
Interactive Non-Malleable Codes Against
Desynchronizing Attacks in the Multi-Party Setting
Nils Fleischhacker #

Ruhr-Universität Bochum, Germany

Suparno Ghoshal #

Ruhr-Universität Bochum, Germany

Mark Simkin #

Ethereum Foundation, Aarhus, Denmark

Abstract
Interactive Non-Malleable Codes were introduced by Fleischhacker et al. (TCC 2019) in the two party
setting with synchronous tampering. The idea of this type of non-malleable code is that it “encodes”
an interactive protocol in such a way that, even if the messages are tampered with according to
some class F of tampering functions, the result of the execution will either be correct, or completely
unrelated to the inputs of the participating parties. In the synchronous setting the adversary is able
to modify the messages being exchanged but cannot drop messages nor desynchronize the two parties
by first running the protocol with the first party and then with the second party. In this work, we
define interactive non-malleable codes in the non-synchronous multi-party setting and construct
such interactive non-malleable codes for the class Fs

bounded of bounded-state tampering functions.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols; Mathematics
of computing → Coding theory

Keywords and phrases non-malleability, multi-party protocols

Digital Object Identifier 10.4230/LIPIcs.ITC.2023.5

Funding Nils Fleischhacker and Suparno Ghoshal were supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2092
CASA – 390781972.

1 Introduction

There is a long line of research that aims to make communication resilient to tampering,
starting with error correcting codes. Error correcting codes allow a sender to encode a
message m into a codeword c, such that a receiver can always recover the message m even
from a tampered codeword c′ as long as the tampering is done in some restricted way.
Specifically, the class of tampering functions tolerated by traditional error correcting codes
are those that erase or modify at most a constant fraction of the symbols in codeword c. If
the tampering function, however, behaves in any other way, there is no longer any guarantee
on the output of the decoding algorithm. Error detecting codes are a relaxation that allows
the decoder to also output a special symbol ⊥ when m is not recoverable from c′. But these
codes, again, cannot tolerate, i.e. will decode incorrectly when tampered with, many simple
tampering functions such as a constant function.

Dziembowski, Pietrzak, and Wichs [30] introduced a further relaxation which they called
non-malleable codes (NMC). Very informally, an encoding scheme (Enc, Dec) is an NMC
for a class of tampering functions, F , if the following holds: given a tampered codeword
c′ = f(Enc(m)) for some f ∈ F , the decoded message m′ = Dec(c′) is either the original
message m or completely unrelated to m. I.e., the tampering function can only “destroy” the

© Nils Fleischhacker, Suparno Ghoshal, and Mark Simkin;
licensed under Creative Commons License CC-BY 4.0

4th Conference on Information-Theoretic Cryptography (ITC 2023).
Editor: Kai-Min Chung; Article No. 5; pp. 5:1–5:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mail@nilsfleischhacker.de
https://orcid.org/0000-0002-2770-5444
mailto:suparno.ghoshal@rub.de
https://orcid.org/0000-0002-3675-1629
mailto:mark.simkin@ethereum.org
https://orcid.org/0000-0002-7325-5261
https://doi.org/10.4230/LIPIcs.ITC.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

information being transferred, but not modify it in a meaningful way. Obviously, NMCs
can still not exist for the set of all tampering functions Fall. To see this, consider the
tampering function that retrieves m = Dec(c), chooses a message m′ related to m and
encodes c′ = Enc(m′). This tampering trivially defeats the requirement above. In light of
this observation, a rich line of works has dealt with constructing non-malleable codes for
different classes of tampering attacks (see Section 1.3 for a discussion).

Non-malleable codes have the obvious advantage that we can obtain meaningful guarantees
for larger classes of tampering functions (compared to error correcting codes) and they have
also found a number of interesting applications in cryptography such as tamper-resilient
cryptography [30, 46, 33, 34]. They have also been useful as a building block in constructing
non-malleable encryption [23], round optimal non-malleable commitments [39], and non-
malleable secret sharing schemes [37, 38, 7].

Interactive Coding

Traditional codes, whether error correcting, error detecting or non-malleable are only con-
cerned with the scenario where a sender sends a single message to a receiver. Interactive
Coding, introduced by Schulman [49, 50, 51], generalizes (error correcting) codes to arbitrary
interactive protocols between two or more [48] parties. Consider the following scenario: n

parties, each with their own input, are running an interactive protocol to perform some task
involving their inputs, such as computing a joint function on them. Now, say an adversary
can get access to their communication channels and tamper with the messages being sent in
the protocol. An interactive code for a class of tampering functions F is essentially a wrapper
around the protocol that would guarantee that, as long as the tampering is performed using
a function f ∈ F , the protocol will conclude correctly and all participants will be able to
recover their correct output.

Interactive Non-Malleable Codes

In interactive coding, just as in the case of error correcting codes, there are strong limits on
which classes of tampering can be dealt with. To achieve meaningful guarantees for larger
classes of tampering functions Fleischhacker et al. [36] introduced the notion of interactive
non-malleable codes (INMC). Just as interactive coding generalizes error correcting codes,
INMCs generalize NMCs, by encoding “active communication” instead of “passive data”.
An INMC is supposed to give a similar guarantee as an NMC. Informally, that means that
the participants of the protocol should either be able to recover the correct output from the
protocol or the correct output would be completely “destroyed” and the participants would
recover something completely unrelated to their inputs. Fleischhacker et al. in fact define
two seperate notion of non-malleability, weak non-malleability only requires the outputs to be
unrelated from other parties’ inputs, while strong non-malleability requires the outputs to be
unrelated even to the party’s own input. We are only interested in the strong non-malleability
notion, which we will simply call non-malleability. It turns out that strong non-malleability
somewhat counterintuitively actually implies error detection in the interactive case.

Fleischhacker et al. [36] define three classes of tampering functions, bounded-state tam-
pering, a variation of split-state tampering, and sliding-window tampering. For each class
they give a construction of a strongly non-malleable INMC.

However, both the definitions and the constructions are limited, because they only apply
to the two party setting and they only consider synchronous tampering. Consider a protocol
between two parties, Alice and Bob. In the synchronous setting, when Alice sends a message

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:3

m to Bob, the tampering function can arbitrarily modify m, but it must then forward it to
Bob without further delay. I.e., at all times, even in a tampered execution of the protocol,
Alice and Bob remain in sync and the tampering function can not choose to, e.g., first finish
the protocol with Alice, before later resuming the communication with Bob.

When considering desynchronization between parties in an interactive protocol we need
to consider how protocols are modeled. As pointed out by Braverman et al. [13] there are
essentially two paradigms for protocols without fully synchronized parties. In a clock-driven
model, each party has a clock and wakes up with each clock tick, checks for incoming
messages, performs some computation, and potentially send messages to the other parties.
Here desynchronization can occur because the different parties’ clocks may be mismatched
or skewed. In a message-driven model, the parties sleep until they receive a new message,
which triggers them to wake up and perform some action. Here desynchronization can occur
because messages are dropped causing one party to be ahead in the protocol. The model for
desynchronization considered in this paper is of the latter kind. I.e., parties in our model are
purely activated by receiving messages and have no sense of time, i.e., they do not notice
how long they may have been asleep. This strengthens the possible attacker, since it allows
for even the most extreme forms of desynchronization.

1.1 Results and Technical Overview
In this work, we aim to remedy the shortcomings of the previous work by Fleischhacker et
al. [36]. In Section 3 we introduce new definitions for arbitrary (potentially desynchronizing)
tampering with interactive protocols between n ≥ 2 parties, define interactive non-malleability
and formalize the class of bounded-state tampering functions. In Section 5 we construct an
INMC for bounded-state tampering functions.

The “Obvious” Solution

When faced with the task of constructing an interactive non-malleable code it may seem
tempting to directly apply the huge body of work around regular non-malleable codes and
try to build an INMC by simply applying an NMC on a per-message basis. While we might
not get guarantees against the same class of tampering functions, we might still hope to
get some useful guarantees. Sadly, this is not the case for general protocols. Consider a
protocol between Alice and Bob, where Alice has input (x1, x2) and Bob has no input. In
the protocol, Alice first sends x1 to Bob, Bob replies with some arbitrary message and then
Alice sends x2. At the end Alice outputs nothing and Bob outputs (x1, x2).

If we encode the messages in this protocol individually, a tampering function can simply
leave all the messages related to x1 intact and replace the messages related to x2 with
constant messages that will decode to some x′

2, causing Bob to output (x1, x′
2), an output

very much not unrelated (x1, x2). This attack works for any class of tampering functions
that allow to tamper with the entire message, no matter how restrictive.

Technical Overview
On a technical level, our construction is heavily inspired by the bounded-state INMC of [36]
and follows the same basic idea: At the beginning of the protocol, each pair of parties runs a
key-exchange protocol that is secure against a bounded state attacker with full control of the
communication channel. Once the key material has been successfully exchanged, the parties
will engage in the underlying protocol while encrypting all messages with an information
theoretically secure encryption scheme and authenticating each message with an information
theoretically secure message authentication code.

ITC 2023

5:4 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

However, since [36] was restricted to two parties and worked in a strictly synchronized
setting, it is unsurprising that directly lifting their protocol to the multi-party unsynchronized
setting causes it to fail in several ways. The key-exchange of [36] works as follows: The
two parties P1, P2 each choose random strings α1, β1 and α2, β2 of sufficient length. They
then send these in alternating order, use a 2-non-malleable extractor to agree on a key
k := nmExt(α1, β1) ⊕ nmExt(α2, β2) and go on to exchange key-confirmation messages to
confirm that both parties have received the same key. Once we allow the tampering function
to desynchronize the two parties this key exchange becomes trivially broken. Consider the
tampering function f that simply ignores P2 and their messages. Instead, when P1 sends
α1, the tampering function immediately sends back α1 and likewise for β1. Note that this
attack works, even though P1 will now receive α2 in the “wrong round”. This is because, as
discussed above, we work in a purely message-driven model where P1 does not notice how
much time has passed between sending α1 and receiving α2. This means that P1 will now
derive the constant key nmExt(α1, β1)⊕ nmExt(α1, β1) = 0κ. This key is of course trivially
known to the tampering function in future rounds meaning the tampering function can
simply engage in the underlying protocol pretending to be P2 with some arbitrary input y′ of
its own choice. If the protocol is meant to evaluate a function g on the joint inputs, P1 will
now output g(x, y′) which is in general neither the correct result nor independent of (x, y).

