Leakage-Resilient Hardness vs Randomness

Yanyi Liu
Cornell Tech, New York, NY, USA

Rafael Pass
Tel-Aviv University, Israel
Cornell Tech, New York, NY, USA

Abstract

A central open problem in complexity theory concerns the question of whether all efficient randomized algorithms can be simulated by efficient deterministic algorithms. The celebrated "hardness v.s. randomness" paradigm pioneered by Blum-Micali (SIAM JoC’84), Yao (FOCS’84) and Nisan-Wigderson (JCSS’94) presents hardness assumptions under which e.g., \(\text{prBPP} = \text{prP} \) (so-called "high-end derandomization), or \(\text{prBPP} \subseteq \text{prSUBEXP} \) (so-called “low-end derandomization), and more generally, under which \(\text{prBPP} \subseteq \text{prDTIME}(C) \) where \(C \) is a “nice” class (closed under composition with a polynomial), but these hardness assumptions are not known to also be necessary for such derandomization.

In this work, following the recent work by Chen and Tell (FOCS’21) that considers “almost-all-input” hardness of a function \(f \) (i.e., hardness of computing \(f \) on more than a finite number of inputs), we consider “almost-all-input” leakage-resilient hardness of a function \(f \) – that is, hardness of computing \(f(x) \) even given, say, \(\sqrt{|x|} \) bits of leakage of \(f(x) \). We show that leakage-resilient hardness characterizes derandomization of \(\text{prBPP} \) (i.e., gives a both necessary and sufficient condition for derandomization), both in the high-end and in the low-end setting.

In more detail, we show that there exists a constant \(c \) such that for every function \(T \), the following are equivalent:

- \(\text{prBPP} \subseteq \text{prDTIME}(\text{poly}(T(\text{poly}(n)))) \);
- Existence of a \(\text{poly}(T(\text{poly}(n))) \)-time computable function \(f : \{0,1\}^n \rightarrow \{0,1\}^n \) that is almost-all-input leakage-resilient hard with respect to \(n^c \)-time probabilistic algorithms.

As far as we know, this is the first assumption that characterizes derandomization in both the low-end and the high-end regime.

Additionally, our characterization naturally extends also to derandomization of \(\text{prMA} \), and also to average-case derandomization, by appropriately weakening the requirements on the function \(f \). In particular, for the case of average-case (a.k.a. “effective”) derandomization, we no longer require the function to be almost-all-input hard, but simply satisfy the more standard notion of average-case leakage-resilient hardness (w.r.t., every samplable distribution), whereas for derandomization of \(\text{prMA} \), we instead consider leakage-resilience for relations.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases Derandomization, Leakage-Resilient Hardness

Digital Object Identifier 10.4230/LIPIcs.CCC.2023.32

Related Version Full Version: https://eccc.weizmann.ac.il/report/2022/113/

Funding Yanyi Liu: Work done while visiting Tel-Aviv University.
Rafael Pass: Supported in part by NSF Award CNS 2149305, NSF Award SATC-1704788, NSF Award RI-1703846, AFOSR Award FA9550-18-1-0267, a JP Morgan Faculty Award, and an Algorand Foundation grant (MEGA-ACE). This material is based upon work supported by DARPA under Agreement No. HR00110C0086. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Government or DARPA.
1 Introduction

Randomness is an ubiquitous tool in algorithm design. A central open problem in complexity theory concerns the question of whether all randomized algorithms can be derandomized; that is, can every randomized polynomial-time algorithm be simulated by a deterministic polynomial-time, or perhaps even just sub-exponential one? In this work, we consider this question with respect to promise problems; as usual, we refer to prBPP as the class of promise problems (as opposed to languages) that can be solved in probabilistic polynomial time (with 2-sided error), and prP to the class of promise problems than can be solved in deterministic polynomial time.

We here focus on the questions of whether $\text{prBPP} = \text{prP}$ (the, so-called, “high-end regime”), $\text{prBPP} \subseteq \text{prSUBEXP}$ (the, so-called, “low-end regime”) and more generally whether $\text{prBPP} \subseteq \text{prDTIME}(C)$, where C is a “nice” class of time bounds (where by “nice” we here mean that C is closed under composition with a polynomial).

A long sequence of works originating with the works of Blum-Micali [3], Yao [30], Nisan [23], Nisan-Wigderson [24], Babai-Fortnow-Nisan-Wigderson [2], Impagliazzo-Wigderson [14] have presented beautiful connections between this problem and the problem of proving computational-complexity lower bounds – the so-called hardness v.s. randomness paradigm. For instance, the results of [24, 14] show that $\text{prBPP} = \text{prP}$ under the assumption that $E = \text{DTIME}(2^{O(n)})$ contains a language that requires Boolean circuits of size $2^{\Omega(n)}$ for almost all input lengths (i.e., E is not contained in $\text{ioSIZE}(2^{\Omega(n)})$). Additionally, results by Impagliazzo, Kabanets and Wigderson [13] show a partial converse: if $\text{prBPP} = \text{prP}$, then some non-trivial circuit lower bound must also hold. In more detail, if $\text{prBPP} = \text{prP}$ (or even just $\text{MA} = \text{NP}$), then $\text{NEXP} \not\subseteq \text{P/poly}$; very recent works [28, 22] managed to strengthen the conclusion to e.g., $\text{NTIME}[n^{\text{polylog} n}] \not\subseteq \text{P/poly}$.

But despite over 40 years of research on the topic of derandomization, there has still been a large “gap” between the hardness assumptions required for derandomizing prBPP, and the ones that are known to be necessary for derandomization, leaving open the following question:

For “nice” classes C, does there exist some (natural) hardness assumption that is equivalent to $\text{prBPP} \subseteq \text{prDTIME}[C]$?

Most notably, known derandomization results for prBPP require complexity lower-bounds on functions in EXP, whereas it is only known that derandomization of prBPP implies complexity lower bounds for functions in non-deterministic classes.

There as been some recent progress on the above problem:

- An elegant work by Chen, Rothblum, Tell and Yogev show an equivalence between derandomization and circuit lower bound under a conjecture (a weaker version of the non-deterministic exponential-time hypothesis) [5]. There work applies for both the high-end and the low-end regime, but is only conditional (i.e., relies on a conjecture).

- Chen and Tell [6], relying on the work by Goldreich [9], show that the existence of a multi-output function $f : \{0,1\}^n \to \{0,1\}^n$ computable by polynomial size logspace-uniform circuits with depth bounded by n^2 that cannot be computed in some (a-priori bounded) probabilistic polynomial time on any sufficiently large input – this is referred to as “almost-all-input hardness” – implies that $\text{prBPP} = \text{prP}$. They also show a partial converse: That a relaxed version of this conjecture, where the depth requirement is dropped, also is necessary.

- Liu and Pass [18], following the work of Hirahara [11], demonstrates a class of promise problems (related to conditional time-bounded Kolmogorov complexity) such that (worst-case) hardness with respect to a-priori polynomially bounded probabilistic algorithms of
all problems in the class is equivalent to \(\text{prBPP} = \text{prP} \). (The result of Liu and Pass also shows that a single problem can be used to characterize \(\text{prBPP} = \text{prP} \) but this problem is very artificial.) Similar to the results of [6], this characterization can be extended slightly beyond the “high-end regime”, but fails to capture the “low-end regime”: it only works to handle derandomization in time \(C \), where \(C \) is a class closed under composition (i.e., if \(T \in C \), then \(T(T(\cdot)) \in T \)), and thus already does not apply to e.g., \(\text{SUBEXP} \).

Finally, a very recent elegant work by Korten [17] demonstrates a natural search problem – the R-Lossy Code problem – that is complete for \(\text{prBPP} \). As such, the assumption that this problem can be solved in deterministic time \(C \) characterizes when \(\text{prBPP} \subseteq \text{DTIME}(C) \).

We note, however that this assumption is not a hardness assumption, but rather an “easiness” assumption.

Thus summing up, it is known how to characterize both the high-end and low-end derandomization through a hardness assumption under a conjecture [5]; unconditionally, however, it is only known how to characterize the high-end regime (i.e., \(\text{prBPP} = \text{prP} \)) and even there it is only known under either (a) a class of hardness assumptions (as opposed to one), or (b) a very specific and artificial single hardness assumption.

In this work, we follow the work by Chen and Tell [6] and also consider the notion of “almost-all-input” hardness of a multi-output function. In contrast to them, however, we consider such “almost-all-input” hardness in the context of leakage resilience, a notion first considered in the cryptographic literature in the 1980s. As we shall see, our main result shows that “almost-all-input” leakage resilient hardness can be used to fully characterize derandomization, both in the high-end and in the low-end setting; additionally, our characterization will extend also to derandomization of \(\text{prMA} \), and also to average-case (a.k.a. “effective”) derandomization. In particular, for the case of average-case derandomization, we no longer require the function to be almost-all-input hard, but simply satisfy the standard notion of average-case leakage-resilient hardness (w.r.t., every samplable distribution). And to characterize derandomization of \(\text{prMA} \), we instead consider the notion of a leakage-resilient relation, which again is a notion considered in the cryptographic literature. Taken together, we believe that our results demonstrate an intriguing connection between derandomization and notions from cryptography.

