(log n)k]. Moreover, this separation holds for a monotone
graph property.

In a more constrained setting, Kuperberg [46, 47] exhibited a monotone graph property
expressible in first-order logic that cannot be expressed in positive first-order logic. A
separation that holds for a monotone graph property was unknown even in the context of
AC0 versus mAC0.

Let HomPreserving denote the class of all homomorphism-preserving graph properties,
and recall that Rossman [63, 66] established that AC0 ∩ HomPreserving ⊆ mAC0. Theorem 1
implies that this efficient monotone simulation does not extend to the larger class of monotone
graph properties, even if super-logarithmic depth is allowed.

Our argument is completely different from those of [49, 1, 13, 24] and their counterparts in
first-order logic [68, 46, 47]. In particular, it allows us to break the O(log n) monotone depth
barrier present in previous separations with an AC0 upper bound, which rely on lower bounds
against monotone circuits of depth d and size (at most) 2nO(1/d) . We defer the discussion of
our techniques to Section 1.2.

In our next result, we consider monotone circuits of unbounded depth.

▶ Theorem 2 (Polynomial-size constant-depth vs. larger monotone size). For every k ≥ 1, we
have AC0[⊕] ∩ Mono ̸⊆ mSIZE[2(log n)k].

Theorem 1 and Theorem 2 are incomparable: while the monotone lower bound is stronger
in the latter, its constant-depth upper bound requires parity gates. Theorem 2 provides the
first separation between constant-depth circuits and monotone circuits of polynomial size,
coming remarkably close to a solution to the question considered by Grigni and Sipser [32].

We note that in both of our results the family of monotone functions is explicit and has
a simple description (see Section 1.2).

1.1.2 Non-trivial monotone simulations and their consequences
While Theorem 1 and Theorem 2 provide more evidence for the existence of monotone
functions in AC0 which require monotone circuits of super-polynomial size, they still leave
open the intriguing possibility that unbounded fan-in ⊕-gates might be crucial to achieve the
utmost cancellations (speedups) provided by constant-depth circuits. This further motivates
the investigation of efficient monotone simulations of constant-depth circuits without parity
gates, which we consider next.

For convenience, let AC0
d[s] denote the class of Boolean functions computed by AC0 circuits

of depth ≤ d and size ≤ s(n). (We might omit s(n) and/or d when implicitly quantifying
over all families of polynomial size circuits and/or all constant depths.)

We observe that a non-trivial monotone simulation is possible in the absence of parity
gates. Indeed, by combining existing results from circuit complexity theory, it is not hard to
show that AC0

d[s] ∩ Mono ⊆ mSIZE[2n(1−1/O(log s)d−1)] (see Section 4.1). Moreover, this upper

B. P. Cavalar and I. C. Oliveira 29:5

bound is achieved by monotone DNFs of the same size. This is the best upper bound we can
currently show for the class of all monotone functions when the depth d ≥ 3. (Negations offer
no speedup at depths d ≤ 2 [55].) In contrast, we prove that a significantly faster monotone
simulation would lead to new (non-monotone) lower bounds in complexity theory. Recall
that it is a notorious open problem to obtain explicit lower bounds against depth-d circuits
of size 2ω(n1/(d−1)), for any fixed d ≥ 3. We denote by GraphProperties the set of all Boolean
functions which are graph properties.

▶ Theorem 3 (New circuit lower bounds from monotone simulations). There exists ε > 0 such
that the following holds.
1. If AC0

3 ∩ Mono ⊆ mNC1, then NP ̸⊆ AC0
3[2o(n)].

2. If AC0
4 ∩ Mono ⊆ mSIZE[poly], then NP ̸⊆ AC0

4[2o(
√

n/ log n)].
3. If AC0 ∩ Mono ⊆ mSIZE[poly], then NC2 ̸⊆ NC1.
4. If NC1 ∩ Mono ⊆ mSIZE[2O(nε)], then NC2 ̸⊆ NC1.
5. If AC0 ∩ Mono ∩ GraphProperties ⊆ mSIZE[poly], then NP ̸⊆ NC1.
6. If NC1 ∩ Mono ∩ GraphProperties ⊆ mSIZE[poly], then L ̸⊆ NC1.

Item (3) of Theorem 3 implies in particular that, if the upper bound of Theorem 2 cannot
be improved to AC0 (i.e., the question asked by [32] has a negative answer), then NC2 ̸⊆ NC1.
It also improves a result from [23] showing the weaker conclusion NP ⊈ NC1 under the same
assumption.

Even if it’s impossible to efficiently simulate AC0 circuits computing monotone functions
using unbounded depth monotone circuits, it could still be the case that a simulation
exists for certain classes of monotone functions with additional structure. As explained
above, Rossman’s result [63, 66] achieves this for graph properties that are preserved under
homomorphisms. Items (5) and (6) of Theorem 3 show that a simulation that holds for all
monotone graph properties is sufficient to get new separations in computational complexity.

1.1.3 Monotone complexity of constraint satisfaction problems
Recall that [31] showed the existence of a monotone function fGKRS in NC2 that is not in
mSIZE[2nΩ(1)]. As opposed to classical results [59, 8, 7, 69] that rely on the approximation
method, their monotone circuit lower bound employs a lifting technique from communication
complexity. It is thus natural to consider if their approach can be adapted to provide a
monotone function g that is efficiently computable by constant-depth circuits but is not in
mSIZE[poly].

As remarked in [31, 26], all monotone lower bounds obtained from lifting theorems so
far also hold for monotone encodings of constraint satisfaction problems (CSPs). Next, we
introduce a class of monotone Boolean functions CSP-SATS which capture the framework
and lower bound of [31].

Encoding CSPs as monotone Boolean functions. Let R ⊆ {0, 1}k be a relation. We call
k the arity of R. Let V = (i1, . . . , ik) ∈ [n]k, and let fR,V : {0, 1}n → {0, 1} be the function
that accepts a string x ∈ {0, 1}n if (xi1 , . . . , xik

) ∈ R. We call fR,V a constraint application of
R on n variables. (A different choice of the sequence V gives a different constraint application
of R.) If S is a finite set of Boolean relations, we call any set of constraint applications of
relations from S on a fixed set of variables an S-formula. In particular, we can describe an
S-formula through a set of pairs (V,R). We say that an S-formula F is satisfiable if there
exists an assignment to the variables of F which satisfies all the constraints of F .

CCC 2023

29:6 Constant-Depth Circuits vs. Monotone Circuits

Let S = {R1, . . . , Rk} be a finite set of Boolean relations. Let ℓi be the arity of the
relation Ri. Note that there are nℓi possible constraint applications of the relation Ri on
n variables. Let N :=

∑k
i=1 n

ℓi . We can identify each S-formula F on a fixed set of n
variables with a corresponding string wF ∈ {0, 1}N , where wF

j = 1 if and only if the j-th
possible constraint application (corresponding to one of the N pairs (V,R)) appears in F .
Let CSP-SATn

S : {0, 1}N → {0, 1} be the Boolean function which accepts a given S-formula
F if F is unsatisfiable. Note that this is a monotone function. When n is clear from
the context or we view {CSP-SATn

S}n≥1 as a sequence of functions, we simply write CSP-SATS .

The function fGKRS from [31] is simply CSP-SATS for S = {⊕0
3,⊕1

3}, where we write
⊕b

3(x1, x2, x3) = 1 if and only if
∑

i xi = b (mod 2). More generally, for any finite set S
of Boolean relations, their framework shows how to lift a Resolution width (resp. depth)
lower bound for an arbitrary unsatisfiable S-formula F over m variables into a corresponding
monotone circuit size (resp. depth) lower bound for CSP-SATn

S , where n = poly(m).
Despite the generality of the technique from [31] and the vast number of possibilities

for S, we prove that a direct application of their approach cannot establish Theorem 1 and
Theorem 2. This is formalised as follows. (We refer to Section 5 for much stronger forms of
the result.)

▶ Theorem 4 (Limits of the direct approach via lifting and CSPs). Let S be a finite set of
Boolean relations. The following holds.
1. If CSP-SATS /∈ mSIZE[poly] then CSP-SATS is ⊕L-hard under ≤AC0

m reductions.
2. If CSP-SATS /∈ mNC1 then CSP-SATS is L-hard under ≤AC0

m reductions.

In particular, since there are functions (e.g., Majority) computable in logarithmic space
that are not in AC0[⊕], Theorem 4 (Part 2) implies that any CSP-SATS function that is
hard for poly-size monotone formulas (mNC1) must lie outside AC0[⊕]. Observe that this
can also be interpreted as a monotone simulation: for any finite set S of Boolean relations, if
CSP-SATS ∈ AC0[⊕] then CSP-SATS ∈ mNC1.7

Theorem 4 is a corollary of a general result that completely classifies the monotone circuit
complexity of Boolean-valued constraint satisfaction problems based on the set Pol(S) of
polymorphisms of S, a standard concept in the investigation of CSPs.8 We present next a
simplified version of this result, which shows a dichotomy for the monotone circuit size and
depth of Boolean-valued constraint satisfaction problems. We refer to Section 5 for a more
general formulation and additional consequences.

▶ Theorem 5 (Dichotomies for the monotone complexity of Boolean-valued CSPs). Let S be a
finite set of Boolean relations. The following holds.
1. Monotone Size Dichotomy: If Pol(S) ⊆ L3 there is ε > 0 such that mSIZE(CSP-SATS) =

2Ω(nε). Otherwise, mSIZE(CSP-SATS) = nO(1).
2. Monotone Depth Dichotomy: If Pol(S) ⊆ L3 or Pol(S) ⊆ V2 or Pol(S) ⊆ E2, there is

ε > 0 such that mDEPTH(CSP-SATS) = Ω(nε). Otherwise, CSP-SATS ∈ mNC2.

7 Jumping ahead, our proof of Theorem 2 still relies in a crucial way on the monotone lower bound
obtained by [31]. However, our argument requires an extra ingredient and does not follow from a direct
application of their template. We provide more details about it in Section 1.2 below. Interestingly, the
proof of Theorem 1 was discovered by trying to avoid the “barrier” posed by Theorem 4.

8 Roughly speaking, Pol(S) captures the amount of symmetry in S, and a larger set Pol(S) implies that
solving CSP-SATS is computationally easier. We refer the reader to Section 5 for more details and for a
discussion of Post’s lattice, which is relevant in the next statement.

B. P. Cavalar and I. C. Oliveira 29:7

We note that previous papers of Schaefer [67] and Allender, Bauland, Immerman, Schnoor
and Vollmer [4] provided a conditional classification of the complexity of such CSPs. The-
orem 5 and its extensions, which build on their results and techniques, paint a complete and
unconditional picture of their monotone complexity.9

1.2 Techniques
Our arguments combine in novel ways several previously unrelated ideas from the literature.
The exposition below follows the order in which the results appear above, except for the
overview of the proof of Theorem 1, which appears last. We discuss this result after explaining
the proof of Theorem 2 and the classification of the monotone complexity of CSPs (Theorem 4
and Theorem 5), as this sheds light into how the proof of Theorem 1 was discovered and into
the nature of the argument.

A monotone circuit size lower bound for a function in AC0[⊕]. We first give an overview
of the proof of Theorem 2.

The lower bound of [31]. We begin by providing more details about the aforementioned
monotone circuit lower bound of [31], since their result is a key ingredient in our separation
(see [26] for a more detailed overview). Recall that their function fGKRS corresponds to
CSP-SATS for S = {⊕0

3,⊕1
3}. Following their notation, this is simply the Boolean function

3-XOR-SATn : {0, 1}2n3
→ {0, 1} which uses each input bit to indicate the presence of a

linear equation with exactly 3 variables. This (monotone) function accepts a given linear
system over F2 if the system is unsatisfiable. As one of their main results, [31] employed
a lifting technique from communication complexity to show the existence of a constant
ε > 0 such that mSIZE(3-XOR-SATn) = 2nε . (We show in Appendix A that a weaker
super-polynomial monotone circuit size lower bound for 3-XOR-SATn can also be obtained
using the approximation method and a reduction.)

Sketch of the proof of Theorem 2. Since 3-XOR-SATn ∈ NC2 (see, e.g, [31]), their result
implies that NC2 ∩ Mono ⊈ mSIZE[2nΩ(1)]. On the other hand, we are after a separation
between constant-depth (non-monotone) circuits and polynomial-size (unbounded depth)
monotone circuits. There are two natural ways that one might try to approach this challenge,
as discussed next.

First, the lifting framework explored by [31] offers in principle the possibility that by
carefully picking a different set S of Boolean relations, one might be able to reduce the
non-monotone depth complexity of CSP-SATS while retaining super-polynomial monotone
hardness. However, Theorem 4 shows that this is impossible, as explained above.

A second possibility is to combine the exponential 2nε monotone circuit size lower bound
for 3-XOR-SATn and a padding argument, since we only need super-polynomial hardness.
Indeed, this argument can be used to define a monotone function g : {0, 1}n → {0, 1} that
is computed by polynomial-size fan-in two circuits of depth poly(log log n) but requires
monotone circuit of size nω(1). However, it is clear that no padding argument alone can
reduce the non-monotone circuit depth bound to O(1) while retaining the desired monotone
hardness.

9 We remark that only recently has Schaefer’s classification been extended to the non-Boolean case [72, 15].
Though the refined classification of [4] is conjectured to hold analogously in the case of non-Boolean
CSPs [48], this is still open (see the discussion in [16, Section 7]).

CCC 2023

29:8 Constant-Depth Circuits vs. Monotone Circuits

Given that both the classical widely investigated approximation method for monotone
lower bounds and the more recent lifting technique do not appear to work in their current
forms, for some time it seemed to us that, if true, a significantly new technique would be
needed to establish a separation similar to the one in Theorem 2.

Perhaps surprisingly, it turns out that a more clever approach that combines padding with
a non-trivial circuit upper bound can be used to obtain the result. The first key observation,
already present in [31] and other papers, is that 3-XOR-SATn can be computed not only in
NC2 but actually by polynomial-size span programs over F2. On the other hand, it is known
that this model is equivalent in power to parity branching programs [44], which correspond
to the non-uniform version of ⊕L, i.e., counting modulo 2 the number of accepting paths
of a nondeterministic Turing machine that uses O(log n) space. A second key idea is that
such a computation can be simulated by AC0[⊕] circuits of sub-exponential size and large
depth. More precisely, similarly to an existing simulation of NL (nondeterministic logspace)
by AC0 circuits of depth d and size 2nO(1/d) via a “guess-and-verify” approach, it is possible
to achieve an analogous simulation of ⊕L using AC0[⊕] circuits (this folklore result appears
implicit in [6] and [51]). Putting everything together, it follows that for a large enough but
constant depth, 3-XOR-SATn can be computed by AC0[⊕] circuits of size 2nε/2 . Since this
function is hard against monotone circuits of size 2nε , a padding argument can now be used
to establish a separation between AC0[⊕] and mSIZE[poly]. (A careful choice of parameters
provides the slightly stronger statement in Theorem 2.)

Non-trivial monotone simulations and their consequences. In order to conclude that
significantly stronger monotone simulations imply new complexity separations (Theorem 3),
we argue contrapositively. By supposing a complexity collapse, we can exploit known
monotone circuit lower bounds to conclude that a hard monotone function exists in a lower
complexity class. For instance, if NC2 ⊆ NC1, then 3-XOR-SAT ∈ NC1, and we can conclude
by standard depth-reduction for NC1 and padding, together with the exponential lower bound
for 3-XOR-SAT due to [31], that there exists a monotone function in AC0 which is hard for
polynomial-size monotone circuits. The other implications are argued in a similar fashion.
In particular, we avoid the more complicated use of hardness magnification from [23] to
establish this kind of result, while also getting a stronger consequence.

A little more work is required in the case of graph properties (Theorem 3 Items 5 and
6), as padding the function computing a graph property does not yield a graph property.
We give a general lemma that allows us to pad monotone graph properties while preserving
their structure (Lemma 12). We then argue as in the case for general functions, using known
monotone lower bounds for graph properties. We note that Lemma 12 is also important
in the proof of Theorem 1, which will be discussed below. We believe that our padding
technique for graph properties might find additional applications.

Monotone complexity of CSPs. These are the most technical results of the paper. Since
explaining the corresponding proofs requires more background and case analysis, here we
only briefly describe the main ideas and references behind Theorem 4, Theorem 5, and the
extensions discussed in Section 5.

A seminal work of Schaefer [67] proved that any Boolean CSP is either solvable in
polynomial-time or it is NP-complete. Later, Jeavons [38] observed that the complexity
of deciding if a given set of constraint applications of S is satisfiable depends exclusively
on the set Pol(S) of polymorphisms of S. Intuitively, the set of polymorphisms of a set
of relations is a measure of its symmetry. The more symmetric a set of relations is, the

B. P. Cavalar and I. C. Oliveira 29:9

lesser is its expressive power. Jeavons formally proves this intuition by showing that, if
Pol(S) ⊆ Pol(S′), then the problem of deciding the satisfiability of a given S′-formula can be
reduced in polynomial-time to that of deciding the satisfiability of a given S-formula. This
allows Jeavons to reprove Schaefer’s result.

Existing proofs and classification results for constraint satisfaction problems do not
encode the satisfiability problem as a monotone Boolean function CSP-SATS , in the way
we described above. We reexamine Schaefer’s and Jeavons’s proofs and establish that the
reduction from CSP-SATS′ to CSP-SATS can also be done with efficient monotone circuits.
Making use of and adapting parts of the refined results and analysis of [4], which builds
on the earlier dichotomy result of [67] and provides a detailed picture of the computational
complexity of Boolean-valued CSPs, we prove in fact that the underlying reductions can all
be done in monotone nondeterministic logspace.

Finally, using known upper and lower bounds for monotone circuits together with a direct
analysis of some basic cases, and inspecting Post’s lattice [53, 18, 19], we are able to show
that CSP-SATS is hard for monotone circuits only when CSP-SATS is ⊕L-complete, as in
Theorem 4 Part 1.

A monotone circuit depth lower bound for a function in AC0. Next, we combine insights
obtained from the monotone lower bound of [31], our proof of Theorem 2 via a guess-and-verify
depth reduction and padding, and the statement of Theorem 4 (limits of the direct approach
via CSPs) to get the separation in Theorem 1. As alluded to above, our approach differs
from those of [49, 1, 13, 24] and related results in the context of first-order logic [68, 46, 47].

Recall that the [31] framework lifts a Resolution width lower bound for an unsatisfiable
S-formula F into a corresponding monotone circuit size lower bound for CSP-SATS . On the
other hand, Theorem 4 rules out separating constant-depth circuits from monotone circuits
of polynomial size via CSP-SATS functions. In particular, we cannot directly apply the chain
of reductions from [31] to obtain the desired separation result. Instead, we extract from the
specific S-formula F that they use a structural property that will allow us to improve the
AC0[⊕] upper from Theorem 2 to the desired AC0 upper bound in Theorem 1.

In [31] the formula F is a Tseitin contradiction, a well-known class of unsatisfiable CNFs
with a number of applications in proof complexity. For an undirected graph G, the Tseitin
formula T (G) encodes a system of linear equations modulo 2 as follows: each edge e ∈ E(G)
becomes a Boolean variable xe, and each vertex v ∈ V (G) corresponds to a constraint
(linear equation) Cv stating that

∑
u∈NG(v) x{v,u} = 1 (mod 2), where NG(v) denotes the

set of neighbours of v in G. Crucially, T (G) does not encode an arbitrary system of linear
equations, i.e., the following key structural property holds: every variable xe appears in
exactly 2 equations.

On a technical level, this property is not preserved when obtaining a (total) monotone
function CSP-SATS by the gadget composition employed in the lifting framework and its
reductions. However, we can still hope to explore this property in a somewhat different
argument with the goal of obtaining CSP instances that lie in a complexity class weaker
than ⊕L, which is the main bottleneck in the proof of Theorem 2 yielding AC0[⊕] circuits
instead of AC0. At the same time, considering this structural property immediately takes us
outside the domain of Theorem 4, which does not impose structural conditions over the CSP
instances.

We can capture the computational problem corresponding to this type of system of linear
equations using the following Boolean function. Let OddFactorn : {0, 1}(n

2) → {0, 1} be the
function that accepts a given graph G if the formula T (G) described above is satisfiable.

CCC 2023

29:10 Constant-Depth Circuits vs. Monotone Circuits

(Equivalently, if G admits a spanning subgraph in which the degree of every vertex is odd.)
Note that OddFactorn is a monotone Boolean function: adding edges to G cannot make a
satisfiable system unsatisfiable, since we can always set a new edge variable xe to 0.

While 3-XOR-SAT (the corresponding CSP-SATS function obtained from an appropriate
Tseitin formula via the framework of [31]) admits a ⊕L upper bound, we observe that
OddFactorn can be computed in L thanks to its more structured class of input instances.
Indeed, one can prove that the formula T (G) is satisfiable if and only if every connected
component of G has an even number of vertices.10 In turn, the latter condition can be
checked in logarithmic space using Reingold’s algorithm for undirected s-t-connectivity [60].
(We note that related ideas appear in an unpublished note of Johannsen [40].) This is the
first application of Reingold’s algorithm to this kind of separation.

At the same time, OddFactorn retains at least part of the monotone hardness of 3-XOR-SAT.
Using a different reduction from a communication complexity lower bound, [9] proved that
the monotone circuit depth of OddFactorn is nΩ(1). Altogether, we obtain a monotone
Boolean function (indeed a graph property) that lies in L but is not in mDEPTH[no(1)].
Applying a guess-and-verify depth reduction for L and using (graph) padding (analogously
to the proof sketch of Theorem 2), we get a monotone graph property in AC0 that is not in
mDEPTH[logk n]. This completes the sketch of the proof of Theorem 1.

1.3 Directions and open problems

Constant-depth circuits and monotone circuits are possibly the two most widely investigated
models in circuit complexity theory. Although our results provide new insights about the
relation between them, there are exceptionally basic questions that remain open.

While [55] showed that negations can be efficiently eliminated from circuits of depth d ≤ 2
that compute monotone functions, already at depth d = 3 the situation is much less clear.
Theorem 19 (see Section 4.1) implies that every monotone function in depth-3 AC0 admits a
monotone circuit of size 2n−Ω(n/ log2 n). It is unclear to us if this is optimal. While [24] rules
out an efficient constant-depth monotone simulation, it is still possible (and consistent with
Theorem 1) that AC0

3 ∩ Mono ⊆ mNC1. Is there a significantly better monotone circuit size
upper bound for monotone functions computed by polynomial-size depth-3 circuits?

Our results come close to solving the question posed by Grigni and Sipser [32]. Using
our approach, it would be sufficient to show that OddFactorn requires monotone circuits
of size exp(nΩ(1)). This is closely related to the challenge of obtaining an exponential
monotone circuit size lower bound for Matchingn, a longstanding open problem in monotone
complexity (see [42, Section 9.11]).11 Indeed, it’s possible to reduce OddFactor to Matching
using monotone AC0 circuits (see [3, Lemma 6.18]).

Incidentally, the algebraic complexity variant of the AC0 vs. mSIZE[poly] problem has been
recently settled in a strong way through a new separation result obtained by Chattopadhyay,
Datta, and Mukhopadhyay [21]. Could some of their techniques be useful to attack the more
elusive Boolean case?

10 A simple parity argument shows that odd-sized components cannot be satisfied. On the other hand,
we can always satisfy an even-sized component by starting with an arbitrary assignment, which must
satisfy an even number of constraints by a parity argument, and flipping the values of the edges in a
path between unsatisfied nodes, until all nodes in the connected component are satisfied.

11 Note that in OddFactor we are concerned with the existence of a spanning subgraph where the degree of
every vertex is odd, while in Matching the degree should be exactly 1.

B. P. Cavalar and I. C. Oliveira 29:11

Finally, it would be interesting to develop a more general theory able to explain when
cancellations can speedup the computation of monotone Boolean functions. Our investigation
of monotone simulations and separations for different classes of monotone functions (graph
properties and constraint satisfaction problems) can be seen as a further step in this direction.

2 Preliminaries

2.1 Notation

Boolean functions. We denote by Mono the set of all monotone Boolean functions. We
define poly =

{
n 7→ nC : C ∈ N

}
. A Boolean function f : {0, 1}(n

2) → {0, 1} is said to be a
graph property if f(G) = f(H) for any two isomorphic graphs G and H. Let F = {fn}n∈N
be a sequence of graph properties, where fn is defined over undirected graphs on n vertices.
We say that F is preserved under homomorphisms if, whenever there is a homomorphism
from a graph G to a graph H, we have F(G) ≤ F(H). We denote by HomPreserving
the set of all graph properties which are preserved under homomorphisms. Note that
HomPreserving ⊆ Mono.

Boolean circuits. We denote by AC0
d[s] the family of Boolean functions computed by

size-s, depth-d Boolean circuits with unbounded fan-in {∧,∨}-gates and input literals from
{x1, x1, . . . , xn, xn}. We write AC0[s] as a shorthand for

⋃∞
d=1 AC0

d[s], and AC0 as a shorthand
of AC0[nO(1)] = AC0[poly]. We will also refer to AC0

d[poly] by AC0
d. We write DNF[s] to denote

the family of Boolean functions computed by size-s DNFs, where size is measured by number
of terms. We write CNF[s] analogously. We write SIZE[s] to denote the family of Boolean
functions computed by size-s circuits. We write DEPTH[d] to denote the family of Boolean
functions computed by fan-in 2 circuits of depth d. We denote by AC0[⊕] the family of
Boolean functions computed by polynomial-size AC0 circuits with unbounded fan-in ⊕-gates.

We denote by L the family of Boolean functions computed by logspace machines, and
by NL the family of Boolean functions computed by polynomial-time nondeterministic
logspace machines. Moreover, we denote by ⊕L the family of Boolean functions computed by
polynomial-time nondeterministic logspace machines with a parity acceptance condition (i.e.,
an input is accepted if the number of accepting paths is odd).

Circuit complexity. Given a circuit class C, we write mC to denote the monotone version
of C. Given a function f , we write mSIZE(f) to denote the size of the smallest monotone
circuit computing f and mDEPTH(f) to denote the smallest depth of a fan-in 2 monotone
circuit computing f . Given two Boolean functions f, g, we write f ≤mProj

m g if there exists a
many-one reduction from f to g in which each bit of the reduction is a monotone projection12

of the input.

Miscellanea. Let α ∈ {0, 1}n . We define |α|1 :=
∑n

i=1 αi. We call |α|1 the Hamming
weight of α. We let supp(α) = {i ∈ [n] : αi = 1}. We let THRk,n : {0, 1}n → {0, 1} be the
Boolean function such that THRk,n(x) = 1 ⇐⇒ |x|1 ≥ k.

12 A monotone projection is a projection without negations.

CCC 2023

29:12 Constant-Depth Circuits vs. Monotone Circuits

2.2 Background results
The next lemma, which is proved via a standard “guess-and-verify” approach, shows that
nondeterministic logspace computations can be simulated by circuits of size 2nε and of depth
d = Oε(1).

▶ Lemma 6 (Folklore; see, e.g., [5, Lemma 8.1]). For all ε > 0, we have NL ⊆ AC0[2nε].

3 Constant-Depth Circuits vs. Monotone Circuits

In this section, we prove Theorems 1 and 2. For the upper bounds, we require the logspace
graph connectivity algorithm due to [60] and the ⊕L algorithm for solving linear systems
over F2 due to [17], as well as the depth-reduction techniques of [6, 5]. On the lower bounds
side, our proofs rely on previous monotone circuit and depth lower bounds from [9, 31]. In
order to obtain a monotone formula lower bound for a graph property, we prove a graph
padding lemma in Section 3.2.

3.1 A monotone size lower bound for a function in AC0[⊕]
In this section, we prove Theorem 2. We first recall the monotone circuit lower bound
of [31] and a depth-reduction lemma implicit in [6] and [51], whose full proof we give below
for completeness. We remark that similar arguments can be employed to prove Lemma 6,
essentially by replacing the ⊕ gates by ∨ gates.

As explained in Section 1.2, in its strongest form the separation result from [31] can be
stated as follows.

▶ Theorem 7 ([31]). There exists ε > 0 such that ⊕L ∩ Mono ̸⊆ mSIZE[2o(nε)]. Moreover,
this separation is witnessed by 3-XOR-SAT.

▶ Lemma 8 (Folklore; see, e.g., [6, 51]). Let f : {0, 1}n → {0, 1} be a Boolean function
computed by a ⊕L machine. For every δ > 0, there exists an AC0[⊕] circuit of size 2nδ that
computes f .

Proof. Let M be a ⊕L-machine computing f . Without loss of generality, we may assume
that each configuration in the configuration graph G of M is time-stamped – in other words,
each configuration carries the information of the number of computational steps it takes
to arrive at it.13 We may also assume that every accepting computation takes exactly the
same amount of time, which means that every path from the starting configuration vstart to
the accepting configuration vaccept has the same length in the configuration graph. These
assumptions imply that the configuration graph is layered (because a configuration with
time-stamp t can only point to configurations with time-stamp t+ 1) and acyclic. Note that,
for a fixed machine, the configuration graph can be computed from the input string using a
projection.

Let m = nO(1) be the time that an accepting computation takes. We now show how
to count (modulo 2) the number of accepting paths from vstart to vaccept with a depth-d
AC0[⊕] circuit. First, choose m1/d − 1 configurations v1, . . . , vm1/d−1 (henceforth called

13 Formally, we can define a ⊕L-machine M ′ such that the configurations of M ′ are (C, t), where C is a
configuration of M , and t = 0, 1, . . . , m = nO(1) is a number denoting the time in which the configuration
was achieved. A configuration (C, t) can only reach a configuration (C′, t + 1) in the configuration graph
of M ′.

B. P. Cavalar and I. C. Oliveira 29:13

“checkpoints”) from V (G), such that the configuration vi is at the level i · m1−1/d in the
configuration graph (i.e., it takes i ·m1−1/d time steps to arrive at vi). For convenience, we
let v0 = vstart and vm1/d = vaccept. We then count the number of paths from from vstart to
vaccept that go through v1, . . . , vm1/d−1, and sum over all possible choices of the checkpoints.
Since the graph is layered and each path from v0 to vm1/d has length exactly m, there is
only one choice of checkpoints that witnesses a given path from v0 to vm1/d , so no path is
counted twice in this summation. Letting #paths(s, t, ℓ) denote the number of paths between
configurations s and t with distance exactly ℓ, we obtain

#paths(v0, vm1/d ,m) =
∑

v1,...,v
m1/d−1

m1/d−1∏
i=0

#paths(vi, vi+1,m
1−1/d).

The above calculation can be done in modulo 2 with an unbounded fan-in XOR gate (replacing
the summation) and an unbounded fan-in AND gate (replacing the product). Note that
the formula above is recursive. Repeating the same computation for calculating (modulo 2)
the expression #paths(vi, vi+1,m

1−1/d) for each i, we obtain a depth-2d AC0[⊕] circuit for
calculating the number of paths from vstart to vaccept (modulo 2). Clearly, the total size of
the circuit is 2O(m1/d·log m), which is smaller than 2nδ for a large enough constant d. ◀

We now restate Theorem 2 and prove it by combining Theorem 7 and Lemma 8 with a
padding trick.

▶ Theorem 2 (Polynomial-size constant-depth vs. larger monotone size). For every k ≥ 1, we
have AC0[⊕] ∩ Mono ̸⊆ mSIZE[2(log n)k].

Proof. By Theorem 7, there exists ε > 0 and a monotone function f ∈ ⊕L such that any
monotone circuit computing f has size 2Ω(nε).

Let δ = ε/k and let m = 2nδ . Let g : {0, 1}n × {0, 1}m → {0, 1} be the Boolean
function defined as g(x, y) = f(x). Note that g is a function on N := m + n = 2Θ(nδ)

bits. By Lemma 8, there exists an AC0[⊕] circuit computing f of size 2nδ = NO(1). The
same circuit computes g. On the other hand, any monotone circuit computing g has size
2Ω(nε) = 2Ω((log N)ε/δ) = 2Ω((log N)k). ◀

3.2 A monotone depth lower bound for a graph property in AC0

In this section, we prove Theorem 1. We prove moreover that the function that separates
AC0 ∩ Mono and mNCi can be taken to be a graph property. We state our result in its full
generality below.

▶ Theorem 9. For every i ≥ 1, we have AC0 ∩ Mono ∩ GraphProperties ̸⊆ mDEPTH[(log n)i].
In particular, we have AC0 ∩ Mono ∩ GraphProperties ̸⊆ mNCi.

First, we recall a result of [9], which proves monotone lower bounds for the following
function. Let OddFactorn : {0, 1}(n

2) → {0, 1} be the function that accepts a given graph if it
contains an odd factor – in other words, a spanning subgraph in which the degree of every
vertex is odd. Babai, Gál and Wigderson [9] proved the following result:

▶ Theorem 10 ([9]). Any monotone formula computing OddFactorn has size 2Ω(n), and any
monotone circuit computing OddFactorn has size nΩ(log n).

CCC 2023

29:14 Constant-Depth Circuits vs. Monotone Circuits

The proof in [9] is actually for the case of bipartite graphs, but it easily extends to general
graphs, since the bipartite case reduces to the general case by a monotone projection. The
formula lower bound stated above is slightly stronger because it makes use of asymptotically
optimal lower bounds on the randomized communication complexity of DISJn [43], which
were not available to [9]. We remark that, with a different language, a monotone circuit
lower bound for OddFactor is also implicitly proved in Feder and Vardi [27, Theorem 30].

We now recall an upper bound for OddFactor, implicitly proved in an unpublished note
due to Johannsen [40].

▶ Theorem 11 ([40]). We have OddFactor ∈ L.

Proof. We first recall the following observation about the OddFactor function, which appears
in different forms in the literature (see [70, Lemma 4.1] or [42, Lemma 18.16]; see also [40,
Proposition 1] for a different proof.)

▷ Claim. A graph G has an odd factor if and only if every connected component of G has
an even number of vertices.

Proof. If a graph G has an odd factor, we can conclude that every connected component of
G has an even number of vertices from the well-known observation that in every graph there
is an even number of vertices of odd degree.

Now suppose that every connected component of G has an even number of vertices. We
will iteratively construct an odd factor F of G. We begin with the empty graph. We take any
two vertices u, v in the same connected component of G which currently have even degree in
F , and consider any path P = (x1, . . . , xk) between u and v, where x1 = u and xk = v. If
the edge xixi+1 is currently in F , we remove xixi+1 from F ; otherwise, we add xixi+1 to
F . It’s easy to check that, in every iteration of this procedure, only the vertices u and v

have the parity of their degree changed in F ; the degree of every other vertex stays the same
(modulo 2). Since every connected component has an even number of vertices, this means
that, eventually, every vertex in F will have odd degree. ◁

Now it’s easy to check in logspace if every connected component of G has an even number of
vertices using Reingold’s algorithm for undirected connectivity [60]. It suffices to check if,
for every vertex v of G, the number of vertices reachable from v is odd. ◀

Now, if we only desire to obtain a function in AC0 not computed by monotone circuits of
depth (log n)i, we can follow the same argument of Theorem 2, using Lemma 6 instead of
Lemma 8. In order to obtain moreover a monotone graph property witnessing this separation,
we will need the following lemma, which enables us to obtain a graph property after “padding”
a graph property. We defer the proof of this lemma to the end of this section.

▶ Lemma 12. Let f : {0, 1}(n
2) → {0, 1} be a monotone graph property on graphs of n

vertices. The following holds.
1. If f ∈ NCi for some i > 1, then there exists a monotone graph property g on graphs of

N = 2(log n)i vertices such that g ∈ NC1 and f ≤mProj
m g.

2. If f ∈ NL, then for all ε > 0 there exists a monotone graph property g on graphs of
N = 2nε vertices such that g can be computed by AC0 circuits of size N2+o(1) and
f ≤mProj

m g.
3. If f ∈ ⊕L, then for all ε > 0 there exists a monotone graph property g on graphs of

N = 2nε vertices such that g can be computed by AC0[⊕] circuits of size N2+o(1) and
f ≤mProj

m g.

B. P. Cavalar and I. C. Oliveira 29:15

We are now ready to prove Theorem 9.

Proof of Theorem 9. Fix n ∈ N and take an ε < 1/i. Observing that L ⊆ NL, from
Theorem 11 and item (2) of Lemma 12 we conclude that there exists a monotone graph
property f on N = 2nε vertices such that f ∈ AC0 and OddFactorn ≤mProj

m f . By Theorem 10,
any monotone circuit computing f has depth Ω(n) = Ω((logN)1/ε) ≫ (logN)i. ◀

Raz and Wigderson [57] observed that there exists a monotone function f ∈ NC1 \ mNC.
Using Lemma 12, we observe moreover that it’s possible to obtain this separation with a
monotone graph property.

▶ Proposition 13. We have NC1 ∩ Mono ∩ GraphProperties ̸⊆ mNC.

Proof. Observing that L ⊆ NC2, we conclude from Theorem 11 and item (1) of Lemma 12
that there exists a monotone graph property f on N = 2(log n)2 vertices such that f ∈ NC1

and OddFactorn ≤mProj
m f . By Theorem 10, any monotone circuit computing f has depth

Ω(n) = Ω(2
√

log N), which implies f ̸∈ mNC. ◀

3.3 Efficient monotone padding for graph properties
We will now prove Lemma 12. We first recall some low-depth circuits for computing threshold
functions, which we will use to design a circuit for efficiently computing the adjacency matrix
of induced subgraphs.

▶ Theorem 14 ([35]). Let d > 0 be a constant. The function THR(log n)d,n can be computed
by an AC0 circuit of size no(1) and depth d+O(1).

▶ Theorem 15 ([2]). For every k ∈ [n], the function THRk,n can be computed by a circuit
of depth O(log n) and size nO(1).

▶ Lemma 16. There exists a circuit Ck
n with

(
n
2
)

+ n inputs and
(

k
2
)

outputs which, when
given as input an adjacency matrix of a graph G on n vertices and a characteristic vector
of a set S ⊆ [n] such that |S| ≤ k, outputs the adjacency matrix of the graph G[S], padded
with isolated vertices when |S| < k. The circuit has constant-depth and size n2+o(1) when
k = polylog(n), and size nO(1) and depth O(log n) otherwise.

Proof. Let {xij}i,j∈[n] encode the adjacency matrix of G. Let α ∈ {0, 1}n be the character-
istic vector of S. Let i, j ∈ [k]. Note that {i, j} ∈ E(G[S]) if and only if there exists a, b ∈ [n]
such that

αa is the i-th non-zero entry of α,
αb is the j-th non-zero entry of α, and
xab = 1 (i.e., a and b are connected in G).

We first consider the case k = polylog(n). In this case, the first two conditions can be
checked with circuits of size no(1) using Theorem 14. Therefore, we can compute if i and j

are adjacent using n2+o(1) gates and constant depth. As there are at most (log n)O(1) such
pairs, we can output G[S] with at most n2+o(1) gates.

For any k, the first two conditions can be checked with an NC1 circuit by Theorem 15.
Since there are at most n2 pairs i, j, the entire adjacency matrix can be computed with a
O(log n)-depth and polynomial-size circuit. ◀

We are ready to prove Lemma 12.

CCC 2023

29:16 Constant-Depth Circuits vs. Monotone Circuits

Proof of Lemma 12. We first prove (1). Fix n ∈ N and let N = 2(log n)i . For a graph G on
N vertices such that |E(G)| ≤

(
n
2
)
, let Gclean be the graph obtained from G by removing

isolated vertices from G one-by-one, in lexicographic order, until one of the following two
conditions are satisfied: (1) there are no more isolated vertices in Gclean, or (2) Gclean has
exactly n vertices. Let g : {0, 1}(N

2) → {0, 1} be the monotone graph property defined as
follows:

g(G) :=
(

|E(G)| >
(
n

2

))
∨ (|V (Gclean)| > n) ∨ (f(Gclean) = 1).

Note that g accepts a graph G if and only if at least one of the following three conditions are
satisfied:
1. G has at most

(
n
2
)

edges, Gclean has exactly n vertices and f(Gclean) = 1, or
2. G has more than

(
n
2
)

edges, or
3. Gclean has more than n vertices.
We observe that the monotonicity of g follows from the monotonicity of f . We also claim that
g is a graph property. Indeed, the graph Gclean is the same (up to isomorphism), irrespective
of the order according to which the isolated vertices are removed from G. Moreover, the
function f is also a graph property. Because of this, all the three conditions above are
preserved under isomorphisms.

We first observe that f is a monotone projection of g. Indeed, given a graph G on n

vertices, we can easily construct by a monotone projection a graph G′ on N vertices and at
most

(
n
2
)

edges such that f(G) = g(G′). We just let G′ have a planted copy of G, and all other
vertices are isolated. Then G′

clean = G (up to isomorphism) and g(G′) = f(Gclean) = f(G).
We now show how to compute g in NC1. Let {xij}i,j∈[N] be the input bits of g, corres-

ponding to the adjacency matrix of a graph G. The circuit computes as follows.

1. If |E(G)| >
(

n
2
)
, accept the graph G.

2. Compute the characteristic vector α ∈ {0, 1}N of the set of all non-isolated vertices of G.
If |α|1 > n, accept the graph G.

3. Compute Gclean and output f(Gclean).

Note that checking if |E(G)| >
(

n
2
)

can be done in NC1 by Theorem 15. Moreover, for all
i ∈ [N], we have αi =

∨
j∈[N] xij , and therefore αi can be computed by a circuit of depth

O(logN) and O(N) gates. In total, the vector α can be computed with O(N2) gates and
O(logN) depth. Finally, we can check if |α|1 > n in NC1 with a threshold circuit.

For the final step, we compute Gclean. If |α|1 = n, note that Gclean = G[supp(α)]. When
|α|1 < n, then Gclean is G[supp(α)] padded with isolated vertices. We can therefore compute
Gclean with the circuit Cn

N of Lemma 16. Moreover, since f ∈ NCi, we have that f can be
computed by a circuit of size nO(1) = No(1) and depth O((log n)i) = O(logN). Therefore,
computing f(Gclean) can be done in NC1. Overall, we get that g ∈ NC1.

In order to prove (2), it suffices to modify the proof above. The modification can be briefly
described as follows. We let N = 2nε . Every time Lemma 16 is applied, we use the AC0

circuit instead of the NC1 circuit, since n = polylog(N). This ammounts to N2+o(1) many
gates with unbounded fan-in. Moreover, since by assumption f ∈ NL, applying Lemma 6 we
obtain an AC0 circuit for f of size 2nε/2 = No(1), so we can compute f(Gclean) in constant
depth with No(1) gates.

Finally, for (3) it suffices to apply the same argument used for (2), replacing an application
of Lemma 6 by an application of Lemma 8. ◀

B. P. Cavalar and I. C. Oliveira 29:17

4 Non-Trivial Monotone Simulations and Their Consequences

In contrast to Section 3, in this section we observe that a non-trivial simulation of AC0

circuits by monotone circuits is possible. This follows from a refined version of the switching
lemma proved by Rossman [65]. As a proof of concept, we use this simulation result to
reprove a well-known AC0 lower bound for Majority.

In the second part of this section, we show that if much faster simulations are possible, then
even stronger non-monotone circuit lower bounds follow. We also show that this implication
is true even if the simulation only holds for graph properties. Monotone simulations for graph
properties are motivated by a result of Rossman [63], which shows that very strong monotone
simulations are possible for homomorphism-preserving graph properties. The lower bounds
from monotone simulations are proved with the simulation result and padding argument
used in the previous section (Lemmas 6 and 12).

4.1 A non-trivial simulation for bounded-depth circuits
The earliest monotone simulation result was proved for DNFs by Quine [55].

▶ Theorem 17 (Quine [55]). For all s : N → N, we have DNF[s] ∩ Mono ⊆ mDNF[s].

Proof. If a given DNF computes a monotone Boolean function, simply removing the negative
literals continues to compute the same function. ◀

Let DTsize(f) denote the size of a smallest decision-tree computing f . We will need a
result obtained by Rossman [65].

▶ Theorem 18 ([65]). If f : {0, 1}n → {0, 1} is computable by an AC0 circuit of depth d and
size s, then DTsize(f) = 2(1−1/O(log s)d−1)n.

▶ Theorem 19. Let s : N → N and d ≥ 1. We have AC0
d[s] ∩ Mono ⊆ mSIZE[t], where

t = n · 2n(1−1/O(log s)d−1). Moreover, this upper bound is achieved by monotone DNFs of size
t/n.

Proof. Let f be a monotone function computable by an AC0 circuit of depth d and size s.
By Theorem 18, there exists a decision tree of size 2(1−1/O(log s)d−1)n computing f . Therefore,
there exists a DNF of the same size computing f , which can be taken to be monotone by by
Theorem 17. This can be converted into a monotone circuit of size n · 2(1−1/O(log s)d−1)n. ◀

We observe that it is possible to immediately deduce an AC0 lower bound for Majority
using this simulation theorem. Even though near-optimal lower bounds for Majority have
been known for a long time [34] and the proof of the main technical tool (Theorem 18) behind
our simulation result is similar to the one used by [34], the argument below illustrates how a
monotone simulation can lead to non-monotone circuit lower bounds.

▶ Corollary 20. Any depth-d AC0 circuit computing Majority has size 2Ω((n/ log n)1/(d−1)).

Proof. Note that Majority has
(

n
n/2

)
= Ω(2n/

√
n) minterms. Therefore, any monotone DNF

computing Majority has size at least Ω(2n/
√
n). By Theorem 19, it follows that the size s of

a depth-d AC0 computing Majority satisfies the following inequality:

2n(1−1/O(log s)d−1) = Ω(2n− 1
2 log n).

From this equation we obtain s = 2Ω((n/ log n)1/(d−1)). ◀

CCC 2023

29:18 Constant-Depth Circuits vs. Monotone Circuits

4.2 Non-monotone lower bounds from monotone simulations
We now show that if monotone circuits are able to efficiently simulate non-monotone circuits
computing monotone Boolean functions, then striking complexity separations follow. We
also show a result of this kind for simulations of graph properties. We first prove a lemma
connecting the simulation of AC0 circuits with the simulation of NL machines.

▶ Lemma 21. For all constants ε > 0 and C ≥ 1, if AC0 ∩ Mono ⊆ mSIZE[2O((log n)C)], then
NL ∩ Mono ⊆ mSIZE[2o(nε)].

Proof. We prove the contrapositive. Suppose that there exists ε > 0 such that NL ∩ Mono ̸⊆
mSIZE[2o(nε)]. This means that there exists a monotone function f such that f ∈ NL and
any monotone circuit computing f has size 2Ω(nε).

Let δ = ε/(2C) and let m = 2nδ . Let g : {0, 1}n × {0, 1}m → {0, 1} be the Boolean
function defined as g(x, y) = f(x). Note that g is a function on N := m+ n = 2Θ(nδ) bits.
By Lemma 6, there exists an AC0 circuit computing f of size 2nδ = NO(1). Moreover, any
monotone circuit computing g has size 2Ω(nε) = 2Ω((log N)ε/δ) = 2Ω((log N)2C). ◀

Next, we recall the strongest known monotone circuit and formula lower bounds for a
monotone function in NP.

▶ Theorem 22 ([52]). NP ∩ Mono ̸⊆ mDEPTH[o(n)].

▶ Theorem 23 ([20]). NP ∩ Mono ̸⊆ mSIZE[2o(
√

n/ log n)].

We are now ready to state and prove our first result regarding new complexity separations
from monotone simulations. Recall that obtaining explicit lower bounds against depth-3
AC0 circuits of size 2ω(n1/2) is a major challenge in circuit complexity theory, while the best
lower bound on the size of depth-4 AC0 circuits computing a function in NP is currently
2Ω(n1/3) [34]. Moreover, no strict separation is known in the following sequence of inclusions
of complexity classes: ACC ⊆ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ ⊕L ⊆ NC2. We show that efficient
monotone simulations would bring new results in both of these fronts. (We stress that
all lower bound consequences appearing below refer to separations against non-uniform
circuits.)14

▶ Theorem 24. Let C be a class of circuits. There exists ε > 0 such that the following holds:
1. If AC0

3 ∩ Mono ⊆ mNC1, then NP ̸⊆ AC0
3[2o(n)].

2. If AC0
4 ∩ Mono ⊆ mSIZE[poly], then NP ̸⊆ AC0

4[2o(
√

n/ log n)].
3. If C ∩ Mono ⊆ mSIZE[2O(nε)], then NC2 ̸⊆ C.
4. If AC0 ∩ Mono ⊆ mSIZE[poly], then NC2 ̸⊆ NC1.

Proof. We will prove each item separately.
Proof of 1. Let us assume that AC0

3 ∩ Mono ⊆ mNC1. Let f be the function of Theorem 22.
For a contradiction, suppose that f ∈ AC0

3[2o(n)]. Let α : N → N be such that α(n) →n ∞
and f has a depth-3 AC0 circuit of size 2n/α. Let m = 2n/(10·α) and let g : {0, 1}n ×
{0, 1}m → {0, 1} be the function g(x, y) = f(x). Let N = n + m = (1 + o(1))2n/(10·α).
Clearly, the function g has a depth-3 AC0 circuit of size 2n/α = NO(1). Since g is
monotone, we conclude from the assumption that g is computed by a polynomial-size
monotone formula. Now, since f(x) = g(x, 1m), we obtain a monotone formula of size
NO(1) = 2o(n) for computing f , which contradicts the lower bound of Theorem 22.

14 In other words, all upper bounds are uniform, but the lower bounds hold even for non-uniform circuits.
Note that this is stronger than lower bounds for uniform circuits.

B. P. Cavalar and I. C. Oliveira 29:19

Proof of 2. Similar to the proof of item (1), but using Theorem 23 instead.
Proof of 3. Suppose that NC2 ⊆ C. By Theorem 7, there exists a monotone function f ∈ NC2

on n bits and a number ε > 0 such that f /∈ mSIZE[2o(nε)]. Therefore, for any δ > 0 such
that δ < ε, we have f /∈ mSIZE[2O(nδ)]. Since, by assumption, we have f ∈ NC2 ⊆ C, we
obtain C ∩ Mono ̸⊆ mSIZE[2O(nδ)].

Proof of 4. If NC2 ⊆ NC1, then, by item (3), we get NC1 ∩ Mono ̸⊆ mSIZE[2o(nε)]. From
Lemma 21, we obtain AC0 ∩ Mono ̸⊆ mSIZE[poly]. ◀

As a motivation to the ensuing discussion, we recall a result of Rossman [63], who
showed that any homomorphism-preserving graph property computed by AC0 circuits is also
computed by monotone AC0 circuits.

▶ Theorem 25 ([63]). AC0 ∩ HomPreserving ⊆ mDNF[poly].

This inspires the question of whether general graph properties can also be efficiently
simulated by monotone circuits. We show that, if true, such simulations would imply strong
complexity separations. Let us first recall an exponential monotone circuit lower bound for
monotone graph properties, and we will be ready to state and prove our main result.

▶ Theorem 26 ([7]). There exists ε > 0 such that NP ∩ Mono ∩ GraphProperties ̸⊆
mSIZE[2o(nε)].

▶ Theorem 27. Let C be a class of circuits. The following holds:
1. If C ∩ Mono ∩ GraphProperties ⊆ mSIZE[poly], then L ̸⊆ C.
2. If C ∩ Mono ∩ GraphProperties ⊆ mDEPTH[o(

√
n)], where n denotes the number of input

bits, then L ̸⊆ C.
3. If AC0 ∩ Mono ∩ GraphProperties ⊆ mSIZE[poly], then NP ̸⊆ NC1.

Proof. We will prove each item separately.

Proof of 1. Suppose that L ⊆ C. By Theorem 10, the monotone graph property OddFactor
satisfies OddFactor /∈ mSIZE[poly]. Moreover, we have the upper bound OddFactor ∈
L by Theorem 11. Since, by assumption, we have OddFactor ∈ L ⊆ C, we obtain
C ∩ Mono ∩ GraphProperties ̸⊆ mSIZE[poly].

Proof of 2. Suppose that L ⊆ C. By Theorems 10 and 11, there exists a monotone graph
property f ∈ L such that f /∈ mDEPTH[o(

√
n)]. Since, by assumption, we have f ∈ L ⊆ C,

we obtain C ∩ Mono ∩ GraphProperties ̸⊆ mDEPTH[o(
√
n)].

Proof of 3. Suppose that NP ⊆ NC1. By Theorem 26, there exists a monotone graph
property f ∈ NC1 such that mSIZE(f) = 2Ω(nε) for some ε > 0. Let δ = ε/2. By Lemma 12
(Item 2), there exists a monotone graph property g on N = 2nδ vertices computed by an
AC0 circuit of size N2+o(1) such that f is a monotone projection of g. Theorem 26 implies
that any monotone circuit computing f has size 2Ω(nε) = 2Ω((log N)2) = Nω(1). ◀

5 Monotone Complexity of Constraint Satisfaction Problems

In this section, we study the monotone complexity of Boolean-valued CSPs. Our goal is to
classify which types of Boolean CSPs are hard for monotone circuit size and monotone circuit
depth, eventually proving Theorems 4 and 5.

We will first spend some time recalling standard definitions and concepts in the theory of
CSPs (Section 5.1), as well as a few results about CSPs that were proved in previous works
[67, 38, 18, 19, 4] (Section 5.2). We will then prove Theorem 5 in Section 5.3, and we will
finally prove Theorem 4 in Section 5.5 after proving some auxiliary results in Section 5.4.

CCC 2023

29:20 Constant-Depth Circuits vs. Monotone Circuits

5.1 Definitions
For a good introduction to the concepts defined below, we refer the reader to [18, 19]. We
also refer the reader to Section 1.1.3 for the definition of the family of functions CSP-SATS ,
as well as the terms constraint application, S-formula and satisfiable formula.

We denote by pn
i : {0, 1}n → {0, 1} the i-th projection function on n variables, whose

operation is defined as pn
i (x) = xi. For a set of Boolean functions B, we denote by [B] the

closure of B, defined as follows: a Boolean function f is in [B] if and only if f ∈ B∪{Identity}
or if there exists g ∈ B and h1, . . . , hk such that f = g(h1, . . . , hk), where each hi is either
a projection function or a function from [B]. We can equivalently define [B] as the set of
all Boolean functions that can be computed by circuits using the functions of B as gates.
Note that [B] necessarily contains an infinite number of Boolean functions, since pn

1 ∈ [B] for
every n ∈ N; moreover, the constant functions are not necessarily in [B]. We say that B is a
clone if B = [B]. A few prominent examples of clones are the set of all Boolean functions
(equal to [{∧,¬}]), monotone functions (equal to [{∧,∨, 0, 1}]), and linear functions (equal
to [{⊕, 1}]).
▶ Remark 28. The set of all clones forms a lattice, known as Post’s lattice, under the
operations [A] ⊓ [B] := [A] ∩ [B] and [A] ⊔ [B] := [A ∪B]. From the next section onwards,
we will refer to the clones defined in [18] (such as I0, I1, etc.), assuming the reader is familiar
with them. For the unfamiliar reader, we refer to Appendix C and Figures 1 and 4, which
contain all the definitions of the clones we will need, as well as the entire Post’s lattice in
graphical representation.

To avoid confusion, we will always refer to clones with normal-Roman font (e.g., S1, I0,
etc).

Let S be a finite set of Boolean relations. We denote by CNF(S) the set of all S-formulas.
We denote by COQ(S) the set of all relations which can be expressed with the following type
of formula φ:

φ(x1, . . . , xk) = ∃y1, . . . , yℓ ψ(x1, . . . , xk, y1, . . . , yℓ),

where ψ ∈ CNF(S). The relations in COQ(S) will also be referred as conjunctive queries over
S. We denote by ⟨S⟩ the set of relations defined as ⟨S⟩ := COQ(S ∪ {=}). If S = ⟨S⟩, we
say that S is a co-clone. We define

CSP = {CSP-SATS : S is a finite set of relations} .

We say that CSP-SATS is trivial if CSP-SATS is a constant function.
Let R be a k-ary Boolean relation and let f : {0, 1}ℓ → {0, 1} be a Boolean function. For

x ∈ R and i ∈ [k], we denote by x[i] the i-th bit of x.

▶ Definition 29. We say that f is a polymorphism of R, and R is an invariant of f , if, for
all x1, . . . , xℓ ∈ R, we have

(f(x1[1], . . . , xℓ[1]), f(x2[2], . . . , xℓ[2]), . . . , f(xk[k], . . . , xℓ[k])) ∈ R.

We denote the set of all polymorphisms of R by Pol(R). For a set of relations S, we denote
by Pol(S) the set of Boolean functions which are polymorphisms of all the relations of S. For
a set of Boolean functions, we denote by Inv(B) the set of all Boolean relations which are
invariant under all functions of B (i.e., Inv(B) = {R : B ⊆ Pol(R)}).

The following summarises the important facts about clones, co-clones and polymorphisms
that are relevant to the study of CSPs [39].

B. P. Cavalar and I. C. Oliveira 29:21

▶ Lemma 30. Let S and S′ be sets of Boolean relations and let B and B′ be sets of Boolean
functions. We have

(i) Pol(S) is a clone and Inv(B) is a co-clone;
(ii) If S ⊆ S′, then Pol(S′) ⊆ Pol(S);
(iii) If B ⊆ B′, then Inv(B′) ⊆ Inv(B);
(iv) COQ(COQ(S)) = COQ(S);
(v) If S ⊆ S′, then COQ(S) ⊆ COQ(S′);
(vi) Inv(Pol(S)) = ⟨S⟩;
(vii) Pol(Inv(B)) = [B].

We now define different types of reductions. We say that a reduction is a monotone OR-
reduction if every bit of the reduction is either constant or can be computed by a monotone
disjunction on the input variables. We write f ≤mOR

m g if there exists a many-one monotone
OR-reduction from f to g. We also write f ≤AC0

m g if there exists a many-one AC0 reduction
from f to g, and f ≤mNL

m g if there exists a many-one mNL reduction from f to g15. Unless
otherwise specified, every reduction we consider will generate an instance of polynomial size
on the length of the input.

Finally, we denote by ORk and NANDk the k-ary OR and NAND relations, respectively.

5.2 Basic facts about CSP-SAT
We state here basic facts about the CSP-SAT function. These facts are proved in the original
paper of Schaefer [67], as well as in later papers [38, 18, 19, 4].

Lemma 31 below is one of the most important lemmas of this section and will be used
many times. It states that Pol(S) characterises the monotone complexity of CSP-SATS , in
the sense that the sets of relations with few polymorphisms give rise to the hardest instances
of CSPs. A non-monotone version of this result was proved in [38, 19, Theorem 2.4], and we
check in Appendix B.2 that their proofs also hold in the monotone case.

▶ Lemma 31 (Polymorphisms characterise the complexity of CSPs [38, 19, Theorem 2.4]). If
Pol(S2) ⊆ Pol(S1), then CSP-SATn

S1
≤mNL

m CSP-SATpoly(n)
S2

.

Theorem 32 gives monotone circuit upper bounds for some instances of CSP-SATS . Non-
monotone variants of this upper bound were originally obtained in the seminal paper of
Schaefer [67], and we again check that the monotone variants work in Appendix B.3.

▶ Theorem 32 (Monotone version of the upper bounds for CSP-SAT [67, 4]). Let S be a finite
set of relations. The following holds.
1. If E2 ⊆ Pol(S) or V2 ⊆ Pol(S), then CSP-SATS ∈ mSIZE[poly].
2. If D2 ⊆ Pol(S), or S00 ⊆ Pol(S), or S10 ⊆ Pol(S), then CSP-SATS ∈ mNL.

Finally, we state here a result of [4], which classifies the non-monotone complexity of
CSP-SATS under ≤AC0

m reductions. The classification of the complexity of CSP-SATS is based
solely on Pol(S). See Figure 1 for a graphical representation.

15 A many-one AC0 (resp. mNL) reduction is one in which each bit of the reduction is either constant
or can be computed with a polynomial-size AC0 circuit (resp. monotone nondeterministic branching
program). Recall that a monotone nondeterministic branching program is a directed acyclic graph
G with two distinguished vertices s and t, in which each edge e is labelled with an input function
ρe ∈ {1, x1, . . . , xn}. Given an input x, the program accepts if there exists a path from s to t in the
subgraph Gx of G in which an edge e appears if ρe(x) = 1.

CCC 2023

29:22 Constant-Depth Circuits vs. Monotone Circuits

▶ Theorem 33 (Refined classification of CSP problems [4, Theorem 3.1]). Let S be a finite set
of Boolean relations. The following holds.

If I0 ⊆ Pol(S) or I1 ⊆ Pol(S), then CSP-SATS is trivial.
If Pol(S) ∈ {I2,N2}, then CSP-SATS is ≤AC0

m -complete for NP.
If Pol(S) ∈ {V2,E2}, then CSP-SATS is ≤AC0

m -complete for P.
If Pol(S) ∈ {L2,L3}, then CSP-SATS is ≤AC0

m -complete for ⊕L.
If S00 ⊆ Pol(S) ⊆ S00

2 or S10 ⊆ Pol(S) ⊆ S10
2 or Pol(S) ∈ {D2,M2}, then CSP-SATS is

≤AC0

m -complete for NL.
If Pol(S) ∈ {D1,D}, then CSP-SATS is ≤AC0

m -complete for L.
If S02 ⊆ Pol(S) ⊆ R2 or S12 ⊆ Pol(S) ⊆ R2, then either CSP-SATS ∈ AC0 or CSP-SATS

is ≤AC0

m -complete for L.

5.3 A monotone dichotomy for CSP-SAT
In this section, we prove Theorem 5. We first prove Part (1) of the theorem (the dichotomy
for circuit size), and then we prove Part (2) of the theorem (the dichotomy for circuit depth).

Dichotomy for circuits. To prove the dichotomy for circuits, we first show that, for any set
of relations S whose set of polymorphisms is contained in L3, we can monotonically reduce
3-XOR-SAT to CSP-SATS .

▶ Lemma 34. Let S be a finite set of relations. If Pol(S) ⊆ L3, then 3-XOR-SAT ≤mNL
m

CSP-SATS.

Proof. Inspecting Post’s lattice (Figure 1), note that the only clones strictly contained in L3
are L2,N2 and I2. We will first show that the reduction holds for the case Pol(S) = L2 and
then prove that the reduction also holds for the case Pol(S) = L3. Lemma 31 will then imply
the cases Pol(S) ∈ {N2, I2}, since I2 ⊆ N2 ⊆ L3.

It’s not hard to check that, if Pol(S) = L2, then Pol(S) ⊆ Pol(3-XOR-SAT) (it suffices to
observe that bitwise XORing three satisfying assignments to a linear equation gives rise to a
new satisfying assignment to the same equation). Therefore, from Lemma 31 we deduce that
3-XOR-SAT admits a reduction to CSP-SATS in mNL. In order to prove the case Pol(S) = L3,
we first prove the following claim.

▷ Claim ([4, Lemma 3.11]). Let S be a finite set of relations such that Pol(S) = L2. There
exists a finite set of relations S′ such that Pol(S′) = L3 and CSP-SATn

S ≤mProj
m CSP-SATn+1

S′ .

Proof. We describe the proof of Lemma 3.11 in [4] and observe that it gives a monotone
reduction.

For a relation R ∈ S, let R′ = {(¬x1, . . . ,¬xk) : (x1, . . . , xk) ∈ R}. Let also S′ =
{R′ : R ∈ S}. It’s not hard to check that Pol(S′) = L3, since S′ is an invariant of L2 and N2,
and L3 is the smallest clone containing both L2 and N2; moreover, if ρ ∈ Pol(S′) and ρ is a
Boolean function on at least two bits, then ρ ∈ Pol(S) = L2.

Now let F be a instance of CSP-SATn
S . For every constraint C = R(x1, . . . , xk) in F , we

add the constraint C ′ = R′(α, x1, . . . , xk) to the S′-formula F ′, where α is a new variable.
Note that F ′ is a S′-formula, defined on n+ 1 variables, which is satisfiable if and only if
F is satisfiable. Moreover, the construction of F ′ from F can be done with a monotone
projection. ◁

Since the case Pol(S) = L2 holds, the case Pol(S) = L3 now follows from Lemma 31 and
the Claim. Finally, from Lemma 31 we conclude that the reduction also holds for the case
Pol(S) ∈ {N2, I2}, since I2 ⊆ N2 ⊆ L3. ◀

B. P. Cavalar and I. C. Oliveira 29:23

I

I0I1

I2

N2

N

V

V0V1

V2

L

L0L1

L2

L3

E

E0E1

E2

D2

S0

S00

S01S02

S1

S10

S11 S12D1

D

S3
0

S3
00

S3
01S3

02

S3
1

S3
10

S3
11 S3

12

S2
0

S2
00

S2
01S2

02

S2
1

S2
10

S2
11 S2

12

M

M0M1

M2

BF

R0R1

R2

NP-complete P-complete ⊕L-complete
NL-complete L-complete L-complete or in coNLOGTIME

Trivial

Figure 1 Graph of all closed classes of Boolean functions. The vertices are colored with the
complexity of deciding CSPs whose set of polymorphisms corresponds to the label of the vertex.
Trivial CSPs are those that correspond to constant functions. Every hardness result is proved under
≤AC0

m reductions. See Theorem 33 for details. A similar figure appears in [4, Figure 1].

CCC 2023

29:24 Constant-Depth Circuits vs. Monotone Circuits

▶ Theorem 35 (Dichotomy for monotone circuits). Let S be a finite set of relations. If
Pol(S) ⊆ L3 then there exists a constant ε > 0 such that mSIZE(CSP-SATS) = 2Ω(nε).
Otherwise, we have mSIZE(CSP-SATS) = nO(1).

Proof. If Pol(S) ⊆ L3, the lower bound follows from the ’moreover’ part of Theorem 7, and
Lemma 34. For the upper bound, we inspect Post’s lattice (Figure 1). Observe that, if
Pol(S) ̸⊆ L3, the following are the only possible cases:
1. I0 ⊆ Pol(S) or I1 ⊆ Pol(S). In both cases, any CNF(S) is trivially satisfiable.
2. E2 ⊆ Pol(S) or V2 ⊆ Pol(S). In this case, CSP-SATS ∈ mSIZE[poly] by Theorem 32.
3. D2 ⊆ Pol(S). In this case, CSP-SATS ∈ mNL ⊆ mSIZE[poly] by Theorem 32. ◀

▶ Remark 36. We remark that the lifting theorem of [31] (which is an ingredient in the
proof of Theorem 7) is only used to prove that the monotone complexity of CSP-SATS is
exponential when Pol(S) ⊆ L3. If we only care to show a superpolynomial separation, then it
suffices to apply the superpolynomial lower bound for CSPs with counting proved in [27, 9]
using the approximation method. Indeed, we give an explicit proof in Appendix A. The same
holds for the consequences of this theorem (see Theorem 46).

Dichotomy for formulas. Define 3-Horn-SATn : {0, 1}2n3+n → {0, 1} as 3-Horn-SATn =
CSP-SATn

H3 , where

H3 = {(¬x1 ∨ ¬x2 ∨ x3), (¬x1 ∨ ¬x2 ∨ ¬x3), (x)} .

The following is proved in [56, 31].

▶ Theorem 37 ([56, 31]). There exists ε > 0 such that 3-Horn-SAT ∈ mSIZE[poly] \
mDEPTH[o(nε)].

Proof sketch. Since E2 ⊆ Pol(H3) (see, e.g., [25, Lemma 4.8]), the upper bound follows
from Theorem 32. The lower bound follows from a lifting theorem of [56, 31]. They show that
the monotone circuit-depth of 3-Horn-SAT is at least the depth of the smallest Resolution-tree
refuting a so-called pebbling formula. Since this formula requires Resolution-trees of depth
nε, the lower bound follows. ◀

Analogously to the previous section, we show that 3-Horn-SAT reduces to CSP-SATS

whenever Pol(S) is small enough, in a precise sense stated below. We then deduce the
dichotomy for formulas with a similar argument.

▶ Lemma 38. Let S be a finite set of relations. If Pol(S) ⊆ E2 or Pol(S) ⊆ V2, then
3-Horn-SAT ≤mNL

m CSP-SATS.

Proof. We first consider the case Pol(S) ⊆ E2. Note that E2 ⊆ Pol(3-Horn-SAT) (see, e.g.,
[25, Lemma 4.8]). Therefore, from Lemma 31 we deduce that 3-Horn-SAT admits a reduction
to CSP-SATS in mNL.

Now let 3-AntiHorn-SAT = CSP-SATA3 , where A3 =
{(x1 ∨ x2 ∨ ¬x3), (x1 ∨ x2 ∨ x3), (¬x)}. Observe that a H3-formula φ is satisfiable
if and only if the A3-formula φ(¬x1, . . . ,¬xn) is satisfiable. Therefore, we have
3-Horn-SAT ≤mProj

m 3-AntiHorn-SAT. Observing that V2 ⊆ Pol(A3) (again, see e.g. [25,
Lemma 4.8]), the result now follows from Lemma 31 and the previous paragraph. ◀

▶ Theorem 39 (Dichotomy for monotone formulas). Let S be a finite set of relations. If
Pol(S) ⊆ L3, or Pol(S) ⊆ V2, or Pol(S) ⊆ E2, then there is a constant ε > 0 such
that mDEPTH(CSP-SATS) = Ω(nε). Otherwise, we have CSP-SATS ∈ mNL ⊆ mNC2 ⊆
mDEPTH[log2 n].

B. P. Cavalar and I. C. Oliveira 29:25

I

I0I1

I2

N2

N

V

V0V1

V2

L

L0L1

L2

L3

E

E0E1

E2

D2

S0

S00

S01S02

S1

S10

S11 S12D1

D

S3
0

S3
00

S3
01S3

02

S3
1

S3
10

S3
11 S3

12

S2
0

S2
00

S2
01S2

02

S2
1

S2
10

S2
11 S2

12

M

M0M1

M2

BF

R0R1

R2

Solvable in mSIZE[poly].
Requires monotone circuits of size 2Ω(nε).
Trivial (i.e., a constant function).

Figure 2 Illustration of Theorem 35. The vertices are colored with the monotone circuit size
complexity of deciding CSPs whose set of polymorphisms corresponds to the label of the vertex.

CCC 2023

29:26 Constant-Depth Circuits vs. Monotone Circuits

Proof. We will first prove the lower bound. If Pol(S) ⊆ L3, the lower bound follows from
Theorem 35. If Pol(S) ⊆ V2 or Pol(S) ⊆ E2, the lower bound follows from Theorem 37
and Lemma 38.

By inspecting Post’s lattice (Remark 28), we see that the remaning cases are:
1. I0 ⊆ Pol(S) or I1 ⊆ Pol(S). In both cases, any CNF(S) is trivially satisfiable.
2. S00 ⊆ Pol(S), or S10 ⊆ Pol(S), or D2 ⊆ Pol(S). In all of those three cases, we have

CSP-SATS ∈ mNL by Theorem 32. ◀

5.4 Some auxiliary results
In this section, we prove auxiliary results needed in the proof of a more general form of
Theorem 4. In particular, we will prove that all CSP-SATS which are in AC0 are also contained
in mAC0 ⊆ mNC1. Moreover, we show that, if CSP-SATS /∈ mNC1, then CSP-SATS is L-hard
under ≤AC0

m reductions.
We first observe that, when COQ(S1) ⊆ COQ(S2), there exists an efficient low-depth

reduction from CSP-SATS1 to CSP-SATS2 . This reduction, which will be useful in this section,
is more refined than the one given by Lemma 31. A proof of the non-monotone version of
this statement is found in [19, Proposition 2.3], and we give a monotone version of this proof
in Appendix B.2.

▶ Lemma 40 ([19, Proposition 2.3]). If COQ(S1) ⊆ COQ(S2), then there exists a constant
C ∈ N such that CSP-SATn

S1
≤mOR

m CSP-SATCn
S2

.

Proof. We defer the proof to Appendix B.2. ◀

We now recall some lemmas from [4], and prove a few consequences from them. We say
that a set S of relations can express equality if {=} ⊆ COQ(S).

▶ Lemma 41 ([4]). Let S be a finite set of relations. Suppose S02 ⊆ Pol(S) (S12 ⊆
Pol(S), resp.) and that S cannot express equality. Then there exists k ≥ 2 such that
S ⊆ COQ(

{
ORk, x,¬x

}
) (S ⊆ COQ(

{
NANDk, x,¬x

}
), resp.).

Proof. Follows from the proof of Lemma 3.8 of [4]. ◀

▶ Lemma 42. Let S be a finite set of relations such that Pol(S) ⊆ R2. If S02 ⊆ Pol(S) or
S12 ⊆ Pol(S), and S cannot express equality, then CSP-SATS ∈ mAC0

3.

Proof. We write the proof in the case S02 ⊆ Pol(S). The other case is analogous.
From Lemmas 40 and 41 and Items iv and v of Lemma 30, we get that there is a

monotone OR-reduction from CSP-SATS to CSP-SAT{ORk,x,¬x} for some k. However, an{
ORk, x,¬x

}
-formula is unsatisfiable iff there exists a literal and its negation as a constraint

in the formula, or if there exists a disjunction in the formula such that every one of its literals
appears negatively as a constraint. This condition can be easily checked by a polynomial-size
monotone DNF. Composing the monotone DNF with the monotone OR-reduction, we obtain
a depth-3 AC0 circuit computing CSP-SATS . ◀

▶ Lemma 43 ([4, Lemma 3.8]). Let S be a finite set of relations such that Pol(S) ⊆ R2. If
S02 ⊆ Pol(S) or S12 ⊆ Pol(S), and S can express equality, then CSP-SATS is L-hard under
≤AC0

m reductions.

▶ Lemma 44. Let S be a finite set of relations. If S02 ̸⊆ Pol(S) and S12 ̸⊆ Pol(S), then
CSP-SATS is L-hard or trivial.

B. P. Cavalar and I. C. Oliveira 29:27

I

I0I1

I2

N2

N

V

V0V1

V2

L

L0L1

L2

L3

E

E0E1

E2

D2

S0

S00

S01S02

S1

S10

S11 S12D1

D

S3
0

S3
00

S3
01S3

02

S3
1

S3
10

S3
11 S3

12

S2
0

S2
00

S2
01S2

02

S2
1

S2
10

S2
11 S2

12

M

M0M1

M2

BF

R0R1

R2

Solvable in mNL ⊆ mDEPTH[O(log2 n)].
Requires monotone depth Ω(nε).
Trivial (i.e., a constant function).

Figure 3 Illustration of Theorem 39. The vertices are colored with the monotone circuit depth
complexity of deciding CSPs whose set of polymorphisms corresponds to the label of the vertex.

CCC 2023

29:28 Constant-Depth Circuits vs. Monotone Circuits

Proof. This follows by inspecting Post’s lattice (Figure 1) and the classification theorem (The-
orem 33). ◀

We may now prove the main result of this subsection.

▶ Theorem 45. We have CSP ∩ AC0 ⊆ mAC0
3. Moreover, if CSP-SATS /∈ mAC0

3, then
CSP-SATS is L-hard under ≤AC0

m reductions.

Proof. Let S be a finite set of relations. If CSP-SATS ̸∈ mAC0
3, then, by Lemma 42, at least

one of the following cases hold:
1. S02 ⊆ Pol(S) ⊆ R2 or S12 ⊆ Pol(S) ⊆ R2, and S can express the equality relation;
2. S02 ̸⊆ Pol(S) ⊆ R2 and S12 ̸⊆ Pol(S) ⊆ R2.
3. Pol(S) ̸⊆ R2.
Since CSP-SATS is not trivial, we obtain that CSP-SATS is L-hard in the first two cases
by Lemmas 43 and 44, and it’s easy to check that CSP-SATS is also L-hard in the third
case by inspecting Post’s lattice (Figure 1) and the classification theorem (Theorem 33).
Since L ̸⊆ AC0, this also implies that, if CSP-SATS ∈ AC0, then S02 ⊆ Pol(S) ⊆ R2 or
S12 ⊆ Pol(S) ⊆ R2, and S cannot express the equality relation. Lemma 42 again gives
CSP-SATS ∈ mAC0

3. ◀

5.5 Consequences for monotone circuit lower bounds via lifting
We now prove a stronger form of Theorem 4. In the previous section, we showed that
CSP∩AC0 ⊆ mAC0. In particular, this means that there does not exist a finite set of relations
S such that CSP-SATS separates AC0 and mNC1, a separation which we proved in Theorem 1.
We will also observe that, if CSP-SATS /∈ mNC2, then CSP-SATS is ⊕L-hard.

▶ Theorem 46. Let S be a finite set of Boolean relations.
1. If CSP-SATS /∈ mAC0

3 then CSP-SATS is L-hard under ≤AC0

m reductions.
2. If CSP-SATS /∈ mNC2, then CSP-SATS is ⊕L-hard under ≤AC0

m reductions.

Proof. Item (1) follows from Theorem 45. To prove item (2), suppose that
mDEPTH(CSP-SATS) = ω(log2 n). Then, by Theorem 39, we conclude that Pol(S) ⊆ L3, or
Pol(S) ⊆ V2, or Pol(S) ⊆ E2. Theorem 33 implies that CSP-SATS is ⊕L-hard. ◀

Further Discussion. We recall the discussion of Section 1.1.3. We introduced and defined
the functions CSP-SATS in that section, as a way to capture monotone circuit lower bounds
proved via lifting. This in particular captures the monotone function 3-XOR-SAT, which
was proved in [31] to require monotone circuit lower bounds of size 2nΩ(1) to compute, even
though ⊕L-machines running in polynomial-time can compute it. Theorem 46 proves that this
separation between monotone and non-monotone circuit lower bounds cannot be improved
by varying the set of relations S, as we argue below.

There are two ways one could try to find a function in AC0 with large monotone complexity
using a CSP-SAT function. First, one could try to define a set of relations S such that
CSP-SATS ∈ AC0, but the monotone complexity of CSP-SATS is large. However, Item (1)
of Theorem 46 proves that this is impossible, as any CSP-SAT function outside of mAC0 is
L-hard under simple reductions and, therefore, cannot be computed in AC0.

Secondly, one could try to be apply the arguments of Section 3, consisting of a padding
trick and a simulation theorem. When S is the set of 3XOR relations, then indeed we
obtain a function in AC0[⊕] with superpolynomial monotone circuit complexity, as proved
in Theorem 7. However, Item (2) of Theorem 46 proves that this is best possible, as any

B. P. Cavalar and I. C. Oliveira 29:29

CSP-SAT function which admits a superpolynomial monotone circuit lower bound must be
⊕L-hard and, therefore, at least as hard as 3-XOR-SAT for non-monotone circuits. Item (2)
also shows that even CSP-SAT functions with a ω(log2 n) monotone depth lower bound must
be ⊕L-hard, which suggests that the arguments of Section 3 applied to a CSP-SAT function
are not able to prove the separation of Theorem 9.

A caveat to these impossibility results is in order. First, we only study Boolean-valued
CSPs here, though the framework of lifting can also be applied in the context of non-Boolean
CSPs. It’s not clear if non-Boolean CSPs exhibit the same dichotomies for monotone
computation we proved in this section. We remark that Schaefer’s dichotomy for Boolean-
valued CSPs [67] has been extended to non-Boolean CSPs [72, 15].

Secondly, the instances of CSP-SAT generated by lifting do not cover the entirety of
the minterms and maxterms of CSP-SAT. In particular, our results do not rule out the
possibility that a clever interpolation of the instances generated by lifting may give rise to
a function that is easier to compute by non-monotone circuits, and therefore bypasses the
hardness results of Theorem 46. One example is the Tardós function [69]. A lifting theorem
applied to a Pigeonhole Principle formula can be used to prove a lower bound on the size of
monotone circuits that accept cliques of size k and reject graphs that are (k − 1)-colorable,
for some k = nε [56, 61]. A natural interpolation for these instances would be the k-Clique
function, which, being NP-complete, would be related to an NP-complete CSP-SAT. However,
as proved by [69], there is a monotone function in P which has the same output behaviour
over these instances.

References
1 Miklós Ajtai and Yuri Gurevich. Monotone versus positive. J. Assoc. Comput. Mach.,

34(4):1004–1015, 1987. doi:10.1145/31846.31852.
2 Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) sorting network. In

Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983,
Boston, Massachusetts, USA, pages 1–9. ACM, 1983. doi:10.1145/800061.808726.

3 Jin Akiyama and Mikio Kano. Factors and Factorizations of Graphs, volume 2031 of Lecture
Notes in Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. doi:10.1007/
978-3-642-21919-1.

4 Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Heribert Vollmer.
The complexity of satisfiability problems: Refining Schaefer’s theorem. J. Comput. Syst. Sci.,
75(4):245–254, 2009. doi:10.1016/j.jcss.2008.11.001.

5 Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks. Minimizing
disjunctive normal form formulas and AC0 circuits given a truth table. SIAM J. Comput.,
38(1):63–84, 2008. doi:10.1137/060664537.

6 Eric Allender, Michal Koucký, Detlef Ronneburger, Sambuddha Roy, and V. Vinay. Time-space
tradeoffs in the counting hierarchy. In Proceedings of the 16th Annual IEEE Conference on
Computational Complexity, Chicago, Illinois, USA, June 18-21, 2001, pages 295–302. IEEE
Computer Society, 2001. doi:10.1109/CCC.2001.933896.

7 Noga Alon and Ravi B. Boppana. The monotone circuit complexity of boolean functions.
Combinatorica, 7(1):1–22, 1987.

8 Alexander E Andreev. On a method for obtaining lower bounds for the complexity of individual
monotone functions. Doklady Akademii Nauk SSSR, 282:1033–1037, 1985.

9 László Babai, Anna Gál, and Avi Wigderson. Superpolynomial lower bounds for monotone
span programs. Combinatorica, 19(3):301–319, 1999. doi:10.1007/s004930050058.

10 Josh Cohen Benaloh and Jerry Leichter. Generalized secret sharing and monotone functions.
In Advances in Cryptology (CRYPTO), pages 27–35, 1988.

CCC 2023

https://doi.org/10.1145/31846.31852
https://doi.org/10.1145/800061.808726
https://doi.org/10.1007/978-3-642-21919-1
https://doi.org/10.1007/978-3-642-21919-1
https://doi.org/10.1016/j.jcss.2008.11.001
https://doi.org/10.1137/060664537
https://doi.org/10.1109/CCC.2001.933896
https://doi.org/10.1007/s004930050058

29:30 Constant-Depth Circuits vs. Monotone Circuits

11 S. J. Berkowitz. On some relationships between monotone and non-monotone circuit complexity.
Technical report, University of Toronto, 1982.

12 Eric Blais, Johan Håstad, Rocco A. Servedio, and Li-Yang Tan. On DNF approximators
for monotone boolean functions. In International Colloquium on Automata, Languages, and
Programming (ICALP), pages 235–246, 2014.

13 Eric Blais, Dominik Scheder, and Li-Yang Tan. Ajtai-gurevich redux. Manuscript, 2013.
14 Nader H. Bshouty and Christino Tamon. On the Fourier spectrum of monotone functions. J.

ACM, 43(4):747–770, 1996. doi:10.1145/234533.234564.
15 Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In Chris Umans, editor, 58th

IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017, pages 319–330. IEEE Computer Society, 2017. doi:10.1109/FOCS.
2017.37.

16 Andrei A. Bulatov. Constraint satisfaction problems: complexity and algorithms. ACM
SIGLOG News, 5(4):4–24, 2018. doi:10.1145/3292048.3292050.

17 Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph Meinel. Structure
and importance of logspace-mod class. Math. Syst. Theory, 25(3):223–237, 1992. doi:
10.1007/BF01374526.

18 Elmar Böhler, Nadia Creignou, Steffen Reith, and Heribert Vollmer. Playing with boolean
blocks, part i: Post’s lattice with applications to complexity theory. SIGACT News, 2003.

19 Elmar Böhler, Nadia Creignou, Steffen Reith, and Heribert Vollmer. Playing with boolean
blocks, part ii: Constraint satisfaction problems. ACM SIGACT-Newsletter, 35, 2004.

20 Bruno Pasqualotto Cavalar, Mrinal Kumar, and Benjamin Rossman. Monotone circuit lower
bounds from robust sunflowers. In LATIN 2020: Theoretical Informatics - 14th Latin American
Symposium, São Paulo, Brazil, January 5-8, 2021, Proceedings, volume 12118 of Lecture Notes
in Computer Science, pages 311–322. Springer, 2020. doi:10.1007/978-3-030-61792-9_25.

21 Arkadev Chattopadhyay, Rajit Datta, and Partha Mukhopadhyay. Lower bounds for monotone
arithmetic circuits via communication complexity. In STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 786–799.
ACM, 2021. doi:10.1145/3406325.3451069.

22 Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient
functions. In Symposium on Theory of Computing (STOC), pages 670–683, 2016.

23 Lijie Chen, Shuichi Hirahara, Igor C. Oliveira, Ján Pich, Ninad Rajgopal, and Rahul Santhanam.
Beyond Natural Proofs: Hardness Magnification and Locality. In 11th Innovations in Theoret-
ical Computer Science Conference (ITCS 2020), volume 151, pages 70:1–70:48, 2020.

24 Xi Chen, Igor C. Oliveira, and Rocco A. Servedio. Addition is exponentially harder than
counting for shallow monotone circuits. In STOC’17 – Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1232–1245. ACM, New York, 2017.
doi:10.1145/3055399.3055425.

25 Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity classifications of Boolean
constraint satisfaction problems, volume 7 of SIAM monographs on discrete mathematics and
applications. SIAM, 2001.

26 Susanna F. de Rezende, Mika Göös, and Robert Robere. Guest column: Proofs, circuits, and
communication. SIGACT News, 53(1):59–82, 2022. doi:10.1145/3532737.3532746.

27 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998. doi:10.1137/S0097539794266766.

28 Oded Goldreich, Shafi Goldwasser, Eric Lehman, and Dana Ron. Testing monotonicity. In
Symposium on Foundations of Computer Science, (FOCS), pages 426–435, 1998.

29 Oded Goldreich and Rani Izsak. Monotone circuits: One-way functions versus pseudorandom
generators. Theory Comput., 8(1):231–238, 2012. doi:10.4086/toc.2012.v008a010.

30 Mika Göös, Rahul Jain, and Thomas Watson. Extension complexity of independent set
polytopes. SIAM J. Comput., 47(1):241–269, 2018. doi:10.1137/16M109884X.

https://doi.org/10.1145/234533.234564
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1145/3292048.3292050
https://doi.org/10.1007/BF01374526
https://doi.org/10.1007/BF01374526
https://doi.org/10.1007/978-3-030-61792-9_25
https://doi.org/10.1145/3406325.3451069
https://doi.org/10.1145/3055399.3055425
https://doi.org/10.1145/3532737.3532746
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.4086/toc.2012.v008a010
https://doi.org/10.1137/16M109884X

B. P. Cavalar and I. C. Oliveira 29:31

31 Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone
complexity and TFNP. In 10th Innovations in Theoretical Computer Science, volume 124
of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 38, 19. Schloss Dagstuhl. Leibniz-Zent.
Inform., Wadern, 2019.

32 Michelangelo Grigni and Michael Sipser. Monotone complexity. In Proceedings of the London
Mathematical Society Symposium on Boolean Function Complexity, pages 57–75, USA, 1992.
Cambridge University Press.

33 Siyao Guo, Tal Malkin, Igor C. Oliveira, and Alon Rosen. The power of negations in
cryptography. In Theory of Cryptography Conference (TCC), pages 36–65, 2015.

34 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California,
USA, pages 6–20, 1986. doi:10.1145/12130.12132.

35 Johan Håstad, Ingo Wegener, Norbert Wurm, and Sang-Zin Yi. Optimal depth, very small
size circuits for symmetric functions in AC0. Inf. Comput., 108(2):200–211, 1994. doi:
10.1006/inco.1994.1008.

36 Shuichi Hirahara. NP-hardness of learning programs and partial MCSP. In Symposium on
Foundations of Computer Science (FOCS), 2022.

37 Christian Ikenmeyer, Balagopal Komarath, Christoph Lenzen, Vladimir Lysikov, Andrey
Mokhov, and Karteek Sreenivasaiah. On the complexity of hazard-free circuits. J. ACM,
66(4):25:1–25:20, 2019. doi:10.1145/3320123.

38 Peter Jeavons. On the algebraic structure of combinatorial problems. Theor. Comput. Sci.,
200(1-2):185–204, 1998. doi:10.1016/S0304-3975(97)00230-2.

39 Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM,
44(4):527–548, July 1997. doi:10.1145/263867.263489.

40 Jan Johannsen. The complexity of satisfiability problems with two occurrences, 2003. Unpub-
lished Manuscript.

41 Neil D. Jones, Y. Edmund Lien, and William T. Laaser. New problems complete for non-
deterministic log space. Math. Syst. Theory, 10:1–17, 1976. doi:10.1007/BF01683259.

42 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers. Springer, 2012.
43 Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity of

set intersection. SIAM J. Discret. Math., 5(4):545–557, 1992. doi:10.1137/0405044.
44 Mauricio Karchmer and Avi Wigderson. On span programs. In Structure in Complexity Theory

Conference (CCC), pages 102–111, 1993. doi:10.1109/SCT.1993.336536.
45 Jan Krajíček. Interpolation theorems, lower bounds for proof systems, and independence

results for bounded arithmetic. J. Symbolic Logic, 62(2):457–486, 1997.
46 Denis Kuperberg. Positive first-order logic on words. In Symposium on Logic in Computer

Science (LICS), pages 1–13, 2021.
47 Denis Kuperberg. Positive first-order logic on words and graphs. CoRR, abs/2201.11619, 2022.

arXiv:2201.11619.
48 Benoît Larose and Pascal Tesson. Universal algebra and hardness results for constraint

satisfaction problems. Theor. Comput. Sci., 410(18):1629–1647, 2009. doi:10.1016/j.tcs.
2008.12.048.

49 E. A. Okol’nishnikova. The effect of negations on the complexity of realization of monotone
Boolean functions by formulas of bounded depth. Metody Diskret. Analiz., pages 74–80, 1982.

50 Igor C. Oliveira. Unconditional lower bounds in complexity theory, 2015. (PhD Thesis,
Columbia University).

51 Igor C. Oliveira, Rahul Santhanam, and Srikanth Srinivasan. Parity helps to compute majority.
In 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick,
NJ, USA, pages 23:1–23:17, 2019. doi:10.4230/LIPIcs.CCC.2019.23.

52 Toniann Pitassi and Robert Robere. Strongly exponential lower bounds for monotone
computation. In Symposium on Theory of Computing (STOC), pages 1246–1255, 2017.
doi:10.1145/3055399.3055478.