To fix this problem, we split each bidirectional communication channel into two unidi-
rectional channels and negotiate separate keys. The two parties still choose random strings
α1, β1 and α2, β2 of sufficient length and send them in separate messages. However the
parties agree on two separate keys k1 := nmExt(α1, β1) and k2 := nmExt(α2, β2). Each party
Pi then uses ki to encrypt messages sent to the other party and to verify the authentication
tags on messages received from the other party. This way, each party always uses a key that
is known to be untampered to perform the security critical operations.

It is still critical, that keys are confirmed and bound to a specific channel. If keys are
not explicitly confirmed, a tampering function could replace one of the keys, say k2 without
any of the parties realizing. If P2 would now send a message to P1, this message would be
authenticated using k1 which was not tampered with, meaning P1 would accept it. However
they would then go on to decrypt the message with an incorrect key k′

2. This would likely
result in P1 passing a random string to the underlying protocol and there is no guarantee
how the underlying protocol would behave in that case. If the key was not explicitly bound
to a specific channel, a tampering function could potentially “swap” two parties. Say there’s
a protocol where P3 and P2 do not communicate with one another but do communicate with
P1. The tampering function could swap all messages from the channel between P1 and P2 to
the channel between P1 and P3 and vice versa. If P2 and and P3 behave identically in the
protocol and never explicitly identify themselves, this would lead P1 to output g(x1, x3, x2)
which again is obviously neither correct nor independent of the original input (x1, x2, x3) in
general.

To prevent all these and other problems introduced by the existence of multiple parties
and the ability of the tampering function to desynchronize the parties each message is always
authenticated together with the identifier of the channel it is being sent on and the message
counter.

Different Message Topologies

The INMC for bounded-state tampering functions presented in Section 5 is still somewhat
restricted in the sense that it can only directly be applied to protocols with a fixed message
topology. This means the message flow of the protocol is required to be known is a priori and

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:5

has to be independent of inputs and randomness. I.e., when party Pi is invoked for the rth
time, we a priori know from which parties they should be receiving messages and to which
parties they should be sending.

Restricting ourselves to protocols with a fixed message topology makes our live significantly
easier, as it allows us to sidestep many subtle issues. The most obvious problem would be an
input dependent message topology. If, whether Pi sends a message to Pj when invoked for
the rth time depends on the value xi, we can easily come up with ways to leak xi to the
tampering function, which would make non-malleability impossible. A more subtle issue are
protocols that misbehave if messages are reordered or dropped. Consider a protocol between
two parties. In an untampered execution P1 would receive a message from P2 in its first
invocation. At the end both parties output 0. Now we can modify this protocol to misbehave
if the messages from P2 never arrives. In this case P1 could simply output x1, which is
neither correct nor unrelated to (x1, x2). If we, however, know which messages should be
arriving in which order, we can abort any party that did not receive messages as specified in
the protocol preventing them from misbehaving.

Obviously, restricting the INMC to protocols with a fixed message topology limits its
applicability at least in theory. However, we show in Section 4 that any protocol (with a
fixed upper bound on the number of rounds) can be transformed into a protocol with a fixed
message topology, thereby extending the applicability of the INMC to (almost) arbitrary
protocols. The transformation is fairly straightforward and simply involves sending dummy
messages when the original protocol decides not to send a message. The transformation
naturally comes with a certain blowup in the communication complexity.

1.2 Instantiating the Construction
To instantiate the protocol the main question is how to instantiate the 2-source non-malleable
extractor. Before going into details of the instantiation of the non-malleable extractor one
needs to understand the amount of key material that will be required by each party in order
to carry out the protocol execution efficiently. As per the construction of our protocol every
party will use the 2-source non-malleable extractor to extract an authentication key and an
encryption key per party it communicates with. The length of those keys will depend on
the number of messages the party expects to exchange with each other party. For a rough
ballpark estimate, let us assume that the encoded protocol is between n parties, that each
party sends the same number r of messages to every other party, and that those messages
are all of length ℓ ≥ λ.

From the two sources sent from party A to party B, both parties must thus extract a
key for a statistically unforgeable (r + 1)-time MAC and a key for stateful r-time encryption
scheme with perfect indistinguishability. Following, Remark 2 and Remark 4 they have to
extract at least (2r + 2) · ℓ bits from each pair of sources. For a 2-source non-malleable
extractor with source length κnm we will later see, that the sources will have min-entropy
at least κnm − (s + 3nλ). To get the lowest possible overhead, we will need a 2-source non-
malleable extractor that can tolerate sources with the lowest possible min-entropy. The best
currently known extractor in this regard was described in a recent paper by Xin Li [44]. The
description of the construction, as is common for the literature on extractors, unfortunately
only makes asymptotic statements about the extractor. It is thus hard to find out what the
exact concrete source length of the extractor needs to be. We can however make an estimate
on the best possible overhead achievable with the extractor from [44].

The construction described in Theorem 6.3 of [44] requires sources with min-entropy
(2/3 + γ) · κnm for the first source and k with k ≥ C log κnm for the second source, where
0 < γ < 1/3 can be chosen arbitrarily and C > 1 is some “large enough” constant. For large

ITC 2023

5:6 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

enough κnm we can choose k = (2/3 + γ) · κnm which is convenient as the guaranteed min-
entropy of the sources will be balanced in our application. The absolute best-case scenario for
Li’s extractor, depending on its exact instantiation, is that the output length is 9·10−6·κnm and
therefore we must have that κnm > (106/9) · (2r +2)ℓ. However, this is not the only condition.
Additionally, we need to consider that we must have κnm− (s+3nλ) ≥ (2/3+γ) ·κnm for the
non-malleability guarantee to apply. Therefore, we must also have κnm ≥ (s+3nλ)/(1/3+γ).
Which of these two bounds is larger depends on the the exact parameters of the protocol and
the size of the tampering function’s state. However clearly even in the best case scenario
the current state of the art makes the encoded protocol incur a multiplicative overhead of
roughly 440, 000. It is thus clear that, which the current state of the art, our construction is
chiefly of theoretical interest.

1.3 Related Works
To the best of our knowledge, the only previous work on non-malleable codes in the interactive
setting has been the already mentioned work of Fleischhacker et al. [36]. In concurrent work
Lin [45] used the results of [36] to construct non-malleable multi-party computation. However,
Lin’s results are largely orthogonal to our work. In particular the tampering model is weaker.
E.g., while we allow the tampering function to tamper jointly on all parties’ concurrent
messages, Lin requires a fixed execution order and only allows tampering based on past
messages. At the same time Lin attempts to achieve not merely a non-malleable encoding but
non-malleable MPC, where the same party who controls the tampering function also controls
a number of corrupted parties. Overall this means that the results of [45] are incomparable
even if the used techniques are similar.

In contrast, non-malleable codes in the non-interactive setting have been studied ex-
tensively for a large variety of different classes of tampering functions. The most ex-
tensively studied class in the non-interactive setting are certainly split-state tampering
functions [46, 29, 3, 19, 18, 2, 20, 42, 40, 41, 4]. But other classes of tampering functions have
been studied such as tampering circuits of limited size or depth [35, 10, 17, 11, 8], tampering
functions computable by decision trees [12], memory-bounded tampering functions [32] where
the size of the available memory is a priori bounded, bounded polynomial time tampering
functions [9], bounded parallel-time tampering functions [26], and non-malleable codes against
streaming tampering functions [11]. Non-malleable codes were also generalized in several
ways, such as continuously non-malleable codes in [33, 25, 23, 47, 31, 24, 4] and locally
decodable and updatable non-malleable codes [28, 15, 27].

As a general rule non-malleable codes are usually considered in the information theoretic
setting. However, there has also been some work in the computational setting. [1, 5, 6, 11]

2 Preliminaries

In this section we introduce our notation and recall some definitions needed for our construc-
tions and proofs.

2.1 Notation
We denote the security parameter by λ ∈ N. For an integer n ∈ N, denote [n] = {1, . . . , n}.

Let M be a matrix. We denote by rowi(M) the i-th row vector and by colj(M) the
j-th column vector of M . If M is square, we denote by diag(M) the vector representing
the main diagonal of M .

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:7

Let S and S′ be sets, let P : S → {true, false} be a predicate, let f : S → S′ be a function,
and let L = (x1, . . . , xℓ) ∈ Sℓ be a list. We denote by

(
f(x) | x ∈ L ∧ P (x)

)
the list that

contains f(xi) iff P (xi) = true and preserves the relative order of the elements.
For x′ ∈ S we denote by L◦x′ the list (x1, . . . , xℓ, x′), i.e. the list resulting from appending

x′ to L. Further, we write Li to denote the ith entry of L and L≤i to denote the length i

prefix of L, i.e. L≤i = (x1, . . . , xi).
Let D be some distribution over S. We denote by f(D) the distribution over S′ sampled by

first sampling x according to D and then applying f to x. For a pair D1, D2 of distributions
over a domain S, we denote their statistical distance by

SD(D1, D2) = 1
2

∑
v∈S

∣∣∣Pr[x← D1 : x = v]− Pr[x← D2 : x = v]
∣∣∣.

If SD(D1, D2) ≤ ϵ, we say that D1, D2 are ϵ-close. For an arbitrary set S we define the
functions replace : (S ∪ {same})× S → S and indicate : S → {same,⊥} as

replace(x, y) :=
{

y if x = same
x otherwise

and indicate(x) :=
{

same if x ̸= ⊥
⊥ otherwise

We extend replace and indicate to n-tuples in the natural way by applying them component-
wise, i.e. replace(x, y) := (replace(x1, y1), . . . , replace(xn, yn)) and indicate(x) := (indicate(x1),
. . . , indicate(xn)).

2.2 Encryption and Message Authentication Codes
Our constructions relies exclusively on information theoretically secure primitives, specifically
perfectly indistinguishable encryption and statistically secure message authentication codes.
For notational convenience we formalize encryption as stateful which allows us not burden
the description of the protocol with keeping track of key-usage.