1.1 Leakage-resilient Hardness

Consider some multi-output function \(f : \{0,1\}^n \rightarrow \{0,1\}^n \). Roughly speaking, we say that \(f \) is \(T \)-hard if no \(T(|x|) \)-time algorithm/attacker \(A \) can compute \(f(x) \) given any input \(x \).

Perhaps the most widely known example of a candidate construction of a hard function is integer factorization: given a product of two-primes \(x \), compute the factorization \(f(x) \) of \(x \). In 1985, Rivest and Shamir [26] asked the question of what happens to this candidate hard function if the attacker gets some additional “side-information” about the factorization of \(x \). Namely, the attacker gets not only \(x \), but also some \(T \)-time computable side-information (a.k.a. “leakage”) \(\text{leak}(x, f(x)) \). Of course, if \(|\text{leak}(x, f(x))| \geq |f(x)| \), then the problem becomes trivial since the side-information can simply reveal the whole factorization; in fact, for the particular factorization problem, it trivially suffices to leak \(n/2 \) bits to reveal just one of the primes. Rivest and Shamir [26] show that, in fact, it suffices to get \(n/3 \) bits of leakage for the function to becomes easy; this result was improved by Coppersmith [7] to \(n/4 \) bits, and a heuristic (with a conjectured polynomial running-time bound) by Maurer [20] shows an attack given just \(\epsilon n \) bits of leakage for any constant \(\epsilon > 0 \). As far as we know, it is unknown if this problem can be solved using just \(n\epsilon \) bits of leakage, for any \(\epsilon < 1 \).
The notion of leakage-resilient hardness captures the notion that a function is hard even given some bounded-length leakage [26, 20, 1]: We say that a function f is (T,ℓ)-leakage resilient hard if no $T(|x|)$-time attacker A can compute $f(x)$ given x and $\text{leak}(x, f(x))$ for any $T(|x|)$-time computable leakage function leak that outputs at most $\ell(|x|)$ bits. In recent years, leakage-resilient cryptography [15, 21, 8, 1] – the design of cryptographic protocols resilient to some forms of leakage of honest players’ secrets – has received significant attention and has become a subfield in cryptography; the bounded-length leakage model is the most common way of formalizing the class of leakage functions.

In this paper, we will consider this notion of leakage-resilient hardness, except that following Chen and Tell, we will also consider it in the context of almost-all-input hardness: that is, for any pair (A, leak) there can be at most finitely many x for which A can compute $f(x)$ given x and $\text{leak}(x, f(x))$.

1.2 Characterizing Derandomization

We are now ready to state our main theorem, which shows that almost-all-input leakage-resilient cryptography characterizes both high-end and low-end derandomization. We say that a class of time-bounds \mathcal{C} is nice if for all polynomials p, q it holds that if $T \in \mathcal{C}$, then $p(n)T(q(n)) \in \mathcal{C}$. For instance, the sets $\text{poly}(n)$ and $2^{n^{o(\log n)}}$ are nice and recall that $\mathbb{P} = \text{DTIME}(\text{poly})$ and $\text{SUBEXP} = \cap_{c>0}\text{DTIME}(2^{n^c})$.

Derandomizing prBPP. Our main theorem gives a characterization of derandomization of prBPP:

- **Theorem 1.1.** There exists a constant c such that for every “nice” class of running-time bounds \mathcal{C}, and for every $0 < \epsilon < 1$, the following are equivalent:
 - $\text{prBPP} \subseteq \cup_{T \in \mathcal{C}} \text{DTIME}[T(n)]$.
 - The existence of a multi-output function $f : \{0,1\}^n \rightarrow \{0,1\}^n$ computable in deterministic time $T \in \mathcal{C}$ such that f is almost-all-input (n^c, n^ϵ)-leakage-resilient hard.

In particular, $\text{prBPP} = \text{prP}$ (resp. $\text{prBPP} \subseteq \text{prSUBEXP}$) iff there exists a polynomial-time (resp. subexponential-time) computable multi-output function that is almost-all-input (n^c, \sqrt{n})-leakage-resilient hard.

Some Corollaries to Leakage-resilient Hardness. For the proof of Theorem 1.1, in one direction, we only require leakage-resilience with a “small” amount of leakage, whereas in the other direction, we obtain a function that is leakage-resilient hard with a “large” amount of leakage. Consequently, our proof actually also yields an amplification theorem for leakage-resilient hardness: For any $\epsilon > 0, d \geq 1$, the existence of an efficient (n^ϵ, n^ϵ)-leakage-resilient hard function implies an efficient $(n^d, n - \Omega(\log n))$-leakage-resilient hard function.

- **Theorem 1.2.** There exists a constant c such that for every nice class \mathcal{C}, all constants $\epsilon > 0, d \geq 1$, the following holds. If there exists a \mathcal{C}-computable almost-all-input (n^c, n^ϵ)-leakage-resilient hard function. Then there exists a \mathcal{C}-computable almost-all-input $(n^d, n - 3\log n)$-leakage-resilient hard function.

Let us highlight that as far as we know, this is the first type of leakage-resilience amplification result in the literature that we are aware of. (Brakerski and Kalai [4] demonstrate a parallel repetition theorem for leakage-resilience but it does not show how to amplify the amount of leakage a function is resilient against, but rather only how to maintain the (relative) amount of leakage.)
Additionally, by combing the result of Chen and Tell [6] with our Theorem 1.1, we get an interesting (one-sided) connection between low-depth computable hard functions and leakage-resilience:

Theorem 1.3. There exists some c such that the following holds. If there exists a function f computable by polynomial-size logspace-uniform circuits with depth bounded by f^2 that is almost-all-input n^c-hard, then for any constant $d \geq 1$, there exists a polynomial-time computable almost-all-input $(n^d, n - 3\log n)$-leakage-resilient hard function.

Comparison with IW: leakage-resilient local hardness. Recall that Impagliazzo and Wigderson [14] shows that $\text{prBPP} = \text{prP}$ under the assumption that $E \not\subseteq \text{ioSIZE}(2^\Omega(n))$ (i.e., that there exists some exponential-time computable function that does not have $2^\Omega(n)$-size circuits.) Since Theorem 1.1 shows that leakage-resilient hardness is both a sufficient and necessary condition for derandomizing prBPP, it directly follows that $E \not\subseteq \text{ioSIZE}(2^\Omega(n))$ implies leakage-resilient hardness (by combining [14] with Theorem 1.1), but it gives little insight into whether the type of assumption used by IW is inherent, or to what extent it “overshoots”. Indeed, understanding to what extent the NW/IW framework is inherent for derandomization is a long standing open problem.

We now show how to use our framework to provide an (in our eyes) crisp answer to this question. We start by noting that by a slight adjustment to the proof of Theorem 1.1, an (a-priori) weaker notion of leakage-resilient local hardness actually suffices to derandomize prBPP: Given a function $f : \{0,1\}^n \to \{0,1\}^n$, we say that A t-locally computes $f(\cdot)$ on input x if for every $i \in [x]$, $A(x,i) = f(x)_i$ (i.e., the ith bit of $f(x)$), and $A(x, i)$ runs in time bounded by $t(|x|)$; we analogously say that A t-locally computes f on input x given (T, ℓ)-leakage leak if for every $i \in [x]$, $A(x, \text{leak}(x, f(x)), i) = f(x)_i$, $A(x, z, i)$ runs in time bounded by $t(|x|)$, $\text{leak}(x, f(x))$ runs in time bounded by $T(|x|)$, and $|\text{leak}(x, f(x))| \leq \ell(|x|)$.

We finally say that f is almost-all-input (T, ℓ)-leakage resilient t-local hard if there does not exist (A, leak) such that A t-locally computes f on infinitely many x given (T, ℓ)-leakage leak. Note that this notion of leakage-resilient hardness differs from the standard one in two ways: (a) we are decoupling the running time T of the leakage function, and the running time t of the computing machine A, and (b) we require the computing machine A to be able to locally compute each bit of the output of $f(x)$ – this will allow us to consider sublinear running times t. Indeed, we will focus our attention on the regime where A is required to reconstruct each bit of $f(x)$ in sublinear time: We say that f is simply almost-all-input (T, ℓ)-leakage resilient locally hard if there exists some $0 < \epsilon < 1$ such that f is almost-all-input (T, ℓ)-leakage resilient t-locally hard where $t(n) = n^\epsilon$. Note that (T, ℓ)-leakage resilient hardness is trivially an (a-priori) stronger condition than (T, ℓ)-leakage resilient local hardness when $T \in \Omega(n^\epsilon)$.

