
21st International Symposium on
Experimental Algorithms

SEA 2023, July 24–26, 2023, Barcelona, Spain

Edited by

Loukas Georgiadis

LIPIcs – Vo l . 265 – SEA 2023 www.dagstuh l .de/ l ip i c s



Editors

Loukas Georgiadis
Department of Computer Science & Engineering, University of Ioannina, Greece
loukas@cs.uoi.gr

ACM Classification 2012
Theory of computation → Design and analysis of algorithms

ISBN 978-3-95977-279-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-279-2.

Publication date
July, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.SEA.2023.0

ISBN 978-3-95977-279-2 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-9706-7409
mailto:loukas@cs.uoi.gr
https://www.dagstuhl.de/dagpub/978-3-95977-279-2
https://www.dagstuhl.de/dagpub/978-3-95977-279-2
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.SEA.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-279-2
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics


0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University – Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB and Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

SEA 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics




Contents

Preface
Loukas Georgiadis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:vii

Steering Committee
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:ix

Organization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xi

Papers

Engineering a Preprocessor for Symmetry Detection
Markus Anders, Pascal Schweitzer, and Julian Stieß . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:1–1:21

Fast Reachability Using DAG Decomposition
Giorgos Kritikakis and Ioannis G. Tollis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1–2:17

Partitioning the Bags of a Tree Decomposition into Cliques
Thomas Bläsius, Maximilian Katzmann, and Marcus Wilhelm . . . . . . . . . . . . . . . . . . . . 3:1–3:19

Subset Wavelet Trees
Jarno N. Alanko, Elena Biagi, Simon J. Puglisi, and Jaakko Vuohtoniemi . . . . . . . 4:1–4:14

Engineering Shared-Memory Parallel Shuffling to Generate Random Permutations
In-Place

Manuel Penschuck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:1–5:20

Proxying Betweenness Centrality Rankings in Temporal Networks
Ruben Becker, Pierluigi Crescenzi, Antonio Cruciani, and Bojana Kodric . . . . . . . . 6:1–6:22

Simple Runs-Bounded FM-Index Designs Are Fast
Diego Díaz-Domínguez, Saska Dönges, Simon J. Puglisi, and Leena Salmela . . . . . 7:1–7:16

Noisy Sorting Without Searching: Data Oblivious Sorting with Comparison Errors
Ramtin Afshar, Michael Dillencourt, Michael T. Goodrich, and Evrim Ozel . . . . . . 8:1–8:18

Optimizing over the Efficient Set of a Multi-Objective Discrete Optimization
Problem

Satya Tamby and Daniel Vanderpooten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9:1–9:13

Solving Directed Feedback Vertex Set by Iterative Reduction to Vertex Cover
Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Tobias Friedrich,
Niko Hastrich, Theresa Hradilak, Davis Issac, Otto Kißig, Jonas Schmidt,
and Leo Wendt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10:1–10:14

CompDP: A Framework for Simultaneous Subgraph Counting Under
Connectivity Constraints

Kengo Nakamura, Masaaki Nishino, Norihito Yasuda, and Shin-ichi Minato . . . . . 11:1–11:20

Multilinear Formulations for Computing a Nash Equilibrium of Multi-Player
Games

Miriam Fischer and Akshay Gupte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12:1–12:14
21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:vi Contents

Integer Programming Formulations and Cutting Plane Algorithms for the
Maximum Selective Tree Problem

Ömer Burak Onar, Tınaz Ekim, and Z. Caner Taşkın . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13:1–13:18

A Graph-Theoretic Formulation of Exploratory Blockmodeling
Alexander Bille, Niels Grüttemeier, Christian Komusiewicz, and
Nils Morawietz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14:1–14:20

FREIGHT: Fast Streaming Hypergraph Partitioning
Kamal Eyubov, Marcelo Fonseca Faraj, and Christian Schulz . . . . . . . . . . . . . . . . . . . . . 15:1–15:16

Arc-Flags Meet Trip-Based Public Transit Routing
Ernestine Großmann, Jonas Sauer, Christian Schulz, and Patrick Steil . . . . . . . . . . 16:1–16:18

Greedy Heuristics for Judicious Hypergraph Partitioning
Noah Wahl and Lars Gottesbüren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17:1–17:16

Hierarchical Relative Lempel-Ziv Compression
Philip Bille, Inge Li Gørtz, Simon J. Puglisi, and Simon R. Tarnow . . . . . . . . . . . . . 18:1–18:16

Exact and Approximate Range Mode Query Data Structures in Practice
Meng He and Zhen Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19:1–19:22

Efficient Yao Graph Construction
Daniel Funke and Peter Sanders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20:1–20:20

Maximum Coverage in Sublinear Space, Faster
Stephen Jaud, Anthony Wirth, and Farhana Choudhury . . . . . . . . . . . . . . . . . . . . . . . . . . 21:1–21:20



Preface

We are pleased to present the collection of papers accepted for presentation at the 21th
edition of the International Symposium on Experimental Algorithms (SEA 2023) which
was held in Barcelona from 24th July 2023 to 26th July 2023. SEA, previously known
as Workshop on Experimental Algorithms (WEA), is an international forum for research-
ers in the area of the design, analysis, and experimental evaluation and engineering of
algorithms, as well as in various aspects of computational optimization and its applications
(telecommunications, transport, bioinformatics, cryptography, learning methods, etc.). The
symposium aims at attracting papers from both the Computer Science and the Operations
Research/Mathematical Programming communities. Submissions to SEA are requested to
present significant contributions supported by experimental evaluation, methodological issues
in the design and interpretation of experiments, the use of heuristics and meta-heuritics,
or application-driven case studies that deepen the understanding of the complexity of a
problem. A main goal of SEA is also the creation of a friendly environment that can lead to
and ease the establishment or strengthening of scientific collaborations and exchanges among
attendees. For this reason, the symposium solicits high-quality original research papers
(including significant work-in-progress) on any aspect of experimental algorithms. Each
submission that was made to SEA 2023 was reviewed by at least three Program Committee
members or external reviewers. After a careful peer review and evaluation process, 21 papers
were accepted for presentation and for inclusion in the LIPIcs proceedings, according to
the reviewers’ recommendations. The acceptance rate was 50%. The scientific program
of the symposium also includes presentations by two keynote speakers: Monika Henzinger
(Research Group Theory and Applications of Algorithms, Universität Wien) and Pankaj K.
Agarwal (Levine Science Research Center, Duke University). Since last year, the conference
reintroduced a best paper award. The SEA 2023 best paper award was selected by the
Program Committee. Based on the committee’s careful assessment, the best paper was
selected to be “FREIGHT: Fast Streaming Hypergraph Partitioning” by Kamal Eyubov,
Marcelo Fonseca Faraj and Christian Schulz. We congratulate the authors for receiving this
award. The 21th edition of SEA was organized by the Universitat Politècnica de Catalunya
(UPC). We thank Maria J. Blesa, Amalia Duch, Guillem Rodríguez, and Maria Serna for the
organization of the symposium. We also thank the UPC staff, Sito Ibáñez Escudero (ICT
and Innovation Support Service), Ana Ibáñez Julià (Administration and Services staff at the
UTG ICT Area), and Gabriel Verdejo Álvarez (RDLAB, Computer Science Department)
for their support, and the faculty of Universitat Politècnica de Catalunya - BarcelonaTech
for providing us with the facilities for the conference. Moreover, we would like to thank the
SEA steering committee for giving us the opportunity to host SEA 2023. Special thanks to
Ulrich Meyer, chair of the steering committee, for his valuable help. Finally, we express our
gratitude to the members of the Program Committee as well as the external reviewers for
their support, collaboration, and excellent work.

Barcelona, July 2023
Loukas Georgiadis

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




Steering Committee

Gianlorenzo D’Angelo (Gran Sasso Science Institute, Italy)
Domenico Cantone (Università degli Studi di Catania, Italy)
David Coudert (INRIA, France)
Simone Faro (Università di Catania, Italy)
Ulrich Meyer (Goethe University Frankfurt, Germany) [chair]
Emanuele Natale (CNRS, Universite Cote d’Azur, I3S, INRIA, France)
Gonzalo Navarro (University of Chile, Chile)
Cynthia Phillips (Sandia National Laboratories, USA)
Simon Puglisi (University of Helsinki, Finland)
Christian Schulz (Heidelberg Univeristy, Germany)
Sabine Storandt (University of Konstanz, Germany)
Laurent Viennot (INRIA, France)
Bora Uçar (CNRS, Laboratoire LIP, Lyon, France)
Dorothea Wagner (Karlsruhe Institute of Technology, Germany)
Christos Zaroliagis (University of Patras, Greece)

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




Organization

Program Chair

Loukas Georgiadis (University of Ioannina, Greece)

Program Committee

Hideo Bannai (Tokyo Medical and Dental University, Japan)
Gerth Brodal (Aarhus University, Denmark)
Kevin Buchin (Technische Universität Dortmund, Germany)
Mateus De Oliveira Oliveira (Stockholm University, Sweden and University of Bergen,
Norway)
Donatella Firmani (Sapienza University of Rome, Italy)
Andrew V. Goldberg (USA)
Yan Gu (University of California, Riverside, USA)
Meng He (Dalhousie University, Canada)
Giuseppe Italiano (LUISS, Italy)
Spyros Kontogiannis (University of Patras, Greece)
Luigi Laura (Uninenettuno, Italy)
Leo Liberti (LIX CNRS, École Polytechnique, Institut Polytechnique de Paris, France)
Matthias Mnich (TUHH - Hamburg University of Technology, Germany)
André Nusser (University of Copenhagen, Denmark)
Charis Papadopoulos (University of Ioannina, Greece)
Vicky Papadopoulou-Lesta (European University Cyprus)
Nikos Parotsidis (Google Research, Switzerland)
Ignaz Rutter (University of Passau, Germany)
Stavros Sintos (University of Illinois at Chicago, USA)
Przemyslaw Uznanski (Pathway, Poland)
Renato Werneck (Amazon, USA)
Anthony Wirth (University of Melbourne, Australia)
Helen Xu (Lawrence Berkeley National Laboratory, USA)

External Reviewers

Wagner Alan Aparecido da Rocha, Daniel Porumbel, Jonas Silva, Sven Mallach, Tobias
Stamm, Václav Rozhoň, Morteza Monemizadeh, Monique Teillaud, Niels Grüttemeier,
Serikzhan Kazi, Jens Kristian, Refsgaard Schou, Arghya Bhattacharya, Simone Zanella, Brian
Wheatman, Frédéric Simard, Jessica Shi, Kaiyu Wu, Jerin George Mathew, Daniil Tsokaktsis,
Stefano Leucci, Esther Galby, Yixiang Fang, Matthias Kaul, Rahul Raychaudhury, Shweta
Jain, Laura Codazzi, Pingan Cheng, Kunal Dutta, Max Deppert, David Fischer, Athanasios
Konstantinidis, Steffan Sølvsten, Sabine Storandt, Matthias Pfretzschner, Evangelos Kosinas,
Lorenzo Balzotti, Simon D. Fink, Christian Komusiewicz, Casper Rysgaard, Jose Fuentes,
Keisuke Goto, Yihan Sun, Rolf Svenning, André van Renssen, Dionysios Kefallinos, Christian
Konrad, Martin Costa

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




Engineering a Preprocessor for Symmetry
Detection
Markus Anders
TU Darmstadt, Germany

Pascal Schweitzer
TU Darmstadt, Germany

Julian Stieß
University of Koblenz-Landau, Germany

Abstract
State-of-the-art solvers for symmetry detection in combinatorial objects are becoming increasingly
sophisticated software libraries. Most of the solvers were initially designed with inputs from
combinatorics in mind (nauty, bliss, Traces, dejavu). They excel at dealing with a complicated
core of the input. Others focus on practical instances that exhibit sparsity. They excel at dealing
with comparatively easy but extremely large substructures of the input (saucy). In practice, these
differences manifest in significantly diverging performances on different types of graph classes.

We engineer a preprocessor for symmetry detection. The result is a tool designed to shrink
sparse, large substructures of the input graph. On most of the practical instances, the preprocessor
improves the overall running time significantly for many of the state-of-the-art solvers. At the same
time, our benchmarks show that the additional overhead is negligible.

Overall we obtain single algorithms with competitive performance across all benchmark graphs.
As such, the preprocessor bridges the disparity between solvers that focus on combinatorial graphs
and large practical graphs. In fact, on most of the practical instances the combined setup significantly
outperforms previous state-of-the-art.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases graph isomorphism, automorphism groups, symmetry detection, preprocessors

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.1

Supplementary Material Software (Source Code): https://github.com/markusa4/sassy
archived at swh:1:dir:ba57bf62762f6c5d0bd51ce07862a70df70c8468

Funding Supported by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (EngageS: grant No. 820148).

Acknowledgements We thank Marc E. Pfetsch and Christopher Hojny for giving us further insights
into the user-side of symmetry detection software, as well as providing us with the MIP2017 graphs.

1 Introduction

Exploitation of symmetries is an indispensable instrument in a vast number of algorithmic
application areas such as SAT [20, 5, 13], SMT [12], QBF [21], CSP [15], ILP [25, 27, 17]
and many more. However, in order to exploit symmetries, we have to compute them first.

Many types of objects can be modelled efficiently as graphs, so that the objects’ symmetries
correspond to the symmetries of the graph. This includes formulas, equation systems, finite
relational structures, and many more (see [29]). Hence, computing the symmetries of these
objects reduces to computing symmetries of graphs. We refer to the act of computing the
symmetries of a graph as symmetry detection.

© Markus Anders, Pascal Schweitzer, and Julian Stieß;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 1; pp. 1:1–1:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.SEA.2023.1
https://github.com/markusa4/sassy
https://archive.softwareheritage.org/swh:1:dir:ba57bf62762f6c5d0bd51ce07862a70df70c8468;origin=https://github.com/markusa4/sassy;visit=swh:1:snp:6329c2291caab6cc869b1d1a830c467f9da14855;anchor=swh:1:rev:1469cef6a3b675df9bab9779150c48f8fc1f0a6d
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 Engineering a Preprocessor for Symmetry Detection

State-of-the-art symmetry detection tools are nauty [26], saucy [11], bliss [19], Traces
[26], and dejavu [7]. Given as input a vertex-colored graph, they output all the symmetries
of the graph. All state-of-the-art tools are based around the so-called individualization-
refinement (IR) paradigm. Yet, they substantially differ in the applied search strategies,
pruning invariants, symmetry handling, and various other heuristics (see [26, 7]). This is
also reflected in diverging performances on different graph classes.

We want to highlight two examples where the diverging performance between the solvers
is notable, namely “practical graphs” and “combinatorial graphs”. For large practical graphs,
such as graphs arising in SAT, QBF, MIP, or road networks, the solver saucy outperforms
all other solvers significantly (see, e.g., the results in [5] or the benchmarks of this paper in
Section 9). Indeed, designed with satisfiability-checking in mind, saucy has been delicately
engineered specifically for these types of graphs. Intuitively, graphs arising from practical
applications tend to be large in size but comparatively simple in their structure. On the
other hand, on almost all graph classes that are difficult relative to their size (e.g., projective
planes, CFI graphs, and other regular combinatorial objects) Traces and dejavu readily
outperform other solvers due to their more sophisticated search strategies (see [7] and [26] for
a more nuanced discussion). In Figure 1, we demonstrate the large disparity between saucy
and dejavu on a difficult graph class from combinatorics and a class of practical graphs.

Only having solvers available that are geared towards specific types of graphs is of course
an undesirable situation. This for example means we have to choose a solver and thus
understand the type of input we are faced with. Also, we will struggle with inputs that are
combinations of the different kinds of graphs. Quite naturally, it is desirable instead to have
a single solver performing well on all graphs.

A commonly used paradigm to make solvers for computational problems more widely
applicable is to add a preprocessor. The use of preprocessors has indeed already led to
countless success stories, in particular in SAT, QBF or MaxSAT [14, 10, 24]. In these
applications, it is nowadays standard to apply a preprocessor to all inputs. In contrast to
this, to date, no preprocessor has been available for symmetry detection. In fact McKay and
Piperno [26] explicitly highlight that in their opinion “graphs of [particular types] ought to
be handled by preprocessing” before using their tools.

Beyond increasing performance, there are various other benefits to having a preprocessor.
Firstly, the problem of initially simplifying the graph can be tackled independently from the
design of the main solver. This is especially desirable since implementations of state-of-the-art
symmetry detection solvers are complex and detailed descriptions of the inner workings
largely unavailable. Secondly, in turn, a preprocessor could even reduce the complexity of
solver implementations if certain cases are reliably handled before running the solver. Lastly,
implementing strategies in a common preprocessor makes them available to all the solvers
simultaneously.

Given the lack of an existing preprocessor for symmetry detection, Traces, for example,
has complicated subroutines that simplify some low-degree vertices before (and sometimes
during) the computation (see the implementation [2]). Overall, the question is whether it is
possible to design a common preprocessor that can simplify inputs and is beneficial to all
state-of-the-art solvers.

Contribution. We implement the first preprocessor sassy for symmetry detection. It is
compatible by design with all state-of-the-art symmetry detection tools. Our benchmarks
(Section 9) corroborate that solver configurations using the preprocessor significantly outper-
form state-of-the-art on many practical graph classes. At the same time, the preprocessor
introduces only a negligible overhead.



M. Anders, P. Schweitzer, and J. Stieß 1:3

0 5 10 15 20

100

101

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

pp16

0 10 20 30 40 50

100

101

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

states

saucy dejavu sy+dejavu

Figure 1 Comparing solvers on difficult combinatorial graphs (pp16) and large practical graphs
(states). Timeout is 60s (red bar). sy+dejavu refers to dejavu with the preprocessor of this paper.

The preprocessor bridges the disparity that exists between solvers that focus on difficult
combinatorial graphs (Traces, dejavu, bliss, nauty) and those that focus on large
practical graphs (saucy). Through the use of the preprocessor, the former kind of solvers
now outperform saucy on most practical graphs.

Techniques. The preprocessor implements mainly techniques to handle graphs that are
sparse, both in the input and output (e.g., practical graphs). In particular, it is made up of
the following building blocks which we discuss throughout the paper:
1. A framework to capture reduction techniques for input graphs. In particular, it captures

the reconstruction of symmetries from the reduced graph back to the input graph, both
theoretically and practically (Section 4).

2. A technique to efficiently remove vertices of degree 0 and 1 (Section 5.1 and Section 5.2).
3. Partial removal of degree 2 vertices avoiding the introduction of colored or directed edges

(Section 5.3).
4. An individualization-refinement-based probing technique for “sparse automorphisms”

(Section 6).
5. Exploiting connected components and homogeneous connections using the concept of

quotient graphs (Section 7).
While sassy is the first universal preprocessor for symmetry detection, we want to remark
that a flavor of (2) is already implemented in Traces. All the techniques other than (2) are
novel contributions, however, we do want to mention that (4) and (5) draw some inspiration
from existing techniques of solvers. We explain this in detail in the respective sections.

2 Philosophy of the Preprocessor

When designing a preprocessor, one of the main challenges is to map out which techniques
and methods fall within the responsibility of the preprocessor and which task should be
resolved by the main algorithm. Another delicate matter are the preprocessor/main solver
and the user/preprocessor interfaces. In the design of our preprocessor we were guided by
conceptual principles as well as technical requirements.

Conceptual principles. On a conceptual level, our goal is to design efficient preprocessing
subroutines that simplify the task of computing symmetries. Naturally, a preprocessor should
only apply procedures that are comparatively fast in relation to the running time of the main
algorithm.

SEA 2023



1:4 Engineering a Preprocessor for Symmetry Detection

preprocessor

graph
reduction

symmetry
lift

symmetries of
G

graph
G

symmetries of
G main

solver

symmetries of
G′

reduced graph
G′

Figure 2 Our proposed preprocessor/main solver and user/preprocessor interfaces. The prepro-
cessor may already determine some (or all) symmetries of G during graph reduction. The reduced
instance is then passed on to the main solver.

The design of our preprocessor is centered around the so-called color refinement algorithm.
Color refinement is a powerful heuristic for symmetry detection. It is continuously and
repeatedly applied in all state-of-the-art solvers. Thus, procedures that run within or close
to color-refinement-time are safe to apply.

The general idea of the preprocessor is to remove substructures of the graph that are
already “basically resolved” by an application of color refinement. The main difficulty lies
in detecting and exploiting these substructures as efficiently as possible. Essentially, any
part that can be handled efficiently ought to be carefully handled using precisely the right
technique.

Overall, we need to balance efficiency, effectiveness, and generality for our subroutines.

Technical requirements. On a technical level, we want our preprocessor to be compatible
with all state-of-the-art solvers. Hence, we need to use an interface that is universal for all
the existing tools. All tools read vertex-colored graphs and output symmetries. Hence, this
is the interface that the preprocessor uses as well.

The preprocessor reads a vertex-colored graph and outputs a reduced vertex-colored
graph passed to a main solver. Moreover, the preprocessor may already determine some
or all of the symmetries, and immediately outputs these to the user. There is one more
technicality: symmetries of the reduced graph which are computed by the main solver are, by
definition, not symmetries of the original graph. To rectify this, the preprocessor employs a
backward-translation (i.e., a form of postprocessing) to lift symmetries that were discovered
by the main solver back to being symmetries of the original input graph.

Our design is illustrated in Figure 2.

3 Preliminaries

A graph G is a finite, simple, undirected graph, unless stated otherwise. The neighborhood
of a vertex v is denoted N(v), its degree is deg(v) := |N(v)|. For a set of vertices V ′ ⊆ V (G)
the neighborhood is the set N [V ′] := (

⋃
v∈V ′ N(v)) \ V ′.

A coloring of a graph G is a map π : V (G) → C from the vertices to some set of colors.
A (color) class C is a set π−1(c) of vertices of the same color. A coloring π is referred to
as discrete whenever π is injective. In other words, in a discrete coloring each vertex has
its own unique color. Unless stated otherwise, we work with colored graphs G = (V,E, π)
which consist of vertex set V , edge set E, and a coloring π. Slightly abusing notation the



M. Anders, P. Schweitzer, and J. Stieß 1:5

pair (G, π) for an uncolored graph G = (V,E) is identified with (V,E, π). For a subset
of the vertices V ′ ⊆ V the induced subgraph of G = (V,E, π) is G[V ′] = (V ′, E′, π|V ′)
where E′ = {e ∈ E | e ⊆ V ′ × V ′}.

A bijection φ : V 7→ V is called an automorphism (symmetry) whenever (φ(V ), φ(E)) =
(V,E) (applying φ element-wise to the vertices in the edges of E). If G is colored, φ also
has to respect colors (i.e., satisfy π(φ(v)) = π(v)). The number of automorphisms can be
exponential in the size of the graph. The symmetries form a permutation group under the
composition operation. The automorphism group containing all automorphisms of a (colored)
graph G is Aut(G). The support of an automorphism φ ∈ Aut(G) is supp(φ) := {φ(x) ̸=
x | x ∈ V (G)}, i.e., vertices not fixed by the automorphism. A subset of automorphisms
S ⊆ Aut(G) is a generating set of Aut(G), whenever exhaustively composing permutations of
S leads to all elements of Aut(G). We write ⟨S⟩ = Aut(G). This enables a concise encoding
of Aut(G). Solvers generally only output a generating set of Aut(G).

3.1 Color Refinement
The color refinement algorithm is a well-studied procedure [8, 9, 26]. For a colored graph it
splits apart colors in a specific way to produce a “finer” coloring. Crucially, this process does
not change the symmetries of the graph.

Formally, a coloring π of a graph is equitable if for all pairs of (not necessarily distinct) color
classes C1, C2, all vertices in C1 have the same number of neighbors in C2 (i.e., |N(v) ∩C2| =
|N(v′) ∩ C2| for all v, v′ ∈ C1.) Given a coloring π, color refinement computes an equitable
refinement π′ (i.e., an equitable coloring π′ for which π′(v) = π′(v′) implies π(v) = π(v′)). In
fact, it computes the coarsest equitable refinement. Crucially, automorphisms of G = (V,E, π)
are also automorphisms of G = (V,E, π′) (and vice versa). It is thus beneficial and routine
to work with π′ instead of π. Color refinement can be implemented in such a way that it
admits a worst case running time of Θ((n+m)(logn)) (see [9]). From an implementation
perspective it is the most crucial subroutine and therefore highly engineered.

3.2 Quotient Graph
For an equitable coloring π of an (otherwise uncolored) graph G, the quotient graph Q(G, π)
captures information regarding the number of neighbors that vertices in one color class have
in another color class. A quotient graph is a complete directed graph in which every vertex
has a self-loop. The vertex set of Q(G, π) is V (Q(G, π)) := π(V (G)), i.e., the set of colors
of vertices under π. The vertices of Q(G, π) are colored with the color they represent in G.
We color the edge (c1, c2) with the number of neighbors a vertex color c1 has of color c2
(possibly c1 = c2). Recall that, since π is equitable, all vertices of c1 have the same number
of neighbors in c2. Two graphs are indistinguishable by color refinement if and only if their
quotient graphs with respect to the coarsest equitable coloring are equal (see e.g. [8]).

4 A Toolbox for Reducing Graphs

We now embark on our journey of describing techniques that simplify a graph for symmetry
detection. The goal is always to efficiently reduce the number of vertices and edges of the
graph. However, whenever we alter the graph, we need to make sure that either no symmetries
are lost, or that we output the symmetries that would be lost immediately. Furthermore,
we have to ensure that after preprocessing is done symmetries of the reduced graph can be

SEA 2023



1:6 Engineering a Preprocessor for Symmetry Detection

mapped back to symmetries of the original graph. After all, we are interested in symmetries
of the original graph. In order to ease this process, we first lay out some general techniques
that we use throughout the paper.

The first type of technique we describe modifies an input graph G on vertex set V to
another graph G′ with vertex set V ′ ⊆ V so that
1. Aut(G)|V ′ ⊆ Aut(G′) (symmetry preservation) and
2. Aut(G)|V ′ ⊇ Aut(G′) (symmetry lifting) hold.
Here by Aut(G)|V ′ we mean the set of maps obtained by restricting the domain of each
φ ∈ Aut(G) to V ′ (and the range to φ(V ′)). If conditions (1) and (2) hold, V ′ must also be
invariant under Aut(G).

Under these conditions the restriction to V ′ is a natural homomorphism p : Aut(G) →
Aut(G′). The orbit-stabilizer theorem (see [18, Theorem 2.16]) implies then that if S′ ⊆
Aut(G) is a set of lifts of a generating set S of Aut(G′), i.e. p(S′) = S, then Aut(G) =
⟨S′, ker(p)⟩ (where ⟨Γ⟩ denotes the group generated by Γ, see [30]). Here ker(p) = {φ ∈
Aut(G) | p(φ) ̸= 1} is the kernel of p and 1 denotes the identity.

Overall this enables us to separate the computation of Aut(G) into computing auto-
morphisms of the removed parts of the graph and the automorphisms of the reduced graph.
Crucial for the techniques is now that G′ and a generating set of ker(p) can be efficiently
computed from G, and that the set of lifts S′ can be efficiently computed from a generating
set of Aut(G′). In particular, we require an efficient postprocessing technique for lifting of
automorphisms to parts that were reduced, which is described in the following.

Canonical Representation Strings. During preprocessing, the parts we remove from the
original graph might be symmetrical to (i.e., in the same orbit as) other parts of the graph.
So, after symmetries of the reduced graph have been computed, we need to lift symmetries of
the reduced graph to symmetries of the original graph. In particular, the lifted symmetries
must map all the removed parts correctly. To simplify the lifting of symmetries we introduce
representation strings associated with the remaining vertices. These encode the nature (i.e.,
the “isomorphism type”) of the vertices that were removed. The encoding is stored in the
color of a suitable vertex that remains. If a remaining vertex is then mapped to another
vertex, the corresponding subgraphs represented by the strings are then mapped to each
other in a canonical way.

We define this process formally through a representation mapping R(v) : V 7→ V ∗ from
the vertices to sequences of vertices as follows. Assume we have a graph G := (V,E, π) which
is reduced to G′ := (V ′, E′, π′) with V ′ ⊆ V and E′ ⊆ E. We require the following:
1. It holds that R(v) := vS with S ∈ V ∗ for all v ∈ V ′, i.e., each remaining vertex must

represent itself first.
2. It holds that R(v) := ϵ for all v ∈ V ∖ V ′, i.e., a removed vertex does not represent any

vertex.
3. For each deleted vertex v ∈ V ∖ V ′ there is at most one v′ ∈ V ′ and at most one i ∈ N

such that v := R(v′)i, i.e., each deleted vertex is represented by at most one remaining
vertex, once.

For each automorphism of the remaining graph φ ∈ Aut(G′) we now define its lifted bijection
φR(v) ∈ Sym(V ) (the symmetric group on V ). First, we require that φ(v) = v′ =⇒
|R(v)| = |R(v′)| holds, otherwise we can not construct a lifted bijection. We define φR(v) :=

φ(v) if v ∈ V ′

R(φ(v′))i if v = R(v′)i for v′ ∈ V ′, i ∈ N
v if v ̸= R(v′)i for all v′ ∈ V ′, i ∈ N.

We call R a canonical representation mapping if φR ∈ Aut(G) for all φ ∈ Aut(G′).



M. Anders, P. Schweitzer, and J. Stieß 1:7

We note by definition, canonical representation mappings can be chained, i.e., if we
reduce a graph G multiple times, we can simply apply the respective canonical representation
mappings in reverse until we reach an automorphism of G. We can even rewrite chained
canonical representation mappings into a single map by essentially composing the functions.
(More accurately we have to interpret strings of strings as simple strings using concatenation.)

Sparse Automorphisms and Restoration. A concept that we implicitly use throughout the
following sections is sparse encodings of automorphisms. A conventional way to do this is the
cycle notation of permutations, i.e., store only for each non-fixed element its image [18]. The
precise encoding used is of no importance, however. Crucially, automorphisms ought to be
encoded using space that is proportional to the size of their support, i.e., in O(| supp(φ)|).

Using a canonical representation mapping R and sparse automorphism encodings, auto-
morphisms of a reduced graph G′ can be efficiently lifted to automorphisms of the original
graph G. Indeed, lifts can be computed in time (and in space) linear in the size of the
support of the lift, by replacing vertices by their represented strings.

▶ Fact 1. Given φ ∈ Aut(G′), the lift φR ∈ Aut(G) can be computed in time O(| supp(φR)|).

Let us remark that often canonical representations in fact ensure that lifted supports are
as small as possible. We say that a representation mapping R respects kernel orbits if it has
the property that v1 ∈ R(v) ⇔ v2 ∈ R(v) whenever v1 and v2 are in the same orbit of ker(p).
All representations we describe subsequently respect kernel orbits.

▶ Fact 2. If R respects kernel orbits then p(ψ) = φ implies that | supp(φR)| ≤ | supp(ψ)|.

We should remark that none of the state-of-the-art solvers except for saucy feature an
interface for sparse automorphisms, i.e., an interface that enables access to an automorphism
in time O(| supp(φ)|). Instead, access is only possible in Ω(|V |). If a user-application uses
the interface for sparse automorphisms correctly, this can yield substantial running time
benefits on graphs that contain a large number of sparse automorphisms (which is the
case for many practical graphs). Most solvers internally incur a cost of Ω(|V |) to handle
automorphisms anyway, in turn making the sparse interface unnecessary. Since this is not
true for our preprocessor and to ensure potential running time benefits to user-applications,
automorphisms found by the preprocessor are of course accessible in a sparse manner.

5 Removing low degree vertices

The first class of efficient reduction techniques we describe removes vertices of low degree.
We propose strategies for vertices of degree 0, 1 and 2. Techniques for preprocessing vertices
of degree 0 and 1 can also be found in the implementation of Traces [2]. The Traces
implementation for degree 0, 1 differs from our proposed strategy in that it does not compute
color refinement before removing degree 0 and 1 vertices.

5.1 Degree 0 Vertices
Preprocessing vertices of degree 0 (and analogously n− 1) is simple. The algorithm detects
color classes consisting of vertices of degree 0. We let V ′ be the set of vertices of degree
larger than 0. By simply removing vertices of degree 0 and not representing them in R at
all, R indeed defines a canonical representation mapping.

The kernel ker(p) of the restriction p onto V ′ is computed as follows. For each color class
of degree 0 vertices in G we output generators for the symmetric group on the class.

SEA 2023



1:8 Engineering a Preprocessor for Symmetry Detection

Y

C2

C1

X

(a) Unique endpoints.

Y

C ′
1

C1

X

(b) Obfuscated matching.

Y

C2

C1

X

(c) Obfuscated edge flip.

Figure 3 Reducible degree 2 patterns.

5.2 Degree 1 Vertices

Exhaustively removing all vertices of degree 1 (and analogously n− 2) essentially removes all
tree-like appendages from graphs. It is well-known that applying color refinement produces
the orbit partitioning on these tree-like appendages – with the notable exception of not
determining whether the roots of these appendages are in the same orbit or not.

We can remove degree 1 vertices recursively. Let G be a graph that contains degree 1
vertices. We describe G′ and R where we remove a color class of degree 1 vertices.

Let C denote such a color class of degree 1 vertices. Since the coloring is equitable, all
neighbors of vertices of C are in the same color class P . In case P = C we have connected
components of size 2. This case can be handled similar to the reduction of degree 0 vertices,
so we assume P ̸= C. We partition C into classes C1, . . . , Cm where c ∈ Ci is adjacent to
pi ∈ P . For the representation mapping, we set R(pi) := piCi (where Ci may appear in
arbitrary order). We set G′ := G∖ {C}. The coloring π remains unchanged. Note that π is
still an equitable coloring for G′. The kernel ker(p) is the direct product of the symmetric
group Sym(Ci) for each i ∈ {1, . . . ,m} (and points outside C are fixed). The process can
then be repeated until all vertices of degree 1 are removed.

By construction, the reduction is symmetry preserving and symmetry lifting, thus it
holds that Aut(G) = ⟨S′, ker(p)⟩. As before, S is a generating set for Aut(G′) and S′ a
corresponding set of lifts.

5.3 Degree 2 Vertices

If we were to allow graphs produced by our preprocessor to contain directed, colored edges,
there is a simple reduction that removes all vertices of degree 2: we may encode the multiset
of paths between two vertices v1 and v2 with deg(vi) ≥ 3 whose internal vertices all have
degree 2 as one directed, colored edge between v1 and v2 (see also [22, Proof of Lemma 15]).

There are, however, drawbacks to this approach: most solvers do not implement directed
and colored edges. Since we want our preprocessor to be compatible with all modern solvers,
this immediately disallows the use of directed, colored edges. Even when they do, using
directed and colored edges comes at the price of additional overhead [28]. Intuitively, while
removing all degree 2 vertices can cause a significant size-reduction, some of the complexity
of the removed path is only shifted into the color encoding of the edges. In turn, we require
refinements to take into account edge colors. This complicates color refinement, the central
subroutine.

For these reasons, if possible, we prefer to remove degree 2 vertices in a way that does
not require the introduction of directed or colored edges.



M. Anders, P. Schweitzer, and J. Stieß 1:9

Non-branching paths with unique endpoint. We describe a heuristic which we found to
be often applicable in practical data sets. It encodes paths with internal vertices of degree
2 that run between two color classes by a set of edges connecting the endpoints directly.
However, it only does so if the set of paths can be reconstructed unambiguously from the set
of edges. In particular, the inserted edges may not interfere with existing edges.

We detect paths of length t between distinct color classes X and Y whose internal vertices
have degree 2. In each vertex of X exactly one such path should start (see Figure 3a). More
formally, suppose X = C0, C1, . . . , Ct, Ct+1 = Y are colors so that (1) vertices in X do not
have neighbors in Y , (2) for i ∈ {1, . . . , t} vertices in Ci have degree 2, (3) for i ∈ {1, . . . , t}
vertices in Ci have a neighbor in Ci−1 and Ci+1, and (4) every node in X has exactly one
neighbor in C1. Then we defineG′ = (V ′, E′) via V ′ := V−(C1∪· · ·∪Ct) and E′ := E(G[V ′])∪
E′′, where E′′ consists of pairs (x, y) for which there is a path (x, c1, . . . , ct, y) with ci ∈ Ci.
The corresponding representation map is R(x) = xc1c2 · · · ct, where (x, c1, . . . , ct, y) is the
unique path from x to some vertex y ∈ Y with ci ∈ Ci.

Note that the newly introduced edges E′′ form a biregular bipartite graph between X

and Y in which vertices of X have degree 1. It is not difficult to check that this yields a
canonical representation map that respects kernel orbits.

Obfuscated Matchings. The preprocessor has special fast code for the particular case in
which |X| = |Y |. In this case E′′ encodes a perfect matching between X and Y .

A slight extension of the technique checks for other choices of Ci whether they also satisfy
the required properties and yield exactly the same matching E′′. In fact, if there is another
matching via color classes C ′

1, . . . , C
′
t′ between X and Y which encodes E′′ , we also delete

vertices in the C ′
i (see Figure 3b). The special purpose code uses arrays and can efficiently

check whether matchings coincide.
We should mention that in the implementation, we only perform the check for paths of

length t = 1 for obfuscated matchings. It turns out that the special case of t = 1 and in fact
multiple such paths encoding the same matching is very common in particular on the MIP
and SAT benchmarks.

Obfuscated Edge Flip. A case that also can be handled efficiently and is not covered by
previous techniques is where X and Y are connected by |X||Y | equally-colored, unique paths.
In this case, each vertex x ∈ X is connected to all y ∈ Y by a path (see Figure 3c). It is
easy to see that deleting all such paths is both symmetry preserving and symmetry lifting
(this is related to the edge flip described in Section 7.1).

Formally, suppose X = C0, C1, . . . , Ct, Ct+1 = Y are colors so that (1) for i ∈ {1, . . . , t}
vertices in Ci have degree 2, (2) for i ∈ {1, . . . , t} vertices in Ci have a neighbor in Ci−1
and Ci+1, and (3) every node in X has exactly |Y | neighbors in C1, where the corresponding
paths end in all y ∈ Y . The technique in turn removes all C0, C1, . . . , Ct from the graph.

Let us now consider computing the lift of this reduction. Unfortunately, canonical
representation strings are not sufficient to express the lift: we need to determine how
C0, C1, . . . , Ct are mapped, and this depends on both the vertices of X and Y . We can not
simply attach C0, C1, . . . , Ct to the canonical representation strings of one of the color classes.
However, if we know how both X and Y are mapped, it is trivial to reconstruct the original
symmetry: assume a symmetry maps x ∈ X to x′ and y ∈ Y to y′. This just means that in
the lift, we need to map the path connecting x to y to the path connecting x′ to y′. Hence,
the lift can still be computed very easily and efficiently.

SEA 2023



1:10 Engineering a Preprocessor for Symmetry Detection

In the implementation, we do write vertices of C0, C1, . . . , Ct into both the representation
strings of X and Y , breaking the formal requirement of not having double entries. We
use an encoding trick to denote the double entries, which triggers special code during the
reconstruction of the symmetries.

Again, these types of degree 2 vertices can often be found in graphs stemming from SAT.

6 Probing for Sparse Automorphisms

We propose a strategy for probing for sparse automorphisms. If successful and automorphisms
are discovered, we “divide them out”, breaking the symmetry by individualization, i.e., giving
a vertex a unique color. We give a brief, high-level description. The full description can be
found in Appendix A.

Our strategy is inspired by a heuristic of saucy: for two colorings π1, π2 we may
check whether interchanging vertices in color classes of size 1 (i.e., singleton vertices) of
corresponding singleton colors and fixing all other vertices yields an automorphism of the
graph. More formally, we define the permutation φπ1,π2(v) :={

v if |π−1
1 (π1(v))| ≠ 1 ∨ |π−1

2 (π2(v))| ≠ 1
π−1

2 (π1(v)) otherwise.

Then, we may simply check whether φπ1,π2 is indeed an automorphism of G. Indeed, this
check can be computed in time O(Σv∈supp(φπ1,π2 )1 + deg(v)).

saucy performs the check for local automorphisms during its depth-first search of its
backtracking tree. It can then store the information about the automorphism and internally
exploit its existence. For preprocessing purposes, however, we want to make the graph
simpler or smaller.

Our probing strategy chooses a color class C of the graph and then concurrently performs
two arbitrary root-to-leaf walks on the backtracking tree (individualization-refinement tree)
that is also used by main solvers. Through the design of the backtracking procedure, each walk
has a natural corresponding coloring (e.g., π1 and π2). We then continuously check whether
the two walks already imply an automorphism (using φπ1,π2). If, using this strategy, we find
enough automorphisms to determine that C is equivalent to an orbit, we can individualize a
vertex of C, thus simplifying the graph.

7 Exploiting the Quotient Graph

We now introduce another set of techniques which make use of the quotient graph Q(G, π).

7.1 Edge Flip and Removal of Trivial Components
First, we describe how to efficiently flip edges between color classes. Let C1, C2 be two
distinct color classes of π. Assume they are connected by m edges. The maximum number of
edges between C1 and C2 is |C1||C2|. If m > |C1||C2|/2, we can flip every edge to a non-edge,
and every non-edge to an edge, reducing the total number of edges in the graph. Since this
operation is isomorphism-invariant and reversible, the automorphism group of the graph
does not change.

When applying edge flips repeatedly and exhaustively, singleton vertices become vertices
of degree 0. In fact, instead of performing edge flips in which singletons are involved, we can
remove singletons directly without changing the automorphism group.



M. Anders, P. Schweitzer, and J. Stieß 1:11

We want to remark that in the implementation, we use one canonical representation
mapping to keep track of all removed vertices. This also includes removed singletons. Hence,
we use string representations throughout all the techniques described in the paper. In
addition to acting as a global canonical representation mapping, we also allow a renaming
of vertices, which enables us to map all remaining vertices into the interval {1, 2, . . . , n},
whenever n vertices remain.

7.2 Connected Components
A strategy more general than removing singletons is to exploit connected components of the
quotient graph.

Consider the quotient graph Q = Q(G, π) of a graph G with respect to a vertex coloring π.
The (weakly) connected components of Q partition the vertex set of G into parts that are
homogeneously connected. This allows us to treat components independently:

▶ Lemma 1. If D1, . . . , Dt are the connected components of the quotient graph Q(G, π)
then Aut(G, π) = Πt

i=1 Aut((G, π)[Di]).

By flipping edges between two color classes we can only ever shrink the components of Q(G, π).
It is therefore beneficial to first exhaustively flip edges and then consider connected compon-
ents (see also [23]).

These types of components have previously been employed for isomorphism and auto-
morphism testing [16, 19]. (In these contexts flips are not employed but rather edges in the
quotient graph are characterized by non-homogeneous connections, which is equivalent.)

Regarding the implementation, we compute the connected components of the quotient
graph without explicitly computing the quotient graph. We first perform edge flips for all fully
connected color classes, i.e., whenever the number of edges between C1, C2 equals |C1||C2|.
Then, we modify a basic algorithm for computing connected components as follows: usually,
the algorithm determines for a vertex v its neighborhood N(v) and adds this neighborhood
to the connected component of v. Our modification simply also adds π−1π(v) in addition to
N(v) (i.e., it adds entire color classes). In turn, the algorithm gives us a partition of the
vertices into the components of the quotient graph.

We use this to perform the probing strategy of Section 6 for each component of the
quotient graph separately. We want to mention that after preprocessing is done, we could,
theoretically, also use the components of the quotient graph to make independent calls to the
main solver on the subgraphs induced by the components. These would, in turn, be smaller,
and their handling could be parallelized. However, in our testing, after preprocessing is done,
usually only one component is left, or there is one very large component and several smaller
ones. We thus, at least so far, did not find it beneficial to use independent solver calls.

8 Scheduling of Techniques

We now describe when and how the preprocessor combines the techniques described in the
previous sections.

The first step of the preprocessor is to apply color refinement to produce an equitable
coloring. The coloring remains equitable throughout the entire algorithm, by reapplying
color refinement whenever necessary (i.e., for the probing techniques). We also continuously
remove singletons. Beyond this, our implementation allows the user to freely specify a
schedule for the various techniques.

SEA 2023



1:12 Engineering a Preprocessor for Symmetry Detection

The schedule used to produce the benchmarks is as follows. We remove vertices of degree
0 and 1, and apply the heuristics described for vertices of degree 2. Next, we flip edges and
apply probing for sparse automorphisms while making use of quotient graph components.
Lastly, we repeat the schedule as long as the graph still contains vertices of degree 0 or 1 and
the number of vertices of the graph shrunk by at least 25%. Note that this ensures that the
schedule is only repeated at most a logarithmic number of times in the original graph size.

The implementation is called sassy. It is implemented in C++ and uses the color
refinement of dejavu (which is itself an amalgam of color refinement implementations in
Traces and saucy). The implementation is open source and freely available at [3].

9 Benchmarks

We split the benchmark section into three parts: first, we check whether applying the
preprocessor speeds up state-of-the-art solvers on graph classes where the preprocessing
techniques are supposedly effective. At the same time we check whether we introduced
excessive overhead on graphs where the techniques are not effective. Secondly, we compare
the performance of solver configurations using the preprocessor to state-of-the-art saucy
and Traces on a wide range of practical data sets. Thirdly, we analyze the separate impact
of each of the different techniques used in the preprocessor (see Appendix D).

Whenever we apply the preprocessor followed by an execution of a main solver, we
write sy+solver. The reported running time for a configuration sy+solver is always the
time used for preprocessing and solving the graph. All benchmarks were run on a machine
featuring an Intel Core i7 9700K, 64GB of RAM on Ubuntu 20.04. We used nauty/Traces
2.6, saucy 3.0, bliss 0.73 and dejavu 1.2 (1% error bound and 4 threads for dejavu, all
other tools are only able to run single-threaded). We ran all benchmarks 3 consecutive times
in order to check whether running times are stable. We report the average and standard
deviation.

Conventionally, the way to test symmetry detection solvers is to first randomly permute
all given benchmark graphs [26, 7]. However, we feel that for many of the practical graphs,
it is not clear whether this is the right way to test the tools: the initial order is often not
arbitrary and may indeed encode information. For example in SAT, usually “literal” vertices
and “clause” vertices are never mixed but appear as contiguous blocks of vertices. While this
does not immediately help the symmetry detection process, aspects such as cache-efficiency
might be affected. Therefore, we ran all benchmarks both ways: in the conventional manner
of randomly permuting the instances (denoted with (p)), as well as using unaltered instances.
Benchmarks for permuted graphs are in this section, while results for non-permuted graphs
are in Appendix B. Overall, the results for both agree.

9.1 Preprocessed versus Unprocessed
We prepared two collections of graphs to test the impact of applying the preprocessor for
each solver. pract contains practical graphs with a lot of exploitable structure for the
preprocessor. On the other hand, the set comb contains combinatorial graphs where there is
no or very little exploitable structure. In the following, we describe how we composed both
sets.

Set “pract”. The goal of this set is to measure whether preprocessing is worthwhile for a
given solver on graphs where there is a lot of exploitable structure. Thus, this set contains
practical graphs. Note that we test practical graphs much more thoroughly in the next



M. Anders, P. Schweitzer, and J. Stieß 1:13

100 101 102 103

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

bliss

10−1 100 101 102 103 104

10−1

100

101

102

103

104

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

nauty

10−1 100 101 102 103

10−1

100

101

102

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

Traces

10−1 101 103

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

dejavu

10−1 101 103 105

10−1

101

103

105

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

saucy

10−1 101 103 105

10−1

101

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

bliss

10−1 101 103 105

10−1

101

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

nauty

10−1 101 103 105

10−1

101

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

Traces

10−1 101 103 105

10−1

101

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

dejavu

10−1 101 103

10−1

101

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

saucy

Figure 4 Solvers with sassy vs. solvers without sassy on comb (p) (top) and pract (p)
(bottom). Timeout is 60s. The green bar shows instances that timed out without the preprocessor.

state-of-the-art this paper
set saucy Traces sy+dejavu sy+Traces sy+bliss sy+saucy sy+nauty
dac (p) 0.51 ± 0.057 2.49 ± 0.072 0.38 ± 0.006 0.91 ± 0.016 0.5 ± 0.002 0.41 ± 0.058 0.46 ± 0.005
states (p) 7.32 ± 0.031 12.55 ± 0.281 6.79 ± 0.075 6.8 ± 0.069 6.8 ± 0.062 6.83 ± 0.085 6.8 ± 0.074
internet (p) 0.19 ± 0.005 2.47 ± 0.379 0.14 ± 0.003 0.15 ± 0.004 0.14 ± 0.002 0.14 ± 0.004 0.14 ± 0.003
ispd (p) 7.12 ± 0.069 7.04 ± 0.085 5.48 ± 0.046 5.43 ± 0.023 5.46 ± 0.005 5.45 ± 0.025 5.45 ± 0.008
MIP2017 (p) 22.3 ± 0.22 803.63 ± 10.469 14.07 ± 0.171 92.76 ± 2.796 28.59 ± 0.234 15.52 ± 0.324 26.54 ± 0.128
SAT2021 (p) 2217.61 ± 0.627 3645.33 ± 11.963 1701.62 ± 10.411 1856.39 ± 10.138 1939.54 ± 4.926 1786.68 ± 6.005 1763.12 ± 6.214
SAT2021-up (p) 1886.87 ± 4.472 2948.5 ± 25.254 1439.5 ± 2.972 1538.71 ± 8.639 1650.68 ± 3.577 1508.91 ± 2.327 1481.28 ± 3.556

Figure 5 Benchmark results on various sets of large, practical graphs (randomly permuted),
timeout is 60s. The benchmarks compare solver configurations using the preprocessor (“sy+”) to
state of the art saucy and Traces. Shown values are the sum over all instances in the set in
seconds. The average and standard deviation of 3 consecutive runs is used. Bold entries indicates
the fastest running time for the given set.

section. To make up pract, we picked the 5 largest instances (if available) of all the saucy
benchmark sets, and for the sets arising from computational tasks (MIP and SAT) we picked
5 instances uniformly at random.

Set “comb”. The goal of this set is to measure the overhead of applying the preprocessor
on graphs where there is no or very little exploitable structure (i.e., where the preprocessor
is expected to have no effect). For this purpose, we chose a large variety of graphs from
combinatorics, on which solvers are routinely evaluated [26]. The subset we chose contains a
graph from almost every graph class of the benchmark library from [2] (cfi, grid, grid-sw,
had, had-sw, hypercubes, kef, latin, latin-sw, lattice, mz, paley, pp, ran10, ransq, sts, sts-sw,
ranreg, tran, triang and shrunken multipedes). Whenever applicable, we chose a graph
of around 1000 vertices: note that here, we apply a size restriction, since combinatorial
graphs are generally difficult for their size. We choose an even smaller graph or left out sets
entirely whenever a solver had trouble finishing the instance quickly. Note that, since we
want to measure the preprocessing overhead, only instances for which the solvers finish in a
reasonable amount of time are of interest. If solvers take a long time solving an instance to
begin with, the overhead of the preprocessor is always negligible. Note that these restrictions
only apply to comb: all the other sets tested in this paper have no restriction on the size
of instances and instances were not chosen manually.

Results. The results are summarized in Figure 4. We conclude for bliss, nauty and
dejavu that the preprocessor increases performance dramatically on most instances, while
the overhead of the preprocessor is negligible. For Traces, performance also improves, in
particular there are fewer timeouts. However, the improvement is not as dramatic.

SEA 2023



1:14 Engineering a Preprocessor for Symmetry Detection

0 5 10 15 20 25

100

101

102

instance

co
m
p
u
ta
ti
o
n
ti
m
e

dac (p)

0 10 20 30 40 50

100

101

102

103

instance

co
m
p
u
ta
ti
o
n
ti
m
e

states (p)

0 0.5 1 1.5 2

102

103

instance

co
m
p
u
ta
ti
o
n
ti
m
e

internet (p)

0 2 4 6
102

103

instance

co
m
p
u
ta
ti
o
n
ti
m
e

ispd (p)

0 50 100 150 200 250

10−2

10−1

100

101

102

103

104

105

instance

co
m
p
u
ta
ti
o
n
ti
m
e

MIP2017 (p)

210 215 220 225 230 235 240

102

103

104

105

instance

co
m
p
u
ta
ti
on

ti
m
e

MIP2017 (p), zoomed

0 100 200 300 400

10−1

100

101

102

103

104

105

instance

co
m
p
u
ta
ti
on

ti
m
e

SAT2021 (p)

350 360 370 380 390 400

104

105

instance

co
m
p
u
ta
ti
o
n
ti
m
e

SAT2021 (p), zoomed

0 100 200 300 400

10−1

100

101

102

103

104

105

instance

co
m
p
u
ta
ti
o
n
ti
m
e

SAT2021-up (p)

saucy Traces sy+dejavu sy+Traces sy+bliss sy+saucy sy+nauty

Figure 6 Detailed plots for the various sets of Figure 5. The red bar illustrates timeouts. Instances
are sorted according to running time.

There are however two eye-catching instances: first, there is an instance with very high
standard deviation for dejavu. The instance is a Kronecker eye flip graph, which dejavu
is known to struggle with [6]. Secondly, there is a particular expensive outlier for Traces.
We analyze and discuss the instance in detail in Appendix C. There, we conclude that the
outlier is caused through an undesired interaction with a heuristic of Traces.

9.2 Comparison to state-of-the-art
The state-of-the-art solver on large practical graphs is saucy. Furthermore, Traces also
contains low-degree techniques. Thus, we compare all the solvers with the preprocessor to
saucy and Traces. The timeout used is 60s (also if a solver runs out of memory).

We test all sets of the saucy distribution. We also test 3 contemporary sets of practical
graphs: the MIP2017 set contains graphs stemming from the mixed integer programming
library (see [1]). The SAT2021 library contains graphs stemming from SAT instances from
the SAT competition 2021 [4]. In the SAT2021-up set, SAT instances were first preprocessed
using the unit and pure literal rule (see [5]). We want to remark that the SAT sets contain
the largest graphs out of all the tested sets, with up to tens of millions of vertices.



M. Anders, P. Schweitzer, and J. Stieß 1:15

The results are summarized in Figure 5, Figure 6, and Appendix B. We observe that the
previous state-of-the-art (saucy) is outperformed on all but one set by several solvers using
the preprocessor. This demonstrates that the approach of using our universal preprocessor
in conjunction with different solvers can outperform state-of-the-art. Moreover, both saucy
and Traces also visibly speed up by applying the preprocessor on all but one set.

On a few of the very large graphs in the SAT sets, dejavu and Traces run out of
memory. Hence, depending on how this is weighed into the evaluation, other solvers may be
preferable. In all cases where dejavu runs out of memory, all other solvers time out. In any
case, on all these sets, sy+nauty and sy+saucy also outperform saucy.

10 Conclusion and Future Development

We introduced the new sassy preprocessor for symmetry detection. We demonstrated that
sassy indeed speeds up state-of-the-art solvers on large, practical graphs. Future additions
to the preprocessor could include more heuristics for degree 2 removal, stronger invariants
or even more efficient implementations and tuning of the existing heuristics. Since we have
observed a high sensitivity of state-of-the-art solvers to their choice of cell selectors, a more
extensive study into the topic would be of interest.

References
1 MIPLIB 2017 - The Mixed Integer Programming Library. https://https://miplib.zib.de/.
2 nauty and Traces. http://pallini.di.uniroma1.it.
3 sassy. https://github.com/markusa4/sassy.
4 SAT Competition 2021. https://satcompetition.github.io/2021/.
5 Markus Anders. SAT preprocessors and symmetry. In Kuldeep S. Meel and Ofer Strichman,

editors, 25th International Conference on Theory and Applications of Satisfiability Testing,
SAT 2022, August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages 1:1–1:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SAT.2022.1.

6 Markus Anders and Pascal Schweitzer. Engineering a fast probabilistic isomorphism test.
In Martin Farach-Colton and Sabine Storandt, editors, Proceedings of the Symposium on
Algorithm Engineering and Experiments, ALENEX 2021, Virtual Conference, January 10-11,
2021, pages 73–84. SIAM, 2021. doi:10.1137/1.9781611976472.6.

7 Markus Anders and Pascal Schweitzer. Parallel computation of combinatorial symmetries. In
Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium
on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume
204 of LIPIcs, pages 6:1–6:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ESA.2021.6.

8 Markus Anders, Pascal Schweitzer, and Florian Wetzels. Comparative design-choice analysis
of color refinement algorithms beyond the worst case. In Nikhil Bansal, Emanuela Merelli,
and James Worrell, editors, 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume
198 of LIPIcs, pages 15:1–15:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ICALP.2021.15.

9 Christoph Berkholz, Paul S. Bonsma, and Martin Grohe. Tight lower and upper bounds for
the complexity of canonical colour refinement. Theory Comput. Syst., 60(4):581–614, 2017.
doi:10.1007/s00224-016-9686-0.

10 Armin Biere, Florian Lonsing, and Martina Seidl. Blocked clause elimination for QBF. In
Nikolaj S. Bjørner and Viorica Sofronie-Stokkermans, editors, Automated Deduction – CADE-
23 – 23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31 –
August 5, 2011. Proceedings, volume 6803 of Lecture Notes in Computer Science, pages 101–115.
Springer, 2011. doi:10.1007/978-3-642-22438-6_10.

SEA 2023

https://https://miplib.zib.de/
http://pallini.di.uniroma1.it
https://github.com/markusa4/sassy
https://satcompetition.github.io/2021/
https://doi.org/10.4230/LIPIcs.SAT.2022.1
https://doi.org/10.1137/1.9781611976472.6
https://doi.org/10.4230/LIPIcs.ESA.2021.6
https://doi.org/10.4230/LIPIcs.ICALP.2021.15
https://doi.org/10.1007/s00224-016-9686-0
https://doi.org/10.1007/978-3-642-22438-6_10


1:16 Engineering a Preprocessor for Symmetry Detection

11 Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov. Exploiting structure
in symmetry detection for CNF. In Sharad Malik, Limor Fix, and Andrew B. Kahng, editors,
Proceedings of the 41th Design Automation Conference, DAC 2004, San Diego, CA, USA,
June 7-11, 2004, pages 530–534. ACM, 2004. doi:10.1145/996566.996712.

12 David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo. Exploiting
symmetry in SMT problems. In Nikolaj S. Bjørner and Viorica Sofronie-Stokkermans, editors,
Automated Deduction – CADE-23 – 23rd International Conference on Automated Deduction,
Wroclaw, Poland, July 31 – August 5, 2011. Proceedings, volume 6803 of Lecture Notes in
Computer Science, pages 222–236. Springer, 2011. doi:10.1007/978-3-642-22438-6_18.

13 Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric explanation learning: Effect-
ive dynamic symmetry handling for SAT. In Serge Gaspers and Toby Walsh, editors, Theory and
Applications of Satisfiability Testing – SAT 2017 – 20th International Conference, Melbourne,
VIC, Australia, August 28 – September 1, 2017, Proceedings, volume 10491 of Lecture Notes in
Computer Science, pages 83–100. Springer, 2017. doi:10.1007/978-3-319-66263-3_6.

14 Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause
elimination. In Fahiem Bacchus and Toby Walsh, editors, Theory and Applications of Satis-
fiability Testing, 8th International Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005,
Proceedings, volume 3569 of Lecture Notes in Computer Science, pages 61–75. Springer, 2005.
doi:10.1007/11499107_5.

15 Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry in constraint programming.
In Francesca Rossi, Peter van Beek, and Toby Walsh, editors, Handbook of Constraint Pro-
gramming, volume 2 of Foundations of Artificial Intelligence, pages 329–376. Elsevier, 2006.
doi:10.1016/S1574-6526(06)80014-3.

16 Mark K. Goldberg. A nonfactorial algorithm for testing isomorphism of two graphs. Discret.
Appl. Math., 6(3):229–236, 1983. doi:10.1016/0166-218X(83)90078-1.

17 Christopher Hojny and Marc E. Pfetsch. Symmetry handling via symmetry breaking polytopes.
In Ekrem Duman and Ali Fuat Alkaya, editors, 13th Cologne Twente Workshop on Graphs
and Combinatorial Optimization, Istanbul, Turkey, May 26-28, 2015, pages 63–66, 2015.

18 Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of Computational Group
Theory. Discrete Mathematics and Its Applications. Chapman and Hall/CRC, 2005.

19 Tommi A. Junttila and Petteri Kaski. Conflict propagation and component recursion for
canonical labeling. In Alberto Marchetti-Spaccamela and Michael Segal, editors, Theory and
Practice of Algorithms in (Computer) Systems – First International ICST Conference, TAPAS
2011, Rome, Italy, April 18-20, 2011. Proceedings, volume 6595 of Lecture Notes in Computer
Science, pages 151–162. Springer, 2011. doi:10.1007/978-3-642-19754-3_16.

20 Hadi Katebi, Karem A. Sakallah, and Igor L. Markov. Symmetry and satisfiability: An update.
In Ofer Strichman and Stefan Szeider, editors, Theory and Applications of Satisfiability Testing
– SAT 2010, 13th International Conference, SAT 2010, Edinburgh, UK, July 11-14, 2010.
Proceedings, volume 6175 of Lecture Notes in Computer Science, pages 113–127. Springer,
2010. doi:10.1007/978-3-642-14186-7_11.

21 Manuel Kauers and Martina Seidl. Symmetries of quantified boolean formulas. In Olaf
Beyersdorff and Christoph M. Wintersteiger, editors, Theory and Applications of Satis-
fiability Testing – SAT 2018 – 21st International Conference, SAT 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceed-
ings, volume 10929 of Lecture Notes in Computer Science, pages 199–216. Springer, 2018.
doi:10.1007/978-3-319-94144-8_13.

22 Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The weisfeiler-leman dimension of
planar graphs is at most 3. J. ACM, 66(6):44:1–44:31, 2019. doi:10.1145/3333003.

23 Sandra Kiefer, Pascal Schweitzer, and Erkal Selman. Graphs identified by logics with counting.
ACM Trans. Comput. Log., 23(1):1:1–1:31, 2022. doi:10.1145/3417515.

https://doi.org/10.1145/996566.996712
https://doi.org/10.1007/978-3-642-22438-6_18
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1007/11499107_5
https://doi.org/10.1016/S1574-6526(06)80014-3
https://doi.org/10.1016/0166-218X(83)90078-1
https://doi.org/10.1007/978-3-642-19754-3_16
https://doi.org/10.1007/978-3-642-14186-7_11
https://doi.org/10.1007/978-3-319-94144-8_13
https://doi.org/10.1145/3333003
https://doi.org/10.1145/3417515


M. Anders, P. Schweitzer, and J. Stieß 1:17

24 Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Järvisalo. Maxpre: An extended
maxsat preprocessor. In Serge Gaspers and Toby Walsh, editors, Theory and Applications of
Satisfiability Testing – SAT 2017 – 20th International Conference, Melbourne, VIC, Australia,
August 28 – September 1, 2017, Proceedings, volume 10491 of Lecture Notes in Computer
Science, pages 449–456. Springer, 2017. doi:10.1007/978-3-319-66263-3_28.

25 François Margot. Symmetry in integer linear programming. In Michael Jünger, Thomas M.
Liebling, Denis Naddef, George L. Nemhauser, William R. Pulleyblank, Gerhard Reinelt,
Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50 Years of Integer Programming 1958-
2008 – From the Early Years to the State-of-the-Art, pages 647–686. Springer, 2010. doi:
10.1007/978-3-540-68279-0_17.

26 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Comput.,
60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

27 Marc E. Pfetsch and Thomas Rehn. A computational comparison of symmetry handling
methods for mixed integer programs. Math. Program. Comput., 11(1):37–93, 2019. doi:
10.1007/s12532-018-0140-y.

28 Adolfo Piperno. Isomorphism test for digraphs with weighted edges. In Gianlorenzo D’Angelo,
editor, 17th International Symposium on Experimental Algorithms, SEA 2018, June 27-29,
2018, L’Aquila, Italy, volume 103 of LIPIcs, pages 30:1–30:13. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.SEA.2018.30.

29 Pascal Schweitzer and Daniel Wiebking. A unifying method for the design of algorithms
canonizing combinatorial objects. In Moses Charikar and Edith Cohen, editors, Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019, pages 1247–1258. ACM, 2019. doi:10.1145/3313276.3316338.

30 Ákos Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge
University Press, 2003. doi:10.1017/CBO9780511546549.

A Probing for Sparse Automorphisms

A.1 The Individualization Refinement Framework
The individualization-refinement framework is a general framework for algorithms computing
isomorphisms, automorphisms and canonical labellings (see [26]). These algorithms generally
work on a special tree, the so-called IR tree. We give a brief description of how IR trees
are constructed. For a more extensive description, in particular for the numerous strategies
needed to perform the search more efficiently, see [26, 7].

Each node x of the tree has a corresponding equitable coloring πx of the input graph.
The leaves correspond to discrete colorings. The most important property of IR trees is that
they are isomorphism-invariant, meaning that on G and φ(G) (where φ is an isomorphism)
we obtain isomorphic IR trees.

Let (G, π) be the input graph. Let π′ be the coarsest equitable refinement of π. We let
the root of the IR tree correspond to π′. In each node x of an IR tree, a non-trivial color
class from the corresponding coloring πx is chosen (i.e., a C = π−1

x (c) with |C| > 1, C must
be chosen isomorphism-invariantly). If there is no non-trivial color class, then x is a leaf and
its corresponding coloring is discrete. Otherwise, for each v ∈ C, we define xv as a child of x
in the IR tree. Let πxv

denote the coloring corresponding to xv. We may obtain πxv
from

πx as follows. Starting from πx, we first artificially single out v (i.e., individualize v). This
means we set πxv (v) := c′ where c′ /∈ π(V (G)) (again, c′ is chosen isomorphism-invariantly).
Then, we refine the coloring using color refinement, obtaining the equitable coloring πxv

.
We can derive automorphisms from IR trees. If π1, π2 are leaves of the tree, i.e., discrete

colorings, then φ := π−1
1 ◦ π2 defines a permutation on V (G). While φ is not guaranteed to

be an automorphism, we can efficiently test whether it is (by checking whether φ(G) = G).

SEA 2023

https://doi.org/10.1007/978-3-319-66263-3_28
https://doi.org/10.1007/978-3-540-68279-0_17
https://doi.org/10.1007/978-3-540-68279-0_17
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1007/s12532-018-0140-y
https://doi.org/10.1007/s12532-018-0140-y
https://doi.org/10.4230/LIPIcs.SEA.2018.30
https://doi.org/10.1145/3313276.3316338
https://doi.org/10.1017/CBO9780511546549


1:18 Engineering a Preprocessor for Symmetry Detection

With this method all of Aut(G) can be computed. This follows essentially from the fact that
comparing all pairs of leaves in this way will give us all automorphisms of G (or rather a
generating set of Aut(G) when automorphism pruning is applied; see [26]).

A.2 The Probing Algorithm
Our probing strategy only searches for automorphisms which can be used directly to reduce
the graph. The idea is as follows. For a color class that we want to reduce, we attempt
to collect automorphisms that transitively permute all the vertices in the entire color class.
This certifies that the color class is an orbit. We can then individualize an arbitrary vertex
of the color class. In contrast, if we only have some automorphisms that together do not
act transitively on the color class, it is not clear how to manipulate the graph favorably. In
particular, since some of the vertices may not be in the same orbit, we do not know which
vertex to individualize. We now describe the bounded IR probing algorithm.

(Description of Algorithm 1.) (See Algorithm 1 for the pseudocode.) The algorithm
expects as input a colored graph G = (V,E, π), a color class Cprobe = π−1(c) as well as a
length bound L. It outputs a set of automorphisms Φ and a coloring π′ refining π. If the
probing was unsuccessful then Φ = {} and π′ = π. Otherwise ⟨Φ⟩ acts transitively on Cprobe

and π′ is obtained from π by individualizing a vertex and refining.
We compute arbitrary IR paths (i.e., a rooted path in the IR tree) starting with an

individualization of a vertex in Cprobe. The path is only computed up to a length of L.
Initially, the algorithm examines two of these paths concurrently, starting in two different

vertices v1, v2 ∈ Cprobe. It checks after each individualization whether the automorph-
ism φπ1,π2 (defined, as above, mapping corresponding singletons) is an automorphism. If
this happens to be the case after having performed, say, L′ individualizations, we bound all
subsequent paths by L′.

Afterwards for each vertex w ∈ Cprobe \ {v1, v2} we compute an IR path starting with the
individualization of w. We hope to find an automorphism mapping v1 to w. If we discover
an automorphism for each w, we return the set of automorphisms Φ, individualize v1 in π,
refine to obtain π′ and return Φ and π′.

(Correctness of Algorithm 1.) Correctness of the algorithm follows simply from the fact
that we certify all automorphisms. That is, every map claimed to be an automorphism
is indeed an automorphism. Since this certification is done for each automorphism, this
certifies the fact that Cprobe is an orbit of Aut(G, π). Since we return all automorphisms
required to construct the orbit (i.e., we return Φ), we have ⟨Φ ∪ Aut(G, π′)⟩ = Aut(G, π) by
the orbit-stabilizer theorem (see [18]).

(Implementation of Algorithm 1.) We want to make some further remarks on the
implementation of the algorithm. In fact, even though it can be implemented very efficiently,
it generally has to be used sparingly. Overall we need to decide when and how often to employ
the probing strategy and also which depth bound L to use. The preprocessor essentially uses
three strategies: 1-IR probing, ∞-IR probing with class size 2 and ∞-IR probing up to class
size 8 (in order of descending frequency).

B Non-permuted Benchmarks

Figure 7, Figure 8 and Figure 9 show benchmark results for non-permuted graphs. While
overall times are faster across all graph classes and solvers than on the randomly permuted
graphs, the interpretation of results given in Section 9 also applies to these benchmarks.
Hence, our results agree on both randomly permuted and non-permuted graphs.



M. Anders, P. Schweitzer, and J. Stieß 1:19

Algorithm 1 Bounded IR probing in a color class Cprobe up to a path of length L.

1 function BoundedProbeIR(G, π, Cprobe, L)
Input : graph G = (V,E, π) where π is equitable, color class Cprobe of π, length

bound L

Output : (equitable) coloring π′, set of automorphisms Φ
2 Φ := {} ; // set of automorphisms
3 Pick vertices v1, v2 ∈ π−1(Cprobe);
4 for i ∈ {1, 2} do
5 πi := π;
6 individualize vi in πi;
7 ColorRefinement(G, πi);
8 LC := [Cprobe] ; // list of color classes
9 while |LC | < L do

10 if φπ1,π2(G, π) = (G, π) then
11 break; // automorphism found
12 C := non-trivial color class of π1;
13 LC += [C] ; // append C to LC

14 individualize some v ∈ π−1
1 (C) in π1;

15 ColorRefinement(G, π1);
16 individualize some v ∈ π−1

2 (C) in π2;
17 ColorRefinement(G, π2);
18 if φπ1,π2(G, π) ̸= (G, π) then
19 return π, ∅; // probing failed
20 else
21 Φ := Φ ∪ {φ};
22 for w ∈ Cprobe ∖ {v1, v2} do
23 reset π2 to π ; // essentially π2 := π

24 individualize w in π2;
25 ColorRefinement(G, π2);
26 for C ∈ LC do
27 individualize some v ∈ π−1

2 (C) in π2;
28 ColorRefinement(G, π2);
29 if φπ1,π2(G, π) ̸= (G, π) then
30 return π, ∅; // probing failed
31 else
32 Φ := Φ ∪ {φ};
33 individualize v1 in π ; // success; individualize v1 in (G, π)
34 return ColorRefinement(G, π), Φ;

C The Outlier in Combinatorial Graphs

There is one particular outlier in the evaluation of Traces comparing preprocessed vs.
unprocessed instances. The instance is a shrunken multipede on 408 vertices. Without
preprocessing, it is solved in 0.75s, while with preprocessing it is solved in 6.3s. This is at
first glance confusing: the preprocessor finishes within less than 0.5ms, while not changing
the graph other than coloring it with its coarsest equitable coloring. This is however almost
the same coloring Traces would also compute for the graph.

SEA 2023



1:20 Engineering a Preprocessor for Symmetry Detection

100 101 102 103

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

bliss

10−1 100 101 102 103 104

10−1

100

101

102

103

104

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

nauty

10−1 100 101 102 103

10−1

100

101

102

103

104

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

Traces

10−1 100 101 102 103

10−1

100

101

102

103

104

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

dejavu

10−1 100 101 102 103 104

10−1

100

101

102

103

104

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

saucy

10−1 101 103 105

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

bliss

10−1 101 103 105

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

nauty

10−1 101 103 105

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

Traces

10−1 101 103 105

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

dejavu

10−1 100 101 102 103

10−1

100

101

102

103

time w/o preprocessor

tim
e

w
ith

pr
ep

ro
ce

ss
er

saucy

Figure 7 Solvers with sassy vs. solvers without sassy on comb (top) and pract (bottom), not
permuted. Timeout is 60s. The green bar shows instances that timed out without the preprocessor.

state-of-the-art this paper
set saucy Traces sy+dejavu sy+Traces sy+bliss sy+saucy sy+nauty
dac 0.35 ± 0.008 2.47 ± 0.005 0.28 ± 0.001 0.81 ± 0.002 0.37 ± 0.002 0.27 ± 0.002 0.34 ± 0.001
states 2.89 ± 0.054 7.58 ± 0.158 3.85 ± 0.048 3.85 ± 0.04 3.85 ± 0.041 3.85 ± 0.038 3.85 ± 0.043
internet 0.15 ± 0.002 2.23 ± 0.022 0.13 ± 0.000 0.13 ± 0.001 0.13 ± 0.001 0.13 ± 0.000 0.13 ± 0.000
ispd 3.83 ± 0.028 4.84 ± 0.059 3.7 ± 0.057 3.7 ± 0.061 3.7 ± 0.057 3.7 ± 0.054 3.68 ± 0.039
MIP2017 10.96 ± 0.158 774.09 ± 0.578 9.12 ± 0.165 84.42 ± 0.201 21.46 ± 0.331 10.66 ± 0.109 21.04 ± 0.163
SAT2021 1292.76 ± 1.641 2855.57 ± 10.636 881.69 ± 0.982 1058.97 ± 3.283 1149.04 ± 3.73 990.96 ± 3.323 988.15 ± 2.662
SAT2021-up 1144.06 ± 3.648 2393.85 ± 4.799 780.02 ± 6.009 903.93 ± 2.517 1027.61 ± 3.815 876.77 ± 2.535 865.38 ± 2.578

Figure 8 Benchmark results on various sets of large, practical graphs (not permuted), timeout is
60s. Running out of memory also counts as a timeout. The benchmarks compare solver configurations
using the preprocessor (“sy+”) to state of the art saucy and Traces. Shown values are the sum
over all instances in the set in seconds. The average and standard deviation of 3 consecutive runs is
used. Bold entries indicates the fastest running time for the given set.

The only difference is that Traces might name the colors differently internally, e.g.,
color 3 might be named color 6 instead. While this does not structurally make the graph
harder or easier, heuristics internally might always, for example, choose the “first largest
color” (this is similar to, e.g., variable ordering in SAT solvers). Thus, renaming the colors
might influence the decisions made by the solver. Using the “first” color is however usually
not a deliberate decision. In fact, if we simply reverse the order of colors, the graph is indeed
solved in 0.12s. In [7], it is also argued that cell selector choice has a significant impact
on the set of shrunken multipedes. We believe that the solution to this issue is to make
structurally better choices, and has indeed little to do with the role of the preprocessor.

D Ablation study

In Figure 10 we evaluate for dejavu on the MIP2017 set the effect of each of the preprocessing
techniques separately. We do so by running the configuration SY+dejavu, but performing
a separate run for each technique, deactivating the respective technique. For example,
sy+dejavu-deg2 runs SY+dejavu without the degree 2 removal techniques. The data
shows that each of the techniques has a beneficial impact on running time. By far the most
impactful technique is the removal of degree 0 and 1, followed by the removal of vertices of
degree 2, and lastly probing.



M. Anders, P. Schweitzer, and J. Stieß 1:21

0 5 10 15 20 25

100

101

102

instance

co
m

pu
ta

tio
n

tim
e

dac

0 10 20 30 40 50

100

101

102

103

instance

co
m

pu
ta

tio
n

tim
e

states

0 0.5 1 1.5 2

102

103

instance

co
m

pu
ta

tio
n

tim
e

internet

0 2 4 6

102

103

instance

co
m

pu
ta

tio
n

tim
e

ispd

0 50 100 150 200 250

10−2

10−1

100

101

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

MIP2017

210 215 220 225 230 235 240

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

MIP2017, zoomed

0 100 200 300 400

10−1

100

101

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

SAT2021

350 360 370 380 390 400

104

105

instance

co
m

pu
ta

tio
n

tim
e

SAT2021, zoomed

0 100 200 300 400

10−1

100

101

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

SAT2021-up

saucy Traces sy+dejavu sy+Traces sy+bliss sy+saucy sy+nauty

Figure 9 Detailed plots for the various sets of Figure 8. The red bar illustrates timeouts. Instances
are sorted according to running time.

0 50 100 150 200 250
10−2

10−1

100

101

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

MIP2017 (ablation)

sy+dejavu
sy+dejavu-deg2
sy+dejavu-deg01
sy+dejavu-probe

210 215 220 225 230 235 240

102

103

104

105

instance

co
m

pu
ta

tio
n

tim
e

MIP2017 (ablation, zoomed)

sy+dejavu
sy+dejavu-deg2
sy+dejavu-deg01
sy+dejavu-probe

Figure 10 Ablation study for sy+dejavu on the MIP2017 graphs (times: 9.15s, 17.87s, 234.47s,
10.65s), timeout is 60s.

SEA 2023





Fast Reachability Using DAG Decomposition
Giorgos Kritikakis #

Univeristy of Crete, Heraklion, Greece

Ioannis G. Tollis #

Univeristy of Crete, Heraklion, Greece

Abstract
We present a fast and practical algorithm to compute the transitive closure (TC) of a directed
graph. It is based on computing a reachability indexing scheme of a directed acyclic graph (DAG),
G = (V, E). Given any path/chain decomposition of G we show how to compute in parameterized
linear time such a reachability scheme that can answer reachability queries in constant time. The
experimental results reveal that our method is significantly faster in practice than the theoretical
bounds imply, indicating that path/chain decomposition algorithms can be applied to obtain fast
and practical solutions to the transitive closure (TC) problem. Furthermore, we show that the
number of non-transitive edges of a DAG G is ≤ width ∗ |V | and that we can find a substantially
large subset of the transitive edges of G in linear time using a path/chain decomposition. Our
extensive experimental results show the interplay between these concepts in various models of DAGs.

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains; Theory of computation → Design and analysis of algorithms

Keywords and phrases graph algorithms, hierarchy, directed acyclic graphs (DAG), path/chain
decomposition, transitive closure, transitive reduction, reachability, reachability indexing scheme

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.2

Related Version Full Version: https://arxiv.org/abs/2212.03945

Supplementary Material Software (Source Code): https://github.com/GiorgosKritikakis/On
GraphHierarchies

1 Introduction

The problem of computing reachability information or a transitive closure of a directed graph
is fundamental in computer science and has a wealth of applications. Formally, given a
directed graph G = (V, E), the transitive closure of G, denoted as G*, is a graph (V, E*) such
that E* contains all edges in E, and for any pair of vertices u, v ∈ V , if there exists a directed
path from u to v in G, then there is a directed edge from u to v in E*. An edge (v1, v2) of a
DAG G is transitive if there is a path longer than one edge that connects v1 and v2. Given a
directed graph with cycles, we can find the strongly connected components (SCC) in linear
time and collapse all vertices of a SCC into a supernode. Hence, any reachability query can
be reduced to a query in the resulting Directed Acyclic Graph (DAG). Additionally, DAGs
are very important in many applications in several areas of research and business because
they often represent hierarchical relationships between objects in a structure. Any DAG
can be decomposed into vertex disjoint paths or chains. In a path every vertex is connected
to its successor by an edge, while in a chain any vertex is connected to its successor by a
directed path, which may be an edge. A path/chain decomposition is a set of vertex disjoint
paths/chains that cover all the vertices of a DAG.

The width of a DAG G = (V, E) is the maximum number of mutually unreachable vertices
of G [8]. An optimum chain decomposition of a DAG G contains the minimum number of
chains, k, which is equal to the width of G. In Section 2 we present experimental results
that show the behavior of the width of DAGs as they become larger and/or denser. Due to

© Giorgos Kritikakis and Ioannis G. Tollis;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 2; pp. 2:1–2:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:georgecretek@gmail.com
https://orcid.org/0000-0002-6223-0421
mailto:tollis@csd.uoc.gr
https://orcid.org/0000-0002-5507-7692
https://doi.org/10.4230/LIPIcs.SEA.2023.2
https://arxiv.org/abs/2212.03945
https://github.com/GiorgosKritikakis/OnGraphHierarchies
https://github.com/GiorgosKritikakis/OnGraphHierarchies
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 Fast Reachability Using DAG Decomposition

the multitude of applications there are several algorithms to find a chain decomposition of a
DAG, see for example [16, 9, 7, 22, 4, 5, 18, 26]. Some of them find the optimum and some
are heuristics. Generally speaking the algorithms that compute the optimum take more than
linear time and use flow techniques which are often heavy and complicated to implement. On
the other hand, for several practical applications it is not necessary to compute an optimum
chain decomposition.

We consider reachability mainly for the static case, i.e., when the graph does not change.
The question of whether an arbitrary vertex v can reach another arbitrary vertex u can be
answered in linear time by running a breadth-first or depth-first search from v, or it can be
answered in constant time after a reachability indexing scheme, or transitive closure of the
graph has been computed. The transitive closure of a graph can be computed in O(nm)
time by starting a breadth-first or depth-first search from each vertex. Alternatively, one
can use the Floyd-Warshall algorithm [12] which runs in O(n3), or solutions based on matrix
multiplication [24]. Currently, the best known bound on the asymptotic complexity of a matrix
multiplication algorithm O(n2.3728596) time [2]. An algorithm with complexity O(n2.37188)
was very recently announced in a preprint [10]. However, this and similar improvements to
Strassen’s Algorithm are not used in practice because the constant coefficient hidden by the
notation are extremely large. Here we focus on computing a reachability indexing scheme in
almost linear time. Notice that we do not explicitly compute the transitive closure matrix of
a DAG. The matrix can be easily computed from the reachability indexing scheme in O(n2)
time (constant time per entry).

(a) A path decomposition of a
graph consisting of 4 paths.

(b) A chain decomposition of a
graph consisting of 2 chains.

Figure 1 Path and chain decomposition of an example graph.

In this paper we present a practical algorithm to compute a reachability indexing scheme
(or the transitive closure information) of a DAG G = (V, E), utilizing a given path/chain
decomposition (i.e., the DAG and a path/chain decomposition are given as input to the



G. Kritikakis and I. G. Tollis 2:3

algorithm). The scheme can be computed in parameterized linear time, where the parameter
is the number, kc, of paths/chains in the given decomposition. The scheme can answer
any reachability query in constant time. Let Etr, Etr ⊂ E, denote the set of transitive
edges and Ered, Ered = E − Etr, denote the set of non-transitive edges of G. We show that
|Ered| ≤ width∗|V | and that we can compute a substantially large subset of Etr in linear time
(see Section 3). This implies that any DAG can be reduced to a smaller DAG that has the
same TC in linear time. Consequently, several hybrid reachability algorithms will run much
faster in practice. The time complexity to produce the scheme is O(|Etr|+kc ∗|Ered|), and its
space complexity is O(kc ∗ |V |) (see Section 4). Our experimental results reveal the practical
efficiency of this approach. In fact, the results show that our method is substantially better
in practice than the theoretical bounds imply, indicating that path/chain decomposition
algorithms can be used to solve the transitive closure (TC) problem. Clearly, given the
reachability indexing scheme the TC matrix can be computed in O(|V |2) time.

2 Width of a DAG and Decomposition into Paths/Chains

In this section, we briefly describe some categories of path and chain decomposition techniques
and show experimental results for the width in different graph models. We focus on fast and
practical path/chain decomposition heuristics. There are two categories of path decomposition
algorithms, Node Order Heuristic, and Chain Order Heuristic, see [16]. The first constructs
the paths one by one, while the second creates the paths in parallel. The chain-order heuristic
starts from a vertex and extends the path to the extent possible. The path ends when no
more unused immediate successors can be found. The node-order heuristic examines each
vertex (node) and assigns it to an existing path. If no such path exists, then a new path is
created for the vertex. In addition to path-decomposition algorithm categorization, Jagadish
in [16] describes chain decomposition heuristics. Those heuristics run in O(n2) time using a
pre-computed transitive closure, which is not linear, and we will not discuss them further.

In [19], a chain decomposition technique was introduced that runs in O(|E|+ c ∗ l) time,
where c is the number of path concatenations, and l is the length of a longest path of the
DAG. This approach relies on path concatenation. We can concatenate two paths/chains into
a single chain if there is a path between the last vertex of one chain and the first vertex of
another chain. This algorithm produces decompositions that are very close to the optimum,
and its worst-case time complexity is the same as the algorithms that construct simple path
decomposition. The above techniques have been tested in practice, and we can utilize any
of these approaches to build a chain decomposition in linear or almost linear time, see [19].
In the next sections, we describe how fast chain decomposition algorithms can enhance
transitive closure solutions, and present in detail an indexing scheme.

In the rest of this section, we present results that reveal the behavior of the width as
the graph density increases. We use three different random graph models implemented in
networkx : Erdős-Rényi [11], Barabasi-Albert [3], and Watts-Strogatz [28] models. The
generated graphs are made acyclic, by orienting all edges from low to high ID number, see the
documentation of networkx [14] for more information about the generators. For every model,
we created 12 types of graphs: Six types of 5000 nodes and six types of 10000 nodes, both
with average degrees 5, 10, 20, 40, 80, and 160. We used different average degrees in order
to have results for various sizes and densities. All experiments were conducted on a simple
laptop PC (Intel(R) Core(TM) i5-6200U CPU, with 8 GB of main memory). Our algorithms
have been developed as stand-alone java programs and were run on multiple copies of graphs.
We observed that the graphs generated by the same generator with the same parameters

SEA 2023



2:4 Fast Reachability Using DAG Decomposition

Table 1 The width of the graph in three different networkx models as the density increases for
graphs of 5000 nodes.

|V | = 5000
Av. Degree 5 10 20 40 80 160

BA
Width 1593 1018 623 320 187 163

ER
Width 785 403 217 110 56 33

WS, b=0.9
Width 560 187 54 22 17 15

WS, b=0.3
Width 9 4 4 4 4 4

have small width deviation. For example, the percentage of deviation on ER is about 5%
and for the BA model is less than 10%. The width deviation of the graphs in the WS model
is a bit higher, but this is expected since the width of these graphs is significantly smaller.
The aim of our experiments is to understand the behavior of the width of DAGs created
in different models. Tables 1 and 2 show the width (computed by Fulkerson’s method) for
graphs of 5000 nodes and 10000 nodes, respectively.

Random Graph Generators.
Erdős-Rényi (ER) model [11]: The generator returns a random graph Gn,p, where n

is the number of nodes and every edge is formed with probability p.
Barabási–Albert (BA) model [3]: preferential attachment model: A graph of n nodes
is grown by attaching new nodes each with m edges that are preferentially attached to
existing nodes with high degree. The factors n and m are parameters to the generator.
Watts–Strogatz (WS) model [28]: small-world graphs: First it creates a ring over n

nodes. Then each node in the ring is joined to its k nearest neighbors. Then shortcuts
are created by replacing some edges as follows: for each edge (u, v) in the underlying
“n-ring with k nearest neighbors” with probability b replace it with a new edge (u, w) with
uniformly random choice of an existing node w. The factors n, k, b are the parameters of
the generator.