▶ Definition 1 (Stateful q-time Encryption with Perfect Indistinguishability). A correct stateful
q-time encryption scheme E for message space {0, 1}ℓ and keyspace {0, 1}κ consists of a
pair of deterministic stateful algorithms (Enc, Dec), such that for all keys k ∈ {0, 1}κ and all
messages (m1, . . . , mq) ∈ ({0, 1}ℓ)r we have that for c1 := Enc(k, m1), . . . , cq := Enc(k, mq)
and m′

1 := Dec(k, c1), . . . , m′
q := Dec(k, cq) it holds that mi = m′

i for all i ∈ [r].
Let LoR be the stateful “left-or-right” algorithm defined as LoR(k, b, m0, m1) := Enc(k, mb)

for the first q invocations and as ⊥ afterwards. A stateful q-time encryption scheme is
perfectly indistinguishable if for any unbounded algorithm A it holds that

Pr
[
k ← {0, 1}κ : ALoR(k,0,·,·) = 0

]
= Pr

[
k ← {0, 1}κ : ALoR(k,1,·,·) = 0

]
For convenience we extend the notation of encryption schemes to vectors in the natural way
by applying the algorithm component wise. I.e., for m ∈ ({0, 1}ℓ)n and k ∈ ({0, 1}κ)n we
write c := Enc(k, m) to denote the vector consisting of ci := Enc(ki, mi). Similarly we write
m′ := Dec(k, c) for the vector consisting of m′

i := Dec(ki, ci).

▶ Remark 2. A stateful q-time encryption with perfect indistinguishability can easily be
instantiated using the one-time pad where the key k is split into keys k1, . . . , kq ∈ {0, 1}ℓ and
ci is computed as mi ⊕ ki. The perfect indistinguishability follows from the regular perfect
secrecy of the one-time pad.[52] In this case κ = qℓ.

ITC 2023

5:8 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

▶ Definition 3 (Statistically Unforgeable q-time MACs). A q-time message authentication
code M for message space {0, 1}ℓ and keyspace {0, 1}κ consists of a pair of deterministic
algorithms (MAC, Vf), such that for all keys k ∈ {0, 1}κ and all messages m ∈ {0, 1}ℓ it holds
that Vf(k, m, MAC(k, m)) = 1.

Let n ∈ N and let M̃AC be the algorithm defined as M̃AC(k1, . . . , kn, i, m) := MAC(ki, m).
A q-time message authentication code is ϵ-unforgeable, if for all unbounded algorithms A it
holds that

Pr
[

k1, . . . , kn ← {0, 1}κ

(i, m, t)← AM̃AC(k1,...,kn,·,·)()
:
Vf(ki, m, t) = 1
∧ (m, t) /∈ Qi ∧ |Qi| ≤ q

]
≤ ϵ

where Qi denotes the set of message-answer pairs, queried by A for index i.

Similar to encryption schemes, we extend the notation of message authentication codes
to vectors in the natural way by applying the algorithm component wise. I.e., for m ∈
({0, 1}ℓ)n and k ∈ ({0, 1}κ)n we write t := MAC(k, m) to denote the vector consisting of
ti := MAC(ki, mi).

▶ Remark 4. Statistically unforgeable q-time MACs can be instantiated using any family of
q +1-wise independent functions such as the family of degree q polynomials over F2max{ℓ,λ} [53].
In this case κ = (q + 1) ·max{ℓ, λ} and ϵ = 2− max{ℓ,λ}.

2.3 2-Non-Malleable Extractors
Our construction also makes use of 2-non-malleable extractors. These were first defined by
Cheraghchi and Guruswami [19, 21] but constructing them was left as an open problem. The
definition was finally instantiated by Chattopadhyay, Goyal, and Li [16]. Such an extractor
allows to non-malleably extract an almost uniform random string from two sources with a
given min-entropy that are being tampered by a split-state tampering function. We closely
follow the definition from [16].

▶ Definition 5 (2-Non-Malleable Extractor). A function nmExt : {0, 1}n×{0, 1}n → {0, 1}m is
a 2-non-malleable extractor for sources with min-entropy k < n and with error ϵ if it satisfies
the following property: If X, Y are independent sources of length n with min-entropy k and
f = (f0, f1) is an arbitrary 2-split-state tampering function, then there exists a distribution
Df over {0, 1}m ∪ {same}, such that

SD
((

nmExt(X, Y), nmExt(f0(X), f1(Y))
)
,
(
Um, replace(Df , Um)

))
≤ ϵ

where both Um refer to the same uniform m-bit string.

▶ Remark 6. The required 2-non-malleable extractor can be instantiated with the construction
of Chattopadhyay Goyal and Li [16] or a number of other construction. [42, 43, 22].

3 Interactive Protocols and Tampering Model

We consider protocols Π between n parties P1, . . . , Pn for evaluating functionalities g =
(g1, . . . , gn) of the form gi : X1 × · · · × Xn → Yi, where Xi, Yi are finite domains. Each
party Pi holds an input xi ∈ Xi and randomness ωi ∈ Ωi and the goal of the protocol is to
interactively evaluate the functionality, such that at the end of the protocol party Pi outputs
gi(x1, . . . , xn) ∈ Yi.

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:9

Formally, an interactive protocol Π between n parties can be described either using
interactive Turing machines, or using next-message functions. The two formalizations
are equivalent up to a slight computational overhead. We will switch between the two
formalizations whenever this is convenient for exposition.

Interactive Protocols as Interactive Turing Machines

In this formalization an interactive protocol Π between n parties is described by an n-tuple
of interactive Turing machines Pi. Each interactive Turing machine Pi has an input tape
containing xi, a random tape containing ωi, an internal work tape, as well as an incoming
communication tape and an outgoing communication tape for each party Pj with j ̸= i and
an output tape.

Interactive Protocols as Next Message Functions

In this formalization an interactive protocol Π between n parties is described by a an n-tuple
of “next message” functions πi and an n-tuple of output functions outi. The next message
function πi takes as input the view of Pi, i.e., the input xi, the randomness ωi, and the
sequence of message vectors received by Pi thus far and outputs the vector si ∈ {0, 1}∗ ∪{⊥}
of messages to be sent by Pi. The output function outi takes as input the final view of Pi,
i.e., xi, ωi, and received message vectors and outputs Pi’s protocol output.

Equivalence of Formalizations

The two formalizations are equivalent up to a slight computational overhead. To see this
consider the following two simple conversions: Given an interactive Turing machine Pi, the
equivalent next message function πi can be computed on input xi, ωi, mi by simulating the
Turing machine on input xi and randomness ωi, writing the received messages for each round
on the appropriate incoming communication tapes until the current round is reached. The
content of the outgoing communication tapes can then be output as si. Similarly, given a
next message function πi, the equivalent interactive Turing machine Pi will simply store
the contents of its incoming communication tapes on its internal work tape, evaluate πi on
its input xi, randomness ωi and all incoming messages, and write the output of πi to its
outgoing communication tapes.

3.1 Correctness and Encodings
We denote by Π(x) the joint distribution of the outputs of an honest execution of the protocol
Π using inputs x and uniformly sampled randomness ω. Further, we denote by g(x) the
vector (g1(x1, . . . , xn), . . . , g1(x1, . . . , xn)).

▶ Definition 7 (Correctness). A protocol Π, is said to ϵ-correctly evaluate a functionality g =
(g1, . . . , gn) if an untampered execution of the protocol correctly computes g with probability
at least 1− ϵ. I.e., for all valid input vectors x it holds that Pr[y ← Π(x) : y = g(x)] ≥ 1− ϵ,

where the probability is taken over the uniform choice of the random tape of all parties.

▶ Definition 8 (Encoding of an Interactive Protocol). An encoding E of n-party interactive
protocols is defined by n interactive oracle machines Enci.

Let Π be an arbitrary interactive n-party protocol that ϵ-correctly evaluate a functionality g.
The encoded protocol is then the interactive n-party protocol between interactive Turing
machines (Q1, . . . , Qn) defined as follows: On input xi, Qi samples uniform randomness ωi,

ITC 2023

5:10 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

initiates the oracle Ox,ω′ = Pi(xi; ωi) and then executes EncOx,ω′

i (), giving it direct access to
all communication tapes. Once EncOx,ω′

i () terminates with some output y, Qi also outputs y.
E is a δ-correct protocol encoding for Π if for all inputs x, the protocol E(Π) = (Q1, . . . , Qn)
ϵ + δ-correctly evaluates the functionality g.

3.2 Tampering Model
The transcript of a protocol executed under tampering needs to specify for each round of
execution both the messages sent by each party and the messages received by each party.
Remember that, due to the presence of the tampering function, the messages received are
not necessarily related in any way to the messages sent.

We consider a scenario in which each party has a point-to-point channel to each other
party, but not to itself. I.e., a protocol among n parties is executed over a complete directed
communication graph (excluding loops) with n nodes Pi.

For each round, the transcript needs to label each edge (Pi, Pj) for i ̸= j in the graph
with the message Pi sent to Pj and the message Pj received from Pi, the two of which need
not be related. We will denote this with two n× n matrices S and R of labels per round of
execution, where a label is either an arbitrary bitstring or the special symbol ⊥ denoting
that no message was sent or received respectively.

▶ Definition 9 (Transcripts). Let M = {0, 1}∗ ∪{⊥} be the set of possible labels for the edges
of the communication graph. The set of possible transcripts is then the set of lists of pairs of
matrices Si, Ri ∈Mn×n such that the diagonal of both matrices only contains ⊥. I.e.,

T =
({

M ∈Mn×n
∣∣ diag(M) ∈ {⊥}n

}2
)∗

.

For any transcript τ =
(
(S1, R1), . . . , (Sℓ, Rℓ)

)
, rowj(Si) denotes the vector of messages

sent by Pj in round i of the execution, while colj(Ri)⊤ denotes the vector of messages received
by Pj in round i of the execution.
We denote by TransΠ(x, ω) the function mapping the input vector x along with the randomness
ω to the transcript of an honest execution of Π with inputs x and randomness ω.

A party’s view of the transcript consists exactly of the vectors of messages it receives. In
particular, if a party does not receive any messages in a particular round of the execution,
this round is not included in the party’s view. This models that a party is not necessarily
capable of detecting that desynchronization happens and allows general tampering functions
to arbitrarily desynchronize different parties during protocol execution.

▶ Definition 10 (Views). Let τ be a transcript. The corresponding view of party Pi is then
defined as Vi(τ) =

(
coli(R)⊤

∣∣ (S, R) ∈ τ ∧ coli(R)⊤ ̸∈ {⊥}n
)
.