We now have the following generalization of Theorem 1.1:

Theorem 1.4. There exists a constant $c \geq 2$ such that for every “nice” class of running-time bounds C, and for every $0 < \epsilon < 1$, the following are equivalent:

- $\text{prBPP} \subseteq \bigcup_{T \in C} \text{prDTIME}[T(n)]$.
- The existence of a multi-output function $f : \{0,1\}^n \to \{0,1\}^n$ computable in deterministic time $T \in C$ such that f is almost-all-input (n^c, n^c)-leakage-resilient locally hard.
- The existence of a multi-output function $f : \{0,1\}^n \to \{0,1\}^n$ computable in deterministic time $T \in C$ such that f is almost-all-input (n^c, n^c)-leakage-resilient locally hard.

Leakage-resilient local hardness is useful as it allows to capture the assumption that $E \not\subseteq \text{ioSIZE}(2^\Omega(n))$. In fact, we observe that $E \not\subseteq \text{ioSIZE}(2^\Omega(n))$ directly implies the existence of a (n^c, n^c)-leakage-resilient locally hard function for every c. To see this, consider some
There is a minor subtlety here. If we have an attacker where g there exists some extend this notion of classes of problems in the usual way: an PPT negligible fraction of instances. now consider instances resilient hardness with respect to some distribution derandomization through average-case leakage-resilient hardness, where average-case leakage-polynomial-time refuter, and with only negligible failure probability.) it here) requires the existence of a single derandomization procedure that works for that particular bound. In contrast, effective derandomization (as we consider running-time/success probability of a refuter, we require the existence of derandomization bounded by 1 running time is bounded by 1 polynomial-time computable leakage. This derandomization, but rather only a notion of \text{polynomial-time} effective derandomization of a \text{prBPP} where the derandomizer does not need to work on all inputs – rather, it can fail sometimes, but only on inputs that are “hard to find” – in more detail, no PPT finder/refuter can find instances on which the derandomization fails except with negligible probability. In essence, effective derandomization is good enough for all efficient applications of derandomization.

For technical reasons, however, Goldreich, is not able to characterize such effective derandomization, but rather only a notion of $\text{p(\cdot)-effective derandomization}$ where the finder/refuter running time is bounded by $p(n)$ for some fixed polynomial p and it success probability is bounded by $\frac{1}{2^{n/p}}$. (In more details, for every a-priori fixed polynomial bound $p(\cdot)$ on the running-time/success probability of a refuter, we require the existence of derandomization that works for that particular bound. In contrast, effective derandomization (as we consider it here) requires the existence of a single derandomization procedure that works for \text{any} polynomial-time refuter, and with only negligible failure probability.)

Using our leakage-resilient framework, we can get a clean characterization also of effective derandomization through average-case leakage-resilient hardness, where average-case leakage-resilient hardness with respect to some distribution D is defined just like before except we now consider instances x sampled from D and we allow the attacker A to succeed on at most a negligible fraction of instances.

More precisely, we say that Π is \text{effectively contained} in Π' (denoted $\Pi \subseteq_{\text{poly}} \Pi'$) if for every PPT A there exists a negligible μ such that the probability that $A(1^n)$ is able to output an n-bit element in the symmetric difference between Π and Π' is bounded by $\mu(n)$; we may extend this notion of classes of problems in the usual way: $D \subseteq_{\text{poly}} D'$ iff for every $\Pi \in D$, there exists some $\Pi' \in D'$ such that $\Pi \subseteq_{\text{poly}} \Pi'$.

1 There is a minor subtlety here. If we have an attacker A that locally computes $f(x)$ on some input x in sublinear time, then A can compute $g_{\log|x|}(y)$ for every $y \in \{0,1\}^{\log|x|}$ in sublinear time \textit{given access to} x which can be of exponential length compared to $|y|$. But since A runs in sublinear time, it can access at most a sublinear number of bits of x, and thus we can compute g_m by a circuit of subexponential size.
Theorem 1.5. There exists a constant c such that for every $0 < \epsilon < 1$, the following are equivalent:
- $\text{prBPP} \subseteq \text{poly prP}$.
- The existence of a multi-output function $f : \{0, 1\}^n \to \{0, 1\}^n$ computable in deterministic polynomial time such that f is average-case (n^c, n')-leakage-resilient hard for every efficiently samplable distribution D.

The result also extends to the low-end regime but only if we consider a stronger form of effective containment (which allows the refuter to have super polynomial running time).

Derandomizing prMA. Finally, we consider the problem of derandomizing prMA (as opposed to just prBPP). Here, we require considering the notion of a leakage-resilient hard relation [25], which is identically defined to that of a leakage-resilient hard function, except that any input x can be mapped to multiple values $y \in R(x)$. We show:

Theorem 1.6. There exists a constant c such that for every “nice” class of running-time bounds C, and for every $0 < \epsilon < 1$, the following are equivalent:
- $\text{prMA} \subseteq \bigcup_{T \in \text{prNP}} \text{polyNTIME}[T(n)]$.
- The existence of a relation $R \subseteq \{0, 1\}^n \times \{0, 1\}^n$ computable in non-deterministic time $T \in C$ such that R is almost-all-input (n^c, n')-leakage-resilient hard.

In particular, prMA = prNP iff there exists a relation $R \in \text{NP}$ that is almost-all-input (n^c, \sqrt{n})-leakage-resilient hard.

Proof Overview. We focus our attention on the proof of Theorem 1.1 (and Theorem 1.4); afterwards, we briefly discuss how to extend these techniques to prove the remaining results. For simplicity, here focusing only on the high-end setting, but the key point is that the same technique directly extends also to the low-end setting.

- Leakage-resilient Hardness implies prBPP = prP: Following Goldreich [9], we consider the notion of a targeted PRG – roughly speaking, this is a PRG g that gets an additional target z as input, and indistinguishability holds with respect to uniform algorithms that also get the target z as input. In other words, g is just like a normal PRG, but with the exception that both the PRG and the distinguisher get access to the auxiliary “target” string z, and we require security to hold for all strings z. (Since we consider PRGs in the context of derandomization, we allow the running-time of the PRG to be (polynomially) larger than the running-time of the distinguisher.) Using standard techniques, it follows that the existence of such a targeted PRG, with sufficiently large stretch, implies that $\text{prBPP} = \text{prP}$ (simply let the instance to be decided be the target for the PRG).

We next show how to use leakage-resilient hardness to construct a targeted PRG. Assume the existence of a leakage-resilient hard multi-output function $f : \{0, 1\}^n \to \{0, 1\}^n$. Given a target $z \in \{0, 1\}^n$, we compute $g_z = \text{ECC}(f(z))$, where ECC is an appropriate list-decodable error-correcting code with good parameters, and interpret g_z as a hard function to use in the Impaglizzo-Wigderson (IW)/Nisan-Wigderson (NW) pseudo-random generator generator [14, 24]. That is, we are relying on the Sudan-Trevisan-Vadhan PRG [27]. The IW-NW proof essentially shows that given a distinguisher D for the PRG, and some (bounded-length) advice about the truthtable (and D), we efficiently compute the evaluation of g_z with probability $1/2 + \frac{1}{p(n)}$ for some polynomial p over random n-bit inputs. We observe that this advice in fact can be efficiently computed if we have access to the truthtable of g_z and the distinguisher D, and we can thus view it as efficiently leakage on $(z, f(z))$. We can next list-decode (again efficiently) g_z and
recover a polynomial-length list of candidates for $f(z)$; given $f(z)$, we can efficiently determine which of these candidates is the correct one, and also include the index of this candidate in the leakage (which again will be short). Given both these leakage, we can now re-compute $f(z)$ by simply again running the list-decoding algorithm and outputting the string specified by the index. We note that we here rely on the fact that once this leakage has been fixed, the rest of the NW reconstruction procedure is deterministic, and furthermore, the list-decoding procedure is also deterministic, so the attacker A can recompute the same list of candidates in the same order, and thus we are guaranteed that it also recovers the exact same string.

In other words, if anyone can break the targeted PRG on infinitely many targets z, we can compute $f(z)$ on infinitely many inputs z given short and efficiently computable leakage on $(z,f(z))$; we note that, somewhat curiously, the leakage function actually also needs to access z and not just $f(z)$ in order to simulate the distinguisher D (that gets z as an input).

We finally observe that if the error-correcting code additionally satisfies a local list decoding property – e.g., by using the error-correcting code of [27] – then we can actually locally compute each bit of $f(z)$ in sublinear time in the length of $f(z)$ which we can use to conclude also the implication in the proof of Theorem 1.4. There is just one small catch: the local list decoding procedure will be randomized, so we may not necessarily recover the same list of candidates, or the same ordering of them. But the list-decoding procedure has a small running time and thus also uses a small amount of randomness, so we can just include this additional randomness as part of the leakage.