Understanding the width in DAGS. In order to understand the behavior of the width of
DAGs of these random graph models we observe: (i) the BA model produces graphs with a
larger width than ER, and (ii) the ER model creates graphs with a larger width than WS.
For the WS model, we created two sets of graphs: The first has probability b = 0.9 and the
second has b = 0.3. Clearly, if the probability b of rewiring an edge is 0, the width would
be one, since the generator initially creates a path that goes through all vertices. As the
rewiring probability b grows, the width grows. That is the reason we choose a low and a
high probability. Figures 2a and 2b, are derived from Tables 1 and 2, and demonstrate the
behavior of the width for each model on the graphs of 5000 and 10000 nodes. Please notice
that in almost all model graphs (except for WS with b = 0.3) the width of a DAG decreases
fast as the density of the DAG increases. As a matter of fact, it is interesting to observe that
the width of the ER model graphs is proportional to Number of nodes

average degree . The width of the
BA model graphs is clearly higher, but it follows a similar trend.



G. Kritikakis and I. G. Tollis 2:5

(a) The width curve on graphs of 5000 nodes.

(b) The width curve on graphs of 10000 nodes.

Figure 2 The width curve on graphs of 5000 and 10000 nodes using three different models.

SEA 2023



2:6 Fast Reachability Using DAG Decomposition

Table 2 The width of the graph in three different networkx models as the density increases on
graphs of 10000 nodes.

|V | = 10000
Av. Degree 5 10 20 40 80 160

BA
Width 3282 2066 1172 678 351 198

ER
Width 1561 802 409 219 110 58

WS, b=0.9
Width 1101 378 93 27 20 18

WS, b=0.3
Width 12 4 4 4 4 4

3 DAG Reduction for Faster Transitivity

The importance of removing transitive edges in order to create an abstract graph utilizing
paths and chains was first described in [20]. Their focus was on graph visualization techniques,
while in this paper we apply a similar abstraction to solve the transitive closure problem.
This concept of abstraction or reduction of a DAG may be useful in several applications
beyond transitive closure or reachability. Therefore we state the following useful lemmas and
Theorem 3:

▶ Lemma 1. Given a chain decomposition D of a DAG G = (V, E), each vertex vi ∈ V ,
0 ≤ i < |V |, can have at most one outgoing non-transitive edge per chain.

Proof. Given a graph G(V, E), a decomposition D(C1, C2, ..., Ckc
) of G, and a vertex v ∈ V ,

assume vertex v has two outgoing edges, (v, t1) and (v, t2), and both t1 and t2 are in chain
Ci. The vertices are in ascending topological order in the chain by definition. Assume t1 has
a lower topological rank than t2. Thus, there is a path from t1 to t2, and accordingly a path
from v to t2 through t1. Hence, the edge (v, t2) is transitive. See Figure 3a. ◀

▶ Lemma 2. Given a chain decomposition D of a DAG G = (V, E), each vertex vi ∈ V ,
0 ≤ i < |V |, can have at most one incoming non-transitive edge per chain.

Proof. Similar to the proof of Lemma 1, see Figure 3b. ◀

▶ Theorem 3. Let G = (V, E) be a DAG with width w. The non-transitive edges of G are
less than or equal to width ∗ |V |, in other words |Ered| = |E| − |Etr| ≤ width ∗ |V |.

Proof. Given any DAG G and its width w, there is a chain decomposition of G with w number
of chains. By Lemma 1, every vertex of G could have only one outgoing, non-transitive
edge per chain. The same holds for the incoming edges, according to Lemma 2. Thus the
non-transitive edges of G are bounded by width ∗ |V |. ◀

An interesting application of the above is that we can find a significantly large subset
of Etr in linear time as follows: Given any chain (or path) decomposition with kc chains,
we can trace the vertices and their outgoing edges and keep the edges that point to the
lowest point of each chain, rejecting the rest as transitive. We do the same for the incoming
edges keeping the edges that come from the highest point (i.e., the vertex with the highest
topological rank) of each chain. In this fashion we find a superset of Ered, call it E′

red, in



G. Kritikakis and I. G. Tollis 2:7

(a) (b)

Figure 3 The light blue edges are transitive. (a) shows the outgoing transitive edges that end in
the same chain. (b) shows the incoming transitive edges that start from the same chain.

linear time. Equivalently, we can find E′
tr = E − E′

red. E′
tr is a significantly large subset of

Etr since |E − E′
tr| = |E′

red| ≤ kc ∗ |V |. Clearly, this approach can be used as a linear-time
preprocessing step in order to substantially reduce the size of any DAG while keeping the
same transitive closure as the original DAG G. Consequently, this will speed up every
transitive closure algorithm bounding the number of edges of any input graph, and the
indegree and outdegree of every vertex by kc. For example, algorithms based on tree cover,
see [1, 6, 25, 27], are practical on sparse graphs and can be enhanced further with such
a preprocessing step that removes transitive edges. Additionally, this approach may have
practical applications in dynamic or hybrid transitive closure techniques: If one chooses to
answer queries online by using graph traversal for every query, one could reduce the size
of the graph with a fast (linear-time) preprocessing step that utilizes chains. Also, in the
case of insertion/deletion of edges one could quickly decide if the edges to add or remove
are transitive. Transitive edges do not affect the transitive closure, hence no updates are
required. This could be practically useful in dynamic insertion/deletion of edges.

4 Reachability Indexing Scheme

In this section, we present an important application that uses a chain decomposition of a
DAG. Namely, we solve the transitive closure problem by creating a reachability indexing
scheme that is based on a chain decomposition and we evaluate it by running extensive
experiments. Our experiments shed light on the interplay of various important factors as the
density of the graphs increases.

Jagadish described a compressed transitive closure technique in 1990 [16] by applying
an indexing scheme and simple path/chain decomposition techniques. His method uses
successor lists and focuses on the compression of the transitive closure. Thus his scheme does
not answer queries in constant time. Simon [23], describes a technique similar to [16]. His
technique is based on computing a path decomposition, thus boosting the method presented

SEA 2023



2:8 Fast Reachability Using DAG Decomposition

in [13]. The linear time heuristic used by Simon is similar to the Chain Order Heuristic
of [16]. A different approach is a graph structure referred to as path-tree cover introduced
in [17], similarly, the authors utilize a path decomposition algorithm to build their labeling.

In the following subsections, we describe how to compute an indexing scheme in O(|Etr|+
kc ∗ |Ered|) time, where kc is the number of chains (in any given chain decomposition) and
|Ered| is the number of non-transitive edges. Following the observations of Section 3, the time
complexity of the scheme can be expressed as O(|Etr|+kc∗|Ered|) = O(|Etr|+kc∗width∗|V |)
since |Ered| ≤ width ∗ |V |. Using an approach similar to Simon’s [23] our scheme creates
arrays of indices to answer queries in constant time. The space complexity is O(kc ∗ |V |).

For our experiments, we utilize the chain decomposition approach of [19], which produces
smaller decompositions than previous heuristic techniques, without any considerable run-time
overhead. Additionally, this heuristic, called NH_conc, will perform better than any path
decomposition algorithms as will be explained next. Thus the indexing scheme is more
efficient both in terms of time and space requirements. Furthermore, the experimental work
shows that, as expected, the chains rarely have the same length. Usually, a decomposition
consists of a few long chains and several short chains. Hence, for most graphs it is not even
possible to have |Ered| = width ∗ |V |, which assumes the worst case for the length of each
chain. In fact, |Ered| is usually much lower than that and the experimental results presented
in Tables 3 and 4 confirm this observation in practice.

Given a directed graph with cycles, we can find the strongly connected components (SCC)
in linear time. Since any vertex is reachable from any other vertex in the same SCC (they
form an equivalence class), all vertices in a SCC can be collapsed into a supernode. Hence,
any reachability query can be reduced to a query in the resulting directed acyclic graph
(DAG). This is a well-known step that has been widely used in many applications. Therefore,
without loss of generality, we assume that the input graph to our method is a DAG. The
following general steps describe how to compute the reachability indexing scheme:
1. Compute a Chain decomposition
2. Sort all Adjacency Lists
3. Create an Indexing Scheme
In Step 1, we use our chain decomposition technique that runs in O(|E| + c ∗ l) time. In
Step 2, we sort all the adjacency lists in O(|V |+ |E|) time. Finally, we create an indexing
scheme in O(|Etr|+ kc ∗ |Ered|) time and O(kc ∗ |V |) space. Clearly, if the algorithm of Step
1 computes fewer chains then Step 3 becomes more efficient in terms of time and space.

4.1 The Indexing Scheme
Given any chain decomposition of a DAG G with size kc, an indexing scheme will be computed
for every vertex that includes a pair of integers and an array of size kc of indexes. A small
example is depicted in Figure 4. The first integer of the pair indicates the node’s chain and
the second its position in the chain. For example, vertex 1 of Figure 4 has a pair (1, 1). This
means that vertex 1 belongs to the 1st chain, and it is the 1st element in it. Given a chain
decomposition, we can easily construct the pairs in O(|V |) time using a simple traversal of
the chains. Every entry of the kc-size array represents a chain. The i-th cell represents the
i-th chain. The entry in the i-th cell corresponds to the lowest point of the i-th chain that
the vertex can reach. For example, the array of vertex 1 is [1, 2, 2]. The first cell of the array
indicates that vertex 1 can reach the first vertex of the first chain (can reach itself, reflexive
property). The second cell of the array indicates that vertex 1 can reach the second vertex
of the second chain (There is a path from vertex 1 to vertex 7). Finally, the third cell of the
array indicates that vertex 1 can reach the second vertex of the third chain.



G. Kritikakis and I. G. Tollis 2:9

Figure 4 An example of an indexing scheme.

Notice that we do not need the second integer of all pairs. If we know the chain a vertex
belongs to, we can conclude its position using the array. We use this presentation to simplify
the understanding of the users.

The process of answering a reachability query is simple. Assume, there is a source vertex
s and a target vertex t. To find if vertex t is reachable from s, we first find the chain of t, and
we use it as an index in the array of s. Hence, we know the lowest point of t’s chain vertex s

can reach. s can reach t if that point is less than or equal to t’s position, else it cannot.

4.2 Sorting Adjacency lists
Next, we use a linear time algorithm to sort all the adjacency lists of immediate successors in
ascending topological order. See Algorithm 2 in Appendix A.2. The algorithm maintains a
stack for every vertex that indicates the sorted adjacency list. Then it traverses the vertices
in reverse topological order, (vn, ..., v1). For every vertex vi, 1 ≤ i ≤ n, it pushes vi into
all immediate predecessors’ stacks. This step can be performed as a preprocessing step,
even before receiving the chain decomposition. To emphasize its crucial role in the efficient
creation of the indexing scheme, if the lists are not sorted then the second part of the time
complexity would be O(kc ∗ |E|) instead of O(kc ∗ |Ered|).

4.3 Creating the Indexing Scheme
Now we present Algorithm 1 that constructs the indexing scheme. The first for-loop initializes
the array of indexes. For every vertex, it initializes the cell that corresponds to its chain. The
rest of the cells are initialized to infinity. The indexing scheme initialization is illustrated in
Figure 5. The dashes represent the infinite values. Notice that after the initialization, the
indexes of all sink vertices have been calculated. Since a sink has no successors, the only
vertex it can reach is itself.

The second for-loop builds the indexing scheme. It goes through vertices in descending
topological order. For each vertex, it visits its immediate successors (outgoing edges) in
ascending topological order and updates the indexes. Suppose we have the edge (v, s), and
we have calculated the indexes of vertex s (s is an immediate successor of v). The process

SEA 2023



2:10 Fast Reachability Using DAG Decomposition

Algorithm 1 Indexing Scheme.

1: procedure Create Indexing Scheme(G, T, D)
INPUT: A DAG G = (V, E), a topological sorting T of G, and the decomposition D of
G.

2: for each vertex: vi ∈ G do
3: vi.indexes ← new table[size of D]
4: vi.indexes.fill(∞)
5: ch_no← vi’s chain index
6: pos← vi’s chain position
7: vi.indexes[ ch_no ]← pos

8: end for
9: for each vertex vi in reverse topological order do

10: for each adjacent target vertex t of vi in ascending topological order do
11: t_ch← chain index of t

12: t_pos← chain position of t

13: if t_pos < vi.indexes[t_ch] then ▷ (vi, t) is not transitive
14: vi.updateIndexes(t.indexes)
15: end if
16: end for
17: end for
18: end procedure

Figure 5 Initialization of indexes.



G. Kritikakis and I. G. Tollis 2:11

of updating the indexes of v with its immediate successor, s, means that s will pass all its
information to vertex v. Hence, vertex v will be aware that it can reach s and all its successors.
Assume the array of indexes of v is [a1, a2, ..., akc

] and the array of s is [b1, b2, ..., bkc
]. To

update the indexes of v using s, we merely trace the arrays and keep the smallest values.
For every pair of indexes (ai, bi), 0 ≤ i < kc, the new value of ai will be min{ai, bi}. This
process needs kc steps.

▶ Lemma 4. Given a vertex v and the calculated indexes of its successors, the while-loop
of Algorithm 1 (lines 10-17) calculates the indexes of v by updating its array with its non-
transitive outgoing edges’ successors. (Proof in Appendix A.1).

Combining the previous algorithms and results we conclude this section with the following:

▶ Theorem 5. Let G = (V, E) be a DAG. Algorithm 1 computes an indexing scheme for G

in O(|Etr|+ kc ∗ |Ered|) time. (Proof in Appendix A.1).

As described in the introduction, a parameterized linear-time algorithm for computing the
minimum number of chains was recently presented in [5]. Its time complexity is O(k3|V |+|E|)
where k is the minimum number of chains, which is equal to the width of G. If we use
this chain decomposition as input to Algorithm 1 it computes an indexing scheme for G in
parameterized linear time. This implies that the transitive closure of G can be computed in
parameterized linear time. Hence we have the following:

▶ Corollary 6. Let G = (V, E) be a DAG. Algorithm 1 can be used to compute an indexing
scheme for G in parameterized linear time. Hence the transitive closure of G can be computed
in parameterized linear time.

4.4 Experimental Results
We conducted experiments using the same graphs of 5000 and 10000 nodes as we described
in Section 2 that were produced by the four different models of Networkx [14] and the Path-
Based model of [21]. We computed a chain decomposition using the algorithm introduced
in [19], called NH_conc, and created an indexing scheme using Algorithm 1. For simplicity,
we assume that the adjacency lists of the input graph are sorted, using Algorithm 2, as a
preprocessing step. We report our experimental results in Tables 3 and 4 for graphs with
5000 nodes and graphs with 10000 nodes, respectively.

In theory, the phase of the indexing scheme creation needs O(|Etr|+ kc ∗ |Ered|) time.
However, the experimental results shown in the tables reveal some interesting (and expected)
findings in practice: As the average degree increases and the graph becomes denser, (a)
the cardinality of Ered remains almost stable; and (b) the number of chains decrease. The
observation that the number of non-transitive edges, Ered, does not vary significantly as
the average degree increases, implies that the number of transitive edges, |Etr|, increases
proportionally to the increase in the number of edges, since (Etr = E − Ered). Since the
algorithm merely traces in linear time the transitive edges, the growth of |Etr| affects the run
time only linearly. As a result, the run time of our technique does not increase significantly
as the the size (number of edges) of the input graph increases. In order to demonstrate this
fact visually, we show the curves of the running time for the graphs of 10000 nodes produced
by the ER model in Figure 6 (see Appendix A). The flat (blue line) represents the run time
to compute the indexing scheme, and the curve (red line) the run time of the DFS-based
algorithm for computing the transitive closure (TC). Clearly, the time of the DFS-based
algorithm increases as the average degree increases, while the time of the indexing scheme is
a straight line almost parallel to the x-axis. All models of Tables 3 and 4 follow this pattern.

SEA 2023



2:12 Fast Reachability Using DAG Decomposition

Table 3 Experimental results for the indexing scheme for graphs of 5000 nodes.

|V | = 5000

Average
Degree

Number
of
Chains

|Etr| |Ered| |Etr|/|E|
NH_conc

Time
(ms)

Indexing
Scheme
Time
(ms)

Total
time
(ms)

TC

BA
5 1630 8054 18921 0.32 3 101 104 137
10 1055 28230 21670 0.57 12 79 91 333
20 664 75801 23799 0.76 6 54 60 638
40 335 180815 22504 0.89 10 48 58 1418
80 207 382422 20854 0.95 122 118 240 3018
160 163 770771 17660 0.98 25 107 132 5464

ER
5 923 3440 21466 0.14 6 67 73 172
10 492 24761 25425 0.49 10 51 61 487
20 252 75312 24646 0.75 5 26 31 1079
40 139 175809 22634 0.89 46 51 97 2896
80 70 378015 19435 0.95 16 50 66 5260
160 38 769919 16843 0.98 98 138 236 8609

WS, b=0.9
5 687 7742 17258 0.30 13 71 84 393
10 212 37992 12008 0.76 11 18 29 817
20 60 89272 10728 0.89 23 22 45 1530
40 25 186486 13514 0.93 47 45 92 3704
80 20 386294 13706 0.97 115 103 218 6172
160 17 787066 12934 0.98 253 207 460 9173

WS, b=0.3
5 9 18421 6579 0.74 11 8 19 910
10 4 43505 6495 0.87 8 11 19 1107
20 4 93490 6510 0.93 18 18 36 2176
40 5 193416 6584 0.97 17 18 35 4753
80 4 393348 6652 0.98 98 82 180 7949
160 5 793430 6570 0.99 250 166 416 11757

PB, Paths=70
5 86 14155 10809 0.57 8 7 15 206
10 101 36801 13102 0.74 7 12 19 313
20 107 84168 15419 0.85 7 15 22 890
40 93 181388 16988 0.91 49 216 265 2584
80 73 376220 17303 0.96 128 163 291 4603
160 51 758207 16566 0.98 55 141 196 9358



G. Kritikakis and I. G. Tollis 2:13

Table 4 Experimental results for the indexing scheme for graphs of 10000 nodes.

|V | = 10000

Average
Degree

Number
of
Chains

|Etr| |Ered| |Etr|/|E|
NH_conc

Time
(ms)

Indexing
Scheme
Time
(ms)

Total
time
(ms)

TC

BA
5 3341 14544 35431 0.29 7 278 285 441
10 2159 53503 46397 0.54 14 231 245 1379
20 1264 147791 51809 0.74 15 218 233 3347
40 752 355854 52465 0.85 28 188 216 7700
80 400 764926 48350 0.94 271 322 593 14632
160 228 1560464 42967 0.97 81 264 345 24601

ER
5 1837 5595 44401 0.11 12 200 212 600
10 1003 44813 55366 0.45 9 161 170 1935
20 516 144276 55310 0.72 16 110 126 6031
40 271 347323 52620 0.87 25 101 126 13522
80 139 749781 46666 0.94 40 145 185 23052
160 72 1548153 39710 0.97 73 249 322 37613

WS, b=0.9
5 1332 13353 36647 0.27 12 175 187 1213
10 447 74782 25218 0.75 9 53 62 3829
20 100 178930 21070 0.89 13 32 45 9279
40 29 373054 26946 0.93 24 60 84 13144
80 24 771374 28626 0.96 266 247 513 25585
160 22 1571957 28043 0.98 80 232 312 36507

WS, b=0.3
5 12 36816 13184 0.73 27 19 46 3468
10 4 86804 13196 0.86 18 45 63 5063
20 4 186756 13244 0.93 10 42 52 12156
40 4 386751 13249 0.97 19 48 67 21055
80 4 786840 13160 0.98 237 187 424 31016
160 4 1586896 13104 0.99 62 167 229 40704

PB, Paths=100
5 125 8182 16810 0.33 12 16 28 240
10 141 74182 25722 0.74 11 30 41 937
20 153 168839 30728 0.85 13 43 56 5015
40 142 363753 34606 0.91 27 78 105 13797
80 120 756578 36918 0.96 56 142 198 27904
160 89 1538101 36496 0.98 77 265 342 41235

SEA 2023



2:14 Fast Reachability Using DAG Decomposition

Apparently, there is a trade-off to consider when building an indexing scheme deploying the
technique of [19]. The heuristic performs concatenations between paths. For every successful
concatenation, the extra runtime overhead is O(l), where l is the longest path between
the two concatenated paths. The unsuccessful concatenations do not cause any overhead.
Assume that we have a path decomposition, and then we perform chain concatenation. If
there is no concatenation between two paths, the concatenation algorithm will run in linear
time.

On the other hand, if there are concatenations, for each one of them, then the cost is O(l)
time, but the savings in the indexing scheme creation is Θ(|V |) in space requirements and
Θ(|Ered|) in time, since every concatenation reduces the needed index size for every vertex
by one. Hence, instead of computing a simple path decomposition (in linear time) the use of
a path concatenation procedure in order to create a more compact indexing scheme faster
is preferred for almost all applications. Another interesting and to some extent surprising
observation that comes from the results of Tables 3 and 4 is that the transitive edges for
almost all models of the graphs of 5000 and 10000 nodes with average degree above 20
are above 85%, i.e., |Etr|/|E| ≥ 85%, see the appropriate columns in both tables. In some
cases where the graphs are a bit denser, the percentage grows above 95%. This observation
has important implications in designing practical algorithms for faster transitive closure
computation in both the static and the dynamic case.

5 Conclusions and Extensions

Our extensive experiments expose the practical behavior of (1) the width, (2) Ered, and
(3) Etr as the density and size of graphs grow. Furthermore, we show that the set Ered is
bounded by width ∗ |V | and show how to find a substantially large subset of Etr in linear
time given any path/chain decomposition. These facts have important practical implications
to the reachability problem and show the potential applications of these techniques in a
dynamic setting where edges and nodes are inserted and deleted from a (very large) graph.
Although our techniques were not developed for the dynamic case, the picture that emerges
is very interesting.

According to our experimental results, see Tables 3 and 4, the overwhelming majority
of edges in a DAG are transitive. The insertion or deletion of a transitive edge clearly
requires a constant time update since it does not affect transitivity, and can be detected in
constant time. On the other hand, the insertion or removal of a non-transitive edge may
require a minor or major recomputation in order to reestablish a correct chain decomposition.
Similarly, since the nodes of the DAG are topologically ordered, the insertion of an edge
that goes from a high node to a low node signifies that the SCCs of the graph have changed,
perhaps locally. However, even if the insertion/deletion of new nodes/edges causes significant
changes in the reachability index (transitive closure) one can simply recompute a chain
decomposition in linear or almost linear time, and then recompute the reachability scheme
in parameterized linear time, O(|Etr| + kc ∗ |Ered|), and O(kc ∗ |V |) space, which is still
very efficient in practice, see [15] for a very recent comparison of practical fully dynamic
transitive closure techniques. We plan to work on the problems that arise in the computation
of dynamic path/chain decomposition and reachability indexes in the future.



G. Kritikakis and I. G. Tollis 2:15

References
1 Rakesh Agrawal, Alexander Borgida, and Hosagrahar Visvesvaraya Jagadish. Efficient man-

agement of transitive relationships in large data and knowledge bases. ACM SIGMOD Record,
18(2):253–262, 1989.

2 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539. SIAM, 2021.

3 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

4 Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and Alexandru I Tomescu.
A linear-time parameterized algorithm for computing the width of a dag. In International
Workshop on Graph-Theoretic Concepts in Computer Science, pages 257–269. Springer, 2021.

5 Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and Alexandru I Tomescu.
Sparsifying, shrinking and splicing for minimum path cover in parameterized linear time. In
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 359–376. SIAM, 2022.

6 Li Chen, Amarnath Gupta, and M Erdem Kurul. Stack-based algorithms for pattern matching
on dags. In Proceedings of the 31st international conference on Very large data bases, pages
493–504. Citeseer, 2005.

7 Yangjun Chen and Yibin Chen. On the dag decomposition. British Journal of Mathematics
and Computer Science, 2014. 10(6): 1-27, 2015, Article no.BJMCS.19380, ISSN: 2231-
0851. URL: https://www.researchgate.net/publication/285591312_Pre-Publication_
Draft_2015_BJMCS_19380.

8 R. P. DILWORTH. A decomposition theorem for partially ordered sets. Ann. Math., 52:161–166,
1950.

9 Fulkerson DR. Note on dilworth’s embedding theorem for partially ordered sets. Proc. Amer.
Math. Soc., 52(7):701–702, 1956.

10 Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric
hashing, 2023. arXiv:2210.10173.

11 P Erdös and A Rényi. On random graphs I. Publicationes Mathematicae Debrecen, 1959.
12 Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.
13 Alla Goralčíková and Václav Koubek. A reduct-and-closure algorithm for graphs. In Interna-

tional Symposium on Mathematical Foundations of Computer Science, pages 301–307. Springer,
1979.

14 Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2008.

15 Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Faster fully dynamic transitive
closure in practice. CoRR, abs/2002.00813, 2020. arXiv:2002.00813.

16 H. V. Jagadish. A compression technique to materialize transitive closure. ACM Trans.
Database Syst., 15(4):558–598, December 1990. doi:10.1145/99935.99944.

17 Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently answering reachability
queries on very large directed graphs. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 595–608, 2008.

18 Shimon Kogan and Merav Parter. Beating matrix multiplication for nˆ{1/3}-directed shortcuts.
In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

19 Giorgos Kritikakis and Ioannis G Tollis. Fast and practical dag decomposition with reachability
applications. arXiv e-prints, 2022. arXiv:2212.03945.

20 Panagiotis Lionakis, Giacomo Ortali, and Ioannis Tollis. Adventures in abstraction: Reachabil-
ity in hierarchical drawings. In Graph Drawing and Network Visualization: 27th International
Symposium, GD 2019, Prague, Czech Republic, September 17–20, 2019, Proceedings, pages
593–595, 2019.

SEA 2023

https://www.researchgate.net/publication/285591312_Pre-Publication_Draft_2015_BJMCS_19380
https://www.researchgate.net/publication/285591312_Pre-Publication_Draft_2015_BJMCS_19380
https://arxiv.org/abs/2210.10173
https://arxiv.org/abs/2002.00813
https://doi.org/10.1145/99935.99944
https://arxiv.org/abs/2212.03945


2:16 Fast Reachability Using DAG Decomposition

21 Panagiotis Lionakis, Giacomo Ortali, and Ioannis G Tollis. Constant-time reachability in dags
using multidimensional dominance drawings. SN Computer Science, 2(4):1–14, 2021.

22 Veli Mäkinen, Alexandru I Tomescu, Anna Kuosmanen, Topi Paavilainen, Travis Gagie, and
Rayan Chikhi. Sparse dynamic programming on dags with small width. ACM Transactions
on Algorithms (TALG), 15(2):1–21, 2019.

23 K. SIMON. An improved algorithm for transitive closure on acyclic digraphs. Theor. Comput.
Sci., 58(1-3):325–346, 1988.

24 Volker Strassen et al. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–
356, 1969.

25 Silke Trißl and Ulf Leser. Fast and practical indexing and querying of very large graphs. In
Proceedings of the 2007 ACM SIGMOD international conference on Management of data,
pages 845–856, 2007.

26 Jan Van Den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao
Song, and Di Wang. Minimum cost flows, mdps, and ℓ1-regression in nearly linear time for
dense instances. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 859–869, 2021.

27 Haixun Wang, Hao He, Jun Yang, Philip S Yu, and Jeffrey Xu Yu. Dual labeling: Answering
graph reachability queries in constant time. In 22nd International Conference on Data
Engineering (ICDE’06), pages 75–75. IEEE, 2006.

28 Duncan J Watts and Steven H Strogatz. Collective dynamics of ’small-world’ networks. nature,
393(6684):440–442, 1998.

A Appendix

A.1 Proofs

Proof of Lemma 4. Updating the indexes of vertex v with all its immediate successors will
make v aware of all its descendants. The while-loop of Algorithm 1 does not perform the
update function for every direct successor. It skips all the transitive edges. Assume there is
such a descendant t and the transitive edge (v, t). Since the edge is transitive, we know by
definition that there exists a path from v to t with a length of more than 1. Suppose that
the path is (v, v1, .., t). Vertex v1 is a predecessor of t and immediate successor of v. Hence
it has a lower topological rank than t. Since, while-loop examines the incident vertices in
ascending topological order, then vertex t will be visited after vertex v1. The opposite leads
to a contradiction. Consequently, for every incident transitive edge of v, the loop firstly visits
a vertex v1 which is a predecessor of t. Thus vertex v will be firstly updated by v1 and it will
record the edge (v, t) as transitive. Hence there is no reason to update the indexes of vertex
v with those of vertex t since the indexes of t will be greater than or equal to those of v. ◀

Proof of Theorem 5. In the initialization step, the indexes of all sink vertices have been
computed as we described above. Taking vertices in reverse topological order, the first vertex
we meet is a sink vertex. When the for-loop of line 9 visits the first non-sink vertex, the
indexes of its successors are computed (all its successors are sink vertices). According to
Lemma 5.1, we can calculate its indexes, ignoring the transitive edges. Assume the for-loop
has reached vertex vi in the ith iteration, and the indexes of its successors are calculated.
Following Lemma 5.1, we can calculate its indexes. Hence, by induction, we can calculate the
indexes of all vertices, ignoring all |Etr| transitive edges in O(|Etr|+ kc ∗ |Ered|) time. ◀



G. Kritikakis and I. G. Tollis 2:17

Algorithm 2 Sorting Adjacency lists.

1: procedure Sort(G, t)
INPUT: A DAG G = (V, E)

2: for each vertex: vi ∈ G do
3: vi.stack ← new stack()
4: end for
5: for each vertex vi in reverse topological order do
6: for every incoming edge e(sj, vi) do
7: sj .stack.push(vi)
8: end for
9: end for

10: end procedure

A.2 Sorting Adjacency lists Algorithm
▶ Lemma 7. Algorithm 2 sorts the adjacency lists of immediate successors in ascending
topological order, in linear time.

Proof. Assume that there is a stack (u1, ..., un), u1 is at the top of the stack. Assume that
there is a pair (uj , uk) in the stack, where uj has a bigger topological rank than uk and
uj precedes uk. This means that the for-loop examined uj before uk. Since the algorithm
processes the vertices in reverse topological order, this is a contradiction. Vertex uj cannot
precede uk if it were examined first by the for-loop. The algorithm traces all the incoming
edges of every vertex. Therefore, it runs in linear time. ◀

A.3 Figures

Figure 6 Run time comparison between the Indexing Scheme (blue line) and TC (red line) for
ER model on graphs of 10000 nodes, see Table 4.

SEA 2023





Partitioning the Bags of a Tree Decomposition
into Cliques
Thomas Bläsius # Ñ

Karlsruhe Institute of Technology, Germany

Maximilian Katzmann #

Karlsruhe Institute of Technology, Germany

Marcus Wilhelm #

Karlsruhe Institute of Technology, Germany

Abstract
We consider a variant of treewidth that we call clique-partitioned treewidth in which each bag is
partitioned into cliques. This is motivated by the recent development of FPT-algorithms based on
similar parameters for various problems. With this paper, we take a first step towards computing
clique-partitioned tree decompositions.

Our focus lies on the subproblem of computing clique partitions, i.e., for each bag of a given
tree decomposition, we compute an optimal partition of the induced subgraph into cliques. The
goal here is to minimize the product of the clique sizes (plus 1). We show that this problem is
NP-hard. We also describe four heuristic approaches as well as an exact branch-and-bound algorithm.
Our evaluation shows that the branch-and-bound solver is sufficiently efficient to serve as a good
baseline. Moreover, our heuristics yield solutions close to the optimum. As a bonus, our algorithms
allow us to compute first upper bounds for the clique-partitioned treewidth of real-world networks.
A comparison to traditional treewidth indicates that clique-partitioned treewidth is a promising
parameter for graphs with high clustering.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Graph algorithms analysis

Keywords and phrases treewidth, weighted treewidth, algorithm engineering, cliques, clustering,
complex networks

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.3

Related Version Full Version: https://arxiv.org/abs/2302.08870

Supplementary Material Software (Source Code): https://github.com/marcwil/cptw_code
archived at swh:1:dir:d611a7236b805d6eb409147b28b514f9132f96c1

Software (Source Code: Archive, Docker Image): https://doi.org/10.5281/zenodo.7816985

1 Introduction

The treewidth is a measure for how treelike a graph is in terms of its separators. It is defined
via a tree decomposition, a collection of vertex separators called bags that are arranged in a
tree structure. The size of the largest bag determines the width of the decomposition and
the treewidth of a graph is the minimum width over all tree decompositions.

The concept of treewidth has its origins in graph theory with some deep structural
insights [22, 24]. Additionally, there are algorithmic implications. Intuitively speaking, the
separators of a tree decomposition split the graph into pieces that can be solved independently
except for minor dependencies at the separators. This is often formalized using a dynamic
program over the tree decomposition, yielding an FPT-algorithm (fixed-parameter tractable)
with the treewidth as parameter [9]. As this is a versatile framework that can be applied to
many problems, it comes to no surprise that there has been quite a bit of effort to develop
algorithms for computing low-width tree decompositions (see, e.g., [15, 16]).

© Thomas Bläsius, Maximilian Katzmann, and Marcus Wilhelm;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 3; pp. 3:1–3:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thomas.blaesius@kit.edu
http://scale.iti.kit.edu
https://orcid.org/0000-0003-2450-744X
mailto:maximilian.katzmann@kit.edu
https://orcid.org/0000-0002-9302-5527
mailto:marcus.wilhelm@kit.edu
https://orcid.org/0000-0002-4507-0622
https://doi.org/10.4230/LIPIcs.SEA.2023.3
https://arxiv.org/abs/2302.08870
https://github.com/marcwil/cptw_code
https://archive.softwareheritage.org/swh:1:dir:d611a7236b805d6eb409147b28b514f9132f96c1;origin=https://github.com/marcwil/cptw_code;visit=swh:1:snp:c3663ac8410092e85e7e7eeddeca1ec0a8a94dbf;anchor=swh:1:rev:9f922b3f71896140422b2de544e90cbd18e7cace
https://doi.org/10.5281/zenodo.7816985
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 Partitioning the Bags of a Tree Decomposition into Cliques

A major obstruction for low treewidth are large cliques, which inevitably lead to large
separators. This is particularly true for so-called complex networks, i.e., graphs with strong
community structure and heterogeneous degree distribution, which appear in various domains
such as communication networks, social networks, or webgraphs. One could, however, hope
for two aspects that together mitigate this negative effect of large cliques. First, though some
separators need to be large, these separators are structurally simple, e.g., they form a clique
or can be covered with few cliques. Second, separators that are large but structurally simple
still let us solve the separated pieces individually with low dependence between them. The
first hope is supported by the fact that the treewidth is asymptotically equal to the clique
number in hyperbolic random graphs [5]; a popular model for complex networks [21]. This
indicates that cliques are indeed the main obstruction for low treewidth in these kinds of
networks. The second hope is supported by the results of de Berg et al. [14], who introduced
the concept P-flattened tree decompositions. There, the graph is partitioned into cliques
and the width of the tree decomposition is measured in terms of the (weighted) number of
cliques in a bag. Thus, the width does measure the complexity of separators rather than
their size. Based on this definition, the authors then show that these structurally simple
separators help to solve various graph problems efficiently.

To the best of our knowledge, these extended concepts have not yet been studied from
a practical perspective. With this paper, we want to initiate this line of research by
addressing two questions. First, can such clique-partitioned tree decompositions lead to
substantially smaller width values than classical tree decompositions? Second, how can such
tree decompositions be computed? For the second question, we design and evaluate different
algorithmic strategies for computing a novel yet closely related variant of tree decompositions.
Our experiments yield some interesting algorithmic insights and provide a good starting point
for further development. On networks that do exhibit clique structures, the constructed tree
decompositions indeed have sufficiently low width to answer the first question affirmatively.
We believe that there is plenty of room for improvement in our approaches, which may yield
even better insights into the applicability of the new parameter. In the following, we discuss
related work before stating our contribution more precisely.

1.1 Related Work
There are multiple lines of research that investigate variants of treewidth where additional
structural properties are taken into account. As mentioned above, De Berg et al. [14] propose
a variant of tree decompositions where the initial graph is partitioned into cliques (or unions
of constantly many connected cliques) that are contracted into weighted vertices. The weight
of a clique of size s is log(s + 1) and the weight of a bag of the tree decomposition is the
sum of its weights. Using this technique, they give subexponential algorithms for a range of
problems on geometric intersection graphs, including Independent Set, Steiner Tree and
Feedback Vertex Set. For some of these problems, the algorithms are also representation
agnostic, while for most others, the geometric representation is required. They also prove
that the running time of the algorithms is tight under the exponential-time-hypothesis
(ETH). Kisfaludi-Bak [20] applied the same algorithmic framework to intersection graphs of
constantly sized objects in the hyperbolic plane.

A similar parameter called tree clique width has been proposed by Aronis [2]. Here, the
idea is to consider tree decompositions where each bag is annotated with an edge clique cover
(ecc) and where the size of the cover determines the width of a bag. The paper shows several
hardness results and adapts common treewidth algorithms to the newly proposed parameter.



T. Bläsius, M. Katzmann, and M. Wilhelm 3:3

Another approach to capture graph structures that lead to high treewidth despite being
structurally simple has been proposed by Dallard, Milanič, and Štorgel. They define the
independence number of a tree decomposition as the size of the largest independent set of
any of its bags and the tree-independence number of a graph as the minimum independence
number of any tree decomposition [13]. This parameter connects to the more theoretical
study of (tw, ω)-bounded graphs, i.e., graph classes in which the treewidth depends only on
the clique number [11, 12]. This line of research is mostly concerned with the classification
and characterization of the considered graph classes both in terms of graph theory and
algorithmic exploitability. However, apart from a factor 8 approximation with running time
2O(k2) · nO(k) due to Dallard, Fomin, Golovach, Korhonen, and Milanič [10], we are not aware
of any work that tries to actually build algorithms for this or similar parameters.

1.2 Contribution
In this paper, we propose clique-partitioned treewidth as a parameter that captures struc-
turally simple separators in graphs. It can be seen as a close adaptation of P-flattened
treewidth [14], where we first compute a tree decomposition and then determine clique
partitions of the subgraphs induced by the bags. Thus, instead of using a global clique
partition of the whole graph, we consider clique partitions that are local to a single bag.

The remainder of this paper is structured as follows. In Section 2, we formalize our
definition for clique-partitioned treewidth and prove several statements comparing it with
P-flattened treewidth. In Section 3, we present multiple approaches to compute low-weight
clique partitions for the bags of a tree decomposition. They include various heuristic methods,
as well as an exact branch-and-bound algorithm for which we propose several adjustments with
the potential to improve its running time in practice. Afterwards, in Section 4 we combine an
implementation of our approaches with existing methods for computing tree decompositions
and study the upper bounds on the clique-partitioned treewidth of real-world networks.
Furthermore, we evaluate the performance of the exact and heuristic clique partition solvers
proposed in Section 3. Due to space limitations, some proofs are in Appendix B.

2 Clique-partitioned treewidth

We first introduce some basic notation and give the definition for traditional tree decomposi-
tions. We write [n] = {1, . . . , n} for the first n natural numbers. Throughout the paper, we
assume graphs G = (V, E) to be simple and undirected and write V (G) and E(G) for the
sets of vertices and edges, respectively. For a subset X ⊆ V we write G[X] for the subgraph
of G induced by X.

A tree decomposition of G is a pair (T, B), for a tree T and a function B mapping vertices
of T to subsets of V called bags such that T and B have the following three properties: (1)
every vertex of G is contained in some bag, (2) for every edge, there is a bag containing both
endpoints, and (3) for any vertex v of G, the set of bags containing v forms a connected
subtree of T . The width of a tree decomposition is the size of the largest bag minus 1. The
treewidth tw(G) is the smallest width obtainable by any tree decomposition of G.

We define a clique-partitioned tree decomposition of G as a tree decomposition where for
every t ∈ V (T ) we have a partition Pt of the subgraph induced by the corresponding bag
(i.e., the graph G[B(t)]) into cliques. Following de Berg et al. [14], we define the weight of a
clique C as log(|C| + 1) and the weight of a bag B(t) as the sum of weights of the cliques in
its partition Pt. Throughout this paper we assume 2 to be the default base of logarithms.

SEA 2023



3:4 Partitioning the Bags of a Tree Decomposition into Cliques

The weight of a clique-partitioned tree decomposition is the maximum weight of any of its
bags and the clique-partitioned treewidth (short: cp-treewidth) of G, denoted by cptw(G), is
the minimum weight of any clique-partitioned tree decomposition.

As mentioned before, the clique-partitioned treewidth is closely related to the parameter
defined by de Berg et al. [14]. For a clique partition P of the whole graph G, we say that
a P-flattened tree decomposition is a clique-partitioned tree decomposition of G where the
partition into cliques within a bag is induced by the global partition P. As before, the
weight of a P-flattened tree decomposition is the maximum total weight of the cliques in
any of its bags. In reference to the authors [14], we call the minimum weight over all P the
BBKMZ-treewidth.

We note that our parameter can also be seen as an adaptation of tree clique width [2],
where instead of considering the size of an edge clique cover of each bag, we consider the
logarithmically weighted sum of clique sizes of a clique partition. That is, we are using the
weight function of the P-flattened treewidth to define a parameter which considers individual
clique partitions, similar to tree clique width.

In the following, we compare the clique-partitioned treewidth to the more closely related
BBKMZ-treewidth. First, as a global partition P can also be used locally in each bag of a
clique-partitioned tree decomposition, we obtain that the clique-partitioned treewidth of a
graph is at most its BBKMZ-treewidth. Additionally, the clique-partitioned treewidth can
also be substantially smaller than the BBKMZ-treewidth, as shown in the following lemma.

▶ Lemma 1. There is an infinite family of graphs G such that a graph G ∈ G with n vertices,
has clique-partitioned treewidth in O (log log n) and BBKMZ-treewidth in Ω (log n).

Proof. The family G contains for every h ∈ N one graph Gh. The Graph Gh is a complete
binary tree of height h, where additionally for every leaf ℓ we connect all h vertices that lie
on a path between the root r and ℓ into a clique. Note that we have h ∈ Θ(log n).

Let Ph be a clique partition of Gh. Then, via a simple induction over h, it is easy to see
that in Gh there is a path between the root r and some leaf ℓ of Gh such that every vertex
on the path belongs to a different partition class. These vertices form a clique in Gh that
has to be prosent in some bag of any Ph-flattened tree decomposition of Gh. This bag thus
contains all h partition classes on the path and has weight h · log(1 + 1) ∈ Ω(log n).

At the same time we can construct a clique-partitioned tree decomposition (T, σ), that
has one bag for every path between the root r and each leaf ℓ. Then, T forms a path. As
every bag consists of a single clique on h vertices, there is a clique partition of this tree
decomposition with weighted width log(h + 1) ∈ O(log log n). ◀

Finally, we show the algorithmic usefulness of clique-partitioned treewidth in the following
lemma, which is an extension of the one proposed by de Berg et al. [14].

▶ Lemma 2. Let G be a graph with a clique-partitioned tree decomposition (T, σ) of weight τ .
Then a largest independent set of G can be found in O(2τ · poly(n)) time.

By the above argumentation, it follows that the clique-partitioned treewidth introduced
in this paper is upper bounded by the version of de Berg et al. and can be exponentially
lower. Additionally, it retains some power in solving NP-hard problems in FPT-time.

3 The weighted clique partition problem

We split the task of computing a clique-partitioned tree decomposition in two phases. First,
we compute a tree decomposition, minimizing the traditional tree width. Secondly, fixing the
structure and bags of this decomposition, we compute a clique partition for every bag. We



T. Bläsius, M. Katzmann, and M. Wilhelm 3:5

note that we already lose optimality by this separation, i.e., the result may be suboptimal
even if we get optimal solutions in each of the two phases. However, we expect that small
bags should also allow for low-weight clique partitions.

In the first phase, we use established algorithms for the computation of tree decompositions.
Consequently, we focus on the second step in this section. To this end, we define the
Weighted Clique Partition problem, short Clique Partition. For a given graph
G and an integer w, decide if there is a partition of V (G) into cliques P1, . . . , Pk such
that

∏
i∈[k](|Pi| + 1) ≤ w. Note that this function differs from the one in the definition of

clique-partitioned treewidth, but is equivalent, as
∑

i∈[k] log(|Pi| + 1) = log(
∏

1≤i≤k(|Pi| + 1))
and the logarithm is monotonic.

In the following, we prove some technical lemmas that are useful throughout the section,
before showing that Weighted Clique Partition is NP-complete (Section 3.1). Afterwards,
we give different heuristic approaches (Section 3.2) and an optimal branch-and-bound
algorithm in (Section 3.3). We start with following lemma, which intuitively states that the
weight of a partition is smaller the more imbalanced the individual weights are, i.e., moving
a vertex from a smaller to a larger clique reduces the total weight.

▶ Lemma 3. Let a, b, c, d ∈ N0 such that a + b = c + d and a ≥ b, c ≥ d, d > b. Then
(a + 1)(b + 1) < (c + 1)(d + 1).

With the above lemma (i.e., repeated applications thereof) we can compare the weight of
two partitions.

▶ Lemma 4. Let ⟨s1, . . . , sk⟩ and ⟨r1, . . . , rℓ⟩ be different non-increasing sequences of natural
numbers such that 2 ≤ k ≤ ℓ,

∑
i∈[k] si =

∑
i∈[ℓ] ri, and si ≥ ri for all i ∈ [k − 1]. Then∏

i∈[k](si + 1) <
∏

i∈[ℓ](ri + 1).

Proof. This follows from repeatedly applying Lemma 3 to go from R = ⟨r1, . . . , rℓ⟩ to
S = ⟨s1, . . . , sk⟩ while reducing the product in each step. To make this precise let i be the
first index where si > ri. We adjust R by adding 1 to ri and subtracting 1 from rℓ. Note
that this maintains the sum. We apply Lemma 3 with a = ri + 1, b = rℓ − 1, c = ri, and
d = rℓ. Then, we have (a + 1)(b + 1) < (c + 1)(d + 1), i.e., the product of the adjusted
sequence is smaller than that of the original sequence R. Moreover, after a finite number of
steps, we reach S and thus the product for S is smaller than the product for R. ◀

3.1 Hardness
To prove that Weighted Clique Partition is NP-complete, we perform a reduction in two
steps. We start with the NP-hard problem 3-Coloring. It asks for a given graph whether
each vertex can be colored with one of three colors such that no two neighbors have the same
color. As an intermediate problem in the reduction, we introduce Weighted Independent
Set Partition. It is defined equivalently to Weighted Clique Partition, but instead
of partitioning the graph into cliques, we partition it into independent sets, i.e., sets of
pairwise non-adjacent vertices. Note that independent sets are cliques in the complement
graph and vice versa. Thus, Weighted Independent Set Partition and Weighted
Clique Partition are computationally equivalent. Thus, to obtain the following theorem,
it remains to reduce 3-Coloring to Weighted Independent Set Partition.

▶ Theorem 5. Weighted Clique Partition is NP-complete.

Proof. Membership in NP is easy to see as polynomial time verification of a solution is
straightforward. For hardness, we reduce from 3-Coloring to Weighted Independent
Set Partition. Thus, we now assume that we are given a graph G and need to transform

SEA 2023



3:6 Partitioning the Bags of a Tree Decomposition into Cliques

it into a graph G′ and integer w such that G can be colored with three colors if and only if
G′ has a partition into independent sets of weight at most w. We construct G′ as follows.
For every vertex v of G, we add two new vertices v1 and v2 that form a triangle together
with v, but have no other edges. We denote n = |V (G)| and set w = (n + 1)3. Note that any
independent set in G′ contains at most n vertices, because every appended triangle admits
only one independent vertex.

Assume that G admits a proper three-coloring. This coloring directly translates to a
three-coloring of G′ as follows. Every vertex v of G keeps its color in G′. moreover, v1 and
v2 each get one of the two other colors. Thus, the coloring classes in G′ have size exactly n

each and form an independent set partition with weight (n + 1)3.
If otherwise G does not admit a proper three-coloring, then neither does G′ and there is

no partition of G′ into at most three independent sets. Any partition of V (G′) into more
than three independent sets has a weight larger than (n+1)3 by Lemma 4, as no independent
set in G′ can have more than n vertices. Consequently, G is three-colorable if and only if
there is a partition of V (G′) into independent sets with weight at most (n + 1)3. ◀

3.2 Heuristic approaches
We now explain different approaches to solving the optimization variant of Weighted
Clique Partition both optimally and heuristically.

Throughout this section we make use of the fact that enumerating all maximal cliques of
a graph is not only output polynomial [19], but also highly feasible in practice as shown by
Eppstein, Löffler, and Strash [17]. We use an implementation of their algorithm from the
igraph1 library.

Maximal clique heuristic. Recall from Lemma 3 that the weight function favors imbalanced
clique sizes over more balanced ones. It therefore makes sense to try to find few large cliques
that cover all vertices. A basic greedy heuristic that tries to achieve this works as follows.
First, we enumerate all maximal cliques C of the graph. Then we iteratively add one clique to
the partition by greedily selecting the clique with the largest number of remaining uncovered
vertices. We call this the maximal clique heuristic.

In order to efficiently implement this heuristic, we use a priority queue to fetch the
largest clique and keep track of the cliques Cv ⊆ C that a vertex v is part of. This way, after
choosing the remaining vertices of a clique C ∈ C as a partition, we have to update the sizes
of O(

∑
v∈C |Cv|) cliques. The total number of such updates throughout the whole algorithm

is at most the sum of clique sizes in C. Thus, using a Fibonacci Heap, a total running time of
O(|V | log |C| +

∑
C∈C |C|) can be achieved. In our implementation we use a binary heap due

to it being faster in practice. This costs an additional factor of log |C| for the second term.

Repeated maximal clique heuristic. Note that the MC heuristic does not recompute the
maximal cliques of the remaining graph after selecting a clique. As deleting the vertices
of one clique can have the effect that a non-maximal clique becomes maximal, the MC
heuristic might miss a clique we would want to select. The repeated maximal clique heuristic
recomputes the set of maximal cliques after each decision, i.e., it selects a maximum clique
of the remaining graph in each step.

1 https://igraph.org/

https://igraph.org/


T. Bläsius, M. Katzmann, and M. Wilhelm 3:7

Set Cover heuristics. Observe that for the Weighted Clique Partition problem, we
have to choose a set of cliques of minimum weight that cover all vertices. Thus, we essentially
have to solve a weighted Set Cover problem. As there are reasonably efficient solvers for
Set Cover (or the equivalent Hitting Set problem), it seems like a promising approach
to use those. However, this has the disadvantage, that we would need to list all cliques and
not only the maximal cliques. Nonetheless, it seems like a good heuristic to just consider
maximal cliques and find a minimum set cover (unweighted or weighted).

The heuristic consists of two steps. First, we compute a minimum set cover, using
the maximum cliques as sets and the vertices as elements. We consider two variants for
this steps; weighted (a set of size k has weight log(k + 1)) and unweighted (each set has
weight 1). Afterwards, in the second step, we convert the cover into a partition by assigning
the overlap between selected cliques to only one clique. We call the resulting two approaches
the (maximal clique) set cover and (maximal clique) weighted set cover heuristics.

For the first step, i.e., solving Set Cover, we use a state of the art branch-and-bound
solver [6] for the unweighted case. Additionally, for the weighted case, we use the straight-
forward formulation of set cover as an ILP and solve it with Gurobi [18]. To the best of our
knowledge, ILP solvers are currently the state-of-the-art for weighted set cover.

For the second step, we have to compute clique partitions from the resulting set covers
by assigning each vertex that is covered by multiple cliques to a single one of these cliques.
The goal is to minimize the weight of the resulting cliques, i.e., by Lemma 3, we want to
distribute them as unevenly as possible. We employ a simple greedy heuristic, assigning each
vertex to the largest clique it is part of and braking ties arbitrarily in case of ambiguity.

At a first glance it seems possible that doing both steps optimally (solving set cover and
resolving the overlaps) could yield an overall optimal solution. However, this is not the case,
as briefly discussed in Appendix A.

3.3 Exact branch-and-bound solver
Our branch-and-bound branches on which clique to select next. How to branch is described
in Section 3.3.1 where we show that we can, in each step, select a maximal clique and that the
cliques of the resulting sequence are non-increasing in size. In Section 3.3.2 and Section 3.3.3,
we describe lower bounds for pruning the search space, i.e., if the best solution found so far
is better than the lower bound in the current branch, we can prune that branch.

3.3.1 Branching
The following structural insight enables us to branch on the maximal cliques.

▶ Lemma 6. Let P be a minimum weight clique partition of a graph G and let C ∈ P be the
largest clique of P. Then C is maximal clique in G.

Thus, even though not all cliques of an optimal solution might be maximal, we at least
know that the largest one is. We can use the decision of which maximal clique to select
as the largest one as the branching decision of our algorithm. This way, we can solve the
optimization variant of Weighted Clique Partition, i.e., the algorithm takes a graph G

and finds a minimum weight clique partitioning.
After a clique C has been selected as the largest one, the remaining problem is to find a

clique partition of G[V \ C] that does not use any clique larger than C. This means that we
can view our algorithm as a simple recursive subroutine that solves the same problem at
every node of the recursion tree. As input it gets the graph G and the cliques ⟨C1, . . . , Ci⟩

SEA 2023



3:8 Partitioning the Bags of a Tree Decomposition into Cliques

that have already been selected by previous recursive calls. It then tries to compute an
optimal clique partition of the remaining graph G′ := G \

⋃
j∈[i] Cj . This is done by either

returning a trivial solution if G′ can be covered with a single clique or by branching on the
decision of which maximal clique to select as the largest one for the partition of G′. Note
that for this decision, only maximal cliques that are at most as large as any of the previously
selected cliques ⟨C1, . . . , Ci⟩ need to be considered. The result of the subroutine call is then
the cheapest solution found in any of the branches.

In order to quickly obtain a good upper bound, we explore branches corresponding to
larger cliques first. This way, the first leaf of the search tree constructs the same solution as
the repeated maximal clique heuristic.

3.3.2 Size lower bound
We call the lower bound given by the following lemma the size lower bound.

▶ Lemma 7. Let G be a graph with n vertices and P be a clique partition of G consisting of
cliques of size at most s. Then P has weight at least (s + 1)⌊n/s⌋ · ((n mod s) + 1).

Proof. The stated minimum weight is achieved by a partitioning P ′ that uses as many cliques
of size s as possible and one clique with all remaining vertices. Any other partitioning P
using only cliques of size at most s is at least as expensive, as it can be transformed into P ′

by Lemma 4. ◀

Note that the size lower bound can trivially be evaluated in constant time. Even though
it is rather basic, we expect this lower bound to be effective at pruning branches in which
very small cliques are selected early on.

3.3.3 Valuable sequence lower bound
Note that the size lower bound optimistically assumes that there are ⌊n/s⌋ non-overlapping
cliques of size s. This yields a bad lower bound if, e.g., there is only one clique of size s while
all other cliques are much smaller. In the following, we describe an improved bound based
on this observation. We note that we have to be careful when considering what clique sizes
are available for the following reason. Assume the branching has already picked a clique of
size s, i.e., subsequent selected cliques have to have size at most s. Then it seems natural
to derive a lower bound by summing over the sizes of all maximal cliques of size at most s.
However, we have to account for the fact that selecting (and deleting) one clique can shrink
a maximal clique that was larger than s to become a clique of size s. Thus, there might me
more cliques of size s available than initially thought. In order to formalize this, we first
introduce a different problem that considers only sizes of the cliques without making any
assumptions on the overlap between the cliques.

In the Valuable Sequence problem, we are given a multiset A of natural numbers and
a natural number n. The task is to construct a sequence of total value n and minimum weight.
Such a sequence S = ⟨s1, s2, . . . , sk⟩ consists of elements si ∈ A such that each number is
repeated at most as often as it appears in A. In the following, we define value and weight of
a sequence and give additional restrictions to what constitutes a valid sequence. To this end,
let Si = ⟨s1, . . . , si⟩ for i ≤ k denote a prefix of S. We define a value val(si) for each si in
the sequence as follows. The first element s1 has value val(s1) = s1. For subsequent elements
si+1, we have val(si+1) = min{si+1, val(si), n − val(Si)}, where val(Si) =

∑
j∈[i] val(sj) is



T. Bläsius, M. Katzmann, and M. Wilhelm 3:9

the total value of the prefix Si.2 If val(si) = si, we say that the element contributes fully to
the sequence. Otherwise, it contributes partially. The weight of S is

∏
i∈[k](val(si) + 1). For

the subsequence Si, we call the next element si+1 eligible if si+1 − val(Si) ≤ val(si); s1 is
always eligible. The sequence S is valid if each element is eligible.

To make the connection back to Weighted Clique Partition, interpret the numbers
in A as the clique sizes. The total value n corresponds to the number of vertices that have
to be covered. The value val(si) corresponds to the number of vertices from the maximal
clique of size si in G that have not been covered by previous cliques, i.e., the number of
vertices that are newly covered in step i. Note that in step i + 1, at least si − val(Si)
new vertices are covered as only val(Si) have been covered previously. Thus, the eligibility
requirement ensures that the number of vertices covered in step i + 1 is not larger than the
number of vertices covered in step i (recall, that we can assume the chosen cliques to form a
non-increasing sequence). Moreover, for the definition of val(si+1), note that the minimum
with val(si) ensures that the sequence of values is non-increasing and the minimum with
n − val(Si) ensures that the total value is n.

The following two lemmas formalize this connection between Valuable Sequence and
Weighted Clique Partition. Afterwards, we discuss how Valuable Sequence can be
solved optimally.

▶ Lemma 8. Let P be a minimum weight clique partition of a graph G and let C be the set
of maximal cliques in G. Then, any mapping f : P → C with P ⊆ f(P ) for each P ∈ P is
injective and there exists at least one such mapping.

Proof. There are mappings from P to C, because each clique P ∈ P is either a maximal
clique or a subset of a larger maximal clique. Assume that a mapping f : P 7→ C is not
injective. Then, there are two partition classes P and P ′ that are mapped to the same clique
C ∈ C. Thus, these partition classes could be merged, contradicting the optimality of P . ◀

▶ Lemma 9. Let G be a graph with maximal cliques C = {C1, . . . , Ck} and let (A, n) with
A = {|C1|, . . . , |Ck|} and n = |V (G)| be an instance of Valuable Sequence. The weight of
a minimum solution of (A, n) is a lower bound for the weight of every clique partition of G.

Proof. We now show that for a minimum clique partition P of G, we find a solution S of
(A, n) whose weight is at most the weight of P.

Let P1, . . . , Pk′ be the cliques of P sorted by size in decreasing order. We can think of P as
constructed iteratively in that order, so that each Pi is a maximal clique in G[V \(

⋃
j∈[i−1] Pj)].

We construct S iteratively until val(S) = n. For each element si in the sequence, we
prove by induction that val(si) ≥ |Pi| except for the last element. This then lets us use
Lemma 4 to obtain that the weight of S is at most the weight of P. For i = 1, we simply
choose s1 = |P1| ∈ A. Since the first element always contributes fully, we have val(s1) = |P1|.

Assuming we constructed the sequence until i, we continue with step i + 1 as follows. If
Pi+1 is one of the initial maximal cliques in C, then we can simply choose si+1 = |Pi+1| ∈ A.
Note that si+1 is eligible, as si+1 = |Pi+1| ≤ |Pi| ≤ val(si), which in particular implies
si+1 − val(Si) ≤ val(si). In this case, si+1 contributes fully, i.e., val(si+1) = |Pi+1|, which
implies the claim.

Otherwise, if Pi+1 is not in C, it is at least a subset of some clique C ∈ C such that
Pi+1 = C \

⋃
j∈[i] Pj . We choose si+1 = |C|. The eligibility of si+1 follows from the facts

that the cliques in P are ordered non-increasingly, i.e. |Pi| ≥ |Pi+1|, and that val(sj) ≥ |Pj |
holds by induction for all j < i + 1:

2 Note that val(si+1) only depends on values of previous elements in S, i.e., the definition is not cyclic.

SEA 2023



3:10 Partitioning the Bags of a Tree Decomposition into Cliques

val(si) ≥ |Pi| ≥ |Pi+1| =
∣∣∣C \

⋃
j∈[i]

Pj

∣∣∣ ≥ |C|−
∑
j∈[i]

|Pj | ≥ si+1 −
∑
j∈[i]

val(sj) = si+1 −val(Si).

Note that si+1 contributes partially, i.e., val(si+1) = val(si) unless this is the last item in S.
As we just argued, we have val(si) ≥ |Pi+1| and thus val(si+1) ≥ |Pi+1|, proving the claim.

To conclude, observe that our construction of S implicitly defines a mapping from P to C
as in Lemma 8. As such a mapping is injective, no number in A is chosen twice. Moreover
as we have val(si) ≥ |Pi| for i < k, but both sum to n, the weight of P is at least the weight
of S by Lemma 4. ◀

Valuable Sequence can be solved optimally with a simple greedy algorithm. We call
the resulting lower bound the valuable sequence bound.

▶ Theorem 10. An instance (A, n) of Valuable Sequence can be solved in O(|A| + n)
time.

3.3.4 Sufficient weight reduction
To speed-up the computation of clique partitions for all bags of a tree decomposition, we
additionally apply the following reduction rule. In the sufficient weight reduction, we
immediately accept the first solution that is lighter or equally light as the largest weight of
any of the already considered bags.

4 Evaluation

With our evaluation, we aim to answer the following questions.

1. How do the different algorithms compare in regards to run time and quality?
2. How do the algorithms scale?
3. What is the impact of the lower bounds and the reduction rules on the performance of

the exact branch-and-bound solver?
4. How do different network properties influence the performance of the algorithms?
5. How do the resulting upper bounds on the clique-partitioned treewidth compare to

traditional treewidth?

Experimental setup. Our implementation is written in Python. The source code along
with all evaluation scripts and results is available on our public GitHub repository3. The
experiments were run with Python 3.10.1 on a Gigabyte R282-Z93 (rev. 100) server (2250MHz)
with 1024GB DDR4 (3200MHz) memory.

For each input graph, we perform the following two steps. First, we compute a tree
decomposition using the heuristics implemented in the HTD library [1]. Specifically, we use
the min-fill-in heuristic, which is known to provide a good tradeoff between run time and
solution quality [23]. Secondly, we solve the Weighted Clique Partition problem for
each bag of the tree decomposition using all algorithms proposed in Section 3.

3 https://github.com/marcwil/cptw_code

https://github.com/marcwil/cptw_code


T. Bläsius, M. Katzmann, and M. Wilhelm 3:11

(a) Number of solved instances
with 500 (bright) 5 k (medium)
and 50 k (dark) vertices.

(b) Distribution of run time rel-
ative to fastest solver within time
limit on a given graph.

(c) Distribution of obtained
width relative to best found solu-
tion on a given graph.

Figure 1 Comparison of run time and solution quality of the different exact (red), greedy (green,
blue) and set cover based (violet) solvers for the Weighted Clique Partition problem on GIRGs.

We use a time limit of five minutes for the heuristic computation of low-weight tree
decompositions with the HTD library. For the Weighted Clique Partition algorithms,
we set a time limit of three minutes per bag and five minutes in total.

To discern the different solvers from Sections 3.2 and 3.3, in our plots, we use the following
abbreviations: branch and bound solver (B&B), maximal clique set cover heuristic (SC),
maximal clique weighted set cover heuristic (WSC), maximal clique heuristic (MC), and
repeated maximal clique heuristic (RMC).

Input instances. For the input, we use a large collection of real-world networks as well
as generated networks. For the latter, we use geometric inhomogeneous random graphs
(GIRGs) [8], which resemble real-world networks in regards to important properties and have
been shown to be well suited for the evaluation of algorithms [3]. GIRGs can be generated
efficiently [4] and allow to vary the power-law exponent (ple) of the degree distribution
controlling its heterogeneity, as well as a parameter α controlling the locality by either
strengthening the influence of the geometry (high values of α) or increasing the probability
for random edges not based on the geometry (low values of α). We mainly use the following
two datasets, where each graph has been reduced to its largest connected component.

A collection of 2967 real-world networks [7] that essentially consists of all networks with
at most 1 M edges from Network Repository [25]; see [3] for details.
GIRGs with n ∈ {500, 5000, 50000} vertices, expected average degree 10, dimension 1,
ple ∈ {2.1, 2.3, 2.5, 2.7, 2.9}, and α ∈ {1.25, 2.5, 5, ∞}. For each parameter configuration,
we generate ten networks with different random seeds, to smooth out random variations.

4.1 Performance comparison
Here, we evaluate the performance of our Clique Partition approaches on the two datasets.

Generated instances. In Figure 1, we compare the run times as well as the solution quality of
the different considered Clique Partition algorithms on the dataset of generated networks.
In Figure 1a, we show how many of the 600 instances were solved within the time limit by
each solver. While the greedy heuristics are able to finish on almost all instances, the set
cover heuristic and the branch-and-bound solver get timed on some of the larger networks
with 5 k and 50 k vertices. The weighted set cover heuristic performs much worse, finishing
only on few networks. We therefore exclude it from the other comparisons.

SEA 2023



3:12 Partitioning the Bags of a Tree Decomposition into Cliques

Figure 2 Distribution of run time relative
to fastest solver within time limit on our set
of real-world networks.

Table 1 Distribution of obtained cp-treewidth
relative to optimum clique partition on our set of
real-world networks.

Measure MC RMC SC
Mean 1.008 1.009 1.002

Median 1 1 1
90th percentile 1.035 1.036 1.000
99th percentile 1.108 1.121 1.046

Maximum 1.254 1.192 1.113

In Figures 1b and 1c, we compare the performance for all instances that were solved
within the time limit by all other algorithms. Figure 1b shows the run time of each algorithm
relative to the fastest one on each instance. Figure 1c shows the obtained upper bound on
the cp-treewidth relative to the optimal solution computed by the branch-and-bound solver.

Our findings are as follows. The branch-and-bound solver solves the fewest instances
of the four considered algorithms, but is quick on most of the instances it is able to solve
within the time limit. Both greedy heuristics (MC and RMC) are similarly fast, significantly
outcompeting the other approaches. In terms of quality, all three heuristics perform well,
achieving solutions within few percent of the optimum. The set cover heuristic slightly
outperforms the greedy heuristics in terms of quality, but pays for this with substantially
higher running time.

Real-world networks. We complement the above evaluation of our Clique Partition
algorithms, by comparing their performance on the collection of real-world networks. As
above, we exclude the weighted set cover heuristic. The other four approaches were able to
finish on 1243 (B&B), 2619 (MC), 2622 (RMC), and 2204 (SC) of the 2967 networks within
the time limit. We compare our algorithms on the 1237 networks that were solved by all
four approaches. Figure 2 shows the run time of each solver relative to the fastest solver on
each instance. In Table 1 we describe the distribution of the obtained upper bounds on the
cp-treewidth relative to the optimal solution found by the branch-and-bound solver.

Our results are the following. In general, our observations on generated networks are
replicated on the real-world networks. Even though the branch-and-bound algorithm solved
fewer instances than the set cover heuristic, it is comparatively faster on the networks it is able
to solve. Both approaches are, however, considerably slower than the greedy heuristics and
this difference is more pronounced than on the generated networks. Regarding the solution
quality, all three heuristic solvers perform even better than on the generated networks, with
only a tiny fraction of instances not being solved almost optimally.

Discussion. We find that the proposed algorithms show good performance both on generated
and real-world instances. Although, the branch-and-bound solver was only able to solve
about half of the considered networks, its run time typically beats the set cover heuristic on
the networks it can solve. In addition, it is a valuable tool for evaluating the solution quality
of the other approaches. We find that especially the set cover heuristic, but also the greedy
heuristics (MC and RMC) often find close to optimal clique partitions. Due to their excellent
trade-off between speed and solution quality, the greedy heuristics are probably the best
approach in most practical settings. In general, we do not expect that there is substantial



T. Bläsius, M. Katzmann, and M. Wilhelm 3:13

Figure 3 Scaling behavior of Clique Partition algorithms on GIRGs with different parameters.

room for improvement in the engineering of Clique Partition solvers for the computation
of cp-treewidth. Instead, in order to achieve better upper bounds, we suggest future research
to optimize the tree decomposition and the partition into cliques at the same time.

4.2 Run time scaling
Next, we consider the scaling behavior of our solvers. For this, we generated GIRGs of
varying sizes up to around 50 k vertices for various parameters. As in Section 4.1, we did not
evaluate the weighted set cover heuristic. Figure 3 shows the run times for GIRGs with two
different parameter configurations. On the networks with high locality (α = inf), all four
approaches seem to have close to linear run time, despite enumerating all maximal cliques
present in each bag of the tree decomposition. However, as we decrease the locality (α = 5)
the performance of the branch-and-bound solver deteriorates while the greedy heuristics and
especially the set cover heuristic are only slightly affected. In the logarithmic plot, we observe
clearly super-polynomial scaling behavior only for the branch-and-bound solver. Further
experiments on a larger grid of parameter settings confirm the above findings.

4.3 Branch-and-bound: lower bounds and reduction rule
In the following, we evaluate the effectiveness of the lower bounds and the reduction rule in
speeding up our branch-and-bound solver. For this, we use the dataset of generated networks.
As the performance without lower bounds does not allow for the timely evaluation on larger
instances, we consider only graphs generated with 5 k vertices. Figure 4 shows the average
run time without lower bounds (none), with only the size lower bound (S) and with the
valuable sequence bound in addition to the size bound (S+V) as well as with and without
the sufficient weight reduction for different network parameters. We only show α ∈ {5, ∞},
as for lower values the variant without lower bounds did not finish within the time limit.

We find that especially for smaller power-law exponents, the lower bounds bring large
speed-ups of up to multiple orders of magnitude. The additional gain of using the size lower
bound is much larger than that of the much simpler valuable sequence bound. The sufficient
weight reduction yields similar speed-ups for all settings. Overall, we conclude that the lower
bounds are effective in speeding up the branch-and-bound solver. On a more general note, it
is striking how strongly all variants of the solver are affected by lower values of α, especially
also below the values shown in Figure 4. In additional experiments we found that the above
observations also apply to the remainder of the dataset, even though for 50 k vertices the
time limit is reached even more frequently.

SEA 2023



3:14 Partitioning the Bags of a Tree Decomposition into Cliques

Figure 4 Run time of different variants of the branch-and-bound solver on GIRGs with 5 k
vertices and different values for the power-law exponent (left to right) and α (top / bottom).

4.4 Impact of network properties
At multiple points throughout the last sections, we found that, especially for the branch-and-
bound algorithm, the performance strongly depended on the parameter α controlling the
locality of the generated networks.

In order to better understand this, we study the structure of cliques in the generated
networks depending on their parameters. Specifically, for each network we count the number
of maximal cliques in the graph, we count the number of maximal cliques in each bag of the
tree decomposition and take the maximum, we count the number of cliques used per bag in
the clique-partitioned tree decomposition and take the maximum, and consider the width of
the clique-partitioned tree decomposition. The clique-partitioned tree decompositions are
obtained using the MC and MCR heuristic. Figure 5 shows these values for GIRGs with
varying power-law exponent and α.

We see that with decreasing values of α, all considered measures increase. However, while
the total number of maximal cliques in the network only increases by a factor of roughly 4 to
10, the highest number of cliques intersecting some bag of the tree decomposition as well as
the highest number of cliques in a lowest-weight clique partition increase by multiple orders
of magnitude. Intuitively, this can be explained by cliques starting to fray if the locality is
too low. This explains, why the Clique Partition problem is harder on GIRGs with lower
values of α, which slows down the branch-and-bound algorithm. We also observe, that the
obtained upper bounds on the cp-treewidth are not much lower than the highest number of
cliques per bag of a solution, explaining the good performance of the set cover heuristic.

4.5 Clique-partitioned treewidth compared to traditional treewidth
Here we consider the data set of real-world networks. As we have seen in Section 4.1, the
maximal clique and repeated maximal clique heuristics are efficient and tend to perform
well in terms of quality. Thus, we use these two heuristics to find an upper bound on the
clique-partitioned treewidth.



T. Bläsius, M. Katzmann, and M. Wilhelm 3:15

Figure 5 Total clique count (number of maximal cliques) per network, and highest clique count
in any bag of a greedy tree decomposition as well in the lowest weight clique partition of any bag,
and clique-partitioned treewidth (lowest upper bound) of the entire instance on GIRGs with 5 k
vertices and varying parameters. Note the logarithmic y-axes on all except the first plot.

(a) Dependency between clustering coefficient
and heuristic upper bounds on clique-partitioned
treewidth and treewidth.

(b) Dependency between clustering coefficient
and relative difference between clique-partitioned
treewidth and treewidth.

Figure 6 Upper bounds for clique-partitioned treewidth on large real-world networks.

In Figure 6a we compare the obtained upper bounds for the weighted treewidth and the
treewidth. Even though the parameter does not decrease much for the majority networks,
there are some networks on which substantial reductions are achieved. This is particularly true
for networks with high clustering coefficient, where for some instances our clique-partitioned
tree decomposition has width 10 while the corresponding traditional tree decomposition
has width above 100. This correspondence with the clustering coefficient fits well to the
observations in Section 4.4. For the networks for which we do not yet see a big improvement, it
would be interesting to see whether adjusting the computation of the initial tree decomposition
can yield better bounds; see also the discussion in Section 4.1.

SEA 2023



3:16 Partitioning the Bags of a Tree Decomposition into Cliques

References
1 Michael Abseher, Nysret Musliu, and Stefan Woltran. htd - A free, open-source framework

for (customized) tree decompositions and beyond. In Domenico Salvagnin and Michele
Lombardi, editors, Integration of AI and OR Techniques in Constraint Programming - 14th
International Conference, CPAIOR 2017, Padua, Italy, June 5-8, 2017, Proceedings, volume
10335 of Lecture Notes in Computer Science, pages 376–386. Springer, 2017. doi:10.1007/
978-3-319-59776-8_30.

2 Chris Aronis. The algorithmic complexity of tree-clique width. CoRR, abs/2111.02200, 2021.
arXiv:2111.02200.

3 Thomas Bläsius and Philipp Fischbeck. On the external validity of average-case analyses
of graph algorithms. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz
Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9,
2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 21:1–21:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ESA.2022.21.

4 Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel Penschuck,
and Christopher Weyand. Efficiently generating geometric inhomogeneous and hyperbolic ran-
dom graphs. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual
European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching,
Germany, volume 144 of LIPIcs, pages 21:1–21:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.21.

5 Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Hyperbolic random graphs: Separators
and treewidth. In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European
Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57
of LIPIcs, pages 15:1–15:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.ESA.2016.15.

6 Thomas Bläsius, Tobias Friedrich, David Stangl, and Christopher Weyand. An efficient
branch-and-bound solver for hitting set. In Cynthia A. Phillips and Bettina Speckmann,
editors, Proceedings of the Symposium on Algorithm Engineering and Experiments, ALENEX
2022, Alexandria, VA, USA, January 9-10, 2022, pages 209–220. SIAM, 2022. doi:10.1137/
1.9781611977042.17.

7 Thomas Bläsius and Philipp Fischbeck. 3006 Networks (unweighted, undirected, simple,
connected) from Network Repository, May 2022. doi:10.5281/zenodo.6586185.

8 Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random
graphs. Theor. Comput. Sci., 760:35–54, 2019. doi:10.1016/j.tcs.2018.08.014.

9 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Mar-
cin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Treewidth, pages 151–244. Springer
International Publishing, Cham, 2015. doi:10.1007/978-3-319-21275-3_7.

10 Clément Dallard, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Martin Milanic.
Computing tree decompositions with small independence number. CoRR, abs/2207.09993,
2022. doi:10.48550/arXiv.2207.09993.

11 Clément Dallard, Martin Milanic, and Kenny Storgel. Treewidth versus clique number. i.
graph classes with a forbidden structure. SIAM J. Discret. Math., 35(4):2618–2646, 2021.
doi:10.1137/20M1352119.

12 Clément Dallard, Martin Milanic, and Kenny Storgel. Treewidth versus clique number. III.
tree-independence number of graphs with a forbidden structure. CoRR, abs/2206.15092, 2022.
doi:10.48550/arXiv.2206.15092.

13 Clément Dallard, Martin Milanič, and Kenny Štorgel. Treewidth versus clique number. ii.
tree-independence number, 2021. doi:10.48550/arXiv.2111.04543.

14 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for eth-tight algorithms and lower bounds in geometric intersection
graphs. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 574–586. ACM, 2018. doi:
10.1145/3188745.3188854.

https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1007/978-3-319-59776-8_30
https://arxiv.org/abs/2111.02200
https://doi.org/10.4230/LIPIcs.ESA.2022.21
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.4230/LIPIcs.ESA.2016.15
https://doi.org/10.4230/LIPIcs.ESA.2016.15
https://doi.org/10.1137/1.9781611977042.17
https://doi.org/10.1137/1.9781611977042.17
https://doi.org/10.5281/zenodo.6586185
https://doi.org/10.1016/j.tcs.2018.08.014
https://doi.org/10.1007/978-3-319-21275-3_7
https://doi.org/10.48550/arXiv.2207.09993
https://doi.org/10.1137/20M1352119
https://doi.org/10.48550/arXiv.2206.15092
https://doi.org/10.48550/arXiv.2111.04543
https://doi.org/10.1145/3188745.3188854
https://doi.org/10.1145/3188745.3188854


T. Bläsius, M. Katzmann, and M. Wilhelm 3:17

15 Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz, and
Frances A. Rosamond. The First Parameterized Algorithms and Computational Experiments
Challenge. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on
Parameterized and Exact Computation (IPEC 2016), volume 63 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 30:1–30:9, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.IPEC.2016.30.

16 Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE
2017 Parameterized Algorithms and Computational Experiments Challenge: The Second
Iteration. In Daniel Lokshtanov and Naomi Nishimura, editors, 12th International Symposium
on Parameterized and Exact Computation (IPEC 2017), volume 89 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 30:1–30:12, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.IPEC.2017.30.

17 David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in large
sparse real-world graphs. ACM J. Exp. Algorithmics, 18, 2013. doi:10.1145/2543629.

18 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.
gurobi.com.

19 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On generating all max-
imal independent sets. Inf. Process. Lett., 27(3):119–123, 1988. doi:10.1016/0020-0190(88)
90065-8.

20 Sándor Kisfaludi-Bak. Hyperbolic intersection graphs and (quasi)-polynomial time. In Shuchi
Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1621–1638. SIAM, 2020.
doi:10.1137/1.9781611975994.100.

21 Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián
Boguñá. Hyperbolic geometry of complex networks. Phys. Rev. E, 82:036106, September 2010.
doi:10.1103/PhysRevE.82.036106.

22 László Lovász. Graph minor theory. Bulletin of the American Mathematical Society, 43(1):75–
86, October 2005. doi:10.1090/S0273-0979-05-01088-8.

23 Silviu Maniu, Pierre Senellart, and Suraj Jog. An experimental study of the treewidth of
real-world graph data. In Pablo Barceló and Marco Calautti, editors, 22nd International
Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal, volume
127 of LIPIcs, pages 12:1–12:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ICDT.2019.12.

24 Neil Robertson and Paul D. Seymour. Graph minors. IV. tree-width and well-quasi-ordering.
J. Comb. Theory, Ser. B, 48(2):227–254, 1990. doi:10.1016/0095-8956(90)90120-O.

25 Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph
analytics and visualization. In Blai Bonet and Sven Koenig, editors, Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA, pages 4292–4293. AAAI Press, 2015. URL: http://www.aaai.org/ocs/index.php/AAAI/
AAAI15/paper/view/9553.

A Limits of the set cover heuristics

(a) Unweighted set cover. (b) Weighted set cover.

Figure 7 Counter-examples for the optimality of the set cover heuristics.

SEA 2023

https://doi.org/10.4230/LIPIcs.IPEC.2016.30
https://doi.org/10.4230/LIPIcs.IPEC.2017.30
https://doi.org/10.1145/2543629
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1016/0020-0190(88)90065-8
https://doi.org/10.1016/0020-0190(88)90065-8
https://doi.org/10.1137/1.9781611975994.100
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1090/S0273-0979-05-01088-8
https://doi.org/10.4230/LIPIcs.ICDT.2019.12
https://doi.org/10.1016/0095-8956(90)90120-O
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9553
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9553


3:18 Partitioning the Bags of a Tree Decomposition into Cliques

We want to briefly discuss why the set cover solutions are not always optimal clique
partitions. First, we give an instance on which the unweighted set cover approach fails.

▶ Observation 11. There are graphs on which the minimum size clique cover cannot give an
optimal clique partition.

Proof. Consider a clique on k vertices for even k where half of the vertices are connected
to one additional vertex and the other half to another additional vertex, as illustrated in
Figure 7a. Then, for k ≥ 6 the partition into three cliques of sizes 1, 1, and k has lower
weight than the partition into two cliques of size k

2 + 1, which corresponds to the optimal
solution of the set cover instance. ◀

For the minimum weight set cover, we can use the fact that the weights of the set cover
instance correspond to the size of the whole clique and do not reflect the potential overlap
between multiple selected cliques.

▶ Observation 12. There are graphs on which the minimum size clique cover cannot give an
optimal clique partition.

Proof. For the weighted approach, consider the instance depicted in Figure 7b. The small
circles represent the vertices of a graph and the regions mark maximal cliques. The optimal
clique partitioning uses cliques of sizes 6, 2, and 1 (the dotted clique plus the remainders of
the two solid cliques). In the set cover instance these cliques have (partly overlapping) sizes
6, 4, and 4, which is more expensive than the set cover solution with sizes 5, 4, and 4 (using
the dashed clique instead of the dotted one), which results in a solution with sizes 5, 3, 1. ◀

The above problem could be avoided by extending the set cover instance to also include
all non-maximal subsets of each clique that can be obtained by removing vertices shared
with some subset of overlapping cliques. This would, however, lead to an exponential blowup
of the set cover instances, which is not feasible even with state of the art solvers.

B Omitted proofs

▶ Lemma 2. Let G be a graph with a clique-partitioned tree decomposition (T, σ) of weight τ .
Then a largest independent set of G can be found in O(2τ · poly(n)) time.

Proof. We use a standard dynamic programming approach on tree decompositions based on
introduce, forget, and join nodes (see for example Cygan et. al [9]). For each node t ∈ V (T ),
we store a number of partial solutions for the subgraph of G induced by the bags of nodes in
the subtree below t.

A partial solution consists of a subset of the vertices in the current bag as well as the size
of the total partial independent set for the subgraph induced by the subtree below the current
bag. This makes it easy to initialize partial solutions for leaf nodes in the tree decomposition.

In an introduce node, two new partial solutions are created, one where the new vertex
is in the independent set and one where it is not. In a forget node, the removed vertex is
removed from each partial solution. In a join node, the partial solutions from the child-nodes
are combined by taking their union.

In a traditional tree decomposition of width k, this leads to at most 2k partial solutions
per bag. In a clique-partitioned tree decomposition, this is even smaller, as there are only
k+1 ways an independent set can intersect a clique of size k. Thus, assuming {Pt | t ∈ V (T )}
denotes the clique partition of weight τ , the number of partial solutions that need to be
considered per bag t are at most



T. Bläsius, M. Katzmann, and M. Wilhelm 3:19

∏
C∈Pt

(|C| + 1) = 2
∑

C∈Pt
log(|C|+1) = 2τ .

As the number of bags and time spent per bag is polynomial, this concludes the proof. ◀

▶ Lemma 3. Let a, b, c, d ∈ N0 such that a + b = c + d and a ≥ b, c ≥ d, d > b. Then
(a + 1)(b + 1) < (c + 1)(d + 1).

Proof. There is an x > 0 such that c = a − x and d = b + x. As c ≥ d, x can be at most
(a − b)/2. We derive

(c + 1)(d + 1) = (a − x + 1)(b + x + 1)
= ab − bx + b + ax − x2 + x + a − x + 1
= (ab + a + b + 1) + ax − bx − x2

= (a + 1)(b + 1) + x(a − b − x).

We have x(a − b − x) > 0, as 0 < x ≤ a−b
2 and thus the claimed strict inequality follows. ◀

▶ Lemma 6. Let P be a minimum weight clique partition of a graph G and let C ∈ P be the
largest clique of P. Then C is maximal clique in G.

Proof. Assume that C is a non-maximal clique. That is, there is a vertex v ∈ V (G) \ C with
C ⊆ N(v). Let C ′ ∈ P be the clique containing v. We construct a clique partition P ′ by
removing v from C ′ and adding it to C. As C was the largest clique in P, via Lemma 3 we
have (|C| + 2)(|C ′|) < (|C| + 1)(|C ′| + 1), contradicting the optimality of P. ◀

▶ Theorem 10. An instance (A, n) of Valuable Sequence can be solved in O(|A| + n)
time.

Proof. We construct a solution S = s1, . . . , si by iteratively choosing an eligible and not yet
chosen number a ∈ A with maximum value, until the value of the sum reaches n.

We note that this greedy strategy maximizes how many numbers in A are eligible, as the
corresponding upper bound val(S) + val(si) decreases as slowly as possible. The optimality
of the produced sequence S = s1, . . . , si follows, again, via Lemma 4 as for j ∈ [i], the value
val(sj) is at least as large as the value of any other number that can be chosen in round j.

Regarding the running time, the greedy strategy can be implemented by sorting the
numbers in A (in O(|A| + n) time) and keeping track of the largest unchosen number that is
eligible and contributes fully, as well as the smallest unchosen number that can contribute
partially (which is larger than the ones that can contribute fully). Both of these values can
be updated in constant time each time a number has been chosen. ◀

SEA 2023





Subset Wavelet Trees
Jarno N. Alanko #

Helsinki Institute for Information Technology (HIIT), Finland
Department of Computer Science, University of Helsinki, Finland

Elena Biagi #

Department of Computer Science, University of Helsinki, Finland

Simon J. Puglisi #

Helsinki Institute for Information Technology (HIIT), Finland
Department of Computer Science, University of Helsinki, Finland

Jaakko Vuohtoniemi #

Department of Computer Science, University of Helsinki, Finland

Abstract
Given an alphabet Σ of σ = |Σ| symbols, a degenerate (or indeterminate) string X is a sequence
X = X[0], X[1] . . . , X[n− 1] of n subsets of Σ. Since their introduction in the mid 70s, degenerate
strings have been widely studied, with applications driven by their being a natural model for
sequences in which there is a degree of uncertainty about the precise symbol at a given position, such
as those arising in genomics and proteomics. In this paper we introduce a new data structural tool
for degenerate strings, called the subset wavelet tree (SubsetWT). A SubsetWT supports two basic
operations on degenerate strings: subset-rank(i, c), which returns the number of subsets up to the
i-th subset in the degenerate string that contain the symbol c; and subset-select(i, c), which returns
the index in the degenerate string of the i-th subset that contains symbol c. These queries are analogs
of rank and select queries that have been widely studied for ordinary strings. Via experiments in a
real genomics application in which degenerate strings are fundamental, we show that subset wavelet
trees are practical data structures, and in particular offer an attractive space-time tradeoff. Along
the way we investigate data structures for supporting (normal) rank queries on base-4 and base-3
sequences, which may be of independent interest. Our C++ implementations of the data structures
are available at https://github.com/jnalanko/SubsetWT.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Design and analysis of algorithms

Keywords and phrases degenerate strings, compressed data structures, succinct data structures,
string processing, data structures, efficient algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.4

Supplementary Material Software (Source Code): https://github.com/jnalanko/SubsetWT
Software (Source Code): https://github.com/jnalanko/SubsetWT-Experiments

Funding This work was supported in part by the Academy of Finland via grants 339070 and 351150.