CCC 2023

https://doi.org/10.1145/12130.12132
https://doi.org/10.1006/inco.1994.1008
https://doi.org/10.1006/inco.1994.1008
https://doi.org/10.1145/3320123
https://doi.org/10.1016/S0304-3975(97)00230-2
https://doi.org/10.1145/263867.263489
https://doi.org/10.1007/BF01683259
https://doi.org/10.1137/0405044
https://doi.org/10.1109/SCT.1993.336536
https://arxiv.org/abs/2201.11619
https://doi.org/10.1016/j.tcs.2008.12.048
https://doi.org/10.1016/j.tcs.2008.12.048
https://doi.org/10.4230/LIPIcs.CCC.2019.23
https://doi.org/10.1145/3055399.3055478

29:32 Constant-Depth Circuits vs. Monotone Circuits

53 Emil L. Post. The Two-Valued Iterative Systems of Mathematical Logic. (AM-5). Princeton
University Press, 1941. URL: http://www.jstor.org/stable/j.ctt1bgzb1r.

54 Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. J. Symb. Log., 62(3):981–998, 1997. doi:10.2307/2275583.

55 W. V. Quine. Two theorems about truth functions. Bol. Soc. Mat. Mexicana, 10:64–70, 1953.
56 Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,

19(3):403–435, 1999. doi:10.1007/s004930050062.
57 Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth. J. ACM,

39(3):736–744, 1992. doi:10.1145/146637.146684.
58 A. A. Razborov. Lower bounds on the monotone complexity of some Boolean functions. Dokl.

Akad. Nauk SSSR, 281(4):798–801, 1985.
59 Alexander A Razborov. Lower bounds on monotone complexity of the logical permanent.

Mathematical Notes of the Academy of Sciences of the USSR, 37(6):485–493, 1985.
60 Omer Reingold. Undirected st-connectivity in log-space. In Harold N. Gabow and Ronald Fagin,

editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005, pages 376–385. ACM, 2005. doi:10.1145/1060590.1060647.

61 Susanna Rezende. Personal communication, 2023.
62 Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook. Exponential

lower bounds for monotone span programs. In IEEE 57th Annual Symposium on Foundations
of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New
Jersey, USA, pages 406–415. IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.51.

63 Benjamin Rossman. Homomorphism preservation theorems. J. ACM, 55(3):Art. 15, 53, 2008.
doi:10.1145/1379759.1379763.

64 Benjamin Rossman. On the constant-depth complexity of k-clique. In Symposium on Theory
of Computing (STOC), pages 721–730, 2008.

65 Benjamin Rossman. An entropy proof of the switching lemma and tight bounds on the
decision-tree size of AC0, 2017.

66 Benjamin Rossman. An improved homomorphism preservation theorem from lower bounds in
circuit complexity. In Innovations in Theoretical Computer Science Conference (ITCS), pages
27:1–27:17, 2017.

67 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San Diego, California,
USA, pages 216–226. ACM, 1978. doi:10.1145/800133.804350.

68 Alexei P. Stolboushkin. Finitely monotone properties. In Symposium on Logic in Computer
Science (LICS), pages 324–330, 1995.

69 É. Tardos. The gap between monotone and nonmonotone circuit complexity is exponential.
Combinatorica, 8(1):141–142, 1988. doi:10.1007/BF02122563.

70 Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987. doi:
10.1145/7531.8928.

71 Leslie G. Valiant. Negation can be exponentially powerful. Theor. Comput. Sci., 12:303–314,
1980.

72 Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Chris Umans, editor, 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 331–342. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.38.

A A Lower Bound for 3-XOR-SAT Using the Approximation Method

As discussed in Section 1.1.3, [31] obtained an exponential lower bound on the monotone
circuit size of the function 3-XOR-SAT using techniques from communication complexity and
lifting. Here we observe that a weaker but still super-polynomial lower bound can be proved
using the approximation method.

http://www.jstor.org/stable/j.ctt1bgzb1r
https://doi.org/10.2307/2275583
https://doi.org/10.1007/s004930050062
https://doi.org/10.1145/146637.146684
https://doi.org/10.1145/1060590.1060647
https://doi.org/10.1109/FOCS.2016.51
https://doi.org/10.1145/1379759.1379763
https://doi.org/10.1145/800133.804350
https://doi.org/10.1007/BF02122563
https://doi.org/10.1145/7531.8928
https://doi.org/10.1145/7531.8928
https://doi.org/10.1109/FOCS.2017.38

B. P. Cavalar and I. C. Oliveira 29:33

First, we recall the function OddFactorn : {0, 1}(n
2) → {0, 1} of Section 3.2, which accepts

a given graph if the graph contains an odd factor, which is a spanning subgraph in which the
degree of every vertex is odd. For convenience, in this section we consider a weaker version of
OddFactor, which takes as an input a bipartite graph with n vertices on each part, and accepts
if the graph contains an odd factor. Let Bipartite-OddFactorn : {0, 1}n2

→ {0, 1} be this
function. We remark that the lower bounds of Babai, Gál and Wigderson [9] for OddFactor
(Theorem 10) also hold for Bipartite-OddFactor. The proof of the monotone circuit lower
bound in particular is essentially Razborov’s lower bound for Matching via the approximation
method [59].

▶ Theorem 47 ([9]). We have

mSIZE(Bipartite-OddFactorn) = nΩ(log n) and mDEPTH(Bipartite-OddFactorn) = Ω(n).

We can reduce Bipartite-OddFactor to 3-XOR-SAT by noting that computing
Bipartite-OddFactorn(M) on a given matrix M ∈ {0, 1}n2

is computationally equivalent
to deciding the satisfiability of the following F2 linear system over variables {xij}:

For all i ∈ [n]:
⊕n

k=1 xik = 1;
For all j ∈ [n]:

⊕n
k=1 xkj = 1;

For all i, j ∈ [n] such that Mij = 0: xij = 0.

We can then use a circuit for 3-XOR-SAT to solve this system by using a standard trick
of introducing new variables to reduce the number of variables that appear in each equation,
as done in the textbook reduction from SAT to 3-SAT. As the corresponding reductions turn
out to be monotone, this implies monotone circuit and formula lower bounds for 3-XOR-SAT.
We note that a somewhat similar argument (in the non-monotone setting) appears in Feder
and Vardi [27, Theorem 30] regarding constraint satisfaction problems with the ability to
count.

In order to formalise this argument, we will need the following definition and results.

▶ Definition 48. Let f be a Boolean function. We define dual(f) : x 7→ ¬f(¬x) as the dual
of f .

▶ Lemma 49. Let f be a monotone Boolean function. We have mSIZE(f) = mSIZE(dual(f))
and mDEPTH(f) = mDEPTH(dual(f)).

Proof. The idea is to push negations to the bottom and eliminate double negations at the
input layer. In other words, applying De Morgan rules, we can convert any {∧,∨}-circuit
computing f into a circuit computing dual(f) by swapping ∧-gates for ∨-gates, and vice-versa.
Moreover, this transformation preserves the depth of the circuit. ◀

We are ready to describe a monotone reduction from the function Bipartite-OddFactorn

to 3-XOR-SAT, which implies the desired lower bounds.

▶ Theorem 50. There exists ε > 0 such that

mSIZE(3-XOR-SAT) = nΩ(log n) and mDEPTH(3-XOR-SAT) = Ω(nε).

Proof. Recall that the value of the function Bipartite-OddFactorn(M) on a given matrix
M ∈ {0, 1}n2

is equal to 1 if the following system is satisfiable:
For all i ∈ [n]:

⊕n
k=1 xik = 1;

For all j ∈ [n]:
⊕n

k=1 xkj = 1;
For all i, j ∈ [n] such that Mij = 0: xij = 0.

CCC 2023

29:34 Constant-Depth Circuits vs. Monotone Circuits

We introduce some extra variables to reduce the number of variables in each equation in the
following way. For every i ∈ [n], introduce variables zi1, . . . , zi(n−1) and the equations

zi1 = xi1 ⊕ xi2,

zi2 = zi1 ⊕ xi3,

. . .

zi,(n−1) = zi,(n−2) ⊕ xi,n,

zi,(n−1) = 1.

Now note that these equations imply zi,(n−2) =
⊕n

k=1 xik = 1. For each “column” equation⊕n
k=1 xkj = 1, we also add variables wj1, . . . , wj(n−1) as above. In total, we add at most

2n2 variables and 2n2 equations. Therefore, there is a system of linear equations on O(n2)
variables, where each constraint contains at most 3 variables, which is satisfiable if and only
if Bipartite-OddFactorn(M) = 1. Moreover, it is easy to see that the characteristic vector α of
the set of equations of this system can be computed from M by an anti-monotone projection,
as we activate a constraint that depends on the input when Mij = 0.

Now let f = dual(3-XOR-SAT) and β = ¬α. Since, by definition, 3-XOR-SAT accepts
unsatisfiable systems, we get Bipartite-OddFactorn(M) = ¬3-XOR-SAT(α) = f(β) and that
β is a monotone projection of M . Therefore, by Lemma 49, we obtain

mSIZE(Bipartite-OddFactorn) ≤ mSIZE(3-XOR-SAT)

and

mDEPTH(Bipartite-OddFactorn) ≤ mDEPTH(3-XOR-SAT). ◀

B Schaefer’s Theorem in Monotone Complexity

B.1 Connectivity and generation functions
We recall the definitions of two prominent monotone Boolean functions that have efficient
monotone circuits. Let ST-CONN : {0, 1}n2

→ {0, 1} be the function that outputs 1 on a
given directed graph G if there exists a path from 1 to n in G. Let GEN : {0, 1}n3

→ {0, 1}
be the Boolean function which receives a set T of triples (i, j, k) ∈ [n3], and outputs 1 if
n ∈ S, where S ⊆ [n] is the set generated with the following rules:

Axiom: 1 ∈ S,
Generation: If i, j ∈ S and (i, j, k) ∈ T , then k ∈ S.

The following upper bounds are well-known and easy to prove.

▶ Theorem 51 ([42, Exercise 7.3], [56]). We have ST-CONN ∈ mNL and GEN ∈ mSIZE[poly].

B.2 Proof of reduction lemmas
Here we present monotonised versions of the proofs of [19, Propositions 2.2 - 2.4], which give
a simplified presentation of the results of [67].

▶ Lemma 40 ([19, Proposition 2.3]). If COQ(S1) ⊆ COQ(S2), then there exists a constant
C ∈ N such that CSP-SATn

S1
≤mOR

m CSP-SATCn
S2

.

Proof. If COQ(S1) ⊆ COQ(S2), then each relation of S1 can be represented as a conjunctive
query over S2. Let F1 be a S1-formula. For each constraint C1 of F1, there exists a formula
φ(C1) in CNF(S2) such that C1 is a projection of φ(C1) (i.e., C1 is a conjunctive query of

B. P. Cavalar and I. C. Oliveira 29:35

φ(C1)). However, note that C1 is satisfiable if and only if φ(C1) is satisfiable. So we can
replace the constraint C1 by the set of constraints in φ(C1). Doing this for every constraint
in F1, we obtain an S2-formula F2 which is satisfiable iff F1 is satisfiable.

Now note that, to decide if a given constraint application C of S2 is in the reduction,
it suffices to check if there exists a S1-constraint C1 in F1 such that C is in φ(C1). Using
non-uniformity, this can be easily done by an OR over the relevant input bits.

Finally, we observe that, since the arities of each relation in S1 and S2 are constant, we
only add a constant number of variables for each constraint to represent S1-formulas with
conjunctive queries over S2-formulas. ◀

▶ Lemma 52. Let S be a set of Boolean relations. We have CSP-SATS∪{=} ≤mNL
m CSP-SATS.

Proof. Let F be a (S ∪ {=})-formula on n variables given as an input. Remember that F
is given as a Boolean vector α, where each bit of α represents the presence of a constraint
application on n variables from S ∪ {=}. We first build an undirected graph G with the
variables x1, . . . , xn as vertices, and we put an edge between xi and xj if the constraint
xi = xj appears in F . Note that G can be constructed by a monotone projection from F .

Let R ∈ S and let C = R(x1, . . . , xn) be a constraint application of R. If C appears
in F , we add to the system every constraint of the form C ′ = R(y1, . . . , yn) such that, for
every i ∈ [n], there exists a path from xi to yi in the graph G. In this case, we say that C
generates C ′. Let F2 be the formula that contains all non-equality constraints of F , and all
the non-equality constraints generated by a constraint in F . It’s not hard to see that F is
satisfiable if and only if F2 is satisfiable, and therefore the reduction is correct.

Moreover, the reduction can be done in monotone NL using the monotone NL algorithm
for ST-CONN (Theorem 51). Indeed, there are at most nk constraint applications of a given
relation R of arity k. Therefore, to decide if a constraint C ′ = R(y1, . . . , yn) appears in F2,
it suffices to check if there exists a constraint application of R in F which generates C ′. This
can be checked with nk calls to ST-CONN. ◀

▶ Lemma 31 (Polymorphisms characterise the complexity of CSPs [38, 19, Theorem 2.4]). If
Pol(S2) ⊆ Pol(S1), then CSP-SATn

S1
≤mNL

m CSP-SATpoly(n)
S2

.

Proof. If Pol(S2) ⊆ Pol(S1), then from Lemma 30 (Items iii, v, and vi) we obtain COQ(S1) ⊆
⟨S1⟩ ⊆ ⟨S2⟩ = COQ(S2 ∪ {=}). Therefore, by Lemmas 40 and 52 we can do the following
chain of reductions in monotone NL:

CSP-SATS1 ≤mOR
m CSP-SATS2∪{=} ≤mNL

m CSP-SATS2 . ◀

B.3 Monotone circuit upper bounds
We restate and prove the theorem.

▶ Theorem 32 (Monotone version of the upper bounds for CSP-SAT [67, 4]). Let S be a finite
set of relations. The following holds.
1. If E2 ⊆ Pol(S) or V2 ⊆ Pol(S), then CSP-SATS ∈ mSIZE[poly].
2. If D2 ⊆ Pol(S), or S00 ⊆ Pol(S), or S10 ⊆ Pol(S), then CSP-SATS ∈ mNL.

Proof. We prove each case separately.
Proof of 1. We first observe that 3-Horn-SAT (see definition in Section 5.3, Dichotomy for

formulas) can be solved by a reduction to GEN ∈ mSIZE[poly]. Indeed, we interpret each
constraint of the form (¬xi ∨ ¬xj ∨xk) (which is equivalent to xi ∧xj =⇒ xk) as a triple
(i, j, k), and constraints of the form xi as a triple (0, 0, i). Let S ⊆ {0, 1, 2 . . . , n} be the

CCC 2023

29:36 Constant-Depth Circuits vs. Monotone Circuits

set generated by these triples, applying the generation rules of GEN, using 0 ∈ S as the
axiom. It suffices to check that there exists some constraint of the form ¬xi ∨ ¬xj ∨ ¬xk,
such that {i, j, k} ⊆ S. This process can be done with polynomial-size monotone circuits,
invoking GEN. Therefore, it follows from Theorem 51 that 3-Horn-SAT ∈ mSIZE[poly].
Moreover, we recall that, if E2 ⊆ Pol(S), then S ⊆ COQ(H3) (in other words, every S-
formula can be written as a set of 3-Horn equations) – see, e.g, [25, Lemma 4.8]. Therefore,
from Items iv and v of Lemma 30 and Lemma 40, we conclude that CSP-SATS ≤mOR

m

3-Horn-SAT ∈ mSIZE[poly].
Now recall that, if V2 ⊆ Pol(S), then S ⊆ COQ(A3), where A3 is the set of width-3 Anti-
Horn relations (i.e., A3 = {(x1 ∨ x2 ∨ ¬x3), (x1 ∨ x2 ∨ x3), (¬x)}; see [25, Lemma 4.8] for
a proof of this observation). But note that an A3-formula φ is satisfiable if and only if the
H3-formula φ(¬x1, . . . ,¬xn) is satisfiable. Therefore by Lemma 40 and Items iv and v of
Lemma 30, we have CSP-SATS ≤mOR

m CSP-SATA3 ≤mProj
m 3-Horn-SAT ∈ mSIZE[poly].

Proof of 2. We first prove the case D2 ⊆ Pol(S). Let 2-SAT = CSP-SATΓ, where Γ =
{(x1 ∨ x2), (x1 ∨ ¬x2), (¬x1 ∨ ¬x2)}. It’s easy to check that the standard reduction from
2-SAT to ST-CONN can be done in monotone NL (see [41, Theorem 4]). Therefore, it
follows from Theorem 51 that 2-SAT ∈ mNL. Now, recall that, if D2 ⊆ Pol(S), then
S ⊆ COQ(Γ) (see, e.g., [25, Lemma 4.9]). Therefore, from Lemma 40 and Items iv and v
of Lemma 30, we conclude CSP-SATS ∈ mNL.
We now suppose that S00 ⊆ Pol(S). We check that the proof of [4, Lemma 3.4] gives
a monotone circuit. If S00 ⊆ Pol(S), then there exists k ≥ 2 such that S00

k ⊆ Pol(S)
(that’s because there does not exist a finite set of relations S such that Pol(S) = S00).
Note that S00

k = Pol(Γ), where Γ =
{

ORk, x,¬x,→,=
}

. We show below how to decide
if a Γ-formula is unsatisfiable in monotone NL. The result then follows from Lemma 31.
Let F be a given Γ-formula with n variables. We first construct a directed graph G, with
vertex set {x1, . . . , xn}, and with arcs (xi, xj) if xi → xj is a constraint of F , and arcs
(xi, xj) and (xj , xi) if xi = xj is a constraint of F . This can be done with a monotone
projection. Observe that a Γ-formula F is unsatisfiable if, and only if, there exists a
constraint of the form xi1 ∨ · · · ∨ xik

in F , such that there exists a path from some xij
to

a constraint ¬y in F . This can be checked in monotone NL by Theorem 51.
The case S10 ⊆ Pol(S) is analogous. ◀

C Background on Post’s Lattice and Clones

In this section, we include the definitions of the various clones that are used in the paper, as
well as a figure of Post’s lattice, which can be helpful when checking the proofs of Section 5.

Let →: (x, y) 7→ (¬x ∨ y). Let also ↔: (x, y) 7→ ¬(x ⊕ y) and id : x 7→ x. Let
f : {0, 1}k → {0, 1} be a Boolean function. We say that f is linear if there exists c ∈ {0, 1}k

and b ∈ {0, 1} such that f(x) = ⟨c, x⟩ + b (mod 2). We say that f is self-dual if f = dual(f).
Let a ∈ {0, 1}. We say that f is a-reproducing if f(a, . . . , a) = a. We say that a set
T ⊆ {0, 1}k is a-separating if there exists i ∈ [k] such that xi = a for all x ∈ T . We say that
f is a-separating if f−1(a) is a-separating. We say that f is a-separating of degree k if every
T ⊆ f−1(a) such that |T | = k is a-separating. The basis of a clone B is a set of Boolean
functions F such that B = [F].

B. P. Cavalar and I. C. Oliveira 29:37

Name Definition Base

BF All Boolean functions {∨, ∧, ¬}
R0 {f ∈ BF : f is 0-reproducing} {∧, ⊕}
R1 {f ∈ BF : f is 1-reproducing} {∨, ↔}
R2 R1 ∩ R0 {∨, x ∧ (y ↔ z)}
M {f ∈ BF : f is monotonic} {∨, ∧, 0, 1}
M1 M ∩ R1 {∨, ∧, 1}
M0 M ∩ R0 {∨, ∧, 0}
M2 M ∩ R2 {∨, ∧}
Sn

0 {f ∈ BF : f is 0-separating of degree n} {→, dual(hn)}
S0 {f ∈ BF : f is 0-separating} {→}
Sn

1 {f ∈ BF : f is 1-separating of degree n} {x ∧ y, hn}
S1 {f ∈ BF : f is 1-separating} {x ∧ y}
Sn

02 Sn
0 ∩ R2 {x ∨ (y ∧ z), dual(hn)}

S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sn

01 Sn
0 ∩ M {dual(hn), 1}

S01 S0 ∩ M {x ∨ (y ∧ z), 1}
Sn

00 Sn
0 ∩ R2 ∩ M {x ∨ (y ∧ z), dual(hn)}

S00 S0 ∩ R2 ∩ M {x ∨ (y ∧ z)}
Sn

12 Sn
1 ∩ R2 {x ∧ (y ∨ z), hn}

S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sn

11 Sn
1 ∩ M {hn, 0}

S11 S1 ∩ M {x ∧ (y ∨ z), 0}
Sn

10 Sn
1 ∩ R2 ∩ M {x ∧ (y ∨ z), hn}

S10 S1 ∩ R2 ∩ M {x ∧ (y ∨ z)}
D {f ∈ BF : f is self-dual} {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
D1 D ∩ R2 {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
D2 D ∩ M {(x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z)}
L {f ∈ BF : f is linear} {⊕, 1}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {↔}
L2 L ∩ R {x ⊕ y ⊕ z}
L3 L ∩ D {x ⊕ y ⊕ z ⊕ 1}
V {f ∈ BF : f is constant or an n-ary OR function} {∨, 0, 1}
V0 [{∨}] ∪ [{0}] {∨, 0}
V1 [{∨}] ∪ [{1}] {∨, 1}
V2 [{∨}] {∨}
E {f ∈ BF : f is constant or an n-ary AND function} {∧, 0, 1}
E0 [{∧}] ∪ [{0}] {∧, 0}
E1 [{∧}] ∪ [{1}] {∧, 1}
E2 [{∧}] {∧}
N [{¬}] ∪ [{0}] ∪ [{1}] {¬, 1}
N2 [{¬}] {¬}
I [{id}] ∪ [{0}] ∪ [{1}] {id, 0, 1}
I0 [{id}] ∪ [{0}] {id, 0}
I1 [{id}] ∪ [{1}] {id, 1}
I2 [{id}] {id}

Figure 4 Table of all closed classes of Boolean functions, and their bases. Here, hn denotes the
function hn(x1, . . . , xn+1) =

∨n+1
i=1

∧n+1
j=1,j ̸=i

xj . See Definition 48 for the definition of dual(·). The
same table appears in [4, Table 1].

CCC 2023

A Degree 4 Sum-Of-Squares Lower Bound for the
Clique Number of the Paley Graph
Dmitriy Kunisky # Ñ

Department of Computer Science, Yale University, New Haven, CT, USA

Xifan Yu #

Department of Computer Science, Yale University, New Haven, CT, USA

Abstract
We prove that the degree 4 sum-of-squares (SOS) relaxation of the clique number of the Paley graph
on a prime number p of vertices has value at least Ω(p1/3). This is in contrast to the widely believed
conjecture that the actual clique number of the Paley graph is O(polylog(p)). Our result may be
viewed as a derandomization of that of Deshpande and Montanari (2015), who showed the same
lower bound (up to polylog(p) terms) with high probability for the Erdős-Rényi random graph on
p vertices, whose clique number is with high probability O(log(p)). We also show that our lower
bound is optimal for the Feige-Krauthgamer construction of pseudomoments, derandomizing an
argument of Kelner. Finally, we present numerical experiments indicating that the value of the
degree 4 SOS relaxation of the Paley graph may scale as O(p1/2−ε) for some ε > 0, and give a
matrix norm calculation indicating that the pseudocalibration construction for SOS lower bounds
for random graphs will not immediately transfer to the Paley graph. Taken together, our results
suggest that degree 4 SOS may break the “√

p barrier” for upper bounds on the clique number of
Paley graphs, but prove that it can at best improve the exponent from 1/2 to 1/3.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Semidefinite programming; Mathematics of computing → Combina-
torial optimization

Keywords and phrases convex optimization, sum of squares, Paley graph, derandomization

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.30

Related Version Full Version: https://arxiv.org/abs/2211.02713

Funding This work was partially supported by ONR Award N00014-20-1-2335 and a Simons
Investigator Award from the Simons Foundation to Daniel Spielman.

Acknowledgements We thank Afonso Bandeira, Chris Jones, and Daniel Spielman for helpful
discussions, and the anonymous reviewers for their careful reading of the paper.

1 Introduction

1.1 Maximum and Planted Clique Problems in Random Graphs
For a graph G, we denote by ω(G) the number of vertices in the largest clique or complete
subgraph in G. Computing ω(G) is a classical NP-hard problem in combinatorial optimization,
which is moreover hard to approximate within any polynomial factor n1−ε for ε > 0 [31, 24].
Aside from this worst-case hardness, an average-case setting of computing ω(G) was proposed
by Karp [32]. In this setting, the input graph is an Erdős-Rényi (ER) random graph G on
n vertices, where each edge is present independently with probability 1

2 . We denote this
by distribution by G ∼ G

(
n, 1

2
)
. It is known that (see, e.g., [5, Section 11.1]), with high

probability,

ω(G) ∈ [(2 − o(1)) log2 n, (2 + o(1)) log2 n] . (1)

© Dmitriy Kunisky and Xifan Yu;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 30; pp. 30:1–30:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dmitriy.kunisky@yale.edu
http://www.kunisky.com
mailto:xifan.yu@yale.edu
https://doi.org/10.4230/LIPIcs.CCC.2023.30
https://arxiv.org/abs/2211.02713
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Degree 4 SOS Lower Bound for Clique Number of Paley Graph

In [32], Karp showed that a simple greedy algorithm with high probability finds a clique of
size roughly log2 n, and asked whether a polynomial-time algorithm can with high probability
find a clique of size (1 + ε) log n for any constant ε > 0. The problem remains open, but,
perhaps surprisingly, evidence has accumulated that such an algorithm does not exist [28, 17].

A natural related problem is that of algorithmically bounding the size of the largest clique
in G, outputting a number that is always an upper bound on ω(G). For example, under
G ∼ G(n, 1

2), a simple algorithm based on the maximum degree can produce a O(
√

n log n)
bound [34]. Spectral algorithms operating on the eigenvalues of the adjacency matrix of G

can improve this to O(
√

n) (for instance, using Haemers’ generalization to irregular graphs
of Hoffman’s classical spectral bound on the clique number [22]).

The question of algorithmically bounding the clique number is also related to the problem
of hypothesis testing between G ∼ G(n, 1

2) and G drawn from another distribution where
a typical G contains a planted clique of size much larger than 2 log2 n, since if we have an
algorithm that always produces a valid bound on ω(G) and this bound is typically small
for G ∼ G(n, 1

2), then we can use its output to detect the planting of a sufficiently large
clique. The above then shows that we may detect the presence of a clique of size C

√
n for

sufficiently large C; [2] moreover showed that an efficient spectral algorithm can even recover
the vertex set of a planted clique of this size.1

A long line of work considered whether using convex relaxations of ω(G) that produce
bounds that are in general stronger than spectral bounds can break this “

√
n barrier” for

G ∼ G(n, 1
2), with a particular focus on semidefinite programming (SDP) relaxations. [30]

showed that Lovász’s ϑ function [37] also has value Ω(
√

n); [14] later considered further
aspects of using the ϑ function for detecting and recovering planted cliques. [15] showed the
same Ω(

√
n) lower bound for any constant level of the Lovász-Schrijver hierarchy of SDPs,

of which the ϑ function is merely the first and weakest. The stronger sum-of-squares (SOS)
hierarchy of relaxations proved harder to analyze. The pioneering but flawed analysis of
[40] was fixed by [39], albeit at the cost of falling short of an Ω(

√
n) lower bound. Many

subsequent works, first on the degree 4 SOS relaxation [9, 45, 27] and culminating in the
development of the pseudocalibration technique for larger degrees [4], ultimately established
an Ω(n1/2−o(1)) lower bound for any constant degree of the SOS hierarchy.2

All of these results apply, as we have mentioned, to the average case of computing the
clique number over G ∼ G(n, 1

2). Some recent literature has revisited other average-case SOS
lower bounds and identified deterministic instances over which the same quality of lower
bound holds (see in particular the work of [11, 26], derandomizing the result of [19] on refuting
3-XORSAT instances).3 In this paper, we initiate the study of the same question for the
clique problem, by derandomizing the SOS lower bound of [9] for the degree 4 SOS relaxation
of ω(G) with G ∼ G(n, 1

2). The deterministic graphs that achieve this derandomization are
the Paley graphs, whose clique number is a question of independent interest in number theory.
We first review some background on the Paley graphs, and then describe our results.

1 Observe that, while a brute force search can both detect and recover a planted clique of any size
(2 + ε) log2 n, this brute force search does not run in polynomial time.

2 The SOS hierarchy consists of a sequence of SDPs producing smaller and smaller upper bounds on ω(G),
indexed by an even number called the degree. See Section 2.2.1 for a precise definition.

3 Here we are interested in quantitative lower bounds showing large integrality gaps, rather than arbitrarily
small integrality gaps – deterministic explicit examples giving the latter for high degrees of SOS have
been shown before for several problems in works such as [19, 35].

D. Kunisky and X. Yu 30:3

1.2 Paley Graphs, Pseudorandomness, and Derandomization
The Paley graphs are an infinite family of graphs that exhibit certain pseudorandom properties,
behaving in some regards similarly to a typical G ∼ G(n, 1

2). They are defined on vertex sets
identified with finite fields Fq of order q ≡ 1 (mod 4), where edges connect pairs of elements
of Fq whose differences are quadratic residues. We denote the Paley graph on Fq by Gq; the
reader may see Section 2.2.2 for a more precise definition.

Many quantities that may be computed from Paley graphs are the same as those of
typical graphs drawn from G(q, 1

2). In the simplest instance, Paley graphs are regular of
degree q−1

2 , roughly the average degree of the corresponding random graph. [7] showed that
the same holds for the number of occurrences of any subgraph of constant size, for the first
eigenvalue being asymptotically q

2 , and the second eigenvalue being o(q 1
2 +ε) for any ε > 0.

How far can we take this analogy? It is natural to ask for subgraph counts of graphs of
size growing slowly with q, and the clique number is just such a question: under G ∼ G(q, 1

2)
we have E[ω(G)] ∼ 2 log2 q, and we might expect the same for ω(Gq).

However, the clique number of Paley graphs is not well understood. Let us review what
is currently known. Hoffman’s spectral bound [25, 22] implies the upper bound

ω(Gq) ≤ √
q. (2)

In fact, this is easy to derive by elementary combinatorial means (see, e.g., [47]) and for this
reason is sometimes called the trivial upper bound on ω(Gq). This is tight for q = p2k an
even power of a prime, as F√

q may be realized as a subfield of Fq all of whose elements are
quadratic residues in this case [6].

However, for odd prime powers, and even the simplest case q = p a prime, the clique
number is believed to be much lower. The upper bound on the diagonal Ramsey number
established by [12] implies that

ω(Gp) ≥
(

1
2 + o(1)

)
log2 p. (3)

By a number-theoretic analysis of the least quadratic non-residue modulo p, [18] improved
this, showing that for infinitely many primes p,

ω(Gp) ≥ log p log log log p. (4)

Moreover, conditional on the Generalized Riemann Hypothesis, the log log log p term may be
improved to log log p [41, Theorem 13.5].4

On the other hand, the best known upper bound [23, 10] improves only by a constant
factor on the spectral bound (2),

ω(Gp) ≤
√

2p − 1 + 1
2 ∼

√
p

√
2

. (5)

In contrast to this state-of-the-art bound, ω(Gp) is widely believed to actually scale at
most polylogarithmically with p based on computations of ω(Gp) for small p. We express
this in the following conjecture; see [46, 3, 47, 33] as well as our Figure 2.

▶ Conjecture 1. For some C, K > 0 and all p ≡ 1 (mod 4) prime, ω(Gp) ≤ C(log p)K .

Numerical evidence suggests that we might in fact expect to be able to take K = 2, as
discussed by [3, 33] and illustrated in our Figure 2.

4 It is still possible to reconcile these results with the proposal that Gp behaves like a random graph, so
long as we adopt a more sophisticated random model than G(p, 1

2) [42].

CCC 2023

30:4 Degree 4 SOS Lower Bound for Clique Number of Paley Graph

Moreover, these graphs are believed to be good constructions for lower bounds on the
diagonal Ramsey numbers R(k, k). For example, the Paley graph of order 17 is the unique
largest graph that contains neither a clique of size 4 nor an independent set of size 4, which
shows that R(4, 4) = 18 [13]. The current best known bound R(6, 6) ≥ 102 is established by
the Paley graph of order 101, which contains neither a clique of size 6 nor an independent
set of size 6 [44].

Because of this application among others, it is a long-standing open problem in additive
combinatorics and number theory to improve the upper bound for clique numbers of Paley
graphs of prime orders, and in particular to break the “√

p barrier” and prove an upper bound
scaling as p1/2−ε for some ε > 0.5 Some recent work has begun to explore whether convex
relaxations of the clique number can lead to such improvements. For instance, [21, 33] explored
using a hierarchy of SDPs producing bounds between that of the Lovász-Schrijver hierarchy
and the SOS hierarchy for this purpose, and [38] empirically found that a modification of
the Lovász ϑ function SDP can recover and sometimes slightly improve on the best-known
upper bound (5).

1.3 Our Contributions
Our main result contributes to both of the lines of work outlined above. On the one hand, it
shows (conditional on Conjecture 1) that the Paley graph gives a derandomization of the
SOS lower bound of [9] for ER random graphs. On the other hand, it shows that a powerful
convex optimization approach to upper-bounding the clique number cannot be too effective
when applied to Gp.

▶ Theorem 2. There is a constant c > 0 such that the value of the degree 4 SOS relaxation of
the clique number SOS4(G), as defined in Section 2.2.1, evaluated with Gp the Paley graph on
p vertices for p any prime number with p ≡ 1 (mod 4), as defined in Section 2.2.2, satisfies

SOS4(Gp) ≥ cp1/3. (6)

The main ingredients in our proof are new norm bounds for certain graph matrices (as appear
in the analysis of SOS relaxations for random graphs; see, e.g., [1]) formed from Paley graphs
and certain character sum estimates for the Legendre symbol.

To elaborate on this result, we provide three further pieces of more detailed analysis. Note
that Theorem 2 does not exclude the possibility that SOS4(Gp) = o(√p). In Section 4.1,
however, we show that at least the lower bound construction we use to prove Theorem 2,
involving the simple class of Feige-Krauthgamer pseudomoments (see Definition 6), cannot
improve on the p1/3 scaling of our lower bound.

On the other hand, in Section 4.2, we present some numerical evidence that SOS4(Gp) ∼ pη

for a constant η ∈ (0, 1
2), with value η ≈ 0.4. As we discuss in Section 4.2, these results

are similar to earlier numerical studies of [21], who consider a weaker class of SDPs than
the SOS hierarchy, and results of [33], who consider the same weaker SDPs and extract a
prediction of the power scaling of their values with p from numerical results. We thus have
reason to believe that our lower bound cannot be improved all the way to a scaling of p1/2.
Unfortunately, we have not found a way to convert these numerical results into a proof of an
improved bound on the clique number, but we leave this as a tantalizing open problem for
future work.

5 For instance, this is mentioned as “probably a very hard problem” in the problem list [8].

D. Kunisky and X. Yu 30:5

Finally, to accompany these empirical results, we provide some modest theoretical evidence
that the SOS hierarchy may break the √

p barrier for upper bounds on ω(Gp). The tight
analysis showing that E[SOS2d(G)] = Ω(n1/2−o(1)) for G ∼ G(n, 1

2) and any constant d uses
a construction satisfying a property called pseudocalibration [4], whose analysis hinges on
norm bounds for the aforementioned graph matrices built from the adjacency matrix of G [1].
In Section 4.3, we show that some of these norm bounds fail for the Paley graph. Thus, the
analysis of the pseudocalibration construction for random graphs cannot be directly adapted
to the case of Paley graphs.6

2 Preliminaries and Proof Overview

2.1 Notations
Throughout the paper, p will denote a prime number, and q a prime power q = pk. The
finite field of order q (unique up to isomorphism) is denoted by Fq, and its group of units by
F×

q . A nonzero element y of Fq is called a quadratic residue of Fq if y = x2 for some x ∈ Fq,
and a quadratic nonresidue otherwise. We write (F×

q)2 for the set of quadratic residues. We
will also freely identify Fp with Z/pZ, with representatives {0, 1, . . . , p − 1}.

We write [n] := {1, 2, . . . , n}. For a finite set X, we write 2X for the power set, and
(

X
k

)
and

(
X
≤k

)
to denote the sets of subsets of X with exactly k elements and at most k elements

respectively. We also use X(k) to denote the set of tuples of elements of X of length k with
all entries distinct.

When the discussion involves variables {xi}i∈I indexed by I, for a subset S ⊂ I, we will
use xS to denote the monomial

∏
i∈S xi.

We use 1 ∈ Rn to denote the all-ones vector. We use I ∈ Rn×n to denote the identity
matrix, J ∈ Rn×n to denote the all-ones matrix, and 0 ∈ Rn×n to denote the all-zeros matrix.
The dimensions of these objects will be clear from context. For a real symmetric or Hermitian
matrix A, we use spec(A) to denote its spectrum, which we write in double braces {{· · · }}
to indicate that the spectrum is a multiset. For matrices A, B ∈ Cn×n and C ∈ Cm×m, we
use A ◦ B ∈ Cn×n to denote the Hadamard product (entrywise product) of A and B, and
A ⊗ C ∈ Cnm×nm to denote the Kronecker product (tensor product) of A and C.

For a graph G = (V, E), we use V (G) to denote its vertex set and E(G) to denote its
edge set. We use G to denote the complement of G. For vertices u, v ∈ V (G), we use u ∼G v

to indicate that u and v are adjacent in G and u ̸∼G v to indicate that they are not adjacent.
We will use AG to denote the {0, 1} adjacency matrix of G, and SG to denote the Seidel
or {±1} adjacency matrix. We drop the subscript G when the graph is clear from context.
Conventionally, the Seidel adjacency matrix is −1 on pairs of adjacent vertices, +1 on pairs
of nonadjacent vertices, and 0 on the diagonal. In this paper, we abuse this term to mean
the matrix that is 1 on pairs of adjacent vertices, −1 on pairs of nonadjacent vertices, and 0
on the diagonal, as this is more conveniently written in terms of the Legendre symbol in the
context of Paley graphs (see Section 3.4). It is easy to see that the AG and SG are related
by SG = 2AG − J + I. We write K(G) for the set of subsets of V (G) that form cliques in G.

We will use the standard asymptotic notations O(·), Ω(·), Θ(·), and o(·). We will use Õ(·)
and Ω̃(·) to additionally suppress polylogarithmic factors.

6 We note that the initial premise of pseudocalibration, which involves comparing a pair of “null” and
“alternative” random graph distributions, is not sensible to apply to the deterministic Paley graph. But,
ultimately, the pseudocalibration argument yields a function mapping a graph to a matrix that one
hopes will be feasible for a high-degree SOS program, and one may simply substitute the Paley graph
into this function and consider the result.

CCC 2023

30:6 Degree 4 SOS Lower Bound for Clique Number of Paley Graph

2.2 Problem Setup
Let us now specify in full detail the SOS relaxations SOS2d of the clique number, and the
Paley graphs Gp.

2.2.1 Sum-Of-Squares Relaxations of the Clique Number
Let G be a graph of order n. The clique number ω(G) of G is equal to the value of the
following polynomial optimization program:

ω(G) =

maximize

∑
i∈V (G) xi

subject to x2
i = xi for all i ∈ V (G),

xixj = 0 for all i, j ∈ V (G) with i ̸= j and i ̸∼G j

 . (7)

It is easy to see that the feasible solutions of the program above are in one-to-one
correspondence with the indicator vectors of the cliques in G. Before we introduce the SOS
relaxations of the clique number, let us first define the pseudoexpectation operators over
which the SOS relaxations optimize.

▶ Definition 3 (Pseudoexpectation). We say Ẽ : R[x1, . . . , xn]≤2d → R is a degree 2d

pseudoexpectation with respect to polynomial constraints {fi(x) = 0}a
i=1, {gj(x) ≥ 0}b

j=1 if
the following properties hold:

Ẽ is linear.
Ẽ[1] = 1.
Ẽ[fi(x)p(x)] = 0, for all p(x) ∈ R[x1, . . . , xn] such that deg(fip) ≤ 2d, for all 1 ≤ i ≤ a.
Ẽ[p(x)2] ≥ 0, for all p(x) ∈ R[x1, . . . , xn]≤d.
Ẽ[gj(x)p(x)2] ≥ 0, for all p(x) ∈ R[x1, . . . , xn] such that deg(gjp2) ≤ 2d, for all 1 ≤ j ≤ b.

In the case of the maximum clique program (7), the polynomial constraints are generated
by the Boolean constraints x2

i − xi = 0 for i ∈ V (G) and the clique constraints xixj = 0 for
i, j ∈ V (G) with i ̸= j and i ̸∼G j,. For convenience, let us identify the vertex set V (G) with
[n] where n = |V (G)|. Then, the degree 2d SOS relaxation of the polynomial optimization
program (7) written in terms of pseudoexpectations is

SOS2d(G) =

maximize
∑n

i=1 Ẽ[xi]
subject to Ẽ : R[x1, . . . , xn]≤2d → R linear,

Ẽ[1] = 1,

Ẽ[(x2
i − xi)p(x)] = 0 for all i ∈ [n], deg(p) ≤ 2d − 2,

Ẽ[xixjp(x)] = 0 for all i ̸∼G j, deg(p) ≤ 2d − 2,

Ẽ[p(x)2] ≥ 0 for all deg(p) ≤ d.

. (8)

To see that this is indeed a relaxation of the clique program (7), observe that for any
probability measure µ : 2[n] → R≥0 supported on the cliques of the graph G, the corresponding
expectation operator Eµ is a pseudoexpectation of any degree.

For every monomial xS for S ∈
([n]

≤2d

)
, Ẽ[xS] is called the pseudomoment of S of the

corresponding pseudoexpectation Ẽ. By linearity, every pseudoexpectation of degree 2d is
uniquely determined by its pseudomoments of degree at most 2d, i.e., by the set {Ẽ[xS] :
S ⊆ [n], |S| ≤ 2d}. We may therefore encode the pseudoexpectation in the pseudomoment

matrix M ∈ R([n]
≤d)×([n]

≤d)
sym with entries

MS,T = Ẽ[xSxT]. (9)

D. Kunisky and X. Yu 30:7

This is especially convenient since the positivity of Ẽ on squared polynomials is equivalent to
positive semidefiniteness of M . We can then rewrite the above program (8) in the form of
an SDP:

SOS2d(G) =

maximize
∑n

i=1 M∅,{i}

subject to M ∈ R([n]
≤d)×([n]

≤d)
M∅,∅ = 1,

MS,T depends only on S ∪ T,

MS,T = 0 whenever S ∪ T /∈ K(G),
M ⪰ 0.

. (10)

We will not verify in detail the equivalence of (10) and (8); the reader may consult [36] for
an overview of this pseudomoment matrix framework, or the papers [9, 45, 27, 4] on SOS
relaxations of ω(G) for further details.

▶ Remark 4 (Pseudomoment matrix compression). We note that the row and column of M

indexed by any S /∈ K(G) is forced by the constraints to be identically zero. These entries
do not affect the positivity of M and do not play a role in the objective function, so we may
just as well take M to be indexed by cliques of size at most d rather than arbitrary subsets
of vertices.

In the special case 2d = 2, the SDP in (10) takes the form

SOS2(G) =

maximize
∑n

i=1 yi

subject to y ∈ Rn, Y ∈ Rn×n
sym ,

Yi,i = yi for all i ∈ [n],
Yi,j = 0 for all i, j ∈ [n] with i ̸= j and i ̸∼G j,

M =
[
1 y⊤

y Y

]
⪰ 0.

. (11)

One can show (see [20, 16]) that the program above is equivalent to the Lovász ϑ function of
the complement graph G, a well-known upper bound on ω(G) due to [37]:

SOS2(G) = ϑ(G). (12)

This SDP enjoys many special properties, some of which we will mention below; the reader
may consult the above references for further information.

On the other hand, once the degree increases to 2d = 4, the resulting SDP is not as well
understood. This SDP, which we study in the remainder of the paper, takes the form

SOS4(G) =

maximize
∑n

i=1 M0,1
∅,i

subject to Mr,c ∈ R([n]
r)×([n]

c) for r, c ∈ {0, 1, 2},

Mr,c
S,T depends only on S ∪ T,

Mr,c
S,T = 0 whenever S ∪ T /∈ K(G),

M =

 1 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

 ⪰ 0

. (13)

2.2.2 Paley Graphs
We now give the definition and some useful basic properties of the Paley graphs.

CCC 2023

30:8 Degree 4 SOS Lower Bound for Clique Number of Paley Graph

▶ Definition 5 (Paley graph). Let q = pk be a prime power such that q ≡ 1 (mod 4). The
Paley graph Gq of order q then has vertex set V (Gq) := Fq and edge set

E(Gq) :=
{

{a, b} ∈
(
Fq

2

)
: a − b ∈ (F×

q)2
}

. (14)

The condition q ≡ 1 (mod 4) ensures that −1 is a square in Fq. As a result, a − b ∈ (F×
q)2 if

and only if b − a ∈ (F×
q)2, so the edge set is well-defined.

We will study the SOS relaxations of the clique number of Paley graphs, SOS2d(Gq).
Recall that the degree 2 SOS relaxation of the clique number of the Paley graph Gq is
equal to the Lovász theta function of its complement, SOS2(Gq) = ϑ(Gq). Since Gq is
self-complementary (under the automorphism x 7→ gx for g a multiplicative generator of F×

q),
ϑ(Gq) = ϑ(Gq). Since Gq is vertex-transitive, by Lovász’s result in [37],

ϑ(Gq)ϑ(Gq) = |V (Gq)| = q, (15)

whereby combining our observations shows that

SOS2(Gq) = √
q. (16)

This is the same as the upper bound of the clique number given by Hoffman’s spectral bound.
Thus, degree 2 SOS does not improve on the spectral bound, and degree 4 SOS, which we
begin to analyze with Theorem 2, is the first more interesting degree.

2.3 Proof Overview
To prove Theorem 2, we will construct a feasible pseudomoment matrix M for the program (13)
that has objective value Ω(p1/3). We will consider the following type of pseudomoments, which
we call Feige-Krauthgamer (FK) pseudomoments, first studied by Feige and Krauthgamer [15]
to prove lower bounds on Lovász-Schrijver relaxations for the maximum independent set
of random graphs (sometimes these are called MPW pseudomoments after their use by the
later paper [39]).

▶ Definition 6 (Feige-Krauthgamer pseudomoments). Consider the degree 2d SOS relax-
ation of the clique number of a graph G. We say the pseudomoments of a degree 2d pseu-
doexpectation Ẽ are Feige-Krauthgamer (FK) pseudomoments if there exists a sequence
1 = α0, α1, α2, . . . , α2d ∈ R such that

Ẽ[xS] =
{

α|S| if S ∈ K(G) (i.e., if S is a clique in G)
0 otherwise.

(17)

We note that FK pseudomoments automatically satisfy all conditions on a pseudoexpectation
other than positivity.

The line of work beginning with [40] sought to use FK pseudomoments to prove lower
bounds on SOS relaxations of ω(G) for random graphs G.7 While eventually in [27, 4] it
was found that FK pseudomoments could not prove optimal Ω(

√
n) lower bounds, earlier

works still proved polynomial Ω(nη) lower bounds with η < 1
2 using FK pseudomoments,

7 Some works, wanting to study an SOS relaxation that included the “exact” constraint
∑n

i=1 xi = k

for some k, adjusted the FK pseudomoments to satisfy the consequences of this constraint (see, e.g.,
[27, 43]). We do not take this route here.

D. Kunisky and X. Yu 30:9

which are simpler to define and to work with than the alternatives developed later. In
particular, our analysis will closely follow that of [9], who used FK pseudomoments to prove
that SOS4(G) = Ω̃(n 1

3) with high probability for G ∼ G(n, 1
2). [27] later showed that, up to

polylogarithmic factors, this is optimal over any choice of FK pseudomoments for the degree
4 relaxation.
▶ Remark 7 (Partial symmetry). By vertex transitivity and edge transitivity of Paley graphs,
there always exists an optimal degree 4 pseudoexpectation giving all Ẽ[xi] the same value
and all Ẽ[xixj] with i ∼ j in Gp the same value, regardless of whether Ẽ is given by FK
pseudomoments or not. This strong symmetry of course fails to hold for ER random graphs.

Recall that in the degree 4 SOS program (13), we write the pseudomoment matrix M in
the block form

M =

 1 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

 . (18)

We will follow the strategy of [9] to successively check the Schur complement conditions for
positive semidefiniteness of M . Namely, we will rely on the following fact.

▶ Proposition 8. Let

M =
[
A B⊤

B C

]
∈ R(a+b)×(a+b) (19)

be a real symmetric matrix written in block form, with A ∈ Ra×a and C ∈ Rb×b. If A ≻ 0
and C −BA−1BT ⪰ 0, then M ⪰ 0. We call the matrix C −BA−1B⊤ the Schur complement
of the block A in M .

3 Proof of Theorem 2

We restate Theorem 2 in more detailed terms of the FK pseudomoments that we will
construct.

▶ Theorem 9. There exists a constant c > 0 so that, setting α1 := cp−2/3, α2 := 4α2
1, α3 :=

8α3
1, and α4 := 512α4

1, the FK pseudomoments defined by these parameters give a feasible
solution to the degree 4 SOS relaxation (13) of the clique number of the Paley graphs Gp for
all sufficiently large p.

Theorem 2 follows, since the above gives, for all sufficiently large p,

SOS4(Gp) ≥ p · cp−2/3 = cp1/3. (20)

To remind the reader of the notations we set in the previous section, the pseudomoment
matrix in the degree 4 SOS relaxation (13) is denoted

M =

 1 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

 , (21)

and we take this to be given by the FK pseudomoments proposed in Theorem 9. Recall that
Mr,c ∈ R(Fp

r)×(Fp
c) for all r, c ∈ {0, 1, 2}. We will use

N =
[
N1,1 N1,2

N2,1 N2,2

]
(22)

to denote the Schur complement of the top left 1 × 1 block in M .

CCC 2023

30:10 Degree 4 SOS Lower Bound for Clique Number of Paley Graph

3.1 Filling Zero Rows and Columns

As mentioned before, we will fill in the zero rows and columns of N in order to make use of
graph matrices. In this section, we define the matrix

H =
[
H1,1 H1,2

H2,1 H2,2

]
(23)

that will achieve this filling.

▶ Definition 10. We write 1k :
(Fp

k

)
→ {0, 1} for the function with 1k(S) = 1 if S is a clique

in Gp and 1k(S) = 0 otherwise.

We now expand the N•,• matrices in terms of this indicator function.

▶ Proposition 11. Under the FK pseudomoments proposed in Theorem 9, the matrix N can
be written as

N =
[
N1,1 N1,2

N2,1 N2,2

]
, (24)

where N1,1 ∈ RFp×Fp , N1,2 ∈ RFp×(Fp
2), N2,1 = N1,2⊤ ∈ R(Fp

2)×Fp , N2,2 ∈ R(Fp
2)×(Fp

2) have
entries

N1,1
a,b =

{
α1 − α2

1 if a = b,

α212({a, b}) − α2
1 if a ̸= b,

(25)

N1,2
a,{b,c} =

{
(α2 − α1α2) 12({b, c}) if a ∈ {b, c},

α313({a, b, c}) − α1α212({b, c}) if a ̸∈ {b, c},
(26)

N2,2
{a,b},{c,d} =

(α2 − α2

2)12({a, b}) if {a, b} = {c, d},

α313({a, b} ∪ {c, d}) − α2
212({a, b})12({c, d}) if |{a, b} ∩ {c, d}| = 1,

α414({a, b, c, d}) − α2
212({a, b})12({c, d}) if {a, b} ∩ {c, d} = ∅.

(27)

Per Remark 4, rows and columns indexed by pairs are identically zero in any of these matrices
for all pairs that are not edges in Gp.

Next, we define matrices H•,• based on the N•,• by replacing the clique indicator functions
with “bipartite” versions of those indicator functions, that only depend on the presence of
edges between two subsets of vertices.

▶ Definition 12. We write 1ℓ,r :
(Fp

ℓ

)
×
(Fp

r

)
→ {0, 1} for the function with

1ℓ,r(L, R) =
{

1 if v ∼Gp w for all v ∈ L \ R, w ∈ R \ L,

0 otherwise.
(28)

In other words, 1ℓ,r(L, R) = 1 if and only if all pairs of vertices in
(

L∪R
2
)

that don’t belong
simultaneously to L or R are connected in Gp.

D. Kunisky and X. Yu 30:11

Now we are ready to state what matrix H is: it is given by blocks H1,1 ∈ RFp×Fp , H1,2 ∈
RFp×(Fp

2), H2,1 = H1,2⊤
, and H2,2 ∈ R(Fp

2)×(Fp
2) having entries

H1,1
a,b =

{
α1 − α2

1 if a = b

α211,1({a}, {b}) − α2
1 if a ̸= b

, (29)

H1,2
a,{b,c} =

{
α2 − α1α2 if a ∈ {b, c}
α311,2({a}, {b, c}) − α1α2 if a ̸∈ {b, c}

, (30)

H2,2
{a,b},{c,d} =

α2 − α2

2 if {a, b} = {c, d}
α312,2({a, b}, {c, d}) − α2

2 if |{a, b} ∩ {c, d}| = 1
α412,2({a, b}, {c, d}) − α2

2 if {a, b} ∩ {c, d} = ∅
. (31)

It is easy to see that proving positive semidefiniteness for H also proves N is positive
semidefinite, due to the following observation.

▶ Proposition 13. Up to permutation of rows and columns, N is the direct sum of the
principal submatrix of H indexed by singletons and the edges of Gp with a zero matrix.

The proof is simply that, for |L|, |R| ≤ 2, we have 1|L∪R|(L ∪ R) = 1|L|,|R|(L, R) so long as
L is an edge if |L| = 2 and R is an edge if |R| = 2.

3.2 Second Schur Complement Bounds
Next, the goal is to prove under the same setting of Theorem 9 that H ⪰ 0. The argument
for this analysis is included in the full version of this paper and is similar to that of [9].

We will use Q0 = 1
p J ∈ RFp×Fp to denote the orthogonal projection matrix to the constant

vector, and Q1 = I − Q0 to denote the projection matrix to the orthogonal complement.

▶ Proposition 14. Under the FK pseudomoments specified by α1, α2, α3, α4 in Theorem 9,
for any constant ε > 0, the matrix H1,1 satisfies

H1,1 ⪰
(

α1 + p − 1
2 α2 − pα2

1

)
Q0 + (1 − ε)α1Q1 ≻ 0 (32)

for all sufficiently large primes p.

So, if moreover we can show H2,2 − H2,1(H1,1)−1H1,2 ⪰ 0, we can conclude the positive
semidefiniteness of H . Our last simplification before proceeding to the main technical analysis
is to remove the (H1,1)−1 term above. Fix some constant ε > 0 for all future discussions,
say ε := 1

2 . Then,

H1,1 ⪰
(

α1 + p − 1
2 α2 − pα2

1

)
Q0 + (1 − ε)α1Q1 ≻ 0 (33)

for all sufficiently large primes p, so

(H1,1)−1 ⪯
(

α1 + p − 1
2 α2 − pα2

1

)−1
Q0 + ((1 − ε)α1)−1

Q1, (34)

and substituting this into the term appearing in the inequality we need to show,

H2,1(H1,1)−1H1,2 ⪯ H2,1

[(
α1 + p − 1

2 α2 − pα2
1

)−1
Q0 + ((1 − ε)α1)−1

Q1

]
H1,2. (35)

CCC 2023

30:12 Degree 4 SOS Lower Bound for Clique Number of Paley Graph

Note that the column sum (row sum) of H2,1 is the same across each column (nonzero
row indexed by edges of Paley graphs) due to the partial symmetry of Paley graphs. As
a result, 1 is an eigenvector of H2,1H1,2, and H2,1Q0H1,2 = P0H2,1H1,2P0, where we use
P0 = 2

p(p−1) J ∈ R(Fp
2)×(Fp

2) to denote the orthogonal projection matrix to the constant vector.
Moreover, since 1 is an eigenvector of H2,1H1,2, (I − P0)H2,1H1,2P0 = 0. We therefore have

H2,1

[(
α1 + p − 1

2 α2 − pα2
1

)−1
Q0 + ((1 − ε)α1)−1

Q1

]
H1,2

= H2,1

[((
α1 + p − 1

2 α2 − pα2
1

)−1
− ((1 − ε)α1)−1

)
Q0 + ((1 − ε)α1)−1

I

]
H1,2

=
(

α1 + p − 1
2 α2 − pα2

1

)−1
P0H2,1H1,2P0 + ((1 − ε)α1)−1 (I − P0)H2,1H1,2(I − P0).

(36)

Thus, to show H2,2 ⪰ H2,1(H1,1)−1H1,2 holds for all sufficiently large primes p, it is sufficient
to prove the following proposition:

▶ Proposition 15. Under the FK pseudomoments specified by α1, α2, α3, α4 in Theorem 9,
for any constant ε > 0,

H2,2 ⪰
(

α1 + p − 1
2 α2 − pα2

1

)−1
P0H2,1H1,2P0

+ ((1 − ε)α1)−1 (I − P0)H2,1H1,2(I − P0) (37)

holds for all sufficiently large primes p.

3.3 Ribbons and Graph Matrices
To organize the remaining calculation, now let us review the construction of graph matrices
that has played a role in many SOS lower bound analyses in previous literature. We will use
the following definitions as appeared in the work of [29].

▶ Definition 16 (Ribbon). A ribbon on a ground set V is a tuple R = (V (R), E(R), AR, BR),
where (V (R), E(R)) is a graph, and AR, BR ⊆ V (R) ⊆ V .

▶ Definition 17 (Matrix for a Ribbon). Let G ∈ RV ×V be a real symmetric matrix whose off-
diagonal entries are ±1 and whose diagonal entries are zero. For R = (V (R), E(R), AR, BR)
a on V , the corresponding matrix MG(R) ∈ R(V

|AR|)×(V
|BR|) has rows and columns indexed by

the subsets of V of sizes |AR| and |BR|, respectively. The entries of MG(R) is given by

MG(R)I,J =
{∏

{i,j}∈E(R) Gi,j if I = AR and J = BR

0 otherwise
. (38)

In other words, there is only one nonzero entry of MG(R), and it is located at the row and
the column corresponding to AR and BR.

▶ Definition 18 (Isomorphisms Between Ribbons). Two ribbons R, S are isomorphic, or have
the same shape, if there is a bijection f : V (R) → V (S) which is a graph isomorphism between
(V (R), E(R)) and (V (S), E(S)) and also a bijection from AR to AS and from BR to BS.

If we ignore the labels on the vertices of a ribbon, what remains is the shape of the ribbon.

D. Kunisky and X. Yu 30:13

▶ Definition 19 (Shape). A shape is an equivalence class of ribbons of the same shape. Each
shape has associated with it a representative β = (V (β), E(β), Aβ , Bβ).

▶ Definition 20 (Embedding of a Shape). Given a shape β on V and an injective function
f : V (β) → V , we let f(β) be the ribbon by labeling the vertices V (β) in the natural way.

▶ Definition 21 (Graph Matrix). Let G ∈ RV ×V be a real symmetric matrix whose off-
diagonal entries are ±1 and whose diagonal entries are zero. For a shape β on V , the graph
matrix MG(β) ∈ R(V

|Aβ |)×(V
|Bβ |) is defined as the sum of all ribbon matrices over ribbons with

shape β:

MG(β) =
∑

R ribbon of shape β

MG (R) . (39)

▶ Definition 22 (Automorphism of a Shape). For a shape β, Aut(β) is the group of bijection
from V (β) to itself such that Aβ and Bβ are fixed as sets and the map is a graph automorphism
of (V (β), E(β)).

It is easy to see that if we sum over ribbon matrices of all ribbons obtained from injective
labelings of β, we obtain the graph matrix MG(β) multiplied by | Aut(β)|. Thus,

MG(β) =
∑

R ribbon of shape β

MG(R) = 1
| Aut(β)|

∑
f :V (β)→V injective

MG(f(β)). (40)

3.4 Graph Matrix Decomposition

▶ Definition 23 (Legendre Symbol). Let Fp be the finite field of order p. The Legendre symbol
is defined as

χ(a) = χp(a) :=

0 if a ≡ 0 (mod p),
1 if a is a quadratic residue in Fp,

−1 if a is a quadratic nonresidue in Fp.

(41)

When the underlying finite field Fp is fixed and clear from context, we will omit the subscript.

▶ Remark 24. Recall that all the primes p in our discussion are congruent to 1 modulo 4.
This ensures that χ(−1) = 1, and thus χ(a) = χ(−a) for any a ∈ Fp.

▶ Proposition 25. We have 1ℓ,r(L, R) = 1
2|L\R|×|R\L|

∏
(a,b)∈(L\R)×(R\L)(1 + χ(a − b)) for

all ℓ, r ≥ 0, L ∈
(Fp

ℓ

)
, and R ∈

(Fp

r

)
.

Proof. The result follows from observing that, for a, b ∈ Fp distinct, 1
2 (1 + χ(a − b)) is the

indicator of the edge {a, b} existing in the Paley graph. ◀

In the following few equations, let us write S for the Seidel adjacency matrix of Gp, so
that Sa,b := χ(a − b). By substituting the indicator functions 1ℓ,r in the definition of H

using Proposition 25 and expanding the products, we have

CCC 2023

30:14 Degree 4 SOS Lower Bound for Clique Number of Paley Graph

H2,2
{a,b},{c,d} =

α2 − α2
2 if {a, b} = {c, d},(

α3
2 − α2

2
)

+ α3
2 Sb,d if a = c and b ̸= d,

(α4
16 − α2

2) + α4
16

(
Sa,c + Sa,d + Sb,c + Sb,d

+Sa,cSa,d + Sb,cSb,d + Sa,cSb,c

+Sa,dSb,d + Sa,cSb,d + Sa,dSb,c

+Sa,cSa,dSb,c + Sb,dSa,dSb,c

+Sa,cSa,dSb,d + Sa,cSb,cSb,d

+Sa,cSa,dSb,cSb,d

)
if {a, b} ∩ {c, d} = ∅.

(42)

and

(H2,1H1,2){a,b},{c,d}

=
∑
i∈Fp

H2,1
{a,b},iH

1,2
i,{c,d}

=

2(α2 − α1α2)2 + (p − 2)((α1α2)2 + α2
3

4 − α1α2α3
2)

+(α2
3

4 − α1α2α3
2)

∑
i∈Fp\{a,b}(Sa,i + Sb,i + Sa,iSb,i)

if {a, b} = {c, d},

(α2 − α1α2)2 − 2(α2 − α1α2)α1α2 + (p − 3)(α1α2)2

+ (α2−α1α2)α3
2 − (p − 3) α1α2α3

2 + (p − 3) α2
3

8

+ (α2−α1α2)α3
4 (Sa,bSb,d + Sa,dSb,d + Sa,b + Sa,d + 2Sb,d)

+(α2
3

8 − α1α2α3
2)

∑
i ̸∈{a,b,d} Sa,i

+(α2
3

8 − α1α2α3
4)

∑
i ̸∈\{a,b,d}(Sb,i + Sd,i

+Sa,iSb,i + Sa,iSd,i)
+ α2

3
8
∑

i∈Fp\{a,b,d}(Sb,iSd,i + Sa,iSb,iSd,i)

if a = c and b ̸= d,

(α2 − α1α2)α3 − 4(α2 − α1α2)α1α2

+(p − 4)(α1α2)2 − (p − 4) α1α2α3
2 + (p − 4) α2

3
16

+ (α2−α1α2)α3
2 (Sa,c + Sa,d + Sb,c + Sb,d)

+ (α2−α1α2)α3
4 (Sa,cSa,d + Sb,cSb,d + Sa,cSb,c + Sa,dSb,d)

+(α2
3

16 − α1α2α3
4)

∑
i ̸∈{a,b,c,d}(Sa,i + Sb,i + Sc,i + Sd,i

+Sa,iSb,i + Sc,iSd,i)
+ α2

3
16
∑

i ̸∈{a,b,c,d}(Sa,iSc,i + Sa,iSd,i + Sb,iSc,i + Sb,iSd,i

+Sa,iSb,iSc,i + Sa,iSb,iSd,i

+Sa,iSc,iSd,i + Sb,iSc,iSd,i

+Sa,iSb,iSc,iSd,i)

if {a, b} ∩ {c, d} = ∅.

(43)

We now express this as a sum of graph matrices. We present all the matrices required for
this decomposition in Table 1. Using the notations for graph matrices defined above and in
the table, we can write the matrix H2,2 and the matrix H2,1H1,2 as a weighted sum of these
matrices, as follows:

D. Kunisky and X. Yu 30:15

H2,2 = (α2 − α2
2)I +

(α3

2 − α2
2

)
T 3,0,1 + α3

2 T 3,1,1 +
(α4

16 − α2
2

)
T 4,0,1

+ α4

16
(
T 4,1,1 + T 4,2,1 + T 4,2,2 + T 4,2,3 + T 4,3,1 + T 4,4,1) , (44)

H2,1H1,2 =
[
2(α2 − α1α2)2 + (p − 2)

(
(α1α2)2 + α2

3
4 − α1α2α3

2

)]
I

+
(

α2
3

4 − α1α2α3

2

)(
U3,1,1 + U3,2,1)

+
[
(α2 − α1α2)

(
α2 − 3α1α2 + α3

2

)
+ (p − 3)

(
(α1α2)2 − α1α2α3

2 + α2
3

8

)]
T 3,0,1

+ (α2 − α1α2)α3

4 (T 3,2,1 + T 3,2,2 + 2T 3,1,1 + T 3,1,2 + T 3,1,3)

+
(

α2
3

8 − α1α2α3

2

)
U4,1,1

+
(

α2
3

8 − α1α2α3

4

)(
U4,1,2 + U4,1,3 + U4,2,1 + U4,2,2)+ α2

3
8
(
U4,2,3 + U4,3,1)

+
[
(α2 − α1α2)(α3 − 4α1α2) + (p − 4)

(
α1α2 − α3

4

)2
]

T 4,0,1

+ (α2 − α1α2)α3

2 T 4,1,1 + (α2 − α1α2)α3

4 (T 4,2,1 + T 4,2,2)

+
(

α2
3

16 − α1α2α3

4

)(
U5,1,1 + U5,1,2 + U5,2,1 + U5,2,2)

+ α2
3

16
(
U5,2,3 + U5,3,1 + U5,3,2 + U5,4,1) . (45)

3.5 Graph Matrix Norm Bounds
Now we analyze the norms of the graph matrices defined above in order to prove Proposi-
tion 15.
▶ Remark 26. Previous work of [1] established the typical norm of graph matrices when
the underlying matrix G is the Seidel adjacency matrix of an ER random graph, where the
quantities that characterize the norm bounds are the sizes of the minimum vertex separators
of the shapes. In this work, using different techniques, we prove graph matrix norm bounds
when the underlying matrix is the Seidel adjacency matrix of the Paley graph Gp.

Recall that we defined P0 = 1
p(p−1) J ∈ R(Fp

2)×(Fp
2) to denote the orthogonal projection

matrix to the constant vector. Following the strategies in [9], we define the following subspaces
of R(Fp

2):

V0 =
{

v ∈ R(Fp
2) : vi,j = vi′,j′ , ∀{i, j}, {i′, j′} ∈

(
Fp

2

)}
(46)

V1 =
{

v ∈ R(Fp
2) : ∃u ∈ RFp , s.t. ⟨1, u⟩ = 0 and v{i,j} = ui + uj , ∀{i, j} ∈

(
Fp

2

)}
(47)

V2 = (V0 ⊕ V1)⊥. (48)

In words, V0 is the span of constant vectors, V0 ⊕ V1 is the span of vectors v whose entries
v{i,j} can be decomposed to a sum of ui + uj for some u ∈ RFp , and V2 is the orthogonal

CCC 2023

30:16 Degree 4 SOS Lower Bound for Clique Number of Paley Graph

Table 1 We present the graph matrices that we consider in Section 3.5 for the proof of Theorem 2,
all defined on the Seidel adjacency matrix S of Gp. For each matrix, we give its name, the associated
shape (see Definition 19), and the formula for the entries of the matrix. Some matrices are only
non-zero on index sets satisfying certain equalities; in this case, for the sake of brevity, we indicate
this “pattern” in the first column, and do not include the requisite indicator function in the third
column. We also give the norm bound we prove in Section 3.5 and the norm bound for the same
graph matrix evaluated on an ER random graph that follows from [1]. In these bounds we give only
the order of growth; our bounds should be viewed as having an implicit O(·), and the bounds of [1]
as having an implicit Õ(·).

Matrix Shape Entry Formula Gp G(p, 1
2)

T 3,2,1
{a,b},{a,c}

A B

Sa,bSb,c p1/2 p1/2

T 3,2,2
{a,b},{a,c}

A B

Sa,cSb,c p1/2 p1/2

T 3,1,1
{a,b},{a,c}

A B

Sb,c p1/2 p1/2

T 3,1,2
{a,b},{a,c}

A B

Sa,b p p

T 3,1,3
{a,b},{a,c}

A B

Sa,c p p

T 3,0,1
{a,b},{a,c}

A B

1 p p

T 4,4,1
{a,b},{c,d}

BA

Sa,cSa,dSb,cSb,d p5/4 p

D. Kunisky and X. Yu 30:17

Matrix Shape Entry Formula Gp G(p, 1
2)

T 4,3,1
{a,b},{c,d}

BA

Sa,cSa,dSb,c + Sa,cSa,dSb,d +
Sa,cSb,cSb,d + Sa,dSb,cSb,d

p p

T 4,2,1
{a,b},{c,d}

BA

Sa,cSa,d + Sb,cSb,d p3/2 p3/2

T 4,2,2
{a,b},{c,d}

BA

Sa,cSb,c + Sa,dSb,d p3/2 p3/2

T 4,2,3
{a,b},{c,d}

BA

Sa,cSb,d + Sa,dSb,c p p

T 4,1,1
{a,b},{c,d}

BA

Sa,c + Sa,d + Sb,c + Sb,d p3/2 p3/2

T 4,0,1
{a,b},{c,d}

BA

1 p2 p2

U3,2,1
{a,b},{a,b}

A B ∑
i ̸∈{a,b} Sa,iSb,i 1 p1/2

U3,1,1
{a,b},{a,b}

A B ∑
i ̸∈{a,b} Sa,i + Sb,i 1 p1/2

CCC 2023

30:18 Degree 4 SOS Lower Bound for Clique Number of Paley Graph

Matrix Shape Entry Formula Gp G(p, 1
2)

U4,3,1
{a,b},{a,c}

A B ∑
i ̸∈{a,b,c} Sa,iSb,iSc,i p3/2 p

U4,2,1
{a,b},{a,c}

A B ∑
i ̸∈{a,b,c} Sa,iSb,i p p3/2

U4,2,2
{a,b},{a,c}

A B ∑
i ̸∈{a,b,c} Sa,iSc,i p p3/2

U4,2,3
{a,b},{a,c}

A B ∑
i ̸∈{a,b,c} Sb,iSc,i p p

U4,1,1
{a,b},{a,c}

A B ∑
i ̸∈{a,b,c} Sa,i p p3/2

U4,1,2
{a,b},{a,c}

A B ∑
i ̸∈{a,b,c} Sb,i p p3/2

U4,1,3
{a,b},{a,c}

A B ∑
i ̸∈{a,b,c} Sc,i p p3/2

U5,4,1
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sa,iSb,iSc,iSd,i p2 p2

D. Kunisky and X. Yu 30:19

Matrix Shape Entry Formula Gp G(p, 1
2)

U5,3,1
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sa,iSb,iSc,i +

Sa,iSb,iSd,i

p2 p2

U5,3,2
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sa,iSc,iSd,i +

Sb,iSc,iSd,i

p2 p2

U5,2,1
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sa,iSb,i p2 p5/2

U5,2,2
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sc,iSd,i p2 p5/2

U5,2,3
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sa,iSc,i +

Sa,iSd,i + Sb,iSc,i + Sb,iSd,i

p2 p2

U5,1,1
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sa,i + Sb,i p2 p5/2

U5,1,2
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sc,i + Sd,i p2 p5/2

CCC 2023

30:20 Degree 4 SOS Lower Bound for Clique Number of Paley Graph

complement of V0 ⊕ V1. Furthermore, let P1 and P2 be the orthogonal projection matrices
to the subspaces V1, and V2 respectively. Note that this is consistent with the previously
defined P0, which is the orthogonal projection matrix to the span of constant vectors V0.

In the analysis of ER graphs, these subspaces appear because they are the decomposition
of R(Fp

2) into irreducible subrepresentations under the action of Sp, with respect to which the
expectation of an FK pseudomoment matrix is invariant. This invariance does not hold for
our deterministic FK pseudomoment matrix, but we will see that the same decomposition is
still useful.

We will use the following norm bounds for the graph matrices defined earlier. The proofs
may be found in the full version of the paper.

▶ Proposition 27. ∥T 3,2,i∥ = O(√p) for i ∈ {1, 2}.

▶ Proposition 28. ∥T 3,1,1∥ = O(√p).

▶ Proposition 29. ∥T 3,1,i∥ = O(p) for i ∈ {2, 3}.

▶ Proposition 30. T 3,0,1 = 2(p − 2)P0 + (p − 4)P1 − 2P2.

▶ Proposition 31. ∥T 4,3,1∥ = O(p).

▶ Proposition 32. ∥T 4,i,j∥ = O(p3/2) for (i, j) ∈ {(2, 1), (2, 2), (1, 1)}. Moreover, all of
∥T 4,2,1P2∥, ∥P2T 4,2,2∥, ∥P2T 4,1,1∥, and ∥T 4,1,1P2∥ are O(√p).

▶ Proposition 33. ∥T 4,2,3∥ = O(p).

▶ Proposition 34. T 4,0,1 = (p−2)(p−3)
2 P0 − (p − 3)P1 + P2.

▶ Proposition 35. ∥U3,i,1∥ = O(1) for i ∈ {1, 2}.

▶ Proposition 36. ∥U4,3,1∥ = O(p3/2).

▶ Proposition 37. ∥U4,i,j∥ = O(p) for i ∈ {1, 2} and j ∈ {1, 2, 3}.

▶ Proposition 38. ∥U5,4,1∥ = O(p2).

▶ Proposition 39. ∥U5,3,i∥ = O(p2) for i ∈ {1, 2}.

▶ Proposition 40. ∥U5,i,j∥ = O(p2) for i ∈ {1, 2} and j ∈ {1, 2, 3}, where j ̸= 3 if i = 1.

▶ Theorem 41. ∥T 4,4,1∥ = O(p5/4).

Of these statements, Theorem 41 is by far the subtlest – unlike the other terms, where fairly
straightforward arguments work, for T 4,4,1 it turns out that a naive bound is insufficient,
and we must more carefully account for character sum cancellations. The bounds we prove
are generally incomparable to those for random graphs following from [1]: for some graph
matrices we expect a comparable norm bound but cannot prove one due to technical obstacles,
while for other graph matrices the Paley graph exhibits stronger cancellations than a random
graph and we can show a stronger norm bound. We compare the respective bounds in Table 1.
Moreover, as we show in Section 4.3, there is an example of a graph matrix for which the
norm when evaluated on the Paley graph is actually asymptotically larger than the norm
when evaluated on a random graph; however, this example does not figure in our analysis.

D. Kunisky and X. Yu 30:21

3.6 Final Steps
Finally, putting all the graph matrix norm bounds together, we prove Proposition 15, which
will conclude the proof of Theorem 9, as we have discussed earlier.

Proof of Proposition 15. The statements in this proof will hold for all sufficiently large
primes p.

To show H2,2 ⪰ (α1 + p−1
2 α2 −pα2

1)−1P0H2,1H1,2P0 +((1−ε)α1)−1(I −P0)H2,1H1,2(I −
P0), we have to show that M1 ⪰ M2, where M1 is the sum of all multiples of the identity,
T 3,0,1, and T 4,0,1 (possibly conjugated by P0 or I − P0) appearing in the expressions
(44) and (45), and M2 is the sum of the remaining graph matrices of shapes having at
least one edge. Note that V0,V1,V2 are eigenspaces of M1, with eigenvalues scaling as
(1 − o(1))6p2α4

1, (1 − o(1))4pα3
1, and (1 − o(1))4α2

1, respectively.
It is then sufficient to show3p2α4

1 0 0
0 2pα3

1 0
0 0 2α2

1

 ?
⪰

∥P0M2P0∥ ∥P0M2P1∥ ∥P0M2P2∥
∥P1M2P0∥ ∥P1M2P1∥ ∥P1M2P2∥
∥P2M2P0∥ ∥P2M2P1∥ ∥P2M2P2∥

 . (49)

Using the graph matrix norm bounds above, we have for any i ∈ {0, 1, 2} and j ∈ {0, 1, 2}
with (i, j) ̸= (2, 2) that

∥PiM2Pj∥ = O(p3/2α4
1), (50)

and for the remaining case

∥P2M2P2∥ = O(p2α5
1), (51)

so we only need to prove that the following matrix is positive semidefinite:3p2α4
1 − O(p3/2α4

1) −O(p3/2α4
1) −O(p3/2α4

1)
−O(p3/2α4

1) 2pα3
1 − O(p3/2α4

1) −O(p3/2α4
1)

−O(p3/2α4
1) −O(p3/2α4

1) 2α2
1 − O(p2α5

1)

 , (52)

which is verified by taking the Schur complement and using diagonal dominance when
α1 = c · p−2/3 for a sufficiently small constant c. ◀

With Proposition 15 proved, we have finished proving Theorem 9.

4 Ancillary Results

4.1 Optimality Over Feige-Krauthgamer Pseudomoments
In this section, we show that our lower bound is optimal over those achievable by FK
pseudomoments. To be precise, let us define a new SDP corresponding to this restricted type
of pseudomoment, a variant of (13):

FK4(G) :=

maximize
∑n

i=1 M0,1
∅,i

subject to Mr,c ∈ R([n]
r)×([n]

c) for r, c ∈ {0, 1, 2},

Mr,c
S,T depends only on S ∪ T,

Mr,c
S,T = 0 whenever S ∪ T /∈ K(G),

Mr,c
S,T depends only on |S ∪ T | when S ∪ T ∈ K(G),

M =

 1 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

 ⪰ 0

. (53)

CCC 2023

30:22 Degree 4 SOS Lower Bound for Clique Number of Paley Graph

102

p

3× 100

4× 100

6× 100

S
O

S
4
(G

p
)

1.017 p 0.395

1.177 p 0.323

Full SDP values

FK pseudomoment SDP values

Figure 1 For primes 5 ≤ p ≤ 250, we present the value of SOS4(Gp) and the value of FK4(Gp)
(where the semidefinite program is restricted to optimize over only FK pseudomoments). We fit
power models apb to the data and plot the results as well.

0 2500 5000 7500 10000 12500 15000 17500

p

0

5

10

15

20

25

ω
(G

p
)

0.238 (log p)2

ω(Gp)

Figure 2 For primes 5 ≤ p ≤ 16741, we present computations of the true clique number ω(Gp)
(taken from [46] and its online supplementary materials). We fit a model a(log p)2 to the data and
plot the results as well.

D. Kunisky and X. Yu 30:23

A B

Figure 3 We illustrate the graph matrix used as an example in Section 4.3.

Since the conditions of this SDP are more restrictive than those of SOS4(G), we have
SOS4(G) ≥ FK4(G). Our strategy has been to show that FK4(G) is large; the following
shows a limitation to this approach. The proof is given in the full version of the paper.

▶ Theorem 42. Over primes p ≡ 1 (mod 4), FK4(Gp) = Θ(p1/3).

4.2 Numerical Experiments
Given our results in Theorems 2 and 42, it is natural to ask whether a better lower bound
technique than working with FK pseudomoments might prove an optimal lower bound of
the form SOS4(Gp) = Ω(p1/2). In Figure 1, we present some surprising numerical results
suggesting that this is not the case. Namely, in addition to the true values of ω(Gp), we plot
the values of SOS4(Gp) (the “full SDP”) and of FK4(Gp) (the “FK pseudomoment SDP”)
on a log-log plot, and fit lines to these results.8

These results for FK4(Gp) confirm the statement of Theorem 42, with an estimated scaling
of FK4(Gp) ∼ p0.323, close to our result showing that FK4(Gp) ∼ p1/3. For SOS4(Gp), the
results still indicate a scaling below p1/2, estimated at SOS4(Gp) ∼ p0.395. Based on these
results, it seems reasonable to conjecture that SOS4(Gp) = O(p1/2−ε) for some ε > 0. This
prediction is compatible with that of [33], who, based experiments solving a weaker SDP
than degree 4 SOS as proposed by [21], experimentally found that SOS4(Gp) ≲ p0.456.

4.3 General Graph Matrix Norm Bounds Do Not Derandomize
In this section, we give a simple example of a graph matrix for which the norm bound of [1]
for ER graphs fails to hold for Paley graphs. Since the bound of [1] is a crucial ingredient
in the proof of the Ω(p1/2) SOS lower bound of [4], we take this as some evidence that
a sufficiently high degree of SOS can prove a bound of the form ω(Gp) ≤ O(p1/2−ε). In
particular, this gives theoretical evidence for the numerical observations above.

Let S ∈ Rn×n be the Seidel adjacency matrix of a graph. We consider the graph
matrix M = M(S) formed from S and the shape in Figure 3, with entries Mxy =
1{x ̸= y}

∑
a,b∈[n]

a ̸=b

Sa,xSa,ySb,xSb,y, where we do not need to include the constraints a, b /∈

{x, y} since these are automatically enacted by having Sa,a = 0 for all a.
For any such S and x ̸= y, we have Mxy = (S2)2

x,y − (p − 2). When S is the Seidel
adjacency matrix of the Paley graph, we have S2 = pI − 11⊤. Thus in this case we have
M(S) = (p−3)I − (p−3)11⊤, and ∥M∥ = (p−1)(p−3) ∼ p2. On the other hand, when S is
the Seidel adjacency matrix of a random ER graph, then the results of [1] show that, since the
shape of M has minimum vertex separator of size 1, with high probability, ∥M∥ ≤ Õ(p3/2).
Thus, the Paley graph adjacency matrix fails to satisfy this basic graph matrix bound.

8 These SDPs are solved using the Mosek solver through the CVXPY interface for Python.

CCC 2023

30:24 Degree 4 SOS Lower Bound for Clique Number of Paley Graph

References
1 Kwangjun Ahn, Dhruv Medarametla, and Aaron Potechin. Graph matrices: Norm bounds

and applications. arXiv preprint, 2016. arXiv:1604.03423.
2 Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique in a

random graph. Random Structures & Algorithms, 13(3-4):457–466, 1998.
3 Christine Bachoc, Máté Matolcsi, and Imre Z Ruzsa. Squares and difference sets in finite

fields. Integers, 13:A77, 2013.
4 Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and Aaron

Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. SIAM
Journal on Computing, 48(2):687–735, 2019.

5 Béla Bollobás. Random graphs. Cambridge University Press, second edition, 2001.
6 I Broere, D Döman, and JN Ridley. The clique numbers and chromatic numbers of certain

Paley graphs. Quaestiones Mathematicae, 11(1):91–93, 1988.
7 Fan R. K. Chung, Ronald L. Graham, and Richard M. Wilson. Quasi-random graphs.

Combinatorica, 9(4):345–362, 1989.
8 Ernie Croot and Vsevolod F Lev. Open problems in additive combinatorics. Additive

Combinatorics, 43:207–233, 2007.
9 Yash Deshpande and Andrea Montanari. Improved sum-of-squares lower bounds for hidden

clique and hidden submatrix problems. In 28th Annual Conference on Learning Theory (COLT
2015), pages 523–562, 2015.

10 Daniel Di Benedetto, József Solymosi, and Ethan P White. On the directions determined by a
Cartesian product in an affine Galois plane. Combinatorica, 41(6):755–763, 2021.

11 Irit Dinur, Yuval Filmus, Prahladh Harsha, and Madhur Tulsiani. Explicit SoS lower bounds
from high-dimensional expanders. arXiv preprint, 2020. arXiv:2009.05218.

12 Paul Erdös and George Szekeres. A combinatorial problem in geometry. Compositio Mathe-
matica, 2:463–470, 1935.

13 RJ Evans, JR Pulham, and J Sheehan. On the number of complete subgraphs contained in
certain graphs. Journal of Combinatorial Theory, Series B, 30(3):364–371, 1981.

14 Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden clique in a
semirandom graph. Random Structures & Algorithms, 16(2):195–208, 2000.

15 Uriel Feige and Robert Krauthgamer. The probable value of the Lovász-Schrijver relaxations
for maximum independent set. SIAM Journal on Computing, 32(2):345–370, 2003.

16 Laura Galli and Adam N Letchford. On the Lovász theta function and some variants. Discrete
Optimization, 25:159–174, 2017.

17 David Gamarnik and Ilias Zadik. The landscape of the planted clique problem: Dense
subgraphs and the overlap gap property. arXiv preprint, 2019. arXiv:1904.07174.

18 Sidney West Graham and CJ Ringrose. Lower bounds for least quadratic non-residues. In
Analytic number theory, pages 269–309. Springer, 1990.

19 Dima Grigoriev. Linear lower bound on degrees of Positivstellensatz calculus proofs for the
parity. Theoretical Computer Science, 259(1-2):613–622, 2001.

20 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combi-
natorial optimization, volume 2. Springer Science & Business Media, 2012.

21 Nebojša Gvozdenović, Monique Laurent, and Frank Vallentin. Block-diagonal semidefinite
programming hierarchies for 0/1 programming. Operations Research Letters, 37(1):27–31,
2009.

22 Willem H Haemers. Interlacing eigenvalues and graphs. Linear Algebra and its Applications,
226:593–616, 1995.

23 Brandon Hanson and Giorgis Petridis. Refined estimates concerning sumsets contained in the
roots of unity. Proceedings of the London Mathematical Society, 122(3):353–358, 2021.

24 Johan Hastad. Clique is hard to approximate within n1−ε. In Proceedings of 37th Conference
on Foundations of Computer Science, pages 627–636. IEEE, 1996.

https://arxiv.org/abs/1604.03423
https://arxiv.org/abs/2009.05218
https://arxiv.org/abs/1904.07174

D. Kunisky and X. Yu 30:25

25 Alan J Hoffman. On eigenvalues and colorings of graphs. In Bernard Harris, editor, Graph
Theory and its Applications. Academic Press, 1970.

26 Max Hopkins and Ting-Chun Lin. Explicit lower bounds against ω(n)-rounds of sum-of-squares.
arXiv preprint, 2022. arXiv:2204.11469.

27 Samuel B Hopkins, Pravesh K Kothari, and Aaron Potechin. SOS and planted clique: Tight
analysis of MPW moments at all degrees and an optimal lower bound at degree four. arXiv
preprint, 2015. arXiv:1507.05230.

28 Mark Jerrum. Large cliques elude the Metropolis process. Random Structures & Algorithms,
3(4):347–359, 1992.

29 Chris Jones, Aaron Potechin, Goutham Rajendran, Madhur Tulsiani, and Jeff Xu. Sum-of-
squares lower bounds for sparse independent set. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 406–416. IEEE, 2022.

30 Ferenc Juhász. The asymptotic behaviour of Lovász’ theta function for random graphs.
Combinatorica, 2(2):153–155, 1982.

31 Richard M Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972.

32 Richard M. Karp. The probabilistic analysis of some combinatorial search algorithms. In
Algorithms and complexity: New Directions and Recent Results, 1976.

33 Vladimir A Kobzar and Krishnan Mody. Revisiting block-diagonal sdp relaxations for the
clique number of the paley graphs. arXiv preprint, 2023. arXiv:2304.08615.

34 Luděk Kučera. Expected complexity of graph partitioning problems. Discrete Applied
Mathematics, 57(2-3):193–212, 1995.

35 Monique Laurent. Lower bound for the number of iterations in semidefinite hierarchies for the
cut polytope. Mathematics of Operations Research, 28(4):871–883, 2003.

36 Monique Laurent. Sums of squares, moment matrices and optimization over polynomials. In
Emerging Applications of Algebraic Geometry, pages 157–270. Springer, 2009.

37 László Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information
theory, 25(1):1–7, 1979.

38 Mark Magsino, Dustin G Mixon, and Hans Parshall. Linear programming bounds for cliques
in Paley graphs. In Wavelets and Sparsity XVIII, volume 11138, page 111381H. International
Society for Optics and Photonics, 2019.

39 Raghu Meka, Aaron Potechin, and Avi Wigderson. Sum-of-squares lower bounds for planted
clique. In 47th Annual ACM Symposium on Theory of Computing (STOC 2015), pages 87–96.
ACM, 2015.

40 Raghu Meka and Avi Wigderson. Association schemes, non-commutative polynomial concen-
tration, and sum-of-squares lower bounds for planted clique. In Electronic Colloquium on
Computational Complexity (ECCC), volume 20, page 10, 2013.

41 Hugh L Montgomery. Topics in multiplicative number theory, volume 227. Springer, 1971.
42 Rudi Mrazović. A random model for the Paley graph. The Quarterly Journal of Mathematics,

68(1):193–206, 2017.
43 Shuo Pang. SOS lower bound for exact planted clique. In 36th Computational Complexity

Conference (CCC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.
44 Stanislaw Radziszowski. Small Ramsey numbers. The Electronic Journal of Combinatorics,

1000:DS1–Aug, 2011.
45 Prasad Raghavendra and Tselil Schramm. Tight lower bounds for planted clique in the degree-4

SOS program. arXiv preprint, 2015. arXiv:1507.05136.
46 James B Shearer. Lower bounds for small diagonal Ramsey numbers. Journal of Combinatorial

Theory, Series A, 42(2):302–304, 1986.
47 Chi Hoi Yip. On the clique number of Paley graphs of prime power order. Finite Fields and

Their Applications, 77:101930, 2022.

CCC 2023

https://arxiv.org/abs/2204.11469
https://arxiv.org/abs/1507.05230
https://arxiv.org/abs/2304.08615
https://arxiv.org/abs/1507.05136

Sum-Of-Squares Lower Bounds for the Minimum
Circuit Size Problem
Per Austrin Ñ

KTH Royal Institute of Technology, Stockholm, Sweden

Kilian Risse
EPFL, Lausanne, Switzerland

Abstract
We prove lower bounds for the Minimum Circuit Size Problem (MCSP) in the Sum-of-Squares (SoS)
proof system. Our main result is that for every Boolean function f : {0, 1}n → {0, 1}, SoS requires
degree Ω(s1−ϵ) to prove that f does not have circuits of size s (for any s > poly(n)). As a corollary
we obtain that there are no low degree SoS proofs of the statement NP ̸⊆ P/poly.