In the actual proof, we show the above in a more modular way:

- We first consider a notion of a strongly black-box PRG – roughly speaking a PRG based on f for which there exists (a) an efficient algorithm that given black-box access to f and some distinguisher for the PRG outputs some advice string, and (b) another efficient algorithm that given this advice string and black-box access to the same distinguisher, is able to efficiently compute f. This notion is a strengthening of the notion of a black-box PRG from [29] where the advice string did not need to be efficiently computable. Nevertheless, following [12], we note that the advice string needed in the reduction to prove security of the [27] PRG construction actually can be efficiently computed.

- Next, we show that any such strongly black-box PRG construction can be used to get a targeted PRG from leakage-resilient hardness.

\textbf{prBPP $=$ prP implies Leakage-resilient Hardness:} Our proof, roughly speaking, proceeds in two steps. First, we show using an information theoretic argument that a random function f is almost-all-input leakage-resilient hard. Next, we show how this function can be “derandomized” assuming prBPP $=$ prP – the crucial aspect that makes this derandomization possible is that it is possible to efficiently verify whether there exists some attacker that efficiently computes the function on some input given efficient leakage (by enumerating the log n first Turing machines and evaluating them).

For the first step, we use a simple compression argument to show that for every attacker, leakage-function pair (A,leak), for any input x, with high probability over the choice of $y = F(x) \in \{0,1\}^n$, it is the case that the attacker A can compute $F(x)$ with probability at most, say, $1/6$. In fact, we will show a slightly stronger statement: for any A,x, with high probability over y, there does not exists any leakage function, leak, such that (A,leak) computes y with probability $1/6$. The advantage of this stronger formulation is that now it is without loss of generality to restrict attention to deterministic leakage functions leak (since for any fixed A,x,y we can always consider the deterministic leakage function that fixes the best randomness).
To prove the (stronger) statement, let us first consider the case when also the attacker A is deterministic. Since the length ℓ of the leakage is significantly shorter than $|y|$, it follows that for any fixed x, most strings y are not in the range of what the attacker can output given x and any leakage, and thus for every x, with high probability over the choice of y, the attacker fails to output y no matter what the function leak is.

Next, note that even if A is randomized, there can be at most 6 strings that A outputs with probability $1/6$ given any fixed x and any fixed leakage output, so the above argument actually also extends to randomized A (except that we increase the number of string y that can be hit by a factor 6). This thus concludes a random choice of y will with high probability not be computable by any (A,leak).

Next, we show that for any x, this random choice of y can actually be derandomized assuming $\text{prBPP} = \text{prP}$, and relying on the fact that we only need y to be hard to compute with respect to uniform (bounded) polynomial-time computable (A,leak). Towards this, we follow the approach of Goldreich [9] and show that for any x, we can greedily compute the bits of $y = f(x)$ one at a time, relying on the fact that we know that a random selection will work, and then use the fact that $\text{prBPP} = \text{prP}$ to efficiently find a good selection. In more details, we know that with high probability over the choice of y, the first $\log n$ uniform (A,leak) machines with running time bounded n^c will fail to compute y so we can start by picking bit 1 y_1 of y that leads to a high probability over the continuation of y of all those $\log n$ machines failing to compute y. Estimating this probability requires randomness, but if $\text{prBPP} = \text{prP}$ then it can also be done deterministically. This second step can be done in a modular way by appealing to the elegant BPP-decision-to-search reduction of Goldreich [9] and by appropriately specifying the above problem of finding a “good” y that fools the $\log n$ first uniform (A,leak) machine with running time n^c (in the sense that their estimated success probability is significantly smaller than $1/6$) as a BPP-search problem.

Effective Derandomization. To characterize “effective derandomization”, the proof follows a very similar structure, except to perform the derandomization we instead pass through a new notion of an “average-case targeted PRG”. The converse direction (showing necessity of the assumption) becomes a bit more complicated than before as we no longer have access to a perfect derandomization, but these additional subtleties can be dealt with. (Roughly speaking, the issue is that since the derandomizer only succeeds on average, we may run into trouble during the decision to search process. On a high-level, the way we get around these issues is by relying on the fact that we only need to derandomize a single fixed problem, and that effective derandomization yields a single derandomized algorithm for solving it, and we can next show that if an error occurs during the decision to search process, the location of the first mistake can be efficiently guessed.)

Characterizing Derandomization of prMA. To show how to derandomize prMA, we instead pass through a new notion of a non-deterministic targeted PRG, which can be instantiated from our assumption and which implies derandomization of prMA.

To prove the converse direction, we proceed a bit different from the proof of Theorem 1.1 – we can no longer passing through the above-mentioned search-to-decision reduction, as no such reduction is known for prMA. Instead, we show how to directly construct a leakage-resilient hard relation from the assumption that prMA can be derandomized using a diagonalization argument. Roughly speaking, we show that the above described BPP-search problem (of given a string x, finding some y that is leakage-resilient hard to compute w.r.t. the first
log n algorithms) actually is a leakage-resilient hard relation assuming that prMA can be derandomized! First note that this problem trivially is in prMA and thus also in prNP under the assumption that $\text{prMA} = \text{prNP}$. More interestingly, if there exists some attacker A that given an input x and given some efficient leakage on x can compute a y in this relation, then this y cannot be in the relation (since by definition, y cannot be computed by any efficient algorithm with small description), which is a contradiction.

Paper Overview. In Section 3, we present an equivalence between derandomizing prBPP and leakage-resilient hardness. In Section 4, we present a characterization of derandomizing prMA via the notion of leakage-resilient relation. The results on average-case derandomization are deferred to the full version [19].

2 Preliminaries

We assume familiarity with basic concepts such as Turing machines, polynomial-time algorithms, and probabilistic algorithms and computational classes such as prBPP and prP. We say that a function f is time-constructible if f is increasing and for all $n \in \mathbb{N}$, $f(n)$ can be computed by a Turing machine in time $\text{poly}(f(n))$. We say that a class of functions C is nice if for all $T \in C$, $t(p(n))q(n) \in C$ for all polynomials p, q.

We say that $D = \{D_n\}_{n \in \mathbb{N}}$ is an ensemble if for all $n \in \mathbb{N}$, D_n is a probability distribution over $\{0,1\}^n$. We say that an ensemble $D = \{D_n\}_{n \in \mathbb{N}}$ is samplable if there exists a probabilistic polynomial time Turing machine S such that $S(1^n)$ samples D_n.

2.1 Leakage Resilient Hardness of (Multi-output) Functions

We consider multi-output functions $f : \{0,1\}^n \rightarrow \{0,1\}^n$ (as opposed to binary functions, traditionally considered in the derandomization literature). We will focus on a leakage-resilient notion of hardness. Roughly speaking, we say that f is (T, ℓ)-leakage resilient hard if no T-time attacker can compute $f(x)$ given x and $\text{leak}(x, f(x))$, where leak is any T-time computable leakage function such that $\text{leak}(x, f(x)) \leq \ell(|x|)$. We will consider this notion of in the context of almost-all-input hardness [6] which requires all potential attackers to succeed only on finitely many inputs.

- **Definition 2.1 (Almost-all-input leakage-resilient hardness).** Let $f : \{0,1\}^n \rightarrow \{0,1\}^n$ be a (multi-output) function. We say that f is almost-all-input (T, ℓ)-leakage resilient hard if for all T-time2 probabilistic algorithms A satisfying $\text{leak}(x, f(x)) \leq \ell(|x|)$, for all sufficiently long strings x, $A(x, \text{leak}(x, f(x))) \neq f(x)$ with probability $\geq 2/3$ (over their internal randomness).

 The notion of leakage-resilient local hardness will be useful for us. In the local hardness condition, we require no attacker A can produce each bit of $f(x)$ given the input x together with the coordinate. This allows us to consider attackers A that run in $|x|^2$ time on input x.

- **Definition 2.2 (Almost-all-input leakage-resilient local hardness).** Let $f : \{0,1\}^n \rightarrow \{0,1\}^n$ be a (multi-output) function. We say that f is almost-all-input (T, ℓ)-leakage resilient t-local hard for all T-time probabilistic algorithms A satisfying $\text{leak}(x, f(x)) \leq \ell(|x|)$, for all t-time probabilistic algorithms A, for all sufficiently long strings x, $A(x, \text{leak}(x, f(x)))$ locally computes

2 To simplify notation, we say that an algorithm $A(\cdot, \cdot)$ runs in time T if A runs in $T(n)$ time where n is the size of the first input.
\(f(x)\) with probability at most \(\geq 1/3\) (over their internal randomness), where we say that \(A(x, \text{leak}(x, f(x)))\) locally computes \(f(x)\) if for all \(i \in \{0, 1\}^{|x|/2}, i \leq |x|\), \(A(x, \text{leak}(x, f(x)), i) = f(x)\).

We simply say that \(f\) is almost-all-input \((T, \ell)\)-leakage resilient locally hard if there exists \(\varepsilon > 0\) such that \(f\) is almost-all-input \((T, \ell)\)-leakage resilient \(n^2\)-local hard.