Acknowledgements A brief description of the subset wavelet tree first appeared in a technical report
by the authors [3].

1 Introduction

Given an alphabet Σ of σ symbols, a degenerate (or indeterminate) string is a sequence
X = X[0], X[1] . . . , X[n − 1] of subsets of Σ. For example, here is a degenerate string of
length 15 on the alphabet Σ = A, C, G, T (note that empty subsets are allowed):

X = {T}{G}{A, C, G, T}{}{}{C, G}{}{A}{}{A}{A, C}{}{}{A}{A}.

© Jarno N. Alanko, Elena Biagi, Simon J. Puglisi, and Jaakko Vuohtoniemi;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 4; pp. 4:1–4:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jarno.alanko@helsinki.fi
mailto:elena.biagi@helsinki.fi
https://orcid.org/0000-0002-8573-3603
mailto:simon.puglisi@helsinki.fi
https://orcid.org/0000-0001-7668-7636
mailto:jaakko.vuohtoniemi@helsinki.fi
https://github.com/jnalanko/SubsetWT
https://doi.org/10.4230/LIPIcs.SEA.2023.4
https://github.com/jnalanko/SubsetWT
https://github.com/jnalanko/SubsetWT-Experiments
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 Subset Wavelet Trees

Since their introduction in a classic paper by Fischer and Paterson [10], degenerate
strings have been widely studied in the field of string processing and its application domains.
Abrahamson [1] studied online pattern matching for degenerate strings, describing theor-
etically optimal algorithms. Since then, several authors (see, e.g., [16, 30]) have described
practical pattern matching algorithms that are fast in practice. Authors have also considered
covering problems [7], data structures for extension queries [17], constrained LCS [18], and
the computation of inverted repeats [2] on degenerate strings.

Interest in degenerate strings has been driven by them being a natural model of the
uncertainty or flexibility often present in real world sequence data. For example, the IUPAC
encoding for biological sequences [19] designates specific symbols, referred to as degenerate,
to represent a sequence position corresponding to a set of possible alternative nucleotides. In
music sequences, single notes may match chords, or notes separated by an octave may match
– properties naturally captured by degenerate strings [5].

In this paper we study two new and seemingly fundamental operations on indeterminate
strings - subset rank and select. In particular, for a given degenerate string X, we define (for
i ≤ n and c ∈ Σ):

subset-rankX(i, c) = number of subsets among the first i subsets of X that contain c;
subset-selectX(i, c) = index in X of the ith subset that contains c.

For example, if X = {T}{G}{A, C, G, T}{}{}{C, G}{}{A}{}{A}{A, C}{}{}{A}{A} as
before, then we would have subset-rankX(8, A) = 2.

Rank and select queries on ordinary (i.e. non-degenerate) strings are now considered
fundamental to the field of succinct and compressed data structures [26, 23]. To our knowledge,
however, the literature on degenerate and indeterminate strings has not explicitly considered
these queries before.

Our own interest in supporting these types of queries on degenerate strings comes from
problems in pangenomics, and in particular the spectral Burrows-Wheeler transform (SBWT),
a recently described approach for representing the de Bruijn graph of a set of strings [3].
The de Bruijn graph is a central data structure in computational biology, used for a variety
of tasks, including genome assembly [6] and pangenomic read alignment [15, 21]. There
is exactly one node in the de Bruijn graph for every distinct k-length substring, or k-mer
occurring in the set of input strings, and nodes are labelled with these substrings. A k-mer
query on the de Bruijn graph asks if there is a node in the graph labelled with a specified
query k-mer. In [3] it is shown that these queries can be reduced to a sequence of 2k

subset-rank queries on a particular degenerate string L produced by the SBWT that encodes
the graph. For brevity, we avoid defining the SBWT here, but we note that L has a special
property that its length is also equal to the sum of the sizes of the sets, i.e. |L| =

∑
i |L[i]|.

The allowance of empty sets means this is possible without the resulting sequence becoming
an ordinary string. We call such a degenerate string balanced. We return to this special case
later, but note here that the data structure we describe applies to all degenerate strings,
balanced or not.

Contribution. We describe the subset wavelet tree, a new data structure for subset-rank
and subset-select queries on degenerate strings. Our experiments on a real-world application
show that subset wavelet trees offer attractive space-time tradeoffs for subset-rank queries
in real-world genomics applications. A key subproblem in the navigation of a SubsetWT
to answer subset-rank is computing normal rank queries on small alphabets sequences (in
particular, base-3 and base-4 sequences). With this in mind, we describe and benchmark
several efficient methods for that subproblem, which may be of independent interest.



J. N. Alanko, E. Biagi, S. J. Puglisi, and J. Vuohtoniemi 4:3

Roadmap. In the next section we cover basic concepts and related work. We also provide
details of our experimental setup and the data sets we use in later sections. In Section 3
we describe a simple data structure for subset-rank and subset-select that acts as a baseline
against which the practical performance of our data structure can be gauged. In Section 4 we
describe the subset wavelet tree and algorithms for supporting subset-rank and subset-select
with it. Section 5 describes methods for computing normal rank queries on small alphabets
sequences. Section 6 then reports on experiments using the SubsetWT for k-mer queries
using SBWT representation discussed above.

2 Preliminaries

Rank and select on binary strings. A key tool in the design of succinct data structures
is the support for the query operations rank and select on a bit string (or bitvector) X of
length n defined as follows (for i ≤ n and c ∈ {0, 1}):

rankX(i, c) = number of c’s among the first i bits of X

selectX(i, c) = position of the i-th c in X

Classical techniques [24] (see also [28]) require n + o(n) bits to support each of the above
queries in O(1) time. However, the information theoretic lower bound on space usage for a
bit string of length n having n1 1s, is B(n, n1) = log

(
n
n1

)
= n1 log n

n1
bits.

There are data structures that come within a lower order term of this lower bound while
still supporting fast rank and select operations. Perhaps the foremost of these, known as
“RRR”, is due to Raman, Raman, and Rao Satti [29] and takes space B(n, n1) + o(n) and
answers all queries above in O(1) time. Fast implementations of RRR exist [27, 12, 22].

Rank and select for larger alphabets. There are also solutions for rank and select for
sequences on larger alphabets [14, 13, 8, 4]. Perhaps the most versatile and useful of these is
the wavelet tree [14, 25], which we now describe.

Consider a (ordinary) string S = S[0]S[1] . . . S[n] over alphabet Σ. The wavelet tree of S

is a balanced binary tree, where each leaf represents a symbol of Σ. The root is associated
with the complete sequence S. Its left child is associated with a subsequence obtained by
concatenating the symbols S[i] of S satisfying S[i] < |Σ|/2. The right child corresponds to
the concatenation of every symbol S[i] satisfying S[i] ≥ |Σ|/2. This relation is maintained
recursively up to the leaves, which are associated with the repetitions of a unique symbol.
At each node we store only a binary string of the same length of the corresponding sequence,
using at each position a 0 to indicate that the corresponding symbol is mapped to the left
child, and a 1 to indicate the symbol is mapped to the right child.

If the bit strings of the nodes support constant-time rank and select queries, then the
wavelet tree supports fast rank and select on T . Before describing how those queries are
carried out, it is instructive to examine a simpler query, namely accessing a given symbol in
the input string using only its wavelet tree.

access: In order to obtain the value of S[i] the algorithm begins at the root, and depending
on the value of the root bit string B at position i, it moves down to the left or to the right
child. If the bit string value is 0 it goes to the left, and replaces i ← rankB(i, 0). If the
bit string value is 1 it goes to the right child and replaces i← rankB(i, 1). When a leaf is
reached, the symbol associated with that leaf is the value of ai.

rank: To obtain the value of rankS(i, c) the algorithm is similar. It begins at the root and
goes down updating i as in the previous query, but the path is chosen according to the bits
of c instead of looking at B[i]. When a leaf is reached, the i value is the answer.

SEA 2023



4:4 Subset Wavelet Trees

Table 1 Statistics on the raw genomic datasets used in experiments. A k-mer is considered equal
to its reverse complement in the k-mer counts. We derived a single degenerate string from each of
these data sets using the Spectral Burrows-Wheeler transform.

Number of sequences Total length Unique 31-mers
E. coli 745,409 18,957,578,183 170,648,610
SARS-CoV-2 1,234,695 36,808,137,972 2,407,721
Metagenome 17,336,887 8,703,117,274 2,761,523,935

select: The value of selectS(j, c) is computed as follows: The algorithm begins in the leaf
corresponding to the character c, and then moves upwards until reaching the root. When it
moves from a node to its parent, j is updated as j ← selectB(j, 0) if the node is a left child,
and j ← selectB(j, 1) otherwise. When the root is reached, the final j value is the answer.

Experimental Setup. All our experiments were conducted on a machine with four 2.10 GHz
Intel Xeon E7-4830 v3 CPUs with 12 cores each for a total of 48 cores, 30 MiB L3 cache,
1.5 TiB of main memory, and a 12 TiB serial ATA hard disk. The OS was Linux (Ubuntu
18.04.5 LTS) running kernel 5.4.0-58-generic. The compiler was g++ version 10.3.0 and the
relevant compiler flags were -O3 -march=native and -DNDEBUG. All runtimes were recorded
by instrumenting the code with calls to the high-resolution clock of std::chrono in C++.
The sizes of the index structures in memory were calculated by adding together the sizes
of each individual component. The code to reproduce the experiments is available at
https://github.com/jnalanko/SubsetWT-Experiments.

Datasets. We experiment on three different data sets that represent typical targets for
k-mer indexing in bioinformatics applications.
1. A pangenome of 3682 E. coli genomes. The data was downloaded during the year 2020 by

selecting a subset of 3682 assemblies listed in ftp://ftp.ncbi.nlm.nih.gov/genomes/
genbank/bacteria/assembly_summary.txt with the organism name “Escherichia coli”
with date before March 22, 2016. The resulting collection is available at zenodo.org/
record/6577997 .

2. A set of 17,336,887 Illumina HiSeq 2500 reads of length 502 sampled from the human
gut (SRA identifier ERR5035349) in a study on irritable bowel syndrome and bile acid
malabsorption [20].

3. A set of 1,234,695 genomes of the SARS-CoV-2 virus downloaded from NCBI datasets.

Table 1 shows a number of key statistics. The constructed index structures include both
forward and reverse DNA strands.

3 Simple Subset Rank and Select

We now describe a straightforward way to support subset-rank and subset-select on a degen-
erate string X of length n over alphabet Σ in O(1) time and uses O(nσ) bits of space. For
each symbol c ∈ Σ we store a bit string Rc of length n such that Rc[i] = 1 if and only if
set X[i] contains symbol c. Each bit string is preprocessed for rank and select queries. To
answer subset-rankX(i, c) we simply return rankRc(i, 1). Select is answered in a similar way.
The approach is fast in practice, and will act as a baseline in our experiments.

https://github.com/jnalanko/SubsetWT-Experiments
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt
zenodo.org/record/6577997
zenodo.org/record/6577997


J. N. Alanko, E. Biagi, S. J. Puglisi, and J. Vuohtoniemi 4:5

T G ACGT CG A A AC A A

ACGT CG A A AC A A T G ACGT CG

0 0 1 0 0 1 0 1 0 1 1 0 0 1 1
1 1 1 0 0 1 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 0 1 1 1
1 1 0 0 1 0 0 1 0 1 0

AC
GT

A
C

G
T

Figure 1 SubsetWT of X = {T}{G}{A, C, G, T}{}{}{C, G}{}{A}{}{A}{A, C}{}{}{A}{A}.
Conceptually there are two bitvectors at each node of the tree, Lv and Rv which are shown on top
of each other in the figure. As described in the text, Lv and Rv can be combined into a base-4
sequence at the root and into a base-3 sequence at other nodes. At the root of this example, the
sequence would be 113003020220022, and at the left child of the root would be 3122322 (or 2011211
on a minimal base-3 alphabet).

4 Subset Wavelet Tree

We build a tree with log σ levels1. Each node of the tree corresponds to a part of the alphabet,
defined as follows. We denote with Av the alphabet of node v. The root node corresponds to
the full alphabet. The alphabets of the rest of the nodes are defined recursively such that
the left child of a node v corresponds to the first half of Av, and the right child corresponds
to the second half of Av. Let Qv be the subsequence of subsets that contain at least one
character from Av. As a special case, the subsequence Qv also includes the empty sets when
v is the root.

Each node v contains two bit vectors Lv and Rv of length |Qv|. We have Lv[i] = 1 iff
subset Qv[i] contains a character from the first half of Av, and correspondingly Rv[i] = 1
iff Qv[i] contains a character from the second half of Av. Figure 1 illustrates our running
example. The bit vectors Lv and Rv can be combined to form a string on the alphabet
{0, 1, 2, 3}, such that the i-th character is defined as (2 · Lv[i] + Rv[i]).

Rank queries on Lv can then be implemented by summing the ranks of characters 0 and
2, and rank queries on Rv can be implemented by summing the ranks of characters 1 and
3. To answer our query for a character c and position i, we traverse from the root to the
leaf of the tree where Av is the singleton subset {c}. While traversing, we compute for each
visited node v the length of the prefix in the current subset sequence Qv that contains all the
subsets of X1, . . . Xi that have at least one character from Av. This is done by using rank
queries on the bit vectors Lv and Rv, analogous to a regular wavelet tree query. Pseudocode
is given in Algorithm 1.

To answer a select query for a character c and position i, we traverse the tree from the
leaf where Av is the singleton subset {c} to the root. While traversing, we update i for each
visited node v and compute the length of the prefix in the current subset sequence Qv that
contains all the subsets of X1, . . . Xi that together have exactly i c characters. This is done
by using select queries on the bit vectors Lv and Rv, analogous to a regular wavelet tree
query. Pseudocode is given in Algorithm 2.

Query time for the subset wavelet tree is clearly O(log σ), as constant time is spent at each
of the log σ levels. For a general sequence of sets, the data structure requires 2n(σ−1)+o(nσ)
bits of space. The subset wavelet tree can be thought of as a complete binary tree with σ

leaves, labeled with the symbols of the alphabet. These are not in Figure 1 since leaves are
not actually stored in the subset wavelet tree. If all sets are full, then each set goes both

1 We assume for simplicity that σ is a power of 2.

SEA 2023



4:6 Subset Wavelet Trees

Algorithm 1 Subset wavelet tree rank query.
Input: Character c from an alphabet Σ = {1, . . . , σ} and an index i.
Output: The number of subsets Xj such that j ≤ i and c ∈ Xj .

function SubsetRank(i, c):
v ← root
[ℓ, r]← [1, σ]
while ℓ ̸= r do

if c < (ℓ + r)/2 then
r ← ⌊(ℓ + r)/2⌋
i← rankLv (i, 1)
v ← left child of v

else
ℓ← ⌈(ℓ + r)/2⌉
i← rankRv (i, 1)
v ← right child of v

return i.

Algorithm 2 Subset wavelet tree select query.
Input: Character c from an alphabet Σ = {1, . . . , σ} and an index i.
Output: The position of subset Xj such that the ith c ∈ Xj .

function SubsetSelect(i, c):
v ← c leaf
while v ̸= root do

u← parent of v

if v = left child of u then
i← selectLv (i, 1)

else
i← selectRv (i, 1)

v ← u

return i.

to the left and to the right child at each level. This means that every internal node of the
subset wavelet tree stores 2n bits. The total size of the subset wavelet tree is then given by
the number of (internal) nodes multiplied by the size of each of them, thus (σ − 1)2n.

For a balanced degenerate string, however, less space is needed. In particular, because
each element in each set corresponds to at most one symbol in sequence at a given level of
the tree, the total length of the sequences is bound by the total sizes of the sets, making the
number of bits over all log σ levels of the tree 2n log σ. We thus have the following theorem.

▶ Theorem 1. The subset wavelet tree of a balanced degenerate string takes 2n log σ+o(n log σ)
bits of space and supports subset rank and subset select queries in O(log σ) time.

5 Rank for Base-3 and Base-4 Sequences

A critical operation in answering subset rank queries with the subset WT is to answer
(ordinary) rank queries on the small alphabet sequences stored at the nodes of the tree. The
sequence at the root is base-4 (with alphabet Σ = {0, 1, 2, 3}) and the sequence at every
other node is base-3 (with alphabet Σ = {0, 1, 2}). Actually, the required operation is more
specific than a rank query: we always want to know the sum of rank(i, σ − 1) and either of
rank(i, Σ[0]) or rank(i, Σ[1]). We call these combined queries rank-pair queries. In particular:



J. N. Alanko, E. Biagi, S. J. Puglisi, and J. Vuohtoniemi 4:7

0.0 0.1 0.2 0.3

-CGT

ACG-

AC-T

A-GT

ACGT

-CG-

A--T

-C-T

A-G-

--GT

AC--

----

-C--

--G-

---T

A---

S
u

b
se

t

Metagenome

0.0 0.1 0.2 0.3
Probability

ACGT

ACG-

-CGT

AC-T

A-GT

-CG-

A--T

AC--

--GT

A-G-

-C-T

----

--G-

-C--

A---

---T

E.coli

0.0 0.1 0.2 0.3

-CG-

ACG-

-CGT

A--T

AC--

--GT

AC-T

A-GT

ACGT

-C-T

A-G-

----

-C--

--G-

A---

---T

Covid-19

Figure 2 Distributions of subsets in the balanced degenerate string produced by the Spectral
Burrows-Wheeler transform on the three genomic data sets described in Section 2. The three plots
show that in all cases the set distribution is highly skewed, with the vast majority of the sets being
singletons. The entropies for the distributions are: 2.21 (Metagenome), 2.24 (E.coli), and 2.31
(Covid-19).

Base-4

rankpair(i, 1) = rank(i, 1) + rank(i, 3)
rankpair(i, 2) = rank(i, 2) + rank(i, 3)

Base-3

rankpair(i, 0) = rank(i, 0) + rank(i, 2)
rankpair(i, 1) = rank(i, 1) + rank(i, 2)

In this section we examine methods for supporting rank and rank-pair queries on small
alphabet sequences. All the methods we describe support both types of queries, but,
importantly, some structures offer more ready support for rank-pair than do others.

We develop the structures with our spectral BWT application in mind. As stated earlier,
the SBWT sequence is a balanced degenerate string. Moreover, singleton sets dominate, as
the plots in Figure 2 show very clearly. In developing our rank/rank-pair data structures in
this section, we specifically target degenerate strings with skewed distributions.

5.1 Wavelet Trees
The current de facto standard for rank queries on sequences over non-binary alphabets is the
wavelet tree. We, therefore, use WTs as a baseline for the other methods we develop in this
section. Using different bitvector implementations inside WTs leads to different space-time
tradeoffs. We experimented with both plain bitvectors, which make the WT faster and larger,
and RRR bitvectors, which, as discussed in Section 2 take nH0 + o(n) bits of space for an
input bit string of n bits and are generally slower.

We used implementations from the Succinct Data Structures Library (SDSL), which
are the fastest wavelet tree implementations we know of. We remark that wavelet trees as
implemented in the SDSL offer no ready support for rank-pair queries, and so we implement
rank-pair by issuing two separate rank queries for the appropriate symbols.

5.2 Scanning Rank
This approach is inspired by fast methods for binary rank queries [12], where the task is
to count 1s up to a given position. For brevity, we describe only the structure for base-4
sequences here – the structure for base-3 sequences is essentially the same.

SEA 2023



4:8 Subset Wavelet Trees

The data structure consists of three layers. At the lowest layer is the sequence X itself,
packed into words. Assuming 64-bit words, we can pack 32 base-4 symbols into a single
word, and so this layer takes 64 · ⌈n/32⌉ ≈ 2n bits. At the highest layer, we divide X into
superblocks each of size s. For each superblock we store the answer to rank(i, c) for all c ∈ Σ,
where i is the start of the superblock. These answers are stored in a table of size σn/s words
so that we can access the answers for the superblock containing a given position j in constant
time at column j/s of the table. In the middle layer of the structure we divide X into blocks
of size b < s, where b is a divisor of s. For a block beginning at position i, we precompute
and store, for each symbol c ∈ Σ, the number of occurrences of c in X[s⌊i/s⌋..i) – in other
words, the count between the start of the block and the start of its enclosing superblock. If
we set s = 232, then the block counts need 32 bits each. In our experiments we set b = 1024.

A critical optimization is to interleave the counts stored for each block with the part of
the sequence covered by the block. In memory, the format of a block is a 2-word header
containing four precomputed counts, followed by a data section of b/64 words into which
the b symbols themselves are packed. Interleaving the header and data sections in this way,
the lower and middle layers as a single array A of (2n/b + n/32) words in memory. Thus,
accessing the data sections of a block immediately after its header has good memory locality.

Query rank(i, c) is answered as follows. The header for the block containing position i

starts at position j = i/(b + 2) in A. We retrieve the count for c and add it to the relevant
count retrieved from the superblock table. We then proceed to scan A[j + 2..i mod b),
counting occurrences of c. In general this involves inspecting zero or more whole words
and possibly one partial word, which together contain part of the input sequence relevant
to the query. Counting occurrences of bit patterns 00, 01, 10, and 11 in whole (or partial)
words can be made fast by the use of bitwise operations. rank-pair affords a particularly fast
implementation with relevant symbol occurrences counted inside a word via a single bitwise
AND (with an appropriate mask) and a single popcount operation.

5.3 Sequence Splitting
Our next structure aims to exploit the skewed distribution in real subset sequences observable
in Figure 2. Because the sets in X are mostly singletons, in the base-4 sequence at the
root of the SubsetWT symbols 1 and 2 will dominate2. With this in mind, to represent a
base-4 sequence X of length n, as follows. Let Xa,b be the subsequence of X consisting of
only symbols X[i] ∈ {a, b}. For X1,2 we store a bitvector L of |X1,2| bits where L[i] = 1 if
X1,2[i] = 2 and L[i] = 0 if X1,2[i] = 1. We store a similar bitvector R for X0,3: R[i] = 1 if
X0,3[i] = 3 and R[i] = 0 if X0,3[i] = 1. Finally, we store positions i such that X[i] ∈ {0, 3} in
a predecessor data structure, P . If there is skewness of the subset distribution we can expect
P and R to be small. Both bitvectors L and R are indexed for rank queries. In summary,
the final data structure for a base-4 sequence consists of P , L and R and their rank support
structures. For base-3 sequences there is no need to store the bitvector L, since P stores
exclusively the indexes i such that X[i] = 2, as those are the only non-singleton sets.

On a base-4 sequence X query rankX(i, c) is answered with a predecessor query on P for
position i, which returns p, the number of elements in P smaller than i (i.e., the rank of the
predecessor of i in P ), followed by a binary rank query on L or R. Subtracting the result of
the predecessor query p from i gives us the appropriate index for a binary rank query on
L if c ∈ {1, 2}. In particular rankX(i, 1) = rankL(i− p, 0) and rankX(i, 2) = rankL(i− p, 1).
For answering rank queries with c ∈ {0, 3}, we require a binary rank query on the bitvector

2 In sequences at lower nodes, which are base-3, it will be symbols 0 and 1 that dominate



J. N. Alanko, E. Biagi, S. J. Puglisi, and J. Vuohtoniemi 4:9

R at position p, in particular rankX(i, 0) = rankR(p, 0) and rankX(i, 3) = rankR(p, 1). Rank
queries on a base-3 sequence are the same as for base-4 for singletons, x ∈ {0, 1}, specifically
rank(i, 0) = rankL(i − p, 0) and rank(i, 1) = rankL(i − p, 1). As no second binary vector is
present, the result of the predecessor query gives us directly the rank of c = 2.

rank-pair queries with this structure can be answered faster than two separate single rank
queries. Indeed, with rank-pair queries we can save a predecessor query as p is computed
only once for both symbols in the query.

5.4 Extending RRR to Base-3 and Base-4 Sequences
Our final method is a generalization – to base-3 and base-4 sequences – of the famous entropy
compressed bitvector due to Raman, Raman, and Rao-Satti [29], the so-called RRR data
structure. RRR represents a bitstring using at most nH0 + o(n) bits and supports rank
and select operations on the bitstring in O(1) time per query, without needed access to the
original input after construction. Practical implementations of generalizations of RRR have
been proposed before [8], however our approach is different, drawing on ideas by Navarro
and Providel [27] for a particular implementation of the binary RRR scheme.

Let X be a sequence of length n from an alphabet with constant size σ. We index X

using a three-level structure similar to the basic binary RRR structure. That is, we segment
X into blocks of size b = O(log n) and superblocks of size B = O(log2 n), where B is a
multiple of b. We precompute the counts of symbols up to the start of each superblock,
and the counts of symbols inside each block. The precomputed values are represented using
O(log n) bits each for superblock, and O(log log n) bits for the regular blocks, making the
total space for those values O(nσ log log n/ log n), which is o(n), as σ was assumed constant.
A rank query rank(i, c) is answered in three parts: first, look up the count of c up to the
superblock containing i, then, add up the counts of c in blocks preceding index i in the
superblock, and lastly, add the count of occurrences of c in the prefix of length p = i mod b

in the block containing index i.
To compute the count of a symbol within a prefix of a block, we encode some extra

information to be able to decode the sequence of symbols in a block, and then loop to
count the number of occurrences in the prefix of length i mod b. Consider the equivalence
relation that partitions the space of all the σb possible distinct blocks into equivalence
classes such that two blocks are in the same class if and only if they contain the same
multiset of symbols. We store for each block the rank r of the block in the lexicographically
sorted list of blocks in its equivalence class. The class and the lexicographic rank within
the class completely determine the sequence of symbols inside the block. That is, there
exists a function unrank(r, d0, d1, . . . dσ−1) that takes the lexicographic rank r and the counts
d0, d1, . . . dσ−1 of symbols inside the block, and returns the sequence of symbols in the block.
It remains to show how to implement unrank(r, d0, d1, . . . dσ−1).

One way to implement unrank would be to precompute and store the answers to all queries
unrank(r, d0, d1, . . . dσ−1). This corresponds to the universal tables in the original RRR data
structure. This, however, is space consuming for large b, so we describe a way to compute
unrank without using any extra space at all. Our method can be seen as a generalization of
the scheme used in the practical RRR implementation of Navarro and Providel [27], from a
binary alphabet to an integer alphabet.

We denote by
(

n
d0d1...dσ−1

)
the multinomial coefficient n!

d0!d1!···dσ−1! , defined so that the
value is 0 if any of the d0, . . . , dσ−1 are negative or their sum is greater than n. Let
lexrank(c0, c1, . . . cb−1) be the lexicographic rank of a block c0, c1, . . . cb−1 in its equivalence
class. Let Dc(i) be the number of occurrences of symbol c in the suffix ci, . . . , cb−1. Now we
can write:

SEA 2023



4:10 Subset Wavelet Trees

lexrank(c0, . . . cb−1) =
b−1∑
i=0

ci−1∑
j=0

(
b− 1− i

D0(i) · · · Dj(i)− 1, · · · Dσ−1(i)

)
,

where the -1 in the choices of the multinomial is only applied for choice Dj(i). The formula
represents a process that iterates the symbols of the block from left to right, adding up
ways to complete the block using the remaining counts such that the completed block is
lexicographically smaller than the input block. Computing the unrank function is a matter
of inverting the lexrank function. We do this by adding the multinomials in the inner sum
until the total would become greater than the target rank r. When this happens, we append
the current symbol j to the sequence of the block and proceed to the next round of the outer
sum. Algorithm 3 provides the pseudocode of the process for a base-4 sequence.

Algorithm 3 Base-4 block unrank. Prints the sequence of symbols in the block with rank r among
the class of blocks with symbol counts d0, d1, d2 and d3.

function Base4BlockUnrank(r, d0, d1, d2, d3):
b← d0 + d1 + d2 + d3 ▷ Block size
s← 0 ▷ Blocks counted so far
for i = 0, . . . , b− 1 do

for j = 0, . . . , 3 do ▷ 0 to σ − 1
dj ← dj − 1
count ←

(
b−1−i

d0,d1,d2,d3

)
dj ← dj + 1
if s + count > r then

print j

dj ← dj − 1
break

else
s← s + count

5.4.1 Practical considerations
In practice, we use a block size b = 31 and superblock size B = 32b = 992. With this choice
of b, the counts of symbols inside blocks fit into 5 bits each. We omit the count of the last
symbol of the alphabet in each block because it can be computed by subtracting the counts
of the other symbols from the block size b. This choice of b also guarantees that lexicographic
ranks of blocks within their classes always fit in 64-bit integers, assuming that the alphabet
size is at most 4. To compute the multinomial coefficients for unrank, we use the formula(

n
d0...dσ−1

)
=

(
n
d0

)(
n−d0

d1

)(
n−d0−d1

d2

)
. . .

(
n−d0−...−dσ−2

dσ−1

)
. The expression is evaluated using only

(σ − 1) multiplications by loading the binomials from a precomputed table and omitting the
last term which is always equal to 1. We terminate the block decoding process early after
having decoded the prefix of the required length.

These lexicographic ranks within a class are stored compactly using ⌈log2 m⌉ bits each,
where m is the size of the class of the block. The binary representations of these ranks are
concatenated in memory. Since the query algorithm will always access the list of lexicographic
ranks of blocks in sequential order starting from a superblock boundary, we do not have to
store the widths of all of the binary representations in the concatenation, but instead, we
only store the sum of widths up to each superblock, and we can compute the width of the
binary representation of the i-th block from the stored symbol counts during query time.



J. N. Alanko, E. Biagi, S. J. Puglisi, and J. Vuohtoniemi 4:11

The binomials involved in the computation are again loaded from a precomputed table, and
the integer base-2 logarithms are efficiently implemented using a machine instruction to
count the number of leading zeroes in a word.

5.5 Microbenchmark

To evaluate the practical performance of the small-alphabet rank data structures developed
earlier in this section, we benchmarked 107 rank and rank-pair queries at random positions
for random characters, in the base-3 and base-4 sequences extracted from the SubsetWT of
the SBWT of our metagenomic read dataset.

The smallest data structure was the RRR-based wavelet tree, which was also the slowest.
The fastest was the Scanning solution, but it had the largest space. The full results are
in Table 2. The WT RRR, Generalized RRR, and Split methods all achieve some level of
compression, while WT plain and Scanning methods both expand on the size of the input
sequence. Finally, we observe that all methods answer rank− pair queries in less than twice
the time it takes to answer a single rank query. The most impressive rank-pair performance
(relative to rank performance) is shown by Generalized RRR and Scanning, both of which
can save significant computation when computing rank-pair.

Table 2 Microbenchmark results on random queries on base-4 and base-3 sequences derived from
the SubsetWT of the Spectral Burrows-Wheeler transform of the metagenomic read dataset.

Sequence Structure space (bps) rank time (ns) rank-pair time (ns)
Base-4 WT plain 2.13 247 404

WT RRR 1.29 1017 1517
Generalized RRR 1.55 826 829

Split 1.69 290 328
Scanning 2.25 142 106

Base-3 WT plain 2.12 199 369
WT RRR 1.15 718 1006

Generalized RRR 1.26 681 679
Split 1.39 224 248

Scanning 2.25 148 107

Table 3 SBWT k-mer search queries with different subset rank implementations. The space
is given in units of bits per indexed k-mer, where a k-mer is considered distinct from its reverse
complement. The time is reported in microseconds per queried k-mer.

Dataset Subset Rank Structure Space (bpk) Query Time (µs)
Metagenomic reads Simple 4.66 1.49

SubsetWT<Generalized-RRR> 3.07 44.13
SubsetWT<WT-RRR> 2.67 71.37
SubsetWT<Split> 3.36 6.03

E. coli genomes Simple 4.29 1.04
SubsetWT<Generalized-RRR> 2.84 41.21
SubsetWT<WT-RRR> 2.48 67.01
SubsetWT<Split> 3.17 6.84

SEA 2023



4:12 Subset Wavelet Trees

2.5 3.0 3.5 4.0 4.5

Space (bits/kmer)

0

10

20

30

40

50

60

70

Q
u

er
y

ti
m

e
(µ

s/
q
u

er
y
)

SBWT k-mer search performance

Simple

SubsetWT<Generalized-RRR>

SubsetWT<WT-RRR>

SubsetWT<Split>

Figure 3 Time and space required for k-mer search on the SBWT using different implementations
for subset rank queries. There are two data points per data structure since we have two datasets.
For all data structures the metagenome result is the right point and E. coli the left. The two vertical
lines mark the entropies of the distribution of subsets in the two datasets.

6 Subset rank query performance on k-mer search of the Spectral
BWT

As mentioned at the start of this paper, our main interest in the SubsetWT is for implementing
a k-mer search algorithm using the Spectral BWT [3], which reduces a k-mer search query to
2k subset rank queries on a degenerate string. In this section, we compare our implementations
of the SubsetWT parameterized by different base-3 and base-4 rank structures, to the simple
solution of Section 3.

We used the value k = 31 in all experiments. The time to load the index into memory
was disregarded and the running time includes only the time spent running queries. Table 3
shows the query times against SBWT index structures built for the metagenomic read set
and the E. coli genomes. In case of the metagenomic read set, we queried the first 25,000
reads in the dataset, and in case of the E. coli genomes, we queried all k-mers of a single
genome in the dataset (assembly id GCA_000005845).

The experiments show that the most succinct solution was the SubsetWT with the
RRR-encoded wavelet tree for the base-3 and base-4 rank queries, at 2.5 – 2.7 bits per k-mer,
but, on the flipside, its query time was the slowest. The generalized RRR was approximately
15% larger, but had approximately 1.6 times faster queries. The next-largest structure was
the Split structure, being 26% larger than the RRR wavelet tree, with dramatically improved
query time, up to 12 times faster. The plain matrix solution was the largest, being 73% larger
than the RRR wavelet tree, with 48 – 64 times faster queries. We omit from the results the
SubsetWT parameterized by the scanning solution of Section 5.2 and by the plain bitvector
wavelet tree of Section 5.1, since on the DNA alphabet, they are dominated in the time-space
plane by the simple solution. They may lead to competitive solutions for degenerate strings
on larger alphabets. Figure 3 shows the data points in Table 3 in the time-space plane.



J. N. Alanko, E. Biagi, S. J. Puglisi, and J. Vuohtoniemi 4:13

7 Concluding Remarks

We have described the subset wavelet tree – a new data structural tool for degenerate strings.
On degenerate strings from a real-world large-scale genomics application, subset wavelet trees
offer significant space savings over a non-trivial baseline method, at an acceptable slowdown
to query times. Along the way we have described and engineered several rank data structures
specialized for ternary and quarternary sequences, which are of independent interest.

The main open problem we leave is to find a tighter analysis of the space required
by subset wavelet trees when entropy compression is applied to their node sequences. In
particular, can the size of the resulting structure be related in some way to the entropy of
the subset sequence. Our experimental results suggest this may well be the case.

Another interesting avenue for future work is to apply the new small alphabet rank data
structures we have developed to other settings, for example FM indexes [9] for DNA sequence
data, or structures currently of a somewhat esoteric nature, such as multiary wavelet trees [8].
Our results suggest some of our structures (e.g., Scanning) are superior to regular wavelet
trees, which until now have been the main practical solution for rank on non-binary sequences
and are currently in wide use via the Succinct Data Structures Library [11].

References

1 Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051, 1987.
2 H. Alamro, M. Alzamel, C.S. Iliopoulos, S. P. Pissis, and S. Watts. IUPACpal: efficient

identification of inverted repeats in IUPAC-encoded dna sequences. BMC Bioinformatics,
22(51), 2021.

3 Jarno N Alanko, Simon J Puglisi, and Jaakko Vuohtoniemi. Succinct k-mer sets using subset
rank queries on the spectral Burrows-Wheeler transform. bioRxiv, 2022.

4 J. Barbay, M. He, I. Munro, and S. Srinivasa Rao. Succinct indexes for strings, binary relations
and multilabeled trees. ACM Transactions on Algorithms, 7(4):article 52, 2011.

5 E. Cambouropoulos, T. Crawford, and C.S. Iliopoulos. Pattern processing in melodic sequences:
Challenges, caveats and prospects. Computers and the Humanities, 35:9–21, 2001.

6 Rayan Chikhi. A tale of optimizing the space taken by de Bruijn graphs. In Proc. 17th
Conference on Computability in Europe (CiE), volume 12813 of LNCS, pages 120–134. Springer,
2021.

7 Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Wojciech
Rytter, and Tomasz Walen. Covering problems for partial words and for indeterminate strings.
Theor. Comput. Sci., 698:25–39, 2017.

8 P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of
sequences and full-text indexes. ACM Transactions on Algorithms, 3(2):article 20, 2007.

9 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA, pages 390–398. IEEE Computer Society, 2000.

10 Michael J. Fischer and Michael S. Paterson. String-matching and other products. Complexity
of Computation, 7:113–125, 1974.

11 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In Proc. 13th International Symposium on Experimental
Algorithms (SEA), LNCS 8504, pages 326–337. Springer, 2014.

12 Simon Gog and Matthias Petri. Optimized succinct data structures for massive data. Softw.
Pract. Exp., 44(11):1287–1314, 2014.

SEA 2023



4:14 Subset Wavelet Trees

13 A. Golynski, I. Munro, and S. Srinivasa Rao. Rank/select operations on large alphabets: a
tool for text indexing. In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 368–373, 2006.

14 R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Proc.
14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), !booktitle = "SODA",
pages 841–850, 2003.

15 Guillaume Holley and Páll Melsted. Bifrost: highly parallel construction and indexing of
colored and compacted de Bruijn graphs. Genome biology, 21(1):1–20, 2020.

16 Jan Holub, William F. Smyth, and Shu Wang. Fast pattern-matching on indeterminate strings.
J. Discrete Algorithms, 6(1):37–50, 2008.

17 Costas S. Iliopoulos and Jakub Radoszewski. Truly subquadratic-time extension queries and
periodicity detection in strings with uncertainties. In Roberto Grossi and Moshe Lewenstein,
editors, Proc. 27th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 54
of LIPIcs, pages 8:1–8:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

18 Costas S. Iliopoulos, M. Sohel Rahman, Michal Vorácek, and Ladislav Vagner. The constrained
longest common subsequence problem for degenerate strings. In Jan Holub and Jan Zdárek,
editors, Proc. 12th International Conference on Implementation and Application of Automata
(CIAA), LNCS 4783, pages 309–311. Springer, 2007.

19 IUPAC-IUB Commission on Biochemical Nomenclature. Abbreviations and symbols for nucleic
acids, polynucleotides, and their constituents. Biochemistry, 9(20):4022–4027, 1970.

20 Ian B Jeffery, Anubhav Das, Eileen O’Herlihy, Simone Coughlan, Katryna Cisek, Michael
Moore, Fintan Bradley, Tom Carty, Meenakshi Pradhan, Chinmay Dwibedi, et al. Differences
in fecal microbiomes and metabolomes of people with vs without irritable bowel syndrome
and bile acid malabsorption. Gastroenterology, 158(4):1016–1028, 2020.

21 Mikhail Karasikov, Harun Mustafa, Daniel Danciu, Marc Zimmermann, Christopher Barber,
Gunnar Rätsch, and André Kahles. Metagraph: Indexing and analysing nucleotide archives at
petabase-scale. BioRxiv, 2020.

22 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Hybrid compression of bitvectors
for the FM-index. In Proceedings of the Data Compression Conference (DCC), pages 302–311,
2014.

23 Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu. Genome-Scale
Algorithm Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press, 2015.

24 J. Ian Munro. Tables. In Proc. 16th Conference on Foundations of Software Technology and
Theoretical Computer Science, LNCS 1180, pages 37–42. Springer, 1996.

25 G. Navarro. Wavelet trees for all. In Proc. 23rd Annual Symposium on Combinatorial Pattern
Matching (CPM), LNCS 7354, pages 2–26, 2012.

26 Gonzalo Navarro. Compact Data Structures – A Practical Approach. Cambridge University
Press, 2016.

27 Gonzalo Navarro and Eliana Providel. Fast, small, simple rank/select on bitmaps. In
Experimental Algorithms: 11th International Symposium, SEA 2012, Bordeaux, France, June
7-9, 2012. Proceedings 11, pages 295–306. Springer, 2012.

28 Rajeev Raman. Rank and select operations on bit strings. In Encyclopedia of Algorithms,
pages 1772–1775. Springer, 2016. doi:10.1007/978-1-4939-2864-4_332.

29 Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 233–242, 2002.

30 Sun Wu and Udi Manber. Agrep – a fast approximate pattern-matching tool. In Proc. USENIX
Winter 1992 Technical Conference, pages 153–162, 1992.

https://doi.org/10.1007/978-1-4939-2864-4_332


Engineering Shared-Memory Parallel Shuffling to
Generate Random Permutations In-Place
Manuel Penschuck #

Goethe Universität Frankfurt, Germany

Abstract
Shuffling is the process of placing elements into a random order such that any permutation occurs
with equal probability. It is an important building block in virtually all scientific areas. We
engineer, – to the best of our knowledge – for the first time, a practically fast, parallel shuffling
algorithm with O

(√
n log n

)
parallel depth that requires only poly-logarithmic auxiliary memory

(with high probability). In an empirical evaluation, we compare our implementations with a number
of existing solutions on various computer architectures. Our algorithms consistently achieve the
highest through-put on all machines. Further, we demonstrate that the runtime of our parallel
algorithm is comparable to the time that other algorithms may take to acquire the memory from
the operating system to copy the input.

2012 ACM Subject Classification Theory of computation → Shared memory algorithms

Keywords and phrases Shuffling, random permutation, parallelism, in-place, algorithm engineering,
practical implementation

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.5

Supplementary Material Software (Source Code): https://crates.io/crates/rip_shuffle
Software (Source Code and Raw Data): https://zenodo.org/record/7876820

Funding Manuel Penschuck: Supported by the Deutsche Forschungsgemeinschaft (DFG) under
grant ME 2088/5-1 (FOR 2975 – Algorithms, Dynamics, and Information Flow in Networks).

1 Introduction

Random permutations are heavily studied in many fields of science with numerous applications.
They are commonly considered an “easy and fair” arrangement and thus influence many
aspects of everyday life ranging from shuffling a deck of cards in a friendly game to determining
the fateful order in which soldiers are drafted for war (e.g., [24]).

In computer science, applications include numerical simulations, sampling of complex
objects, such as random graphs, machine learning, or statistical tests (e.g., [4, 16, 20, 26]).
Especially, if coupled with rejection sampling, shuffling can become a dominating subroutine
(e.g., [1] which triggered this work). Further, the assumption that an input is provided
in random order (instead of adversarially) allows for practical algorithms that are almost
always efficient. Among others, this notion motivates the random-order-model for online
algorithms [11]. For the same reason, implementations of offline algorithms may start by
shuffling their inputs; for instances, folklore suggests to shuffle the input before sorting it
with a simple Quicksort implementation.

From an algorithmic point of view, the tasks of shuffling and sorting are tightly connected
since both require an algorithm capable of emitting any permutation. Though, while sorting
needs to handle adversarial inputs, shuffling can be optimized for the well-behaved uniform
distribution. Shuffling can be implemented in linear-time via integer sorting by augmenting
each input element with a uniform variate and sorting by it [7]; we refer to this approach as
SortShuffle. The famously impractical BogoSort demonstrates the other direction, namely
sorting by shuffling, but suffers from a “slightly” suboptimal expected runtime of Ω(n ·n!) [14].

© Manuel Penschuck;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 5; pp. 5:1–5:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mpenschuck@ae.cs.uni-frankfurt.de
https://orcid.org/0000-0003-2630-7548
https://doi.org/10.4230/LIPIcs.SEA.2023.5
https://crates.io/crates/rip_shuffle
https://zenodo.org/record/7876820
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 In-Place Shared-Memory Parallel Shuffling

The quest for in-place algorithms is driven by the various costs of memory. The most
obvious aspect is that the maximal data set size that can be handled by a machine roughly
halves if the output is produced in a copy. Further, it takes a considerable time to allocate
main memory on modern computer systems; in Section 6 we demonstrate that the runtime
of our shuffling algorithm is comparable to the time it takes to acquire additional memory of
input size. Another hidden cost is the increased code complexity to handle failed allocations of
dynamic memory (e.g., because the system ran out of memory). Finally, some programming
languages have a concept of non-copyable data; e.g., in C++ the copy-constructor can be
deleted, and in Rust data types need to explicitly declare that they can be cloned.

1.1 Our contributions
We design and implement the practical shared-memory parallel algorithm Parallel In-Place
ScatterShuffle (PIpScShuf ). Our contributions include:

The algorithm is an in-place modification of ScatterShuffle [29]. Instead of directly putting
elements to random positions, ScatterShuffle instead assigns the elements to random
buckets and recurses on them until eventually a random permutation is achieved.
We show that our PIpScShuf has (whp) a parallel depth of O(log(n)

√
nk/ log k) and uses

O(n logk(n)) work (see Section 2.1 for definitions) where k is small tuning parameter.
While it is straightforward to implement ScatterShuffle in-place using standard techniques
(e.g., by sampling the buckets sizes as a multinomial followed by weighted sampling to
distribute the elements [26]), we design a multi-staged assignment process for practical
performance inspired by MergeShuffle [3].
We first assume that all buckets have the same sizes and randomly assign most elements
very efficiently. We then show that an asymptotically negligible and practically cheap
repair step can produce the required original random distribution.
We provide fast shuffle implementations in a free and well-tested plug-and-play Rust
library. Our PIpScShuf does not use heap allocations and emits reproducible permutations
if a seedable pseudo-random number generator is provided.

After a discussion of notation and related work in Sections 2 and 3, we derive the
sequential In-Place ScatterShuffle (IpScShuf ) in Section 3 and parallelize it in Section 4. In
Section 5, we discuss details of our implementations which we then evaluate in Section 6.

2 Preliminaries and notation

The expression (xi)b
i=a denotes the sequence xa, . . . , xb and may be shortened to (xi)i if the

limits are implied by context. We indicate an array of n elements as X[1..n] and reference
the subrange X[i], . . . , X[j] as X[i..j]. Further, [n] denotes the set {1, . . . , n}. Then, a
permutation is a bijection π : [n] → [n] where π(i) encodes the position of the i-th input
element in the output. We say that a probabilistic statement holds with high probability
(whp) if the error probability is at most 1/n for some implied parameter n.

2.1 Parallel model of computation
For parallel algorithms, we assume the commonly accepted binary Fork-Join model [8]. This
choice fits the rayon1 infrastructure used in our implementation well. An execution starts
with a single task on a unit-cost random access machine. Additionally, any task t0 can

1 https://crates.io/crates/rayon

https://crates.io/crates/rayon


M. Penschuck 5:3

Algorithm 1 Fisher Yates Shuffle on input A[1..n]. The array eventually holds the output.

1 for i in 1 to n−1 do
2 j ← uniform sample from [i..n] // A[1..i− 1] already have final values
3 swap elements A[i] and A[j]

recursively fork into two tasks t1 and t2. In this case t0 waits until t1 and t2 complete their
computation and join to resume t0. In practice, Fork-Join frameworks, such as oneTBB2,
Cilk3 [19], or rayon, use a worker-pool in combination with a work-stealing scheduler to map
tasks to cores. Algorithmic performance measures are the work, i.e. the total number of
instructions, and the parallel depth (span), defined as the length of the critical path which
corresponds to the execution time assuming an unbounded number of workers.

2.2 Random shuffling
The sequential Fisher-Yates-Shuffle (FY , also know as Knuth-Shuffle) [18] obtains a random
permutation of an array A[1..n] in time O(n). As summarized in Algorithm 1, conceptually,
it places all items into an urn, draws them sequentially without replacement, and returns the
items in the order they were drawn. The algorithm works in-place and fixes the value of A[i]
in iteration i ∈ [1...n−1] by swapping A[i] with A[j] where j is chosen uniformly at random
from the not yet fixed positions [i..n]. In other words, in the i-th iteration, the (i−1)-prefix
of A stores the result obtained so far, while the (n−i)-suffix represents the urn.

Shun et al. show that this seemingly inherently sequential algorithm exposes sufficient
independence to be processed with logarithmic parallel depth (whp) [30]. Later, Gu et al.
propose an in-place variant based on the so-called decomposition property of the parallel
FY [15]. However, both algorithms are designed to solve a subtly different problem. They
permute the input in an explicitly prescribed manner. As such, the permutation is part of the
input and the implementation4 of [15] uses two additional pointers per element (i.e. shuffling
32 bit values on a 64 bit machine leads to a five-fold increase of memory).

A random permutation can be computed in parallel by P processors by assigning each
element to one of P buckets uniformly at random and then applying the sequential algorithm
to each bucket [29]. We refer to this algorithm as ScatterShuffle and discuss it in detail in
Section 3. A similar technique yields an I/O-efficient random permutation algorithm [29].

Going the opposite direction also yields an efficient algorithm. MergeShuffle first assigns
each processor a contiguous section of the input array, shuffles the subproblems pleasingly
parallel and finally recursively merges them to obtain a larger random permutation [3]. Here,
merging of two input sequences A and B exploits that A and B were previously shuffled.
Hence, the relative order of elements from A (and B respectively) can be kept in the output.
In other word, the merging phase conceptually produces a |A|+ |B| bit vector with exactly |B|
ones. If the i-th zero is at position j, we place A[i] to the j-th output position (analogously
for ones and B).

This merging can be interpreted as the inverse of ScatterShuffle’s scatter with two buckets.
In a precursor study, we found it too slow to generalize MergeShuffle using k-way merging
which is needed to reduce the recursion depth. MergeShuffle further uses a sequential merge

2 previously known as Intel Threaded Building Blocks, https://github.com/oneapi-src/oneTBB
3 see also https://www.opencilk.org, http://cilkplus.org
4 https://github.com/ucrparlay/PIP-algorithms master at time of writing (6af1df9)

SEA 2023

https://github.com/oneapi-src/oneTBB
https://www.opencilk.org
http://cilkplus.org
https://github.com/ucrparlay/PIP-algorithms


5:4 In-Place Shared-Memory Parallel Shuffling

procedure and we are unaware of a parallelization that is as efficient as our PIpScShuf based
on ScatterShuffle. However, the authors show that if |A| ≈ |B|, we can assign the positions
of all but expected O

(√
|A|+ |B|

)
elements using a single random bit. A generalization of

this insight is a crucial building block for our RoughScatter routine in Section 3.3.
Cong and Bader [7] empirically study additional techniques such as shuffling using sorting

algorithms (SortShuffle) or random dart-throwing (DartThrowingShuffle). We are, however,
unaware of how to implement these approaches in-place. Yet, it is worth pointing out that our
IpScShuf algorithm can be interpreted as an optimized in-place RadixSort in which buckets
are randomly drawn. As such, there are conceptual similarities to SortShuffle. In a precursor
study, we found that even highly optimized parallel and in-place sorting algorithms, such as
IPS2RA [2], are outperformed by our PIpScShuf implementation. This can be attributed to
the fact that sorting is a much more constraint problem, while shuffling can algorithmically
exploit the features of uniform permutations.

2.3 Sampling from discrete distributions
In the following, we sample from several discrete probability distributions (arguably, shuffling
is just that). This is achieved by first obtaining a stream of independent and unbiased random
bits that are subsequently reshaped to attain the required distribution. The default way of
implementing the first step is using a pseudo-random generator, such as Pcg64Mcg [25].

Sampling an integer from [0, s) with s = 2k for some k ∈ N from random words is very
cheap and involves only shifting and masking. We adopt rejection-based algorithms with
expected constant time to sample uniform variates from [0, s] for general s (see [20]) and
binomial variates (see [9]). Sampling of k-dimensional multinomial variates is implemented
by chaining appropriately parametrized binomial samples in expected time O(k).

3 Sequential in-place shuffling

In this section, we propose In-Place ScatterShuffle (IpScShuf ), a sequential in-place variant
of Sanders’ parallel ScatterShuffle [29]. Building on the performance results obtained, we
reintroduce parallelism in Section 4.

3.1 State of the art
It seems that the simple and fast Fisher-Yates Shuffle (FY , see Section 2.2) is the shuffle
algorithm most commonly used in practice. Due to its simplicity, the algorithm typically
outperforms more advanced schemes for small inputs. However, FY ’s unstructured accesses
to main memory cause a severe slowdown for larger inputs. This is especially relevant for
parallel algorithms where the memory subsystem is shared between cores (see Section 6).

ScatterShuffle (Algorithm 2) is designed to be a parallel algorithm that also fares well in
the external memory model [29]. Given an input (xi)n

i=1, the algorithm moves each input
element xi into a bucket drawn independently and uniformly from B1, . . . , Bk. Afterwards,
each bucket constitutes an independent subproblem of expected Θ(n/k) elements on which
we recurse. For small subproblems, we switch to FY as the base case algorithm.

While we refer to [29] for a formal correctness proof, the following intuition should suffice
to follow this article. Consider that we augment each input element xi with a random
integer ri chosen uniformly from [0; 2ℓ) where ℓ is sufficiently large such that all ri are unique.
Then, we use RadixSort to order the elements according to these random keys (starting with



M. Penschuck 5:5

Algorithm 2 Sequential variant of ScatterShuffle. The buckets’ total size is Θ(n).

1 Function ScatterShuffle(X = [x1, . . . , xn], k) // X is modified in-place
2 if n is small then // Base case for small inputs
3 FisherYates (X) and return

4 Initialize empty buckets B1, . . . , Bk

5 for x ∈ X do // Assign elements to buckets
6 copy x into Bj where Bj is uniformly chosen from B1, . . . , Bk

7 s← 1
8 for Bj ∈ {B1, . . . , Bk} do // Recurse and overwrite input X

9 ScatterShuffle(Bj , k)
10 X[s..(s+|Bj |)]← Bj

11 s← s + |Bj |

the most significant k-ary digit); this will yield a uniform permutation by construction. Now
observe that the buckets in ScatterShuffle and RadixSort are treated analogously with the
difference that ScatterShuffle samples the digits on-demand.

In the original parallel formulation of ScatterShuffle, the number of buckets k equals the
number of processing units P to expose the maximal degree of parallelism. Sanders, however,
already discusses that in the presence of memory hierarchies, the parameter k should be
chosen sufficiently small such that the individual processors can cache at least the tail of each
bucket. In his implementation5, the parameter is k = 32 for the largest runs in [29]. At time
of writing – more than two decades later, using very different hardware to run experiments
with more than three orders of magnitude larger data sets – we empirically find k ≤ 64 to
be the best choice for our In-Place ScatterShuffle over a wide range of input sizes. Hence,
the parameter k should be intuitively treated as a small constant that governs primarily the
branching factor of the recursion. In Section 4, we will add parallelism independent of k.

Our main modification to ScatterShuffle is In-place Scatter (IpSc) which scatters the
input into k buckets. It effectively replaces lines 4–6 in Algorithm 2. Instead of copying the
input into new arrays representing the buckets, the buckets become disjoint memory regions
of the input (e.g., represented by two pointers). Then, the recursion (line 9) can directly
modify each bucket’s memory without copying the elements. Formally, let X = (xi)n

i=1 be
the input of IpSc. Further, let A = (ai)n

i=1 be independent uniform variables from [1, k]
indexing into the aforementioned buckets. Then, IpSc groups X by A by rearranging the
elements in X with some permutation π that sorts A. We exploit that the order of elements
within a bucket can be arbitrary as the recursion will shuffle them randomly later on.

Similar problems have been studied in the context of integer sorting. The special case
of k = 2 (i.e. binary partition) and k = 3 (known as the Dutch national flag problem) can
be efficiently solved in-place [10, 23]. For k > 3, two-pass approaches can be used (e.g.,
American flag sort [22]) but require repeated access each ai. The parallel implementation [31]
of ScatterShuffle included in libstdc++ uses this technique and stores A explicitly requiring
Θ(n log k) bits. Another way, in the spirit of [13], is to require a pseudo-random generator
that can be replayed multiple times by copying and retrieving the generator’s internal state.

5 https://web.archive.org/web/20050827081959/http://www.mpi-sb.mpg.de/~sanders/programs/

SEA 2023

https://web.archive.org/web/20050827081959/http://www.mpi-sb.mpg.de/~sanders/programs/


5:6 In-Place Shared-Memory Parallel Shuffling

B1 B2 B3 B4 Input X is a view (start/end pointers) to contiguous memory. Buck-
ets B1, . . . , Bk are views with an initial size n/k.

RoughScatter randomly assigns items to buckets until one is full
(here B3). Marked elements are staged (i.e. yet unassigned).

Sample the number of staged items per bucket. Then TwoSweep
fixes boundaries, s.t. placed items remain in their assigned buckets.

After recursively shuffling the staged items, we recurse on each
bucket independently.

Figure 1 In-Place ScatterShuffle (IpScShuf ). The first three steps constitute In-place Scatter
(IpSc). All operations are either pointer arithmetic or swapping of items. No input element is copied.

Bucket Bi

bi si ei

· · · placed staged · · ·

Figure 2 IpSc partitions the input into k buckets, each roughly containing n/k elements. Initially,
all items are staged (bi = si) and the bucket is said to be empty. Eventually, more and more items
are placed (from the left). If si = ei the bucket is said to be full.

3.2 IpScShuf – an in-place implementation of ScatterShuffle
In the following, we describe In-place Scatter (IpSc) that supports true random bits, and,
whp, runs in linear time using only O(k log k) bits additional storage. Since each of the n

items is assigned a uniformly selected bucket, the numbers (ni)k
i=1 of elements assigned to

each bucket follow a multinomial distribution and are tightly concentrated around n/k.
For the remainder, we assume that n≫ k(log k)3 and k3 log k = O(n), since otherwise,

the problem is so small that Fisher-Yates Shuffle is more appropriate. These assumptions are
only needed to bound IpScShuf ’s complexity and do not affect its correctness. In practice,
they translate to a minimal recommended size of roughly 105 elements.

A straightforward solution is to draw the sizes of all buckets as a multinomial random
variate. We then sample the buckets without replacement weighted by their decreasing target
size. This can be implemented in expected linear time using suitable dynamic weighted
sampling data structures (e.g., [21]). As discussed further in Section 5, such approaches are
outperformed by the following scheme. Inspired by the framework of [3] (but quite different
in its details), our assignment task consists of two phases that are illustrated in Figure 1.
Firstly, during the RoughScatter phase, we very efficiently assign the vast majority of items –
but almost certainly not all of them. Secondly, during the FineScatter phase, we process the
remaining few elements.

3.3 RoughScatter – the opportunistic work horse
RoughScatter exploits the aforementioned concentration of the final bucket sizes around their
mean of n/k to assign elements in an opportunistic fashion until we hit said n/k barrier. Let
X[1..n] denote the input array. As illustrated in Figure 2, we partition X into k contiguous
buckets of equal sizes n/k (up to rounding). Each bucket Bi is stored as a triple of indices
(bi, si, ei) where bi points to the beginning of Bi and ei beyond the bucket’s end. A bucket is
further subdivided into (i) an initially empty segment X[bi..si) of so-called placed items and
(ii) X[si..ei) of so-called staged items. We say that bucket Bi is full iff all items are placed,
i.e. si = ei. Up to the last step in Section 3.4, staged items can be freely moved around,
whereas the position of placed items carries meaning.



M. Penschuck 5:7

In each iteration, the algorithm finalizes the bucket assignment of the element x that s1
points to, i.e. the first staged element in B1 at that point in time. To this end, we randomly
draw a partner bucket j uniformly from [1..k], swap the elements X[s1]↔ X[sj ] (skipped
if j = 1), and increment sj . As a result, element x is moved into the placed region of the
partner bucket Bj . If Bj is now full, the algorithm stops, otherwise it repeats.

▶ Lemma 1. Let P be the set of elements placed by RoughScatter and let x ∈ P be an
arbitrary placed item. Then x is assigned to bucket Bi with probability 1/k.

Proof. Without loss of generality, we assume that initially all items are staged. Then, there
is a unique iteration for each item x ∈ P in which it gets placed. To this end, the then still
staged element x is swapped with a staged item y where y ∈ Bi with probability 1/k. It then
increases si and thereby defines x as placed. Since RoughScatter only swaps staged items,
this placement of x is final. The possible change of position of element y is inconsequential,
since each assignment is carried out independently. ◀

In the following, we bound the number elements that remain staged after RoughScatter.

▶ Lemma 2. After a RoughScatter run, let ri = ei − si be the number of items still staged
in bucket bi and R =

∑
i ri their sum. For n≫ k(log k)3, we have R ≤

√
2nk log k whp.

Proof. We interpret the input to RoughScatter as n balls that are independently thrown
into k uniform bins. If we run the balls-into-bins experiment to completion, the maximal
load of any bucket is at most M(n, k) = n

k +
√

2 n
k log k whp [27].6

Let n′ be the number of balls assigned in said game when the maximal load first reached
n/k. Algorithmically, this corresponds to the termination of RoughScatter. By identifying
M(n′, k) = n/k and solving for n′, we find that whp n′ ≥ n−

√
2nk log k := n−R. ◀

▶ Remark 3. The fraction of unprocessed elements R/n vanishes for n→∞. Even for small
inputs with n = 222 and practical k = 64, less than 1% of the input remains unassigned whp.

3.4 FineScatter – fixing the small remainder
After the execution of RoughScatter only R = O

(√
nk log k

)
items need to be assigned

during the FineScatter phase whp. If our initial assumption still holds for R ≫ k(log k)3,
we can compact the staged items into a contiguous memory area, apply RoughScatter and
recurse. However, for small inputs the assumption is likely violated, while for large inputs
the fraction R/n contributes only negligibly to the total runtime. Thus, we do not consider
it worthwhile to devise a merging procedure for this case and instead directly use a dedicated
base case algorithm based on the following Lemma. It lays out the route to efficiently obtain
the final bucket sizes and independently assign the remaining elements.

▶ Lemma 4. Let X = (xi)n
i=1 be a sequence and N = (ni)k

i=1 be sampled from a multinomial
distribution with equal weights p = 1/k such that

∑
i ni = n. Let fN : [n]→ [k] be an arbitrary

partition of X with class sizes N . Finally, let π : [n]→ [n] be a random permutation. Then,
for fixed i and j, the probability that element xi is mapped by fN (π(i)) to class j is 1/k.

Proof. Due to symmetry, it suffices to consider the first partition class j = 1. Its size n1
follows a binomial distribution over n attempts with success probability p = 1/k by definition
of the multinomial distribution. Further, let γ be a permutation such that the composition

6 A similar argument was already used in the analysis of ScatterShuffle [29].

SEA 2023



5:8 In-Place Shared-Memory Parallel Shuffling

fN ◦ γ maps the indices 1, . . . , n1 to the first partition class. Due to uniformity, π itself and
π′ = π ◦ γ are equally likely. Thus, it suffices to compute the total probability that π′ puts a
fixed xi into the first n1 ranks over all 0 ≤ n1 ≤ n:

n∑
j=0

P [π′(i) ≤ n1 |n1 = j] · P [n1 = j] =
n∑

j=0

j

n︸︷︷︸
=1−(1− j

n )

·
(

n

j

) (
1
k

)j (
1− 1

k

)n−j

(1)

=
n∑

j=0
1 ·

(
n

j

) (
1
k

)j (
1− 1

k

)n−j

︸ ︷︷ ︸
=1

−
n∑

j=0
(1− j

n
) ·

(
n

j

)
︸ ︷︷ ︸

=

{(
n−1

j

)
if j < n

0 if j = n

(
1
k

)j (
1− 1

k

)n−j

(2)

= 1−
n−1∑
j=0

(
n− 1

j

) (
1
k

)j (
1− 1

k

)(n−1)−j

︸ ︷︷ ︸
=1

(
1− 1

k

)1
= 1/k ◀

3.4.1 Finalizing the bucket sizes
Let N = (ni)i be the numbers of elements assigned to bucket Bi by RoughScatter. Guided
by Lemma 4, the base case algorithm first draws a multinomial variant N ′ = (n′

i)i where n′
i

corresponds to the number of elements that will be placed into bucket Bi by FineScatter.
Then, the final sizes Nf = (nf

i )i are nf
i = ni + n′

i. Since N and N ′ follow a multinomial
distribution with k equally weighted classes, their sum Nf does too.

By construction, the expected bucket size is n/k. Let di = nf
i −n/k denote the deviation of

the size of bucket Bi, i.e. the number of elements it needs to gain over the initial estimation of
RoughScatter. Analogously to the proof of Lemma 2, we bound maxi {|di|} = O(

√
n/k log k)

whp [27, 29]. Thus, in all likelihood, the bucket boundaries only move slightly.
Luckily, ScatterShuffle is oblivious to the order of elements within a bucket prior to

recursion. Thus, it suffices to appropriately move a few items near the boundaries of the
buckets using our TwoSweep algorithm. First, we iterate over the buckets in ascending index
order. Meanwhile, we keep a counter Ci =

∑i−1
j=1 dj that indicates how many additional

items are needed left of the current bucket Bi. If bucket Bi is too large by more than Ci

items, we swap the excess staged items into the staging area of bucket Bi+1. In a second
sweep from Bk to B1, we move the remaining excess items towards smaller bucket indices.

▶ Lemma 5. Let Nf = (nf
i )i be the final bucket sizes, denote their deviation from the mean

n/k as di = nf
i − n/k, and let Di =

∑i
j=1 dj be the inclusive prefix sum of deviations. Then,

TwoSweep executes a total of M(Nf ) =
∑

i |Di| swaps and takes time O
(
k + M(Nf )

)
.

Proof. TwoSweep can exchange a staged item of bucket Bi with its direct neighbors Bi±1 in
O(1) time by executing a single swap and adopting the pointers of the two involved buckets;
exchanging an item between buckets Bi and Bj this way implies a chain of |i − j| swaps
causing O(|i− j|) work. Based on this, TwoSweep carries out two snow-plow-like motions
likely pushing intermediate items along the chain. For the remainder see Appendix C. ◀

▶ Corollary 6. TwoSweep takes time O
(
k
√

nk log k
)

whp.

Proof. see Appendix C. ◀



M. Penschuck 5:9

3.4.2 Assigning the remaining staged elements
At this point in the execution, all buckets have reached their final sizes, but each bucket Bi still
has n′

i staged items with
∑

i n′
i = R. Rather than sampling weighted by N ′ = (n′

i)i, we apply
Lemma 4 and instead randomly shuffle all staged items. This can be done by compacting
the staged item into X[1..R] and shuffling X. To this end, we swap the staged items with
the items originally stored in X; after shuffling, we apply the same swap sequence in reverse
to restore the original items and put the staged items into a now random permutation.

3.5 Putting it all together
In-place Scatter (IpSc) is the algorithm executed on each recursion layer of IpScShuf . It
runs RoughScatter and FineScatter in sequence to randomly assign n elements to k buckets.
The input is rearranged such that each bucket corresponds to a contiguous memory region.

▶ Lemma 7. For n≫ k log3 k and k3 log k = O(n), IpSc assigns n items in time O(n) whp.

Proof. We sum up the four tasks carried out:
1. RoughScatter first partitions the input into buckets in time O(k) and then randomly

assigns n − R = O(n) elements whp. Assuming that obtaining a word of randomness
takes constant time, this translates into a time complexity of O(k + n) = O(n).

2. Sampling a k-dimensional multinomial random variate takes time O(k) whp.
3. Running TwoSweep to adjust the boundary size takes time O

(
k
√

nk log k
)

= O(n) whp.
4. Shuffling the staged items with Fisher-Yates Shuffle takes time O(R) = O(n) time.7 ◀

In-Place ScatterShuffle consists of recursive applications of IpSc. We stop the recursion on a
subproblem as soon as it reaches the base case size of N0 = O(1) at which point it is finalized
using Fisher-Yates Shuffle.

▶ Theorem 8. With high probability In-Place ScatterShuffle takes time O(n logk(n/N0)) and
O(k logk(n/N0)) additional words of storage where N0 = Ω(k3) is the base case size.

Proof. IpScShuf splits an input of length n into k independent subproblems of size Θ(n/k)
whp. It then calls itself recursively until the base case size of N0 is reached. Whp, this
involves O(logk(n/N0)) recursion layers, each taking time O(n) and requiring O(k) words of
memory for a depth-first traversal. The base case FY uses O(1) words of memory and takes
time O(n′) for a subproblem of size n′ and in total O(n) for all subproblems. ◀

4 Parallel algorithms

In this section, we introduce Parallel In-Place ScatterShuffle (PIpScShuf ), a parallel variant
of IpScShuf . It is obvious that after running IpSc (i.e. a single recursion level of IpScShuf )
we can process the k independent subproblems pleasingly in parallel – this is one of the
core insights of the original ScatterShuffle [29]. Unfortunately, in our case, parallelizing the
subproblems alone leads to a linear parallel depth, since the first IpSc execution requires
Ω(n) sequential work. Therefore, we also have to parallelize IpSc itself. We focus on the
parallelization of RoughScatter which, in practice, accounts for the vast majority of work.

7 Based on Theorem 8, we are also free to recurse with IpScShuf instead of using Fisher-Yates Shuffle.

SEA 2023



5:10 In-Place Shared-Memory Parallel Shuffling

4.1 Parallelizing RoughScatter
At heart, the parallel ParRoughScatter runs the sequential RoughScatter concurrently on
independent subproblems. To this end, we exploit that RoughScatter allows arbitrary gaps
between buckets. Secondly, we can freely pause and resume after each assignment without
additional overhead since the algorithm’s state is fully captured by the buckets’ pointer
triples and the partition of the placed elements.

Analogously to Section 3.3, we first split the input into k buckets of roughly equal size.
In order to fork, we further split each bucket into two, and assign either half to one subtask.
Then each subtask either recursively continues splitting, or, if the subproblem is sufficiently
small, runs the sequential RoughScatter. After both subtasks join, we merge the two halves
of each bucket. This involves only operations on the buckets’ pointers and swapping the
staged items of the first half to the second half. Additionally observe that the first subtask
ends if there exists a filled bucket B

(1)
i , and analogously B

(2)
j for the second subtask. Only

with probability 1/k, we have i = j, and thus, the merged bucket Bj is full. Otherwise, all
merged buckets contain at least one staged item and we continue executing RoughScatter.

▶ Observation 9. Since ParRoughScatter applies RoughScatter after each join, the number R

of remaining staged items according to Lemma 2 also holds for ParRoughScatter.

▶ Lemma 10. For n ≫ k log3 k and k2 = O(n), whp ParRoughScatter has O
(√

nk log k
)

parallel depth and needs O(n) work.

Proof. Splitting k buckets into 2k takes O(k) time. By Observation 9, Lemma 2 bounds
the number of staged items received from both subtasks to O

(√
nk log k

)
. This bounds

from above the time required to swap elements during merging, as well as the time to run
RoughScatter on the remaining staged elements after merging. To meet the prerequisites of
Lemma 2, we choose a base case size of N0 = k2 and process smaller subproblem sequentially
in time O(N0). This leads to the following bound on the parallel depth D(n):

D(n) =
{

D(n/2) +O
(
k +
√

nk log k
)

if n ≥ N0

O(N0) if n < N0
(3)

= O
(

N0 + log(n/N0)k +
√

nk log k
)

= O
(√

nk log k
)

(4)

Analogously, we bound the work using the Master Theorem [5] for the following recursion:

W (n) =
{

2W (n/2) +O
(
k +
√

nk log k
)

if n ≥ N0

O(N0) if n < N0
= O(n) ◀

4.2 Parallelizing FineScatter
As we discuss in Section 6.4, in practice, it is not necessary to parallelize FineScatter due to its
negligible impact on the total runtime. Thus, in the following, we sketch just enough adoptions
to reduce the parallel depth of FineScatter to that of ParRoughScatter. By Observation 9, the
analysis of FineScatter in Section 3.4 remains valid after the execution of ParRoughScatter.
By comparing with Lemma 10, we find that the parallel depth ParRoughScatter dominates
all sequential operations but TwoSweep.

Recall that TwoSweep shifts the boundaries of buckets to match the final bucket sizes
in time O

(
k
√

nk log k
)

whp. Thus, we need to shave off only a factor of Θ(k) which is
straightforward using standard parallelization techniques based on the following observation:



M. Penschuck 5:11

The prefix sum Di defined in Lemma 5 can be interpreted as the number of elements that
the end of bucket Bi needs to be shifted. Thus, after computing (Di)i and placing one
worker per bucket, each worker can shift elements in the appropriate direction. To shift
items between distant buckets, we run O(k) rounds. The time per round is dominated by
the largest swap of items over any bucket boundary which, in turn, is upper bounded by the
maximal deviation O

(√
n/k log k

)
whp in the first round. Thus, TwoSweep can be naïvely

parallelized with a parallel depth of O
(√

nk log k
)

matching that of ParRoughScatter. This
results in a trivial upper bound of work of O

(
k
√

nk log k
)

matching the overestimation of
Corollary 6 used for the sequential TwoSweep.

▶ Theorem 11. PIpScShuf has (whp) parallel depth O
(√

nk/ log k log(n)
)

, uses O(n logk(n))
work and O(k[logk(n) + P]) words of memory where P is the number of parallel subtasks.

Proof. The proof is analogous to the proof of Theorem 8 by replacing the complexity
measures of IpSc with Lemma 10 followed by symbolic simplifications. The memory bound
additionally accounts for k bucket pointer triples per subtask. ◀

5 Implementation

Our implementations use Rust, a programming language with strong memory safety and
parallelism guarantees. While the code repository contains a number of prototypes, we
consider the publicly exposed algorithms, such as IpScShuf (seq_shuffle) and PIpScShuf
(par_shuffle), ready to be used in other projects. To monitor the code quality, we rely on
the strong static analysis tools and dynamic checks available in the Rust ecosystem. We
also use more than 80 tests that include statistical tests of the uniformity of the produced
permutations (e.g., the 1 and 2-independence of the output ranks).

PIpScShuf uses the work-stealing scheduler included in the rayon8 crate. We exclusively
use binary Fork-Join parallelism by means of the rayon::join function which requires no
heap allocations after the worker pool was once initialized. Given the widespread usage of
rayon, it is very likely that the calling application already set up this pool. Then, none of
our algorithms cause any heap memory allocation (thereby avoiding potential error sources
or hidden synchronizations). A rayon::join incurs very little cost if both tasks are executed
on the same worker. Hence, we regularly define more than 211 parallel subtasks – allowing
fine-grained work-balancing. In case of a compatible pseudo-random number generator
(requires rand::SeedableRNG trait), we use a deterministic sequence to derive the subtasks’
generators from the provided generator. Then, two runs from the same state yield the same
permutation despite non-deterministic scheduling; this optional reproducibility can be crucial
(e.g., for debugging of the embedding code).

Based on Figure 11 (Appendix), we empirically optimized the number of buckets k as
k = 64. The vast majority of code is implemented in the safe subset of Rust. In Section 6,
we use a highly optimized implementation of RoughScatter that requires pointer arithmetic
and memory accesses without explicit boundary checks which is considered unsafe in Rust.
While the memory safety guarantees of these sections are “only” comparable with C/C++,
as an implementor it is easier to reason about these small code segments (as opposed to the
whole program) and to check assumptions during runtime.

8 https://github.com/rayon-rs/rayon

SEA 2023

https://github.com/rayon-rs/rayon


5:12 In-Place Shared-Memory Parallel Shuffling

On the x86 platform, the code executes 2⌊64/⌈log2(k)⌉⌋ (i.e. 32 for k = 16 and 20
for k = 64) random assignments without any branching instructions. This allows a high
utilization of the CPU’s pipeline which is further increased by explicitly prefetching the
memory locations. Further, instead of using a standard swap(x, y) with three move operations
(namely t← x, x← y, y ← t where t is a temporary storage), we use two temporary variables
resulting in 2 + ϵ data movements per assignment. The resulting assignment process is at
least five times faster than any weighted sampling strategy we experimented with (including
fast implementations of [21] and various rejection schemes in spirit of [6]).

IpScShuf and PIpScShuf use a FY implementation for instances below 218 items that
resorts to 32 bit arithmetic and often produces two indices from one random 64 bit word.

The repository includes highly optimized sequential and parallel reimplementations of
MergeShuffle which include similar techniques as above. Their performance is incomparable
with the original implementation9 which, on the one hand, includes handcrafted assembly
code for merging, but, on the other hand, uses the rdrand instruction [17] to acquire random
bits; depending on the specific processor, rdrand one to two orders of magnitude slower
than Pcg64Mcg. [12, 28] Further, both choices are highly non-portable. Overall our portable
implementation using Pcg64Mcg is faster than the original. Observe that MergeShuffle has
linear parallel depth since only independent subproblems are executed in parallel while the
merging of the first recursion layer is purely sequential.

6 Empirical evaluation

In this section, we investigate the performance of multiple shuffling algorithms for diverse
settings. If not stated differently, we use the following standard parameters:

Measurements are collected on a machine with an AMD EPYC 7702P CPU (64 cores/128
hardware threads), 512 GB RAM, running Ubuntu 20.04, rustc 1.71 and gcc-10,
using release builds (cargo –release, g++ -O3) without machine-specific optimizations.
Further, we consider nine more machines with quite different configurations in Section 6.6.
Experiments focus on the fast pseudo-random number generator Pcg64Mcg, as this choice
exposes overheads in the shuffling algorithms rather in the generators itself. In Figure 8
(Appendix), we report the performance for different generators. The relative performance
of algorithms remains qualitatively similar for different randomness sources, though
IpScShuf and PIpScShuf are less affected by the generator choice as FY variants.
Experiments focus on 64 bit integers, which seems to be a typical index size in data sets
of several 100 GiB. As indicated in Figure 9 (Appendix), the throughput (measured in
bytes per second) increases for larger elements since the per-element overhead shrinks.
Again, IpScShuf and PIpScShuf exhibit a smaller spread than FY variants.
All performance measurements reported are the mean of at least five runs. To reduce
systematic errors, an individual run is the average of N repetitions where N is chosen such
that the measured time exceeds 100 ms. Consecutive repetitions use different locations in
a larger memory region to simulate a cold start where the input is not already cached.

6.1 Memory usage and allocation costs
One important motivation for this work is the runtime cost of allocating large amounts of
memory which we quantify in Figure 3a. For each measurement, we obtain a certain amount
of data using the low level libc::malloc instruction, initialize it, and then return the data

9 https://github.com/axel-bacher/mergeshuffle

https://github.com/axel-bacher/mergeshuffle


M. Penschuck 5:13

228 230 232 234 236

Number of 64bit integers allocated

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Ti

m
e 

pe
r e

le
m

en
t [

ns
]

Access Type
Parallel
Sequential
PIpDScS

(a) Runtime cost of memory allocation.

221 223 225 227 229 231 233 235

Number of 64bit Integers Allocated

2 14

2 12

2 10

2 8

2 6

2 4

RS
S 

In
cr

ea
se

 / 
RS

S 
Be

fo
re

 S
hu

ffl
e Allocation Type

Sequential
Parallel

(b) Memory usage of PIpScShuf implementa-
tion.

Figure 3 Measurements of memory runtime costs and memory usage as described in Section 6.1.

using libc::free. For large volumes, malloc requests the operating system to map a certain
memory size into virtual memory. Critically, the memory will only be backed by physical
memory if it is actually accessed. For this reason, we initialize the data twice, and subtract
the second round from the first one. The difference between both runs is the time it takes
the system to provide the physical memory (without initializing it). Our measurements also
suggest that writing the values in parallel does not scale well – despite an investment of 128
threads, we observe only a speedup of 4.9 for the initialization which is reduced to 3.1 for the
whole process since malloc and free are sequential. For reference, we included the runtime
of PIpScShuf and find that shuffling the data in parallel takes roughly as long as to acquire
the memory needed to store a copy – without copying it.

In Figure 3b, we report the effective memory usage of PIpScShuf . We start a dedicated
process for each run and measure the maximal resident set size (RSS) of the process (i.e. the
maximal amount of memory that was physically backed at any time during the execution).
We measure the RSS before and after the invocation of PIpScShuf and report the relative
growth. As already discussed in Section 5, rayon’s worker pool needs to be initialized once.
If we allocated the data sequentially, PIpScShuf implicitly sets up a pool resulting in 1631
heap operations to reserve a total of 923 KiB. After a parallel allocation, on the other hand,
no heap operations are carried out. Even then, we observe a small increase of the RSS for
large inputs – this seems to be caused by growing stack memory of the 128 active threads.
In this case, the largest observed growth is 0.2 % and diminishes for very large inputs.

6.2 Performance overview

In Figure 4, we report the performance of several shuffling implementations. For each run, we
set a timeout of 30 s and stop a graph after its algorithm hit said budget. The only exception
is our PIpScShuf implementation with a runtime of 20.8 s for the largest data point. From
a pool of various Fisher-Yates Shuffle implementations (see Figure 10, Appendix), we only
include our own variant which strictly outperforms all competitors in the relevant regime.

The two fastest algorithms are parallel::shuffle (a C++ implementation of Scat-
terShuffle included in stdlibc++) and our PIpScShuf . For relatively small inputs Scat-
terShuffle is faster than PIpScShuf which takes the lead for inputs larger than 256 MiB.

All algorithms exhibit deteriorating throughput for larger inputs. This is remarkable for
FY derivatives which have a predicted linear runtime. Their slowdown can be attributed
to cache misses and related effects of the memory hierarchy. In Figure 10 (Appendix), we

SEA 2023



5:14 In-Place Shared-Memory Parallel Shuffling

216 219 222 225 228 231 234

Number n of 64bit integers

25

26

27

28

29

210

211
Th

ro
ug

hp
ut

 [M
illi

on
 it

em
s /

 se
co

nd
] Algorithm

FY (32 bits)
IpScShuf (this paper)
PIpScShuf (this paper)
MergeShuffle
parallel::shuffle (stdlibc++)
Number of Workers
1
128

Figure 4 Performance of several shuffling algorithms with a time budget of 30 s per run. FY ,
IpScShuf , and PIpScShuf are our own implementations. std::shuffle and parallel:shuffle are
implemented in C++. For parallel algorithms, we indicate the number of cores available as p.

28 210 212 214 216 218 220 222

Number n of 64bit integers

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 [M

illi
on

 it
em

s /
 se

co
nd

] Algorithm
FY (32 bits)
IpScatterShuffle (base case 2^9)
IpScatterShuffle (base case 2^12)
IpScatterShuffle (base case 2^15)
IpScatterShuffle (base case 2^17)
IpScatterShuffle (base case 2^18)
IpScatterShuffle (base case 2^19)
Algorithm Type
ScatterShuffle
Fisher Yates

Figure 5 Performance of several sequential shuffling algorithms run in parallel on different data.

demonstrate that memory latency can be hidden by explicitly prefetching memory locations
ahead of time.10 However, prefetching only helps to simulate a slightly larger cache and we
still observe a significant performance drop around 2 GiB. As predicted, all implementations
based on ScatterShuffle exhibit a logk(n) dependency in their runtime; this is especially
visible for PIpScShuf when executed on a single core.

Due to incompatible libraries, we were unable to include fair performance measurements
of [15] in our campaign. However, Figure 7 reports a higher throughput for PIpScShuf on a
quad-core laptop (i7-8550U) than [15, Table 6] for a quad-socket server (E7-8867 v4) with
72 cores (while PIpScShuf uses less memory and includes the computation of random bits).

6.3 Parallel execution of sequential algorithms

When selecting an appropriate base case algorithm for PIpScShuf , Figures 4 and 10 can be
misleading as they report the performance of sequential algorithms executed in isolation. In
this setting, the studied algorithm has more resources at its disposal compared to the case
where several instances are executed in parallel on independent data. This might also be
relevant in different scenarios, e.g., if computational resources are shared by different users.

10 We use a ring buffer to generate and prefetch random indices 16 swaps prior to the actual swap.



M. Penschuck 5:15

0 20 40 60 80 100 120
Number of workers

0

2

4

6

8

10

12

14

16
Sp

ee
du

p

1 GiB
10 GiB
100 GiB
400 GiB

(a) Strong scaling of PIpScShuf . The vertical line
indicates the number of physical cores.

219 221 223 225 227 229 231 233

Number n of 64bit integers

2 8

2 6

2 4

2 2

20

Fr
ac

tio
n 

of
 to

ta
l r

un
tim

e

RoughScatter
SampleFinalBucketSize
ShuffleStashes
TwoSweep

(b) Fraction of runtime of the first recursion layer
of PIpScShuf with 128 cores.

Figure 6 Parallel performance of Parallel In-Place ScatterShuffle.

Figure 5 is recorded similarly to Figure 4 with the difference that we execute 128
independent tasks in parallel and report the mean of their individual runtime as a single
run. To avoid scheduling artifacts, we discard and repeat any run in which the wall-time of
the experiment (i.e. from the start of the first thread to the termination of the last) is 20 %
larger than the mean runtime of the individual tasks.

In this setting, we observe that memory becomes the dominating bottleneck; with minor
exceptions (such as too small base case sizes), all algorithms exhibit roughly the same
performance for instances below 1 MiB (the CPU has 256 MiB L3 cache that is now shared
among 128 threads). For larger instances, IpScShuf variants are more than 3 times faster
than the FY variants. Also observe that the contributions of implementation details, such as
prefetching or base case size, pale in comparison the importance of memory locality.

6.4 Parallel scaling
To quantify the parallel speedup of PIpScShuf , we carry out a strong scaling experiment as
follows. For fixed input sizes, we execute IpScShuf and the fastest FY implementation as
base lines and then profile PIpScShuf for an increasing number of workers. In Figure 6a, we
report the parallel speedup over the fast sequential implementation (IpScShuf in all cases).

For data set sizes of 10 GiB and larger, the speedup over the fastest sequential solution
approaches up to 16. The self speedup is larger (e.g., 22.9 for 400 GiB), indicating a good
scalability that is somewhat offset by the additional overhead of the parallel implementation.
For the same instance, PIpScShuf is 141 times faster than Fisher-Yates Shuffle.

We see a substantial increase in speed until the number of workers matches the number
of physical cores; using virtual cores (simultaneous multi-threading) has little impact. This is
to be expected since shuffling is memory-bound and virtual cores primarily help to saturate
arithmetic units of super-scalar processors, but do not affect memory performance.

6.5 Relative performance of subproblems
When designing, implementing, and analyzing IpScShuf and PIpScShuf we focused on the fast
opportunistic RoughScatter which then requires the additional FineScatter post-processing
to deal with the few remaining items. While we heavily optimized RoughScatter, we opted
for simple and easy to implement solutions in FineScatter.