We also show that for any 0 < α < 1 there are Boolean functions with circuit complexity larger
than 2nα

but SoS requires size 22Ω(nα)
to prove this. In addition we prove analogous results on the

minimum monotone circuit size for monotone Boolean slice functions.
Our approach is quite general. Namely, we show that if a proof system Q has strong enough

constraint satisfaction problem lower bounds that only depend on good expansion of the constraint-
variable incidence graph and, furthermore, Q is expressive enough that variables can be substituted
by local Boolean functions, then the MCSP problem is hard for Q.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Proof Complexity, Sum of Squares, Minimum Circuit Size Problem

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.31

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/010/

Funding Supported by the Approximability and Proof Complexity project funded by the Knut and
Alice Wallenberg Foundation.
Kilian Risse: Supported by Swiss National Science Foundation project 200021-184656 “Randomness
in Problem Instances and Randomized Algorithms”.

1 Introduction

Even before the dawn of complexity theory, there was an interest in the minimum circuit
size problem (MCSP): given the truth table of a Boolean function f : {0, 1}n → {0, 1} and
a parameter s, the MCSP problem asks whether there is a Boolean circuit of size at most
s computing f . Despite many years of research, we do not know whether this problem is
NP-hard. It clearly is in NP: given a circuit of size at most s (described by O(s log s) bits)
we can easily check in time O(s · 2n) whether this circuit indeed computes f .

Determining the hardness of MCSP itself turns out to be a difficult problem. Kabanets
and Cai [14] showed that NP-hardness of the MCSP problem implies breakthrough circuit
lower bounds. These lower bounds are not implausible but well out of reach of current
techniques. In a similar vein Murray and Williams [19] showed that NP-hardness of MCSP
implies that EXP ̸= ZPP and more recently Hirahara [13] proved that NP-hardness of
MCSP implies a worst-case to average-case reduction for problems in NP (for an appropriate
MCSP version).

On the other hand if one could show that MCSP is in P/poly, this would imply even
stronger (though less realistic) results: Kabanets and Cai [14] also showed that if MCSP is
in P/poly, then crypto-secure one way functions can be inverted on a considerable fraction
of their range.

© Per Austrin and Kilian Risse;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 31; pp. 31:1–31:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://people.kth.se/~austrin/
https://orcid.org/0000-0001-8217-0158
https://orcid.org/0000-0002-6913-3341
https://doi.org/10.4230/LIPIcs.CCC.2023.31
https://eccc.weizmann.ac.il/report/2023/010/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem

To summarize it seems unlikely that MCSP is in P, but showing that it is NP-hard
implies very strong consequences. As these results seem out of reach for current techniques, it
might be a more fruitful avenue to try to at least rule out that certain (families of) algorithms
solve the MCSP problem efficiently.

This can be achieved very elegantly in proof complexity: show that some proof system
capturing your algorithm requires long proofs to refute the claim that a complex function
has a small circuit. This will then rule out that the algorithm in question can efficiently
solve the MCSP problem. This will not only show that this specific algorithm requires long
running time but would also show that any algorithm captured by this proof system requires
long running time to solve the MCSP problem. Hence by this line of reasoning we manage
to rule out entire classes of algorithms to solve the MCSP problem efficiently.

This paper focuses on the Sum of Squares proof system (SoS). This proof system provides
certificates of unsatisfiability of systems of polynomial equations P = {p1 = 0, . . . , pm = 0}
over R. In this paper we are only interested in Boolean systems of equations, meaning
that P contains the equation x2 − x = 0 for every variable x appearing in the system. A
key complexity measure is the degree of a refutation, which is the maximum degree of a
monomial occurring in the refutation of P . All Boolean systems P over n variables have an
SoS refutation of degree n and we are interested in the minimum degree that SoS requires to
refute P . An SoS refutation of degree d has size O(nd) and can be found in nO(d) time using
semidefinite programming and this is often a useful heuristic bound for the complexity of an
SoS refutation. The actual size complexity of SoS can sometimes be significantly smaller
than nd [21] and it would be surprising if the shortest refutation can be found efficiently.
Hence it is in general of interest to understand both the degree and the size needed to refute
any given system.

SoS is a very powerful proof system and captures many state of the art algorithms
that are based on spectral methods. A classic algorithm captured by SoS is Goemans and
Williamson’s Max-Cut algorithm [8], but also approximate graph coloring algorithms [15],
and algorithms solving constraint satisfaction problems [2, 22] are captured by SoS. On the
other hand SoS has real difficulty arguing about integers and in particular parities. Indeed,
Grigoriev [10] showed that SoS requires degree Ω(n) to refute a random xor constraint
satisfaction problem of the appropriate (constant) density. After this initial lower bound it
took a few years to develop good lower bounds methods for SoS, but in recent years there
has been a flurry of strong SoS degree lower bounds [18, 4, 16].

In order to rule out that algorithms captured by SoS can solve MCSP efficiently, we need
to encode the claim that a given function has a small circuit as a propositional formula.
We work with the encoding suggested by Razborov [26], which encodes this claim that the
function f : {0, 1}n → {0, 1} has a circuit of size s by a propositional formula Circuits(f)
over O(s2 + s · 2n) = O(s · 2n) variables as follows. We have Θ(s2) structure variables to
encode all possible size s circuits, and for every assignment α ∈ {0, 1}n we then have an
additional Θ(s) evaluation variables that simulate the evaluation of the circuit on each input,
and constraints forcing the circuit to output the correct value on each input α.

A closely related question to the MCSP problem is the question of how hard it is to actually
prove strong circuit lower bounds. For example, are there efficient refutations of the statement
NP ⊆ P/poly, assuming the statement is false? This question, as proposed by Razborov [26],
can also be investigated by studying above formula: consider CircuitnO(1)(SAT), where SAT
is the function that outputs 1 if and only if the input is an encoding of a satisfiable CNF.
This is, essentially, a propositional encoding of the claim that SAT has a circuit in P/poly.
Hence proving lower bounds for CircuitnO(1)(SAT) rules out efficient proofs of NP ̸⊆ P/poly
in the proof system under consideration.

P. Austrin and K. Risse 31:3

Experience suggests that studying such meta-mathematical questions is difficult. This
problem is no exception to this rule and, even though the formula has been conjectured to be
hard for strong proof systems such as extended Frege, progress has been slow. The only proof
systems for which we have unconditional, superpolynomial lower bounds on proofs of the
Circuits(f) formula are Resolution [23, 27], small width DNF-Resolution [28] and Polynomial
Calculus [26, 28]. The resolution size and Polynomial Calculus degree lower bounds follow
from a reduction of the pigeonhole principle to Circuits(f). In fact, this reduction was a main
motivation for a long line of work [29, 20, 23, 27] eventually establishing strong resolution
lower bounds for the weak pigeonhole principle. The other size lower bounds follow from a
general connection between pseudo-random generator lower bounds and MCSP lower bounds
as outlined in [1, 28], building on Krajíček’s iterability trick [17].

As the pigeonhole principle is easy for the SoS proof system [11], we cannot hope to
borrow the hardness from that formula. Neither do we have strong enough pseudorandom
generator lower bounds for SoS to employ that connection. In fact, to date, we have no
unconditional (degree) lower bounds for any semi-algebraic proof system, that is, proof
systems that manipulate polynomial inequalities such as SoS or Cutting Planes. Furthermore
it has been stated [24, 25] as an explicit open problem to prove SoS degree lower bounds for
the formula Circuits(f).

1.1 Our Results
Our first result gives a lower bound on the degree needed to refute Circuits(f) in SoS. This
lower bound is very general and in fact applies to every Boolean function f : {0, 1}n → {0, 1}.

▶ Theorem 1. For all ε > 0 there is a d = d(ε) such that the following holds. For n ∈ N, all
s ≥ nd and any Boolean function f : {0, 1}n → {0, 1} on n bits, SoS requires degree Ωε(s1−ε)
to refute Circuits(f).

It is worthwhile to point out that the proof of Theorem 1 is not specific to the SoS
proof system. In fact we outline a general reduction that shows that if one has a CSP
lower bound of the form of Theorem 13 that only requires good expansion of the underlying
constraint-variable incidence graph and the proof system is expressive enough so that one
can replace variables by local Boolean functions, then one obtains strong lower bounds for
the Circuits(f) formula.

The lower bound of Ωε(s1−ε) on the degree is essentially tight: if f does not have a circuit
of size s then there exists an SoS refutation of this statement in degree O(s).

▶ Proposition 2. Let s ∈ N and f : {0, 1}n → {0, 1} be a Boolean function on n bits
that requires circuits of size larger than s to be computed. Then there is a degree O(s) SoS
refutation of Circuits(f).

For a proof of Proposition 2 we refer to the full version.
We also prove a result about the minimum size (number of monomials) required for

SoS to refute Circuits(f). This result holds for all functions that “almost” have a circuit
of size s, in the sense that they have an errorless heuristic circuit (see the survey [7]) of
size s/2 and extremely small error probability with respect to the uniform distribution.
Formally, we let Fn(s, t) denote the class of Boolean functions that consists of all functions
f : {0, 1}n → {0, 1} for which there is a Boolean circuit Cf : {0, 1}n → {0, 1, ⊥} of size at
most s such that
1. if Cf (α) ̸= ⊥, then Cf (α) = f(α), and
2. Cf (α) = ⊥ on at most t inputs.

CCC 2023

31:4 Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem

In other words the circuit Cf computes f correctly on all except t inputs. Note that
technically the output of the circuit Cf is two bits with the first one indicating whether
the output is ⊥ or the value of the second bit. We believe that above presentation is more
intuitive and hope that the slight abuse of notation causes no confusion. With the class of
functions Fn(s, t) at hand we can state our main SoS size lower bound.

▶ Theorem 3. For all ε > 0 there is a d = d(ε) such that the following holds. Let n ∈ N

and s ∈ N such that s ≥ nd. If t ≥ s and f ∈ Fn(s/2, t), then it holds that SoS requires size
exp

(
Ωε(s2−ε/t)

)
to refute Circuits(f).

This yields non-trivial size lower bounds for t as large as s2−ε/ω(1). Furthermore, note
that once t ≫ s log s there are functions that require such large circuits. For example setting
s = 2n0.99 and t = s1.5, the theorem shows that there are functions f that do not have
circuits of size s, but SoS requires size 22Ω(n0.99) to prove this.

It is natural to wonder whether SoS fares better in the monotone setting. In other words,
whether SoS can refute the claim that a complex monotone function has a small monotone
circuit. The following two theorems show that this is not the case for the set Mn(ℓ) of
monotone ℓ-slice functions. Recall that Mn(ℓ) consist of all Boolean functions f on n bits
such that f(α) = 0 for all α with Hamming weight less than ℓ, and f(α) = 1 for all α with
Hamming weight greater than ℓ (note that any such f is monotone).

We define a variant Circuitmon
s (f) of the Circuits(f) formula, which instead encodes the

claim that f has a monotone circuit of size s, and prove the following theorem.

▶ Theorem 4. For all ε > 0 there is a d = d(ε) such that the following holds. For all
n, ℓ ∈ N, all s ≥ nd and any monotone slice function f ∈ Mn(ℓ) SoS requires degree Ωε(s1−ε)
to refute Circuitmon

s (f).

As in the non-monotone case, we can also obtain size lower bounds for the monotone-
MCSP. Akin to the general size lower bound we consider monotone Boolean slice functions
that have good monotone errorless heuristic circuits. Let Mn(ℓ, s, t) ⊆ Mn(ℓ) be the class of
monotone Boolean ℓ-slice functions f : {0, 1}n → {0, 1} for which there is a (not necessarily
monotone) Boolean circuit Cmon

f : {0, 1}n → {0, 1, ⊥} of size s such that
1. for all ℓ-slice inputs α ∈

([n]
ℓ

)
it holds that if Cmon

f (α) ̸= ⊥, then Cmon
f (α) = f(α), and

2. Cmon
f (α) = ⊥ on at most t inputs α ∈

([n]
ℓ

)
.

▶ Theorem 5. For all ε > 0 there is a d = d(ε) such that the following holds. For
n, ℓ ∈ N, all s ≥ nd and t ≥ s and monotone function f ∈ Mn(ℓ, s/10, t) SoS requires size
exp

(
Ωε(s2−ε/t)

)
to refute Circuitmon

s (f).

1.2 Overview of Proof Techniques
Degree Lower Bound

The main idea that drives our result is a reduction from an expanding xor constraint
satisfaction problem to the Circuits(f) formula. The reduction is achieved through a careful
restriction of the Circuits(f) formula, such that each input α ∈ {0, 1}n to the circuit specifies
an xor constraint over some new set of variables Y . These Y variables are a subset of roughly
Θ(s1−ϵ) out of the Θ(s2) many structure variables of the Circuits(f) formula. All other
structure variables apart from the Y variables are fixed to constant values in this step. This
will then result in an XOR-CSP instance with 2n constraints over the variables Y . All that
SoS has to prove is that there is no satisfying assignment to this XOR-CSP instance. By

P. Austrin and K. Risse 31:5

ensuring that the constraint-variable incidence graph is sufficiently expanding, SoS requires
large degree to refute the restricted formula (see Theorem 13). At the same time, we need the
constraint graph to be very explicit so that it can be encoded into a small circuit. For this
we utilize a construction of unbalanced expanders by Guruswami et al. [12] (see Theorem 8).
This reduction then immediately yields Theorem 1.

This lower bound may also be viewed as implementing the general program sketched by
Razborov [28] relating pseudorandom generators in proof complexity to the MCSP problem.
However, we prefer to describe it as a direct reduction to the MCSP problem.

Size Lower Bound

In order to obtain size lower bounds, we would like to apply the degree-size tradeoff due
to Atserias and Hakoniemi [3] to Theorem 1. Unfortunately the formula is over too many
variables to be able to conclude a meaningful size lower bound: it is defined over roughly
Ω(2n · s) variables.

Instead of applying Theorem 1, we restrict our attention to functions with all except the
at most t ⊥-outputs computed by the corresponding errorrless heuristic circuit. If we choose
t small enough, then we are able to heavily restrict Circuits(f) and significantly reduce
the number of variables to the point where the Atserias-Hakoniemi degree-size tradeoff is
applicable.

Monotone Circuits

We prove these theorems by adapting the proofs for the non-monotone setting. The idea is to
work over the ℓth slice and disregard all other inputs. The key feature that makes this work
is the fact that the monotone circuit complexity of a slice function is essentially the same as
the (ordinary) circuit complexity (see Lemma 10). This lets us convert all subcircuits used
in the reduction to small monotone circuits (if we only work on the slice).

The size lower bound goes along the same lines as the proof of Theorem 3.

1.3 Organization

In Section 2, we provide the necessary background material. In Section 3 we set up the
general framework for our lower bounds with some preliminary definitions and lemmas. Then
in Section 4 we prove the main degree Theorem 1 and size Theorem 3 lower bounds. We prove
the monotone lower bounds Theorem 4 and Theorem 5 in Section 5. Finally in Section 6 we
give some concluding remarks.

2 Preliminaries

All logarithms are in base 2. For integers n ≥ 1 we write [n] = {1, 2, . . . , n} and for a set U

we denote the power set of U by 2U . Further, for a set V ⊆ U we let V be the complement
of V with respect to U , that is, V = U \ V . We write

([n]
ℓ

)
⊆ {0, 1}n for the set of binary

strings with Hamming weight ℓ. For a string α ∈ {0, 1}n we let |α| =
∑

i∈[n] αi.
We sometimes want to supress dependencies on constants and write f(n, ε) ∈ Oε

(
g(n, ε)

)
,

respectively f(n, ε) ∈ Ωε

(
g(n, ε)

)
, to mean that there exists a function c(ε) > 0 such

that there is an n0 and for all n ≥ n0 it holds that f(n, ε) ≤ c(ε) · g(n, ε), respectively
f(n, ε) ≥ c(ε) · g(n, ε).

CCC 2023

31:6 Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem

▶ Definition 6. A sequence of bipartite graphs {Gn = (Un, Vn, En)}n∈N with deg(u) = d for
all u ∈ Un is explicit if there is an algorithm that given (n, u, j), where n ∈ N, u ∈ Un and j ∈
[d], computes the jth neighbor of vertex u in the graph Gn in time poly(log n+log |U |+log d).

From now on it is understood that whenever we talk about an explicit graph we actually
mean to say that there is a sequence of explicit graphs with above properties.

For a graph G = (V, E) and W ⊆ V we denote by

N(W) = { u ∈ V \ W | (w, u) ∈ E for some w ∈ W }

the set of neighbors of W .

▶ Definition 7. A bipartite graph G = (U, V, E) is an (r, d, c)-expander if every vertex u ∈ U

has degree deg(u) = d and every set W ⊆ U of size |W | ≤ r satisfies |N(W)| ≥ c · |W |.

A key ingredient in our proofs is the following result on the existence of strong explicit
expanders.

▶ Theorem 8 ([12]). For all constants γ > 0, every M ∈ N, r ≤ M , and ε > 0, there is an
N ≤ d2 · r1+γ and an explicit (r, d, (1 − ε)d)-expander G = (U, V, E), with |U | = M , |V | = N ,
and d = O

(
((log M)(log r)/ε)1+1/γ

)
.

For our purposes it is more relevant to compute the neighbor relation Neigh(u, v)
indicating whether (u, v) ∈ E rather than the neighbor function as in Definition 6, but this
is an immediate consequence of being able to compute the neighbor function.

▷ Claim 9. If G = (U, V, E) is explicit then the neighbor relation Neigh : U × V → {0, 1}
is computable by a circuit of size d ·

(
poly(log n + log |U | + log d) + 2 log |V | + 1

)
.

A slice function is a Boolean function f such that there is a ℓ ∈ [n] with f(α) = 0
whenever |α| < ℓ, and f(α) = 1 whenever |α| > ℓ. Note that all slice functions are monotone.

The circuit complexity C(f) of a Boolean function f is the size of the smallest circuit
over the basis ∨, ∧, and ¬ (with fan-in 2). Similarly the monotone circuit complexity Cmon(f)
of a monotone Boolean function f is the size of the smallest circuit over the basis ∨, and ∧.
We have the following useful inequality between these measures.

▶ Lemma 10 ([6]). If g is any slice function on n bits, then Cmon(g) ≤ 2 C(g) + O(n2 log n).

Finally we also rely on the following simple claim.

▷ Claim 11. Let p : Rn → R be a degree d polynomial such that p(x) = 0 for all x ∈ {0, 1}n.
Then p can be written as

p(x) =
∑
i∈[n]

qi(x) · (x2
i − xi)

where each term in the sum has degree at most d.

Proof sketch. We take the polynomial p and multilinearize it, using the appropriate polynomial
x2

i − xi. Eventually we are left with a sum of polynomials of the form qi(x) · (x2
i − xi) and a

multilinear polynomial p̃(x) which is 0 on all Boolean inputs. As multilinear polynomials are
a basis for Boolean functions this implies that p̃(x) is equal to the 0 polynomial and hence
the claim follows. ◁

P. Austrin and K. Risse 31:7

2.1 Sum of Squares
Let P = {p1 = 0, . . . , pm = 0} be a system of polynomial equations over the set of variables
X = {x1, . . . , xn, x̄1, . . . , x̄n}. Each pi is called an axiom, and throughout the paper we
always assume that P includes all axioms x2

i − xi and x̄2
i − x̄i, ensuring that the variables

are Boolean, as well as the axioms 1 − xi − x̄i, making sure that the “bar” variables are in
fact the negation of the “non-bar” variables.

▶ Definition 12 (Sum-of-Squares). Sum-of-Squares (SoS) is a static, semi-algebraic proof
system. An SoS proof of f ≥ 0 from P is a sequence of polynomials π = (t1, . . . , tm; s1, . . . , sa)
such that∑

i∈[m]

tipi +
∑
i∈[a]

s2
i = f .

The degree of a proof π is Deg(π) = max{maxi∈[m] deg(ti) + deg(pi), maxi∈[a] 2 deg(si)}, an
SoS refutation of P is an SoS proof of −1 ≥ 0 from P, and the SoS degree to refute P is the
minimum degree of any SoS refutation of P: if we let π range over all SoS refutations of P,
we can write Deg(P ⊢SoS ⊥) = minπ Deg(π). The size of an SoS refutation π, Size(π), is the
sum of the number of monomials in each polynomial in π and the size of refuting P is the
minimum size over all refutations Size(P ⊢SoS ⊥) = minπ Size(π).

Let us recall some well-known results about SoS. Given a bipartite graph G = (U, V, E),
and b ∈ {0, 1}|U | we denote by Φ(G, b) the following XOR-CSP instance defined over G: for
each v ∈ V there is a Boolean variable xv, and for every vertex u ∈ U there is a constraint
⊕v∈N(u)xv = bu. We encode this in the obvious way as a system of polynomial equations:{ ∏

v∈N(u)

(1 − 2 · xv) = 1 − 2 · bu | u ∈ U
}

,

along with the Boolean axioms and the negation axioms for the x variables. The first theorem
we need to recall is the classic lower bounds for XOR-CSPs by Grigoriev.

▶ Theorem 13 ([10]). For n ∈ N, all k = k(n) and r = r(n) the following holds. Let
G = (U, V, E) be an (r, k, 2)-expander with |V | = n. Then for every b ∈ {0, 1}|U | SoS requires
degree Ω(r) to refute the claim that there is a satisfying assignment to Φ(G, b).

We also need to recall the size-degree tradeoff by Atserias and Hakoniemi.

▶ Theorem 14 ([3]). Let P be a system of polynomial equations over n Boolean variables
and degree at most k. If d is the minimum degree SoS requires to refute P, then the minimum
size of an SoS refutation of P is at least exp(Ω((d − k)2/n)).

2.2 Restrictions
Let P = {p1 = 0, . . . , pm = 0} be a system of polynomial equations over the set
of Boolean variables X = {x1, . . . , xn, x̄1, . . . , x̄n}. For a map ρ : {x1, . . . , xn} →
{0, 1, x1, . . . , xn, x̄1, . . . , x̄n} denote by P

∣∣
ρ

the system of polynomial equations P restricted
by ρ, i.e.,

P
∣∣
ρ

= {p1(ρ(x1), . . . , ρ(xn)) = 0,

p2(ρ(x1), . . . , ρ(xn)) = 0,

...
pm(ρ(x1), . . . , ρ(xn)) = 0} ,

CCC 2023

31:8 Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem

where it is understood that ρ(x̄i) = ρ(xi), with the convention ¯̄xi = xi, 0̄ = 1 and vice versa.
Throughout the paper all our restrictions set the bar variables to the negation of the non-bar
variables. As such it makes sense to treat the pair of variables (xi, x̄i) as one variable and
we say that P has n unset variables.

▶ Definition 15 (Variable Substitution). We say that a system of polynomial equations P ′ is
a variable substitution of P if there is a map ρ : {x1, . . . , xn} → {0, 1, x1, . . . , xn, x̄1, . . . , x̄n}
such that P ′ = P

∣∣
ρ
, where we ignore polynomial equations of the form 0 = 0.

The following well-known lemma states that a system of polynomial equations P is at
least as hard as any of its variable substitutions.

▶ Lemma 16. Let P, P ′ be systems of polynomial equations such that P ′ is a variable
substitution of P. Then,
1. Deg(P ⊢SoS ⊥) ≥ Deg(P ′ ⊢SoS ⊥), and
2. Size(P ⊢SoS ⊥) ≥ Size(P ′ ⊢SoS ⊥).
The lemma is easy to verify by considering an SoS refutation of P and hitting it with the
appropriate variable substitution. The restricted proof is now a refutation of P ′ and it can
be seen that the degree/size of the restricted refutation is at most the degree/size of the
original refutation.

We also consider more general substitutions.

▶ Definition 17 (Polynomial Substitution). Functions ρ : {x1, . . . , xn} → R[x]≤k that map
variables to polynomials of degree at most k are called polynomial substitutions.

For polynomial substitutions we have the following well-known lemma.

▶ Lemma 18. Let P be a system of polynomial equations and let ρ be a polynomial substitution
mapping variables to polynomials of degree at most k. Then, Deg(P ⊢SoS ⊥) ≥ Deg(P

∣∣
ρ

⊢SoS

⊥)/k.

This lemma can again be verified by considering a refutation of P. Substitute each
variable xi in the proof by ρ(xi). This results in a refutation of P

∣∣
ρ
, whose degree is at most

a factor k larger than the degree of the refutation of P.

2.3 The Circuit Size Formula
The formula Circuits(f) encodes the claim that the function f , given as a truthtable
f ∈ {0, 1}2n , can be computed by a circuit of size s over n Boolean inputs x1, . . . , xn. The
encoding is not essential but for concreteness let us fix one encoding of this claim. We
deviate from the encoding used by Razborov [26, 27] and do not present the formula as a
propositional formula but rather as a system of polynomial equations. In order to encode
below constraints as a constant width CNF formula, as done by Razborov, one needs to
introduce extension variables. Despite this difference it is not difficult to see that our lower
bound also works against the CNF encoding (see the full version of this paper for more
details).

We also need to define the monotone version of Circuits(f) denoted by Circuitmon
s (f).

The later is a restriction of the former with the IsNeg(v) (see below) variable, for all v ∈ [s],
set to 0. This forces the circuit to only contain ∧ and ∨ gates, i.e., the circuit is monotone.

All variables introduced in the following are Boolean variables and we implicitly add the
Boolean axiom y(1 − y) = 0 for each variable y and further implicitly introduce the “bar
variable” ȳ along with the negation axiom y = 1 − ȳ (and the corresponding Boolean axiom)
ensuring that ȳ is always the negation of y.

P. Austrin and K. Risse 31:9

Let us first describe the structure variables which are used to describe the circuit that
supposedly computes the function f .

We view the s gates as being indexed from 1 to s in topological order with gate s being the
output. For each gate v ∈ [s] there are three variables IsNeg(v), IsOr(v), IsAnd(v) indicating
the operation computed at v. Similarly for a gate v ∈ [s] and a wire a ∈ {1, 2} we have
variables IsFromConst(v, a), IsFromInput(v, a), IsFromGate(v, a) indicating whether the input
wire a of v is connected to a constant, a variable or a gate.

Further, we have the variables ConstantValue(v, a), IsInput(v, a, i) and IsGate(v, a, u), for
a ∈ {1, 2}, i ∈ [n] and u < v, specifying the constant value, input xi or gate u, the input
wire a of v is connected to (assuming a is connected to the corresponding kind).

The second set of variables are the evaluation variables, which describe what value is
computed at each v on input α = α1, . . . , αn (i.e., we have xi = αi).

For each gate v ∈ [s] and assignment α ∈ {0, 1}n we have a Boolean variable Outα(v)
indicating the value computed at gate v on input α. The Boolean variable Inα(v, a) indicates
the value brought to the vertex v ∈ [s] on wire a ∈ {1, 2} on input α.

Note that there is a total of 3s + 6s + 2s + 2sn + 2
(

s
2
)

= Θ(s2 + sn) structure variables,
and a total of 3s2n evaluation variables, for a total of Θ(s2 + s2n) variables in Circuits(f).

The formula consists of the following axioms. For the sake of readability we omit some
universal quantifiers: the variable a ∈ {1, 2} in Axioms 1 and 3–9 as well as the variable
α ∈ {0, 1}n in Axioms 7–13 are implicitly universally quantified.

Let us first describe the axioms on the structure of the circuit. In the following section
we refer to this set of axioms as the structure axioms. The first axioms ensure that every
wire is connected to a single kind

IsFromConst(v, a) + IsFromInput(v, a) + IsFromGate(v, a) = 1 ∀ v ∈ [s] , (1)

and similarly the next axioms make sure that each gate is of precisely one kind

IsNeg(v) + IsOr(v) + IsAnd(v) = 1 ∀ v ∈ [s] . (2)

The final structure axioms ensure that the variables, which indicate to what input or gate
a fixed wire is connected to, always sum to one (except for gate 1 which cannot have any
inputs from other gates)

n∑
i=1

IsInput(v, a, i) = 1 ∀v ∈ [s], and (3)

v−1∑
u=1

IsGate(v, a, u) = 1 ∀v ∈ [s] \ {1} . (4)

We further strengthen our encoding by adding the axioms

IsInput(v, a, i) IsInput(v, a, j) = 0 ∀v ∈ [s], i < j ∈ [n], and (5)
IsGate(v, a, u) IsGate(v, a, u′) = 0 ∀u < u′ < v ∈ [s] . (6)

Note that Axioms 5 and 6 are implied by Axioms 3 and 4. We add these axioms in order to
argue that a short refutation of the CNF encoding of this principle leads to a short refutation
of the present encoding.

The second group of axioms are the evaluation axioms and they ensure that the evaluation
variables indeed compute the intended values. We start by making sure that the wires carry
the value intended by the structure axioms. If a wire is connected to a constant, then the
evaluation variable associated with that wire should always be equal to the constant

CCC 2023

31:10 Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem

IsFromConst(v, a) ·
(

Inα(v, a) − ConstantValue(v, a)
)

= 0 , (7)

and similarly in case if a wire is connected to an input or a gate

IsFromInput(v, a) · IsInput(v, a, i) ·
(

Inα(v, a) − αi

)
= 0 , (8)

IsFromGate(v, a) · IsGate(v, a, u) ·
(

Inα(v, a) − Outα(u)
)

= 0 . (9)

The final set of evaluation axioms makes sure that the output evaluation variable of a gate is
correctly related to the input evaluation variables:

IsNeg(v) · Outα(v) = IsNeg(v) · Inα(v, 1) , (10)

IsOr(v) · Outα(v) = IsOr(v) ·
(
1 − Inα(v, 1) · Inα(v, 2)

)
, (11)

IsAnd(v) · Outα(v) = IsAnd(v) · Inα(v, 1) · Inα(v, 2) . (12)

Last but not least we have the axioms that ensure that the circuit outputs the function
specified by the truthtable

Outα(s) = f(α) . (13)

3 On Circuits and Restrictions

Let G = (U, V, E) be a bipartite graph with U = {0, 1}n and V = [m]. As in the XOR-
CSP setup (Section 2.1) we think of vertices in U as constraints and vertices in V as
variables. More specifically, we think of each vertex α ∈ U as an xor constraint over the
variables in the neighborhood ⊕i∈N(α)vi = bα, for a constraint vector b ∈ {0, 1}U . Given
an assignment β ∈ {0, 1}m to the variables V , we let fG,β : U → {0, 1} be the function
defined by fG,β(α) = ⊕i∈N(α)vi. In other words, viewing fG,β as a vector in {0, 1}U , it is
the unique constraint vector such that the XOR-CSP instance, defined over G, is satisfied
by the assignment β. Let us denote the set of all such constraint vectors that give rise to a
satisfiable XOR-CSP instance by

FG = {fG,β | β ∈ {0, 1}m} .

In order for SoS to refute an XOR-CSP instance defined over G, it must prove that the given
constraint vector is not in the set FG.

On the other hand in order for SoS to refute the formula Circuits(f) it needs to show
that there is no circuit of size at most s computing f . That is, SoS needs to show that f is
not in the set

C∅ = {T : {0, 1}n → {0, 1} such that Circuits(T) is satisfiable} .

More generally, if we restrict Circuits(f) by a restriction ρ, then the proof system must prove
that f is not a member of the family of truthtables

Cρ = {T : {0, 1}n → {0, 1} such that Circuits(T)
∣∣
ρ

is satisfiable} .

In the following we show that there is a well-behaved restriction ρ such that Cρ = FG for
some explicit graphs G. In other words, once we consider the restricted formula Circuits(f)

∣∣
ρ
,

SoS needs to rule out that f is a valid right hand side of an XOR-CSP instance. But we
know that if G is a moderate expander, then low degree SoS cannot determine whether the
XOR-CSP instance is satisfiable and hence we obtain our lower bound.

Let us first formalize the properties we require from ρ. We start off by restricting our
attention to a certain natural class of variable substitutions. Namely, we do not want that
the structure of the circuit depends on evaluation variables.

P. Austrin and K. Risse 31:11

▶ Definition 19 (natural variable substitutions). A variable substitution ρ to the variables
of Circuits(f) is natural if there is no structure variable y such that ρ(y) is an evaluation
variable.

In order to motivate the next definition, let us informally describe the natural restriction
ρ and explain the properties of ρ we require.

For now we can think of ρ as a restriction to the structure variables (though for the
size lower bounds we also need to restrict some of the evaluation variables). Some set of
m structure variables remains undetermined. Let us denote these variables by y1, . . . , ym.
We intend to choose ρ such that on a given input α ∈ {0, 1}n to the circuit, it is forced to
compute ⊕i∈N(α)yi. In other words, given such a restriction ρ, we are essentially left with
an XOR-CSP problem over G, with right hand side f . There is however a difference in
that the encoding is non-standard: the evaluation variables act like extension variables that
correspond to the functions computed at each gate of the circuit. In order to argue that the
known degree lower bound for the XOR-CSP problem implies a degree lower bound for the
problem at hand, we need to get rid of these extension variables. This can be done if the
functions computed at the gates are of low degree in the y variables.

Recall from Section 2.2 that a system of polynomial equations P has n unset variables if
there are n tuples of variables (x, x̄) such that at least one variable of each tuple occurs in P
and all variables in these tuples are unset, i.e., they are not fixed to a constant.

▶ Definition 20 (k-determined). Let ρ be a variable substitution to the variables of Circuits(f)
and suppose that ρ leaves m structural variables Y = {y1, . . . , ym} unset. Then ρ is k-
determined if for every v ∈ [s] and α ∈ {0, 1}n there are multilinear polynomials

gout
v,α, gin1

v,α, gin2
v,α : {0, 1}m → {0, 1}

depending on at most k variables such that the following holds. For all T ∈ Cρ and all total
assignments σ that satisfy Circuits(T)

∣∣
ρ

it holds that

Outα(v)
∣∣
ρ∪σ

= gout
v,α(β) , Inα(v, 1)

∣∣
ρ∪σ

= gin1
v,α(β) , and Inα(v, 2)

∣∣
ρ∪σ

= gin2
v,α(β) , (14)

where β ⊆ σ is the assignment to Y .

However, Definition 20 is not quite sufficient. For example, there is no guarantee that Cρ

is non-empty, i.e., that the restriction ρ describes a valid (partial) circuit. More generally,
we need the additional guarantee that there are still many viable circuits that the restricted
formula can describe: if there is just a single setting of the Y variables such that all structural
axioms are satisfied, then the formula may be refuted in constant degree. Hence we need to
ensure that there are many viable assignments to the Y variables that satisfy all structure
axioms. This leads us to the following definition.

▶ Definition 21 (m-independent). A variable substitution ρ to the variables of the formula
Circuits(f) is m-independent if ρ leaves exactly m structural variables Y = {y1, . . . , ym}
unset, and for every assignment β ∈ {0, 1}Y it holds that |Cρ∪β | = 1.

With these definitions at hand we can state the lemma that drives all our lower bounds.

▶ Lemma 22. Let ρ be a natural m-independent k-determined variable substitution of
Circuits(f), and let Y and gout

u,α be as in Definition 20. If there is an SoS refutation
of Circuits(f)

∣∣
ρ

of degree d, then there is a degree d · k SoS refutation of the system of
polynomial equations

{gout
s,α(Y) = f(α) | α ∈ {0, 1}n} ∪ {y2

i = yi | i ∈ [m]} . (15)

CCC 2023

31:12 Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem

For proving this lemma, we consider the natural extension of ρ which substitutes all
evaluation variables by appropriate degree-k polynomials as indicated by Definition 20.

▶ Definition 23. For a k-determined restriction ρ (with associated polynomials gout
v,α, gin1

v,α, gin2
v,α)

of Circuits(f), we denote by ρ̂ the polynomial substitution that extends ρ by first substituting
any bar variable x̄ by 1 − x and then substituting all evaluation variables as follows:

ρ̂(Outα(v)) = gout
v,α(Y) , ρ̂(Inα(v, 1)) = gin1

v,α(Y) , and ρ̂(Inα(v, 2)) = gin2
v,α(Y) .

Note that the formula Circuits(f)
∣∣
ρ̂

is defined only over Y . Let us stress that there are
no “bar” variables left in the formula. The main observation used to prove Lemma 22 is the
following claim, which establishes that the formula (15) is in fact essentially the same as
Circuits(f)

∣∣
ρ̂
.

▷ Claim 24. Let ρ be a natural m-independent k-determined variable substitution of
Circuits(f). Then Circuits(f)

∣∣
ρ̂

can be written as

Circuits(f)
∣∣
ρ̂

= P ∪ Q ,

where P is the formula (15) and Q only consists of axioms that are satisfied for all assignments
β ∈ {0, 1}Y .

Proof. Note that the set of output axioms (13) of Circuits(f) under ρ̂ equals the first part of
(15), and that the Boolean axioms on the Y variables in Circuits(f)

∣∣
ρ̂

are exactly the second
part of (15).

The remaining axioms of Circuits(f)
∣∣
ρ̂
, which are not present in (15), are the Boolean

axioms on the variables outside Y , the negation axioms, as well as Axioms 1–12.
The Boolean axioms may turn into polynomials of degree at most 2k. Because the

polynomials we substitute the variables with are Boolean valued, we see that these substituted
axioms are satisfied for all assignments β ∈ {0, 1}Y and we can thus put them into the set Q.

The negation axioms all become “0 = 0” under ρ̂ since ρ̂(x̄) = 1 − ρ̂(x).
Finally we need to argue that the Axioms 1–12 are also of the form p(Y) = 0 for a

polynomial p which is identically 0 on all of {0, 1}m. This in turn follows immediately from
the assumption that ρ is m-independent: for every β ∈ {0, 1}Y , there exists some T such
that the complete assignment ρ̂(β) ∪ β satisfies Circuits(T). But since none of the remaining
Axioms 1–12 depends on T , they must then all be satisfied for every β ∈ {0, 1}Y . ◁

Using this claim we can easily prove Lemma 22.

Proof of Lemma 22. Suppose Circuits(f)
∣∣
ρ

has a refutation in degree d. By Lemma 18,
there then exists a degree d · k refutation of Circuits(f)

∣∣
ρ̂
.

By Claim 24, this new refutation is almost a refutation of (15), except that Circuits(f)
∣∣
ρ̂

has an additional set Q of axioms that the refutation may use. However, each of these
additional axioms is of the form p(Y) = 0 for a polynomial which is identically 0 on the
entire Boolean cube. By Claim 11, such an axiom can be rewritten as a linear combination
of the Boolean axioms. Since the Boolean axioms are present in (15), this yields a refutation
of that formula in degree d · k. ◀

P. Austrin and K. Risse 31:13

4 Lower Bounds for General Circuits

We state the following lemma general enough so that we can apply it for the degree as well as
the size lower bound. As explained previously, for the size lower bounds we rely on functions
that almost have circuits of size s. Recall that we consider the class of functions Fn(s, t)
that consists of all Boolean functions f : {0, 1}n → {0, 1} for which there is a Boolean circuit
Cf : {0, 1}n → {0, 1, ⊥} of size at most s such that
1. if Cf (α) ̸= ⊥, then Cf (α) = f(α), and
2. Cf (α) = ⊥ on at most t inputs.
The following lemma establishes the existence of m-independent k-determined variable
substitutions that result in XOR-CSP instances over explicit graphs.

▶ Lemma 25. For all k, m, n, t ∈ N satisfying m ≤ 2n, and any explicit bipartite graph
G = (U, V, E) such that |U | = 2n, |V | = m and all u ∈ U are of degree deg(u) ≤ k, the
following holds. There is a constant C > 0, depending on the explicitness of G, such that
for all s ≥ C · m · nC · kC and any Boolean function f ∈ Fn(s/2, t) there is a natural
m-independent k-determined variable substitutions ρ for the formula Circuits(f) such that

gout
s,α(Y) =

{
f(α), if Cf (α) ̸= ⊥,

⊕i∈N(α)yi, otherwise

for all α ∈ {0, 1}n and gout
s,α and Y as in Definition 20. Furthermore, the formula Circuits(f)

∣∣
ρ

is over O
(
t · k + m

)
variables.

For the degree lower bound (Theorem 1) we will set t = 2n and use the trivial Cf which
always outputs ⊥, so the reader who wishes a simplified version of the lemma can focus on
this special case.

Proof. We consider the formula Circuits(f) and let the first m gates of the formula be
denoted by Y . We restrict the formula such that each gate in Y computes an or of two
constants. The first wire to the gate is fixed to the constant 0, whereas the second wire is
only restricted to carry either the constant 0 or 1. In the end these will be the only structural
variables that are not restricted to a constant. In the following we think of the gates Y as
Boolean variables; as m additional input bits to our circuit.

Further, we restrict another part of the formula such that one part of the circuit described
by the formula computes the circuit Cf . Recall that we pretend that the output of Cf is
in {0, 1, ⊥}, but it actually outputs two bits C1

f and C2
f , where C1

f (α) = 1 if and only if
C2

f (α) = f(α).
Finally we also want to hard code the bipartite graph G({0, 1}n, Y, E) into our circuit.

Since G is very large this requires G to be explicit. That is, we require small circuits
Sel1, . . . , Selm, where given any α ∈ {0, 1}n, Seli(α) is 1 if and only if the vertex yi ∈ Y is a
neighbor of the vertex α. By Claim 9 these circuits Seli are each of size

k · (poly(n + log k) + 2 log m + 1) ≤ poly(n, k) .

The restriction ρ restricts some structural variables such that a part of the circuit computes
Sel1, . . . , Selm. We connect each output of the Seli circuit by an and gate to the negation of
C1

f . Denote the resulting circuits by Sel′1, . . . , Sel′m. Observe that the circuits Sel′i output 0
whenever C2

f (α) = f(α) and otherwise output Seli. We think of these circuits as “selector
circuits” which indicate whether on input α ∈ {0, 1}n (to the original variables x1, . . . , xn

over which the circuit is defined) the variable yi ∈ Y appears in the constraint for α.

CCC 2023

31:14 Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem

y1Sel′1

∧

y2Sel′2

∧

ymSel′m

∧

· · ·
α α α

⊕

Cf

∧

∨

α

Figure 1 A schematic depiction of the formula after hitting it with the described restriction.

The output of these selector circuits Sel′i is connected to the gate yi by an and gate.
All these m and gates are in turn connected to a circuit computing the xor of these gates.
Finally, to ensure that the circuit computes f(α) on inputs α such that Cf (α) ̸= ⊥, we
connect C1

f with C2
f by an and gate which is then connceted by a or gate to the output of

the xor circuit. This completes the description of the restriction on the structure variables.
A depiction of the resulting circuit can be found in Figure 1.

Note that this implements the intended semantics: for each input α ∈ {0, 1}n the selector
circuits output 1 on some variables yi which are then xor ’ed, and the restricted circuit
outputs⊕

i∈N(α)

yi , (16)

unless Cf (α) ̸= ⊥, in which case the output of the circuit is f(α) and all selector circuits
output 0. We require that s is larger than the size of the described circuit which is of size
O

(
m · poly(n, k)

)
+ s/2.

We have the intended semantics of the circuit and need to ensure the furthermore property:
that the restricted formula is over few variables. First, since the selector circuits Sel′i are fixed,
all evaluation variables for these subcircuits can be fixed to constants. The same holds for the
circuit Cf . Similarly, since the yi gate always carries the value of the yi variable, all 2n · m

wire variables corresponding to the Y variables can be substituted by the corresponding yi

variable and are thus restricted away.
After these restrictions the only evaluation variables left are those for the evaluation of

the ⊕ circuit. For α such that Cf (α) ̸= ⊥, the selector circuits are hard-wired to 0 and
in particular the inputs to the ⊕ circuit is hard-wired to 0, meaning that these evalation
variables can be restricted away.

There remains then only the O(t · m) evaluation variables corresponding to the evaluation
of the ⊕ circuit for inputs α such that Cf (α) = ⊥. Let us, without loss of generality, use an
xor-circuit which iteratively xors each variable. Concretely, let it have subcircuits χi where
χ1 = Sel′1 ∧y1 and χi = χi−1 ⊕ (Sel′i ∧yi) for i > 1, and χm is the overall output of the ⊕
circuit.

P. Austrin and K. Risse 31:15

The only observation required is that if the circuit Sel′i(α) = 0, then χi gets a 0 as input
from index i, independent of the value of yi. Hence the output wire variable of the circuit χi

indexed by the input α can be substituted by the output of the circuit χi−1. Hence for each
α such that Cf (α) = ⊥, we can reduce the number of free wire variables indexed by α to
O(k), as each ⊕-constraint is over at most k variables. As Cf outputs ⊥ on at most t inputs,
we end up with a restriction leaving only a total of O(t · k + m) remaining variables in the
restricted formula.

This completes the description of the restriction ρ. The only part that remains is to verify
that ρ is natural, k-determined, and m-independent. That ρ is natural is immediate – it does
not substitute any structural variable by an evaluation variable. For k-determinedness, note
that for a fixed input α at most k selector circuits output 1, and thus for every gate u the
value of Outα(u) as a function of Y can be computed by a function over those k variables.
Finally, each assignment to the remaining structure variables Y gives a valid circuit and thus
ρ is m-independent. ◀

We are ready to prove the degree lower bound, restated here for convenience.

▶ Theorem 1. For all ε > 0 there is a d = d(ε) such that the following holds. For n ∈ N, all
s ≥ nd and any Boolean function f : {0, 1}n → {0, 1} on n bits, SoS requires degree Ωε(s1−ε)
to refute Circuits(f).

Proof. Let G = (U, V, E) be an explicit bipartite graph as in Theorem 8, with U = {0, 1}n,
k = Oγ

(
(n log r)1+1/γ

)
, and |V | ≤ k2r1+γ for parameters γ > 0 and r ≤ 2n to be fixed

later. Apply Lemma 25 with t = 2n along with Cf = ⊥ to obtain, for s ≥ m · poly(n, k),
a natural m-independent k-determined variable substitution ρ for Circuits(f) such that
gout

s,α(Y) = ⊕i∈N(α)yi. In words, the circuit of the restricted formula on input α computes an
xor of the neighborhood of the vertex α of G.

Apply Lemma 22 to ρ to conclude that if there is an SoS refutation of Circuits(f)
∣∣
ρ

of
degree d, then there is a degree d · k SoS refutation of the system of polynomial equations
computing

PG =
{ ⊕

i∈N(α)

yi = f(α) : α ∈ {0, 1}n
}

∪ {y2
i = yi | i ∈ [m]} .

As the graph G is a strong expander, we can apply Theorem 13 to get an SoS degree lower
bound of Ω(r) for the XOR-CSP instance PG defined over G, which in turn gives us an
Ω(r/k) degree lower bound for the Circuits(f)

∣∣
ρ

formula and hence also for the unrestricted
formula.

Let us fix the parameters. We want to choose r as large as possible. However, the larger
we choose r, the larger m may become, since Theorem 8 only guarantees that m ≤ k2r1+γ .
Let us analyze how large r can be chosen in terms of n and s.

Note that k = polyγ(n), where we use that r ≤ 2n, and we write polyγ(n) to denote some
polynomial in n whose degree and coefficients may depend on γ. Hence we may choose

m = s

polyγ(n) , (17)

according to the requirement on s in Lemma 25. From the guarantees of Theorem 8 we know
that r ≥ (m/k2)1/(1+γ). Substituting m according to the previous equation we get that

r ≥
(

s

k2polyγ(n)

) 1
1+γ

= s1/(1+γ)

polyγ(n) . (18)

Hence if we choose γ small enough so that 1
1+γ > 1 − ε/2 and then require s to be large

enough such that the final polyγ(n) is at most sε/2, we obtain the claimed lower bound. ◀

CCC 2023

31:16 Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem

In the following we prove the claimed size lower bound.

▶ Theorem 3. For all ε > 0 there is a d = d(ε) such that the following holds. Let n ∈ N

and s ∈ N such that s ≥ nd. If t ≥ s and f ∈ Fn(s/2, t), then it holds that SoS requires size
exp

(
Ωε(s2−ε/t)

)
to refute Circuits(f).

Proof. Apply Lemma 25 with the graphs from Theorem 8 as in the proof of Theorem 1.
We get a natural m-independent k-determined variable substitution ρ and the formula
Circuits(f)

∣∣
ρ

over O(t · k + m) variables. To this formula we then apply Lemma 22 to obtain
a degree lower bound of Ω(r/k), akin to the proof of Theorem 1. By setting the parameters
as in the aforementioned proof we get the same degree lower bound of Ωε(s1−ε/3) for the
formula Circuits(f)

∣∣
ρ
. As this formula is over few variables we can apply Theorem 14 to

obtain an SoS size lower bound of exp
(

Ωε

(
(s1−ε/3 − 3k)2/(t · k + m)

))
for the restricted

formula. As variable substitutions may only decrease the size of a refutation, the same
lower bound also holds for the unrestricted formula. We obtain the desired lower bound by
choosing s large enough such that sε/3 ≥ k = polyε(n) and by recalling that t ≥ s ≥ m. ◀

5 Lower Bounds for Monotone Circuits

Recall that Mn(ℓ) denotes all Boolean monotone ℓ-slice functions on n bits: all Boolean
functions f : {0, 1}n → {0, 1} that output 0 on all inputs of Hamming weight less than
ℓ and 1 on all inputs of Hamming weight larger than ℓ. There is no restriction on the
output for inputs of Hamming weight ℓ and we have |Mn(ℓ)| = 2(n

ℓ). Further, recall that
Mn(ℓ, s, t) ⊆ Mn(ℓ) is the class of monotone Boolean ℓ-slice functions f : {0, 1}n → {0, 1}
for which there is a (not necessarily monotone) Boolean circuit Cmon

f : {0, 1}n → {0, 1, ⊥} of
size s such that
1. for all ℓ-slice inputs α ∈

([n]
ℓ

)
it holds that if Cmon

f (α) ̸= ⊥, then Cmon
f (α) = f(α), and

2. Cmon
f (α) = ⊥ on at most t inputs α ∈

([n]
ℓ

)
.

It is very convenient to work with slice functions as we have a handle on their monotone
circuit complexity: by Lemma 10 their monotone circuit size is the same as their ordinary
circuit size up to a polynomial size increase. Hence we do not need to worry whether the
functions needed for the reduction have small monotone circuits, as long as we are working
on a slice only.

The proof of the monotone lower bound is an adaption of the argument used to prove
Lemma 25. The idea is to work over the ℓth slice and disregard all other inputs. By Lemma 10
we can implement our selector circuits by small monotone circuits. We then also need to
take care of the negations in the ⊕-circuit. We push the negations down until they either
hit a gate in Y or a selector circuit. We create a set Y gates, which we can think of as the
negation of the gates in Y and also create negated selector circuits (on the ℓth slice). By
doing so we can now get rid of the last negations by appropriately connecting the appropriate
circuits. The following corollary of Lemma 10 will be useful to us.

▷ Claim 26. Let C be a Boolean circuit on n input bits of size s. Then, for ℓ ∈ [n], there is
a monotone Boolean circuit Cmon of size 2s + poly(n) computing the ℓ-slice function that is
equal to C on the ℓ-slice.

Proof. Let T≥ℓ be the threshold function that outputs 1 if and only if the Hamming weight
of an input α ∈ {0, 1}n is at least ℓ. Connect the output of C by an and gate to a circuit
computing T≥ℓ. The output of this circuit is then connected by an or gate to the output of
a circuit computing T>ℓ. Let us denote this new circuit by C ′.

P. Austrin and K. Risse 31:17

The circuit C ′ clearly outputs 1 whenever the input is of Hamming weight larger than
ℓ. Furthermore, on the ℓ-slice it is equal to C because T≥ℓ outputs 1 while T>ℓ outputs 0.
Finally the output is 0 if the Hamming weight is less than ℓ because the output of both
threshold functions is 0.

Clearly the size of the circuits computing the threshold functions is poly(n). We apply
Lemma 10 to conclude that there is a monotone circuit Cmon computing the same function
as C ′ of size 2s + poly(n). ◁

Before stating the following lemma we need to adapt some terminology to the monotone
setting. Observe that Circuitmon

s (f) is a restriction of Circuits(f). Let τ be such that
Circuits(f)

∣∣
τ

= Circuitmon
s (f). This allows us to naturally extend k-determined restrictions

to the monotone setting: a restriction ρ is a k-determined restriction for Circuitmon
s (f) if

the restriction ρτ is a k-determined restriction for Circuits(f). Similarly we can extend
m-independence to the monotone setting. This will later allow us to use Lemma 22 even
though we are working with the monotone formula.

▶ Lemma 27. For all k, ℓ, m, n, t ∈ N satisfying m ≤ 2n, and any explicit bipartite graph
G = (U, V, E) such that |U | = 2n, |V | = m and all u ∈ U are of degree deg(u) ≤ k, the
following holds. There is a constant C > 0, depending on the explicitness of G, such that
for all s ≥ C · m · nC · kC and any f ∈ Mn(ℓ, s/10, t) there is a natural m-independent
k-determined variable substitution ρ for the formula Circuitmon

s (f) such that

gout
s,α(Y) =

1, if |α| > ℓ,

0, if |α| < ℓ,

f(α), if |α| = ℓ and Cmon
f (α) ̸= ⊥,

⊕i∈N(α)yi, otherwise,

for gout
s,α and Y as in Definition 20.

Furthermore, the formula Circuitmon
s (f)

∣∣
ρ

is over O(t · k + m) variables.

Proof. This proof is an adaptation of the argument of the proof Lemma 25. Let us describe
the natural m-independent k-determined restriction ρ for the formula Circuitmon

s (f).
As in the proof of Lemma 25 we have gates that act as Boolean variables. But instead of

having a single set Y of variables we now have two sets Y and Y , each of size m. We think
of the variables in Y as the negations of the variables in Y and ensure this by applying the
appropriate variable substitution for all α ∈ {0, 1}n and i ∈ [m].

According to Claim 26 we may assume that the circuit Cmon
f computes a monotone ℓ-slice

function in both outputs Cmon
f,1 , Cmon

f,2 for a mild increase in size; |Cmon
f | ≤ s/5 + poly(n) ≤ s/4

for s large enough. Recall that the first output of Cmon
f indicates whether the second output

bit is equal to f on the ℓ-slice. Let C
mon
f,1 be the negation of Cmon

f,1 on the ℓ-slice. In other
words, C

mon
f,1 (α) = ¬Cmon

f,1 (α) if α has Hamming weight ℓ, and C
mon
f,1 (α) = Cmon

f,1 (α) otherwise.
The monotone circuit Cmon

f is of size at most s/4 and hence according to Lemma 10 there
is a monotone circuit of size s/2 + poly(n) ≤ 5s/8 computing C

mon
f,1 (α).

We restrict the formula such that a part of the circuit is equivalent to Cmon
f and another

part is equal to C
mon
f,1 . Note that the size of these two circuits is at most 7s/8 by above

discussion.
Recall that because G({0, 1}n, Y, E) is explicit, there are circuits Sel1, Sel2, . . . , Selm, each

of size poly(n, k), where each Seli computes, given an input α ∈ {0, 1}n, whether the vertex
yi ∈ Y is a neighbor of the vertex α. Let Seli = ¬ Seli and denote by Selmon

i (respectively
Selmon

i) the circuit obtained by applying Claim 26 to Seli (to Seli respectively). By the
guarantees of Claim 26 all these 2m circuits are of size poly(n, k).

CCC 2023

31:18 Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem

We restrict the formula such that a part of the circuit computes the functions

Selmon
1 , . . . , Selmon

m , Selmon
1 , . . . , Selmon

m . (19)

From these ℓ-slice selector circuits we can then define selector circuits that take Cmon
f into

account. Namely, we connect Selmon
i by an and gate to the output of C

mon
f,1 to obtain the

circuit Sel′mon
i and similarly connect Selmon

i by an or gate to Cmon
f,1 to obtain the circuit Sel′mon

i .
Finally, we also put each variable yi and ȳi onto the slice by the same construction used

in the proof of Claim 26: connect the variable yi (respectively ȳi) by an and to the threshold
circuit T≥ℓ and connect this circuit in turn by an or gate to a T>ℓ threshold circuit to obtain
ymon

i (respectively ȳmon
i). It is well-known [30, 5, 9] that threshold circuits have montone

circuits of size poly(n) and we can thus restrict the formula such that a part of the circuit
computes ymon

i and ȳmon
i .

Finally we connect ymon
i by an and gate to the selector circuit Sel′mon

i . Note that this
circuit is equal to an ℓ-slice function. As we will see later this ensures that the whole circuit
outputs an ℓ-slice function. We connect the circuits ȳmon

i similarly: connect ȳmon
i by an or

gate to the negated selector circuit Sel′mon
i . Again, the output of this circuit is equal to an

ℓ-slice function.
Equally inportant is that these circuits behave well on the ℓ-slice. Indeed it can be

checked that the positive circuit, on input α ∈ {0, 1}n, outputs Sel′mon
i (α) ∧ yi while the

negative circuit outputs Sel′mon
i (α) ∨ ȳi. On the ℓ-slice these functions are the negation of

eachother, which we are going to use in the following.
We need to construct a monotone circuit for the xor of Sel′mon

i (α) ∧ yi for i from 1 to m,
on ℓ-slice inputs α. We take a standard O(m)-size ⊕-circuit and monotonize it by pushing
all negations in it down using De Morgan’s law until they reach one of the ⊕-circuit’s inputs
Sel′mon

i ∧yi. Whenever the negation of Sel′mon
i (α) ∧ yi is needed, we do one last step of De

Morgan and replace it by Sel′mon
i (α) ∨ ȳi.

To ensure that the circuit outputs f(α) whenever Cmon
f (α) ̸= ⊥, we connect the two

outputs of Cmon
f by an and gate and connect this gate by an or gate to the output of the

xor circuit. This completes the description of the restriction on the structure variables. A
depiction of the resulting circuit can be found in Figure 2. We ensure that s is large enough
so that above circuit can be described by the formula.

Note that the constructed circuit always outputs a monotone ℓ-slice function: as the
monotonized ⊕-circuit is non-constant, we see that if all inputs to the circuit are 0, it outputs
0 and if all inputs are 1, it outputs 1. This, in particular, implies that the circuit outputs 0
(respectively 1) if the input is below (respectively, above) the ℓ-slice and hence the entire
circuit computes a monotone ℓ-slice function.

It can be easily checked that the described restriction is m-independent and k-determined.
In order to prove the furthermore part, we need to reduce the number of evaluation variables.
This can be achieved analogous to the proof of Lemma 25 and we thus omit it here. ◀

Let us prove our degree lower bound for monotone circuits, restated here for convenience.

▶ Theorem 4. For all ε > 0 there is a d = d(ε) such that the following holds. For all
n, ℓ ∈ N, all s ≥ nd and any monotone slice function f ∈ Mn(ℓ) SoS requires degree Ωε(s1−ε)
to refute Circuitmon

s (f).

P. Austrin and K. Risse 31:19

⊕̃

· · · · · ·∧

Sel′mon
1

α

∧

Sel′mon
m

α

∨

Sel
′mon
m

α

∨

Sel
′mon
1

α

ymon
1 ymon

m ȳmon
1 ȳmon

m

α α α α

Cmon
f

∧

∨

α

Figure 2 A depiction of the monotone circuit, where ⊕̃ is the ⊕ circuit with the negations pushed
down.

Proof of Theorem 4. As in the proof of Theorem 1, we use the graphs from Theorem 8, with
U = {0, 1}n, k = Oγ

(
(n log r)1+1/γ

)
, and |V | ≤ k2r1+γ for parameters γ > 0 and r ≤ 2n.

We apply Lemma 27 with above graph and t = 2n along with Cmon
f = ⊥ to obtain, for

s ≥ m · poly(n, k), an appropriate natural m-independent k-determined variable substitution
ρ for Circuitmon

s (f). In particular ρ satisfies

gout
s,α(Y) =

1, if |α| > ℓ,

0, if |α| < ℓ,

⊕i∈N(α)yi, otherwise,

for gout
s,α and Y as in definition Definition 20.

Recall that there is a restriction τ such that Circuitmon
s (f) = Circuits(f)

∣∣
τ

and we can
thus apply Lemma 22 with τρ to conclude that if there is an SoS refutation of Circuitmon

s (f)
∣∣
ρ

in degree d, then there is a degree d · k SoS refutation of the system of polynomial equations
computing

{
⊕

i∈N(α)

yi = f(α) | α ∈
(

[n]
ℓ

)
} . (20)

As the graph G is a strong expander, we can apply Theorem 13 to get an SoS degree lower
bound of Ω(r) for above system of equations. By above connection this gives an Ω(r/k) degree
lower bound for the Circuitmon

s (f)
∣∣
ρ

formula and hence also for the unrestricted formula.
Regarding the parameters, as in the proof of Theorem 1 we choose m = s/polyγ(n). Re-

peating the calculations from the aforementioned proof we obtain that r ≥ s1/(1+γ)/polyγ(n).
Thus by choosing γ small enough such that 1

1+γ > 1 − ε/2 and s large enough such that the
final polyγ(n) ≤ sε/2 we obtain the claimed degree lower bound of Ωε(s1−ε). ◀

As in the non-monotone case, we can also obtain size lower bounds for functions that
almost have a circuit of size s.

CCC 2023

31:20 Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem

▶ Theorem 5. For all ε > 0 there is a d = d(ε) such that the following holds. For
n, ℓ ∈ N, all s ≥ nd and t ≥ s and monotone function f ∈ Mn(ℓ, s/10, t) SoS requires size
exp

(
Ωε(s2−ε/t)

)
to refute Circuitmon

s (f).

Proof. Analogous to the proof of Theorem 3. ◀

6 Concluding Remarks

We have shown degree and size lower bounds in the Sum-of-Squares proof system for the
minimum circuit size problem. There are a number of interesting questions left open for
further study. Let us name a few.

Better Size Lower Bounds

Whereas our degree lower bounds apply for all Boolean functions f , the corresponding size
lower bounds only apply to an albeit rich but still restricted class of functions.

Monotone Circuit Lower Bounds

For monotone circuits, we were only able to obtain lower bounds for slice functions (essentially
because they behave in many ways like non-monotone functions). An intriguing question
is whether this limitation can be overcome, or whether it is inherent and there exist some
monotone circuit lower bounds that SoS is able to prove.

References
1 Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Pseudoran-

dom generators in propositional proof complexity. SIAM Journal on Computing, 34(1):67–88,
2004. Preliminary version in FOCS ’00.

2 S. R. Allen, R. ODonnell, and D. Witmer. How to refute a random csp. In 2015 IEEE
56th Annual Symposium on Foundations of Computer Science (FOCS), pages 689–708, Los
Alamitos, CA, USA, October 2015. IEEE Computer Society. doi:10.1109/FOCS.2015.48.

3 Albert Atserias and Tuomas Hakoniemi. Size-Degree Trade-Offs for Sums-of-Squares and
Positivstellensatz Proofs. In Amir Shpilka, editor, 34th Computational Complexity Conference
(CCC 2019), volume 137 of Leibniz International Proceedings in Informatics (LIPIcs), pages
24:1–24:20, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CCC.2019.24.

4 B. Barak, S. B. Hopkins, J. Kelner, P. Kothari, A. Moitra, and A. Potechin. A nearly tight
sum-of-squares lower bound for the planted clique problem. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), pages 428–437, 2016.

5 Amos Beimel and Enav Weinreb. Monotone circuits for monotone weighted threshold functions.
Inf. Process. Lett., 97(1):12–18, January 2006.

6 S. J. Berkowitz. On some relationships between monotone and non-monotone circuit complexity.
Technical report, Technical Report, University of Toronto, 1982.

7 Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foundations and Trends in
Theoretical Computer Science, 2(1):1–106, 2006. doi:10.1561/0400000004.

8 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995. doi:10.1145/227683.227684.

9 Oded Goldreich. On (Valiant’s) Polynomial-Size Monotone Formula for Majority, pages 17–23.
Springer International Publishing, Cham, 2020. doi:10.1007/978-3-030-43662-9_3.

10 Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the
parity. Theoretical Computer Science, 259(1):613–622, 2001. doi:10.1016/S0304-3975(00)
00157-2.

11 Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. Complexity of semi-algebraic
proofs. In STACS 2002, pages 419–430, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

https://doi.org/10.1109/FOCS.2015.48
https://doi.org/10.4230/LIPIcs.CCC.2019.24
https://doi.org/10.1561/0400000004
https://doi.org/10.1145/227683.227684
https://doi.org/10.1007/978-3-030-43662-9_3
https://doi.org/10.1016/S0304-3975(00)00157-2
https://doi.org/10.1016/S0304-3975(00)00157-2

P. Austrin and K. Risse 31:21

12 Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and
randomness extractors from Parvaresh–Vardy codes. Journal of the ACM, 56(4):20:1–20:34,
July 2009. Preliminary version in CCC ’07.

13 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within np. In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 247–258,
2018. doi:10.1109/FOCS.2018.00032.

14 Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, STOC ’00, pages 73–79, New
York, NY, USA, 2000. Association for Computing Machinery. doi:10.1145/335305.335314.

15 David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by semidefinite
programming. J. ACM, 45(2):246–265, March 1998. doi:10.1145/274787.274791.

16 Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares lower
bounds for refuting any csp. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, pages 132–145, New York, NY, USA, 2017. Association for
Computing Machinery. doi:10.1145/3055399.3055485.

17 Jan Krajíček. On the weak pigeonhole principle. Fundamenta Mathematicae, 170(1-2):123–140,
2001. URL: http://eudml.org/doc/282141.

18 Raghu Meka, Aaron Potechin, and Avi Wigderson. Sum-of-squares lower bounds for planted
clique. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing
(STOC ’15), pages 87–96, June 2015.

19 Cody D. Murrayand and R. Ryan Williams. On the (Non) NP-Hardness of Computing Circuit
Complexity. In David Zuckerman, editor, 30th Conference on Computational Complexity
(CCC 2015), volume 33 of Leibniz International Proceedings in Informatics (LIPIcs), pages
365–380, Dagstuhl, Germany, 2015. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CCC.2015.365.

20 Toniann Pitassi and Ran Raz. Regular resolution lower bounds for the weak pigeonhole
principle. Combinatorica, 24(3):503–524, 2004. Preliminary version in STOC ’01. doi:
10.1007/s00493-004-0030-y.

21 Aaron Potechin. Sum of Squares Bounds for the Ordering Principle. In Shubhangi Saraf, editor,
35th Computational Complexity Conference (CCC 2020), volume 169 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 38:1–38:37, Dagstuhl, Germany, 2020. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CCC.2020.38.

22 Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting random csps below
the spectral threshold. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, pages 121–131, New York, NY, USA, 2017. Association for
Computing Machinery. doi:10.1145/3055399.3055417.

23 Ran Raz. Resolution lower bounds for the weak pigeonhole principle. J. ACM, 51(2):115–138,
2004. doi:10.1145/972639.972640.

24 Alexander Razborov. P, NP and Proof Complexity. https://youtu.be/ZVL_HsPC4xE?t=2646,
2021. Accessed April 2022.

25 Alexander Razborov. Open problems. https://people.cs.uchicago.edu/~razborov/
teaching/index.html, 2022. Accessed April 2022.

26 Alexander A. Razborov. Lower bounds for the polynomial calculus. Computational Complexity,
7(4):291–324, December 1998.

27 Alexander A. Razborov. Resolution lower bounds for perfect matching principles. Journal of
Computer and System Sciences, 69(1):3–27, August 2004. Preliminary version in CCC ’02.

28 Alexander A. Razborov. Pseudorandom generators hard for k-DNF resolution and polynomial
calculus resolution. Annals of Mathematics, 181(2):415–472, March 2015.

29 Alexander A. Razborov, Avi Wigderson, and Andrew Chi-Chih Yao. Read-once branching pro-
grams, rectangular proofs of the pigeonhole principle and the transversal calculus. Combinator-
ica, 22(4):555–574, 2002. Preliminary version in STOC ’97. doi:10.1007/s00493-002-0007-7.

30 Leslie G. Valiant. Short monotone formulae for the majority function. J. Algorithms, 5:363–366,
1984.

CCC 2023

https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/274787.274791
https://doi.org/10.1145/3055399.3055485
http://eudml.org/doc/282141
https://doi.org/10.4230/LIPIcs.CCC.2015.365
https://doi.org/10.1007/s00493-004-0030-y
https://doi.org/10.1007/s00493-004-0030-y
https://doi.org/10.4230/LIPIcs.CCC.2020.38
https://doi.org/10.1145/3055399.3055417
https://doi.org/10.1145/972639.972640
https://youtu.be/ZVL_HsPC4xE?t=2646
https://people.cs.uchicago.edu/~razborov/teaching/index.html
https://people.cs.uchicago.edu/~razborov/teaching/index.html
https://doi.org/10.1007/s00493-002-0007-7

Leakage-Resilient Hardness vs Randomness
Yanyi Liu #

Cornell Tech, New York, NY, USA

Rafael Pass #

Tel-Aviv University, Israel
Cornell Tech, New York, NY, USA

Abstract
A central open problem in complexity theory concerns the question of whether all efficient randomized
algorithms can be simulated by efficient deterministic algorithms. The celebrated “hardness v.s.
randomness” paradigm pioneered by Blum-Micali (SIAM JoC’84), Yao (FOCS’84) and Nisan-
Wigderson (JCSS’94) presents hardness assumptions under which e.g., prBPP = prP (so-called
“high-end derandomization), or prBPP ⊆ prSUBEXP (so-called “low-end derandomization), and more
generally, under which prBPP ⊆ prDTIME(C) where C is a “nice” class (closed under composition
with a polynomial), but these hardness assumptions are not known to also be necessary for such
derandomization.

In this work, following the recent work by Chen and Tell (FOCS’21) that considers “almost-
all-input” hardness of a function f (i.e., hardness of computing f on more than a finite number of
inputs), we consider “almost-all-input” leakage-resilient hardness of a function f – that is, hardness
of computing f(x) even given, say,

√
|x| bits of leakage of f(x). We show that leakage-resilient

hardness characterizes derandomization of prBPP (i.e., gives a both necessary and sufficient condition
for derandomization), both in the high-end and in the low-end setting.

In more detail, we show that there exists a constant c such that for every function T , the
following are equivalent:

prBPP ⊆ prDTIME(poly(T (poly(n))));

Existence of a poly(T (poly(n)))-time computable function f : {0, 1}n → {0, 1}n that is almost-
all-input leakage-resilient hard with respect to nc-time probabilistic algorithms.

As far as we know, this is the first assumption that characterizes derandomization in both the
low-end and the high-end regime.

Additionally, our characterization naturally extends also to derandomization of prMA, and also
to average-case derandomization, by appropriately weakening the requirements on the function f . In
particular, for the case of average-case (a.k.a. “effective”) derandomization, we no longer require the
function to be almost-all-input hard, but simply satisfy the more standard notion of average-case
leakage-resilient hardness (w.r.t., every samplable distribution), whereas for derandomization of
prMA, we instead consider leakage-resilience for relations.

2012 ACM Subject Classification Theory of computation→ Pseudorandomness and derandomization

Keywords and phrases Derandomization, Leakage-Resilient Hardness

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.32

Related Version Full Version: https://eccc.weizmann.ac.il/report/2022/113/

Funding Yanyi Liu: Work done while visiting Tel-Aviv University.
Rafael Pass: Supported in part by NSF Award CNS 2149305, NSF Award SATC-1704788, NSF
Award RI-1703846, AFOSR Award FA9550-18-1-0267, a JP Morgan Faculty Award, and an Algorand
Foundation grant (MEGA-ACE). This material is based upon work supported by DARPA under
Agreement No. HR00110C0086. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
United States Government or DARPA.

© Yanyi Liu and Rafael Pass;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 32; pp. 32:1–32:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yl2866@cornell.edu
mailto:rafaelp@tau.ac.il
https://doi.org/10.4230/LIPIcs.CCC.2023.32
https://eccc.weizmann.ac.il/report/2022/113/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Leakage-Resilient Hardness vs Randomness

1 Introduction

Randomness is an ubiquitous tool in algorithm design. A central open problem in complexity
theory concerns the question of whether all randomized algorithms can be derandomized;
that is, can every randomized polynomial-time algorithm be simulated by a deterministic
polynomial-time, or perhaps even just sub-exponential one? In this work, we consider this
question with respect to promise problems; as usual, we refer to prBPP as the class of promise
problems (as opposed to languages) that can be solved in probabilistic polynomial time (with
2-sided error), and prP to the class of promise problems than can be solved in deterministic
polynomial time.

We here focus on the questions of whether prBPP = prP (the, so-called, “high-end
regime”), prBPP ⊆ prSUBEXP (the, so-called, “low-end regime”) and more generally whether
prBPP ⊆ prDTIME(C), where C is a “nice” class of time bounds (where by “nice” we here
mean that C is closed under composition with a polynomial).

A long sequence of works originating with the works of Blum-Micali [3], Yao [30], Nisan
[23], Nisan-Wigderson [24], Babai-Fortnow-Nisan-Wigderson [2], Impagliazzo-Wigderson [14]
have presented beautiful connections between this problem and the problem of proving
computational-complexity lower bounds – the so-called hardness v.s. randomness paradigm.
For instance, the results of [24, 14] show that prBPP = prP under the assumption that
E = DTIME(2O(n)) contains a language that requires Boolean circuits of size 2Ω(n) for
almost all input lengths (i.e., E is not contained in ioSIZE(2Ω(n))). Additionally, results by
Impagliazzo, Kabanets and Wigderson [13] show a partial converse: if prBPP = prP, then
some non-trivial circuit lower bound must also hold. In more detail, if prBPP = prP (or even
just MA = NP), then NEXP ̸⊆ P/poly; very recent works [28, 22] managed to strengthen the
conclusion to e.g., NTIME[npoly log n] ̸⊆ P/poly.

But despite over 40 years of research on the topic of derandomization, there has still
been a large “gap” between the hardness assumptions required for derandomizing prBPP,
and the ones that are known to be necessary for derandomization, leaving open the following
question:

For “nice” classes C, does there exist some (natural) hardness assumption that is
equivalent to prBPP ⊆ prDTIME[C]?

Most notably, known derandomization results for prBPP require complexity lower-bounds on
functions in EXP, whereas it is only known that derandomization of prBPP implies complexity
lower bounds for functions in non-deterministic classes.

There as been some recent progress on the above problem:
An elegant work by Chen, Rothblum, Tell and Yogev show an equivalence between
derandomization and circuit lower bound under a conjecture (a weaker version of the
non-deterministic exponential-time hypothesis) [5]. There work applies for both the
high-end and the low-end regime, but is only conditional (i.e., relies on a conjecture).
Chen and Tell [6], relying on the work by Goldreich [9], show that the existence of a
multi-output function f : {0, 1}n → {0, 1}n computable by polynomial size logspace-
uniform circuits with depth bounded by n2 that cannot be computed in some (a-priori
bounded) probabilistic polynomial time on any sufficiently large input – this is referred
to as “almost-all-input hardness” – implies that prBPP = prP. They also show a partial
converse: That a relaxed version of this conjecture, where the depth requirement is
dropped, also is necessary.
Liu and Pass [18], following the work of Hirahara [11], demonstrates a class of promise
problems (related to conditional time-bounded Kolmogorov complexity) such that (worst-
case) hardness with respect to a-priori polynomially bounded probabilistic algorithms of

Y. Liu and R. Pass 32:3

all problems in the class is equivalent to prBPP = prP. (The result of Liu and Pass also
shows that a single problem can be used to characterize prBPP = prP but this problem is
very artificial.) Similar to the results of [6], this characterization can be extended slightly
beyond the “high-end regime”, but fails to capture the “low-end regime”: it only works
to handle derandomization in time C, where C is a class closed under composition (i.e., if
T ∈ C, then T (T (·) ∈ T), and thus already does not apply to e.g., SUBEXP.
Finally, a very recent elegant work by Korten [17] demonstrates a natural search problem
– the R-Lossy Code problem – that is complete for prBPP. As such, the assumption that
this problem can be solved in deterministic time C characterizes when prBPP ⊆ DTIME(C).
We note, however that this assumption is not a hardness assumption, but rather an
“easiness” assumption.

Thus summing up, it is known how to characterize both the high-end and low-end deran-
domization through a hardness assumption under a conjecture [5]; unconditionally, however,
it is only known how to characterize the high-end regime (i.e., prBPP = prP) and even there
it is only known under either (a) a class of hardness assumptions (as opposed to one), or (b)
a very specific and artificial single hardness assumption.

In this work, we follow the work by Chen and Tell [6] and also consider the notion of
“almost-all-input” hardness of a multi-output function. In contrast to them, however, we
consider such “almost-all-input” hardness in the context of leakage resilience, a notion first
considered in the cryptographic literature in the 1980s. As we shall see, our main result
shows that “almost-all-input” leakage resilient hardness can be used to fully characterize
derandomization, both in the high-end and in the low-end setting; additionally, our char-
acterization will extend also to derandomization of prMA, and also to average-case (a.k.a.
“effective”) derandomization. In particular, for the case of average-case derandomization, we
no longer require the function to be almost-all-input hard, but simply satisfy the standard
notion of average-case leakage-resilient hardness (w.r.t., every samplable distribution). And
to characterize derandomization of prMA, we instead consider the notion of a leakage-resilient
relation, which again is a notion considered in the cryptographic literature. Taken together,
we believe that our results demonstrate an intriguing connection between derandomization
and notions from cryptography.

1.1 Leakage-resilient Hardness
Consider some multi-output function f : {0, 1}n → {0, 1}n. Roughly speaking, we say that
f is T -hard if no T (|x|)-time algorithm/attacker A can compute f(x) given any input x.
Perhaps the most widely known example of a candidate construction of a hard function is
integer factorization: given a product of two-primes x, compute the factorization f(x) of x.
In 1985, Rivest and Shamir [26] asked the question of what happens to this candidate hard
function if the attacker gets some additional “side-information” about the factorization of x.
Namely, the attacker gets not only x, but also some T -time computable side-information
(a.k.a. “leakage”) leak(x, f(x)). Of course, if |leak(x, f(x))| ≥ |f(x)|, then the problem
becomes trivial since the side-information can simply reveal the whole factorization; in fact,
for the particular factorization problem, it trivially suffices to leak n/2 bits to reveal just
one of the primes. Rivest and Shamir [26] show that, in fact, it suffices to get n/3 bits of
leakage for the function to becomes easy; this result was improved by Coppersmith [7] to
n/4 bits, and a heuristic (with a conjectured polynomial running-time bound) by Maurer
[20] shows an attack given just ϵn bits of leakage for any constant ϵ > 0. As far as we know,
it is unknown if this problem can be solved using just nϵ bits of leakage, for any ϵ < 1.

CCC 2023

32:4 Leakage-Resilient Hardness vs Randomness

The notion of leakage-resilient hardness captures the notion that a function is hard even
given some bounded-length leakage [26, 20, 1]: We say that a function f is (T, ℓ)-leakage
resilient hard if no T (|x|)-time attacker A can compute f(x) given x and leak(x, f(x)) for
any T (|x|)-time computable leakage function leak that outputs at most ℓ(|x|) bits. In recent
years, leakage-resilient cryptography [15, 21, 8, 1] – the design of cryptographic protocols
resilient to some forms of leakage of honest players’ secrets – has received significant attention
and has become a subfield in cryptography; the bounded-length leakage model is the most
common way of formalizing the class of leakage functions.

In this paper, we will consider this notion of leakage-resilient hardness, except that
following Chen and Tell, we will also consider it in the context of almost-all-input hardness:
that is, for any pair (A, leak) there can be at most finitely many x for which A can compute
f(x) given x and leak(x, f(x)).

1.2 Characterizing Derandomization
We are now ready to state our main theorem, which shows that almost-all-input leakage-
resilient hardness characterizes both high-end and low-end derandomization. We say that
a class of time-bounds C is nice if for all polynomials p, q it holds that if T ∈ C, then
p(n)T (q(n)) ∈ C. For instance, the sets poly(n) and 2no(1) are nice and recall that P =
DTIME(poly) and SUBEXP = ∩ϵ>0DTIME(2nϵ).

Derandomizing prBPP. Our main theorem gives a characterization of derandomization of
prBPP:

▶ Theorem 1.1. There exists a constant c such that for every “nice” class of running-time
bounds C, and for every 0 < ϵ < 1, the following are equivalent:

prBPP ⊆ ∪T ∈CprDTIME[T (n)].
The existence of a multi-output function f : {0, 1}n → {0, 1}n computable in deterministic
time T ∈ C such that f is almost-all-input (nc, nϵ)-leakage-resilient hard.

In particular, prBPP = prP (resp. prBPP ⊆ prSUBEXP) iff there exists a polynomial-time
(resp. subexponential-time) computable multi-output function f that is almost-all-input
(nc,
√

n)-leakage-resilient hard.

Some Corollaries to Leakage-resilient Hardness. For the proof of Theorem 1.1, in one
direction, we only require leakage-resilience with a “small” amount of leakage, whereas in
the other direction, we obtain a function that is leakage-resilient hard with a “large” amount
of leakage. Consequently, our proof actually also yields an amplification theorem for leakage-
resilient hardness: For any ϵ > 0, d ≥ 1, the existence of an efficient (nc, nϵ)-leakage-resilient
hard function implies an efficient (nd, n− Ω(log n))-leakage-resilient hard function.

▶ Theorem 1.2. There exists a constant c such that for every nice class C, all constants ϵ >

0, d ≥ 1, the following holds. If there exists a C-computable almost-all-input (nc, nϵ)-leakage-
resilient hard function. Then there exists a C-computable almost-all-input (nd, n− 3 log n)-
leakage-resilient hard function.

Let us highlight that as far as we know, this is the first type of leakage-resilience amplification
result in the literature that we are aware of. (Brakerski and Kalai [4] demonstrate a parallel
repetition theorem for leakage-resilience but it does not show how to amplify the amount of
leakage a function is resilient against, but rather only how to maintain the (relative) amount
of leakage.)

Y. Liu and R. Pass 32:5

Additionally, by combing the result of Chen and Tell [6] with our Theorem 1.1, we get
an interesting (one-sided) connection between low-depth computable hard functions and
leakage-resilience:

▶ Theorem 1.3. There exists some c such that the following holds. If there exists a function
f computable by polynomial-size logspace-uniform circuits with depth bounded by n2 that
is almost-all-input nc-hard, then for any constant d ≥ 1, there exists a polynomial-time
computable almost-all-input (nd, n− 3 log n)-leakage-resilient hard function.

Comparison with IW: leakage-resilient local hardness. Recall that Impagliazzo and
Wigderson [14] shows that prBPP = prP under the assumption that E ̸⊆ ioSIZE(2Ω(n)) (i.e.,
that there exists some exponential-time computable function that does not have 2Ω(n)-size
circuits.) Since Theorem 1.1 shows that leakage-resilient hardness is both a sufficient and
necessary condition for derandomizing prBPP, it directly follows that E ̸⊆ ioSIZE(2Ω(n))
implies leakage-resilient hardness (by combining [14] with Theorem 1.1), but it gives little
insight into whether the type of assumption used by IW is inherent, or to what extent it
“overshoots”. Indeed, understanding to what extent the NW/IW framework is inherent for
derandomization is a long standing open problem.

We now show how to use our framework to provide an (in our eyes) crisp answer to this
question. We start by noting that by a slight adjustment to the proof of Theorem 1.1, an
(a-priori) weaker notion of leakage-resilient local hardness actually suffices to derandomize
prBPP: Given a function f : {0, 1}n → {0, 1}n, we say that A t-locally computes f(·) on
input x if for every i ∈ [|x|], A(x, i) = f(x)i (i.e., the ith bit of f(x)), and A(x, i) runs in
time bounded by t(|x|); we analogously say that A t-locally computes f on input x given
(T, ℓ)-leakage leak if for every i ∈ [|x|], A(x, leak(x, f(x)), i) = f(x)i, A(x, z, i) runs in time
bounded by t(|x|), leak(x, f(x)) runs in time bounded by T (|x|), and |leak(x, f(x))| ≤ ℓ(|x|).
We finally say that f is almost-all-input (T, ℓ)-leakage resilient t-local hard if there does not
exist (A, leak) such that A t-locally computes f on infinitely many x given (T, ℓ)-leakage leak.
Note that this notion of leakage-resilient hardness differs from the standard one in two ways:
(a) we are decoupling the running time T of the leakage function, and the running time t of
the computing machine A, and (b) we require the computing machine A to be able to locally
compute each bit of the output of f(x) – this will allow us to consider sublinear running times
t. Indeed, we will focus our attention on the regime where A is required to reconstruct each
bit of f(x) in sublinear time: We say that f is simply almost-all-input (T, ℓ)-leakage resilient
locally hard if there exists some 0 < ϵ < 1 such that f is almost-all-input (T, ℓ)-leakage
resilient t-locally hard where t(n) = nϵ. Note that (T, ℓ)-leakage resilient hardness is trivially
an (a-priori) stronger condition than (T, ℓ)-leakage resilient local hardness when T ∈ Ω(n2).
We now have the following generalization of Theorem 1.1:

▶ Theorem 1.4. There exists a constant c ≥ 2 such that for every “nice” class of running-time
bounds C, and for every 0 < ϵ < 1, the following are equivalent:

prBPP ⊆ ∪T ∈CprDTIME[T (n)].
The existence of a multi-output function f : {0, 1}n → {0, 1}n computable in deterministic
time T ∈ C such that f is almost-all-input (nc, nϵ)-leakage-resilient locally hard.
The existence of a multi-output function f : {0, 1}n → {0, 1}n computable in deterministic
time T ∈ C such that f is almost-all-input (nc, nϵ)-leakage-resilient hard.

Leakage-resilient local hardness is useful as it allows to capture the assumption that E ̸⊆
ioSIZE(2Ω(n)). In fact, we observe that E ̸⊆ ioSIZE(2Ω(n)) directly implies the existence
of a (nc, nϵ)-leakage-resilient locally hard function for every c. To see this, consider some

CCC 2023

32:6 Leakage-Resilient Hardness vs Randomness

E-computable function gn : {0, 1}n → {0, 1} that does not have circuits of size 2Ω(n); in other
words, gn cannot be computed by a 2Ω(n) time algorithm even when given any (potentially
non computable) advice string. Define the multi-output function f that is constant on each
input length n and simply outputs the truthtable of glog n; that is,

f(x) = gm(1)||gm(2)|| . . . ||gm(|x|)

where m = log |x|. Note that f(x) is polynomial-time computable (since we are only
evaluating gm on input of logarithmic length in |x|), and additionally by the hardness of
g, it directly follows that f is almost-all-input leakage-resilient locally hard (since locally
computing f on some input x in sublinear time with efficiently computable leakage implies
computing glog |x|(y) on every input y ∈ {0, 1}log |x| in subexponential time with advice).1 In
fact, it directly follows that this construction is almost-all-input leakage-resilient locally hard
even with respect to uncomputable leakage.

In other words, the IW assumption “overshoots” the minimal assumption needed for
derandomizing BPP in two ways: (a) it considers leakage-resilient hardness of a “degenerated”
multi-output function that is constant on each input length, and (b) it requires leakage
resilient hardness also with respect to uncomputable leakage, whereas the minimal assumption
only requires it w.r.t. polynomial-time computable leakage.

Effective Derandomization. Goldreich [9] (see also [10, 16]) considers a notion of “effective”
derandomization of prBPP where the derandomizer does not need to work on all inputs –
rather, it can fail sometimes, but only on inputs that are “hard to find” – in more detail,
no PPT finder/refuter can find instances on which the derandomization fails except with
negligible probability. In essence, effective derandomization is good enough for all efficient
applications of derandomization.

For technical reasons, however, Goldreich, is not able to characterize such effective deran-
domization, but rather only a notion of p(·)-effective derandomization where the finder/refuter
running time is bounded by p(n) for some fixed polynomial p and it success probability is
bounded by 1

p(n) . (In more details, for every a-priori fixed polynomial bound p(·) on the
running-time/success probability of a refuter, we require the existence of derandomization
that works for that particular bound. In contrast, effective derandomization (as we consider
it here) requires the existence of a single derandomization procedure that works for any
polynomial-time refuter, and with only negligible failure probability.)

Using our leakage-resilient framework, we can get a clean characterization also of effective
derandomization through average-case leakage-resilient hardness, where average-case leakage-
resilient hardness with respect to some distribution D is defined just like before except we
now consider instances x sampled from D and we allow the attacker A to succeed on at most
a negligible fraction of instances.

More precisely, we say that Π is effectively contained in Π′ (denoted Π ⊆poly Π′) if for
every PPT A there exists a negligible µ such that the probability that A(1n) is able to output
an n-bit element in the symmetric difference between Π and Π′ is bounded by µ(n); we may
extend this notion of classes of problems in the usual way: D ⊆poly D′ iff for every Π ∈ D,
there exists some Π′ ∈ D′ such that Π ⊆poly Π′.

1 There is a minor subtlety here. If we have an attacker A that locally computes f(x) on some input x in
sublinear time, then A can compute glog |x|(y) for every y ∈ {0, 1}log |x| in sublinear time given access to
x which can be of exponential length compared to |y|. But since A runs in sublinear time, it can access
at most a sublinear number of bits of x, and thus we can compute gm by a circuit of subexponential
size.

Y. Liu and R. Pass 32:7

▶ Theorem 1.5. There exists a constant c such that for every 0 < ϵ < 1, the following are
equivalent:

prBPP ⊆poly prP.
The existence of a multi-output function f : {0, 1}n → {0, 1}n computable in deterministic
polynomial time such that f is average-case (nc, nϵ)-leakage-resilient hard for every
efficiently samplable distribution D.

The result also extends to the low-end regime but only if we consider a stronger form of
effective containment (which allows the refuter to have super polynomial running time).

Derandomizing prMA. Finally, we consider the problem of derandomizing prMA (as opposed
to just prBPP). Here, we require considering the notion of a leakage-resilient hard relation [25],
which is identically defined to that of a leakage-resilient hard function, except that any input
x can be mapped to multiple values y ∈ R(x). We show:

▶ Theorem 1.6. There exists a constant c such that for every “nice” class of running-time
bounds C, and for every 0 < ϵ < 1, the following are equivalent:

prMA ⊆ ∪T ∈CprNTIME[T (n)].
The existence of a relation R ⊂ {0, 1}n × {0, 1}n computable in non-deterministic time
T ∈ C such that R is almost-all-input (nc, nϵ)-leakage-resilient hard.

In particular, prMA = prNP iff there exists a relation R ∈ NP that is almost-all-input
(nc,
√

n)-leakage-resilient hard.

Proof Overview. We focus our attention on the proof of Theorem 1.1 (and Theorem 1.4);
afterwards, we briefly discuss how to extend these techniques to prove the remaining results.
For simplicity, here focusing only on the high-end setting, but the key point is that the same
technique directly extends also to the low-end setting.