We remark that we are decoupling the running time \(T\) of the leakage function and the running time \(t\) of the computing machine \(A\). In addition, we only require hardness with respect to \(|x|^\varepsilon\)-time attackers \(A\) which can only read the first \(|x|^\varepsilon\) bits of the string \(x\).\(^3\) As mentioned in the introduction, the notion of leakage-resilient local hardness enables us to capture the assumption that \(E \not\subseteq \text{ioSIZE}(2^{O(n)})\).

\(\blacktriangleleft\) **Lemma 2.3.** If there exists a constant \(\varepsilon > 0\) such that \(E \not\subseteq \text{ioSIZE}(2^n)\), then there exists a function \(f : \{0, 1\}^n \to \{0, 1\}^n\) that is \((n^\varepsilon, n^{\varepsilon/2})\)-leakage resilient \(n^{\varepsilon/2}\)-locally hard for every \(\varepsilon \geq 1\).

Proof. Let \(g_n : \{0, 1\}^n \to \{0, 1\}\) be a \(E\)-computable function that requires circuits of size \(> 2^{n^\varepsilon}\) to compute (which is guaranteed to exist by the assumption). Consider the following multi-output function \(f\) such that for each \(x \in \{0, 1\}^n\),

\[
\begin{align*}
f(x) &= g_k(1)|\ldots|g_k(2^k)|0|\ldots|0
\end{align*}
\]

where \(k = |\log |x||\). Note that \(f(x)\) can be computed in time \(2^{O(k)} = 2^{O(|\log |x||)} = |x|^{O(1)}\) so \(f\) is poly-time computable. Assume for contradiction that \(f\) is not \((n^\varepsilon, n^{\varepsilon/2})\)-leakage resilient \(n^{\varepsilon/2}\)-locally hard. Then there exist attackers \((A, \text{leak})\) such that \(\text{leak}(x, f(x))\) outputs at most \(|x|^{\varepsilon/2}\) bits and \(A(x, \text{leak}(x, f(x)))\) computes \(f(x)\) locally in time \(|x|^{\varepsilon/2}\) for infinitely many \(x\). For each such \(x\) and input length \(k = |\log |x||\), we will construct a \(2^{2k}\)-size circuit \(C_k\) to compute \(g\) on input length \(k\), which is a contradiction. Since \(A(x, \text{leak}(x, f(x)))\) locally computes \(f(x)\) in time \(|x|^{\varepsilon/2}\), there exists a leakage string \(w \in \{0, 1\}^{|x|^{\varepsilon/2}}\) and a random tape \(r \in \{0, 1\}^{|x|^{\varepsilon/2}}\) such that for each \(i \in \{0, 1\}^{|\log |x||\}, A(x, w, i; r)\) will compute \(f(x)\), within time \(|x|^{\varepsilon/2}\), and it follows that \(A(x, w, i; r)\) will only read the first \(|x|^{\varepsilon/2}\) bits of the string \(x\); let \(x'\) denote the \(|x|^{\varepsilon/2}\)-bit prefix of \(x\). Consider a circuit \(C_k\) having the strings \(x', w, r\) hardcoded in it, and on input \(i \in \{0, 1\}^k\), it will compute \(A(x, w, i; r)\). \(C_k\) is of size \(\Omega(|x|^{\varepsilon/2} \log |x|) \leq 2^{2k}\) that computes \(g\) on input length \(k\), which concludes the proof.

In addition, we can also consider just “plain” (as opposed to leakage-resilient) hardness. As above, we also require the hardness condition holds on almost all inputs.

\(\blacktriangleleft\) **Definition 2.4** (Almost-all-input hardness). Let \(f : \{0, 1\}^n \to \{0, 1\}^n\) be a (multi-output) function. We say that \(f\) is almost-all-input \(T\)-hard if for all \(T\)-time probabilistic algorithms \(A\), for all sufficiently long strings \(x\), \(A(x) \neq f(x)\) with probability \(\geq 2/3\) (over their internal randomness).

2.2 Targeted Pseudorandom Generator

We consider the notion of a targeted pseudorandom generator (targeted PRG) \([9]\). Roughly speaking, a targeted pseudorandom generator \(G\) takes a seed along with a “target” string \(x\) as input, and we require that its output is indistinguishable from uniform by (computationally-bounded) distinguishers that additionally get the target \(x\) as input. In other words, \(G\) is just

\(^3\) We assume that \(A\) is a standard Turing machine with each input on a separate tape, and we do not assume that \(A\) has oracle access to its inputs. This is a weaker hardness assumption than letting \(A\) have oracle access to the inputs.
like a normal PRG, but with the exception that both the PRG and the distinguisher get access to the auxiliary “target” string x, and we require security to hold for all strings x. Since we consider PRGs in the context of derandomization, we allow the running-time of the PRG to be larger than the running-time of the distinguisher.

Theorem 3.1 (Targeted pseudorandom generator [9]). Let $G : 1^n \times \{0, 1\}^{\ell(n)} \times \{0, 1\}^{m(n)} \rightarrow \{0, 1\}^n$ be a computable function. We say that G is an $T(n)$-secure $(\ell(n), m(n))$-targeted pseudorandom generator (T-secure $(\ell(n), m(n))$-targeted PRG) if for all deterministic attackers D that run in $T(n)$ time (where n is the length of its first input), for all sufficiently large $n \in \mathbb{N}$ and all strings $x \in \{0, 1\}^{\ell(n)}$, it holds that

$$\left| \Pr[s \leftarrow \{0, 1\}^{m(n)} : D(1^n, x, G(1^n, x, s)) = 1] - \Pr[y \leftarrow \{0, 1\}^n : D(1^n, x, y) = 1]\right| < \frac{1}{6}.$$

For any targeted PRG G, we say that G is $O(T(n))$-secure if for all constant $c > 0$, G is $(cT(n))$-secure. Note that the length of the target string $\ell(n)$ can be potentially larger than the running time bound of the distinguisher $T(n)$. In such cases, we only require security with respect to distinguishers D which can only read the first $T(n)$ bits of the target string. Note that this is a weaker security requirement than allowing D to have oracle access to the target string.

It is well-known that a (non-uniformly) secure PRG can derandomize prBPP. When considering a targeted uniformly-secure PRG, the same derandomization result still holds. This in essence follows by the standard proof (that non-uniformly secure PRG derandomize prBPP), but with an additional padding argument to deal with the “target”/auxiliary input.

Lemma 2.6 ([9]). Assume that there exist constants $\sigma \geq 1, \theta \geq 1$ and a $O(n)$-secure $(n^\sigma, \sigma \log n)$-targeted PRG G that runs in time $t(n) \geq n$. Then, $\text{prBPP} \subseteq \cup_{p,q \in \text{poly} \text{DTIME}[t(p(n))]}{\text{DTIME}[t(q(n))]}$.

For the sake of completeness, we refer the reader to the full version for a detailed proof.

3 Derandomization and Leakage Resilient Hardness

In this section, we show a characterization between derandomizing prBPP and the existence of almost-all-input leakage resilient hard functions. Our result can be adapted to both the high-end and the low-end setting.

Theorem 3.1. There exists a constant $c \geq 1$ such that for all nice classes of functions \mathcal{C}, the following are equivalent.

1. $\text{prBPP} \subseteq \cup_{T \in \mathcal{C} \text{DTIME}[T]}$.
2. The existence of a constant $\varepsilon > 0$, a function $T \in \mathcal{C}$, and an almost-all-input $(n^\varepsilon, n^\varepsilon)$-leakage resilient locally hard function $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ computable in deterministic time T.
3. For all $d \geq 1$, there exist $T \in \mathcal{C}$ and an almost-all-input $(n^d, n - 3 \log n)$-leakage resilient hard function $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ computable in deterministic time T.

Proof. The implication (1) ⇒ (3) follows from Theorem 3.8 (stated and proved in Section 3.1). To show (2) ⇒ (1), we apply Lemma 3.9 (stated and proved in Section 3.2) to obtain a targeted PRG and (1) follows from Lemma 2.6. (3) trivially implies (2).

We then state corollaries of Theorem 3.1 in both the high-end regime and the low end regime. To characterize derandomizing prBPP in polynomial time, we take the class \mathcal{C} in Theorem 3.1 to be the class of polynomials $\text{poly}(\cdot)$.
Corollary 3.2. There exists a constant $c \geq 1$ such that the following holds. $\text{prBPP} = \text{prP}$ if and only if there exists an efficiently computable multi-output function f that is almost-all-input (n^c, \sqrt{n})-leakage resilient hard.

To characterize derandomizing prBPP in subexponential time $\text{prSUBEXP} = \cap_{c>0} \text{prDTIME}[2^{n^c}]$, we consider the class \mathcal{C} consisting of (all) time-constructible functions T such that $T(n)$ is smaller than 2^{n^c} for all $\varepsilon > 0^4$, and we refer to a function f as being computable in subexponential time if f runs in time 2^{n^c} for all $\varepsilon > 0$.

Corollary 3.3. There exists a constant $c \geq 1$ such that the following holds. $\text{prBPP} \subseteq \text{prSUBEXP}$ if and only if there exists a subexponential time computable multi-output function f that is almost-all-input (n^c, \sqrt{n})-leakage resilient hard.