SEA 2023



5:16 In-Place Shared-Memory Parallel Shuffling

Ra
sp

be
rry

 Pi
 4B

4 c
or

es
 (6

4b
it 

sy
ste

m)

(3
 G

B 
ins

ta
nc

e)
AW

S G
ra

vit
on

 1
16

 co
re

s
a1

.4x
lar

ge
Int

el 
i7-

85
50

U

4 c
or

es
 @

 1.
8 G

Hz
2x

 In
te

l X
eo

n 4
21

6

16
 co

re
s @

 2.
10

GH
z

Int
el 

Xe
on

 62
26

R

16
 co

re
s @

 2.
9 G

Hz
2x

 In
te

l X
eo

n E
5-

26
40

 v4

10
 co

re
s @

 2.
40

GH
z

AW
S G

ra
vit

on
 2

48
 co

re
s

c6
g.1

2x
lar

ge
2x

 In
te

l X
eo

n 6
14

8

20
 co

re
s @

 2.
40

GH
z

AM
D 

EP
YC

 77
02

P

64
 co

re
s @

 2.
35

 G
Hz

2x
 A

MD
 EP

YC
 7R

13

48
 co

re
s

c6
a.m

et
al

20

21

22

23

24

25

26

27
Sp

ee
d-

up
 o

ve
r s

lo
we

st
 a

lg
or

ith
m

 o
n 

ho
st

6.
3

9.
6

19
.2

12
.4

16
.5

27
.3

14
.9

22
.5

16
.4

25
.86.
9

10
.5

71
.8

41
.3

49
.4

81
.3

39
.0 72

.8

34
.6

11
3.

3

8.
9

28
.1

52
.4 36
.1

50
.9

51
.7

45
.8

51
.2

69
.1

87
.2

8.
8

28
.1

52
.8 36
.4

50
.9

51
.6

45
.8

51
.1

69
.2

87
.325

.0 51
.6

15
2.

5

80
.3

94
.4

11
4.

7

49
.7 10

2.
7

16
5.

6

18
1.

5

20
.5 39

.2 96
.4

49
.9

58
.9

69
.6 44

.8

65
.1

90
.6 15
4.

4

7.
8

54
.6

68
.5 53

.3

15
1.

2

15
1.

2

24
8.

4

18
7.

3

29
7.

7

34
6.

1

46
.6

31
8.

3

30
4.

5

38
7.

5

86
4.

1

10
24

.1

14
26

.2

17
32

.1

23
40

.8

30
51

.4

rand::shuffle (4bde8a0)
FY (with prefetch)
MergeShuffle
ParMergeShuffle, p=1
IpScatterShuffle
PIpScatterShuffle, p=1
ParMergeShuffle, p=max
PIpScatterShuffle, p=max

Figure 7 Performance of selected algorithms on different computers shuffling 64 bit integers. The
length of a bar corresponds to the speedup compared to the slowest algorithm on that system. The
numbers above a bar indicate the absolute through-put in million elements per second.

To empirically support this design decision, we measure the runtime of the first recursion
layer of PIpScShuf for a wide range of input sizes. In Figure 6b, we then report the relative
wall time of the four sub-algorithms that constitute said layer. In our implementation only
RoughScatter is executed in parallel with 128 workers available while the remaining parts
are sequential algorithms. Despite the asymmetry in available workers, we observe that for
n ≥ 227 ParRoughScatter accounts for more than 90 % (99 % for n ≥ 233) of the runtime.
This supports our design decisions since optimizing FineScatter leads to diminishing results.

6.6 Performance on different machines
To verify that our empirical findings are representative for modern computers, we quantify
the performance of shuffling on different machines in Figure 7. The machines range from a
single-board computer, over a laptop, to dual-socket servers (covering more than two orders
in magnitude in purchase price). They use different instruction sets, micro-architectures,
processor manufactures, and core counts. Their configurations are specified in the figure. We
reiterate that no machine-specific optimizations are used; in fact, exactly two binaries were
used (for ARM and x86, respectively).

To accommodate most systems, we selected an instance size of 10 GiB with the exception
of the Raspberry PI 4B which features only 4 GiB of main memory. The measurements
consist of runs of sequential algorithms, sequential runs of parallel algorithms (indicated
by p = 1), and parallel runs with one worker per hardware thread (indicated by p = max).
The maximal throughput of the fastest system is 50 times higher than that of the slowest
system. In all cases rand::shuffle is the slowest contender, IpScShuf the fastest sequential
implementation, and PIpScShuf the overall fastest solution.

References
1 Daniel Allendorf, Ulrich Meyer, Manuel Penschuck, Hung Tran, and Nick Wormald. Engineering

uniform sampling of graphs with a prescribed power-law degree sequence. In ALENEX, pages
27–40. SIAM, 2022.

2 Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. Engineering in-place
(shared-memory) sorting algorithms. ACM Trans. Parallel Comput., 9(1):2:1–2:62, 2022.



M. Penschuck 5:17

3 Axel Bacher, Olivier Bodini, Alexandros Hollender, and Jérémie O. Lumbroso. Mergeshuffle:
a very fast, parallel random permutation algorithm. In GASCom, volume 2113 of CEUR
Workshop Proceedings, pages 43–52. CEUR-WS.org, 2018.

4 Edward A. Bender and E. Rodney Canfield. The asymptotic number of labeled graphs with
given degree sequences. J. Comb. Theory, Ser. A, 24(3):296–307, 1978.

5 Jon Louis Bentley, Dorothea Haken, and James B. Saxe. A general method for solving
divide-and-conquer recurrences. SIGACT News, 12(3):36–44, 1980.

6 Petra Berenbrink, David Hammer, Dominik Kaaser, Ulrich Meyer, Manuel Penschuck, and
Hung Tran. Simulating population protocols in sub-constant time per interaction. In ESA,
volume 173 of LIPIcs, pages 16:1–16:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020.

7 Guojing Cong and David A. Bader. An empirical analysis of parallel random permutation
algorithms ON smps. In PDCS, pages 27–34. ISCA, 2005.

8 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

9 Luc Devroye. Non-Uniform Random Variate Generation. Springer, 1986.
10 Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
11 Thomas S. Ferguson. Who solved the secretary problem? Stat. Sci., 4(3):282–289, 1989.
12 Agner Fog. Instruction tables. URL: https://www.agner.org/optimize/instruction_

tables.pdf.
13 Daniel Funke, Sebastian Lamm, Ulrich Meyer, Manuel Penschuck, Peter Sanders, Christian

Schulz, Darren Strash, and Moritz von Looz. Communication-free massively distributed graph
generation. J. Parallel Distributed Comput., 131:200–217, 2019.

14 Hermann Gruber, Markus Holzer, and Oliver Ruepp. Sorting the slow way: An analysis of
perversely awful randomized sorting algorithms. In FUN, volume 4475 of Lecture Notes in
Computer Science, pages 183–197. Springer, 2007.

15 Yan Gu, Omar Obeya, and Julian Shun. Parallel in-place algorithms: Theory and practice. In
APOCS, pages 114–128. SIAM, 2021.

16 Chris Hinrichs, Vamsi K Ithapu, Qinyuan Sun, Sterling C Johnson, and Vikas Singh. Speeding
up permutation testing in neuroimaging. In C. J. C. Burges et al., editor, Advances in Neural
Information Processing Systems, volume 26, pages 890–898. Curran Associates, Inc., 2013.

17 Intel Corporation. Intel 64 and ia-32 architectures software developer’s manual, 2022.
18 Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms,

2nd Edition. Addison-Wesley, 1981.
19 Charles E. Leiserson. Programming irregular parallel applications in cilk. In IRREGULAR,

volume 1253 of Lecture Notes in Computer Science, pages 61–71. Springer, 1997.
20 Daniel Lemire. Fast random integer generation in an interval. ACM Trans. Model. Comput.

Simul., 29(1):3:1–3:12, 2019.
21 Yossi Matias, Jeffrey Scott Vitter, and Wen-Chun Ni. Dynamic generation of discrete random

variates. Theory Comput. Syst., 36(4):329–358, 2003.
22 Peter M. McIlroy, Keith Bostic, and M. Douglas McIlroy. Engineering radix sort. Comput.

Syst., 6(1):5–27, 1993.
23 SJ Meyer. A failure of structured programming, Zilog Corp. Technical report, Software Dept.

Technical Report, 1979.
24 Richard Nixon. Executive order 11497 — amending the selective service regulations to prescribe

random selection, 1969.
25 Melissa E. O’Neill. Pcg: A family of simple fast space-efficient statistically good algorithms

for random number generation. Technical Report HMC-CS-2014-0905, Harvey Mudd College,
Claremont, CA, September 2014.

26 Manuel Penschuck, Ulrik Brandes, Michael Hamann, Sebastian Lamm, Ulrich Meyer, Ilya
Safro, Peter Sanders, and Christian Schulz. Recent advances in scalable network generation.
CoRR, abs/2003.00736, 2020.

SEA 2023

https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf


5:18 In-Place Shared-Memory Parallel Shuffling

27 Martin Raab and Angelika Steger. “Balls into bins” – A simple and tight analysis. In
RANDOM, volume 1518 of Lecture Notes in Computer Science, pages 159–170. Springer, 1998.

28 Matthew Route. Radio-flaring ultracool dwarf population synthesis. The Astrophysical Journal,
845(1):66, August 2017. doi:10.3847/1538-4357/aa7ede.

29 Peter Sanders. Random permutations on distributed, external and hierarchical memory. Inf.
Process. Lett., 67(6):305–309, 1998.

30 Julian Shun, Yan Gu, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons. Sequential
random permutation, list contraction and tree contraction are highly parallel. In SODA, pages
431–448. SIAM, 2015.

31 Johannes Singler and Benjamin Konsik. The GNU libstdc++ parallel mode: software engin-
eering considerations. In IWMSE@ICSE, pages 15–22. ACM, 2008.

A Additional measurements

214 217 220 223 226 229 232 235

Number n of 64bit integers

24

25

26

27

28

29

210

211

Th
ro

ug
hp

ut
 [M

illi
on

 it
em

s /
 se

co
nd

] Algorithm
rand::shuffle (4bde8a0)
FY (with prefetch)
IpScatterShuffle
MergeShuffle
PIpScatterShuffle, p=128
ParMergeShuffle
rng
Pcg64Mcg
Pcg32
Pcg64
StdRng
ChaChaRng

Figure 8 Performance of selected algorithms with different pseudo-random number generators.

22 25 28 211 214 217

Instance size [MiB]

27

28

29

210

211

212

213

214

Th
ro

ug
hp

ut
 [M

iB
 / 

se
co

nd
]

Algorithm
FY (with prefetch)
IpScatterShuffle
MergeShuffle
PIpScatterShuffle, p=128
ParMergeShuffle
Bytes Per Element
4
8
64

Figure 9 Performance of selected algorithms with different element sizes.

B Quantifying the hidden constants

In Lemma 2, we bound the number R ≤
√

2nk log k of items that remain staged after
RoughScatter whp. Additionally, in Corollary 6, we bounded the complexity of TwoSweep by
O

(
k
√

nk log k
)
. To provide empirical evidence and study the hidden constants, we simulate

both processes. In Figure 12, we report the mean over 1000 independent runs divided
by
√

2nk log k and k
√

nk log k respectively. Recall that our implementations use k = 16
and k = 64; we additionally simulated k = 216 as an accommodating upper bound for
the foreseeable future. The small growth in k visible in Figure 12 is due to the small k

values. Simulations with k up to 228 agree with Lemma 2 and approach a factor of 0.66 in
Corollary 6.

https://doi.org/10.3847/1538-4357/aa7ede


M. Penschuck 5:19

216 218 220 222 224 226 228 230

Number n of 64bit integers

25

26

27

28
Th

ro
ug

hp
ut

 [M
illi

on
 it

em
s /

 se
co

nd
] Algorithm

rand::shuffle (4bde8a0)
FY (naive)
FY (with prefetch)
FY (32 bits)
std::shuffle (stdlibc++)
Number of Workers
1

Figure 10 Performance of several Fisher-Yates implementations with a time budget of 30 s.

22 24 26 28 210

Number k of buckets

25

26

27

28

29

210

211

Th
ro

ug
hp

ut
 [M

illi
on

 it
em

s /
 se

co
nd

]

Data size
128 MiB
2 GiB
32 GiB
256 GiB
Workers
p = 1
p = 128

Figure 11 Performance of In-Place ScatterShuffle (p = 1) and Parallel In-Place ScatterShuffle
(p = 128) for various data sizes as function of the number of buckets k. The two vertical lines
correspond to default values of k = 16 for IpScShuf and k = 64 for PIpScShuf , respectively.

C Omitted proofs

▶ Lemma 5. Let Nf = (nf
i )i be the final bucket sizes, denote their deviation from the mean

n/k as di = nf
i − n/k, and let Di =

∑i
j=1 dj be the inclusive prefix sum of deviations. Then,

TwoSweep executes a total of M(Nf ) =
∑

i |Di| swaps and takes time O
(
k + M(Nf )

)
.

Proof. Observe that a positive value di indicates that bucket Bi needs to receive di additional
staged items from other buckets. Contrary, a negative value di means that bucket Bi has to
give away −di elements. The prefix sum Di has an analogous meaning but accumulated over
the first i buckets. This leads to the following cases:
1. If Di is positive, buckets B1, . . . , Bi have an excess of Di items required somewhere in

Bi+1, . . . , Bk. These Di items will be pushed to the right during the first sweep.
2. If Di is negative, buckets B1, . . . , Bi have a demand of |Di| items met by an excess

somewhere in the buckets Bi+1, . . . , Bk. Thus, Bi receives |Di| items in the second sweep.

In sum, bucket Bi is involved in |Di| swaps with its direct neighbors, leading to a total of
M(Nf ) swaps and O

(
M(Nf ) + k

)
work where the k accounts for per-bucket overheads. ◀

▶ Corollary 6. TwoSweep takes time O
(
k
√

nk log k
)

whp.

Proof. We prove the claim based on Lemma 5 by establishing
∑

i |Di| = O
(
k
√

nk log k
)

(whp) where Di =
∑i

j=1 di is the prefix sum over the bucket size deviations from the mean.
Observe that by construction, only elements that remain staged after the execution of

SEA 2023



5:20 In-Place Shared-Memory Parallel Shuffling

222 226 230 234 238 242

Number n of Items

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
ul

tip
le

 o
f B

ou
nd

Number of Buckets
64
256
65536

Simulation
Bound on R
Bound on M(Nf)

Figure 12 Simulation of Lemma 2 and Corollary 6.

RoughScatter can contribute and therefore
∑

i |di| ≤ 2R where R ≤
√

2nk log k (whp) by
Lemma 2. Additionally, since the deviations balance over all buckets we have

∑
i di = 0.

Thus, we trivially have that maxi |Di| ≤ R.
We assume a worst case deviation where the first bucket needs to gain all R elements

from the last bucket (or vice versa). While this is rather pessimistic (recall maxi {|di|} =
O

(√
n/k log k

)
whp), it suffices to show the bound. In this instance, we have |Di| ≤ R for

all i and
∑k

i=1 |Di| ≤
∑k

i=1 R ≤ kR = O
(
k
√

nk log k
)

(whp). ◀



Proxying Betweenness Centrality Rankings in
Temporal Networks
Ruben Becker #

Ca’ Foscari University of Venice, Italy

Pierluigi Crescenzi #

Gran Sasso Science Institute, L’Aquila, Italy

Antonio Cruciani #

Gran Sasso Science Institute, L’Aquila, Italy

Bojana Kodric #

Ca’ Foscari University of Venice, Italy

Abstract
Identifying influential nodes in a network is arguably one of the most important tasks in graph mining
and network analysis. A large variety of centrality measures, all aiming at correctly quantifying
a node’s importance in the network, have been formulated in the literature. One of the most
cited ones is the betweenness centrality, formally introduced by Freeman (Sociometry, 1977). On
the other hand, researchers have recently been very interested in capturing the dynamic nature
of real-world networks by studying temporal graphs, rather than static ones. Clearly, centrality
measures, including the betweenness centrality, have also been extended to temporal graphs. Buß et
al. (KDD, 2020) gave algorithms to compute various notions of temporal betweenness centrality,
including the perhaps most natural one – shortest temporal betweenness. Their algorithm computes
centrality values of all nodes in time O(n3T 2), where n is the size of the network and T is the total
number of time steps. For real-world networks, which easily contain tens of thousands of nodes, this
complexity becomes prohibitive. Thus, it is reasonable to consider proxies for shortest temporal
betweenness rankings that are more efficiently computed, and, therefore, allow for measuring the
relative importance of nodes in very large temporal graphs. In this paper, we compare several
such proxies on a diverse set of real-world networks. These proxies can be divided into global and
local proxies. The considered global proxies include the exact algorithm for static betweenness
(computed on the underlying graph), prefix foremost temporal betweenness of Buß et al., which
is more efficiently computable than shortest temporal betweenness, and the recently introduced
approximation approach of Santoro and Sarpe (WWW, 2022). As all of these global proxies are
still expensive to compute on very large networks, we also turn to more efficiently computable local
proxies. Here, we consider temporal versions of the ego-betweenness in the sense of Everett and
Borgatti (Social Networks, 2005), standard degree notions, and a novel temporal degree notion
termed the pass-through degree, that we introduce in this paper and which we consider to be one of
our main contributions. We show that the pass-through degree, which measures the number of pairs
of neighbors of a node that are temporally connected through it, can be computed in nearly linear
time for all nodes in the network and we experimentally observe that it is surprisingly competitive
as a proxy for shortest temporal betweenness.

2012 ACM Subject Classification Theory of computation → Shortest paths; Networks → Network
algorithms; Mathematics of computing → Graph algorithms

Keywords and phrases node centrality, betweenness, temporal graphs, graph mining

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.6

Supplementary Material Software (Source Code): https://github.com/piluc/TSBProxy
archived at swh:1:dir:02ece196b54034f669645bc2b220c28d43cbc423

Funding Pierluigi Crescenzi: Partially supported by the French government through the UCAJEDI,
while visiting COATI, INRIA d’Université Côte d’Azur, Sophia Antipolis, France.

© Ruben Becker, Pierluigi Crescenzi, Antonio Cruciani, and Bojana Kodric;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rubensimon.becker@unive.it
mailto:pierluigi.crescenzi@gssi.it
mailto:antonio.cruciani@gssi.it
mailto:bojana.kodric@unive.it
https://orcid.org/0000-0001-7242-0096
https://doi.org/10.4230/LIPIcs.SEA.2023.6
https://github.com/piluc/TSBProxy
https://archive.softwareheritage.org/swh:1:dir:02ece196b54034f669645bc2b220c28d43cbc423;origin=https://github.com/piluc/TSBProxy;visit=swh:1:snp:64f47195c1bf2c2aab425a0df712be8017cd7000;anchor=swh:1:rev:3d9a0de9d98bd7c44f97e8a38dc35dd09acfddcd
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Proxying Betweenness Centrality Rankings in Temporal Networks

1 Introduction

Centrality measures are notions for evaluating the importance of nodes in networks, used
in network analysis and graph theory. The aim is to assign real values to all the nodes,
in such a way that the values are monotonously dependent of the nodes’ importance, i.e.,
more important nodes should have higher centrality values. It is evident that this task is
among the most important ones in network analysis. Consequently, there is a vast variety of
centrality notions in the existing literature. Popular measures include spectral notions, such
as Katz’s index [24], Seeley’s index [41], and PageRank [10], and combinatorial notions, like
the straightforward concept of degree centrality, the closeness centrality [4], the harmonic
centrality [32, 6], and the betweenness centrality [18]. This diversity of notions indicates that
there is no consensus among researchers on which notion is the “correct one”. While Boldi
and Vigna [6] provide an axiomatic approach to this question, their work mainly transfers
the discord from which centrality notion to use to the question of which axioms to agree
upon. In fact, the choice of which centrality notion to employ is mainly dependent on the
application which may stem from a diverse set of fields [30, 17, 11]. In many scenarios, the
considered networks are characterized by the following challenges: (1) they are very large and
(2) they are dynamic or temporal, i.e., they change over time. In the context of these two
challenges it is, thus, essential to consider temporal variants of the most important centrality
notions, alongside algorithms for computing them, that have a good scaling behaviour. In
this work, we focus on the betweenness centrality, which is certainly among the most used
and most cited centrality notions, and study it in the context of these challenges.

Buß et al. [12] defined the shortest temporal betweenness as a temporal counterpart of
the betweenness centrality, and gave an algorithm to compute all centrality values in time
O(n3T 2), where n is the size of the network and T is the total number of time steps. For
nowadays networks, such time complexity easily becomes infeasible. Thus, it is reasonable
to consider proxies for shortest temporal betweenness rankings that are more efficiently
computed. In this work, we use the following general approach. We employ a set of competitor
algorithms that we each use as proxies for temporal betweenness rankings, i.e., for each
algorithm, we compute a complete ranking of the nodes and evaluate how this ranking relates
to the “correct” ranking. While different scenarios may exist, centrality values are frequently
used to rank nodes and our proxy notion is motivated exactly by such applications.

Some of the considered proxies have the property that they still try to capture the global
nature inherent in the definition of the shortest temporal betweenness and, as a consequence,
still suffer from a comparatively bad running time, meaning that their running times are far
from linear in the input size. Note however that, as argued, e.g., by Teng [47], in the age of
Big Data, an algorithm should be considered efficient or scalable if its time complexity is
nearly-linear. In fact, there is even theoretical evidence, in form of several conditional lower
bound results [2, 7], for believing that no such algorithm is achievable, even for approximately
computing the betweenness values in static graphs. We thus shift our focus away from these
global proxies towards local proxies for shortest temporal betweenness rankings. We classify
a proxy as local if the centrality values of nodes are completely determined by the induced
subgraph of their neighborhood (including themselves).

For measuring proxy quality, we employ several different metrics, most prominently
a weighted version of Kendall’s τ correlation coefficient and the intersection of the top-k
ranked nodes (for different values of k). Note that the latter is directly translatable into
the Jaccard similarity of the top ranked nodes. We would like to stress here that it is quite
uncomplicated to show that all proxies considered in the present work can perform arbitrarily
bad on adversarial examples (in terms of all considered metrics) and no reasonable theoretical
guarantees can therefore be given for their ranking quality.



R. Becker, P. Crescenzi, A. Cruciani, and B. Kodric 6:3

A diverse set of temporal betweenness notions has been defined in the literature (see
Section 1.2). Clearly, if the notion of centrality is already vague in static graphs, it becomes
even more so in the temporal setting, where in addition the time dimension has to be
considered. In this study, we focus on the definition given by Buß et al. [12] as it arguably
represents one of the most “natural” and direct temporal analogues of the static betweenness
(once the notion of distance has been defined).

1.1 Contribution
We compare a variety of approaches for proxying shortest temporal betweenness rankings
in terms of their scalability and output quality. We start our study in Section 3 with a
comparison of the following proxies: (1) exact algorithm for the static betweenness computed
on the underlying graph, (2) the more efficiently computable prefix foremost temporal
betweenness of Buß et al. and (3) the recently introduced (absolute) approximation approach
of Santoro and Sarpe [39]. Our evaluation indicates that the static betweenness rankings turn
out to be quite competitive, the performance of the prefix foremost temporal betweenness
seems somewhat inconsistent, while the quality of the ranking returned by the considered
temporal betweenness approximation algorithm very much depends on the provided time.

Next, motivated by the fact that static degree centrality is often compared to other
centrality measures, we follow this approach in the temporal setting. In Section 4, we
describe our main theoretical contribution: the pass-through degree, a new temporal degree
notion which we believe to be interesting in its own right. Informally the pass-through
degree of a node v measures the number of neighbor pairs of v that are temporally connected
through v, i.e., that have a temporal path of length two between them that passes through v.
We proceed by giving an algorithm that computes the pass-through degree of all nodes in a
given (directed) temporal graph in O(M log m) time, where M is the number of temporal
arcs and m the number of arcs in the underlying static graph. In other words, the proposed
algorithm is scalable in the sense of Teng [47].

In Section 5 we compare the following set of local proxies in terms of their efficiency and
quality: (1) temporal versions of the ego-betweenness in the sense of Everett and Borgatti [16],
which entails to compute the betweenness centrality values of the nodes in their respective
ego-networks (the induced subgraph of a node’s neighborhood including himself) (2) the
pass-through degree, and (3) the approximation algorithm for temporal betweenness centrality
also used as one of the global proxies in Section 3, as it is the only choice from that section
that offers scalability in terms of computation time. We note that the pass-through degree
falls somewhere between the simple degree notions and the ego-betweenness notion in terms
of complexity. Our evaluation here indicates that the ego-networks can be of comparable
size as the whole network and, thus, prohibitively large on some data sets, the pass-through
degree usually does not perform worse than the ego-variants and is at the same time much
faster, while the considered approximation algorithm for temporal betweenness has a more
inconsistent performance over different data sets.

Our experimental evaluation is based on a diverse set of real-world networks that includes
almost all publicly available networks from the works of Buß et al. [12] and Santoro and
Sarpe [39]. We did not include the Karlsruhe network [20] (used in [12]) because it does not
appear to be available anymore. Moreover, we replaced Mathoverflow [29] network (used
in [39]) by a bigger temporal network from a different domain to make the set of analyzed
temporal graphs more diverse. Finally, we excluded Ask Ubuntu and Super User [29] (also
analyzed in [39]) because of the excessive amount of time needed to compute their exact
temporal betweenness rankings.

SEA 2023



6:4 Proxying Betweenness Centrality Rankings in Temporal Networks

1.2 Further Related Work

The literature on centrality measures being vast, we restrict our attention to approaches that
are closest to ours. We, thus, particularly focus on centrality notions in temporal graphs.

First of all, several works give introductions to temporal graphs that include surveys
on temporal centrality measures (see, e.g., [23, 28, 40]). Nicosia et al. [33] introduced
different temporal graph notions, such as temporal centralities, temporal motif, temporal
clustering, temporal modularity, and temporal communities. Providing top-k algorithms for
estimating temporal closeness centrality has also already been treated in the literature [15, 34].
Subsequently, a closeness variant based on bounded random-walks, related to the concept
of influence spreading, has been proposed by Haddadan et al. [22]. Furthermore, Tang et
al. [46] introduced temporal variants of both closeness and betweenness centrality based
on foremost temporal paths, and experimentally showed the effectiveness of such metrics
in spotting influential users in real-world temporal graphs. Building upon this direction,
Tang et al. [44] used the notion of temporal closeness to provide an empirical analysis of the
containment of malware in real-world mobile phone networks. The Katz centrality [24] has
been adapted to the temporal setting [21, 5] as well, while Rozenshtein et al. [37] defined the
temporal PageRank by replacing random walks with temporal random walks.

Tsalouchidou et al. [48] extended the well-known Brandes algorithm [9] to allow for
distributed computation of betweenness in temporal graphs. Specifically, they studied
shortest-fastest paths, considering the bi-objective of shortest length and shortest duration.
Buß et al. [12] analysed the temporal betweenness centrality considering several temporal
path optimality criteria, such as shortest (foremost), foremost, fastest, and prefix-foremost,
along with their computational complexities. They showed that, when considering paths
with increasing time labels, the foremost and fastest temporal betweenness variants are
#P -hard, while the shortest and shortest foremost ones can be computed in O(n3T 2), and
the prefix-foremost one in O(nM log M). Here n is the number of nodes and M the number of
temporal arcs. The complexity analysis of these measures has been further refined since [38].

Santoro and Sarpe [39] provide a sampling-based approximation algorithm for estimating
the temporal betweenness centrality of nodes based on shortest path criterion, for situations
in which the computational cost of computing exact values is too large.

Ghanem et al. [19] defined a temporal version of ego betweenness based on most recent
paths, which are paths that give the most recent information to the destination vertex
about the status of the source, i.e., no other path starts from the source at a later point in
time. Their definition of temporal ego betweenness is snapshot based, i.e., it gives the ego
betweenness of the temporal ego graph at a specific time instant. Simard et al. [42], on the
other hand, studied a continuous-time scenario of the shortest paths betweenness.

Finally, Oettershagen et al. [35] defined a random temporal walks based centrality
that quantifies the importance of a node by measuring its ability to obtain and distribute
information in a temporal network. They provide exact and approximate algorithms for
computing their centrality measures and compare it with the state-of-the-art temporal
centralities, i.e., with PageRank [37], Katz [5], closeness [15, 34], and betweenness [12].

2 Preliminaries

We proceed by formally introducing the terminology and concepts that we use in what follows.
For k ∈ N, we let [k] := {1, . . . , k}.



R. Becker, P. Crescenzi, A. Cruciani, and B. Kodric 6:5

Static Graphs. We start by introducing standard static, i.e., non-temporal, graphs1. An
undirected graph is an ordered pair G = (V, E), where V is a set whose elements are called
vertices or nodes, and E is a set of unordered pairs of vertices, whose elements are called
edges. We denote by N(u) = {v ∈ V : {u, v} ∈ E} the set of neighbors of a vertex
u ∈ V . The degree of a vertex u ∈ V is defined as d(u) := |N(u)|. A directed graph is a
an ordered pair G = (V, A), where V is a set whose elements are called vertices or nodes,
and A is a set of ordered pairs of vertices, whose elements are called arcs. We denote by
N in(u) = {v ∈ V : (v, u) ∈ A} and Nout(u) = {w ∈ V : (u, w) ∈ A} the set of in-neighbors
and of out-neighbors of a vertex u ∈ V , respectively. For a subset of nodes U ⊆ V , we call
G[U ] := (U, A′), where A′ := {(u, v) ∈ A : u, v ∈ U}, the induced subgraph of U . We note
that an undirected graph can be modeled as a directed graph by introducing, for every edge
e = {u, v} ∈ E, both arcs (u, v) and (v, u), resulting in the corresponding bidirected graph.
We thus focus on directed graphs in what follows.

Temporal Graphs. A directed temporal graph is an ordered triple G = (V, A, λ), where (V, A)
is a directed graph, called the underlying graph of the temporal graph G, and λ : A → 2[T ]

is a function assigning to every arc in A a finite set of elements from the set of time labels
[T ].2 We let A = {(u, v, t) : (u, v) ∈ A, t ∈ λ(u, v)} denote the set of temporal arcs of G.
Undirected temporal graphs can be modeled via directed graphs resulting in a bidirected
underlying graph. Static graphs can be modeled by temporal graphs by defining λ(a) := [T ]
for all arcs a ∈ A.

Temporal Betweenness. A walk from node u to node w in a static graph G = (V, A) is
a sequence a1, . . . , ak such that ai = (vi, vi+1) ∈ A, v1 = u, and vk+1 = w. We call k the
length of the walk. A path is a walk such that vi ≠ vj for all i, j ∈ [k] with i ≠ j. A shortest
path from u to w is a path of minimum length among all paths from u to w. We denote by
σu,w the total number of shortest paths between u and w in G, while σu,w(v) is the number
of shortest paths between u and w that pass through v. The betweenness or betweenness
centrality of a node v in G, formally introduced by Freeman [18] in 1977, is defined as

bG(v) :=
∑

u,w∈V \{v}:σu,w ̸=0

σu,w(v)
σu,w

.

A temporal walk from node u to node w in a temporal graph G = (V, A, λ) is a walk
a1, . . . , ak from u to w in the underlying graph G = (V, A) such that there exist time labels
t1, . . . , tk with t1 < . . . < tk and ti ∈ λ(ai) for every i ∈ [k]. We call k the length of the
temporal walk and tk the arrival time of the walk at w. A temporal path is a temporal walk
such that vi ̸= vj for all i, j ∈ [k] with i ̸= j. A prefix temporal path of a temporal path is its
subpath starting at the same vertex. A shortest temporal path from u to w is a temporal
path of minimum length among all temporal paths from u to w. Analogously to the static
case, we denote by σtemp

u,w the total number of shortest temporal paths between u and w in G,
while σtemp

u,w (v) is the number of shortest temporal paths between u and w that pass through
v. The shortest temporal betweenness (centrality) of a node v in the temporal graph G is
defined as

1 We use the terms “graph” and “network” interchangeably.
2 The value T denotes the life-time of the temporal graph, and, without loss of generality for our purposes,

we assume that, for any t ∈ [T ], there exists at least one temporal arc a such that λ(a) = t.

SEA 2023



6:6 Proxying Betweenness Centrality Rankings in Temporal Networks

stbG(v) :=
∑

u,w∈V \{v}:

σtemp
u,w ̸=0

σtemp
u,w (v)
σtemp

u,w

.

Different notions of temporal betweenness were recently studied by Buß et al. [12]. Their
foremost and fastest variants are both #P -hard, making them very impractical. From the
remaining variants, the shortest temporal betweenness seems to be the most natural one.
We do not consider walk-based betweenness notions as we agree with Buß et al. that “paths
are more suitable than walks for defining temporal betweenness centrality” [12]. Buß et
al. [12] gave an algorithm to compute the shortest temporal betweenness of all nodes in time
O(n3T 2). We will next introduce the notion of prefix foremost temporal betweenness from
the work of Buß et al. as we will use it as a proxy for the shortest temporal betweenness.
A prefix foremost shortest path from u to w is a shortest temporal path from u to w such
that no other shortest temporal path has an earlier arrival time at w and such that its every
prefix path satisfies the same property. Let τ temp

u,w now be the total number of prefix foremost
shortest paths between u and w in G and let τ temp

u,w (v) be the number of those paths that pass
through v. The prefix foremost temporal betweenness pftb of v is then defined analogously
to the shortest temporal betweenness by replacing σ by τ , i.e.,

pftbG(v) :=
∑

u,w∈V \{v}:
τtemp

u,w ̸=0

τ temp
u,w (v)
τ temp

u,w

.

Buß et al. give an algorithm for computing the prefix foremost temporal betweenness of all
nodes in time O(nM log M), where n is the number of vertices and M the total number of
temporal arcs.

Temporal Ego-Betweenness The ego-network G[v] of a node v in a static graph G is
the induced subgraph of its in- and out-neighbors, i.e., G[v] := G[N in(v) ∪ Nout(v)].
The ego-betweenness (centrality) of v is the betweenness of v in its ego-network, i.e.,
ego-b(v) := bG[v](v). The ego-betweenness (in undirected graphs) was introduced by Everett
and Borgatti [16] as a more tractable variant of betweenness. We extend their ego-betweenness
to temporal graphs as follows. The ego-network G[v] of a node v in a temporal graph G is the
temporal graph with the underlying graph G[v] := G[N in(v)∪Nout(v)] and with the time label
function λ′ being the restriction of λ to arcs in G[v]. The ego-shortest temporal betweenness
of v is the shortest temporal betweenness of v in its ego-network, i.e., ego-stb(v) := stbG[v](v).
Similarly, we define the ego-prefix foremost temporal betweenness of v as the prefix foremost
temporal betweenness of v in its ego-network, i.e, ego-pftb(v) := pftbG[v](v).

Everett and Borgatti [16] propose an algorithm to compute the ego-betweenness of a
single node in an undirected static graph via computation of the square of the incidence
matrix of the node’s ego-network. We note that in the worst case the ego-network is of the
same size as the original graph. For computing the temporal ego-betweennesses of all nodes,
this algorithm can thus be implemented in time O(nω+1), where ω is matrix multiplication
exponent, i.e., the smallest real number such that two n × n matrices can be multiplied
within O(nω+ε) field operations for all ε > 0. The current best bound on ω is 2.3728596 [3].



R. Becker, P. Crescenzi, A. Cruciani, and B. Kodric 6:7

3 Global Proxies for Shortest Temporal Betweenness

In this section, we summarize the results of our experimental study on proxying the shortest
temporal betweenness values in large real-world networks using global proxies. Recall
that a proxy is global, if the centrality value of each node is not purely dependent on its
neighborhood. Our general experimental approach here is as follows. We employ a set
of competitor algorithms that we each use as a proxy for shortest temporal betweenness
centrality rankings. That is, for each algorithm, we compute a complete ranking of the
nodes and evaluate (using various metrics) how this ranking relates to the “correct” ranking
computed by the algorithm of Buß et al. [12]. In what follows, we will call this benchmark
algorithm TempBrandes for “Temporal Brandes algorithm”. Recall that TempBrandes
computes the shortest temporal betweenness values of all nodes in time O(n3T 2).

3.1 Experimental Setting
Global Proxies. As global proxies for shortest temporal betweenness, our study includes
the following algorithms.
Brandes: The classical algorithm of Brandes, which computes the static betweenness of all

nodes in time O(nm) on the underlying graph, i.e., the graph obtained by a union over
all the time steps.3

Pref: The algorithm of Buß et al. [12] for computing the prefix foremost temporal between-
nesses pftb in O(nM log M).

Onbra: The approximation algorithm of Santoro and Sarpe [39], which is a sampling technique
for obtaining an absolute approximation of the shortest temporal betweenness values.
The work that introduced this algorithm is rather vague in terms of how to choose the
sample size, stating only that they choose it so as to make the algorithm run “within a
fraction of the time required by the exact algorithm”. In our study, we choose the number
of samples such that the running time of Onbra is a tenth, a half and roughly equal to
the running time of TempBrandes. We achieve this by first estimating the time taken
per sample, and then computing the number of samples by dividing the (fraction of) time
needed by TempBrandes with the computed estimate.

Besides Brandes, which is available in the Graphs.jl library, we implemented TempBrandes
and all competitor algorithms in Julia. We chose to re-implement TempBrandes, Pref and
Onbra because the available implementations of TempBrandes and Pref have issues with
the number of paths in the tested networks, causing overflow errors (indicated by negative
centralities). Since Onbra is based on the TempBrandes code, it results in the same
errors. Our implementation uses a sparse matrix representation of the n × |T | table used in
[12, 39], making the implemented algorithms space-efficient and allowing to compute the exact
temporal shortest betweenness on big temporal graphs (for which the original version of the
code gives out of memory errors). Furthermore, we noticed another error in TempBrandes
and Pref, related to time relabeling causing an underestimation of centralities. Our code is
available at https://github.com/piluc/TSBProxy.

Networks. We evaluate all of the above competitors on real-world temporal graphs of
different nature, whose properties are summarized in Table 1. The networks come from two
different domains.

3 We are aware of fast approximation algorithms like Kadabra [8] for the computation of the static
betweenness, but for our purpose here the efficiency of the exact algorithm is sufficient.

SEA 2023

https://github.com/piluc/TSBProxy


6:8 Proxying Betweenness Centrality Rankings in Temporal Networks

Table 1 The temporal networks used in our evaluation, where n denotes the number of nodes, m

the number of arcs in the underlying static graph, M the number of temporal arcs, T the number of
unique time labels, tSTB the execution time of TempBrandes, and nmax

e the maximum number
of nodes in the ego network (type D stands for directed and U for undirected). The networks are
sorted in increasing order with respect to tSTB.

Data set n m M T tSTB nmax
e Type Source

Hypertext 2009 113 4392 41636 5246 263 99 U [1]
High school 2011 126 3418 57078 5609 446 56 U [1]
Hospital ward 75 2278 64848 9453 659 62 U [1]
College msg 1899 20296 59798 58911 894 256 D [29]
Wiki elections 7115 103680 106985 101012 1192 1066 D [29]
High school 2012 180 4440 90094 11273 1345 57 U [1]
Digg reply 30360 85247 86203 82641 1762 284 D [36]
Infectious 10972 89034 831824 76944 4985 65 U [1]
Primary school 242 16634 251546 3100 5607 135 U [1]
Facebook wall 35817 104942 198028 194904 5751 89 D [36]
Slashdot reply 51083 130370 139789 89862 8653 2916 D [36]
High school 2013 327 11636 377016 7375 20642 88 U [1]
Topology 16564 122140 198038 32823 22453 1401 U [27]
SMS 44090 67190 544607 467838 25178 407 D [36]
Email EU 986 24929 327336 207880 31840 346 D [29]

Social networks: This domain includes most of the considered networks: College msg, Wiki
elections, Digg reply, Slashdot reply, a subgraph of Facebook wall [50] containing
the last ∼ 200k temporal arcs (as in the work of Santoro and Sarpe [39]), SMS and Email
EU. These are social networks from different realms, where nodes correspond to users and
temporal arcs indicate messages sent between them at specific points in time.

Contact networks: This domain includes the six networks Hypertext 2009, High school
11/12/13, Hospital ward, Infectious, Primary school and Topology. In the first
case nodes correspond to individuals, while in the second case they correspond to
computers. In both cases temporal arcs indicate a contact between nodes at a specific
time.

In Appendix C we briefly discuss another type of temporal networks, that is, public transport
networks (see, for example, [14, 15]), which, due to their topology, have quite peculiar
properties in terms of both the execution times and of the quality of the analysed proxies.

Evaluation Details. We executed the experiments on a server running Ubuntu 20.04.5 LTS
112 with processors Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz and 112GB RAM. All
the correlation coefficients were computed by making use of the corresponding functions
available in the Python scipy.stats module [13].



R. Becker, P. Crescenzi, A. Cruciani, and B. Kodric 6:9

3.2 Experimental Results

Experiment 1: Global Proxies’ Correlation to TEMPBRANDES

In our first experiment, we run both TempBrandes and all the discussed global proxies on
the networks listed in Table 1. We then, for each of these four algorithms (TempBrandes
plus three proxies), compute the resulting node ranking and evaluate the correlation of the
rankings computed by the proxies with the ranking computed by TempBrandes. Here, we
employ two different rank correlation measures, i.e., (1) a weighted version of Kendall’s τ

coefficient based on the work of Vigna [49], and (2) the number of common highest rank
nodes among the first k. We also investigated the Spearman’s ρ coefficient [43] and Kendall’s
τ coefficient [25] of the rankings, but we omit these results here due to space constraints. We,
however, note that these measures indicated similar proxy performance as (1), and at the
same time we find (1) more relevant, as it gives more importance to approximating the upper
part of the ranking. For the weighted Kendall’s τ coeffficient, we use a hyperbolic weighting
scheme, as proposed by Vigna [49], that gives weights to the positions in the ranking which
decay harmonically with the ranks, i.e., the weight of rank r is 1/(r + 1). We refrain from
comparing the proxies with respect to average correlation due to outliers.

Table 2 For each network, we show the execution times of TempBrandes and of all proxies
(except for Onbra) in seconds. Dashes indicate that the experiment was interrupted after the
time of TempBrandes elapsed. We omit Onbra from the table as its running time is fixed to
approximately 1/10, 1/2, or 1 times the running time of TempBrandes due to the choice of the
sample size.

Network Execution Time (seconds)

TempBrandes Brandes Prefix EgoPrefix EgoSTB PTD

Hypertext 2009 262.58 0.01 2.29 25.14 – 0.01
High school 2011 445.62 0.02 3.39 15.81 – 0.01
Hospital ward 659.13 0.01 2.01 37.97 – 0.01
College msg 894.44 1.12 21.58 4.83 116.53 0.02
Wiki elections 1192.42 6.52 49.84 45.54 586.75 0.06
High school 2012 1345.06 0.03 7.77 232.90 – 0.01
Digg reply 1762.09 123.37 224.58 1.61 4.43 0.05
Infectious 4985.19 3.28 50.26 26.97 820.73 0.11
Primary school 5607.17 0.08 39.22 492.73 – 0.04
Facebook wall 5750.73 349.01 429.38 2.00 17.86 0.07
Slashdot reply 8652.54 442.75 1116.99 7.08 38.78 0.07
High school 2013 20641.71 0.11 95.49 200.89 – 0.09
Topology 22452.98 124.98 1017.78 905.69 – 0.08
SMS 25178.27 129.53 591.98 4.18 476.71 0.09
Email EU 31839.72 0.54 180.86 411.07 – 0.05

Running Times. The running times of the global proxies can be found in the first three
columns of Table 2. We note that Prefix always terminates in at most 15% of the running
time of TempBrandes, while Brandes always finishes in at most 7% of the running time
of TempBrandes. The efficiency of both proxies is particularly pronounced on contact
networks with lots of temporal edges and comparatively few edges in the underlying graph.
As a result the underlying graph is comparatively small, which is beneficial for Brandes.

SEA 2023



6:10 Proxying Betweenness Centrality Rankings in Temporal Networks

On the other hand, the number of prefix foremost shortest paths is also much smaller than
the total number of shortest temporal paths, which is beneficial for Prefix. The running
times of the three Onbra versions are fixed to approximately 1/10, 1/2, and 1 times the
running times of TempBrandes due to the choice of the sample size.

0.00

0.25

0.50

0.75

1.00

Hyp
ert

ex
t 2

00
9

High
 sc

ho
ol 

20
11

Hos
pit

al 
ward

Coll
eg

e m
sg

W
iki

 el
ec

tio
ns

High
 sc

ho
ol 

20
12

Digg
 re

ply

Inf
ec

tio
us

Prim
ary

 sc
ho

ol

Fa
ce

bo
ok

 w
all

Slas
hd

ot 
rep

ly

High
 sc

ho
ol 

20
13

To
po

log
y

SMS

Email
 E

U

Brandes Prefix Onbra1/10 Onbra1/2 Onbra1

Weighted Kendall Tau (global)

0

10

20

30

40

50

Hyp
ert

ex
t 2

00
9

High
 sc

ho
ol 

20
11

Hos
pit

al 
ward

Coll
eg

e m
sg

W
iki

 el
ec

tio
ns

High
 sc

ho
ol 

20
12

Digg
 re

ply

Inf
ec

tio
us

Prim
ary

 sc
ho

ol

Fa
ce

bo
ok

 w
all

Slas
hd

ot 
rep

ly

High
 sc

ho
ol 

20
13

To
po

log
y

SMS

Email
 E

U

Brandes Prefix Onbra1/10 Onbra1/2 Onbra1

Intersection k = 50 (global)

Figure 1 Comparison of the centrality ranking produced by TempBrandes and the rankings
produced by the global proxies. The comparison is given in terms of the weighted Kendall’s τ

coefficient and the intersection of the top 50 nodes.

Ranking Correlation. An illustration of the ranking correlation results of this experiment can
be found in Figure 1. On top of the figure, we show the Weighted Kendall’s τ correlation of the
rankings computed by the respective proxies and the ranking computed by TempBrandes.
On the bottom, we show the results in terms of the intersection of the top-k nodes. We
choose the value of k to be 50 here, while further results for k = 1 and k = 25 can be found
in Table 5 in the appendix.

In terms of the weighted Kendall’s τ correlation (see Table 3), we first observe that
there are three (3) networks in which Brandes performs best, five (5) networks in which
Prefix performs best, and ten (10) networks in which Onbra with maximal sample size
performs best (we count networks with ties multiple times). We, however, also notice that
the Onbra’s performance heavily relies on the used sample size. Indeed, if the sample size
is such that Onbra needs roughly 10% of TempBrandes running time, we observe that
the numbers change as follows: there are eleven (11) networks in which Brandes achieves
the best correlation and there are five (5) networks in which Prefix performs best, while
Onbra never performs best.

As Brandes always terminates in less than 7% of TempBrandes’ running time, and in
most cases much faster, we can conclude that the static betweenness rankings are actually
quite competitive in situations where we are restricted in terms of running time. In other
words, it seems really necessary to give Onbra a running time similar to the exact algorithm



R. Becker, P. Crescenzi, A. Cruciani, and B. Kodric 6:11

Table 3 For each network, we show the weighted Kendall’s τ coefficient of the rankings computed
by the three global proxies and the ranking computed by TempBrandes. For Onbra we show the
results using, respectively, a sample size such that Onbra’s execution time is 1/10, 1/2, and exactly
the one of TempBrandes. For each instance, we highlight the best result in bold font.

Network weighted Kendall’s τ coefficient

Brandes Prefix Onbra 1
10

Onbra 1
2

Onbra1

Hypertext 2009 0.90 0.67 0.86 0.94 0.96
High school 2011 0.89 0.56 0.82 0.92 0.95
Hospital ward 0.84 0.71 0.82 0.92 0.94
College msg 0.95 0.92 0.89 0.94 0.95
Wiki elections 0.92 0.92 0.84 0.90 0.92
High school 2012 0.90 0.56 0.81 0.89 0.93
Digg reply 0.94 0.99 0.73 0.83 0.86
Infectious 0.92 0.78 0.45 0.67 0.70
Primary school 0.89 0.13 0.88 0.94 0.96
Facebook wall 0.91 0.98 0.80 0.87 0.90
Slashdot reply 0.91 0.96 0.85 0.91 0.92
High school 2013 0.92 0.63 0.86 0.93 0.95
Topology 0.93 0.92 0.89 0.93 0.94
SMS 0.93 0.99 0.73 0.81 0.84
Email EU 0.95 0.88 0.91 0.96 0.97

in order for it to outperform Brandes. At this point, we would like to emphasize that our
choice of sample size for Onbra is inherently impractical as it requires to run the exact
algorithm first. We chose this approach in order to be as fair as possible when evaluating its
performance in terms of quality. Choosing its sample size based on the time of other proxies,
as, e.g., Brandes, makes its performance much worse in comparison. The results based on
the intersection measure are somewhat similar, with Onbra performing slightly better.

4 Pass-Through Degree

Motivated by the fact that the running times of the global proxies employed in the previous
section all grow much faster than linearly, we now turn to local proxies, i.e., proxies which
compute centrality values purely based on nodes’ neighborhoods. In the case of static graphs,
it is common practice to compare more involved centrality notions to the simple degree
centrality. Motivated by this fact, we here introduce a new degree notion for temporal graphs,
which we will evaluate as a local proxy for shortest temporal betweenness in what follows.
This new degree notion is somewhat related to the ego-betweenness, but it is in fact even
simpler. In the end of this section, we will show that it can be computed for all nodes in
nearly linear time in the number of temporal arcs.

Static Pass-Through Degree. With the aim of a simpler exposition, we start by giving
the definition of our new degree notion for static directed graphs. We first note that the
two standard degree notions in directed graphs, the in-degree din(u) = |N in(u)| and the
out-degree dout(u) = |Nout(u)|, both fail to observe the vertex as a whole, by taking in-going
and out-going arcs into account in isolation. In undirected graphs, on the other hand, the

SEA 2023



6:12 Proxying Betweenness Centrality Rankings in Temporal Networks

v1

u1

v2

w1

u2

w2 w3 w4 w5 w6 wk. . .

Figure 2 For the first variant, the pass-through degree of vertices u1 and u2 in the example
graphs depicted above is equal. Namely, d1(u1) = |N in(u1)| = 1 = |N in(u2)| = d1(u2). For the
second variant this is not the case, as d2(u1) =

√
2 and d2(u2) =

√
k = Θ(

√
n), where n denotes the

number of nodes in the graph.

degree of a vertex also measures the number of neighbor pairs that can reach each other
by passing through u, albeit normalized by the size of the neighborhood of u. In other
words, d(u) = |N(u)|·|N(u)|

|N(u)| . This is, of course, just an overly complicated way of writing
down the identity d(u) = |N(u)|, but we use it as motivation for defining the analogous
degree notion in directed graphs. We actually give two candidate definitions first, both
generalizing the above equality to directed graphs, and then argue which of the two notions
is more reasonable. The two variants of a directed degree notion that we propose, for a node
u ∈ V , are d1(u) := |N in(u)|·|Nout(u)|

|N in(u)∪Nout(u)| and d2(u) :=
√

|N in(u)| · |Nout(u)|. When modeling
an undirected graph G = (V, E) as a directed graph D = (V, A), by introducing two arcs
(u, v) and (v, u) for every edge {u, v} ∈ E, we obtain, for every node u in the undirected
graph, N(u) = N in(u) = Nout(v) and d1(u) = d2(u) = d(u). Thus, both notions are proper
generalizations of the undirected degree.

While at first sight it is not obvious which vertex degree definition is more suitable, both
of them being legitimate generalizations of the undirected degree, one of the two turns out
to be better suited for measuring vertex importance. As the examples in Figure 2 illustrate,
the first candidate, d1, has a serious drawback. More formally, when N in(u) ∪ Nout(u) ∈
{N in(u), Nout(u)}, then d1(u) ∈ {|N in(u)|, |Nout(u)|}. This in particular means that in such
a case, contrary to our initial intention, the degree of a node depends only on the in-going
or the out-going arcs. Since the second candidate does not suffer from this issue, we find
it more suitable for defining our directed degree notion. We now formally define it as the
pass-through degree of a node.

▶ Definition 1. In a static directed graph G = (V, A), the pass-through-degree of u ∈ V is
defined as

ptd(u) :=
√

|N in(u)| · |Nout(u)|

We point out that the pass-through degree is the geometric mean of in- and out-degree, the
two classical notions of directed degree.

Temporal Pass-Through Degree. The introduced pass-through degree notion nicely gener-
alizes to temporal graphs. Recall that the pass-through degree of a node u is equal to the
geometric mean of the number of ordered neighbor pairs v, w that are connected through
u. We generalize this to temporal nodes via pairs of neighbors that are temporally connec-
ted via exactly two hops through u. Formally, we write v

u−→ w if and only if there exist
a1 = (v, u) ∈ A and a2 = (u, w) ∈ A such that λ(a1) < λ(a2). We are now ready to define
the temporal pass-through degree.



R. Becker, P. Crescenzi, A. Cruciani, and B. Kodric 6:13

▶ Definition 2. In a temporal graph G = (V, A, λ), the temporal pass-through-degree of
u ∈ V is

t-ptd(u) :=
√

|{(v, w) ∈ (V \ {u})2 : v
u−→ w}|

Algorithm 1 Temporal Pass-Through Degree.

Data: temporal arc list A
Result: temporal pass-through degree of all vertices t-ptd

1 G, G = {∅} // initialize two empty temporal graphs
2 for each (u, v, t) ∈ A do

// check if the edge already exists in G, G

3 if (u, v) ∈ E(G) then
// update max and min encountered label

4 G(u, v) = max
(
G(u, v), t

)
, G(u, v) = min (G(u, v), t)

5 else
6 add (u, v) to E(G), E(G)
7 G(u, v) = t, G(u, v) = t

8 sort edges of G in ascending order according to time labels
9 Leat = [[·], [·], . . . , [·]] // list of n empty lists

10 for each (u, v, t) ∈ G do
11 Leat[v].append(t)
12 t-ptd = [0, 0, . . . , 0]// initialize array of n zeros
13 for each (v, w, t) ∈ G do

// compute the pass-through degrees
14 t-ptd[v] = t-ptd[v] +

∣∣{t ∈ Leat[v] : t < t}
∣∣

15 return t-ptd

Computation of the Temporal Pass-Through Degree. Algorithm 1, given the temporal
arc list A of a temporal graph, computes the pass-through degrees in O(M log m) = Õ(M)
time and O(m +n) space, where M is the number of temporal arcs and m, n are, respectively,
the number of arcs and the number of nodes of the underlying static graph. More precisely,
the first for loop (lines 2-7) iterates over all the temporal arcs and builds two simple
labeled directed graphs, G and G, which respectively keep track of the maximum and the
minimum appearance time of each arc from the underlying graph. Building G and G requires
O(M log m) time, as we can maintain a vertex-sorted list of already added arcs, and O(m+n)
space. Subsequently, the algorithm sorts the m arcs of the temporal graph G according to
their time labels in time O(m log m). The second for loop (lines 10-11) iterates over all the
(now sorted) arcs of the temporal graph G, and appends the appearance time t of the arc
(u, v, t) to the minimum incoming times list of node v. Since G has exactly m arcs, this loop
requires O(m) steps and uses O(m + n) space. Finally, using O(n) space, the last for loop
(lines 13-14) iterates over all the m temporal arcs (u, w, t) of G and increments the t-ptd
variables. More specifically, when encountering the temporal arc (v, w, t), it increases the
previous t-ptd value of v by the number of distinct in-going temporal arcs of v in G with
t < t (line 14). Since Leat[v] is a sorted lists of length at most n (as G is a simple graph),
for each v ∈ V we can compute the new ptd[u] in O(log n) via binary-search. Therefore, the
last loop requires O(m log n) steps. The overall time and space complexities are therefore
O(M log m) = Õ(M) and O(m + n), respectively.

SEA 2023



6:14 Proxying Betweenness Centrality Rankings in Temporal Networks

5 Local Proxies for Shortest Temporal Betweenness

We now turn to an experimental analysis of local proxies for shortest temporal betweenness.
Our approach here is the same as in Section 3 and, besides the different choice of proxies, our
experimental setting is identical. We first list the set of local proxies for shortest temporal
betweenness that our study includes.

EgoSTB: The algorithm for computing the ego-shortest temporal betweenness ego-stb of all
nodes by going through them iteratively, computing the ego-network of the respective
node, and then calling the algorithm of Buß et al. [12] for computing the shortest temporal
betweenness of the node in its ego-network.

EgoPrefix: The algorithm that, analogously to the one above, computes the ego-prefix
foremost temporal betweenness ego-pftb of all nodes.

PTD: The algorithm for computing the temporal pass-through degree of all nodes in nearly
linear time in the number of temporal arcs, described in Section 4.

We in addition examine the rankings produced by both the static and temporal versions of
the in- and out-degree. These results are omitted from the main body of the paper (but can
be found in Table 7, Appendix B). The quality of the rankings returned by PTD is usually
much better, and only in a single case (on Infectious) is the obtained Weighted Kendall’s
τ value more than 0.01 worse than for another degree notion.

Table 4 For each network, we show the weighted Kendall’s τ coefficient of the rankings computed
by the three local proxies and the ranking computed by TempBrandes. For Onbra we show the
results using a sample size such that Onbra’s execution time is 1/10 the one of TempBrandes.
For each instance, we highlight the best result in bold font.

Network weighted Kendall’s τ coefficient

Onbra 1
10

EgoPrefix EgoSTB PTD

Hypertext 2009 0.86 0.73 – 0.89
High school 2011 0.82 0.69 – 0.76
Hospital ward 0.82 0.77 – 0.82
College msg 0.89 0.94 0.94 0.95
Wiki elections 0.84 0.94 0.94 0.94
High school 2012 0.81 0.81 – 0.81
Digg reply 0.73 0.96 0.96 0.96
Infectious 0.45 0.76 0.81 0.65
Primary school 0.88 0.63 – 0.83
Facebook wall 0.8 0.94 0.94 0.93
Slashdot reply 0.85 0.97 0.97 0.96
High school 2013 0.86 0.83 – 0.83
Topology 0.89 0.92 – 0.92
SMS 0.73 0.95 0.96 0.94
Email EU 0.91 0.91 – 0.91



R. Becker, P. Crescenzi, A. Cruciani, and B. Kodric 6:15

Experiment 2: Local Proxies’ Correlation to TEMPBRANDES

Running Times. The local proxies’ running times can be found in the last three columns of
Table 2. We note that the running time of EgoSTB easily becomes prohibitively large: in
fact, we interrupted its execution once the time of TempBrandes elapsed, which resulted
in eight (8) missing values for EgoSTB. We note that this is due to the large size of the ego
networks, which can be deduced from the nmax

e column in Table 1. We emphasize that the
nearly linear time algorithm from the previous section computes the pass-through degree of
all nodes in less than 0.005% of the running time of TempBrandes on all data sets.

0.00

0.25

0.50

0.75

1.00

Hyp
ert

ex
t 2

00
9

High
 sc

ho
ol 

20
11

Hos
pit

al 
ward

Coll
eg

e m
sg

W
iki

 el
ec

tio
ns

High
 sc

ho
ol 

20
12

Digg
 re

ply

Inf
ec

tio
us

Prim
ary

 sc
ho

ol

Fa
ce

bo
ok

 w
all

Slas
hd

ot 
rep

ly

High
 sc

ho
ol 

20
13

To
po

log
y

SMS

Email
 E

U

EgoPrefix EgoSTB PTD Onbra1/10

Weighted Kendall Tau (local + fastest Onbra)

0

10

20

30

40

Hyp
ert

ex
t 2

00
9

High
 sc

ho
ol 

20
11

Hos
pit

al 
ward

Coll
eg

e m
sg

W
iki

 el
ec

tio
ns

High
 sc

ho
ol 

20
12

Digg
 re

ply

Inf
ec

tio
us

Prim
ary

 sc
ho

ol

Fa
ce

bo
ok

 w
all

Slas
hd

ot 
rep

ly

High
 sc

ho
ol 

20
13

To
po

log
y

SMS

Email
 E

U

EgoPrefix EgoSTB PTD Onbra1/10

Intersection k = 50 (local + fastest Onbra)

Figure 3 Comparison of the centrality ranking produced by TempBrandes and the rankings
produced by the local proxies and Onbra with the smallest considered sample size. The comparison
is given in terms of the weighted Kendall’s τ coefficient and the intersection of the top 50 nodes.

Ranking Correlation. An illustration of the ranking correlation results of this experiment
can be found in Figure 3. On top of the figure, we show the Weighted Kendall’s τ correlation
coefficient of the rankings computed by the respective proxies and the ranking computed
by TempBrandes (see also Table 4). On the bottom, we show the results in terms of the
intersection of the top-k nodes (again k = 50, see Table 6, Appendix A, for k = 1 and
k = 25). In order to allow for better comparison with the results for global proxies from
Section 3, in all the tables and plots that follow, we also include the fastest variant of Onbra,
i.e, the variant with roughly 10% of TempBrandes’ running time. We observe that the
pass-through degree usually does not perform worse than the ego-variants of the shortest
temporal betweenness and is at the same time much faster. In terms of both weighted
Kendall’s τ coefficient and the intersection measure, the pass-through degree performs better
or at least as good as the considered version of Onbra on 10 out of 15 instances. At the
same time its running time is between 3 and 4 orders of magnitudes smaller on all instances.

SEA 2023



6:16 Proxying Betweenness Centrality Rankings in Temporal Networks

1e−05

1e−03

1e−01

0.25 0.50 0.75 1.00
weighted kendall's tau

tim
e 

ra
tio

Hypertext 2009
High school 2011
Hospital ward

College msg
Wiki elections
High school 2012

Digg reply
Infectious
Primary school

Facebook wall
Slashdot reply
High school 2013

Topology
SMS
Email EU

Brandes
Prefix

PTD
Onbra.0.1

Onbra.0.5
Onbra.1

Figure 4 A two-dimensional illustration of ranking quality in terms of weighted Kendall’s τ

coefficient (on the horizontal linear axis) and the ratio between the proxies execution time and the
time of TempBrandes (on the vertical logarithmic axis). The shapes of the points indicate the
network, while the color indicates the proxy. On the top and on the right we plot the median value
of the weighted Kendall’s τ and the time ratio, respectively. We note that the running time ratios of
the three Onbra variants are fixed to 1/10, 1/2, and 1, respectively.

6 Conclusion

We experimentally compared three global and three local proxies for shortest temporal
betweenness rankings. One of these local proxies is a novel temporal degree notion, called
the pass-through degree, which computes the number of neighbor pairs that are temporally
connected by a two-hop path passing through the node at hand. Our experimental results
are summarized in Figure 4, which depicts the performance of both global and local proxies
discussed in previous sections (both in terms of running time and ranking quality). When
applied to very large temporal networks, the pass-through degree clearly outperforms all the
other competitors in terms of time performance. As indicated by the median time ratios
that are depicted on the right of the plot, the pass-through degree achieves a time ratio
that is around two (2), three (3), and four (4) orders of magnitude better than Brandes,
Prefix, and the fastest considered Onbra variant, respectively. In terms of ranking quality,
the medians of the two time-intense Onbra variants are best, followed by Brandes, PTD,
Prefix, and the fastest Onbra variant.4

One future direction is explaining the correlations between PTD and the shortest temporal
betweenness by using temporal graph parameters, such as the ones defined in the works
of Tang et al. [45] and Nicosia et al. [33]. It would also be interesting to use PTD as a
proxy for both static and temporal centralities in the context of routing schemes [31], as
its local character enables an efficient distributed computation. From a theoretical point
of view, possible directions of research include finding a conditional lower bound on the
time complexity of computing shortest temporal betweenness that is better than the lower
bound implied by its non-temporal counterpart. Proving a conditional lower bound on the
computation of the ego-network betweenness measures (or designing a better algorithm) is
also a very challenging question. Finally, the pass-through degree easily generalises to k-hop
paths (instead of 2-hop paths). We believe that designing a quasi-linear time algorithm for
computing such a generalisation, and verifying its quality in terms of proxying the shortest
temporal betweenness, is the most natural continuation of this work.

4 We note that we chose to compute medians rather than averages here, as the data seems to include
several outliers (see, e.g., Prefix on the primary school network).



R. Becker, P. Crescenzi, A. Cruciani, and B. Kodric 6:17

References
1 Sociopatterns. https://www.sociopatterns.org/, last checked on February 10, 2023.
2 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences

between graph centrality problems, APSP and diameter. In Piotr Indyk, editor, Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
San Diego, CA, USA, January 4-6, 2015, pages 1681–1697. SIAM, 2015. doi:10.1137/1.
9781611973730.112.

3 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522–539.
SIAM, 2021. doi:10.1137/1.9781611976465.32.

4 Alex Bavelas. Communication patterns in task-oriented groups. The journal of the acoustical
society of America, 22(6):725–730, 1950.

5 Ferenc Béres, Róbert Pálovics, Anna Oláh, and András A Benczúr. Temporal walk based
centrality metric for graph streams. Applied network science, 2018.

6 Paolo Boldi and Sebastiano Vigna. Axioms for centrality. Internet Mathematics, 10(3-4):222–
262, 2014.

7 Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the square: On the complexity of
some quadratic-time solvable problems. Electron. Notes Theor. Comput. Sci., 322:51–67, 2016.
doi:10.1016/j.entcs.2016.03.005.

8 Michele Borassi and Emanuele Natale. KADABRA is an adaptive algorithm for betweenness
via random approximation. ACM J. Exp. Algorithmics, 24(1):1.2:1–1.2:35, 2019. doi:10.
1145/3284359.

9 Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of mathematical sociology,
2001.

10 Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems, 30(1-7):107–117, 1998.

11 Laura F. Bringmann, Timon Elmer, Sacha Epskamp, Robert W. Krause, David Schoch,
Marieke Wichers, Johanna Wigman, and Evelien Snippe. What do centrality measures
measure in psychological networks? Journal of Abnormal Psychology, 128(8):892, 2019.

12 Sebastian Buß, Hendrik Molter, Rolf Niedermeier, and Maciej Rymar. Algorithmic aspects
of temporal betweenness. In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash,
editors, KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, Virtual Event, CA, USA, August 23-27, 2020, pages 2084–2092. ACM, 2020. doi:
10.1145/3394486.3403259.

13 The SciPy community. Statistical functions. https://docs.scipy.org/doc/scipy/
reference/stats.html, last checked on February 10, 2023.

14 Pierluigi Crescenzi, Clémence Magnien, and Andrea Marino. Approximating the temporal
neighbourhood function of large temporal graphs. Algorithms, 12(10), 2019.

15 Pierluigi Crescenzi, Clémence Magnien, and Andrea Marino. Finding top-k nodes for temporal
closeness in large temporal graphs. Algorithms, 13(9), 2020.

16 Martin G. Everett and Stephen P. Borgatti. Ego network betweenness. Soc. Networks,
27(1):31–38, 2005. doi:10.1016/j.socnet.2004.11.007.

17 Robert Faris and Diane Felmlee. Status struggles: Network centrality and gender segregation
in same-and cross-gender aggression. American Sociological Review, 76(1):48–73, 2011.

18 Linton C. Freeman. A set of measures of centrality based on betweenness. Sociometry,
40(1):35–41, March 1977. doi:10.2307/3033543.

19 Marwan Ghanem, Florent Coriat, and Lionel Tabourier. Ego-betweenness centrality in link
streams. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining 2017, Sydney, Australia, July 31 - August 03, 2017.
ACM, 2017.

SEA 2023

https://www.sociopatterns.org/
https://doi.org/10.1137/1.9781611973730.112
https://doi.org/10.1137/1.9781611973730.112
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1016/j.entcs.2016.03.005
https://doi.org/10.1145/3284359
https://doi.org/10.1145/3284359
https://doi.org/10.1145/3394486.3403259
https://doi.org/10.1145/3394486.3403259
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
https://doi.org/10.1016/j.socnet.2004.11.007
https://doi.org/10.2307/3033543


6:18 Proxying Betweenness Centrality Rankings in Temporal Networks

20 R. Goerke. Email network of KIT informatics. https://i11www.iti.kit.edu/en/projects/
spp1307/emaildata, 2011. Online; accessed 10 February 2023.

21 Peter Grindrod, Mark C Parsons, Desmond J Higham, and Ernesto Estrada. Communicability
across evolving networks. Physical Review E, 2011.

22 Shahrzad Haddadan, Cristina Menghini, Matteo Riondato, and Eli Upfal. Repbublik: Reducing
polarized bubble radius with link insertions. In WSDM ’21, The Fourteenth ACM International
Conference on Web Search and Data Mining, Virtual Event, Israel, March 8-12, 2021. ACM,
2021.

23 Petter Holme. Modern temporal network theory: a colloquium. The European Physical Journal
B, 2015.

24 Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43,
1953.

25 Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.
26 R. Kujala, C. Weckström, R. Darst, M. Madlenocić, and J. Saramäki. A collection of public

transport network data sets for 25 cities. Sci. Data, 5:article number: 180089, 2018.
27 J. Kunegis. The KONECT Project. http://konect.cc, last checked on February 10, 2023.
28 Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link streams

for the modeling of interactions over time. Soc. Netw. Anal. Min., 2018.
29 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.

http://snap.stanford.edu/data, last checked on February 10, 2023.
30 Carlos Lozares, Pedro López-Roldán, Mireia Bolibar, and Dafne Muntanyola. The structure

of global centrality measures. International Journal of Social Research Methodology, 18(2):209–
226, 2015.

31 Leonardo Maccari, Lorenzo Ghiro, Alessio Guerrieri, Alberto Montresor, and Renato Lo Cigno.
On the distributed computation of load centrality and its application to DV routing. In 2018
IEEE Conference on Computer Communications, INFOCOM 2018, Honolulu, HI, USA, April
16-19, 2018, pages 2582–2590. IEEE, 2018. doi:10.1109/INFOCOM.2018.8486345.

32 Massimo Marchiori and Vito Latora. Harmony in the small-world. Physica A: Statistical
Mechanics and its Applications, 285(3-4):539–546, 2000.

33 Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi, Giovanni Russo, and Vito
Latora. Graph metrics for temporal networks. In Temporal networks. Springer, 2013.

34 Lutz Oettershagen and Petra Mutzel. Efficient top-k temporal closeness calculation in temporal
networks. In 2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020.

35 Lutz Oettershagen, Petra Mutzel, and Nils M. Kriege. Temporal walk centrality: Ranking
nodes in evolving networks. In WWW ’22: The ACM Web Conference 2022, Virtual Event,
Lyon, France, April 25 - 29, 2022. ACM, 2022.

36 Ryan A. Rossi and Nesreen K. Ahmed. Network repository. https://networkrepository.com,
last checked on February 10, 2023.

37 Polina Rozenshtein and Aristides Gionis. Temporal pagerank. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. Springer, 2016.

38 Maciej Rymar, Hendrik Molter, André Nichterlein, and Rolf Niedermeier. Towards classifying
the polynomial-time solvability of temporal betweenness centrality. In Graph-Theoretic
Concepts in Computer Science - 47th International Workshop, WG 2021, Warsaw, Poland,
June 23-25, 2021, Revised Selected Papers, Lecture Notes in Computer Science. Springer, 2021.

39 Diego Santoro and Ilie Sarpe. ONBRA: rigorous estimation of the temporal betweenness
centrality in temporal networks. In WWW ’22: The ACM Web Conference 2022, Virtual
Event, Lyon, France, April 25 - 29, 2022. ACM, 2022.

40 Nicola Santoro, Walter Quattrociocchi, Paola Flocchini, Arnaud Casteigts, and Frédéric
Amblard. Time-varying graphs and social network analysis: Temporal indicators and metrics.
CoRR, 2011.

41 John R Seeley. The net of reciprocal influence. a problem in treating sociometric data.
Canadian Journal of Experimental Psychology, 3:234, 1949.

https://i11www.iti.kit.edu/en/projects/spp1307/emaildata
https://i11www.iti.kit.edu/en/projects/spp1307/emaildata
http://konect.cc
http://snap.stanford.edu/data
https://doi.org/10.1109/INFOCOM.2018.8486345
https://networkrepository.com


R. Becker, P. Crescenzi, A. Cruciani, and B. Kodric 6:19

42 Frédéric Simard, Clémence Magnien, and Matthieu Latapy. Computing betweenness centrality
in link streams. CoRR, 2021.

43 Charles Spearman. The proof and measurement of association between two things. American
Journal of Psychology, 15:72–101, 1904.

44 John Kit Tang, Cecilia Mascolo, Mirco Musolesi, and Vito Latora. Exploiting temporal complex
network metrics in mobile malware containment. In 12th IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks, WOWMOM 2011, Lucca, Italy, 20-24
June, 2011. IEEE Computer Society, 2011.

45 John Kit Tang, Mirco Musolesi, Cecilia Mascolo, and Vito Latora. Temporal distance metrics
for social network analysis. In Proceedings of the 2nd ACM Workshop on Online Social
Networks, WOSN 2009, Barcelona, Spain, August 17, 2009. ACM, 2009.

46 John Kit Tang, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Vincenzo Nicosia. Analysing
information flows and key mediators through temporal centrality metrics. In Proceedings of
the 3rd Workshop on Social Network Systems, Paris, France, April 13, 2010. ACM, 2010.

47 Shang-Hua Teng. Scalable algorithms for data and network analysis. Found. Trends Theor.
Comput. Sci., 12(1-2):1–274, 2016. doi:10.1561/0400000051.

48 Ioanna Tsalouchidou, Ricardo Baeza-Yates, Francesco Bonchi, Kewen Liao, and Timos Sellis.
Temporal betweenness centrality in dynamic graphs. Int. J. Data Sci. Anal., 2020.

49 Sebastiano Vigna. A weighted correlation index for rankings with ties. In Aldo Gangemi,
Stefano Leonardi, and Alessandro Panconesi, editors, Proceedings of the 24th International
Conference on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages
1166–1176. ACM, 2015. doi:10.1145/2736277.2741088.

50 Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P Gummadi. On the evolution
of user interaction in facebook. In Proceedings of the 2nd ACM workshop on Online social
networks, 2009.

A Top-k intersection value tables

Table 5 For each network, we show the intersections between the top 1, 25 and 50 nodes in
the rankings computed by the three global proxies and the ranking computed by TempBrandes.
For Onbra we show the results when its running time is, respectively, one tenth, half and exactly
TempBrandes’ execution time.

Network Intersection
Brandes Prefix Onbra 1

10
Onbra 1

2
Onbra1

k 1 25 50 1 25 50 1 25 50 1 25 50 1 25 50
Hypertext 2009 1 22 43 1 15 37 1 20 42 1 22 46 1 22 47
High school 2011 0 20 45 0 14 31 0 19 42 0 20 47 1 22 48
Hospital ward 0 22 45 1 18 43 0 20 44 0 22 47 0 24 48
College msg 1 22 42 1 12 29 1 19 37 0 23 44 1 23 46
Wiki elections 1 16 34 0 7 21 1 15 31 1 21 41 1 22 42
High school 2012 1 21 44 0 8 27 1 18 37 1 20 42 1 22 45
Digg reply 1 20 40 1 22 44 0 14 26 0 20 39 1 20 43
Infectious 1 19 31 0 3 7 0 6 9 0 5 11 0 6 10
Primary school 0 18 43 0 3 18 1 20 40 1 23 46 1 23 45
Facebook wall 0 10 15 1 17 37 1 15 26 1 17 37 1 19 43
Slashdot reply 1 18 39 1 20 38 1 19 39 1 22 45 1 23 46
High school 2013 1 20 44 0 11 26 1 20 38 0 22 45 1 23 46
Topology 1 21 41 1 20 39 1 23 46 1 23 47 1 24 49
SMS 0 13 32 1 20 43 0 15 26 0 18 33 1 19 40
Email EU 1 20 41 0 14 34 1 19 41 1 23 46 1 23 47

SEA 2023

https://doi.org/10.1561/0400000051
https://doi.org/10.1145/2736277.2741088


6:20 Proxying Betweenness Centrality Rankings in Temporal Networks

Table 6 For each network, we show the intersections between the top 1, 25 and 50 nodes in the
rankings computed by the three global proxies and the ranking computed by TempBrandes. For
Onbra we show the results when its running time is one tenth of TempBrandes execution time.

Network Intersection
ONBRA 1

10
EgoPrefix EgoSTB PTD

k 1 25 50 1 25 50 1 25 50 1 25 50
Hypertext 2009 1 20 42 1 17 40 – – – 1 20 44
High school 2011 0 19 42 0 16 36 – – – 1 17 42
Hospital ward 0 20 44 1 18 44 – – – 0 21 47
College msg 1 19 37 0 20 41 0 22 43 1 23 43
Wiki elections 1 15 31 1 19 38 1 21 44 1 19 42
High school 2012 1 18 37 1 16 38 – – – 1 13 36
Digg reply 0 14 26 1 19 36 1 19 36 1 19 36
Infectious 0 6 9 0 4 12 0 4 12 0 2 8
Primary school 1 20 40 0 11 22 – – – 0 17 40
Facebook wall 1 15 26 1 14 27 1 14 25 1 13 24
Slashdot reply 1 19 39 1 20 39 1 20 39 1 19 37
High school 2013 1 20 38 0 18 38 – – – 0 17 37
Topology 1 23 46 1 21 40 – – – 0 16 34
SMS 0 15 26 0 13 34 0 13 33 0 12 32
Email EU 1 19 41 0 18 39 – – – 1 18 36

B Comparison among Degree Notions

Table 7 For each network, we show the weighted Kendall’s τ coefficient of the rankings computed
by the static/temporal degree notions and the pass-through degree and the ranking computed by
TempBrandes.

Network weighted Kendall’s τ coefficient
PTD in-degree out-degree t-in-degree t-out-degree

Hypertext 2009 0.89 0.89 0.89 0.72 0.72
High school 2011 0.76 0.77 0.77 0.40 0.40
Hospital ward 0.82 0.83 0.83 0.85 0.85
College msg 0.95 0.91 0.92 0.90 0.91
Wiki el’s 0.94 0.74 0.72 0.72 0.72
High school 2012 0.81 0.82 0.82 0.50 0.50
Digg reply 0.96 0.84 0.83 0.84 0.83
Infectious 0.65 0.70 0.70 0.42 0.42
Faceb’k w’l 0.93 0.86 0.89 0.85 0.88
Primary school 0.83 0.84 0.84 0.70 0.70
Slashdot reply 0.96 0.78 0.94 0.80 0.94
SMS 0.94 0.84 0.88 0.69 0.81
High school 2013 0.83 0.84 0.84 0.50 0.50
Topology 0.92 0.92 0.92 0.92 0.92
Email EU 0.91 0.87 0.90 0.77 0.83



R. Becker, P. Crescenzi, A. Cruciani, and B. Kodric 6:21

C Public transport networks

A special class of temporal networks are public transport networks, in which the existence of
a temporal arc (u, v, t) indicates that it is possible to reach location v from u by taking a
mean of public transport at time t. Indeed, these networks are characterized by a sort of
“regularity” (that is, nodes are very similar in terms of in- and out-degree), which makes
the local proxies quite bad in proxying the temporal shortest betweenness. At the same
time, they contain a huge amount of shortest temporal paths, which forced us to use big
integer data structures for TempBrandes and Onbra, thus significantly slowing down
their execution time. As an example, we considered the two networks Venice and Bordeaux
that stem from the work of Kujala et al. [26], and are chosen to be analysed because of
their different sizes and geographies. The main characteristics of these two networks are
summarised in the following table.

Data set n m M T tSTB nmax
e Type Source

Venice 1874 3465 113670 1691 7758 20 D [26]
Bordeaux 3435 4040 236075 60582 50937 13 D [26]

The execution times TempBrandes and of all proxies (except for Onbra) in seconds are
shown in the following table (once again dashes indicate that the experiment was interrupted
after the time of TempBrandes elapsed and we omit Onbra from the table as its running
time is fixed to approximately 1/10, 1/2, or 1 times the running time of TempBrandes due
to the choice of the sample size).

Network Execution Time (seconds)

TempBrandes Brandes Prefix EgoPrefix EgoSTB PTD

Venice 7758 0.7374 72.9 31 48 0.0168
Bordeaux 50937 2.8722 443.0 93 107 0.0161

The weighted Kendall’s τ coefficient of the rankings computed by the three global proxies
and the ranking computed by TempBrandes are shown in the following table (once again,
for Onbra we show the results using, respectively, a sample size such that Onbra’s execution
time is 1/10, 1/2, and exactly the one of TempBrandes, and, for each instance, we highlight
the best result in bold font).

Network weighted Kendall’s τ coefficient

Brandes Prefix Onbra 1
10

Onbra 1
2

Onbra1

Venice 0.90 0.80 0.93 0.96 0.98
Bordeaux 0.96 0.82 0.94 0.97 0.98

We can observe that, in this case, Onbra even in the case of the smallest sample size
is better than Brandes and Prefix. However, it is also worth observing that Brandes
performs quite well in the case of both networks, suggesting that, in these cases, the
temporality of the network does not influence so much the ranking of the nodes. This might
be intuitively justified by the fact that a “temporally” central node in this kind of networks
is also central in the underlying graphs. This is confirmed by the following table, which
shows the intersection values for all global proxies for values of k = 1, 25, 50 (once again, a
value of x in the table means that the top-k nodes with respect to the ranking computed by
a given proxy contain x of the top-k nodes of the ranking computed by TempBrandes).

SEA 2023



6:22 Proxying Betweenness Centrality Rankings in Temporal Networks

Network Intersection
Brandes Prefix Onbra 1

10
Onbra 1

2
Onbra1

k 1 25 50 1 25 50 1 25 50 1 25 50 1 25 50
Venice 0 16 36 0 12 23 1 23 41 0 24 47 0 24 48
Bordeaux 1 23 46 1 17 29 1 19 48 1 23 48 1 24 49

The next table shows the weighted Kendall’s τ coefficient of the rankings computed by
the three local proxies and the ranking computed by TempBrandes (once again, for Onbra
we show the results using a sample size such that Onbra’s execution time is 1/10 the one of
TempBrandes, and, for each instance, we highlight the best result in bold font).

Network weighted Kendall’s τ coefficient

Onbra 1
10

EgoPrefix EgoSTB PTD

Venice 0.93 0.64 0.62 0.61
Bordeaux 0.94 0.63 0.55 0.61

As expected, the local proxies perform quite bad and Onbra is by far better than all of
them. This is confirmed by the following table, which shows the intersections between the
top 1, 25 and 50 nodes in the rankings computed by the three global proxies and the ranking
computed by TempBrandes (once again, for Onbra we show the results when its running
time is one tenth of TempBrandes execution time).

Network Intersection
ONBRA 1

10
EgoPrefix EgoSTB PTD

k 1 25 50 1 25 50 1 25 50 1 25 50
Venice 1 23 41 0 5 13 0 4 13 0 5 11
Bordeaux 1 19 48 0 4 5 0 4 5 0 4 5



Simple Runs-Bounded FM-Index Designs Are Fast
Diego Díaz-Domínguez #

Department of Computer Science, University of Helsinki, Finland

Saska Dönges #

Department of Computer Science, University of Helsinki, Finland

Simon J. Puglisi #

Helsinki Institute for Information Technology (HIIT), Finland
Department of Computer Science, University of Helsinki, Finland

Leena Salmela #

Department of Computer Science, University of Helsinki, Finland

Abstract
Given a string X of length n on alphabet σ, the FM-index data structure allows counting all
occurrences of a pattern P of length m in O(m) time via an algorithm called backward search. An
important difficulty when searching with an FM-index is to support queries on L, the Burrows-
Wheeler transform of X, while L is in compressed form. This problem has been the subject of
intense research for 25 years now. Run-length encoding of L is an effective way to reduce index
size, in particular when the data being indexed is highly-repetitive, which is the case in many types
of modern data, including those arising from versioned document collections and in pangenomics.
This paper takes a back-to-basics look at supporting backward search in FM-indexes, exploring
and engineering two simple designs. The first divides the BWT string into blocks containing b

symbols each and then run-length compresses each block separately, possibly introducing new runs
(compared to applying run-length encoding once, to the whole string). Each block stores counts
of each symbol that occurs before the block. This method supports the operation rankc(L, i) (i.e.,
count the number of times c occurs in the prefix L[1..i]) by first determining the block i/b in which
i falls and scanning the block to the appropriate position counting occurrences of c along the way.
This partial answer to rankc(L, i) is then added to the stored count of c symbols before the block
to determine the final answer. Our second design has a similar structure, but instead divides the
run-length-encoded version of L into blocks containing an equal number of runs. The trick then is to
determine the block in which a query falls, which is achieved via a predecessor query over the block
starting positions. We show via extensive experiments on a wide range of repetitive text collections
that these FM-indexes are not only easy to implement, but also fast and space efficient in practice.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases data structures, efficient algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.7

Supplementary Material Software (Source Code): https://github.com/saskeli/block_RLBWT
archived at swh:1:dir:244fd876cd15bd291d91e444c8c04bb289aed05f

Funding This work was supported in part by the Academy of Finland via grants 339070, 351150,
and 323233.

Acknowledgements The authors wish to thank the Finnish Computing Competence Infrastructure
(FCCI) for supporting this project with computational and data storage resources.

1 Introduction

Given a string X[0, n − 1], the suffix array [21] of X, denoted SAX (or just SA when clear
from context) is a permutation of the integers [0, n − 1] that tells the lexicographical order of
the suffixes of X, i.e., SA is the permutation such that X[SA[0]..n] < X[SA[1]..n] < . . . <

© Diego Díaz-Domínguez, Saska Dönges, Simon J. Puglisi, and Leena Salmela;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diego.diaz@helsinki.fi
mailto:saska.donges@helsinki.fi
mailto:simon.puglisi@helsinki.fi
https://orcid.org/0000-0001-7668-7636
mailto:leena.salmela@helsinki.fi
https://doi.org/10.4230/LIPIcs.SEA.2023.7
https://github.com/saskeli/block_RLBWT
https://archive.softwareheritage.org/swh:1:dir:244fd876cd15bd291d91e444c8c04bb289aed05f;origin=https://github.com/saskeli/block_RLBWT;visit=swh:1:snp:cd1f322bada0595aca0d53481ddedbab2fd72b04;anchor=swh:1:rev:f260a4e5ee611ca3cb34d3ca53672539d575fe88
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 Simple Runs-Bounded FM-Index Designs Are Fast

X[SA[n − 1]..n]. Because of the lexicographical ordering, all the positions of occurrence of
any pattern P that is a substring of X lie in a contiguous interval of SA, and thus pattern
matching over X reduces to determining the appropriate interval of SA.

An FM-index is a data structure that supports finding such SA intervals. The main
common feature of the FM-index and its variants is support for the function extendLeft([i, j], c),
which, given a suffix array interval SA[i, j] containing all the occurrences of some pattern
P , and a symbol c, returns the interval [i′, j′] such that SA[i′, j′] contains all occurrences
of pattern P ′ = cP . Clearly, having support for extendLeft allows one to perform pattern
matching: given a pattern P of length m, we can find all the occurrences of P in X via a
sequence of m applications of extendLeft that return intervals corresponding to increasingly
longer suffixes of the pattern.

FM-index implementations (see [19, 23] and references therein) differ primarily on how
they support extendLeft. For many years, this was done via rank queries on the Burrows-
Wheeler transform (BWT) of the input string. The BWT of string X, which we denote with
LX , or just L when clear from context, is a permutation of the symbols of X defined by SAX .
In particular, L[i] = X[SA[i] − 1] except when SA[i] = 0, in which case L[i] = X[n].

In their groundbreaking article [10], Ferragina and Manzini showed that, somewhat
remarkably, extendLeft([i, j], c) = [C[c] + rankc(L, i), C[c] + rankc(L, i) − 1], where C[c] is
the total number of symbols in X less than symbol c, and the query rankc(L, i) returns the
number of occurrences of symbol c in L[0..i]. Most known FM-index variants follow this
scheme. The fastest rank-based FM-index we know of, due to Gog et al. [13], divides L into
blocks and represents each block with a Huffman-shaped wavelet tree, the bitvectors of which
are compressed with different schemes depending on characteristics of each block’s entropy.