Leakage-resilient Hardness implies prBPP = prP: Following Goldreich [9], we
consider the notion of a targeted PRG – roughly speaking, this is a PRG g that gets
an additional target z as input, and indistinguishability holds with respect to uniform
algorithms that also get the target z as input. In other words, g is just like a normal
PRG, but with the exception that both the PRG and the distinguisher get access to the
auxiliary “target” string z, and we require security to hold for all strings z. (Since we
consider PRGs in the context of derandomization, we allow the running-time of the PRG
to be (polynomially) larger than the running-time of the distinguisher.) Using standard
techniques, it follows that the existence of such a targeted PRG, with sufficiently large
stretch, implies that prBPP = prP (simply let the instance to be decided be the target for
the PRG).
We next show how to use leakage-resilient hardness to construct a targeted PRG. Assume
the existence of a leakage-resilient hard multi-output function f : {0, 1}n → {0, 1}n.
Given a target z ∈ {0, 1}n, we compute gz = ECC(f(z)), where ECC is an appropriate
list-decodable error-correcting code with good parameters, and interpret gz as a hard
function to use in the Impaglizzo-Wigderson (IW)/Nisan-Wigderson (NW) pseudo-random
generator generator [14, 24]. That is, we are relying on the Sudan-Trevisan-Vadhan PRG
[27]. The IW-NW proof essentially shows that given a distinguisher D for the PRG,
and some (bounded-length) advice about the truthtable (and D), we efficiently compute
the evaluation of gz with probability 1/2 + 1

p(n) for some polynomial p over random
n-bit inputs. We observe that this advice in fact can be efficiently computed if we
have access to the truthtable of gz and the distinguisher D, and we can thus view it
as efficiently leakage on (z, f(z)). We can next list-decode (again efficiently) gz and

CCC 2023

32:8 Leakage-Resilient Hardness vs Randomness

recover a polynomial-length list of candidates for f(z); given f(z), we can efficiently
determine which of these candidates is the correct one, and also include the index of this
candidate in the leakage (which again will be short). Given both these leakage, we can
now re-compute f(z) by simply again running the list-decoding algorithm and outputting
the string specified by the index. We note that we here rely on the fact that once this
leakage has been fixed, the rest of the NW reconstruction procedure is deterministic,
and furthermore, the list-decoding procedure is also deterministic, so the attacker A can
recompute the same list of candidates in the same order, and thus we are guaranteed that
it also recovers the exact same string.
In other words, if anyone can break the targeted PRG on infinitely many targets z, we
can compute f(z) on infinitely many inputs z given short and efficiently computable
leakage on (z, f(z)); we note that, somewhat curiously, the leakage function actually also
needs to access z and not just f(z) in order to simulate the distinguisher D (that gets z

as an input).
We finally observe that if the error-correcting code additionally satisfies a local list
decoding property – e.g., by using the error-correcting code of [27] – then we can actually
locally compute each bit of f(z) in sublinear time in the length of f(z) which we can use
to conclude also the implication in the proof of Theorem 1.4. There is just one small
catch; the local list decoding procedure will be randomized, so we may not necessarily
recover the same list of candidates, or the same ordering of them. But the list-decoding
procedure has a small running time and thus also uses a small amount of randomness, so
we can just include this additional randomness as part of the leakage.
In the actual proof, we show the above in a more modular way:

We first consider a notion of a strongly black-box PRG – roughly speaking a PRG
based on f for which there exists (a) an efficient algorithm that given black-box access
to f and some distinguisher for the PRG outputs some advice string, and (b) another
efficient algorithm that given this advice string and black-box access to the same
distinguisher, is able to efficiently compute f . This notion is a strengthening of the
notion of a black-box PRG from [29] where the advice string did not need to be
efficiently computable. Nevertheless, following [12], we note that the advice string
needed in the reduction to prove security of the [27] PRG construction actually can be
efficiently computed.
Next, we show that any such strongly black-box PRG construction can be used to get
a targeted PRG from leakage-resilient hardness.

prBPP = prP implies Leakage-resilient Hardness: Our proof, roughly speaking,
proceeds in two steps. First, we show using an information theoretic argument that a
random function f is almost-all-input leakage-resilient hard. Next, we show how this
function can be “derandomized” assuming prBPP = prP – the crucial aspect that makes
this derandomization possible is that it is possible to efficiently verify whether there
exists some attacker that efficiently computes the function on some input given efficient
leakage (by enumerating the log n first Turing machines and evaluating them).
For the first step, we use a simple compression argument to show that for every attacker,
leakage-function pair (A, leak), for any input x, with high probability over the choice of
y = F (x) ∈ {0, 1}n, it is the case that the attacker A can compute F (x) with probability
at most, say, 1/6. In fact, we will show a slightly stronger statement: for any A, x,
with high probability over y, there does not exists any leakage function, leak, such that
(A, leak) computes y with probability 1/6. The advantage of this stronger formulation
is that now it is without loss of generality to restrict attention to deterministic leakage
functions leak (since for any fixed A, x, y we can always consider the deterministic leakage
function that fixes the best randomness).

Y. Liu and R. Pass 32:9

To prove the (stronger) statement, let us first consider the case when also the attacker
A is deterministic. Since the length ℓ of the leakage is significantly shorter than |y|, it
follows that for any fixed x, most strings y are not in the range of what the attacker can
output given x and any leakage, and thus for every x, with high probability over the
choice of y, the attacker fails to output y no matter what the function leak is.
Next, note that even if A is randomized, there can be at most 6 strings that A outputs with
probability 1/6 given any fixed x and any fixed leakage output, so the above argument
actually also extends to randomized A (except that we increase the number of string y

that can be hit by a factor 6). This thus concludes a random choice of y will with high
probability not be computable by any (A, leak).
Next, we show that for any x, this random choice of y can actually be derandomized
assuming prBPP = prP, and relying on the fact that we only need y to be hard to compute
with respect to uniform (bounded) polynomial-time computable (A, leak). Towards this,
we follow the approach of Goldreich [9] and show that for any x, we can greedily compute
the bits of y = f(x) one at a time, relying on the fact that we know that a random
selection will work, and then use the fact that prBPP = prP to efficiently find a good
selection. In more details, we know that with high probability over the choice of y, the first
log n uniform (A, leak) machines with running time bounded nc will fail to compute y so
we can start by picking bit 1 y1 of y that leads to a high probability over the continuation
of y of all those log n machines failing to compute y. Estimating this probability requires
randomness, but if prBPP = prP then it can also be done deterministically. This second
step can be done in a modular way by appealing to the elegant BPP-decision-to-search
reduction of Goldreich [9] and by appropriately specifying the above problem of finding
a “good” y that fools the log n first uniform (A, leak) machine with running time nc (in
the sense that their estimated success probability is significantly smaller than 1/6) as a
BPP-search problem.

Effective Derandomization. To characterize “effective derandomization”, the proof follows
a very similar structure, except to perform the derandomization we instead pass through a
new notion of an “average-case targeted PRG”. The converse direction (showing necessity of
the assumption) becomes a bit more complicated than before as we no longer have access
to a perfect derandomization, but these additional subtleties can be dealt with. (Roughly
speaking, the issue is that since the derandomizer only succeeds on average, we may run into
trouble during the decision to search process. On a high-level, the way we get around these
issues is by relying on the fact that we only need to derandomize a single fixed problem, and
that effective derandomization yields a single derandomized algorithm for solving it, and we
can next show that if an error occurs during the decision to search process, the location of
the first mistake can be efficiently guessed.)

Characterizing Derandomization of prMA. To show how to derandomize prMA, we instead
pass through a new notion of a non-deterministic targeted PRG, which can be instantiated
from our assumption and which implies derandomization of prMA.

To prove the converse direction, we proceed a bit different from the proof of Theorem 1.1 –
we can no longer passing through the above-mentioned search-to-decision reduction, as no such
reduction is known for prMA. Instead, we show how to directly construct a leakage-resilient
hard relation from the assumption that prMA can be derandomized using a diagonalization
argument. Roughly speaking, we show that the above described BPP-search problem (of
given a string x, finding some y that is leakage-resilient hard to compute w.r.t. the first

CCC 2023

32:10 Leakage-Resilient Hardness vs Randomness

log n algorithms) actually is a leakage-resilient hard relation assuming that prMA can be
derandomized! First note that this problem trivially is in prMA and thus also in prNP under
the assumption that prMA = prNP. More interestingly, if there exists some attacker A that
given an input x and given some efficient leakage on x can compute a y in this relation, then
this y cannot be in the relation (since by definition, y cannot be computed by any efficient
algorithm with small description), which is a contradiction.

Paper Overview. In Section 3, we present an equivalence between derandomizing prBPP
and leakage-resilient hardness. In Section 4, we present a characterization of derandomizing
prMA via the notion of leakage-resilient relation. The results on average-case derandomization
are deferred to the full version [19].

2 Preliminaries

We assume familiarity with basic concepts such as Turing machines, polynomial-time al-
gorithms, and probabilistic algorithms and computational classes such as prBPP and prP.
We say that a function f is time-constructible if f is increasing and for all n ∈ N, f(n) can
be computed by a Turing machine in time poly(f(n)). We say that a class of functions C is
nice if for all T ∈ C, t(p(n))q(n) ∈ C for all polynomials p, q.

We say that D = {Dn}n∈N is an ensemble if for all n ∈ N, Dn is a probability distribution
over {0, 1}n. We say that an ensemble D = {Dn}n∈N is samplable if there exists a probabilistic
polynomial time Turing machine S such that S(1n) samples Dn.

2.1 Leakage Resilient Hardness of (Multi-output) Functions
We consider multi-output functions f : {0, 1}n → {0, 1}n (as opposed to binary functions,
traditionally considered in the derandomization literature). We will focus on a leakage-
resilient notion of hardness. Roughly speaking, we say that f is (T, ℓ)-leakage resilient hard
if no T -time attacker can compute f(x) given x and leak(x, f(x)), where leak is any T -time
computable leakage function such that leak(x, f(x)) ≤ ℓ(|x|). We will consider this notion
of in the context of almost-all-input hardness [6] which requires all potential attackers to
succeed only on finitely many inputs.

▶ Definition 2.1 (Almost-all-input leakage-resilient hardness). Let f : {0, 1}n → {0, 1}n be
a (multi-output) function. We say that f is almost-all-input (T, ℓ)-leakage resilient hard
if for all T -time2 probabilistic algorithms leak, A satisfying leak(x, f(x)) ≤ ℓ(|x|), for all
sufficiently long strings x, A(x, leak(x, f(x))) ̸= f(x) with probability ≥ 2/3 (over their
internal randomness).

The notion of leakage-resilient local hardness will be useful for us. In the local hardness
condition, we require no attacker A can produce each bit of f(x) given the input x together
with the coordinate. This allows us to consider attackers A that run in |x|ε time on input x.

▶ Definition 2.2 (Almost-all-input leakage-resilient local hardness). Let f : {0, 1}n → {0, 1}n be
a (multi-output) function. We say that f is almost-all-input (T, ℓ)-leakage resilient t-local hard
for all T -time probabilistic algorithms leak satisfying leak(x, f(x)) ≤ ℓ(|x|), for all t-time prob-
abilistic algorithms A, for all sufficiently long strings x, A(x, leak(x, f(x))) locally computes

2 To simplify notation, we say that an algorithm A(·, ·) runs in time T if A runs in T (n) time where n is
the size of the first input.

Y. Liu and R. Pass 32:11

f(x) with probability at most ≥ 1/3 (over their internal randomness), where we say that A(x,

leak(x, f(x))) locally computes f(x) if for all i ∈ {0, 1}log |x|, i ≤ |x|, A(x, leak(x, f(x)), i) =
f(x)i.

We simply say that f is almost-all-input (T, ℓ)-leakage resilient local hard if there exists
ε > 0 such that f is almost-all-input (T, ℓ)-leakage resilient nε-local hard.

We remark that we are decoupling the running time T of the leakage function and the
running time t of the computing machine A. In addition, we only require hardness with
respect to |x|ε-time attackers A which can only read the first |x|ε bits of the string x.3 As
mentioned in the introduction, the notion of leakage-resilient local hardness enables us to
capture the assumption that E ̸⊆ ioSIZE(2Ω(n)).

▶ Lemma 2.3. If there exists a constant ε > 0 such that E ̸⊆ ioSIZE(2εn), then there exists
a function f : {0, 1}n → {0, 1}n that is (nc, nε/2)-leakage resilient nε/2-locally hard for every
c ≥ 1.

Proof. Let gn : {0, 1}n → {0, 1} be a E-computable function that requires circuits of size
> 2εn to compute (which is guaranteed to exist by the assumption). Consider the following
multi-output function f such that for each x ∈ {0, 1}∗,

f(x) = gk(1)|| . . . ||gk(2k)||0|| . . . ||0

where k = ⌊log |x|⌋. Note that f(x) can be computed in time 2O(k) = 2O(log |x|) = |x|O(1) so
f is poly-time computable. Assume for contradiction that f is not (nc, nε/2)-leakage resilient
nε/2-locally hard. Then there exist attackers (A, leak) such that leak(x, f(x)) outputs at
most |x|ε/2 bits and A(x, leak(x, f(x))) computes f(x) locally in time |x|ε/2 for infinitely
many x. For each such x and input length k = ⌊log |x|⌋, we will construct a 2εk-size circuit
Ck to compute g on input length k, which is a contradiction. Since A(x, leak(x, f(x))) locally
computes f(x) in time |x|ε/2, there exists a leakage string w ∈ {0, 1}|x|ε/2 and a random tape
r ∈ {0, 1}|x|ε/2 such that for each i ∈ {0, 1}log |x|, A(x, w, i; r) will compute f(x)i within time
|x|ε/2, and it follows that A(x, w, i; r) will only read the first |x|ε/2 bits of the string x; let x′

denote the |x|ε/2-bit prefix of x. Consider a circuit Ck having the strings x′, w, r hardwired in
it, and on input i ∈ {0, 1}k, it will compute A(x, w, i; r). Ck is of size O(|x|ε/2 log |x|) ≤ 2εk

that computes g on input length k, which concludes the proof. ◀

In addition, we can also consider just “plain” (as opposed to leakage-resilient) hardness.
As above, we also require the hardness condition holds on almost all inputs.

▶ Definition 2.4 (Almost-all-input hardness). Let f : {0, 1}n → {0, 1}n be a (multi-output)
function. We say that f is almost-all-input T -hard if for all T -time probabilistic algorithms
A, for all sufficiently long strings x, A(x) ̸= f(x) with probability ≥ 2/3 (over their internal
randomness).

2.2 Targeted Pseudorandom Generator
We consider the notion of a targeted pseudorandom generator (targeted PRG) [9]. Roughly
speaking, a targeted pseudorandom generator G takes a seed along with a “target” string x as
input, and we require that its output is indistinguishable from uniform by (computationally-
bounded) distinguishers that additionally get the target x as input. In other words, G is just

3 We assume that A is a standard Turing machine with each input on a separate tape, and we do not
assume that A has oracle access to its inputs. This is a weaker hardness assumption than letting A
have oracle access to the inputs.

CCC 2023

32:12 Leakage-Resilient Hardness vs Randomness

like a normal PRG, but with the exception that both the PRG and the distinguisher get
access to the auxiliary “target” string x, and we require security to hold for all strings x.
Since we consider PRGs in the context of derandomization, we allow the running-time of the
PRG to be larger than the running-time of the distinguisher.

▶ Definition 2.5 (Targeted pseudorandom generator [9]). Let G : 1n×{0, 1}ℓ(n)×{0, 1}m(n) →
{0, 1}n be a computable function. We say that G is an T (n)-secure (ℓ(n), m(n))-targeted
pseudorandom generator (T -secure (ℓ(n), m(n))-targeted PRG) if for all deterministic at-
tackers D that run in T (n) time (where n is the length of its first input), for all sufficiently
large n ∈ N and all strings x ∈ {0, 1}ℓ(n), it holds that

|Pr[s← {0, 1}m(n) : D(1n, x, G(1n, x, s)) = 1]− Pr[y ← {0, 1}n : D(1n, x, y) = 1]| < 1
6 .

For any targeted PRG G, we say that G is O(T (n))-secure if for all constant c > 0, G is
(cT (n))-secure. Note that the length of the target string ℓ(n) can be potentially larger than
the running time bound of the distinguisher T (n). In such cases, we only require security
with respect to distinguishers D which can only read the first T (n) bits of the target string.
Note that this is a weaker security requirement than allowing D to have oracle access to the
target string.

It is well-known that a (non-uniformly) secure PRG can derandomize prBPP. When
considering a targeted uniformly-secure PRG, the same derandomization result still holds.
This in essence follows by the standard proof (that non-uniformly secure PRG derandomize
prBPP), but with an additional padding argument to deal with the “target”/auxiliary input.

▶ Lemma 2.6 ([9]). Assume that there exist constants σ ≥ 1, θ ≥ 1 and a O(n)-secure
(nθ, σ log n)-targeted PRG G that runs in time t(n) ≥ n. Then, prBPP ⊆ ∪p,q∈polyprDTIME[
t(p(n))q(n)].

For the sake of completeness, we refer the reader to the full version for a detailed proof.

3 Derandomization and Leakage Resilient Hardness

In this section, we show a characterization between derandomizing prBPP and the existence
of almost-all-input leakage resilient hard functions. Our result can be adapted to both the
high-end and the low-end setting.

▶ Theorem 3.1. There exists a constant c ≥ 1 such that for all nice classes of functions C,
the following are equivalent.
1. prBPP ⊆ ∪T ∈CprDTIME[T].
2. The existence of a constant ε > 0, a function T ∈ C, and an almost-all-input (nc, nε)-

leakage resilient locally hard function f : {0, 1}n → {0, 1}n computable in deterministic
time T .

3. For all d ≥ 1, there exist T ∈ C and an almost-all-input (nd, n− 3 log n)-leakage resilient
hard function f : {0, 1}n → {0, 1}n computable in deterministic time T .

Proof. The implication (1)⇒ (3) follows from Theorem 3.8 (stated and proved in Section 3.1).
To show (2) ⇒ (1), we apply Lemma 3.9 (stated and proved in Section 3.2) to obtain a
targeted PRG and (1) follows from Lemma 2.6. (3) trivially implies (2). ◀

We then state corollaries of Theorem 3.1 in both the high-end regime and the low end
regime. To characterize derandomizing prBPP in polynomial time, we take the class C in
Theorem 3.1 to be the class of polynomials poly(·).

Y. Liu and R. Pass 32:13

▶ Corollary 3.2. There exists a constant c ≥ 1 such that the following holds. prBPP = prP
if and only if there exists an efficiently computable multi-output function f that is almost-all-
input (nc,

√
n)-leakage resilient hard.

To characterize derandomizing prBPP in subexponential time prSUBEXP = ∩ε>0prDTIME[
2nε], we consider the class C consisting of (all) time-constructible functions T such that
T (n) is smaller than 2nε for all ε > 04, and we refer to a function f as being computable in
subexponential time if f runs in time 2nε for all ε > 0.

▶ Corollary 3.3. There exists a constant c ≥ 1 such that the following holds. prBPP ⊆
prSUBEXP if and only if there exists an subexponential time computable multi-output function
f that is almost-all-input (nc,

√
n)-leakage resilient hard.

In addition, we note that the proof of Theorem 3.1 also yields the following amplification
result for leakage resilient hardness.

▶ Theorem 3.4. There exists a constant c such that if there exist a constant ε > 0 and an
almost-all-input (nc, nε)-leakage-resilient hard function computable in time t(n), then for all
d ≥ 1, there exist polynomials p, q and an almost-all-input (nd, n− 3 log n)-leakage-resilient
hard function computable in time t(p(n))q(n).

Proof. The theorem follows from Lemma 3.9, Lemma 2.6, and Theorem 3.8. ◀

Besides amplifying leakage resilience, we observe that by combining the result of Chen
and Tell with Theorem 3.1, we obtain a leakage-resilient hard function from a low-depth
function with just plain hardness.

▶ Theorem 3.5. There exists some c such that the following holds. If there exists a function
f computable by polynomial-size logspace-uniform circuits with depth bounded by n2 that
is almost-all-input nc-hard, then for any constant d ≥ 1, there exists a polynomial-time
computable almost-all-input (nd, n− 3 log n)-leakage-resilient hard function.

Proof. Chen and Tell [6] showed that the existence of such f implies prBPP = prP. The
existence of a leakage-resilient hard function then follows from Theorem 3.1. ◀

3.1 Leakage Resilient Hardness from Derandomization
We proceed to constructing a multi-output function that is almost-all-input leakage resilient
hard. Towards this, it is instructive to recall some ingredients from [9]. We first recall the
definition of a prBPP search problem.

▶ Definition 3.6 (prBPP search problem). Let RYES and RNO be two disjoint binary relations
⊆ {0, 1}∗ × {0, 1}∗. We say that (RYES, RNO) is a prBPP search problem if the following two
conditions hold.
1. The decisional problem (RYES, RNO) ∈ prBPP; that is, there exists a PPT algorithm V

such that for every (x, y) ∈ RYES it holds that Pr[V (x, y) = 1] ≥ 2/3, and for every
(x, y) ∈ RNO it holds that Pr[V (x, y) = 1] ≤ 1/3.

2. There exists a PPT algorithm A such that, for every x ∈ SRYES , it holds that Pr[A(x) ∈
RYES(x)] ≥ 2/3, where RYES(x) = {y : (x, y) ∈ RYES} and SRYES = {x : RYES ̸= ∅}

4 Note that this class is indeed nice since if T (n) < 2nε

for all ε > 0, it holds that T (p(n))q(n) < 2nε

for
all ε > 0 and all polynomials p, q.

CCC 2023

32:14 Leakage-Resilient Hardness vs Randomness

It has also been shown in [9] that there exists a deterministic search to decision reduction
for prBPP by using techniques resembling the Conditional Expectation Method.

▶ Theorem 3.7 (Search to decision reduction [9]). For every prBPP search problem
(RYES, RNO), there exists a binary relation R such that RYES ⊆ R ⊆ ({0, 1}∗ × {0, 1}∗)\RNO
and solving the search problem of R is polynomial-time deterministically reducible to some
decisional problem in prBPP.

Now we return to showing the existence of a multi-output function that is hard to compute
on almost all inputs with leakage assuming prBPP can be derandomized.

▶ Theorem 3.8. If prBPTIME[O(n)] ⊆ prDTIME[t(n)], then for any constant c ≥ 1, there
exists a function f : {0, 1}n → {0, 1}n running in time t(p(n))q(n) (for some polynomials
p, q) such that f is almost-all-input (nc, n− 3 log n)-leakage resilient hard.

Proof. We start by defining a prBPP-search problem which the task of constructing a
leakage-resilient hard function can be reduced to. Consider any constant c ≥ 1 and let
ℓ(n) = n− 3 log n. To construct an almost-all-input (nc, ℓ(n))-leakage resilient hard function,
for each input x ∈ {0, 1}n, we need to find (uniformly) a string f(x) = r such that r is hard
to compute (for any nc-time algorithms) given x and any (nc-time) “side information” leaked
from r. We observe that for any attacker/leakage functions g, leak – even non-computable
g, leak – with high probability over r, r will satisfy the hardness with leakage condition w.r.t.
g, leak.

▷ Claim 1. For any probabilistic algorithms leak, g, for all n ∈ N, ℓ ≤ n, x ∈ {0, 1}n, with
probability at most 6 · 2−n+ℓ+1 over random r ∈ {0, 1}n, it holds that

Pr [|leak(x, r)| ≤ ℓ ∧ g(x, leak(x, r)) = r] ≥ 1
6 (1)

Proof. Consider any n ∈ N, x ∈ {0, 1}n, and any probabilistic algorithm g. We will show
that with probability at most 6 · 2−n+ℓ+1 over random r ∈ {0, 1}n, for any deterministic
function leak′ that outputs ≤ ℓ bits, it holds that

Pr[g(x, leak′(x, r)) = r] ≥ 1
6 (2)

The proof of Claim 1 will directly follow from Equation 2 by noting that given any probabilistic
leak, g, any n ∈ N, ℓ ≤ n, x ∈ {0, 1}n, we can consider the deterministic leak′ obtained
by fixing the random tape of leak to be such that it maximize the number r’s that satisfy
Equation 1.

To show Equation 2, consider the set of “bad” r’s: B = {r : ∃w, |w| ≤ ℓ, Pr[g(x, w) =
r] ≥ 1/6}. For any r ∈ {0, 1}n, if there exists a function leak′ that outputs ≤ ℓ bits and
Pr[g(x, leak′(x, r)) = r] ≥ 1

6 , it follows that r ∈ B. We now bound |B|. Note that are at
most 2ℓ+1 strings w such that |w| ≤ ℓ, and for each such w, there can be at most 6 strings
ouput by g with probability ≥ 1/6; thus we have that |B| ≤ 6 · 2ℓ+1. It follows that the
probability that a random r falls into B is at most 6 · 2−n+ℓ+1. ◁

Next, we note that if we only consider efficiently (and uniformly) computable g, leak, it
suffices to consider attacker/leakage functions of description length no more than log n. We
can thus defined an prBPP-search problem that will enable us to find a “hard” r w.r.t. all
such efficient attacker/leakage functions.

Y. Liu and R. Pass 32:15

The BPP search problem. Let RYES be a binary relation such that (x, r) ∈ RYES if
1. |x| = |r|
2. For all probabilistic machines leak, g such that |leak| ≤ log n, |g| ≤ log n, it holds that

Pr
[
|leak′(x, r)| ≤ ℓ(n) ∧ g′(x, leak′(x, r)) = r

]
<

1
6 (3)

where n denotes |x|, and leak′ and g′ denote “time-truncated” versions of leak, g that are
only executed for nc steps, where c is the constant in the lemma statement.

Let RNO be a binary relation such that (x, r) ∈ RNO if for at least one pair of leak and g

with |leak|, |g| ≤ log n, the above equation with 1
6 replaced by 1

3 does not hold.
We turn to showing that (RYES, RNO) is a prBPP search problem by presenting a verifying

algorithm V and a solution finding algorithm A.

The search problem verifier. On input (x, r), the verifier V enumerates all probabilistic
machines leak, g such that |leak|, |g| ≤ log n. V estimates the value

pleak,g = Pr
[
|leak′(x, r)| ≤ ℓ(n) ∧ g′(x, leak(x, r)) = r

]
by running the following experiment for sufficiently many times and computing the average
acceptance probability. In each experiment, V emulates leak(x, r) for nc steps, and emulates
g(x, leak(x, r)) for nc steps. V accepts in this experiment if g(x, leak(x, r)) = r. After
estimating the average acceptance probability for each pair of leak and g, V outputs 1 if
the estimated values of pleak,g are < 3

12 for all pairs of leak, g. By the Chernoff bound and
the Union bound, V will accept if (x, r) ∈ RYES (and reject if (x, r) ∈ RNO) with very high
probability.

The solution finder. We next construct a solution finding algorithm A such that (x, A(x)) ∈
RYES with high probability for all x. On input x, A simply outputs a random string of the
same length. For any fixed x ∈ {0, 1}n, by Claim 1 and a Union bound over the choice
of leak and g, we conclude that A(x) outputs a valid witness with probability at least
1− 6n2 · 2−n+ℓ(n)+1 ≥ 2

3 .

Constructing the hard function f . Finally, we show how to construct a function f that is
hard to compute in the presence of any leakage, by making use of the prBPP search problem
(RYES, RNO). By Theorem 3.7, there exists a binary relation R such that RYES ⊆ R ⊆
({0, 1}∗×{0, 1}∗)\RNO and solving the search problem of R is polynomial-time deterministic
reducible to some decisional prBPP problem. This leads us to our construction of f . On
input x, f solves the search problem of R and outputs a R-witness of x. We first show that
f is almost-all-input (nc, ℓ(n))-leakage resilient hard. Consider any nc-time algorithms leak
and g satisfying |leak(x, f(x))| ≤ ℓ(|x|), all sufficiently large inputs x ∈ {0, 1}n such that
|g| ≤ log n and |leak| ≤ log n. Since R and RNO are disjoint and f solves the search problem
of R, (x, f(x)) ̸∈ RNO and this implies that

Pr [g(x, leak(x, f(x))) ̸= f(x)] ≥ 2
3

We turn to proving that f runs in deterministic time t(p(n))q(n) for some polynomials p, q,
which will conclude our proof. Recall that f can be polynomial-time deterministically reduced
to a decisional problem Π ∈ prBPP. Since prBPTIME[O(n)] ⊆ prDTIME[t(n)], by padding
instances in Π so that the probabilistic algorithm for Π now runs in linear time in the length

CCC 2023

32:16 Leakage-Resilient Hardness vs Randomness

of the padded instance, it follows that Π ∈ prDTIME[t(p′(n))] (for some polynomial p′). This,
combined with the fact that the reduction runs in deterministic polynomial time, shows that
f can be computed in deterministic time t(p′(a(n)))b(n) for some polynomials a, b and the
claim follows. ◀

3.2 Derandomization from Leakage Resilient Hardness
We turn our attention to the converse direction and we will show how to obtain a targeted PRG,
which is later used to derandomize prBPP, from an almost-all-input leakage resilient hard
function. Combining the result from the previous section, we will obtain a characterization
between derandomization and leakage resilient hardness.

▶ Lemma 3.9. There exists a constant c ≥ 1 such that the following holds. Assume that
there exist a constant ε > 0 and an almost-all-input (nc, nε)-leakage resilient nε-locally
hard function f : {0, 1}n → {0, 1}n computable in deterministic time t(n) ≥ n. Then there
exist constants σ, θ ≥ 1 and a O(n)-secure (nθ, σ log n)-targeted PRG computable in time
t(nθ)poly(n).

The proof of Lemma 3.9 relies on the notion of black-box PRG construction from a
worst-case hard function f [27, 29]. Roughly speaking, this notion of black-box PRG from a
function f requires the existence of an efficient oracle algorithm that given (a) some fixed
advice string, and (b) black-box access to any distinguisher for the PRG, is able to compute
function f . Following, [12], we will here consider a strengthening of this notion of a black-box
construction, simply referred to as strongly black-box, where also the advice string can be
efficiently computed using black-box access to f .

▶ Definition 3.10. Let g : 1n× 1m×{0, 1}d → {0, 1}m be a (deterministic) oracle algorithm,
and let k(·) be functions. We say that g is a k-reconstructive PRG construction if there exist
PPT oracle algorithms R, M such that for every f : [n]→ {0, 1} and T : {0, 1}m → {0, 1}, if

|Pr[T (gf (1n, 1m,Ud)) = 1]− Pr[T (Um) = 1]| ≥ 1
6

then Mf,T (1n, 1m) will output at most k(n, m) bits such that for all i ∈ [n],

RT (Mf,T (1n, 1m), i) = f(i)

with probability at least 2/3.

We next observe that the Sudan-Trevisan-Vadhan PRG [27] obtain by combining a locally
list-decodable error correcting code [27] and the Nisan-Wigderson PRG construction [24]
yields a strongly black-box construction of a PRG. We note that [29] previously argued that
this construction is black-box; we here simply observe that the advice string needed can be
efficiently computed.

▶ Theorem 3.11 (Extending [27]; see also [29, Theorem 7.67]). There exists a k-reconstructive
PRG construction g : 1n × 1m × {0, 1}d → {0, 1}m such that for every m ∈ N, n ≥ m,
f : [n]→ {0, 1} the following conditions are satisfied:
1. Explicitness: gf is computable in uniform time poly(m, n).
2. Seed length: d(n, m) = O(log2 n/ log m).
3. Reduction advice length: k(n, m) = poly(m, log n).
Since the proof follows standard techniques, we have deferred it to the full version.

Y. Liu and R. Pass 32:17

Return to proving Lemma 3.9. We are now ready to prove Lemma 3.9 by relying on the
above result.

Proof of Lemma 3.9. Consider any constant ε > 0.

A padding trick. In this proof, we will use a padding argument to make the leakage we
need as small as it is required. Let m denote the output length of the targeted PRG that
we hope to construct. Let n denote the input length of the multi-output function f . Let
θ = O(1/ε) ∈ N be a constant such that 1

θ is sufficiently smaller than ε. In this proof, we
usually assume that n = poly(m) and it holds that n = n(m) = mθ. In some cases depending
on the context, m is defined w.r.t. n and it holds that m(n) = ⌊n1/θ⌋ (and we can think of
m as being sublinear in n).

Constructing the PRG. Let g be the k-reconstructive PRG obtained from Theorem 3.11,
and let R, M be the algorithms associated with g (as in Definition 3.10). We will consider a
function G : 1m × {0, 1}mθ × {0, 1}d → {0, 1}m. On input (1m, x, y) where x ∈ {0, 1}mθ

, y ∈
{0, 1}d, the algorithm G proceeds in the following steps.

G first computes z = f(x). Let n = mθ = |z|.
G outputs

G(1m, x, y) = gz(1n, 1m, y)

Note that the seed length of the PRG d(n, m) = O(log2 n/ log m) so we can let σ be a constant
such that d = σ log m and G is now a function of the form 1m × {0, 1}mθ × {0, 1}σ log m →
{0, 1}m.

We claim that G is a O(m)-secure (mθ, σ log m)-targeted PRG. Suppose not; then there
exists a O(m)-time deterministic distinguisher D such that for infinitely many m ∈ N,
n = mθ, x ∈ {0, 1}n,∣∣Pr[v ← {0, 1}σ log m : D(1m, x, G(1m, x, v)) = 1]− Pr[w ← {0, 1}m : D(1m, x, w) = 1]

∣∣ ≥ 1
6 (4)

(Note that D runs in time O(m) so it is unable to read the whole string x.) We will prove that
f can be computed locally in nε time with nc-time computable leakage, for some constant c

which we will fix later.

Computing f with leakage. We will construct a nc-time algorithm leak, and a nε-time
(local) algorithm A, where leak(x, f(x)) will produce a |x|ε-bit leakage and A(x, leak(x, f(x))
will locally compute the function f(x) on input x for infinitely many x (i.e., those inputs
x on which Equation 4 holds). The algorithms A and leak will collaboratively proceed as
follows. On input x, z, leak computes n = |x| and m = ⌊n1/θ⌋, and leak simply outputs
Mz,D(1m,x,·)(1n, 1m). We turn to constructing the algorithm A. On input x, the output of
leak (denoted by a), and a bit index i ∈ [n], A simply outputs RD(1m,x,·)(a, i).

Analyzing the reduction. We turn to analyzing the reduction. We first show that
A(x, leak(x, f(x)), i) will indeed compute f(x)i for all i ∈ [|x|] on infinitely many inputs x.
This follows from the correctness of the distinguisher D, and the security of the reconstructive
PRG g. In more detail, let us fix a (sufficiently long) string x ∈ {0, 1}n w.r.t. which Equa-
tion 4 holds. Note that the distinguisher D(1m, x, ·) will also distinguish the reconstructive
PRG gz(1n, 1m, ·), and therefore A(x, leak(x, f(x)), i) will output

RD(1m,x,·)(Mz,D(1m,x,·)(1n, 1m), i)

CCC 2023

32:18 Leakage-Resilient Hardness vs Randomness

which equals zi = f(x)i with probability at least 2/3. In addition, leak(x, f(x)) is short and
of length at most nε (due to our choice of θ). Since leak(x, f(x)) contains the reduction advice
for the reconstructive PRG g, and by Theorem 3.11 it is at most of length poly(m, log n) =
poly(n1/θ, log n), which is at most nε (since θ is picked to be much larger than 1/ε).

We proceed to showing that leak runs in time nc (for some sufficiently large universal
constant c) and A runs in time nε. Note that leak simply invokes the algorithm M on input
1n, 1m (given z and D(1m, x, ·)), M runs in polynomial time, and D runs in time O(m). It
follows that leak runs in time poly(n) and we can pick c to be large enough such that leak
runs in time nc. A will call the algorithm R on input (a, i), which (as argued above) is of
length at most n2/θ. Since R runs in polynomial time, A runs in time poly(n2/θ) which will
be at most nε if we pick θ much larger than 1/ε.

It remains to show that G runs in time t(mθ)poly(m). Note that it takes t(mθ) time to
compute z = f(x), and the construction g runs in time polynomial in n = mθ. Thus, it
follows that G(1m, x, ·) runs in time t(mθ)poly(m). ◀

4 Characterizing Derandomization of prMA

In this section, we present a characterization between derandomization and leakage-resilient
hardness regarding prMA and prNP. In the non-deterministic setting, we need to consider a
notion of leakage-resilient hard relations (generalizing the notion of leakage-resilient hard
functions), which will be both sufficient and necessary to derandomize prMA. Due to space
limit, we will defer proofs in this section to the full version.

For any relation R ⊆ {0, 1}∗ × {0, 1}∗ and any class of languages C, we say that R is
computable in C if there exists a language L ∈ C such that (x, y) ∈ R iff (x, y) ∈ L.

▶ Definition 4.1 (Leakage Resilient Hard Relation). Let R ⊆ {0, 1}∗ × {0, 1}∗ be a relation
such that for every (x, y) ∈ R, |x| = |y|. We say that R is almost-all-input (T (·), ℓ(·))-leakage
resilient hard if the following two conditions hold.

(Non-triviality.) For every x ∈ {0, 1}∗, R(x) = {y : (x, y) ∈ R} ̸= ∅.
(Leakage-resilient.) For all T -time probabilistic algorithms leak, A satisfying leak(x, y) ≤
ℓ(|x|), for all sufficiently long strings x, y satisfying (x, y) ∈ R, A(x, leak(x, y)) ̸= y with
probability ≥ 2/3 (over their internal randomness).

Now we are ready to state our characterization of derandomizing prMA.

▶ Theorem 4.2. There exists a constant c ≥ 1 such that for all nice classes of functions C,
all constants 0 < ε < 1, the following are equivalent.
1. prMA ⊆ ∪T ∈CprNTIME[T].
2. The existence of a function T ∈ C and an almost-all-input (nc, nε)-leakage resilient hard

relation R ⊆ {0, 1}∗ × {0, 1}∗ computable in NTIME[T].

Proof. The implication (1) ⇒ (2) follows from Theorem 4.3 (stated and proved below). To
show (2) ⇒ (1), we apply Lemma 4.6 (stated and proved in below) to obtain a targeted PRG
and (1) follows from Lemma 4.5. ◀

As demonstrated in the proof above, the proof Theorem 4.2 contains two parts. In the
first part, we show that we can directly obtain a leakage-resilient hard relation from the
assumption that prMA = prNP without relying on a search-to-decision reduction.

▶ Theorem 4.3. If prMATIME[O(n)] ⊆ prNTIME[t(n)], then for any constant c ≥ 1, there
exists a relation R computable in NTIME[t(p(n))] (for some polynomials p) that is almost-
all-input (nc, n− 3 log n)-leakage resilient hard.

Y. Liu and R. Pass 32:19

In the second part of the proof, we prove the converse implication of Theorem 4.3. We
rely on the following non-deterministic variant of a targeted PRG (where the PRG takes as
input an additional witness whose validity can be checked by an verifier).

▶ Definition 4.4 (Targeted non-deterministic pseudorandom generator). Let G : 1n×{0, 1}ℓ(n)×
{0, 1}ℓ(n) × {0, 1}m(n) → {0, 1}n be a computable function. We say that G is an T (n)-secure
(ℓ(n), m(n))-targeted non-deterministic pseudorandom generator (T -secure (ℓ(n), m(n))-
targeted NPRG) if there exists a non-deterministic verifier V such that the following two
conditions hold:

For all sufficiently large n ∈ N, for all x ∈ {0, 1}ℓ(n), there exists w ∈ {0, 1}ℓ(n), |w| = |x|,
and V (1n, x, w) = 1.
For all deterministic attackers D that run in T (n) time (where n is the length of its
first input), for all sufficiently large n ∈ N and all strings x, w ∈ {0, 1}ℓ(n) satisfying
V (1n, x, w) = 1, it holds that

|Pr[s← {0, 1}m(n) : D(1n, x, G(1n, x, w, s)) = 1]−Pr[y ← {0, 1}n : D(1n, x, y) = 1]| < 1
6 .

We say that a targeted NPRG G is computable in time T (for some function T) if G is
computable in time T (with respect to the length of its first input) and there exists a verifier
for G computable in non-deterministic time T (w.r.t. the length of its first input).

We then show that the notion of a targeted NPRG is indeed useful by proving that it
can be used to derandomize prMA.

▶ Lemma 4.5. Assume that there exist constants σ ≥ 1, θ ≥ 1 and a O(n)-secure
(nθ, σ log n)-targeted NPRG G that is computable in time t(n) ≥ n. Then, prMA ⊆
∪p,q∈polyprNTIME[t(p(n))q(n)].

It remains to show that the existence of a leakage-resilient hard relation implies the
existence of a targeted NPRG, which can be proved by generalizing Lemma 3.9 to allow
non-deterministic computation.

▶ Lemma 4.6. There exists a constant c ≥ 1 such that the following holds. Assume that
there exist a constant ε > 0 and an almost-all-input (nc, nε)-leakage resilient hard relation R

computable in NTIME[t]. Then there exist constants σ, θ ≥ 1 and a O(n)-secure (nθ, σ log n)-
targeted NPRG GN computable in time t(nθ)poly(n).

References
1 Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and

cryptography against memory attacks. In Theory of cryptography conference, pages 474–495.
Springer, 2009.

2 László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318,
1993.

3 Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM Journal on Computing, 13(4):850–864, 1984.

4 Zvika Brakerski and Yael Tauman Kalai. A parallel repetition theorem for leakage resilience.
In Theory of Cryptography Conference, pages 248–265. Springer, 2012.

5 Lijie Chen, Ron D Rothblum, Roei Tell, and Eylon Yogev. On exponential-time hypotheses,
derandomization, and circuit lower bounds. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 13–23. IEEE, 2020.

6 Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box, and
instance-wise. Electronic Colloquium on Computational Complexity, 2021. URL: https:
//eccc.weizmann.ac.il/report/2021/080/l.

CCC 2023

https://eccc.weizmann.ac.il/report/2021/080/l
https://eccc.weizmann.ac.il/report/2021/080/l

32:20 Leakage-Resilient Hardness vs Randomness

7 Don Coppersmith. Small solutions to polynomial equations, and low exponent rsa vulnerabil-
ities. Journal of cryptology, 10(4):233–260, 1997.

8 Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS, pages
293–302, 2008.

9 Oded Goldreich. In a world of P=BPP. In Studies in Complexity and Cryptography. Miscellanea
on the Interplay between Randomness and Computation, pages 191–232. Springer, 2011.

10 Oded Goldreich. Two comments on targeted canonical derandomizers. In Electron. Colloquium
Comput. Complex., volume 18, page 47, 2011.

11 Shuichi Hirahara. Non-disjoint promise problems from meta-computational view of pseudor-
andom generator constructions. In 35th Computational Complexity Conference (CCC 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

12 R Impagliazzo and A Wigderson. Randomness vs. time: de-randomization under a uniform
assumption. In Proceedings 39th Annual Symposium on Foundations of Computer Science
(Cat. No. 98CB36280), pages 734–743. IEEE, 1998.

13 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

14 Russell Impagliazzo and Avi Wigderson. P = BPP if e requires exponential circuits: Deran-
domizing the xor lemma. In STOC ’97, pages 220–229, 1997.

15 Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In Annual International Cryptology Conference, pages 463–481. Springer,
2003.

16 Valentine Kabanets. Easiness assumptions and hardness tests: Trading time for zero error.
Journal of Computer and System Sciences, 63(2):236–252, 2001.

17 Oliver Korten. Derandomization from time-space tradeoffs. In 37th Computational Complexity
Conference (CCC 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

18 Yanyi Liu and Rafael Pass. Characterizing derandomization through hardness of levin-
kolmogorov complexity. In CCC, 2022.

19 Yanyi Liu and Rafael Pass. Leakage-resilient hardness vs randomness. Electronic Colloquium on
Computational Complexity, 2022. URL: https://eccc.weizmann.ac.il/report/2022/113/.

20 Ueli M Maurer. Factoring with an oracle. In Workshop on the Theory and Application of of
Cryptographic Techniques, pages 429–436. Springer, 1992.

21 Silvio Micali and Leonid Reyzin. Physically observable cryptography. In Theory of Cryptography
Conference, pages 278–296. Springer, 2004.

22 Cody Murray and Ryan Williams. Circuit lower bounds for nondeterministic quasi-polytime:
an easy witness lemma for np and nqp. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 890–901, 2018.

23 Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70,
1991.

24 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994.

25 Rafael Pass. Unprovability of leakage-resilient cryptography beyond the information-theoretic
limit. In SCN, 2020.

26 Ronald L Rivest and Adi Shamir. Efficient factoring based on partial information. In Workshop
on the Theory and Application of of Cryptographic Techniques, pages 31–34. Springer, 1985.

27 Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the xor
lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

28 Roei Tell. Proving that prBPP= prP is as hard as proving that “almost NP” is not contained
in P/poly. Information Processing Letters, 152:105841, 2019.

29 Salil P Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012.

30 Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 80–91, 1982.

https://eccc.weizmann.ac.il/report/2022/113/

On the Impossibility of General Parallel
Fast-Forwarding of Hamiltonian Simulation
Nai-Hui Chia #

Rice University, Houston, TX, USA

Kai-Min Chung #

Academia Sinica, Taipei, Taiwan

Yao-Ching Hsieh #

University of Washington, Seattle, WA, USA

Han-Hsuan Lin #

National Tsing Hua University, Hsinchu, Taiwan

Yao-Ting Lin #

University of California at Santa Barbara, CA, USA

Yu-Ching Shen #

Academia Sinica, Taipei, Taiwan

Abstract
Hamiltonian simulation is one of the most important problems in the field of quantum computing.
There have been extended efforts on designing algorithms for faster simulation, and the evolution
time T for the simulation greatly affect algorithm runtime as expected. While there are some
specific types of Hamiltonians that can be fast-forwarded, i.e., simulated within time o(T), for some
large classes of Hamiltonians (e.g., all local/sparse Hamiltonians), existing simulation algorithms
require running time at least linear in the evolution time T . On the other hand, while there exist
lower bounds of Ω(T) circuit size for some large classes of Hamiltonian, these lower bounds do not
rule out the possibilities of Hamiltonian simulation with large but “low-depth” circuits by running
things in parallel. As a result, physical systems with system size scaling with T can potentially do
a fast-forwarding simulation. Therefore, it is intriguing whether we can achieve fast Hamiltonian
simulation with the power of parallelism.

In this work, we give a negative result for the above open problem in various settings. In the
oracle model, we prove that there are time-independent sparse Hamiltonians that cannot be simulated
via an oracle circuit of depth o(T). In the plain model, relying on the random oracle heuristic, we
show that there exist time-independent local Hamiltonians and time-dependent geometrically local
Hamiltonians on n qubits that cannot be simulated via an oracle circuit of depth o(T/nc), where
the Hamiltonians act on n qubits, and c is a constant. Lastly, we generalize the above results and
show that any simulators that are geometrically local Hamiltonians cannot do the simulation much
faster than parallel quantum algorithms.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory

Keywords and phrases Hamiltonian simulation, Depth lower bound, Parallel query lower bound

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.33

Funding NH. Chia is supported by NSF award FET-2243659 and Google Scholar Award. KM.
Chung’s research is partially supported by NSTC QC project under Grant no. NSTC 111-2119-M-
001-004- and the 2021 Academia Sinica Investigator Award (AS-IA-110-M02). HH. Lin is supported
by NSTC QC project under Grant no. NSTC 111-2119-M-001-004- and MOST Grant no. 110-2222-
E-007-002-MY3. YC. Hsieh and YC. Shen are supported by NSTC QC project under Grant no.
NSTC 111-2119-M-001-004-. YT. Lin is partially supported by Executive Yuan Data Safety and
Talent Cultivation Project (AS-KPQ-110-DSTCP). Part of the work was done when YC. Hsieh and
YT. Lin were working at Academia Sinica.

© Nai-Hui Chia, Kai-Min Chung, Yao-Ching Hsieh, Han-Hsuan Lin,
Yao-Ting Lin, and Yu-Ching Shen;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 33; pp. 33:1–33:45

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nc67@rice.edu
mailto:kmchung@iis.sinica.edu.tw
mailto:ychsieh@cs.washington.edu
mailto:linhh@cs.nthu.edu.tw
mailto:yao-ting_lin@ucsb.edu
mailto:yuching@iis.sinica.edu.tw
https://doi.org/10.4230/LIPIcs.CCC.2023.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Impossibility of Fast-Forwarding of Hamiltonian Simulation

1 Introduction

Simulating a physical system with a specified evolution time is an essential approach to study
the properties of the system. In particular, given a Hamiltonian H that presents the physical
system of interest and the evolution time t, the goal is to use some well-studied physical system
as a simulator to implement e−iHt when H is time-independent or expT

(
−i
∫ t

0 H(t′)dt′
)

for
time-dependent H, where expT denotes the time-ordered matrix exponential. Intuitively, a
simulator simulates a Hamiltonian H step by step and thus requires time at least linear in t.
On the other hand, if one can use a well-studied physical system (e.g., digital or quantum
computers) to simulate the Hamiltonian of interest with time significantly less than the
specified evolution time, it can significantly benefit our study of physics. Following this line
of thought, a fundamental question for simulating Hamiltonians is:

Can a simulator simulate Hamiltonians in time strictly less than the evolution time?

This is called fast-forwarding of Hamiltonians. In this work, we investigate the possibility of
achieving fast-forwarding of Hamiltonian using quantum computation.

It is known that quantum algorithms can fast-forward some Hamiltonians. Atia and
Aharonov [3] showed that commuting local Hamiltonians and quadratic fermionic Hamiltoni-
ans with evolution time t = 2Ω(n) can be exponentially fast-forwarded by quantum algorithms,
where the Hamiltonian applies on n qubits. This result implies the existence of quantum
algorithms that simulate the two classes of Hamiltonians in poly(n) time. Gu et al. [22]
showed that more Hamiltonians could be exponentially or polynomially fast-forwarded, such
as the exponential fast-forwarding for block diagonalizable Hamiltonians and polynomial
fast-forwarding method for frustration-free Hamiltonians at low energies.

The existence of general fast-forwarding methods for Hamiltonians using quantum com-
puters has also been studied. In particular, people investigated whether all Hamiltonians with
some “succinct descriptions”, such as local and sparse Hamiltonians, can be fast-forwarded.
Berry et al. [6] proved no general fast-forwarding for all sparse Hamiltonians of n qubits
for evolution time t = nπ/2 by a reduction from computing the parity of a binary string.
In particular, computing the parity of an n-bit string requires Ω(n) quantum queries, and
they showed that any algorithm that simulates the corresponding Hamiltonian in time o(n)
will violate the aforementioned query lower bound of parity. Atia and Aharonov [3] further
showed that if all 2-sparse row-computable1 Hamiltonians with evolution time 2o(n) can
be simulated in quantum polynomial time, then BQP = PSPACE. In other words, the
result in [3] rules out the possibility of exponential fast-forwarding for Hamiltonians with
evolution time superpolynomial in the dimension under well-known complexity assumptions.
Haah et al. [23] showed that there exists a piecewise constant bounded 1D time-dependent
Hamiltonian2 H(t) on n qubits, such that any quantum algorithm simulating H(t) with
evolution time T requires Ω(nT) gates.

All these works, however, mainly considered lower bounds on the number of gates required
for simulation, and it does not rule out the possibility that one can complete the simulation
with time strictly less than t by using parallelism. Briefly, if many local gates in an algorithm
operate on disjoint sets of input, then these gates can be applied together, and the efficiency
of the algorithm is captured by the circuit depth instead of the number of gates. For instance,
the result in [6] was based on the fact that the query complexity of parity is Ω(n) and thus,

1 Given the row index, one can efficiently compute the column indices and values of the non-zero entries
of the row.

2 The Hamiltonian is 1D local, and there is a time slicing such that H(t) is time-independent within each
time slice. See [23] for the formal definition.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:3

one needs Ω(t) queries to simulate the Hamiltonian evolution; however, if one runs t queries
in parallel, it is possible to solve the parity problem with one layer of queries. Therefore, a
direct translation of [6] does not rule out the possibility of constant depth simulation of the
Hamiltonian evolution for time t by running O(t) simulations in parallel.

Parallel runtime (i.e., the circuit depth in the quantum circuit model) could be another
suitable notion for capturing the efficiency of the Hamiltonian simulation. Broadly speaking,
any physically controllable and implementable system can be used as a simulator, so-called
quantum analogue computing [17,18]; instead of having one local interaction at each time
step, a simulator that is realized by some physical system will have the whole system evolve
together. From a computational perspective, a positive result of fast-forwarding Hamiltonians
using parallel algorithms can imply that the simulation can be done in time strictly less than
the specified evolution time given sufficient computational resources. In particular, if there
exists an algorithm that simulates all Hamiltonians in time less than the simulation time t,
we might be able to further reduce the runtime by recursively applying the algorithm with
sufficient quantum resources. Hence, such algorithms can be a powerful tool for studying
quantum physics. In fact, parallel quantum algorithms for Hamiltonian simulation have
been studied and showed some advantages. Zhang et al. [39] presented a parallel quantum
algorithm, whose parallel runtime (circuit depth) has a doubly logarithmic dependency
on the simulation precision. Moreover, Haah et al. [23] showed that the circuit depth of
their algorithm for simulating geometrically constant-local Hamiltonians can be reduced to
O(t · polylog(tn/ϵ)) by using ancilla qubits. In the last, choosing other physical systems
similar to the target Hamiltonians as simulators is possible to gain advantages, which is the
idea of quantum analogue computing.

We first explore the possibility of achieving fast-forwarding of Hamiltonians using parallel
quantum algorithms, i.e., quantum algorithms that have circuit depth strictly less than
the simulation time. We call this parallel fast-forwarding. Our first goal is to address the
following question:

For all sparse or local Hamiltonians, do there exist quantum algorithms that simulate the
Hamiltonians with circuit depth strictly less than the required evolution time?

Furthermore, we noticed that more general simulators (in addition to quantum cir-
cuit models) are widely considered for Hamiltonian simulation, such as quantum analogue
computing. So, we are also wondering about the following question.

For all sparse or local Hamiltonians, does there exist a natural simulator that simulates the
Hamiltonians with evolution time strictly less than the required evolution time?

1.1 Our Results
In the work, we give negative answers to the above questions. Roughly speaking, we show
that under standard cryptographic assumptions, there exists Hamiltonians that cannot be
parallelly fast-forwarded by quantum computers and any simulators that are geometrically
local physical systems.

We define parallel fast-forwarding as follows:

▶ Definition 1 (Parallel fast-forwarding). Let H be a subset of all normalized Hamiltonian
(∥H∥ = 1) and Hn be the subset of Hamiltonian in H which acts on n qubits. We say that
the set H can be (T (·), g(·), ε(·))-parallel fast forwarded if there exists an efficient classical
algorithm A(1n, t) that outputs a circuit Cn,t, i.e., {Cn,t} is a uniform quantum circuit, such
that for all n ∈ N, t ≤ T (n), Cn,t satisfies the following two properties.

CCC 2023

33:4 Impossibility of Fast-Forwarding of Hamiltonian Simulation

The circuit Cn,t has depth at most g(t).
For all H ∈ Hn, |ψ⟩ ∈ C2n , the circuit Cn,t(H, |ψ⟩) (or CHn,t(|ψ⟩) under the oracle setting)
has output state that is ε(n) close to the Hamiltonian evolution outcome e−iHt|ψ⟩.

In other words, there exists uniform quantum circuit Cn,t such that for every Hamiltonian
H ∈ Hn, the evolution of H to time t up to some predetermined time bound T (·) can be
simulated by C.

Compared to [3], Definition 1 focuses on C’s circuit depth instead of the number of gates
and requires the depth of C to be smaller than t rather than being poly(n). In particular,
when t = superpoly(n), the definition in [3] can only be satisfied by a circuit C that has gate
number superpolynomially smaller than t, and C that has circuit depth slightly less than
t can satisfy Definition 1. Therefore, we can also interpret the no fast-forwarding theorem
in [3] as refuting the possibility of achieving Definition 1 with gate number (and also circuit
depth) superpolynomially smaller than t = superpoly(n) for a specific family of Hamiltonians.
However, given that negative result, one might ask the following question:

Can we achieve parallel fast-forwarding with g(t) slightly smaller than t, such as g(t) =
√
t?

In this work, we address the aforementioned question and show impossibility results for
parallel fast-forwarding with circuit depth g(t) slightly smaller than t for local or sparse
Hamiltonians. Our first result is an unconditional3 result under the oracle model.4

▶ Theorem 2 (No parallel fast-forwarding for sparse Hamiltonians relative to random permuta-
tions, simplified version of Theorem 37). Relative to a random permutation oracle over n-bit
strings, for any polynomial T (·), there exists a family of time-independent sparse Hamiltoni-
ans H such that H cannot be (T (·), g(·), ε(·))-fast forwarded for some g = Ω(t) and ε = Ω(1).

To obtain no fast-forwarding result in the standard model,5 we rely on cryptographic
assumptions that provide hardness against low-depth algorithms. We assume the existence
of iterative parallel-hard functions, formally defined in Definition 43. Roughly speaking, an
iterative parallel-hard function is a function of the form f(k, x) = g(k)(x) := g(g(. . . g(x)))︸ ︷︷ ︸

k times

,

such that g is efficiently computable (by some circuit of size s), but g(k)(x) is not computable
for circuits with depth much less than k.

With such a cryptographic assumption, we obtained the following two no-fast-forwarding
theorems under the standard model.

▶ Theorem 3 (No parallel fast-forwarding for local Hamiltonians, simplified version of Theo-
rem 45). Assuming the existence of iterative parallel-hard functions with size parameter s(n),
then for every polynomial T (n), there exists a family of time-independent local Hamiltonians
H such that H cannot be (T (·), g(·), ε(·))-fast forwarded for some g = Ω(t/s(n)) and ε = Ω(1).

▶ Theorem 4 (No parallel fast-forwarding for time-dependent geometrically local Hamiltonians,
simplified version of Theorem 46). Assuming the existence of iterative parallel-hard functions
with size parameter s(n), then for every polynomial T (n), there exists a family of time-
dependent geometrically local Hamiltonian H such that H cannot be (T (·), g(·), ε(·))-fast
forwarded for some g = Ω(t/ns(n)) and ε = Ω(1).

3 That is, the result holds without making any computational assumptions.
4 By the oracle model we mean that the algorithm can only access the Hamiltonian by making (quantum)

queries to the oracle that encodes the description of the Hamiltonian. See Section 8 for the definition.
5 By the standard (plain) model we mean that the algorithm is given the classical description of the

Hamiltonian as input, which is the standard setting of the Hamiltonian simulation problem. Moreover,
there is no oracle that can be accessed by algorithms. We will use the terms “standard model” and
“plain model“ interchangeably throughout this work.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:5

Some loss in parameters are hidden in Theorem 3 and Theorem 4. Readers are referred
to the full theorems in Section 9 for precise parameters.

We note that the existence of parallel-hard functions with an iterative structure is widely
used in cryptography. Our definition of iterative parallel-hard functions adapts from the
iterated sequential function proposed by Boneh et al. [9]. Functions of this form play a crucial
role in the recent construction of verifiable delay functions (VDF) [19, 32, 35]. In contrast to
its wide usage, there have not been many proposals on candidates for such iterative hard
functions. Iterative squaring [33], which is probably the most widely used candidate, is
not hard against quantum circuits. There are some recent attempts toward constructing
iterated quantum-hard functions from isogenies [12, 20], but these assumptions are much less
well-studied.

As a concrete instantiation of our iterated parallel-hard function, we adopted a hash
chain, which is also widely assumed to be hard to compute within low depth. In Section 6,
we justify the quantum parallel hardness of the hash chain by showing a depth lower bound
of computing the hash chain in the quantum random oracle model [10].

Our results in Theorem 2, Theorem 3, and Theorem 4 imply that no quantum algorithm
can simulate certain families of local or sparse Hamiltonians with circuit depth polynomially
smaller than t. For instance, suppose t = nc for some constant c and s(n) = n2, then by
Theorem 3, no quantum algorithm can simulate the local Hamiltonians with circuit depth
smaller than tc−2.

Since local Hamiltonians are sparse, Theorem 3 also implies no parallel fast-forwarding
of sparse Hamiltonians in the standard model. Finally, Theorem 4 and Theorem 3 are
incomparable due to the fact that the Hamiltonians in Theorem 4 are time-dependent and
the depth lower bound has a factor of n.

It is worth noting that the results above show no parallel fast-forwarding when using
“quantum circuits” as simulators, which does not directly imply hardness results when
considering other physical systems as simulators. Especially, choosing physical systems that
are similar to the Hamiltonians to be simulated is possible to gain advantages, and physical
systems naturally evolve the whole system together instead of applying local operators one by
one. Therefore, it is nontrivial whether similar results hold for other simulators. Fortunately,
we are able to generalize Theorem 4 and Theorem 3 to show that natural simulators that are
geometrically local Hamiltonians cannot do much better than quantum circuits.

▶ Theorem 5 (No fast-forwarding for local Hamiltonians with natural simulators, simplified
version of Corollary 55). Assuming the existence of iterative parallel-hard function with size
parameter s(n), then for every polynomial T (n), there exists a family of time-independent
local Hamiltonians H over Õ(n) qubits satisfying the following. For any geometrically
constant-local Hamiltonian HB acting on poly(n) qubits, using HB to simulate any HA ∈
H for any evolution time t ∈ [0, s(n)T (n)] needs an evolution time at least (t/2s(n) −
O(s(n)))/ polylog(tn).

▶ Theorem 6 (No fast-forwarding for geometrically local Hamiltonians with natural simulators,
simplified version of Corollary 54). Assuming the existence of iterative parallel-hard functions
with size parameter s(n), then for every polynomial T (n), there exists a family of time-
dependent geometrically local Hamiltonians H over Õ(n) qubits satisfying the following. For
any geometrically constant-local Hamiltonian HB acting on poly(n) qubits, using HB to
simulate any HA ∈ H for any evolution time t ∈ [0, ns(n)T (n)] needs an evolution time at
least

(
t

ns(n) −O(ns(n))− polylog(n)
)
/ polylog(tn).

CCC 2023

33:6 Impossibility of Fast-Forwarding of Hamiltonian Simulation

2 Technical Overview

The main idea

Our idea is to reduce some tasks that have a circuit or query depth lower bounds (i.e.,
parallel-hard problems) to simulating specific Hamiltonians with evolution time t, such that
the existence of parallel fast-forwarding of the Hamiltonians will contradict the circuit depth
lower bound and also violate the parallel hardness of the task. For instance, one can reduce
parity, which is not in QNC0 (the class of all constant-depth bounded fan-in circuits), to
simulate a corresponding Hamiltonian H with some time t, such that e−iHt outputs the parity
of the input. Along this line, if e−iHt can be implemented by a constant-depth quantum
circuit, we can compute parity – this violates the quantum circuit lower bound on parity!
Following the same idea, one can also derive some no-go results for parallel fast-forwarding
from unstructured search, where the k-parallel quantum query complexity is Θ(

√
N/k),

where k-parallel means each “query layer” can have k queries in parallel [24, 36].
However, there are several challenges: First, those above-mentioned parallel-hard problems

can be solved in depth smaller than the input size. This could result in a Hamiltonian
simulation in which the evolution time is smaller than the number of qubits. Although this
might still lead to an impossibility result for parallel fast-forwarding of an o(n) evolution
time, parallel fast-forwarding algorithms for such a short evolution time seem not that useful.
In fact, to the best of our knowledge, it is not easy to find a problem that can be computed
in quantum polynomial time while having a quantum depth strictly greater than the input
size using polylog(n) parallel queries. So, one technical contribution of our work is finding
such problems and proving their quantum depth.

Second, finding appropriate reductions from the parallel-hard problems to Hamiltonians
of our interest and preserving the input size and the quantum depth is also challenging. Note
that we are focusing on sparse or local Hamiltonians with evolution time, a polynomial in
the number of qubits. One intuitive approach is trying the circuit-to-Hamiltonian reduction
in [25, 30]. Briefly, the reduction uses a t-depth circuit on n qubits to simulate a local
Hamiltonian on n + t qubits with time t, where the additional t qubits are for the “clock
register”. This, as mentioned above, has an evolution time smaller than the number of qubits.
In this work, we find reductions that map a d-depth n-qubit quantum computation with
d = poly(n) to a local or sparse Hamiltonian with the number of qubits and evolution time
“close to” n and t respectively.

Another challenge is that we need the parallel-hard problem as an iterative structure
to show no parallel fast-forwarding theorems. More specifically, our goal is to prove that
some Hamiltonians cannot be parallel fast-forwarded with any evolution time in the specified
range. Therefore, we might need a sequence of parallel-hard problems such that there are
corresponding parallel-hard problems for all t in the range. In addition, given a parallel-hard
problem with an iterative structure, it is not trivial how to reduce it to one Hamiltonian H

with different evolution times t such that simulating H for different t gives the corresponding
answers.

Parallel hardness of the underlining assumptions

One candidate for parallel-hard problems with an iterative structure of our purpose is the
hash chain. Roughly speaking, let X be a finite set and h : X → X be a hash function. An
s-chain of h is a sequence x0, x1, . . . , xs ∈ X such that xi+1 = h(xi) for any i ∈ [s−1]. Given
quantum oracle access to h, the goal of the algorithm is to find an s-chain. Classically, it was

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:7

proven that classical algorithms require query depth of at least s to output an s-chain with
constant probability. A similar result also holds for quantum algorithms that make quantum
queries to the hash function [16]. Along this line, the hash chain seems ideal for our purpose
because s can be a polynomial in log(|X |) and has the iterative parallel hardness.

However, a hash function is generally irreversible, and this fails standard approaches for
reducing the problem to Hamiltonian simulation. Briefly, one encodes h as a Hamiltonian
H such that evaluating h is equivalent to applying e−iH . Since e−iH is a unitary that is
reversible, evaluating h also needs to be reversible. Here, we give permutation chain and
twisted hash chain that are iteratively parallel-hard and the underlining function is reversible.
However, the reversibility imposes another challenge, as the ability to query the inverse of
the permutation breaks the known composed oracle techniques used to prove the hardness of
hash chain [16]6. Therefore we tailored a two-step-hybrid argument to prove the hardness of
the random permutation chain with the ability to query the inverse of the permutations.

Note that for oracle lower bounds of parallel query algorithms, while [24] gives optimal
bounds by generalizing the adversary method, it is notoriously hard to find the suitable
adversary matrices. Therefore we derive the query lower bounds for our problems by crafting
a hybrid argument and using the compressed oracle technique [38] respectively.

2.1 No parallel fast-forwarding for sparse Hamiltonians relative to
random permutation oracle

We first introduce the permutation chain and demonstrate how to prove Theorem 2 via the
graph-to-Hamiltonian reduction based on the permutation chain. This shows no parallel
fast-forwarding for sparse matrices relative to a random permutation oracle.

Permutation chain

One of the reversible parallel-hard problem we formulated is the permutation chain. In this
problem, we are given as inputs q permutations of N := 2n elements Π1,Π2, . . . ,Πq.7 Let
SΠ be the unitary that enables one to query to each Πi and their inverses in superposition.
Let x̄1 = 1 and x̄i+1 = Πi(x̄i) so that x̄q+1 = Πq(. . .Π2(Π1(1))). With q queries to
SΠ, it is easy to calculate x̄i, while we prove that it is only possible to calculate x̄i with
probability O(q

√
k/N) using ⌊(q − 1)/2⌋ k-parallel queries8 to SΠ. Therefore if we have

q, k = O(polylog(N)), the success probability is negligible in n, even when k is larger than q

and having access to the inverses of Π1,Π2, . . . ,Πq.
To bound the success probability, we employed a two-step hybrid. First, we show that we

can replace each SΠ with SΠ̃. SΠ̃ is a set of functions that return zeros almost everywhere
except at {x̄i}, where they behave the same as SΠ (see Figure 2(a)(b)). We prove that we
can approximately simulate one call to a random SΠ with two calls to SΠ̃. Now, SΠ̃ looks
like a constant zeros function, we can erase some of its values without getting caught. In
the second step, we show that we can release the Π̃i’s on a finely controlled schedule, with
only negligible change in the output probability. Define Π⊥ to be a constant zero function.
Define SΠ̃ℓ to be the unitary corresponding to Π̃1, Π̃2, . . . , Π̃ℓ,Π⊥, . . . , i.e., all but the first ℓ
permutations are erased (see Figure 1). We show that if we replace the first k-parallel queries

6 One can use the technique in [37] to convert random permutations to random functions, but the
conversion only works when the algorithm has no access to the inverse oracle.

7 They can be viewed as a special case of one permutation of qN elements.
8 k-parallel means each “query layer” can have k queries in parallel

CCC 2023

33:8 Impossibility of Fast-Forwarding of Hamiltonian Simulation

of SΠ̃ with SΠ̃1, second k-parallel queries of SΠ̃ with SΠ̃2, third k-parallel queries of SΠ̃
with SΠ̃3, etc, we can only be caught with negligible probability. Intuitively, this is because
while we are at the i-th query layer, it is hard to find any non-zero values of Π̃i+1, . . . , Π̃q.
Therefore, if an algorithm only makes q − 1 queries to SΠ̃, we can replace the queries with
SΠ̃1, SΠ̃2, . . . , SΠ̃q−1. It is impossible to find x̄q+1 with non-negligible probability since these
oracles do not have information of Π̃q.

Graph-to-Hamiltonian reductions

The purpose of graph-to-Hamiltonian reduction is using quantum walk on a line [14] to
solve the permutation chain. Briefly, we use a graph to encode the permutation chain and
let Hamiltonian H be the adjacency matrix that represents the graph. Then, the time
evolution operator e−iHt helps to find the solution of permutation chain. Therefore, a
low-depth Hamiltonian simulation algorithm for H could result in breaking the hardness of
permutation chain. This gives our first impossibility result of parallel fast-forwarding for
sparse Hamiltonians.

Let Π1,Π2, . . .ΠL be L permutations over N elements. We use a graph with N(L+ 1)
vertices in which each vertex labelled by (j, x) to record the permutation chain, where
j ∈ {0, 1, . . . , L} and x ∈ [N]. The vertices (j, x) and (j + 1, x′) are adjacent if and only if
x′ = Πj+1(x). The construction of the graph has followings properties. First, the graph
consists of N disconnected line because each Πj is a permutation. Second, each vertex (q, x)
that connects to (0, x0) satisfies xq = Πq(Πq−1 · · · (Π1(x0)). To solve the permutation chain
problem, we start from the vertex (0, x0) and walk along the connected line. When stopping
at a vertex (q, xq), the pair (xq, x0) would be a solution of permutation chain. It is obvious
that the adjacency matrix of the corresponding graph is sparse. We let the Hamiltonian H

determining the dynamics of the walk be the adjacency matrix of the graph, and our goal is
to find (xq, x0) by simulating e−iHt given sparse access to H.

There are two main challenges for building such a reduction: First, we need to implement
the sparse oracle access to the corresponding Hamiltonian. This requires oracle access to the
permutation and inverse permutation oracle. More specific, we need to implement two oracles
that are used in the Hamiltonian simulation algorithm to execute the quantum walk. The
first one is the entry oracle OH , which answers the element value of H when queried on the
matrix index. The second one is the sparse structure oracle OL, which answers the indices
of the nonzero entries when queried on the row index. To implement OH , it is equivalent
to checking if two vertices (j, x) and (j + 1, x′) are adjacency. It can be done by querying
Πj+1(x). To implement OL, it is equivalent to finding the vertices that are adjacent to (j, x).
Finding (j + 1, x′) adjacent to (j, x) can be done by querying Πj+1(x), but finding (j − 1, x′′)
needs to query Π−1

j (x). Hence, we need to consider the security of permutation chain when
the inversion oracle Π−1

j is given to the adversary. We bypass this challenge by showing that
the our permutation chain is secure against quantum adversaries even if inverse permutation
oracle is given as we previously discussed.

Second, we need to show that the simulation algorithm is able to walk fast enough so
that simulating H for evolution time close to the length of the chain gives the solution to
the permutation chain. To be more precise, we aim to design the system such that after
walking for time t, it reaches the vertex further than t with high probability. Recall that H
determining the dynamics of the walk is the adjacency matrix of the graph corresponding to
the permutation chain. We observe that for such quantum walk system, it indeed reaches
some points beyond t for the walking time t with high probability. At any time t, the system
is described by the quantum state e−iHt|0, x0⟩. The probability of stopping on the vertex

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:9

(q, xq) at time t is P (q) =
∣∣⟨q, xq|e−iHt|0, x0⟩

∣∣2. We have
∣∣⟨q, xq|e−iHt|0, x0⟩

∣∣ = qJq(2t)/t for
t ∈ [0, L/2], where Jq(·) is the q-th order Bessel function [14]. By the properties of Bessel
function, we show that

∑L
q=⌈t⌉ P (q) = O(1), which means that the probability of stopping at

a vertex (l, xl) such that l > t is high. As a result, it breaks the hardness of permutation
chain if e−iHt can be implemented with o(t) queries.

2.2 No parallel fast-forwarding for (geometrically) local Hamiltonians in
the plain model

To show no fast-forwarding of (geometrically) local Hamiltonians in the plain model, the
combination of the permutation chain and the graph-to-Hamiltonian reduction used in
Section 2.1 might be insufficient. First, it is unclear how to instantiate random permutation
oracle. In addition, even if we can translate the permutation chain to a parallel-hard quantum
circuit in the plain model, the graph-to-Hamiltonian reduction inherently provides sparse
oracle access to the Hamiltonian from oracle access to the permutation chain. However, we
need to have the full classical descriptions of each local term for simulating local Hamiltonians.

Observing these difficulties, we introduce the twisted hash chain and the circuit-to-
Hamiltonian reduction for proving Theorem 3 and Theorem 4.

Twisted hash chain

In order to implement a reversible operation (or a permutation), we follow the idea of
the Feistel network [29]. Roughly speaking, the Feistel network is an implementation of
block ciphers by using cryptographic hash functions. By means of chaining quantum query
operators as in Figure 3, the outputs in each layer satisfy xi = H(xi−1)⊕ xi−2. Therefore,
we can think of it as a “quantum version” of the Feistel networks. Informally, the goal of the
algorithm is to output the head and tail of a chain of length q + 1 by using at most q depth
of queries.

For proving the parallel hardness, we use the compressed oracle technique by Zhandry [38].
In particular, the analysis is undergone in the framework of Chung et al. [16] where they
generalize the technique to the parallel query model. Our proof is inspired by the parallel
hardness of the standard hash chain proven in [16]. For technical reasons, the challenge is
the following: in the twisted hash chain problem, the algorithm is not required to output all
elements of the chain and their hash values. Therefore, we cannot directly apply the tools
provided in [16]. In addition, we cannot simply ask the algorithm to spend extra queries for
outputting the hash values since this would lead to a trivial bound (we call the extra queries
for generating the whole chain the “verification” procedure). Instead, we need a more fine-
grained analysis of the verification procedure. First, we notice that since xi = H(xi−1)⊕xi−2,
the verification requires sequential queries. Therefore, unlike Theorem 5.9 in [16] where the
verification procedure only requires parallel queries, the analysis for our purpose is more
involved.

We bypass the aforementioned issue by reduction. Suppose there is an algorithm A
outputs x0, xq, xq+1 such that x0, . . . , xq+1 form a (q + 1)-chain by making q k-parallel
queries. Then we can construct a reduction B which first runs A and obtain x0, xq, xq+1.
Next, B starts with x0, xq+1 and queries each element of the chain iteratively in parallel
until approaching xq−1, x2q. If A successfully outputs a (q + 1)-chain, then it implies that B
also outputs the complete (2q+ 1)-chain with hash values but H(x2q+1) by making a total of
2q k-parallel queries. As a result, it remains to analyze the success probability of making the
last additional query on x2q+1. In this way, it significantly simplifies the proof.

CCC 2023

33:10 Impossibility of Fast-Forwarding of Hamiltonian Simulation

Circuit-to-Hamiltonian reductions

For our results in the plain model, we leverage the power of the random oracle heuristic.
From the parallel hardness of twisted hash chain, we can obtain a heuristically parallel-hard
circuit that preserves the iterative structure. Evaluation of this circuit to large depth directly
translates to computing a hash chain of large length, which is assumed to be hard for low
depth circuit. To translate the hardness to a no parallel fast-forwarding result, we embed
the computation of the circuit to a Hamiltonian via two different approaches.

To embed circuit computation to a time-independent Hamiltonian, we use the technique
from Nagaj [30], which demonstrate how to transform a circuit computation with size T
to a Hamiltonian evolution problem of time O(T log T). In our work, we make two major
modification upon Nagaj’s technique. First, we observed that Nagaj’s technique fits well
with our iterated structure of circuit. At a high level, simulating Hamiltonian obtained from
Nagaj’s compiler can be interpreted as a quantum walk on a line, where each point on the
line correspond to a computation step/gate of the circuit. Again by the detailed analysis
on Bessel function that we used in the graph-to-Hamiltonian reduction, we observe that
we can obtain a “depth O(t)” intermediate state of computing C by evolving H for time
O(t). This not only gives a better fast-forward lower bound, but also allows us to obtain
a Hamiltonian that is hard to fast-forward on every evolution time within time bound T .
Second, Nagaj’s construction gives a Hamiltonian of O(n+ T)-qubits, where n is the circuit
input size and T is the circuit size. This is an issue because it restricts our no fast-forwarding
results to evolution times small than the Hamiltonian size. We overcome this by introducing
a new design for the clock state via the Johnson graph. Our restructured clock state allows
a fine-grained tradeoff between the locality parameter and the Hamiltonian size.

For our second construction, we achieve the geometrically local property with the power of
time-dependent Hamiltonians. Our idea is to use the piecewise-time-independent construction
from [23], in which simulating the Hamiltonian for each time segment on the initial state
behaves equivalently to applying a gate on the state. We take one step further by transforming
our circuit to contain gates operating on neighboring gates only. This gives us a geometrically
2-local Hamiltonian which is hard to fast-forward. Combined with the algorithm that
simulates geometrically local Hamiltonians also by [23], our result tightens the gap between
upper bounds and lower bounds to a small polynomial in qubit number n.

▶ Remark 7. Two things worth to be noted for the two approaches in Section 2.1 and
Section 2.2:

If one can instantiate random permutations by hash functions or other algorithms without
using keys, one can obtain Theorem 3 and Theorem 4 by combining the permutation
chain and the circuit-to-Hamiltonian reduction.

The combination of the twisted hash chain and the circuit-to-Hamiltonian reduction
can give no parallel fast-forwarding for Hamiltonians in the random oracle model. This
is similar to Theorem 2; however, Theorem 2 using the permutation chain and the
graph-to-Hamiltonian reduction provides a better size of the Hamiltonians. In particular,
the Hamiltonian in Theorem 2 has the number of qubits independent of the evolution
time, while the Hamiltonians given from the circuit-to-Hamiltonian reduction has the
number of qubits that is poly-logarithmic in the evolution time.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:11

3 Open Questions

In this work, we showed that the existence of a parallel-hard problem with an iterative
structure implies no parallel fast-forwarding of sparse and (geometrically) local Hamiltonians
under cryptographic assumptions. Along this line, the first question that is natural to ask
is whether there exist more Hamiltonians that have succinct descriptions and cannot be
parallelly fast-forwarded under other computational assumptions.

We are also wondering whether the existence of parallel-hard problems with an iterative
structure is equivalent to no parallel fast-forwarding. This is equivalent to proving or
disproving that no parallel fast-forwarding results in parallel-hard problems with an iterative
structure. Intuitively, One can show that the existence of Hamiltonians that cannot be
parallelly fast-forwarded implies some quantum circuits that have no smaller circuit depth.
This follows from the fact that if one can implement a quantum circuit with a depth
smaller than the quantum simulation algorithm for the Hamiltonian, one can achieve parallel
fast-forwarding. However, this task asks the algorithm to output quantum states close to
e−iHt|ψ⟩ and thus is not a “classical computational problem” as parallel-hard problems with
an iterative structure.

In addition, we want to match the upper and lower bounds for parallel fast-forwarding of
Hamiltonian simulation. For instance, for geometrically local Hamiltonians, the algorithms
in [23] require depth O(t · polylog(tn/ϵ)), where n is the number of qubits and ϵ is the
precision parameter. There is still a O(1/ns(n)) gap compared to our result in Theorem 4.
Likewise, our results for sparse (Theorem 2) and local Hamiltonians (Theorem 3) have not
matched the upper bounds from known quantum simulation algorithms, such as [27,28,39].

The questions mentioned above are to investigate the optimal quantum circuit depth for
Hamiltonian simulation under certain computational assumptions. Note that the Hamiltonian
simulation problem has classical inputs and quantum outputs. Inspired by this, we are
wondering a more general question: is it possible to prove quantum circuit lower bounds for
complexity classes that have classical inputs and quantum outputs? For example, can we
unconditionally show quantum circuit depth lower bounds for Hamiltonian simulation or
some quantum states with succinct classical descriptions? Note that although showing circuit
depth lower bounds for languages is challenging and has some barriers, complexity classes
with quantum outputs might have specific properties and provide new insights into showing
quantum circuit depth lower bounds.

4 Preliminaries and Notation

4.1 Notation
For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. The trace distance between two density
matrices ρ and σ is denoted by ∆(ρ, σ) := 1

2 ∥ρ− σ∥1 = 1
2 tr
(√

(ρ− σ)†(ρ− σ)
)

. Let x1, x2

be n-bit strings, we use x1 ⊕ x2 to denote the bitwise XOR of x1 and x2. The Kronecker
delta is denoted by δjk where δjk = 0 if j ̸= k and δjk = 1 if j = k.

4.2 Hamiltonian simulation
▶ Definition 8 (Hamiltonian simulation). A Hamiltonian simulation algorithm A takes as
inputs the description of the Hamiltonian H, an initial state |ψ0⟩, the evolution time t ≥ 0
and an error parameter ϵ ∈ (0, 1]. Let |ψ̃t⟩ be the ideal state under the Hamiltonian H

for evolution time t with the initial state |ψ0⟩. In other words, |ψ̃t⟩ := e−iHt|ψ0⟩ for a

CCC 2023

33:12 Impossibility of Fast-Forwarding of Hamiltonian Simulation

time-independent H, and |ψ̃t⟩ := expT
(
−i
∫ t

0 H(t′)dt′
)
|ψ0⟩ for a time-dependent H, where

expT is the time-ordered matrix operator. The goal of A is to generate an approximation
|ψt⟩ of the evolved quantum state |ψ̃t⟩ such that

∆
(
|ψt⟩⟨ψt|, |ψ̃t⟩⟨ψ̃t|

)
≤ ϵ.

4.3 Basic quantum computation
Below, we provide a brief introduction to quantum computation. For more basics, we refer
the readers to [31]. Throughout this work, we use the standard bra-ket notation.

▶ Definition 9 (Quantum circuit model). A quantum circuit consists of qubits, a sequence of
quantum gates, and measurements. A qubit is a two-dimensional complex Hilbert space. Each
qubit is associated with a register. A quantum gate is a unitary operator acting on quantum
registers. We say a quantum gate is a k-qubit gate if it acts non-trivially on k qubits.

▶ Theorem 10 (Universal gate sets [11]). There exists a universal gate set that consists of
a finite number of quantum gates such that any unitary operator can be approximated by
composing elements in the universal gate set within an arbitrary error. Furthermore, every
element in the universal gate set is a one- or two-qubit gate.

▶ Definition 11 (Quantum circuit depth). Given a finite-sized gate set G, a d-depth quantum
circuit or a quantum circuit of depth d with respect to G consists of a sequence of d layers
of gates such that (i) each gate belongs in G and (ii) each gate within the same layer acts on
disjoint qubits. We omit the gate set G when it is clear from the context.

▶ Definition 12 (Quantum query operator). Given an oracle f : {0, 1}n → {0, 1}m, the query
operator Of is defined as

Of |x, y⟩ := |x, y ⊕ f(x)⟩.

▶ Definition 13 (Parallel quantum query operator). Given an oracle f : {0, 1}n → {0, 1}m.
The k-parallel query operator O⊗kf is defined as

O⊗kf |x,y⟩ := |x,y⊕ f(x)⟩,

where x = (x1, . . . , xk), y = (y1, . . . , yk) and f(x) := (f(x1), . . . f(xk)).

4.4 Useful tools
In this subsection, we introduce several definitions and lemmas for analyzing quantum random
walk in Section 7 and the clock state construction in Section 9.

4.4.1 Bessel functions
The Bessel functions of the first kind of order n are denoted by Jn(x). We present the
required properties of Bessel functions for our use.

The integration form of the Bessel function:

Jn(x) = 1
2π

∫ π

−π
dp einp−ix sin p = in

2π

∫ π

−π
dp einp−ix cos p. (1)

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:13

The relation between Jn and J−n:

J−n(x) = (−1)nJn(x). (2)

The recursion formula for integer orders:

Jn+1(x) = 2n
x
Jn(x)− Jn−1(x). (3)

The asymptotic form for large order

Jn(n sechξ) ∼ e−n(ξ−tanh ξ)
√

2πn tanh ξ
(4)

suggests that when x < |n|, the value of Jn(x) is exponentially small in n.

The following lemmas provide upper bounds for Bessel functions for large argument x.

▶ Lemma 14 (Theorem 2 in [26]). Let n > −1/2 and µ := (2n + 1)(2n + 3). For any
x >

√
µ+ µ2/3/2, it holds that

J2
n(x) ≤

4
(
4x2 − (2n+ 1)(2n+ 5)

)
π
(
(4x2 − µ)3/2 − µ

) .

By Lemma 14, we have the following lemma which is more convenient for our use.

▶ Lemma 15. Let n be a positive integer. For any real x ≥ 2n, it holds that

J2
n(x) ≤ 2

nπ
.9

Proof. We discuss the behavior of Bessel functions in three cases: n = 1, n = 2, and n ≥ 3.
For n = 1, the maximum of J2

1 (x) is 0.339 . . . which is less than 2/π ≈ 0.637. For n = 2, the
maximum of J2

2 (x) is 0.237 . . . which is less than 1/π ≈ 0.318.
Now let us analyze the case in which n ≥ 3. First, we notice that when x > 2n, the

conditions in Theorem 14 hold. This is because µ+ µ2/3 < 2µ and then√
µ+ µ2/3

2 <

√
2µ
2 =

√
2n2 + 4n+ 3

2 <
√

4n2 = 2n < x,

where the second inequality holds when n ≥ 3.
Now, we will finish the proof by bounding the numerator and the denominator of the

RHS in Lemma 14. For the numerator, we have

4
(
4x2 − (2n+ 1)(2n+ 5)

)
< 4

(
4x2 − (2n+ 1)(2n+ 3)

)
= 4

(
4x2 − µ

)
.

For the denominator, we will show that

(4x2 − µ) 3
2 − µ > 2

3(4x2 − µ) 3
2

or equivalently

1
3(4x2 − µ) 3

2 > µ.

CCC 2023

33:14 Impossibility of Fast-Forwarding of Hamiltonian Simulation

First, since x ≥
√

2µ/2, we have 4x2 − µ ≥ µ. Furthermore, when n ≥ 3 we have µ ≥ 35,
which would imply 1

3µ
3/2 > µ. Hence, we conclude that 1

3 (4x2 − µ) 3
2 ≥ 1

3µ
3/2 > µ. Putting

things together, we obtain

J2
n(x) < 4

π
· (4x2 − µ)

2
3 (4x2 − µ)3/2 = 4

π
· 1

2
3

√
4x2 − µ

.

When x > 2n and n > 3, it holds that 4x2 − µ ≥ 16n2 − (4n2 + 8n+ 3) ≥ 9n2. Therefore,
we finally obtain

J2
n(x) ≤ 4

π
· 1

2
3

√
4x2 − µ

≤ 4
π
· 1

2
3 · 3n

= 2
nπ

.

This finishes the proof. ◀

4.4.2 Johnson graph
▶ Definition 16 (Johnson Graph). For all integers n ≥ k ≥ 1, the (n, k)-Johnson graph
Jn,k = (V,E) is an undirected acyclic graph defined as follows.

V := {S ⊆ [n] : |S| = k}, i.e., the vertices are the k-element subsets of an n-element set.
E := {(S0, S1) : |S0 ∩ S1| = k − 1}, i.e., there is an edge if and only if the intersection of
the two vertices (subsets) contains k − 1 elements.10

The number of vertices in Jn,k is
(
n
k

)
. It was proven that for all integers n ≥ k ≥ 1, there

exists a Hamiltonian path11 in Jn,k [2].

5 Lower Bounding Permutation Chain

▶ Definition 17 (Permutation notations). Here we define several notations for the later
proofs. Let Π1,Π2, . . . ,Πq be permutations of N elements. Let Π−1

1 ,Π−1
2 , . . . ,Π−1

q be the
corresponding inverse permutations. Define the sets [−q] := {−q,−q + 1, . . . ,−1} and
[±q] := [q]∪[−q]. We define the unitary SΠ as the controlled version of the above permutations
as

SΠ|j, x, r⟩ :=
{
|j, x, r ⊕Πj(x)⟩ , j > 0
|j, x, r ⊕Π−1

|j| (x)⟩ , j < 0
(5)

where j ∈ [±q] and x, r ∈ [N].
We denote the elements of the chain by x̄1 := 1 and x̄i+1 := Πi(x̄i) for all i ∈ [k]. Next, we
define Π̃i to be the “erased” Πi for all i ∈ [q]. Formally, Π̃i is defined to be the function
[N]→ [N] ∪ {0} such that

Π̃i(x) =
{
x̄i , x = x̄i−1

0 , otherwise.
(6)

Similarly, we define the corresponding controlled unitary SΠ̃. For all i ∈ [k], define
∆x̄i := x̄i+1 − x̄i mod N . Note that SΠ̃ can be parameterized by either {x̄2, . . . , x̄q+1} or
{∆x̄1, . . . ,∆x̄q}. Denote the transformation from SΠ to SΠ̃ by SΠ̃ = F (SΠ). For all ℓ ∈ [q],
define the hybrid oracle SΠ̃ℓ as

10 Equivalently, we can define E := {(S0, S1) : |S0 ∪ S1| = k + 1}.
11 A Hamiltonian path is a path that visits every vertex in the graph exactly once. Do not confuse it with

the physical quantity we want to simulate.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:15

(a)

(b)

Figure 1 Schematic diagram of SΠ̃ and SΠ̃ℓ. (a) The permutation chain x̄1, x̄2, . . . x̄q+1 specified
by SΠ̃. (b) SΠ̃ℓ, where the permutations are removed after ℓ queries.