In addition, we note that the proof of Theorem 3.1 also yields the following amplification result for leakage resilient hardness.

Theorem 3.4. There exists a constant c such that if there exist a constant $\varepsilon > 0$ and an almost-all-input (n^c, n^c)-leakage-resilient hard function computable in time $t(n)$, then for all $d \geq 1$, there exist polynomials p, q and an almost-all-input $(n^d, n - 3 \log n)$-leakage-resilient hard function computable in time $t(p(n))q(n)$.

Proof. The theorem follows from Lemma 3.9, Lemma 2.6, and Theorem 3.8.

Besides amplifying leakage resilience, we observe that by combining the result of Chen and Tell with Theorem 3.1, we obtain a leakage-resilient hard function from a low-depth function with just plain hardness.

Theorem 3.5. There exists some c such that the following holds. If there exists a function f computable by polynomial-size logspace-uniform circuits with depth bounded by n^2 that is almost-all-input n^c-hard, then for any constant $d \geq 1$, there exists a polynomial-time computable almost-all-input $(n^d, n - 3 \log n)$-leakage-resilient hard function.

Proof. Chen and Tell [6] showed that the existence of such f implies $\text{prBPP} = \text{prP}$. The existence of a leakage-resilient hard function then follows from Theorem 3.1.

3.1 Leakage Resilient Hardness from Derandomization

We proceed to constructing a multi-output function that is almost-all-input leakage resilient hard. Towards this, it is instructive to recall some ingredients from [9]. We first recall the definition of a prBPP search problem.

Definition 3.6 (prBPP search problem). Let R_{YES} and R_{NO} be two disjoint binary relations $\subseteq \{0,1\}^* \times \{0,1\}^*$. We say that $(R_{\text{YES}}, R_{\text{NO}})$ is a prBPP search problem if the following two conditions hold.

1. The decisional problem $(R_{\text{YES}}, R_{\text{NO}}) \in \text{prBPP}$; that is, there exists a PPT algorithm V such that for every $(x, y) \in R_{\text{YES}}$ it holds that $\Pr[V(x, y) = 1] \geq 2/3$, and for every $(x, y) \in R_{\text{NO}}$ it holds that $\Pr[V(x, y) = 1] \leq 1/3$.

2. There exists a PPT algorithm A such that, for every $x \in S_{R_{\text{YES}}}$, it holds that $\Pr[A(x) \in R_{\text{YES}}(x)] \geq 2/3$, where $R_{\text{YES}}(x) = \{y : (x, y) \in R_{\text{YES}}\}$ and $S_{R_{\text{YES}}} = \{x : R_{\text{YES}}(x) \neq \emptyset\}$.

4 Note that this class is indeed nice since if $T(n) < 2^{n^c}$ for all $\varepsilon > 0$, it holds that $T(n)p(n)q(n) < 2^{n^c}$ for all $\varepsilon > 0$ and all polynomials p, q.

CCC 2023
Leakage-Resilient Hardness vs Randomness

It has also been shown in [9] that there exists a deterministic search to decision reduction for prBPP by using techniques resembling the Conditional Expectation Method.

Theorem 3.7 (Search to decision reduction [9]). For every prBPP search problem \(R_{YES}, R_{NO}\), there exists a binary relation \(R\) such that \(R_{YES} \subseteq R \subseteq (\{0,1\}^* \times \{0,1\}^*) \setminus R_{NO}\) and solving the search problem of \(R\) is polynomial-time deterministically reducible to some decisional problem in prBPP.

Now we return to showing the existence of a multi-output function that is hard to compute on almost all inputs with leakage assuming prBPP can be derandomized.

Theorem 3.8. If prBPTIME\([O(n)] \subseteq \text{prDTIME}[t(n)]\), then for any constant \(c \geq 1\), there exists a function \(f : \{0,1\}^n \rightarrow \{0,1\}^n\) running in time \(t(p(n))q(n)\) (for some polynomials \(p, q\)) such that \(f\) is almost-all-input \((n^c, n - 3\log n)\)-leakage resilient hard.

Proof. We start by defining a prBPP-search problem which the task of constructing a leakage-resilient hard function can be reduced to. Consider any constant \(c \geq 1\) and let \(\ell(n) = n - 3\log n\). To construct an almost-all-input \((n^c, \ell(n))\)-leakage resilient hard function, for each input \(x \in \{0,1\}^n\), we need to find (uniformly) a string \(f(x) = r\) such that \(r\) is hard to compute (for any \(n^c\)-time algorithms) given \(x\) and any \(n^c\)-time “side information” leaked from \(r\). We observe that for any attacker/leakage functions \(g, \text{leak}\) – even non-computable \(g, \text{leak}\) – with high probability over \(r\), \(r\) will satisfy the hardness with leakage condition w.r.t. \(g, \text{leak}\).

Claim 1. For any probabilistic algorithms \(\text{leak}, g\), for all \(n \in \mathbb{N}\), \(\ell \leq n\), \(x \in \{0,1\}^n\), with probability at most \(6 \cdot 2^{-n+\ell+1}\) over random \(r \in \{0,1\}^n\), it holds that

\[
\Pr[|\text{leak}(x,r)| \leq \ell \land g(x,\text{leak}(x,r)) = r] \geq \frac{1}{6}.
\]

Proof. Consider any \(n \in \mathbb{N}\), \(x \in \{0,1\}^n\), and any probabilistic algorithm \(g\). We will show that with probability at most \(6 \cdot 2^{-n+\ell+1}\) over random \(r \in \{0,1\}^n\), for any deterministic function \(\text{leak}'\) that outputs \(\ell\) bits, it holds that

\[
\Pr[g(x,\text{leak}'(x,r)) = r] \geq \frac{1}{6}.
\]

The proof of Claim 1 will directly follow from Equation 2 by noting that given any probabilistic \(\text{leak}, g\), any \(n \in \mathbb{N}, \ell \leq n\), \(x \in \{0,1\}^n\), we can consider the deterministic \(\text{leak}'\) obtained by fixing the random tape of \(\text{leak}\) to be such that it maximize the number \(r\)'s that satisfy Equation 1.

To show Equation 2, consider the set of “bad” \(r\)'s: \(B = \{r : \exists w, |w| \leq \ell, \Pr[g(x,w) = r] \geq 1/6\}\). For any \(r \in \{0,1\}^n\), if there exists a function \(\text{leak}'\) that outputs \(\ell\) bits and \(\Pr[g(x,\text{leak}'(x,r)) = r] \geq \frac{1}{6}\), it follows that \(r \in B\). We now bound \(|B|\). Note that at most \(2^{\ell+1}\) strings \(w\) such that \(|w| \leq \ell\), and for each such \(w\), there can be at most 6 strings output by \(g\) with probability \(\geq 1/6\); thus we have that \(|B| \leq 6 \cdot 2^{\ell+1}\). It follows that the probability that a random \(r\) falls into \(B\) is at most \(6 \cdot 2^{-n+\ell+1}\).

Next, we note that if we only consider efficiently (and uniformly) computable \(g, \text{leak}\), it suffices to consider attacker/leakage functions of description length no more than \(\log n\). We can thus defined an prBPP-search problem that will enable us to find a “hard” \(r\) w.r.t. all such efficient attacker/leakage functions.
We turn to proving that $1 - |\text{leak}(x, r)| = 0$ which will conclude our proof. Recall that R instances in Π to a decisional problem R of g is almost-all-input hard to compute in the presence of any leakage, by making use of the Constructing the hard function f.

For any fixed x, we conclude that $A(x)$ outputs a valid witness with probability at least $1 - 6n^2 \cdot 2^{-\eta^* + \ell(n) + 1} \geq \frac{2}{3}$.

We turn to showing that R_{YES}, R_{NO} is a prBPP search problem by presenting a verifying algorithm V and a solution finding algorithm A.

The search problem verifier. On input (x, r), the verifier V enumerates all probabilistic machines leak, g such that $|\text{leak}|, |g| \leq \log n$. V estimates the value $p_{\text{leak}, g} = \Pr[|\text{leak}'(x, r)| \leq \ell(n) \wedge g'(x, \text{leak}(x, r)) = r]$ by running the following experiment for sufficiently many times and computing the average acceptance probability. In each experiment, V emulates $\text{leak}(x, r)$ for n^c steps, and emulates $g(x, \text{leak}(x, r))$ for n^c steps. V accepts in this experiment if $g(x, \text{leak}(x, r)) = r$. After estimating the average acceptance probability for each pair of leak and g, V outputs 1 if the estimated values of $p_{\text{leak}, g}$ are $< \frac{3}{12}$ for all pairs of leak, g. By the Chernoff bound and the Union bound, V will accept if $(x, r) \in R_{YES}$ (and reject if $(x, r) \in R_{NO}$) with very high probability.