The interactive non-malleable code presented in Section 5 is restricted to protocols with
a fixed message topology. This means that the number of messages exchanged over each
channel is fixed, the expected relative ordering of all the messages received by a single party is
a priori known, and whether or not a party sends a message along a communication channel
does not depend on their input or their received messages. I.e., the “structure” of each vector
in a party’s view as well as the output vector in any particular round of execution is fixed in
an untampered execution. We define this formally as follows.

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:11

▶ Definition 11 (Fixed Message Topology). An interactive protocol Π with n parties defined by
next message functions πi and output functions outi is said to have a fixed message topology,
if there exists a function µ : [n]×N→ {0, 1}n ×{0, 1}n, such that for all vectors of inputs x,
all randomness vector ω and the transcript τ of an honest untampered execution of Π on x

with ω, all i ∈ [n], and all r ∈ [|Vi(τ)|] it holds that µ(i, r) = (v′, s′), where

v′
j :=

{
0 if Vi(τ)r,j = ⊥
1 otherwise

s′
j :=

{
0 if πi(xi, ωi, Vi(τ)≤r)j = ⊥
1 otherwise

for j ∈ [n] and for all r ≥ |Vi(τ)| it holds that µ(i, r) = (0n, 0n). We further define the
function ν : [n]× [n]→ N as ν(i, j) :=

∑
r∈N µ(i, r)1,j =

∑
r∈N µ(j, r)2,i as the exact number

of messages received by party i from j during an execution of the protocol.

Let Π be a protocol with n parties defined by next message functions πi and output functions
outi. For ease of notation we define the function NextΠ which describes computation
of all messages sent during a particular round of execution depending on the protocol
specification, the vector of inputs x = (x1, . . . , xn) and the partial transcript τ ∈ T . Let
F : T ×Mn×n →Mn×n be an arbitrary tampering function. We describe execution of Π
on inputs x = (x1, . . . , xn) under tampering by F using the algorithm ExecuteΠ,F .

NextΠ(x, ω, τ)
parse τ = ((S1, R1), . . . , (Sℓ, Rℓ))
for 1 ≤ i ≤ n do

if τ = ∅ ∨ coli(Rℓ)⊤ ̸= ⊥n

si := πi(xi, ωi, Vi(τ))
else

si := ⊥n

return

s1
...

sn



ExecuteΠ,F (x; ω)
τ := ∅
S := Next(Π, x, ω, τ)
R := F (τ, S)

while R ̸= ⊥n×n

τ := τ ◦ (S, R)
S := Next(Π, x, ω, τ)
R := F (τ, S)

return
(
out1(x1, V1(τ)), . . . , outn(xn, Vn(τ))

)

Let I : T × Mn×n → Mn×n be the function defined as I(τ, S) := S. We call I the
identity tampering function. Note that the distribution Π(x) is identical to the distribution
ExecuteΠ,I(x).

▶ Definition 12 (Protocol Non-malleability). An n-party protocol Π for functionality g is
ϵ-protocol non-malleable for a family F of tampering functions if for every tampering function
F ∈ F there exists a distribution DF over {⊥, same}n such that for all x, it holds that

SD(ExecuteΠ,F (x), replace(DF , Π(x))) ≤ ϵ.

▶ Definition 13 (Interactive Non-Malleable Code). A protocol encoding E is called a (δ, ϵ)−inter-
active non-malleable code for a family F of tampering functions and a class of protocols, if for
any protocol Π of this class, E(Π) δ-correctly encodes Π and E(Π) is ϵ-protocol non-malleable
for F .

ITC 2023

5:12 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

3.3 Bounded State Tampering

We now define bounded state tampering functions for multi-party protocols. This is a natural
model in which the adversary can arbitrarily and jointly tamper with all channels, however
there exists an a priori upper bound on the size of the state they can hold. Similar classes of
adversaries have already been considered starting with the work of Cachin and Maurer [14]
which proposed encryption and key exchange protocols secure against computationally
unbounded adversaries. With respect to non-malleable codes Faust et al. [32] introduced the
notion of non-malleable codes against space-bounded tampering. Our formalization closely
follows the one of Fleischhacker et al. [36] but adapted to the multi-party case. This means
that we do not limit the size of the memory available for computing the tampering function
in each round of tampering. Instead, we only limit the size of the state that can be carried
over to the next round of tampering. I.e., an adversary in this model can jointly tamper
with all of the messages exchanged in one round of execution depending on some function of
all previously exchanged messages. But the function can only depend on up to some fixed
number of s bits of information about previous messages. This is formalized as follows.

▶ Definition 14 (Bounded State Tampering Functions). Functions of the class of s-bounded
state tampering functions F ∈ Fs

bounded for an interactive protocol are defined by a function

f : {0, 1}s ∪ {⊥} ×Mn×n → {0, 1}s ×Mn×n

The function f takes as input a previous state of the tampering function and a matrix of sent
messages and outputs an updated state and a matrix of received messages.

The full tampering function F : T ×Mn×n →Mn×n is then defined in terms of f as
seen below.

F (τ, S)
σ := ⊥
for (S′, R′) in τ

(σ, R) := f(σ, S′)
(σ, R) := f(σ, S)
return R

4 Arbitrary Message Topologies

The INMC for Bounded-state tampering functions that is introduced in Section 5 requires
the underlying protocol to have a fixed message topology. In this section we show that is is
not in general a restriction, as any protocol can be transformed protocol with a fixed message
topology. Therefore, the INMC can be applied to any protocol by first transforming it to a
protocol with a fixed message topology and then applying the INMC itself.

For this purpose we first introduce a general definition of a message topology, which for
any party and round defines the probability that messages are received or sent over each
channel, maximized over all possible inputs.

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:13

▶ Definition 15 (Message Topology). Let Π be interactive protocol with n parties defined by
next message functions πi and output functions outi. The message topology of Π is defined
by a function µ : [n]× N→ [0, 1]n × [0, 1]n, such that for all i ∈ [n], and all r ∈ N it holds
that µ(i, r) = (v′, s′), where

v′
j := max

x

{
Pr

[
ω ← Ω1 × Ω2 × · · · × Ωn

τ ← TransΠ(x, ω)
: |Vi(τ)| ≥ r ∧ Vi(τ)r,j ̸= ⊥

]}

s′
j := max

x

{
Pr

[
ω ← Ω1 × Ω2 × · · · × Ωn

τ ← TransΠ(x, ω)
: |Vi(τ)| ≥ r ∧ πi(xi, ωi, Vi(τ)≤r)j ̸= ⊥

]}
for j ∈ [n].

A fixed message topology can then be seen as a special case, where µ is defined over {0, 1}
and the probabilities used in the definition are independent of the input vectors.

4.1 Transformations from Arbitrary to Fixed Message Topology
We propose three different transformations from an arbitrary message topology (AMT) to a
fixed message topology (FMT). The first transformation is very naive, resulting in a very
large blowup of the communication complexity but can be applied without any detailed
consideration to the original message topology, i.e. it does not even reference the above
definition. The second transformation considers the original message topology and will result
in a lower blowup in the communication complexity for most reasonable protocols. However,
in the worst case, for pathological examples, it can still result in the same blowup as the
naive transformation. The third transformation finally allows us to limit the blowup, even
in the worst case, but at the cost of potentially degrading the correctness of the protocol.
Throughout this section, we assume that there exists a fixed upper bound on the number
rounds the execution of a protocol may take.

4.1.1 Trivial Transformation
The simplest transformation floods the entire network in every round by sending dummy
messages whenever there’s no actual message to be sent. To reliably distinguish between
real and dummy messages, real messages are marked by a prefix identifying them as real.
Specifically, if in any round of the original protocol an actual message is sent by party Pi to
party Pj then party Pi just prepends 1 to the message and sends it to the concerned party Pj .
If on the other hand no message is sent in the original protocol a dummy message consisting
of 0 is sent to Pj . To formally describe the next-message functions of the transformed
protocol, we first define two functions addDummies and remDummies used to add and remove
the dummy messages. We define the function

addDummies : [n]× [rmax]× ({0, 1}∗ ∪ {⊥})n → ({0, 1}∗ ∪ {⊥})n

as

addDummies(i, r, m) := m′, where m′
j :=


⊥ if i = j

0 if mj = ⊥ and i ̸= j

1∥mj otherwise.1

and the function

1 Note that addDummies takes an input r which is then ignored. This will make our lives easier when we
modify the transformation going forward.

ITC 2023

5:14 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

remDummies : ({0, 1}∗ ∪ {⊥})n → ({0, 1}∗ ∪ {⊥})n

as

remDummies(m) := m′, where m′
j :=

{
⊥ if mj ∈ {0,⊥}
m′′ if mj = 1∥m′′

For ease of notation we will apply remDummies to lists of vectors, which is to be interpreted
as component-wise application. Let Π be an arbitrary ϵ-correct protocol described by next
message functions πi with an upper bound of rmax on the number of rounds. The next
message function π′

i of the naively transformed protocol can then simply be defined as

π′
i(xi, ωi, Vi) :=

{
⊥n if |Vi| ≥ rmax

addDummies(i, |Vi|, πi(xi, ωi, remDummies(Vi))) otherwise.

This trivially transformed protocol works exactly in the same way as the original protocol
with the only exception being that in every round, all channels on which the original protocol
would not have sent messages, the transformed protocol sends dummy messages and then
promptly ignores them. The protocol terminates after exactly rmax rounds. This means that
since the transformed protocol doesn’t drop any messages and the original views of the parties
can easily be reconstructed by ignoring the dummy messages. Hence it will still be ϵ-correct.
This transformation clearly serves the purpose of transforming any protocol into a protocol
with a fixed message topology. A clear downside, however, is the blowup in communication
complexity, especially if the original protocol used a rather sparse communication graph.
In every round each party starts sends messages to every other party whether they were
expecting messages or not. In the worst case, this means that the expected communication
complexity of the protocol blows up infinitely.2 But even in more reasonable protocols that
happen to use a sparse communication graph, the blowup is quite severe. Luckily we can do
a bit better at least for reasonable protocols.

4.1.2 Maintaining the Communication Graph
The overhead of the transformation can be reduced if we only flood those channels where
messages could possibly be sent. In order for that to happen we let party Pi send a dummy
message only on those channels where there’s a non-zero probability of a real message being
sent. We can achieve that if we redefine the function addDummies as follows

addDummies(i, r, m) := m′, where m′
j :=


0 if m′

j = ⊥ and µ(i, r)2,j > 0
1∥m′

j if m′
j ̸= ⊥

⊥ otherwise.