SΠ̃ℓ|j, x, r⟩ :=

|j, x, r ⊕ Π̃j(x)⟩ , |j| ≤ ℓ, j > 0
|j, x, r⟩ , j > ℓ

|j, x, r ⊕ Π̃−1
|j| (x)⟩ , |j| ≤ ℓ, j < 0

|j, x, r⟩ , j < −ℓ.

(7)

▶ Theorem 18. Use the notations of Definition 17. Let q, k be integers such that k =
O(polylog(N)) and q = O(polylog(N)). For any quantum algorithm A using ⌊(q − 1)/2⌋
k-parallel queries to SΠ, we have

E
SΠ

[
Pr[ASΠ outputs x̄q+1]

]
= O

(
q

√
k

N

)
.

Before proving Theorem 18, we first introduce several lemmas as follows.

▶ Lemma 19. For any |ϕ⟩, |ψ⟩ such that ∥|ϕ⟩∥ = ∥|ψ⟩∥ = 1 and ∥|ϕ⟩ − |ψ⟩∥ ≤ ε, it holds
that

∆(|ϕ⟩⟨ϕ|, |ψ⟩⟨ψ|) ≤ ε.

Proof. The trace distance between two pure states is given by
√

1− |⟨ϕ|ψ⟩|2. The Euclidean
norm of |ϕ⟩−|ψ⟩ is given by ∥|ϕ⟩−|ψ⟩∥ =

√
(⟨ϕ| − ⟨ψ|)(|ϕ⟩ − |ψ⟩) =

√
2− 2Re[⟨ϕ|ψ⟩], where

Re[·] denote the real part of a complex number.
First, it is true that 0 ≤ (Re[⟨ϕ|ψ⟩]− 1)2 + Im[⟨ϕ|ψ⟩]2, where Im[·] denote the imaginary

part of a complex number. Rearranging the terms, we obtain

1− |⟨ϕ|ψ⟩|2 = 1− (Re[⟨ϕ|ψ⟩]2 + Im[⟨ϕ|ψ⟩]2) ≤ 2− 2Re[⟨ϕ|ψ⟩]. ◀

CCC 2023

33:16 Impossibility of Fast-Forwarding of Hamiltonian Simulation

▶ Lemma 20 (q-bin k-parallel Grover search lower bound). Let F be the set of all functions
f from [qN] to {0, 1} with the following promise. For all i ∈ {0, 1, . . . , q − 1}, it holds that
|{x ∈ {iN + 1, iN + 2, . . . , iN + N} : f(x) = 1}| = 1. Let g be the constant zero function
with domain [qN]. Then for every algorithm that makes ℓ k-parallel queries to f (or g), the
final state of the algorithm, denoted by |ψf ⟩ (or |ψg⟩), satisfies

E
f←F

[
∆
(
|ψf ⟩⟨ψf |, |ψg⟩⟨ψg|

)]
= O

(
ℓ

√
k

N

)
.

Proof. Let |ψgi ⟩ := UiO
⊗k
g . . . U1O

⊗k
g U0|0⟩. For any f ∈ F , let Πf be the projector acting on

the query register of the algorithm that is defined as Πf :=
∑
x:f(x)=1|x⟩⟨x|. Let Πf := I−Πf .

Notice that (O⊗kf −O⊗kg)Π⊗kf = 0 because Of and Og are identical beyond the set of the
1-preimages. Therefore, we have

(O⊗kf −O
⊗k
g)(I −Π⊗kf) = O⊗kf −O

⊗k
g . (8)

Also, it holds that

I −Π⊗kf ≤
k∑
i=j

Πf,j , (9)

where Πf,j denote the operator the acts as Πf on the register of the j-th query branch and
as identity on other registers; for matrices A,B, by A ≥ B we mean that A−B is a positive
semi-definite matrix. Then by standard hybrid arguments [5], we have

E
f←F

[
∥|ψf ⟩ − |ψg⟩∥

]
≤

ℓ−1∑
i=0

E
f←F

[
∥(O⊗kf −O

⊗k
g)|ψgi ⟩∥

]
=

ℓ−1∑
i=0

E
f←F

[
∥(O⊗kf −O

⊗k
g)(I −Π⊗kf)|ψgi ⟩∥

]
≤

ℓ−1∑
i=0

E
f←F

[
∥(O⊗kf −O

⊗k
g)∥ · ∥(I −Π⊗kf)|ψgi ⟩∥

]
,

where the first equality is due to (8) and the last inequality is due to the fact that ∥A|ϕ⟩∥ ≤
∥A∥ · ∥|ϕ⟩∥, where ∥A∥ denotes the operator norm of A.

Since ∥Of∥ = ∥Og∥ = 1, by the triangle inequality we can bound it as

≤ 2
ℓ−1∑
i=0

E
f←F

[
∥(I −Π⊗kf)|ψgi ⟩∥

]
= 2

ℓ−1∑
i=1

E
f←F

[√
⟨ψgi |(I −Π⊗kf)|ψgi ⟩

]

≤ 2
ℓ−1∑
i=0

√
E

f←F

[
⟨ψgi |(I −Π⊗kf)|ψgi ⟩

]
(Jensen’s inequality)

≤ 2
ℓ−1∑
i=0

√√√√√ E
f←F

⟨ψgi | k∑
j=1

Πf,j |ψgi ⟩

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:17

≤ 2
ℓ−1∑
i=0

√√√√ k∑
j=1

E
f←F

[⟨ψgi |Πf,j |ψgi ⟩] (linearity of expectation)

= 2
ℓ−1∑
i=0

√√√√ k∑
j=1
⟨ψgi |

I

N
|ψgi ⟩ = 2ℓ

√
k

N
,

where the first equality holds since I − Π⊗kf is a projection operator; the third inequality
holds due to (9) and the second equality holds because the probability of any x ∈ [qN] being
a 1-preimage of f is 1/N . So we have Ef←F [Πf,j] = I/N for every j. Finally, by Lemma 19,
we have

E
f←F

[
∆
(
|ψf ⟩⟨ψf |, |ψg⟩⟨ψg|

)]
≤ 2ℓ

√
k

N
.

as desired. ◀

(a) Πi

x̄i

x̄i+1

(b) Π̃i

x̄i

x̄i+1

(c) ΠR
i

x̄i

x̄′i

x̄′−i

x̄i+1

(d) Π̃′i

x̄i

x̄′i

x̄′−i

x̄i+1

(e) H(Π̃′i)

x̄i

x̄′i

x̄′−i

x̄i+1

Figure 2 Schematic diagrams of permutation in the hybrid proof. (a) Πi is the permutation
given by the problem. (b) Π̃i maps x̄i to x̄i+1 := Πi(x̄i) and maps other inputs to a dummy image 0.
(c) ΠR

i is a random permutation that is independent of Πi. (d) Π̃′
i merges Π̃i and ΠR

i . It maps x̄i to
x̄i+1, and maps other input x to ΠR

i (x). There is a collision on inputs x̄i and x̄′
i := ΠR−1

i (x̄i+1).
When executing the “inverse” of Π̃′

i, it follows the rules of ΠR−1
i . Note that the “inverse” is not

exactly equal to Π̃′−1
i . (e) The truth table of H(Π̃′

i) is equal to Π̃′
i except that H(Π̃′

i)(x̄′
i) = x̄′−i.

▶ Lemma 21. Use the notations of Definition 17. Let ℓ, k be integers such that ℓ =
O(polylog(N)) and k = O(polylog(N)). For any quantum algorithm A using ℓ k-parallel
queries to SΠ , there is a quantum algorithm Ã using 2ℓ k-parallel queries to SΠ̃ such that
for all SΠ̃,

E
SΠ∈F−1(SΠ̃)

[
Pr[ASΠ ̸= ÃSΠ̃]

]
= O

(
ℓ

√
k

N

)
.

Proof. Let ΠR
1 ,ΠR

2 , . . . ,ΠR
q be permutations of N elements. Let SΠR be the corresponding

unitary.
We construct Ã as follows: it samples a uniformly random SΠR and runs A but replaces

every query to SΠ with SΠ̃′ constructed from uniformly random SΠR, where SΠ̃′ is defined
as

SΠ̃′|i, x, r⟩ :=

|i, x, r ⊕ Π̃i(x)⟩ , Π̃i(x) ̸= 0, i > 0
|i, x, r ⊕ΠR

i (x)⟩ , Π̃i(x) = 0, i > 0
|i, x, r ⊕ Π̃−1

|i| (x)⟩ , Π̃−1
|i| (x) ̸= 0, i < 0

|i, x, r ⊕ΠR
|i|
−1(x)⟩ , Π̃−1

|i| (x) = 0, i < 0.

(10)

CCC 2023

33:18 Impossibility of Fast-Forwarding of Hamiltonian Simulation

One query to SΠ̃′ can be constructed from two queries to SΠ̃ coherently by doing the obvious
classical calculation and uncomputing the garbage. Therefore Ã uses 2ℓ queries to SΠ̃ as
required.

Now we prove that it is very hard to distinguish A from Ã. This is done by a reduction
to the hardness of the modified Grover’s search algorithm in Lemma 20.

For all i ∈ [q], define x̄′i to be x such that Π̃′(x) = x̄i+1 and x ̸= x̄ . For all i ∈ [−q],
define x̄′i to be x such that Π̃′−1

|i| (x) = x̄|i| and x ̸= x̄|i|+1. Note that x̄′i does not exist if
ΠR
i (x̄i) = Π̃i(x̄i).

Note that each Π̃′i looks like a random permutation except on the collisions {x̄′i}. We
define a function H which relates these similar SΠ and SΠ̃′:

H(SΠ̃′)|i, x, r⟩ :=

|i, x, r ⊕ Π̃i(x)⟩ , Π̃i(x) ̸= 0, i > 0
|i, x, r ⊕ΠR

i (x)⟩ , Π̃i(x) = 0, x ̸= x̄′i, i > 0
|i, x, r ⊕ x̄′−i⟩ , x = x̄′i, i > 0
|i, x, r ⊕ Π̃−1

|i| (x)⟩ , Π̃−1
|i| (x) ̸= 0, i < 0

|i, x, r ⊕ΠR
|i|
−1(x)⟩ , Π̃−1

|i| (x) = 0, x ̸= x̄′i, i < 0
|i, x, r ⊕ x̄′−i⟩ , x = x̄′i, i < 0.

(11)

It is easy to check that for all SΠ̃′, H(SΠ̃′) is a valid SΠ, and for a given SΠ, there are
Nq elements in H−1(SΠ). It is also easy to verify that for a fixed SΠ̃, different H−1(SΠ)
partitions all possible SΠ̃′.

Let ρSΠ be the final density matrix of ASΠ. Let ρSΠ̃′ be the final density matrix of ÃSΠ̃

with a fixed SΠ′. By the strong convexity of trace distance, we have

∆
(

E
SΠ∈F −1(SΠ̃)

[ρSΠ], E
SΠ̃′∈H−1(F −1(SΠ̃))

[ρSΠ̃′]
)

≤ E
SΠ∈F −1(SΠ̃)

[
∆
(

ρSΠ, E
SΠ̃′∈H−1(SΠ)

[ρSΠ̃′]
)]

. (12)

Finally, we prove that ∆(ρSΠ,ESΠ̃′∈H−1(SΠ)[ρSΠ̃′]) = O

(
ℓ
√

k
N

)
for all SΠ by a reduction

to the modified Grover search problem. Consider a Grover oracle G defined in Lemma 20
that might be f or g. Given free calls to SΠ, we use two calls to G to construct an oracle
SΠG which equals SΠ when G = g and equals a random SΠ̃′ when G = f . The construction
is as follows:

SΠG|i, x, r⟩ :=

|i, x, r ⊕ Π̃i(x)⟩ , Π̃i(x) ̸= 0, i > 0
|i, x, r ⊕Πi(x)⟩ , Π̃i(x) = 0, G((i− 1)N + x) = 0, i > 0
|i, x, r ⊕ x̄i+1⟩ , Π̃i(x) = 0, G((i− 1)N + x) = 1, i > 0
|i, x, r ⊕ Π̃−1

|i| (x)⟩ , Π̃−1
|i| (x) ̸= 0, i < 0

|i, x, r ⊕Π−1
|i| (x)⟩ , Π̃−1

|i| (x) = 0, G((i− 1)N + Π−1
|i| (x)) = 0, i < 0

|i, x, r ⊕ x̄i⟩ , Π̃−1
|i| (x) = 0, G((i− 1)N + Π−1

|i| (x)) = 1, i < 0.

(13)

By Lemma 20, if we try to distinguish f from g by distinguishing ASΠG of the two cases, we

can only succeed with probability O
(
ℓ
√

k
N

)
since we only have O(ℓ) k-parallel queries to

G. Therefore, one can only distinguish SΠ from SΠ̃′ with probability O
(
ℓ
√

k
N

)
, i.e.,

∆
(
ρSΠ, E

SΠ̃′∈H−1(SΠ)
[ρSΠ̃′]

)
= O

(
ℓ

√
k

N

)
. (14)

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:19

Then by (12),

∆
(

E
SΠ∈F−1(SΠ̃)

[ρSΠ] , E
SΠ̃′∈H−1(F−1(SΠ̃))

[ρSΠ̃′]
)

= O

(
ℓ

√
k

N

)
. (15)

By the operational interpretation of the trace distance, we have

E
SΠ∈F−1(SΠ̃)

[
Pr[ASΠ ̸= ÃSΠ̃]

]
= O

(
ℓ

√
k

N

)
. (16)

◀

▶ Lemma 22. Use the notations of Definition 17. Let ℓ, k be integers such that ℓ ∈ [q],
k = O(polylog(N)). For all algorithm A using ℓ k-parallel queries to SΠ̃, w.l.o.g. we can
assume the final output of A has the form

|ψ⟩ = UℓSΠ̃⊗kUℓ−1SΠ̃⊗k . . . U2SΠ̃⊗kU1SΠ̃⊗k|ψ0⟩.

For all m, p ∈ [ℓ], p ≤ m, define the hybrid state

|ψm,p⟩ := UmSΠ̃⊗kUm−1SΠ̃⊗k . . . Up+1SΠ̃⊗kUpSΠ̃⊗kp Up−1SΠ̃⊗kp−1 . . . U2SΠ̃⊗k2 U1SΠ̃⊗k1 |ψ0⟩.

Then for all A,

E
SΠ̃
∥|ψ⟩ − |ψℓ,ℓ⟩∥ ≤ 2ℓ

√
k

N
. (17)

Proof. Note that |ψ⟩ = |ψℓ,0⟩. By triangle inequality we have

E
SΠ̃
∥|ψ⟩ − |ψℓ,ℓ⟩∥ ≤

ℓ∑
i=1

E
SΠ̃
∥|ψℓ,i−1⟩ − |ψℓ,i⟩∥ . (18)

We proceed by proving ESΠ̃ ∥|ψℓ,i−1⟩ − |ψℓ,i⟩∥ = 2
√
k/N for all i ∈ [ℓ]. Note that

∥|ψℓ,i−1⟩ − |ψℓ,i⟩∥ = ∥|ψi,i−1⟩ − |ψi,i⟩∥
=
∥∥UiSΠ̃⊗k|ψi−1,i−1⟩ − UiSΠ̃⊗ki |ψi−1,i−1⟩

∥∥
=
∥∥(SΠ̃⊗k − SΠ̃⊗ki)|ψi−1,i−1⟩

∥∥ . (19)

Note that SΠ̃|j, x, r⟩ and SΠ̃i|j, x, r⟩ differs only when j > i and x = x̄j or j < −i and
x = x̄j+1. Therefore

(SΠ̃− SΠ̃i)|j, x, r⟩ = (SΠ̃− SΠ̃i)Pi|j, x, r⟩ (20)
SΠ̃(1− Pi) = SΠ̃i(I − Pi) (21)

(SΠ̃⊗k − SΠ̃⊗ki)(I − Pi)⊗k = 0 (22)

where

Pi :=

 k∑
j=i+1

|j, x̄j⟩ ⟨j, x̄j |+
k∑

−j=i+1
|j, x̄j+1⟩ ⟨j, x̄j+1|

⊗ I. (23)

Note that Pi actually depends on SΠ̃, but we omit the dependence for cleaner notation.
Therefore we have

CCC 2023

33:20 Impossibility of Fast-Forwarding of Hamiltonian Simulation

∥∥(SΠ̃⊗k − SΠ̃⊗ki)|ψi−1,i−1⟩
∥∥2

=
∥∥(SΠ̃⊗k − SΠ̃⊗ki)(I − (I − Pi)⊗k)|ψi−1,i−1⟩

∥∥2

≤4
∥∥(I − (I − Pi)⊗k)|ψi−1,i−1⟩

∥∥2

=4⟨ψi−1,i−1|(I − (I − Pi)⊗k)|ψi−1,i−1⟩

≤4⟨ψi−1,i−1|
k∑
j=1

P ji |ψi−1,i−1⟩ (24)

where P ji = I⊗j−1 ⊗ Pi ⊗ I⊗k−j . In the fourth line, we use the fact that I − (I − Pi)⊗k is a
projector, and in the fifth line we use the standard union bound calculation.

By (23), for all i ∈ [q] and j ∈ [k], P ji is normalized by

N−1∑
∆x̄i=0

P ji =

 k∑
j=i+1

+
k∑

−j=i+1

 |j⟩ ⟨j| ⊗ ∑
x̄∈[N]

|x̄⟩ ⟨x̄| ≤ I (25)

where we omitted the tensor product of identities and assume ∆x̄i+1, . . . ,∆x̄q to be fixed.
Therefore

N−1∑
∆x̄i=0

∥∥(SΠ̃⊗k − SΠ̃⊗ki)|ψi−1,i−1⟩
∥∥2

≤
N−1∑

∆x̄i=0

4⟨ψi−1,i−1|
k∑
j=1

P ji |ψi−1,i−1⟩

≤4k (26)

Finally, combining (26), (24), and (19), we have

E
SΠ̃
∥|ψℓ,i−1⟩ − |ψℓ,i⟩∥

= E
∆x̄1,...,∆x̄i−1

E
∆x̄i

E
∆x̄i+1,...,∆x̄q

∥∥(SΠ̃⊗k − SΠ̃⊗ki)|ψi−1,i−1⟩
∥∥

= E
∆x̄1,...,∆x̄i−1

E
∆x̄i+1,...,∆x̄q

1
N

∑
∆x̄i

∥∥(SΠ̃⊗k − SΠ̃⊗ki)|ψi−1,i−1⟩
∥∥

≤ E
∆x̄1,...,∆x̄i−1

E
∆x̄i+1,...,∆x̄q

1
N

√∑
∆x̄i

∥∥(SΠ̃⊗k − SΠ̃⊗ki)|ψi−1,i−1⟩
∥∥2 ·
√
N

=2
√
k

N
. (27)

Plugging back to (18) we have

E
SΠ̃
∥|ψ⟩ − |ψℓ,ℓ⟩∥ ≤ 2ℓ

√
k

N
. (28)

◀

▶ Corollary 23. Any algorithm A using (q− 1) k-parallel queries to SΠ̃ can only output x̄q+1

with probability O
(
ℓ
√

k
N

)
.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:21

Proof. By Lemma 19 and Lemma 22, output probability of |ψ⟩ and |ψℓ,ℓ⟩ only differ by
O(ℓ

√
k/N). Since |ψq−1,q−1⟩ does not depend on Π̃q, it can only find x̄q+1 with probability

1/N . Thus the maximum probability of |ψ⟩ finding x̄q+1 is O(ℓ
√
k/N) + 1/N = O(ℓ

√
k/N).

◀

Proof of Theorem 18. Let A be an algorithm that uses ⌊(q − 1)/2⌋ k-parallel queries to
SΠ and outputs x̄q+1 with some probability p. By Lemma 21, there is an algorithm
Ã that uses (q − 1) k-parallel queries to SΠ̃ and outputs x̄q+1 with probability at least

p−O
(
q
√

k
N

)
. By Corollary 23, it holds that p−O

(
q
√

k
N

)
= O

(
q
√

k
N

)
. Therefore, we

have p = O

(
q
√

k
N

)
. ◀

6 Parallel Hardness of Twisted Hash Chains

The (standard) hash chain problem is a natural candidate for parallel hardness. However,
hash functions (modeled as random functions) with equal-length inputs and outputs are
not injective with overwhelming probability. Importantly, quantum operations need to
be reversible. Therefore, if we evaluate the standard hash chain straight-forwardly, the
intermediate hash values are required to be stored in ancilla qubits. Consequently, the
width of the circuit would become proportional to the length of the chain, which means the
computation could not be done within width λ.

Inspired by the construction of the Feistel cipher which implements a permutation by
hash functions, we introduce the twisted hash chain problem. Let X be {0, 1}n. An s-chain
is a sequence x0, x1, . . . , xs ∈ X such that xi = H(xi−1) ⊕ xi−2 for i ∈ [s] where we use
the convention that x−1 := 0n. Informally, the task of a q-query k-parallel algorithm that
interacts with a random oracle H : X → Y with |X | = |Y| is to output x0, xq, xq+1 ∈ X of a
(q + 1)-chain, i.e., there exists a sequence x1, . . . , xq−1 ∈ X such that xi = H(xi−1)⊕ xi−2
for i ∈ [q + 1]. The computation of a twisted hash chain is shown in Fig. 3.

y y ⊕H(x)

x x

OH
x x

y y ⊕H(x)
ÕH

x0

x−1
OH ÕH OH OH

Figure 3 Schematic diagram of the twisted hash chain.

In this section, we aim to prove the following theorem.

▶ Theorem 24 (Twisted hash chain is sequential). For any k-parallel q-query oracle algorithm
C, the probability pC (parameterized by k and q) that C outputs x0, xq, xq+1 ∈ X satisfying
the following condition:

there exist x1, . . . , xq−1 ∈ X such that H(xi−1) = xi⊕xi−2 for i ∈ [q+1], where x−1 := 0n
is at most F (k, 2q) = O(k4q4/|Y|), where the function F is defined in Lemma 32.

Toward proving the hardness, we exploit the framework of [16]. Below, we borrow the
notations and definitions of [16]. Let H : X → Y be a random oracle. Let Ŷ be the dual
group of Y. Let Y denote the set Y ∪ {⊥}. We say that D : X → Y is a database. By D

we mean the set of all databases, i.e., the set of all functions from X to Y. For any tuple
x = (x1, . . . , xk) with pairwise disjoint xi ∈ X , tuple r = (r1, . . . , rk) ∈ Yk and database
D ∈ D, we define the database D[x 7→ r] as

CCC 2023

33:22 Impossibility of Fast-Forwarding of Hamiltonian Simulation

D[x 7→ r](x) :=
{
ri if x = xi for some i ∈ [k]
D(x) if x /∈ {x1, . . . , xk}.

By database property P we mean a set of databases, that is P ⊆ D. In this section, we
assume that X = Y . For any database D ∈ D and tuple x = (x1, . . . , xk) of pairwise distinct
xi ∈ X , we let

D|x := {D[x 7→ r] | r ∈ Yk} ⊆ D

be the set of databases that coincide D outside of x. Furthermore, for any database property
P ⊆ D, we let

P|D|x := P ∩D|x.

▶ Definition 25 (Definition 5.5 in [16]). Let P,P′ be two database properties. Then, the
quantum transition capacity (of order k) is defined as

JP k−→ P′K := max
x,ŷ,D

∥P′|D|xcOxŷP|D|x∥,

where the maximum is over all possible x ∈ X k, ŷ ∈ Ŷk and D ∈ D. Furthermore, we define

JP k=⇒ P′K := sup
U1,...,Uq−1

∥∥∥P′Uq−1cOkUq−1cOk . . . U1cOkP
∥∥∥ ,

where ∥ · ∥ is the operator norm; the supremum is over all positive d ∈ Z and all unitaries
U1, . . . , Uq−1 acting on C[X]⊗C[Y]⊗Cd.12 For the formal definitions of cOxŷ and cOk, we
refer to [16]. We note that their definitions are not required for the following proof.

▶ Definition 26. The database property twisted hash chain of length s, denoted by TCHNs,
is defined as

TCHNs := {D | ∃x0, x1, . . . , xs ∈ X : xi = D(xi−1)⊕ xi−2, ∀i ∈ [s]} ⊆ D,

where we use the convention that x−1 := 0n for convenience.

▶ Definition 27 (Definition 5.20 in [16], with ℓ fixed to 1). A database transition P→ P′ is said
be k-non-uniformly weakly recognizable by 1-local properties13 if for every x = (x1, . . . , xk)
with pairwise disjoint entries, and for every D ∈ D, there exists a family of 1-local properties
{LD,xi } where each LD,xi ⊆ Y and the support of LD,xi is {xi} or empty, so that

D[x 7→ r] ∈ P ∧ [x 7→ u] ∈ P′ =⇒ ∃i : ui ∈ LD,xi ∧ ri ̸= ui.

▶ Theorem 28 (Theorem 5.23 in [16]). Let P and P′ be k-non-uniformly weakly recognizable
by 1-local properties Lx,D

i , where the support of Lx,D
i is {xi} or empty. Then

J⊥ q,k==⇒ TCHNq+1K ≤ max
x,D

e
∑
i

√
10P [U ∈ Lx,D

i],

where U is defined to be uniformly random in Y and ⊥ := {D | D(x) = ⊥ for all x ∈ X}.

12 Namely, over all q-query quantum algorithms.
13 We refer to Definition 5.10 in [16] for the formal description of local properties.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:23

Here, we define the family of local properties for our purpose. For any D ∈ D and any
x := (x1, . . . , xk) ∈ X k with disjoint entries, we defined the following 1-local properties
LD,xi ⊆ Y14 with support {xi} for i ∈ [k] as

LD,xi := LD,xi,1 ∪ L
D,x
i,2 ,

where

LD,xi,1 := {x ∈ X | D(x) ̸= ⊥ ∨ x ∈ {x1, . . . , xk}}

and

LD,xi,2 := {x ∈ X | ∃x′, x′′ ∈ LD,xi,1 : x = x′ ⊕ x′′}.

The following lemma, in line with Lemma 2.1 in [16], shows that the local properties
{LD,xi } recognize the database transition ¬TCHNs → TCHNs+1, and allows us to exploit
Theorem 28. First, we briefly explain the intuition. We pick an arbitrary (s + 1)-chain
in D[x 7→ u] and call it the new chain. We denote the elements of the new chain by
x̂0, x̂1, . . . , x̂s+1. There are two possible consequences of this database transition:

First, some branch xi of the query x becomes the first elements x̂0 of the new chain, i.e.,
xi = x̂0 and xi is responded with D[x 7→ u](xi) = ui such that ui = D[x 7→ u](x̂0) = x̂1. In
addition, D[x 7→ u](x̂1) = x̂0 ⊕ x̂2 ≠ ⊥. This means that x̂1 must either already be sampled
(D(x̂1) ̸= ⊥) or be one of the branch of x (x̂1 ∈ {x1, . . . , xk}) (or both). In other words, ui
must be in LD,xi,1 .

Second, some branch xi of the query x becomes the (j + 1)-th elements x̂j (1 ≤ j ≤ s)
of the new chain, i.e., xi = x̂j and xi is responded with D[x 7→ u](xi) = ui such that
ui = D[x 7→ u](x̂j) = x̂j−1 ⊕ x̂j+1. Similarly, we can conclude that either D(x̂j−1) ̸= ⊥
or x̂j−1 ∈ {x1, . . . , xk} (or both) and either D(x̂j+1) ̸= ⊥ or x̂j+1 ∈ {x1, . . . , xk} (or both).
This means that ui must be the XOR of two elements in LD,xi,1 . That is, ui ∈ LD,xi,2 .

The intuition above can be formalized as the following lemma.

▶ Lemma 29. D[x 7→ r] /∈ TCHNs∧D[x 7→ u] ∈ TCHNs+1 =⇒ ∃i ∈ [k] : ri ≠ ui∧ui ∈ LD,xi .

Proof. Suppose D[x 7→ u] ∈ TCHNs+1 and let x̂0, x̂1, . . . , x̂s+1 be such a chain, i.e., x̂1 =
D[x 7→ u](x̂0) and x̂j+2 = D[x 7→ u](x̂j+1) ⊕ x̂j for j = 0, 1, . . . , q − 1. Let s◦ be the
smallest j such that D[x 7→ r](x̂s◦) ̸= D[x 7→ u](x̂s◦). If s◦ ≥ s or j does not exist, then
D[x 7→ r] ∈ TCHNs+1, and we are done. Suppose now 0 ≤ s◦ ≤ s− 1. Since D[x 7→ u] and
D[x 7→ u] are identical outside of x, there exists a coordinate i of x such that xi = x̂s◦ .
Therefore, ui = D[x 7→ u](xi) = D[x 7→ u](x̂s◦) ̸= D[x 7→ r](x̂s◦) = D[x 7→ r](xi) = ri.

Below, we divide the analysis into three cases according to the value of s◦:
1. If s◦ = 0, we have ui = D[x 7→ u](x̂s◦) = D[x 7→ u](x̂0) = x̂1. And D[x 7→ u](x̂1) =

x̂2⊕ x̂0 ̸= ⊥, which implies either D(x̂1) ̸= ⊥ or x̂1 ∈ {x1, . . . , xk} (or both). This means
ui ∈ LD,xi,1 .

2. If s◦ = 1, we have ui = D[x 7→ u](x̂s◦) = D[x 7→ u](x̂1) = x̂2 ⊕ x̂0. And D[x 7→ u](x̂2) =
x̂3 ⊕ x̂1 ̸= ⊥, which implies either D(x̂2) ̸= ⊥ or x̂2 ∈ {x1, . . . , xk} (or both). And
D[x 7→ u](x̂0) = x̂1 ≠ ⊥, which implies either D(x̂0) ̸= ⊥ or x̂0 ∈ {x1, . . . , xk} (or both).
This means ui ∈ LD,xi,2 .

14 Recall that we assume X = Y.

CCC 2023

33:24 Impossibility of Fast-Forwarding of Hamiltonian Simulation

3. If 2 ≤ s◦ ≤ s − 1, then ri = D[x 7→ u](x̂s◦) = x̂s◦+1 ⊕ x̂s◦−1. Similarly, D[x 7→
u](x̂s◦+1) = x̂s◦ ⊕ x̂s◦+2 ̸= ⊥, which implies either D(x̂s◦+1) ̸= ⊥ or x̂s◦+1 ∈ {x1, . . . , xk}
(or both). And D[x 7→ u](x̂s◦−1) = x̂s◦ ⊕ x̂s◦−2 ̸= ⊥, which implies either D(x̂1) ̸= ⊥ or
x̂1 ∈ {x1, . . . , xk} (or both). This means ui ∈ LD,xi,2 .

In all of the above cases, ui must be in LD,xi which concludes the proof. ◀

We need Corollary 4.2 in [16] which is rephrased from Lemma 5 in [38].

▶ Lemma 30 (Lemma 5 in [38]). Let R ⊆ X ℓ ×Yℓ be a relation. Let A be an algorithm that
outputs x ∈ X ℓ and y ∈ Yℓ. Let p be the probability that y = H(x) := (H(x1), . . . ,H(xℓ)) and
(x,y) ∈ R when A has interacted with the standard random oracle, initialized with a uniformly
random function H. Similarly, let p′ be the probability that y = D(x) := (D(x1), . . . , D(xℓ))
and (x,y) ∈ R when A has interacted with the compressed oracle and D is obtained by
measuring its internal state in the computational basis. Then

√
p ≤

√
p′ +

√
ℓ

|Y|
.

▶ Lemma 31. J⊥ q,k==⇒ TCHNq+1K ≤ qek
√

5kq(kq+1)
|Y| .

Proof. By Lemma 5.6 in [16], we have

J⊥ q,k==⇒ TCHNq+1K ≤
q∑
s=1

JSZ≤k(s−1) \ TCHNs k−→ TCHNs+1K.

Choosing the local properties {LD,xi } as above whenever D ∈ SZ≤k(s−1), and to be constant-
false otherwise, Lemma 29 ensures that we can apply Theorem 5.23 in [16] to bound quantum
transition capacity. Therefore, applying Theorem 5.23 in [16], for each s ∈ [q] we have

JSZ≤k(s−1) \ TCHNs k−→ TCHNs+1K ≤ emax
D,x

k∑
i=1

√
10 Pr[U ∈ LD,xi] ≤ ek

√
5kq(kq + 1)
|Y|

.

The last inequality holds because for every s ∈ [q] and every D ∈ SZ≤k(s−1), it holds that

|{x ∈ X | D(x) ̸= ⊥} ∪ {x1 . . . , xk}| ≤ k(q − 1) + k = kq.

Thus, we have |LD,xi,1 | ≤ kq and |LD,xi,2 | ≤
(
kq
2
)

= kq(kq − 1)/2 for i ∈ [k], which then implies
|LD,xi | ≤ kq(kq + 1)/2. Finally, summing over s ∈ [q] completes the proof. ◀

First, note that Lemma 30 is tailored for algorithms that output all elements of the chain
and their hash values. However, to obtain a bound when the algorithm A is required to
output only x0, xq and xq+1 is more challenging. In most of situations, one could define
another algorithm B that simply runs A followed by calculating the whole chain with q + 2
extra queries. This would increase the number of queries by at most q + 2. However, this
gives us a meaningless bound for the twisted hash chain problem.

Below, we first provide the following lemma for algorithms that do not have to output
the last hash value yq+1. The proof is similar to Theorem 5.9 in [16].

▶ Lemma 32. For any k-parallel q-query oracle algorithm A that interacts with a standard
random oracle, the probability pA (parameterized by k and q) that A outputs x0, x1, . . . , xq+1 ∈
X and y0, y1, . . . , yq ∈ Y (without yq+1) satisfying

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:25

yi = H(xi) for 0 ≤ i ≤ q
yi−1 = xi ⊕ xi−2 for i ∈ [q + 1], where x−1 := 0n

is upper bounded by the function F (k, q) where

F (k, q) :=
(
qek

√
5kq(kq + 1)
|Y|

+ e(q + 2)

√
5(q + 2)(q + 3)

|Y|
+

√
q + 2
|Y|

)2

= O

(
q4k4

|Y|

)
.

Proof. We define an algorithm B that runs A and obtains the output x0, ,̇xq+1, y0, . . . , yq.
And then B makes a classical query xq+1 to the random oracle. Finally, B outputs
x0, ,̇xq+1, y0, . . . , yq, H(xq+1).

Let pB be the probability that B outputs x0, x1, . . . , xq+1 ∈ X and y0, y1, . . . , yq+1 ∈ Y
satisfying

yi = H(xi) for 0 ≤ i ≤ q + 1
yi−1 = xi ⊕ xi−2 for i ∈ [q + 1], where x−1 := 0n

when B interacts with the standard random oracle.
Let p′B be the probability that B outputs x0, x1, . . . , xq+1 ∈ X and y0, y1, . . . , yq+1 ∈ Y

satisfying
yi = D(xi) for 0 ≤ i ≤ q + 1
yi−1 = xi ⊕ xi−2 for i ∈ [q + 1], where x−1 := 0n

when B interacts with the compressed oracle.
Let p′B be the probability that B outputs x0, x1, . . . , xq+1 ∈ X and y0, y1, . . . , yq+1 ∈ Y

satisfying
D(xi−1) = xi ⊕ xi−2 for i ∈ [q + 1], where x−1 := 0n

when B interacts with the compressed oracle.
We trivially have pA = pB and p′B ≤ p′B. Since B now outputs all the hash values as well,

we can apply Lemma 30 to B which gives

√
pB ≤

√
p′B +

√
q + 2
|Y|

.

In the rest of the proof, it remains to bound p′B.√
p′B ≤ sup

U1,...,Uq

∥∥∥∥∥∑
x

TCHNq+1
x (|x⟩⟨x| ⊗ cOxq+1)UqcOkUq−1cOk . . . U1cOk⊥

∥∥∥∥∥
≤

∥∥∥∥∥∑
x

TCHNq+1
x (|x⟩⟨x| ⊗ cOxq+1)¬TCHNq+1

∥∥∥∥∥
+ sup
U1,...,Uq

∥TCHNq+1UqcOkUq−1cOk . . . U1cOk⊥∥

≤ max
x
∥TCHNq+1

x cOxq+1¬TCHNq+1∥+ J⊥ q,k==⇒ TCHNq+1K

≤ max
x
∥TCHNq+1

x cOxq+1¬TCHNq+1
x ∥+ J⊥ q,k==⇒ TCHNq+1K,

where the summation is over all x = (x0, . . . , xq+1) ∈ X q+2; {|x⟩⟨x|} denotes the measurement
acting on B’s output register to produce the output x; the database property TCHNq+1

x is
defined as

TCHNq+1
x := {D | xi = D(xi−1)⊕ xi−2 for i ∈ [q + 1]} ⊆ D.

That is, the sequence x0, . . . , xq+1 forms a (q + 1)-chain.

CCC 2023

33:26 Impossibility of Fast-Forwarding of Hamiltonian Simulation

Now, notice that for every x ∈ X q+2,

∥TCHNq+1
x cOxq+1¬TCHNq+1

x ∥
=∥TCHNq+1

x (cOxq+1 ⊗ cOxq 0̂ ⊗ · · · ⊗ cOx00̂)¬TCHNq+1
x ∥

≤max
ŷ
∥TCHNq+1

x cOxŷ¬TCHNq+1
x ∥ ≤ J¬TCHNq+1

x
q+2−−→ TCHNq+1

x K,

where the first equality holds since cOx0̂ is equal to the identity operator for every x ∈ X .
Following similar arguments as in Lemma 29, we now show there exist local properties

that recognize the database transition J¬TCHNq+1
x

q+2−−→ TCHNq+1
x K. For any tuple x =

(x1, . . . , xq+2) with pairwise distinct entries, any tuple x′ = (x′0, . . . , x′q+1)15 and database
D ∈ D, we define the following local properties for i ∈ [q + 2]

Lx,D
i := {x′0, . . . , x′q+1} ∪ {x | ∃a, b ∈ {1, . . . , q + 2} : x = x′a ⊕ x′b}.

Note that |Lx,D
i | ≤ (q + 2) +

(
q+2

2
)

= (q + 2)(q + 3)/2 for each i ∈ [q + 2].
Suppose D[x 7→ r] /∈ TCHNq+1

x′ yet D[x 7→ u] ∈ TCHNq+1
x′ . Then {x′0, . . . , x′q+1} is a

(q+ 1)-chain. Let s◦ be the smallest j such that D[x 7→ r](x′j) ̸= D[x 7→ u](x′j). If s◦ = q+ 1
or j does not exist, then D[x 7→ r] ∈ TCHNq+1

x′ and we are done. So we assume 0 ≤ s◦ ≤ q.
Since D[x 7→ r] coincides D[x 7→ u] outside of x, there must exists an index i ∈ [q + 2] such
that xi = x′s◦

. Therefore, we have ri = D[x 7→ r](xi) = D[x 7→ r](x′s◦
) ̸= D[x 7→ u](x′s◦

) =
D[x 7→ u](xi) = ui.

In addition, if s◦ = 0, then ui = D[x 7→ u](x′0) = x′1 ∈ {x′0, . . . , x′q+1}. If 1 ≤ s◦ ≤ q, then
ui = D[x 7→ u](x′s◦

) = x′s◦−1 ⊕ x′s◦+1 which means ui is the XOR of two distinct elements in
{x′0, . . . , x′q+1}. In either case, ui must lie in Lx,D

i . Therefore, by Theorem 5.23 in [16], for
every x′ ∈ X q+2 we have

J¬TCHNq+1
x′

q+2−−→ TCHNq+1
x′ K ≤ e(q + 2)

√
5(q + 2)(q + 3)

|Y|
.

Thus, we can bound maxx′ ∥TCHNq+1
x′ cOx′

q+1
¬TCHNq+1

x′ ∥ by the above quantity.
Putting things together, we have

pA ≤

(
J⊥ q,k==⇒ TCHNq+1K + e(q + 2)

√
5(q + 2)(q + 3)

|Y|
+

√
q + 2
|Y|

)2

Bounding the first term by Lemma 31, this concludes the proof. ◀

Now, we are ready to prove the main theorem.

Proof of Theorem 24. We finish the proof by reduction. Define the algorithm D as follows:
1. Run C and obtain x0, xq and xq+1.
2. For i ∈ [q − 1]:

- Make a classical 2-parallel query (xi−1, xq+i) to the random oracle and then obtain
(H(xi−1), H(xq+i)).
- Set xi := H(xi−1)⊕ xi−2 and xq+i+1 := H(xq+i)⊕ xq+i−1.

3. Make a classical 2-parallel query (xq−1, x2q) to the random oracle and then obtain
(H(xq−1), H(x2q)).

4. Output x0, x1, . . . , x2q+1 and H(x0), H(x1), . . . ,H(xq−1), H ′(xq), H(xq+1), . . . ,H(x2q),
where H ′(xq) := xq−1 ⊕ xq+1

16.

15 In the rest of the proof, we switch the variable x of TCHNq+1
x into x′ for convenience.

16 Note that in Step 2 and 3, D makes a total of 2q queries including x0, . . . , x2q except xq.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:27

First, it is trivial that pC is equivalent to the probability pD that H ′(xq) = H(xq) and D
outputs a (2q + 1)-chain. Now, we calculate the total number of queries made by D. In Step
1, D makes q k-parallel queries to execute C. In Steps 2 and 3, D makes q 2-parallel queries.
To sum up, D makes a total of 2q k-parallel queries. By Lemma 32, the probability pD is at
most F (k, 2q). Therefore, this finishes the proof. ◀

Considering the situation in which the algorithm is assigned to a particular starting point
x0 ∈ X of the chain, we have the following corollary which is trivially implied by Theorem 24.

▶ Corollary 33. For any k-parallel q-query oracle algorithm E , the probability pE (parameter-
ized by k and q) that the algorithm takes a uniformly random x0 ∈ X as input, and outputs
xq, xq+1 ∈ X satisfying

there exist x1, . . . , xq−1 ∈ X such that H(xi−1) = xi⊕xi−2 for i ∈ [q+1], where x−1 := 0n
is at most F (k, 2q) = O(k4q4/|Y|), where the function F is defined in Lemma 32.

Proof. We finish the proof by reduction. Let C be the algorithm that first samples x0 ∈ X
uniformly at random and invokes E(x). C responds to every E ’s oracle query by its oracle
access directly. Then C outputs whatever E outputs.

Let pC be the probability defined as in Theorem 24. Since the success of E implies
the success of C, we have pC ≥ pE . By Theorem 24 and the construction of C, we have
F (k, 2q) ≥ pC , which concludes the proof. ◀

▶ Remark 34. Here, we explain the challenging issue of our case. Given only x0, xq and xq+1,
in order to output the whole chain, the algorithm cannot make the query in parallel but is
required to make adaptive queries. For example, to reveal the next point x1 = H(x0), the
algorithm must first query x0. Therefore, we cannot use Theorem 5.9 in [16] in a black-box
way.

7 Quantum Walk on a Line

Our proof of Hamiltonian simulation lower bound relies on the continuous-time quantum
walk on a line [14]. We introduce quantum walks on a line in this section.

Consider a particle moving on a graph, which is a line with L vertices. Each vertex on
the line is labeled by an integer 1, 2, . . . L. We use a quantum state |j⟩ to denote the particle
locating at the vertex j. Figure 4(a) illustrates our system, a finite segment with length L.
We let the Hamiltonian HL of the system be the adjacency matrix of the graph. In physics
terminology, HL couples adjacent vertices with the coupling constant 1. We have

HL =
L−1∑
j=1
|j⟩⟨j + 1|+ |j + 1⟩⟨j|, (29)

or

HL =

0 1 0 0
1 0 1 · · · · · · 0
0 1 0 0

...
. . .

...
... 0 1

0 0 0 · · · 1 0

.

in the {|j⟩}Lj=1 basis.

CCC 2023

33:28 Impossibility of Fast-Forwarding of Hamiltonian Simulation

(a)
|1⟩ |2⟩ |3⟩ |L − 2⟩ |L− 1⟩ |L⟩

(b)
|−1⟩ |0⟩ |1⟩ |2⟩ |3⟩ |L − 2⟩ |L− 1⟩ |L⟩ |L+ 1⟩ |L+ 2⟩

Figure 4 Quantum walk on a line. (a) Quantum walk on a finite segment with length L. (b)
Quantum walks on an infinite line.

The dynamics of the particle are determined by the time evolution operator e−iHLt, where
t is the evolution time. We call the dynamics of the system “quantum walk on a line.”

We are interested in the dynamics of a particle initially at the end of the line. In other
words, we consider the evolution of a particle under HL with the initial state |1⟩. We have
the following result.

▶ Lemma 35. Given a system that evolves under the Hamiltonian HL described in (29)
with initial state |1⟩, if the system is measured at time t ∈ [0, L/2] in the {|j⟩}Lj=0 basis with
outcome l, the probability that l > t is at least 1/3.

Before the formal proof of Lemma 35, we first discuss the general behavior of the quantum
walk. Let the particle initially locate at |k⟩ and evolve under the Hamiltonian HL. When
measuring the system at time t in the {|j⟩}Lj=1 basis, the probability P (k, l, t) of measurement
outcomes being l is

P (k, l, t) =
∣∣⟨l|e−iHLt|k⟩

∣∣2 . (30)

By diagonalizing HL, we can calculate P (k, l, t) as follows:

P (k, l, t) =
∣∣⟨l|e−iHLt|k⟩

∣∣2 =
L∑

p,q=1
e−i(λp−λq)tv

(p)
l v

(p)∗
k v

(q)∗
l v

(q)
k , (31)

where λp’s are the eigenvalues of HL – each with the corresponding eigenstate |v(p)⟩ =∑L
j=1 v

(p)
j |j⟩. The eigenvalues and the eigenstates of HL have a closed-form expression. That

is, λp = 2 cos(pπ
L+1) and v

(p)
j =

√
2

L+1 sin(jpπL+1) [30] 17.
We use the propagation of the wave function of a free particle to analogize the quantum

walk.18 For example, we plot the result of the quantum walk on a segment of length L = 100
in Figure 5. The initial state is |k = 1⟩ and we focus on the time interval t ∈ [0, L/2].
Figure 5(a) shows P (1, l, t), the probability of obtaining the measurement outcome |l⟩, for

17 In fact, there is a simpler form of P (k, l, t): when |l − k| is even,

P (k, l, t) =
(∑

p

cos
(

2t cos
(

pπ

L + 1

))
sin
(

kpπ

L + 1

)
sin
(

lpπ

L + 1

))2
,

and when |l − k| is odd,

P (k, l, t) =
(∑

p

sin
(

2t cos
(

pπ

L + 1

))
sin
(

kpπ

L + 1

)
sin
(

lpπ

L + 1

))2
.

18 Consider an extreme case that the distance between two adjacent vertices in space goes to zero and the
length L goes to infinity. The system is reduced to free space.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:29

every l at different time t. We see that at time t, the wavefront reaches l ≈ 2t. Figure 5(b)
shows the probability of getting the measurement outcome |l⟩ for a fixed l versus time. We
see that the probability is extremely small when t≪ l/2 and reaches the maximum at t ≈ l/2.
Finally, it behaves like a damped oscillation when t ≳ l/2. These observations suggest that
the wavefront propagates at a constant speed, which gives a hint that the particle reaches
the vertex l = Θ(t) at time t.19

0 20 40 60 80 100
0.0

0.1

0.2 t = 10

(a)

0 20 40 60 80 100
0.0

0.1

0.2 t = 20

0 20 40 60 80 100
0.0

0.1

0.2

p(
1,

l,
t)

t = 30

0 20 40 60 80 100
0.0

0.1

0.2 t = 40

20 40 60 80 100
vertex index l

0.0

0.1

0.2 t = 50

0 10 20 30 40 50
0.0

0.1

0.2 l = 1

(b)

0 10 20 30 40 50
0.0

0.1

0.2 l = 25

0 10 20 30 40 50
0.0

0.1

0.2

p(
1,

l,
t) l = 50

0 10 20 30 40 50
0.0

0.1

0.2 l = 75

0 10 20 30 40 50
evolution time t

0.0

0.1

0.2 l = 100

Figure 5 The result of quantum walk on a segment with L = 100 for the evolution time t ∈ [0, L/2].
The initial state is |1⟩. (a) The probability of getting the outcomes |l⟩ for every node l at the
evolution time t = 10, 20, 30, 40 and 50 respectively. (b) The probability of getting the outcomes
l = 1, 25, 50, 75 and 100 versus evolution time t ∈ [0, L/2].

Next, we are going to prove Lemma 35. We take another approach instead of diagonalizing
HL directly. We follow the approach in [14]. Similar to solving “the particle in a box model”
in quantum mechanics, we first find the homogeneous solution in free space and then find
the particular solution that satisfies the boundary conditions and the initial conditions. (See,
for example, [34].)

Consider the quantum walk on an infinite line which is illustrated in Figure 4(b). The
Hamiltonian of the quantum walk on an infinite line is defined by

H∞ :=
∞∑

j=−∞
|j + 1⟩⟨j|+ |j⟩⟨j + 1|, (32)

19 This corresponds to the fact that the uncertainty of the position of a free particle is linear in t. See, for
example, [34].

CCC 2023

33:30 Impossibility of Fast-Forwarding of Hamiltonian Simulation

and we define the propagator

G(k, l, t) := ⟨l|e−iH∞t|k⟩. (33)

The (sub-normalized) eigenstate of H∞ is the momentum state |p⟩. The momentum state
has the following property

⟨j|p⟩ = eipj ,−π ≤ p ≤ π. (34)

The corresponding eigenvalue of |p⟩ is Ep = 2 cos p. Hence, we have

⟨l|e−iH∞t|k⟩ =
∫ π

−π
dpe−i2t cos p+ip(l−k) = i(l−k)Jl−k(2t), (35)

where Jn(·) is the Bessel function of order n. (See (1).)
Now we are ready to calculate the propagator of the quantum walk on a finite segment.

We use G̃(k, l, t) := ⟨l|e−iHLt|k⟩ to denote the propagator of the quantum walk on a finite
segment. The propagator G̃ is a superposition of G and G̃ that satisfies the boundary
conditions: G̃(k, 0, t) = 0 = G̃(k, L+ 1, t), and the initial condition G̃(k, l, 0) = δkl.

The solution is

G̃(1, l, t) =
∞∑

m=−∞
G(1, l + 2m(L+ 1), t)−G(1,−l + 2m(L+ 1), t). (36)

The above equation (36) can be interpreted as the wave reflecting between the boundaries
j = 0 and j = L+ 1.

We set the starting point j = 1. In the time interval that we are interested in, namely,
t ∈ [0, L/2], we have G(1,±l + 2m(L+ 1), t) = J2m(L+1)±l−1(2t) is exponentially small in L

for m ̸= 0. This is because the order |2m(L+ 1)± l − 1| > L for m ̸= 0 and the argument
2t ≤ L for t ≤ L/2. (See (4).)
Thus,

G̃(1, l, t) ≈ G(1, l, t)−G(1,−l, t)

= il−1Jl−1(2t)− i−(l+1)J−(l+1)(2t)

= il−1Jl−1(2t)− (i−(l+1))(−1l+1)Jl+1(2t)
= il−1Jl−1(2t)− (−i)l+1)Jl+1(2t)
= il−1(Jl−1(2t)− (−i)2Jl+1(2t))
= il−1(Jl−1(2t) + Jl+1(2t))

= il−1 l

t
Jl(2t). (37)

The third equation is due to the relation of negative order (2) of the Bessel function, and the
last equation uses the recursion property (3) of the Bessel function. Then we have

P (1, l, t) =
∣∣∣G̃(1, l, t)

∣∣∣2 ≈ (l
t

)2
J2
l (2t). (38)

As a remark, the probability P (1, l, t) is almost independent of L when t ∈ [L/2]. It can be
interpreted as the following: before the wavefront reaches the boundary, the wave propagates
as in free space. Finally, we prove Lemma 35.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:31

Proof of Lemma 35. We directly calculate the probability
∑⌊t⌋
l=1 P (1, l, t) as follows:

⌊t⌋∑
l=1

P (1, l, t) =
⌊t⌋∑
l=1

(
l

t

)2
J2
l (2t) ≤

⌊t⌋∑
l=1

(
l

t

)2 2
π

1
l

= 2
π

⌊t⌋∑
j=l

l

t2
≤ 2
π
,

where the first equation follows from (38) and the second inequality follows from Lemma 15.
As a result, we conclude that

L∑
l=⌈t⌉

P (1, l, t) = 1−
⌊t⌋∑
l=1

P (1, l, t) > 1
3 . ◀

8 No Fast-forwarding in Oracle Model: Unconditional Result

In this section, we are going to investigate the parallel lower bound of Hamiltonian simulation
in the oracle model. In the oracle model, the Hamiltonian is expressed by a Hermitian matrix.
There are many algorithms that can efficiently simulate a Hamiltonian in the oracle model
if the Hamiltonian matrix is sparse [6–8, 13, 27, 28]. As a result, we are interested in the
lower bound of simulating a sparse Hamiltonian. Besides, we normalize the Hamiltonian by
setting the absolute value of every element of the Hamiltonian to be at most 1. The sparse
Hamiltonian is defined as follows.

▶ Definition 36 (Sparse Hamiltonian). Let H ∈ CN×N denote a Hamiltonian acting on the
Hilbert space with dimension N . We say H is d-sparse if there are at most d nonzero entries
in every row.

In the oracle setting, the simulation algorithm can only obtain the description of the
Hamiltonian via oracle queries. In most of the models of the algorithms, there are two
oracles that can be accessed: First, the entry oracle, denoted by OH , answers the value of
the matrix element. Second, the sparse structure oracle, denoted by OL, answers the index
of the nonzero entry. Let the Hamiltonian H that we want to simulate be acting on an
N -dimensional Hilbert space and be d-sparse. When the entry oracle OH is queried on the
index (j, k) where j, k ∈ [N], it returns the element value Hjk. When the sparse structure
oracle is queried on (j, s) where j ∈ [N] and s ∈ [d], it returns k where Hjk is the s-th
nonzero entry of the j-th row.

The algorithm can query these two oracles in superposition respectively. In the standard
quantum oracle model, these two oracles are written as:

OH |j, k, z⟩ = |j, k, z ⊕Hjk⟩, (39)

and

OL|j, s⟩ = |j, k⟩, (40)

where k is the index of the s-th nonzero entry in the j-th row.
We are going to prove that simulating a quantum system for evolution time t requires at

least Ω(t) parallel quantum queries. We have the following result.

▶ Theorem 37 (Simulation lower bound in the oracle model). For any integer n, any polynomial
T (·) and p = poly(n), there exists a time-independent Hamiltonian H ∈ C(2nT (n))×(2nT (n))

satisfies the following. For any quantum algorithm that can make p-parallel queries to the
entry oracle OH (defined in (39)) and the sparse structure oracle OL (defined in (40)),
simulating H for an evolution time t ∈ [0, T (n)/2] within an error ϵ ≤ 1/4 needs at least
Ω(t) p-parallel queries to OH and OL in total. Furthermore, H is 2-sparse and |Hjk| ≤ 1
for every j, k ∈ [2nT (n)].

CCC 2023

33:32 Impossibility of Fast-Forwarding of Hamiltonian Simulation

Theorem 37 can be interpreted as simulating a system with n+O(log n) qubits for an
evolution time t < poly(n) cannot be fast-forwarded.

Before the formal proof of Theorem 37, we first sketch our proof strategy. We modify the
proof of the query lower bound in [6]. In [6], the parity problem is reduced to the Hamiltonian
simulation problem. In particular, it is shown that if one can fast-forward the Hamiltonian
simulation, then one can find the parity of an N -bit string with o(N) queries. However, this
technique cannot be extended to prove the parallel lower bound since finding the parity of a
string is not parallel-hard. Instead, we reduce the permutation chain problem, of which the
parallel hardness was already proven in Section 5, to the Hamiltonian simulation. We are
going to show that there exists a specific Hamiltonian such that simulating the Hamiltonian
implies solving the permutation chain problem.

We restate the permutation chain problem and its hardness below.

▶ Definition 38 (Permutation chain). Let n ∈ N and p, L = poly(n). For each j ∈ [L], let
Πj : {0, 1}n → {0, 1}n be a random permutation and let Π−1

j be the inverse of Πj . Let f (j)(·)
denote Πj(Πj−1(· · ·Π1(·))). A quantum algorithm can make p-parallel query to both Πj and
Π−1
j for each j ∈ [L] respectively and is asked to output xq ∈ {0, 1}n such that xq = f (q)(0n),

where q ∈ [L].

▶ Corollary 39 (Hardness of permutation chain). Let n ∈ N, and p, L = poly(n). For each
j ∈ [L], let Πj and Π−1

j be a random permutation over n-bit strings and its inverse. Let
f (j)(·) := Πj(Πj−1(· · ·Π1(·))) be the function defined in Definition 38. For any t, q ∈ [L] and
any quantum algorithm A that makes t p-parallel queries to Πj and Π−1

j , the probability that
A outputs xq ∈ {0, 1}n satisfying xq = f (q)(0n) and t < q is negligible in n.

Proof. Let x̄q := f (q)(0n) for each q ∈ [L]. The probability that A outputs x̄q such that
t < q is given by

L∑
j=t+1

Pr[A outputs x̄j].

By Theorem 18, for any quantum algorithm A that makes t p-parallel queries to Πj and Π−1
j ,

the probability that A outputs xj such that j > t is O(t
√
p/2n). Hence, the probability

L∑
j=t+1

Pr[A outputs x̄j] = poly(n) ·O
(
t

√
p

2n

)
is negligible in n. ◀

Similar to [6], we use quantum walk on a graph to solve the underlying hard problem.
We construct a graph that consists of L columns where there are 2n vertices in each column.
Each vertex in the j-th column is labelled by (j, x), where j ∈ {0, 1, . . . L} and x ∈ {0, 1}n.
The label is translated as follows: after j queries, the output string is x. The vertices
in the j-th column are only adjacent to the vertices that are in the (j ± 1)-th columns.
Furthermore, the vertices (j, x) and (j + 1, x′) (resp., (j − 1, x′)) are adjacent if and only if
x′ = Πj+1(x) (resp. Π−1

j (x)). Because each Πj is a permutation, the graph consists of 2n
disconnected lines of length L. If the vertices (j, x) and (0, x0) are connected, it holds that
x = f (j)(x0).

In Figure 6, we presents a toy example: let Πj : {0, 1}2 → {0, 1}2 for each j ∈ [L] and
each Πj = Π has the same truth table, i.e.,

Π(00) = (01), Π(01) = (10), Π(10) = (11), and Π(11) = (00).

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:33

(0, 00)

(0, 01)

(0, 10)

(0, 11)

(1, 00)

(1, 01)

(1, 10)

(1, 11)

(2, 00)

(2, 01)

(2, 10)

(2, 11)

(L− 1, 00)

(L− 1, 01)

(L− 1, 10)

(L− 1, 11)

(L, 00)

(L, 01)

(L, 10)

(L, 11)

L+ 1

Figure 6 Using quantum walk to solve the permutation chain problem: a toy example.

We let the Hamiltonian H that determines the behavior of the quantum walk be the
adjacency matrix of the graph.20 That is,

H =
L−1∑
j=0

∑
x∈{0,1}n

|j + 1,Πj(x)⟩⟨j, x|+ |j, x⟩⟨j + 1,Πj(x)|

=
∑

x0∈{0,1}n

L−1∑
j=0
|j + 1, f (j+1)(x0)⟩⟨j, f (j)(x0)|+ |j, f (j)(x0)⟩⟨j + 1, f (j+1)(x0)|. (41)

Because two vertices on different lines are decoupled, we have the following observation.

▶ Observation 40. If the random walk starts at the vertex (0, x0), then it always walks on
the same line. To be more precise, if a system evolves under the Hamiltonian H described
in (41) and the initial state is |0, x0⟩, then at any time t, the quantum state of the system is
in the subspace Span

({
|j, f (j)(x0)⟩

}L
j=0

)
.

Observation 40 can be verified by taking the Taylor expansion of the time evolution operator:
e−iHt =

∑∞
k=0(−iHt)k/k!.

To solve the permutation chain problem, we use a Hamiltonian simulation algorithm to
simulate the quantum walk under the Hamiltonian H with initial state |0, 0n⟩. When we
measure the system at time t and get the outcome (q, x). The string x is a potential solution
to the permutation chain problem. We aim to prove the following two statements. First, the
oracles OH and OL can be simulated efficiently by Πj and Π−1

j . Second, the probability of
getting a measurement outcome (q, x) at time t such that q ≥ t is high. Combining these
two statements, we have the following conclusion. If an algorithm can simulate H for an
evolution time t with o(t) queries, then we can solve the permutation chain problem with
o(t) queries as well. However, this violates the hardness of the permutation chain problem.

Now we are ready to present the formal proof of Theorem 37.

Proof of Theorem 37. We construct a time-independent Hamiltonian H acting on a 2n(L+
1)-dimensional Hilbert space where L + 1 = f(n). The basis vector of the 2n(L + 1)-
dimensional Hilbert space is denoted by |j, x⟩ where j ∈ {0, 1, . . . , L} and x ∈ {0, 1}n. The
element of H is defined as follows.

⟨j′, x′|H|j, x⟩ =

1, ifj′ = j + 1 and x′ = Πj+1(x)
1, ifj′ = j − 1 and x′ = Π−1

j (x)
0, otherwise.

(42)

20 Our Hamiltonian is different from that appears in [6], in which the graph is weighted.

CCC 2023

33:34 Impossibility of Fast-Forwarding of Hamiltonian Simulation

Notice that the Hamiltonian H is 2-sparse and the absolute value of every matrix element is
at most 1.

We are going to show the following. Suppose A can simulate H for an evolution time
t ∈ [0, (L+ 1)/2] within an error ϵ < 1/4 by making o(t) p-parallel queries to OH and OL.
Then we can construct a reduction R that makes o(t) p-parallel queries to Πj and Π−1

j and
outputs a pair (x0, xq) such that xq = f (q)(x0) and q > t with constant probability. The
reduction R is described as follows:
1. Run the Hamiltonian simulation algorithm A on inputs the Hamiltonian H, the evolution

time t ∈ [0, L/2] and the initial state |0, 0n⟩.
When A queries OH on the index ((j, x), (j′, x′)), the reduction R returns the response
by the following rules.

If j′ = j + 1 and x′ = Πj+1(x), then R returns 1.
If j′ = j − 1 and x′ = Π−1

j (x), then R returns 1.
Otherwise, R returns 0.

When A queries OL on ((j, x), s), reduction R returns the response by the following
rules.

If j = 0 and s = 1, then R returns (1,Π1(x)).
If j = L and s = 1, then R returns (L− 1,Π−1

L (x))
If j ̸= 0, L and s = 1, then R returns (j − 1,Π−1

j (x)).
If j ̸= 0, L and s = 2, then R returns (j + 1,Πj+1(x)).

2. Measure the system in the {|j, x⟩} basis and obtain the outcome (q, xq).
3. Output xq.

Note that answering a query to the entry oracle OH can be implemented by O(1) queries
to Πj and Π−1

j . Similarly, the sparse structure oracle OL can be simulated by O(1) queries
to Πj and Π−1

j as well.
Next, we analyze the evolution under H . Let us define another Hamiltonian H|0 restricted

to the subspace Span
({
|j, f (j)(0)⟩

}L
j=0

)
:

H|0 =
L−1∑
j=0
|j + 1, f (j+1)(0)⟩⟨j, f (j)(0)|+ |j, f (j)(0)⟩⟨j + 1, f (j+1)(0)|.

By Observation 40, the time evolution under H|0 is equivalent to the time evolution under
H with the initial state |0, 0n⟩.

We first consider a perfect Hamiltonian simulation algorithm Ã that outputs the state
|ψ̃⟩ := e−iHt|0, 0n⟩ = e−iH|0t|0, 0n⟩. In Step 2, the measurement outcome (q, xq) satisfies
xq = f (q)(0n). Then by Lemma 35, the probability that the measurement outcome satisfies
q > t is at least 1/3.

Next, we consider the general simulation algorithm that outputs a state |ψ⟩ such that
∆(|ψ⟩⟨ψ|, |ψ̃⟩⟨ψ̃|) ≤ 1/4. By the property of the trace distance, the difference in probabilities
that R outputs a correct outcome by measuring |ψ⟩ and |ψ̃⟩ is at most 1/4. As a result, R
outputs the accepted string xq with probability at least 1/3− 1/4 = 1/12.

Combining everything together, if A simulates H for time t within ϵ ≤ 1/4 by making o(t)
p-parallel queries, then R will output xq = f (q)(0n) such that q > t with constant probability
by making o(t) p-parallel queries. This contradicts Corollary 39. ◀

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:35

9 No Fast-forwarding in Plain Model

In this section, we are going to investigate the parallel lower bound of Hamiltonian simulation
in the plain model. In the plain model, we are interested in the Hamiltonians that have a
succinct description. Typically, we consider the local Hamiltonians.

▶ Definition 41 (Local Hamiltonian). We say a Hamiltonian H that acts on n qubits is
k-local if H can be written as

H =
∑
j

Hj ,

where each Hj acts non-trivially on at most k qubits.

The geometrically local Hamiltonians are another kind of Hamiltonians that often appear
in physics models. A geometrically local Hamiltonian is a local Hamiltonian with more
constraints. For a geometrically local Hamiltonian written by H =

∑
j Hj , each term Hj

acts non-trivially on the qubits that are near in space. We are especially interested in
one-dimensional geometrically local Hamiltonians.

▶ Definition 42 (One-dimension geometrical local Hamiltonians). Let a system consist of n
qubits that are aligned in space and each qubit is labeled by an integer l ∈ [n]. Let H =

∑
j Hj

be a k-local Hamiltonian that acts on n qubits. We say H is an one-dimension geometrically
local Hamiltonian if each Hj acts non-trivially on at most k consecutive indices.

For example, consider Hamiltonians H1 and H2 acting on four qubits defined as follows:

H1 := σX ⊗ σZ ⊗ I ⊗ I + σZ ⊗ I ⊗ I ⊗ σZ + I ⊗ I ⊗ σX ⊗ I,

and

H2 := σZ ⊗ σZ ⊗ I ⊗ I + I ⊗ σZ ⊗ σZ ⊗ I + I ⊗ I ⊗ σZ ⊗ σZ ,

where σX and σZ are Pauli operators and I is the identity operator. Hamiltonian H1 is
2-local but not geometrically local, but Hamiltonian H2 is geometrically local. We normalize
the Hamiltonian by setting the spectral norm ∥Hj∥ = O(1) for each j.

Having a succinct description gives the simulation algorithm more power than in the
oracle model. In this sense, we obtain a stronger lower bound. On the other hand, our lower
bound in the plain model relies on computational assumptions, which weakens the result.
For our lower bound, we need to assume an iterative parallel-hard function, which is slightly
modified from the definition of an iterative sequential function by Boneh et al. [9].

▶ Definition 43 (Iterative parallel-hard functions/puzzles). A function f : N× X̂ → X where
X̂ ∈ X and |X̂| = 2θ(λ) is a (post-quantum) (s, d)-iterated parallel-hard function if there
exists a function g : X → X such that

g can be computed by a quantum circuit with width λ and size s(λ). Without loss of
generality, we can let s(λ) = Ω(λ)
f(k, x) = g(k)(x).
For all sufficiently large k = 2o(λ), for any quantum circuit C with depth less than d(k)
and size less than poly(t, d(k), λ),

Pr[C(x) = f(k, x) | x← X̂] ≤ negl(λ)

Without loss of generality, we assume that d is non-decreasing.

CCC 2023

33:36 Impossibility of Fast-Forwarding of Hamiltonian Simulation

We say that f forms a (post-quantum) (s, d)-iterated parallel-hard puzzle if it only satisfies
a weaker version of the third requirement as follows:

For all k = 2o(λ), for any uniform quantum circuit C with depth less than d(k) and size
less than poly(t, d(k), λ),

Pr[C(x) = f(k′, x) for some k′ ≥ k/2 | x← X̂] ≤ negl(λ).

Note that an (s, d)-iterated parallel-hard function is directly an (s, d′)-iterated parallel-hard
puzzle, where d′(x) := d(x/2).

Under the (quantum) random oracle heuristic [4, 10], such parallel-hard puzzles can be
heuristically obtained by instantiating the twisted hash chain with a cryptographic hash
function.

▶ Assumption 44. With the random oracle heuristic, we can assume that the standard
instantiation of the twisted hash chain is parallel-hard by Corollary 33. Assuming the
cryptographic hash function h in the instantiation can be implemented by circuits of size s(λ)
on λ-bit inputs, the twisted hash chain directly gives an (s+O(λ), d) iterative parallel-hard
function with d(x) := x − 1, which is an (s + O(λ), d) iterative parallel-hard puzzle with
d(x) := ⌊x2 ⌋ − 1

We present the simulation lower bound for the local Hamiltonians in the following theorem.

▶ Theorem 45 (Simulation lower bound for local Hamiltonians in the plain model). Assuming
an (s, d)-iterated parallel-hard puzzle, for any integer n, there exists a time-independent c-local
Hamiltonian H acting on n+ (2s(n)T (n))1/c qubits such simulating H for an evolution time
t ∈ [0, s(n)T (n)] with error ϵ < 1/4 needs a (d(⌊t/2s(n)⌋)−O(s(n)))-depth circuit, where
T (·) is an arbitrary polynomial and c is a constant.

We also have the lower bound for simulating geometrically local time-dependent Hamilto-
nians.

▶ Theorem 46 (Simulation lower bound for geometrically local Hamiltonians in the plain
model). Assuming an (s, d)-iterated parallel-hard function, for any integer n, there exists a
piecewise-time-independent 1-D geometrically 2-local Hamiltonian H acting on n qubits such
that simulating H for an evolution time t ∈ [0, ns(n)T (n)] with error ϵ(n) ≤ 1− 1/ poly(n)
needs a

(
d(⌊ t

ns(n)⌋)−O(ns(n))− poly(log(n), log log(1/ϵ′(n))
)

-depth circuit, where T (·) is
an arbitrary polynomial and ϵ′(n) < 1− ϵ(n)− 1/ poly(n).

We sketch our proof strategy as follows. The main idea is, again, to reduce the hard
problem to the Hamiltonian simulation problem. First, we consider a quantum circuit C
that computes an (s, d)-iterated parallel-hard puzzle, which according to the definition, can
be written as a sequential composition of λ-qubit s(λ)-sized circuits. Then we construct
a Hamiltonian Hcircuit to implement the circuit C by the circuit to Hamiltonian reduction
technique. The circuit to time-independent reduction is introduced in Section 9.1, and
the circuit to time-dependent reduction is introduced in Section 9.3. Finally, we use the
Hamiltonian simulation algorithm to simulate the Hamiltonian Hcircuit. If we can fast-forward
the Hamiltonian evolution under Hcircuit, then we can break the depth guarantee provided
by the iterated parallel-hard puzzle.

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:37

9.1 Circuit to time-independent Hamiltonian

Feynman suggested that we can implement a quantum circuit (which was called reversible
computation at his time) by a time-independent Hamiltonian [21]. About a decade later,
Childs and Nagaj provided rigorous analyses for the implementation [15, 30]. The idea is
to introduce an extra register, which is called the clock register Hclock, associated with the
circuit register Hcircuit to record the progress of the quantum circuit. After introducing
the clock register, we define a state |ψj⟩ = |ϕj⟩circuit ⊗ |γj⟩clock to indicate that the j-th
steps outcomes is |ϕj⟩. We can construct a Hamiltonian acting on Hcircuit ⊗Hclock such that
during the evolution, the system is in Span ({|ψj⟩}). When we measure the clock register
Hclock and get the outcome γk, the quantum state in the circuit register Hcircuit collapses to
|ϕk⟩. And then we obtain the k-th step outcome of the quantum circuit. Similar techniques
appear in the proof of QMA completeness [25] and universality of adiabatic computation [1].

In [30], Nagaj proved that for any quantum circuit C with L quantum gates, there is a
Hamiltonian Hcircuit such that evolving the system under the Hamiltonian Hcircuit for time
O(L) and then measuring the system, we can get the final state of the quantum circuit
C with high probability. We extend Nagaj’s result. In this section, we are going to prove
that if the system evolves under Hcircuit for time t ∈ [0, L/2], we can get |ψj⟩ where j ≥ t

with high probability. Our method is slightly different from Nagai’s. In [30], the evolution
time is uniformly sampled, while we have an explicit evolution time. Another difference is
that in [30] it needs to pad O(L) dummy identity gates at the end of the quantum circuit
to amplify the probability of getting the output state. In our construction, padding is not
required.

Let a quantum circuit C which acts on the register Hcircuit consist of a sequence of g
quantum gates U1, U2, . . . , UL. Namely,

C = ULUL−1 · · ·U1.

After introducing the clock register Hclock, and the clock state, which is a family of or-
thonormal states {|γj⟩}Lj=0 where each |γj⟩ ∈ Hclock, we construct the following Hamiltonian

Hcircuit :=
L∑
j=1

Hj , (43)

where

Hj := Uj ⊗ |j⟩⟨j − 1|+ U †j ⊗ |j − 1⟩⟨j|. (44)

Let the input state of the circuit be |ϕ(0)
0 ⟩, and let |ϕ(0)

j ⟩ denote the quantum state of j-th
step. That is, |ϕ(0)

j ⟩ = UjUj−1 · · ·U1|ϕ(0)
0 ⟩. Define the state

|ψ(0)
j ⟩ := |ϕ(0)

j ⟩ ⊗ |γj⟩, (45)

which is the state after j steps of C.
Let {|ϕ(1)

0 ⟩, . . . , |ϕ
(N−1)
0 ⟩} be the states that are orthogonal to |ϕ(0)

0 ⟩ where N denotes the
dimension of Hcircuit. Besides, let |ϕ(m)

j ⟩ := UjUj−1 · · ·U1|ϕ(m)
0 ⟩ and |ψ(m)

j ⟩ := |ϕ(m)
j ⟩ ⊗ |γj⟩

where m ∈ [N − 1]. We have

CCC 2023

33:38 Impossibility of Fast-Forwarding of Hamiltonian Simulation

Hcircuit|ψ(m)
j ⟩ =

|ψ(m)
j+1⟩ , if j = 0,
|ψ(m)
j−1⟩+ |ψmj+1⟩ , if j = 1, . . . , L− 1,
|ψ(m)
j−1⟩ , if j = L,

for any m ∈ {0, 1, . . . , N − 1}.
Again, the evolution under Hcircuit can be viewed as quantum walks on a graph. We

construct a graph illustrated in Figure 7 whose adjacency matrix is Hcircuit.

|ψ(0)
0 ⟩

|ψ(1)
0 ⟩

|ψ(N−1)
0 ⟩

|ψ(0)
1 ⟩

|ψ(1)
1 ⟩

|ψ(N−1)
1 ⟩

|ψ(0)
2 ⟩

|ψ(1)
2 ⟩

|ψ(N−1)
2 ⟩

|ψ(0)
L−1⟩

|ψ(1)
L−1⟩

|ψ(N−1)
L−1 ⟩

|ψ(0)
L ⟩

|ψ(1)
L ⟩

|ψ(N−1)
L ⟩

L+ 1

Figure 7 The quantum walk on a graph for the circuit to Hamiltonian reduction.

We have the following lemma.

▶ Lemma 47. A system evolves under the Hamiltonian Hcircuit described in (43) with the
initial state |ψ(0)

0 ⟩ described in (45). If the clock register is measured at time t ∈ [0, L/2]
in the {γj} basis and get the outcome l, the probability that the circuit register collapses to
|ϕ(m)
l ⟩ where m = 0 and l > t is at least 1/3.

Proof. By the similar argument of Observation 40, we define another Hamiltonian H|ψ(0)

restricted to the subspace Span
(
{|ψ(0)

j ⟩}Lj=0

)
:

H|ψ(0) :=
L−1∑
j=0
|ψ(0)
j+1⟩⟨ψ

(0)
j |+ |ψ

(0)
j ⟩⟨ψ

(0)
j+1|. (46)

If the system is initially at |ψ(0)
0 ⟩, the time evolution under Hcircuit is the same as the time

evolution under H|ψ(0) . As a result, we have m = 0 for any time t.
Because |ψ(0)

j ⟩ = |ϕ(0)
j ⟩ ⊗ |γj⟩, the measurement results of measuring clock register in

{|γj⟩} basis is the same as measuring the entire system in {|ψ(0)
j ⟩} basis. The probability

that l > t can be obtained directly from Lemma 35. This finishes the proof. ◀

Next, we present our construction of the clock state.

▶ Lemma 48. For all c, T ∈ N, there exists a construction that implements the clock state
for time T with locality c and at most O(T 1/(c−1)) qubits.

Proof. Let n be the smallest integer such that
(
n
c−1
)
≥ T . Thus, n = O(T 1/(c−1)). Consider

the system that consists of n qubits indexed from 1 to n. Consider the Johnson graph Jn,c−1
(see Definition 16), for each node S ⊆ [n], define the n-qubit state |S⟩ as

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:39

|S⟩ :=
n⊗
i=1
|IS(i)⟩i,

where the subscript i denotes the register of the i-th qubit; IS : [n]→ {0, 1} is the indicator
function that equals 1 if i ∈ S and 0 otherwise.

Choose an arbitrary Hamiltonian path of Jn,c−1, denoted by (S1, S2, . . . , S(n
c−1)). Now,

each time j ∈ [
(
n
c−1
)
] corresponds to the n-qubit state |Sj⟩.

For every j ∈
[(

n
c−1
)
− 1
]
, the time transition |j + 1⟩⟨j| is implemented by

Ej→j+1 :=
n⊗
i=1

Pi,

where

Pi :=

|1⟩⟨1|i, if i ∈ Sj ∩ Sj+1

|1⟩⟨0|i, if i ∈ Sj+1 \ Sj
|0⟩⟨1|i, if i ∈ Sj \ Sj+1

I, otherwise.

It is easy to see that the transitions are c-local due to the definition of Jn,c−1. It remains to
check the correctness of the transitions. That is, for every j, j′ ∈

[(
n
c−1
)
− 1
]
, they should

satisfy

Ej→j+1|Sj′⟩ =
{
|Sj′+1⟩, if j = j′

0, otherwise.

When j = j′, the equality holds since there is an edge between Sj and Sj+1. When j ̸= j′,
there must exist an i∗ ∈ Sj such that i∗ /∈ Sj′ . Therefore, Pi∗ = |0⟩⟨1|i∗ will vanish |Sj′⟩
because the i∗-th qubit of |Sj′⟩ is in the state |0⟩i. This verifies the correctness. ◀

9.2 Proof of the lower bound for local Hamiltonians
Proof of Theorem 45. From an (s, d)-iterated parallel-hard puzzle f(k, x) = g(k)(x), we
here show how to construct a time-independent (c + 2)-local Hamiltonian H acting on
n+ (2s(n)T (n))1/c qubits.

The construction is direct. By definition, g can be implemented by an s(n)-sized quantum
circuit Cg. We can thus construct a circuit C concatenating T (n) copies of Cg, which
computes f(T (n), x) with size s(n)T (n). Note that, if we denote C(i, x) to be the intermediate
output of C(x) after applying the i-th gate, then we additionally have C(ks(n), x) = |f(k, x)⟩
for all k ≤ T (n).

Given such a circuit C, we can construct a Hamiltonian H by the circuit-to-Hamiltonian
reduction introduced in Section 9.1. We use the construction in Lemma 48 with locality
c and time-bound 2s(n)T (n) to implement the clock state. Hence H =

∑
j Hj , where

Hj := Uj ⊗ |j⟩⟨j − 1|+ U†j ⊗ |j − 1⟩⟨j|, and Uj is a unitary corresponding to the j-th gate
of C. Note that Uj is always an one- or two-qubit gate, and |j⟩⟨j − 1| is c-local. Hence H
is c+ 2 local over n+ (2s(n)T (n))1/c qubits. It is also direct to see that ∥Hj∥ = O(1) for
each j.

CCC 2023

33:40 Impossibility of Fast-Forwarding of Hamiltonian Simulation

For such H and any t ∈ [0, s(n)T (n)], if there is a quantum algorithm A that computes
e−iHt within depth dA, we can indeed construct a quantum algorithm R with depth dA+O(n)
that computes the underlying parallel-hard puzzle. The algorithm R is defined as follows.
1. For an input x ∈ {0, 1}n, run the algorithm A with input Hamiltonian H and input state
|x⟩, obtain the output state of A, denoted by |ψ⟩.

2. Measure the clock register Hclock in {|γj⟩} basis and obtain some l ∈ [s(n)f(n)]. The
residual state in the circuit register Hcircuit is denoted by |ϕl⟩.

3. Let m = ⌈l/s(n)⌉. Apply Ums(n) · · ·Ul+1 on |ϕl⟩. Let the final state be |ϕm⟩.
4. Measure |ϕm⟩ on the computational basis and obtain the outcome xm.
5. Output xm

In this construction, Step 2 and Step 4 can be done within depth O(n) and Step 3 can be
done within depth s(n). It is easy to see that R can be implemented with depth dA+O(s(n)).

We claim that, with constant probability, m > t
s(n) and xm = f(m,x). This implies that

R can break the underlying parallel-hard puzzle on k = 2⌊ t
s(n)⌋

To prove the claim, we first consider a simplified case, where there exists an ideal Ã that
perfectly simulates H for time t and plugs it into our construction. We use |ψ̃⟩ to denote
the output of Ã in Step 1, and similarly |ψ̃l⟩ for output in Step 2. By Lemma 47, we have
|ϕ̃l⟩ = Ul · · ·U1|x⟩ for all l and the probability that we get some l > t in Step 2 is at least 1/3.
By the definition of C, the output state of Step 3 satisfies |ϕ̃m⟩ = Ums(n) · · ·U1|x⟩ = |f(m,x)⟩.
Moreover, m ≥ ⌊ t

s(n)⌋ with probability at least 1/3. This matches the required condition of
our claim.

Now we return to the general A with simulation error ϵ < 1/4. Let |ψ⟩ be the output
of A with error ϵ. Observe that we have ∆(|ψ⟩⟨ψ|, |ψ̃⟩⟨ψ̃|) < 1/4. Thus, by the definition
of the trace distance, the difference in probabilities of obtaining any outcome by applying
the same procedure to two states should be at most 1/4. Hence, with probability at least
1/3− 1/4 = 1/12, measuring |ϕm⟩ gives f(m,x) with some m ≥ ⌊ t

s(n)⌋. This completes the
proof of our claim.

Finally, by the security guarantee of the (s, d)-iterated parallel-hard puzzle, any circuit
computing the puzzle for k = 2⌊ t

s(n)⌋ should have depth at least d(2⌊ t
s(n)⌋). This gives an

lower bound that dA +O(s(n)) > d(2⌊ t
s(n)⌋), which completes the proof. ◀

9.3 Circuit to time-dependent Hamiltonian
In this section, we will show how to encode a circuit into a time-dependent geometrically
local circuit.

▶ Lemma 49. A quantum circuit C (of 2-qubit gates) over n qubits of size s can be
transformed into a circuit C ′ over n qubits of size ns, such that every gate in C ′ acts only
on consecutive qubits, and C ′(x) = πC(x) for some permutation π on n elements. We call
such C ′ a geometrically local circuit.

Proof. The proof of this small lemma is very direct. Given a circuit C with (sequen-
tial) gates G1, G2, . . . , Gs, where gate Gi acts on qubits αi, βi, then we can rewrite C as
S1,α1 , S1,α1+1, . . . , S1,β1−2, G

′
1, G

′
2, . . . , G

′
s, where Si is a swap gate acting on the i and

(i + 1)-th qubits, and G′i is Gi acting on the permuted qubits. Note that now G′1 is
acting on two consecutive qubits β1 − 1, β1. It is easy to see that applying G1 and apply-
ing S1,α1 , S1,α1+1, . . . , S1,β1−2, G

′
1 generate output states that differ up to a permutation.

Through repeating such process s times, we can obtain a circuit C ′ that consists of at most
(n− 1)s swap gates and s permuted gates from C. Furthermore, every gate in C ′ is acting
only on consecutive qubits. ◀

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:41

▶ Theorem 50. Given a quantum circuit C over n qubits that consists of s gates U1 . . . Us,
we can define a time-dependent Hamiltonian H such that H(t) := −i logUi for all t ∈ [i−1, i)
and Ui := In for i > s. Note that H obviously satisfies eiHt|ϕ⟩ = C|ϕ⟩ for t > s.

▶ Remark 51. A Hamiltonian H obtained from a geometrically local circuit is 1-D geometri-
cally 2-local.

▶ Remark 52. Such time-independent Hamiltonians that remain constant in each time
segment are also called piecewise constant Hamiltonians in [23].

9.4 Proof of the lower bound for geometrically local Hamiltonians
Before proving the theorem, we will need the existence of a Hamiltonian simulation algorithm
for 2-local time-independent Hamiltonians. While there are plenty of proposals in the
literature, we use the one in [39] which provides a good dependency on ϵ. The choice of the
simulation algorithm will only affect an additive term of our bound.

▶ Theorem 53 ([39], with some parameter specified). A 2-local Hamiltonian acting on
n qubits can be simulated for time t within precision ϵ by a quantum circuit of depth
poly(log log(1/ϵ), log(n), t).

Proof of Theorem 46. The proof is very similar to the proof of Theorem 45. From an
(s, d)-iterated parallel-hard function f(k, x) = g(k)(x), we will construct a geometrically
2-local Hamiltonian H over n qubits.

Again, since g can be implemented by an s(n) sized circuit Cg, we can construct Cf
by concatenating T (n) copies of Cg, which computes f(T (n), x) with size s(n)T (n). Then,
by applying Lemma 49, we can obtain a geometrically local circuit C of depth at most
ns(n)T (n). Note that Lemma 49 basically constructs C by adding at most n− 1 swap gates
before each gate of Cf . For notation simplicity, we add extra dummy gate before each gate
so that there are exactly (n− 1) gates added before each gate of Cf . Thus the depth of C
is exactly ns(n)T (n), and if we denote C(i, x) to be the intermediate output of C(x) after
applying the i-th gate, we have C(kns(n), x) = πk|f(k, x)⟩ for all k ≤ T (n), where πk is
some (known) permutation on n bits.

With such a geometrically local circuit C, we can apply Theorem 50 to obtain a time-
dependent geometrically 2-local Hamiltonian H over n qubits. For all t ∈ [0, ns(n)T (n)], if
there is a quantum algorithm A that computes e−iHt with precision ϵ of depth dA, we can
indeed construct a quantum algorithm R of depth dA +O(s(n)) + poly(log log(1/ϵ′), log n)
with ϵ′ < 1− ϵ− 1/ poly(n). The algorithm R is defined as follows.
1. For an input x ∈ {0, 1}n, run A on inputs the Hamiltonian H and the initial state |x⟩ to

obtain the output state |ϕ⟩.
2. Run the Hamiltonian simulation algorithm S in Theorem 53 with inputs the Hamiltonian

H(t) (which is time-independent) , the initial state |ϕ⟩, the evolution time ⌈t⌉ − t, and
the precision parameter ϵ′ to obtain the output state |ϕ⌈t⌉⟩.

3. Let m = ⌈ t
ns(n)⌉. Apply Umns(n) · U⌈t⌉+1 to |ϕ⌈t⌉⟩. Let the final state be |ϕm⟩.

4. Measure the permuted state πm|ϕm⟩ on the computational basis and obtain the outcome
xm.

5. Output xm.

In the construction, Step 3 can be done within depth O(ns(n)) and Step 4 can be
done within depth O(1). Thus, R can be instantiated within depth dA + O(ns(n)) +
poly(log log(1/ϵ′), log n).

CCC 2023

33:42 Impossibility of Fast-Forwarding of Hamiltonian Simulation

Now we show that if ϵ+ ϵ′ ≤ 1− 1/ poly(n), then xm = f(k,m) holds with non-negligible
probability.

We consider the case in which the algorithms A and S both simulate the evolution
perfectly. Denote the output state in each step of this experiment as |ϕ̃⟩, |ϕ̃⌈t⌉⟩ and |ϕ̃m⟩. In
particular,

|ϕ̃⟩ = expT
(
−i
∫ t

0
H(t′)dt′

)
|x⟩

and

|ϕ̃⌈t⌉⟩ = e−iH(t)(⌈t⌉−t) × expT
(
−i
∫ t

0
H(t′)dt′

)
|x⟩

= expT

(
−i
∫ ⌈t⌉

0
H(t′)dt′

)
|x⟩ = |C(⌈t⌉, x)⟩,

where the last equation follows from the definition of H , while the second last equation follows
from the fact that H is constant on the interval (t, ⌈t⌉). Hence, |ϕ̃m⟩ = |C(mns(n), x)⟩ =
|f(m,x)⟩ with probability 1.

Back to the actual construction, by the precision guarantee of A and S, there exists some
polynomial p such that ∆(|ψ⌈t⌉⟩⟨ψ⌈t⌉|, |ψ̃⌈t⌉⟩⟨ψ̃⌈t⌉|) < 1− 1/p(n). Thus, xm = f(m,x) holds
with probability at least 1/p(n).

Finally, by the security guarantee of the (s, d)-iterated parallel-hard function, any quantum
circuit that computes f(m,x) should have depth at least d(m) = d(⌈ t

ns(n)⌉). This gives an
lower bound that dA +O(ns(n)) + poly(log log(1/ϵ), log(n)) < d(⌈ t

ns(n)⌉), which completes
the proof. ◀

10 No Fast-forwarding with Natural Simulators

In previous sections, we have shown no-go theorems for using quantum circuits to parallelly
fast-forward (geometrically) local Hamiltonian simulation. Here, we are going to generalize
Theorem 46 and Theorem 45 by showing that simulators that are geometrically local
Hamiltonians cannot do much better than quantum circuits.

▶ Corollary 54. Assuming an (s, d)-iterated parallel-hard function, for any integer n,
there exists a piecewise-time-independent 1-D geometrically 2-local Hamiltonian HA act-
ing on n qubits satisfying the following: For any geometrically constant-local Hamil-
tonian HB acting on poly(n) qubits, using HB to simulate HA for evolution time
t ∈ [0, ns(n)T (n)] with error ϵ(n) ≤ 1 − 1/ poly(n) needs (d(⌊ t

ns(n)⌋) − O(ns(n)) −
poly(log(n), log log(1/ϵ′(n)))/ polylog(tn/ϵ) evolution time, where T (·) is an arbitrary poly-
nomial and ϵ′(n) < 1− ϵ(n)− 1/ poly(n).

Proof. Let HA be the Hamiltonian we considered in the proof of Theorem 46. Suppose
there exists HB that can simulate HA for evolution time t ∈ [0, ns(n)T (n)] and error
ϵ(n)/2 ≤ 1− 1/ poly(n) with t′ <

d(⌊ t
ns(n) ⌋)−O(ns(n))−poly(log(n),log log(1/ϵ′(n))

polylog(tn/ϵ) evolution time,
where ϵ′(n) < 1− ϵ(n)/2− 1/ poly(n).