The solution finder. We next construct a solution finding algorithm A such that $(x, A(x)) \in R_{YES}$ with high probability for all x. On input x, A simply outputs a random string of the same length. For any fixed $x \in \{0, 1\}^n$, by Claim 1 and a Union bound over the choice of leak and g, we conclude that $A(x)$ outputs a valid witness with probability at least $1 - 6n^2 \cdot 2^{-n + \ell(n) + 1} \geq \frac{2}{3}$.

Constructing the hard function f. Finally, we show how to construct a function f that is hard to compute in the presence of any leakage, by making use of the prBPP search problem (R_{YES}, R_{NO}). By Theorem 3.7, there exists a binary relation R such that $R_{YES} \subseteq R \subseteq (\{0, 1\}^* \times \{0, 1\}^*) \setminus R_{NO}$ and solving the search problem of R is polynomial-time deterministic reducible to some decisional prBPP problem. This leads us to our construction of f. On input x, f solves the search problem of R and outputs a R-witness of x. We first show that f is almost-all-input $(n^c, \ell(n))$-leakage resilient hard. Consider any n^c-time algorithms leak and g satisfying $|\text{leak}(x, f(x))| \leq \ell(|x|)$, all sufficiently large inputs $x \in \{0, 1\}^n$ such that $|g| \leq \log n$ and $|\text{leak}| \leq \log n$. Since R and R_{NO} are disjoint and f solves the search problem of R, $(x, f(x)) \not\in R_{NO}$ and this implies that $\Pr[g(x, \text{leak}(x, f(x))) \neq f(x)] \geq \frac{2}{3}$.

We turn to proving that f runs in deterministic time $t(p(n))q(n)$ for some polynomials p, q, which will conclude our proof. Recall that f can be polynomial-time deterministically reduced to a decisional problem $\Pi \in \text{prBPP}$. Since $\text{prBPTIME}[O(n)] \subseteq \text{prDTIME}[t(n)]$, by padding instances in Π so that the probabilistic algorithm for Π now runs in linear time in the length.
of the padded instance, it follows that \(\Pi \in \text{prDTIME}[t(p'(n))] \) (for some polynomial \(p' \)). This, combined with the fact that the reduction runs in deterministic polynomial time, shows that \(f \) can be computed in deterministic time \(t(p'(a(n)))b(n) \) for some polynomials \(a, b \) and the claim follows.

3.2 Derandomization from Leakage Resilient Hardness

We turn our attention to the converse direction and we will show how to obtain a targeted PRG, which is later used to derandomize \(\text{prBPP} \), from an almost-all-input leakage resilient hard function. Combining the result from the previous section, we will obtain a characterization between derandomization and leakage resilient hardness.

▶ **Lemma 3.9.** There exists a constant \(c \geq 1 \) such that the following holds. Assume that there exist a constant \(\varepsilon > 0 \) and an almost-all-input \((\sigma, \theta) \)-leakage resilient \(n^\varepsilon \)-locally hard function \(f : \{0,1\}^n \rightarrow \{0,1\}^n \) computable in deterministic time \(t(n) \geq n \). Then there exist constants \(\sigma, \theta \geq 1 \) and an \(O(n) \)-secure \((n^\theta, \sigma \log n) \)-targeted PRG computable in time \(t(n^\theta) \cdot \text{poly}(n) \).

The proof of Lemma 3.9 relies on the notion of black-box PRG construction from a worst-case hard function \(f \) [27, 29]. Roughly speaking, this notion of black-box PRG from a function \(f \) requires the existence of an efficient oracle algorithm that given (a) some fixed advice string, and (b) black-box access to any distinguisher for the PRG, is able to compute function \(f \). Following, [12], we will here consider a strengthening of this notion of a black-box construction, simply referred to as strongly black-box, where also the advice string can be efficiently computed using black-box access to \(f \).

▶ **Definition 3.10.** Let \(g : 1^n \times 1^m \times \{0,1\}^d \rightarrow \{0,1\}^m \) be a (deterministic) oracle algorithm, and let \(k(\cdot) \) be functions. We say that \(g \) is a \(k \)-reconstructive PRG construction if there exist \(\text{PPT} \) oracle algorithms \(R, M \) such that for every \(f : [n] \rightarrow \{0,1\} \) and \(T : \{0,1\}^m \rightarrow \{0,1\} \), if

\[
\left| \Pr[T(g^f(1^n, 1^m, \mathcal{U}_d)) = 1] - \Pr[T(\mathcal{U}_m) = 1] \right| \geq \frac{1}{6}
\]

then \(M^{f,T}(1^n, 1^m) \) will output at most \(k(n,m) \) bits such that for all \(i \in [n] \),

\[
R^T(M^{f,T}(1^n, 1^m), i) = f(i)
\]

with probability at least \(2/3 \).

We next observe that the Sudan-Trevisan-Vadhan PRG [27] obtain by combining a locally list-decodable error correcting code [27] and the Nisan-Wigderson PRG construction [24] yields a strongly black-box construction of a PRG. We note that [29] previously argued that this construction is black-box; we here simply observe that the advice string needed can be efficiently computed.

▶ **Theorem 3.11 (Extending [27]; see also [29, Theorem 7.67]).** There exists a \(k \)-reconstructive PRG construction \(g : 1^n \times 1^m \times \{0,1\}^d \rightarrow \{0,1\}^m \) such that for every \(m \in \mathbb{N} \), \(n \geq m \), \(f : [n] \rightarrow \{0,1\} \) the following conditions are satisfied:

1. **Explicitness:** \(g^f \) is computable in uniform time \(\text{poly}(m,n) \).
2. **Seed length:** \(d(n,m) = O(\log^2 n / \log m) \).
3. **Reduction advice length:** \(k(n,m) = \text{poly}(m, \log n) \).

Since the proof follows standard techniques, we have deferred it to the full version.
Return to proving Lemma 3.9. We are now ready to prove Lemma 3.9 by relying on the above result.

Proof of Lemma 3.9. Consider any constant $\varepsilon > 0$.

A padding trick. In this proof, we will use a padding argument to make the leakage we need as small as it is required. Let n denote the output length of the multi-output function f. Let $n = O(1/\varepsilon) \in \mathbb{N}$ be a constant such that $\frac{1}{2^\varepsilon}$ is sufficiently smaller than ε. In this proof, we usually assume that $n = \text{poly}(m)$ and it holds that $n = n(m) = m^\theta$. In some cases depending on the context, m is defined w.r.t. n and it holds that $m(n) = [n^{1/\theta}]$ (and we can think of m as being sublinear in n).

Constructing the PRG. Let g be the k-reconstructive PRG obtained from Theorem 3.11, and let R, M be the algorithms associated with g (as in Definition 3.10). We will consider a function $G : 1^m \times \{0,1\}^{m^d} \times \{0,1\}^d \rightarrow \{0,1\}^m$. On input $(1^m, x, y)$ where $x \in \{0,1\}^{m^d}$, $y \in \{0,1\}^d$, the algorithm G proceeds in the following steps.

- G first computes $z = f(x)$. Let $n = m^\theta = |z|$.
- G outputs $G(1^m, x, y) = g^z(1^n, 1^m, y)$.

Note that the seed length of the PRG $d(n, m) = O(\log^2 n / \log m)$ so we can let σ be a constant such that $d = \sigma \log m$ and G is now a function of the form $1^m \times \{0,1\}^{m^d} \times \{0,1\}^{\sigma \log m} \rightarrow \{0,1\}^m$.

We claim that G is a $O(m)$-secure $(m^\theta, \sigma \log m)$-targeted PRG. Suppose not; then there exists a $O(m)$-time deterministic distinguisher D such that for infinitely many $m \in \mathbb{N}$, $n = m^\theta$, $x \in \{0,1\}^n$,

$$\Pr[v \leftarrow \{0,1\}^{\sigma \log m} : D(1^m, x, G(1^m, x, v)) = 1] - \Pr[w \leftarrow \{0,1\}^m : D(1^m, x, w) = 1] \geq \frac{1}{6} \tag{4}$$

(Note that D runs in time $O(m)$ so it is unable to read the whole string x.) We will prove that f can be computed locally in n^c time with n^c-time computable leakage, for some constant c which we will fix later.

Computing f with leakage. We will construct a n^c-time algorithm leak, and a n^c-time (local) algorithm A, where $\text{leak}(x, f(x))$ will produce a $|x|^c$-bit leakage and $A(x, \text{leak}(x, f(x))$ will locally compute the function $f(x)$ on input x for infinitely many x (i.e., those inputs x on which Equation 4 holds). The algorithms A and leak will collaboratively proceed as follows. On input x, leak computes $n = |x|$ and $m = [n^{1/\theta}]$, and leak simply outputs $M^z, D(1^m, x, \cdot)(1^n, 1^m)$. We turn to constructing the algorithm A. On input x, the output of leak (denoted by a), and a bit index $i \in [n]$, A simply outputs $R^{D(1^m, x, \cdot)}(a, i)$.