Another more recent (and less populated) class of FM-index variants avoids rank queries
altogether, instead essentially storing space-efficient mappings from (interval, symbol) pairs
to intervals in order to implement extendLeft. The first of these methods is due to Belazzougui
and Navarro [3], who describe an index that uses minimal monotone perfect hash functions
and uses nHk + O(n) bits of space, where Hk is the kth-order empirical entropy of the input
text [22]. More recently, Nishimoto and Tabei [25], describe a structure using O(r) words
space, where r is the number of runs1 in L.

On highly repetitive strings, which are now produced by many sources, and are notably
central to the field of computational genomics [28, 8, 9, 23, 20], the BWT string L is
composed of relatively few runs – i.e., r is significantly smaller than n, perhaps by 2-3 orders
of magnitude depending on the input – and so L can be compressed well with run-length
encoding. The problem then becomes supporting extendLeft (via rank queries or otherwise)
in close to O(r) space.

Contribution. This paper is a back-to-basics examination of run-length compressed FM
indexes that explores two simple ways to achieve space usage close to O(r) words while
maintaining fast query times in practice.

Both designs are rank-based and divide L into blocks. The first approach divides L into
n/b blocks of b symbols each (with the last block possibly having less), before applying
run-length encoding to each block. Rank can be implemented on this structure in O(b)
time and the index takes O(r + σn/b) words of space. The second approach divides L into
blocks containing an equal number b′ of runs. Rank now takes O(b′ + pred(r/b′)) time, where

1 A run L[i..j] = cℓ has ℓ > 1 consecutive copies of c such that i = 1, or L[i − 1] ̸= c, and L[j] = n or
L[j + 1] ̸= c.



D. Díaz-Domínguez, S. Dönges, S. J. Puglisi, and L. Salmela 7:3

pred(m) is the time for a predecessor query over m integers, and space is O(r + σr/b′) words.
We find that both these simple schemes afford very fast practical implementations, and
dominate other approaches in practice on many data sets. Along the way we explore practical
structures to support predecessor queries, which may be of independent interest.

Our rationale in this study is twofold. Firstly, simple code is easier to maintain and easier
to adapt to different application requirements, which is important given the relevance of the
FM-index in modern genomics analyses [18, 8]. Secondly, simpler data structures are often
easier to optimize, both for the programmer and for the compiler. For the particular problem
we consider in this paper, our results suggest that simpler designs may have an inherent
speed advantage over more complex ones. In their simplicity and strong performance, the
indexes we describe herein represent non-trivial baselines against which the performance of
future, possibly more sophisticated, FM indexes can be measured.

Roadmap. The remainder of this paper is organized as follows. In the next section we
review related work. Our new FM-indexes are then described in Section 3. In that section
we also present a microbenchmark of different predecessor structures, which are essential
for our second index. Then, in Section 4, we present results of benchmarks comparing our
indexes to the state of the art. Conclusions and avenues for future work are then offered.

2 Background and Related Work

We now briefly describe four FM index designs [19, 13, 2, 25] that represent the state of the
art, either in theory or practice. Implementations of all methods described here are included
in our experiments. For a more thorough treatment, including earlier and more obscure
indexes, we refer the reader to [24, 23].

Mäkinen and Navarro [19] proposed the FM-index variant to encode L in O(r log n)
bits. It supports rankc(L, i) (and therefore extendLeft) in O(log logw(σ + n/r)) time. Our
description here follows that given in Gagie et al. [11].

Let R = (c1, ℓ1), . . . , (cr, ℓr) be the run-length encoding of L, with pair (ci, ℓi), i ∈ [1..r],
representing the ith run in L, where ci ∈ Σ is the run symbol and ℓi is the run length. We
maintain a vector L′ = c1, . . . , cr with the run heads in the same order as they appear in
L. L′ is represented with a data structure of O(r log n) bits that supports O(1)-time access
and rankc(L′, i) in O(log logw σ) time. We also maintain an array C ′[1, σ] storing in C ′[c]
the number of runs in L whose symbol is smaller than c ∈ Σ.

A predecessor data structure of O(r log n) bits encodes the set E = {1} ∪ {1 < i ≤
n, L[i − 1] ̸= L[i]} with the positions in L for the run heads (i.e., the leftmost symbol in
every run). The query pred(E, i) returns pair (i′, b), where i′ is the predecessor of i in E,
and b is the rank of i′ in E. pred(E, i) takes O(log logw(n/r)) time using [4].

Let R′ be a permutation of R in which the runs are stably sorted by their symbols and
let (ci, ℓi) be the ith run in the permutation R′. We store an array D[1..r] of r log n bits
storing in D[i] the cumulative length of the runs associated with ci in R′[1..i].

Answering rankc(L, i) in the RLFM requires us to call (i′, b) = pred(E, i) to get the head
position i′ and rank b for the run where i lies. We can then obtain the symbol c′ = L′[b]
associated with i’s run. Subsequently, we obtain the number k = rankc(L′, b − 1) of runs
for c in the prefix L′[1..b − 1] and finally compute the number x = D[C ′[c] + k] of cs in the
prefix L[1..j′ − 1], returning x + i − i′ + 1 if c = c′, or return x otherwise.

Overall query time is dominated by pred(E, i) and rankc(L′, b − 1), which combined take
O(log logw(σ + (n/r))) time.

SEA 2023



7:4 Simple Runs-Bounded FM-Index Designs Are Fast

Gog et al. [13] describe what is currently the fastest general-purpose FM index we know
of. Their approach shares some similarity to one of our schemes in that it divides L into
blocks of fixed size b. Each block stores, for each symbol of the alphabet, precomputed ranks
up to the beginning of the block. Each block is then encoded using a Huffman-shaped wavelet
tree [19], which can answer rank queries up to the beginning of each block, and combined
with the precomputed ranks, enables general rank queries to be answered in O(log σ) time.
Each wavelet tree take space proportional to the entropy of its block, leading to a bound of
nHk + o(n log σ) bits for the whole index.

Although the index size is not directly relatable to r, the number of runs in L, experiments
in Gog et al. [13] show the index performs well on inputs with small r. Intuitively, on a L
having many long runs, the blocks tend to have a small alphabet with a skewed distribution of
symbols and so will have a small representation when Huffman encoded (which is essentially
what the Huffman-shaped wavelet tree does). However, a further optimization has been
made, that favors runs even further. In particular, the bit vectors of the wavelet trees are
represented with the hybrid encoding of Kärkkäinen et al. [16] which run-length encodes
bitvectors having long runs. If the block being encoded has long runs then the bitvector at
the root of its wavelet tree will have at least as many, and bitvectors at other nodes will tend
to preserve runs too. This makes the space usage much closer to r than it was designed to
be, even if it does not explicitly encode runs in L.

Prezza et al. [2] store one character per run in a string H ∈ Σr and mark with a 1 the
beginning of each run in a bitvector Vall[0..n − 1]. For every c ∈ Σ they store the lengths of
all runs of character c consecutively in a bitvector Vc. More precisely, every run of symbol c

of length k is represented in Vc as 10k−1. This representation allows them to map rank and
access queries on L to rank, select and access queries on H, Vall, and Vc. By gap-encoding
the bitvectors, this representation takes r(2 log(n/r) + log σ)(1 + o(1)) bits of space. The
multiplicative term log(n/r) can be reduced by storing in Vall just one out of 1/ϵ ones, where
0 < ϵ ≤ 1 is a constant. One is still able to answer all queries on L, by using the Vc vectors to
reconstruct the positions of the missing ones in Vall, though this multiplies query time by 1/ϵ.
In their implementation of this scheme, Prezza et al. [2] represent H as a Huffman-shaped
wavelet tree and store the bitvectors in an Elias-Fano structure [29].

Nishimoto and Tabei [25] proposed the first encoding that represents L in O(r) bits
and supports extendLeft(i, L[i])2 in constant time without resorting to rank operations. Let
I = {(s1, e1), . . . , (sr, er)} be a sequence of r consecutive ranges over [1, n] such that L[sj , ej ],
with j ∈ [1, r], is the jth run of L (from left to right). Each range (sj , ej) ∈ I has an
associated mapping pair (s′

j = extendLeft(sj , L[sj ]), e′
j = extendLeft(ej , L[ej ]) that represents

the contiguous range L[s′
j , e′

j ] one obtains by performing extendLeft operations over the
symbols in L[sj ..ej ]. Note that (s′

j , e′
j) does not necessarily match a range in I, but can

be fully contained in one or cover several of them. The key idea in Nishimoto and Tabei’s
method to obtain constant time is to further break the ranges to produce a new sequence
I ′ of length r′, r ≤ r′ < 2r where every (sj , ej) ∈ I ′ has a mapping pair (s′

j , e′
j) that covers

a constant number c of other ranges in I ′. They maintain an array D[1..r′] that stores in
D[j] the pair (sj , s′

j) and a vector D′ = [1..r′] that stores in D′[j] = y ∈ [1, r′] the index y

of the pair (sy, ey) ∈ I ′ where s′
j lies (i.e., sy ≤ s′

j ≤ ey). Answering extendLeft(i, L[i]) in
this scheme requires first knowing the pair (sj , ej) ∈ I ′ enclosing i, then scanning the area
D[D′[j]..D′[j]+c−1] until the range (sy, ey) ∈ I ′ that contains extendLeft(i, L[i]) = s′

j+(i−sj)
is found. This approach was recently implemented by Brown et al. [5].

2 This constrained version of extendLeft is also known as LF(i) in the literature.



D. Díaz-Domínguez, S. Dönges, S. J. Puglisi, and L. Salmela 7:5

3 Simple Runs-Bounded FM-index Designs

Both of our indexing schemes are based on splitting the BWT into run-length encoded blocks
along with preceding symbol counts. To answer rankc(L, i) queries, it suffices to find the
block containing the ith character, scanning the block and adding the result of the scan to
the number of preceding occurrences of c.

The number of preceding symbols are stored in at most 7 +
∑

c∈Σ⌈log2 rankc(L, n)⌉ bits
per block3. In our implementations with a constant number of symbols per block, there is
an additional “super block” level that stores precomputed answers for rank queries for blocks
of size 232. The super block approach was taken to allow storing large chunks of memory for
the blocks instead of just one very large block of memory, and to guarantee that four bytes
would be sufficient to store any symbol counts on the block level. Neither of these turned
out to be relevant in our experiments, and the additional layer of complexity likely slows
down query performance very slightly and has a negligible impact on data structure size.

Blocks with b symbols. If each block contains b symbols. We can store pointers to the
⌈n/b⌉ blocks in an array BP . With this, rankc(L, i) reduces to rankc(BP [⌊i/b⌋], i mod b) on
the block.

The upper bound space complexity, given logarithmic encoding of integers comprises of:
O

((
n
b + r

)
(log b + log σ)

)
bits for run encoding,

O
(

n
b σ log n

)
bits for encoding the block headers containing preceding character counts

and
O

(
n
b w

)
bits for storing block pointers, w being the machine word length,

making

O
((n

b
+ r

)
(log b + log σ) + n

b
(w + σ log n)

)
bits an asymptotic upper bound for these Sb (for symbol block) structures.

Query time is simply O(b) under the word RAM model. We expect at most two memory
transfers from uncached memory locations per query, meaning most of the work would be
done on cached data.

The blocks themselves consist of a run-length-encoded sequence either using two bytes
per run with runs split as necessary, or with each run being encoded with a variable number
of bytes depending on the length of the run. In both approaches the first ⌈log2 σ⌉ bits encode
the run head.

In two byte encoded blocks, 16 − ⌈log2 σ⌉ bits are used to store the run length. Thus
the maximum length for one run is 216−⌈log2 σ⌉, meaning long runs will need to be split
into multiple runs within the same block. In the worst case, for a large alphabet (> 27)
and large block sizes (≥ 213) a single run can be split into more than 24 blocks, thus
increasing the space usage considerably. However, for genomics data and small (< 213)
block sizes, the vast majority of runs fit into two bytes. Scanning these two byte encoded
blocks is fast since there is no branching or data dependencies in decoding runs and only a
single branch miss-prediction to end scanning. We note that for this variant, the bounds
for space complexity apply as long as b is considered a bound constant as opposed to
being linear in n for example.

3 The +7 bits is the possible overhead of keeping data byte-aligned.

SEA 2023



7:6 Simple Runs-Bounded FM-Index Designs Are Fast

With runs encoded into a variable number of bytes, arbitrarily long runs can be efficiently
encoded in O(log σ + log m) bits where m is the length of the run. With long runs this is
more space efficient than the two byte approach, but decoding, especially of short runs is
slower as decoding requires data-dependent branching.

In addition to these encodings we experimented with hybrid compression schemes where
the encoding is chosen on a per-block basis. However, we found that the overhead of decoding
the more rare block type is high enough that our dynamic encodings remain uncompetetive
with more simple block encodings. We suspect that in addition to a branch missprediction, the
cold code path causes inefficiencies in instruction caching or pipeline unrolling, that dominate
the efficiency gains of a superior encoding for some minority of blocks. An improvement
in performance of querying the rarer blocks with a separate encoding compared to the
majority blocks of ≈ 100 nanoseconds (≈ 20% improvement) would be sufficient to warrant
reconsidering a hybrid approach. This idea may be feasible with some as yet untested block
encodings.

Blocks with b′ runs. For finding the block containing the ith symbol when blocks contain
a variable number of symbols, we use a predecessor search to find m and arg maxj(j ≤
i)) s.t. block m starts with the jth symbol. Now given m and j, rankc(L, i) becomes
rankc(BP [m], i − j).

For running the predecessor search we tested four different approaches:

A simple binary search over an array of tuples with the number of symbols in L

preceding each block and a pointer to the block itself. This approach is very simple to
implement and has minimal memory overhead. However, the memory access pattern is
not well supported on modern microprocessors, unless the entire array can fit in cache.
A heap ordered binary search tree is a balanced search tree stored in an array A,
such that for every internal node A[i], the left child will be found at A[2i + 1] and the
right child at A[2i + 2]. Internal nodes contain the number of symbols represented by
their left sub tree, while leaves contain pointers to the actual blocks. The computation
done is exactly the same as for binary search, but the heap ordering makes the memory
pattern an increasing stride in the same direction, allowing for more efficient predictive
caching by modern microprocessors. For tree traversal to work properly, all but the final
internal level in the tree need to be full (containing 2ℓ elements where ℓ is the level) even
if some sub trees are empty, this potentially doubles the memory footprint of the heap
ordered binary search tree compared to a simple binary search.
A B+-tree [6] is a B-tree with pointers to blocks only stored in the leaves, while internal
nodes only store the number of symbols represented by the sub trees. When B = 2k

for some k ∈ N, a fast templated branchless [27] binary search can be implemented for
branch selection in the B-tree. While the internal nodes close to the root of the tree are
likely to be present in cache, accessing nodes closer to the leaves are likely to trigger
cache misses. In addition, the B-tree is comparatively space inefficient due to the need to
store pointers internally.
A heap ordered B+-tree aims to be the best of both worlds, by storing the B+-tree
in contiguous memory without the need for child pointers. The children of node A[i]
will be at A[Bi + 1..Bi + B]. Internal branch selection can be done with templated
binary searches and the memory access pattern follows a somewhat predictable increasing
forward stride. While the need to keep internal levels of the tree full implies significant
memory overhead, the low number of levels necessary to do block selection even for large
data sets, keeps the memory overhead low in practice.



D. Díaz-Domínguez, S. Dönges, S. J. Puglisi, and L. Salmela 7:7

Binary search Heap ordered binary
search tree

B + -tree Heap ordered B + -tree
0

250

500

750

1000

1250

1500

1750

2000
m

ea
n 

qu
er

y 
ti
m

e 
(n

s)

Figure 1 Predecessor search performance. Based on 105 pred(x) queries over 107 elements, with
x chosen at random from [0..m + 10] where m is the largest element in the collection. Both B+-tree
and the heap ordered binary search tree are faster than a simple binary search, while the heap
ordered B+-tree is significantly faster still. The performance here and in Table 1 differ due to the
overhead of outputting results of every query as opposed to just calculating summary statistics.

After benchmarking all of these potential approaches, we found that the heap ordered
B+-tree was the fastest and had reasonable memory overhead (Figure 1 and Table 1). The
space complexity of our Rb (for run block) implementation comprises of:

O (r(log σ + log n)) bits for encoding runs,
O

(
r
b′ σ log n

)
bits for encoding the block headers containing preceding character counts,

O
(

r
b′ w

)
bits for storing block pointers, and

O
(

r
b′ w

)
bits for storing the heap ordered B+-tree,

making

O
(

r(log σ + log n) + r

b′ (σ log n + w)
)

bits an asymptotic upper bound for these Rb structures.
Time complexity is O

(
log r

b′ + b′). We expect fewer than log r/b′ memory accesses to
uncached memory locations due to the apparent efficiency of pre-caching with increasing
stride.

See Figure 2 for an example, illustrating the memory layout and query logic of our index
structures.

Table 1 Performance of benchmarked predecessor search structures. 105 random predecessor
queries on a set of ten million random (unique) elements. Heap ordered binary search trees and
B+-trees are faster than a traditional binary search, but have significant space overhead. Heap
ordered B+-tree is faster still with only minor overhead in space efficiency compared to binary search.

binary search heap ordered BST B+-tree heap ordered B+-tree
Mean query time 524.348ns 331.548ns 363.409ns 313ns
Space usage 76.294MB 128MB 157.511MB 78.3257MB

SEA 2023



7:8 Simple Runs-Bounded FM-Index Designs Are Fast

Sb with block size 10:

A: 0
C: 0
G: 0
T: 0

A10

A: 10
C: 0
G: 0
T: 0

A5C3GT

A: 15
C: 3
G: 1
T: 1

T5G3A2

A: 17
C: 3

G: 4
T: 6

A2TCG T

0 1 2 3

rankC(L, 35)

⌊35/10⌋ = 3

rankC(BP [3], 35 mod 10)

Rb with 3 runs per block and heap-ordered B+-tree with b = 2:

A: 0
C: 0
G: 0
T: 0

A15C3G

A: 15
C: 3
G: 1
T: 0

T6G3A4

A: 19
C: 3
G: 4
T: 6

TCG

A: 19
C: 4

G: 5
T: 7

T

32 19 35 0 1 2 3

rankC(BP [3], 35 − 35)

rankC(L, 35)

Figure 2 Illustrative example of our index structures. Indexes built on input sequence L =
A15C3GT6G3A4TCGT. Memory access pattern for rankC(L, 35) highlighted. For Sb, five symbols,
in four runs, containing one “C” character get read from block BP [3], this one “C” count gets added
to the number of preceding “C” characters in the block header (3), these get added together giving
rankC(L, 35) = 4. For Rb the pred query tells us that BP [3] is the target block, and that a total
of 35 symbols precede the block, no scanning is needed and the result is the total count of “C”
characters in the block header (4).

4 Performance

We implemented the designs described in Section 3 to verify their efficacy in practice, and to
explore time-space trade-offs in performance by varying b′ for our Rb variant and varying
b for Sb variants. The source code is in C++, and it is available at https://github.com/
saskeli/block_RLBWT.

4.1 Experimental Setup

Machine and Compilation. Tests were run on a machine with an AMD EPYC 7452
processor and 496GB of DDR4 RAM. The operating system was AlmaLinux 8.4 (with Linux
4.18.0-372.9.1.el8.x86_64 kernel). Code was compiled with GCC 12.2.0 and the performance-
relevant flags: -std=c++2a, -march=native, -Ofast and -DNDEBUG. Experiments were
repeated on a machine on the same HPC cluster with an Intel Xeon E7-8890 v4 processor
(see Appendix B). We found results to be relatively stable across these two systems.

https://github.com/saskeli/block_RLBWT
https://github.com/saskeli/block_RLBWT


D. Díaz-Domínguez, S. Dönges, S. J. Puglisi, and L. Salmela 7:9

Indexes Measured. We use sbt_rlbwt (for symbol blocks, two-byte) to refer to the Sb FM
index variant from Section 3 that first divides the BWT into blocks contain equal numbers of
symbols and then applies two byte run length encoding to each block; sbv_rlbwt (for symbol
blocks, variable width) to refer to the Sb index variant that divides the BWT into blocks
containing equal numbers of symbols before using a variable width encoding to compress the
blocks; and use rb_rlbwt for our Rb index that divides the run-length encoded BWT into
blocks of fixed runs.

We explored the space efficiency / query time trade-offs of varying block sizes for our
indexes. We used block sizes of 28 ≤ b ≤ 217 for Sb variants, and 20 ≤ b′ ≤ 29 for Rb, as
these ranges cover what we consider practical values in most cases.

sbt_rlbwt. Uses a default block size of b = 211, which yields reliably fast indexes and
occasionally suffer in terms of compression performance.
sbv_rlbwt. Uses a default block size of b = 214. This value enables good compression
ratios most of the time while not completely sacrificing query performance.
rb_rlbwt. With each block containing b′ = 32 runs by default and using a heap ordered
B+-tree predecessor structure, with B = 64, for answering pred queries. We selected these
parameters as good defaults for genomics data sets.

We further compared the performance of our variants using default parameters against
other state-of-the-art FM-index implementations. These were:

Fbb. The fixed-block boosting with wavelet trees index of Gog et al. [13]. We obtained the
code from the SDSL-lite library [12]. We realised that substituting the hybrid bit vector
implementation used in the wavelet trees with other bit vector variants available in the
SDSL-lite library led to interesting time / space trade-offs for the Fbb implementations.
We include four of these variants as fbb_xx in our results

fbb_hyb was built using the hybrid bit vector of Kärkkäinen et al. [17]. The SDSL-lite
library implements the hybrid bit vector in the hyb_vector class.
fbb_bv was built using uncompressed bit vectors from the SDSL-lite library (class
bit_vector) with separate rank support data structures.
fbb_il was built using the SDSL-lite implementation (bit_vector_il) of the bit
vector from Gog et al. [14] that interleaves the partial rank queries with uncompressed
bit vector blocks.
fbb_rrr uses the rrr_vector class of SDSL-lite, which implements the H0-
compressed bit vector representation of Raman et al. [26].

Rlbwt is the rlmn class of the SDSL-lite library that implements the run-length-encoded
BWT representation with rank support of Mäkinen and Navarro [19].
Srlbwt. The sparse RLBWT scheme of Belazzougui et al. [2], which is the component
used for counting in the the r-index implementation [11]. We obtained its implementation
from the r-index’s official repository4.
R-index-F represents the scheme of Nishimoto and Tabei [25] as implemented by Brown
et al. [5]5.

We remark that in preliminary experiments (not shown here) we also measured the
performance of indexes based on balanced and Huffman-shaped wavelet trees applied to the
entire BWT (with various internal bitvector representations), but found, as other authors

4 https://github.com/nicolaprezza/r-index
5 https://github.com/drnatebrown/r-index-f

SEA 2023

https://github.com/nicolaprezza/r-index
https://github.com/drnatebrown/r-index-f


7:10 Simple Runs-Bounded FM-Index Designs Are Fast

Table 2 Details of the datasets used in performance benchmarks. The symbol σ denotes the
alphabet size, n is the number of symbols in the dataset, and r is the number of runs in the BCR
BWT of that dataset.

Dataset σ n r n/r

hum50 16 1.54×1011 3.89×109 39.53
ecoli3.6K 16 1.90×1010 1.57×108 120.55
cov400K 6 1.19×1010 9.05×106 1317.79
einstein 140 4.68×108 2.90×105 1611.18
worldleaders 90 4.70×107 5.73×105 81.90
coreutils 235 2.05×108 4.68×106 43.82

have (e.g., [15, 13]), that these approaches were always inferior to the indexes listed above
on our data sets. We therefore exclude these from further mention in the experiments for
the sake of clarity.

Datasets. We used six repetitive collections for the experiments. See Table 2. They vary
in length, alphabet size and level of repetitiveness to reflect different application scenarios.
The dataset hum50 consists of 50 different human assemblies. The dataset ecoli3.6k is the
concatenation of 3600 E. coli genomes. The dataset covid400k contains 400,000 variants of
the covid genome. einstein and worldleaders are each concatenations of different versions
of a Wikipedia entry (for “Albert Einstein” and “World Leaders”, respectively). coreutils
contains different versions of the GNU coreutils’ source code6.

Benchmarks. For every dataset, we proceeded as follows. We built its BCR BWT string
L [1] using the grlBWT tool [7]. Then, with L as input, we built an instance of each index
listed above. We sampled sets of patterns of lengths 10, 30 and 50. For each set we sampled
substrings of the desired length from ten thousand random positions in the input data set,
such that the substrings contained only printable characters for the general data sets and
no “N” symbols for genomic data sets. We measured the elapsed times for each index to
count all patterns in each pattern set and then took the average, further dividing by pattern
length to get a per symbol time for each pattern set.

4.2 Results

Time-space trade-offs. Increasing the block sizes for Sb variants had the expected effect of
improving compression while sacrificing query performance, suggesting that when optimizing
for query speed, block size should be reduced as much as possible within memory constraints.
For Rb increasing block size improves compression to the detriment of query performance, but
reducing the number of runs per block beyond a certain point decreases query performance.
This performance decrease is expected if we observe that as the number of runs per block
approaches one, the index becomes a heap ordered B+-tree with single runs at the leaves,
and the Θ(log r/b) tree traversal becomes Θ(log r). These performance trade-offs are shown
in Figure 3.

6 More details of the last three data sets can be found at corpus: http://pizzachili.dcc.uchile.cl/
repcorpus.html.

http://pizzachili.dcc.uchile.cl/repcorpus.html
http://pizzachili.dcc.uchile.cl/repcorpus.html


D. Díaz-Domínguez, S. Dönges, S. J. Puglisi, and L. Salmela 7:11

0.0 0.5 1.0 1.5 2.0 2.5
bits per symbol

0

500

1000

1500

2000

Q
ue

ry
 t

im
e 

pe
r 

sy
m

bo
l n

s
sbt_rlbwt

hum50
coreutils
cov400K
ecoli3.6K
einstein
worldleaders
217

211

28

0.0 0.5 1.0 1.5 2.0 2.5
bits per symbol

0

500

1000

1500

2000
sbv_rlbwt

hum50
coreutils
cov400K
ecoli3.6K
einstein
worldleaders
217

214

28

0.0 0.5 1.0 1.5 2.0 2.5
bits per symbol

0

500

1000

1500

2000
rb_rlbwt

hum50
coreutils
cov400K
ecoli3.6K
einstein
worldleaders
29

25

20

Figure 3 Performance trade-offs for varying block sizes, with maximum, default and minimum
tested block sizes annotated as shapes. Sb variants have a clear trade-off where increasing block size
improves compression and slows down queries, while decreasing block size degrades compression
performance and speeds up queries. The same is mostly true for Rb as well but the increased
overhead of the predecessor search when block sizes decrease limits how much speed up is possible.
The sweet spot for minimizing both compressed size and query time differs between data sets.
Default parameters for sbt_rlbwt and rb_rlbwt seem mostly reasonable but parameter tuning is
recommended for best performance in specific applications.

Comparison against other FM-index implementations. Our index implementations are
very competitive with other FM-index implementations, as can be observed in Figure 4. Our
experiments show that as pattern length increases, the performance of our indexes improves in
comparison to the competition (See Appendix A for figures with additional pattern lengths).
We posit that this gain is due to the likelihood of both of the rank queries associated with
a step of extendLeft targeting the same block increasing as the number matching suffixes
becomes lower. This feature allows the second query to act on fully cached memory making
the simple scanning approaches very fast in practice.

5 Concluding Remarks

We have described, engineered, and experimentally analysed two strikingly simple FM indexes,
which often outperform more complex prior art. We close with three avenues for future work.

Firstly, our indexes were designed with genomics applications in mind and so, therefore,
the approach we selected for encoding and decoding run heads is likely to be sub-optimal
for data sets on larger alphabets. We believe that improving the run-head encoding with,
e.g., Huffman codes, and allowing the character encoding, in some cases, to exceed eight bits,
would improve compression with a negligible impact on query performance.

For larger alphabets, the space overhead incurred by the precomputed ranks stored at
each block quickly becomes substantial. To mitigate this, it may be fruitful to treat rare
symbols differently, possibly with an entirely different rank structure, avoiding the need to
store a full σ precomputed ranks at each block.

Finally, as mentioned in Section 3, selecting encoding on a per-block basis was explored
but discarded as the overhead for decoding was too high to be practical with out currently
available block encodings. Block encodings designed specifically for fast decoding of blocks
with specific attributes may prove fast enough in practice to be worth the overhead in
encoding detection when querying.

SEA 2023



7:12 Simple Runs-Bounded FM-Index Designs Are Fast

0.5 1.0 1.5 2.0

1000

1500

2000

2500

3000

3500

4000
m

ea
n 

qu
er

y 
tim

e 
pe

r s
ym

bo
l n

s
hum50

fbb_bv
fbb_il
fbb_rrr

1 2 3
bits per symbol

250

500

750

1000

1250

1500

m
ea

n 
qu

er
y 

tim
e 

pe
r s

ym
bo

l n
s

coreutils
0.0 0.1 0.2 0.3

500

1000

1500

2000

2500

cov400K
fbb_hyb
rlbwt
srlbwt
R-index-F

0.25 0.50 0.75 1.00 1.25

500

1000

1500

2000

2500

3000

ecoli3.6k
sbt_rlbwt
sbv_rlbwt
rb_rlbwt

0.0 0.2 0.4 0.6 0.8
bits per symbol

200

400

600

800

1000

1200

1400
einstein

0.5 1.0 1.5 2.0
bits per symbol

0

200

400

600

800

1000

1200

1400
worldleaders

Figure 4 Mean match counting per symbol query times and bits per symbol for patterns of
length 30. Our sbt_rlbwt and rb_rlbwt variants with default parameters are as fast or faster than
the competition for genomics data, and compress significantly better than the closest competitors
in query time. For the more general data sets we remain competitive but lose out in compression,
possibly due to our implementation not doing any entropy-based compression, and thus encoding run
heads inefficiently. However, the simple run head encoding does translate to good query performance.

References
1 Markus J. Bauer, Anthony J. Cox, and Giovanna Rosone. Lightweight algorithms for construct-

ing and inverting the BWT of string collections. Theoretical Computer Science, 483:134–148,
2013.

2 Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raffinot. Flexible
indexing of repetitive collections. In Proc. 13th Conference on Computability in Europe (CiE),
pages 162–174, 2017.

3 Djamal Belazzougui and Gonzalo Navarro. Alphabet-independent compressed text indexing.
ACM Transactions on Algorithms, 10(4):23:1–23:19, 2014.

4 Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing
sequences. ACM Transactions on Algorithms, 11(4), 2015.

5 Nathaniel K. Brown, Travis Gagie, and Massimiliano Rossi. RLBWT tricks. In Proc. 20th
International Symposium on Experimental Algorithms (SEA), page article 16, 2022.

6 Douglas Comer. Ubiquitous B-Tree. ACM Computing Surveys, 11(2):121–137, 1979.
7 Diego Díaz-Domínguez and Gonzalo Navarro. Efficient construction of the BWT for repetitive

text using string compression. In Proc. 33rd Annual Symposium on Combinatorial Pattern
Matching (CPM), volume 223, page article 29, 2022.

8 Dirk D. Dolle, Zhicheng Liu, Matthew Cotten, Jared T. Simpson, Zamin Iqbal, Richard
Durbin, Shane A. McCarthy, and Thomas M. Keane. Using reference-free compressed data
structures to analyze sequencing reads from thousands of human genomes. Genome Research,
27(2):300–309, 2017.

9 Jana Ebler, Peter Ebert, Wayne E. Clarke, Tobias Rausch, Peter A. Audano, Torsten Houwaart,
Yafei Mao, Jan O. Korbel, Evan E. Eichler, Michael C. Zody, et al. Pangenome-based genome
inference allows efficient and accurate genotyping across a wide spectrum of variant classes.
Nature Genetics, 54(4):518–525, 2022.



D. Díaz-Domínguez, S. Dönges, S. J. Puglisi, and L. Salmela 7:13

10 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
Proc. 41st Annual Symposium on Foundations of Computer Science (FOCS), pages 390–398,
2000.

11 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully-functional suffix trees and optimal
text searching in BWT-runs bounded space. Journal of the ACM, 67(1):article 2, 2020.

12 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In Proc. 13th International Symposium on Experimental
Algorithms, (SEA), pages 326–337, 2014. doi:10.1007/978-3-319-07959-2_28.

13 Simon Gog, Juha Kärkkäinen, Dominik Kempa, Matthias Petri, and Simon J. Puglisi. Fixed
block compression boosting in FM-indexes: Theory and practice. Algorithmica, 81(4):1370–
1391, 2019.

14 Simon Gog and Matthias Petri. Optimized succinct data structures for massive data. Software:
Practice and Experience, 44(11):1287–1314, 2014.

15 Simon Gog and Matthias Petri. Optimized succinct data structures for massive data. Softw.
Pract. Exp., 44(11):1287–1314, 2014.

16 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Hybrid compression of bitvectors
for the FM-index. In Proc. 14th Data Compression Conference (DCC), pages 302–311, 2014.

17 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lempel-Ziv parsing in external
memory. In Proc. 24th Data Compression Conference (DCC), pages 153–162, 2014.

18 Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2. Nature
Methods, 9(4):357–359, 2012.

19 V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding. Nordic
Journal of Computing, 12(1):40–66, 2005.

20 Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu. Genome-Scale
Algorithm Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press, 2015.

21 Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. SIAM
Journal on Computing, 22(5):935–948, 1993.

22 Giovanni Manzini. An analysis of the burrows-wheeler transform. J. ACM, 48(3):407–430,
2001.

23 G. Navarro. Indexing highly repetitive string collections, part II: Compressed indexes. ACM
Computing Surveys, 54(2):article 26, 2021.

24 G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys,
39(1):article 2, 2007.

25 Takaaki Nishimoto and Yasuo Tabei. Optimal-time queries on BWT-runs compressed indexes.
In Proc. 48th International Colloquium on Automata, Languages, and Programming (ICALP),
page article 101, 2021.

26 Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In Proc. 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 233–242, 2002.

27 Peter Sanders and Sebastian Winkel. Super scalar sample sort. In Proc. 12th European
Symposium on Algorithms (ESA), pages 784–796, 2004.

28 Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxiang Zhai, Miles J.
Efron, Ravishankar Iyer, Michael C. Schatz, Saurabh Sinha, and Gene E. Robinson. Big data:
astronomical or genomical? PLoS Biology, 13(7):e1002195, 2015.

29 Sebastiano Vigna. Quasi-succinct indices. In Proc. Sixth ACM International Conference on
Web Search and Data Mining (WSDM), pages 83–92. ACM, 2013.

SEA 2023

https://doi.org/10.1007/978-3-319-07959-2_28


7:14 Simple Runs-Bounded FM-Index Designs Are Fast

A Additional match counting results on AMD EPYC 7452

0.5 1.0 1.5 2.0

1000

2000

3000

4000

5000

6000

7000

m
ea

n 
qu

er
y 

tim
e 

pe
r s

ym
bo

l n
s

hum50
fbb_bv
fbb_il
fbb_rrr

1 2 3
bits per symbol

200

400

600

800

1000

1200

1400

1600

m
ea

n 
qu

er
y 

tim
e 

pe
r s

ym
bo

l n
s

coreutils
0.0 0.1 0.2 0.3

500

1000

1500

2000

2500

3000

3500

cov400K
fbb_hyb
rlbwt
srlbwt
R-index-F

0.25 0.50 0.75 1.00 1.25

500

1000

1500

2000

2500

3000

3500
ecoli3.6k

sbt_rlbwt
sbv_rlbwt
rb_rlbwt

0.0 0.2 0.4 0.6 0.8
bits per symbol

200

400

600

800

1000

1200

einstein

0.5 1.0 1.5 2.0
bits per symbol

200

400

600

800

1000

1200

worldleaders

Figure 5 Mean match counting per symbol query times and bits per symbol for patterns of
length 10.

0.5 1.0 1.5 2.0
500

1000

1500

2000

2500

3000

3500

m
ea

n 
qu

er
y 

tim
e 

pe
r s

ym
bo

l n
s

hum50
fbb_bv
fbb_il
fbb_rrr

1 2 3
bits per symbol

200

400

600

800

1000

1200

1400

1600

m
ea

n 
qu

er
y 

tim
e 

pe
r s

ym
bo

l n
s

coreutils
0.0 0.1 0.2 0.3

500

1000

1500

2000

cov400K
fbb_hyb
rlbwt
srlbwt
R-index-F

0.25 0.50 0.75 1.00 1.25

500

1000

1500

2000

2500

3000

ecoli3.6k
sbt_rlbwt
sbv_rlbwt
rb_rlbwt

0.0 0.2 0.4 0.6 0.8
bits per symbol

0

200

400

600

800

1000

1200

1400
einstein

0.5 1.0 1.5 2.0
bits per symbol

0

200

400

600

800

1000

1200

1400
worldleaders

Figure 6 Mean match counting per symbol query times and bits per symbol for patterns of
length 50.



D. Díaz-Domínguez, S. Dönges, S. J. Puglisi, and L. Salmela 7:15

B Intel Xeon E7-8890 v4 experiment results

0.0 0.5 1.0 1.5 2.0 2.5
bits per symbol

0

500

1000

1500

2000

Q
ue

ry
 t

im
e 

pe
r 

sy
m

bo
l n

s

sbt_rlbwt
hum50
coreutils
cov400K
ecoli3.6K
einstein
worldleaders
217

211

28

0.0 0.5 1.0 1.5 2.0 2.5
bits per symbol

0

500

1000

1500

2000
sbv_rlbwt

hum50
coreutils
cov400K
ecoli3.6K
einstein
worldleaders
217

214

28

0.0 0.5 1.0 1.5 2.0 2.5
bits per symbol

0

500

1000

1500

2000
rb_rlbwt

hum50
coreutils
cov400K
ecoli3.6K
einstein
worldleaders
29

25

20

Figure 7 Performance trade-offs for varying block sizes. Run on Intel Xeon E7-8890 v4.

0.5 1.0 1.5 2.0

1000

2000

3000

4000

5000

6000

7000

m
ea

n 
qu

er
y 

tim
e 

pe
r s

ym
bo

l n
s

hum50
fbb_bv
fbb_il
fbb_rrr

1 2 3
bits per symbol

500

1000

1500

2000

m
ea

n 
qu

er
y 

tim
e 

pe
r s

ym
bo

l n
s

coreutils
0.0 0.1 0.2 0.3

1000

2000

3000

4000

cov400K
fbb_hyb
rlbwt
srlbwt
R-index-F

0.25 0.50 0.75 1.00 1.25

500

1000

1500

2000

2500

3000

3500

4000
ecoli3.6k

sbt_rlbwt
sbv_rlbwt
rb_rlbwt

0.0 0.2 0.4 0.6 0.8
bits per symbol

0

500

1000

1500

2000

einstein

0.5 1.0 1.5 2.0
bits per symbol

0

500

1000

1500

2000

worldleaders

Figure 8 Mean match counting per symbol query times and bits per symbol for patterns of length
10. Run on Intel Xeon E7-8890 v4.

SEA 2023



7:16 Simple Runs-Bounded FM-Index Designs Are Fast

0.5 1.0 1.5 2.0

1000

1500

2000

2500

3000

3500

4000

m
ea

n 
qu

er
y 

tim
e 

pe
r s

ym
bo

l n
s

hum50
fbb_bv
fbb_il
fbb_rrr

1 2 3
bits per symbol

500

1000

1500

2000

2500

m
ea

n 
qu

er
y 

tim
e 

pe
r s

ym
bo

l n
s

coreutils
0.0 0.1 0.2 0.3

0

500

1000

1500

2000

2500

3000

3500

cov400K
fbb_hyb
rlbwt
srlbwt
R-index-F

0.25 0.50 0.75 1.00 1.25

500

1000

1500

2000

2500

3000

3500

ecoli3.6k
sbt_rlbwt
sbv_rlbwt
rb_rlbwt

0.0 0.2 0.4 0.6 0.8
bits per symbol

0

500

1000

1500

2000

einstein

0.5 1.0 1.5 2.0
bits per symbol

0

500

1000

1500

2000

worldleaders

Figure 9 Mean match counting per symbol query times and bits per symbol for patterns of length
30. Run on Intel Xeon E7-8890 v4.

0.5 1.0 1.5 2.0
500

1000

1500

2000

2500

3000

3500

4000

m
ea

n 
qu

er
y 

tim
e 

pe
r s

ym
bo

l n
s

hum50
fbb_bv
fbb_il
fbb_rrr

1 2 3
bits per symbol

500

1000

1500

2000

2500

m
ea

n 
qu

er
y 

tim
e 

pe
r s

ym
bo

l n
s

coreutils
0.0 0.1 0.2 0.3

0

500

1000

1500

2000

2500

3000

cov400K
fbb_hyb
rlbwt
srlbwt
R-index-F

0.25 0.50 0.75 1.00 1.25

500

1000

1500

2000

2500

3000

3500

ecoli3.6k
sbt_rlbwt
sbv_rlbwt
rb_rlbwt

0.0 0.2 0.4 0.6 0.8
bits per symbol

0

500

1000

1500

2000

einstein

0.5 1.0 1.5 2.0
bits per symbol

0

500

1000

1500

2000

2500
worldleaders

Figure 10 Mean match counting per symbol query times and bits per symbol for patterns of
length 50. Run on Intel Xeon E7-8890 v4.



Noisy Sorting Without Searching: Data Oblivious
Sorting with Comparison Errors
Ramtin Afshar #

University of California, Irvine, CA, USA

Michael Dillencourt #

University of California, Irvine, CA, USA

Michael T. Goodrich #

University of California, Irvine, CA, USA

Evrim Ozel #

University of California, Irvine, CA, USA

Abstract
We provide and study several algorithms for sorting an array of n comparable distinct elements
subject to probabilistic comparison errors. In this model, the comparison of two elements returns the
wrong answer according to a fixed probability, pe < 1/2, and otherwise returns the correct answer.
The dislocation of an element is the distance between its position in a given (current or output)
array and its position in a sorted array. There are various algorithms that can be utilized for sorting
or near-sorting elements subject to probabilistic comparison errors, but these algorithms are not
data oblivious because they all make heavy use of noisy binary searching. In this paper, we provide
new methods for sorting with comparison errors that are data oblivious while avoiding the use of
noisy binary search methods. In addition, we experimentally compare our algorithms and other
sorting algorithms.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases sorting, algorithms, randomization, experimentation

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.8

Supplementary Material
Software (Source Code): https://github.com/UC-Irvine-Theory/NoisyObliviousSorting

archived at swh:1:dir:d49510784ab64d4ac0f4f9d2879587b83e8d91a8

1 Introduction

Given an array, A, of n distinct comparable elements, we study the problem of efficiently
sorting A subject to noisy probabilistic comparisons. In this framework, which has been
extensively studied [2, 5, 7–9,14,16,17,19,21,23,31], the comparison of two elements, x and
y, results in a true result independently according to a fixed probability, and otherwise
returns the opposite (false) result. In the case of persistent errors [2, 7–9, 17], the result
of a comparison of two given elements, x and y, always returns the same result. In the
case of non-persistent errors [5, 14, 16, 19, 23, 31], however, the probabilistic determination
of correctness is determined independently for each comparison, even if it is for a pair of
elements, (x, y), that were previously compared.

Motivation for sorting with comparison errors comes from multiple sources, including
applied cryptography scenarios where cryptographic comparison protocols can fail with
known probabilities (see, e.g., [6, 20, 33]). In such cases, reducing the noise from comparison
errors can be computationally expensive, and the framework advanced in our paper offers an
alternative, possibly more efficient approach, where a higher error rate is tolerated while still
achieving the ultimate goal of sorting or near-sorting with high probability. Further, other
applications of sorting with comparison errors include ranking objects in online forums via
group A/B testing [32].

© Ramtin Afshar, Michael Dillencourt, Michael T. Goodrich, and Evrim Ozel;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:afsharr@uci.edu
mailto:mbdillen@uci.edu
mailto:goodrich@uci.edu
mailto:eozel@uci.edu
https://doi.org/10.4230/LIPIcs.SEA.2023.8
https://github.com/UC-Irvine-Theory/NoisyObliviousSorting
https://archive.softwareheritage.org/swh:1:dir:d49510784ab64d4ac0f4f9d2879587b83e8d91a8;origin=https://github.com/UC-Irvine-Theory/NoisyObliviousSorting;visit=swh:1:snp:11bcbab19e893bdc43b87c1e2297d58d514a39d9;anchor=swh:1:rev:1e2a1df6446614d389ddcfa8cc9eb1640e19de85
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


8:2 Noisy Sorting Without Searching

Since it is not possible to always correctly sort an array, A, subject to persistent comparison
errors, we follow the formulation of Geissmann et al. [7–9], and define the dislocation of
an element, x, in an arary, A, as the absolute value of the difference between x’s index in
A and its index in the correctly sorted permutation of A. Further, define the maximum
dislocation of A as the maximum dislocation for the elements in A, and let the total
dislocation of A be the sum of the dislocations of the elements in A. By known lower
bounds [7–9], the best a sorting algorithm can achieve under persistent comparison errors is
a maximum dislocation of O(log n) and a total dislocation of O(n). Thus, coming close to
such asymptotic maximum and total dislocation guarantees should be the goal for a sorting
algorithm in the presence of persistent comparison errors.

Given the cryptographic applications of noisy comparisons, we desire sorting algorithms
that are data oblivious, which support privacy-preserving cryptographic protocols. A sorting
algorithm is data oblivious if its memory access pattern does not reveal any information
about the data values being sorted. Unfortunately, existing efficient algorithms for sorting
with noisy comparisons are not data oblivious. Indeed, they all make use of noisy binary
search [8], which is a data-sensitive random walk in a binary search tree, e.g., see Geissmann,
Leucci, Liu, and Penna [8], Feige, Raghavan, Peleg, and Upfal [5], and Leighton, Ma, and
Plaxton [19]. Instead, we desire efficient sorting algorithms that tolerate noisy comparisons
and avoid the use of noisy binary search, so as to be data oblivious (i.e., privacy preserving
if comparisons are done according to a data-hiding protocol).

Related Prior Results. Problems involving probabilistic comparison errors can trace their
roots back to a classic problem by Rényi [27] of playing a two-person game where player A
poses yes/no questions to a player B who lies with a given probability; see a survey by Pelc [24].
Notable prior results include a paper by Pippenger [25] on computing Boolean functions with
probabilistically noisy gates and work by Yao and Yao [34] on sorting networks built from noisy
comparators. There is also considerable work on searching when the total number of faulty
comparisons is bounded rather than considering probabilistic noisy comparisons, including
the work by Kenyon-Mathieu and Yao [15] and Rivest, Meyer, Kleitman, Winklmann, and
Spencer [28]. Also of note is work by Karp and Kleinberg [14], who study binary searching
for a value x ∈ [0, 1] in an array of biased coins ordered by their biases.

Braverman and Mossel [2] introduce a persistent-error model, where comparison errors
are persistently wrong with a fixed probability, p < 1/2 − ε, and they achieve a sorting
algorithm that in our framework runs in O(n3+f(p)) time, where f(p) is some function of p,
with maximum expected dislocation O(log n) and total dislocation O(n). Klein, Penninger,
Sohler, and Woodruff [17] improve the running time to O(n2), but with O(n log n) total
dislocation w.h.p. The running time for sorting in the persistent-error model optimally
with respect to maximum and total dislocation was subsequentially improved to O(n2),
O(n3/2), and ultimately to O(n log n), in a sequence of papers by Geissmann, Leucci, Liu,
and Penna [7–9], all of which are not data oblivious because they make extensive use of noisy
binary searching, which amounts to a random walk in a binary search tree.

Our Results. In this paper, we provide data-oblivious sorting algorithms that tolerate
persistent noisy comparisons. In addition, we empirically compare our algorithms to other
sorting algorithms, including the worst-case optimal algorithm, Riffle sort, by Geissmann,
Leucci, Liu, and Penna [8], which is not data oblivious, but it achieves an optimal maximum
and total dislocation under noisy comparisons. It runs in O(n log n) time, but it makes use
of noisy binary search.



R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:3

In addition to providing theoretical analysis for some of our algorithms, we empirically
study all of our algorithms by measuring the effect of changing the amount of noise and
the input size on the amount of dislocation, inversions, and number of comparisons. Our
experiments show that for all of the data-oblivious algorithms we provide in this paper,
the maximum and total dislocations are comparable to the optimal bounds of O(log n) and
O(n) respectively for the best algorithms that are not data oblivious. Moreover, we include
experimental results for some standard sorting algorithms such as insertion sort, quick sort,
and shell sort, for which we provide emipirical evidence that all of our algorithms significantly
outperform these other algorithms in terms of the maximum and total dislocation metrics.
These results indicate that our algorithms are able to combine the properties of both having
a good tolerance to noisy comparisons while also being data-oblivious.

2 Window-Sort

Our first sorting algorithm is a version of window-sort [7], which will be useful as a subroutine
in our other algorithms. We describe the pseudo-code at a high level in Algorithm 1, for
approximately sorting an array of size n that has maximum dislocation at most d1 ≤ n so
that it will have maximum dislocation at most d2 = d1/2k, for some integer k ≥ 1, with high
probability as a function of d2.

Algorithm 1 Window-Sort(A = {a0, a1, . . . , an−1}, d1, d2).

1 for w ← 2d1, d1, d1/2, . . . , 2d2 do
2 foreach i← 0, 1, 2, . . . , n− 1 do
3 ri ← max{0, i− w}+ |{aj < ai : |j − i| ≤ w}|
4 Sort A (deterministically) by nondecreasing ri values (i.e., using ri as the

comparison key for ai)
5 return A

In addition to implementing window-sort data obliviously, we provide a new analysis of
window-sort, which allows us to apply it in new contexts. We begin this new analysis with
the following lemma, which establishes the progress made in each iteration of window-sort.

▶ Lemma 1. Suppose the comparison error probability, pe, is at most 1/16. If an array, A,
has maximum dislocation at most d′ prior to an iteration of window-sort for w = 2d′ (line 1
of Algorithm 1), then after this iteration, A will have maximum dislocation at most d′/2 with
probability at least 1− n2−d′/8.

Proof. Let ai be an element in A. Let W denote the window of elements in A for which
we perform comparisons with ai in this iteration; hence, 2d′ ≤ |W | ≤ 4d′. Because A has
maximum dislocation d′, by assumption, there are no elements to the left (resp., right) of
W that are greater than ai (resp., less than ai). Thus, ai’s dislocation after this iteration
depends only on the comparisons between ai and elements in its window. Let X be a random
variable that represents ai’s dislocation after this iteration, and note that X ≤ Y , where Y

is the number of incorrect comparisons with ai performed in this iteration. Note further
that we can write Y as the sum of |W | independent indicator random variables and that
µ = E[Y ] = pe|W | ≤ d′/4. Thus, if we let R = d′/2, then R ≥ 2µ; hence, we can use a
Chernoff bound as follows:

Pr(X > d′/2) ≤ Pr(Y > d′/2) = Pr(Y > R) ≤ 2−R/4 = 2−d′/8.

Thus, with the claimed probability, the maximum dislocation for all elements of A will be at
most d′/2, by a union bound. ◀

SEA 2023



8:4 Noisy Sorting Without Searching

This implies the following.

▶ Theorem 2. Suppose the comparison error probability, pe, is at most 1/16. If an array, A,
of size n has maximum dislocation at most d1 ≥ log n, then executing Window-Sort(A, d1, d2)
runs in O(d1n) time. Further, we can execute Window-Sort(A, d1, d2) data-obliviously to
result in A having maximum dislocation of d2/2 with probability at least 1− 2n2−d2/8, where
d2 = d1/2k, for some integer k ≥ 1.

Proof. For the running time and data obliviousness, note that we can perform the
deterministic sorting step using a data-oblivious sorting algorithm (e.g., see [12]) in O(n log n)
time. The windowed comparison steps (step 3 of Algorithm 1) are already data-oblivious
and their running times form a geometric sum adding up to O(d1n); hence, the total time for
all the deterministic sorting steps (step 4 of Algorithm 1) is O((log(d1/d2))n log n), which is
at most O(d1n) for d1 ≥ log n.

For the maximum dislocation bound, note once w = 2d2 and the array A prior to
this iteration has maximum dislocation at most d2, then it will result in having maximum
dislocation at most d2/2 with probability at least 1 − n2−d2/8, by Lemma 1. Thus, by a
union bound, the overall failure probability is at most

n
(

2−d2/8 + 2−2d2/8 + 2−4d2/8 + · · ·+ 2−d1/8
)

< n2−d2/8
∞∑

i=0
2−i = 2n2−d2/8. ◀

In terms of efficiency, we note that our data-oblivious implementation of window-sort is
only time-efficient for small subarrays; hence, we need to do more work to design an efficient
data-oblivious sorting algorithm.

3 Window-Merge-Sort

In this section, we describe a simple algorithm for sorting with noisy comparisons, which
achieves a maximum dislocation of O(log n). Our window-merge-sort method is a windowed
version of merge sort; hence, it is deterministic but not data oblivious. Nevertheless, it does
avoid using noisy binary search.

Suppose we are given an array, A, of n elements (we use n to denote the original size of
A, and N to denote the size of the subproblem we are currently working on recursively). Our
method runs in O(n log2 n) time and we give the pseudo-code for this method in Algorithm 2,
with d = c log n for a constant c ≥ 1 set in the analysis.

Our method begins by checking if the current problem size, N , satisfies N ≤ 6d, in which
case we’re done. Otherwise, if N > 6d, then we divide A into 2 subarrays, A1 and A2, of
roughly equal size and recursively approximately sort each one. For the merge of the two
sublists, A1 and A2, we inductively assume that A1 and A2 have maximum dislocation at
most 3d/2 = (3c/2) log n. We then copy the first 3d elements of A1 and the first 3d elements
of A2 into a temporary array, S, and we note that, by our induction hypothesis, S contains
the smallest 3d/2 elements currently in A1 and the smallest 3d/2 elements currently in A2.
We then call Window-Sort(S, 4d, d), and copy the first d elements from the output of this
window-sort to the output of the merge, removing these same elements from A1 and A2.
Then we repeat this merging process until we have at most 6d elements left in A1 ∪A2, in
which case we call window-sort on the remaining elements and copy the result to the output
of the merge. The following lemma establishes the correctness of this algorithm.

▶ Lemma 3. If A1 and A2 each have maximum dislocation at most 3d/2, then the merge of
A1 and A2 has maximum dislocation at most 3d/2 with probability at least 1−N2−d/8.



R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:5

Algorithm 2 Window-Merge-Sort(A = {a0, a1, . . . , aN−1}, n, d).

1 if N ≤ 6d then
2 return Window-Sort(A, 4d, d)
3 Divide A into two subarrays, A1 and A2, of roughly equal size
4 Window-Merge-Sort(A1, n, d)
5 Window-Merge-Sort(A2, n, d)
6 Let B be an initially empty output list
7 while |A1|+ |A2| > 6d do
8 Let S1 be the first min{3d, |A1|} elements of A1
9 Let S2 be the first min{3d, |A2|} elements of A2

10 Let S ← S1 ∪ S2
11 Window-Sort(S, 4d, d)
12 Let B′ be the first d elements of (the near-sorted) S

13 Add B′ to the end of B and remove the elements of B′ from A1 and A2

14 Call Window-Sort(A1 ∪A2, 4d, d) and add the output to the end of B

15 return B

Proof. By Lemma 1 and a union bound, each of the calls to window-sort performed during
the merge of A1 and A2 will result in an output with maximum dislocation at most d/2, with
at least the claimed probability. So, let us assume each of the calls to window-sort performed
during the merge of A1 and A2 will result in an output with maximum dislocation at most
d/2. Consider, then, merge step i, involving the i-th call to Window-Sort(S, 4d, d), where
S consists of the current first 3d elements in A1 and the current first 3d elements in A2,
which, by assumption, contain the current smallest 3d/2 elements in A1 and current smallest
3d/2 elements in A2. Thus, since this call to window-sort results in an array with maximum
dislocation at most d/2, the subarray, Bi, of the d elements moved to the output in step
i includes the d/2 current smallest elements in A1 ∪ A2. Moreover, the first d/2 elements
in Bi have no smaller elements that remain in S. In addition, for the d/2 elements in the
second half of Bi, let S′ denote the set of elements that remain in S that are smaller than at
least one of these d/2 elements. Since the output of Window-Sort(S, 4d, d) has maximum
dislocation at most d/2, we know that |S′| ≤ d/2 Moreover, the elements in S′ are a subset
of the smallest d/2 elements that remain in S and there are no elements in (A1 ∪A2)− S

smaller than the elements in S′ (since S includes the 3d/2 smallest elements in A1 and
A2, respectively. Thus, all the elements in S′ will be included in the subarray, Bi+1, of d

elements output in merge step i + 1. In addition, a symmetric argument applies to the first
d/2 elements with respect to the d elements in Bi−1. Therefore, the output of the merge of
A1 and A2 will have maximum dislocation at most 3d/2 with the claimed probability. ◀

Window-merge-sort clearly runs in O(n log2 n) time. This gives us the following.

▶ Theorem 4. Given an array, A, of n distinct comparable elements, one can deterministically
sort A in O(n log2 n) time subject to comparison errors with probability pe ≤ 1/16, so as to
have maximum dislocation of O(log n) w.h.p., assuming that the block size B is at least log n.

This method is not data oblivious, however. For example, in a merge of two subarrays, A1
and A2, if each element in A1 is less than all the elements in A2, then with high probability
the merge will take almost all the elements from A1 before taking any elements from A2.

SEA 2023



8:6 Noisy Sorting Without Searching

4 Window-Oblivious-Merge-Sort

In this section, we describe a deterministic data-oblivious sorting algorithm that can tolerate
noisy comparisons, which uses our data-oblivious window-sort only for small subarrays.
Our method is an adaptation of the classic odd-even merge-sort algorithm [1] to the noisy
comparison model, and it runs in O(n log3 n) time, and achieves a maximum dislocation of
O(log n), set in the analysis. We give our algorithm in Algorithm 3, with d = c log n, where
c is a constant set in the analysis.

Algorithm 3 Window-Odd-Even-Sort(A = {a0, a1, . . . , aN−1}, n, d).

1 if N ≤ 6d then
2 return Window-Sort(A, 4d, d)
3 Divide A into two subarrays, A1 and A2, of roughly equal size
4 Window-Odd-Even-Sort(A1, n, d)
5 Window-Odd-Even-Sort(A2, n, d)
6 B ← Window-Merge(A1, A2, d)
7 return B

8

9 Window-Merge(A1, A2, d):
10 if |A1|+ |A2| ≤ 6d then
11 return Window-Sort(A1 ∪A2, 4d, d)
12 Let Ao

1 (resp., Ae
1) be the subarray of A1 of elements at odd (resp., even) indices

13 Let Ao
2 (resp., Ae

2) be the subarray of A2 of elements at odd (resp., even) indices
14 B1 ← Window-Merge(Ae

1, Ae
2, d)

15 B2 ← Window-Merge(Ao
1, Ao

2, d)
16 Let B be the shuffle of B1 and B2, so its even (resp., odd) indices are B1 (resp., B2)
17 for i = 0, 1, 2, . . . , |B|/d do
18 Window-Sort(B[id : id + 6d], 4d, d)
19 return B

Note that, assuming d is O(log n), the running time for window-merge is characterized by
the recurrence, T (n) = 2T (n/2) + n log n, which is O(n log2 n); hence, the running time for
window-odd-even-sort is characterized by the recurrence, T (n) = 2T (n/2) + n log2 n, which
is O(n log3 n).

The correctness of window-merge is proved using induction and the 0-1 principle, which
is that if a data-oblivious algorithm can sort an array of 0’s and 1’s, then it can sort any
array1 [18]. Let n be a power of 2, and consider the elements of each of A1 and A2 arranged
in two columns with even indices in the left column and odd indices in the right column.
(See Figure 1.) By the 0-1 principle, if A1 and A2 each have maximum dislocation at most d,
then, for each arrangement of A1 and A2, the difference between the number of 1’s in the
left column and the number of 1’s in the right column is at most d + 1.

Next stack the two-column arrangement of A1 on top of that for A2 and note that our
window-merge algorithm recursively sorts each column, which, by induction will each have
maximum dislocation d. That is, by the 0-1 principle, each column will consist of a contiguous

1 It is straightforward to show that the 0-1 principle holds for our noisy sorting setting as well.



R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:7

even odd

A1

even odd

A2

(a)

even odd

(b)

even odd

(c)

1

Figure 1 Window-Merge (a) Subarrays A1 and A2. (b) A before the merge. (c) A after the merge.

sequence of 0’s, followed by a sequence of length at most 2d comprising a mixture of 0’s and
1’s, followed by a contiguous sequence of 1’s. Further, by how we began our arrangement,
the difference between the number of 1’s in the left column and the number of 1’s in the right
column in the full arrangement of A1 and A2 is at most 2d + 2. Thus, all the unsortedness is
confined to a region of at most 4d + 2 consecutively-indexed elements in the merged sequence,
which are then completely contained in a region of 5d consecutively-indexed elements that
begin at a multiple of d. Our window-merge method is guaranteed to call window-sort for
this region of elements, bringing its maximum dislocation to be at most d. We observe that
there are other calls to window-sort as well, but these will not degrade the sortedness of this
region. Thus, the result is that the maximum dislocation of the merged list is at most d.

This gives us the following.

▶ Theorem 5. Given an array, A, of n distinct comparable elements, one can deterministically
and data-obliviously sort A in O(n log3 n) time, subject to comparison errors with probability
pe ≤ 1/16, so as to have maximum dislocation of O(log n) w.h.p.

We note that the only randomization here is in the comparison model. The algorithm for
Theorem 5 is deterministic. If we are willing to use a randomized algorithm, however, we
can achieve a faster running time.

5 Randomized Shellsort

In this section, we describe a randomized data-oblivious sorting method that runs in O(n log n)
time. The method is the simple randomized Shellsort algorithm of Goodrich [10], which we
review in an appendix in Algorithm 4. It is based on peforming region compare-exhanges
between subarrays of equal size, which, for a constant c ≥ 1 set in the analysis, consists of
constructing c random matchings between the elements of the two subarrays and performing
compare-exchange operations between the matched elements. We study the dislocation
reduction properties of randomized Shellsort empirically.

6 Annealing Sort

We briefly review here the annealing sort algorithm (see Algorithm 5 in an appendix), first
introduced by Goodrich [11], which is a randomized data-oblivious sorting algorithm, and
uses the simulated annealing meta-heuristic that involves following an annealing schedule
defined by a temperature sequence T = (T1, T2, . . . Tt) and a repetition sequence

SEA 2023



8:8 Noisy Sorting Without Searching

R = (r1, r2, . . . , rt). This algorithm essentially uses a randomized round-robin strategy of
scanning the input array A and performing, for each i = 1, 2, . . . , n, a compare-exchange
operation between A[i] and A[s] where s is a randomly chosen index not equal to i. At
each round j, the temperature Tj is then used to determine how far apart the candidate
comparison elements with indices i and s should be at each time step. Following the simulated
annealing metaheuristic, the temperatures in the annealing schedule decrease over time, and
each random choice is repeated rj number of times in round j. In our experiments, we follow
the same three-phase annealing schedule used in the analysis of this algorithm in [11].

7 Experiments

To empirically test the performance of our algorithms under persistent noisy errors, we
implemented each of the algorithms described in Sections 2–6, along with riffleSort, which
is a non-data-oblivious noisy sorting algorithm introduced by Geissman, Leucci, Liu, and
Penna [8] that we review in an appendix in Algorithm 6. We also compare our algorithms
to the standard and well-known insertion sort, randomized quicksort, and Shellsort [29]
algorithms, e.g., see [3, 13]. For completeness, we include pseudo-code for these classic
algorithms in an appendix in Algorithm 7.

We have also considered a variant of randomized Shellsort, which we denote by
randomizedShellSortNo2s3s that does not include the 2 hop and 3 hop passes (lines 7-8
in Algorithm 4), as we do not think that they are necessary for the algorithm to perform
well in practice. For standard Shell sort, we used the Pratt sequence [26], which uses a gap
sequence consisting of all products of powers of 2 and 3 less than the array size, and we
denote this algorithm by shellSortPratt.

Parameter configurations. The riffleSort algorithm uses a parameter c to determine
the group sizes during noisy binary search. Geissmann, Leucci, Liu, and Penna [8] assume
c = 103 in their analysis; however, we set c = 5 so that the algorithm works with the input
sequence sizes we use. We also set a parameter, h, of riffle-sort, which affects the height of
the noisy binary search tree, to be log(⌊n+1

5d ⌋), where d is the maximum dislocation of the
input sequence given to the noisy binary search tree. For all other parameters, we follow
the values used in [8]. We have also made a significant and potentially risky modification
to the noisy binary search algorithm described by Geissmann, Leucci, Liu, and Penna [8]
so that it works in a practical setting. In particular, while the original description of this
subroutine fixes an upper bound τ = ⌊240 log n⌋ on the total number of steps performed
in a noisy binary search random walk, we found that this resulted in unreasonably long
running times for the input sequence sizes we used, and we instead lowered this upper bound
to τ = ⌊7 log n⌋ in our implementation. Despite using lower τ , the algorithm surprisingly
produces good dislocation bounds, while taking significantly less time. Because of its reliance
on noisy binary searching, riffle-sort is not data-oblivious, so we used its performance as the
best achievable empirical dislocation bounds, which our data-oblivious methods compare
against.

For annealing sort, we follow the annealing schedule and constants used in [4], which
defines additional parameters h, gscale, and finds suitable values for them alongside the
existing parameters c and q defined by Goodrich [11], all of which affect the temperature and
repetition schedules used in the algorithm; hence, we set h = 1, gscale = 0, c = 10, and q = 1.



R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:9

For windowMergeSort and windowOddEvenMergeSort, we set d = log n.
Though a larger constant multiple of log n is required for the theoretical proofs of these
algorithms, we found that this wasn’t necessary in practice; in fact we observed that d = log n

resulted in lower inversions and dislocations in our experiments.
Lastly, for windowSort, we set d1 = n/2 and d2 = log n, and for

randomizedShellSort, we set c = 4.

Experimental setup. We implemented each algorithm in C++2, and compared the
performance of each algorithm by measuring the total dislocations, maximum dislocations,
and the number of inversions of the output arrays, as well as the total number of pairwise
comparisons that were done. Each data point in the following plots correspond to the average
of 5 runs of the algorithm with random input sequences of integers.

To implement noisy persistent comparisons, we make use of tabulation hashing [22,30].
In our tabulation hashing setting, we let f denote the number of bits to be hashed, and s ≤ f

be a block size, and t = ⌈f/s⌉ be the number of blocks. We initialize a two dimensional
t× 2s array, A, with random q bit integers. Given a key, c, with f bits, we partition f into t

blocks of s bits. For our experiments, we set f = 64, s = 8, and q = 14. If ci represents the
i-th block, the hash value h(c) will be derived using the lookup table as follows:

h(c) = A[0][c0]⊕A[1][c1]⊕ · · · ⊕A[t][ct]

For simulating a noisy comparison, given two 4-Byte Integers, x < y, we first concatenate
the numbers to get the key, c = (x · 232) + y. Then, we hash c to derive h(c), a random
q = 14 bit integer. We determine that the comparison of these two numbers is noisy if and
only if h(c) ≤ p · 2q, where p is the noise probability, and output the result of the comparison
accordingly.

We performed two sets of experiments: one with a varying probability p of comparison
error and fixed input size n = 32768, and the other with varying input size n and a
fixed probability p = 0.03 of comparison error. In our experiments, p takes on values
(2−1, 2−2 . . . , 2−10), and n takes on values (216, 215 . . . , 27).

Results and analysis. We first consider experiments with varying p, and compare the
maximum dislocations, total dislocations and inversions between each algorithm. We see
from Figure 2 that all of the data-oblivious algorithms we describe in this paper have
maximum and total dislocations that are inline with the theoretical optimal bounds of
O(log n) and O(n) respectively, as well as riffleSort, particularly when p < 0.1. For
example, we see that windowOddEvenMergeSort tends to be the best-performing data-
oblivious algorithm for different values of p, achieving a total dislocation of at most ≈ 35 300,
a maximum dislocation of at most 12, and at most ≈ 19 200 total inversions for values of
p < 0.1.

We see that all of the non-standard algorithms tend to form an S-shaped curve, in terms
of their dislocation bounds, such that as p starts to increase, the number of dislocations and
inversions start to increase slowly, then there is a sharper increase after we reach p > 0.1.
As expected, we see that the highest dislocation and inversions is when p = 0.5, which is
the worst-case scenario for p (for any value of p > 0.5, reversing the output should result

2 Our implementations of all algorithms can be found at https://github.com/UC-Irvine-Theory/
NoisyObliviousSorting.

SEA 2023

https://github.com/UC-Irvine-Theory/NoisyObliviousSorting
https://github.com/UC-Irvine-Theory/NoisyObliviousSorting


8:10 Noisy Sorting Without Searching

102

103

104

105

106

107

108

Nu
m

. I
nv

er
sio

ns

insertionSort
shellSortPratt
quickSort
windowSort
windowMergeSort

windowOddEvenMergeSort
annealingSort
randomizedShellSort
randomizedShellSortNo2s3s
riffleSort

102

103

104

105

106

107

108

To
ta

l D
isl

oc
at

io
n

10 3 10 2 10 1

100

101

102

103

104

M
ax

. D
isl

oc
at

io
n

p

Figure 2 Effect of varying the comparison error probability p on the inversion and dislocation
counts, with input sequences of size 32768.



R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:11

in a sequence with lower dislocation). In particular, as p goes from 1/32 to 1/2, all of the
non-standard algorithms go from having up to 100 maximum dislocation and ≈ 28 900 total
dislocation to having up to ≈ 30 000 maximum dislocation and ≈ 345 million total dislocation.
These results match our theoretical analyses in this paper, as we assume that p ≤ 1/16 in
order to prove bounds for the dislocation. The proof for the version of riffleSort we use
assumes similar bounds for p [8]. On the other hand, we see that our implementations of
insertion sort, quick sort, and Shell sort do not have the tendency to form an S-curve, and
their inversion and dislocation counts are significantly higher compared to our algorithms.

In Figure 3, we see the effect of varying p and n on the number of comparisons made
during the algorithm. We see that the number of comparisons tends to grow smaller as p

increases in riffleSort, insertionSort and shellSortPratt. When the input size is
varied, we see that riffleSort, insertionSort and quickSort use the fewest number
of comparisons. Notably, we see that randomizedShellSort (and its variant without
2 and 3-hop passes), as well as annealingSort, are the best-performing data-oblivious
algorithms in terms of the number of comparisons. Overall, we found that riffleSort was
the best-performing algorithm in both sets of experiments; however, it uses the noisy binary
search subroutine and is thus not a data-oblivious algorithm.

10 3 10 2 10 1

p

105

106

107

108

109

insertionSort
shellSortPratt
quickSort
windowSort
windowMergeSort

windowOddEvenMergeSort
annealingSort
randomizedShellSort
randomizedShellSortNo2s3s
riffleSort

102 103 104

n

103

105

107

109

Nu
m

. C
om

pa
ris

on
s

Figure 3 Effect of varying the comparison error probability p and the input size n on the number
of comparisons.

We also consider how the dislocation is distributed across the output array for each
algorithm. In Figure 4, we see the average dislocation across different array indices for 5 runs
of each algorithm with input sequences of size 16384, and p = 0.03. For each output array,

SEA 2023



8:12 Noisy Sorting Without Searching

we grouped the indices into 128 bins and took the average dislocation inside each bin. From
this figure we can see the significant difference in dislocation counts between the standard
sorting algorithms insertion sort, Shellsort and quick sort, compared to the other algorithms
we implemented. All of the standard sorting algorithms have bins with over 2000 dislocation
on average, whereas none of the other algorithms have any bins with over 1.2 dislocations on
average, with riffleSort having less than 0.2 dislocations on average accross all of its bins.

While the distribution of dislocation is similar accross most algorithms, we see that
insertion sort has most of its dislocation at the two ends of the array, whereas quickSort
has a few bins with high dislocation and has lower dislocation for most of the remaining bins.

8 Conclusions and Future Work

We introduced the sorting algorithms Window-Merge-Sort and Window-Odd-Even-Sort, both
of which are tolerant to noisy comparisons, with the latter also being data-oblivious, with
the key difference from existing algorithms being that we do not require use of a noisy binary
search subroutine for either algorithms. We then provided both theoretical and experimental
analyses, comparing our algorithms to some standard well-known sorting algorithms, and
saw that our algorithms perform well in a practical setting as well. Interestingly, we found
that the data-oblivious algorithms Annealing sort and Randomized Shellsort performed quite
well under noisy comparisons in our experiments, though we have not provided a theoretical
analysis for either of these algorithms. Therefore one possible direction for future work could
be to prove similar bounds for these two algorithms.



R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:13

0

40
96

81
92

12
28

8

16
38

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2
AnnealingSort

0

40
96

81
92

12
28

8

16
38

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2
RandomizedShellSort

0

40
96

81
92

12
28

8

16
38

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2
RandomizedShellSortNo2s3s

0

40
96

81
92

12
28

8

16
38

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2
WindowMergeSort

0

40
96

81
92

12
28

8

16
38

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2
WindowOddEvenMergeSort

0

40
96

81
92

12
28

8

16
38

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2
WindowSort

0

40
96

81
92

12
28

8

16
38

3

0

2000

4000

6000

8000

10000
InsertionSort

0

40
96

81
92

12
28

8

16
38

3

0

2000

4000

6000

8000

10000
QuickSort

0

40
96

81
92

12
28

8

16
38

3

0

2000

4000

6000

8000

10000
ShellSortPratt

0

40
96

81
92

12
28

8

16
38

3

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
RiffleSort

Array index

Di
slo

ca
tio

n

Figure 4 Averaged dislocation counts at different array indices over 5 runs for each algorithm on
input sequences of size 16384, and p = 0.03. Each bar in the histogram corresponds to a bin of 128
indices.

SEA 2023



8:14 Noisy Sorting Without Searching

References
1 Kenneth E Batcher. Sorting networks and their applications. In Proc. of the Spring Joint

Computer Conference (AFIPS), pages 307–314. ACM, 1968. doi:10.1145/1468075.1468121.
2 Mark Braverman and Elchanan Mossel. Noisy sorting without resampling. In 19th ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 268–276, 2008.
3 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to

Algorithms. MIT Press, 4/e edition, 2022.
4 Kris Vestergaard Ebbesen. On the practicality of data-oblivious sorting. Master’s thesis,

Aurhus Univ., Denmark, 2015.
5 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy

information. SIAM Journal on Computing, 23(5):1001–1018, 1994.
6 Marc Fischlin. A cost-effective pay-per-multiplication comparison method for millionaires. In

David Naccache, editor, Topics in Cryptology CT-RSA, pages 457–471. Springer, 2001.
7 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Sorting with recurrent

comparison errors. In Yoshio Okamoto and Takeshi Tokuyama, editors, 28th Int. Symp.
on Algorithms and Computation (ISAAC), volume 92 of LIPIcs, pages 38:1–38:12, 2017.
doi:10.4230/LIPIcs.ISAAC.2017.38.

8 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Optimal sorting with
persistent comparison errors. In Michael A. Bender, Ola Svensson, and Grzegorz Herman,
editors, 27th European Symposium on Algorithms (ESA), volume 144 of LIPIcs, pages 49:1–
49:14, 2019.

9 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Optimal dislocation
with persistent errors in subquadratic time. Theory of Computing Systems, 64(3):508–521,
2020. This work appeared in preliminary form in STACS’18.

10 Michael T. Goodrich. Randomized shellsort: A simple data-oblivious sorting algorithm. J.
ACM, 58(6):27:1–27:26, December 2011. doi:10.1145/2049697.2049701.

11 Michael T. Goodrich. Spin-the-bottle sort and annealing sort: Oblivious sorting via round-robin
random comparisons. Algorithmica, pages 1–24, 2012. doi:10.1007/s00453-012-9696-5.

12 Michael T. Goodrich. Zig-zag sort: A simple deterministic data-oblivious sorting algorithm
running in O(n log n) time. In 46th ACM Symposium on Theory of Computing (STOC), pages
684–693, 2014. doi:10.1145/2591796.2591830.

13 Michael T Goodrich and Roberto Tamassia. Algorithm Design and Applications, volume 363.
Wiley, 2015.

14 Richard M Karp and Robert Kleinberg. Noisy binary search and its applications. In 18th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 881–890, 2007.

15 Claire Kenyon-Mathieu and Andrew C Yao. On evaluating boolean functions with unreliable
tests. International Journal of Foundations of Computer Science, 1(01):1–10, 1990.

16 Kamil Khadiev, Artem Ilikaev, and Jevgenijs Vihrovs. Quantum algorithms for some strings
problems based on quantum string comparator. Mathematics, 10(3):377, 2022.

17 Rolf Klein, Rainer Penninger, Christian Sohler, and David P. Woodruff. Tolerant algorithms.
In Camil Demetrescu and Magnús M. Halldórsson, editors, European Symposium on Algorithms
(ESA), pages 736–747. Springer, 2011.

18 Donald E Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley, 2nd edition, 1998.

19 Tom Leighton, Yuan Ma, and C. Greg Plaxton. Breaking the Θ(n log2 n) barrier for sorting
with faults. Journal of Computer and System Sciences, 54(2):265–304, 1997. doi:10.1006/
jcss.1997.1470.

20 Wen Liu, Shou-Shan Luo, and Ping Chen. A study of secure multi-party ranking problem.
In Eighth ACIS Int. Conf. on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing (SNPD), volume 2, pages 727–732, 2007. doi:10.1109/SNPD.
2007.367.

https://doi.org/10.1145/1468075.1468121
https://doi.org/10.4230/LIPIcs.ISAAC.2017.38
https://doi.org/10.1145/2049697.2049701
https://doi.org/10.1007/s00453-012-9696-5
https://doi.org/10.1145/2591796.2591830
https://doi.org/10.1006/jcss.1997.1470
https://doi.org/10.1006/jcss.1997.1470
https://doi.org/10.1109/SNPD.2007.367
https://doi.org/10.1109/SNPD.2007.367


R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:15

21 Cheng Mao, Jonathan Weed, and Philippe Rigollet. Minimax rates and efficient algorithms for
noisy sorting. In Firdaus Janoos, Mehryar Mohri, and Karthik Sridharan, editors, Proceedings
of Algorithmic Learning Theory, volume 83 of Proceedings of Machine Learning Research,
pages 821–847, 2018.

22 Mihai Pǎtraşcu and Mikkel Thorup. The power of simple tabulation hashing. J. ACM,
59(3):1–50, June 2012. doi:10.1145/2220357.2220361.

23 Andrzej Pelc. Searching with known error probability. Theoretical Computer Science, 63(2):185–
202, 1989. doi:10.1016/0304-3975(89)90077-7.

24 Andrzej Pelc. Searching games with errors—fifty years of coping with liars. Theoretical
Computer Science, 270(1):71–109, 2002. doi:10.1016/S0304-3975(01)00303-6.

25 Nicholas Pippenger. On networks of noisy gates. In 26th IEEE Symp. on Foundations of
Computer Science (FOCS), pages 30–38, 1985. doi:10.1109/SFCS.1985.41.

26 Vaughan Ronald Pratt. Shellsort and sorting networks. PhD thesis, Stanford University,
Stanford, CA, USA, 1972.

27 Alfréd Rényi. On a problem in information theory. Magyar Tud. Akad. Mat. Kutató Int. Közl.,
6:505–516, 1961. See https://mathscinet.ams.org/mathscinet-getitem?mr=0143666.

28 R.L. Rivest, A.R. Meyer, D.J. Kleitman, K. Winklmann, and J. Spencer. Coping with errors
in binary search procedures. Journal of Computer and System Sciences, 20(3):396–404, 1980.
doi:10.1016/0022-0000(80)90014-8.

29 D. L. Shell. A high-speed sorting procedure. Comm. ACM, 2(7):30–32, July 1959. doi:
10.1145/368370.368387.

30 Mikkel Thorup. Fast and powerful hashing using tabulation. Commun. ACM, 60(7):94–101,
June 2017. doi:10.1145/3068772.

31 Ziao Wang, Nadim Ghaddar, and Lele Wang. Noisy sorting capacity. arXiv, abs/2202.01446,
2022. arXiv:2202.01446.

32 Ya Xu, Nanyu Chen, Addrian Fernandez, Omar Sinno, and Anmol Bhasin. From infrastructure
to culture: A/B testing challenges in large scale social networks. In 21th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining (KDD), pages 2227–2236, 2015. doi:
10.1145/2783258.2788602.

33 Andrew C. Yao. Protocols for secure computations. In 23rd IEEE Symp. on Foundations of
Computer Science (FOCS), pages 160–164, 1982. doi:10.1109/SFCS.1982.38.

34 Andrew C. Yao and F. Frances Yao. On fault-tolerant networks for sorting. SIAM Journal on
Computing, 14(1):120–128, 1985. doi:10.1137/0214009.

SEA 2023

https://doi.org/10.1145/2220357.2220361
https://doi.org/10.1016/0304-3975(89)90077-7
https://doi.org/10.1016/S0304-3975(01)00303-6
https://doi.org/10.1109/SFCS.1985.41
https://mathscinet.ams.org/mathscinet-getitem?mr=0143666
https://doi.org/10.1016/0022-0000(80)90014-8
https://doi.org/10.1145/368370.368387
https://doi.org/10.1145/368370.368387
https://doi.org/10.1145/3068772
https://arxiv.org/abs/2202.01446
https://doi.org/10.1145/2783258.2788602
https://doi.org/10.1145/2783258.2788602
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1137/0214009


8:16 Noisy Sorting Without Searching

A Some Existing Sorting Algorithms

In this section, we review some existing sorting algorithms that we included in our tests.

A.1 Randomized Shellsort

The first existing sorting algorithm we review is the randomized Shellsort of Goodrich [10],
which we give in Algorithm 4. This algorithm is data oblivious.

Algorithm 4 Random-Shellsort(A = {a0, a1, . . . , an−1}).

1 for o = n/2, n/22, n/23, . . . , 1 do
2 Let Ai denote subarray A[io .. io + o− 1], for i = 0, 1, 2, . . . , n/o− 1.
3 begin a shaker pass
4 Region compare-exchange Ai and Ai+1, for i = 0, 1, 2, . . . , n/o− 2.
5 Region compare-exchange Ai+1 and Ai, for i = n/o− 2, . . . , 2, 1, 0.
6 begin an extended brick pass
7 Region compare-exchange Ai and Ai+3, for i = 0, 1, 2, . . . , n/o− 4.
8 Region compare-exchange Ai and Ai+2, for i = 0, 1, 2, . . . , n/o− 3.
9 Region compare-exchange Ai and Ai+1, for even i = 0, 1, 2, . . . , n/o− 2.

10 Region compare-exchange Ai and Ai+1, for odd i = 0, 1, 2, . . . , n/o− 2.

A.2 Annealing Sort

The next existing sorting algorithm we review is the annealing-sort method of Goodrich [11],
which we review in Algorithm 5. This algorithm is also data oblivious.

Algorithm 5 Annealing-Sort(A = {a0, a1, . . . , aN−1}, n, T, R).

1 for j = 1, 2, . . . , t do
2 for i = 1, . . . , n− 1 do
3 for k = 1, 2, . . . , rj do
4 Let s be a random integer in the range [i + 1, min(n, i + Tj)]
5 if A[i] > A[s] then
6 Swap A[i] and A[s]

7 for i = n, n− 1, . . . 2 do
8 for k = 1, 2, . . . , rj do
9 Let s be a random integer in the range [max(1, i− Tj), i− 1]

10 if A[s] > A[i] then
11 Swap A[i] and A[s]



R. Afshar, M. Dillencourt, M. T. Goodrich, and E. Ozel 8:17

A.3 Riffle Sort

We include pseudo-code for the riffle-sort method of Geissman, Leucci, Liu, and Penna [8],
which we review in Algorithm 6, for k = (log n)/2 and γ = 2020. The pseudo-code
uses a subroutine test(x, v) (see [8], Definition 1), which checks whether some element x

approximately belongs to the interval pointed to by some node v in the noisy binary search
tree, which is the main place where this algorithm is not data oblivious.

Algorithm 6 Riffle-Sort(A = {a0, a1, . . . , an−1}).

1 T0, T1, . . . , Tk ← Partition(A)
2 S0 ←WindowSort(T0,

√
n, 1)

3 for j = 1, . . . , k + 1 do
4 Si ←Merge(Si, Ti−1)
5 Si ←WindowSort(Si, 9γ log n, 1)
6 return Sk+1
7

8 Partition(A) :
9 for i = k, . . . , 1 do

10 Ti ← 2i−1√n elements chosen u.a.r. from A \ {Ti+1, . . . , Tk}
11 T0 ← remaining

√
n elements in A

12 return T0, . . . , Tk

13

14 Merge(A, B) :
15 foreach x ∈ B do
16 rankx ← NoisyBinarySearch(A, x)
17 Insert simultaneously all elements x ∈ B according to rankx into A
18 return A

19

20 NoisyBinarySearch(A, x) :
21 Construct noisy binary search trees T0, T1 as described in [8], section 3.1.
22 for j = 0, 1 do
23 t← 7⌊log |A|⌋
24 curr ← Tj .root

25 while t > 0 do
26 if curr is a leaf of Tj then
27 return curr

28 Call test(x, c) for each child c of node curr.
29 if exactly one of the calls pass for some child node c then
30 curr ← c

31 else
// all tests have failed

32 curr ← curr.parent

33 t← t− 1

34 return an arbitrary index // both walks have timed out

SEA 2023



8:18 Noisy Sorting Without Searching

A.4 Well-known Sorting Algorithms
For the sake of completeness, we also include pseudo-code for the well-known insertion-sort,
quick-sort, and Shellsort algorithms, in Algorithm 7. None of these three algorithms are
data oblivious. One can modify insertion-sort to be data oblivious, however, by continuing
the compare-and-swap inner loop process to the beginning of the array in every iteration.
Likewise, the Shellsort algorithm can also be modified to be data oblivious in the same
manner, since its inner loop is essentially an insertion-sort carried out across elements
separated by the gap distance in each iteration.

Algorithm 7 Well-known sorting algorithms, assuming the input array, A, is of size n

and indexed starting at 0. We sort A by calling Insertion-Sort(A, n), Quick-sort(A, 0, n − 1),
or Shell-sort(A, n, G), where G is a non-increasing gap sequence of positive integers less
than n, such as the Pratt sequence [26], which consists of all products of powers of 2 and 3
less than n.