Recall that the algorithm in [23] can simulate a geometrically constant-local Hamiltonian
with quantum circuit depth t · polylog(tn/ϵ), where n is the number of qubits and ϵ is the
precision parameter.

Then, we apply the algorithm in [23] to simulate HB with evolution time t′ and precision
ϵ/2. This leads to a simulation algorithm for HA with error ϵ and circuit depth strictly less
than d(⌊ t

ns(n)⌋)−O(ns(n))−poly(log(n), log log(1/ϵ′(n)), which contradicts Theorem 46. ◀

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:43

▶ Corollary 55. Assuming an (s, d)-iterated parallel-hard function, for any integer n, there
exists a time-independent c-local Hamiltonian H acting on n+(2s(n)T (n))1/c qubits satisfying
the following: For any geometrically constant-local Hamiltonian HB acting on poly(n) qubits,
using HB to simulate HA for evolution time t ∈ [0, s(n)T (n)] with error ϵ(n) < 1/4 needs
d(⌊t/2s(n)⌋)−O(s(n))/ polylog(tn/ϵ) evolution time, where T (·) is an arbitrary polynomial
and c is a constant.

The proof for Corollary 55 is similar to the proof for Corollary 54.

References
1 Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev.

Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation. SIAM
Review, 50(4):755–787, 2008.

2 Brian Alspach. Johnson graphs are Hamilton-connected. Ars Mathematica Contemporanea,
6(1):21–23, 2012.

3 Yosi Atia and Dorit Aharonov. Fast-forwarding of hamiltonians and exponentially
precise measurements. Nature Communications, 8(1), November 2017. doi:10.1038/
s41467-017-01637-7.

4 Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing ef-
ficient protocols. In Proceedings of the 1st ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

5 Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and
weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510–1523, 1997.

6 Dominic W Berry, Graeme Ahokas, Richard Cleve, and Barry C Sanders. Efficient quantum
algorithms for simulating sparse Hamiltonians. Communications in Mathematical Physics,
270(2):359–371, 2007.

7 Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma.
Exponential improvement in precision for simulating sparse Hamiltonians. Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, pages 283–292, May 2014. arXiv:
1312.1414. doi:10.1145/2591796.2591854.

8 Dominic W. Berry, Andrew M. Childs, and Robin Kothari. Hamiltonian Simulation with
Nearly Optimal Dependence on all Parameters. In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pages 792–809, October 2015. ISSN: 0272-5428. doi:
10.1109/FOCS.2015.54.

9 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
CRYPTO (1), volume 10991 of Lecture Notes in Computer Science, pages 757–788. Springer,
2018.

10 Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In Advances in Cryptology–ASIACRYPT 2011:
17th International Conference on the Theory and Application of Cryptology and Information
Security, Seoul, South Korea, December 4-8, 2011. Proceedings 17, pages 41–69. Springer, 2011.

11 P Oscar Boykin, Tal Mor, Matthew Pulver, Vwani Roychowdhury, and Farrokh Vatan. On
universal and fault-tolerant quantum computing: a novel basis and a new constructive proof of
universality for Shor’s basis. In 40th Annual Symposium on Foundations of Computer Science
(Cat. No. 99CB37039), pages 486–494. IEEE, 1999.

12 Jorge Chávez-Saab, Francisco Rodríguez-Henríquez, and Mehdi Tibouchi. Verifiable isogeny
walks: Towards an isogeny-based postquantum VDF. In SAC, volume 13203 of Lecture Notes
in Computer Science, pages 441–460. Springer, 2021.

13 Andrew M. Childs and Dominic W. Berry. Black-box Hamiltonian simulation and unitary
implementation. Quantum Information and Computation, 12(1&2):29–62, January 2012.
doi:10.26421/QIC12.1-2-4.

CCC 2023

https://doi.org/10.1038/s41467-017-01637-7
https://doi.org/10.1038/s41467-017-01637-7
https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1109/FOCS.2015.54
https://doi.org/10.1109/FOCS.2015.54
https://doi.org/10.26421/QIC12.1-2-4

33:44 Impossibility of Fast-Forwarding of Hamiltonian Simulation

14 Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and Daniel A.
Spielman. Exponential algorithmic speedup by a quantum walk. In Proceedings of the
thirty-fifth ACM symposium on Theory of computing - STOC '03. ACM Press, 2003. doi:
10.1145/780542.780552.

15 Andrew MacGregor Childs. Quantum Information Processing in Continuous Time. Thesis,
Massachusetts Institute of Technology, 2004.

16 Kai-Min Chung, Serge Fehr, Yu-Hsuan Huang, and Tai-Ning Liao. On the compressed-oracle
technique, and post-quantum security of proofs of sequential work. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 598–629.
Springer, 2021.

17 J. Ignacio Cirac and Peter Zoller. Goals and opportunities in quantum simulation. Nature
Physics, 8(4):264–266, April 2012. doi:10.1038/nphys2275.

18 Toby Cubitt, Ashley Montanaro, and Stephen Piddock. Universal Quantum Hamiltonians.
Proceedings of the National Academy of Sciences, 115(38):9497–9502, September 2018. doi:
10.1073/pnas.1804949115.

19 Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous verifiable
delay functions. In EUROCRYPT (3), volume 12107 of Lecture Notes in Computer Science,
pages 125–154. Springer, 2020.

20 Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay functions
from supersingular isogenies and pairings. In ASIACRYPT (1), volume 11921 of Lecture Notes
in Computer Science, pages 248–277. Springer, 2019.

21 Richard P. Feynman. Quantum Mechanical Computers. Optics News, 11(2):11–20, February
1985. doi:10.1364/ON.11.2.000011.

22 Shouzhen Gu, Rolando D. Somma, and Burak Ş ahinoğlu. Fast-forwarding quantum evolution.
Quantum, 5:577, November 2021. doi:10.22331/q-2021-11-15-577.

23 Jeongwan Haah, Matthew B. Hastings, Robin Kothari, and Guang Hao Low. Quantum
algorithm for simulating real time evolution of lattice Hamiltonians. SIAM Journal on
Computing, pages FOCS18–250–FOCS18–284, January 2021. doi:10.1137/18m1231511.

24 Stacey Jeffery, Frederic Magniez, and Ronald de Wolf. Optimal parallel quantum query
algorithms, 2013. doi:10.48550/ARXIV.1309.6116.

25 A. Kitaev, A. Shen, and M. Vyalyi. Classical and Quantum Computation, volume 47 of
Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island,
May 2002. doi:10.1090/gsm/047.

26 Ilia Krasikov. Uniform bounds for Bessel functions. Journal of Applied Analysis, 12(1):83–91,
2006.

27 Guang Hao Low and Isaac L. Chuang. Optimal Hamiltonian simulation by quantum signal
processing. Phys. Rev. Lett., 118:010501, January 2017. doi:10.1103/PhysRevLett.118.
010501.

28 Guang Hao Low and Isaac L. Chuang. Hamiltonian Simulation by Qubitization. Quantum,
3:163, July 2019. doi:10.22331/q-2019-07-12-163.

29 Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988.

30 Daniel Nagaj. Fast universal quantum computation with railroad-switch local Hamiltonians.
Journal of Mathematical Physics, 51(6):062201, 2010.

31 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, 2010. doi:10.1017/CBO9780511976667.

32 Krzysztof Pietrzak. Simple verifiable delay functions. In ITCS, volume 124 of LIPIcs, pages
60:1–60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

33 Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release
crypto. Massachusetts Institute of Technology. Laboratory for Computer Science, 1996.

34 J. J. Sakurai and Jim Napolitano. Modern Quantum Mechanics. Cambridge University Press,
third edition, September 2020. doi:10.1017/9781108587280.

https://doi.org/10.1145/780542.780552
https://doi.org/10.1145/780542.780552
https://doi.org/10.1038/nphys2275
https://doi.org/10.1073/pnas.1804949115
https://doi.org/10.1073/pnas.1804949115
https://doi.org/10.1364/ON.11.2.000011
https://doi.org/10.22331/q-2021-11-15-577
https://doi.org/10.1137/18m1231511
https://doi.org/10.48550/ARXIV.1309.6116
https://doi.org/10.1090/gsm/047
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/9781108587280

N.-H. Chia, K.-M. Chung, Y.-C. Hsieh, H.-H. Lin, Y.-T. Lin, and Y.-C. Shen 33:45

35 Benjamin Wesolowski. Efficient verifiable delay functions. J. Cryptol., 33(4):2113–2147, 2020.
36 Christof Zalka. Grover’s quantum searching algorithm is optimal. Physical Review A, 60(4):2746,

1999.
37 Mark Zhandry. A note on the quantum collision and set equality problems, 2013. doi:

10.48550/arXiv.1312.1027.
38 Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability.

In Annual International Cryptology Conference, pages 239–268. Springer, 2019.
39 Zhicheng Zhang, Qisheng Wang, and Mingsheng Ying. Parallel quantum algorithm for

Hamiltonian simulation. arXiv preprint, 2021. arXiv:2105.11889.

CCC 2023

https://doi.org/10.48550/arXiv.1312.1027
https://doi.org/10.48550/arXiv.1312.1027
https://arxiv.org/abs/2105.11889

The Optimal Depth of Variational Quantum
Algorithms Is QCMA-Hard to Approximate
Lennart Bittel #

Institute for Theoretical Physics, Heinrich Heine University Düsseldorf, Germany

Sevag Gharibian #

Department of Computer Science, and Institute for Photonic Quantum Systems, Universität
Paderborn, Germany

Martin Kliesch #

Institute for Theoretical Physics, Heinrich Heine University Düsseldorf, Germany
Institute for Quantum-Inspired and Quantum Optimization, Technische Universtiät Hamburg,
Germany

Abstract
Variational Quantum Algorithms (VQAs), such as the Quantum Approximate Optimization Al-
gorithm (QAOA) of [Farhi, Goldstone, Gutmann, 2014], have seen intense study towards near-term
applications on quantum hardware. A crucial parameter for VQAs is the depth of the variational
ansatz used – the smaller the depth, the more amenable the ansatz is to near-term quantum hardware
in that it gives the circuit a chance to be fully executed before the system decoheres. In this work,
we show that approximating the optimal depth for a given VQA ansatz is intractable. Formally, we
show that for any constant ϵ > 0, it is QCMA-hard to approximate the optimal depth of a VQA
ansatz within multiplicative factor N1−ϵ, for N denoting the encoding size of the VQA instance.
(Here, Quantum Classical Merlin-Arthur (QCMA) is a quantum generalization of NP.) We then
show that this hardness persists in the even “simpler” QAOA-type settings. To our knowledge, this
yields the first natural QCMA-hard-to-approximate problems.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory

Keywords and phrases Variational quantum algorithms (VQA), Quantum Approximate Optimiza-
tion Algorithm (QAOA), circuit depth minimization, Quantum-Classical Merlin-Arthur (QCMA),
hardness of approximation, hybrid quantum algorithms

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.34

Related Version Full Version: https://arxiv.org/abs/2211.12519

Funding Lennart Bittel and Martin Kliesch: German Federal Ministry of Education and Research
(BMBF), funding program “Quantum Technologies – from Basic Research to Market” via the joint
project MANIQU (grant number 13N15578); Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under the grant number 441423094 within the Emmy Noether Program.
Sevag Gharibian: DFG under grant numbers 450041824 and 432788384; the BMBF within the
funding program “Quantum Technologies – from Basic Research to Market” via project PhoQuant
(grant number 13N16103); project “PhoQC” from the programme “Profilbildung 2020”, an initiative
of the Ministry of Culture and Science of the State of North Rhine-Westphalia.

Acknowledgements We thank Ashley Montanaro for helpful discussions.

1 Introduction

In the current era of Noisy Intermediate Scale Quantum (NISQ) devices, quantum hardware
is (as the name suggests) limited in size and ability. Thus, NISQ-era quantum algorithm
design has largely focused on hybrid classical-quantum setups, which ask: What types of
computational problems can a classical supercomputer, paired with a low-depth quantum

© Lennart Bittel, Sevag Gharibian, and Martin Kliesch;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 34; pp. 34:1–34:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lennart.bittel@uni-duesseldorf.de
https://orcid.org/0000-0003-1626-2761
mailto:sevag.gharibian@upb.de
https://orcid.org/0000-0002-9992-3379
mailto:martin.kliesch@tuhh.de
https://orcid.org/0000-0002-8009-0549
https://doi.org/10.4230/LIPIcs.CCC.2023.34
https://arxiv.org/abs/2211.12519
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 The Optimal Depth of VQAs is QCMA-Hard to Approximate

computer, solve? This approach, typically called Variational Quantum Algorithms (VQA),
has been studied intensively in recent years (see, e.g. [13, 8] for reviews), with Farhi,
Goldstone and Gutmann’s Quantum Approximate Optimization Algorithm (QAOA) being a
prominent example [14].

More formally, VQAs roughly work as follows. One first chooses a variational ansatz (i.e.
parameterization) over a family of quantum circuits. Then, one iterates the following two
steps until a “suitably good” parameter setting is found:
1. Use a classical computer to optimize the ansatz parameters variationally1.
2. Run the resulting parameterized quantum algorithm on a NISQ device to evaluate the

“quality” of the chosen parameters (relative to the computational problem of interest).
The essential advantage of this setup over more traditional quantum algorithm design
techniques (such as full Trotterization of a desired Hamiltonian evolution) is that one can
attempt to minimize the depth of the ansatz used. (A formal definition of “depth” is given
in Problem 1; briefly, it is the number of Hamiltonian evolutions the ansatz utilizes.) This
possibility gives VQAs a potentially crucial advantage on near-term quantum hardware (i.e.
noisy hardware without quantum error correction), because a NISQ device can, in principle,
execute a low-depth ansatz before the system decoheres, i.e. before environmental noise
destroys the “quantumness” of the computation. From an analytic perspective, low-depth
ansatzes also have an important secondary benefit – VQAs of superlogarithmic depth are
exceedingly difficult to analyze via worst-case complexity. Sufficiently low-depth setups,
however, sometimes can be rigorously analyzed, with the groundbreaking QAOA work of [14]
for MAX-CUT being a well-known example. Thus, estimating the optimal depth for a VQA
appears central to its use in near-term applications.

1.1 Our results
In this work, we show that it is intractable to approximate the optimal depth for a given
VQA ansatz, even within large multiplicative factors. Moreover, this hardness also holds for
the restricted “simpler” case of the QAOA. To make our claim rigorous, we first define the
VQA optimization problem we study. (Intuition to follow.)

▶ Problem 1 (VQA minimization (MIN-VQA(k, l))). For an n-qubit system:
Input:

1. Set H = {Hi} of Hamiltonians2, where Hi acts non-trivially only on a subset Si ⊆ [n]
of size |Si| = k.

2. An l-local observable M acting on a subset of l qubits.
3. Integers 0 ≤ m ≤ m′ representing circuit depth thresholds.
Output:

1. YES if there exists a list of at most m angles (θ1, . . . , θm) ∈ Rm and a list
(G1, . . . , Gm) of Hamiltonians from H (repetitions permitted) such that |ψ⟩ :=
eiθmGm · · · eiθ1G1 |0 · · · 0⟩ satisfies ⟨ψ|M |ψ⟩ ≤ 1/3.

2. NO if for all lists of at most m′ angles (θ1, . . . , θm′) ∈ Rm′ and all lists (G1, . . . , Gm′) of
Hamiltonians from H (repetitions permitted), |ψ⟩ := eiθm′Gm′ · · · eiθ1G1 |0 · · · 0⟩satisfies
⟨ψ|M |ψ⟩ ≥ 2/3.

1 In practice, this typically means heuristic optimization.
2 An n-qubit Hamiltonian H is a 2n × 2n Hermitian matrix. Any unitary operation U on a quantum

computer can be generated via some Hamiltonian H and evolution time t ≥ 0, i.e. U = eiHt.

L. Bittel, S. Gharibian, and M. Kliesch 34:3

For intuition, recall that a VQA ansatz is a parameterization over a family of quantum
circuits. Above, the ansatz is parameterized by angles θj , and the family of quantum
circuits is generated by Hamiltonians Hj . The aim is to pick a minimum-length sequence of
Hamiltonian evolutions eiθjGj , so that the generated state |ψ⟩ has (say) low overlap with the
target observable, M . For clarity, throughout this work, by “depth” of a VQA ansatz, we are
referring to the standard VQA notion of the number of Hamiltonian evolutions m applied3.
(In the setting of QAOA, the “depth” is often referred to as the “level”, up to a factor of 2.)

We remark for Problem 1 that we do not restrict the order in which Hamiltonians Hi are
applied, and any Hi may be applied multiple times. Moreover, our results also hold if one
defines the YES case to maximize overlap with M (as opposed to minimize overlap).

Our first result is the following.

▶ Theorem 1. MIN-VQA(k, l) is QCMA-complete for k ≥ 4, l = 2, and m ≤ poly(n).
Moreover, for any ϵ > 0, it is QCMA-hard to distinguish between the YES and NO cases of
MIN-VQA even if m′/m ≥ N1−ϵ, where N is the encoding size of the instance.

Here, Quantum-Classical Merlin-Arthur (QCMA) is a quantum generalization of NP with
a classical proof and quantum verifier (formal definition in Definition 5). For clarity, the
encoding size of the instance is the number of bits required to write down a MIN-VQA
instance, i.e. to encode H = {Hi}, M , m, m′ (see Problem 1). Note the encoding size
is typically dominated by the encoding size of H, which may be assumed to scale as |H|,
i.e. with the number of interaction terms Hi, which can be asymptotically larger than the
number of qubits, n. Thus, simple gap amplification strategies such as taking many parallel
copies of all interaction terms do not suffice to achieve our hardness ratio of N1−ϵ.

A direct consequence of Theorem 1 is that it is intractable (modulo the standard conjecture
that BQP ̸= QCMA, which also implies P ̸= QCMA) to compute the optimum circuit depth
within relative precision N1−ϵ:

▶ Corollary 2 (Depth minimization). In Problem 1, let mopt denote the minimum depth
m such that ⟨ψ|M |ψ⟩ ≤ 1/3. Then, for any constant ϵ > 0, computing estimate mest ∈
[mopt, N

1−ϵmopt] is QCMA-hard.

On the other hand, even if a desired depth m = m′ is specified in advance, it is also QCMA-
hard to find the minimizing angle and Hamiltonian sequences (θ1, . . . , θm) and (G1, . . . , Gm),
respectively, which follows directly from Theorem 1:

▶ Corollary 3 (Parameter optimization). Consider Problem 1 with input m = m′. Then the
problem of finding angles (θ1, . . . , θm) that minimize expectation ⟨ψ|M |ψ⟩ is QCMA-hard.

We next turn to the special case of QAOAs. As detailed shortly under “Previous work”,
the study of QAOA ansatzes was initiated by [14] in the context of quantum approximation
algorithms for MAX CUT. In that work, a QAOA is analogous to a VQA, except there are
only two Hamiltonians H = {Hb, Hc} given as input and M is one of those two observables
(see Problem 3 for a formal definition). For clarity, here we work with a more general
definition of QAOA than [14], in which neither Hb nor Hc need be diagonal in the standard

3 Alternatively, one could consider the circuit depth of any simulation of the desired Hamiltonian sequence
in Problem 1. The downside of this is that it would be much more difficult to analyze – one would
presumably first need to convert each eiθj Gj to a circuit Uj via a fixed choice of Hamiltonian simulation
algorithm. One would then need to characterize the depth of the concatenated circuit Um · · ·U1.

CCC 2023

34:4 The Optimal Depth of VQAs is QCMA-Hard to Approximate

basis. (In this sense, our definition is closer to the more general Quantum Alternating
Operator Ansatz, also with acronym QAOA [23].) For our hardness results, it will suffice for
Hb and Hc to be k-local Hamiltonians4. For QAOA, we show a matching hardness result:

▶ Theorem 4. MIN-QAOA(k) is QCMA-complete for k ≥ 4 and m ≤ poly(n). Moreover,
for any ϵ > 0, it is QCMA-hard to distinguish between the YES and NO cases of MIN-QAOA
even if m′/m ≥ N1−ϵ, for N the number of strictly k-local terms comprising Hb and Hc.

Note that in contrast to MIN-VQA, which is parameterized by k (the Hamiltonians’ locality)
and l (the observable’s locality), MIN-QAOA is only parameterized by k. This is because in
QAOA, the “cost” Hamiltonian Hc itself acts as the observable (in addition to helping drive
the computation), which will be one of the obstacles we will need to overcome. For context,
typically in applications of QAOA, Hc encodes (for example [14]) a MAX CUT instance.

To the best of our knowledge, Theorem 1 and Theorem 4 yield the first natural QCMA-hard
to approximate problems.

1.2 Previous work

Generally speaking, it is well-known that VQA parameters are “hard to optimize”, both
numerically and from a theoretical perspective. We now discuss selected works from the
(vast) VQA literature, and clarify how these differ from our work.

1. Theoretical studies. As previously mentioned, in 2014, Farhi, Goldstone and Gutmann
proposed the Quantum Approximate Optimization Algorithm (QAOA), a special case of VQA
with only two local Hamiltonians H = {Hb, Hc} (acting on n qubits each). They showed
that level-1 of the QAOA (what we call “depth 2” in Problem 1) achieves a 0.6924-factor
approximation for the NP-complete MAX CUT problem. Unfortunately, worst-case analysis
of higher levels has in general proven difficult, but Bravyi, Kliesch, Koenig and Tang [12] have
shown an interesting negative result – QAOA to any constant level/depth cannot outperform
the classical Goemans-Williams algorithm for MAX CUT [19]. Thus, superconstant depth is
necessary if QAOA is to have a hope of outperforming the best classical algorithms for MAX
CUT. In terms of complexity theoretic hardness, Farhi and Harrow [15] showed that even
level-1 QAOA’s output distribution cannot be efficiently simulated by a classical computer.

Most relevant to this paper, however, is the work of Bittel and Kliesch [9], which roughly
shows that finding the optimal set of rotation angles (the θj in Problem 1 and Problem 3) is
NP-hard. Let us clearly state how the present work differs from [9]:
1. [9] fixes both the depth of the VQA and the precise sequence of Hamiltonians Hi to be

applied as part of the input. It then asks: What is the complexity of computing the
optimal rotation angles θi so as to minimize overlap with a given observable?
In contrast, our aim here is to study the complexity of optimizing the depth itself. Thus,
Problem 1 does not fix the depth m, nor the order/multiplicity of application of any of
the Hamiltonian terms.

4 A k-local n-qubit Hamiltonian H is a quantum analogue of a MAX-k-SAT instance, and can be written
H =

∑
i
Hi, with each “quantum clause” Hi acting non-trivially on some subset of k qubits. Strictly

speaking, each Hi is tensored with the identity matrix on n− k qubits to ensure all operators in the
sum have the correct dimension.

L. Bittel, S. Gharibian, and M. Kliesch 34:5

2. [9] shows that optimizing the rotation angles in QAOA is NP-hard, even if one is allowed
to work in time polynomial in the dimension of the system. (Formally, this is obtained by
reducing a MAX CUT instance of encoding size N to QAOA acting on log(N) qubits.)
In contrast, we work in the standard setting of allowing only poly-time computations
in the number of qubits, n, not the dimension. In return, we obtain stronger hardness
results, both in that NP ⊆ QCMA (and thus QCMA-hardness is a stronger statement than
NP-hardness5), and in that we show hardness of approximation up to any multiplicative
factor N1−ϵ.

2. Practical/numerical studies. For clarity, numerical studies are not directly related to
our work. However, due to the intense practical interest in VQA for the NISQ era, for
completeness we next survey some of the difficulties encountered when optimizing VQAs
on the numerical side. For this, note that VQAs are typically used to solve problems which
can be phrased as energy optimization problems (such as NP-complete problems like MAX
CUT [14]).

In this direction, two crucial problems can arise in the classical optimization part of the
standard VQA setup: (i) barren plateaus [30], which lead to vanishing gradients, and (ii)
local minima [9], many of which can be highly non-optimal. Such unwanted local minima
are also called traps. In order to counterbalance these challenges, heuristic optimization
strategies have led to promising results in relevant cases but with not too many qubits.
Initialization-dependent barren plateaus [30] can be avoided by tailored initialization [40],
and there are indications that barren plateaus are a less significant challenge than traps
[3]. In general, the optimization can be improved using natural gradients [36], multitask
learning type approach [39], optimization based on trigonometric model functions [26], neural
network-based optimization methods [31], brick-layer structures of generic unitaries [32],
and operator pool-based methods [22, 11]. ADAPT-VQEs [22] iteratively grow the VQA’s
parametrized quantum circuit (PQC) by adding operators from a pool that have led to the
largest derivative in the previous step. This strategy allows one to avoid barren plateaus and
even “burrow” out of some traps [21]. CoVar [11] is based on similar ideas complemented
with estimating several properties of the variational state in parallel using classical shadows
[24]. The optimization strategies are of a heuristic nature, and analytic results are scarce.
Finally, it has been numerically observed [33, 37] and analytically shown [27] that VQA-type
ansätze become almost free from traps when the ansatz is overparameterized. Our work
implies that these practical approaches cannot work for all instances and, therefore, provides
a justification to resort to such heuristics.

1.3 Techniques
We focus on techniques for showing QCMA-hardness of approximation, as containment in
QCMA is straightforward6 for both MIN-VQA and MIN-QAOA.

To begin, recall that in a QCMA proof system (Definition 5), given a YES input, there
exists a poly-length classical proof y causing a quantum poly-size circuit V to accept, and
for a NO input, all poly-length proofs y cause V to reject. Our goal is to embed such proof
systems into instances of Problem 1 and Problem 3, while maintaining a large promise

5 Note that for log(N)-size instances of QAOA as in [9], one cannot hope for more than NP-hardness,
since both Hamiltonians Hb and Hc have polynomial dimension, and thus can be classically simulated
efficiently. Thus, such instances are verifiable in NP.

6 The prover sends angles θj , and the verifier simulates each eiθj Hj via known Hamiltonian simulation
algorithms [29].

CCC 2023

34:6 The Optimal Depth of VQAs is QCMA-Hard to Approximate

gap ratio m′/m. To do so, we face three main challenges: (1) Where will hardness of
approximation come from? Typically, one requires a PCP theorem [5, 6] for such results,
which remains a notorious open question for both QCMA and QMA7 [1]. (2) Problem 1 places
no restrictions on which Hamiltonians are applied, in which order, and with which rotation
angles. How can one enforce computational structure given such flexibility? In addition,
MIN-QAOA presents a third challenge: (3) How to overcome the previous two challenges
when we are only permitted two Hamiltonians, Hb and Hc, the latter of which must also act
as the observable?

To address the first challenge, we appeal to the hardness of approximation work of
Umans [34]. The latter showed how to use a graph-theoretical construct, known as a
disperser, to obtain strong hardness of approximation results for Σp

2 (the second level of
the Polynomial-Time Hierarchy). Hiding at the end of that paper is Theorem 9, which
showed that the techniques therein also apply to yield hardness of approximation within
factor N1/5−ϵ for a rather artificial NP-complete problem. Gharibian and Kempe [18] then
showed that [34] can be extended to obtain hardness of approximation results for a quantum
analogue of Σp

2, and also obtained QCMA-hardness of approximation within N1−ϵ for an
even more artificial problem, Quantum Monotone Minimum Satisfying Assignment (QMSA,
Problem 2). Roughly, QMSA asks – given a quantum circuit V accepting a monotone
set (Definition 6) of strings, what is the smallest Hamming weight string accepted by V ?
Here, our approach will be to construct many-one reductions from QMSA to MIN-VQA and
MIN-QAOA, where we remark that maintaining the N1−ϵ hardness ratio (i.e. making the
reduction approximation-ratio-preserving) will require special attention.

1. The reduction for MIN-VQA. To reduce a given QMSA circuit V = VL · · ·V1 to a VQA
instance ({Hi},M,m,m′), we utilize a “hybrid Cook-Levin + Kitaev” circuit-to-Hamiltonian
construction, coupled with a pair of clocks (whereas Kitaev [25] requires only one clock).
Here, a non-hybrid (i.e. standard) circuit-to-Hamiltonian construction is a quantum analogue
of the Cook-Levin theorem, i.e. a map from quantum circuits V to local Hamiltonians
HV , so that there exists a proof |ψ⟩ accepted by V if and only if HV has a low-energy8

“history state”, |ψhist⟩. A history state, in turn, is a quantum analogue of a Cook-Levin
tableau, except that each time step of the computation is encoded in superposition via a
clock construction of Feynman [16]. In contrast, our construction is “hybrid” in that it uses a
clock register like Kitaev, but does not produce a history state in superposition over all time
steps, like Cook-Levin. A bit more formally, the Hamiltonians {Hi} of our VQA instance act
on four registers, ABCD, denoting proof (A), workspace (B), clock 1 (C), and clock 2 (D).
To an honest prover, these Hamiltonians {Hi} may be viewed as being partitioned into two
sets: Hamiltonians for “setting proof bits”, denoted P , and Hamiltonians for simulating gates
from V , denoted Q. An example of a Hamiltonian in P is Pj := XAj ⊗ |1⟩⟨1|Cj

⊗ |1⟩⟨1|D|D|

which says: If clock 1 (register C) is at time j and clock 2 (register D) is at time |D| (more
on clock 2 shortly), then flip the jth qubit of register A via a Pauli X gate. An example of a
Hamiltonian in Q is

Qj := (Vj)AB ⊗ |01⟩⟨10|C|A|+j,|A|+j+1
+ (V †

j)AB ⊗ |10⟩⟨01|C|A|+j,|A|+j+1
, (1)

which allows the prover to apply gate Vj of V to registers AB, while updating clock 1 from
time |A| + j to |A| + j + 1. In this first (insufficient) attempt at a reduction, the honest
prover for MIN-VQA acts as follows: First, apply a subset of the P Hamiltonians to prepare

7 Quantum Merlin-Arthur (QMA) is QCMA but with a quantum proof.
8 By “energy” of a state |ψ⟩ against Hamiltonian H, one means the expectation ⟨ψ|H|ψ⟩, whose minimum

possible value is precisely λmin(H), i.e. the smallest eigenvalue of H.

L. Bittel, S. Gharibian, and M. Kliesch 34:7

the desired input y to the QMSA verifier V in register A, and then evolve Hamiltonians Q1
through QL to simulate gates V1 through VL on registers A and B. The observable M is
then defined to measure the designated output qubit of B in the standard basis, conditioned
on C being at time T .

The crux of this (honest prover) setup is that if we start with a YES (respectively, NO)
instance of QMSA, then the Hamming weight of the optimal y is at most g (respectively, at
least g′), for g′/g ≥ N1−ϵ

QMSA and NQMSA the encoding size of the QMSA instance. This, in
turn, means that the VQA prover applies at most g Hamiltonians from P (YES case), or at
least g′ Hamiltonians from P (NO case). The problem is that the prover must also apply
Hamiltonians Q1 through QL in order to simulate the verifier, V , and so we have hardness
ratio m′/m = (g′ + L)/(g + L) → 1 if L ∈ ω(g), as opposed to N1−ϵ!

To overcome this, we make flipping each bit of P “more costly” by utilizing a 2D clock
setup. This, in turn, will ensure the hardness ratio (g′ + L)/(g + L) becomes (roughly)
g′|D|+L
g|D|+L ≈ g′

g for |D| ∈ ω(L), as desired. Specifically, to flip bit Aj for any j, we force the
prover to first sequentially increment the second clock, D, from 1 to |D|. By definition, Pj
can now flip the value of Aj – but it cannot increment time in C (i.e. we remain in time step j
on clock 1). This next forces the prover to decrement D from |D| back to 1, at which point a
separate Hamiltonian (not displayed here) can increment clock C from j to j + 1. The entire
process then repeats itself to flip bit Aj+1. What is crucial for our desired approximation
ratio is that we only have a single copy of register D, i.e. we re-use it to flip each bit Aj , thus
effectively making CD act as a 2D clock. This ensures the added overhead to the encoding
size of the VQA instance scales as |D|, not |A| |D|, which is what one would obtain if CD
encoded a 1D clock (i.e. if each Aj had a separate copy of D).

Finally, to show soundness against provers deviating from the honest strategy above,
we first establish that any sequence of evolutions from {Hi} keeps us in a desired logical
computation space, i.e. the span of vectors of form

S :=
{
Vs−|A| · · ·V1|y⟩A|0 · · · 0⟩B |s̃⟩C |t̃⟩D | y ∈ {0, 1}|A|

, s ∈ {1, . . . , |C|}, t ∈ {1, . . . , |D|}
}
,

for |y⟩A the “proof string” prepared via P -gates and s̃ and t̃ the unary representations of
time steps s and t in clocks 1 and 2, respectively. We then show that applying too few
Hamiltonian evolutions from {Hi} results in a state with either no support on large Hamming
weight strings y (meaning the verifier V must reject in the NO case), or no support on states
with a fully executed verification circuit V = VL · · ·V1 (in which case we design V to reject).

2. The reduction for MIN-QAOA. At a high level, our goal is to mimic the reduction to
MIN-VQA above. However, the fact that we have only two Hamiltonians at our disposal, Hb

(driving Hamiltonian) and Hc (cost Hamiltonian), and no separate observable M , complicates
matters. Very roughly, our aim is to alternate even and odd steps of the honest prover’s
actions from MIN-VQA, so that Hb simulates the even steps, and Hc the odd ones. To
achieve this requires several steps:
1. First, we modify the MIN-VQA setup so that all the odd (respectively, even) local terms

Hi pairwise commute. This ensures that the actions of exp(iθHb) and exp(iθHc) can be
analyzed, since Hb and Hc will consist of sums of (now commuting) Hi terms.

2. In MIN-VQA, all Hamiltonians satisfied H2
i = I, which intuitively means an honest prover

could use Hi to either act trivially (θi = 0) or perform some desired action (θi = π). For
MIN-QAOA, we instead require a trick inspired by [9] – we introduce certain local terms
Gj (Equation (27)) with 3-cyclic behavior. In words, the honest prover can induce three
logical actions from such Gj , obtained via angles θj ∈ {0, π/3, 2π/3}, respectively.

CCC 2023

34:8 The Optimal Depth of VQAs is QCMA-Hard to Approximate

3. We next add additional constraints to Hb to ensure its unique ground state encodes the
correct start state (see Equation (23) of Problem 3). This is in contrast to MIN-VQA,
where the initial state |0 · · · 0⟩ is fixed and independent of the Hi.

4. Finally, the observable M is added as a local term to Hc, but scaled larger than all other
terms in Hc. This ensures that for any state |ψ⟩, |⟨ψ|Hc −M |ψ⟩| is “small”, so that
measuring cost Hamiltonian Hc once the QAOA circuit finishes executing is “close” to
measuring M .

As for soundness, the high-level approach is similar to MIN-VQA, in that we analyze a
logical space of computation steps, akin to the definition of S, and track Hamming weights
of prepared proofs in this space. The analysis, however, is more involved, as the construction
itself is more intricate than for MIN-VQA. For example, a new challenge for our MIN-QAOA
construction is that evolving by a Hamiltonian (specifically, Hc) does not necessarily preserve
the logical computation space. We thus need to prove that we may “round” each intermediate
state in the analysis back to the logical computation space, in which we can then track the
Hamming weight of the proof y (Lemma 20).

1.4 Open questions
We have shown that the optimal depth of a VQA or QAOA ansatz is hard to approximate,
even up to large multiplicative factors. A natural question is whether similar NP-hardness of
approximation results for depth can be shown when (e.g.) the cost Hamiltonian in QAOA is
classical, such as in [14]? Since we aimed here to capture the strongest possible hardness
result, i.e. for QCMA, our Hamiltonians were necessarily not classical/diagonal. Second,
although our results are theoretical worst-case results, VQAs are of immense practical interest
in the NISQ community. Can one design good heuristics for optimal depth approximation
which often work well in practice? Third, can one approximate the optimal depth for QAOA
on random instances of a computational problem? Here, for example, recent progress has
been made by Basso, Gamarnik, Mei and Zhou [7], Boulebnane and Montanaro [10], and
Anshu and Metger [4], which give analytical bounds on the success probability of QAOA
at various levels and on random instances of various constraint satisfaction problems, for
instance size n going to infinity. The bounds of [4], for example, show that even superconstant
depth (i.e. scaling as o(log log n)) is insufficient for QAOA to succeed with non-negligible
probability for a random spin model. On a positive note, we remark that [10] give numerical
evidence (based on their underlying analytical bounds) that at around level 14, QAOA begins
to surpass existing classical SAT solvers for the case of random 8-SAT. Fourth, we have
given the first natural QCMA-hard to approximate problems. What other QCMA-complete
problems can be shown hard to approximate? A natural candidate here is the Ground State
Connectivity problem [17, 20, 35], whose hardness of approximation we leave as an open
question. Finally, along these lines, can a PCP theorem for QCMA be shown as a first
stepping stone towards a PCP theorem for QMA?

Organization. In Section 2, we show Theorem 1. Section 3 shows Theorem 4. All omitted
proofs are in the full version.

2 QCMA-hardness of approximation for VQAs

In this section, we show Theorem 1. We begin in Section 2.1 with relevant definitions and
lemmas. Section 2.2 proves Theorem 1.

L. Bittel, S. Gharibian, and M. Kliesch 34:9

2.1 Definitions and required facts
Throughout, the relation := denotes a definition, and [n] := {1, 2, . . . , n}. We use |x| to specify
the length of a vector or string or the cardinality of set x. The term IA denotes the identity
operator/matrix on qubits with indices in register A. By ∥H∥∞ we denote the spectral norm
of an operator H acting on Cd, i.e. max|ψ⟩∈Cd

∥H|ψ⟩∥2
∥|ψ⟩∥2

, for ∥ · ∥2 the standard Euclidean norm.
The trace norm of an operator is denoted by ∥ · ∥tr. ei refers to a computational basis state.

▶ Definition 5 (Quantum-classical Merlin-Arthur (QCMA)). Let Π = (Πyes,Πno) be a promise
problem. Then Π ∈ QCMA if and only if there is a polynomial p such that for any x ∈ Π
there exists a quantum circuit Vx of size p(|x|) with one designated output qubit satisfying:

(i) If x ∈ Πyes there exists a string y ∈ {0, 1}p(|x|) such that Pr[Vx accepts y] ≥ 2/3 and
(ii) if x ∈ Πno and all strings y ∈ {0, 1}p(|x|) it holds that Pr[Vx accepts y] ≤ 1/3.

Often, it is helpful to separate the qubits into an a proof register A, which contains the classical
proof |y⟩, and an ancilla/work register B, which is initialized in the |0⟩ state. Then the ac-
ceptance probability can be expressed as Pr[Vx accepts (x, y)] =

〈
y; 0

∣∣V (n)†
x M (B1)V

(n)
x

∣∣y; 0
〉
,

where the measurement is given by an operator M (B1) acting on the first qubit of the work
register B.

QCMA was first defined in [2], and satisfies NP ⊆ QCMA ⊆ QMA. QCMA-complete
problems include Identity Check on Basis States (i.e. “does a quantum circuit act almost
as the identity on all computational basis states?”) [38] and Ground State Connectivity
(GSCON) (i.e. is the ground space of a local Hamiltonian “connected”?) [17]. The latter
remains hard (specifically, QCMAEXP-hard) in the 1D translation-invariant setting [35]. Next,
we will introduce a QCMA-complete problem related to monotone sets.

▶ Definition 6 (Monotone set). A set S ⊆ {0, 1}n is called monotone if for any x ∈ S, any
string obtained from x by flipping one or more zeroes in x to one is also in S.

▶ Definition 7 (Quantum circuit accepting monotone set). Let V be a quantum circuit
consisting of 1- and 2-qubit gates, which takes in an n-bit classical input register, m-qubit
ancilla register initialized to all zeroes, and outputs a single qubit, q. For any input x ∈ {0, 1}n,
we say V accepts (respectively, rejects) x if measuring q in the standard basis yields 1
(respectively, 0) with probability at least 1 − ϵQ (If not specified, ϵQ = 1/3). We say V accepts
a monotone set if the set S ⊆ {0, 1}n of all strings accepted by V is a monotone.

▶ Problem 2 (QUANTUM MONOTONE MINIMUM SATISFYING ASSIGN-
MENT (QMSA)). Given a quantum circuit V accepting a non-empty monotone set S ⊆
{0, 1}n, and integer thresholds 0 ≤ g ≤ g′ ≤ n, output:

YES if there exists an x ∈ {0, 1}n of Hamming weight at most g accepted by V .
NO if all x ∈ {0, 1}n of Hamming weight at most g′ are rejected by V .

▶ Theorem 8 (Gharibian and Kempe [18]). QMSA is QCMA-complete, and moreover it is
QCMA-hard to decide whether, given an instance of QMSA, the minimum Hamming weight
string accepted by V is at most g or at least g′ for g′/g ∈ O(N1−ϵ) (where g′ ≥ g).

In words, QMSA is QCMA-hard to approximate within N1−ϵ for any constant ϵ > 0, where
N is the encoding size of the QMSA instance.

2.2 QCMA-completeness
▶ Theorem 1. MIN-VQA(k, l) is QCMA-complete for k ≥ 4, l = 2, and m ≤ poly(n).
Moreover, for any ϵ > 0, it is QCMA-hard to distinguish between the YES and NO cases of
MIN-VQA even if m′/m ≥ N1−ϵ, where N is the encoding size of the instance.

CCC 2023

34:10 The Optimal Depth of VQAs is QCMA-Hard to Approximate

In words, it is QCMA-hard to decide whether, given an instance of MIN-VQA, the variational
circuit can prepare a “good” ansatz state with at most m evolutions, or if all sequences of
m′ evolutions fail to prepare a “good” ansatz state, for m′/m ∈ O(N1−ϵ) (where m′ ≥ m).

Proof. Containment in QCMA is straightforward; the prover sends the angles θi and indices
of Hamiltonians Hi to evolve, which the verifier then completes using standard Hamiltonian
simulation techniques [28, 29]. We now show QCMA-hardness of approximation. Let
Π′ = (V ′, g, g′) be an instance of QMSA, for V ′ = V ′

L′ · · ·V ′
1 a sequence of L′ 2-qubit gates

taking in n′
V input bits and m′

V ancilla qubits.

Preprocessing V ′. Suppose V ′ takes in n′
V input qubits in register A′ and m′

V ancilla
qubits in register B′. To ease our soundness analysis, we make two assumptions about V ′

without loss of generality:

▶ Assumption 9. V ′ only reads register A′, but does not write to it. To achieve this, add
n′
V ancilla qubits (initialized to |0⟩) to B′, and prepend V ′ with n′

V CNOT gates applied
transversally to copy input x from A′ to the added ancilla qubits in B′. Update any subsequent
gate which acts on the original input x to instead act on its copied version in B′.

▶ Assumption 10. The output qubit of V ′ is set to |0⟩ until V ′
L is applied. For this, add a

single ancilla qubit to B′ initialized to |0⟩, and treat this as the new designated output qubit.
Append to the end of V ′ a CNOT gate from its original output wire to the new output wire.

Call the new circuit with all modifications V . V acts on nV := n′
V input qubits, mV :=

m′
V + n′

V + 1 ancilla qubits, and consists of L := L′ + n′
V + 1 gates.

Proof organization. The remainder of the proof is organized as follows. Section 2.2.1
constructs the MIN-VQA instance. Section 2.2.2 proves observations and lemmas required
for the completeness and soundness analyses. Sections 2.2.3 and 2.2.4 show completeness
and soundness, respectively. Finally, Section 2.2.5 analyzes the hardness ratio achieved. All
omitted proofs are in the full version.

2.2.1 The MIN-VQA instance
We now construct our instance Π of MIN-VQA as follows. Π acts on a total of n qubits,
which we partition into 4 registers: A (proof), B (workspace), C (clock 1), and D (clock 2).
Register A consists of nV qubits, B of mV qubits, C of L+ nV + 1 qubits, and D of ⌈L1+δ⌉
qubits for some fixed 0 < δ < 1 chosen at the end of the proof in Section 2.2.5.

Our construction will ensure that C (respectively, D) always remains in the span of
logical time steps, TC := {|s̃⟩}|C|

s=1 (respectively, TD :=
{

|t̃⟩
}|D|
t=1), defined as:

|s̃⟩ := |0⟩⊗s−1|1⟩|0⟩⊗|C|−s for 1 ≤ s ≤ |C| (2)

|t̃⟩ = |0⟩⊗t−1|1⟩|0⟩⊗|D|−t for 1 ≤ t ≤ |D| . (3)

For example for C, |1̃⟩ = |1⟩|0⟩⊗|C|−1, |2̃⟩ = |0⟩|1⟩|0⟩⊗|C|−2, |3̃⟩ = |00⟩|1⟩|0⟩⊗|C|−3, and
so forth. Note this differs from the usual Kitaev unary clock construction, which encodes
time t via |1⟩⊗t|0⟩⊗N−t [25]. This allows us to reduce the locality of our Hamiltonian.

Throughout, we use (e.g.) Cj to refer to qubit j and Ci,j and qubits i and j of register
C. All qubits not explicitly mentioned are assumed to be acted on by the identity. Define
four families of Hamiltonians as follows:

L. Bittel, S. Gharibian, and M. Kliesch 34:11

A

C

D

B

Figure 1 Sketch describing the VQA instance. A colored square (say, blue) at index j of a register
means that register’s jth qubit must be in |1⟩ for any blue gates to act non-trivially. So, for example,
the G gates increment the first clock register C, but only if the D register is in the state |1⟩D1 . For
the initial state, C1 and D1 are in the |1⟩ state, marked by a black dot. The gates F increment the
second clock register D. The P gates are controlled operations on the C register, which perform
X operations on the A register, but only if D is in the state |1⟩D|D| . The Q gates increment the
clock register C, while also applying the circuit V1, . . . , VL on the AB registers. The measurement
operator M acts on the B1 and C|C| qubit.

(F) For propagation of the second clock, D, define 2-local Hamiltonians as

Fj := |01⟩⟨10|Dj,j+1
+ |10⟩⟨01|Dj,j+1

for all j ∈ {1, . . . , |D| − 1}. (4)

(G) For propagation of the first clock, C, define 3-local Hamiltonians as

Gj :=
(

|01⟩⟨10|Cj,j+1
+ |10⟩⟨01|Cj,j+1

)
⊗ |1⟩⟨1|D1

for all j ∈ {1, . . . , |A|}. (5)

(P) For each qubit j ∈ {1, . . . , |A|} of A, define 3-local Hamiltonian as

Pj := XAj ⊗ |1⟩⟨1|Cj
⊗ |1⟩⟨1|D|D|

. (6)

(Q) For each gate Vk for k ∈ {1, . . . , L}, let Rk denote the two qubits of AB which Vk
acts on. Define 4-local Hamiltonians as

Qk := (Vk)Rk
⊗ |01⟩⟨10|C|A|+k,|A|+k+1

+ (V †
k)Rk

⊗ |10⟩⟨01|C|A|+k,|A|+k+1
. (7)

Denote the union of these four sets of Hamiltonians as SFGPQ := F ∪ G ∪ P ∪ Q. Set a
2-local observable

M := I − |1⟩⟨1|B1
⊗ |1⟩⟨1|C|C|

(8)

where we assume without loss of generality that V outputs its answer on qubit B1. Set
m = g · (2 |D|−1)+ |A|+L, m′ = g′ · (2 |D|−1)+ |A|+L. To aid the reader in the remainder
of the proof, all definitions above are summarized in Table 1.

It remains to choose our initial state. Strictly speaking, Problem 1 mandates initial state
|0 · · · 0⟩ABCD. However, to keep notation simple, it will be convenient to instead choose

|ϕ⟩ := |0 · · · 0⟩AB |10|C|−1⟩C |10|D|−1⟩D = |0 · · · 0⟩AB |1̃⟩C |1̃⟩D, (9)

CCC 2023

34:12 The Optimal Depth of VQAs is QCMA-Hard to Approximate

Table 1 Terms used in the proof of Theorem 1.

Term Description Properties
V ′ Input QMSA instance’s verification circuit V ′ = V ′

L′ · · ·V ′
1

L′ Number of 1- and 2-qubit gates in V ′

n′
V Number of proof qubits taken in by V ′

m′
V Number of ancilla qubits taken in by V ′

g,g′ YES/NO thresholds for QMSA instance, resp.
V QMSA verifier obtained from V ′ via Assump. 9 and 10 V = VL · · ·V1

L Number of 1- and 2-qubit gates in V L = L′ + n′
V + 1

nV Number of proof qubits taken in by V nV = n′
V

mV Number of ancilla qubits taken in by V mV = m′
V + n′

V + 1
A Proof register |A| = nV

B Workspace register |B| = mV

C Clock 1 register |C| = L+ nV + 1
D Clock 2 register |D| = ⌈L1+δ⌉,

see Section 2.2.5 for δ
F Propagation terms for clock 2 Act on register D,

|F | = |D| − 1
G Propagation terms for clock 1 Act on registers C,D,

|g| = |A|
P Hamiltonian terms for setting proof bits Act on registers A,C,D,

|P | = |A|
Q Hamiltonian terms for simulating verifier gates, Vk Act on registers A,B,C,

|Q| = L

M Observable for MIN-VQA instance M := I − |1⟩⟨1|B1
⊗ |1⟩⟨1|C|C|

m,m′ YES/NO thresholds for MIN-VQA instance, resp. m = g · (2 |D| − 1) + |A| + L,
m′ = g′ · (2 |D| − 1) + |A| + L.

i.e. with the two clock registers C and D initialized to their starting clock state, |1̃⟩. This
is without loss of generality – we may, in fact, start with any standard basis state as our
initial state without requiring major structural changes to our construction, as the following
observation states.

▶ Observation 11. Fix any standard basis state |x⟩ABCD = X|0 · · · 0⟩ABCD, for X :=
Xx1

1 ⊗ · · · ⊗ XxN

N with N := |A| + |B| + |C| + |D|. Consider the updated set S′
FGPQ :={

XHX | H ∈ SFGPQ
}

, where for simplicity we match H ∈ SFGPQ with H ′ := XHX ∈
S′
FGPQ. Then, for any m ∈ N, and any sequence (Ht)mt=1 of Hamiltonians from SFGPQ,

eiθmHm · · · eiθ2H2eiθ1H1 |x⟩ABCD = eiθmH
′
m · · · eiθ2H

′
2eiθ1H

′
1 |0 · · · 0⟩ABCD. (10)

Moreover, each H and H ′ have the same locality.

2.2.2 Helpful observations and lemmas

We next state all observations and technical lemmas for the later correctness analysis of our
construction. All omitted proofs are in the full version.

L. Bittel, S. Gharibian, and M. Kliesch 34:13

▶ Observation 12. For all θ ∈ R, and all Fj ∈ F , Gj ∈ G, Pj ∈ P and Qk ∈ Q,

eiθFj = cos(θ)(|01⟩⟨01| + |10⟩⟨10|)Dj,j+1 + i sin(θ)Fj + (I − |01⟩⟨01| − |10⟩⟨10|)Dj,j+1

(11)

eiθGj = cos(θ)
(

|01⟩⟨10|Cj,j+1
+ |10⟩⟨01|Cj,j+1

)
⊗ |1⟩⟨1|D1

+ i sin(θ)Gj+(
I −

(
|01⟩⟨10|Cj,j+1

+ |10⟩⟨01|Cj,j+1

)
⊗ |1⟩⟨1|D1

)
(12)

eiθPj = (cos(θ)I + i sin(θ)X)Aj
⊗ |1⟩⟨1|Cj

⊗ |1⟩⟨1|D|D|
+ (I − |1⟩⟨1|Cj

⊗ |1⟩⟨1|D|D|
) (13)

eiθQk = cos(θ)IAB ⊗ (|01⟩⟨01| + |10⟩⟨10|)C|A|+k,|A|+k+1 + i sin(θ)Qk+
IAB ⊗ (I − |01⟩⟨01| − |10⟩⟨10|)C|A|+k,|A|+k+1 . (14)

Any register not explicitly listed in equations above is assumed to be acted on by identity.

▶ Definition 13 (Support only on logical time steps). We say state |ψ⟩ABCD is supported
only on logical time steps if it can be written |ψ⟩ABCD =

∑|C|
s=1

∑|D|
t=1 αst|ηst⟩AB |s̃⟩C |t̃⟩D for

unit vectors |ηst⟩ and
∑
st |αst|2 = 1, and |s̃⟩ ∈ TC and |t̃⟩ ∈ TD defined as in Equation (2)

and Equation (3), respectively.

▶ Observation 14. Recall that the initial state |ϕ⟩ = |0 · · · 0⟩AB |1̃⟩C |1̃⟩D is supported only
on logical time steps. Then, for any m ∈ N and sequence of evolutions exp(iθjHj) for θj ∈ R
and Hj ∈ SFGPQ, eiθmHm · · · eiθ2H2eiθ1H1 |ϕ⟩ is supported only on logical time steps.

The following lemma tells us that any sequence of Hamiltonian evolutions exp(iθuHu) on
initial state |ϕ⟩ remains in a certain logical computation space.

▶ Lemma 15. Define

S :=
{
Vs−|A| · · ·V1|y⟩A|0 · · · 0⟩B |s̃⟩C |t̃⟩D | y ∈ {0, 1}|A|

, s ∈ {1, . . . , |C|}, t ∈ {1, . . . , |D|}
}
,

(15)

where we adopt the convention that the V gates are present only when s > |A|. Then, for
any m ∈ N, Πm

u=1e
iθuHu |ϕ⟩ ∈ Span(S) for any angles θu ∈ R and sequence of Hamiltonians

Hu ∈ SFGPQ.

Next, we relate the circuit depth of a state generated by our VQA to the Hamming weight
of the proof string y.

▶ Lemma 16. Let (Hu)mu=1 be a sequence of Hamiltonians drawn from SFGPQ which maps
the initial state (9) to |ϕm⟩ := Πm

u=1e
iθuHu |ϕ⟩. Suppose |ϕm⟩ has non-zero overlap with some

|ηy,s,t⟩ with y of Hamming weight at least w and s = |A| + 1. Then, m ≥ w(2 |D| − 1) + |A|
with at least w(2 |D| − 1) + |A| of the Hu drawn from F ∪G ∪ P .

Finally, the next lemma ensures that any prover applying fewer than L Hamiltonians
from Q cannot satisfy the YES case’s requirements for MIN-VQA.

▶ Lemma 17. For any m ∈ N, let (Hu)mu=1 be any sequence of Hamiltonians drawn from
SFGPQ and containing strictly fewer than L Hamiltonians from Q. Then, for observable
M = I − |1⟩⟨1|B1

⊗ |1⟩⟨1|C|C|
, the state |ϕm⟩ := Πm

u=1e
iθuHu |0 · · · 0⟩ABC satisfies

⟨ϕm|M |ϕm⟩ = 1. (16)

CCC 2023

34:14 The Optimal Depth of VQAs is QCMA-Hard to Approximate

Proof. By Lemma 15, |ϕm⟩ ∈ S for S from Equation (15). Next, by Observation 12,
Hamiltonians from F ∪ P act invariantly on clock C, and Hamiltonians from G can only
increment C from 1 (i.e. its initial value in |ϕ⟩) to |A| + 1. The observable M , however, acts
non-trivially only when C is set to |C| = |A| + L + 1. The only Hamiltonians which can
increment C from |A| + 1 to |A| + L + 1 are those from Q. Each such Hs ∈ Q can map
C from time |A| + s to |A| + s + 1 or vice versa, for s ∈ {1, . . . , L}. Thus, since strictly
fewer than L of the Hu chosen are from Q, it follows that |ϕm⟩ has no support on time
step |C| = |A| + L + 1, i.e. (IAB ⊗ |1⟩⟨1|C|C|

)|ϕm⟩ = 0. The claim now follows since we
Assumption 10 says verifier V = VL · · ·V1 has its output qubit, denoted B1, set to |0⟩ until
its final gate VL is applied. ◀

2.2.3 Completeness
With all observations and lemmas of Section 2.2.2 in hand, we are ready to prove completeness
of the construction. Specifically, in the YES case, there exists an input y ∈ {0, 1}|A| of
Hamming weight at most g accepted with probability at least 2/3 by V . The honest prover
proceeds as follows.

(Prepare classical proof) Prepare state (up to global phase) |ψ0⟩ := |y⟩A|0⟩B | ˜|A| + 1⟩C |1̃⟩D
as follows. Starting with |ϕ⟩ = |0 · · · 0⟩AB |1̃⟩C |1̃⟩D:

1. Set j = 1.
2. If yj = 1 then

Apply, in order, unitaries exp(i(π/2)F1), exp(i(π/2)F2),. . . , exp(i(π/2)F|D|−1).
This maps registers C and D to 1 and |D|, respectively.
Apply exp(i(π/2)Pj), which maps Aj from 0 to 1.
Apply, in order, unitaries exp(i(π/2)F|D|), exp(i(π/2)F|D|−1),. . . , exp(i(π/2)F1).
This maps registers C and D back to 1 and 1, respectively.

3. Apply unitary exp(i(π/2)Gj), which maps C from j to j + 1.
4. Set j = j + 1.
5. If j < |A| + 1, return to line 2 above.
This process applies g(2 |D| − 1) + |A| gates.
(Simulate verifier) Prepare the sequence of states |ψj⟩ = ei

π
2Qj · · · eiπ

2Q1 |ψ0⟩ by applying,
in order, unitaries exp(i(π/2)Q1), exp(i(π/2)Q2),. . . , exp(i(π/2)QL). Since the jth step
of this process applies exp(i(π/2)Qj), and since the state |ψ0⟩ has clock C set to |A| + 1,
Observation 12 and Equation (7) imply that

ei
π
2Qj |ψj−1⟩ =

(
(Vj)Rj

⊗ | ˜|A| + j + 1⟩ ⟨ ˜|A| + j|C
)

|ψj−1⟩, (17)

i.e. we increment the clock from |A| + j to |A| + j + 1 and apply the jth gate Vj . The
final state obtained is thus |ψL⟩ = (VL · · ·V1|y⟩A|0⟩B) ⊗ | ˜|A| + L+ 1⟩C |1̃⟩D. This process
applies L gates.

Since V accepts y with probability at least 2/3, we conclude ⟨ψL|M |ψL⟩ ≤ 1/3, as desired.
The number of Hamiltonians from SFGPQ we needed to simulate in this case is m =
g(2 |D| − 1) + |A| + L, as desired.

2.2.4 Soundness
We next show soundness. Specifically, in the NO case, for all inputs y ∈ {0, 1}|A| of
Hamming weight at most g′, V accepts with probability at most 1/3. So, consider
any sequence of m′ = g′(2 |D| − 1) + |A| + L Hamiltonian evolutions producing state
|ϕm′⟩ := Πm′

t=1e
iθuHu |0 · · · 0⟩AB |1̃⟩C |1̃⟩D for arbitrary θu ∈ R and Hamiltonians Hu ∈ SFGPQ.

Lemma 15 says we may write

L. Bittel, S. Gharibian, and M. Kliesch 34:15

|ϕm′⟩ =
∑

y∈{0,1}|A|

|C|∑
s=1

|D|∑
t=1

αy,s,t|ηy,s,t⟩ ∈ Span(S) (18)

with
∑
y,s,t |αy,s,t|2 = 1. Now, for the observable (8) it follows that

⟨ϕm′ |M |ϕm′⟩ = 1 − ⟨ϕm′ |
(

|1⟩⟨1|B1
⊗ |1⟩⟨1|C|C|

)
|ϕm′⟩ = 1 − ⟨η||1⟩⟨1|B1

|η⟩ for (19)

|η⟩ :=
∑

y∈{0,1}|A|

|D|∑
t=1

αy,|A|+L+1,tVL · · ·V1|y⟩A|0⟩B | ˜|A| + L+ 1⟩C |t̃⟩D, (20)

where we have used Equation (18) and the fact that M projects onto time step |C| in register
C. Now, if we applied strictly less than L evolutions from Q, Lemma 17 says we have no
weight on time step |C|, so that ⟨ϕm′ |M |ϕm′⟩ = 1 ≥ 2/3, as required in the NO case. If,
on the other hand, we applied at least L evolutions from Q, then we must have applied at
most g′(2 |D| − 1) + |A| evolutions from F ∪G ∪ P (otherwise, we have a contradiction since
m′ = g′(2 |D| − 1) + |A| + L). Lemma 16 hence implies the right hand side of Equation (19)
equals 1 − ⟨ηg′ ||1⟩⟨1|B1

|ηg′⟩ for9

|ηg′⟩ :=
∑

y s.t. HW(y)≤g′

|D|∑
t=1

αy,|A|+L+1,tVL · · ·V1|y⟩A|0⟩B | ˜|A| + L+ 1⟩C |t̃⟩D, (21)

where HW(y) denotes the Hamming weight of the bitstring y. But since any input y
of Hamming weight at most g′ is accepted with probability at most 1/3, we conclude
⟨ϕm′ |M |ϕm′⟩ ≥ 2/3, as claimed.

2.2.5 Hardness ratio
Finally, we show our reduction has the desired approximation ratio. Observe

m′

m
= g′(2 |D| − 1) + |A| + L

g(2 |D| − 1) + |A| + L
= g′(2⌈L1+δ⌉ − 1) + |A| + L

g(2⌈L1+δ⌉ − 1) + |A| + L
. (22)

Since |A| ≤ L by definition, and since we will choose δ > 0 as a small constant, this ratio
scales asymptotically as g′/g. Recall now that Theorem 8 says that for any constant ϵ′ > 0,
the QMSA instance Π′ = (V ′, g, g′) we are reducing from is QCMA-hard to approximate
within g′/g ∈ O((N ′)1−ϵ′), for N ′ the encoding size of Π′. By appropriately comparing N ′

to the encoding size N of our MIN-VQA instance Π, one can in fact show that for any ϵ > 0,
g′/g ≥ N1−ϵ for large enough V ′, as desired. The proof is in the full version. ◀

3 Extension of the hardness results to QAOAs

In this section, we prove Theorem 4, which is restated for convenience shortly. First, we
define the optimization problem MIN-QAOA covered by the theorem.

A k-local Hamiltonian is a sum of strictly k-local terms, i.e. Hermitian operators each
of which acts non-trivially on at most k qubtis. As mentioned previously, our definition of
MIN-QAOA is more general than that of [14], and closer to that of [23].

9 Below, HW(y) denotes the Hamming weight of string y.

CCC 2023

34:16 The Optimal Depth of VQAs is QCMA-Hard to Approximate

A

C

D

B

Figure 2 Figure describing the QAOA instance (see Figure 1 for further details). The border
color of each gate indicates if the generator belongs to Hb or Hc. Compared to the previous VQA
instance, the P now only act at even time steps in C and the even-indexed Gj and the F1 generator
are combined into one generator, denoted by the red and dark green edges.

▶ Problem 3 (QAOA minimization (MIN-QAOA(k))). For an n-qubit system:
Input:

1. A set H = {Hb, Hc} of k-local Hamiltonians.
2. A poly(n)-size quantum circuit Ub preparing the ground state of Hb, denoted |gsb⟩.
3. Integers 0 ≤ m ≤ m′ representing thresholds for depth.
Output:

1. YES if there exists a sequence of angles10 (θi)mi=1 ∈ Rm, such that

|ψ⟩ := eiθmHbeiθm−1Hc · · · eiθ2Hbeiθ1Hc |gsb⟩ (23)

satisfies ⟨ψ|Hc|ψ⟩ ≤ 1
3 .

2. NO if for all sequences of angles (θi)m
′

i=1 ∈ Rm′

|ψ⟩ := eiθm′Hbeiθm′−1Hc · · · eiθ2Hbeiθ1Hc |gsb⟩, (24)

satisfies ⟨ψ|Hc|ψ⟩ ≥ 2
3 .

Just as for MIN-VQA, by “optimal depth” of a QAOA, we mean the minimum number of
Hamiltonian evolutions m required above. The expectation value thresholds 1

3 and 2
3 are

arbitrary and can be changed by rescaling and shifting Hc.

▶ Theorem 4. MIN-QAOA(k) is QCMA-complete for k ≥ 4 and m ≤ poly(n). Moreover,
for any ϵ > 0, it is QCMA-hard to distinguish between the YES and NO cases of MIN-QAOA
even if m′/m ≥ N1−ϵ, for N the number of strictly k-local terms comprising Hb and Hc.

Proof. Containment in QCMA is again straightforward and thus omitted. For QCMA-
hardness of approximation, we again use a reduction from an instance Π = (V, g, g′) of QMSA
with V = VL · · ·V1 being a sequence of L two-qubit gates taking in nV input bits and mV

ancilla qubits. All those terms are defined as in the proof of Theorem 1.

10 Throughout Problem 3, for clarity we assume all angles are specified to poly(n) bits.

L. Bittel, S. Gharibian, and M. Kliesch 34:17

Proof organization. The proof is organized as follows. In Section 3.1 we explain the modific-
ations of the VQA instances to obtain the QAOA instances of our construction. Section 3.1.2
and Section 3.1.3 explain how we recover the desired initial state and cost function. Sec-
tion 3.1.4 provides notation preliminary technical results needed for the QCMA-completeness
proof. Then, completeness is shown in Section 3.1.5 and soundness in Section 3.1.6. Finally,
in Section 3.1.7, we analyze the hardness ratio achieved by the reduction. All omitted proofs
are in the full version.

3.1 QCMA completeness for QAOAs
To specify our QAOA instance, we modify the set SFGPQ from the proof of Theorem 1 to
suit our reduction here as follows. The structural changes are illustrated in Figure 2. Briefly
recapping the proof techniques outline in Section 1.3, we:

(i) implement the reduction with only two generators by alternating even and odd steps of
the honest prover’s actions, so that Hb simulates the even steps, and Hc the odd ones,

(ii) introduce terms Gj from Equation (27) with 3-cyclic behavior, i.e. allowing three logical
actions,

(iii) add new constraints to Hb to ensure its unique ground state encodes the correct start
state (see Equation (23) of Problem 3), and

(iv) add the observable O to Hc (scaled larger than other terms in Hc) to obtain the correct
cost function.

An undesired side effect of this is that evolution by Hc allows one to leave the desired logical
computation space, S. We will show via Lemma 20 that the states obtained are still close to
the set, which suffices for our soundess analysis.

To begin, we use registers composed of |A| = nV , |B| = mV , |C| = L + 2nV + 1, and
|D| = ⌈L1+δ⌉ qubits, respectively, where 0 < δ < 1 is fixed by specified later. Without loss
of generality, we assume |D| and L to be even. Additionally to the changes we outline, we
also add diagonal terms additional diagonal terms. This will be relevant for defining the
initial state later on.

(F) We remove F1,

Fj := |01⟩⟨10|Dj,j+1
+ |10⟩⟨01|Dj,j+1

− 2|00⟩⟨00|Dj,j+1
for all j ∈ {2, . . . , |D| − 1}. (25)

(G) We double the number of qubits G acts on,

Gj :=
(

|01⟩⟨10|Cj,j+1
+ |10⟩⟨01|Cj,j+1

)
⊗ |1⟩⟨1|D1

− 2|001⟩⟨001|Cj,j+1,D1

for all j ∈ {1, 3, . . . , 2 |A| − 1}, (26)

Gj := i√
3

(
|0110⟩⟨1010| + |1001⟩⟨0110| + |1010⟩⟨1001|

− |1010⟩⟨0110| − |0110⟩⟨1001| − |1001⟩⟨1010|
)
Cj,j+1,D1,2

− 2|0010⟩⟨0010|Cj,j+1,D1,2
for all j ∈ {2, 4, . . . , 2 |A|}. (27)

While odd numbered gates can only change the clock, even numbered ones can still
increment C, but also have the option of moving |1̃⟩D → |2̃⟩D, which is the operation
performed by F (o)

1 in the proof of Theorem 1 on MIN-VQA. The superscript (o) refers to
the gates of the previous VQA proof. The following relations hold:

ei
π
3Gi |̃i, 1̃⟩C,D = ei

π
2G

(o)
i |̃i, 1̃⟩C,D ∝ |ĩ+ 1, 1̃⟩C,D, (28)

ei
2π
3 Gi |̃i, 1̃⟩C,D = ei

π
2 F

(o)
1 |̃i, 1̃⟩C,D ∝ |̃i, 2̃⟩C,D, (29)

where, in this case, “∝” means equality up to a phase.

CCC 2023

34:18 The Optimal Depth of VQAs is QCMA-Hard to Approximate

(P) For each qubit j ∈ {1, . . . , |A|} of A, we define the X-operators, but now they only
act on even values in the clock register,

Pj := XAj
⊗ |1⟩⟨1|C2j

⊗ |1⟩⟨1|D|D|
− 2|00⟩⟨00|C2j ,D|D|

for all j ∈ {1, . . . , |A|}. (30)

(Q) We shift the C-indices of the Q-gates because reading in the proof takes longer time
now,

Qk := (Vk)Rk
⊗ |01⟩⟨10|C2|A|+k,2|A|+k+1

+ (V †
k)Rk

⊗ |10⟩⟨01|C2|A|+k,2|A|+k+1
(31)

− 2|00⟩⟨00|C2|A|+k,2|A|+k+1
for all k ∈ {1, . . . , L} (32)

(M), (H0) We add the two operators

H0 = −

 ∑
i∈[|A|]

|0⟩⟨0|Ai
+

∑
i∈[|B|]

|0⟩⟨0|Bi

 ⊗ |1⟩⟨1|C1
, (33)

M = I − |1⟩⟨1|B1
⊗ |1⟩⟨1|C|C|

(34)

to the set of generators.
To construct our desired QAOA instance, we define a partition of all gates into two groups:

G1 = {Gi}i∈{2,4,...,2|A|} ∪ {Fi}i∈{3,5,...,|D|−1} ∪ {Qi}i∈{2,4,...,L}, (35)
G2 = {Gi}i∈{1,3,...,2|A|−1} ∪ {Fi}i∈{2,4,...,|D|−2} ∪ {Qi}i∈{1,3,...,L−1} ∪ {Pi}i∈[|A|]. (36)

Intuitively, G1 (respectively, G2) will be part of our Hamiltonian Hb (respectively, Hc). Note
also that all operators in G1 (respectively, G2) pairwise commute, a fact we will use in our
analysis. Finally, in addition to Assumption 9 and Assumption 10 from the VQA section, we
shall also use the following.

▶ Assumption 18. The acceptance probability of V in the YES (respectively, NO) case
is at least 1 − ϵQ (respectively, at most ϵQ), where ϵQ = O(N−1). This is achieved via
standard parallel k times repetition of the circuit V , followed by a majority vote. This
increases the encoding size of V – for k repetitions, the new gate sequence length scales with
L′ = k(L + O(1)), and yields ϵ′Q = ϵ

O(k)
Q . For the precision we require, it suffices to set

k = O(log(N)).

Due to this assumption, our encoding size increases by a multiplicative log factor, which
does not affect our final approximation ratio calculation.

3.1.1 The Min-QAOA instance
The QAOA instance we use to prove Theorem 4 takes the generators

Hb =
∑

Γ∈G1

Γ +H0 , (37)

Hc = κ
∑

Γ∈G2

Γ +M (38)

with m = g(2 |D| − 2) + |C| − 1 and m′ = g′(2 |D| − 4) + |C| − 1. Crucially, the generators/-
operators comprising Hb (respectively, Hc) pairwise commute. The Q gates are taken from a
QMSA circuit where using Assumption 18, we set the acceptance threshold of the circuit to
√
ϵQ = 1

48m′ . Also, we set κ = 1
24|G| .

We first characterize the initial state and cost function as defined in Problem 3.

L. Bittel, S. Gharibian, and M. Kliesch 34:19

3.1.2 Initial state
Recall that in Problem 3 the initial state has to be a ground state of Hb (given as input via
a preparation circuit Ub). We want this initial state to be

|gsb⟩ = |0, 0, 1̃, 1̃⟩ABCD, (39)

which can trivially be prepared by a constant-sized circuit Ub. To see that we indeed obtain
this ground state, note below that for all generators except G1, M , which are not included
in Hb, |gsb⟩ is a ground state of the generator. Moreover, the groundstate turns out to be
unique because for each qubit, the state is uniquely determined by one of the generators,
which implies that the entire state is unique. Specifically, we have

Fi|0, 0, 1̃, 1̃⟩ABCD = −2|0, 0, 1̃, 1̃⟩ABCD ∀i ∈ {3, 5, . . . , |D| − 1}, ∥Fi∥∞ = 2,
Gi|0, 0, 1̃, 1̃⟩ABCD = −2|0, 0, 1̃, 1̃⟩ABCD ∀i ∈ {2, 4 . . . , 2 |A|}, ∥Gi∥∞ = 2,
Qi|0, 0, 1̃, 1̃⟩ABCD = −2|0, 0, 1̃, 1̃⟩ABCD ∀i ∈ {2, 4 . . . , L}, ∥Qi∥∞ = 2,
H0|0, 0, 1̃, 1̃⟩ABCD = −(|A| + |B|)|0, 0, 1̃, 1̃⟩ABCD, ∥H∥∞ = |A| + |B| .

Indeed, since the state (39) is a ground state of all the generators of Hb and the terms
of Hb mutually commute, it is also a ground state of Hb. Moreover, since every qubit is
non-trivially supported by at least one generator of Hb, it is also the unique ground state for
the entire Hilbert space, i.e., |gsb⟩ represents the unique one-dimensional subspaces where
each gate acts non-trivially.

3.1.3 Cost function
In the QAOA setup, the measured observable is Hc. For our construction we wish to use the
observable M . Fortunately, we can find an upper bound for the difference of these operators.
Namely, for every |Ψ⟩ ∈ H

|⟨Ψ|(Hc −M)|Ψ⟩| = κ|⟨Ψ|
∑

Γ∈G2
Γ|Ψ⟩| ≤ 2κ|G2| ≤ 1

12 (40)

where we used (1) that ∥g∥∞ ≤ 2 for all Γ ∈ G2, and (2) the definition of κ.

3.1.4 Preliminaries for the completeness proof
We first define the set of states comprising our logical computation space,

S := {Vt−2|A|−1 · · ·V1|y⟩A|0 · · · 0⟩B |t̃⟩C |s̃⟩D| ∀(y, t, s) ∈ IS} (41)

with

IS =
{

(y, t, s)
∣∣∣∣y ∈ {0, 1}|A|

, t ∈ {1, . . . , |C|}, s ∈

{
{1, . . . , |D|} if t ∈ {2, 4, · · · 2 |A|}
{1} otherwise

}

being the allowed index set. Here, the notation means that V1 is only applied if t > 2 |A| + 1.
Below, we often write a state |ΨS⟩ ∈ span(S) as

|ΨS⟩ =
∑

(y,t,s)∈IS

ay,t,sVt−2|A|−1 · · ·V1|y⟩A|0 · · · 0⟩B |t̃⟩C |s̃⟩D =:
∑

(y,t,s)∈IS

ay,t,s|Ψy,t,s⟩ .

CCC 2023

34:20 The Optimal Depth of VQAs is QCMA-Hard to Approximate

We also define the function W , which is intended to capture a lower bound on the number of
Hamiltonian evolutions required to prepare a given logical state |Ψy,t,s⟩:

W (y, t, s) := (2 |D| − 4)HW(y) + t+ (−1)δy⌈t/2⌉,1(s+ δs,1 − 2), (42)

where HW(y) denotes the Hamming weight of y.
We next show a helpful lemma regarding the action of each Hamiltonian on our logical

computation space, S.

▶ Lemma 19. The following two statements hold:
For every |Ψy,t,s⟩ ∈ S and Hi ∈ {Hb, Hc}, eiHiθ|Ψy,t,s⟩ = eiα(i)

y,t,sθeiΓ(i)
y,t,sθ|Ψy,t,s⟩for some

phase α ∈ R. In words, applying Hi simulates application of a single gate Γ(b)
y,t,s ∈ G1,

Γ(c)
y,t,s ∈ κG2 ∪ {M} up to global phase αy,t,s, where κG2 = {κΓ | Γ ∈ G2}.

For every |Ψy,t,s⟩ ∈ S and every gate Γ ∈ G1 ∪ G2 ∪ {H0}, ∃ amplitudes {ay,t,s} such that

eiΓθ|Ψy,t,s⟩ =
∑

(y′,t′,s′)∈IS

W (y′,t′,s′)≤W (y,t,s)+1

ay,t,s|Ψy′,t′,s′⟩ (43)

In words, the application of Γ can only increase value of the W -function by at most 1.

3.1.5 Completeness
In the YES case, there exists a sequence of gates with proof y ∈ {0, 1}|A| of Hamming weight
at most g accepted with probability at least 1−ϵQ by the verifier circuit V . We use shorthand
notation (y)j = (y1, . . . yj−1, 0, . . . , 0) to indicate the partially written proof string. Also,
exp(iθHi) ∼ exp(iθΓ) indicates which generator Γ in Hi performs the non-trivial operation
(as per Lemma 19, claim 1). The honest prover proceeds as follows:

(Prepare classical proof) Prepare state (up to global phase) |ψ0⟩ :=
|y⟩A|0⟩B | ˜2 |A| + 1⟩C |1̃⟩D as follows. Starting with |gsb⟩ = |(y)0, 0, 1̃, 1̃⟩ABCD:

1. Set j = 1.
2. Apply exp(i π2κHc) ∼ exp(iπ2G2j−1) to map |2̃j − 1⟩C → |2̃j⟩C . This maps

|(y)j−1, 0, 2̃j − 1, 1̃⟩ABCD 7→ |(y)j−1, 0, 2̃j, 1̃⟩ABCD. (44)

3. If yj = 1 then
Apply exp(i 2π

3 Hb) ∼ exp(i 2π
3 G2j), to map |1̃⟩D → |2̃⟩D, i.e.

|(y)j−1, 0, 2̃j, 1̃⟩ABCD 7→ |(y)j−1, 0, 2̃j, 2̃⟩ABCD. (45)

Apply, in order, exp(i π2κHc) ∼ exp(iπ2F2), exp(iπ2Hb) ∼ exp(iπ2F3), . . . ,
exp(iπ2Hb) ∼ exp(iπ2F|D|−1), in total |D| − 2 operations . This maps |2̃⟩D → ||̃D|⟩D,
i.e.

|(y)j−1, 0, 2̃j, 2̃⟩ABCD 7→ |(y)j−1, 0, 2̃j, |̃D|⟩ABCD. (46)

Apply exp(i π2κHc) ∼ exp(iπ2Pj), to map |0⟩Aj
→ |1⟩Aj

, i.e.

|(y)j−1, 0, 2̃j, |̃D|⟩ABCD → |(y)j , 0, 2̃j, |̃D|⟩ABCD. (47)

Apply, in order, exp(iπ2Hb) ∼ exp(iπ2F|D|−1),exp(i π2κHc) ∼ exp(iπ2F|D|−2) . . . ,
exp(i π2κHc) ∼ exp(iπ2F2), in total |D| − 2 operations. This maps ||̃D|⟩D → |2̃⟩D, i.e.

|(y)j , 0, 2̃j, |̃D|⟩ABCD 7→ |(y)j , 0, 2̃j, 2̃⟩ABCD. (48)

L. Bittel, S. Gharibian, and M. Kliesch 34:21

Apply exp(i 2π
3 Hb) ∼ exp(i 2π

3 G2j), to map |2̃⟩D → |1̃⟩D and |2̃j⟩C → |2̃j + 1⟩C , i.e.

|(y)j , 0, 2̃j, 2̃⟩ABCD 7→ |(y)j , 0, 2̃j + 1, 1̃⟩ABCD (49)

4. else
Apply exp(iπ3Hb) ∼ exp(iπ3G2j), to map |2̃j⟩C 7→ |2̃j + 1⟩C , i.e.

|(y)j−1, 0, 2̃j, 1̃⟩ABCD 7→ |(y)j , 0, 2̃j + 1, 1̃⟩ABCD. (50)

5. Set j = j + 1.
6. If j < |A|, return to line 2 above.
This process applies 2g(|D| − 1) + 2 |A| gates.
(Simulate verifier) Apply in order, exp(i π2κHc) ∼ exp(iπ2Q1) , exp(iπ2Hb) ∼ exp(iπ2Q2),
. . . , exp(iπ2Hb) ∼ exp(iπ2QL) for a total L gates. This implements the verifier, i.e.

|y, 0, ˜2 |A| + 1, 1̃⟩ABCD → |ΨL⟩ := VL · · ·V1|y, 0, |̃C|, 1̃⟩ABCD. (51)

Since V accepts proof y of the QMSA instance with probability at least 1 − ϵQ, we conclude
using Equation (40) that

⟨ΨL|Hc|ψL⟩ ≤ ⟨ΨL|M |ΨL⟩ + 1
12 ≤ 1 − (1 − ϵQ) + 1

12 ≤ 1
3 (52)

as desired. The number of Hamiltonians applied in this case is m = g(2 |D| − 2) + 2 |A| +L =
g(2 |D| − 2) + |C| − 1, also as desired.

3.1.6 Soundness
In the proof of Theorem 1 for MIN-VQA, we showed that all Hamiltonian evolutions keep us
in our desired logical computation space S. In contrast, for our MIN-QAOA construction,
the M operator (embedded in Hc) does not necessarily preserve the space span(S) (see
Claim 2 of Lemma 19). We thus first require the following lemma, which allows us to “round”
our intermediate state back to one in S for our analysis and also establishes W (y, t, s) as a
proper lower bound for the number of gate applications required to reach the states in S.

▶ Lemma 20 (Rounding lemma). In the NO case, after ζ ≥ 1 applications of Hc and Hb,
|Ψζ⟩ ∈ Γζ :=

{∏ζ
i=1 e

iHiθi |gsb⟩ | Hi ∈ {Hb, Hc}, θ ∈ Rζ
}

will be ϵ ≤ 4ζ√ϵQ close to the span
of S i.e.

∀|Ψζ⟩ ∈ Γζ , ∃|Ψ′
ζ⟩ ∈ span(S) :

∥∥|Ψζ⟩⟨Ψζ | − |Ψ′
ζ⟩⟨Ψ′

ζ |
∥∥

tr ≤ 4ζ√ϵQ (53)

and it additionally holds that |Ψ′
ζ⟩ =

∑
(y,t,s)∈IS

W (y,t,s)≤ζ+1
ay,t,s|Ψy,t,s⟩.

The proof is in the full version. This lemma is needed because the time evolution of the
observable M (in Hc) may leave the sub-space Span(S). The rounding step is possible,
because in the NO case, the state in the B1 register, after applying the circuit V (s̃ = |D|),
is always close to |0⟩B1 (using Assumption 18), meaning the evolution in M only adds to a
global phase.

CCC 2023

34:22 The Optimal Depth of VQAs is QCMA-Hard to Approximate

We are finally ready to prove soundness. For this, we need to show that in the NO
case, all sequences of ζ ≤ m′ = g′(2 |D| − 4) + |C| − 1 gates produce cost function value
⟨Ψζ |Hc|Ψζ⟩ ≥ 2

3 . This follows since for all ζ ≤ m′,

⟨Ψζ |Hc|Ψζ⟩ ≥ ⟨Ψζ |M |Ψζ⟩ − 1
12 (54)

≥ ⟨Ψ′
ζ |M |Ψ′

ζ⟩ − |Tr[M(|Ψζ⟩⟨Ψζ | − |Ψ′
ζ⟩⟨Ψ′

ζ |)]| − 1
12 (55)

≥ ⟨Ψ′
ζ |M |Ψ′

ζ⟩ − ∥M∥∞
∥∥|Ψζ⟩⟨Ψζ | − |Ψ′

ζ⟩⟨Ψ′
ζ |

∥∥
tr − 1

12 (56)

≥ ⟨Ψ′
ζ |M |Ψ′

ζ⟩ − 4m′√ϵQ − 1
12 (57)

≥ ⟨Ψ′
ζ |M |Ψ′

ζ⟩ − 1
6 (58)

where the first statement follows from Equation (40), the third by Hölder’s inequality, the
fourth by Lemma 20, and the last since √

ϵQ ≤ 1
48m′ . By Lemma 19, we can expand |Ψ′

ζ⟩ in
the basis |Ψ′

ζ⟩ =
∑

(y,t,s)∈IS

W (y,t,s)≤m′+1
ay,t,s|Ψy,t,s⟩ which gives

⟨Ψ′
ζ |M |Ψ′

ζ⟩ = 1 −
∑

y∈{0,1}|A||HW(y)≤g′

|ay,|C|,1|2⟨Ψy,|C|,1||1⟩⟨1|B1
|Ψy,|C|,1⟩ ≥ 1 − ϵQ (59)

as M only acts non-trivial on t = |C| and W (y, |C| , 1) ≤ m′ + 1 reduces to HW(y) ≤ g′, and
in the NO case QMSA accepts such a y with at most ϵQ probability. Combining the two
results we get

⟨Ψζ |Hc|Ψζ⟩ ≥ 1 − ϵQ − 1
6 >

2
3 (60)

which shows soundness for all gates-sequences of length ζ ≤ m′.

3.1.7 Hardness ratio
The analysis is essentially identical to that for MIN-VQA, and is in the full version. ◀

References
1 Dorit Aharonov, Itai Arad, and Thomas Vidick. Guest column: The quantum PCP conjecture.

SIGACT News, 44(2):47–79, June 2013. doi:10.1145/2491533.2491549.
2 Dorit Aharonov and Tomer Naveh. Quantum NP - a survey, 2002. arXiv:quant-ph/0210077.
3 Eric R. Anschuetz and Bobak T. Kiani. Beyond barren plateaus: Quantum variational

algorithms are swamped with traps, 2022. arXiv:2205.05786.
4 Anurag Anshu and Tony Metger. Concentration bounds for quantum states and limitations

on the QAOA from polynomial approximations, 2022. arXiv:2209.02715.
5 S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. Journal

of the ACM, 45(1):70–122, 1998. Prelim. version FOCS ’92. doi:10.1145/273865.273901.
6 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

verification and the hardness of approximation problems. Journal of the ACM, 45(3):501–555,
1998. Prelim. version FOCS ’92. doi:10.1145/278298.278306.

7 Joao Basso, David Gamarnik, Song Mei, and Leo Zhou. Performance and limitations of
the qaoa at constant levels on large sparse hypergraphs and spin glass models, 2022. doi:
10.48550/arXiv.2204.10306.

https://doi.org/10.1145/2491533.2491549
https://arxiv.org/abs/quant-ph/0210077
https://arxiv.org/abs/2205.05786
https://arxiv.org/abs/2209.02715
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/278298.278306
https://doi.org/10.48550/arXiv.2204.10306
https://doi.org/10.48550/arXiv.2204.10306

L. Bittel, S. Gharibian, and M. Kliesch 34:23

8 Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav
Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-
Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik. Noisy intermediate-
scale quantum (NISQ) algorithms. Rev. Mod. Phys., 94(1):015004, January 2022. doi:
10.1103/RevModPhys.94.015004.

9 Lennart Bittel and Martin Kliesch. Training variational quantum algorithms is NP-hard. Phys.
Rev. Lett., 127:120502, September 2021. doi:10.1103/PhysRevLett.127.120502.

10 Sami Boulebnane and Ashley Montanaro. Solving boolean satisfiability problems with the
quantum approximate optimization algorithm, 2022. doi:10.48550/arXiv.2208.06909.

11 Gregory Boyd and Bálint Koczor. Training variational quantum circuits with covar: covariance
root finding with classical shadows, 2022. arXiv:2204.08494.

12 Sergey Bravyi, Alexander Kliesch, Robert Koenig, and Eugene Tang. Obstacles to variational
quantum optimization from symmetry protection. Phys. Rev. Lett., 125:260505, December
2020. doi:10.1103/PhysRevLett.125.260505.

13 M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke
Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J.
Coles. Variational quantum algorithms. Nat. Rev. Phys., 3:625–644, 2021. doi:10.1038/
s42254-021-00348-9.

14 Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization
algorithm, 2014. arXiv:1411.4028.

15 Edward Farhi and Aram W Harrow. Quantum supremacy through the quantum approximate
optimization algorithm, 2016. arXiv:1602.07674.

16 Richard P Feynman. Quantum mechanical computers. Found. Phys., 16(6):507–
531, 1986. URL: http://www.cs.princeton.edu/courses/archive/fall05/frs119/papers/
feynman85_optics_letters.pdf.

17 S. Gharibian and J. Sikora. Ground state connectivity of local Hamiltonians. In 42nd
International Colloquium on Automata, Languages, and Programming (ICALP), pages 617–
628, 2015. doi:10.1007/978-3-662-47672-7_50.

18 Sevag Gharibian and Julia Kempe. Hardness of approximation for quantum problems. In
39th International Colloquium on Automata, Languages and Programming (ICALP), pages
387–398, 2012. doi:10.1007/978-3-642-31594-7_33.

19 M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM, 42:1115–1145,
1995. doi:10.1145/227683.227684.

20 David Gosset, Jenish C. Mehta, and Thomas Vidick. QCMA hardness of ground space
connectivity for commuting Hamiltonians. Quantum, 1:16, July 2017. doi:10.22331/
q-2017-07-14-16.

21 Harper R. Grimsley, George S. Barron, Edwin Barnes, Sophia E. Economou, and Nicholas J.
Mayhall. ADAPT-VQE is insensitive to rough parameter landscapes and barren plateaus,
2022. arXiv:2204.07179.

22 Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall. An
adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat.
Commun., 10:3007, July 2019. doi:10.1038/s41467-019-10988-2.

23 Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G. Rieffel, Davide Venturelli, and
Rupak Biswas. From the quantum approximate optimization algorithm to a quantum altern-
ating operator ansatz. Algorithms, 12(2):34, 2019. doi:https://www.mdpi.com/1999-4893/
12/2/34.

24 Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a
quantum system from very few measurements. Nature Physics, 16:1050–1057, June 2020.
doi:10.1038/s41567-020-0932-7.

CCC 2023

https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/PhysRevLett.127.120502
https://doi.org/10.48550/arXiv.2208.06909
https://arxiv.org/abs/2204.08494
https://doi.org/10.1103/PhysRevLett.125.260505
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1602.07674
http://www.cs.princeton.edu/courses/archive/fall05/frs119/papers/feynman85_optics_letters.pdf
http://www.cs.princeton.edu/courses/archive/fall05/frs119/papers/feynman85_optics_letters.pdf
https://doi.org/10.1007/978-3-662-47672-7_50
https://doi.org/10.1007/978-3-642-31594-7_33
https://doi.org/10.1145/227683.227684
https://doi.org/10.22331/q-2017-07-14-16
https://doi.org/10.22331/q-2017-07-14-16
https://arxiv.org/abs/2204.07179
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/https://www.mdpi.com/1999-4893/12/2/34
https://doi.org/https://www.mdpi.com/1999-4893/12/2/34
https://doi.org/10.1038/s41567-020-0932-7

34:24 The Optimal Depth of VQAs is QCMA-Hard to Approximate

25 Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vyalyi. Classical and quantum computation,
volume 47. American Mathematical Society, 2002. URL: https://bookstore.ams.org/
gsm-47.