Analyzing the reduction. We turn to analyzing the reduction. We first show that $A(x, \text{leak}(x, f(x)), i)$ will indeed compute $f(x)_i$ for all $i \in [|x|]$ on infinitely many inputs x. This follows from the correctness of the distinguisher D, and the security of the reconstructive PRG g. In more detail, let us fix a (sufficiently long) string $x \in \{0,1\}^n$ w.r.t. which Equation 4 holds. Note that the distinguisher $D(1^m, x, \cdot)$ will also distinguish the reconstructive PRG $g^z(1^n, 1^m, \cdot)$, and therefore $A(x, \text{leak}(x, f(x)), i)$ will output $R^{D(1^m, x, \cdot)}(M^z, D(1^m, x, \cdot)(1^n, 1^m), i)$.
which equals \(z_i = f(x)_i \), with probability at least \(2/3 \). In addition, \(\text{leak}(x, f(x)) \) is short and of length at most \(n^\varepsilon \) (due to our choice of \(\theta \)). Since \(\text{leak}(x, f(x)) \) contains the reduction advice for the reconstructive PRG \(g \), and by Theorem 3.11 it is at most of length \(\text{poly}(m, \log n) = \text{poly}(n^{1/\theta}, \log n) \), which is at most \(n^\varepsilon \) (since \(\theta \) is picked to be much larger than \(1/\varepsilon \)).

We proceed to showing that \(\text{leak} \) runs in time \(n^\varepsilon \) (for some sufficiently large universal constant \(c \)) and \(A \) runs in time \(n^\varepsilon \). Note that \(\text{leak} \) simply invokes the algorithm \(M \) on input \(1^n, 1^m \) (given \(z \) and \(D(1^n, x, i) \)), \(M \) runs in polynomial time, and \(D \) runs in time \(O(m) \). It follows that \(\text{leak} \) runs in time \(\text{poly}(n) \) and we can pick \(c \) to be large enough such that \(\text{leak} \) runs in time \(n^\varepsilon \). \(A \) will call the algorithm \(R \) on input \((a, i)\), which (as argued above) is of length at most \(n^{2/\theta} \). Since \(R \) runs in polynomial time, \(A \) runs in time \(\text{poly}(n^{2/\theta}) \) which will be at most \(n^\varepsilon \) if we pick \(\theta \) much larger than \(1/\varepsilon \).

It remains to show that \(G \) runs in time \(t(m^0) \text{poly}(m) \). Note that it takes \(t(m^0) \) time to compute \(z = f(x) \), and the construction \(g \) runs in time polynomial in \(n = m^\theta \). Thus, it follows that \(G(1^n, x, \cdot) \) runs in time \(t(m^0) \text{poly}(m) \).

\[
4 \quad \text{Characterizing Derandomization of prMA}
\]

In this section, we present a characterization between derandomization and leakage-resilient hardness regarding prMA and prNP. In the non-deterministic setting, we need to consider a notion of leakage-resilient hard relations (generalizing the notion of leakage-resilient hard functions), which will be both sufficient and necessary to derandomize prMA. Due to space limit, we will defer proofs in this section to the full version.

For any relation \(R \subseteq \{0, 1\}^* \times \{0, 1\}^* \) and any class of languages \(\mathcal{C} \), we say that \(R \) is computable in \(\mathcal{C} \) if there exists a language \(L \in \mathcal{C} \) such that \((x, y) \in R \) if and only if \((x, y) \in L \).

\begin{definition}[Leakage Resilient Hard Relation] \(\text{Let } R \subseteq \{0, 1\}^* \times \{0, 1\}^* \text{ be a relation such that for every } (x, y) \in R, |x| = |y| \). We say that \(R \) is almost-all-input \((T(\cdot), \ell(\cdot)) \)-leakage resilient hard if the following two conditions hold.

1. \(\text{Non-triviality.} \) For every \(x \in \{0, 1\}^* \), \(R(x) = \{y : (x, y) \in R\} \neq \emptyset \).
2. \(\text{Leakage-resilient.} \) For all \(T \)-time probabilistic algorithms \(\text{leak} \), \(A \) satisfying \(\text{leak}(x, y) \leq \ell(|x|) \), for all sufficiently long strings \(x, y \) satisfying \((x, y) \in R \), \(A(x, \text{leak}(x, y)) \neq y \) with probability \(\geq 2/3 \) (over their internal randomness).
\end{definition}

Now we are ready to state our characterization of derandomizing prMA.

\begin{theorem} \label{thm:main} There exists a constant \(c \geq 1 \) such that for all nice classes of functions \(\mathcal{C} \), all constants \(0 < \varepsilon < 1 \), the following are equivalent.
1. \(\text{prMA} \subseteq \text{prNP} \)
2. The existence of a function \(T \in \mathcal{C} \) and an almost-all-input \((n^c, n^\varepsilon) \)-leakage resilient hard relation \(R \subseteq \{0, 1\}^* \times \{0, 1\}^* \) computable in \(\text{NTIME}[T] \).
\end{theorem}

\begin{proof} The implication \((1) \Rightarrow (2)\) follows from Theorem 4.3 (stated and proved below). To show \((2) \Rightarrow (1)\), we apply Lemma 4.6 (stated and proved in below) to obtain a targeted PRG and \((1) \) follows from Lemma 4.5.
\end{proof}

As demonstrated in the proof above, the proof Theorem 4.2 contains two parts. In the first part, we show that we can directly obtain a leakage-resilient hard relation from the assumption that \(\text{prMA} = \text{prNP} \) without relying on a search-to-decision reduction.

\begin{theorem} \label{thm:main2} If \(\text{prMATIME}[O(n)] \subseteq \text{prNTIME}[t(n)] \), then for any constant \(c \geq 1 \), there exists a relation \(R \) computable in \(\text{NTIME}[t(p(n))] \) (for some polynomials \(p \)) that is almost-all-input \((n^c, n - 3 \log n) \)-leakage resilient hard.
\end{theorem}
In the second part of the proof, we prove the converse implication of Theorem 4.3. We rely on the following non-deterministic variant of a targeted PRG (where the PRG takes as input an additional witness whose validity can be checked by a verifier).

Definition 4.4 (Targeted non-deterministic pseudorandom generator). Let $G : 1^n \times \{0, 1\}^{\ell(n)} \times \{0, 1\}^{m(n)} \to \{0, 1\}^n$ be a computable function. We say that G is an $T(n)$-secure ($\ell(n), m(n)$)-targeted non-deterministic pseudorandom generator (T-secure ($\ell(n), m(n)$)-targeted NPRG) if there exists a non-deterministic verifier V such that the following two conditions hold:

- For all sufficiently large $n \in \mathbb{N}$, for all $x \in \{0, 1\}^{\ell(n)}$, there exists $w \in \{0, 1\}^{\ell(n)}$, $|w| = |x|$, and $V(1^n, x, w) = 1$.
- For all deterministic attackers D that run in $T(n)$ time (where n is the length of its first input), for all sufficiently large $n \in \mathbb{N}$ and all strings $x, w \in \{0, 1\}^{\ell(n)}$ satisfying $V(1^n, x, w) = 1$, it holds that

$$\Pr[s \leftarrow \{0, 1\}^{m(n)} : D(1^n, x, G(1^n, x, w, s)) = 1] - \Pr[y \leftarrow \{0, 1\}^n : D(1^n, x, y) = 1] < \frac{1}{6}.$$

We say that a targeted NPRG G is computable in time T (for some function T) if G is computable in time T (with respect to the length of its first input) and there exists a verifier for G computable in non-deterministic time T (w.r.t. the length of its first input).

We then show that the notion of a targeted NPRG is indeed useful by proving that it can be used to derandomize prMA.

Lemma 4.5. Assume that there exist constants $\sigma \geq 1, \theta \geq 1$ and an $O(n)$-secure $(n^{\sigma}, \sigma \log n)$-targeted NPRG G that is computable in time $t(n) \geq n$. Then, $\text{prMA} \subseteq \bigcup_{p, q \in \text{poly}\text{NTIME}[t(p(n))] \text{NTIME}[t]}. \text{NTIME}[t(p(n))]$.

It remains to show that the existence of a leakage-resilient hard relation implies the existence of a targeted NPRG, which can be proved by generalizing Lemma 3.9 to allow non-deterministic computation.

Lemma 4.6. There exists a constant $c \geq 1$ such that the following holds. Assume that there exist a constant $\varepsilon > 0$ and an almost-all-input (n^c, n^ε)-leakage resilient hard relation R computable in $\text{NTIME}[t]$. Then there exist constants $\sigma, \theta \geq 1$ and an $O(n)$-secure $(n^{\sigma}, \sigma \log n)$-targeted NPRG G_N computable in time $t(n^{\sigma})\text{poly}(n)$.

References

Leakage-Resilient Hardness vs Randomness

Roei Tell. Proving that prBPP= prP is as hard as proving that “almost NP” is not contained in P/poly. *Information Processing Letters*, 152:105841, 2019.