The next message function is still defined as before. Clearly, this again results in a fixed
message topology. This transformed protocol will also be ϵ-correct if the actual protocol
is ϵ-correct as no messages are dropped and the original view can be reconstructed. Even
though this transformation eliminates quite a lot of redundant messages and will result in a
much smaller blowup for many protocols run over a sparse communication graph, the worst
case blowup still remains infinite by the same argument as before.

2 An example of a pathological protocol that exhibits infinite blowup is a protocol with at most one round,
where one party sends a message with probability ζ, where ζ tends towards 0.

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:15

4.1.3 Dropping Low Probability Messages

To fix this issue of an infinite blowup in the expected communication complexity we can
modify the transformation, by introducing a threshold value t and dropping all messages
that are sent with probability less than t. In order to achieve this we again redefine the
function addDummies as as

addDummies(i, r, m) := m′, where m′
j :=


0 if m′

j = ⊥ and µ(i, r)2,j > t

1∥m′
j if m′

j ̸= ⊥ and µ(i, r)2,j > t

⊥ otherwise.

This transformation only allows messages to be sent if their probability is above the threshold
probability of t. The implementation of the next message function πi remains the same for
this transformation as was for the last transformation. For this transformation potentially
degrades the correctness of the protocol. In a protocol with rmax rounds there are rmax(n2−n)
potential messages, each of which may have a probability of being sent infinitesimally less
than t. Each message that is actually sent by the underlying protocol but them blocked by
the transformation can result in the protocol computing an incorrect output. But we can
apply a union bound and get that the transformed protocol remains ϵ + trmax(n2−n)-correct.
However, this degraded correctness buys us a finite bound on the blowup of the expected
communication complexity. In the worst case, each message in the original protocol is sent
with probability exactly t, whereas it is sent with probability 1 in the transformed protocol.
Therefore, the blowup can be at most 1/t therefore allowing us to bound the blowup.

5 An INMC for Bounded-State Tampering Functions

We devise an interactive non-malleable code for bounded state tampering functions that can
be applied to any multi-party protocol Π′ with fixed message topology, i.e., to any protocol
where for every party Pi and every invocation r of the next message function πi, whether
or not a message is sent to party Pj is a priori known and does not depend on any of π′

is

inputs. The basic idea is that each pair of parties will first run a key-exchange in which they
will exchange enough key-material to the execute the original protocol encrypted under an
information theoretically secure encryption scheme and authenticated with a statistically
unforgeable MAC. Besides making sure that the tampering function cannot replay, redirect
or omit messages by binding the authentication to a specific channel and including message
counters in the authentication, the main challenge is to construct a key exchange that is
secure against a computationally unbounded but bounded state adversary. We achieve this
using a 2-non-malleable extractor. Essentially each party chooses a key by choosing two
random sources α, β which will be much longer than the bounded state of the tampering
function and extracting a key k := nmExt(α, β). They will be using this key which they
know is untampered to encrypt messages and to verify authentication tags. The two sources
α, β are then sent in seperate rounds, ensuring that they cannot be tampered jointly, except
for some amount of leakage through the state of the tampering function and potentially
conditional aborts. This leakage can be handled by reinterpreting the sources as coming
from a different distribution with slightly less min-entropy. Once the keys are exchanged,
the parties verify that the keys were not modified in transit by sending a MAC computed
over the ID of the channel with the key they received from the other party.

ITC 2023

5:16 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

CheckMsgOrder(V)
r = 0n

for j ∈ [n] \ {i} do
if V|V |,j ̸= ⊥

rj := 1
if µ(i, |V | − 3)1 ̸= r

return 0
return 1

Figure 1 The func-
tion checking the order-
ing of messages against
the fixed message topol-
ogy.

π
O′

x,ω′

i (ω, Vi(τ))
s := ⊥n

if |V | = 0
rec := 0n, sent := 0n

(αi, βi)← (({0, 1}κnm)2)n

(kenc
i , kauth

i) := nmExt(αi, βi)
s := αi

elseif |V | = 1
if ⊥ ∈ V1

abort
s := βi

elseif |V | = 2
if ⊥ ∈ V2

abort

(k̃enc
j , k̃

auth
j) := nmExt(V1, V2)

for j ∈ [n] \ {i} do

sj := MAC(k̃auth
i,j , (i, j))

else
if |V | = 3

if ⊥ ∈ V3

abort
for j ∈ [n] \ {i} do

if Vf(kauth
i , (j, i), V3,j) = 0

abort
else

m := ⊥n

if CheckMsgOrder(V) = 0
abort

else
for j ∈ [n] \ {i} do

if V|V |,j ̸= ⊥
(c, t) := V|V |,j , recj := recj + 1

if Vf(kauth
i , (c, j, i, recj), t) = 0

abort

mj := Dec(k̃enc
j , c)

s′ ← O′
x,ω′ (m)

for j ∈ [n] \ {i} do
if s′

j ̸= ⊥

c := Enc(k̃enc
i , s′

j), sentj := sentj + 1

sj := (c, MAC(k̃auth
j , (c, i, j, sentj))

return s

Figure 2 The next message function describing the INMC for bounded
state tampering functions. For the sake of readability, we write the
function as if it were stateful. I.e., in particular the variables rec and sent
retain their value accross different invocations of πi and do not need to
be recomputed.

5.1 Defining the Next Message Function

The INMC is restricted to protocols with a fixed message topology as defined in Definition 11.
Refer to Section 4 for a discussion on how arbitrary protocols can be transformed into
protocols with a fixed message topology. To formally describe the next message function
and output function of the INMC, we need an algorithm that checks whether the sequence
of messages received from the other parties involved in the protocol confirm to the fixed
message topology. The function CheckMsgOrder defined in Figure 1 allows to perform this
check. Now that we have defined the CheckMsgOrder function we are ready to define the
next message function in Figure 2. Remember, that according to Definition 8 an encoding is
specified by an oracle machine or equivalently a next message function that is defined relative
to an stateful oracle representing the next message function of the underlying protocol. The
next message function π

Oi,x,ω′

i has three phases. In the initial phase every party shares their
keys with the rest of the parties taking part in the protocol. In the next phase all of the
parties confirms their respective keys with the other parties by sending a key confirmation
value. The last phase of the execution of the next message function just deals with the

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:17

actual message exchanges that happens between all the parties taking part in the protocol Π′.
The output function outi of the INMC simply takes the view V ′ of the underlying protocol
that it can extract from it’s own view exactly as in the next message function and outputs
out′

i(x, ω′, V ′) if the view conforms to the fixed message topology or ⊥ otherwise.

▶ Theorem 16. Let Π′ be a protocol between n parties with fixed message topology, with
r = maxi,j∈[n]{ν(i, j)} and message length ℓ. If (MAC, Vf) is a statistically ϵmac-unforgeable
r +1-time message authentication code with with message length ℓ+2⌈log n⌉+⌈log r⌉ and key
length κmac, (Enc, Dec) is a perfectly indistinguishable stateful t-time encryption scheme with
message length ℓ and key length κenc, and nmExt : {0, 1}κnm ×{0, 1}κnm → {0, 1}κmac+κEnc is
an ϵnm-non-malleable 2-source extractor for sources with min-entropy at least κnm− s− 3nλ,
then Π as described by πi and outi specified above is a (0, (2n2 +n)·2−λ +(n2−n)·ϵnm +ϵMAC)-
interactive non-malleable code for Π′ for the class Fs

bounded of bounded state tampering
functions.

Due to space constraints the proof is deferred to Appendix A.

References
1 Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey,

and Manoj Prabhakaran. Optimal computational split-state non-malleable codes. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of Cryptography Conference,
Part II, volume 9563 of Lecture Notes in Computer Science, pages 393–417, Tel Aviv, Israel,
January 10–13 2016. Springer, Heidelberg, Germany. doi:10.1007/978-3-662-49099-0_15.

2 Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-malleable
reductions and applications. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th Annual
ACM Symposium on Theory of Computing, pages 459–468, Portland, OR, USA, June 14–17
2015. ACM Press. doi:10.1145/2746539.2746544.

3 Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive
combinatorics. In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory of
Computing, pages 774–783, New York, NY, USA, May 31 – June 3 2014. ACM Press. doi:
10.1145/2591796.2591804.

4 Divesh Aggarwal, Nico Döttling, Jesper Buus Nielsen, Maciej Obremski, and Erick Purwanto.
Continuous non-malleable codes in the 8-split-state model. In Yuval Ishai and Vincent Rijmen,
editors, Advances in Cryptology – EUROCRYPT 2019, Part I, volume 11476 of Lecture
Notes in Computer Science, pages 531–561, Darmstadt, Germany, May 19–23 2019. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-17653-2_18.

5 Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran.
Explicit non-malleable codes against bit-wise tampering and permutations. In Rosario Gennaro
and Matthew J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part I,
volume 9215 of Lecture Notes in Computer Science, pages 538–557, Santa Barbara, CA, USA,
August 16–20 2015. Springer, Heidelberg, Germany. doi:10.1007/978-3-662-47989-6_26.

6 Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prab-
hakaran. A rate-optimizing compiler for non-malleable codes against bit-wise tampering
and permutations. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th
Theory of Cryptography Conference, Part I, volume 9014 of Lecture Notes in Computer Sci-
ence, pages 375–397, Warsaw, Poland, March 23–25 2015. Springer, Heidelberg, Germany.
doi:10.1007/978-3-662-46494-6_16.

7 Saikrishna Badrinarayanan and Akshayaram Srinivasan. Revisiting non-malleable secret shar-
ing. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019,
Part I, volume 11476 of Lecture Notes in Computer Science, pages 593–622, Darmstadt, Ger-
many, May 19–23 2019. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-17653-2_20.

ITC 2023

https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1145/2746539.2746544
https://doi.org/10.1145/2591796.2591804
https://doi.org/10.1145/2591796.2591804
https://doi.org/10.1007/978-3-030-17653-2_18
https://doi.org/10.1007/978-3-662-47989-6_26
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-030-17653-2_20

5:18 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

8 Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang Tan. Non-malleable
codes for small-depth circuits. In Mikkel Thorup, editor, 59th Annual Symposium on Founda-
tions of Computer Science, pages 826–837, Paris, France, October 7–9 2018. IEEE Computer
Society Press. doi:10.1109/FOCS.2018.00083.