26 Bálint Koczor and Simon C. Benjamin. Quantum analytic descent. Phys. Rev. Research,
4(2):023017, April 2022. doi:10.1103/PhysRevResearch.4.023017.

27 Martin Larocca, Nathan Ju, Diego García-Martín, Patrick J. Coles, and M. Cerezo. Theory of
overparametrization in quantum neural networks, 2021. arXiv:2109.11676.

28 Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996. doi:10.1126/
science.273.5278.1073.

29 Guang Hao Low and Isaac L. Chuang. Optimal Hamiltonian simulation by quantum signal
processing. Phys. Rev. Lett., 118:010501, January 2017. doi:10.1103/PhysRevLett.118.
010501.

30 Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven.
Barren plateaus in quantum neural network training landscapes. Nat. Commun., 9:4812,
November 2018. doi:10.1038/s41467-018-07090-4.

31 Javier Rivera-Dean, Patrick Huembeli, Antonio Acín, and Joseph Bowles. Avoiding local
minima in variational quantum algorithms with neural networks, 2021. arXiv:2104.02955.

32 Lucas Slattery, Benjamin Villalonga, and Bryan K. Clark. Unitary block optimization
for variational quantum algorithms. Phys. Rev. Research, 4(2):023072, April 2022. doi:
10.1103/PhysRevResearch.4.023072.

33 Bobak Toussi Kiani, Seth Lloyd, and Reevu Maity. Learning unitaries by gradient descent,
2020. arXiv:2001.11897.

34 C. Umans. Hardness of approximating Σp
2 minimization problems. In 40th Symposium on

Foundations of Computer Science, pages 465–474, 1999.
35 J. D. Watson, J. Bausch, and S. Gharibian. The Complexity of Translationally Invariant

Problems beyond Ground State Energies. In 40th Symposium on Theoretical Aspects of
Computer Science (STACS 2023), 2023.

36 David Wierichs, Christian Gogolin, and Michael Kastoryano. Avoiding local minima in
variational quantum eigensolvers with the natural gradient optimizer. Phys. Rev. Research,
2(4):043246, November 2020. doi:10.1103/PhysRevResearch.2.043246.

37 Roeland Wiersema, Cunlu Zhou, Yvette de Sereville, Juan Felipe Carrasquilla, Yong Baek
Kim, and Henry Yuen. Exploring entanglement and optimization within the Hamiltonian
variational ansatz. PRX Quantum, 1:020319, 2020. doi:10.1103/PRXQuantum.1.020319.

38 P. Wocjan, D. Janzing, and T. Beth. Two QCMA-complete problems. Quantum Information
& Computation, 3(6):635–643, 2003. doi:10.5555/2011556.2011563.

39 Dan-Bo Zhang and Tao Yin. Collective optimization for variational quantum eigensolvers.
Phys. Rev. A, 101(3):032311, March 2020. doi:10.1103/PhysRevA.101.032311.

40 Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D. Lukin. Quantum
approximate optimization algorithm: Performance, mechanism, and implementation on near-
term devices. Phys. Rev. X, 10:021067, 2020. doi:10.1103/PhysRevX.10.021067.

https://bookstore.ams.org/gsm-47
https://bookstore.ams.org/gsm-47
https://doi.org/10.1103/PhysRevResearch.4.023017
https://arxiv.org/abs/2109.11676
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1038/s41467-018-07090-4
https://arxiv.org/abs/2104.02955
https://doi.org/10.1103/PhysRevResearch.4.023072
https://doi.org/10.1103/PhysRevResearch.4.023072
https://arxiv.org/abs/2001.11897
https://doi.org/10.1103/PhysRevResearch.2.043246
https://doi.org/10.1103/PRXQuantum.1.020319
https://doi.org/10.5555/2011556.2011563
https://doi.org/10.1103/PhysRevA.101.032311
https://doi.org/10.1103/PhysRevX.10.021067

An Algorithmic Approach to Uniform Lower
Bounds
Rahul Santhanam #

Department of Computer Science, University of Oxford, UK

Abstract
We propose a new family of circuit-based sampling tasks, such that non-trivial algorithmic solutions
to certain tasks from this family imply frontier uniform lower bounds such as “NP is not in uniform
ACC0” and “NP does not have uniform polynomial-size depth-two threshold circuits”. Indeed, the
most general versions of our sampling tasks have implications for central open problems such as NP
vs P and PSPACE vs P.

We argue the soundness of our approach by showing that the non-trivial algorithmic solutions
we require do follow from standard cryptographic assumptions. In addition, we give evidence that a
version of our approach for uniform circuits is necessary in order to separate NP from P or PSPACE
from P. We give an algorithmic characterization for the PSPACE vs P question: PSPACE ̸= P iff
either E has sub-exponential time non-uniform algorithms infinitely often or there are non-trivial
space-efficient solutions to our sampling tasks for uniform Boolean circuits.

We show how to use our framework to capture uniform versions of known non-uniform lower
bounds, as well as classical uniform lower bounds such as the space hierarchy theorem and Allender’s
uniform lower bound for the Permanent. We also apply our framework to prove new lower bounds:
NP does not have polynomial-size uniform AC0 circuits with a bottom layer of MOD 6 gates, nor
does it have polynomial-size uniform AC0 circuits with a bottom layer of threshold gates.

Our proofs exploit recently defined probabilistic time-bounded variants of Kolmogorov complexity
[36, 24, 34].

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Complexity classes

Keywords and phrases Probabilistic Kolmogorov complexity, sampling algorithms, uniform lower
bounds

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.35

Related Version Extended Version: https://eccc.weizmann.ac.il/report/2023/028/

Funding This work was partly funded by the ESPRC New Horizons grant EP/V048201/1 on
“Structure vs Randomness in Algorithms and Computation”.

Acknowledgements We are grateful to Eric Allender, Arkadev Chattopadhyay, Hanlin Ren, Zhenjian
Lu, Igor Oliveira, Ronen Shaltiel and Srikanth Srinivasan for useful discussions.

1 Introduction

1.1 Background and Motivation
The NP vs P problem [18, 20] is the central problem in theoretical computer science. Despite
much effort over the years, we seem to be quite far from a solution. Theoretical computer
science has had many successes over the years, but as far as NP vs P is concerned, it has
been hard even to come up with viable approaches to the problem.

When the problem first received attention in the 1970s, a natural approach to it was
to explore analogies with computability theory, and use simulation and diagonalization
techniques to achieve a separation. For example, the uncomputability of the Halting Problem
is a foundational result in computability theory proved using diagonalization. A time-bounded

© Rahul Santhanam;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 35; pp. 35:1–35:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rahul.santhanam@cs.ox.ac.uk
https://orcid.org/0000-0002-8716-6091
https://doi.org/10.4230/LIPIcs.CCC.2023.35
https://eccc.weizmann.ac.il/report/2023/028/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 An Algorithmic Approach to Uniform Lower Bounds

version of the Halting Problem for non-deterministic machines is NP-complete, so it makes
sense to try resource-bounded variants of diagonalization to separate NP and P. However, all
approaches using simulation and diagonalization have been fruitless so far, and a major reason
for this was identified by Baker, Gill and Solovay [11] in their paper on the relativization
barrier. Classical techniques in computability theory relativize, meaning that they continue
to hold relative to an arbitrary oracle, but no solution to the NP vs P can relativize - there is
an oracle A such that NP = P relative to A, and another oracle B such that NP ̸= P relative
to B [11].

After the relativization barrier was identified, attention shifted to the non-uniform version
of the NP vs P problem. The non-uniform version asks if NP has polynomial-size Boolean
circuits. A negative answer implies NP ̸= P, since all problems in P have polynomial-size
Boolean circuits. The hope in studying Boolean circuits was that they might be easier to
analyze and understand using combinatorial and algebraic techniques than is the case for
uniform algorithms. Indeed, the hope was fed by a spate of results in the 1980s showing super-
polynomial lower bounds against weak circuit classes, including AC0 circuits [2, 22, 60, 25] ,
AC0[p] circuits for prime p [47, 50] and monotone circuits [46].

This spate of lower bound results slowed down to a trickle in the 1990s, and even the
question of proving super-polynomial lower bounds against constant-depth circuits with
composite modular gates remained unsolved. In an attempt to explain the stalled progress,
Razborov and Rudich [48] identified a further barrier: the Natural Proofs barrier. While
the relativization barrier applies to traditional simulation and diagonalization approaches,
the Natural Proofs barrier applies to combinatorial and algebraic techniques that were the
main source of hope for showing non-uniform lower bounds. The Natural Proofs barrier rules
out constructive approaches to circuit lower bounds that involve identifying a complexity
measure that is easy to compute, low for functions with small circuits and high for random
functions, assuming standard cryptographic conjectures. Essentially all known non-uniform
lower bound techniques at the time involved identifying such complexity measures, and so
the Natural Proofs barrier did help to explain why progress was stalled.

Since the Natural Proofs barrier was identified, there has been pessimism about the
prospect of proving lower bounds in the near future, and few promising lower bound
approaches have been identified. The ambitious Geometric Complexity Theorey program
of Mulmuley and Sohoni [38, 37] seeks to solve the Permanent vs Determinant problem,
which is an algebraic analogue of NP vs P, by using representation theory and algebraic
geometry to analyze symmetries of the Determinant and Permanent. A version of their
approach also applies to the NP vs P problem. While Geometric Complexity Theory has
led to significant new insights in algebraic complexity theory, the original approach has also
faced some obstacles [14], and Mulmuley himself believes that it is likely to take a very long
time for NP vs P to be solved using this approach [20].

A rare success in the theory of lower bounds over the past couple of decades is the
algorithmic method [57, 58] of Ryan Williams. Somewhat paradoxically, Williams proposed
to attack the question of circuit lower bounds, i.e., proving that no efficient non-uniform
algorithms exist for some task, by finding improved algorithms for a different task. To be
more specific, if we wish to prove that NEXP does not have polynomial-size C-circuits for
some circuit class C with natural closure properties, then all we need to do is to solve the
Satisfiability problem for C-circuits in barely non-trivial time, i.e., in time 2npoly(m)/nω(1),
where m is the circuit size and n is the number of variables. Note that the trivial brute
force search algorithm for Satisfiability takes time 2npoly(m), so what is required is just a
super-polynomial improvement over this trivial algorithm.

R. Santhanam 35:3

One might wonder whether an algorithmic approach via improved algorithms for Satis-
fiability is feasible if we are interested in lower bounds for general Boolean circuits. Perhaps
no non-trivial improvement over brute force search is possible for Circuit Satisfiability? This
potential objection is addressed in [57] by showing that circuit lower bounds hold even if
we can estimate the acceptance probability of a C-circuit in barely non-trivial time. This
acceptance probability estimation task is known to be doable in sub-exponential time under
circuit lower bound assumptions, by using ideas from the theory of derandomization [42, 10].
Thus, in a sense, the algorithmic approach is without loss of generality when it comes to
circuit lower bounds for NEXP.

In a breakthrough, Williams showed how to solve a frontier question in circuit lower
bounds using the algorithmic method. He showed that NEXP ̸⊆ ACC0 [58], by designing
algorithms for ACC0 Satisfiability that beat brute-force search. Since then, several other
lower bounds for restricted classes of circuits have been shown using the algorithmic method
[59, 56, 7, 15, 16, 40, 17, 13]. What is particularly appealing about the algorithmic method
is that humans seem more suited to constructive algorithmic thinking than to proving
impossibility results, and so the reformulation of a lower bound task as an algorithmic task
is likely to stimulate progress.

The original formulation of the algorithmic method [57] gave a connection between
non-trivial Satisfiability algorithms and circuit lower bounds for NEXP. While NEXP lower
bounds are interesting from a derandomization perspective, what we desire most in complexity
theory is super-polynomial size lower bounds for NP. Murray and Williams [40] show how
to scale down the algorithmic method to derive lower bounds for NQP (non-deterministic
quasi-polynomial time) against polynomial-size C-circuits and lower bounds for NP against
fixed polynomial size C-circuits (where the running time of the NP algorithm depends on the
size lower bound) from circuit analysis algorithms for C. However, their techniques do not
seem to be useful in deriving super-polynomial size lower bounds for NP - it is unclear what
a corresponding circuit analysis task would be.

It seems very challenging even to prove that NP does not have polynomial-size ACC0

circuits, and no approaches to this question are known. But what if we weaken our goal to
lower bounds against polynomial-size uniform ACC0 circuits? Note that from the perspective
of making progress toward NP ̸= P, uniform lower bounds are just as good as non-uniform
ones. However, we do not have any cases so far of super-polynomial uniform lower bounds for
NP against a class C of circuits where a corresponding non-uniform lower bound is unknown.
We also don’t have any plausible approaches toward showing such uniform lower bounds.

This raises the following question, which is at the core of our work.

▶ Question. Is there an algorithmic approach1 to long-standing open questions about uniform
lower bounds?

To make this question more precise, we state a couple of criteria that we require from
an “algorithmic approach”. First, we would like our algorithmic task to be as close to a
conventional algorithmic task as possible - a task that takes an input and produces output
that satisfies some desired property. For example, cryptographic pseudo-random generators
imply NP ̸= P, but we do not consider the construction of such generators as a standard
algorithmic task, just as the construction of complexity-theoretic pseudo-random generators

1 Note that we are interested in this paper only in algorithmic approaches to lower bounds. We hold the
conventional belief that NP ̸= P and wish to show this using an algorithmic approach. Of course, if
one wishes to show that NP = P, an algorithmic approach is completely natural, i.e., designing and
analyzing a polynomial-time algorithm for SAT.

CCC 2023

35:4 An Algorithmic Approach to Uniform Lower Bounds

does not count as an algorithmic approach toward circuit lower bounds for EXP. Second,
we would like our approach to be sound, meaning that there should be some evidence that
the algorithmic task is indeed feasible. Note that an infeasible algorithmic task, such as
designing polynomial-time algorithms for an EXP-complete problem, would imply anything
at all, and in particular would imply NP ̸= P.

When trying to design an algorithmic approach to uniform lower bounds, it is useful to
keep in mind an informal but fundamental distinction between two regimes of lower bounds
- the complexity-theoretic regime and the cryptographic regime. The complexity-theoretic
regime refers to situations where we are trying to show a lower bound C ̸⊆ D for complexity
classes C and D, and C has enough computational resources to simulate D. For example, the
case of NEXP ̸⊆ SIZE(poly) falls into the complexity-theoretic regime, since exponential-time
machines can simulate polynomial-size circuits. The cryptographic regime refers to situations
where C does not have the resources to simulate D. The case of super-polynomial size uniform
circuit lower bounds for NP falls into the cryptographic regime, since we are trying to show
that a fixed problem in NP does not have uniform circuits of arbitrary polynomial size, and
so the NP machine does not have enough resources to simulate the circuits against which a
lower bound is sought.

The common feature to all known applications of the algorithmic method [57, 58, 40] is
that the corresponding lower bounds fall in the complexity-theoretic regime. The reason
is that the proof technique for establishing the connection between algorithms and lower
bounds involves indirect diagonalization, culminating in an application of hierarchy theorems.
Since hierarchy theorems require the class for which we are showing a lower bound to have
more resources than the class against which we are showing a lower bound, it seems unlikely
that the algorithmic method can be directly adapted to the cryptographic regime of lower
bounds.

In this work, we present a new family of circuit-based sampling tasks such that solutions
to tasks in this family imply uniform circuit lower bounds in the cryptographic regime for
classes such as NP and PSPACE. Since these algorithmic tasks have not been considered
before, there isn’t a clear path yet to solving them for general Boolean formulas or circuits.
As such, this is not yet a full-fledged approach to strong uniform circuit lower bounds such as
NP ≠ P or PSPACE ̸= P. Nevertheless, our approach does allow us to recover state-of-the-art
uniform lower bounds and to prove a couple of new ones, and we believe it might be useful
to attack frontier uniform lower bound questions such as separating NP from uniform ACC0

or uniform TC0
2. Moreover, we believe that the connection from algorithms to lower bounds

is interesting in itself, and hope that it will stimulate further research on the sampling tasks
we define.

We now proceed to describe our approach.

1.2 The Approach
We describe our approach to lower bounds for PSPACE first. Suppose we seek to prove
uniform lower bounds for PSPACE against some class C of circuits. The only requirement we
will make of C is that it can be simulated by general Boolean circuits. In order to describe
the algorithmic tasks in our approach, we first introduce some terminology.

Given a C-circuit C on n variables of size poly(n), we say that C is dense if C accepts at
least a 2/3 fraction of all inputs of length n. We are interested in the problem of sampling
satisfying assignments of C. Satisfying assignments of C are plentiful, so a trivial randomized
algorithm works with high probability, but it might not be easy for a deterministic algorithm
to find satisfying assignments. In our setting, we will allow the use of randomness in the
algorithm.

R. Santhanam 35:5

In order not to make the task trivial, we will require that the algorithm outputs a fixed
satisfying assignment with probability at least nk/2n for some large enough constant k.
This requirement is related to the notion of pseudo-deterministic search defined by Gat
and Goldwasser [23]. A pseudo-deterministic algorithm is a randomized algorithm for a
search problem that outputs a fixed solution with high probability, say 2/3. In contrast, we
only require that a fixed assignment is output with probability poly(n)/2n, which is barely
non-trivial.

It is not hard to see that this task is easy if the algorithm is given full access to C and
is able to simulate C. The key restriction we impose is that the algorithm does not have
enough resources to simulate C, though it does have full access to C. The algorithm is given
random access to the representation of C, and must run in some fixed polynomial space
bound nd, where d is independent of the size of C. This restriction turns out to be enough
to imply lower bounds for PSPACE against uniform C-circuits.

We say that there is space-efficient non-trivial sampling for dense C-satisfiability if the
task described above is feasible, namely if for some large enough constant2 k, there is a
constant d and a probabilistic algorithm A running in space nd such that, given an input
C-circuit C on n variables of size poly(n) accepting at least a 2/3 fraction of all inputs, A

outputs a fixed satisfying assignment y of C with probability at least nk/2n. Our main result
for PSPACE shows that feasibility of this task implies lower bounds for PSPACE against
uniform C-circuits, where the notion of uniformity is LOGSPACE-uniformity.

▶ Theorem 1 (Informal Statement). Let C be any class of circuits that can be simulated by
Boolean circuits of polynomial size. If there is space-efficient non-trivial sampling for dense
C-satisfiability, then PSPACE does not have uniform C-circuits of polynomial size.

As a corollary, when C is the class of general Boolean circuits, space-efficient non-trivial
sampling for dense C−SAT implies that PSPACE ̸= P. Thus a solution to a purely algorithmic
task separates PSPACE from P. We find this connection surprising, even if it’s not apparent
what sorts of algorithmic ideas might be useful in solving our task.

We note that the requirements of our algorithmic task are fairly relaxed in many ways.
We are interested in randomized algorithms, while it is still open to derive non-uniform circuit
lower bounds for NEXP from randomized algorithms for CircuitSAT. A trivial linear-time
randomized algorithm for our task simply samples a random y ∈ {0, 1}n and outputs it -
each satisfying assignment is output with probability 2−n by this algorithm. We only require
a fixed polynomial advantage in sampling probability over this trivial algorithm.

However, the restriction that the algorithm must operate in space a fixed polynomial
independent of the circuit size of C is indeed a fairly strong requirement. Essentially, what
this restriction means is that we can’t simulate the circuit C when trying to solve our
algorithmic task. Thus, in order to solve our algorithmic task, we need to have a rich
structural understanding of C-circuits accepting at least a 2/3 fraction of their inputs.

We argue heuristically that some such restriction on white-box access is necessary to
derive lower bounds for PSPACE. Consider the case where C is just the class of general
Boolean circuits. Suppose we were able to derive PSPACE ≠ P from the success of some
algorithmic task T that is defined with a Boolean circuit C as input, and suppose we had full
white-box access to C. If T is solvable in PSPACE, then if PSPACE = P, T should be solvable
efficiently. Since the efficient solvability of T implies NP ̸= P, we get that PSPACE ≠ P
unconditionally!

2 Our proof shows that k > 3 suffices, and we suspect that k > 1 might suffice if we optimise our
parameters.

CCC 2023

35:6 An Algorithmic Approach to Uniform Lower Bounds

Of course it is possible that T is not solvable in PSPACE, but rather (say) in EXP.
However, in this case, there might not be sufficient reason to believe T is solvable efficiently,
and using T to derive a lower bound might not be a sound algorithmic approach.

We would like to emphasize the point made by the argument above: the restriction that
the algorithm for our task cannot simulate the circuit C is not just an artifact or weakness
of our approach. Rather, it seems unavoidable for any white-box task in the cryptographic
regime, since the lower bound we are trying to show is quantitatively stronger than the upper
bound.

Indeed, as mentioned before, if we have full white-box access to C, we can unconditionally
solve the algorithmic task we propose, by repeatedly sampling strings of length n and
outputting the lexicographically smallest string accepted by C. Theorem 31 in Section 4
establishes this formally. The ability of the algorithm to read the description of C as well as
to simulate C makes this argument work.

Now suppose we wish to extend the approach of Theorem 1 to uniform lower bounds
for NP. We can define an analogous notion of time-efficient non-trivial sampling for dense
C-satisfiability, and prove a connection similar to Theorem 1 where the consequence is a lower
bound for NP. However, this notion of time-efficient non-trivial sampling is very restrictive,
as the sampling algorithm will not even be able to read the entire input circuit, let alone
simulate it. Ideally, we would like the sampling algorithm to be able to read the entire input,
even if it isn’t able to perform a simulation, as in our setting for PSPACE.

Therefore, we consider a succinct version of our algorithmic task. Our input now is 1n

together with a C-circuit C of size at most n which is a compressed representation of a
larger C-circuit C ′ of size poly(n) on n variables. Here, by saying that C is a compressed
representation of C ′, we mean that we can recover any specific bit in the representation of
C ′ by evaluating C on some input. Alternatively, one can think of C as a circuit for the
direct connection language of C ′.

We say that there is efficient non-trivial sampling with PH oracle for the succinct version
of dense C-satisfiability if for some large enough constant k, there is a constant d and a
probabilistic algorithm A running in time nd with a PH oracle such that, given 1n and
C-circuit C as input, where C is a compressed representation of a C-circuit C ′ of size poly(n)
on n variables accepting at least a 2/3 fraction of inputs, A outputs some fixed satisfying
assignment y of C ′ with probability at least nk/2n. The notion of uniformity we use for all
of our results on lower bounds for NP is LOGTIME-uniformity [12].

▶ Theorem 2 (Informal Statement). Let C be any class of circuits that can be simulated by
Boolean circuits of polynomial size. If there is efficient non-trivial sampling with PH oracle
for the succinct version of dense C-satisfiability, then NP does not have uniform C-circuits
of polynomial size.

Note that we allow the sampling algorithm oracle access to an arbitrary PH oracle in the
hypothesis. This is intended to make the algorithmic task easier to solve.

Now we justify our claim that our algorithmic approach fulfils the two criteria we stated in
Section 1.1. The first criterion is that the relevant algorithmic task should be a conventional
one. This is true in our case since the algorithmic task we consider is that of efficiently
sampling, with non-trivial probability, a fixed satisfying assignment to a circuit with many
satisfying assignments. We observe that the second criterion holds as well, under standard
cryptographic assumptions.

▶ Theorem 3 (Informal Statement). If one-way functions secure against super-polynomial
size circuits exist, then there is efficient non-trivial sampling for the succint version of dense
Circuit-satisfiability.

R. Santhanam 35:7

We show Theorem 3 by using cryptographic pseudo-random generators to give an efficient
non-trivial sampling algorithm for the succinct version of dense Circuit-satisfiability. Note
that the sampling algorithm yielded by the assumption does not need access to a PH
oracle. Also, an efficient non-trivial sampling algorithm for the succinct version of dense
Circuit-satisfiability trivially implies a space-efficient non-trivial sampling algorithm, therefore
Theorem 3 additionally evidences the feasibility of the approach toward PSPACE ̸= P.

One might still wonder if the algorithmic approach we present is far stronger than is
actually necessary for uniform lower bounds. We show that under plausible complexity
assumptions (which seem morally weaker than the lower bounds we are trying to prove), a
uniform version of our approach3 is in fact necessary in that the algorithmic tasks we propose
become feasible.

Our ideas give an unconditional algorithmic characterization of PSPACE ̸= P.

▶ Theorem 4 (Informal Statement). PSPACE ̸= P iff E has circuits of size 2o(n) on infinitely
many input lengths, or if there is a space-efficient non-trivial algorithm for the uniform
version of dense Circuit-satisfiability on infinitely many input lengths.

In other words, a central uniform lower bound question in complexity theory reduces to
either showing surprising non-uniform algorithms exist for E, or to solving our sampling task
for general uniform Boolean circuits in a space-efficient non-trivial way. While there are such
algorithmic characterizations of lower bounds for NEXP in the complexity-theoretic regime
[31, 57, 55], the characterization above seems to the first one in the cryptographic regime.

While the results above indicate that our approach is sound, it is unclear a priori whether
our algorithmic approach is feasible, i.e., if it has any hope of yielding new lower bounds in
the near future. We do believe that the connection from algorithms to uniform lower bounds
is interesting in itself, but we would like the framework to be capable at least of proving
some known uniform lower bounds.

We show that the framework does indeed have this capability. On the one hand, we
use known unconditional results about hitting set generators for weak circuit classes to
observe that our sampling tasks are solvable for these circuit classes. On the other hand, we
show that our framework can be used to give alternative proofs of well-known uniform lower
bounds such as versions of the space hierarchy theorem [51] and Allenders’ lower bound for
Permanent [3]. This evidences the flexibility of the framework - it accommodates techniques
exploiting specific properties of circuit classes as well as techniques based on simulation and
diagonalization.

Finally, we use our approach to prove a couple of new lower bounds, and hope that even
stronger lower bounds will follow using more sophisticated algorithmic ideas.

▶ Theorem 5 (Informal Statement). NP does not have uniform polynomial-size AC0 circuits
with a bottom layer of Modm gates for any positive integer m, not does it have uniform
polynomial-size AC0 circuits with a bottom layer of threshold gates.

We note that it is a longstanding open problem to prove non-uniform super-polynomial
size lower bounds in NP against AC0 circuits with a bottom layer of Mod6 gates or a bottom
layer of threshold gates, despite much effort4. We show that uniformity can be exploited

3 By this we mean that our algorithmic task is only required to be feasible on uniform sequences of
circuits.

4 However, such lower bounds are known for non-deterministic quasi-polynomial time NQP [59, 40], in
the complexity-theoretic regime. We are interested here in lower bounds in the cryptographic regime.

CCC 2023

35:8 An Algorithmic Approach to Uniform Lower Bounds

to prove lower bounds for these classes. As far as we are aware, this is the first case of a
super-polynomial circuit lower bound for NP that holds for a uniform circuit class but is not
known to hold for the corresponding non-uniform circuit class5.

1.3 Discussion
In this sub-section, we discuss various features of our approach. Some of these have been
mentioned before, but it might be useful for the reader to see them discussed together.

Another Algorithmic Approach to Lower Bounds. Our work is the latest in the line of
works which apply algorithmic approaches to lower bound problems. However, it is the first
to apply an algorithmic approach to lower bound problems in the cryptographic regime, and
in particular with relevance to problems such as NP vs P and PSPACE vs P. The algorithmic
method of [57, 58] shows that non-trivial algorithms for CircuitSAT and Circuit Acceptance
Probability Estimation imply super-polynomial circuit lower bounds for NEXP. Building on
[21, 33], Oliveira and Santhanam [44] showed that non-trivial randomized learning algorithms
with membership queries over the uniform distribution for a class C of circuits implies lower
bounds in BPEXP against polynomial-size C-circuits.

Previous works on algorithmic approaches require a non-trivial upper bound on the
running time of the algorithm to derive lower bound consequences. In our case, in contrast,
while it is important that the algorithm is efficient, what matters more is the probability of
sampling some fixed solution - we need this to be non-trivial. Another difference between our
work and previous works is that previous works all rely ultimately on hierarchy theorems. In
contrast, we do not use hierarchy theorems, and this enables us to deal with the cryptographic
regime of lower bounds.

Exploiting the Power of NP. As mentioned in Section 1.1, there are several works beginning
in the 1980s that establish super-polynomial circuit lower bounds for weak circuit classes using
various combinatorial and algebraic techniques. An interesting feature of these results is that
in most cases, the best lower bounds we know are for problems that are in P. For example,
the strongest lower bounds we know for constant-depth circuits are for the Parity function,
which is easily seen to be solvable by linear-size circuits. Clearly, any lower bound technique
that yields lower bounds for problems in P is not capable of proving super-polynomial lower
bounds for general Boolean circuits. Our approach, in contrast, uses the power of NP, and
perhaps this suggests that the approach, or variants in it, might be useful in the long run to
prove strong lower bounds.

The Importance of Uniformity. Historically, there has been a divide in complexity theory
between approaches to non-uniform lower bounds and approaches to uniform lower bounds.
Approaches to non-uniform lower bounds are often tailored to the circuit class of interest,
identifying a structural weaknesses of the circuit class (such as being simplified by random
restrictions or being approximable by low-degree polynomials) and then exploiting the
weakness mathematically or algorithmically. Approaches to uniform lower bounds tend to be
more generic, employing clever combinations of simulation and diagonalization techniques.
Our work bridges this divide to an extent in that it identifies stand-alone algorithmic tasks

5 Allender’s lower bound for Permanent is another example of this phenomenon, but Permanent is neither
known nor believed to be in NP

R. Santhanam 35:9

such that solutions for these tasks have implications for uniform lower bounds. The hope is
that these algorithmic tasks can be solved efficiently and non-trivially by exploiting properties
of the circuit class.

Generality of the Approach. Our algorithmic approach is general in multiple respects.
First, it is relevant to lower bounds for any circuit class C contained in the class of Boolean
circuits. We do not even require even weak closure properties of the circuit classes. In
particular, this makes our approach potentially relevant to frontier lower bounds against
fixed-depth classes, eg., the class of depth-two threshold circuits.

Secondly, our approach can be adapted to lower bounds for uniform classes other than
NP, simply by modifying the resource requirements of the algorithm. Theorem 1 illustrates
how this works in the context of lower bounds for PSPACE. The approach is also capable of
being adapted to lower bounds for other problems such as Permanent, as shown in Sections 3
and 5.

White-Box Algorithmic Tasks in the Cryptographic Regime. Our approach puts the
spotlight on white-box circuit-based algorithmic tasks in the cryptographic regime, where
the algorithm does not have the resources to simulate the circuit it gets as input. To the
best of our knowledge, these kinds of algorithms have not been considered before. We
are specifically interested in sampling algorithms, and the extent to which sampling can
outperform simulation. There are some known results about the power of low-complexity
samplers, such as the work of Applebaum, Ishai and Kushilevitz[8] using the technique of
randomizing polynomials to show that in many contexts, NC1-samplable distributions can
be replaced by NC0-samplable distributions, and the work of Viola [53] initiating a line of
research on the complexity of distributions. Perhaps ideas from these works or related works
could be useful in approaching our algorithmic tasks.

Relevance to Known Barriers. Several previous attempts to attack NP vs P and related
problems have run into one or the other of various complexity barriers, including the
relativization barrier [11], the Natural Proofs barrier [48] and the algebrization barrier [1].
So it is important to examine how our approach fares against these barriers. As of now,
we envision our approach as relevant mostly to frontier questions such as separating NP
from uniform ACC0 and uniform TC0

2. It does not seem as though the relativization and
algebraization barriers are relevant to such weak circuit classes, as existing lower bounds for
weak circuit classes exploit weaknesses of the gate sets, and hence don’t work when oracle
gates with large fan-in occur in the circuit. The natural proofs barrier is not known to have
any relevance to uniform circuit lower bounds. Indeed, even in the case of non-uniform
circuit lower bounds against these classes, the natural proofs barrier would only be operative
if there are pseudo-random functions in ACC0 or TC0

2, and no compelling evidence exists for
the existence of such low-complexity pseudo-random functions.

1.4 Proof Ideas
We discuss here the ideas behind our approach and sketch the proofs of the connections from
algorithms to lower bounds. We first discuss the proof ideas behind Theorem 2, and then
the ideas behind Theorem 1.

Recall that our goal is to develop an algorithmic approach to uniform lower bounds
for NP and PSPACE. We would like our algorithmic approach to involve a conventional
algorithmic task, and for there to be complexity-theoretic evidence that the algorithmic task
is feasible. Ideally, the algorithmic task should require only a marginal improvement over
known algorithms.

CCC 2023

35:10 An Algorithmic Approach to Uniform Lower Bounds

Our starting point is an elegant idea of Hirahara [28]. Hirahara was interested in the
problem of proving uniform lower bounds for the problem RKt of determining whether an
input string x has high Kt complexity. Recall that the Kt complexity of a string is the
minimum of |p| + log(t) over programs p and time bounds t such that U t(p, ϵ) = x, i.e.,
a universal machine halts within t steps on input p and outputs x. RKt is known to be
EXP-complete [6] but only with respect to non-uniform truth-table reductions or NP Turing
reductions. It is a long-standing open problem whether RKt is in P. Hirahara showed that
RKt does not have P-uniform ACC0 circuits of polynomial size.

His idea is as follows: suppose that there is a non-trivial algorithm for satisfiability for a
circuit class C. Namely, we can find a satisfying assignment y of length n for a satisfiable
C-circuit C on n variables in deterministic time 2n/nω(1). Then it is not too hard to show that
y has Kt complexity n − ω(log(n)) conditioned on C. Now, if C itself were a uniform circuit
generated by an efficient procedure given input 1n, that implies that Kt(C) = O(log(n)),
and by first generating C and then generating y conditioned on C, we get that y has Kt
complexity n − Ω(log(n)).

We can use this to derive a contradiction to the assumption that RKt has P-uniform
C-circuits. We consider the uniform circuit ACC0 Cn assumed to solve RKt. The satisfying
assignments of Cn are precisely the hard Kt strings, and in particular we can assume that
every satisfying assignment has Kt complexity n − Ω(log(n)). But then the argument in the
previous para yields a contradiction, since y is a satisfying assignment to Cn and has Kt
complexity n − ω(log(n)).

Since we know that satisfiability of ACC0 circuits can be solved in non-trivial time [58],
we derive a P-uniform ACC0 lower bound for RKt. This is still quite far from the desired
result showing RKt ̸∈ P, but it constitutes some progress. Hirahara uses similar ideas to show
that the set of Kt-random strings is not in P for any super-polynomial t.

While the idea of the proof is novel, the lower bound result for RKt is still in the
complexity-theoretic regime of lower bounds, since we are trying to prove uniform super-
polynomial lower bound for a language that is known to be complete for exponential time.
However, we observe that this isn’t intrinsic to the approach; rather it depends on which
notion of resource-bounded Kolmogorov complexity we analyze. In this case, we analyzed
Kt complexity, but in principle we could analyze some other resource-bounded Kolmogorov
complexity measure.

In particular, let us imagine trying to upper-bound the Kpoly complexity of satisfying
assignments to circuits. Our reason for doing this is that the language of hard Kpoly strings is
in NP, hence if we are able to carry through an argument analogous to Hirahara’s argument,
we might be able to show a uniform circuit lower bound for NP. One obstacle that presents
itself is that it is unclear what sort of algorithm we need to analyze in order to upper bound
the Kpoly complexity of solutions. Another obstacle is that it is unclear even why there should
be a solution of low Kpoly complexity.

Let us try to address the second obstacle first, and come up with an algorithmic task
where there are likely to be solutions of non-trivial Kpoly complexity. Here we make a crucial
observation: Hirahara considers the Satisfiability problem for general circuits, but in fact we
can consider the Satisfiability problem for dense circuits instead. The reason is that if we
are going to use the argument on a circuit that is presumed to decide the set of hard Kpoly

strings correctly, the circuit will have many accepting inputs, since a random string is likely
to be Kpoly-hard.

Considering Dense Circuit Satisfiability makes our approach more plausible, since if we
make cryptographic derandomization assumptions, we are at least likely to have solutions
with low Kpoly complexity conditioned on the circuit. However, the first obstacle remains - it
is not clear how to analyze Kpoly complexity of solutions for any natural algorithmic task.

R. Santhanam 35:11

Our idea is to use probabilistic notions of time-bounded Kolmogorov complexity. Several
notions of probabilistic time-bounded Kolmogorov complexity have recently been defined
and studied in [43, 35, 24, 36, 34]. A notion that is ideal for our purposes is the notion of
pKpoly [24, 36]. Intuitively, a string x has low pKpoly string if for most random strings r of a
given polynomial length, there is a small description pr from which x can be reconstructed
in polynomial time given r. This notion of probabilistic Kolmogorov complexity has two
very appealing features. First, pKpoly complexity turns out to be closely tied to a very
natural algorithmic task, namely sampling solutions of search problems. This allows us to
define a natural algorithmic task that makes no reference to Kolmogorov complexity notions.
Second, pKpoly complexity has a so-called Optimal Coding Theorem, which implies that
strings sampled efficiently with probability p have pKpoly complexity very close to log(1/p).
This allows us to define an algorithmic task that involves just a non-trivial improvement in
success probability over existing efficient algorithms.

The price we pay is that the language of hard pKpoly strings is no longer in NP. However,
we can define a promise version of the language of hard strings which is in AM, and this
turns out to be sufficient for our purposes, by using an additional idea.

However, our assumption in Theorem 2 is for the succinct version of Dense Circuit
Satisfiability. In order to use this version, we observe that we use the assumption of feasibility
of algorithmic tasks only on uniform circuits, which are succinctly representable. In fact,
when we are arguing by contradiciton, we can efficiently recover a succinct description of the
circuit, where the description itself belongs to the class of circuits that are being described.
This additional step allows us to complete the proof of Theorem 2.

To extend this proof idea to lower bounds for PSPACE in Theorem 1, we show that it
is enough to simply change the resource requirements of the algorithmic tasks to a fixed
polynomial space bound rather than a fixed polynomial time bound. The natural idea for
analyzing this would be to consider a notion of space-bounded Kolmogorov complexity, but
our argument by contradiction finds a short-cut. We use an argument by contradiction
again to observe that if indeed PSPACE had small uniform circuits, then PSPACE = P. This
implies that our small-space sampling algorithm can be simulated by a time-efficient sampling
algorithm, and then we can use the same machinery as in Theorem 2 to complete the proof.

For Theorem 3, we use the fact [26] that one-way functions imply the existence of
cryptographic pseudo-random generators (PRG) with seed length nϵ for any ϵ > 0. A
cryptographic PRG can be used to solve our sampling task efficiently by simply outputting a
random element in the range of the PRG, which can be done in time a fixed polynomial in n.
By the pseudo-randomness property, most elements of the range will be satisfying assignment
of the dense circuit on which we are solving the sampling task, and each such element will
be output with probability 2−nϵ , which is non-trivial. Note that we do not even need to look
at the circuit on which we are solving the sampling task.

For the algorithmic characterization of PSPACE ̸= P, we use certain properties of the set
of strings L = MKSP[

√
n] of Kolmogorov space-bounded complexity at most

√
n. It follows

from [6] that L is hard on average for polynomial time in a zero-error sense if PSPACE ̸= BPP,
and it can be shown using ideas in [49] that the hardness on average of L implies the existence
of a crytographic hitting-set generator against polynomial size circuits. A cryptographic
hitting-set generator can be used to solve our sampling task space-efficiently using the
observations in the previous paragraph. To complete our characterization, we use a standard
result from derandomization [32], namely that either E has circuits of size 2o(n) infinitely
often or BPP = P.

The proof of Theorem 5 proceeds by designing efficient non-trivial sampling algorithms
with PH oracle for the succinct version of Dense C Satisfiability for C = AC0 ◦ (Modm) and
C = AC0 ◦ Thr.

CCC 2023

35:12 An Algorithmic Approach to Uniform Lower Bounds

Several recent works in various areas of complexity theory, including learning theory,
pseudorandomness, cryptography, structural complexity and proof complexity, have developed
and exploited ideas from meta-complexity, i.e., the complexity of complexity. We refer to [5]
for a recent survey. The ideas of our proof are another illustration of this phenomenon. Like
the recent work of Hirahara [29] on average-case hardness of NP from exponential worst-case
assumptions, our results use meta-complexity as a catalyst: the results make no reference to
meta-complexity, yet the proofs use meta-complexity crucially.

2 Preliminaries

2.1 Standard Complexity Notions
The textbook by Arora and Barak [9] is an excellent reference for basic notions in complexity
theory. Here we recall a few that are especially relevant to this paper.

Computational problems are typically modelled as decision problems, where each input is
either accepted or rejected. Occasionally we are interested in promise problems, where the
set of accepted inputs is disjoint from the set of rejected inputs, but some inputs might not
belong to either category. Formally, a promise problem Γ over {0, 1} is a pair (ΓY ES , ΓNO)
where ΓY ES , ΓNO ⊆ {0, 1}∗ and ΓY ES ∩ ΓNO = ∅. The complement of a promise problem
(ΓY ES , ΓNO) is the promise problem (ΓNO, ΓY ES). We say that a language L is consistent
with a promise problem Γ = (ΓY ES , ΓNO) if ΓY ES ⊆ L and ΓNO ⊆ L̄.

We will need to be careful about which Turing machine model we consider, since we are
often interested in computations that run in sub-linear time. We will use the random access
Turing machine model, where each tape of a multi-tape Turing machine has a corresponding
address tape. When the address tape for tape k has index i written on it, and the machine
enters a special tape, the contents of the i’th tape cell of the k’th tape can be accessed in unit
time. We also consider oracle Turing machines, where the random access Turing machine
is provided with a separate oracle tape, on which queries to the oracle can be made, and
answered in unit time.

We will be considering various standard circuit classes, including the class AC0
d of constant-

depth circuits of depth d with AND and OR gates, the class AC0
d[p] of constant-depth circuits

of depth d with AND, OR and MOD p gates for prime p, the class ACC0 of constant-depth
circuits of depth d with AND, OR and modular gates, the class TC0

d of depth-d threshold
circuits, the class Formula of Boolean formulas, and the class Circuit of Boolean circuit. By
default, whenever we refer to a circuit class, we will mean the non-uniform version of the
circuit class. However, as is standard terminology, NC1 will refer to LOGTIME-uniform
circuits of logarithmic depth. We will occasionally abuse notation and use the name of a
circuit class to refer to the circuit class as well as to the class of languages decided by the
circuit class.

We will mainly be using two standard notions of uniformity for circuits: LOGTIME-
uniformity and LOGSPACE-uniformity. We refer to [12] for precise definitions of these
notions as well as a detailed discussion on motivation. Briefly, LOGTIME-uniformity means
that the direct connection language of a sequence {Cn} of circuits, encoding types of gates
and connections between them in a natural way, is decidable in time logarithmic in the
size of the circuit. LOGSPACE-uniformity means that the direct connection language of
{Cn} is decidable in logarithmic space; equivalently, a description of Cn can be computed
in logarithmic space given 1n as input. The main property we will require of LOGTIME-
uniformity is that any given bit of the description of a LOGTIME-uniform circuit C can be
computed in time logarithmic in the size of the circuit. This is the case when a circuit is
represented in a standard way, i.e., as a list of gate types and connections between gates in
some pre-determined order.

R. Santhanam 35:13

We won’t formally define direct connection languages, since the details depend on the
circuit classes of interest, and we consider a wide variety of circuit classes. However, in
each case, we will be able to answer questions about the gate type, about whether the
i’th child of a gate is a certain other gate, and about whether a gate has more than i

inputs using a single query to the direct connection language. Things get a bit subtle when
considering circuits where the gates have weights, eg., threshold gates which check whether
an integer-weighted sum of inputs is at least some integer value, or modular gates which
check whether integer-weighted sums of the inputs belong to some set of values modulo a
given integer. Indeed, we consider AC0 circuits with a bottom layer of Modm or Thr gates in
Section 5, and we assume there that the gates are irredundant, i.e., that the weights aren’t
unnecessarily large. In particular, we assume that the weights for any Modm gate are at
most m, and that the weights for a threshold gate on n inputs is at most nO(n), which is
true without loss of generality [39]. In these cases, the weights can be extracted using a fixed
polynomial number of queries to the direct connection language - this will be crucial in the
proofs of our new lower bounds.

We will also refer to POLYLOG-uniformity, where the direct connection language is
decidable in time poly-logarithmic in the size of the circuit.

We say that a circuit class C is polynomially simulatable if there is a polynomial-time
algorithm which, given a circuit C from C and an input x to C, computes C(x).

▶ Proposition 6. Suppose a circuit class C is polynomially simulatable, and let L be a language
that has LOGTIME-uniform (resp. LOGSPACE-uniform) C-circuits of polynomial size. Then
L has LOGTIME-uniform (resp. LOGSPACE-uniform) Boolean circuits of polynomial size.

Recall that CH [54, 45] is the counting hierarchy, whose first level CH1 = PP and i’th
level CHi = PPCHi−1 . We will also need Toda’s theorem [52].

▶ Theorem 7 ([52]). PH ⊆ PPP = P#P.

2.2 Meta-Complexity
Here we define various notions of Kolmogorov complexity that will be needed in this work.

Throughout, we fix a time-efficient universal Turing machine U . Notions of Kolmogorov
complexity are defined relative to this universal machine U , but since the notions and results
we use are robust to the precise choice of the universal machine, we suppress the dependence
on U .

Given a string x, the Kolmogorov complexity K(x) is defined to be the size of the smallest
program p such that U(p, ϵ)) = x. Given a time bound t : N → N and a string x, the t-time
bounded Kolmogorov complexity of x is defined as follows: Kt(x) is the size of the smallest
program p such that U t(|x|(p, ϵ) = x, where UT means that that the universal machine is
restricted to run for at most T steps.

K and Kt are deterministic notions of Kolmogorov complexity, in that a string is recovered
from its compressed representation by a deterministic program. We require a probabilistic
notion of Kolmogorov complexity recently introduced in [24].

Given a time bound t : N → N, a string x and a number ρ ∈ [0, 1], we say that x has
ρ-confidence pKt complexity at most k if for at least ρ fraction of random strings r of length
t(|x|), there is a program pr, |pr| ⩽ k, for which U t(|x|)(pr, r) = x.

▶ Proposition 8. For any time bound t : N → N, non-negative integers n, k and ρ ∈ [0, 1], at
most 2k+1/ρ strings have ρ-confidence pKt-complexity at most k.

CCC 2023

35:14 An Algorithmic Approach to Uniform Lower Bounds

Let t : N → N be a time bound. Given a complexity parameter s : N → N and real
numbers ρ, δ ∈ [0, 1] such that δ < ρ, we define the meta-complexity promise problem
RpKt [s, ρ, δ] = (ΓY ES , ΓNO), with ΓY ES , ΓNO ⊆ {0, 1}∗ and ΓY ES ∩ ΓNO = ∅, as follows. A
string x ∈ ΓNO if the ρ-confidence pKt complexity of x is at most s(|x|). A string x ∈ ΓY ES

if the δ-confidence pKt complexity of x is not at most s(|x|).

▶ Proposition 9. RpKt [s, ρ, δ] ∈ coAM. Moreover, if s(n) + log(1/δ) < n − 2 for each n ∈ N,
then ΓY ES contains at least a 3/4 fraction of all strings of length n.

2.3 One-Way Functions and Pseudorandomness
We need the standard cryptographic notion of a non-uniformly secure one-way function. In
fact, we define the length-preserving variant of the notion, which is without loss of generality.

▶ Definition 10. Let s : N → N. A function f = {fn}, fn : {0, 1}n → {0, 1}n is said to be
an s(·)-secure one-way function if for each sequence of circuits {Dn} of size poly(s(n)), we
have that Prx∼{0,1}n [f(D(f(x))) = f(x)] = 1/nω(1).

Next we define the notion of a cryptographic pseudo-random generator. For ease of
application, we define the notion slightly differently than the standard notion, with the
computability of the PRG measured as a function of the output size.

▶ Definition 11. Let ℓ : N → N be a function such that ℓ(n) ⩽ n for all n ∈ N. A
cryptographic pseudo-random generator with seed length ℓ is a function G = {Gn}, Gn :
{0, 1}ℓ(n) → {0, 1}n computable in time poly(n) such that for any algorithm D running in
time poly(n), | Pry∈{0,1}n D(y) − Prz∈{0,1}ℓ(n) D(G(z))| = 1/nω(1).

One of the foundational result in cryptography is that cryptographic pseudo-random
generators with small seed length can be based on the existence of one-way functions with
super-polynomial hardness.

▶ Theorem 12 ([26]). Suppose there is an nω(1)-secure one-way function. Then there is a
cryptographic pseudo-random generator with seed length no(1).

We will also need the notion of a cryptographic hitting set generator useful against a
circuit class C.

▶ Definition 13. Let ℓ : N → N be a function such that ℓ(n) ⩽ n for all n ∈ N, and let
C be a circuit class. A cryptographic hitting set generator with seed length ℓ against C is
a function G = {Gn}, Gn : {0, 1}ℓ(n) → {0, 1}n computable in time poly(n) such that for
any sequence of C-circuits {Cn} such that Cn accepts at least a 1/n fraction of n-bit inputs
for large enough n, there exists a sequence {yn} with yn ∈ {0, 1}ℓ(n) for each n such that
C(Gn(yn)) = 1.

2.4 Search Problems and Samplers
The algorithmic tasks we consider will involve solving search problems. We first define the
notion of a promise search problem.

▶ Definition 14. A promise search problem S is a pair (R, X) where R ⊆ {0, 1}∗ is a
polynomial-time computable binary relation and X ⊆ {0, 1}∗ is a subset of inputs. A solution
to the search problem S on input x is any string y such that (x, y) ∈ R. We say that an
algorithm A solves the promise search problem S if for each x ∈ X, A outputs a solution to
S on x if one exists.

R. Santhanam 35:15

We will be interested in a specific promise search problem where the task is to find
satisfying assignments of circuits that accept most of their inputs.

▶ Definition 15. Let C be a circuit class. The promise search problem Dense − C − SAT is
defined by the following binary relation R and input set X. R consists of all pairs (C, x),
where C is (the encoding of) a C-circuit, and x is a satisfying assignment of C. X consists
of all C-circuit C such that C accepts at least a 2/3 fraction of its inputs.

For technical reasons, we will also need the notion of a sampler. Note that our notion of
sampler simply models an algorithm that samples a distribution, and is not related to the
notion of sampler in the theory of randomness extraction.

▶ Definition 16. A sampler is a polynomial-time randomized algorithm which, given 1n as
input for n ∈ N, samples a distribution on n-bit outputs.

3 From Algorithms to Uniform Lower Bounds

In this section, we show our main results about connections from circuit sampling tasks to
uniform lower bounds for NP, PSPACE and Permanent.

3.1 An Algorithmic Approach to Uniform Lower Bounds for NP
We first define the algorithmic task we will consider in this sub-section.

▶ Definition 17. Given circuits C and C ′, we say that C encodes C ′ if the Boolean function
computed by C is the direct connection language of C ′.

▶ Definition 18. Let C be a circuit class. We say that there is efficient non-trivial sampling
(resp. efficient non-trivial sampling with PH oracle) for the succinct version of Dense−C−SAT
if for every k > 0 there is a probabilistic algorithm A (resp. probabilistic algorithm A with
PH oracle) which, given 1n and a C-circuit C of size at most n, where C encodes a C-circuit
C ′ of size at most nb on n variables accepting at least a 2/3 fraction of its inputs, runs in
time nd (for some constant d independent of b) and outputs some fixed satisfying assignment
y to C ′ with probability at least nk/2n.

The following is a version of the Optimal Coding Theorem for pKt in [36] with slightly
improved parameters6 that are important in our application.

▶ Lemma 19. Let S be a sampler that runs in time ns on input of length n, where s > 0 is
a constant. There is a constant β such that if S samples some y ∈ {0, 1}n with probability p,
then y has 3/4-confidence pKnβs

complexity at most log(1/p) + 3 log(n).

In fact it can be shown for any search problem that sampling of a fixed solution to
the search problem with non-trivial probability is equivalent to the existence of solutions
that have non-trivial conditional pKpoly complexity, for an appropriately defined notion of
conditional pKpoly complexity. We do not pursue this direction here to avoid detracting from
the focus of the paper on approaches to uniform lower bounds.

We need an easy lemma to allow us to deal with the issue of promise problems.

6 Specifically, the coding theorem in [36] involves an additive term that is logarithmic in the time bound
of the sampler, while the additive term in our bound is logarithmic in the input length of the sampler

CCC 2023

35:16 An Algorithmic Approach to Uniform Lower Bounds

▶ Lemma 20. Let Γ be a promise problem in coAM. If NP = P, then there is a language LΓ
consistent with Γ such that LΓ ∈ P.

We are now ready to establish the main result of this sub-section. The following is a
more formal version of Theorem 2.

▶ Theorem 21. Let C be a polynomially simulatable circuit class. Suppose that there is
efficient non-trivial sampling with PH oracle for the succinct version of Dense − C − SAT.
Then NP does not have LOGTIME-uniform C-circuits of polynomial size.

Theorem 21 is very general in that there are no constraints on the circuit class C apart
from polynomial simulatability, and in particular we do not require any closure properties of
C. We immediately obtain the following corollaries. The first two corollaries concern frontier
questions in complexity theory, and the last two concern two of the central problems in the
area.

▶ Corollary 22. Suppose that for any d ∈ N there is efficient non-trivial sampling with PH
oracle for the succinct version of Dense − ACC0

d − SAT. Then NP does not have LOGTIME-
uniform ACC0-circuits of polynomial size.

▶ Corollary 23. Suppose that there is efficient non-trivial sampling with PH oracle for
the succinct version of Dense − TC0

2 − SAT. Then NP does not have LOGTIME-uniform
TC0

2-circuits of polynomial size.

▶ Corollary 24. Suppose that there is efficient non-trivial sampling with PH oracle for the
succinct version of Dense − Formula − SAT. Then NP ̸= NC1.

▶ Corollary 25. Suppose that there is efficient non-trivial sampling with PH oracle for the
succinct version of Dense − Circuit − SAT. Then NP ̸= P.

3.2 An Algorithmic Approach to Uniform Lower Bounds for PSPACE
Theorem 21 gives an algorithmic approach to showing uniform lower bounds for NP. It is
natural to ask if there is a similar algorithmic approach involving an easier algorithmic task
toward showing uniform lower bounds for larger classes such as PSPACE. We provide an
affirmative answer in this sub-section.

We begin by defining a space-efficient notion of sampling.

▶ Definition 26. Let C be a circuit class. We say that there is space-efficient non-trivial
sampling for Dense −C− SAT if for every k > 0 there is a d > 0 and a probabilistic algorithm
A such that for every b > 0, when A is given an instance C of Dense − C − SAT, where C is
of size m = nb on n variables, A has space and randomness complexity nd for some fixed
constant d, and outputs some fixed satisfying assignment y to C with probability at least
nk/2n.

We would like to show that space-efficient non-trivial sampling for Dense −C− SAT leads
to lower bounds for PSPACE against LOGSPACE-uniform C-circuits of polynomial size. A
natural strategy to achieve this is to define a new notion of probabilistic space-bounded
Kolmogorov complexity and work in analogy to Section 3.2. But in fact we can short-circuit
this process and adapt the argument in Section 3.2 more directly, while still working with
time-bounded Kolmogorov complexity. We simply exploit the fact that our argument works
by contradiction, and our initial assumption implies that PSPACE = P, which means that
the space-bounded and time-bounded notions of Kolmogorov complexity essentially coincide.

The following is a more formal version of Theorem 1 from the Introduction.

R. Santhanam 35:17

▶ Theorem 27. Let C be a polynomially simulatable circuit class, and suppose that there
is space-efficient non-trivial sampling for Dense − C − SAT. Then PSPACE does not have
LOGSPACE-uniform C-circuits of polynomial size.

We immediately obtain the following corollary, which concerns a long-standing open
problem in complexity theory . Note that analogues of Corollaries 22, 23, 24 are known to
hold unconditionally for PSPACE by the space hierarchy theorem [51].

▶ Corollary 28. Suppose that there is space-efficient non-trivial sampling for Dense−Circuit−
SAT. Then PSPACE ̸= P.

There are a couple of differences in the hypothesis of Theorem 27 as compared to Theorem
21. The first is that the sampling algorithm isn’t given access to an oracle. However, this is an
insignificant difference. Given a space-efficient sampling algorithm access to a PSPACE oracle
doesn’t really increase its power, as PSPACE is closed under polynomial-space reductions.

The second is that the sampling algorithm is given the entire circuit as input rather
than a succinct representation of it. At first sight, this looks more like a hypothesis about a
white-box algorithm rather than about a restricted white-box algorithm. But in fact, the
hypothesis isn’t fully white box, as the sampling algorithm doesn’t have enough space to
simulate the input circuit in general. The input circuit can be of size an arbitrary polynomial
in n, while the sampling algorithm needs to run in space a fixed polynomial in n.

We could consider the succinct version of the sampling problem here too, and the
connection would still go through, just as in the proof of Theorem 21. This would yield
our desired conclusion under a weaker hypothesis, as space-efficient non-trivial sampling
implies space-efficient non-trivial sampling for the succinct version. Indeed, suppose we have
a space-efficient non-trivial sampling algorithm for the succinct version, where we are given a
circuit C of size at most n encoding a circuit C ′ on n variables for which we want to sample
a satisfying assignment. We could simulate any query to C ′ in the non-succinct version by
running C in the succinct version, which costs at most a fixed polynomial overhead in space.

Our reason for stating the weaker result here (by using a stronger hypothesis) is that in
some situations the stronger hypothesis seems more natural to attack, because it feels more
similar in flavour to the white-box version. Indeed, when we reprove versions of the space
hierarchy theorem using our approach in Section 5, we do establish the stronger hypothesis
for the circuit class of interest there.

An analogue of the stronger hypothesis could also be defined and considered in the setting
of uniform lower bounds for NP, but feels less achievable there, as it would involve solving the
sampling task without even reading the entire input circuit. This might still be possible for
weak circuit classes, such as depth-two circuits, but coming up with algorithmic approaches
to the hypothesis for stronger circuit classes might be hard. In contrast, when considering
the stronger hypothesis in the setting of uniform lower bounds for PSPACE, we are allowed to
read the entire input circuit, just not to use a large amount of space when trying to sample
from it.

An algorithmic approach to the problem of showing that Permanent is not in NC1 can be
developed along very similar lines to Theorem 21 and Theorem 27. Here Permanent is the
problem of computing the permanent of a Boolean matrix over the integers, encoded in a
standard way as a decision problem.

▶ Theorem 29. Let C be a polynomially simulatable circuit class that is closed under
projections. Suppose that there is efficient non-trivial sampling with CH oracle for the
succinct version of Dense − C − SAT. Then Permanent does not have LOGTIME-uniform
C-circuits of polynomial size.

CCC 2023

35:18 An Algorithmic Approach to Uniform Lower Bounds

4 Soundness of the Approach

4.1 Solving the Algorithmic Tasks under Standard Cryptographic
Assumptions

As discussed, one of the most important criteria for an algorithmic approach to a lower
bound problem is that the approach should be sound, i.e., there should ideally be evidence
that the relevant algorithmic task is feasible. We begin by providing cryptographic evidence
that the algorithmic tasks discussed in Section 3 are feasible. The following is a more formal
version of Theorem 3.

▶ Theorem 30. Suppose there is an nω(1)-secure one-way function. Let C be any circuit
class that is polynomially simulatable. Then there is efficient non-trivial sampling for
Dense − C − SAT. Indeed, there is a probabilistic algorithm A which, given a C-circuit C of
size m = nb on n variables accepting at least 2/3 of its inputs, runs in time nd (where d is
independent of b) and outputs some fixed satisfying assignment of C with probability 2−no(1) .

Note that the algorithm A in the proof of Theorem 30 is oblivious: it does not consult its
input. Thus the standard cryptographic assumption of the existence of one-way functions
implies an oblivious solution to our algorithmic task, while we only require a constrained
white-box solution.

It turns out that if we are interested in a white-box solution to the algorithmic tasks that
is not constrained, i.e., the algorithm is not required to be efficient, then the task is indeed
solvable with non-trivial probability by a sampling argument.

▶ Theorem 31. Let C be any polynomially simulatable circuit class. For each k > 0 there is a
probabilistic algorithm A which, given a C-circuit Cof size poly(n) on n variables accepting at
least 2/3 fraction of its inputs, runs in time poly(n) and outputs a fixed satisfying assignment
y of C with probability at least nk/2n for large enough n ∈ N.

4.2 Necessity of the Approach
We have argued that our algorithmic approach is sound, but could it be that what we require
algorithmically is much stronger than what is needed? Next we show that under plausible
complexity-theoretic assumptions, a version of our algorithmic approach to lower bounds
for NP and PSPACE is in fact necessary. Specifically, we define a uniform version of our
algorithmic approach, where efficient non-trivial sampling is only required for each uniform
sequence of circuits, rather than for circuits given as input to an algorithm. We observe that
our proofs in Section 3 go through if the uniform version is feasible, and then show that
under our complexity assumptions, NP ̸= P and PSPACE ̸= P actually imply the feasibility
of the uniform versions of our assumptions.

We need a standard complexity-theoretic derandomization assumption, as well as an
additional assumption about NP-hardness of a meta-complexity problem in the case of
uniform lower bounds for NP. We discuss the case of uniform lower bounds for NP first, and
then move on to the case of uniform lower bounds for PSPACE. First we define a uniform
version of our algorithmic approach for NP.

▶ Definition 32. Let C be a circuit class. We say that there is efficient non-trivial sampling
for the uniform version of Dense − C − SAT if for every k > 0 and every LOGTIME-uniform
sequence {Cn} of C-circuits of size poly(n) on n variables such that Cn accepts at least 2/3
fraction of inputs of length n, there is a probabilistic algorithm A which, given input 1n, runs
in time nd (for some constant d independent of the exponent in the size of Cn) and outputs
some fixed satisfying assignment y to Cn with probability at least nk/2n.

R. Santhanam 35:19

Next we require a standard derandomization result.

▶ Theorem 33 ([32]). Suppose E requires exponential-size Boolean circuits. Then BPP = P.

We need to define the meta-complexity problem MCSP and what it means for this problem
to be average-case hard and to be hard to approximate.

▶ Definition 34. Given a size function s : N → N where s(N) ⩽ N for each positive integer
N , we define the problem MCSP[s] as follows. YES instances of MCSP[s] are strings y of
length N where N = 2n for some integer n and fy has Boolean circuits of size at most s(N),
where fy is the Boolean function whose truth table is y.

We say that MCSP[s] is zero-error easy on average over the uniform distribution if there
is a deterministic polynomial-time algorithm which, given input y, always outputs 0, 1 or ’?’;
always correctly classifies y with respect to MCSP[s] when it outputs a Boolean value; and
outputs a non-’?’ value with probability at least 1/poly(N) over y ∼ {0, 1}N . We say that
MCSP[s] is zero-error hard on average over the uniform distribution if it is not zero-error
easy on average over the uniform distribution.

Given a function γ : N → N, we say that MCSP is γ-hard to approximate (resp. γ-hard
to approximate probabilistically) if there is no polynomial time algorithm (resp. probabilistic
polynomial time algorithm) solving the following promise problem Γ. ΓY ES consists of tuples
(y, 1s) such that y is the truth table of a function with Boolean circuits of size at most s.
ΓNO consists of tuples (y, 1s) such that y is the truth table of a function with no Boolean
circuits of size at most γ(|y|)s.

We say that it is NP-hard to γ-approximate MCSP if there is a polynomial-time reduction
from SAT to the promise problem Γ described above.

We will use the following approximation to average-case reduction of Hirahara [27].

▶ Theorem 35 ([27]). Suppose that MCSP is N1−ϵ-hard to approximate probabilistically for
each ϵ > 0. Then for each δ > 0, MCSP[N δ] is zero-error average-case hard over the uniform
distribution.

Now we are ready to prove our result about necessity of the uniform version of our
algorithmic approach in the case of uniform lower bounds for NP.

▶ Theorem 36. Suppose that E requires exponential-size Boolean circuits, and moreover that
MCSP is NP-hard to N1−ϵ-approximate for each ϵ > 0. Then NP ̸= P iff there is efficient
non-trivial sampling for the uniform version of Dense − Circuit − SAT.

Given that the uniform version of the algorithmic approach suffices to show NP ̸= P,
one might ask why we do not highlight this version in Section 3. The reason is that this
algorithmic task is not very naturally defined, since it has a unary input and refers to a
uniform circuit family. We find the algorithmic tasks defined and studied in Section 3 more
natural, in that an arbitrary circuit from the class C is provided as input.

Next we tackle the generality question for our algorithmic approach to lower bounds for
PSPACE. We first define a uniform version of the algorithmic approach.

▶ Definition 37. Let C be a circuit class. We say that there is space-efficient non-trivial
sampling for the uniform version of Dense −C− SAT if for every k > 0 and every LOGTIME-
uniform sequence {Cn} of C-circuits of size poly(n) on n variables such that Cn accepts at
least 2/3 fraction of inputs of length n, there is a probabilistic algorithm A which, given input
1n, has space and randomness complexity at most nd (for some constant d independent of
the exponent in the size of Cn) and outputs some fixed satisfying assignment y to Cn with
probability at least nk/2n.

CCC 2023

35:20 An Algorithmic Approach to Uniform Lower Bounds

We require the notion of KS complexity and the corresponding meta-complexity problem
MKSP.

▶ Definition 38. The KS complexity of a string x is defined as follows, relative to some
space-efficient universal Turing machine U . KS(x) is the minimum over |p| + s such that
U(p, ϵ) halts and outputs x using space at most s.

Given a function s : N → N, MKSP[s] is the set of strings x such that KS(x) ⩽ s(|x|).
We say that MCSP[s] is zero-error easy on average over the uniform distribution if there is
a deterministic polynomial-time algorithm which, given input y, always outputs 0, 1 or ’?’;
always correctly classifies y with respect to MCSP[s] when it outputs a Boolean value; and
outputs a non-’?’ value with probability at least 1/poly(n) over y ∼ {0, 1}n. We say that
MCSP[s] is zero-error hard on average over the uniform distribution if it is not zero-error
easy on average over the uniform distribution.

We will use the following result which establishes that MKSP is PSPACE-hard even on
average.

▶ Theorem 39 ([6]). If PSPACE ̸= BPP, then for each constant δ > 0, MKSP[nδ] is zero-error
hard on average under the uniform distribution.

Finally we are ready to show our result in the case of uniform lower bounds for PSPACE.

▶ Theorem 40. Suppose that E requires exponential-size Boolean circuits. Then PSPACE ̸= P
iff there is infinitely-often space-efficient non-trivial sampling for the uniform version of
Dense − Circuit − SAT.

As an easy corollary of Theorem 40, we derive an algorithmic characterization of PSPACE ̸=
P. We show that separating PSPACE and P, which is a lower bound question, is equivalent to
the existence of at least one of two kinds of algorithms: a sub-exponential time non-uniform
algorithm for E that works on infinitely many input lengths, or a space-efficient non-trivial
sampling algorithm for the unfiorm version of Dense − Circuit − SAT.

The following is a re-statement of Theorem 4.

▶ Corollary 41. PSPACE ̸= P iff E has circuits of size 2o(n) infinitely often or there is
infinitely-often space-efficient non-trivial sampling for the uniform version of Dense−Circuit−
SAT.

5 Feasibility of the Approach

In this section, we argue for the feasibility of our approach. We first show that uniform
versions of most super-polynomial circuit lower bounds for NP can be captured within
the framework, and then that some of the best-known uniform lower bounds proved using
diagonalization, such as the space hierarchy theorem and Allender’s lower bound for the
Permanent, can be reproved using our approach. Then we show how to prove a couple of
new lower bounds: NP does not have uniform polynomial-size AC0 circuits with a bottom
layer of Mod m gates, for any composite m, nor uniform polynomial-size AC0 circuits with a
bottom layer of threshold gates.

5.1 Capturing Known Lower Bounds
Complexity theorists have had success proving super-polynomial circuit lower bounds for
NP against a variety of weak circuit classes, such as AC0 and AC0[p] (for primes p). We
observe that the proofs of these lower bounds imply efficient non-trivial sampling for the

R. Santhanam 35:21

corresponding circuit classes, and hence our framework applies. Of course our framework
only yields uniform lower bounds, which are weaker than the non-uniform lower bounds
already known for these classes. However our hope is that the framework might be useful
even for stronger circuit classes where non-uniform lower bounds in NP are not known, and
in order for this to be credible, the framework should at least apply in cases where lower
bounds are known.

We use the fact that super-polynomial size lower bounds for NP against AC0 and AC0[p]
yield cryptographic hitting set generators against these classes with non-trivial seed length.

▶ Theorem 42 ([41, 4, 19, 30]). There is a cryptographic hitting set generator with seed length
polylog(n) useful against AC0 and, for any prime p, a cryptographic hitting set generator
with seed length n −

√
n useful against AC0[p].

In fact the work of [41, 4, 19, 30] gives cryptographic pseudo-random generators rather
then just cryptographic hitting-set generators, but the weaker hitting property satisfies for
our application.

▶ Corollary 43. There is efficient non-trivial sampling for the succinct versions of Dense −
AC0 − SAT and Dense − AC0[p] − SAT.

The corollary follows from Theorem 42 by just sampling a random output of the generator,
which can be done in fixed polynomial time in n independent of the size of the circuit on
n bits for which we are solving the sampling problem. Note that by the hitting property,
at least one of the outputs of the generator will satisfy the circuit, and each such output
is sampled with probability 2−ℓ(n), where ℓ(n) is the seed length of the generator, which is
non-trivial by Theorem 42.

We next show that versions of some of the classical results on uniform lower bounds in the
literature, shown using direct or indirect diagonalization, can be shown using our framework.
First, we consider versions of the space hierarchy theorem.

▶ Theorem 44. Let C be the class of branching programs of polynomial size. There is
space-efficient non-trivial sampling for Dense − C − SAT.

▶ Corollary 45 ([51]). PSPACE ̸= LOGSPACE.

Corollary 45 follows from Theorem 44 by applying Theorem 27, since the class of branching
programs of polynomial size is polynomially simulatable.

We remark that the standard proof of the space hierarchy theorem is a fairly simple
direct diagonalization, so the proof of Corollary 45 does not have any advantage in terms of
simplicity. In addition, Corollary 45 does not give the tight parameters of the space hierarchy
theorem, i.e., separating space S from space S′ for any space-constructible bounds S, S′

where S = o(S′). The reason that Theorem 27 does not give the tight space hierarchy is that
tighter separations correspond to simulation of circuit classes C that are not known to be
polynomially simulatable, i.e., branching programs of super-polynomial size. However, the
tight space hierarchy can be recovered using the ideas of the proof of Theorem 27, by defining
and applying an appropriate space-bounded version of Kolmogorov complexity. We omit the
details, as we do not see how to obtain a new result on space hierarchies using these ideas.

Next, we show how to rederive Allender’s celebrated uniform lower bound for the Per-
manent using our approach [3]. To show the efficient non-trivial sampling required to derive
this lower bound, we need a lemma about the evaluation of succinctly described threshold
circuits. For convenience, we will work with Majority circuits instead, and then use the fact
that uniform depth d threshold circuits can be simulated by uniform depth d + 1 Majority
circuits.

CCC 2023

35:22 An Algorithmic Approach to Uniform Lower Bounds

For any positive integer d, define the language Succinct-Maj0d-Eval to be the set of pairs
< C, x >, where C is a Majd circuit of size n encoding a Majd circuit C ′ on n variables, and
x is an input of length n, satisfying the condition that C ′(x) = 1.

▶ Lemma 46. Let d be any positive integer. Succinct-Majd-Eval is in CH.

▶ Theorem 47. Let d be any positive integer.There is efficient non-trivial sampling with CH
oracle for the succinct version of Dense − Majd − SAT.

▶ Corollary 48 ([3]). Permanent does not have LOGTIME-uniform TC0 circuits of polynomial
size.

We explain briefly how the proofs of Corollary 45 and Corollary 48 differ from the
standard proofs. The standard proof of the space hierarchy [51] combines two ingredients: (i)
The existence of a space-efficient universal Turing machine U that can simulate any Turing
machine M with at most a constant factor overhead in space, and (ii) The idea of directly
diagonalizing against all Turing machines operating in a given space bound by mapping
inputs x to Turing machines Mx in a surjective way and doing the opposite of Mx on x. The
proof of Corollary 45 replaces the simulation ingredient (i) with the existence of a non-trivial
space-efficient sampling algorithm, and the direct diagonalization part (ii) with a different
diagonalization argument based on resource-bounded Kolmogorov complexity.

The standard proof of Allender’s lower bound [3] is an indirect diagonalization argument
with the following parts: (i) A time hierarchy theorem for threshold Turing machines proved
in an analogous way to the space hierarchy theorem, with a simulation step and a direct
diagonalization step, and (ii) An inductive argument showing that if the Permanent has small
uniform threshold circuits, so does every level of the counting hierarchy; then combining (i)
and (ii) to derive a contradiction. The proof of Corollary 48 still uses the ingredient (ii), but
replaces the simulation step of (i) with a sampling step, and the direct diagonalition step
with a diagonalization argument based on resource-bounded Kolmogorov complexity.

The broader point we wish to make is that our framework is capable of capturing both
direct and indirect diagonalization arguments, since the sampling condition we require seems
weaker than the simulation conditions in previous diagonalization arguments, and hence
potentially capable of proving a broader class of lower bounds. This is related to Theorem 31,
which shows that efficient non-trivial sampling exists unconditionally in a white box setting.

5.2 New Lower Bounds
Ideally, we would like to be able to use our new approach to attack frontier open problems
in uniform circuit lower bounds, such as separating NP from LOGTIME-uniform ACC0 and
separating NP from LOGTIME-uniform TC0

2. While we are unable to do this, we are able to
show lower bounds in NP against interesting subclasses of these circuit classes, namely against
LOGTIME-uniform AC0 circuits with Modm gates at the bottom (for an arbitrary positive
integer m), and against LOGTIME-uniform AC0 circuits with Thr gates at the bottom. To
show lower bounds in NP against the non-uniform versions of these classes is a longstanding
open problem (though we do know lower bounds in NQP [59, 40]), and to the best of our
knowledge, lower bounds in NP against the uniform versions have also been open so far.

▶ Theorem 49. Let d, m be any positive integers. NP does not have polynomial-size
LOGTIME-uniform AC0

d ◦ (Modm) circuits.

Examining the proof of Theorem 49, the only fact we used about the bottom layer of
gates is that they can be evaluated in fixed polynomial time in n. Hence the same proof also
gives the following result.

R. Santhanam 35:23

▶ Theorem 50. Let d be any positive integer. NP does not have polynomial-size LOGTIME-
uniform AC0

d ◦ Thr circuits.

Theorems 49 and 50 above together capture the content of Theorem 5 from the Introduc-
tion.

We note that the simulation arguments used for the non-trivial sampling in the proofs of
Theorem 49 and Theorem 50 are fairly generic. This leads us to believe that there might be
alternate proofs of these results using a more standard indirect diagonalization approach.
However, these results already seem new, and exploiting the fact that we only need sampling
rather than simulation to apply Theorem 21 might lead to even stronger lower bounds.

6 Future Work

We describe here some directions for future work.
The main direction is to develop new algorithmic ideas for the sampling problems we

consider, and use these to prove new lower bounds. In particular, it would be interesting
to explore if the ideas and techniques of [8] and [53] are useful here. A particular circuit
class of interest is the class of quasi-polynomial size SY M+ circuits, i.e., depth-two circuits
with a top symmetric gate and polylogarithmic fan-in AND gates at the bottom. Efficient
non-trivial sampling for the succinct version of this class would imply that NP does not have
LOGTIME-uniform ACC0 circuits of polynomial size.

Another question is whether there is an analogous approach to separating NP and PSPACE
from probabilistic uniform classes. For example, are there natural sampling tasks or similar
tasks such that efficient solutions imply NP ̸⊆ BPP?

While we provide one potential algorithmic approach to uniform lower bounds, there
might be others. It would be interesting to look into this, especially if these other approaches
are more feasible with the algorithmic techniques we have at present.

References
1 Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. In

Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC ’08), 2008.
To appear.

2 Miklos Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24:1–48,

1983.
3 Eric Allender. The permanent requires large uniform threshold circuits. Chic. J. Theor.

Comput. Sci., 1999, 1999.
4 Eric Allender. When worlds collide: Derandomization, lower bounds, and kolmogorov com-

plexity. Foundations of Software Technology and Theoretical Computer Science, 21, 2001.
5 Eric Allender. The new complexity landscape around circuit minimization. In Language and

Automata Theory and Applications - 14th International Conference, LATA 2020, volume 12038
of Lecture Notes in Computer Science, pages 3–16. Springer, 2020.

6 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger.
Power from random strings. SIAM Journal on Computing, 35(6):1467–1493, 2006.

7 Josh Alman and Lijie Chen. Efficient construction of rigid matrices using an NP oracle. In 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, pages 1034–1055.
IEEE Computer Society, 2019.

8 Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. In 45th Sym-
posium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome, Italy,
Proceedings, pages 166–175. IEEE Computer Society, 2004.

CCC 2023

35:24 An Algorithmic Approach to Uniform Lower Bounds

9 S. Arora and B. Barak. Complexity Theory: A Modern Approach. Cambridge University Press,
Cambridge, 2009.

10 László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity, 3(4):307–318,
1993.

11 Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P =? NP question.
SIAM Journal on Computing, 4(4):431–442, 1975.

12 David Barrington, Neil Immerman, and Howard Straubing. On uniformity within NC1.
Journal of Computer and System Sciences, 41, 1990.

13 Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal. Rigid matrices from
rectangular pcps or: Hard claims have complex proofs. In 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, pages 858–869. IEEE, 2020.

14 Peter Bürgisser, Christian Ikenmeyer, and Greta Panova. No occurrence obstructions in
geometric complexity theory. In IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS 2016, pages 386–395. IEEE Computer Society, 2016.

15 Lijie Chen. Non-deterministic quasi-polynomial time is average-case hard for ACC circuits. In
David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019, pages 1281–1304. IEEE Computer Society, 2019.

16 Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit lower bounds from
non-trivial derandomization. In 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, pages 1–12. IEEE, 2020.

17 Lijie Chen and Hanlin Ren. Strong average-case lower bounds from non-trivial derandomization.
In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, Chicago, IL, USA, June 22-26, 2020, pages 1327–1334. ACM, 2020.

18 Stephen Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

19 Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On beating the
hybrid argument. Theory Comput., 9:809–843, 2013.

20 Lance Fortnow. The status of the P versus NP problem. Communications of the ACM,
52(9):78–86, 2009.

21 Lance Fortnow and Adam R. Klivans. Efficient learning algorithms yield circuit lower bounds.
Journal of Computer and System Sciences, 75(1):27–36, 2009.

22 Merrick Furst, James Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, April 1984.

23 Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and
their cryptographic applications. Electron. Colloquium Comput. Complex., TR11-136, 2011.

24 Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor Carboni Oliveira. Probabilistic
kolmogorov complexity with applications to average-case complexity. In 37th Computational
Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of
LIPIcs, pages 16:1–16:60. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

25 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
18th Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

26 Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

27 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In 59th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, pages 247–258.
IEEE Computer Society, 2018.

28 Shuichi Hirahara. Unexpected hardness results for kolmogorov complexity under uniform
reductions. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, pages 1038–1051. ACM, 2020.

R. Santhanam 35:25

29 Shuichi Hirahara. Average-case hardness of NP from exponential worst-case hardness assump-
tions. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,, pages
292–302. ACM, 2021.

30 Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP and
its variants. In Ryan O’Donnell, editor, 32nd Computational Complexity Conference, CCC
2017, July 6-9, 2017, Riga, Latvia, volume 79 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

31 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

32 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium on the Theory
of Computing, pages 220–229, 1997.

33 Adam R. Klivans, Pravesh Kothari, and Igor Carboni Oliveira. Constructing hard functions
using learning algorithms. In Proceedings of the 28th Conference on Computational Complexity,
CCC 2013, pages 86–97. IEEE Computer Society, 2013.

34 Zhenjian Lu and Igor Carboni Oliveira. Theory and applications of probabilistic kolmogorov
complexity. Bull. EATCS, 137, 2022.

35 Zhenjian Lu, Igor Carboni Oliveira, and Rahul Santhanam. Pseudodeterministic algorithms
and the structure of probabilistic time. In STOC ’21: 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pages 303–316. ACM, 2021.

36 Zhenjian Lu, Igor Carboni Oliveira, and Marius Zimand. Optimal coding theorems in time-
bounded kolmogorov complexity. In 49th International Colloquium on Automata, Languages,
and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages
92:1–92:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

37 Ketan Mulmuley. On p vs np and geometric complexity theory: dedicated to sri ramakrishna.
Journal of the Association of Computing Machinery, 58(2), 2011.

38 Ketan Mulmuley and Milind Sohoni. Geometric complexity theory I: an approach to the P vs.
NP and related problems. SIAM Journal on Computing, 31(2):496–526, 2001.

39 Saburo Muroga. Threshold logic and its applications. Wiley, 1971.
40 Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-

polytime from a new easy witness lemma. SIAM J. Comput., 49(5), 2020.
41 Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70,

1991.
42 Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System

Sciences, 49(2):149–167, 1994.
43 Igor Carboni Oliveira. Randomness and intractability in kolmogorov complexity. In 46th

International Colloquium on Automata, Languages, and Programming, ICALP 2019, volume
132 of LIPIcs, pages 32:1–32:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

44 Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning algorithms,
circuit lower bounds, and pseudorandomness. In 32nd Computational Complexity Conference,
CCC 2017, volume 79 of LIPIcs, pages 18:1–18:49. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

45 Ian Parberry and Georg Schnitger. Parallel computation with threshold functions. J. Comput.
Syst. Sci., 36(3):278–302, 1988.

46 Alexander Razborov. Lower bounds for the monotone complexity of some boolean functions.
Soviet Mathematics Doklady, 31:354–357, 1985.

47 Alexander Razborov. Lower bounds on the size of bounded-depth networks over the complete
basis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987.

48 Alexander Razborov and Steven Rudich. Natural proofs. Journal of Computer and System
Sciences, 55(1):24–35, 1997.

CCC 2023

35:26 An Algorithmic Approach to Uniform Lower Bounds

49 Rahul Santhanam. Pseudorandomness and the minimum circuit size problem. In 11th
Innovations in Theoretical Computer Science Conference, ITCS 2020, volume 151 of LIPIcs,
pages 68:1–68:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

50 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the 19th Annual Symposium on Theory of Computing, pages
77–82, 1987.

51 Richard Stearns, Juris Hartmanis, and Philip Lewis. Hierarchies of memory limited computa-
tions. In Proceedings of the Sixth Annual Symposium on Switching Circuit Theory and Logical
Design, pages 179–190. IEEE, 1965.

52 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

53 Emanuele Viola. The complexity of distributions. SIAM J. Comput., 41(1):191–218, 2012.
54 Klaus W. Wagner. The complexity of combinatorial problems with succinct input representation.

Acta Informatica, 23(3):325–356, 1986.
55 R. Ryan Williams. Natural proofs versus derandomization. SIAM J. Comput., 45(2):497–529,

2016.
56 Richard Ryan Williams. Limits on representing boolean functions by linear combinations

of simple functions: Thresholds, relus, and low-degree polynomials. In 33rd Computational
Complexity Conference, CCC 2018, volume 102 of LIPIcs, pages 6:1–6:24. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

57 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. In
Proceedings of the 42nd Annual ACM Symposium on Theory of Computing, pages 231–240,
2010.

58 Ryan Williams. Non-uniform ACC circuit lower bounds. In Proceedings of 26th Annual IEEE
Conference on Computational Complexity, pages 115–125, 2011.

59 Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 194–202,
2014.

60 Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In 26th Annual Symposium on Foundations of Computer Science, pages 1–10. IEEE
Computer Society, 1985.

Colourful TFNP and Propositional Proofs
Ben Davis #

School of Computer Science, McGill University, Montreal, Canada

Robert Robere #

School of Computer Science, McGill University, Montreal, Canada

Abstract
Recent work has shown that many of the standard TFNP classes – such as PLS, PPADS, PPAD,
SOPL, and EOPL – have corresponding proof systems in propositional proof complexity, in the sense
that a total search problem is in the class if and only if the totality of the problem can be efficiently
proved by the corresponding proof system. We build on this line of work by studying coloured
variants of these TFNP classes: C-PLS, C-PPADS, C-PPAD, C-SOPL, and C-EOPL. While C-PLS
has been studied in the literature before, the coloured variants of the other classes are introduced
here for the first time. We give a family of results showing that these coloured TFNP classes are
natural objects of study, and that the correspondence between TFNP and natural propositional proof
systems is not an exceptional phenomenon isolated to weak TFNP classes. Namely, we show that:

Each of the classes C-PLS, C-PPADS, and C-SOPL have corresponding proof systems character-
izing them. Specifically, the proof systems for these classes are obtained by adding depth to the
formulas in the corresponding proof system for the uncoloured class. For instance, while it was
previously known that PLS is characterized by bounded-width Resolution (i.e. depth 0.5 Frege),
we prove that C-PLS is characterized by depth-1.5 Frege (Res(polylog(n))).
The classes C-PPAD and C-EOPL coincide exactly with the uncoloured classes PPADS and
SOPL, respectively. Thus, both of these classes also have corresponding proof systems: unary
Sherali-Adams and Reversible Resolution, respectively.
Finally, we prove a coloured intersection theorem for the coloured sink classes, showing C-PLS ∩
C-PPADS = C-SOPL, generalizing the intersection theorem PLS ∩ PPADS = SOPL. However,
while it is known in the uncoloured world that PLS ∩ PPAD = EOPL = CLS, we prove that this
equality fails in the coloured world in the black-box setting. More precisely, we show that there
is an oracle O such that C-PLSO ∩ C-PPADO ⊋ C-EOPLO.

To prove our results, we introduce an abstract multivalued proof system – the Blockwise Calculus –
which may be of independent interest.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases oracle separations, TFNP, proof complexity, Res(k), lower bounds

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.36

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/068/

Funding B.D. and R.R. supported by NSERC.

1 Introduction

1.1 Introduction to TFNP and Proof Complexity
This work continues a recent line of research relating the theory of total NP search problems
[22, 27] to the theory of propositional proof complexity.1 A total NP search problem is a
search problem S satisfying:

1 This paper is an extended abstract. Please see the full version at https://eccc.weizmann.ac.il/
report/2023/068/.

© Ben Davis and Robert Robere;
licensed under Creative Commons License CC-BY 4.0

38th Computational Complexity Conference (CCC 2023).
Editor: Amnon Ta-Shma; Article No. 36; pp. 36:1–36:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benjamin.davis2@mcgill.ca
mailto:robere@cs.mcgill.ca
https://doi.org/10.4230/LIPIcs.CCC.2023.36
https://eccc.weizmann.ac.il/report/2023/068/
https://eccc.weizmann.ac.il/report/2023/068/
https://eccc.weizmann.ac.il/report/2023/068/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Colourful TFNP and Propositional Proofs

Totality. On every input x, some solution y with |y| ≤ |x|O(1) is guaranteed to exist.
Efficient Certification. Checking if y is a valid solution for x is polynomial-time
computable.

The class TFNP contains all such search problems, and many important computational
problems lie inside of this class – such as the problem of computing a Nash equilibrium of a
bimatrix game, or the problem of computing a prime factor of a given number.

Since the initial study of TFNP it has been known that no problem in TFNP can be
NP-Hard unless NP = coNP [26]. As a result, in order to understand the internal structure
of TFNP, researchers have defined subclasses of TFNP based on polynomial-time reducibility
to fixed total search problems [27]. For example, some of the most well-studied subclasses of
TFNP can be defined by reductions to the following problems:

PLS. Given a directed acyclic graph, output a sink node.
PPAD. Given a directed graph with an unbalanced node (in-degree ̸= out-degree), output
another unbalanced node.
PPADS. Given a directed graph with a negatively unbalanced node (in-degree < out-
degree), output a positively unbalanced node (in-degree > out-degree).

The theory of TFNP has been an extraordinary success in capturing the complexity of
many computational problems that have avoided classification in other settings. For example,
the class PPAD captures the complexity of computing a Nash Equilibrium [15] along with
other important problems in economics [13, 11, 12].

Black-Box TFNP Classes and Propositional Proof Systems

An important caveat in the definitions of the above classes is in the input representation. It is
clear that all of the above problems are computationally easy (i.e. inside of P), if we are given
the directed graphs in some standard encoding like an adjacency list or an adjacency matrix.
Instead, in the definitions of the TFNP classes we assume that the inputs are given implicitly.
For instance, we can represent an (exponentially large) O(1)-degree directed graph G by a
polynomial-size boolean circuit C that, when given a node u ∈ V (G) as input, outputs the
list of in- and out-neighbours of u. When described in this implicit encoding, we can no
longer exhaustively search through the graph to find a solution to the search problem, but,
when given a potential solution we can still verify its correctness in polynomial time.

Another natural way of implicitly representing an input to a total search problem is
by using black-box (also called query) access, where the input is represented by an oracle.
Following the earlier example, now the graph G would be represented by an oracle which
receives a node u ∈ V (G) as input and outputs the list of neighbours of u. For now,
we informally define TFNPdt as the class of total search problems where the inputs are
represented as black-boxes in this way. The seminal work of Beame et al. [3] demonstrated
that this model is closely related to oracle separations between the standard TFNP classes.
In particular, if we have two black-box TFNP subclasses Adt and Bdt, then a containment
Adt ⊆ Bdt by a sufficiently uniform simulation implies that A ⊆ B – since we can always
simulate the black-box by evaluating the circuit – but if Adt ̸⊆ Bdt then there is an oracle O

such that AO ̸⊆ BO [3]. Beame et al. [3] used this strategy to construct oracle separations
between many pairs of TFNP classes that were not previously separated.

Another major contribution of Beame et al. [3] was pioneering the use of propositional
proof complexity in the study of TFNP classes. They showed that if a total search problem S

lies in the (black-box) class PPAdt ⊆ TFNPdt, then a particular unsatisfiable CNF formula
FS associated with S has efficient refutations in the well-studied algebraic Nullstellensatz

B. Davis and R. Robere 36:3

proof system. By combining this with a lower bound against Nullstellensatz proofs refuting
the pigeonhole principle Phpn+1

n they provided the first oracle separation between the classes
PPPO and PPAO. Proof complexity was also employed as a crucial tool by Buresh-Oppenheim
and Morioka [8], who used it to unify previous oracle separations in black-box TFNP and
also provide new results about the class PLSdt.