Insertion-sort(A, n):
for i← 1, . . . , n− 1 do

j ← i

while j > 0 and A[j − 1] > A[j] do
Swap A[j] and A[j − 1]
j ← j − 1

Quick-sort(A, l, h):
if l < h then

Choose x uniformly at random from the subarray A[l..h]
Partition A into A[l..p− 1], A[p], and A[p + 1..h], where A[i] < x for i ∈ [l, p− 1],
A[p] = x, and A[i] ≥ x for i ∈ [p + 1, h] (if these subarrays exist)

Quick-sort(A, l, p− 1)
Quick-sort(A, p + 1, h)

Shell-sort(A, n, G):
foreach g ∈ G do

for i← g, . . . , n− 1 do
j ← i

while j ≥ g and A[j − g] > A[j] do
Swap A[j] and A[j − g]
j ← j − g



Optimizing over the Efficient Set of a
Multi-Objective Discrete Optimization Problem
Satya Tamby #

Université Paris Dauphine, PSL Research University, LAMSADE, France

Daniel Vanderpooten1 #

Université Paris Dauphine, PSL Research University, LAMSADE, France

Abstract
Optimizing over the efficient set of a discrete multi-objective problem is a challenging issue. The
main reason is that, unlike when optimizing over the feasible set, the efficient set is implicitly
characterized. Therefore, methods designed for this purpose iteratively generate efficient solutions
by solving appropriate single-objective problems. However, the number of efficient solutions can be
quite large and the problems to be solved can be difficult practically. Thus, the challenge is both to
minimize the number of iterations and to reduce the difficulty of the problems to be solved at each
iteration.

In this paper, a new enumeration scheme is proposed. By introducing some constraints and
optimizing over projections of the search region, potentially large parts of the search space can be
discarded, drastically reducing the number of iterations. Moreover, the single-objective programs to
be solved can be guaranteed to be feasible, and a starting solution can be provided allowing warm
start resolutions. This results in a fast algorithm that is simple to implement.

Experimental computations on two standard multi-objective instance families show that our
approach seems to perform significantly faster than the state of the art algorithm.

2012 ACM Subject Classification Applied computing → Multi-criterion optimization and decision-
making; Theory of computation → Integer programming

Keywords and phrases discrete optimization, multi-objective optimization, non-dominated set,
efficient set

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.9

1 Introduction

For problems involving multiple objectives, solutions of interest are efficient solutions for
which there is no other solution which dominates it, meaning that it is at least as good on
all objectives and strictly better on at least one objective. The resulting efficient set is often
of large cardinality for multi-objective discrete problems, and in particular multi-objective
combinatorial optimization (MOCO) problems. In order to discriminate among efficient
solutions, a natural approach is to optimize, over the efficient set, a value function Φ which
represents a major objective or the preferences of a specific decision maker. A special case
of interest is the determination of the nadir point which, when considering objectives to be
minimized, corresponds to the worst values achieved by efficient solutions for each objective.
This valuable information allowing a decision maker to better appreciate the values that
he/she could expect, can indeed be seen as maximizing independently each objective function
over the efficient set.

When the function Φ to be optimized guarantees to return an efficient solution (e.g. when
Φ is a positively weighted sum of the objective functions), optimizing Φ over the efficient
set can be performed by optimizing Φ over the feasible set. In general, however, optimizing

1 corresponding author

© Satya Tamby and Daniel Vanderpooten;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 9; pp. 9:1–9:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:satya.tamby@lamsade.dauphine.fr
https://orcid.org/0000-0002-3310-272X
mailto:daniel.vanderpooten@lamsade.dauphine.fr
https://orcid.org/0000-0002-5934-0603
https://doi.org/10.4230/LIPIcs.SEA.2023.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 Optimizing over the Efficient Set of a Multi-Objective Discrete Optimization Problem

Φ directly over the feasible set will return a dominated solution. The difficulty stems from
the fact that, unlike the feasible set, the efficient set is not explicitly defined by a set of
constraints.

A trivial approach consists of enumerating the entire efficient set, computing the image
of each solution through function Φ before finding the optimal one. However, as mentioned
before, this is not a convenient approach since computing the efficient set can be intractable
due to its large cardinality. For this reason, most approaches, including ours, try to find an
optimal solution by enumerating the smallest possible subset of efficient solutions.

After stating the problem formally in Section 2, we briefly review the literature indicating
the positioning of our approach among existing approaches (Section 3). We then state some
preliminary results (Section 4) before presenting our algorithm in Section 5. Experimental
results on two standard MOCO problems are then reported in Section 6. Some conclusions
and perspectives are finally presented.

2 Problem statement

In the following, vectors are written in bold contrarily to scalars. Components of vectors are
specified as indices.

2.1 Basic definitions and notations
Given a discrete set X of feasible solutions, defined by constraints on n decision variables,
and p objective functions or criteria f = (f1, . . . , fp),

we consider the following multi-objective problem:

(MOP)
{

min f(x) = (f1(x), . . . , fp(x))
s.t. x ∈ X

For any feasible solution x ∈ X , its image y = f(x) is referred to as a feasible point and
Y = f(X ) denotes the set of feasible points. In this setting Rn and Rp, will be referred to as
the decision space and the objective space, respectively.

Given p dimensional points in Rp, we consider the following binary relations; they are
respectively referred to as (Pareto) dominance, strong dominance and weak dominance:

y ⪯ y′ ⇐⇒
{

yi ≤ y′
i ∀i ∈ {1, . . . , p}

y ̸= y′

y ≺ y′ ⇐⇒ yi < y′
i ∀i ∈ {1, . . . , p}

y � y′ ⇐⇒ yi ≤ y′
i ∀i ∈ {1, . . . , p}

The set YN , which contains the points that are non-dominated, is defined by: YN = {y ∈
Y,∄y′ ∈ Y, y′ ⪯ y}. The subset of feasible solutions that lead to a non-dominated point is
referred to as the efficient set and is denoted by XE = f−1(YN ). It should be observed that
several efficient solutions may correspond to the same non-dominated point. Solving problem
(MOP) is then usually understood as determining YN and providing one efficient solution
associated with each non-dominated point in YN . Many algorithms have been proposed for
solving problem (MOP) in the discrete case including [9, 13, 12, 6, 2, 14]. As will be seen in
Section 3, algorithms for optimizing over the efficient set have been strongly influenced by
these algorithms.

Finally, y−k ∈ Rp−1 denotes the projection of y in the direction k i.e. the point y where
component k has been omitted, that is y−k = (y1, . . . , yk−1, yk+1, . . . , yp).



S. Tamby and D. Vanderpooten 9:3

2.2 Problem statement
Given a function Φ : X → R to be minimized, the problem of optimizing Φ over the efficient
set of X can be stated as follows:

(MOPE)
{

min Φ(x)
s.t. x ∈ XE

The difficulty of this problem stems from the fact that XE is not characterized explicitly,
i.e. as a set of constraints. Note that under certain assumptions on Φ, this problem amounts
to optimizing over the feasible set, making the problem much simpler. In particular, this
is the case when the optima of Φ are guaranteed to be non-dominated, as stated later in
Theorem 2. In general, however, optimizing over the feasible set returns a solution which is
not efficient and provides a lower bound on Φ which may be very far from the optimal value.

3 Related works and contribution of this paper

Approaches optimizing over the efficient set usually rely on the concept of search region that
has been formalized in [8, 4], which is described in Section 4.1. Informally, the search region
associated to a set of points N corresponds to the subset of the objective space containing
points not dominated by any point in N .

Most methods dealing with the discrete case for problem (MOPE) follow the same general
scheme. They iteratively minimize Φ over the current search region to obtain a candidate
point y. Since y is potentially dominated, an additional effort is required to check the
Pareto-optimality of the candidate. This step is usually performed by solving a program
leading to a point y′ ∈ YN that dominates y. Among all efficient solutions x′ corresponding
to y′, i.e. such that x′ ∈ f−1(y′), one optimizing function Φ is selected and retained if it
improves the current best value of Φ. Convergence is reached when there is no feasible point
in the current search region or when the solution of the first phase is non-dominated.

The evolution of the proposed methods for optimizing over the efficient set of a discrete
multi-objective problem (problem (MOPE) ) follows the evolution of the proposed methods
for generating the non-dominated set of a discrete multi-objective problem (problem (MOP) )
and is actually related to the evolution of the way of representing the search region.

The oldest methods for solving problem (MOP) , such as [9, 13], used a complete and
implicit representation of the search region. This involves imposing constraints stating that
the new non-dominated point to be generated should improve on at least one objective with
respect to all non-dominated points previously generated. This may be achieved by adding
disjunctive constraints as shown in [13]. While quite easy to implement, the main drawback
of this approach is the growth of the number of constraints which makes it impossible to solve
other than small size instances. Similarly, the oldest methods for solving problem (MOPE) ,
such as [5, 3] use a complete and implicit representation of the search region, with the same
drawbacks as for problem (MOP) .

The current methods for solving problem (MOP) resort to a decomposition of the search
region into a union of search zones which allows solving at each iteration problems of constant
size testing the existence of new non-dominated points in a search zone. The clear advantage
is that the required optimization is relatively fast. The corresponding algorithms, such as
[12, 6, 2, 14], mostly differ on how search zones are defined (note that sometimes a superset
of the search region is stored), how search zones are explored (i.e. which search zone should
be explored first and how) and how the search region is updated (i.e. how to modify the
search zones so as to remove the part dominated by a new point) - see [14] for more details.

SEA 2023



9:4 Optimizing over the Efficient Set of a Multi-Objective Discrete Optimization Problem

Following this evolution, the most recent algorithms for solving problem (MOPE) resort
to a decomposition of the search region, and were often proposed by the same authors who
adapted their decomposition approach to problem (MOPE) [1, 11] or to its special case of
determining the nadir point [10, 7]. Similarly the algorithm proposed in this paper can be
seen as an adaptation of our previous algorithm for problem (MOP) presented in [14]. While
preserving the positive features of our previous approach (the definition of rules allowing
many search zones to be discarded without exploring them, the guarantee that the required
optimization problems are feasible and the existence of an initial feasible solution provided to
the solver, which considerably speeds up the solution times,...), our adaptation also includes
new positive features specific to problem (MOPE) . In particular, by focusing on the iterative
improvement of function Φ, we define new rules to discard additional search zones which
cannot contain efficient solutions improving Φ.

4 Preliminary results

4.1 Search region, search zones
Given a set of N points, the corresponding search region denoted by S(N) corresponds to
the set of points that are not dominated by a point of N , i.e.

S(N) = {y ∈ Rp : ∄ȳ ∈ N, ȳ � y}

The search region, which describes the part of the objective space where undiscovered
non-dominated points may lie, can be defined as a union of search zones delimited by local
upper bounds (see [8] for more details). Denoting U(N) as the set of these local upper bounds,
we have then:

y ∈ S(N) ⇐⇒ ∃u ∈ U(N) : y ≺ u

When a new point y is found, the search region must be updated by removing the part
dominated by y. This is done by splitting each zone strictly dominated by y into p new
zones, referred to as children. Child i of u is ui = (u1, . . . , ui−1, yi, ui+1, . . . , up).

Updating the search region can lead to redundancies, i.e. zones that are included in
others. Since only maximal zones are required to represent the search region, [8, 4] have
proposed some methods to avoid generating redundant zones. One of these relies on the
identification of the defining points, that are the points in N which define the components of
the local upper bounds.

▶ Definition 1. A point y ∈ N is a defining point for the component i of u if and only if
yi = ui and y−i ≺ u−i.

The following result allows the efficient identification of maximal local upper bounds.

▶ Theorem 1 ([8]). u is maximal if there exists at least one defining point for every bounded
component of u.

In the following, Di(u) denotes the set of defining points of ui.

4.2 Finding a non-dominated point
A well known theorem in multi-objective optimization states that some functions are guar-
anteed to lead to a non-dominated point when being optimized. Such functions are called
strongly monotone and preserve the Pareto-dominance. More formally:



S. Tamby and D. Vanderpooten 9:5

▶ Definition 2. A function g : Y 7→ R is said to be strongly monotone if and only if

∀(y, y′) ∈ Y2, y ⪯ y′ =⇒ g(y) < g(y′)

▶ Theorem 2. Let g be a strongly monotone function and u ∈ Rp. Then, if problem
{min g(y) : y ∈ Y, y � u} admits y∗ as an optimal solution, then y∗ ∈ YN .

Proof. Due to the strong monotonicity of g, any point ȳ ∈ Y dominating y∗ should verify
g(ȳ) < g(y∗). Moreover, we have ȳ ⪯ y∗ � u, thus ȳ is feasible, contradicting the optimality
of y∗. ◀

5 Algorithm statement

The proposed algorithm iteratively explores the search region, trying to improve the current
best known value ϕ of function Φ while limiting the number of search zones to be explored,
and stops when the search region becomes empty.

5.1 Exploration of the search region
Since the search region is defined as a list of search zones, each zone is investigated independ-
ently. The exploration of the zone bounded by u is performed by solving integer programs
over a projection of u. All these programs are guaranteed to be feasible, and an initial
feasible solution can be provided in each case (warm start). These two properties usually
lead to faster solution times.

First, a lower bound over the value of Φ is computed by solving the program:

(Π(ℓ, u)) = {min Φ(x) : x ∈ X , f−ℓ(x) ≺ u−ℓ}

Note that, by Definition 1 and Theorem 1, if uℓ is bounded then any defining point in
Dℓ(u) is feasible for problem (Π(ℓ, u)), which allows us to optimize this problem using a
warm start. Even if the resulting optimal solution x̂ is not guaranteed to be efficient, it
provides a lower bound on Φ over the zone delimited by u, but also over some similar search
zones as stated by the following result.

▶ Proposition 3. Let u′ ∈ Rp be a local upper bound such that u′
−ℓ � u−ℓ for some

ℓ ∈ {1, . . . , p}. If (Π(ℓ, u)) admits an optimal solution x̂, then Φ(x̂) is a lower bound for any
feasible point in the zone delimited by u′.

Proof. Since u′
−ℓ � u−ℓ, every x ∈ X whose image by f is in the zone delimited by u′ is

feasible for Π(ℓ, u). ◀

Note that Proposition 3 applies for u in particular. Therefore, when the optimal value
of problem (Π(ℓ, u)) does not improve ϕ, all search zones delimited by local upper bounds
triggering Proposition 3 can be discarded. Otherwise, we proceed to the next step aiming at
identifying a candidate while possibly discarding other search zones.

For this purpose, we look for a solution that minimizes fℓ over the same projection, while
improving ϕ. This is performed by solving:

(P (ℓ, u)) = {min fℓ(x) : x ∈ X , f−ℓ(x) ≺ u−ℓ, Φ(x) < ϕ}

Observe that, at this stage, the optimal solution returned by problem (Π(ℓ, u)) can be
used as a warm start for problem (P (ℓ, u)). This program does not necessarily return an

SEA 2023



9:6 Optimizing over the Efficient Set of a Multi-Objective Discrete Optimization Problem

efficient solution due to the additional constraint over the value of Φ. It provides however a
lower bound on objective fℓ over all efficient solutions that improve the estimation over the
projection. The following result exploits this property in order to discard some search zones.

▶ Proposition 4. Let u′ ∈ Rp be a local upper bound such that u′
−ℓ � u−ℓ for some

ℓ ∈ {1, . . . , p}. If (P (ℓ, u)) yields a solution x̄ such that u′
ℓ ≤ fℓ(x̄), then no point in the

zone delimited by u′ improves ϕ which can thus be discarded.

Proof. Any solution x that is feasible for P (ℓ, u′) is also feasible for P (ℓ, u). Thus, we have
u′

ℓ ≤ fℓ(x̄) ≤ fℓ(x), meaning that f(x) cannot belong to the zone bounded by u′. Due to
the constraint Φ(x) < ϕ in program (P (ℓ, u)), the image by f of any improving solution
cannot belong to this zone. ◀

As before, Proposition 4 applies for u in particular.
While solution x̄ of (P (ℓ, u)) improves ϕ, its efficiency is not guaranteed. Therefore, we

look for an efficient solution dominating x̄, by solving the following program that optimizes a
strongly monotone function (guaranteeing efficiency by Theorem 2) and discriminates among
the resulting optimal solutions by optimizing Φ.

(OptEff) = {lexmin
{

p∑
i=1

fi(x), Φ(x)
}

: x ∈ X , f(x) � f(x̄)}

Note that x̄ is feasible for this problem and can thus be used as a warm start. The solution
x∗ of problem (OptEff) while being efficient is no longer guaranteed to improve ϕ.

It is important to observe that the search region is reduced at each iteration. Indeed,
at least u is discarded by application of Proposition 3 or 4, or a new non-dominated point
y∗ = f(x∗) is found in the zone bounded by u and the region it dominates is thus removed
(by splitting the zones y∗ belongs to). The convergence of the resulting algorithm (see
Algorithm 1) is therefore guaranteed under standard conditions ensuring that XE is finite,
trivially satisfied in particular for MOCO problems.

5.2 Updating the search region
Each time a non-dominated point y∗ = f(x∗) is found, the search region must be updated by
removing the part dominated by y∗. The basic operation is described in [8] and is performed
in two steps. First, the zones y∗ belongs to must be split by replacing the corresponding
local upper bounds u by their p children ui, i ∈ {1, . . . , p}. Second, the search zones that
are redundant, i.e. included in others, must be discarded. Moreover, by application of
Propositions 3 and 4, additional zones can be ignored.

We associate to each local upper bound u a lower bound on Φ denoted by lΦ(u). This
lower bound is iteratively updated each time Proposition 3 can be applied, i.e. each time
Π(ℓ, u′) is solved for a zone u′ such that u−ℓ � u′

−ℓ. If the lower bound of a search zone is
worse than ϕ, the zone is discarded.

It is also important to notice that Propositions 3 and 4 can be triggered at further
iterations. For this reason, we store the successive results of problems (Π(ℓ, u)) and (P (ℓ, u))
in archives denoted by AΠ and AP , respectively. Entries in AΠ are 3-uples of the form
(u, ℓ, Φ(x̂)) and entries in AP are 3-uples of the form (u, ℓ, fℓ(x̄)). Before adding a new child
v, the archives are consulted. If Propositions 3 and 4 can be applied using an entry of AΠ
or AP , the child can be discarded. The use of balanced trees to store the content of each
archive allows us to perform efficient lookups since only lower bounds that are greater than
ϕ (for AΠ) or greater than vj for some j ∈ {1, . . . , p} (in AP ) are relevant.

This update procedure is described in Algorithm 2.



S. Tamby and D. Vanderpooten 9:7

5.3 Selecting a search zone
To increase the impact of Propositions 3 and 4, we want to prioritize maximal projections of
local upper bounds, i.e. we want to select u and ℓ such that there is no local upper bound
u′ such that u−ℓ � u′

−ℓ. Moreover, we want to select ℓ such that uℓ is bounded in order to
exploit Theorem 1 to provide a defining point of uℓ as a starting solution for (Π(ℓ, u)), which
is always possible except at the first iteration.

For this reason, we suggest to compute the volume of the projection:

h(u, ℓ) =
p∏

i=1
i ̸=ℓ

ui − yI
i

where yI denotes the ideal point of (MOP) , which can be obtained by optimizing independ-
ently each objective function fi over X .

Then, we select the projection maximizing this volume, among the current set U of local
upper bounds:

(u∗, ℓ) = argmax u∈U
i∈{1,...,p}

{h(u, i)}

Algorithm 1 Optimization over the efficient set.

Input :X , f , Φ
Output : ϕ, xopt

/* Initialize the estimation of Φ, the set of non-dominated points,
the list of upper bounds and the archives */

1 ϕ←∞, N ← ∅, U ← {(∞, . . . ,∞)}, AΠ ← ∅, AP ← ∅
2 while U ̸= ∅ do
3 (u∗, ℓ)← argmax u∈U

i∈{1,...,p}
{h(u, i)}

4 x̂← argmin {Φ(x) : x ∈ X , f(x)−ℓ ≺ u∗
−ℓ}

5 AΠ ← AΠ ∪ {(u∗, ℓ, Φ(x̂))}
6 if Φ(x̂) ≥ ϕ then
7 U ← U \ {v ∈ U , v−ℓ � u∗

−ℓ, vℓ ≥ fℓ(x̂)}
8 else
9 x̄← argmin {fℓ(x) : x ∈ X , f−ℓ(x) ≺ u∗

−ℓ, Φ(x) < ϕ}
10 x∗ ← arglexmin {

∑p
i=1 fi(x), Φ(x) : x ∈ X , f(x) � f(x̄)}

11 N ← N ∪ {x∗}
12 if Φ(x∗) < ϕ // Updating the estimation
13 then
14 ϕ← Φ(x∗), xopt ← x∗

15 update(U , ϕ, u∗
−ℓ, Φ(x̂), fℓ(x̄), x∗, f(x∗))

16 AP ← AP ∪ {(u∗, ℓ, fℓ(x̄))}

6 Computational experiments

The evaluation of our algorithm (referred to as TV in the following), is performed using
instances of standard MOCO problems where Φ is a linear combination of the decision

SEA 2023



9:8 Optimizing over the Efficient Set of a Multi-Objective Discrete Optimization Problem

Algorithm 2 Updating the search region.

Input :U , the search region to be updated
ϕ, the value of the best known solution
u∗

−ℓ, the explored projection
Φ(x̂), the result of Π(ℓ, u∗)
ȳℓ, the result of P (ℓ, u∗)
x∗ and y∗, the efficient solution and its associated point

Output :U , the updated search region
1 children← ∅

/* Computing the maximal children */
2 foreach u ∈ U do
3 if y∗ ≺ u then
4 U ← U \ {u}
5 foreach i ∈ {1, . . . , p} do
6 ui ← (u1, . . . , ui−1, y∗

i , ui+1, . . . , up)
/* Computing the defining points of each bounded component */

7 Dj(ui)← {y ∈ Dj(u), yi < y∗
i }, ∀j ∈ {1, . . . , p}, ui

j ̸=∞
8 Di(ui)← {f(x∗)}
9 if Dj(ui) ̸= ∅, ∀j ∈ {1, . . . , p}, ui

j ̸=∞ // The child is maximal
10 and ∄(v, j, opt) ∈ AΠ : ui

−j ⪯ v−j , opt ≥ ϕ // No archived problem
triggers Proposition 3

11 and ∄(v, j, opt) ∈ AP : ui
−j ⪯ v−j , opt ≥ ui

j // No archived problem
triggers Proposition 4

12 then
13 children← children ∪ {ui}

14 else if y∗ � u then
/* y∗ may be a new defining point for u */

15 Dj(u)← Dj(u) ∪ {y∗} ∀j ∈ {1, . . . , p}, y∗
−j ≺ u−j

16 U ← U ∪ children
/* Application of the reduction rules */

17 foreach u ∈ U do
18 if u−ℓ � u∗

−ℓ then
19 if ȳℓ ≥ uℓ then

/* Proposition 4 */
20 U ← U \ {u}
21 else

/* Proposition 3 */
22 lΦ(u)← max {lΦ(u), Φ(x̂)}

23 if lΦ(u) ≥ ϕ then
24 U ← U \ {u} // The lower bound is worse than the current

estimation



S. Tamby and D. Vanderpooten 9:9

variables, as done for most other algorithms. Moreover we propose to compare TV with a
state of the art algorithm. Natural candidates are the most recent algorithms which were
themselves compared to previous ones and shown to achieve the best performances. The two
most recent algorithms are [1, 11]. Comparisons in [1] report significantly better results with
respect to the algorithm proposed in [5]. Comparisons in [11], for which no implementation
is available, report contrasted results in particular between algorithms presented in these two
papers. Moreover, algorithms in [11] deal with a special case where function Φ is a weighted
combination of the objectives, with at least one negative weight. Therefore, we selected the
algorithm proposed in [1] (referred to as BCS in the following) as a reference algorithm,
using the C++ implementation provided by the authors.

Experiments have been conducted on a Linux NixOS virtual machine (AMD EPYC 7702
64-Core) running at 2000 Mhz and having 32 G of RAM. The experiments are restricted to
run on a single thread, but without memory limit (less than 32G). The underlying discrete
solver is IBM Cplex 22.10. Our code is written using the Haskell programming language and
a handcrafted API for Cplex. This code is available online2. If an instance takes more than
two hours to be solved, the tested approach is considered to have timed out.

6.1 Instances
Our approach has been validated on two sets of instances that are described in this section.
In each instance, the function Φ to be minimized is randomly generated in a similar way as
the objective functions.

6.1.1 MOKP
Given a set of n items, each item i having p profit values vj

i , j ∈ {1, . . . , p} and a weight
wi, the multi-objective knapsack problem (MOKP) consists of selecting a subset of items
considering the total values on each objective, without exceeding a certain weight capacity
W . This problem can be stated as:

(MOKP )


max fj(x) =

∑n
i=1 vj

i xi ∀j ∈ {1, . . . , p}
s.t.

∑n
i=1 wixi ≤W

xi ∈ {0, 1} i ∈ {1, . . . , n}

Coefficients vj
i and wi are uniformly sampled in {1, . . . , 100}, and W is set to

∑n

i=1
wi

2 .
10 instances of size n = 100 and p = 3, 4, 5 have been generated.

6.1.2 MOAP
Given n tasks to be performed on n machines and p costs cj

ik of assigning task i to machine
k, the multi-objective assignment problem consists of determining an assignment considering
the total cost on each objective. This problem can be stated as:

(MOAP )


min

∑n
i=1

∑n
k=1 cj

ikxik ∀j ∈ {1, . . . , p}
s.t.:

∑n
i=1 xik = 1 k ∈ {1, . . . , n}∑n
k=1 xik = 1 i ∈ {1, . . . , n}

xik ∈ {0, 1} i ∈ {1, . . . , n}, k ∈ {1, . . . , n}

2 https://github.com/tambysatya/EfficientSetOptmizer

SEA 2023

https://github.com/tambysatya/EfficientSetOptmizer


9:10 Optimizing over the Efficient Set of a Multi-Objective Discrete Optimization Problem

(a) p = 3. (b) p = 4.

(c) p = 5.

Figure 1 Performance profiles on multi-objective knapsack problem (higher is better).

Coefficients cj
ik are uniformly sampled in {1, . . . , 25}. 10 instances of size n = 30 and p = 3, 4

have been generated.

6.2 Analysis
We first propose a comparative analysis of the CPU time required by BCS and TV on both
families of instances. Performance profiles are reported in Figures 1 and 2. These plots
represent the percentages of instances solved in less than t seconds, for t ≤ 7200s. We can
see that TV clearly outperforms BCS on both MOKP and MOAP instances. In particular,
on the tri-objective MOKP and on all MOAP instances, TV solves each instance faster than
the most fastly solved instance by BCS. In addition, BCS is unable to solve any instance of
MOAP with 4 objectives and two instances of MOKP with 5 objectives while TV solves all
of them in less than two hours. For the MOKP with 4 objectives, TV solves all instances in
less than 500 seconds while BCS solves only 2 of these in this timelapse.

Second, BCS and TV are evaluated according to several measures in Tables 1 and 2. For
both algorithms, the average cpu-time, number of iterations and the number of generated
non-dominated points are presented. Additional information is reported for TV : the maximum
and average size of the search region, the percentage of zones that are discarded by reduction
rules induced by Propositions 3 and 4 and using the archives.

The average CPU time spent on each test set obviously matches the observations made
from the performance profiles, validating the performance of TV against BCS, and will thus
not be discussed. The number of iterations required to compute the optimum for each test
set also shows that our approach converge faster. These two measures are inter-related,
especially since each iteration of BCS involves solving problems with disjunctive constraints
which are likely more difficult to be optimized and which can be infeasible while TV solves



S. Tamby and D. Vanderpooten 9:11

(a) p = 3. (b) p = 4.

Figure 2 Performance profiles on multi-objective assignment problem (higher is better).

Table 1 Performance measures for MOKP

mean
p n CPU (s) #It |N | |U|max |U|avg Reductions (%) Archive (%)
3 100 TV 16.9 218.3 172.7 91.8 44.67 27.65 0.50

BCS 85.8 287.0 155.5
4 100 TV 135.8 1003.8 560.5 1237.4 696.02 14.63 0.88

BCS 1457.1 1242.7 436.3
5 100 TV 720.3 3123.2 1071.9 12493.2 6852.99 8.38 0.86

BCS -

Table 2 Performance measures for MOAP.

mean
p n × n CPU (s) #It |N | |U|max |U|avg Reductions (%) Archive (%)
3 30 × 30 TV 169.8 561.9 475.5 177.3 93.78 25.41 0.32

BCS 2134.0 2042.7 1020.5
4 30 × 30 TV 3396.0 5140.9 3267.5 10609.4 5319.58 13.88 0.33

BCS -

SEA 2023



9:12 Optimizing over the Efficient Set of a Multi-Objective Discrete Optimization Problem

only feasible problems that are augmented with budget constraints only. Regarding MOKP,
we can observe that, while converging faster than BCS, TV generates a slightly larger number
non-dominated points (for p = 3, 4). This is no longer true for MOAP, where BCS requires
the generation of about four times more non-dominated points (for p = 3).

To perform a more detailed analysis of TV, several points must be discussed. First, the
maximum and average size of the current search region remains “reasonable”, suggesting
that time is mainly spent in exploring zones and justifying our aim of reducing the number
of calls to the underlying discrete solver and helping it by providing feasible problems for
which initial feasible solutions are also provided (warm start). Second, we can see that
reduction rules are quite efficient in particular for tri-criteria case where about a quarter
of the children zones are discarded, both for MOKP and MOAP. As expected given the
conditions for triggering these rules, this proportion decreases for 4 objectives (around 15%)
to become less than 10% when p = 5. Conversely, despite being significantly smaller, the
proportion of zones that are discarded using the archives is rather stable when the number
of objectives grows.

7 Conclusion

While strongly relying on mechanisms developed in [14] that already proved quite successful
for problem (MOP) (reduction rules to reject zones without probing them, or providing an
initial solution for every integer program to be solved), this algorithm, proposed for problem
(MOPE) , takes advantage of new results, notably the computation of local lower bounds
on the function to be minimized over the efficient set. Additional reduction rules are thus
proposed, allowing pruning the search space and converging faster. Our experiments on
the multi-objective knapsack and assignment problems show promising results since this
approach seems to perform significantly better than the state of the art algorithms.

Besides technically improving the current method, further works may concern studying
the optimization of specific functions. For instance, a natural extension would be to apply
this method to the computation of the nadir point, whose components are the worst possible
values taken by the non-dominated points. Our perspective in this respect is to make use of
specific properties of this point so as to adapt our approach to this problem.

References
1 Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. A new method for optimizing a

linear function over the efficient set of a multiobjective integer program. European Journal of
Operational Research, 260(3):904–919, 2017.

2 Natashia Boland, Hadi Charkhgard, and Martin W. P. Savelsbergh. The L-shape search method
for triobjective integer programming. Mathematical Programming Computation, 8(2):217–251,
2016.

3 Djamal Chaabane and Marc Pirlot. A method for optimizing over the integer efficient set.
Journal of Industrial and Management Optimization, 6(4):811–823, 2010.

4 Kerstin Dächert, Kathrin Klamroth, Renaud Lacour, and Daniel Vanderpooten. Efficient
computation of the search region in multi-objective optimization. European Journal of
Operational Research, 260(3):841–855, 2017.

5 Jesus Jorge. An algorithm for optimizing a linear function over an integer efficient set. European
Journal of Operational Research, 195(3):98–103, 2009.

6 Gokhan Kirlik and Serpil Sayin. A new algorithm for generating all nondominated solutions
of multiobjective discrete optimization problems. European Journal of Operational Research,
232(3):479–488, 2014.



S. Tamby and D. Vanderpooten 9:13

7 Gokhan Kirlik and Serpil Sayin. Computing the nadir point for multiobjective discrete
optimization problems. Journal of Global Optimization, 62(1):79–99, 2015.

8 Kathrin Klamroth, Renaud Lacour, and Daniel Vanderpooten. On the representation of the
search region in multi-objective optimization. European Journal of Operational Research,
245(3):767–778, 2015.

9 Dieter Klein and Edward L. Hannan. An algorithm for the multiple objective integer linear
programming problem. European Journal of Operational Research, 9(4):378–385, 1982.

10 Murat Köksalan and Banu Lokman. Finding nadir points in multi-objective integer programs.
Journal of Global Optimization, 62(1):55–77, 2015.

11 Banu Lokman. Optimizing a linear function over the nondominated set of multiobjective
integer programs. International Transactions in Operational Research, 28(4):2248–2267, 2021.

12 Banu Lokman and Murat Köksalan. Finding all nondominated points of multi-objective integer
programs. Journal of Global Optimization, 57(2):347–365, 2013.

13 John Sylva and Alejandro Crema. A method for finding the set of non-dominated vectors
for multiple objective integer linear programs. European Journal of Operational Research,
158(1):46–55, 2004.

14 Satya Tamby and Daniel Vanderpooten. Enumeration of the nondominated set of multiobjective
discrete optimization problems. INFORMS Journal on Computing, 33(1):72–85, 2021.

SEA 2023





Solving Directed Feedback Vertex Set by Iterative
Reduction to Vertex Cover
Sebastian Angrick #

Hasso Plattner Institute,
Universität Potsdam, Germany

Ben Bals #

Hasso Plattner Institute,
Universität Potsdam, Germany

Katrin Casel #

Humboldt-Universität zu Berlin, Germany
Sarel Cohen #

The Academic College of Tel Aviv-Yaffo, Israel

Tobias Friedrich #

Hasso Plattner Institute,
Universität Potsdam, Germany

Niko Hastrich #

Hasso Plattner Institute,
Universität Potsdam, Germany

Theresa Hradilak #

Hasso Plattner Institute,
Universität Potsdam, Germany

Davis Issac #

Hasso Plattner Institute,
Universität Potsdam, Germany

Otto Kißig #

Hasso Plattner Institute,
Universität Potsdam, Germany

Jonas Schmidt #

Hasso Plattner Institute,
Universität Potsdam, Germany

Leo Wendt #

Hasso Plattner Institute,
Universität Potsdam, Germany

Abstract
In the Directed Feedback Vertex Set (DFVS) problem, one is given a directed graph G = (V, E) and
wants to find a minimum cardinality set S ⊆ V such that G − S is acyclic. DFVS is a fundamental
problem in computer science and finds applications in areas such as deadlock detection. The problem
was the subject of the 2022 PACE coding challenge. We develop a novel exact algorithm for the
problem that is tailored to perform well on instances that are mostly bi-directed. For such instances,
we adapt techniques from the well-researched vertex cover problem. Our core idea is an iterative
reduction to vertex cover. To this end, we also develop a new reduction rule that reduces the number
of not bi-directed edges. With the resulting algorithm, we were able to win third place in the exact
track of the PACE challenge. We perform computational experiments and compare the running time
to other exact algorithms, in particular to the winning algorithm in PACE. Our experiments show
that we outpace the other algorithms on instances that have a low density of uni-directed edges.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases directed feedback vertex set, vertex cover, reduction rules

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.10

Supplementary Material Software (Source Code): https://doi.org/10.5281/zenodo.6645235
Software (Source Code): https://github.com/BenBals/mount-doom/tree/exact

archived at swh:1:dir:a8ce8a824241821bdff98f5380594c74d2d6c327

1 Introduction

In the Directed Feedback Vertex Set (DFVS) problem, we are given a directed graph
G = (V, E) and the objective is to find a minimum cardinality set S ⊆ V such that G − S is
acyclic. DFVS is a fundamental computational problem that appeared in Karp’s seminal
paper [19]. The problem is equivalent to the Feedback Arc Set (FAS) problem where
we want to delete edges instead of vertices i.e., there are reductions in both directions
that preserve the value of the solution and blow up the graph size only polynomially. Both

© Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Tobias Friedrich, Niko Hastrich,
Theresa Hradilak, Davis Issac, Otto Kißig, Jonas Schmidt, and Leo Wendt;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sebastian.angrick@student.hpi.de
mailto:ben.bals@student.hpi.de
mailto:katrin.casel@hu-berlin.de
https://orcid.org/0000-0001-6146-8684
mailto:sarelco@mta.ac.il
https://orcid.org/0000-0003-4578-1245
mailto:tobias.friedrich@hpi.de
https://orcid.org/0000-0003-0076-6308
mailto:niko.hastrich@student.hpi.de
https://orcid.org/0000-0002-3753-145X
mailto:theresa.hradilak@student.hpi.de
mailto:davis.issac@hpi.de
https://orcid.org/0000-0001-5559-7471
mailto:otto.kissig@student.hpi.de
https://orcid.org/0000-0002-9414-9206
mailto:jonas.schmidt@student.hpi.de
mailto:leo.wendt@student.hpi.de
https://doi.org/10.4230/LIPIcs.SEA.2023.10
https://doi.org/10.5281/zenodo.6645235
https://github.com/BenBals/mount-doom/tree/exact
https://archive.softwareheritage.org/swh:1:dir:a8ce8a824241821bdff98f5380594c74d2d6c327;origin=https://github.com/BenBals/mount-doom;visit=swh:1:snp:9c9371ceb6042dac4eea8f30787f84b80468d2ed;anchor=swh:1:rev:6cc7474166c92a9968e8ceeafeb6142bd382a50f
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


10:2 Solving Directed Feedback Vertex Set by Reduction to Vertex Cover

problems have applications in areas such as deadlock detection [13], compiler optimization [34],
program verification [31], VLSI chip design [5], Computer Aided Design (CAD) [23], and
chemical engineering [2].

From a theoretical point of view, DFVS is NP-hard, thus polynomial exact algorithms
are very unlikely. The currently best known theoretical runtime known in terms of input size
n for an exact algorithm is the O(1.9977n) algorithm by Razgon [28], only barely beating the
trivial O(2n) time brute-force algorithm. From the perspective of parameterized algorithms
(see [8] for an introduction to parameterized complexity), the current best fixed parameter
tractable algorithm for DFVS is a 4kk!nO(1) time algorithm by Chen et al. [7], where the
parameter k is the size of the directed feedback vertex set. The best known polynomial time
approximation algorithm known for DFVS is a O(log k log log k) approximation by Even et
al. [12].

From a practical point of view, there are only few recent exact algorithms that can be
used for large general instances. Historically, Smith and Walford [32] gave the first exact
algorithm for DFVS in 1975 but their algorithm can only handle small graphs [21]. There
are also a few branch and bound based exact algorithms. Chakradhar et al. [5] in 1995
gave a branch and bound exact algorithm using an ILP relaxation for finding DFVS of
flip-flop dependency graphs arising from sequential circuits. Orenstein et al. [25], also in
1995, used branch and bound to find optimal DFVS in digital circuit graphs and tested them
on ISCAS89 benchmarks. Lin and Jou [23] in 1999 gave an improved branch and bound exact
algorithm together with reduction rules, and experimentally evaluated them on the ISCAS89
benchmarks coming from CAD applications.

More recent exact algorithms use different techniques. Fleischer et al. [13] experimentally
evaluate Chen’s algorithm and some reduction rules. Based on their experiments, the
algorithm already becomes impractical when the solution size k is as small as 10. Baharev
et al. [2] gave an integer-program based exact algorithm for Feedback Arc Set that uses a
lazy enumeration of cycles, and can be also applied to DFVS. To apply an FAS algorithm to
DFVS, one can split each vertex into an in-vertex and out-vertex with a uni-directed edge
between them.

Some heuristic algorithms have been also developed for DFVS e.g, based on greedy
randomized adaptive search [26] (1998), markov chains [22] (2008), and local search [15]
(2013). We do not describe them in further detail as exact algorithms are the focus of this
work.

Perhaps also due to this lack of fast exact algorithms for DFVS, it was selected as the
problem for the PACE 2022 coding challenge [30].

A much more extensively studied problem, that was also subject of the PACE challenge
in 2019 [10], is Vertex Cover. It is closely related to other important problems such as
Maximum Clique, Maximum Independent Set, Odd Cycle Tansversal etc. Often, a
formulation in terms of vertex cover have been useful in solving these problems [24].

From a theoretical point of view, Vertex Cover is “easier” than DFVS, since there is
an easy reduction from Vertex Cover to DFVS that just replaces undirected edges with
bi-directional arcs. This is also reflected in the much better theoretical exact algorithms.
The current best exact algorithm measured with respect to the number of vertices n runs
in O(1.1996n) [35]. Also, just recently, the parameterized 1.2738knO(1) algorithm by Chen,
Kanj and Xia [6] was improved to 1.25298knO(1) by Harris and Narayanaswamy [17].

Also, and perhaps even more so, there are much more powerful practical solvers for
Vertex Cover than for DFVS. Vertex Cover has a straight forward ILP formulation
that can be then fed into commercial ILP solvers such as Gurobi and CPLEX. Akiba and



S. Angrick et al. 10:3

Iwata [1] gave a branch and reduce algorithm and showed it to be competitive with the
CPLEX solver. Faster solvers were developed as a result of the PACE 2019 challenge [10].
The winning solver is the WeGotYouCovered solver by Hespe et al. [18] which uses branch
and reduce and branch and bound. Later, Plachetta and van der Grinten [27] developed
a branch and reduce algorithm using a SAT solver that was competitive with the PACE
winner. Stallmann, Ho and Goodrich [33] enhanced the solver by Akiba and Iwata [1] using
targeted reductions depending on the instance profile. Also, vertex cover has extremely fast
heuristic solvers, e.g. [4]. Thus, our approach to DFVS is to take advantage of this wealth of
results for Vertex Cover.

In a recent ALENEX 2023 paper [20], Kiesel and Schidler describe their DAGer algorithm
for DFVS, which won the first place in the PACE 2022 challenge [29]. In a nuthsell, their
algorithm first applies an extensive set of preprocessing rules to reduce the size of the instance.
The reduced instance is then solved exactly using a modified SAT-solver. As initialization,
a set of clauses corresponding to cycles that need to be hit, is given. This set might not
be exhaustive. To ensure feasibility, the SAT-solver is modified to maintain a topological
ordering on the vertices and dynamically detect cycles and adding the corresponding clauses
to the problem. They refer to this approach as Cycle Propagation, which builds on the
idea that already a limited number of the constraints in a propositional encoding is usually
sufficient for finding an optimal solution, thus their algorithm starts with a small number of
constraints and cycle propagation adds additional constraints when necessary. Our approach
deviates from DAGer, as we describe in the following section.

Our Contribution

We develop a novel exact algorithm Mount-Doom for the DFVS problem. Our approach is
different from all the previous exact as well as heuristic approaches. We develop a method to
iteratively reduce DFVS to the Vertex Cover problem and exploit fast existing algorithms
for this problem. In order to strategically reduce to Vertex Cover, we also develop a new
reduction rule called SHORTONE that reduces the number of uni-directed edges.

With these strategies, Mount-Doom was able to secure third place in the exact track of
PACE 2022 challenge.

We perform experiments to compare our algorithm to the PACE winning solver DAGer [20,
29] and the state-of-the-art ILP based solver Sdopt [2] for DFAS. We use the complete set of
200 instances from the PACE competition as well as our own randomly generated instances,
and observe that in a fair share of the instances our running times are significantly better.
As characteristic of instances in which our algorithm performs better, we consider the density
of uni-directed edges. This measure can be seen as a distance to the DFVS instance being a
Vertex Cover instance. We show experimentally that when the density of uni-directed
edges is small then we are considerably faster than other algorithms in the PACE instances.

We also perform another set of experiments to demonstrate the utility of our new
reduction rule SHORTONE. Our experiments reveal that in many of the PACE instances
there is significantly more reduction in the instance size by using this new rule in addition to
the existing reduction rules. On our less structured set of generated graphs (Erdős-Rényi
graphs), we are more often outperformed by the competitors. This indicates that our
algorithm heavily takes advantage of structured input.

SEA 2023



10:4 Solving Directed Feedback Vertex Set by Reduction to Vertex Cover

2 Preliminaries

We use G = (V, E) to denote directed and undirected graphs. For any S ⊆ V we write G − S

for the graph obtained from G by deleting all vertices in S together with their adjacent edges.
With these notions, the Directed Feedback Vertex Set problem (DFVS for short) is the task
to find a minimum cardinality subset S ⊆ V such that G − S is acyclic.

We call an edge vw ∈ E bi-directed if wv ∈ E. Let PIE ⊆ E be the set of all bi-directed
edges and DIR = E \ PIE. We define G[PIE] to be the undirected graph obtained from G

by deleting all edges in DIR, and replacing any pair of bi-directed edges by an undirected
edge. Further, we define the graph G[DIR] = (V, DIR), the subgraph of G containing
only the not bi-directed edges. We call theses edges uni-directed. Therefore, we define the
uni-directed edge density of a graph as the number of uni-directed edges divided by the
number of possible edges

(|V |
2

)
. We use uv ∈ E to denote an uni-directed edge from u to v,

and {u, v} for a bi-directed edge.
For any v ∈ V , N+(v) denotes the set of outgoing neighbors of v, i.e. N+(v) = {u |

vu ∈ E}. Similarly, N−(v) denotes the set of incoming neighbors. We define the set of
bi-directed neighbors N(v) of v as the set of its neighbors in G[PIE], formally N(v) = {u |
uv ∈ E ∧ vu ∈ E}. Additionally, we call D ⊆ V a diclique, if D \ {u} ⊆ N(u) for each u ∈ D.

For v ∈ V , we define the graph obtained from G by shortcutting v as the graph G′ =
(V ′, E′) with vertex set V ′ = V \ {v} and edge set E′ = (E ∩ (V ′ × V ′)) ∪ (N−(v) × N+(v)).
Note that in the context of the DFVS problem, shortcutting v corresponds to the assumption
that v is not part of the solution.

3 Mount Doom Solver

As already mentioned, our overall idea is to profit from the plethora of results obtained for
the Vertex Cover problem. We do this both by adapting known reduction rules for and
also by a direct reduction to Vertex Cover.

3.1 Reduction to Vertex Cover
Our reduction to Vertex Cover relies on the simple but surprisingly powerful observation,
that any directed feedback vertex set has to in particular cover all bi-directed edges. In the
special case of a graph that only contains bi-directed edges, DFVS is equivalent to Vertex
Cover. More generally, one can observe the following relation to the underlying undirected
graph; recall that we defined G[PIE] to be the graph obtained from G by replacing bi-directed
edges by undirected edges, and then deleting the remaining directed edges.

▶ Observation 1. If S is a minimum vertex cover for G[PIE] and G − S is acyclic, then S

is a minimum feedback vertex set for G.

This observation implies that if we happen to find a feedback vertex set by solving the
Vertex Cover problem on G[PIE], then we have solved DFVS on G. On the other hand,
if such a minimum vertex cover S for G[PIE] is not a feedback vertex set for G, then there
exists a cycle in G[DIR] that is not covered by S. For our reduction, we add a clique gadget
to such cycles.

Formally, let G = (V, E) be an undirected graph and let C ⊆ V . Our goal is to create a
graph G′ such that that any minimum vertex cover for G′ is a vertex cover for G and also
contains a vertex in C. Let C be a set of r vertices c1, . . . , cr. For our clique gadget, we



S. Angrick et al. 10:5

(a) A cycle C in the graph G. (b) The clique c′
1, ..., c′

4 in G[P IE] + C.

Figure 1 An example reduction to vertex cover. Red denotes uni-directed and black denotes
bi-directed edges.

add r new vertices c′
1, . . . , c′

r to G, turn them into a clique, and add the edges {ci, c′
i} for all

1 ≤ i ≤ r. We denote this operation by G + C. See Figure 1 for an example application. We
first prove an exchange argument for vertex covers for G + C.

▶ Lemma 2. For any cycle C in G[DIR] and vertex cover S for G[PIE] + C, a vertex cover
S′ for G[PIE] + C with |S′| ≤ |S| and such that C ∩ S′ ̸= ∅ can be created in linear time.

Proof. Assume that S contains no vertices of C = {c1, . . . , cr}, as otherwise we are already
done. In order to cover the edges {ci, c′

i} for 1 ≤ i ≤ r, S then has to contain all vertices c′
i,

1 ≤ i ≤ r added by the clique gadget. To create S′ from S, we replace c′
1 by c1. This choice

of S′ obviously satisfies |S′| ≤ |S|. Further, S′ is also a vertex cover for G[PIE] + C, since
N(c′

1) = {c1, c′
2, . . . , c′

r} ⊆ S′ and thus all edges that were covered by S through c′
1 remain

covered by S′. ◀

With this exchange argument, we can assume that adding the clique gadget results in a
vertex cover for G[PIE] + C that contains at least one vertex from C. The overall idea of
our reduction to Vertex Cover is to iteratively add clique gadgets for so far not covered
cycles, until we find a feedback vertex set for the original graph.

Consider any set of cycles C = {C1, C2, . . . , Cq} in G[DIR]. Denote the graph resulting
from iteratively applying the clique gadget for each cycle in C by G[PIE] + C. Note that with
this gadgetry we add multiple disjoint sets C ′

i of new vertices. Formally, for Ci = {ci
1, . . . , ci

ri
},

we add new vertices C ′
i = {di

1, . . . , di
ri

}, add edges to turn C ′
i into a clique, and add edges

{ci
j , di

j} for all 1 ≤ i ≤ ri, for each 1 ≤ i ≤ q. For this iterative application of the clique
gadget, we observe the following.

▶ Lemma 3. For any set of C = {C1, C2, . . . , Cq} in G[DIR] and minimum vertex cover S

for G[PIE] + C, if G − S is acyclic, then S ∩ V is a minimum feedback vertex set for G.

Proof. Let S∗ be a minimum feedback vertex set for G. We claim that |S∗| ≥ |S ∩ V |, which
proves the lemma. Since S∗ is a feedback vertex set for G, it follows that S∗ is a vertex cover
for G[PIE], and contains at least one vertex from each cycle in C. (Note that any edge in
G[PIE] and any cycle in G[DIR] corresponds to a cycle in G that needs to be covered.)
Assume w.l.o.g. that S∗ contains vertex ci

1 for each Ci.
Let S∗

C be the set created from S∗ by adding di
2, . . . , di

ri
for each i, 1 ≤ i ≤ q. Observe

that S∗
C then is a vertex cover for G[PIE] + C. The vertices added from the C ′

i cover the
clique-edges among the C ′

i, and all edges {ci
j , di

j} with j ≥ 2. Since S∗ contains vertex ci
1,

also the edge {ci
1, di

1} is covered for each i.

SEA 2023



10:6 Solving Directed Feedback Vertex Set by Reduction to Vertex Cover

heuristic solver

for Vertex Cover

exact solver

for Vertex CoverS is DFVS

S is no DFVS

update C

S is DFVS

S is no DFVS

update C

return S

heuristic solver

for Vertex Cover

exact solver

for Vertex CoverS is DFVS

S is no DFVS

update C

S is DFVS

S is no DFVS

update C

return S

for Vertex Cover

exact solver

for Vertex Cover
solver needs

> 5 sec

S ∩ V is no DFVS

update C

S ∩ V
is DFVS

S ∩ V is DFVS

heuristic solver
return S ∩ V

S ∩ V is no DFVS

update C

Figure 2 Overview of the reduction to Vertex Cover.

Since S is a minimal vertex cover for G[PIE] + C, it follows that |S∗
C | ≥ |S|. At last, note

that S ∩ V contains at least ri − 1 out of the ri vertices in C ′
i for each i, since these build a

clique in G[PIE] + C that needs to be covered. Also, we added exactly ri − 1 out of the ri

vertices in C ′
i for each i to S∗ to create S∗

C .
Thus |S ∩ V | ≤ |S| −

∑q
i=1(ri − 1) ≤ |S∗

C | −
∑q

i=1(ri − 1) = |S∗|. ◀

Building from this idea, we iteratively choose new cycles and add their corresponding
clique gadgets, growing a set C. By using the exchange argument from Lemma 2 on the
vertex cover for G[PIE] + C, we are certain that this process converges to finding a directed
feedback vertex set for the original graph, at the latest when C contains all cycles in G.
We start with C = ∅, and iteratively do the following until we find a solution. Compute a
minimum vertex cover S for G[PIE] + C and use the exchange argument from Lemma 2 to
create a set that contains at least one vertex for each cycle in C. If S ∩ V is not a feedback
vertex set for G, we compute a set of vertex disjoint cycles in G[DIR] − S (simply with a
depth first search) and add them to C.

Since this iterative built up of C can result in multiple calls to a Vertex Cover solver,
we do the following. If the exact Vertex Cover solver takes more than five seconds, we
switch to a heuristic solver to find a set C that gives a feedback vertex set. (See Figure 2
for an overview of how we switch between solvers.) Then we run the exact Vertex Cover
solver only once on G[PIE] + C for this set C to find an optimal solution. In theory, it could
happen that the set C by the heuristic solver gives a feedback vertex set does not work for
the exact solver and we would have to iterate further, adding more cycles to C. To our
knowledge, this did not happen in our experiments.

3.2 Reduction Rules

Before reducing to Vertex Cover, we apply a number of reduction rules to shrink the
input. We adapt some reduction rules that were introduced for the Vertex Cover problem,
and also introduce a new rule that is tailored specifically for instances with many bi-directed
and few not bi-directed edges.

We can again use that any feedback vertex set in particular is a vertex cover for G[PIE]
and inherit the following reduction rules from [14] for Vertex Cover.

VC-DOME. Let u be isolated in G[DIR] such that N(u) \ {v} ⊆ N(v) for some v ∈ N(u)
(u is dominated by v in G[PIE]). Add v to the solution and delete it from G.



S. Angrick et al. 10:7

(a) Before application of SHORTONE. (b) After application of SHORTONE.

Figure 3 An example application of the SHORTONE reduction rule. Red denotes uni-directed
and black denotes bi-directed edges.

Degree 2 Fold. Let v, u ∈ V be two isolated vertices in G[DIR] (i.e. they are adjacent
only to bi-directed edges in G). Also, let v have degree two in G[PIE] with N(v) = {u, w}.
Add a new vertex t to G and connect t in such a way, that N+(t) = N+(w) ∪ N(u) and
N−(t) = N−(w) ∪ N(u) and remove u, v and w.

To unfold this reduction after a solution S is computed for the reduced graph do the
following. If t ∈ S, the solution to the original instance is (S \ {t}) ∪ {u, w}, and otherwise,
the solution to the original instance is S ∪ {v}.

Funnel Fold. Let v be isolated in G[DIR] and w ∈ N(v) such that N(v) \ w is a diclique.
Add C = N(v) ∩ N(w) to the solution and delete these vertices. Then add edges, such that
each x ∈ N(v) \ C is a bi-directed neighbor of every y ∈ N(w) \ C. Finally delete v and w.

To unfold this reduction after a solution S is computed for the reduced graph do the
following. If N(v) \ {w} ⊆ S, the solution to the original instance is S ∪ {w}, otherwise
S ∪ {v}.

Particularly for instances with low degree in G[DIR], we design the following reduction
rule to decrease the number of edges that are not bi-directed.

SHORTONE. Let v be a node with exactly one incoming edge uv and one outgoing edge vw

in G[DIR] such that N(v) ⊆ N(u) ∪ N(w) (any bi-directed neighbor of v is also a bi-directed
neighbor of u or w). Remove the edges uv and vw and add uw.

▶ Lemma 4. Reduction rule SHORTONE is correct.

Proof. Let G be the original graph, and G′ be the graph obtained from G by applying
SHORTONE. First consider any directed feedback vertex set S for G. If v ̸∈ S, then S is also
a solution for G′. If v ∈ S, assume S is not a solution for G′. Then u, w ̸∈ S since any cycle
that is present in G′ and not in G was introduced by SHORTONE and hence must use uw.
Since all bi-directed neighbors of v in G are also bi-directed neighbors of u or w in G, those
must all be included in S. Thus we can simply replace v by u (or w) and obtain a solution
for G′ of the same size as S.

Conversely, consider any solution S′ for G′ and assume that it is not a solution for G.
Thus G − S′ still contains a cycle C. Since S′ is a solution for G′, C has to contain uv or vw

since these are the only arcs deleted to create G′. Further, C cannot contain both uv and
vw, since G′ contains the added uw that could be used to turn C into a cycle in G′. Thus, C

has to contain edge of the form vx or xv for some x /∈ {u, w}. However, all possible choices
of x are bi-directed neighbors of v in G′, and are thus contained in S′. ◀

See Figure 3 for an example application of the SHORTONE reduction rule.

SEA 2023



10:8 Solving Directed Feedback Vertex Set by Reduction to Vertex Cover

Aside from these reduction rules imported or inspired by techniques developed for Vertex
Cover, we use and slightly alter some of those rules for DFVS.

These following two rules can be found in [22], where we do a slight novel alteration of
the second one.

PIE. If uv is an edge between different strongly connected components in G[DIR], then
delete uv.

Improved CORE. A vertex a is a core of a diclique, if the graph induced by a and its
neighbors is a diclique. Traditionally, one now deletes N(a) from G since if S′ is optimal for
G − N(v), S′ ∪ N(v) is optimal for G. We proceed differently and shortcut the node a if
N+(a) or N−(a) are dicliques. While this extension is easy to prove, it is, to the best of our
knowledge, novel.

As first obvious reduction rules that are always applied, all nodes with self loops are
collected into the solution and removed from the graph, and isolated nodes are removed as
well. Further we use the classical domination rule, formally.

DOME. An edge ab ∈ DIR is called dominated if all outgoing neighbors of b are also
outgoing neighbors of a or if all incoming neighbors of a are also incoming neighbors of b. It
is well known (see e.g. [9]) that such a dominated edge can safely be deleted.

3.3 Implementation Details
We fist only use the reduction rules Improved CORE and PIE, and deletion of self loops and
isolated nodes. If we do not completely solve the instance within five seconds, using only
these reductions, we proceed with all reduction rules listed above.

In both cases, if the instance is not solved after exhaustive application of all reduction
rules, we proceed with our clique gadget to reduce to Vertex Cover. To solve the Vertex
Cover instances G[PIE] + C, we initially reduce them using the kernelization procedure,
implemented by the winning solver of the 2019 PACE challenge [18]. For solving these
reduced instances heuristically, we use the local-search solver NuMVC by Cai et al. [4]. When
the heuristic solver has found a successful set of cycles C, we compute an exact minimal
vertex cover for G[PIE] + C. For this exact computation, we use the solver SAT-and-Reduce
by Plachetta and van der Grinten [27], which we augment by implementing better upper
bounds using the aforementioned local-search solver (SAT-and-Reduce internally uses the
SAT solver CaDiCaL by Biere et al. [3].)

4 Experiments

In this section we give the details of the computational experiments conducted to evaluate
our solver Mount-Doom.

4.1 Data
We evaluate both the effect of our new reduction rule SHORTONE and the overall solver on
two data sets. Firstly, we examine the performance on the public and private instances from
the PACE 2022 challenge. Those are designed to provide a wide range of graph types with
practical relevance [30].



S. Angrick et al. 10:9

Figure 4 Running time on PACE graphs by density of uni-directed edges.

Figure 5 Running time on Erdős-Rényi graphs by density of uni-directed edges.

Secondly, we evaluate on randomly generated graphs of varying sizes and densities. In
the usual Erdős-Rényi model the number of vertices is fixed and each possible edge is present
uniformly and independently at random with some constant probability [11]. Since we are
interested in the effect of the uni-directed edge density on the solver performance, we modify
this model as follows: For n ∈ N and p, q ∈ R+ s.t. p + q ≤ 1 generate a graph G(n, p, q)
with n vertices letting each possible edge be a bi-directed edge with probability p, a single
edge with probability q and not present with probability 1 − p − q. In the case of single edges,
pick one of the two possible directions with equal probability. We then examine different
parameters, with n between 10 and 500, p and q between 0.0001 and 0.05. Overall, we
generated 253 such graphs.

These two data sources help us gain a good understanding of two different aspects: The
PACE instances provide large scale real-world relevant instance which contain up to a million
edges while our random instances provide a more systematic view into the effect of the
uni-directed edge density.

SEA 2023



10:10 Solving Directed Feedback Vertex Set by Reduction to Vertex Cover

4.2 Competing Algorithms
We compare our algorithm with the winner of the PACE 2022 implementation challenge
DAGer [20, 29] and a state-of-the-art-solver for the Directed Feedback Arc Set problem
(DFAS) Sdopt [2].

The solver DAGer first applies an extensive set of preprocessing rules to reduce the
size of the instance. The reduced instance is then solved exactly using a modified SAT-
solver. As initialization, a set of clauses corresponding to cycles that need to be hit, is
given. This set might not be exhaustive. To ensure feasibility, the SAT-solver is modified to
maintain a topological ordering on the vertices and dynamically detect cycles and adding
the corresponding clauses to the problem.

To use the solver Sdopt, which is designed to solve the DFAS problem, we first use the
canonical reduction from the DFVS problem to the DFAS problem. Initially the solver
enumerates a set of cycles and solves the integer programming formulation for hitting all of
theses cycles. If the obtained solution is a directed feedback arc set, this solution is returned,
otherwise the current solution is augmented to a feasible DFAS and the found optimum is
updated. Additionally, it searches for cycles that are not hit and adds some of them to the
integer program relaxation. This process is repeated until a solution is found.

4.3 Machine Specifications
All experiments were conducted on an AMD EPYC 7742 at 2.25GHz CPU running Fedora
34. Both DAGer and Mount-Doom were compiled with GCC 11.3.1. Sdopt was run with
Python 3.9 against Gurobipy 9.5.2 [16]. All experiments were conducted on a single thread.

4.4 Experiment Description
To examine the efficacy of our solver as a whole and the effect of our proposed reduction rule
SHORTONE, we conducted two experiments.

For our first experiment, we take the two data sets described above and run the three
described solvers (DAGer, Sdopt, Mount-Doom) on them.

We hypothesize that on instances with a large number of bi-directed edges, our solver
outperforms both competing solvers. To support this conclusion, the randomly generated
graphs contain instances with a wide range of bi-directed and uni-directed edges and overall
densities. The PACE instances also vary widely in these parameters.

In the second experiment, we want to examine the effect of our novel reduction rule
SHORTONE. We compare the reduction achieved by our whole set of reduction rules to this
set without SHORTONE on both of the data sets.

4.5 Results and Discussion
Next, we present the results of the conducted experiments and summarize our findings.

Figure 4 shows the running times of the three algorithms Mount-Doom, DAGer, and Sdopt
on the PACE instances and Figure 5 shows the running times on the Erdős-Rényi graphs. It
is apparent from the plots that Mount-Doom and DAGer outpace the Sdopt solver. Hence we
make further one-to-one comparisons between DAGer and Mount-Doom in Table 1. Although
DAGer clearly wins on the PACE instances in the total number of instances solved before
the timeout, our Mount-Doom solver wins in the number of instances solved faster. On
Erdős-Rényi graphs, DAGer also wins in the number of fast solved instances. This indicates
that our solver is more suited for structured and less random instances.



S. Angrick et al. 10:11

Figure 6 Ratio of Mount-Doom and DAGer running times on the PACE instances sorted by
uni-directed edge density. On blue instances at least one of the solvers did not finish within 30
minutes. The unfinished solver’s time is denoted by 30 minutes. The line shows a linear regression
model with a confidence interval of 95%.

Figure 7 Ratio of Mount-Doom and DAGer running times on the Erdős-Rényi instances. On
blue instances at least one of the solver’s did not finish within 30 minutes. The unfinished solvers
time is denoted by 30 minutes. The line shows a linear regression model with a confidence interval
of 95%.

Figure 8 Percentage of total edges which are reduced with SHORTONE but not without by
density of directed edges. The instances are taken from the set of all PACE instances after removing
graphs which were fully reduced without SHORTONE (60 instances) and those that are not reduced
at all even after including SHORTONE (2 instances).

SEA 2023



10:12 Solving Directed Feedback Vertex Set by Reduction to Vertex Cover

Table 1 Comparison of number of instances solver faster by each solver for different graph types.

Data set Solver #Solved #Solved faster #Solved faster by factor 2

PACE Mount-Doom 153 109 46
DAGer 186 78 38

Erdős-Rényi Mount-Doom 166 75 17
DAGer 213 102 28

The instances in the plots in Figure 4 and Figure 5 are ordered by the density of the
uni-directed edges. We can see that in Figure 4 i.e. the PACE instances, we are in general
faster than the other two algorithms in those instances with few uni-directed edges. Figure 6
shows the ratios between running times of Mount-Doom and DAGer with a similar X-axis
and a linear regression line with a confidence interval of 95%. The regression line clearly
shows the trend that Mount-Doom is better on low uni-directed density instances. But such
a trend cannot be seen in Erdős-Rényi graphs from similar plots in Figures Figure 5 and
Figure 7, again showing that Mount-Doom is better suited for structured instances.

Our SHORTONE reduction rule relies on the existence of a vertex v with exactly one
incoming and one outgoing uni-directed neighbor, such that for every w ∈ N(v) there is
a uni-directed neighbor of v adjacent to w in G[PIE]. Therefore, when we have a sparse
directed graph with relatively many bi-directed edges, we expect SHORTONE to be well
applicable. This can be attested by Figure 8 showing the performance of SHORTONE on
PACE instances. When we have only a small percentage of uni-directed edges, we can reduce
a considerable percentage of initial edges which we do not reduce without SHORTONE. With
up to 5% of the initial edges, we see a clear advantage compared to not using SHORTONE.
This advantage decreases with increasing density of uni-directed edges. But even for a
uni-directed edge density of about 1%, where G[DIR] becomes quite dense, we are still able
to reduce some edges.

However, on the generated Erdős-Rényi graphs, which exhibit a uniform edge distribution,
the required edge structure for the rule to be applied is much less likely to occur. This was
confirmed by experimental results, where the inclusion of SHORTONE did not reduce the
instances any further.

5 Conclusion

We give the description of our new exact algorithm Mount-Doom for DFVS, which won the
third place in the PACE coding challenge 2022. We also present the results of extensive
experiments we conducted to compare Mount-Doom to the PACE winner DAGer and a state
of art solver Sdopt. We demonstrated that we clearly outpace Sdopt in terms of running
time. Although DAGer beats our algorithm in many cases, our algorithm is still competitive,
and is considerably faster in a big share of the instances. Especially, on structured instances
with low uni-directed edge density Mount-Doom has an upper hand.

We also introduced a new reduction rule SHORTONE in our algorithm. We demonstrated
that the reduction rule comes to good use in many of the instances, especially the structured
instances with small uni-directed edge density.

The efficiency of our solver seems to not just depend on the uni-directed edge density
but even more on structure, as can be seen by the different performance between the PACE
instances and the Erdős-Rényi graphs. As further work, it would be interesting to study more



S. Angrick et al. 10:13

closely which structures are beneficial not just for our particular algorithm, but generally
for the approach to reduce DFVS to Vertex Cover. One could, for example, also directly
attempt to develop an algorithm that has theoretical efficiency in the low uni-directed density
regime.

References
1 Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/fpt algorithms in practice: A

case study of vertex cover. Theoretical Computer Science, 609:211–225, 2016.
2 Ali Baharev, Hermann Schichl, Arnold Neumaier, and Tobias Achterberg. An exact method

for the minimum feedback arc set problem. ACM Journal of Experimental Algorithmics,
26:1.4:1–1.4:28, 2021. doi:10.1145/3446429.

3 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. Cadical, kissat,
paracooba, plingeling and treengeling entering the sat competition 2020. In Proceedings of the
SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1, pages 51–53,
2020.

4 Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. NuMVC: An Efficient Local Search
Algorithm for Minimum Vertex Cover. Journal of Artificial Intelligence Research, 46:687–716,
2013. doi:10.1613/jair.3907.

5 Srimat T Chakradhar, Arun Balakrishnan, and Vishwani D Agrawal. An exact algorithm for
selecting partial scan flip-flops. Journal of Electronic Testing, 7(1):83–93, 1995.

6 Jianer Chen, Iyad A Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoretical
Computer Science, 411(40-42):3736–3756, 2010.

7 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A Fixed-Parameter
Algorithm for the Directed Feedback Vertex Set Problem. Journal of the ACM, 55:21:1–21:19,
2008.

8 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.

9 Reinhard Diestel. Graph Theory 3rd ed. Graduate Texts in Mathematics, 173, 2005.
10 M. Ayaz Dzulfikar, Johannes K. Fichte, and Markus Hecher. The PACE 2019 Parameterized

Algorithms and Computational Experiments Challenge: The Fourth Iteration (Invited Paper).
In International Symposium on Parameterized and Exact Computation (IPEC), volume 148,
pages 25:1–25:23, 2019. doi:10.4230/LIPIcs.IPEC.2019.25.

11 Paul Erdős and Alfréd Rényi. On random graphs. Publicationes Mathematicae, 6:290–297,
1959.

12 Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan. Approximating minimum
feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998.

13 Rudolf Fleischer, Xi Wu, and Liwei Yuan. Experimental study of fpt algorithms for the
directed feedback vertex set problem. In European Symposium on Algorithms (ESA), pages
611–622. Springer, 2009.

14 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A Measure & Conquer Approach
for the Analysis of Exact Algorithms. Journal of the ACM, 56(5):25:1–25:32, 2009. doi:
10.1145/1552285.1552286.

15 Philippe Galinier, Eunice Lemamou, and Mohamed Wassim Bouzidi. Applying local search to
the feedback vertex set problem. Journal of Heuristics, 19(5):797–818, 2013.

16 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL: https://www.
gurobi.com.

17 David G. Harris and N. S. Narayanaswamy. A faster algorithm for vertex cover parameterized
by solution size. CoRR, abs/2205.08022, 2022. doi:10.48550/arXiv.2205.08022.

18 Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. WeGotYouCovered:
The winning solver from the PACE 2019 challenge, vertex cover track. In Proceedings
of the SIAM Workshop on Combinatorial Scientific Computing (CSC), pages 1–11, 2020.
doi:10.1137/1.9781611976229.1.

SEA 2023

https://doi.org/10.1145/3446429
https://doi.org/10.1613/jair.3907
https://doi.org/10.4230/LIPIcs.IPEC.2019.25
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1145/1552285.1552286
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.48550/arXiv.2205.08022
https://doi.org/10.1137/1.9781611976229.1


10:14 Solving Directed Feedback Vertex Set by Reduction to Vertex Cover

19 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

20 Rafael Kiesel and André Schidler. A Dynamic MaxSAT-based Approach to Directed Feedback
Vertex Sets. In Gonzalo Navarro and Julian Shun, editors, Proceedings of the Symposium
on Algorithm Engineering and Experiments (ALENEX), pages 39–52. SIAM, 2023. doi:
10.1137/1.9781611977561.ch4.

21 D.H. Lee and S.M. Reddy. On determining scan flip-flops in partial-scan designs. In IEEE/ACM
International Conference on Computer-Aided Design, (ICCAD), pages 322–325, 1990. doi:
10.1109/ICCAD.1990.129914.

22 Mile Lemaic. Markov-Chain-Based Heuristics for the Feedback Vertex Set Problem for Di-
graphs. PhD thesis, Universität zu Köln, 2008. URL: https://kups.ub.uni-koeln.de/2547/
1/Dissertation.pdf.

23 Hen-Ming Lin and Jing-Yang Jou. Computing minimum feedback vertex sets by contraction
operations and its applications on cad. In Proceedings of the IEEE International Conference
On Computer Design, VLSI in Computers and Processors, (ICCD), pages 364–369. IEEE,
1999.

24 Daniel Lokshtanov, NS Narayanaswamy, Venkatesh Raman, MS Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions on
Algorithms (TALG), 11(2):1–31, 2014.

25 Tatiana Orenstein, Zvi Kohavi, and Irith Pomeranz. An optimal algorithm for cycle breaking
in directed graphs. Journal of Electronic Testing, 7(1):71–81, 1995.

26 Panos M Pardalos, Tianbing Qian, and Mauricio GC Resende. A greedy randomized adaptive
search procedure for the feedback vertex set problem. Journal of Combinatorial Optimization,
2(4):399–412, 1998.

27 Rick Plachetta and Alexander van der Grinten. Sat-and-reduce for vertex cover: Accelerating
branch-and-reduce by sat solving. In Proceedings of the Symposium on Algorithm Engineering
and Experiments (ALENEX), pages 169–180, 2021. doi:10.1137/1.9781611976472.13.

28 Igor Razgon. Computing minimum directed feedback vertex set in O(1.9977n). In Italian
Conference on Theoretical Computer Science (ICTCS), pages 70–81. World Scientific, 2007.

29 Andreas Schindler and Rafael Kiesel. Dager. URL: https://github.com/ASchidler/dfvs.
30 Christian Schulz, Ernestine Großmann, Tobias Heuer, and Darren Strash. Pace 2022: Directed

feedback vertex set. In 17th International Symposium on Parameterized and Exact Computation
(IPEC 2022), 2022.

31 Adi Shamir. A linear time algorithm for finding minimum cutsets in reducible graphs. SIAM
Journal on Computing, 8(4):645–655, 1979.

32 G Smith and R Walford. The identification of a minimal feedback vertex set of a directed
graph. IEEE Transactions on Circuits and Systems, 22(1):9–15, 1975.

33 Matthias F Stallmann, Yang Ho, and Timothy D Goodrich. Graph profiling for vertex cover:
Targeted reductions in a branch and reduce solver. arXiv preprint arXiv:2003.06639, 2020.

34 Ching-Chy Wang, Errol L Lloyd, and Mary Lou Soffa. Feedback vertex sets and cyclically
reducible graphs. Journal of the ACM, 32(2):296–313, 1985.

35 Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set.
Information and Computation, 255:126–146, 2017. doi:10.1016/j.ic.2017.06.001.

https://doi.org/10.1137/1.9781611977561.ch4
https://doi.org/10.1137/1.9781611977561.ch4
https://doi.org/10.1109/ICCAD.1990.129914
https://doi.org/10.1109/ICCAD.1990.129914
https://kups.ub.uni-koeln.de/2547/1/Dissertation.pdf
https://kups.ub.uni-koeln.de/2547/1/Dissertation.pdf
https://doi.org/10.1137/1.9781611976472.13
https://github.com/ASchidler/dfvs
https://doi.org/10.1016/j.ic.2017.06.001


CompDP: A Framework for Simultaneous
Subgraph Counting Under Connectivity Constraints
Kengo Nakamura #

NTT Communication Science Laboratories, Kyoto, Japan
Graduate School of Informatics, Kyoto University, Japan

Masaaki Nishino #

NTT Communication Science Laboratories, Kyoto, Japan

Norihito Yasuda #

NTT Communication Science Laboratories, Kyoto, Japan

Shin-ichi Minato # Ñ

Graduate School of Informatics, Kyoto University, Japan

Abstract
The subgraph counting problem computes the number of subgraphs of a given graph that satisfy
some constraints. Among various constraints imposed on a graph, those regarding the connectivity
of vertices, such as “these two vertices must be connected,” have great importance since they are
indispensable for determining various graph substructures, e.g., paths, Steiner trees, and rooted
spanning forests. In this view, the subgraph counting problem under connectivity constraints is also
important because counting such substructures often corresponds to measuring the importance of a
vertex in network infrastructures. However, we must solve the subgraph counting problems multiple
times to compute such an importance measure for every vertex. Conventionally, they are solved
separately by constructing decision diagrams such as BDD and ZDD for each problem. However,
even solving a single subgraph counting is a computationally hard task, preventing us from solving
it multiple times in a reasonable time. In this paper, we propose a dynamic programming framework
that simultaneously counts subgraphs for every vertex by focusing on similar connectivity constraints.
Experimental results show that the proposed method solved multiple subgraph counting problems
about 10–20 times faster than the existing approach for many problem settings.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Subgraph counting, Connectivity, Zero-suppressed Binary Decision Diagram

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.11

Supplementary Material Software: https://github.com/nttcslab/compdp-counting

Funding This work was supported by JSPS KAKENHI Grant Number JP20H05963 and JST CREST
Grant Number JPMJCR22D3.

1 Introduction

Given graph G = (V, E), the subgraph counting problem computes the (possibly weighted)
count of the subgraphs of G that satisfy some constraints such as each vertex’s degree and
the existence of cycles. More specifically, given edge weights w+

e , w−
e ∈ R for e ∈ E, this

problem (exactly) computes the following value:

W (E) :=
∑

E′∈E

∏
e∈E′

w+
e ·

∏
e∈E\E′

w−
e , (1)

where E ⊆ 2E is a family of the subsets of edges, i.e., subgraphs, that satisfy given constraints.

© Kengo Nakamura, Masaaki Nishino, Norihito Yasuda, and Shin-ichi Minato;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 11; pp. 11:1–11:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kengo.nakamura@ntt.com
https://orcid.org/0000-0002-9615-3479
mailto:masaaki.nishino@ntt.com
https://orcid.org/0000-0001-6489-5446
mailto:norihito.yasuda@ntt.com
mailto:minato@i.kyoto-u.ac.jp
https://www.lab2.kuis.kyoto-u.ac.jp/minato/
https://orcid.org/0000-0002-1397-1020
https://doi.org/10.4230/LIPIcs.SEA.2023.11
https://github.com/nttcslab/compdp-counting
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 CompDP: A Framework for Simultaneous Subgraph Counting

This problem has been studied as a fundamental task in computer science [2, 1, 5, 4], and
extensively studied in the area of network reliability analysis [21]. The most fundamental
problem of network reliability analysis is computing the probability that the predetermined
vertices will remain connected assuming that each edge fails independently with a given
probability. This task is equivalent to the subgraph counting problem under connectivity
constraints; a connectivity constraint is a topological constraint requiring that some pairs of
vertices are connected and other pairs are disconnected.

A connectivity constraint is also fundamental in determining various graph substructures,
such as paths, Steiner trees, spanning trees, and rooted spanning forests, in combination
with other constraints, as described in Section 2. Counting these substructures also has great
importance, especially for evaluating the importance of a vertex. For example, paths and
Steiner trees on communication networks correspond to the routing of point-to-point and
multi-site communication (e.g., see [10, 26]). Thus, the number of paths or Steiner trees
passing vertex v is an importance measure for v in this communication network, since its
failure causes the lost of this number of communication routing. A cycle passing through
source vertex s and another vertex v constitutes a vertex-disjoint two paths between s and v,
and counting such cycles corresponds to the number of non-blocking pairs of communication
routings from s to v [11]. A rooted spanning forest (RSF) rooted at r1, . . . , rk corresponds to
a (electrical) distribution network whose substations are located at r1, . . . , rk [12]. When we
add a new substation to v, the number of RSFs rooted at r1, . . . , rk, v (given other constraints
such as electric constraints) provides flexibility of the distribution network.

In evaluating such an importance measure for every vertex v, we generally have to solve
the subgraph counting problem for every v. That is, we must compute multiple count
values W (Ev1), . . . , W (Evn) for different families of subgraphs Ev1 , . . . , Evn . However it was
proven that the network reliability evaluation described above is in #P-complete [32], a
computationally challenging class, and computing W (E) in the presence of other constraints
is equally as difficult in general. Even a practically fast algorithm for computing W (E)
described below may take several minutes or more for a graph with hundreds of edges.
Subgraph counting for every vertex described above seems computationally much more
difficult since we have to repeatedly solve cumbersome counting tasks.

This paper proposes a practically fast algorithm for simultaneously counting subgraphs
for every vertex (formally defined in Section 2). Here, “simultaneously” means that we build
only one data structure for obtaining all count values W (Ev1), . . . , W (Evn

). Our contribution
is summarized as follows:

Our proposed method enables us to simultaneously count such graph substructures as
paths, cycles, Steiner trees, and RSFs by sophisticated dynamic programming (DP) on
the built data structure.
Complexity analyses show that the proposed method solves subgraph counting for every
vertex O(n) times faster than the baseline method that separately solves each counting,
where n is the number of vertices.
We empirically confirmed that the proposed algorithm solved subgraph counting for every
vertex around 10–20 times faster than the baseline method.

1.1 Related Works
The study of network reliability problems, i.e., subgraph counting problems under constraints
of the from “specified vertices must be connected,” has a long history. This problem is
known as #P-complete [32], meaning that it is computationally tough. Meanwhile, various
algorithms have been proposed for this problem, e.g., sum-of-disjoint product [6] with



K. Nakamura, M. Nishino, N. Yasuda, and S. Minato 11:3

tieset [25] or cutset enumeration [31], and factoring [33]. However, currently the practically
fastest algorithm, originated by Hardy et al. [8] and Herrmann [9], directly constructs a data
structure called a binary decision diagram (BDD) [3]. Their method successfully computes
network reliability for real topologies with around 200 edges. Here BDD is used as a tool
that represents the family of subgraphs where predetermined vertices are connected; after it
is built, the counting problem can be solved by a simple DP on it.

Other studies exist for counting subgraphs with additional constraints other than con-
nectivity. The simplest method enumerates all the substructures [23, 28] such as paths and
spanning trees. Especially, the enumeration of spanning trees [28] corresponds to computing
the Tutte polynomial of a graph, which can be used for many kinds of graph counting prob-
lems. However, since there might be an exponential number of substructures, enumeration
suddenly becomes intractable with the growth of graph size. For practically fast counting,
indexing the constrained subgraphs into BDD-like structures has also been studied. Sekine et
al. [27] designed an algorithm to build a BDD representing all the spanning trees to compute
the Tutte polynomial. Knuth [18] proposed a very efficient scheme called Simpath that
indexes all the simple paths in a zero-suppressed BDD (ZDD) [20], which is a variant of BDD.
By expanding such research, Kawahara et al. [17] proposed a frontier-based search (FBS),
which can build a ZDD of various graph substructures. Since ZDD also allows a simple DP for
counting, FBS can be used for practically fast subgraph counting. Our proposed algorithm
is also based on FBS. Subgraph counting is also studied in the context of parameterized
complexity theory [5, 4], although their interest often focuses on theoretical aspects. To
the best of our knowledge, no works have outperformed the BDD/ZDD-based methods in
practically solving subgraph counting problems, including network reliability evaluations.

In 2021, Nakamura et al. [22] proposed an algorithm for network reliability that simultan-
eously computes the probability of connecting to servers for every client. It essentially solves
counting problems for every vertex and runs much faster than the baseline where each client’s
reliability is computed separately. However, it can only deal with the constraints of the form
“all the specified vertices are connected” and cannot accept the constraints of disconnection
and others. Technically, the proposed method can deal with these constraints by utilizing the
ZDD structures [20] and the FBS [17]. While the existing method [22] relies on a BDD-like
structure that is not truly a BDD, we build a legitimate ZDD by FBS, enabling us to combine
such existing ZDD algorithms as Apply [20] and subsetting [15].

1.2 Organization of Paper
The rest of this paper is organized as follows. Section 2 describes the preliminary and the
formal statement of the problem we solved. Section 3 gives the overview of the proposed
method. Section 4 introduces the ZDD and the frontier-based search that are used in
the proposed method. Section 5 details the proposed method, and Section 6 analyzes the
computational complexity of it. Section 7 empirically compares the proposed method with
the baseline in terms of computational time, and Section 8 gives a conclusion.

We give the list of acronyms and notations used in this paper in Table 1.

2 Problem Statement

Before proceeding to our problem statement, we introduce a notion that represents the
connectivity constraint in the same manner as Kawahara et al. [17]. As described in
Section 1, a connectivity constraint requires that some pairs of vertices are connected and
other pairs are disconnected. We represent the connectivity constraint by subpartition P

SEA 2023



11:4 CompDP: A Framework for Simultaneous Subgraph Counting

Table 1 Acronyms and notations.

Acronym
RSF Rooted Spanning Forest
DP Dynamic Programming
BDD Binary Decision Diagram
ZDD Zero-suppressed binary Decision Diagram
FBS Frontier-Based Search
DAG Directed Acyclic Graph

Notation
Frequently used notations
G = (V, E) undirected graph with vertex set V and edge set E
n, m = |V |, |E|: the number of vertices and edges in the graph
w+

e , w−
e ∈ R: edge weights for e ∈ E

W (E) the value of subgraph counting given E ⊆ 2E (family of subgraphs)
P subpartition of V representing connectivity constraint
P ∗ subpartition of V ∪ {∗} containing one wildcard ∗
P ∗[v] connectivity constraint obtained by substituting ∗ in P ∗ with v ∈ V
P ∗[] connectivity constraint obtained by removing ∗ from P ∗

C(P ) ⊆ 2E : family of subgraphs satisfying connectivity constraint P
F ⊆ 2E : base set in our problem
count(v) = W (F ∩ C(P ∗[v])): count value for vertex v ∈ V computed in our problem
Notations for ZDD
Z = (N, A) ZDD with node set N and arc set A
⊤,⊥ terminal nodes of ZDD
r̂ ∈ N : root node of ZDD
lo(n̂), hi(n̂) ∈ A: lo-arc and hi-arc outgoing from ZDD node n̂
n̂−, n̂+ ∈ N : lo-child and hi-child of ZDD node n̂
lb(n̂) ∈ Z: label of ZDD node n̂
Li i-th level of ZDD, i.e., the set of ZDD nodes whose label is i
R (directed) path in ZDD
RZ(n̂, n̂′) set of paths between ZDD nodes n̂ and n̂′ in ZDD Z
S(Z) ⊆ 2E : family of subgraphs represented by ZDD Z
E(R) ⊆ E: subgraph represented by path R in ZDD
Wp(R) ∈ R: path product of path R in ZDD defined in (3)
n̂.p, n̂.r sum of path products of the paths in RZ(r̂, n̂) and RZ(n̂,⊤)
Notations for explaining existing and proposed methods
E<i = {e1, . . . , ei−1}: processed edges
E≥i = {ei, . . . , em}: unprocessed edges
Fi ⊆ V : i-th frontier, the vertices appearing in both E<i and E≥i

VP ⊆ V : set of vertices appearing in connectivity constraint P
V ′

P ∗ ⊆ V : set of vertices in the set in P ∗ containing ∗
V ′′

P ∗ ⊆ V : set of vertices present in P ∗ and not included in V ′
P ∗

n̂.comp partition of Fi maintaining the connectivity among Fi

n̂.vset connectivity constraint maintaining the connectivity among Fi ∪ VP

Rv ⊆ RZ(r̂,⊤): set of paths whose corresponding subgraph satisfies (#v)
Rv,n̂ ⊆ Rv: set of paths that passes through ZDD node n̂
B ∈ n̂.comp: set contained in comp, i.e., connected component
Rn̂,B ⊆ RZ(n̂,⊤): set of paths associated with ZDD node n̂ and set B ∈ n̂.comp
n̂.q[B] sum of path products of the paths in Rn̂,B

n̂.q−[B] sum of path products of the paths in Rn̂,B traversing lo(n̂)
n̂.q+[B] sum of path products of the paths in Rn̂,B traversing hi(n̂)
V ′

n̂.vset ⊆ V : set of vertices in the set in n̂.vset containing ∗
V ′′

n̂.vset ⊆ V : set of vertices present in n̂.vset and not included in V ′
n̂.vset

ZF ZDD representing base set F
Notations for conducting complexity analysis
ZFBS(P ) ZDD bulit by FBS with connectivity constraint P
cP the number of set in connectivity constraint P
vP the number of vertices in connectivity constraint P excluding ∗
fw = maxi |Fi|: frontier width
Dk k-th Bell number



K. Nakamura, M. Nishino, N. Yasuda, and S. Minato 11:5

of vertex set V of graph G = (V, E), where a subpartition of V is a set of pairwise disjoint
subsets of V . P imposes the following constraints: (i) for any pair of vertices v, v′ in the
same set in P , they must be connected, and (ii) for any pair of vertices v, v′ in different sets
in P , they must not be connected.

We extend the notion by introducing exactly one wildcard ∗, which will be replaced by a
vertex to represent various connectivity constraints. Let P ∗ be a subpartition of V ∪{∗} that
must contain exactly one ∗. For v ∈ V , let P ∗[v] be the connectivity constraint obtained by
substituting ∗ in P ∗ with v. Additionally, let P ∗[] be the connectivity constraint obtained by
simply removing ∗ from P . Note that if v ∈ V is already present in P ∗, P ∗[v] equals (i) P ∗[]
if v is in the same set in P ∗ that contains ∗; or (ii) an inconsistent constraint. For example,
for P ∗ = {{v1, v2, ∗}, {v3}}, P ∗[v4] = {{v1, v2, v4}, {v3}}, P ∗[v2] = P ∗[] = {{v1, v2}, {v3}},
and P ∗[v3] is an inconsistent constraint.