9 Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, Huijia Lin, and Tal Malkin. Non-
malleable codes against bounded polynomial time tampering. In Yuval Ishai and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part I, volume 11476 of
Lecture Notes in Computer Science, pages 501–530, Darmstadt, Germany, May 19–23 2019.
Springer, Heidelberg, Germany. doi:10.1007/978-3-030-17653-2_17.

10 Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable codes
for bounded depth, bounded fan-in circuits. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes
in Computer Science, pages 881–908, Vienna, Austria, May 8–12 2016. Springer, Heidelberg,
Germany. doi:10.1007/978-3-662-49896-5_31.

11 Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable
codes from average-case hardness: AC0, decision trees, and streaming space-bounded
tampering. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptol-
ogy – EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Computer Science,
pages 618–650, Tel Aviv, Israel, April 29 – May 3 2018. Springer, Heidelberg, Germany.
doi:10.1007/978-3-319-78372-7_20.

12 Marshall Ball, Siyao Guo, and Daniel Wichs. Non-malleable codes for decision trees. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
Part I, volume 11692 of Lecture Notes in Computer Science, pages 413–434, Santa Barbara, CA,
USA, August 18–22 2019. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-26948-7_
15.

13 Mark Braverman, Ran Gelles, Jieming Mao, and Rafail Ostrovsky. Coding for interactive
communication correcting insertions and deletions. IEEE Transactions on Information Theory,
63(10):6256–6270, 2017. doi:10.1109/TIT.2017.2734881.

14 Christian Cachin and Ueli M. Maurer. Unconditional security against memory-bounded
adversaries. In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume
1294 of Lecture Notes in Computer Science, pages 292–306, Santa Barbara, CA, USA, August
17–21 1997. Springer, Heidelberg, Germany. doi:10.1007/BFb0052243.

15 Nishanth Chandran, Bhavana Kanukurthi, and Srinivasan Raghuraman. Information-theoretic
local non-malleable codes and their applications. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A: 13th Theory of Cryptography Conference, Part II, volume 9563 of Lecture Notes
in Computer Science, pages 367–392, Tel Aviv, Israel, January 10–13 2016. Springer, Heidelberg,
Germany. doi:10.1007/978-3-662-49099-0_14.

16 Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes, with
their many tampered extensions. In Daniel Wichs and Yishay Mansour, editors, 48th Annual
ACM Symposium on Theory of Computing, pages 285–298, Cambridge, MA, USA, June 18–21
2016. ACM Press. doi:10.1145/2897518.2897547.

17 Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-depth circuits,
and affine functions. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, 49th
Annual ACM Symposium on Theory of Computing, pages 1171–1184, Montreal, QC, Canada,
June 19–23 2017. ACM Press. doi:10.1145/3055399.3055483.

18 Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant split-
state tampering. In 55th Annual Symposium on Foundations of Computer Science, pages
306–315, Philadelphia, PA, USA, October 18–21 2014. IEEE Computer Society Press. doi:
10.1109/FOCS.2014.40.

19 Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and split-
state tampering. In Yehuda Lindell, editor, TCC 2014: 11th Theory of Cryptography Conference,

https://doi.org/10.1109/FOCS.2018.00083
https://doi.org/10.1007/978-3-030-17653-2_17
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-319-78372-7_20
https://doi.org/10.1007/978-3-030-26948-7_15
https://doi.org/10.1007/978-3-030-26948-7_15
https://doi.org/10.1109/TIT.2017.2734881
https://doi.org/10.1007/BFb0052243
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1145/2897518.2897547
https://doi.org/10.1145/3055399.3055483
https://doi.org/10.1109/FOCS.2014.40
https://doi.org/10.1109/FOCS.2014.40

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:19

volume 8349 of Lecture Notes in Computer Science, pages 440–464, San Diego, CA, USA,
February 24–26 2014. Springer, Heidelberg, Germany. doi:10.1007/978-3-642-54242-8_19.

20 Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. IEEE
Transactions on Information Theory, 62(3):1097–1118, March 2016.

21 Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. Journal of Cryptology, 30(1):191–241, January 2017. doi:10.1007/
s00145-015-9219-z.

22 Eldon Chung, Maciej Obremski, and Divesh Aggarwal. Extractors: Low entropy requirements
colliding with non-malleability. arXiv, 2021. doi:10.48550/arXiv.2111.04157.

23 Sandro Coretti, Yevgeniy Dodis, Björn Tackmann, and Daniele Venturi. Non-malleable
encryption: Simpler, shorter, stronger. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-
A: 13th Theory of Cryptography Conference, Part I, volume 9562 of Lecture Notes in Computer
Science, pages 306–335, Tel Aviv, Israel, January 10–13 2016. Springer, Heidelberg, Germany.
doi:10.1007/978-3-662-49096-9_13.

24 Sandro Coretti, Antonio Faonio, and Daniele Venturi. Rate-optimizing compilers for continu-
ously non-malleable codes. In Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and
Moti Yung, editors, ACNS 19: 17th International Conference on Applied Cryptography and Net-
work Security, volume 11464 of Lecture Notes in Computer Science, pages 3–23, Bogota, Colom-
bia, June 5–7 2019. Springer, Heidelberg, Germany. doi:10.1007/978-3-030-21568-2_1.

25 Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-bit to
multi-bit public-key encryption via non-malleable codes. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015: 12th Theory of Cryptography Conference, Part I, volume 9014
of Lecture Notes in Computer Science, pages 532–560, Warsaw, Poland, March 23–25 2015.
Springer, Heidelberg, Germany. doi:10.1007/978-3-662-46494-6_22.

26 Dana Dachman-Soled, Ilan Komargodski, and Rafael Pass. Non-malleable codes for bounded
parallel-time tampering. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology
– CRYPTO 2021, Part III, volume 12827 of Lecture Notes in Computer Science, pages 535–
565, Virtual Event, August 16–20 2021. Springer, Heidelberg, Germany. doi:10.1007/
978-3-030-84252-9_18.

27 Dana Dachman-Soled, Mukul Kulkarni, and Aria Shahverdi. Tight upper and lower bounds
for leakage-resilient, locally decodable and updatable non-malleable codes. In Serge Fehr,
editor, PKC 2017: 20th International Conference on Theory and Practice of Public Key
Cryptography, Part I, volume 10174 of Lecture Notes in Computer Science, pages 310–332,
Amsterdam, The Netherlands, March 28–31 2017. Springer, Heidelberg, Germany. doi:
10.1007/978-3-662-54365-8_13.

28 Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally decodable
and updatable non-malleable codes and their applications. In Yevgeniy Dodis and Jesper Buus
Nielsen, editors, TCC 2015: 12th Theory of Cryptography Conference, Part I, volume 9014
of Lecture Notes in Computer Science, pages 427–450, Warsaw, Poland, March 23–25 2015.
Springer, Heidelberg, Germany. doi:10.1007/978-3-662-46494-6_18.

29 Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from
two-source extractors. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology
– CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science, pages 239–
257, Santa Barbara, CA, USA, August 18–22 2013. Springer, Heidelberg, Germany. doi:
10.1007/978-3-642-40084-1_14.

30 Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In Andrew
Chi-Chih Yao, editor, ICS 2010: 1st Innovations in Computer Science, pages 434–452, Tsinghua
University, Beijing, China, January 5–7 2010. Tsinghua University Press.

31 Antonio Faonio, Jesper Buus Nielsen, Mark Simkin, and Daniele Venturi. Continuously
non-malleable codes with split-state refresh. In Bart Preneel and Frederik Vercauteren, editors,
ACNS 18: 16th International Conference on Applied Cryptography and Network Security,

ITC 2023

https://doi.org/10.1007/978-3-642-54242-8_19
https://doi.org/10.1007/s00145-015-9219-z
https://doi.org/10.1007/s00145-015-9219-z
https://doi.org/10.48550/arXiv.2111.04157
https://doi.org/10.1007/978-3-662-49096-9_13
https://doi.org/10.1007/978-3-030-21568-2_1
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-030-84252-9_18
https://doi.org/10.1007/978-3-030-84252-9_18
https://doi.org/10.1007/978-3-662-54365-8_13
https://doi.org/10.1007/978-3-662-54365-8_13
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14

5:20 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

volume 10892 of Lecture Notes in Computer Science, pages 121–139, Leuven, Belgium, July 2–4
2018. Springer, Heidelberg, Germany. doi:10.1007/978-3-319-93387-0_7.

32 Sebastian Faust, Kristina Hostáková, Pratyay Mukherjee, and Daniele Venturi. Non-malleable
codes for space-bounded tampering. In Jonathan Katz and Hovav Shacham, editors, Advances
in Cryptology – CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Computer Science,
pages 95–126, Santa Barbara, CA, USA, August 20–24 2017. Springer, Heidelberg, Germany.
doi:10.1007/978-3-319-63715-0_4.

33 Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Con-
tinuous non-malleable codes. In Yehuda Lindell, editor, TCC 2014: 11th Theory of
Cryptography Conference, volume 8349 of Lecture Notes in Computer Science, pages 465–
488, San Diego, CA, USA, February 24–26 2014. Springer, Heidelberg, Germany. doi:
10.1007/978-3-642-54242-8_20.

34 Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. A tamper
and leakage resilient von neumann architecture. In Jonathan Katz, editor, PKC 2015: 18th
International Conference on Theory and Practice of Public Key Cryptography, volume 9020 of
Lecture Notes in Computer Science, pages 579–603, Gaithersburg, MD, USA, March 30 – April 1
2015. Springer, Heidelberg, Germany. doi:10.1007/978-3-662-46447-2_26.

35 Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-
malleable codes and key-derivation for poly-size tampering circuits. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of
Lecture Notes in Computer Science, pages 111–128, Copenhagen, Denmark, May 11–15 2014.
Springer, Heidelberg, Germany. doi:10.1007/978-3-642-55220-5_7.

36 Nils Fleischhacker, Vipul Goyal, Abhishek Jain, Anat Paskin-Cherniavsky, and Slava Radune.
Interactive non-malleable codes. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019:
17th Theory of Cryptography Conference, Part II, volume 11892 of Lecture Notes in Computer
Science, pages 233–263, Nuremberg, Germany, December 1–5 2019. Springer, Heidelberg,
Germany. doi:10.1007/978-3-030-36033-7_9.