Very recently, the relationships between TFNPdt subclasses and propositional proof
systems have been revisited [10, 21, 20, 9]. One surprising outcome of the emerging work is
that: not only can proof complexity lower bounds be used to construct oracle separations (as
in [3]) but, proof complexity lower bounds in fact turn out to be equivalent to these oracle
separations! More formally, for many of the most well-studied TFNP classes A (e.g. A = PLS,
PPAD, PPADS, CLS = EOPL, SOPL), there is a corresponding propositional proof system
PA such that the following relationship holds:

A total search problem S lies in the class Adt

if and only if
The propositional encoding of the totality of S can be efficiently proved in PA.

These new equivalences led to a number of new results in both the theory of propositional
proof complexity and the theory of TFNP. In the theory of TFNP, for example, for each of
the classes listed above, such propositional proof systems not only exist, but they are natural
proof systems that have been well-studied in the proof complexity literature (cf. Figure 1).
In [20] these new equivalences led to the proofs of oracle separations between the TFNP classes
PLS and PPP as well as between UEOPL and EOPL, finally resolving all oracle separations
between the classical TFNP classes. On the other hand, the breakthrough collapse CLS =
PLS ∩ PPAD [16] and its followups EOPL = PLS ∩ PPAD and SOPL = PLS ∩ PPADS [19] led
to brand-new intersection theorems in proof complexity. In particular, there are natural
proof systems – P1, P2, P3 – such that a formula F has an efficient proof in P1 if and only
if F has efficient proofs in P2 and efficient proofs in P3. This is illustrated by the work
of [20], which showed that the proof system Reversible Resolution – which is closely related
to Max-SAT solving – is the intersection of the classical Resolution proof system and the
Sherali-Adams proof system. Section 2 outlines the formal definitions of these proof systems.

Next Steps

In light of these results a number of open problems – both concrete and conceptual – remain,
namely:

Do all TFNP subclasses defined by a syntactic existence principle admit a characterization
by a natural proof system? The recent work of Buss, Fleming, and Impagliazzo [9]
constructs a Cook-Reckhow proof system for every black-box TFNP class, but, it is not
clear if these proof systems are equivalent to standard systems occurring in the literature.
If the above is not true, what is special about these “weak” TFNP classes that do admit
characterizations by proof systems?
Are the intersection theorems CLS = EOPL = PLS ∩ PPAD and SOPL = PLS ∩ PPADS a
unique phenomenon, or do other instances of intersection theorems exist? If so, do they
imply other intersection results for proof complexity?
Do other well-studied TFNP classes not depicted above that correspond to natural proof
systems? (Note that many other well-studied TFNP subclasses – such as the classes
PPP and UEOPL – and other classes corresponding to the weak pigeonhole principle
or Ramsey’s theorem are currently not known to admit nice characterizations by proof
systems).

CCC 2023

36:4 Colourful TFNP and Propositional Proofs

FP

UEOPL

EOPL

SOPL PPAD

PPADS

PLS PPP PPA

TFNP

Tree Resolution ∼=

Resolution ∼= ∼= F2-NS

unary SA ∼=

∼= unary Z-NSReversible Resolution ∼=

Reversible Resolution with Terminals ∼=

Figure 1 Class inclusion diagram for TFNP. An arrow A → B means A ⊆ B relative to all oracles.
In the black-box model some classes can be captured using propositional proof systems, as indicated
in blue. Above SA refers to the Sherali-Adams proof system [29], NS refers to the Nullstellensatz
proof system [4], and “unary” refers to the fact that we measure size by the sum of all coefficients
occurring in the proof.

1.2 Our Results
In this paper we introduce a new family of TFNP classes and demonstrate that they have
natural corresponding propositional proof systems. Specifically, we consider a systematic
way to generalize the TFNP classes PLS, PPAD, PPADS, EOPL, SOPL, obtaining their
coloured generalizations C-PLS, C-PPAD, C-PPADS, C-EOPL, and C-SOPL. The formulas
embodying the class C-PLS have previously been studied in proof complexity and bounded
arithmetic, particularly in connection with witnessing theorems for the bounded arithmetic
theory T 2

2 [24, 31]. For the other classes, however, the coloured variants are introduced and
systematically studied here for the first time to the best of our knowledge. Before we discuss
our results for these coloured classes, let us first describe to generalize a TFNP class to its
coloured variant.

From Uncoloured to Coloured TFNP Classes

The key shared property between the classes PLS, PPADS, PPAD, EOPL, SOPL is the
following: the input to each of these problems is a directed graph – enforced to be acyclic2

in the case of PLS, EOPL, and SOPL – having distinguished source node s with at least one

2 We can enforce acyclicity by adding in a decreasing potential function on the nodes of the graph, and
requiring that edges must point from nodes of higher potential to nodes of lower potential.

B. Davis and R. Robere 36:5

outgoing edge. The goal of the search problem is to either output a proper sink node in
the input graph (i.e. a sink node with at least one in-neighbour) or, in the case of PPAD
and EOPL, one can also output a proper source node (i.e. a source node with at least one
out-neighbour) other than the distinguished one3.

In the coloured generalization of these problems, we receive a list of n colours Cu ⊆ [n]
for each node u ∈ V (G) along with the directed graph G as input, and the solutions are
updated as follows:

Any proper source node with a colour is a solution,
Any sink node with no colour (i.e. if Cu = ∅) is a solution, and
A node u with an out-neighbour v is a solution if there is a colour λ ∈ Cv such that
λ ̸∈ Cu.

To state the totality as an unsatisfiable system of constraints: the graph G has at least
one proper source, all proper sources are colourless, all sinks have at least one colour, and
colours propagate backwards across directed edges – if a node u has v as an out-neighbour
then Cv ⊆ Cu. All of these constraints are obviously testable in polynomial time, with the
possible exception of testing for a colourless sink. For this, we require that if a node is a sink
node, then there is a polynomial-time function that points to some colour that is present
at that sink. Note that knowing only the identity of a node, it is no longer simple to test
whether it is colourless. This is unlike the analogous and easily-testable property in the
uncoloured problems that a node has a successor, giving some intuition for the increased
difficulty of the coloured problems. See Figure 2 for the hierarchy of these coloured problems
and how they relate to classical TFNP classes, and Section 2.2 for formal definitions.

Statement of Results

Before stating our main results we require some formal definitions. A query total search
problem is a sequence of relations Rn ⊆ {0, 1}n × On, one for each n ∈ N, such that
∀x ∈ {0, 1}n∃o ∈ On : (x, o) ∈ Rn. We think of x as being provided to us via query access
to its individual bits, and so an “efficient” algorithm would intuitively be provided by a
polylog(n)-depth decision tree solving the search problem. The search problem R = (Rn)n is
in TFNPdt if, for each o ∈ On, there is a polylog(n)-depth decision tree To such that To(x) = 1
iff (x, o) ∈ Rn. Furthermore, given a search problem R, we can define a corresponding
subclass of TFNPdt, denoted Rdt, obtained by taking all query total search problems that
have low-depth decision-tree reductions to R (see Section 2.2 for the formal definition of a
reduction in this model).

The canonical examples of total search problems in TFNPdt come from low-width unsat-
isfiable CNF formulas. Any unsatisfiable CNF formula F = C1 ∧ · · · ∧ Cm over variables
x1, . . . , xn yields a closely related total search problem S(F) ⊆ {0, 1}n × [m]: given an assign-
ment x to the variables of F , output the index of a falsified clause of F (x). Given a sequence
of unsatisfiable CNF formulas F = (Fn)n, the search problem S(F) := (S(Fn))n ∈ TFNPdt

if and only if the width of (some unsatisfiable subformula of) F is polylog(n). Conversely,
given any total search problem Rn ⊆ {0, 1}n × On we can define the unsatisfiable CNF
formula

∧
o∈On

¬To, where ¬To is the encoding of the negation of the decision tree To as a
CNF formula. It is easy to see that a query-efficient algorithm for Rn exists iff one exists
for S(

∧
o∈On

¬To), and thus we can focus on search problems of the form S(F) ∈ TFNPdt

without loss of generality.

3 For the interested reader, we note that this similarity was identified and formalized as a general Grid
search problem in [19].

CCC 2023

36:6 Colourful TFNP and Propositional Proofs

C-EOPL = SOPL

PLS C-SOPL ∩ C-PPAD

C-SOPL C-PPAD = PPADS

C-PPADSC-PLS

TFNP

Resolution ∼=

Res(logO(1) n) ∼= ∼= Circular Res(logO(1) n)

∼= unary SAReversible Res(logO(1) n) ∼=

Reversible Resolution ∼=

Figure 2 The coloured TFNP classes and the corresponding proof systems considered in this
paper. A solid line from A to B indicates that A is contained in B relative to every oracle, while a
red dashed line means A is not contained in B relative to some oracle.

Given these definitions we can state our main results, summarized in Figure 2. First, we
show that every coloured class defined above has an equivalent propositional proof system.
Moreover, these proof systems are closely related to the proof systems for the uncoloured
variants. Given a black-box TFNP class Adt and a proof system P , we write Adt ∼= P if the
following holds: for every sequence of unsatisfiable CNFs F = (Fn)n ∈ TFNPdt, S(F) ∈ Adt

if and only if there is a npolylog(n)-size, polylog(n)-degree refutation of Fn in P .

▶ Theorem 1.1. The following equivalences between TFNPdt classes and proof systems hold:
C-PLSdt ∼= Res(polylog(n)),
C-PPADSdt ∼= CircRes(polylog(n)),
C-SOPLdt ∼= RevRes(polylog(n)).

In the above theorem, Res(polylog(n)) is the extension of Resolution to DNF formulas with
polylog(n)-width conjunctions on the bottom level (see e.g. [23, 28, 1, 18]). The system Res(n)
is equivalent to depth-2 Frege, and thus Res(polylog(n)) sits between Resolution and depth-2
Frege in power. The Reversible Res(polylog(n)) system (denoted RevRes(polylog(n))) is the
natural extension of reversible Resolution to DNF formulas. The Circular Res(polylog(n))
system is exactly the higher-depth analogue of Sherali-Adams which is allowed to “operate”
on DNF formulas. It is obtained by augmenting the RevRes(polylog(n)) system with a new
rule that allows us to introduce any DNF formula D for free, as long as we (eventually)
derive a copy of D later in the proof to make up for the introduced copy. This notion of
a “circular, yet sound” proof was introduced by [2] in the setting of Resolution, where it
was observed that Circular Resolution is exactly the same as Sherali-Adams. It is quite
remarkable that augmenting the three TFNP classes PLS, PPADS, and SOPL with colours
yields new natural classes whose corresponding proof systems are simply the proof systems
for the uncoloured class where the lines have one greater depth!

Our second main result deals with the coloured “source-or-sink” classes C-PPAD and
C-EOPL. Here, we show an a-priori unexpected collapse actually occurs: the coloured
source-or-sink classes are exactly the same as the uncoloured sink classes. Consequentially,
we obtain propositional proof systems equivalent to these TFNPdt classes by relying on earlier
work [20].

B. Davis and R. Robere 36:7

▶ Theorem 1.2. The collapses C-EOPL = SOPL and C-PPAD = PPADS hold. As a con-
sequence, C-EOPLdt ∼= Reversible Resolution and C-PPADdt ∼= Unary Sherali-Adams.

In order to prove the above collapses between TFNP classes, we actually proceed entirely
through proof complexity. That is, we exploit the prior results SOPLdt ∼= RevRes, as well as
PPADSdt ∼= uSA [20], and give refutations of the defining principles of C-EOPL and C-PPAD
in the corresponding proof systems. By applying the known characterization results we then
obtain the collapses between these TFNP classes immediately. While we do not see how to
prove these collapses directly in the language of TFNP, this only further necessitates studying
the relationship between the two areas.

Our third major result is a generalization of the intersection theorem SOPL = PLS∩PPADS
to the coloured setting. This proves, as an immediate consequence, that the proof system
RevRes(k) is the “intersection” of Res(k) and CircRes(k).

▶ Theorem 1.3. C-SOPLdt = C-PLSdt ∩ C-PPADSdt.

▶ Corollary 1.4. For any polylog(n)-width CNF formula F on n variables, there is a npolylog(n)-
size RevRes(polylog(n)) refutation of F if and only if there is a npolylog(n)-size Res(polylog(n))
refutation of F and a npolylog(n)-size CircRes(polylog(n)) refutation of F .

Finally, and quite surprisingly, we show that the intersection theorem C-EOPL = C-PLS ∩
C-PPAD actually fails relative to an oracle. In other words, there is an oracle O such that
C-EOPLO ̸= C-PLSO ∩ C-PPADO.

▶ Theorem 1.5. C-EOPLdt ⊊ C-PLSdt ∩ C-PPADdt, or, equivalently SOPLdt ⊊ C-PLSdt ∩
PPADSdt.

We show this theorem as follows. Since C-EOPLdt = SOPLdt ⊆ PLSdt, the intersection
theorem would imply that

C-PLSdt ∩ C-PPADdt = C-PLSdt ∩ PPADSdt ⊆ PLSdt.

However, we can actually show the (even stronger) separation that C-SOPLdt ∩ PPADSdt ̸⊆
PLSdt. The fact that PPADSdt ̸⊆ PLSdt follows from [20], and we can prove directly that
C-SOPLdt ̸⊆ PLSdt. We then show that for PLSdt, one can combine the adversary arguments
from the previous two separations to create an adversary for PPADSdt ∩ C-SOPLdt. The
combination of adversaries holds generically, and shows that PLSdt is itself not a non-trivial
intersection class (we discuss this more in the full version of the paper.) Taken together, our
results paint a intriguing picture for how the coloured TFNP classes relate to the uncoloured
classes.

The Blockwise Calculus

The results that we prove in this paper have the unfortunate property of becoming quite proof-
theoretically technical when trying to proceed directly. Our primary technical innovation
– when compared to the recent work between TFNP and proof complexity – is the use of
multivalued logic to simplify these arugments. In particular, we found it useful to abstract
out a generalized calculus – called the Blockwise Calculus – in which to implement our
proofs. One can think of the Blockwise Calculus as the natural extension of the Resolution
proof system to multivalued variables. In Section 3 we define the Blockwise Calculus and its
Reversible and Circular variants, as well as discuss its basic properties. In particular, we
show how to translate refutations in the Blockwise Calculus and its variants automatically
into refutations in Resolution, Res(k), and their variants.

CCC 2023

36:8 Colourful TFNP and Propositional Proofs

Open Problems

In general this work suggests that further investigation of the connection between TFNP
subclasses and propositional proof complexity is an avenue ripe for exploration.

As previously outlined, Atserias and Lauria showed that Sherali-Adams is polynomially
equivalent to the Circular Resolution proof system [2]. Is there an analogue of this
result for Circular Res(k)? That is, is there a natural semi-algebraic proof system that
generalizes Sherali-Adams and is polynomially equivalent to Circular Res(k)?
It was recently shown that Resolution does not polynomially-simulate unary Sherali-Adams
and vice-versa [20]. Can we prove similar separations between Res(k) and CircRes(k)?
Note that one direction of this separation is already known: Res(k) cannot simulate
CircRes(k) as the retraction Pigeonhole Principle is easy for CircRes(k) [14] but hard for
Res(k) [28].
What combinatorial principles capture even higher-depth proof systems? We note that
some principles (e.g. the Game Induction principles) are known using translations from
bounded arithmetic [5, 30].

Paper Organization

The rest of the paper proceeds as follows. In Section 2 we introduce the formal definitions
of the propositional proof systems and TFNP subclasses that we consider. In Section 3 we
define the Blockwise Calculus and its variants, as well as prove our main technical theorems
relating the Blockwise Calculus to the boolean proof systems introduced in Section 2. We
refer to the full version of the paper for proofs of our new containment and separation results,
respectively.

2 TFNP Classes and Propositional Proof Systems

2.1 Propositional Proof Systems
In this section we recall the definitions of some of the standard proof systems considered in
this paper. First, we recall the simplest proof system, Resolution, and its variant Reversible
Resolution [20]. The Reversible Resolution variant (and, in particular, the “reversible” rules
presented below) were first introduced in the context of MaxSAT solving [7, 25, 17].

▶ Definition 2.1. Let F be a CNF formula and let C be a clause. A Resolution proof of C

from F is given by a sequence of clauses C1, C2, . . . , Cs = C where the sequence is generated
as follows. Starting from the empty sequence we either choose a clause from F to append to
the sequence, or, we choose earlier clauses in the sequence and apply one of the proof rules
depicted below to generate new clauses to append to the sequence.

C ∨ ℓ C ∨ ℓ
C

(Resolution)
C

C ∨ ℓ C ∨ ℓ
(Reverse Resolution)

The proof is a refutation if C = ⊥. The length of the proof is s, the number of clauses, and
the width of the proof is the size of the widest clause in the proof. Finally, the proof is a
Reversible Resolution proof if every clause is used as the hypothesis of at most one proof rule.

We will also use Sherali-Adams proofs, which are one of the basic semi-algebraic proof
systems studied in the literature. In particular we need its unary variant.

B. Davis and R. Robere 36:9

▶ Definition 2.2. If C =
∧

i∈S xi ∨
∧

j∈T xj is a conjunction then we let p(C) :=∏
i∈S xi

∏
j∈T (1 − xj) denote the encoding of C as a real polynomial. A conical junta

is a non-negative combination of conjunctions
∑

λ λp(C) where all coefficients are positive
integers. A Sherali-Adams refutation of a CNF formula F = C1 ∧ · · · ∧ Cm is given by a set
of polynomials p1, ..., pm and a conical junta J such that:

m∑
i=1

pi · p(Ci) + J = −1,

where all polynomial arithmetic is performed modulo the ideal generated by ⟨x2
i − xi⟩n

i=1. The
unary size of the refutation is the sum of all coefficients of all monomials in the expression
above (after expansion), and the degree of the proof is the maximum degree of any monomial
in the expanded expression above. We write uSA to denote the Sherali-Adams system where
we measure size by unary size.

The main focus of the present work is the higher-depth analogue of Resolution, known as
Res(k), which operates on low-width DNF formulas. We consider three different variants
of the Res(k) system (the standard, reversible, and circular variants), and for the sake of
uniformity define them all using the same proof rules (cf. Figure 3).

∧-Introduction D ∨ A D ∨ B
D ∨ (A ∧ B) D ∨ A ∨ B

Cut D ∨ A D ∨ A
D

Reverse Cut D

D ∨ A D ∨ A
Axiom Introduction

ℓ ∨ ℓ

Figure 3 The Res(k) Proof Rules. Above D is any DNF formula, A is a conjunction of boolean
literals, ℓ is a boolean literal, and we use the convention that A =

∨
ℓ∈A

ℓ.

▶ Definition 2.3. Let F be a CNF formula, let G be a DNF formula, and let k be a positive
integer. A Res(k) proof of G from F is a sequence of k-DNF formulas D1, ..., Ds = G where
the sequence is generated as follows: starting from the empty sequence we either choose a
clause from F to append to the sequence (interpreted as a width-1 DNF), or, we choose
earlier DNFs in the sequence and apply any Res(k)-proof rule (cf. Figure 3) to generate new
DNFs and append them to the sequence. The proof is a refutation of F if G = ⊥, the empty
disjunction. The size of the proof is

∑s
i=1 |Di|, where |Di| represents the size of each DNF.

The proof is reversible (or a RevRes(k) proof) if every DNF is used as a hypothesis of at
most one proof rule.

We now define Unary Circular Res(k) (or uCircRes(k)) proofs, which are a generalization
of Res(k) in which the proofs can have cycles. As discussed in the introduction this is the
higher-depth analogue of Sherali-Adams [6]. To define it we must introduce one additional
proof rule called DNF Creation, defined next, that allows to create any DNF D in one proof
step. While this rule is (obviously) not sound by itself, it turns out that one can make a
sound proof system as long as we require that the proof eventually derives at least as many
copies of D from other proof rules than were created by using the DNF Creation rule, and
strictly more if D is the clause we wish to prove (cf. [2]).

(DNF Creation)
D

CCC 2023

36:10 Colourful TFNP and Propositional Proofs

▶ Definition 2.4. Let F be a CNF formula. A Unary Circular Res(k) proof of a DNF G

from F is a sequence of DNFs D1, D2, . . . , Ds = G that is generated as follows: starting
from the empty sequence we either choose a clause C from F and append it to the sequence,
we apply the DNF Creation rule to generate a new DNF and add it to the list, or we choose
earlier DNFs in the sequence and apply a Res(k) proof rule to generate new DNFs and append
them to the sequence. In addition, we make the following stipulations: each DNF Di in the
sequence is used as the hypothesis of at most one Res(k) rule, and every DNF D appearing
in the proof is derived as the output of some proof rule at least as many times as it is created
using DNF Creation, except the conclusion G which must be derived strictly more times than
it is created with DNF-Creation. The size of the proof is

∑s
i=1 |Di|. If G = ⊥ then we call

this a uCircRes(k) refutation of F .

Both Res(k) and CircRes(k) can efficiently simulate RevRes(k), since RevRes(k) is a
restriction of both systems – of the first system because of the fanout restriction, and of the
second system because of its inability to apply DNF Creation.

2.2 Search classes
In this section we define the relevant background for TFNP. We follow the treatment of
black-box TFNP used by [20].

▶ Definition 2.5. A total (query) search problem is a sequence of relations R = {Rn ⊆
{0, 1}n × On}, where On are finite sets, such that for all x ∈ {0, 1}n there is an o ∈ On so
that (x, o) ∈ Rn. A total search problem R is in TFNPdt if for each o ∈ On there is a decision
tree To with depth poly(log n) such that for every x ∈ {0, 1}n, To(x) = 1 iff (x, o) ∈ R.

As discussed in the introduction the canonical problems in TFNPdt are the false clause
search problems associated with an unsatisfiable polylog(n)-width CNF formula F = C1 ∧
· · · ∧ Cm defined as S(F) ⊆ {0, 1}n × [m] with (x, i) ∈ S(F) iff Ci(x) = 0. Every problem in
TFNPdt is equivalent to S(F) for some polylog(n)-width CNF formula.

▶ Definition 2.6. Let R ⊆ {0, 1}n × O and S ⊆ {0, 1}m × O′ be total search problems. An
S-formulation of R is a decision-tree reduction (fi, go)i∈[m],o∈O′ from R to S. Formally, for
each i ∈ [m] and o ∈ O′ there are functions fi : {0, 1}n → {0, 1} and go : {0, 1}n → O such
that

(x, go(x)) ∈ R ⇐= (f(x), o) ∈ S

where f(x) ∈ {0, 1}m is the string whose i-th bit is fi(x). The depth of the reduction is

d := max
(
{D(fi) : i ∈ [m]} ∪ {D(go) : o ∈ O′}

)
,

where D(h) denotes the decision-tree depth of h. The size of the reduction is m, the number
of input bits to S. The complexity of the reduction is log m + d. We write Sdt(R) to denote
the minimum complexity of an S-formulation of R.

We extend these notations to sequences in the natural way. If R is a single search problem
and S = (Sm) is a sequence of search problems, then we denote by Sdt(R) the minimum of
Sdt

m(R) over all m. If R = (Rn) is also a sequence, then we denote by Sdt(R) the function
n 7→ Sdt(Rn).

Using the previous definition we can now define complexity classes of total search problems
via reductions. For total search problems R = (Rn), S = (Sn), we write

Sdt := {R : Sdt(R) = polylog(n)}.

B. Davis and R. Robere 36:11

Coloured TFNP Classes

With the definition of reductions established, we can define the search problems characterizing
our coloured TFNP classes. We define the notation [n]0 := [n] ∪ {0}.

▶ Definition 2.7 (Coloured Sink-of-Dag). C-SoDn is a total search problem defined on an
n × n grid of nodes, where (1, 1) is a special distinguished node. As input, we receive the
following parameters for each node (i, j) ∈ [n] × [n]:

An index si,j ∈ [n]0, indicating that the successor of (i, j) is (i + 1, si,j), or if si,j = 0,
that (i, j) is a leaf.
An indicator ci,j,λ ∈ {0, 1} ∀λ ∈ [n], indicating the presence of colours at each grid node
An index ei,j ∈ [n], indexing a colour at each node

Here the index ei,j is used to ensure that sinks can be efficiently verified to have a colour.
Any node on the final layer or any node with successor 0 is called a leaf and the node

(1, 1) is called the distinguished source. If the set of colours at each node contains the set of
colours at its successor node, and there is at least one colour at each leaf, then clearly there
must be at least one colour at the source node. The goal of the search problem is to find a
witness of this fact. Formally, a solution to the C-SoDn search problem is

((i, j), λ) if si,j = k, ci+1,k,λ = 1, and ci,j,λ = 0 for some k. (colour propagation)
((1, 1), λ) if c1,1,λ = 1 (distinguished source should be colourless)
((i, j), λ) if (i, j) is a leaf, ei,j = λ, and ci,j,λ = 0 (sinks should have a colour)

▶ Definition 2.8 (Coloured Sink- and End-of-Line). C-SoLn is a search problem defined
on a set of n nodes, denoted [n − 1]0, distinguishing the node 0. We define a graph on these
nodes using the following parameters for each node u ∈ [n − 1]0:

An index su ∈ [n − 1]0 indexing the successor of u.
An index pu ∈ [n − 1]0 indexing the predecessor of u.
An indicator cu,λ ∈ {0, 1} for each λ ∈ [n], indicating the presence of the colour λ at u.
An index eu ∈ [n], indexing a distinguished colour at each node.

We define a graph G on [n] by including an edge (u, v) if and only if su = v and pv = u.
Again, if the set of colours at each node contains that at its successor, and there is at least
one colour at each sink, then each source must contain at least one colour. The goal of the
search problem is to find a witness of this. A pair (u, λ) is then a solution to an instance of
C-SoLn if:

su = v, pv = u, cv,λ = 1 and cu,λ = 0 for some node v ̸= u (colour propagation)
u = 0 and c0,λ = 1 (distinguished source should be colourless)
u is a sink node, eu = λ, and cu,λ = 0 (sinks should have a colour)

The C-EoLn problem is obtained by adding the following solutions to the C-SoLn problem:
u is a source node and cu,λ = 1 (sources should be colourless)

▶ Definition 2.9 (Coloured Sink- and End-of-Potential-Line). The C-SoPLn and C-EoPLn

problems are search problems combining the constraints of C-SoD and C-EoL. As with
C-SoD they are defined on an n × n grid. We have the following parameters for each node
(i, j) ∈ [n] × [n]:

An index si,j ∈ [n − 1]0 indicating that the successor of (i, j) is (i + 1, si,j).
An index pi,j ∈ [n − 1]0 indicating that the predecessor of (i, j) is (i − 1, pi,j).
An indicator ci,j,λ ∈ {0, 1} for each λ ∈ [n] indicating the presence of the colour λ at
(i, j).
An index ei,j ∈ [n] indexing a distinguished colour at each node.

CCC 2023

36:12 Colourful TFNP and Propositional Proofs

As with C-SoL and C-EoL we define a graph G on [n]× [n] by including an edge ((i, j), (i+
1, k)) if and only if si,j = k and pi+1,k = j. The solutions are then defined exactly as for
C-SoLn and C-EoLn adapted to the n × n grid.

We denote the TFNPdt classes obtained by taking formulations of the above problems in
San-Serif font, e.g. C-SOPLdt = C-SoPLdt.

3 The Blockwise Calculus

3.1 Multivalued CNFs and Blockwise Calculus Proofs
The proof-theoretic results in this paper have the unfortunate property of becoming technical
when proved directly in the boolean proof systems defined in the previous section. To aid
exposition we have found it useful to abstract out a generalized calculus – the Blockwise
Calculus – to phrase our proofs in. In this section we introduce the Blockwise Calculus
and prove our main technical results illustrating its relationship with the proof systems
introduced in the previous section. Intuitively the Blockwise Calculus is the extension of
Resolution to variables in a wider range than {0, 1}.

▶ Definition 3.1. A multivalued variable is a pair (x, n) where x is a formal variable and
n ∈ N is a positive integer representing the range [n − 1]0 that the variable x can take values
in. We will suppress the range parameter n when it is obvious from context. An atom is
an expression of the form Jx ̸= iK where i ∈ [n − 1]0 is an element of the range. Given an
[n − 1]0-assignment to x the atom evaluates to true iff the inequality inside the atom is
satisfied. A clause is a disjunction (∨) of atoms, where each variable in the clause can be
quantified over its own range. The width of a clause C is the number of atoms in it.

Using multivalued variables we can introduce the notion of a multivalued CNF formula.

▶ Definition 3.2. Let (x1, r1), (x2, r2), . . . , (xn, rn) be a collection of multivalued variables. A
multivalued CNF formula F = C1 ∧ · · · ∧ Cm over these variables is a conjunction of clauses
of atoms over the same variables. We say that F is unsatisfiable if there is no assignment of
each variable to their respective ranges such that the resulting CNF is satisfied, and define
the corresponding search problem S(F) ⊆ [r1 − 1]0 × · · · × [rn − 1]0 × [m] in the natural way:
given a multivalued assignment to the corresponding variables, output a false clause of F .

While the Blockwise Calculus operates on multivalued CNF formulas, we ultimately
want to convert everything back to refutations in boolean logic. For this, we introduce the
booleanization of a multivalued CNF, which is obtained by encoding each multivalued variable
(x, r) in binary.

▶ Definition 3.3. Let (xi, ri) for i ∈ [n] be a collection of multivalued variables, and let
F =

∧m
i=1 Ci be a multivalued CNF formula over these variables. The booleanization of F is

the following CNF formula Fbool. For each variable (xi, ri) we introduce ti := ⌈log ri⌉ boolean
variables in a block, denoted x⃗i := xi,1 . . . xi,ti

∈ {0, 1}ti , encoding the value of the variable
xi in binary. Then, for each clause in F we substitute each occurrence of an atom Jxi ̸= kK
with the disjunction on the variables x⃗i that is false exactly when xi = k. Finally, for each
i ∈ [n] and each value ℓ ∈ [2ti] with ℓ ≥ ri, we add a clause to Fbool over the variables x⃗i

encoding that xi ̸= ℓ.

B. Davis and R. Robere 36:13

For each of the search problems defined in the previous section, there is a natural
multivalued encoding of that search problem as an unsatisfiable multivalued CNF formula
(cf. Section 3.2). Our current focus is to define the Blockwise Calculus and its variants. The
rules of the Blockwise Calculus are shared among the three systems and defined in Figure 4,
where C is a multivalued clause and (x, r) is a multivalued variable.

(Reverse Cut) C
C ∨ Jx ̸= 0K C ∨ Jx ̸= 1K · · · C ∨ Jx ̸= r − 1K

(Cut) C ∨ Jx ̸= 0K C ∨ Jx ̸= 1K · · · C ∨ Jx ̸= r − 1K
C

Figure 4 Proof Rules for the Blockwise Calculus.

▶ Definition 3.4. Let F be a multivalued CNF formula and let C be a clause. A Blockwise
Calculus proof of C from F is a sequence of clauses C1, C2, . . . , Cs = C where the sequence
is generated as follows. Starting from the empty sequence we either choose a clause from F

to append to the sequence, or, we choose earlier clauses in the sequence and apply one of the
Blockwise Calculus proof rules (cf. Figure 4) to generate new clauses and append them to the
sequence. The length of the proof is s, the number of clauses, and the width of the proof
is the size of the largest clause in the proof. The proof is a refutation if C = ⊥, the empty
clause. Finally, the proof is a Reversible Blockwise Calculus proof if every clause is used as
the hypothesis of at most one proof rule.

As in the case of Res(k), we can also introduce the Circular variant of Blockwise Calculus.
The analogous rule we need to introduce is the following, for any multivalued clause C:

(Clause Creation)
C

▶ Definition 3.5. Let F be a multivalued CNF formula and let C be a clause. A Circular
Blockwise Calculus proof of C from F is a sequence of clauses C1, C2, . . . , Cs = C where the
sequence is generated as follows. Starting from the empty sequence we can either choose a
clause from F and append it to the end of the sequence, apply the Clause Creation rule to
create an arbitrary clause C and append it to the sequence, or choose earlier clauses in the
sequence and apply a Blockwise Calculus rule to generate new clauses and append them to the
sequence. In addition, we make the following stipulations: each clause Ci in the sequence is
used as the hypothesis of at most one Blockwise Calculus rule, and every clause C appearing
in the proof is derived as the output of some proof rule more times than it is created using the
Clause Creation rule. The length of this proof is s and the width of the proof is the maximum
width of any clause C in the proof. The proof is a refutation if C = ⊥.

Similarly to the Res(k) systems, it is easy to see that Reversible Blockwise Calculus is a
subsystem of both the Blockwise Calculus and the Circular Blockwise Calculus.

3.2 Encoding TFNP Problems as Multivalued CNFs
Given any of the total search problems introduced in Section 2, we can create a natural
unsatisfiable multivalued CNF formula F expressing that the search problem has no solution.
Intuitively, the negation of F encodes that the search problem is total.

CCC 2023

36:14 Colourful TFNP and Propositional Proofs

Coloured Sink-of-Dag

We first show how to encode the Coloured Sink-of-Dag (C-SoDn) problem. For each i, j ∈ [n]
we have a multivalued variable (sij , n + 1) expressing that the pointer of the node sij is
either 0 or points to a node on the next level. For each i, j ∈ [n] and each λ ∈ [n] we have a
multivalued variable (ci,j,λ, 2) expressing whether or not the colour λ is present at node (i, j).
Finally, for each i, j ∈ [n] we have a second multivalued variable (eij , n) indexing a colour
at that node. We can now phrase the totality of the search problem using the following
unsatisfiable multivalued CNF formula C-SoD, containing the following clauses:

Colourless Distinguished Source. For each λ ∈ [n − 1]0, Jc11λ ̸= 1K.
Propagating Colours. For each i ∈ [n − 1], each j, k ∈ [n], and each λ ∈ [n − 1]0,

Jsij ̸= kK ∨ Jci+1,k,λ ̸= 1K ∨ Jci,j,λ ̸= 0K .

Coloured Sinks. For each i ∈ [n − 1], j ∈ [n], λ ∈ [n − 1]0,

Jsij ̸= 0K ∨ Jeij ̸= λK ∨ Jcijλ ̸= 0K , and

Jenj ̸= λK ∨ Jcnjλ ̸= 0K .

Coloured Sink-of-Line and Coloured End-of-Line

The variables of both C-SoLn and C-EoLn are the same, but the two formulas differ on their de-
fining constraints. For each u, λ ∈ [n−1]0 we have multivalued variables (su, n), (pu, n), (eu, n),
and (cu,λ, 2) encoding successor pointers, predecessor pointers, colour pointers, and colours
for each node. The nodes range in the set [n − 1]0 and we treat 0 as the distinguished source
node. The clauses of the C-SoLn formula are defined as follows:

Colourless Distinguished Source. For each λ ∈ [n − 1]0, Jc0,λ ̸= 1K.
Colour Propagation. For each u ̸= v ∈ [n − 1]0 and each λ ∈ [n],

Jsu ̸= vK ∨ Jpv ̸= uK ∨ Jcu,λ ̸= 0K ∨ Jcv,λ ̸= 1K .

Coloured Sinks. For each u, v, w, λ ∈ [n − 1]0 with u ̸= w:

Jsu ̸= vK ∨ Jpv ̸= wK ∨ Jeu ̸= λK ∨ Jcu,λ ̸= 0K .

The C-EoLn formula adds the following clauses to the C-SoLn formula:

Colourless Sources. For each u ∈ [n − 1], v, w, λ ∈ [n − 1]0 with u ̸= w:

Jpu ̸= vK ∨ Jsv ̸= wK ∨ Jcu,λ ̸= 1K .

Coloured Sink-of-Potential-Line and Coloured End-of-Potential-Line

The variables of C-SoPLn and C-EoPLn are the same. For each i, j ∈ [n − 1]0 and each
λ ∈ [n − 1]0 we have variables (sij , n), (pij , n), (eij , n), (cijλ, n) encoding successor pointers,
predecessor pointers, colour pointers, and colours for each node. The clauses of the C-SoPLn

formula are defined as follows:
Colourless Distinguished Source. For each λ ∈ [n − 1]0, Jc0,0,λ ̸= 1K.
Colour Propagation. For each i ∈ [n − 2]0, j, k ∈ [n − 1]0 and each λ ∈ [n − 1]0,

Jsij ̸= kK ∨ Jpi+1,k ̸= jK ∨ Jci,j,λ ̸= 0K ∨ Jci+1,k,λ ̸= 1K .

B. Davis and R. Robere 36:15

Coloured Sinks. For each i ∈ [n − 2]0, j, k, ℓ ∈ [n − 1]0 with ℓ ̸= j and λ ∈ [n − 1]0

Jsij ̸= kK ∨ Jpi+1,k ̸= ℓK ∨ Jei,j ̸= λK ∨ Jci,j,λ ̸= 0K , and

Jen−1,j ̸= λK ∨ Jcn−1,j,λ ̸= 0K .

The C-EoPLn formula adds the following clauses to the C-SoPLn formula:
Colourless Sources. For each i ∈ [n − 1], j, k, ℓ, m ∈ [n − 1]0 with m ̸= j, and each
λ ∈ [n − 1]0

Jpij ̸= ℓK ∨ Jsi−1,ℓ ̸= mK ∨ Jsij ̸= kK ∨ Jpi+1,k ̸= jK ∨ Jcijλ ̸= 1K

and

Js0,j ̸= kK ∨ Jp1,k ̸= jK ∨ Jc0,j,λ ̸= 1K .

3.3 Blockwise Calculus vs. Boolean Proof Systems
In this section we prove the main technical theorem necessary for our main results. Essentially,
it says that if we have a refutation of a formula F in the Blockwise Calculus or one if its
variations, then we can automatically obtain a refutation of any F -formulation in a related
boolean proof system.

▶ Theorem 3.6. Let F, G be any width-c multivalued CNF formulas for which there is a
depth-d S(F)-formulation of S(G). Then

If there is a size-s Blockwise Calculus refutation of F , then there is a size-s2O(d) Res(O(d))-
refutation of Gbool.
If there is a size-s Circular Blockwise Calculus refutation of F , then there is a size-s2O(d)

uCircRes(O(d))-refutation of Gbool.
If there is a size-s Reversible Blockwise Calculus refutation of F , then there is a size-s2O(d)

RevRes(O(d))-refutation of Gbool.

Proving this theorem is much easier after we introduce some auxiliary technical lemmas
for working with decision trees. For a given decision tree T , let Pℓ(T) denote the set of all
root-leaf paths ending in a leaf labelled by ℓ, and let P (T) :=

⋃
ℓ Pℓ(T). For a given path

p ∈ P (T) let Cp := x1 ∧ · · · ∧ xk and Cp := x1 ∨ · · · ∨ xk where x1, ..., xk are the queries
made along p.

Let DT :=
∨

p∈P (T) Cp, intuitively encoding the fact that some branch of a decision
tree must be followed under an input. We will rely on these formulas heavily, so we now
demonstrate that they can be efficiently derived in Res(k). It is enough to prove this next
lemma for RevRes(d) since both Res(d) and uCircRes(d) simulate RevRes(d).

▶ Lemma 3.7. If T is a decision tree of depth d, then there is a size-22d RevRes(d) proof of
the formula

∨
p∈P (T) Cp.

Proof. If T consists of a single query of some literal ℓ, then DT = ℓ ∨ ℓ, which can be
derived in a single line as an axiom. Otherwise we proceed by induction, so let ℓ be the
first literal queried by T . Let T0 be the subtree of T followed when ℓ is falsified, and T1 be
the one followed when ℓ is satisfied. By induction, we can derive DT0 and DT1 with size
2 · 22(d−1) = 22d−1. We begin by ∨-weakening T0 with ℓ and T1 with ℓ, and introducing the
axiom ℓ ∨ ℓ.

CCC 2023

36:16 Colourful TFNP and Propositional Proofs

Now let p1,, pk be the paths of T0. Weaken the axiom ℓ ∨ ℓ by Cpi for all 1 < i ≤ k to
obtain

∨
1<i≤k Cpi

∨ ℓ ∨ ℓ. ∧-introducing this with DT0 ∨ ℓ on Cp1 and ℓ, we obtain:∨
1<i≤k

Cpi
∨ Cp1∪ℓ ∨ ℓ

Now weaken ℓ ∨ ℓ by Cpi
for all 2 < i ≤ k, and by Cpi∪ℓ for 1 ≤ i < 2 to obtain

∨
2<i≤k Cpi

∨∨
1≤i<2 Cpi∪ℓ ∨ ℓ ∨ ℓ. We again ∧-introduce this, this time with

∨
1<i≤k Cpi

∨ Cpi∪ℓ ∨ ℓ on
Cp2 and ℓ to obtain:∨

2<i≤k

Cpi
∨

∨
1≤i≤2

Cpi∪ℓ ∨ ℓ

Repeating this for the remaining paths pj for 2 < j ≤ k, we obtain:∨
p∈P (T0)

Cp∪ℓ ∨ ℓ

and we can repeat this process for T1 to likewise derive:∨
p∈P (T1)

Cp∪ℓ ∨ ℓ

Since P (T) =
⋃

p∈P (T0)(p ∪ ℓ) ∪
⋃

p∈P (T1)(p ∪ ℓ), we can finally cut these two formulas on ℓ

to obtain
∨

p∈P (T) Cp = DT . All conjunctions created in this process have width at most d,
as they each correspond to a path or subpath of a path of T , and since there are 2d−1 paths
in each subtree this process adds an additional 2 · (2d−1)2 = 22d−1 lines to the proof. Thus
the total size of the proof is 2 · 22d−1 = 22d. Further, since all root–leaf paths are bounded in
length by d, the proof has width O(d). ◀

We now show that cutting and weakening along negated paths of decision trees can be
done inside of Reversible Resolution.

▶ Lemma 3.8. Let C be a width-w clause and let T be a depth-d decision tree. Then there is
a size-2d, width-(w + d) RevRes derivation of C from the set of clauses {C ∨ Cp | p ∈ P (T)}
and vice-versa.

Proof. We proceed by induction on d. In the base case, d = 1 and a single variable x is
queried by T ; in this case we have the formulas C ∨ x and C ∨ x and we resolve on x to
obtain C.

By induction suppose that the claim holds for a decision tree of depth at most d − 1. Let
T0 be the decision tree obtained by discarding all leaves of T (the new leaves may be labelled
arbitrarily). For each path p ∈ P (T), let x be the final variable it queries, let q be the path
of T which differs from p only on x, and let p0 be the path of T0 obtained by truncating p

before x. Then we may cut the formulas C ∨ p0 ∨ x and C ∨ p0 ∨ x, corresponding to p and
q, on x to obtain C ∨ p0. Repeating this for each such pair of paths in T yields C ∨ p0 for
each p0 ∈ T0 in 2d−1 steps, allowing us to apply the induction hypothesis to complete the
derivation of C in a further 2d−1 steps, for a total size of 2d as desired. Furthermore, this is
reversible, as each path of T belongs to a single such pair. The width claims are also clear as
all formulas are of the form C ∨ p for some path p of a depth-d decision tree. ◀

B. Davis and R. Robere 36:17

Now, let F be a multivalued CNF formula on variables (xi, ri) for i ∈ [n], let G be
a multivalued CNF formula on variables (yi, si) for i ∈ [m], and suppose that we have a
depth-d S(F)-formulation of S(G). This means that each variable xi is computed by a
depth-d decision tree fi which queries variables yj and outputs a value in [ri − 1]0, and we
also have, for each clause C in F , a decision tree gC which queries yj variables and outputs
a clause of S(G). For simplicity, we will identify the variable xi with its decision tree fi that
computes it.

Suppose that we have a Blockwise Calculus refutation Π of F . Our goal is to give a
Res(O(d)) refutation of G. In order to prove this theorem we need to encode atoms Jxi ̸= jK
into boolean formulas. We introduce two such encodings: the positive and negative encoding.
In the positive encoding we encode each atom as a d-DNF formula, while in the negative
encoding we encode the atom as a family of width-d clauses. We emphasize that in the
definitions below we identify the variable xi of the formula F with the decision tree fi

outputting the value of xi in the reduction from G.

D+(Jxi ̸= jK) :=
∨
k ̸=j

∨
p∈Pk(xi)

Cp

D−(Jxi ̸= jK) := {Cp : p ∈ Pj(xi)}

If C is a clause over multivalued atoms we write D+(C) to denote the DNF formula obtained
by substituting each atom A in C with its positive encoding D+(A), and write D−(C) to
denote the CNF formula obtained by substituting

∧
D−(A) for each atom in C and then

re-writing the result in CNF by distributing the ∨ over the ∧s.
The next lemma is arguably the main technical lemma used in the proof of Theorem 3.6.

It shows that it is possible to derive positive encodings of multivalued clauses from negative
encodings and vice-versa efficiently in RevRes(d).

▶ Lemma 3.9. Suppose that x is computed by a depth-d decision tree and G is a DNF.
Then there is a RevRes(d) proof of all the DNFs in {G ∨ C | C ∈ D−(Jx ̸= jK)} from
G ∨ D+(Jx ̸= jK) and vice-versa in size |G|2 · 2O(d)

Proof. We begin by proving G∨D+(Jx ̸= jK) from {G∨C | C ∈ D−(Jx ̸= jK)}. This direction
is simpler. By applying Lemma 3.7 we can derive the DNF

∨
p∈P (x) Cp in size 22d from

axioms, and then by applying reverse cut repeatedly we can derive G ∨
∨

p∈P (x) Cp in size
O(|G|22d). From G ∨

∨
p∈P (x) Cp we can repeatedly cut on G ∨ C for each C ∈ D−(Jx ̸= jK)

to in sequence to derive G ∨ D+(Jx ̸= jK). The total size is |G|22O(d).
We now prove the other direction. Without loss of generality suppose that j = 0 and let

D := G∨D+(Jx ̸= 0K) for the sake of brevity. By definition we have D = G∨
∨

k ̸=j

∨
p∈Pk(x) Cp.

Let P =
⋃

k ̸=0 Pk(x) denote the set of all paths appearing in the above disjunction and write
P = {p1, p2, . . . , ps}.

We begin by applying reverse cut repeatedly along the variables in the decision tree
computing x to derive the set of DNFs {D ∨ Cq | q ∈ P (x)}. Fix an arbitrary path q ∈ P0(x).
For each path pi ∈ P there is a literal ℓi such that ℓi is queried positively in pi and negatively
in q. Therefore, by using an axiom-introduction we can introduce the clause ℓ1 ∨ ℓ1 and then
repeatedly using reverse-cut we can derive G∨

∨s
i=2 Cpi

∨Cq ∨Cp1 We can then cut this result
with D ∨ Cq to derive G ∨

∨s
i=2 Cpi

∨ Cq. We can now repeat this process: there is another
literal ℓ2 appearing positively in p2 and negatively in q, and thus we can axiom-introduce
ℓ2 ∨ ℓ2 and then use reverse cut to derive G ∨

∨s
i=3 Cpi

∨ Cp2 ∨ Cq. Cutting this with the
result of the previous stage yields G ∨

∨s
i=3 Cpi ∨ Cq, and we can repeat this process s times

in order to derive G ∨ Cq. We can then repeat this for each q ∈ P0(x) to derive D−(Jxi ̸= jK).

CCC 2023

36:18 Colourful TFNP and Propositional Proofs

We now estimate the size of the derivation. The first line has size at most |G| + 2d, and
we begin by deriving a set of 2d DNFs, each of size O(|G| + 2d), and thus the cost of the
first step is O(|G|22d). To cut each of the paths Cp1 , Cp2 , . . . , Cps

we must pay O(|G|22d) to
derive the corresponding DNF to cut our preserved formula with, and this will repeat s ≤ 2d

times, for a total cost of O(|G|222d). Finally, we must repeat this entire process ≤ 2d times
for each q ∈ P0(x), and thus the final size is O(|G|223d) = |G|22O(d). ◀

Using the lemma we can now prove Theorem 3.6.

Proof of Theorem 3.6. The basic idea of this proof is simple: for each clause C ∈ Π we
replace C with the width-d DNF encoding D+(C), noting that the final clause ⊥ remains
empty. We prove two claims:
Claim 1. For each clause C in F we can deduce D+(C) from the clauses of Gbool in

RevRes(O(d)).
Claim 2. For each proof rule of the Blockwise Calculus we can deduce the positive encodings

of each consequent of the rule from the positive encodings of each antecedent of the rule
efficiently in RevRes(O(d)).

To prove the first claim, let F = C1 ∧ · · · ∧ Cs and Gbool = C ′
1 ∧ · · · ∧ C ′

t, let (xi, ri) for
i ∈ [n] denote the variables of F , and let y⃗1, . . . , y⃗m denote the (boolean block) variables of
Gbool. By the definition of an S(F)-formulation, for each variable (xi, ri) of F we have a
depth-d decision tree fi querying variables of Gbool and outputting a value for xi, as well as
a decision tree gk for each k ∈ [s] such that (f(y), k) ∈ S(F) ⇒ (y, gk(y)) ∈ S(G). We can
interpret this definition in terms of proofs as follows. Let Ck = A1 ∨ · · · ∨ Aw be any clause
of F and assume w.l.o.g. that Ai := Jxi ̸= ℓiK for some ℓi. For each i ∈ [w] let pi ∈ Pℓi

(xi)
be any path in the corresponding decision tree from the formulation outputting ℓi, and let
q ∈ P (gk) be any path in the tree gk. Then the clause

∨w
i=1 Cpi

∨ Cq is a weakening of
clause of G. Since there are at most 2d paths in each decision tree and the width of Ck is
w it follows that there are at most 2wd ≤ 2cd such clauses, and each can be deduced from
clauses of G using weakening rules. Next, we observe that from the collection of clauses
{
∨w

i=1 Cpi ∨ Cq | q ∈ P (gk)} we can use reversible cuts up the decision tree gk in order to
deduce the family of clauses {

∨w
i=1 Cpi

}, and taking the union over all such paths pi ∈ Pℓi
(xi)

yields exactly D−(Ck). Finally, applying Lemma 3.9 yields D+(Ck). Applying this strategy
to all clauses of F we can deduce D+(Ck) for each clause of F , as desired.

We move on to proving the second claim. We first consider the Cut rule

C ∨ Jxi ̸= 0K C ∨ Jxi ̸= 1K · · · C ∨ Jxi ̸= ri − 1K
C

for which we need to show how to derive D+(C) from D+(C) ∨ D+(JxiK ̸= ℓ) for each
ℓ ∈ [ri − 1]0. We can apply Lemma 3.9 to D+(C) ∨ D+(Jxi ̸= ℓK) for each ℓ = 0, 1, . . . , ri − 1
in order to derive the family

ri−1⋃
ℓ=0

{D+(C) ∨ D | D ∈ D−(Jx ̸= ℓK)} =
⋃

p∈P (xi)

{D+(C) ∨ Cp}.

From this family we can apply Lemma 3.8 in order to derive D+(C), as desired.
We now consider the Reverse Cut rule

C
C ∨ Jxi ̸= 0K C ∨ Jxi ̸= 1K · · · C ∨ Jxi ̸= ri − 1K.

B. Davis and R. Robere 36:19

Starting from D+(C) we must derive the family {D+(C) ∨ D+(Jxi ̸= ℓK) | ℓ ∈ [ri − 1]0}.
This direction is easy: since this rule is the reverse of the previous rule, and since we gave
a RevRes(d) simulation of the previous rule, running the previous construction in reverse
handles this case as well.

Using the two claims we can now complete the proof of the theorem. For Res(d) and
RevRes(d) the result follows immediately by induction over the proof Π. For Circular Res(d)
we can similarly apply induction over Π, additionally observing that if we ever apply the
Clause Creation rule in a Circular Blockwise Calculus proof to create a clause C, we can
simply apply the DNF creation rule in Circular Res(d) to create D+(C). Since the Circular
Blockwise Calculus proof must derive each clause C more times than it is introduced by a
Clause Creation rule, the same property holds for the uCircRes(d) proof. This completes the
proof of the theorem. ◀

A similar result can also be obtained for low-width Resolution, which we will use to show
collapses to uncoloured classes. The main difference in this proof is that we do not use the
positive encoding, only the negative encoding.

▶ Theorem 3.10. Let F, G be any multivalued CNF formulas for which there is a depth-d
S(F)-formulation of S(G). Then

If there is a size-s, width-logO(1) s Blockwise Calculus refutation of F , then there is a
size-sO(1)2O(d), width-d · logO(1) s Resolution refutation of Gbool.
If there is a size-s, width-logO(1) s Circular Blockwise Calculus refutation of F , then there
is a size-sO(1)2O(d), width-d · logO(1) s uCircRes-refutation of Gbool.
If there is a size-s, width-logO(1) s Reversible Blockwise Calculus refutation of F , then
there is a size-sO(1)2O(d), width-d · logO(1) s RevRes-refutation of Gbool.

Proof. Let Π be the size-s, width-logO(1) s Blockwise Calculus refutation (potentially revers-
ible or circular) of F . We construct a Resolution refutation of G from Π By first proving
D−(F) :=

∧
C∈F D−(C), then converting Π into a refutation of D−(F), so we may finally

combine these proofs into a refutation of G. Again, this requires us to show the following:
For each clause C of F , there is an efficient proof of D−(C) from G

Each rule of the blockwise calculus can be efficiently simulated by Reversible Resolution
using the negative encoding of blocks

Let C1, ..., Cs denote the clauses of F , and C ′
1, ..., C ′

t the clauses of Gbool. Likewise, dnote
the variables of F by (x1, r1), ..., (xn, rn) and the variables of Gbool by y⃗1, ..., y⃗m. For each
variable xi of F , we have a depth-d decision tree fi decision tree in the formulation over
variables of Gbool computing it, and for each clause Ci of F , we have a depth-d decision tree
gi outputting a corresponding clause of G. By definition of a S(F)-formulation then, for each
such clause Ci, each clause C ′ ∈ D−(Ci), and each path p ∈ P (gi), the clause C ′ ∨ Cp is a
weakening of at least one clause of G – if C ′ and Cp are both falsified under some assignment
a⃗ to the variables of G, then so too must the clause output by p be falsified under a⃗. Thus,
for each such C ′, we can derive the clause C ′ ∨ Cp from G for every p ∈ P (gi), at which point
we may apply Lemma 3.8 to obtain D−(Ci). Repeating for all clauses of F yields D−(F).

We proceed now to show that we can simulate the rules of the blockwise calculus in
Reversible Resolution:

If some clause C was derived by cutting earlier clauses C ∨ Jx ̸= 0K , ..., C ∨ Jx ̸= n − 1K,
then we have the set of clauses C ′ ∨ p for each C ′ ∈ C and p ∈ P (Tx), from which we
wish to derive each C ′ ∈ C. Thus, by Lemma 3.8 this can be done in 2d steps with width
d + d · logO(1) s.

CCC 2023

36:20 Colourful TFNP and Propositional Proofs

If C was derived by weakening some earlier clause C0 on some variable x, then begin
with each C ′ ∈ C, from which we wish to derive C ′ ∨ p for each C ′ ∈ C and p ∈ P (Tx).
By reversibility of Lemma 3.8, this can be done in 2d steps with width d + d · logO(1) s.

Since all families of clauses C corresponding to an original clause C of Π have size
sO(1)2O(d) and each new clause requires 2d additional steps to derive, this results in a proof of
size nO(1)2O(d) overall. Furthermore, all clauses in the new proof consist of logO(1) s negated
paths of depth-d decision trees, and thus have width d · logO(1) s overall. ◀

References
1 Albert Atserias and Maria Luisa Bonet. On the automatizability of resolution and related

propositional proof systems. Inf. Comput., 189(2):182–201, 2004. doi:10.1016/j.ic.2003.
10.004.

2 Albert Atserias and Massimo Lauria. Circular (yet sound) proofs. In Proceedings of the
22nd Theory and Applications of Satisfiability Testing (SAT), pages 1–18. Springer, 2019.
doi:10.1007/978-3-030-24258-9_1.

3 Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. The
relative complexity of NP search problems. Journal of Computer and System Sciences,
57(1):3–19, 1998. doi:10.1006/jcss.1998.1575.

4 Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák. Lower
bounds on Hilbert’s Nullstellensatz and propositional proofs. In Proceedings of the 35th
Symposium on Foundations of Computer Science (FOCS), pages 794–806, 1994. doi:10.1109/
SFCS.1994.365714.

5 Arnold Beckmann and Samuel R. Buss. Characterising definable search problems in bounded
arithmetic via proof notations. In Ways of Proof Theory, ONTOS Series in Mathematical
Logic, pages 65–134, 2010.

6 Ilario Bonacina and Maria Luisa Bonet. On the strength of sherali-adams and nullstellensatz
as propositional proof systems. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th
Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5,
2022, pages 25:1–25:12. ACM, 2022. doi:10.1145/3531130.3533344.

7 María Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution for Max-SAT. Artificial
Intelligence, 171(8-9):606–618, 2007. doi:10.1016/j.artint.2007.03.001.

8 Joshua Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems and
propositional proof systems. In Proceedings of the 19th IEEE Conference on Computational
Complexity (CCC), pages 54–67, 2004. doi:10.1109/CCC.2004.1313795.

9 Sam Buss, Noah Fleming, and Russell Impagliazzo. Tfnp characterizations of proof systems and
monotone circuits. Electron. Colloquium Comput. Complex., TR22-141, 2022. arXiv:TR22-141.

10 Samuel R. Buss and Alan S. Johnson. Propositional proofs and reductions between NP search
problems. Annals of Pure and Applied Logic, 163(9):1163–1182, 2012. doi:10.1016/j.apal.
2012.01.015.

11 Xi Chen, Decheng Dai, Ye Du, and Shang-Hua Teng. Settling the complexity of Arrow-Debreu
equilibria in markets with additively separable utilities. In Proceedings of the 50th Symposium on
Foundations of Computer Science (FOCS), pages 273–282, 2009. doi:10.1109/FOCS.2009.29.

12 Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. The complexity of non-monotone markets.
Journal of the ACM, 64(3):20:1–20:56, 2017. doi:10.1145/3064810.

13 Bruno Codenotti, Amin Saberi, Kasturi Varadarajan, and Yinyu Ye. The complexity of
equilibria: Hardness results for economies via a correspondence with games. Theoretical
Computer Science, 408(2–3):188–198, 2008. doi:10.1016/j.tcs.2008.08.007.

14 Stefan S. Dantchev, Barnaby Martin, and Mark Nicholas Charles Rhodes. Tight rank lower
bounds for the sherali-adams proof system. Theor. Comput. Sci., 410(21-23):2054–2063, 2009.
doi:10.1016/j.tcs.2009.01.002.

https://doi.org/10.1016/j.ic.2003.10.004
https://doi.org/10.1016/j.ic.2003.10.004
https://doi.org/10.1007/978-3-030-24258-9_1
https://doi.org/10.1006/jcss.1998.1575
https://doi.org/10.1109/SFCS.1994.365714
https://doi.org/10.1109/SFCS.1994.365714
https://doi.org/10.1145/3531130.3533344
https://doi.org/10.1016/j.artint.2007.03.001
https://doi.org/10.1109/CCC.2004.1313795
https://arxiv.org/abs/TR22-141
https://doi.org/10.1016/j.apal.2012.01.015
https://doi.org/10.1016/j.apal.2012.01.015
https://doi.org/10.1109/FOCS.2009.29
https://doi.org/10.1145/3064810
https://doi.org/10.1016/j.tcs.2008.08.007
https://doi.org/10.1016/j.tcs.2009.01.002

B. Davis and R. Robere 36:21

15 Constantinos Daskalakis, Paul Goldberg, and Christos Papadimitriou. The complexity of
computing a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009. doi:
10.1137/070699652.

16 John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani. The complexity
of gradient descent: CLS = PPAD ∩ PLS. In Proceedings of the 53rd Symposium on Theory
of Computing (STOC), pages 46–59, 2021. doi:10.1145/3406325.3451052.

17 Yuval Filmus, Meena Mahajan, Gaurav Sood, and Marc Vinyals. MaxSAT resolution and
subcube sums. In Proceedings of the 23rd Theory and Applications of Satisfiability Testing
(SAT), pages 295–311. Springer, 2020. doi:10.1007/978-3-030-51825-7_21.

18 Michal Garlík. Failure of feasible disjunction property for k-dnf resolution and np-hardness of
automating it. CoRR, abs/2003.10230, 2020. arXiv:2003.10230.

19 Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert
Robere, and Ran Tao. Further collapses in TFNP. In Proceedings of the 37th Computational
Complexity Conference (CCC), pages 33:1–33:15, 2022. doi:10.4230/LIPICS.CCC.2022.33.

20 Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre, William Pires, Robert
Robere, and Ran Tao. Separations in proof complexity and TFNP. Electron. Colloquium
Comput. Complex., TR22-058, 2022. arXiv:TR22-058.

21 Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone
complexity and TFNP. In Proceedings of the 10th Innovations in Theoretical Computer Science
Conference (ITCS), volume 124, pages 38:1–38:19, 2018. doi:10.4230/LIPIcs.ITCS.2019.38.

22 David Johnson, Christos Papadimitriou, and Mihalis Yannakakis. How easy is local search?
Journal of Computer and System Sciences, 37(1):79–100, 1988. doi:10.1016/0022-0000(88)
90046-3.

23 Jan Krajíček. On the weak pigeonhole principle. Fundamenta Mathematicae, 170(1-3):123–140,
2001.

24 Jan Krajícek, Alan Skelley, and Neil Thapen. NP search problems in low fragments of bounded
arithmetic. J. Symb. Log., 72(2):649–672, 2007. doi:10.2178/jsl/1185803628.

25 Javier Larrosa, Federico Heras, and Simon de Givry. A logical approach to efficient Max-SAT
solving. Artificial Intelligence, 172(2-3):204–233, 2008. doi:10.1016/j.artint.2007.05.006.

26 Nimrod Megiddo and Christos Papadimitriou. On total functions, existence theorems and
computational complexity. Theoretical Computer Science, 81(2):317–324, 1991. doi:10.1016/
0304-3975(91)90200-L.

27 Christos Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3):498–532, 1994. doi:
10.1016/s0022-0000(05)80063-7.

28 Nathan Segerlind, Samuel R. Buss, and Russell Impagliazzo. A switching lemma for small
restrictions and lower bounds for k-dnf resolution. SIAM J. Comput., 33(5):1171–1200, 2004.
doi:10.1137/S0097539703428555.

29 Hanif Sherali and Warren Adams. A hierarchy of relaxations and convex hull characterizations
for mixed-integer zero–one programming problems. Discrete Applied Mathematics, 52(1):83–
106, July 1994. doi:10.1016/0166-218x(92)00190-w.

30 Alan Skelley and Neil Thapen. The provably total search problems of bounded arithmetic.
Proceedings of the London Mathematical Society, 103(1):106–138, 2011.

31 Neil Thapen. A tradeoff between length and width in resolution. Theory Comput., 12(1):1–14,
2016. doi:10.4086/toc.2016.v012a005.

CCC 2023

https://doi.org/10.1137/070699652
https://doi.org/10.1137/070699652
https://doi.org/10.1145/3406325.3451052
https://doi.org/10.1007/978-3-030-51825-7_21
https://arxiv.org/abs/2003.10230
https://doi.org/10.4230/LIPICS.CCC.2022.33
https://arxiv.org/abs/TR22-058
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.2178/jsl/1185803628
https://doi.org/10.1016/j.artint.2007.05.006
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1016/s0022-0000(05)80063-7
https://doi.org/10.1016/s0022-0000(05)80063-7
https://doi.org/10.1137/S0097539703428555
https://doi.org/10.1016/0166-218x(92)00190-w
https://doi.org/10.4086/toc.2016.v012a005

	p000-Frontmatter
	Preface
	Conference Organization

	p001-Cheung
	1 Introduction
	1.1 Main Result
	1.2 Consequences of the Main Theorem
	1.3 Connections to Fourier Algebra Norm

	2 Notations and Preliminaries
	2.1 Matrix Norms
	2.2 Communication Complexity
	2.3 Fourier Analysis of Zpk̂

	3 Overview of the Proof of the Main Theorem
	4 Randomized Communication Complexities of PL and PLZp
	5 Trace Norms of PL and PLZp
	6 Concluding Remarks

	p002-Chatterjee
	1 Introduction
	2 Preliminaries and Notations
	3 Proof of our closure results
	3.1 Proof of Theorem 1
	3.2 Proof of Corollary 3

	p003-Ivanov
	1 Introduction and our results
	1.1 The conjecture and our first result
	1.2 Mod functions
	1.2.1 Exact results
	1.2.2 Are symmetric polynomials optimal?

	1.3 A new approach
	1.3.1 Our approach vs. ``barriers'' to lower bounds

	1.4 Our second result: Proof of Conjecture 2 for d = 2
	1.4.1 Results and directions for d = 3

	1.5 Boolean correlation
	1.6 Proof sketch of Theorem 5
	1.6.1 Computing E_{y}c_{y}(s) and bounding |c_{y}(p)|
	1.6.2 Structure on p and slowly restricting y
	1.6.3 Bounding E_{y}|c_{y}(p)|
	1.6.4 The proof of (6) via handshaking
	1.6.5 Slackness

	2 The CHHLZ conjecture
	3 Derivatives
	4 Correlation of symmetric polynomials
	5 Proof of Theorem 5
	5.1 Proof of Theorem 21
	5.1.1 Proof of Lemma 28
	5.1.2 Proof of Lemma 29
	5.1.3 Proof of Lemma 30
	5.1.4 Proof of Lemma 31
	5.1.5 Proof of Lemma 32
	5.1.6 Proof of Lemma 33

	5.2 Proof of Lemma 22
	5.3 Proof of Lemma 23
	5.4 Proof of Lemma 24

	6 Boolean correlation
	6.1 Proof of Theorem 6
	6.1.1 Proof of Item 1
	6.1.2 Proof of Item 2
	6.1.3 Proof of Item 3

	7 Symmetric correlates poorly with mod m
	8 Structured cubic loses to quadratic
	8.1 Proof of Lemma 45
	8.2 Proof of Lemma 46

	p004-Galesi
	1 Introduction
	1.1 Main results
	1.2 Comparison with linear algebra, a new proof system, and a conjecture
	1.3 Organization

	2 Preliminaries
	2.1 Proof systems
	2.2 Linear algebra and tensors
	2.3 Polynomial encodings and the inversion principle

	3 Linear algebra warm-up: PC for matrices
	3.1 A trick for PC degree
	3.2 Inversion Principle implies the Rank Principle
	3.3 Lower bound on the Rank Principle (and Inversion Principle) via reduction from PHP

	4 Upper bound for non-isomorphism of bounded-rank tensors
	5 Lower bound on PC degree for Tensor Isomorphism from Graph Isomorphism
	6 Lower bound on PC degree for Tensor Isomorphism from Random 3XOR
	6.1 From Random 3-XOR to {+/- 1}-multilinear noncommutative cubic forms
	6.2 From {1}-monomial equivalence to (unrestricted) monomial equivalence
	6.3 From monomial equivalence to general equivalence of noncommutative cubic forms
	6.4 From cubic forms to tensors
	6.5 Putting it all together

	7 Open Questions
	7.1 Degree
	7.2 Size
	7.3 Other matrix problems
	7.4 Bounded border rank
	7.5 Relating different reductions from Graph Isomorphism

	p005-Hu
	1 Introduction
	1.1 Overall Goal: Indistinguishable Generative Models of Huge Objects
	1.2 Our Results
	1.3 Related Work

	2 Preliminaries
	2.1 Functions
	2.2 Graphs
	2.3 Indistinguishability
	2.4 Truthfulness
	2.5 Implementations
	2.6 Learning
	2.7 Other Notations

	3 Learning Functions with Exponentially Large Domains
	3.1 Learning Sample-Access Binary Functions
	3.2 Truthful Learning That Preserves Support Size
	3.3 Learning Support-Access Binary Functions
	3.4 Learning Bit-String Functions

	4 Learning Exponential-Size Graphs
	4.1 Learning Dense Graphs
	4.2 Learning Sparse Graphs Without Dense Subgraphs
	4.3 Learning Uniform Degree Graphs

	5 Impossibilities
	5.1 Fooling Distinguishers with Entry-Access is Hard
	5.2 Learned Model Needs to be Stronger than Distinguishers
	5.3 The Distinguisher Class Needs to be Learnable

	p006-Hirahara
	1 Introduction
	1.1 Bounded Relativization
	1.2 New Lower and Upper Bounds via Bounded Relativization
	1.3 Barriers for PSPACE-Relativizing Techniques
	1.3.1 Uniform Derandomization
	1.3.2 Explicit Constructions
	1.3.3 Circuit Lower Bounds

	1.4 Comparison with Algebrization
	1.4.1 Variants of Algebrization
	1.4.2 Comparison

	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Technical Tools

	3 New Lower and Upper Bounds via Bounded Relativization
	3.1 A PSPACE-Relativizing, Pseudodeterministic, Efficient PRG
	3.2 A Nearly Maximum Circuit Lower Bound for BPE-MCSP
	3.3 Circuit Lower Bounds for Meta-Complexity Problems
	3.3.1 A Pseudodeterministic PRG Fooling Circuits
	3.3.2 Circuit Lower Bound for rKPoly-MCSP

	3.4 Pseudodeterministic Construction for Range Avoidance

	4 Barriers for Derandomization under Uniform Assumptions
	4.1 PSPACE-Relativizing Derandomization under Uniform Assumptions
	4.2 Bounded-Relativization Barriers for Uniform Derandomization
	4.2.1 Barrier for Worst-Case Derandomization under Uniform Assumptions
	4.2.2 Barrier for Almost-Everywhere Derandomization without Advice

	5 Barriers for Explicit Constructions
	5.1 PSPACE-Relativizing Pseudodeterministic Constructions
	5.2 Bounded-Relativization Barriers for Explicit Constructions
	5.2.1 Barriers for Almost-Everywhere Pseudodeterministic Constructions
	5.2.2 Barriers for Deterministic Constructions and Lower Bounds for MKtP

	6 Barriers for Circuit Lower Bounds for Merlin–Arthur Classes
	6.1 PSPACE-Relativizing Circuit Lower Bounds for Merlin–Arthur Classes
	6.2 Bounded-Relativization Barriers for Circuit Lower Bounds

	7 Open Problems

	p007-Impagliazzo
	1 Introduction
	1.1 Related Work
	1.2 Our Result: Proof Overview

	2 Preliminaries
	3 The Hard Formulas
	4 The Lower Bound
	4.1 Technical Proof Overview
	4.2 Singular and Nonsingular variables
	4.3 Quadratic degree
	4.4 The Split Operation
	4.5 Proof of Main Theorem
	4.5.1 Cleanup operations
	4.5.2 The Main Theorem

	A Appendix

	p008-Cohen
	1 Introduction
	1.1 Expanding expanders
	1.2 Our results
	1.2.1 Expanding Ramanujan graphs
	1.2.2 On spectral expanding expanders meeting the Ramanujan bound and the ubiquitous of Ramanujan graphs

	1.3 Organization

	2 Proof Overview
	2.1 Lifts
	2.2 Partial lifts
	2.3 Bounding the spectral expansion
	2.4 Bounding the normalized spectral expansion

	3 Preliminaries
	3.1 Spectral graph theory
	3.2 Lifts

	4 Bounding the Spectral Expansion
	5 Bounding the Normalized Spectral Expansion
	6 Proof of Theorem 1

	p009-Chattopadhyay
	1 Introduction
	1.1 Linear branching programs
	1.2 Prior work
	1.3 Our results
	1.4 On average-case lower bound with negligible error
	1.5 Pseudorandomness against linear branching programs
	1.6 Subsequent Works and Future Directions
	1.7 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Statistical Distance
	2.3 Conditional Min-entropy
	2.4 Extractors

	3 Linear BP lower bounds based on sumset extractors
	4 Average-case lower bound with negligible error
	4.1 Sumset extractors for almost affine source
	4.2 Sumset extractors for non-intersecting span

	5 Kakeya sets and HSGs for regular ROLBPs
	5.1 Limitation to our approach

	A Definitions of strongly read-once linear branching programs
	B Directional affine extractors are non-malleable
	C Extractors for average conditional min-entropy, generalized

	p010-Abdolazimi
	1 Introduction
	1.1 Main Contribution
	1.2 Proof Overview

	2 Preliminaries
	2.1 Linear Algebra
	2.2 Simplicial Complexes

	3 Simplifying Matrix Trickle Down's Conditions to Scalar Inequalities
	4 Proof of Main Theorem

	p011-Doron
	1 Introduction
	1.1 Setting the stage: A tighter hypothesis and improved local list decoding
	1.2 Black-box derandomization with minimal footprint
	1.3 Non black-box derandomization with minimal footprint
	1.4 Catalytic computation towards an even smaller footprint

	2 Technical Overview
	2.1 Warm-up: Hardness amplification for {TC}^0 circuits in linear space
	2.2 Derandomization with minimal footprint using PRGs
	2.3 Non black-box derandomization with minimal memory footprint

	p012-Goldberg
	1 Introduction
	1.1 Results
	1.2 Techniques
	1.2.1 Learning from MKtP
	1.2.2 Learning from MKTP

	1.3 Related Work

	2 Preliminaries
	2.1 Average-case Complexity
	2.2 Time-bounded Kolmogorov Complexity
	2.3 Agnostic PAC-Learning and Correlative RRHS-Refutation
	2.4 Inversion
	2.5 Direct Product Generator and pKt-Compression
	2.6 Source Coding Theorem

	3 Approximating Kt
	4 Agnostic Learning from Heuristics for K-complexity
	4.1 Learning over the Uniform Distribution from MKTP
	4.2 Learning over PSAMPpoly from MKTP
	4.3 Learning from MKtP
	4.4 Learning from Worst-case Easiness of MKTP

	5 Open questions

	p013-Chatterjee
	1 Introduction
	2 Notation and preliminaries
	3 Main results
	4 Lower bounds against homogeneous non-commutative circuits
	4.1 Lower bounds for a single monomial
	4.2 Computing partial derivatives simultaneously
	4.3 Lower bound for ordered symmetric polynomials

	5 Upper bounds for ordered symmetric polynomials
	6 Open problems

	p014-Block
	1 Introduction
	1.1 Our results
	1.2 Overview of techniques
	1.2.1 Exponential Lower Bound for Weak Hamming RLDCs with q=2
	1.2.2 Lower Bounds for Strong Insdel RLDCs
	1.2.3 Constant-Query Weak Insdel RLDC

	2 Open Questions
	2.1 Further discussion about related work
	2.2 Organization

	3 Preliminaries
	4 Lower Bounds for 2-Query Hamming RLDCs
	4.1 A Warm-up: the lower bound for non-adaptive decoders
	4.2 Lower bounds for adaptive 2-Query Hamming RLDCs

	p015-Kush
	1 Introduction
	1.1 Background on Algebraic Complexity
	1.2 A Recent Breakthrough
	1.3 The Large Degree Regime
	1.4 Our Results
	1.5 Proof Overview and Relation to Prior Work

	2 Preliminaries
	2.1 Relative Rank and its Properties
	2.2 Inner Product Gadget

	3 A Hard Set-multilinear Polynomial in VP
	3.1 Description of the Polynomial
	3.2 Proof of Hardness

	4 A Hard Set-multilinear Polynomial in VBP
	4.1 Arc-partition Measure Description
	4.2 Construction of an Arc-full-rank Polynomial
	4.3 Bounding relrk_w for Small Set-multilinear Formulas
	4.4 Proof of the Many Violations Lemma
	4.5 Proof of the Chessboard Lemma

	5 Discussion and Open Problems
	A Proof Sketch of Lemma 22

	p016-Alman
	1 Introduction
	1.1 Our contributions

	2 Tensor Preliminaries
	3 Promise problems and colored tensors
	3.1 Number on the forehead problems as promise-number-in-hand problems
	3.2 Comparison with standard bounds for the NOF communication complexity
	3.3 Lower bounding the communication complexity of random NOF permutation problem
	3.4 Background on independence number and coloring of matrix multiplication tensor
	3.5 Laser method gives a non-trivial asymptotic protocol for all NOF permutation problems
	3.6 Zeroing out subrank of the matrix multiplication tensor
	3.7 Other promise problems
	3.8 Lower Bounds from the Asymptotic Spectrum of Tensors
	3.9 Intermediate Group Promise Problems

	p017-VanMelkebeek
	1 Introduction
	2 Technical overview
	2.1 Main results
	2.2 Byproducts

	3 Preliminaries
	3.1 Nondeterministic, co-nondeterministic and single-valued computation
	3.2 Arthur-Merlin protocols
	3.3 Learn-and-evaluate and commit-and-evaluate protocols
	3.4 Hitting-set generators and targeted hitting-set generators
	3.5 PCPs and low-degree extensions
	3.6 Average-case simulation

	4 Targeted hitting-set generator construction
	4.1 Recursive Miltersen-Vinodchandran generator
	4.2 Targeted generator and reconstruction
	4.3 Derandomization consequences

	5 Consequences of derandomization
	5.1 Hardness on almost-all inputs
	5.2 Targeted hitting-set generator

	6 Derandomization under uniform worst-case hardness
	6.1 Average-case simulation
	6.2 Infinitely-often all-input simulation

	7 Unconditional mild derandomization
	7.1 Nondeterministic easy witnesses
	7.2 Simulation

	p018-Kumar
	1 Introduction
	1.1 Our Results
	1.2 The Switching Lemma
	1.2.1 Comparison to Lyu [18]

	1.3 The Depth Reduction Lemma
	1.4 Putting It All Together

	2 Preliminaries
	2.1 Notation
	2.2 Random Restrictions and Partial Assignments
	2.3 Models of Computation
	2.4 Pseudorandomness and Probability
	2.5 Fourier Analysis

	3 Simplification Theorem of {GC}_d^0(k) Circuits
	4 Applications of The {GC}^0(k) Simplification Theorem
	4.1 Exponential Lower Bounds Against Parity
	4.2 Correlation Bounds for {GC}^0(k) Circuits With Few Arbitrary Threshold Gates
	4.3 Derandomizing the Multi-Switching Lemma and PRGs for {GC}^0(k)
	4.4 Fourier Spectrum Bounds for {GC}^0(k)

	5 Open Problems
	A Deferred Proofs
	A.1 Showing {TC}^0(k)subset {GC}^0(k)
	A.2 Tightness of the {GC}^0(k) Switching Lemma and Correlation Bounds
	A.3 Proof of the {GC}^0(k) Multi-Switching Lemma

	p019-Harsha
	1 Introduction
	2 Preliminaries
	2.1 Restrictions, Decision Trees and Restriction Trees
	2.2 Representation of restrictions and restriction trees

	3 Canonical decision tree
	3.1 0-Balancing and 1-Balancing
	3.2 CDT Definition
	3.3 Unpacking the CDT

	4 Downward closure property
	5 Bounds on criticality
	5.1 Sampling restriction trees
	5.2 Main Lemma

	6 Satisfiablity algorithms

	p020-Garg
	1 Introduction
	1.1 Main Result & Technical Contributions
	1.2 High level proof ideas
	1.2.1 Wide algebras

	1.3 Related work

	2 Preliminaries
	2.1 Rank and linear spaces of quadratic forms
	2.2 General Projections

	3 Sylvester–Gallai configurations
	3.1 Linear Sylvester–Gallai configurations
	3.2 Radical Sylvester-Gallai configurations

	4 Commutative algebraic preliminaries
	4.1 Basic Definitions
	4.2 Discriminant lemma

	5 Wide vector spaces and relative linear spaces
	5.1 Wide vector spaces and algebras
	5.2 Relative linear spaces

	6 Integral sequences and strong sequences
	6.1 Integral sequences
	6.2 Strong sequences

	7 Proof of Sylvester-Gallai Theorem
	7.1 Constructing core algebras
	7.2 Finding small ideal containing the quadratic forms
	7.3 Basic configuration
	7.4 Proof of main theorem

	8 Conclusion
	A Alternative proof of Lemma 64

	p021-Chen
	1 Introduction
	1.1 Sketch of the Reduction

	2 Partial-Information Functions
	3 The Partial-Information Reduction and Proof of Theorem 3
	3.1 Subroutine Generate-PI-Function
	3.2 Consequences of PI Function Being Safe
	3.3 Preserving Monotonicity and Safety
	3.4 Not Creating New Fixed Points

	4 An Illustrating Example
	5 Promise Problem versus TFNP Version
	6 Discussion and Open Problems

	p022-Natarajan
	1 Introduction
	1.1 Graph oracles
	1.2 Overview of proof techniques
	1.3 Statement of the result
	1.4 Implications and future directions

	2 Organization of the paper
	3 Preliminaries
	3.1 Notation and quantum information basics
	3.2 Expander graphs
	3.3 Non-deterministic oracle problems
	3.4 Graph oracles

	4 Random distributions over graphs with many connected components
	4.1 Graphs distributions inspired by [6]
	4.2 Setting of constants
	4.3 Concentration bounds for random distributions over graphs

	5 QMA protocol
	6 Adversary method
	6.1 Ambainis' proof of the adversary method
	6.2 Setup from QCMA algorithm
	6.3 Query lower bound for distinguishing sunflowers and fixed distributions
	6.3.1 A warmup lemma for distinguishing graphs
	6.3.2 Improving to more general permutations
	6.3.3 Completing the proof

	6.4 Statistical indistinguishability between random distributions

	7 Polynomial method lower bound
	7.1 From random walk sampling to uniform sampling
	7.2 From Pr_{A_2}[cdot] to Pr_{F then G}[cdot]

	8 Wrapping up the proof of Theorem 1
	8.1 QMA algorithm
	8.2 QCMA algorithm

	9 Concluding remarks
	9.1 Relation to the Fefferman and Kimmel [13] construction
	9.2 Difficulties in proving stronger statements

	p023-Aharonov
	1 Introduction
	2 Problem Definitions, Results and Main Challenges
	3 Tiling Rules and Layers
	4 Overview of Proofs
	5 Discussion, Related Work, and Open Problems

	p024-Ambainis
	1 Introduction
	2 Preliminaries
	2.1 Polynomials
	2.2 Adversary Bound

	3 The Problem and the Polynomial Upper Bound
	4 Quantum Lower Bound
	4.1 Input-Related Sets
	4.2 Overview of the Proof
	4.3 Fourier Basis
	4.4 The Building Blocks
	4.5 The Matrix G(alpha)
	4.6 Construction of alpha
	4.7 Finishing the Proof

	5 Discussion

	p025-Arunachalam
	1 Introduction
	1.1 Main Result
	1.2 Result 1: Separations based on the Forrelation problem
	1.2.1 Problem Definition: The Forrelation Problem
	1.2.2 Main Theorem

	1.3 Result 2: Separations based on Boolean Hidden Matching
	1.3.1 Problem Definition: The Boolean Hidden Matching Problem
	1.3.2 Main Theorem

	1.4 Proof Sketch
	1.5 Organization

	2 Preliminaries
	2.1 Quantum information
	2.2 Communication Complexity
	2.3 XOR-Fibers of Communication Protocols
	2.4 Fourier analysis

	3 XOR Lemma for Q|| for the Boolean Hidden Matching Problem
	4 XOR Lemma for R1 for the Boolean Hidden Matching Problem

	p026-Viola
	1 Introduction and our results
	1.1 Our results

	2 Techniques
	2.1 Conclusion and open problems

	3 Proof of the separator Theorem 14
	3.1 Proof of Theorem 16
	3.2 Proof of Lemma 17

	4 Comets
	5 A lemma about entropy
	6 Proof of Theorem 8
	7 Proof of Theorem 4
	8 Proof of Corollary 12
	A Proof of the fixed-set Lemma 19

	p027-DOrsi
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Perspective
	1.4 Organization

	2 Preliminaries
	2.1 CSPs, k-XOR and strong refutations

	3 A generalized Ihara-Bass formula
	3.1 Norm bounds via the Ihara-Bass formula

	p028-Fournier
	1 Introduction
	2 Preliminaries
	2.1 Algebraic formulas

	3 Main result
	3.1 Proof of Theorem 1
	3.2 Reducing the size blow-up
	3.3 Reducing the product fan-ins to 2

	4 Tightness
	5 Conclusion and Open questions
	A The Bonet-Buss depth-reduction

	p029-Cavalar
	1 Introduction
	1.1 Results
	1.1.1 Constant-depth circuits vs. monotone circuits
	1.1.2 Non-trivial monotone simulations and their consequences
	1.1.3 Monotone complexity of constraint satisfaction problems

	1.2 Techniques
	1.3 Directions and open problems

	2 Preliminaries
	2.1 Notation
	2.2 Background results

	3 Constant-Depth Circuits vs. Monotone Circuits
	3.1 A monotone size lower bound for a function in AC^0[oplus]
	3.2 A monotone depth lower bound for a graph property in AC^0
	3.3 Efficient monotone padding for graph properties

	4 Non-Trivial Monotone Simulations and Their Consequences
	4.1 A non-trivial simulation for bounded-depth circuits
	4.2 Non-monotone lower bounds from monotone simulations

	5 Monotone Complexity of Constraint Satisfaction Problems
	5.1 Definitions
	5.2 Basic facts about CSP-SAT
	5.3 A monotone dichotomy for CSP-SAT
	5.4 Some auxiliary results
	5.5 Consequences for monotone circuit lower bounds via lifting

	A A Lower Bound for 3-XOR-SAT Using the Approximation Method
	B Schaefer's Theorem in Monotone Complexity
	B.1 Connectivity and generation functions
	B.2 Proof of reduction lemmas
	B.3 Monotone circuit upper bounds

	C Background on Post's Lattice and Clones

	p030-Kunisky
	1 Introduction
	1.1 Maximum and Planted Clique Problems in Random Graphs
	1.2 Paley Graphs, Pseudorandomness, and Derandomization
	1.3 Our Contributions

	2 Preliminaries and Proof Overview
	2.1 Notations
	2.2 Problem Setup
	2.2.1 Sum-Of-Squares Relaxations of the Clique Number
	2.2.2 Paley Graphs

	2.3 Proof Overview

	3 Proof of Theorem 2
	3.1 Filling Zero Rows and Columns
	3.2 Second Schur Complement Bounds
	3.3 Ribbons and Graph Matrices
	3.4 Graph Matrix Decomposition
	3.5 Graph Matrix Norm Bounds
	3.6 Final Steps

	4 Ancillary Results
	4.1 Optimality Over Feige-Krauthgamer Pseudomoments
	4.2 Numerical Experiments
	4.3 General Graph Matrix Norm Bounds Do Not Derandomize

	p031-Austrin
	1 Introduction
	1.1 Our Results
	1.2 Overview of Proof Techniques
	1.3 Organization

	2 Preliminaries
	2.1 Sum of Squares
	2.2 Restrictions
	2.3 The Circuit Size Formula

	3 On Circuits and Restrictions
	4 Lower Bounds for General Circuits
	5 Lower Bounds for Monotone Circuits
	6 Concluding Remarks

	p032-Liu
	1 Introduction
	1.1 Leakage-resilient Hardness
	1.2 Characterizing Derandomization

	2 Preliminaries
	2.1 Leakage Resilient Hardness of (Multi-output) Functions
	2.2 Targeted Pseudorandom Generator

	3 Derandomization and Leakage Resilient Hardness
	3.1 Leakage Resilient Hardness from Derandomization
	3.2 Derandomization from Leakage Resilient Hardness

	4 Characterizing Derandomization of prMA

	p033-Chia
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 No parallel fast-forwarding for sparse Hamiltonians relative to random permutation oracle
	2.2 No parallel fast-forwarding for (geometrically) local Hamiltonians in the plain model

	3 Open Questions
	4 Preliminaries and Notation
	4.1 Notation
	4.2 Hamiltonian simulation
	4.3 Basic quantum computation
	4.4 Useful tools
	4.4.1 Bessel functions
	4.4.2 Johnson graph

	5 Lower Bounding Permutation Chain
	6 Parallel Hardness of Twisted Hash Chains
	7 Quantum Walk on a Line
	8 No Fast-forwarding in Oracle Model: Unconditional Result
	9 No Fast-forwarding in Plain Model
	9.1 Circuit to time-independent Hamiltonian
	9.2 Proof of the lower bound for local Hamiltonians
	9.3 Circuit to time-dependent Hamiltonian
	9.4 Proof of the lower bound for geometrically local Hamiltonians

	10 No Fast-forwarding with Natural Simulators

	p034-Bittel
	1 Introduction
	1.1 Our results
	1.2 Previous work
	1.3 Techniques
	1.4 Open questions

	2 QCMA-hardness of approximation for VQAs
	2.1 Definitions and required facts
	2.2 QCMA-completeness
	2.2.1 The MIN-VQA instance
	2.2.2 Helpful observations and lemmas
	2.2.3 Completeness
	2.2.4 Soundness
	2.2.5 Hardness ratio

	3 Extension of the hardness results to QAOAs
	3.1 QCMA completeness for QAOAs
	3.1.1 The Min-QAOA instance
	3.1.2 Initial state
	3.1.3 Cost function
	3.1.4 Preliminaries for the completeness proof
	3.1.5 Completeness
	3.1.6 Soundness
	3.1.7 Hardness ratio

	p035-Santhanam
	1 Introduction
	1.1 Background and Motivation
	1.2 The Approach
	1.3 Discussion
	1.4 Proof Ideas

	2 Preliminaries
	2.1 Standard Complexity Notions
	2.2 Meta-Complexity
	2.3 One-Way Functions and Pseudorandomness
	2.4 Search Problems and Samplers

	3 From Algorithms to Uniform Lower Bounds
	3.1 An Algorithmic Approach to Uniform Lower Bounds for NP
	3.2 An Algorithmic Approach to Uniform Lower Bounds for PSPACE

	4 Soundness of the Approach
	4.1 Solving the Algorithmic Tasks under Standard Cryptographic Assumptions
	4.2 Necessity of the Approach

	5 Feasibility of the Approach
	5.1 Capturing Known Lower Bounds
	5.2 New Lower Bounds

	6 Future Work

	p036-Davis
	1 Introduction
	1.1 Introduction to TFNP and Proof Complexity
	1.2 Our Results

	2 TFNP Classes and Propositional Proof Systems
	2.1 Propositional Proof Systems
	2.2 Search classes

	3 The Blockwise Calculus
	3.1 Multivalued CNFs and Blockwise Calculus Proofs
	3.2 Encoding TFNP Problems as Multivalued CNFs
	3.3 Blockwise Calculus vs. Boolean Proof Systems