Now we proceed to our problem definition. In our problem, we are given connected
undirected graph G = (V, E) with n = |V | vertices and m = |E| edges, connectivity constraint
P ∗ containing exactly one wildcard ∗, family F of subgraphs, i.e., subsets of edges, and
weights w+

e , w−
e ∈ R for each e ∈ E. For connectivity constraint P , let C(P ) be the family of

subgraphs satisfying P . Our goal is to compute the following value

count(v) := W (F ∩ C(P ∗[v])) for every v ∈ V . (2)

The problems described in Section 1 can be covered by our problem.
Path: Given s, t ∈ V , we set P ∗ = {{s, t, ∗}} and let F be a family of subgraphs where
(i) the degree of s and t is 1, and the others have degree 0 or 2, and (ii) there are no
cycles. Then count(v) equals the number of simple s, t-paths that pass through v.
Cycle: Given s ∈ V , we set P ∗ = {{s, ∗}}, and let F be a family of subgraphs where (i)
the degree of each vertex is 0 or 2, and (ii) there is exactly one connected component.
Then count(v) equals the number of cycles starting from s that pass through v.
Steiner tree: Given T ⊆ V , we set P ∗ = {T ∪ {∗}} and let F be a family of subgraphs
where there are no cycles and exactly one connected component. Then count(v) equals
the number of T -Steiner trees containing v, where T -Steiner trees are the trees connecting
all the T vertices.
Rooted spanning forest: Given T = {r1, . . . , rk} ⊆ V , we set P ∗ = {{r1}, . . . , {rk}, {∗}},
and let F be a family of subgraphs where (i) every vertex has degree at least 1, (ii) there
are no cycles, and (iii) there are exactly (k + 1) connected components. Then count(v)
equals the number of rooted spanning forests rooted at r1, . . . , rk and v.

In addition, the problem setting of Nakamura et al. [22] essentially counts the subgraphs
where given vertex set T ⊆ V and vertex v are connected for every v and can be recovered
by P ∗ = {T ∪ {∗}} and F = 2E . Although here we list only topological constraints for F ,
we can also impose non-topological constraints with F , such as knapsack constraints.

3 Overview of Proposed Algorithm

First, we explain case F = 2E . Given connectivity constraint P ∗, the baseline method, which
separately computes the count value for every v by FBS [17], builds a ZDD with connectivity
constraint P ∗[v] for every v ∈ V . Here ZDD compactly represents a family of subgraphs by
a rooted directed acyclic graph. By FBS with P ∗[v], a ZDD representing C(P ∗[v]) is built
and allows a simple DP for computing count(v) = W (C(P ∗[v])). The details of ZDD and
FBS are explained in Section 4.

SEA 2023



11:6 CompDP: A Framework for Simultaneous Subgraph Counting

Graph G

Connectivity constraint
P ∗

Base set F ZDD ZF

FBS with P ∗
(Sect. 4.2)

Intersection
(Sect. 5.3)

ZDD Z
· representing F ∩ C(P ∗[])
· comp/vset in each node

ZDD Z
· p, q, r values in each node

DP with comp/vset (Sect. 5.2)

Levelwise
computation
with p, q, r

(Sect. 5.1)

count(v1)

count(v2)

count(vn)

...

.

..

Figure 1 Overview of proposed algorithm.

Similarly, the proposed method builds a ZDD by FBS. However, unlike the baseline
method, we build only one ZDD Z for P ∗, which represents C(P ∗[]). Instead, we retain
the information used in the FBS for building Z, comp and vset in each node of Z, both of
which are discarded after the FBS in the baseline method. Since comp and vset provide
rich information for connectivity among vertices, we fully exploit them to perform a more
sophisticated DP, yielding for each node of Z three kinds of values, p, q, and r. Their
definitions are described in Section 5.1. By using them, we can compute count(v) values
for every v ∈ V . Since the computation of p, q, r, and count(v) can be performed in time
proportional to the execution of FBS, the proposed algorithm runs faster than the baseline.
We fully describe the computation of the count(v) values in Section 5.1 and those of p, q,
and r (the DP procedure) in Section 5.2.

Finally, we deal with case F ≠ 2E . For it, we first construct a ZDD ZF by the existing
methods. Then, we construct one ZDD Z that represents F ∩ C(P ∗[]) whose nodes have
comp and vset. This can be performed by exploiting existing techniques of constructing a
ZDD of set intersection, such as Apply [20] and subsetting [15]. After Z is built, we can
perform the same DP scheme as above. We describe taking the set intersection in Section 5.3.
An overview of the proposed method is given in Fig. 1.

By changing base set F and connectivity constraint P ∗, the proposed algorithm can solve
various subgraph counting problems, as in Section 2. We named our proposed algorithm
compDP since it fully uses information comp.

3.1 Intuition and Idea behind the Proposed Algorithm
We describe the high-level idea behind the proposed algorithm. As described later, ZDD,
which is a rooted and layered directed acyclic graph, represents a family of subgraphs as the
set of paths from the root to a terminal node. By defining the path product of a path by
the weights along this path (precise definition is later), the count value equals the sum of
path products of these paths. The intuitive for the proposed algorithm is as follows: Let
Ev = F ∩ C(P ∗[v]). To compute count(v) = W (Ev) for every v ∈ V , it is sufficient to build
a ZDD representing Ev for every v. However, since Ev and Ew (v ̸= w) are similar families
stemming from the common constraint P ∗, the ZDDs representing them also are expected to
exhibit similar structures. We use such similarities to reduce the computation.

More specifically, we use the following step-by-step ideas: First, since C(P ∗[v]) ⊆ C(P ∗[])
for any v ∈ V , F ∩ C(P ∗[v]) is represented by the subset of the paths within the ZDD
representing F ∩ C(P ∗[]). Second, these paths can be decomposed into former and latter
parts; the former is the paths from the root to a specific layer, and the latter is the paths
from the specific layer to the terminal. The count value count(v) can be represented by
the sums of path products of the former part and those of the latter part. Third, when
considering such a decomposition for every v ∈ V , we can reuse the values of “the sums of
path products of the former part” (p in the proposed algorithm) and “those of the latter
part” (q and r in the proposed algorithm). Thus, by pre-computing them by a DP, we can
compute count(v) for every v ∈ V with these values.



K. Nakamura, M. Nishino, N. Yasuda, and S. Minato 11:7

4 ZDD and Frontier-based Search

4.1 Zero-suppressed Binary Decision Diagrams (ZDDs)
Zero-suppressed binary decision diagram (ZDD) [20] Z = (N, A) is a rooted directed acyclic
graph (DAG)-shaped data structure representing a family of subsets of edges E;1 the root
node is denoted by r̂ ∈ N . Node set N has two special nodes ⊤ and ⊥ called terminals and
other internal nodes. Each internal node n̂ has exactly two outgoing arcs called lo-arc lo(n̂)
and hi-arc hi(n̂) and label lb(n̂) that is an integer of range [1, m]. We respectively call the
child nodes of n̂ pointed by lo(n̂) and hi(n̂) lo-child n̂− and hi-child n̂+ of n̂. Labels must be
ordered in an ascending manner, i.e., lb(n̂) < lb(n̂−) and lb(n̂) < lb(n̂+) must hold for every
n̂. For convenience, we set the labels of the terminal nodes to m + 1. A ZDD is normalized
if for every internal node n̂, each of n̂− and n̂+ is either ⊥ or a node whose label is exactly
lb(n̂) + 1. Size |Z| of ZDD Z is defined as the number of nodes in Z.

For n̂, n̂′ ∈ N , RZ(n̂, n̂′) denotes the set of paths from n̂ to n̂′. Given a predefined order
of edges, e1, . . . , em, ZDD Z represents a family of subgraphs S(Z) ⊆ 2E by RZ(r̂,⊤). For
path R in Z, we associate subset E(R) ⊆ E where ei ∈ E(R) if and only if R traverses a
hi-arc outgoing from a node with label i. Then S(Z) = {E(R) | R ∈ RZ(r̂,⊤)}. For example,
in Fig. 2(b), path 1-(hi)-2-(lo)-3-(lo)-4-(hi)-5-(hi)-⊤ indicates that {e1, e4, e5} ∈ S(Z).

Normalized ZDDs can be used as an efficient tool for subgraph counting. Let Z be
a normalized ZDD, and let R ∈ RZ(n̂, n̂′) be an arbitrarily chosen path. Given weights
w+

e , w−
e ∈ R for each e ∈ E, we define the path product of R by

Wp(R) :=
∏

e∈E(R)

w+
e ·

∏
e∈{elb(n̂),...,elb(n̂′)−1}\E(R)

w−
e . (3)

In other words, Wp(R) is the product of w+
e for the edges in E(R) and w−

e for the edges not
in E(R). We also define value n̂.p for ZDD node n̂ by the sum of path products of the paths
in RZ(r̂, n̂). By definition, W (S(Z)) equals ⊤.p. Moreover, although n̂.p is defined as the
sum of a possibly exponential number of path products, its value can efficiently be computed
by a DP. Simple calculation shows the following equation for a node other than r̂ or ⊥:

n̂.p =
∑

n̂′:(n̂′)−=n̂

w−
elb(n̂)

· n̂′.p +
∑

n̂′:(n̂′)+=n̂

w+
elb(n̂)

· n̂′.p. (4)

Starting with r̂.p = 1, by applying (4) in a top-down manner along Z, we can compute the
value of ⊤.p = W (S(Z)) in time proportional to the number of nodes in Z.

4.2 Frontier-based Search
A frontier-based search (FBS) [17] is an efficient method for constructing a normalized ZDD
that represents a family of subgraphs satisfying some constraints. Below we explain its
procedure of given connectivity constraint P (without ∗).

We start with a naive way for constructing ZDD. Given order of edges e1, . . . , em, we
decide one by one whether ei is excluded or included in the subgraph. This generates a binary
decision tree like Fig. 2(c). After deciding every link’s exclusion or inclusion, all subgraphs
are enumerated at the bottom of the decision tree, and we can judge whether the constraints

1 Although a ZDD can represent a family of subsets of arbitrary base set X, here we explain it as a tool
for representing a family of edge subsets for simplicity.

SEA 2023



11:8 CompDP: A Framework for Simultaneous Subgraph Counting

(a) (b)

(c) (d)

e1

e2

e3

e4

e5

1

2

3

4

+e1

+e2 +e2

+e3

+e4

+e5

† † † †

⊥⊥ ⊥⊥ ⊥⊥ ⊥⊥ ⊥> ⊥> ⊥> >> ⊥⊥ >> ⊥> >> ⊥> >> ⊥> >>

1
2 2

⊥ 3 3 3

4 4 4

⊥ 5 5 5

⊥ >

/{1,4}

{1}{2}/{1,4} {1,2}/{1,4}

⊥ {2}{3}/{3,4} {2}{3}/{2,4} {2,3}/{2,3,4}

{2}{3}/{3,4} {2}{3}/{2,4} {2,3}/{2,3,4}
†

⊥ {3}{4}/{3,4} {3}{4}/{4} {3,4}/{3,4}

⊥ > > > > >

Figure 2 (a) Example of graph. (b) Example of (normalized) ZDD. Dashed and solid lines
indicate lo- and hi-arcs, and an integer inside a node represents a label. (c) Binary decision tree
made by deciding one by one whether ei is excluded or included. (d) ZDD made by FBS where
P = {{1, 4}}. Two subpartitions of vertices inside a node represent comp and vset.

are satisfied one by one. The example in Fig. 2(c) judges whether the black vertices (1 and
4) are connected. This decision tree has a property where the collection of paths from root
to ⊤ corresponds to the family of subgraphs satisfying the constraints. After making the
decision tree, ZDD can be constructed by merging the identical subtrees of it. For example,
the four nodes marked † in Fig. 2(c) have an identical pattern of leaves: ⊥,⊤,⊤,⊤. Even if
we merge them, the property that the collection of paths from root to ⊤ corresponds to a
family of satisfying subgraphs is not broken.

However, since there are 2m subgraphs, the size of the decision tree must be expo-
nential. For efficient construction of ZDD, we try to detect identical subtrees without
constructing them. Formally, the identicalness of subtrees can be stated as follows. Let
E<i = {e1, . . . , ei−1} and E≥i = {ei, . . . , em}. We call the subset of edges after deciding
ei−1’s exclusion or inclusion the i-th subgraph. Note that the i-th subgraphs are subsets of
E<i. We consider the following equivalence relation for i-th subgraphs X, X ′ ⊆ E<i: (§) For
any Y ⊆ E≥i, whether subgraph X ∪ Y or X ′ ∪ Y satisfies the constraints is equivalent. If
(§) holds, the subtree rooted at X and that rooted at X ′ are identical.

Condition (§) is met for X, X ′ ⊆ E<i if X and X ′ share identical connectivity among
V , i.e., for any v, v′ ∈ V , whether v and v′ are connected is equivalent. This is because if
X and X ′ share identical connectivity, so do X ∪ Y and X ′ ∪ Y . Moreover, if X and X ′

have an identical connectivity, so do X ∪ {ei} and X ′ ∪ {ei}. This enables us to build a
decision “diagram” by the following procedure. In building a decision tree like Fig. 2(c) in a
breadth-first manner, we merge some subgraphs if they exhibit an identical connectivity.

The FBS further refines this idea by focusing on the connectivity among a limited subset
of vertices. Let Fi, called i-th frontier, be the vertices appearing in both E<i and E≥i. Also,
let VP be the set of vertices appearing in connectivity constraint P . Then, it can be proved
that condition (§) is satisfied if X and X ′ have an identical connectivity among Fi ∪ VP .
Intuitively, this is because every vertex v ∈ V \ VP that does not appear in E≥i can be
equated with vertex v′ ∈ Fi ∪ VP if v is connected to v′, or it can be ignored if it is not
connected to any vertex in Fi ∪VP . FBS generates a diagram by a breadth-first manner such
that the nodes exhibiting identical connectivity among Fi ∪ VP are all merged.

Algorithm 1 is pseudocode of FBS. The connectivity among Fi ∪VP is maintained by two
subpartitions of vertices: comp and vset. Here comp maintains the connectivity among Fi

while vset maintains the connectivity among the sets in comp and the vertices in VP . More
specifically, comp is a partition of Fi such that v, v′ ∈ Fi are in the same set if and only if



K. Nakamura, M. Nishino, N. Yasuda, and S. Minato 11:9

Algorithm 1 Frontier-based search for connectivity constraint P . Underlined part in
line 16 is added if it is used for a subroutine of proposed method.

1 r̂.comp← {}, r̂.vset← P, L1 ← {r̂}, Li ← ∅ (i = 2, . . . , m + 1)
2 for i← 1 to m do // ei = {v, v′}
3 foreach n̂ ∈ Li do
4 foreach f ∈ {−, +} do
5 n̂′ ← n̂ // Vn̂′.vset is the vertices present in n̂′.vset
6 if f = + and v, v′ ∈ Vn̂′.vset and n̂′.vset[v] ̸= n̂′.vset[v′] then
7 n̂′ ← ⊥ and goto finish // v and v′ must not be connected
8 foreach u ∈ {v, v′} \ Fi do // Vertices entering the frontier
9 n̂′.comp← n̂′.comp ∪ {{u}} // Add u as an isolated vertex

10 if f = + and n̂′.comp[v] ̸= n̂′.comp[v′] then // Connecting two components
11 Merge n̂′.comp[v] and n̂′.comp[v′] into one
12 if v ∈ Vn̂′.vset and v′ /∈ Vn̂′.vset then Add vertices in n̂′.comp[v′] to n̂′.vset[v]
13 if v /∈ Vn̂′.vset and v′ ∈ Vn̂′.vset then Add vertices in n̂′.comp[v] to n̂′.vset[v′]
14 foreach u ∈ {v, v′} \ Fi+1 do // Vertices leaving from frontier
15 if {u} ∈ n̂′.comp then // Component containing u leaves frontier
16 if u ∈ Vn̂′.vset and {u} /∈ n̂′.vset and {u, ∗} /∈ n̂′.vset then
17 n̂′ ← ⊥ and goto finish // u must be connected to w ∈ n̂′.vset[u]
18 Remove u from n̂′.comp and n̂′.vset if exists
19 if n̂′ ̸= ⊥ then
20 if i = m then n̂′ ← ⊤ // All conditions are satisfied
21 else if ∃n̂′′ ∈ Li+1 s.t. n̂′′.comp = n̂′.comp and n̂′′.vset = n̂′.vset then
22 n̂′ ← n̂′′ // Already generated node
23 else Li+1 ← Li+1 ∪ {n̂′} // Newly generated node
24 finish: n̂f ← n̂′ // Set lo- or hi-child of n̂ to n̂′

they are connected, and vset maintains the connectivity constraint such that the vertices
in the same set must be connected and those in different sets must be disconnected. Here
comp[v] denotes the set in comp containing v, and as is the same with vset[v]. By starting
with comp = {} and vset = P (Line 1), the algorithm repeatedly updates comp and vset by
excluding (f = −) or including (f = +) ei; lines 5–13 are the update procedure. We set the
destination of lo-arc (f = −) or hi-arc (f = +) to the node with the updated comp and vset
(line 24). If the node having identical comp and vset has already been generated, we set it
to the already generated node (lines 21–22); otherwise, we newly generate a node (line 23).
When either of the following occurs, we prune the node, i.e., setting the destination of an
arc to ⊥: (I) Two vertices are connected that are in different sets of vset (lines 6–7). This
violates the disconnection requirement of vset. (II) comp[v] leaves the frontier, but vset[v]
has vertex v′ other than v (lines 16–17). In this case v will never be connected with v′,
violating the connection requirement of vset. If the search proceeds to the final level without
being pruned, it reaches ⊤, i.e., constraint P is satisfied (line 20).

For example, Fig. 2(d) is the result of FBS given the graph in Fig. 2(a) and the constraint
that vertices 1 and 4 must be connected. We now focus on the left, 2nd level node:
“{1}{2}/{1,4}”. Here comp = {1}{2} denotes two components, the one including 1 and the
one including 2, and vset = {1, 4} represents that 1 and 4 must be connected. If we exclude
e2 = {1, 3}, the component including 1 is left isolated because F3 = {2, 3} does not include 1.
However, since this contradicts that 1 and 4 must be connected, the lo-child is ⊥ (pruned).
If we include e2, the component including 1 becomes one that includes 3 at the next level.
The constraint that 1 and 4 must be connected can be rewritten as that 3 and 4 must be
connected. Thus, hi-child’s comp is {2}{3} and vset is {3,4}. Here the four nodes marked †
in Fig. 2(c) are treated as only one marked node in Fig. 2(d).

SEA 2023



11:10 CompDP: A Framework for Simultaneous Subgraph Counting

5 Details of Proposed Method

First, we assume F = 2E ; this assumption is removed in Section 5.3. As in Section 3, the
proposed method first builds ZDD Z representing C(P ∗[]). To explain the meaning and
procedure for this, we observe the relationship between P ∗[] and P ∗[v]. Let V ′

P ∗ be the
vertices in the set in P ∗ containing ∗, and let V ′′

P ∗ be the other vertices present in P ∗. From
the definition, P ∗[v] imposes the following additional constraint on P ∗[]:

(#v) v must be connected with the vertices in V ′
P ∗ , and v must be disconnected from

the vertices in V ′′
P ∗ .

That is, C(P ∗[v]) = {X | X ∈ C(P ∗[]), X satisfies (#v)}. Now the constraint P ∗[v] is
decomposed into (#v) and P ∗[], where (#v) involves only the connectivity around v and P ∗[]
represents the other constraints. The fact that (#v) concerns only the connectivity around v

enables us to compute count(v) for every v with only one ZDD Z representing C(P ∗[]), as
described in the subsequent sections.

Meanwhile, during the procedure of FBS, we must remember which set in vset corresponds
to the set in P containing ∗ since we use it for the subsequent computation. To achieve this,
we just consider ∗ in P ∗ a special vertex. More specifically, we let r̂.vset← P ∗ in line 1 of
Algorithm 1 and add the underlined part of line 16. By adding the underlined part, the
pruning condition (II) simply discards ∗ even if vset[v] contains ∗. Thus, Z finally represents
C(P ∗[]), while each vset has at most one set containing ∗.

5.1 Computation with Intermediate Level of Diagram
Let Rv be the paths in RZ(r̂,⊤) whose corresponding subgraph satisfies (#v). As stated
above, count(v) equals the sum of path products of the paths in Rv. Here we focus on i-th
level Li of Z where v ∈ Fi.2 For node n̂ ∈ Li with label i, let Rv,n̂ be the paths in Rv

passing through n̂. Since Z is normalized, every r̂-⊤ path in Z passes exactly one node in Li.
This means that count(v) can be represented as the sum of

∑
R∈Rv,n̂

Wp(R) over n̂ ∈ Li.
We further decompose

∑
R∈Rv,n̂

Wp(R) by focusing on n̂ ∈ Li. Since n̂.comp maintains
the connectivity among Fi, the sets in n̂.comp are indeed connected components. Since the
connectivity around v can be translated into that around connected component B = n̂.comp[v],
(#v) can be restated as a constraint on B = n̂.comp[v]:

(#′
B) Connected component B must be connected with the vertices in V ′

P ∗ , and B

must be disconnected from the vertices in V ′′
P ∗ .

Let Rn̂,B ⊆ RZ(n̂,⊤) be a set of paths such that R′ ∈ Rn̂,B if and only if E(R) ∪ E(R′)
satisfies (#′

B) for arbitrarily chosen R ∈ RZ(r̂, n̂). Rn̂,B is well-defined, i.e., kept unchanged
regardless of the choice of R because E(R)’s connectivity among components and the vertices
in V ′

P ∗ ∪ V ′′
P ∗ is completely determined in n̂.vset. This means that Rv,n̂ can be written as

direct product RZ(r̂, n̂) ⊔Rn̂,n̂.comp[v] where A ⊔B := {a ∪ b | a ∈ A, b ∈ B}. In other words,
every path R ∈ Rv,n̂ can be decomposed into R′ ∈ RZ(r̂, n̂) and R′′ ∈ Rn̂,n̂.comp[v]. From
the definition of path product, Wp(R) = Wp(R′)Wp(R′′). Thus, by defining n̂.q[B] as the
sum of path product of the paths in Rn̂,B , the following holds:∑

R∈Rv,n̂

Wp(R) =
∑

R′∈RZ (r̂,n̂)

∑
R′′∈Rn̂,n̂.comp[v]

Wp(R′)Wp(R′′) = n̂.p · n̂.q[n̂.comp[v]]. (5)

2 If v’s degree is more than 1, there is at least one i such that v ∈ Fi. For example, if ei is the first edge
containing v within the edge ordering, v ∈ Fi. The treatment of degree 1 vertices is in Appendix A.1.



K. Nakamura, M. Nishino, N. Yasuda, and S. Minato 11:11

Finally, count(v) can be represented as

count(v) =
∑

n̂∈Li

∑
R∈Rv,n̂

Wp(R) =
∑

n̂∈Li

n̂.p · n̂.q[n̂.comp[v]]. (6)

By choosing i such that v ∈ Fi for every v, we can compute count(v) for every v by (6) if p
and q are computed. In the next section, we show that q can easily be computed by DP.

5.2 Dynamic Programming

First, we define a correspondence of the components in comp between n̂ and its child nodes.

▶ Definition 1. Let n̂ ∈ Li be a node of a normalized ZDD whose label is i, and let f

be either − or +. Assuming n̂f ̸= ⊥, for B ∈ n̂.comp, we define Bf as follows: (i) If B

contains vertex v in Fi+1, Bf = n̂f .comp[v]. (ii) If no such vertex exists, B− = ∅, i.e., no
corresponding component. For f = +, let v, v′ be the endpoints of ei. If v′ ∈ Fi and v ∈ B,
B+ = n̂+.comp[v′]. If v ∈ Fi and v′ ∈ B, B+ = n̂+.comp[v]. Otherwise, B+ = ∅.

Intuitively, Bf is a component in n̂f .comp that represents the same component as B.
We derive a formula for n̂.q[B] by decomposing the set of paths Rn̂,B . Since every path

in Rn̂,B passes either lo(n̂) or hi(n̂), we have a case analysis. Let n̂.q−[B] (n̂.q+[B]) be the
sum of path products of the paths in Rn̂,B that traverse lo(n̂) (hi(n̂)). Now

n̂.q[B] = n̂.q−[B] + n̂.q+[B]. (7)

We now focus on n̂.q−[B], which means that ei is excluded. If n̂− = ⊥, constraint
C(P ∗[]) is not satisfied, so no path in Rn̂,B passes through lo(n̂). Thus, n̂.q−[B] = 0.
Otherwise, B− is defined as in Definition 1. If B− ̸= ∅, since B− is the same component as
B, constraint (#′

B) is satisfied if and only if constraint (#′
B−) for n̂− is satisfied. Thus, the

set of paths in Rn̂,B that traverse lo(n̂) can be written as {lo(n̂)} ⊔ Rn̂−,B− . This means
that n̂.q−[B] = w−

ei
· n̂−.q[B−].

The remaining case is n̂− ̸= ⊥ and B− = ∅. In this case, the component B does not exist
in the next level Li+1 and thus we cannot translate constraint (#′

B) into the one concerning
the lo-child n̂−. In other words, we must judge whether constraint (#′

B) is satisfied with
only the information on n̂. Fortunately, it is possible because n̂.vset completely determines
the connectivity among B ∈ n̂.comp and V ′

P ∗ ∪ V ′′
P ∗ .

We have case analysis on how B is connected with V ′
P ∗ ∪ V ′′

P ∗ ; how to distinguish these
cases are described later. If B is connected with some (but not all) vertices in V ′

P ∗ , it violates
the constraint P ∗[] that all the vertices in V ′

P ∗ are connected. If B is connected with both
the vertices in V ′

P ∗ and those in V ′′
P ∗ , it again violates the constraint P ∗[] that the vertices

in the different sets of P ∗[] are disconnected. Therefore, since at least P ∗[] is not violated
by R′ ∈ RZ(r̂, n̂), only one of the three cases must hold: (i) B is disconnected from any
vertex in P ∗, (ii) B is connected with all the vertices in V ′

P ∗ , and (iii) B is connected with
some vertices in V ′′

P ∗ . When V ′
P ∗ ̸= ∅, only case (ii) satisfies (#′

B). When V ′
P ∗ = ∅, case (i)

also satisfies (#′
B). For both scenarios, the set of paths in Rn̂,B that traverse lo(n̂) can be

written as {lo(n̂)} ⊔ RZ(n̂−,⊤), since (#′
B) is always satisfied regardless of the choice of the

path from n̂− to ⊤. By defining n̂′.r as the sum of path products of the paths in RZ(n̂,⊤)
for any node n̂′, n̂.q−[B] = w−

ei
· n̂−.r for these cases. To sum up, the following holds:

SEA 2023



11:12 CompDP: A Framework for Simultaneous Subgraph Counting

Algorithm 2 CompDP: dynamic programming with information of comp.
1 r̂.p← 1, set all other p values to 0, ⊤.r← 1, ⊥.r← 0, set all q values to 0
2 for i← 1 to m do // Top-down DP
3 foreach n̂ ∈ Li do
4 if n̂− ̸= ⊥ then n̂−.p += w−

ei
· n̂.p // (4)

5 if n̂+ ̸= ⊥ then n̂+.p += w+
ei
· n̂.p

6 for i← m to 1 do // Bottom-up DP
7 foreach n̂ ∈ Li do
8 n̂.r← w−

ei
· n̂−.r + w+

ei
· n̂+.r // (9)

9 foreach B ∈ n̂.comp do
10 foreach f ∈ {−, +} do
11 if n̂f ̸= ⊥ and Bf ̸= ∅ then n̂.qf [B]← wf

ei
· n̂f .q[Bf ] // (8), 1st case

12 else if n̂f ̸= ⊥ and (B ∩ V ′
n̂.vset ̸= ∅ or (V ′

P ∗ = ∅ and B ∩ V ′′
n̂.vset = ∅) then

13 n̂.qf [B]← wf
ei
· n̂f .r // (8), 2nd case

14 Process corner cases

n̂.q−[B] =


w−

elb(n̂)
· n̂−.q[B−] (n̂− ̸= ⊥, B− ̸= ∅)

w−
elb(n̂)

· n̂−.r (n̂− ̸= ⊥, B− = ∅, case (ii) or (case (i) and V ′
P ∗ = ∅))

0 (otherwise)
,

(8)

where ⊤.r = 1, ⊥.r = 0, n̂.r = w−
elb(n̂)

· n̂−.r + w+
elb(n̂)

· n̂+.r. (9)

Note that the recurrence formula (9) for r can easily be derived from the definition in the
same way as the formula (4) for p.

The remaining is how to distinguish the cases (i)–(iii). Since the connectivity among B

and the vertices in P ∗ is stored in n̂.vset, it can be achieved by the comparison of B and
n̂.vset. Let V ′

n̂.vset be the vertices in the set in n̂.vset containing ∗ and let V ′′
n̂.vset be the other

vertices present in n̂.vset. Then, case (i) holds when the vertices in B do not exist in n̂.vset.
Case (ii) holds when B has a node in V ′

n̂.vset. Case (iii) holds when B has a node in V ′′
n̂.vset.

Let us see the example by Fig. 2(d). If we perform FBS with P ∗ = {{1, 4, ∗}}, the center
node of 5th level, say n̂, becomes {3}{4}/{4, ∗}. When traversing lo(n̂), both {3} and {4}
leave from the frontier. Here {3} falls into case (i) and {4} falls into case (ii), thus we have
n̂.q−[{3}] = 0 and n̂.q−[{4}] = w−

e5
· n̂−.r = w−

e5
· ⊤.r = w−

e5
.

Equation (8) also holds even if we substitute − with +, which means ei is included, except
for the following corner case. Let ei = {v, v′}. We consider the case where v, v′ /∈ Fi+1 and
n̂.comp[v] leaves the frontier with case (i). When V ′

P ∗ ̸= ∅, if v′ ∈ V ′
n̂.vset or n̂.comp[v′] leaves

the frontier with case (ii), n̂.q+[n̂.comp[v]] = w+
ei
· n̂+.r since n̂.comp[v] is finally connected

with V ′
P ∗ . Similarly, when V ′

P ∗ = ∅, if v′ ∈ V ′′
n̂.vset or n̂.comp[v′] leaves the frontier with case

(iii), n̂.q+[n̂.comp[v]] = 0 since n̂.comp[v] is finally connected with V ′′
P ∗ .

Algorithm 2 describes the pseudocode for DP. After p, q and r values are computed by
Algorithm 2, the count(v) value for every v can be obtained by (6).

5.3 Intersection with Base Set
Next we generalize for case F ̸= 2E . In the previous sections, we used the fact that P ∗[v]
is a constraint made by adding another constraint (#v) to P ∗[]. This also holds even if F
is constrained, i.e., F ∩ C(P ∗[v]) = {X | X ∈ F ∩ C(P ∗[]), X satisfies (#v)}. Therefore, by
constructing a ZDD Z representing F ∩ C(P ∗[]) with the information of comp and vset, we
can reuse the discussions in Sections 5.1 and 5.2 and run Algorithm 2 on Z to obtain count(v)



K. Nakamura, M. Nishino, N. Yasuda, and S. Minato 11:13

for every v ∈ V . More specifically, let Z ′ be the normalized ZDD of C(P ∗[]) built by FBS
with P ∗. Then Z should be a normalized ZDD representing F ∩ C(P ∗[]) that satisfies the
following condition for every i: for any i-th subgraph X ⊆ E<i, if X corresponds to i-th
level nodes n̂ in Z and n̂′ in Z ′, n̂ must have the same comp and vset as n̂′.

After building ZF that represents F by some means, Z can be built by combining FBS
with the existing methods. One approach is to use Apply [20]. First, we build Z ′ representing
C(P ∗[]) by FBS. Then by taking the set intersection of ZF and Z ′ with Apply while keeping
the information of comp and vset, we can construct Z. The other is to use subsetting [15]. It
enables us to directly construct Z from ZF in a similar manner as the FBS. For the sake of
completeness, we describe the pseudocode of subsetting with FBS in Appendix A.2.

6 Complexity Analysis

We here conduct a complexity analysis of the proposed algorithm. For connectivity constraint
P possibly including ∗, let ZFBS(P ) be a ZDD built by FBS with P , let cP be the number
of sets in P , and let vP be the number of vertices in P (excluding ∗). Additionally, let
fw = maxi |Fi| called frontier width. We give detailed proofs in Appendix A.3.

First, we bound the running time of our algorithm by the ZDD size.

▶ Proposition 2. Our proposed algorithm runs in O(fw · |ZF ||ZFBS(P ∗)|) time.

Next we bound the ZDD sizes. The bound of |ZFBS(P )| for P excluding ∗ is given in
Proposition 3 and that of |ZFBS(P ∗)| for P ∗ including ∗ is in Proposition 4.

▶ Proposition 3. The size of ZFBS(P ) for connectivity constraint P excluding ∗ is bounded
by O(mDfw ·min{(cP + 1)fw, (fw + 1)vP }), where Dfw is the fw-th Bell number.

▶ Proposition 4. For connectivity constraint P ∗ including ∗, |ZFBS(P ∗)| ≤ cP ∗ |ZFBS(P ∗[])|.

Combining Propositions 2–4 yields the following theorem.

▶ Theorem 5. The proposed algorithm runs in O(fw · cP ∗ |ZF ||ZFBS(P ∗[])|) time, which is
bounded by O(|ZF | ·mcP ∗ · fw ·Dfw ·min{(cP ∗ + 1)fw, (fw + 1)vP ∗ }).

If fw can be considered as a constant, the proposed algorithm runs in O(mcP ∗ |ZF |) time. It
is known that fw is closely related to the pathwidth [24] of a graph. If a graph’s pathwidth is
pw, there is a edge ordering with fw = pw [13]. The value of pw is often much smaller than n

and m for sparse graphs, e.g., [22]. Although obtaining such an order is NP-hard in general,
we can use pathwidth optimization heuristics [13] for obtaining better ordering.

We compare this complexity with the baseline method where we separately build a ZDD
representing F ∩ C(P ∗[v]) by FBS. The overall complexity is O(fw ·

∑
v |ZF ||ZFBS(P ∗[v])|),

analyzed in the same way as Proposition 2, which is bounded by O(|ZF | ·mn · fw · Dfw ·
min{(cP ∗ + 1)fw, (fw + 1)vP ∗ +1}). If fw is constant, it is O(|ZF |mn). Compared with
Theorem 5, the proposed method runs faster by an O(n) factor.

Here we mention the ZDD sizes. The complexity bounds of the proposed and baseline
methods heavily depend on ZF ’s size. Here |ZF | also remains small for various constraints
if fw is small. For example, the constraints appeared in the example of Section 2, e.g., the
degree constraints and the existence of cycles, can all be represented as a ZDD whose size
is proportional to m if fw is constant [27, 18, 17]. This boosts the effectiveness of both the
proposed and baseline methods for practical use because fw is often much smaller than n

and m for graphs in real worlds. Moreover, |Z| is often much smaller than expected from
the above analysis, as demonstrated by Kawahara et al. [17].

SEA 2023



11:14 CompDP: A Framework for Simultaneous Subgraph Counting

Table 2 Computational time for grid graphs and Rocketfuel dataset in seconds.

Path Cycle Steiner tree RSF
Instance n m fw Ours Base Ours Base Ours Base Ours Base

Grid-8x8 64 112 8 0.06 0.48 0.06 0.54 4.93 29.87 8.87 38.17
Grid-8x16 128 232 8 0.16 2.54 0.16 2.81 14.16 183.16 25.72 234.17
Grid-8x24 192 352 8 0.26 6.29 0.27 6.86 23.27 470.60 42.81 >600
Grid-8x32 256 472 8 0.36 11.73 0.38 12.65 32.55 >600 60.28 >600
Grid-9x9 81 144 9 0.22 2.13 0.22 2.34 40.13 298.57 62.44 397.57
Grid-10x10 100 180 10 0.78 9.70 0.89 11.69 284.17 >600 430.04 >600
Grid-11x11 121 220 11 2.88 42.26 3.22 50.97 >600 >600 >600 >600
Grid-12x12 144 264 12 11.24 183.87 15.25 241.94 >600 >600 >600 >600
Grid-13x13 169 312 13 45.51 >600 56.25 >600 >600 >600 >600 >600
Rocketfuel-1221 318 758 10 157.01 >600 111.52 >600 181.38 >600 >600 >600
Rocketfuel-1755 172 381 12 43.94 >600 32.48 >600 >600 >600 >600 >600
Rocketfuel-6461 182 294 10 3.66 65.64 4.80 128.86 71.10 >600 95.47 >600

We close this section by mentioning the space complexity of the proposed and the baseline
methods. The proposed algorithm uses at most O(fw · |ZF ||ZFBS(P ∗)|) words of space, since it
retains O(fw) words of information for each node of ZFBS(P ∗). The baseline method typically
uses at most O(fw · |ZF ||ZFBS(P ∗[v])|) words of space for the computation of count(v). If it
is assumed that |ZFBS(P ∗[v])| is close to |ZFBS(P ∗[])|, the space complexity of the baseline
method is at most only O(cP ∗) times smaller due to Proposition 4.

7 Experiments

We empirically compared the proposed and the baseline methods with respect to the com-
putational time. Here the baseline method is to separately build a ZDD by FBS for each
constraint. Both methods were implemented in C++ and compiled by g++ with -O3 option.
We used TdZdd [14] for the baseline method, which is a highly optimized C++ library
for FBS. We also used TdZdd for the proposed method to construct ZDD ZF of base set.
Experiments are conducted on a single thread of a Linux machine with AMD EPYC 7763
2.45 GHz CPU and 2048 GB RAM; note that we used less than 256 GB of memory during
the experiments. We set the time limit of every run to 600 seconds.

We used both synthetic graphs and real benchmarks as tested graphs. The synthetic ones
are grid graphs; Grid-wxh represents a grid graph with w × h vertices. For the others, we
used the Rocketfuel [29] and Romegraph datasets [7]. Rocketfuel was also used in [22]. From
Romegraph, we chose all the graphs with n = 100: there were 140 such graphs. Identical
edge ordering was used for both methods, and it was decided as follows: For the grid graphs,
we used the edge ordering of Iwashita et al. [16], which is better for the DP on grid graphs.
For the other graphs, we used beam-search heuristics [13] to determine the edge ordering.

We evaluated four problem settings in Section 2: path, cycle, Steiner tree, and rooted
spanning forest (RSF). The given vertices for these settings were determined as follows.
Let d(v, v′) be the shortest distance between vertices v and v′. For the path problem, we
chose the most distant vertex pair as s, t, i.e., s, t satisfies d(s, t) = maxv,v′ d(v, v′). For the
cycle problem, we chose the graph center as s, i.e., s ∈ argminv maxv′ d(v, v′). For the other
problems, we chose four vertices as T such that the sum of the distances between distinct
vertices,

∑
v,v′∈T :v ̸=v′ d(v, v′), is maximized.

Table 2 shows the result for the grid graphs and the Rocketfuel dataset. For all the graphs
and problem settings solved by both methods within the time limit, the proposed method
ran about 10–20 times faster than the baseline method. The complexity analyses in Section 6



K. Nakamura, M. Nishino, N. Yasuda, and S. Minato 11:15

 0.01

 0.1

 1

 10

 100

 0.01 0.1  1  10  100

Path

#(solved) (out of 140):
Proposed: 138
Baseline: 126

P
ro

p
o
s
e
d
 m

e
th

o
d
 (

s
)

Baseline method (s)
 0.01 0.1  1  10  100

Cycle

#(solved) (out of 140):
Proposed: 138
Baseline: 126

Baseline method (s)
 0.01 0.1  1  10  100

Steiner tree

#(solved) (out of 140):
Proposed: 116
Baseline: 78

Baseline method (s)
 0.01 0.1  1  10  100

RSF

#(solved) (out of 140):
Proposed: 113
Baseline: 78

Baseline method (s)

Figure 3 Computational time for Romegraph dataset: Blue points indicate instances solved by
both methods, and red points indicate those solved only by proposed method. Solid black lines
indicate elapsed time for both methods is identical, and dashed lines indicate proposed method is 10
times faster than baseline method.

suggest that the proposed method becomes faster than the existing method when n is large.
Table 2 exhibits such a tendency. For example, for the Grid-8xh graphs, the proposed method
becomes much faster than the baseline method when n = 8h is increased. In addition, both
methods ran faster for graphs with smaller fw value, reflecting the complexity analyses.

Fig. 3 plots the result for the Romegraph dataset and also describes the number of graphs
solved by each method within the time limit. Here each point corresponds to a graph, where
the blue ones are those solved by both methods and the red ones are those solved only by
the proposed method. Although the computational time itself varied from less than 0.01 to
600 seconds, for almost all the graphs the proposed method ran about 10–20 times faster
than the existing method. This ratio is kept because the graphs all have the same number of
vertices: 100. We give detailed results for Romegraph in Appendix A.4.

8 Conclusion

We proposed a novel framework, compDP, for solving multiple subgraph counting problems
with similar connectivity constraints simultaneously. A complexity analysis showed that the
proposed method ran O(n) times faster than the baseline approach, and the experiments
revealed the proposed method’s efficiency.

As a future work, we will consider dealing with the reachability in directed graphs. There
are approaches for building BDDs of reachability constraints [19, 30], and we want to consider
whether they can be incorporated into our framework.

References
1 N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica,

17:209–223, 1997.
2 Eric T. Bax. Algorithms to count paths and cycles. Information Processing Letters, 52(5):249–

252, 1994.
3 Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.

Comput., C-35(8):677–691, 1986.
4 Radu Curticapean. Counting problems in parameterized complexity. In Proc. of the 13th

International Symposium on Parameterized and Exact Computation (IPEC), pages 1:1–1:18,
2018.

5 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM J.
Comput., 33(4):892–922, 2004.

SEA 2023



11:16 CompDP: A Framework for Simultaneous Subgraph Counting

6 Luigi Fratta and Ugo Montanari. A Boolean algebra method for computing the terminal
reliability in a communication network. IEEE Trans. Circuit Theory, 20(3):203–211, 1973.

7 graphdrawing.org. RomeGraph. http://www.graphdrawing.org/data.html.
8 G. Hardy, C. Lucet, and N. Limnios. K-terminal network reliability measures with binary

decision diagrams. IEEE Trans. Rel., 56(3):506–515, 2007.
9 J.U. Herrmann. Improving reliability calculation with augmented binary decision diagrams.

In Proc. of the 24th IEEE International Conference on Advanced Information Networking and
Applications (AINA), pages 328–333, 2010.

10 Makoto Imase and Bernard M. Waxman. Dynamic Steiner tree problem. SIAM J. Discrete.
Math., 4(3):369–384, 1991.

11 Takeru Inoue. Reliability analysis for disjoint paths. IEEE Trans. Rel., 68(3):985–998, 2018.
12 Takeru Inoue, Norihito Yasuda, Shunsuke Kawano, Yuji Takenobu, Shin-ichi Minato, and

Yasuhiro Hayashi. Distribution network verification for secure restoration by enumerating all
critical failures. IEEE Trans. Smart Grid, 6(2):843–852, 2015.

13 Yuma Inoue and Shin-ichi Minato. Acceleration of ZDD construction for subgraph enumeration
via pathwidth optimization. Technical Report TCS-TR-A-16-80, Division of Computer Science,
Hokkaido University, 2016.

14 Hiroaki Iwashita, Jun Kawahara, and Kohei Shinohara. TdZdd. https://github.com/
kunisura/TdZdd.

15 Hiroaki Iwashita and Shin-ichi Minato. Efficient top-down ZDD construction techniques using
recursive specifications. Technical Report TCS-TR-A-13-69, Division of Computer Science,
Hokkaido University, 2013.

16 Hiroaki Iwashita, Yoshio Nakazawa, Jun Kawahara, Takeaki Uno, and Shin-ichi Minato.
Efficient computation of the number of paths in a grid graph with minimal perfect hash
functions. Technical Report TCS-TR-A-13-64, Division of Computer Science, Hokkaido
University, 2013.

17 Jun Kawahara, Takeru Inoue, Hiroaki Iwashita, and Shin-ichi Minato. Frontier-based search
for enumerating all constrained subgraphs with compressed representation. IEICE Trans.
Fundamentals, E100-A(9):1773–1784, 2017.

18 Donald E. Knuth. The art of computer programming: Vol. 4A. Combinatorial Algorithms,
Part 1. Addison-Wesley Professional, 2011.

19 Takanori Maehara, Hirofumi Suzuki, and Masakazu Ishihata. Exact computation of influence
spread by binary decision diagrams. In Proc. of the 26th International World Wide Web
Conference (WWW), pages 947–956, 2017.

20 Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In
Proc. of the 30th ACM/IEEE Design Automation Conference (DAC), pages 272–277, 1993.

21 Fred Moskowitz. The analysis of redundancy networks. Transactions of the American Institute
of Electrical Engineers, Part I: Communication and Electronics, 77(5):627–632, 1958.

22 Kengo Nakamura, Takeru Inoue, Masaaki Nishino, and Norihito Yasuda. Efficient network reli-
ability evaluation for client-server model. In Proc. of IEEE Global Communication Conference
(GLOBECOM), pages 1–6, 2021.

23 R. C. Read and R. E. Tarjan. Bounds on backtrack algorithms for listing cycles, paths, and
spanning trees. Networks, 5(3):237–252, 1975.

24 Neil Robertson and P.D. Seymour. Graph minors. I. excluding a forest. Journal of Combinat-
orial Theory, Series B, 35(1):39–61, 1983.

25 Arnie Rosenthal. Computing the reliability of complex networks. SIAM J. Appl. Math.,
32(2):384–393, 1977.

26 Shinsaku Sakaue and Kengo Nakamura. Differentiable equilibrium computation with decision
diagrams for Stackelberg models of combinatorial congestion games. In Proc. of the 35th
Conference on Neural Information Processing Systems (NeurIPS), pages 9416–9428, 2021.

http://www.graphdrawing.org/data.html
https://github.com/kunisura/TdZdd
https://github.com/kunisura/TdZdd


K. Nakamura, M. Nishino, N. Yasuda, and S. Minato 11:17

27 Kyoko Sekine, Hiroshi Imai, and Seiichiro Tani. Computing the Tutte polynomial of a graph of
moderate size. In Proc. of the 6th International Symposium on Algorithms and Computation
(ISAAC), pages 224–233, 1995.

28 Akiyoshi Shioura, Akihisa Tamura, and Takeaki Uno. An optimal algorithm for scanning all
spanning trees of undirected graphs. SIAM J. Comput., 26(3):678–692, 1997.

29 Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Measuring ISP topologies
with Rocketfuel. IEEE/ACM Trans. Netw., 12(1):2–16, 2004.

30 Hirofumi Suzuki, Masakazu Ishihata, and Shin-ichi Minato. Exact computation of strongly
connected reliability by binary decision diagrams. In Proc. of the 12th Annual International
Conference on Combinatorial Optimization and Applications (COCOA), pages 281–295, 2018.

31 S. Tsukiyama, I. Shirakawa, H. Ozaki, and H. Ariyoshi. An algorithm to enumerate all cutsets
of a graph in linear time per cutset. J. ACM, 27(4):619–632, 1980.

32 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979.

33 R. Kevin Wood. Factoring algorithms for computing K-network network reliability. IEEE
Trans. Rel., 35(3):269–278, 1986.

A Appendix

A.1 Treatment of Degree 1 Vertices
As in Section 5.1, we can compute the count(v) value by focusing on the i-th level of Z where
v ∈ Fi. However, if v’s degree is 1, no such i exists. Let ei = {v, v′} be the only edge incident
to v. Then for i′ < i, v is not present in E≥i′ , and for i′ ≥ i, it is not present in E<i′ , so no
frontier contains v. Therefore, we have an alternative formula for computing count(v) like
Eq. (6). Let us focus on the i-th level where ei = {v, v′} is the only edge incident to v.

First, we address the case where the other endpoint, v′, is in Fi. Let n̂ ∈ Li be an
arbitrarily chosen i-th level node of Z. Since ei is the only edge incident to v, if ei is excluded,
v remains as an isolated vertex. Thus, if V ′

P ∗ ≠ ∅, constraint (#v) will never be satisfied.
Otherwise, if V ′

P ∗ = ∅, constraint (#v) is always satisfied. In this case, the set of paths
in RZ(r̂,⊤) that passes n̂ whose corresponding subgraph satisfies (#v), i.e., Rv,n̂, can be
written as RZ(r̂, n̂)⊔ {lo(n̂)} ⊔RZ(n̂−,⊤). The sum of their path products is n̂.p ·w−

ei
· n̂−.r

given that n̂− ̸= ⊥. If ei is included, v is connected with v′, and so condition (#v) is met
if and only if condition (#′

B) for B = n̂.comp[v′] is met. In this case, the set of paths
in RZ(r̂,⊤) that passes n̂ whose corresponding subgraph satisfies (#v) can be written as
RZ(r̂, n̂) ⊔ R+

n̂,n̂.comp[v′], where R+
n̂,B is the set of paths in Rn̂,B that passes through hi(n̂).

The sum of their path products is n̂.p · n̂.q+[n̂.comp[v′]] using the notion q+ introduced in
Section 5.2. The value count(v) can be computed by their sum over n̂ ∈ Li:

count(v) =
∑

n̂∈Li

n̂.p · n̂.q+[n̂.comp[v′]] +
{

0 (V ′
P ∗ ̸= ∅)∑

n̂∈Li:n̂− ̸=⊥ n̂.p · w−
ei
· n̂−.r (V ′

P ∗ = ∅)
. (10)

The remaining issue is how to cope with case v′ /∈ Fi. For it, we can assume v′ ∈ Fi+1;
otherwise, v′ is also a degree 1 vertex that means graph G consists of only ei since G is
connected, which is trivial. The case where ei is excluded is treated in the same way as
above. If ei is included, let n̂ be an arbitrary i-th level node of Z. Since v is connected
with v′, constraint (#v) is met if and only if constraint (#′

B) for B = n̂−.comp[v′] is met.
Therefore, the set of paths in RZ(r̂,⊤) that passes n̂ whose corresponding subgraph satisfies
(#v) can be written as RZ(r̂, n̂) ⊔ {hi(n̂)} ⊔ Rn̂+,n̂+.comp[v′], given that n̂+ ≠ ⊥. The sum of
their path products is n̂.p · w+

ei
· n̂+.q[n̂+.comp[v′]]. The value count(v) can be computed by

SEA 2023



11:18 CompDP: A Framework for Simultaneous Subgraph Counting

Algorithm 3 Frontier-based search with subsetting for connectivity constraint P and
base ZDD ZF representing the base family of subgraphs F .

1 r̂.comp← {}, r̂.vset← P, r̂.base← r̂F (ZF ’s root), L1 ← {r̂}, Li ← ∅ (i = 2, . . . , m + 1)
2 for i← 1 to m do // ei = {v, v′}
3 foreach n̂ ∈ Li do
4 foreach f ∈ {−, +} do
5 n̂′ ← n̂

6 if f = + and i < lb(n̂′.base) then
7 n̂′ ← ⊥ and goto finish // No further subgraphs in F
8 if i = lb(n̂′.base) then
9 n̂′.base← (n̂′.base)f // base proceeds to child node

10 if n̂′.base = ⊥ then
11 n̂′ ← ⊥ and goto finish // No further subgraphs in F
12 if f = + and v, v′ ∈ Vn̂′.vset and n̂′.vset[v] ̸= n̂′.vset[v′] then
13 n̂′ ← ⊥ and goto finish // v and v′ must not be connected
14 foreach u ∈ {v, v′} \ Fi do // Vertices entering the frontier
15 n̂′.comp← n̂′.comp ∪ {{u}} // Add u as an isolated vertex
16 if f = + and n̂′.comp[v] ̸= n̂′.comp[v′] then // Connecting two components
17 Merge n̂′.comp[v] and n̂′.comp[v′] into one
18 if v ∈ Vn̂′.vset and v′ /∈ Vn̂′.vset then Add vertices in n̂′.comp[v′] to n̂′.vset[v]
19 if v /∈ Vn̂′.vset and v′ ∈ Vn̂′.vset then Add vertices in n̂′.comp[v] to n̂′.vset[v′]
20 foreach u ∈ {v, v′} \ Fi+1 do // Vertices leaving the frontier
21 if {u} ∈ n̂′.comp then // Component containing u leaves frontier
22 if u ∈ Vn̂′.vset and {u} /∈ n̂′.vset and {u, ∗} /∈ n̂′.vset then
23 n̂′ ← ⊥ and goto finish // u must be connected to w ∈ n̂′.vset[u]
24 Remove u from n̂′.comp and n̂′.vset if exists
25 if n̂′ ̸= ⊥ then
26 if i = m then n̂′ ← ⊤ // All conditions are meet
27 else if ∃n̂′′ ∈ Li+1 s.t. n̂′′.comp = n̂′.comp and n̂′′.vset = n̂′.vset and

n̂′′.base = n̂′.base then
28 n̂′ ← n̂′′ // Already generated node
29 else Li+1 ← Li+1 ∪ {n̂′} // Newly generated node
30 finish:
31 n̂f ← n̂′ // Set lo- or hi-child of n̂ to n̂′

count(v) =
∑

n̂∈Li:n̂+ ̸=⊥

n̂.p·w+
ei
·n̂+.q[n̂+.comp[v′]]+

{
0 (V ′

P ∗ ̸= ∅)∑
n̂∈Li:n̂− ̸=⊥ n̂.p · w−

ei
· n̂−.r (V ′

P ∗ = ∅)
. (11)

A.2 Pseudocode for FBS with Subsetting
Next we explain the subsetting [15], which is used for taking the set intersection of the ZDDs,
and describe the pseudocode for the FBS with subsetting. Given ZDD ZF that represents
the base set F and connectivity constraint P , it constructs a ZDD that represents F ∩ C(P ).
Starting with r̂F where r̂F is the root node of ZF , we traverse the lo-arc of ZF if ei is
excluded in the FBS and its hi-arc of if ei is included in the FBS. We now record the present
node in ZF as n̂.base for each node n̂. If it reaches ⊥ in ZF , there are no further subgraphs
in F , and so pruning is executed. Here we can identify the two nodes of Z if their base as
well as comp and vset are identical.

Based on these procedures, the FBS with subsetting can be described as Algorithm 3.
Here the red part is newly added elements that are not included in Algorithm 1. Note that
these codes are a bit complicated than the above explanation since we also cope with the
case where ZF is not normalized.



K. Nakamura, M. Nishino, N. Yasuda, and S. Minato 11:19

A.3 Proof of Propositions in Complexity Analysis
Proof of Proposition 2. By storing comp and vset as an integer sequence whose length is
fw, as in the previous work [22], FBS with an intersection runs in O(fw · |Z|) time where Z

is the resultant ZDD. Since |Z| can be bounded by the product of |ZF | and |ZFBS(P )| [20],
|Z| = O(|ZF ||ZFBS(P ∗)|) in the proposed algorithm. For each node, p, r, and q[B] can be
computed in constant time, and there are at most fw sets in comp. Thus, the DP computation
is completed in O(fw · |Z|) time. The complete computation of count(v) can be done in
O(|Z|) time; by choosing i such that ei is the first edge containing v for every v, each level
of Z is scanned at most twice for computing count(v) for every v. ◀

Proof of Proposition 3. We consider the number of possible patterns for the comp and vset
pair. We focus on an i-th level. Since comp is simply a partition of Fi, the number of possible
patterns for it is D|Fi|. The number of possible patterns for vset can be bounded in two ways.
First, vset retains the information of how the components in vset are connected to each set
in P . Each component of comp is connected to at most one set in P , since if more than
two sets are connected, connectivity constraint P is violated. Since there are at most |Fi|
components, the number of vset patterns is bounded by (cP + 1)|Fi|, where +1 deals with the
case where no component is connected to any sets in P . Second, vset can be seen as retaining
the information of how the vertices in P are connected to the component in comp. Thus, the
number of vset patterns is bounded by (|Fi|+ 1)vP , where +1 deals with the case where a
vertex in P is not connected to any component in comp. To sum up, the number of patterns
of the comp and vset pair can be bounded by O(D|Fi| ·min{(cP + 1)|Fi|, (|Fi|+ 1)vP }).

Since there are m levels and |Fi| ≤ fw, the overall size is bounded by O(mDfw ·min{(cP +
1)fw, (fw + 1)vP }). ◀

Proof of Proposition 4. Since running Algorithm 1 with P ∗ and P ∗[] yields the same rep-
resenting family of sets, C(P ∗[]), we only have to address the number of patterns of comp and
vset. The only difference is that when running FBS with P ∗, we must determine which set
in vset has ∗. Since there are at most cP ∗ sets in vset, there will be at most cP ∗ patterns of
vset for a node in ZFBS(P ∗[]) when running FBS with P ∗. Thus, |ZFBS(P ∗)| ≤ cP ∗ |ZFBS(P ∗[])|
holds. ◀

A.4 Detailed Experimental Results for Romegraph Dataset
Next we describe a detailed experimental results for the Romegraph dataset, which has
140 graphs whose number of nodes is exactly 100. With beam-search heuristics [13], the
frontier width fw of each graph ranges from 6 to 14. The number of graphs per value of fw is
described in Table 3.

Table 3 also shows the number of graphs solved within the time limit for each method, each
problem setting, and each frontier width value. In addition, Fig. 4 plots the computational
time for the Romegraph dataset aggregated by frontier width fw. For both methods, the
graphs with a larger fw value are clearly difficult to solve, i.e., time-consuming; this outcome
reflects the complexity results in Section 6. However, our proposed method can also treat
graphs with a larger fw value than the baseline method. This again clearly indicates the
efficiency of our proposed method.

SEA 2023



11:20 CompDP: A Framework for Simultaneous Subgraph Counting

Table 3 Comparison of the number of solved graphs in Romegraph dataset within time limit for
each frontier width.

Path Cycle Steiner tree RSF
fw #(graphs) Ours Base Ours Base Ours Base Ours Base
6 3 3 3 3 3 3 3 3 3
7 7 7 7 7 7 7 7 7 7
8 26 26 26 26 26 26 26 26 26
9 28 28 28 28 28 28 27 28 28
10 33 33 33 33 33 33 15 33 14
11 25 25 24 25 24 18 0 15 0
12 10 10 5 10 5 1 0 1 0
13 6 6 0 6 0 0 0 0 0
14 2 0 0 0 0 0 0 0 0

Total 140 138 126 138 126 116 78 113 78

 0.01

 0.1

 1

 10

 100

 6  8  10 12

Path

E
la

p
s
e
d
 t
im

e
 (

s
)

fw
 6  8  10 12

Path

fw
 6  8  10 12

Cycle

fw

Proposed

 6  8  10 12

Cycle

fw
 6  8  10 12

Steiner tree

fw
 6  8  10 12

Steiner tree

fw

Baseline

 6  8  10 12

RSF

fw
 6  8  10 12

RSF

fw

Figure 4 Computational time for Romegraph dataset aggregated by frontier width fw. Blue
points indicate results of proposed method, and red points indicate results of baseline method.



Multilinear Formulations for Computing a Nash
Equilibrium of Multi-Player Games
Miriam Fischer # Ñ

Department of Computing, Imperial College London, UK

Akshay Gupte1 #Ñ

School of Mathematics, The University of Edinburgh, UK

Abstract
We present multilinear and mixed-integer multilinear programs to find a Nash equilibrium in multi-
player noncooperative games. We compare the formulations to common algorithms in Gambit, and
conclude that a multilinear feasibility program finds a Nash equilibrium faster than any of the
methods we compare it to, including the quantal response equilibrium method, which is recommended
for large games. Hence, the multilinear feasibility program is an alternative method to find a Nash
equilibrium in multi-player games, and outperforms many common algorithms. The mixed-integer
formulations are generalisations of known mixed-integer programs for two-player games, however
unlike two-player games, these mixed-integer programs do not give better performance than existing
algorithms.

2012 ACM Subject Classification Theory of computation → Exact and approximate computation
of equilibria; Theory of computation → Nonconvex optimization

Keywords and phrases Noncooperative n-person games, Nash equilibrium, Multilinear functions,
Nonconvex problems, Mixed-integer optimization

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.12

Supplementary Material
Dataset: https://github.com/economicsandcomputing/MultilinearNashEquilibria

Funding Miriam Fischer : Supported by a PhD scholarship from DeepMind.

Acknowledgements This research was initiated as part of the MSc dissertation of the first author in
the School of Mathematics at the University of Edinburgh.

1 Introduction

A noncooperative game has n players, where n ≥ 2 is finite, with each player having finitely
many pure strategies which they do not discuss or reveal to each other. A mixed strategy
for a player is a probability distribution over the player’s pure strategies. Each player has a
known payoff function which maps any combination of pure strategies of all the n players to
a real number. Mixed strategies of all the players form a tuple whose payoff is calculated by
taking expectation over the probability distributions. In his seminal work [11], Nash showed
that every such game has a tuple of mixed strategies that is an equilibrium in the sense that
no player increases their payoff if they were to change their mixed strategy while the others
keep theirs fixed. Although existence of Nash equilibrium is guaranteed, uniqueness does not
always hold, and there are also characterisations of when there exists an equilibrium formed
solely by pure strategies.

1 Corresponding author

© Miriam Fischer and Akshay Gupte;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.fischer21@imperial.ac.uk
https://www.doc.ic.ac.uk/~mif21/
mailto:akshay.gupte@ed.ac.uk
https://www.maths.ed.ac.uk/school-of-mathematics/people/a-z?person=820
https://orcid.org/0000-0002-7839-165X
https://doi.org/10.4230/LIPIcs.SEA.2023.12
https://github.com/economicsandcomputing/MultilinearNashEquilibria
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


12:2 Nash Equilibria Through Multilinear Optimization

This paper deals with the question of algorithmic and numerical computation of Nash
equilibria. From a complexity perspective, computing an equilibrium was only somewhat
recently formally settled to being PPAD-complete [1, 2] even for two-player games. There is
a lot of literature for two-player bimatrix games, and the most well-known and established
exact method to compute an equilibrium is the Lemke-Howson algorithm [8]. This gives a
very good computational performance on many instances in practice, although its worst-case
performance can take exponentially many pivoting steps [17].

However, for multi-player games, there do not seem to be commonly established approach
for computing the equilibrium. Although there is a generalisation of the Lemke-Howson
method to n-person games [14, 21], popular algorithmic approaches include a global Newton
method [6], an iterated polymatrix approximation approach [7], a simplicial subdivision
method [20], a simple search algorithm aiming to find an equilibrium with small support
size [13], and a quantal response equilibrium method which gives an approximation to
a Nash equilibrium [19]. Many of these methods are implemented in the game-theoretic
library Gambit [10]. Experiments comparing different methods have been undertaken [16, 13],
however it is rather unclear which of the methods is best for multi-player games. For example,
the global Newton method gives solid performance for small games, however does not to
scale well to larger games [5, 18]. Support enumeration algorithms are fast for games with
pure equilibria but will be much slower for a game that only has equilibria of medium to
large support size. There are also approximation algorithms, which tend to approximate a
Nash equilibrium for large games [19, 5, 3].

We adopt the optimization approach, and propose different optimization formulations
for computing a Nash equilibrium for n-person games for n ≥ 2. Particularly, we present a
multilinear polynomial continuous feasibility program of degree n (= number of players),
which is a generalisation of the bilinear optimization problem for 2 players [9]. Further, we
extend the two-player mixed-integer formulations of [16] to multi-player games, and give
a large variety of mixed-integer formulations to find a Nash equilibrium in multi-player
games. All our formulations find a Nash equilibrium of a n ≥ 2 player game. We compare
our programs to gambit-gnm (global Newton), gambit-simpdiv (simplicial subdivision),
gambit-logit (quantal response equilibrium) algorithms in Gambit, focusing on random
games and covariant games with negative covariance. We find that the mixed-integer
formulations do not give better performance than existing algorithms, and our analysis of
those is aimed to get an understanding of which mixed-integer formulations are most suited
for finding a Nash equilibrium. We find that our multilinear continuous feasibility program
is faster than all the methods in Gambit we compare it to, including the gambit-logit
method, which is so far recommended for large games. Thus, we provide an alternative
approach to computing Nash equilibrium in multi-player games.

The next section presents our continuous and mixed-integer multilinear optimization
formulations. For each of them, their correctness, i.e., the fact that their optimal/feasible
solutions correspond to Nash equilibria of the game, is proved in the Appendix.

2 Formulations

The multi-player multilinear formulation is an extension of a bilinear formulation for bimatrix
games [9]. To motivate the multilinear formulation, we shortly recall the bilinear program
that is equivalent to finding a Nash equilibrium in a bimatrix game. To do so, we introduce
some notation. Let A, B ∈ Rm×n be the payoff matrix of player 1 and player 2, with m

pure strategies of player 1 and n pure strategies of player 2. Let x ∈ Rm with x ≥ 0 and



M. Fischer and A. Gupte 12:3

∑m
i=1 xi = 1 be a (possibly mixed) strategy of player 1, with xs being the probability placed

on pure strategy s. Let y ∈ Rn with y ≥ 0 and
∑n

j=1 yj = 1 be a (possibly mixed) strategy
of player 2. Let 1n and 1m denote vectors of all ones of dimension n and m. Any globally
optimal solution (x, y, p, q) to the bilinear optimization problem in BLP is equivalent to a
Nash equilibrium in a bimatrix game.

(BLP)

max
x,y,p,q

x⊤Ay + x⊤By − p − q (1a)

s.t. Ay ≤ p1m, B⊤x ≤ q1n (1b)
m∑

i=1
xi = 1,

n∑
j=1

yj = 1, x, y ≥ 0. (1c)

It is easy to see that any feasible mixed strategies x, y will have objective function value
less or equal to zero, as given player 2’s (mixed) strategy, any pure strategy of player 1 can
give payoff at most p, and given player 1’s (mixed) strategy, any pure strategy of player 2
can give payoff at most q. This implies that any combination of pure strategies (i.e. any
mixed strategy) of player 1 gives payoff at most p, and any combination of pure strategies of
player 2 gives payoff at most q. Further, any Nash equilibrium x∗, y∗ has objective function
value equal to zero, thus maximises the objective function. This is because players play best
responses, and thus p∗ = x∗⊤Ay∗ and q∗ = x∗⊤By∗. Importantly, only the Nash equilibria
have objective function value of zero. This is because for any optimal solution (x∗, y∗, p∗, q∗)
and any (x, y) with x ≥ 0,

∑m
i=1 xi = 1, y ≥ 0,

∑n
i=1 yi = 1, x⊤Ay∗ ≤ p∗, x∗⊤By ≤ q∗, and

thus x∗⊤Ay∗ ≤ p∗, x∗⊤By∗ ≤ q∗. As a Nash equilibrium has objective function value of
zero and is guaranteed to exist, the optimal value of the bilinear formulation must be zero
(as it is non-positive). Thus x∗⊤Ay∗ = p∗, x∗⊤By∗ = q∗. This implies x⊤Ay∗ ≤ x∗⊤Ay∗,
x∗⊤By ≤ x∗⊤By∗.

In this work, we propose a multilinear feasibility program whose every feasible solution is
a Nash equilibrium to a corresponding multi-player game with n ≥ 2 players. The formulation
is based on an extension of the bilinear formulation to multi-player games. Although such
an extension is straightforward, is has not been given much empirical analysis. We compare
the multilinear feasibility formulation to established algorithms used to find an equilibrium
in multi-player games. We find that our multilinear program is faster than a variety of
algorithms in Gambit [10].

2.1 Multilinear formulation
Let us define some notation. Let n ≥ 2 be the number of players, and [n] = {1, . . . , n} the
set of players. Every player i comes with a finite set of pure strategies Si, with |Si| = ni.
Let S = S1 × S2 × · · · × Sn be the set of all n-tuples of pure strategy combinations of all
players. We will further denote by S−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn the set of all pure
strategy tuples of all players except i. Let s = (s1, . . . , sn) ∈ S be a pure strategy tuple of
all players and ŝ = (s1, . . . , si−1, si+1, . . . , sn) ∈ S−i be a pure strategy tuple of all players
other than i. We define payoff matrix Ai : s ∈ S → R for player i. As an example, if we had
three players, A1[s1, s2, s3] denotes player 1’s payoff when player 1 plays pure strategy s1,
player 2 plays pure strategy s2 and player 3 plays pure strategy s3. Likewise, A2[s1, s2, s3]
and A3[s1, s2, s3] denote player 2 and 3’s payoff for the strategy combination (s1, s2, s3) ∈ S.
For pure strategy s of player i and pure strategies (s1, . . . , si−1, si+1, . . . , sn) = ŝ ∈ S−i

of the other players, we write Ai[s, ŝ] to denote the payoff of player i when player i plays
pure strategy s ∈ Si and the other players play pure strategies ŝ ∈ S−i. For every player
i, we define strategy vector xi ∈ Rni , with xi ≥ 0 and

∑
s∈Si

xi
s = 1. xi is a probability

SEA 2023



12:4 Nash Equilibria Through Multilinear Optimization

distribution over player i’s pure strategies, and thus a mixed strategy. Note that any pure
strategy is also a mixed strategy2. Let x = (x1, . . . , xn) be a mixed strategy profile of all
players, and x−i = (x1, . . . , xi−1, xi+1, xn) be a mixed strategy profile of all players other
than i. The product term

∏
sj∈ŝ xj

sj
for ŝ ∈ S−i denotes the combined probability of all

players except i to play the pure strategy tuple ŝ ∈ S−i. As an example, if we have three
players, player 2 has pure strategies s2,1 and s2,2 and player 3 has pure strategies s3,1 and
s3,2, then S−1 = {(s2,1, s3,1), (s2,1, s3,2), (s2,2, s3,1), (s2,2, s3,2)}. If player 2 plays s2,1 with
probability 1/2 and player 3 plays s3,1 with probability 1/4, then

∏
sj∈(s2,1,s3,1) = 1/2 ∗ 1/4,∏

sj∈(s2,1,s3,2) = 1/2 ∗ 3/4,
∏

sj∈(s2,1,s3,1) = 1/2 ∗ 1/4,
∏

sj∈(s2,2,s3,2) = 1/2 ∗ 3/4. Further, we
define vector p ∈ Rn. pi corresponds to player i’s highest expected payoff.

▶ Definition 1. Let Γ = ⟨{1, . . . , n}, (Si), (Ai)⟩ be a game with n, Si, Ai, xi defined as above.
Let xi ≥ 0 with

∑
s∈Si

xi
s = 1 be a mixed strategy of player i. Then, x∗ = (x∗1, . . . , x∗n)

with x∗i ≥ 0 and
∑

s∈Si
x∗i

s = 1 for all players i is a (mixed) Nash equilibrium if for all
players i and every mixed strategy xi, we have E [Ai[x∗]] ≥ E

[
Ai[xi, x∗−i]

]
.

We now present the multilinear optimization formulation.

(MLP1)

max
x,p

n∑
i=1

 ∑
(s,̂s)

∈Si×S−i

Ai[s, ŝ]xi
s

∏
sj∈ŝ

xj
sj

 −
n∑

i=1
pi (2a)

s.t.
∑

ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

xj
sj

≤ pi ∀i ∈ [n], s ∈ Si (2b)

∑
s∈Si

xi
s = 1 ∀i ∈ [n] (2c)

0 ≤ xi
s ≤ 1 ∀i ∈ [n], s ∈ Si (2d)

▶ Theorem 2. A (mixed) strategy (x1, . . . , xn) is a (mixed) Nash equilibrium of the
n-player game (A1, . . . , An) if and only if there exist numbers p1, . . . , pn such that
(x1, . . . , xn, p1, . . . , pn) is an optimal solution to the problem in MLP1.

It is easy to see that for two players, MLP1 equals the bilinear formulation in BLP,
with x1, x2 instead of x, y, p1, p2 instead of p, q, and A1, A2 instead of A, B. Computational
experiments on small instances reveal that the solver takes significant time to solve MLP1 to
optimality. However, further inspections reveal that it is more the verification of an optimal
solution, rather than finding an optimal solution, that is the reason for this. Particularly,
the solver finds a solution with objective function value 0 (i.e. a Nash equilibrium) relatively
quickly, but spends a lot of time verifying that there is no feasible solution with objective
function value larger than zero. However, as there cannot be a feasible solution with strictly
positive objective value, it is sufficient for the solver to find a feasible solution with objective
function value zero, instead of verifying that the upper bound to the optimisation program
is zero. Thus, we reformulate the program into a feasibility program, for which the aim is to
find a feasible solution for which the objective function (2a) of program MLP1 is non-negative.
As a strictly positive solution is not possible, any feasible solution to MLP2 will have a value
of zero, and thus be a Nash equilibrium.

2 When we refer to (mixed) strategies or a (mixed) Nash equilibrium, this includes pure strategies or a
pure Nash equilibrium.



M. Fischer and A. Gupte 12:5

▶ Corollary 3. Every feasible solution of MLP2 is a Nash equilibrium.

(MLP2)

max
x,p

0 (3a)

s.t.
∑

ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

xj
sj

≤ pi ∀i ∈ [n], s ∈ Si (3b)

n∑
i=1

 ∑
(s,̂s)

∈Si×S−i

Ai[s, ŝ]xi
s

∏
sj∈ŝ

xj
sj

 −
n∑

i=1
pi ≥ 0 (3c)

∑
s∈Si

xi
s = 1 ∀i ∈ [n] (3d)

0 ≤ xi
s ≤ 1 ∀i ∈ [n], s ∈ Si (3e)

2.2 Mixed-integer formulations
For a two-player game, four mixed-integer formulations whose solutions are equivalent to a
Nash equilibrium in a two-player game were given in [16]. We generalize these formulations
to multi-player games. The notation we use is similar to the notation introduced in the
multilinear formulations. Further, we introduce U i = maxsl,sh∈Si ,̂sl ,̂sh∈S−i

Ai[sh, ŝh] −
Ai[sl, ŝl] be the maximum difference of any two payoffs of player i for any pure strategies of
all players.

We have four mixed-integer multilinear formulations, of which one is a feasibility program
and three are optimisation programs. All programs have five sets of variables. xi

s, ri
s, ui

s, ui

are real variables, and bi
s is binary. The MIMLPs have the same interpretation and range

of values for variables xi
s ≥ 0, ui, ui

s, ri
s ≥ 0, further they also come with constraints (4b),

(4c), (4d), (4e) (which are mostly such that variables xi
s, ui, ui

s, ri
s are defined as desired).

xi
s, for all players i ∈ [n] and all pure strategies s ∈ Si of player i, denotes the probability

with which player i plays pure strategy s. Hence, variables xi
s give us the mixed strategy

played by each player. In order to be valid strategies, all pure strategies of a player must be
played with non-negative probability (Eq. 4h) and sum up to one (Eq. 4b), for all players.
ui denotes the highest utility player i can achieve by playing any strategy, given the other
players mixed strategies. ui

s is the expected utility of player i of playing pure strategy s,
given the other players play their (mixed) strategies (Eq. 4c). Naturally, ui ≥ ui

s (Eq. 4d).
ri

s = ui − ui
s (Eq. 4e) is the regret of player i of playing pure strategy s. It is defined as the

difference of the highest utility of any strategy for the player to the utility of playing strategy
s, given the other players’ mixed strategies. By definition, the regret of any pure strategy
must be non-negative (4h). Further, in any Nash equilibrium, every pure strategy that is
played with strictly positive probability must have zero regret. If there was a pure strategy
which the player plays and that has positive regret, the player can increase their payoff by
putting more probability on a pure strategy with no regret and putting less probability on
the pure strategy with regret. Hence, it would not be a Nash equilibrium.

The meaning of binary variables bi
s is different in all formulations, with not all constraints

of MIMLP 1 regarding this variable (Eq. 4f, 4g) present in MIMLP 2,3,4. In formulation
1, if bi

s is 1, strategy s of player i is not played, hence xi
s = 0. If bi

s = 0, the probability on
strategy s is allowed to be positive, however the regret of the strategy must be zero. (4f)
ensures that bi

s can only be set to 1 if zero probability is on s. Further, (4g) ensures that
bi

s can only be set to zero if the strategy’s regret is zero (if bi
s = 1, this constraint does not

restrict any variable, as ri
s ≤ U i by definition).

SEA 2023



12:6 Nash Equilibria Through Multilinear Optimization

▶ Proposition 4. The set of feasible solutions to MIMLP1 is precisely the set of Nash
equilibria for the corresponding multi-player game.

(MIMLP1)

min 0 (4a)

s.t.
∑
s∈Si

xi
s = 1 ∀i ∈ [n] (4b)

ui
s =

∑
ŝ∈S−i

∏
sj∈ŝ

xj
sj

Ai[s, ŝ] ∀i ∈ [n], ∀s ∈ Si (4c)

ui ≥ ui
s ∀i ∈ [n], ∀s ∈ Si (4d)

ri
s = ui − ui

s ∀i ∈ [n], ∀s ∈ Si (4e)
xi

s ≤ 1 − bi
s ∀i ∈ [n], ∀s ∈ Si (4f)

ri
s ≤ U ibi

s ∀i ∈ [n], ∀s ∈ Si (4g)
xi

s, ri
s ≥ 0, ui

s, ūi ∈ R ∀i ∈ [n], ∀s ∈ Si (4h)
bi

s ∈ {0, 1} ∀i ∈ [n], ∀s ∈ Si (4i)

MIMLP1 is a feasibility program, for which only Nash equilibria are feasible solutions.
MIMLP2, MIMLP3, MIMLP4 have larger feasible regions, as pure strategies with positive
probability are allowed to have positive regret, and pure strategies with positive regret are
allowed to be played with positive probability. The formulations minimize a penalty, and it is
only Nash equilibria for which the penalty is minimal. Thus, only Nash equilibria are optimal
solutions. The advantage of these formulations is that, since finding a Nash equilibrium
is assumed to be computationally intractable, these formulations can be used to stop the
program before an equilibrium has been calculated, and thus give solutions which are close
to an equilibrium, also called approximate equilibria. However, it is more difficult with these
formulations to find a specific equilibrium among all equilibria, rather than just an arbitrary
equilibrium.

MIMLP2 penalises the regret of a pure strategy that is played with positive probability
in the objective function, and thus for optimal solutions, the regret of pure strategies with
positive probability is zero. MIMLP3 penalises the probability placed on pure strategies with
positive regret, and thus optimal solutions will have zero probability on pure strategies with
positive regret. MIMLP4 combines the normalised regret and the probability as a penalty,
and the solver can choose whether the regret or the probability should be minimized. As
[16] noted, these formulations can be used to find approximate Nash equilibria.

MIMLP2 aims to minimize the regret of pure strategies that are played with positive
probabilities. Particularly, the regret of a pure strategy played with positive probability
serves as a penalty to the objective function. This is done by introducing variable f i

s for
all i ∈ [n], s ∈ Si, which represents a pure strategy’s regret if the strategy has positive
probability and zero otherwise.

▶ Proposition 5. The set of Nash equilibria minimizes the objective function of MIMLP2.

(MIMLP2)

min
n∑

i=1

∑
s∈Si

f i
s − U ibi

s (5a)

s.t. (4b) − (4f), (4h), (4i)
f i

s ≥ ri
s ∀i ∈ [n], ∀s ∈ Si (5b)

f i
s ≥ U ibi

s ∀i ∈ [n], ∀s ∈ Si (5c)



M. Fischer and A. Gupte 12:7

MIMLP3 is similar to MIMLP 2, however instead of minimising the regret of pure
strategies played with positive probability, the probabilities of pure strategies with positive
regret is minimized. To do so, variables gi

s are introduced, which are set such that a strategy’s
penalty in the objective function is zero if the strategy’s regret is zero, and xi

s (the probability
with which it is played) otherwise. The set of Nash equilibria minimizes the objective, as
strategies with positive regret are not played.

▶ Proposition 6. The set of Nash equilibria minimizes the objective function of MIMLP3.

(MIMLP3)

min
n∑

i=1

∑
s∈Si

gi
s − (1 − bi

s) (6a)

s.t. (4b) − (4e), (4g) − (4i)
gi

s ≥ xi
s ∀i ∈ [n], ∀s ∈ Si (6b)

gi
s ≥ 1 − bi

s ∀i ∈ [n], ∀s ∈ Si (6c)

MIMLP4 combines MIMLP 2 and MIMLP 3. Instead of penalising all pure strategies’
regret (MIMLP 2) or penalising all pure strategies’ probabilities if they have positive regret
(MIMLP 3), this formulation lets the solver decide for each pure strategy whether to penalise
the regret or the probability. The penalised regret is expressed with variables f i

s, the
penalised probabilities are expressed with variables gi

s. When using both the regret and the
probabilities, the regret must be normalised, as the probability of a pure strategy is between
zero and one, but a pure strategy’s regret can generally be larger than one. Hence, f i

s uses
normalised regret ri

s/U i, which is between zero and one.

▶ Proposition 7. The set of Nash equilibria minimizes the objective function of MIMLP4.

(MIMLP4)

min
n∑

i=1

∑
s∈Si

f i
s + gi

s (7a)

s.t. (4b) − (4e), (4h), (4i)
f i

s ≥ ri
s/U i ∀i ∈ [n], ∀s ∈ Si (7b)

f i
s ≥ bi

s ∀i ∈ [n], ∀s ∈ Si (7c)
gi

s ≥ xi
s ∀i ∈ [n], ∀s ∈ Si (7d)

gi
s ≥ 1 − bi

s ∀i ∈ [n], ∀s ∈ Si (7e)

2.3 Continuous and feasibility formulations
For potential performance improvements of the mixed-integer multilinear programs, we
further give continuous as well as feasibility formulations for the MIMLPs. Particularly, for
all MIMLPs, we introduce continuous formulations3 MIMLP1(C), MIMLP2(C), MIMLP3(C),
MIMLP4(C), for which constraint 4i, i.e. constraints (bi

s ∈ {0, 1}) is replaced by bi
s = (bi

s)2

(which implies 0 ≤ bi
s ≤ 1 and bi

s = 0 or bi
s = 1). Thus, the continuous formulations

are equivalent to the MIMLPs. The continuous formulation MIMLP1(C) for MIMLP1 is
given in MIMLP1(C), likewise MIMLP2(C), MIMLP3(C), MIMLP4(C) are simply MIMLP2,
MIMLP3, MIMLP4 but constraint (4i) replaced by (8a).

3 We note that due to this, the formulations are no longer mixed-integer, however we will still refer to
MIMLP(C), to make clear that they belong to the respective MIMLP

SEA 2023



12:8 Nash Equilibria Through Multilinear Optimization

(MIMLP1(C))

min (4a)
s.t. (4b) − (4e), (4h)

bi
s = (bi

s)2 ∀i ∈ [n], ∀s ∈ Si (8a)

For MIMLP 2,3,4 we also introduce equivalent feasibility formulations MIMLP2(F),
MIMLP3(F), MIMLP4(F), by introducing a constraint which requires the objective function of
the respective MIMLP to be equal to the optimal value of the MIMLP. Particularly, MIMLP2
and MIMLP3 have optimal objective function of zero, and thus we introduce constraints (5a)
= 0, i.e.

∑n
i=1

∑
s∈Si

f i
s −U ibi

s = 0 (MIMLP2) and (6a) = 0, i.e.
∑n

i=1
∑

s∈Si
gi

s−(1−bi
s) = 0

for MIMLP3. MIMLP4 has optimal value
∑n

i=1 |Si|, and thus we introduce constraint (7a)
=

∑n
i=1 |Si|, i.e.

∑n
i=1

∑
s∈Si

f i
s + gi

s =
∑n

i=1 |Si|. For all feasibility formulations, the
objective function is changed to 0. MIMLP3(F) is given in MIMLP3(F).

Further, we introduce MIMLP2(C,F), MIMLP3(C,F), MIMLP4(C,F), which combine the
continuous and feasibility formulations of MIMLP2,3,4, and are thus continuous multilinear
formulations4. MIMLP3(C,F) is given in MIMLP3(C,F).

(MIMLP3(F))
min 0
s.t. (4b) − (4e), (4g) − (4i), (6b), (6c)

(6a) = 0

(MIMLP3(C,F))
min 0
s.t. (4b) − (4e), (4g) − (4h), (6b), (6c), (8a)

(6a) = 0

Table 1 Overview of all mixed-integer multilinear formulations.

MIMLP 1 2 3 4 1(C) 2(C) 3(C) 4(C) 2(F) 3(F) 4(F) 2(C,F) 3(C,F) 4(C,F)

Feasibility program ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Optimality program ✓ ✓ ✓ ✓ ✓ ✓

Continuous ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mixed-integer ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 Computational Experiments

All experiments are run on a MacBook Pro with 8GB RAM and Intel i5 CPU. Multilinear
and mixed-integer formulations are implemented in AMPL [4]. We use BARON 21.1.13 [15]
as the solver, which uses FilterSD and FilterSQP as non-linear subsolvers. As the multilinear
formulation MLP2 in Equation (MLP2) is much faster than any of the MIMLPs (see Table 3),
we decide to only compare MLP2 against common algorithms for multi-player games. The
MIMLPs do not seem to give better performance than existing algorithms, and hence the
analysis of those is focused on comparing the MIMLPs to each other, to get an understanding
which MIMLP formulation is best. Thus, the experiments consist of two parts:

4 MIMLP2(C,F), MIMLP3(C,F), MIMLP4(C,F) are thus no longer mixed-integer.



M. Fischer and A. Gupte 12:9

1. a comparison of MLP2 with common algorithms in Gambit [10] (results in Table 2),
2. a comparison of the different MIMLPs (results in Table 3).

All games are instanced in GAMUT [12] and have integer payoffs. We focus on random
games and covariance games with negative covariance, as previous work [16, 13] indicates
that covariance games with negative covariance are challenging to solve experimentally for a
variety of algorithms as they tend to only have few equilibria with small support size. We
refer to a covariance game with n players and |Si| actions per player and covariance ρ as
CG(n,|Si|,ρ), and to a random game with n players and |Si| actions per player as RG(n,|Si|).
For all games, we take the average of 10 randomly generated instances of that game, and if a
method did not find a Nash equilibrium before the timeout (which, depending on the game,
is 300 or 900 seconds), we add the timeout to the average.

Table 2 compares MLP2 to the simplicial subdivision method (SD), the global newton
method (GN), and the quantal response equilibrium (QRE) in Gambit. The results can
be summarised as follows: The simplicial subdivision algorithm is the slowest, and already
small instances are sufficient for the algorithm to not find a Nash equilibrium in less than
15 minutes. The global Newton method, although fast on the instances for which it finds
an equilibrium, in many instances terminates without giving an equilibrium back. This
issues has been reported in different scenarios, see [18], and in these cases, we put the
timeout towards the average. The logit algorithm and the multilinear formulation have
similar runtime for smaller instances, but for larger games, our formulations seems to be
faster. Thus, to conclude, our algorithm is faster than the algorithms in Gambit we test it
with, and can be an alternative.

Table 3 presents the results for the MIMLPs and the reformulations. It should be pointed
out than any of the MIMLPs takes much longer to find an equilibrium than MLP2, and
thus none of the MIMLPs is suited to find an equilibrium for large multi-player games. This
is different to the mixed-integer formulations for two-player games, for which [16] showed
better performance on some instances than existing algorithms. Therefore, the analysis of the
MIMLPs aims more to get an understanding what type of formulation is best to find a Nash
equilibrium in a multi-player game, than to compare the MIMLPs to common algorithms.