37 Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Ilias Diakonikolas,
David Kempe, and Monika Henzinger, editors, 50th Annual ACM Symposium on Theory
of Computing, pages 685–698, Los Angeles, CA, USA, June 25–29 2018. ACM Press. doi:
10.1145/3188745.3188872.

38 Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing for general access structures.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part I, volume 10991 of Lecture Notes in Computer Science, pages 501–530, Santa Barbara, CA,
USA, August 19–23 2018. Springer, Heidelberg, Germany. doi:10.1007/978-3-319-96884-1_
17.

39 Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commitments.
In Daniel Wichs and Yishay Mansour, editors, 48th Annual ACM Symposium on Theory of
Computing, pages 1128–1141, Cambridge, MA, USA, June 18–21 2016. ACM Press. doi:
10.1145/2897518.2897657.

40 Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Four-state non-
malleable codes with explicit constant rate. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017: 15th Theory of Cryptography Conference, Part II, volume 10678 of Lecture Notes
in Computer Science, pages 344–375, Baltimore, MD, USA, November 12–15 2017. Springer,
Heidelberg, Germany. doi:10.1007/978-3-319-70503-3_11.

41 Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Non-malleable
randomness encoders and their applications. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of Lecture
Notes in Computer Science, pages 589–617, Tel Aviv, Israel, April 29 – May 3 2018. Springer,
Heidelberg, Germany. doi:10.1007/978-3-319-78372-7_19.

42 Xin Li. Improved non-malleable extractors, non-malleable codes and independent source
extractors. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, 49th Annual ACM

https://doi.org/10.1007/978-3-319-93387-0_7
https://doi.org/10.1007/978-3-319-63715-0_4
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-662-46447-2_26
https://doi.org/10.1007/978-3-642-55220-5_7
https://doi.org/10.1007/978-3-030-36033-7_9
https://doi.org/10.1145/3188745.3188872
https://doi.org/10.1145/3188745.3188872
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1007/978-3-319-96884-1_17
https://doi.org/10.1145/2897518.2897657
https://doi.org/10.1145/2897518.2897657
https://doi.org/10.1007/978-3-319-70503-3_11
https://doi.org/10.1007/978-3-319-78372-7_19

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:21

Symposium on Theory of Computing, pages 1144–1156, Montreal, QC, Canada, June 19–23
2017. ACM Press. doi:10.1145/3055399.3055486.

43 Xin Li. Non-malleable extractors and non-malleable codes: Partially optimal constructions.
In Proceedings of the 34th Computational Complexity Conference, CCC ’19, Dagstuhl, DEU,
2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CCC.2019.28.

44 Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. arXiv,
2023. doi:10.48550/arXiv.2303.06802.

45 Fuchun Lin. Non-malleable multi-party computation. Cryptology ePrint Archive, Report
2022/978, 2022. URL: https://eprint.iacr.org/2022/978.

46 Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-state model.
In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012,
volume 7417 of Lecture Notes in Computer Science, pages 517–532, Santa Barbara, CA, USA,
August 19–23 2012. Springer, Heidelberg, Germany. doi:10.1007/978-3-642-32009-5_30.

47 Rafail Ostrovsky, Giuseppe Persiano, Daniele Venturi, and Ivan Visconti. Continuously non-
malleable codes in the split-state model from minimal assumptions. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part III, volume 10993
of Lecture Notes in Computer Science, pages 608–639, Santa Barbara, CA, USA, August 19–23
2018. Springer, Heidelberg, Germany. doi:10.1007/978-3-319-96878-0_21.

48 Sridhar Rajagopalan and Leonard J. Schulman. A coding theorem for distributed computation.
In 26th Annual ACM Symposium on Theory of Computing, pages 790–799, Montréal, Québec,
Canada, May 23–25 1994. ACM Press. doi:10.1145/195058.195462.

49 Leonard J. Schulman. Communication on noisy channels: A coding theorem for computation. In
33rd Annual Symposium on Foundations of Computer Science, pages 724–733, Pittsburgh, PA,
USA, October 24–27 1992. IEEE Computer Society Press. doi:10.1109/SFCS.1992.267778.

50 Leonard J. Schulman. Deterministic coding for interactive communication. In 25th Annual
ACM Symposium on Theory of Computing, pages 747–756, San Diego, CA, USA, May 16–18
1993. ACM Press. doi:10.1145/167088.167279.

51 Leonard J. Schulman. Coding for interactive communication. IEEE Transactions on Informa-
tion Theory, 42(6):1745–1756, November 1996.

52 Claude E. Shannon. Communication theory of secrecy systems. Bell Systems Technical Journal,
28(4):656–715, 1949.

53 Mark N. Wegman and J. Lawrence Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22(3):265–279, 1981. doi:
10.1016/0022-0000(81)90033-7.

A Proof of Main Theorem

Proof. In order to prove that the protocol Π is a (0, ϵ)-interactive non-malleable code we need
to prove the correctness as well as non-malleability of the protocol as stated in Lemma 17
and Lemma 18.

▶ Lemma 17. For any protocol Π′, Π 0-correctly encodes Π′.

Proof. The extractor is deterministic and hence all the parties involved in the protocol will
extract identical keys in an untampered execution. Since the MAC is correct, and tags are
computed and verified with the correct keys, all messages will always verify and no party will
abort during the protocol. As the correctness of the stateful encryption scheme Enc allows
each party decrypt all received messages correctly all the parties will be able to faithfully
execute a perfectly honest untampered execution of the underlying protocol Π. Therefore Π
evaluates correctly whith the same probability as Π′. ◀

ITC 2023

https://doi.org/10.1145/3055399.3055486
https://doi.org/10.4230/LIPIcs.CCC.2019.28
https://doi.org/10.48550/arXiv.2303.06802
https://eprint.iacr.org/2022/978
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-319-96878-0_21
https://doi.org/10.1145/195058.195462
https://doi.org/10.1109/SFCS.1992.267778
https://doi.org/10.1145/167088.167279
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1016/0022-0000(81)90033-7

5:22 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

▶ Lemma 18. The interactive protocol Π is ϵ-protocol non-malleable, where ϵ = (2n2 + n) ·
2−λ + (n2 − n) · ϵnm + ϵMAC.

Proof. In order to show that the coding scheme is non-malleable we need to provide a
distribution DF as defined in Definition 12. In order to achieve a sampler for the distribution
DF , we start with the output distribution of an honest execution of the actual protocol
and modify it through a serie of hyrids, until we reach a distribution that can be sampled
independently of x. To define the different hybrid distributions, first define a function V̄i

which essentially gives us the equivalent of a party’s current view in the protocol, but replaces
all received messages, with the messages that were originally sent.

V̄ (τ)
V := Vi(τ)
for j ∈ [n] do

s := (Si,j | (S, R) ∈ τ ∧ Si,j ̸= ⊥)
c := 1
for q ∈ [|V |] do

if Vq,j ̸= ⊥
Vq,j := tj,c

c = c + 1
return V

Now, let F ∈ Fs
bounded be an arbitrary tampering function. For i, j ∈ [n] and o ∈ {α, β}, let

ζα,i,j be the probability that the tampering function modifies or drops oi,j

during an execution of the protocol. We define the modified tampering function F ′ which
behaves exactly like F , but for any (i, j, o) such that ζα,i,j < 2−λ it always keeps oi,j

unmodified. We then further define for i ∈ [n] and r ∈ {1, 2, 3}, γi,r to be the probability
that in an execution tampered by F ′, πi aborts in execution round r, i.e., after receiving
the αs, after receiving the βs, or after receiving the key confirmation values. Finally, let
x′ ∈ X1×· · ·×Xn be arbitrary but fixed. We then define several variants of Execute, Next, and
πi in Figure 3 and Figure 4 respectively and are then finally ready to specify a series of hybrid
distribution we construct to reach the distribution that corresponds to replace(DF , Π(x)).
H0 : Hybrid 0 is the original output distribution of a tampered execution. I.e, H0 =

ExecuteΠ,F (x).
H1 : Hybrid 1 is still the distribution of a tampered execution, however we replace the

tampering function with the modified tampering function F ′. I.e., H1 = ExecuteΠ,F ′(x).
H2 : In hybrid 2, we switch to using the modified execution algorithm Execute1 and Π1.

This change gives the next message function access to the message it should have received,
i.e., those that were originally sent. I.e., H2Execute1

Π1,F ′(x).
H3 : In hybrid 3 we switch to using Π2, which means that parties that abort with over-

whelming probability during the key exchange or key confirmation phase, now abort with
probability 1. I.e., H3 = Execute1

Π2,F ′(x).
H4 : In hybrid 4, we switch to using Π3 which means that the keys are now no longer

extracted but instead sampled uniformly at random on the sender’s side and according
to Df on the receiver’s side, where f is a split state tampering function induced by F ′.
I.e., H4 = Execute1

Π3,F ′(x).
H5 : Hybrid 5 switches to using Π4, which means that instead of verifying MACs the

next message functions now directly check if messages were modified or not. I.e., H5 =
Execute1

Π4,F ′(x).

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:23

Executeχ
Π,F (x; ω)

τ := ∅
S := Next1(Π, x, ω, τ) // χ = 1

R := F (τ, S)

while R ̸= ⊥n×n

τ := τ ◦ (S, R)

S := Next1(Π, x, ω, τ) // χ = 1

R := F (τ, S)

return
(
out1(x1, V1(τ)), . . . , outn(xn, Vn(τ))

)
// χ = 1

return

indicate(out1(x1, V1(τ))),
. . . ,

indicate(outn(xn, Vn(τ)))

 // χ = 2

Next1
Π(x, ω, τ)

parse τ = ((S1, R1), . . . , (Sℓ, Rℓ))
for 1 ≤ i ≤ n do

if τ = ∅ ∨ coli(Rℓ)⊤ ̸= ⊥n

si := πl
i(xi, ωi, Vi(τ), V̄i(τ))

else
si := ⊥n

return

s1
...

sn


⊤

Figure 3 Variants of Execute and Next as used in the hybrid distributions. Differences from
the original are highlighted in gray. The different versions of Execute used in the hybrids are
differentiated by the index χ. Each line where differences exist is marked with a comment indicating
for which values of χ this line will be executed.

H6 : In hybrid 6 we switch to Execute2. This means that the execution no longer out-
puts the actual outputs of the parties. Instead it only indicates which parties pro-
duced an output and which aborted. The outputs of all non-aborting parties are
then replaced by the outputs of an honest untampered execution of Π(x). I.e., H6 =
replace(Execute2

Π4,F ′(x), Π(x)).
H7 : Finally in hybrid 7, we replace the input x of the tampered execution with the arbitrary

fixed input x′. I.e., H7 = replace(Execute2
Π4,F ′(x′), Π(x)).

We note, that in H7, the distribution of Execute2
Π4,F ′(x′) no longer depends on x. I.e., we

define DF as Execute2
Π4,F ′(x′) and it is then sufficient to bound that SD(H0, H7) to prove the

Lemma. We do so by bounding the statistical distance of each pair of neighboring hybrids.

▷ Claim 19. SD(H0, H1) ≤ 2(n2 − n) · 2−λ.

Proof. In H1 we replaced F with the modified tampering function F ′. This function is
modified such that a series of low probability events (that oi,j for o ∈ {α, β} and i, j ∈ [n] is
modified by F) does not happen. Each event happens with probability less than 2−λ. The
number of events is bounded by two times the number of edges in the communication graph.
This is a directed complete graph, i.e., the number of edges is n2 − n. Hence, by a union
bound over all events, the statistical distance between hybrids H0 and H1 can be bounded
by 2(n2 − n) · 2−λ. ◁

▷ Claim 20. SD(H1, H2) = 0

Proof. In hybrids H1, H2, it is easy to see that the only differences between the hybrids are
syntactic. I.e., the next message function receives the additional input V̄i(τ) in H2, but does
not actually use it yet. Therefore the output distributions remain identical. ◁

▷ Claim 21. SD(H2, H3) ≤ 3n · 2−λ

Proof. In hybrid H3 we eliminate another series of low probability events. If F ′ causes any
of the parties to abort with overwhelming probability > (1− 2−λ) in the first three rounds of

ITC 2023

5:24 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

π
d,O′

x,ω′

i (ω, Vi(τ))
s := ⊥n

if |V | = 0
rec := 0n, sent := 0n

(αi, βi)← (({0, 1}κnm)2)n

(kenc
i , kauth

i) := nmExt(αi, βi) // d < 3

(kenc
i , kauth

i)← {0, 1}κenc+κmac // d ≥ 3

s := αi

elseif |V | = 1
if ⊥ ∈ V1 // d < 2

if ⊥ ∈ V1 or γi,1 > 1− 2−λ // d ≥ 2

abort
s := βi

elseif |V | = 2
if ⊥ ∈ V2 // d < 2

if ⊥ ∈ V2 or γi,2 > 1− 2−λ // d ≥ 2

abort

(k̃enc
j , k̃

auth
j) := nmExt(V1, V2) // d < 3

(k̃enc
j , k̃

auth
j) := replace(Df , (kenc

j , kauth
j)) // d ≥ 3

for j ∈ [n] \ {i} do
sj := MAC(k̃auth

i,j , (i, j))

else
if |V | = 3

if ⊥ ∈ V3 // d < 2

if ⊥ ∈ V3 or γi,3 > 1− 2−λ // d ≥ 2

abort
for j ∈ [n] \ {i} do

if Vf(kauth
i , (j, i), V3,j) = 0 // d < 4

if (k̃i ̸= ki) or V̄3,j ̸= V3,j // d ≥ 4

abort
else

m := ⊥n

if (CheckMsgOrder = 0)
abort

else
for j ∈ [n] \ {i} do

if V|V |,j ̸= ⊥
(c, t) := V|V |,j , recj := recj + 1

if Vf(kauth
i , (c, j, i, recj), t) = 0 // d < 4

if V̄|V |,j ̸= V|V |,j // d ≥ 4

abort
mj := Dec(k̃enc

j , c)
s′ ← O′

x,ω′ (m)

for j ∈ [n] \ {i} do
if s′

j ̸= ⊥

c := Enc(k̃enc
i , s′

j), sentj := sentj + 1

sj := (c, MAC(k̃auth
j , (c, i, j, sentj))

return s

Figure 4 The modified next message functions used in the hybrid distributions. Differences from
the original are highlighted in gray. The different next message functions used in the hybrids are
differentiated by the index d. Each line where differences between next message functions exist is
marked with a comment indicating for which values of d this line will be executed.

the protocol, i.e., during key-exchange or key-confirmation, the party now aborts at the same
point in time with probability 1. I.e., each eliminated event, i.e. the “non-abort”, happens
with probability less than 2−λ. The number of eliminated events is bounded by three times
the number of parties in the protocol. Therefore a union bound over all eliminated events
gives us that the statistical distance between H2 and H3 can be bounded by 3n · 2−λ. ◁

▷ Claim 22. SD(H3, H4) ≤ (n2 − n) · ϵnm.

Proof. For any i, j, let fi,j be the tampering function for αi,j , βi,j induced by F . We observe
that the changes that were made in H4 are that rather than using the extracted keys the
sender uses uniformly chosen keys while the receiver either receives keys that are distributed
according to Dfi,j

that is independent of the actual key, or it receives the same uniformly
distributed key used by the sender.

Now, if fi,j were split state, then the non-malleability of the extractor would imply that
the statistical distance caused by each replaced key can be at most ϵnm. The main issue is

N. Fleischhacker, S. Ghoshal, and M. Simkin 5:25

that fi,j is in fact not split state. The tampering function can use both, its bounded state
as well as conditional aborts (and non-aborts) of the individual parties to leak information
from the first part of the tampering function to the second part and from both parts to the
rest of the protocol. However, if we can bound the amount of information that can be leaked,
then we can change our perspective and look at fi,j as a split state tampering functions, that
tampers with sources sampled from a distribution defined by sampling almost uniformly, but
conditioned on the leakage.

It remains to actually bound the leakage. Clearly a tampering function in Fs
bounded can

leak s bits simply through its persistent state. Additional leakage is obtained by causing any
of the parties to abort or not to abort with low probability. However, due to the elination
of low probability events in previous hybrids, we know that each of these events happens
with probability at least 2−λ. Per party there exist three abort/non-abort events, i.e. the
tampering function can leak at most 3n log 1

2−λ = 3nλ additional bits of information.
We can thus reinterpret fi,j as a split-state tampering function on sources with min-

entropy κnm − s− 3nλ. Since, nmExt is specified as working with sources of this type, we
have that each replaced key increases the statistical distance by at most ϵnm. As there are,
as mentioned before, (n2 − n) keys to deal with, we can bound the total statistical distance
between the hybrids H1 and H2 with (n2 − n) · ϵnm. ◁

▷ Claim 23. SD(H4, H5) ≤ ϵMAC

Proof. Here we bound the statistical distance between the hybrids using a reduction from
the statistical unforgeability of the MAC. The output distribution of the two hybrids only
differs, if at any point one of the parties receives a ciphertext and tag pair (c, t) such that
for some (i, j, r), Vf(kauth

i,j , (c, i, j, r), t) = 1 but where none of the parties ever computed
MAC(kauth

i,j , (c, i, j, r)). That means that the statistical distance between the hybrids is
equal to the probability that the above event occurs. We can then construct an attacker A
against the MAC scheme as follows: A executes H4 as specified, except that it ignores the
actual authentication keys and instead uses the MAC oracle to compute all tags. When the
event specified above occurs, A outputs (c, i, j, r), t, i. If the event never occurs, A aborts.
Clearly A forges a MAC with probability SD(H4, H5). Since the MAC is ϵmac-statistically
unforgeable, we therefore have SD(H4, H5) ≤ ϵMAC as claimed. ◁

▷ Claim 24. SD(H5, H6) = 0.

Proof. Due to the changes in the previous hybrids, we know that all messages received by
any party that does not abort are exactly those messages that were originally sent. Further,
whenever a party aborts it does not send any more messages, ensuring that all messages that
are sent are computed solely based on untampered messages. Additionally, since the protocol
has a fixed message topology and both the next message function as well as the output
function check that the view conforms to this topology, we know that any party that does
not abort computed their output based on a complete view consisting of honestly computed
messages that were received in the correct order. I.e., in H5 the outputs of the non-aborting
parties are distributed according to the same distribution as in a completely untampered
execution of Π on x. In H6, Execute2

Π4,F (x) returns ⊥ for all aborting parties and same for
all non-aborting parties. The function indicate then replaces the same entries with consistent
outputs of an honest execution of Π(x). Therefore the two distributions are identical. ◁

▷ Claim 25. SD(H6, H7) = 0.

ITC 2023

5:26 INMCs Against Desynchronizing Attacks in the Multi-Party Setting

Proof. Since the message topology is fixed in both the hybrids, the “shape” of the transcripts
of the underyling protocol during the execution in both the hybrids are identical, only the
content of the messages might differ based on the inputs x and x′. However, due to the
perfect indistingishability of the stateful encryption scheme, the distribution of the ciphertexts
is identical. Therefore the distributions of the overall transcripts observed by the tampering
function are identical and therefore, so are the output distributions. ◁

Using the triangle inequality over the bounds from Claim 19 through Claim 25 we can thus
conclude that

SD(ExecuteΠ,F (x), replace(DF , Π(x)))
= SD(ExecuteΠ,F (x), replace(Execute2

Π4,F (x′), Π(x)))

= SD(H0, H7) ≤
7∑

i=1
SD(Hi−1, Hi) = (2n2 + n) · 2−λ + (n2 − n) · ϵnm + ϵMAC ◀

The theorem finally follows immediately from Lemma 17 and Lemma 18. ◀

	1 Introduction
	1.1 Results and Technical Overview
	1.2 Instantiating the Construction
	1.3 Related Works

	2 Preliminaries
	2.1 Notation
	2.2 Encryption and Message Authentication Codes
	2.3 2-Non-Malleable Extractors

	3 Interactive Protocols and Tampering Model
	3.1 Correctness and Encodings
	3.2 Tampering Model
	3.3 Bounded State Tampering

	4 Arbitrary Message Topologies
	4.1 Transformations from Arbitrary to Fixed Message Topology
	4.1.1 Trivial Transformation
	4.1.2 Maintaining the Communication Graph
	4.1.3 Dropping Low Probability Messages

	5 An INMC for Bounded-State Tampering Functions
	5.1 Defining the Next Message Function

	A Proof of Main Theorem