First, the continuous formulations MIMLP2(C), MIMLP3(C), MIMLP4(C) of MIMLP2,
MIMLP3, MIMLP4 don’t give much performance improvement compared to MIMLP2,3,4.
For MIMLP2 and MIMLP3, both the feasibility formulations MIMLP2(F) and MIMLP3(F)
and the combined continuous and feasibility formulations MIMLP2(C,F) and MIMLP3(C,F)
give better performance than MIMLP2 and MIMLP3, but whether MIMLP2(C,F) and
MIMLP3(C,F) are better than MIMLP2(F) and MIMLP3(C,F) depends very much on the
game. For MIMLP4, whether MIMLP4(F) or MIMLP4(C,F) are better than MIMLP4
depends on the game. Further, compared over all games, MIMLP1(C), i.e. the continuous
formulation of the feasibility formulation MIMLP1 seems to give the best performance.

4 Future Work

Further questions include using different nonlinear solvers for the multilinear formulation.
The solver we use finds a Nash equilibrium faster than any of the other algorithms we
compare it to, other solvers should only improve the performance of the multilinear feasibility
formulation. We also propose generating hard-to-solve instances. Even though GAMUT [12]
offers many different types of games, many of these are easy to solve even for large multi-
player games. Covariant games are among the few types of games that are (relatively)

SEA 2023



12:10 Nash Equilibria Through Multilinear Optimization

difficult to solve in the game generator GAMUT, and therefore we particularly use these
instances. However, due to this, there is not much variety in the hard-to-solve instances we
can use. Recent work has focused on hard-to-solve instances for polymatrix games (see [3] and
http://polymatrix-games.github.io), and so more hard-to-solve instances is a direction
to explore.

Table 2 Comparison of multilinear feasibility program to state-of-the-art algorithms.

Instance MLP2 GN SD QRE

CG(5,5,ρ = −0.2) 2.35 810.09 900 1.9 average (in seconds)
100% 10% 0% 100% percentage solved
2.53 0.91 – 1.9 average on solved (in seconds)

CG(3,10,ρ = −0.2) 0.57 271.56 518.96 0.36 average (in seconds)
100% 70% 50% 100% percentage solved
0.57 2.22 137.9 0.36 average on solved (in seconds)

RG(5,5) 2.23 540.57 632.98 2.08 average (in seconds)
100% 40% 40% 100% percentage solved
2.23 1.43 232.45 2.08 average on solved (in seconds)

RG(3,10) 0.329 91.325 382.9 0.362 average (in seconds)
100% 90% 70% 100% percentage solved
0.329 1.47 161.287 0.362 average on solved (in seconds)

CG(5,10,ρ = −0.2) 250.28 825.52 900 361.46 average (in seconds)
100% 10% 0% 100% percentage solved
250.28 155.21 – 361.46 average on solved (in seconds)

RG(5,10) 208.79 900 900 564.32 average (in seconds)
100% 0% 0% 90% percentage solved
208.79 – – 527.02 average on solved (in seconds)

CG(5,10,ρ = −0.1) 220.72 813.47 900 415.64 average (in seconds)
100% 10% 0% 90% percentage solved
220.72 34.77 – 361.82 average on solved (in seconds)

The time is the average over 10 instances of this game in seconds - if no solution is found after the
timeout of 15 minutes, the timeout is evaluated as time for the instance.

http://polymatrix-games.github.io


M. Fischer and A. Gupte 12:11

Table 3 MIMLP results.

Method RG(3,5) RG(3,10) CG(3,5,-0.2) CG(5,3,-0.2) RG(5,3)

Time Time Time Time Time

MIMLP1 8.41 229.86 107.4 122.73 112.5
MIMLP1(C) 2.876 231.57 41.4 47.96 66.3
MIMLP2 19.11 202.38 16.16 538.17 660.5
MIMLP2(C) 55.93 272.15 165.5 469.5 453.14
MIMLP2(F) 14.4 150.33 29.72 410.94 345.45
MIMLP2(C,F) 14.3 279.03 68.516 198.7 218.16
MIMLP3 46.79 265.53 161.4 392.45 535.9
MIMLP3(C) 75.93 300 200.59 575.32 430.03
MIMLP3(F) 17.67 225.66 18.8 188.94 115.95
MIMLP3(C,F) 9.16 260.98 76.71 54.56 90.91
MIMLP4 5.84 220.969 79.4 359.54 49.75
MIMLP4(C) 110.3 300 69.6 479.0 462.62
MIMLP4(F) 56.5 221.26 129.78 129.59 56.88
MIMLP4(C,F) 59.19 270.69 65.12 248.85 84.52
MLP 2 0.03 0.36 0.035 0.12 0.09

The time is the average over 10 instances of this game in seconds - if no solution is found after the
timeout, the timeout is evaluated as time for the instance
RG(3,5), RG(3,10), CG(3,5,-0.2): Timeout after 300 seconds [5 minutes]
CG(5,3,-0.2), RG(5,3): Timeout after 900 seconds [15 minutes]

References
1 Xi Chen and Xiaotie Deng. Settling the complexity of computing two-player Nash equilibrium.

Journal of the ACM, 56(3):1–57, 2009. doi:10.1145/1516512.1516516.
2 Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity

of computing a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009. doi:
10.1137/070699652.

3 Argyrios Deligkas, John Fearnley, Tobenna Peter Igwe, and Rahul Savani. An empirical
study on computing equilibria in polymatrix games. In Proceedings of the 16st International
Conference on Autonomous Agents and Multiagent Systems, AAMAS ’16, pages 186–195, 2016.

4 Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. Cengage Learning, 2nd edition, 2002.

5 Ian Gemp, Rahul Savani, Marc Lanctot, Yoram Bachrach, Thomas Anthony, Richard Everett,
Andrea Tacchetti, Tom Eccles, and János Kramár. Sample-based approximation of Nash in large
many-player games via gradient descent. In Proceedings of the 21st International Conference
on Autonomous Agents and Multiagent Systems, AAMAS ’22, pages 507–515. International
Foundation for Autonomous Agents and Multiagent Systems, 2022. arXiv:2106.01285.

6 Srihari Govindan and Robert Wilson. A global newton method to compute Nash equilibria.
Journal of Economic Theory, 110(1):65–86, 2003. doi:10.1016/S0022-0531(03)00005-X.

7 Srihari Govindan and Robert Wilson. Computing Nash equilibria by iterated polymatrix
approximation. Journal of Economic Dynamics and Control, 28(7):1229–1241, 2004. doi:
10.1016/S0165-1889(03)00108-8.

8 C. E. Lemke and J. T. Howson, Jr. Equilibrium points of bimatrix games. SIAM Journal on
Applied Mathematics, 12(2):413–423, 1964. doi:10.1137/0112033.

9 O.L. Mangasarian and H. Stone. Two-person nonzero-sum games and quadratic pro-
gramming. Journal of Mathematical Analysis and Applications, 9(3):348–355, 1964. doi:
10.1016/0022-247X(64)90021-6.

SEA 2023

https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1137/070699652
https://doi.org/10.1137/070699652
https://arxiv.org/abs/2106.01285
https://doi.org/10.1016/S0022-0531(03)00005-X
https://doi.org/10.1016/S0165-1889(03)00108-8
https://doi.org/10.1016/S0165-1889(03)00108-8
https://doi.org/10.1137/0112033
https://doi.org/10.1016/0022-247X(64)90021-6
https://doi.org/10.1016/0022-247X(64)90021-6


12:12 Nash Equilibria Through Multilinear Optimization

10 Richard D. McKelvey, Andrew M. McLennan, and Theodore L. Turocy. Gambit: Software
tools for game theory, version 16.0.2. URL: http://www.gambit-project.org.

11 John Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295, 1951. doi:
10.2307/1969529.

12 Eugene Nudelman, Jennifer Wortman, Yoav Shoham, and Kevin Leyton-Brown. Run the
GAMUT: A comprehensive approach to evaluating game-theoretic algorithms. In Proceedings
of the Third International Joint Conference on Autonomous Agents and Multiagent Systems -
Volume 2, AAMAS ’04, pages 880–887, USA, 2004. IEEE Computer Society.

13 Ryan Porter, Eugene Nudelman, and Yoav Shoham. Simple search methods for finding a Nash
equilibrium. Games and Economic Behavior, 63(2):642–662, 2008. doi:10.1016/j.geb.2006.
03.015.

14 Joachim Rosenmüller. On a generalization of the lemke–howson algorithm to noncooperative
n-person games. SIAM Journal on Applied Mathematics, 21(1):73–79, 1971. doi:10.1137/
0121010.

15 Nick V. Sahinidis. BARON 21.1.13: Global Optimization of Mixed-Integer Nonlinear Programs,
User’s Manual. http://www.minlp.com/downloads/docs/baron%20manual.pdf, 2017.

16 Thomas Sandholm, Andrew Gilpin, and Vincent Conitzer. Mixed-integer programming
methods for finding Nash equilibria. In Proceedings of the 20th National Conference on
Artificial Intelligence - Volume 2, AAAI’05, pages 495–501. AAAI Press, 2005.

17 Rahul Savani and Bernhard von Stengel. Hard-to-solve bimatrix games. Econometrica,
74(2):397–429, 2006. doi:10.1111/j.1468-0262.2006.00667.x.

18 Theodore L. Turocy. Answer to question regarding time limits of algorithms in gambit. URL:
https://github.com/gambitproject/gambit/issues/261#issuecomment-660894391.

19 Theodore L. Turocy. A dynamic homotopy interpretation of the logistic quantal response
equilibrium correspondence. Games and Economic Behavior, 51(2):243–263, 2005. Special
Issue in Honor of Richard D. McKelvey.

20 G. van der Laan, A. J. J. Talman, and L. van der Heyden. Simplicial variable dimension
algorithms for solving the nonlinear complementarity problem on a product of unit simplices
using a general labelling. Mathematics of Operations Research, 12(3):377–397, August 1987.

21 Robert Wilson. Computing equilibria of n-person games. SIAM Journal on Applied Mathem-
atics, 21(1):80–87, 1971. doi:10.1137/0121011.

A Correctness of the Proposed Formulations

Here we present proofs for the claims made with regards to the formulations presented in
this paper.

Proof of Theorem 2. We first show that if (x̄1, . . . , x̄n) is a Nash equilibrium to
(A1, . . . , Am), then there exist numbers p̄1, . . . , p̄n such that (x̄1, . . . , x̄n, p̄1, . . . , p̄n) is an
optimal solution to the program in MLP1. Assume that (x̄1, . . . , x̄n) is a Nash equilibrium.
For any feasible solution (x1, . . . , xn, p1, . . . , pn) of MLP1, constraints (2b), (2c) imply

∑
s∈Si

xi
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

xj
sj

 ≤ pi

for all i ∈ [n]. This implies (2a) ≤ 0 for any feasible solution. Set

p̄i =
∑
s∈Si

x̄i
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj


for every i ∈ [n]. We show that (x̄1, . . . , x̄n, p̄1, . . . , p̄n) is feasible and optimal to MLP1.

http://www.gambit-project.org
https://doi.org/10.2307/1969529
https://doi.org/10.2307/1969529
https://doi.org/10.1016/j.geb.2006.03.015
https://doi.org/10.1016/j.geb.2006.03.015
https://doi.org/10.1137/0121010
https://doi.org/10.1137/0121010
http://www.minlp.com/downloads/docs/baron%20manual.pdf
https://doi.org/10.1111/j.1468-0262.2006.00667.x
https://github.com/gambitproject/gambit/issues/261#issuecomment-660894391
https://doi.org/10.1137/0121011


M. Fischer and A. Gupte 12:13

As (x̄1, . . . , x̄n) is a Nash equilibrium, we have

∑
s∈Si

x̄i
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj

 ≥
∑
s∈Si

xi
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj


for all (mixed) strategies xi ≥ 0 with

∑
s∈Si

xi
s = 1. Choosing xi = ek, with k ∈ {1, . . . , |Si|},

hence the unit vector with all zeros except one in the k-th component, we have

p̄i =
∑
s∈Si

x̄i
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj

 ≥
∑

ŝ∈S−i

Ai[k, ŝ]
∏
sj∈ŝ

x̄j
sj

∀k ∈ {1, . . . , |Si|},

satisfying constraint 2b. As we can apply this for all players i ∈ [n] (and constraints 2c, 2d
hold as (x̄1, . . . , x̄n) is a Nash equilibrium), it follows that (x̄1, . . . , x̄m, p̄1, . . . , p̄n) is feasible.
Further, the objective function value is zero at the point (x̄1, . . . , x̄n, p̄1, . . . , p̄n). As the
objective function value is at most zero and (x̄1, . . . , x̄n, p̄1, . . . , p̄n) is feasible, it follows that
it is optimal.

To show that if (x̄1, . . . , x̄n, p̄1, . . . , p̄n) is an optimal solution to MLP1, (x̄1, . . . , x̄n) is a
Nash equilibrium, we assume that (x̄1, . . . , x̄n, p̄1, . . . , p̄n) indeed is optimal to MLP1. Since a
Nash equilibrium exists in this game and has objective value of zero, and all feasible solutions
have non-positive value, it follows that the objective value of (x̄1, . . . , x̄n, p̄1, . . . , p̄n) must
be zero. For any xi ≥ 0 with

∑
s∈Si

xi
s = 1, for all players i ∈ [n], constraints 2b, 2c imply

∑
s∈Si

xi
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj

 ≤ p̄i ∀i ∈ [n].

Particularly,

∑
s∈Si

x̄i
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj

 ≤ p̄i ∀i ∈ [n].

As further objective value of (x̄1, . . . , x̄n, p̄1, . . . , p̄n) is zero, we have

∑
s∈Si

x̄i
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj

 = p̄i ∀i ∈ [n].

Hence,

∑
s∈Si

xi
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj

 ≤
∑
s∈Si

x̄i
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj

 = p̄i

∀i ∈ [n], ∀xi ≥ 0 :
∑

s∈Si
xi

s = 1. Therefore, (x̄1, . . . , x̄n) is a Nash equilibrium, as the
constraint states that given the other players mixed strategies x̄j , no strategy of player i can
give higher payoff than strategy x̄i, for all players. ◀

Proof of Proposition 4. For any player i ∈ [n] and any pure strategy s ∈ Si of player i, xi
s

denotes the probability with which player i plays pure strategy s. Constraint 4b,4h guarantee
xi to be a valid mixed strategy for each player i, as all pure strategies are played with
non-negative probability and sum up to one. Constraint 4c defines the expected payoff ui

s of

SEA 2023



12:14 Nash Equilibria Through Multilinear Optimization

player i of playing pure strategy s (given the other players’ mixed strategies), and 4d defines
the highest possible expected payoff ui of any (mixed) strategy of player i given the other
players’ (mixed) strategies. Constraint 4e,4h define the regret ri

s of player i of playing pure
strategy s ∈ Si. The regret of a pure strategy is the difference of player i’s highest possible
expected payoff ui and i’s payoff of playing pure strategy s and is non-negative. Constraint
4i introduces binary variable bi

s for any pure strategy s of any player i. Constraint 4f requires
that bi

s can only be set to one if player i puts zero probability on pure strategy s. Further,
constraint 4g ensures that bi

s can only be set to zero if the strategy’s regret is zero (if bi
s = 1,

this constraint does not restrict any variable, as ri
s ≤ U i by definition). Thus, if bi

s is 1,
strategy s of player i is not played, hence xi

s = 0. If bi
s = 0, the probability on strategy s is

allowed to be positive, however the regret of the strategy must be zero. Hence, only pure
strategies with zero regret can be played with positive probability, which is precisely the
definition of a Nash equilibrium. ◀

Proof of Proposition 5. Constraints 4b,4c,4d,4e,4h,4i guarantee that xi, ri, ui, ui are cor-
rectly defined for all players. Due to constraint (4f), bi

s can only be set to one if the probability
on the pure strategy is zero. Then, due to minimising f i

s in (5a) and Equation (5c), f i
s must

be set to U i. In that case, f i
s and U ibi

s cancel out in the objective, and hence strategies with
zero probability have no penalty. If bi

s = 0, f i
s equals ri

s, due to minimising f i
s and Equation

(5b), and as U ibi
s = 0, the penalty of the pure strategy equals the regret of the strategy,

and pure strategies that have no regret do not have a penalty. Thus, due to the objective
function, it is encouraged to play pure strategies which have no regret, and to not play
strategies with regret. Thus, any pure strategy will only contribute to the objective function
if it has positive regret and probability. The Nash equilibria minimize the objective function,
with optimal objective of zero. As any pure strategy in a Nash equilibrium will either have
zero probability (hence no penalty) or zero regret (hence no penalty), the objective function
will equal zero. Solutions which do not equal a Nash equilibrium have higher objective value,
as for some strategies, f i

s > 0 (as ri
s and U i are non-negative). ◀

Proof of Proposition 6. We recall that because of constraint (4g), bi
s can only be set to zero

if the strategy’s regret ri
s is zero. By constraint (6c) and minimising gi

s, if bi
s = 0, then gi

s = 1.
Thus, gi

s and 1 − bi
s cancel out in the objective function and the penalty of strategy s is zero.

If bi
s = 1, due to constraint (6b) and minimising gi

s, gi
s = xi

s, and 1 − bi
s = 0. Hence, the

penalty of strategy s equals xi
s. Therefore, the probability a pure strategy is played with

only contributes to the objective function if the strategy has positive regret. Nash equilibria
minimize the objective function, and come with optimal value of zero. Constraint (4f) of
MIMLP 1 (namely, xi

s ≤ 1 − bi
s) is no longer in this formulation, and it is possible to set

bi
s = 1 even if some probability is placed on s. However, in a Nash equilibrium, bi

s will only
be set to 1 if the probability on s is indeed zero, as pure strategies with positive regret are
not played. ◀

Proof of Proposition 7. Constraint (7b) demands that if bi
s = 0, then f i

s = ri
s/U i, which is

at most 1. Further, due to (7e), gi
s = 1. If bi

s = 1, then f i
s = 1 (constraint (7c)) and gi

s = xi
s

(constraint (7d)), which is at most 1. Hence, f i
s + gi

s is at least 1 for every pure strategy
s, and additional penalties (either the normalised regret or the probability of the strategy)
contribute to the objective function if a strategy has positive probability and positive regret.
Any feasible solution that is not a Nash equilibrium has f i

s + gi
s > 1 for some strategies, as

not all strategies have either no regret or zero probability. Nash equilibria minimize the
objective function, with value of

∑n
i=1 |Si|, as the normalised regret is zero, or the probability

of strategy is zero. ◀



Integer Programming Formulations and Cutting
Plane Algorithms for the Maximum Selective Tree
Problem
Ömer Burak Onar #

Department of Industrial Engineering, Bogazici University, Turkey

Tınaz Ekim #

Department of Industrial Engineering, Bogazici University, Turkey

Z. Caner Taşkın #

Department of Industrial Engineering, Bogazici University, Turkey

Abstract
This paper considers the Maximum Selective Tree Problem (MSelTP) as a generalization of the
Maximum Induced Tree problem. Given an undirected graph with a partition of its vertex set
into clusters, MSelTP aims to choose the maximum number of vertices such that at most one
vertex per cluster is selected and the graph induced by the selected vertices is a tree. To the
best of our knowledge, MSelTP has not been studied before although several related optimization
problems have been investigated in the literature. We propose two mixed integer programming
formulations for MSelTP; one based on connectivity constraints, the other based on cycle elimination
constraints. In addition, we develop two exact cutting plane procedures to solve the problem to
optimality. On graphs with up to 25 clusters, up to 250 vertices, and varying densities, we conduct
computational experiments to compare the results of two solution procedures with solving a compact
integer programming formulation of MSelTP. Our experiments indicate that the algorithm CPAXnY
outperforms the other procedures overall except for graphs with low density and large cluster size,
and that the algorithm CPAX yields better results in terms of the average time of instances optimally
solved and the overall average time.

2012 ACM Subject Classification Theory of computation → Integer programming; Mathematics of
computing → Graph theory; Mathematics of computing → Network optimization

Keywords and phrases maximum induced tree, selective tree, cutting plane, separation algorithm,
mixed integer programming

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.13

Supplementary Material Software (source code): https://github.com/omarburk/MSelTP-Paper
archived at swh:1:dir:a1cfaed88df61df35c2a6bf140f4a3ba21af145b

1 Introduction

Given an undirected graph with a partition of its vertex set into clusters, we consider the
Maximum Selective Tree Problem (MSelTP) which aims to select at most one vertex per
cluster such that the graph induced by the selected vertices is a tree and among all possible
vertex selections, the number of vertices of the induced tree is maximized. For problems
where alternative decisions are represented by vertices belonging to the same clusters, and
selections of vertices (from each cluster) force to consider all edges whose both end vertices are
selected, it can be important to obtain a minimally connected graph, which is an induced tree.
A water-pipe network, gas-pipe network or a type of circuit having a clustered structure and
where the flow uses all pipes or wires among allowed/selected nodes are potential application
examples of MSelTP. To the best of our knowledge, MSelTP has not been studied in the
literature although various related problems have been considered.

© Ömer Burak Onar, Tınaz Ekim, and Z. Caner Taşkın;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:burak.onar@boun.edu.tr
mailto:tinaz.ekim@boun.edu.tr
mailto:caner.taskin@boun.edu.tr
https://doi.org/10.4230/LIPIcs.SEA.2023.13
https://github.com/omarburk/MSelTP-Paper
https://archive.softwareheritage.org/swh:1:dir:a1cfaed88df61df35c2a6bf140f4a3ba21af145b;origin=https://github.com/omarburk/MSelTP-Paper;visit=swh:1:snp:57acc4789addeea1cf25cb6617621692a0d2f38f;anchor=swh:1:rev:83ddc50b74cde7b0a1b5b2d39988a882a93cc6a9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 IP Formulations and Cutting Plane Algorithms for MSelTP

Given a graph, finding a largest vertex subset that induced a tree is called The Maximum
Induced Tree problem. This problem is a special case of MSelTP where each cluster in a
vertex partition consists of a singleton. Since the decision version of the Maximum Induced
Tree problem is NP-complete [11], it follows that MSelTP is also NP-hard. The Maximum
Induced Tree problem and several variations of it have been studied from various aspects in
the literature [10, 22, 11, 2, 8, 36, 20, 27].

Classical combinatorial optimization problems can often be generalized in various ways.
The selective version of each combinatorial optimization problem brings some flexibility
into their applications by adding a set of alternatives but also adds in their computational
complexity. A selective version consists of taking a graph whose vertices are partitioned into
clusters and selecting one vertex per cluster so that the graph induced by the selected vertices
admits, among all possible selections, the best solution for the original optimization problem.
We note that, in the literature of selective problems, the term cluster is used commonly to
mean a set of vertices in a vertex partition. Accordingly, clusters are not complete or dense
subgraphs unlike in many other contexts such as community detection. Problems of selective
nature have been widely studied in the literature. For instance, the selective graph coloring
problem (SelCol) which has been extensively studied [26, 6, 33, 16, 7, 17, 38, 39, 5], takes
as input a clustered graph and aims to select exactly one vertex per cluster so that, among
all possible such selections, the chromatic number of the graph induced by the selected
vertices is minimized. SelCol models the wavelength and routing assignment problem and its
selective nature allows us to select a route for each connection from a given set of alternative
routes [26].

Generalized network design problems, in general, are obtained by clustered graph instances
expressing the feasibility conditions of the classical network design problem in terms of
clusters [13]. A selective version of the travelling salesman problem has also been considered
in the literature. It aims to select exactly one vertex per cluster so that the selected vertices
form a cycle with minimum cost [29, 25, 23].

The generalized spanning tree problem (GMSTP) introduced in [28], takes as input
a undirected weighted graph and a partition of its vertex set into clusters, and finds a
minimum-cost tree that spans exactly one vertex from each cluster. GMSTP allows us to
model local and global networks together for telecommunication networks, where hubs in
local networks have to be connected via transmission links such as optical fibers to create a
minimum cost global network [28, 12, 14, 4, 19, 30, 15, 21, 34, 18, 32]. The group Steiner
tree problem is a more general version of GMSTP [37, 9]. Some other related problems are
the prize-collecting generalized minimum spanning tree problem [31] and the generalized
traveling salesman problem [3].

Given a graph whose vertex set is partitioned into clusters, another way to generalize
classical combinatorial optimization problems is to select representative vertices for each
cluster and also edges whose both end vertices are selected and satisfy constraints in the
original optimization problem. In this way, the subgraph formed by the selection is not
necessarily an induced graph. This notion has been studied in several papers [28, 13, 32, 37,
21, 34, 12, 14, 19, 18, 30, 35, 4, 15, 9, 29, 25, 23], where the number of these representative
vertices is required to be at least, at most or exactly one per cluster for different problem
types.

Let us now introduce MSelTP in a formal way. MSelTP is defined for an undirected graph
G = (V, E) whose vertices are partitioned into m vertex sets called clusters. Let |V | = n

and K = {V1, · · · , Vm} be a clustering of V , that is, V = V1 ∪ V2 · · · ∪ Vm and Vl ∩ Vk = ∅
for all Vl, Vk ∈ K such that l ̸= k. We can assume without loss of generality that edges are
defined only between vertices belonging to different clusters since the intracluster edges are
irrelevant when at most one vertex is selected from each cluster.



Ö. B. Onar, T. Ekim, and Z. C. Taşkın 13:3

Given a graph G = (V, E) and V ′ ⊂ V , a graph whose vertex set is V ′, and whose edges
are all the edges of G that have both ends in V ′ is called a subgraph of G induced by V ′, and
denoted by G[V ′] [1]. Moreover, for a |V |-dimensional binary vector x, let G[x] represent the
subgraph induced by the vertex set {i ∈ V | xi = 1}, which is the set of selected vertices.
Similarly, let E[x] denote the edge set of G[x].

MSelTP is the problem of selecting a maximum number of vertices such that at most one
vertex is selected per cluster, and the graph induced by the selected vertices is a tree. Such
a tree is called a maximum selective tree. Figure 1 illustrates a solution for MSelTP in an
undirected graph with 15 vertices partitioned into 5 clusters.

𝑉1

𝑉2 𝑉3

𝑉4

𝑉5

𝑉1

𝑉2 𝑉3

𝑉4

𝑉5

Figure 1 An optimal solution for an instance of MSelTP.

Given a graph G = (V, E) and a subset S ⊂ V , the set of edges in E that have both
endpoints in S is denoted by E(S), and the set of edges in E that have only one endpoint in
S is denoted by δ(S):

E(S) = {(i, j) ∈ E | i ∈ S, j ∈ S}
δ(S) = {(i, j) ∈ E | i ∈ S, j /∈ S}

Given a graph G = (V, E), the directed graph associated with G is denoted by D = (V, A),
whose arc set A is composed of arcs [i, j] and [j, i] for each edge (i, j) ∈ E. Similarly, for a
directed graph D = (V, A) and a subset S ⊂ V , the set of arcs in A that have both endpoints
in S is denoted by A(S), and the set of arcs in A that have only tail or head in S is denoted
as follows:

A(S) = {[i, j] ∈ A | i ∈ S, j ∈ S}
δ+(S) = {[i, j] ∈ A | i ∈ S, j /∈ S}
δ−(S) = {[i, j] ∈ A | i /∈ S, j ∈ S}

We use the notations δ+(i) and δ−(i) instead of δ+({i}) and δ−({i}) for brevity.
In Section 2, two integer programming formulations of MSelTP are presented: we present

an exact formulation, namely flow based formulation (Model 1) in Subsection 2.1, and a
formulation with an exponential number of constraints, namely cycle elimination formulation
(Model 2) in Subsection 2.2. In Section 3, we develop two cutting plane algorithms, CPAXnY
(Algorithm 1) and CPAX (Algorithm 2), based on the cycle elimination formulation. In
Section 4, the computational results of the two cutting plane algorithms (CPAXnY and
CPAX) and the flow based formulation (FLOW) are compared.

SEA 2023



13:4 IP Formulations and Cutting Plane Algorithms for MSelTP

2 Formulations for MSelTP

2.1 Flow Based Formulation

We propose a formulation for MSelTP based on connectivity constraints. In the formulation,
we use flow mechanism introduced by Myung et al. [28] in the directed multicommodity
flow model. Model 1 aims to find a connected induced subgraph with maximum number of
vertices, which is one more than the number of its edges. Each cluster Vk ∈ K corresponds to
a commodity. For each commodity k, the flow of commodity k should start from the source
cluster, which is uniquely designated (for all commodities) to the destination cluster Vk.
Only one source is designated among all clusters from which a vertex is selected. In order to
indicate the direction of flow, we use arcs [i, j] and [j, i] in A instead of each edge (i, j) in E,
and we create a directed graph D = (V, A) as a directed version of graph G = (V, E). Thus,
there may be flow in each direction from i to j and from j to i for each edge (i, j) ∈ E. For
each commodity k, we introduce non-integer variables fk

ij to represent the flow of commodity
k on arc [i, j] and F k

i to represent the net flow of commodity k through vertex i. The
following binary variables are introduced:
xi = 1 if the vertex i is selected in the solution, 0 otherwise;
yij = 1 if the edge (i, j) ∈ E is induced by the selected vertices, 0 otherwise;
wij = 1 if there is flow from the vertex i ∈ V to the vertex j ∈ V , 0 otherwise;
sk = 1 if the cluster Vk ∈ K is designated as the source cluster for all the commodities, 0
otherwise;
tk = 1 if no vertex is selected from the cluster Vk ∈ K, 0 otherwise.

From a flow related point of view, the binary variable xi indicates whether the vertex i is
included in the network so that all flows are sent through, and yij indicates if the edge (i, j)
is able to carry any flow. The variables fk

ij , F k
i , wij and sk are auxiliary flow variables. Our

flow based formulation is given in Model 1.

Summing all t-variables, the objective function minimizes the number of clusters having
no selected vertex (1). Constraint (2) ensures that the subgraph defined by any solution has
at most one vertex from each cluster and that tk takes value 1 if no vertex is selected from
cluster Vk and 0 otherwise. The number of edges induced by the selected vertices, namely
|E[x]|, should be exactly one less than the number of selected vertices; this is ensured by
constraint (3) since the number of selected vertices equals the number of clusters containing
a selected vertex. Two selected vertices force the edge between them to be in the (induced)
subgraph, with constraint (4). For an edge to be in the induced subgraph, its both end
vertices have to be selected, as forced by constraints (5) and (6). Thus, constraints (4),
(5) and (6) ensure that the subgraph defined by any solution is the induced subgraph by
the selected vertices. It also allows us to relax y-variables as continuous (19) since these
constraints force y-variables to be integral.

Flow constraints in general include a root vertex/cluster as a source to send all commodities.
In MSelTP, the source cluster has to be designated among those clusters including a selected
vertex. If the cluster Vk is designated as the source cluster, only then, the variable sk should
be 1. Constraint (7) forces that only one of the clusters is selected as the source cluster
and constraint (8) ensures that only the clusters including a selected vertex can be a source
cluster.



Ö. B. Onar, T. Ekim, and Z. C. Taşkın 13:5

Constraints (9) are the net flow equations. Let Vs be the source cluster. The LHS of
constraint (9) is the net flow of the commodity k over the vertex i, which should be 1 if i is
the selected vertex in the source cluster Vs unless k = s or Vk does not include any selected
vertices; -1 if i is the selected vertex in Vk unless k = s; and 0 otherwise. These cases are
ensured by constraints (10)-(15). Thus, the net flow constraints (9)-(15) suggest that the
subgraph defined by any solution has to be connected.

Model 1:

min
∑

Vk∈K
tk (1)

s.t. ∑
i∈Vk

xi + tk = 1 ∀Vk ∈ K (2)

∑
(i,j)∈E

yij = |K| − 1−
∑

Vk∈K
tk (3)

xi + xj − 1 ≤ yij ∀(i, j) ∈ E (4)
yij ≤ xi ∀(i, j) ∈ E (5)
yij ≤ xj ∀(i, j) ∈ E (6)∑
Vk∈K

sk = 1 (7)

sk ≤ 1− tk ∀Vk ∈ K (8)∑
j : [i,j]∈A

fk
ij −

∑
j : [j,i]∈A

fk
ji = F k

i ∀i ∈ V, Vk ∈ K (9)

F k
i ≤ sk − xi ∀i ∈ Vk, Vk ∈ K (10)

F k
i ≥ sk − 1 ∀i ∈ Vk, Vk ∈ K (11)

F k
i ≤ sl ∀i ∈ Vl, Vl ∈ K, l ̸= k (12)

F k
i ≤ 1− tk ∀i ∈ Vl, Vl ∈ K, l ̸= k (13)

F k
i ≥ xi + sl − tk − 1 ∀i ∈ Vl, Vl ∈ K, l ̸= k (14)

F k
i ≥ 0 ∀i ∈ Vl, Vl ∈ K, l ̸= k (15)

fk
ij ≤ wij ∀[i, j] ∈ A, Vk ∈ K (16)

wij + wji = yij ∀(i, j) ∈ E (17)
fk

ij ≥ 0 ∀[i, j] ∈ A, Vk ∈ K (18)
0 ≤ yij ≤ 1 ∀(i, j) ∈ E (19)
xi ∈ {0, 1} ∀i ∈ V (20)
wij ∈ {0, 1} ∀[i, j] ∈ A (21)
sk ∈ {0, 1} ∀Vk ∈ K (22)
tk ∈ {0, 1} ∀Vk ∈ K (23)

SEA 2023



13:6 IP Formulations and Cutting Plane Algorithms for MSelTP

Considering the edge (i, j) in any selective tree and the flows fk
ij for all Vk ∈ K on it, if

we hypothetically eliminate this edge to split the selective tree into two trees, for each cluster
Vk included in the same tree with the source cluster, the associated commodity k does not
flow through (i, j). However, for each cluster Vk included in the other tree, each associated
commodity k flows through (i, j) from the tree including the source cluster to the other tree,
which indicates that those flows are in the same direction.

When the edge (i, j) is able to carry flow, wij is hereby used as an indicator of the flow
direction for each commodity. Thus, constraints (16) and (17) force that the flow of each
commodity on arc [i, j] can be sent only if edge (i, j) is contained in E[x], and if multiple
commodities flow on edge (i, j), they all flow in the same direction.

Constraints (5), (6), (9), (16), (17) and (18) ensure that if the vertex i is not selected
(xi = 0), related y, w, f and F -variables are forced to be 0 as well. Thus, constraints
(12)-(15) allow us to relax F k

i as −1 ≤ F k
i ≤ 1, ∀i ∈ V, Vk ∈ K since these constraints force

F -variables to be integral.
Constraint (3) and the connectivity constraints (9, 16, 17) together ensure that the

selection induces also a tree. Therefore, each feasible solution corresponds to a selection of
an induced tree with at most one vertex per cluster. If the objective function gives the result
of |K| − 1, then, the selection is also a generalized spanning tree.

Model 1 has O((|V | + |E|) × |K|) constraints, and O(|V | + |E| + |K|) binary variables
out of O((|V | + |E|) × |K|) variables. Since it has a polynomial number of variables and
constraints, Model 1 is a compact formulation for MSelTP.

2.2 Cycle Elimination Formulation
We propose another formulation with constraints eliminating cycles for each vertex subset.
This formulation has an exponential number of constraints and O(|V |+ |K|) binary variables.
Since an acyclic graph with n vertices and n − 1 edges is a tree, Model 2 aims to find an
acyclic induced graph with maximum number of vertices, which is one more than the number
of its edges. The same set of variables xi, yij and tk as in Model 1 are used in Model 2.

Model 2:

min
∑

Vk∈K
tk (24)

s.t. ∑
i∈Vk

xi + tk = 1 ∀Vk ∈ K (25)

∑
(i,j)∈E

yij = |K| − 1−
∑

Vk∈K
tk (26)

xi + xj − 1 ≤ yij ∀(i, j) ∈ E (27)
yij ≤ xi ∀(i, j) ∈ E (28)
yij ≤ xj ∀(i, j) ∈ E (29)∑
(i,j)∈E(S)

yij ≤ |S| − 1 ∀S ⊂ V, 3 ≤ |S| (30)

0 ≤ yij ≤ 1 ∀(i, j) ∈ E (31)
xi ∈ {0, 1} ∀i ∈ V (32)
tk ∈ {0, 1} ∀Vk ∈ K (33)



Ö. B. Onar, T. Ekim, and Z. C. Taşkın 13:7

The flow formulation in Model 1 focuses on the connectivity of the induced subgraph,
whereas Model 2 focuses on the fact that the induced graph has to be acyclic. Thus, only the
objective function (24), constraint (25) ensuring at most one vertex per cluster, constraint
(26) of order-size relation, and constraints (27), (28), (29) forcing the subgraph to be induced
by the selected vertices are revisited in this model.

Constraint (30) suggests that the subgraph defined by any solution has to be acylic. For
each vertex subset S ⊂ V with at least 3 vertices, it eliminates all solutions containing a
cycle of size |S|. Constraints (26) and (30) together ensure that the selection induces a tree.
Therefore, each feasible solution yields a selection of an induced tree with at most one vertex
per cluster. If the optimal objective function value is |K| − 1, then the selection is also a
generalized spanning tree.

3 Cutting Plane Methods

Model 2 has an exponential number of constraints, implying that only relatively small
instances can be solved with this formulation. Therefore, we develop cutting plane algorithms
that add cycle elimination constraints as needed.

Constraint (30) in Model 2 is of exponential cardinality and it ensures that the subgraph
defined by any solution is acylic. Since there is an exponential number of constraints (30), we
remove them from the formulation and generate them as needed in a cutting plane fashion. In
particular, given a selection of vertices, the feasibility of constraint (30) is checked by running
a Depth-First Search algorithm to detect cycles. If there is no cycle, then the selection is
feasible. Otherwise, let C denote a detected cycle having vertex set V (C) and edge set E(C).
We add the following cut:∑

(i,j)∈E(C)

yij ≤ |V (C)| − 1 (34)

The cutting plane algorithm CPAXnY summarizes the procedure above as:

Algorithm 1 CPAXnY.

Require: A graph G = (V, E) with clustering K
Ensure: An optimal selection x∗ of vertices inducing a maximum selective tree

1: loop
2: Solve Model 2 with constraint (30) relaxed. Let x̂ be an optimal selection of vertices,

and G[x̂] be the subgraph induced by x̂.
3: Find cycles in the induced graph, if any, by depth-first search.
4: if G[x̂] does not contain any cycles then
5: The selection x̂ is optimal.
6: x∗ ← x̂

7: stop
8: else
9: For some cycle C, generate cut (34) and add it to Model 2.

10: end if
11: end loop

SEA 2023



13:8 IP Formulations and Cutting Plane Algorithms for MSelTP

Model 2 has O(|V |+ |E|+ |K|) variables, which is significantly fewer than in Model 1.
Furthermore, we observe that Model 2 can be reformulated in terms of only x and t-variables,
hence eliminating y-variables. To do that, all constraints involving y-variables have to be
re-expressed. Hence, the related formulation is:

Model 3:

min
∑

Vk∈K
tk

s.t. ∑
i∈Vk

xi + tk = 1 ∀Vk ∈ K (35)

|E[x]| = |K| − 1−
∑

Vk∈K
tk (36)

G[x] admits no cycle (37)
xi ∈ {0, 1} ∀i ∈ V (38)
tk ∈ {0, 1} ∀Vk ∈ K (39)

Model 3 has O(|V |+ |K|) variables, which is fewer than in Model 1 and Model 2. Since the
sum of y-variables in constraint (26) indicates the number of edges induced by the selected
vertices, the size of E[x], which denotes the edge set of G[x], is used in constraint (36). Since
E[x] in (36) depends on the selection and since there is an exponential number of (37), we
relax constraints (36) and (37). At any point, if constraint (36) is not satisfied, we need to
add a cut to eliminate the current selection from the solution set. Laporte and Louveaux
define a binary optimality cut to exclude the current solution [24]. Given binary solution vn

with S = {i | vn
i = 1} and S′ = {i | vn

i = 0}, the binary optimality cut is defined as:∑
i∈S

(1− vi) +
∑
i∈S′

vi ≥ 1

In our case, the binary variables are x and t-variables. Let V̂ be the set of selected
vertices x̂, and K̂ be {Vk ∈ K | t̂k = 1}, indicating the set consisting of clusters, in which no
vertex is selected. Thus, in Model 3, the corresponding binary optimality cut is as follows:∑

i∈V̂

(1− xi) +
∑

i∈V \V̂

xi +
∑

Vk∈K̂

(1− tk) +
∑

Vk∈K\K̂

tk ≥ 1 (40)

By constraint (35), changing a 0-valued x or t variable to 1 forces to change a 1-valued
variable to 0, and vice versa. Thus, Equation (40) can be improved as follows:∑

i∈V̂

(1− xi) +
∑

Vk∈K̂

(1− tk) ≥ 1 (41)



Ö. B. Onar, T. Ekim, and Z. C. Taşkın 13:9

𝑉1 𝑉2

𝑉3

1 3

2 4

5

(a) A selection that violates (36).

𝑉2

3

4

1

1

4

3

4

1

4

𝑉1

𝑉3

1 3

2 4

5

(b) A fractional point satisfying cut
(40), and violating cut (42).

Figure 2 A graph example to illustrate that cut (42) is stronger than (40).

Since at most one vertex can be selected from each cluster by constraint (35), the sum of
the number of clusters having no selected vertex and the number of selected vertices is equal
to the total number of clusters, which leads |K̂|+ |V̂ | = |K|. By that equation, an equivalent
of Equation (41) is as follows:

∑
i∈V̂

xi +
∑

Vk∈K̂

tk ≤ |K| − 1 (42)

▶ Proposition 1. Cut (42) is stronger than cut (40).

Proof. Any pair (x, t) with x ≥ 0, t ≥ 0 satisfying (41) and hence (42) also satisfies (40).
To show that cut (42) is stronger than cut (40), we consider a graph G = (V, E) with

clustering K = {V1, V2, V3} where V = {1, 2, 3, 4, 5}, V1 = {1, 2}, V2 = {3, 4}, V3 = {5}, and
E = {{1, 3}, {2, 4}, {2, 5}, {4, 5}}. One possible selection for this graph is x̂ = {1, 0, 1, 0, 1},
hence t̂ = {0, 0, 0} as in Figure 2a. The induced graph G[x̂] is, then, composed of vertices
{1, 3, 5} and edge (1, 3), and constraint (36) is not satisfied. This is a case where a binary
optimality cut is generated. Cut (40) associated with selection x̂ is (1− x1) + (1− x3) + (1−
x5)+x2 +x4 +t1 +t2 +t3 ≥ 1, whereas cut (42) associated with selection x̂ is x1 +x3 +x5 ≤ 2.
The point (x, t) with x = (3/4, 1/4, 3/4, 1/4, 1) and t = (0, 0, 0), as in Figure 2b, satisfies
constraint (35) and cut (40); however, cut (42) is violated. Hence, cut (42) is stronger than
cut (40). ◀

Thus, when the number of edges does not satisfy the condition (36), cut (42) is generated.
The feasibility of constraint (37) is checked by running a Depth-First Search algorithm to
detect cycles. If there is no cycle, then the selection (x, t) is optimum. Otherwise, let C

denote a detected cycle having vertex set V (C). We add the following cut:

∑
i∈V (C)

xi ≤ |V (C)| − 1 (43)

The cutting plane algorithm CPAX summarizes the procedure above.

SEA 2023



13:10 IP Formulations and Cutting Plane Algorithms for MSelTP

Algorithm 2 CPAX.

Require: A graph G = (V, E) with clustering K
Ensure: An optimal selection x∗ of vertices inducing a maximum selective tree

1: loop
2: Solve Model 3 with constraints (36) and (37) relaxed. Let x̂ be an optimal selection of

vertices, and G[x̂] be the subgraph induced by x̂.
3: Find the subgraph G[x̂] induced by x̂.
4: Find cycles in G[x̂], if any, by depth-first search.
5: if G[x̂] does not contain any cycles then
6: if |E[x̂]| = |K| − 1−

∑
Vk∈K t̂k then

7: The selection is optimal.
8: x∗ ← x̂

9: stop
10: else
11: Generate cut (42) for (x̂, t̂) and add it to Model 3.
12: end if
13: else
14: For some cycle C, generate cut (43) and add it to Model 3.
15: end if
16: end loop

4 Experimental Results

We conduct computational experiments to compare Algorithm 1 and 2 with solving the
compact integer programming formulation Model 1 of MSelTP, called FLOW thereafter. We
implement the algorithms in C++ and conduct experiments on a computer with an Intel
Core i5-7200U @ 2.50 GHz processor and 8 GB RAM with a time limit of 1500 seconds
for each experiment. We use CPLEX 20.1 as a solver. We use lazy callback mechanism
in CPLEX to apply the cutting plane algorithms. Source code of our implementation is
available at https://github.com/omarburk/MSelTP-Paper.

We randomly generate test instances as graphs with clusters varying from 5 to 25. We
call the number of vertices in a cluster the cluster size, and we use three different average
cluster size values, which are 3, 6 and 10. As an average density value, we use 0.1, 0.3,
0.5, and 0.7. For each number of clusters, average cluster size and edge density, 10 random
instances are generated.

The graphs are randomly generated so that a vertex can be in any cluster with the same
probability and for each pair of vertices, the probability of forming an edge between them
is the same, which is the edge density value. However, we assume that there is no empty
cluster and edges are defined only between vertices belonging to different clusters since
the intracluster edges are irrelevant when at most one vertex is selected from each cluster.
Additionally, we only choose connected graphs as test instances. In CPAXnY and CPAX, in
iterations where multiple cycles are found, we limit the number of cuts to be added in an
iteration to 75.

We conduct experiments on 600 test instances of MSelTP to compare the three methods.
The number of clusters in these graphs are 5, 10, 15, 20, and 25. Each of them has 3 different
sizes as “small”, “medium”, and “large”, corresponding to the average number of vertices per
cluster, which are 3, 6, and 10. There are 4 different density options for each case as 0.1 and
0.3 being “low” densities and 0.5 and 0.7 being “high” densities. For each tuple of types,

https://github.com/omarburk/MSelTP-Paper


Ö. B. Onar, T. Ekim, and Z. C. Taşkın 13:11

Table 1 Summary table for all graph instances.

FLOW CPAXnY CPAX
cluster

size
density

#
opt

avg gap
nonopt

avg
time

#
opt

avg gap
nonopt

avg
time

#
opt

avg gap
nonopt

avg
time

small
low 80 83.46 331.88 100 5.20 98 61.90 63.33
high 42 76.71 902.35 100 31.96 81 31.48 372.40
all 122 78.44 617.11 200 18.58 179 34.38 217.86

medium
low 57 99.82 718.64 92 63.35 147.82 89 80.28 190.67
high 31 97.63 1088.51 76 61.59 485.60 58 74.35 709.72
all 88 98.47 903.57 168 62.03 316.71 147 75.58 450.19

large
low 46 100.00 903.01 90 91.64 189.26 90 92.33 178.32
high 23 99.93 1187.03 57 85.63 736.31 42 88.41 896.16
all 69 99.96 1045.02 147 86.77 462.78 132 88.99 537.24

overall 279 94.21 855.24 515 77.45 266.02 458 75.91 401.77

10 random cases are generated. We first present the general analysis of the results in Table
1. The cases are grouped by their cluster sizes and densities, in which each combination
represents 100 instances. The first two columns in this table identify these combinations.
Next columns are split into groups for each method (FLOW, CPAXnY, CPAX). In each
column group, the first column shows the number of optimally solved instances out of 100.
The second column shows the average of the relative optimality gap for nonoptimal cases in
percent within the given time limit of 1500 seconds. The relative optimality gap is calculated
as

(
UB−LB

UB × 100
)
, where LB is the best known lower bound on the optimal solution value

and UB is the upper bound, which is the best integer objective found. The third column
shows the average overall time in seconds within the time limit. For each cluster size group,
the last row corresponds to aggregate values for all density groups.

The values at the last row of each group and the final row indicate that CPAXnY
outperforms the other two methods in terms of each criteria in the table, except the total
average relative gap. Moreover, CPAX yields better results than FLOW. CPAXnY and
CPAX optimally solves 86% and 76% of the instances, respectively. FLOW solves only 47%
of the instances optimally. In terms of the average relative gap and the average time, the
ranking between the methods is the same. For only large-size low-density group of instances,
CPAX method seems better than CPAXnY in terms of the average time, despite yielding
the average relative gap a bit worse, while their number of optimally solved instances are
the same. Moreover, CPAX method seems a bit better than CPAXnY in terms of the total
average relative gap although CPAXnY method yields better average relative gaps for each
group. The reason is that CPAXnY solves all small-size group optimally, therefore it has no
nonoptimal case, which affects the total average relative gap.

We observe that the performance of each method deteriorates as the average cluster size
increases. Similarly, as the graph gets denser, the performance of each method becomes
worse. While CPAXnY method spends a few seconds on average for small-size low-density
group and it solves each one of them to optimality, it rises to 736 seconds for large-size
high-density group, and it solves only 57% of the instances optimally.

In order to analyze the results better, we compare the methods separately for different
cluster sizes and densities. In our next set of experiments, we compare the results of three
methods on graphs with “small”, “medium” and “large” cluster sizes. The average number
of vertices per cluster is 3 in graphs with “small” cluster size, 6 in graphs with “medium”
cluster size, whereas it is 10 in the “large” one. The results of the comparison for graphs
with small, medium and large cluster sizes are presented in Tables 2, 3 and 4, respectively in
Appendix A.

SEA 2023



13:12 IP Formulations and Cutting Plane Algorithms for MSelTP

In each table hereafter, the first three columns in the table identify the number of clusters,
the number of vertices, and average edge density across ten random instances. Next columns
are split into groups for each method (FLOW, CPAXnY, CPAX). In each column group, the
first column shows the number of optimally solved instances out of 10. The second column
shows the average of the relative optimality gap in percent of the instances that are not solved
to optimality within the given time limit of 1500 seconds, while the third column shows that
of all the instances. The relative optimality gap is calculated as

(
UB−LB

UB × 100
)
, where LB

is the best known lower bound on the optimal solution value and UB is the upper bound,
which is the best integer objective found. The fourth and the fifth columns show the average
time in seconds of the instances that are not solved to optimality within the time limit and
that of all the instances, respectively. The procedures CPAXnY and CPAX have one last
column that shows average time spent in their subproblem in seconds of all the instances. As
we can see from Tables 2, 3 and 4, in each row, the average time in subproblems is negligible.
All the values in each row are the average result of the 10 instances for that case.

As we can see the results in Table 2, the algorithm CPAXnY outperforms the other
procedures in terms of the number of optimally solved instances, the average of the relative
optimality gap for both nonoptimal cases and overall, and the average time of instances
optimally solved and the overall average time. For graphs with lower density and a smaller
number of cluster, its results are similar with that of CPAX in terms of the average time
of instances optimally solved and the overall average time, yet, as the number of clusters
increases, it gave better results. Furthermore, for graphs with higher density, CPAXnY yields
significantly better results than others. It still optimally solves all the cases whereas CPAX
is not able to solve to optimality except one instance for graphs with 25 clusters. Moreover,
for graphs with 20 and 25 clusters, the overall average time of CPAX is longer more than 10
times that of CPAXnY. Both outperform FLOW significantly, which is able to solve very few
instances optimally as the number of clusters increases to 15 for graphs with higher density.

As we can see the results in Table 3, the algorithm CPAXnY still outperforms the other
procedures in terms of each criteria. However, the performance of each method deteriorates
as the cluster size increases. For graphs with lower density and fewer number of clusters, the
results of CPAXnY are similar with that of CPAX in terms of the average time of instances
optimally solved and the overall average time, yet, as the number of clusters increases, it gave
better results. This time, instead of all cases, CPAXnY and CPAX optimally solve 92% and
89% of the instances, respectively. Furthermore, for graphs with higher density, CPAXnY
yields much better results than others. However, it optimally solves 76% of the instances
this time and 80% of the instances for graphs with 20 cluster, whereas CPAX is not able to
solve any instances to optimality for graphs with 20 and 25 clusters. Moreover, CPAXnY
has better average of the relative optimality gap for both nonoptimal cases and overall. Both
outperform FLOW significantly. Among graphs with higher density, it is able to solve the
instances optimally for only those with 5 clusters and half of those with 10 clusters.

As we can see the results in Table 4, for graphs with lower density, the algorithm CPAXnY
outperforms the other procedures in terms of the average of the relative optimality gap for
both nonoptimal cases and overall; however, the algorithm CPAX yields better results than
the other procedures in terms of the average time of instances optimally solved and the overall
average time. CPAXnY and CPAX solve the same number of instances to optimality. For
graphs with lower density, both CPAXnY and CPAX optimally solve 90% of the instances.
Nevertheless, for graphs with higher density, CPAXnY yields much better results than others
in terms of each criteria. It optimally solves 57% of the instances this time and 85% of the
instances for graphs with 15 cluster, whereas CPAX optimally solves 42% of the instances



Ö. B. Onar, T. Ekim, and Z. C. Taşkın 13:13

and it is not able to solve any instances to optimality for graphs with 15, 20 and 25 clusters
except 3 instances for those with 15. Their average times are closer than before. Moreover,
CPAXnY has better average of the relative optimality gap for both nonoptimal cases and
overall. Both outperform FLOW significantly. Among graphs with higher density, it is able
to solve the instances optimally for only those with 5 clusters and 15% of those with 10
clusters. As a limitation, for the large-size high-density graph instances, CPAXnY is not
able to solve after those with 20 clusters in 1500 seconds, whereas CPAX is not almost able
to solve after those with 15 clusters in 1500 seconds and FLOW is not after those with 10
clusters. As the number of clusters or density increases, the performance of all methods
deteriorates in general, especially FLOW method worsens faster. Intuitively, one can think
that finding a tree gets easier as density increases; however, finding an induced tree gets
harder since the possibility of including a cycle in an induced subgraph increases. Comparing
Tables 2, 3 and 4, we observe also that for graphs with high density, the performance of all
three methods gets worse in general as the cluster size increases. However, for graphs with
low density, the deterioration in performance is less than high density graphs.

As a future research direction, MSelTP can be examined for different kinds of graph
classes in terms of algorithms, formulations, and complexity. Moreover, a variant of MSelTP
can be studied for forests instead of trees; this would correspond to the selective version of
the well-known feedback vertex set problem, which has not been studied to the best of our
knowledge. Additionally, vertex-weighted and/or edge-weighted versions of MSelTP can be
studied.

References
1 John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph Theory with Applications.

Elsevier Science Publishing Co., Inc., 1976.
2 M. Chudnovsky and Paul D. Seymour. The three-in-a-tree problem. Combinatorica, 30:387–417,

2010.
3 Ovidiu Cosma, Petrică C. Pop, and Laura Cosma. An effective hybrid genetic algorithm

for solving the generalized traveling salesman problem. In Hugo Sanjurjo González, Iker
Pastor López, Pablo García Bringas, Héctor Quintián, and Emilio Corchado, editors, Hybrid
Artificial Intelligent Systems, pages 113–123, Cham, 2021. Springer International Publishing.

4 Ernando Gomes de Sousa, Rafael Castro de Andrade, and Andréa C. Santos. A multigraph
formulation for the generalized minimum spanning tree problem. In ISCO 2018: Combinatorial
Optimization, volume 10856 of Lecture Notes in Computer Science, pages 133–143. Springer,
July 2018. doi:10.1007/978-3-319-96151-4_12.

5 Marc Demange, Tınaz Ekim, and Bernard Ries. On the minimum and maximum selective
graph coloring problems in some graph classes. Discrete Applied Mathematics, 204:77–89, 2016.
doi:10.1016/j.dam.2015.10.005.

6 Marc Demange, Tınaz Ekim, Bernard Ries, and Cerasela Tanasescu. On some applications of
the selective graph coloring problem. European Journal of Operational Research, 240(2):307–
314, 2015. doi:10.1016/j.ejor.2014.05.011.

7 Marc Demange, Jérôme Monnot, Petrica Pop, and Bernard Ries. On the complexity of the
selective graph coloring problem in some special classes of graphs. Theoretical Computer Science,
540-541:89–102, 2014. Combinatorial Optimization: Theory of algorithms and Complexity.
doi:10.1016/j.tcs.2013.04.018.

8 Nicolas Derhy and Christophe Picouleau. Finding induced trees. Discrete Applied Mathematics,
157:3552–3557, October 2009. doi:10.1016/j.dam.2009.02.009.

9 C.W Duin, A Volgenant, and S Voß. Solving group Steiner problems as Steiner prob-
lems. European Journal of Operational Research, 154(1):323–329, 2004. doi:10.1016/
S0377-2217(02)00707-5.

SEA 2023

https://doi.org/10.1007/978-3-319-96151-4_12
https://doi.org/10.1016/j.dam.2015.10.005
https://doi.org/10.1016/j.ejor.2014.05.011
https://doi.org/10.1016/j.tcs.2013.04.018
https://doi.org/10.1016/j.dam.2009.02.009
https://doi.org/10.1016/S0377-2217(02)00707-5
https://doi.org/10.1016/S0377-2217(02)00707-5


13:14 IP Formulations and Cutting Plane Algorithms for MSelTP

10 Paul Erdös and Zbigniew Palka. Trees in random graphs. Discret. Math., 46:145–150, 1983.
11 Paul Erdös, Michael Saks, and Vera T Sós. Maximum induced trees in graphs. Journal of

Combinatorial Theory, Series B, 41(1):61–79, 1986. doi:10.1016/0095-8956(86)90028-6.
12 Corinne Feremans, Martine Labbé, and Gilbert Laporte. A comparative analysis of several

formulations for the generalized minimum spanning tree problem. Networks, 39:29–34, January
2002. doi:10.1002/net.10009.

13 Corinne Feremans, Martine Labbé, and Gilbert Laporte. Generalized network design problems.
European Journal of Operational Research, 148(1):1–13, 2003. doi:10.1016/S0377-2217(02)
00404-6.

14 Corinne Feremans, Martine Labbé, Gilbert Laporte, and Etudes Commerciales. The generalized
minimum spanning tree problem: Polyhedral analysis and branch-and-cut algorithm. Networks,
43, November 2002. doi:10.1002/net.10105.

15 Cristiane S. Ferreira, Luis Satoru Ochi, Víctor Parada, and Eduardo Uchoa. A GRASP-based
approach to the generalized minimum spanning tree problem. Expert Systems with Applications,
39(3):3526–3536, 2012. doi:10.1016/j.eswa.2011.09.043.

16 Yuri Frota, Nelson Maculan, Thiago F Noronha, and Celso C Ribeiro. A branch-and-cut
algorithm for partition coloring. Networks: An International Journal, 55(3):194–204, 2010.

17 Fabio Furini, Enrico Malaguti, and Alberto Santini. An exact algorithm for the partition
coloring problem. Computers & Operations Research, 92:170–181, 2018. doi:10.1016/j.cor.
2017.12.019.

18 Bruce Golden, Saahitya Raghavan, and Daliborka Stanojevic. The prize-collecting generalized
minimum spanning tree problem. Journal of Heuristics, 14:69–93, February 2008. doi:
10.1007/s10732-007-9027-1.

19 Mohamed Haouari and Jouhaina Siala. Upper and lower bounding strategies for the generalized
minimum spanning tree problem. European Journal of Operational Research, 171:632–647,
February 2006. doi:10.1016/j.ejor.2004.07.072.

20 Alain Hertz, Odile Marcotte, and David Schindl. On the maximum orders of an induced
forest, an induced tree, and a stable set. Yugoslav Journal of Operations Research, 24:199–215,
January 2014. doi:10.2298/YJOR130402037H.

21 Edmund Ihler, Gabriele Reich, and Peter Widmayer. Class Steiner trees and VLSI-design.
Discrete Applied Mathematics, 90(1):173–194, 1999. doi:10.1016/S0166-218X(98)00090-0.

22 Michal Karonski and Zbigniew Palka. On the size of a maximal induced tree in a random
graph. Math. Slovaca, 30:151–155, 1980.

23 Gilbert Laporte, Ardavan Asef-Vaziri, and Chelliah Sriskandarajah. Some applications of the
generalized travelling salesman problem. The Journal of the Operational Research Society,
47(12):1461–1467, 1996.

24 Gilbert Laporte and François V. Louveaux. The integer L-shaped method for stochastic
integer programs with complete recourse. Operations Research Letters, 13(3):133–142, 1993.
doi:10.1016/0167-6377(93)90002-X.

25 Gilbert Laporte and Yves Nobert. Generalized travelling salesman problem through n sets
of nodes: An integer programming approach. INFOR: Information Systems and Operational
Research, 21(1):61–75, 1983. doi:10.1080/03155986.1983.11731885.

26 Guangzhi Li and Rahul Simha. The partition coloring problem and its application to wavelength
routing and assignment. In In Proceedings of the First Workshop on Optical Networks, 2000.

27 Rafael A. Melo and Celso C. Ribeiro. Maximum weighted induced forests and trees: New for-
mulations and a computational comparative review. International Transactions in Operational
Research, 2021. doi:10.1111/itor.13066.

28 Young Soo Myung, Chang Ho Lee, and Dong Wan Tcha. On the generalized minimum spanning
tree problem. Networks, 26(4):231–241, 1995. doi:10.1002/net.3230260407.

29 Charles E. Noon and James C. Bean. A lagrangian based approach for the asymmetric
generalized traveling salesman problem. Operations Research, 39(4):623–632, 1991.

https://doi.org/10.1016/0095-8956(86)90028-6
https://doi.org/10.1002/net.10009
https://doi.org/10.1016/S0377-2217(02)00404-6
https://doi.org/10.1016/S0377-2217(02)00404-6
https://doi.org/10.1002/net.10105
https://doi.org/10.1016/j.eswa.2011.09.043
https://doi.org/10.1016/j.cor.2017.12.019
https://doi.org/10.1016/j.cor.2017.12.019
https://doi.org/10.1007/s10732-007-9027-1
https://doi.org/10.1007/s10732-007-9027-1
https://doi.org/10.1016/j.ejor.2004.07.072
https://doi.org/10.2298/YJOR130402037H
https://doi.org/10.1016/S0166-218X(98)00090-0
https://doi.org/10.1016/0167-6377(93)90002-X
https://doi.org/10.1080/03155986.1983.11731885
https://doi.org/10.1111/itor.13066
https://doi.org/10.1002/net.3230260407


Ö. B. Onar, T. Ekim, and Z. C. Taşkın 13:15

30 Temel Oncan, Jean-François Cordeau, and Gilbert Laporte. A tabu search heuristic for the
generalized minimum spanning tree problem. European Journal of Operational Research,
191:306–319, December 2008. doi:10.1016/j.ejor.2007.08.021.

31 Petrica C. Pop. On the prize-collecting generalized minimum spanning tree problem. Annals
of Operations Research, 150:193–204, March 2007. doi:10.1007/s10479-006-0153-1.

32 Petrica C. Pop. The generalized minimum spanning tree problem: An overview of formulations,
solution procedures and latest advances. European Journal of Operational Research, 283(1):1–
15, 2020. doi:10.1016/j.ejor.2019.05.017.

33 Petrica C. Pop, Bin Hu, and Günther Raidl. A memetic algorithm with two distinct solution
representations for the partition graph coloring problem. In Revised Selected Papers of the
14th International Conference on Computer Aided Systems Theory - EUROCAST 2013 -
Volume 8111, volume 8111, pages 219–226. Springer-Verlag, February 2013. doi:10.1007/
978-3-642-53856-8_28.

34 Petrica C. Pop, Walter Kern, and Georg J. Still. The Generalized Minimum Spanning Tree
Problem. University of Twente, Department of Applied Mathematics, 2000.

35 Petrica C. Pop, Oliviu Matei, Cosmin Sabo, and Adrian Petrovan. A two-level solution
approach for solving the generalized minimum spanning tree problem. European Journal of
Operational Research, August 2017. doi:10.1016/j.ejor.2017.08.015.

36 Dieter Rautenbach. Dominating and large induced trees in regular graphs. Discrete Mathem-
atics, 307(24):3177–3186, 2007. doi:10.1016/j.disc.2007.03.043.

37 Gabriele Reich and Peter Widmayer. Beyond Steiner’s problem: A VLSI oriented generalization.
In Graph-Theoretic Concepts in Computer Science, volume 411 of Lecture Notes in Computer
Science, pages 196–210. Springer, Berlin, Heidelberg, 1990. doi:10.1007/3-540-52292-1_14.

38 Oylum Şeker, Tınaz Ekim, and Z. Caner Taşkın. A decomposition approach to solve the
selective graph coloring problem in some perfect graph families. Networks, 73(2):145–169,
2019. doi:10.1002/net.21850.

39 Oylum Şeker, Tınaz Ekim, and Z. Caner Taşkın. An exact cutting plane algorithm to solve the
selective graph coloring problem in perfect graphs. European Journal of Operational Research,
291(1):67–83, 2021. doi:10.1016/j.ejor.2020.09.017.

SEA 2023

https://doi.org/10.1016/j.ejor.2007.08.021
https://doi.org/10.1007/s10479-006-0153-1
https://doi.org/10.1016/j.ejor.2019.05.017
https://doi.org/10.1007/978-3-642-53856-8_28
https://doi.org/10.1007/978-3-642-53856-8_28
https://doi.org/10.1016/j.ejor.2017.08.015
https://doi.org/10.1016/j.disc.2007.03.043
https://doi.org/10.1007/3-540-52292-1_14
https://doi.org/10.1002/net.21850
https://doi.org/10.1016/j.ejor.2020.09.017


13:16 IP Formulations and Cutting Plane Algorithms for MSelTP

A
C

om
pu

ta
tio

na
lR

es
ul

ts
fo

r
gr

ap
hs

w
ith

sm
al

l/
m

ed
iu

m
/l

ar
ge

cl
us

te
r

siz
es

Ta
bl

e
2

C
om

pu
ta

tio
na

lr
es

ul
ts

fo
r

gr
ap

hs
w

ith
sm

al
lc

lu
st

er
si

ze
.

FL
O

W
C

PA
X

nY
C

PA
X

# cl
us

t
# ve
rt

av
g

de
ns

ity
# op

t

av
g

%
ga

p
in

no
no

pt

av
g

%
ga

p
ov

er
al

l

av
g

tim
e

in
op

t

av
g

tim
e

ov
er

al
l

# op
t

av
g

%
ga

p
in

no
no

pt

av
g

%
ga

p
ov

er
al

l

av
g

tim
e

in
op

t

av
g

tim
e

ov
er

al
l

av
g

tim
e

in
su

bp
r

# op
t

av
g

%
ga

p
in

no
no

pt

av
g

%
ga

p
ov

er
al

l

av
g

tim
e

in
op

t

av
g

tim
e

ov
er

al
l

av
g

tim
e

in
su

bp
r

5
15

0.
1

10
0.

00
0.

22
0.

22
10

0.
00

0.
02

0.
02

0.
00

10
0.

00
0.

11
0.

11
0.

01
5

15
0.

3
10

0.
00

0.
25

0.
25

10
0.

00
0.

03
0.

03
0.

00
10

0.
00

0.
05

0.
05

0.
00

10
30

0.
1

10
0.

00
0.

71
0.

71
10

0.
00

0.
03

0.
03

0.
00

10
0.

00
3.

95
3.

95
0.

09
10

30
0.

3
10

0.
00

2.
94

2.
94

10
0.

00
0.

05
0.

05
0.

00
10

0.
00

0.
02

0.
02

0.
00

15
45

0.
1

10
0.

00
1.

74
1.

74
10

0.
00

0.
05

0.
05

0.
00

10
0.

00
26

.6
0

26
.6

0
0.

40
15

45
0.

3
10

0.
00

13
4.

85
13

4.
85

10
0.

00
0.

52
0.

52
0.

00
10

0.
00

0.
06

0.
06

0.
01

20
60

0.
1

10
0.

00
31

.1
1

31
.1

1
10

0.
00

0.
26

0.
26

0.
01

10
0.

00
36

.2
7

36
.2

7
0.

44
20

60
0.

3
0

77
.0

3
77

.0
3

15
00

.0
0

10
0.

00
3.

93
3.

93
0.

01
10

0.
00

12
.5

9
12

.5
9

0.
14

25
75

0.
1

10
0.

00
14

6.
96

14
6.

96
10

0.
00

6.
52

6.
52

0.
04

9
10

0.
00

10
.0

0
6.

31
15

5.
68

0.
26

25
75

0.
3

0
89

.9
0

89
.9

0
15

00
.0

0
10

0.
00

40
.6

4
40

.6
4

0.
02

9
23

.8
1

2.
38

27
5.

48
39

7.
93

0.
52

80
83

.4
6

16
.6

9
39

.8
5

33
1.

88
10

0
0.

00
0.

00
5.

20
5.

20
0.

01
98

61
.9

0
1.

24
34

.0
1

63
.3

3
0.

18
5

15
0.

5
10

0.
00

0.
21

0.
21

10
0.

00
0.

03
0.

03
0.

00
10

0.
00

0.
02

0.
02

0.
00

5
15

0.
7

10
0.

00
0.

26
0.

26
10

0.
00

0.
03

0.
03

0.
00

10
0.

00
0.

02
0.

02
0.

00
10

30
0.

5
10

0.
00

39
.6

4
39

.6
4

10
0.

00
0.

40
0.

40
0.

00
10

0.
00

0.
05

0.
05

0.
01

10
30

0.
7

10
0.

00
53

.7
5

53
.7

5
10

0.
00

0.
86

0.
86

0.
00

10
0.

00
0.

24
0.

24
0.

01
15

45
0.

5
2

52
.3

1
41

.8
4

11
48

.0
8

14
29

.6
2

10
0.

00
2.

65
2.

65
0.

00
10

0.
00

5.
65

5.
65

0.
07

15
45

0.
7

0
64

.8
8

64
.8

8
15

00
.0

0
10

0.
00

5.
21

5.
21

0.
00

10
0.

00
19

.5
4

19
.5

4
0.

12
20

60
0.

5
0

80
.8

9
80

.8
9

15
00

.0
0

10
0.

00
27

.1
8

27
.1

8
0.

00
10

0.
00

32
2.

85
32

2.
85

0.
43

20
60

0.
7

0
79

.1
6

79
.1

6
15

00
.0

0
10

0.
00

24
.4

2
24

.4
2

0.
00

10
0.

00
42

8.
15

42
8.

15
0.

57
25

75
0.

5
0

88
.4

0
88

.4
0

15
00

.0
0

10
0.

00
15

4.
78

15
4.

78
0.

00
1

32
.9

7
29

.6
7

97
4.

91
14

47
.4

9
0.

74
25

75
0.

7
0

89
.7

5
89

.7
5

15
00

.0
0

10
0.

00
10

4.
01

10
4.

01
0.

00
0

30
.1

4
30

.1
4

15
00

.0
0

0.
00

42
76

.7
1

44
.4

9
77

.0
2

90
2.

35
10

0
0.

00
0.

00
31

.9
6

31
.9

6
0.

00
81

31
.4

8
5.

98
10

7.
90

37
2.

40
0.

16



Ö. B. Onar, T. Ekim, and Z. C. Taşkın 13:17

Ta
bl

e
3

C
om

pu
ta

tio
na

lr
es

ul
ts

fo
r

gr
ap

hs
w

ith
m

ed
iu

m
cl

us
te

r
si

ze
.

FL
O

W
C

PA
X

nY
C

PA
X

# cl
us

t
# ve
rt

av
g

de
ns

ity
# op

t

av
g

%
ga

p
in

no
no

pt

av
g

%
ga

p
ov

er
al

l

av
g

tim
e

in
op

t

av
g

tim
e

ov
er

al
l

# op
t

av
g

%
ga

p
in

no
no

pt

av
g

%
ga

p
ov

er
al

l

av
g

tim
e

in
op

t

av
g

tim
e

ov
er

al
l

av
g

tim
e

in
su

bp
r

# op
t

av
g

%
ga

p
in

no
no

pt

av
g

%
ga

p
ov

er
al

l

av
g

tim
e

in
op

t

av
g

tim
e

ov
er

al
l

av
g

tim
e

in
su

bp
r

5
30

0.
1

10
0.

00
0.

20
0.

20
10

0.
00

0.
03

0.
03

0.
00

10
0.

00
0.

09
0.

09
0.

01
5

30
0.

3
10

0.
00

0.
44

0.
44

10
0.

00
0.

05
0.

05
0.

00
10

0.
00

0.
02

0.
02

0.
00

10
60

0.
1

10
0.

00
2.

53
2.

53
10

0.
00

0.
07

0.
07

0.
00

10
0.

00
49

.4
5

49
.4

5
0.

56
10

60
0.

3
10

0.
00

35
.4

6
35

.4
6

10
0.

00
0.

13
0.

13
0.

00
10

0.
00

0.
02

0.
02

0.
00

15
90

0.
1

10
0.

00
52

.1
5

52
.1

5
10

0.
00

0.
22

0.
22

0.
00

9
10

0.
00

10
.0

0
8.

66
15

7.
80

0.
20

15
90

0.
3

2
99

.4
6

79
.5

7
87

5.
46

13
75

.0
9

10
0.

00
1.

72
1.

72
0.

00
10

0.
00

0.
25

0.
25

0.
03

20
12

0
0.

1
5

10
0.

00
50

.0
0

94
1.

10
12

20
.5

5
10

0.
00

0.
67

0.
67

0.
01

10
0.

00
6.

37
6.

37
0.

20
20

12
0

0.
3

0
99

.7
5

99
.7

5
15

00
.0

0
10

0.
00

99
.6

7
99

.6
7

0.
03

10
0.

00
19

2.
18

19
2.

18
0.

89
25

15
0

0.
1

0
10

0.
00

10
0.

00
15

00
.0

0
10

0.
00

2.
81

2.
81

0.
03

10
0.

00
0.

48
0.

48
0.

09
25

15
0

0.
3

0
99

.8
9

99
.8

9
15

00
.0

0
2

63
.3

5
50

.6
8

86
4.

13
13

72
.8

3
0.

04
0

78
.3

0
78

.3
0

15
00

.0
0

0
57

99
.8

2
42

.9
2

12
9.

19
71

8.
64

92
63

.3
5

5.
07

30
.2

4
14

7.
82

0.
01

89
80

.2
8

8.
83

28
.8

4
19

0.
67

0.
22

5
30

0.
5

10
0.

00
0.

74
0.

74
10

0.
00

0.
03

0.
03

0.
00

10
0.

00
0.

02
0.

02
0.

00
5

30
0.

7
10

0.
00

1.
85

1.
85

10
0.

00
0.

05
0.

05
0.

00
10

0.
00

0.
02

0.
02

0.
00

10
60

0.
5

10
0.

00
50

6.
90

50
6.

90
10

0.
00

0.
98

0.
98

0.
00

10
0.

00
0.

35
0.

35
0.

02
10

60
0.

7
1

90
.2

6
81

.2
3

25
6.

02
13

75
.6

0
10

0.
00

4.
19

4.
19

0.
00

10
0.

00
7.

12
7.

12
0.

11
15

90
0.

5
0

97
.4

1
97

.4
1

15
00

.0
0

10
0.

00
34

.5
2

34
.5

2
0.

00
10

0.
00

22
2.

16
22

2.
16

0.
60

15
90

0.
7

0
97

.7
3

97
.7

3
15

00
.0

0
10

0.
00

66
.6

2
66

.6
2

0.
00

8
45

.0
0

9.
00

70
9.

40
86

7.
52

1.
30

20
12

0
0.

5
0

98
.9

5
98

.9
5

15
00

.0
0

8
37

.1
8

7.
44

69
9.

24
83

2.
71

0.
01

0
64

.0
0

64
.0

0
15

00
.0

0
0.

00
20

12
0

0.
7

0
98

.3
3

98
.3

3
15

00
.0

0
8

24
.6

2
4.

92
77

1.
07

91
6.

86
0.

01
0

63
.5

7
63

.5
7

15
00

.0
0

0.
00

25
15

0
0.

5
0

10
0.

00
10

0.
00

15
00

.0
0

0
73

.3
6

73
.3

6
15

00
.0

0
0.

00
0

87
.2

2
87

.2
2

15
00

.0
0

0.
00

25
15

0
0.

7
0

10
0.

00
10

0.
00

15
00

.0
0

0
62

.0
8

62
.0

8
15

00
.0

0
0.

00
0

88
.4

7
88

.4
7

15
00

.0
0

0.
00

31
97

.6
3

67
.3

7
17

2.
61

10
88

.5
1

76
61

.5
9

14
.7

8
16

8.
77

48
5.

60
0.

00
58

74
.3

5
31

.2
3

13
7.

45
70

9.
72

0.
31

SEA 2023



13:18 IP Formulations and Cutting Plane Algorithms for MSelTP

Ta
bl

e
4

C
om

pu
ta

tio
na

lr
es

ul
ts

fo
r

gr
ap

hs
w

ith
la

rg
e

cl
us

te
r

si
ze

.

FL
O

W
C

PA
X

nY
C

PA
X

# cl
us

t
# ve
rt

av
g

de
ns

ity
# op

t

av
g

%
ga

p
in

no
no

pt

av
g

%
ga

p
ov

er
al

l

av
g

tim
e

in
op

t

av
g

tim
e

ov
er

al
l

# op
t

av
g

%
ga

p
in

no
no

pt

av
g

%
ga

p
ov

er
al

l

av
g

tim
e

in
op

t

av
g

tim
e

ov
er

al
l

av
g

tim
e

in
su

bp
r

# op
t

av
g

%
ga

p
in

no
no

pt

av
g

%
ga

p
ov

er
al

l

av
g

tim
e

in
op

t

av
g

tim
e

ov
er

al
l

av
g

tim
e

in
su

bp
r

5
50

0.
1

10
0.

00
0.

78
0.

78
10

0.
00

0.
03

0.
03

0.
00

10
0.

00
0.

39
0.

39
0.

03
5

50
0.

3
10

0.
00

1.
81

1.
81

10
0.

00
0.

05
0.

05
0.

00
10

0.
00

0.
02

0.
02

0.
00

10
10

0
0.

1
10

0.
00

8.
10

8.
10

10
0.

00
0.

17
0.

17
0.

00
10

0.
00

10
7.

83
10

7.
83

0.
82

10
10

0
0.

3
10

0.
00

35
6.

09
35

6.
09

10
0.

00
0.

51
0.

51
0.

00
10

0.
00

0.
02

0.
02

0.
00

15
15

0
0.

1
6

10
0.

00
40

.0
0

93
8.

88
11

63
.3

3
10

0.
00

0.
86

0.
86

0.
00

10
0.

00
4.

99
4.

99
0.

15
15

15
0

0.
3

0
10

0.
00

10
0.

00
15

00
.0

0
10

0.
00

10
.9

0
10

.9
0

0.
01

10
0.

00
0.

16
0.

16
0.

03
20

20
0

0.
1

0
10

0.
00

10
0.

00
15

00
.0

0
10

0.
00

5.
59

5.
59

0.
01

10
0.

00
1.

73
1.

73
0.

15
20

20
0

0.
3

0
10

0.
00

10
0.

00
15

00
.0

0
10

0.
00

34
5.

68
34

5.
68

0.
06

10
0.

00
16

4.
77

16
4.

77
1.

32
25

25
0

0.
1

0
10

0.
00

10
0.

00
15

00
.0

0
10

0.
00

28
.7

7
28

.7
7

0.
03

10
0.

00
3.

31
3.

31
0.

26
25

25
0

0.
3

0
10

0.
00

10
0.

00
15

00
.0

0
0

91
.6

4
91

.6
4

15
00

.0
0

0.
00

0
92

.3
3

92
.3

3
15

00
.0

0
0.

00
46

10
0.

00
54

.0
0

20
2.

20
90

3.
01

90
91

.6
4

9.
16

43
.6

2
18

9.
26

0.
01

90
92

.3
3

9.
23

31
.4

7
17

8.
32

0.
31

5
50

0.
5

10
0.

00
2.

84
2.

84
10

0.
00

0.
06

0.
06

0.
00

10
0.

00
0.

02
0.

02
0.

00
5

50
0.

7
10

0.
00

6.
65

6.
65

10
0.

00
0.

07
0.

07
0.

00
10

0.
00

0.
03

0.
03

0.
00

10
10

0
0.

5
3

10
0.

00
70

.0
0

10
36

.1
4

13
60

.8
4

10
0.

00
2.

53
2.

53
0.

00
10

0.
00

0.
27

0.
27

0.
02

10
10

0
0.

7
0

99
.9

3
99

.9
3

15
00

.0
0

10
0.

00
26

.7
0

26
.7

0
0.

00
9

83
.3

3
8.

33
15

9.
36

29
3.

43
0.

58
15

15
0

0.
5

0
10

0.
00

10
0.

00
15

00
.0

0
10

0.
00

46
5.

66
46

5.
66

0.
01

3
72

.8
6

51
.0

0
39

2.
90

11
67

.8
7

1.
47

15
15

0
0.

7
0

99
.5

2
99

.5
2

15
00

.0
0

7
44

.4
4

13
.3

3
70

1.
94

86
8.

05
0.

00
0

73
.2

4
73

.2
4

15
00

.0
0

0.
00

20
20

0
0.

5
0

10
0.

00
10

0.
00

15
00

.0
0

0
87

.3
0

87
.3

0
15

00
.0

0
0.

00
0

90
.5

7
90

.5
7

15
00

.0
0

0.
00

20
20

0
0.

7
0

10
0.

00
10

0.
00

15
00

.0
0

0
81

.5
5

81
.5

5
15

00
.0

0
0.

00
0

92
.4

6
92

.4
6

15
00

.0
0

0.
00

25
25

0
0.

5
0

10
0.

00
10

0.
00

15
00

.0
0

0
94

.4
4

94
.4

4
15

00
.0

0
0.

00
0

99
.8

2
99

.8
2

15
00

.0
0

0.
00

25
25

0
0.

7
0

10
0.

00
10

0.
00

15
00

.0
0

0
91

.6
0

91
.6

0
15

00
.0

0
0.

00
0

97
.3

5
97

.3
5

15
00

.0
0

0.
00

23
99

.9
3

76
.9

4
13

9.
28

11
87

.0
3

57
85

.6
3

36
.8

2
17

3.
05

73
6.

31
0.

00
42

88
.4

1
51

.2
8

62
.2

9
89

6.
16

0.
23



A Graph-Theoretic Formulation of Exploratory
Blockmodeling∗

Alexander Bille #

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Germany

Niels Grüttemeier #

System Technologies and Image Exploitation,
Fraunhofer IOSB, Lemgo, Fraunhofer Institute of Optronics, Germany

Christian Komusiewicz #

Institute of Computer Science, Friedrich Schiller Universität Jena, Germany

Nils Morawietz #

Institute of Computer Science, Friedrich Schiller Universität Jena, Germany

Abstract
We present a new simple graph-theoretic formulation of the exploratory blockmodeling problem
on undirected and unweighted one-mode networks. Our formulation takes as input the network G

and the maximum number t of blocks for the solution model. The task is to find a minimum-size
set of edge insertions and deletions that transform the input graph G into a graph G′ with at
most t neighborhood classes. Herein, a neighborhood class is a maximal set of vertices with the
same neighborhood. The neighborhood classes of G′ directly give the blocks and block interactions
of the computed blockmodel.

We analyze the classic and parameterized complexity of the exploratory blockmodeling problem,
provide a branch-and-bound algorithm, an ILP formulation and several heuristics. Finally, we
compare our exact algorithms to previous ILP-based approaches and show that the new algorithms
are faster for t ≥ 4.

2012 ACM Subject Classification Theory of computation → Social networks; Theory of computation
→ Parameterized complexity and exact algorithms; Theory of computation → Branch-and-bound

Keywords and phrases Clustering, Exact Algorithms, ILP-Formulation, Branch-and-Bound, Social
Networks

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.14

Supplementary Material Software (Source Code and Results): https://git.uni-jena.de/algo-
engineering/blockmodeling

archived at swh:1:dir:1271064707a641448704346b9ff9dc43cdc799b3

Funding Nils Morawietz: Supported by the Deutsche Forschungsgemeinschaft (DFG), project
OPERAH, KO 3669/5-1.

Acknowledgements We would like to thank the anonymous reviewers of SEA for their helpful
comments which have improved the presentation of our results.

1 Introduction

In social network analysis, a standard task is to determine which vertices have the same role in
the network. One approach for this role assignment problem, called structural equivalence [3],
is to assign the same role to vertices if and only if they have the same neighborhood. This

∗ Most of the results of the presented work are also contained in the first author’s Master’s thesis
https://www.uni-marburg.de/de/fb12/arbeitsgruppen/algorith/paper/master-alex-bille.pdf

© Alexander Bille, Niels Grüttemeier, Christian Komusiewicz, and Nils Morawietz;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 14; pp. 14:1–14:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bille@informatik.uni-marburg.de
mailto:niels.gruettemeier@iosb-ina.fraunhofer.de
https://orcid.org/0000-0002-6789-2918
mailto:c.komusiewicz@uni-jena.de
https://orcid.org/0000-0003-0829-7032
mailto:nils.morawietz@uni-jena.de
https://orcid.org/0000-0002-7283-4982
https://doi.org/10.4230/LIPIcs.SEA.2023.14
https://git.uni-jena.de/algo-engineering/blockmodeling
https://git.uni-jena.de/algo-engineering/blockmodeling
https://archive.softwareheritage.org/swh:1:dir:1271064707a641448704346b9ff9dc43cdc799b3;origin=https://git.uni-jena.de/algo-engineering/blockmodeling;visit=swh:1:snp:083c3912bd82c2e59b8ba573245063bcfbe227ad;anchor=swh:1:rev:81feed8ec10e070c0936d33fe9bb5be1bab2ed06
https://www.uni-marburg.de/de/fb12/arbeitsgruppen/algorith/paper/master-alex-bille.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


14:2 A Graph-Theoretic Formulation of Exploratory Blockmodeling

demand is often too strict. In this case, one may instead use blockmodeling. Here, one
wants to partition the vertex set of the network into blocks in such a way that vertices with
similar neighborhoods end up in the same block [3, 25]. The partition of the vertices gives a
blockmodel of the input network, which is essentially a graph whose vertices are the blocks
and where an edge between two blocks a and b indicates that vertices of block a are likely to
interact with vertices of block b. Usually this graph is represented via its adjacency matrix,
also called blockmatrix or imagematrix. For an example of a vertex partition of a graph and
the corresponding blockmatrix, see Figure 1.

A critical distinction in blockmodeling is whether the blockmatrix is fixed in advance or
not [5, 8, 21]. For fixed blockmatrices, the blockmodeling problem essentially asks to confirm
whether this blockmatrix is a good explanation for the network; when the blockmatrix is
not fixed, then we have an exploratory blockmodeling problem, where we aim to identify
an unknown model from the given input. In this work, we study a simple graph-theoretic
formulation of the exploratory blockmodeling problem. We adopt a graph modification
point of view which has already been used for graph clustering [11, 23] and special cases
of blockmodeling such as the identification of core/periphery structures [2, 4]. In our
formulation, the only prespecified aspect of the blockmodel is the number t of blocks. A
starting point is to consider the situation that the graph admits a perfect blockmodel
with t (possibly empty) blocks. Informally speaking, this is the case when the number of
different neighborhoods of the graph is at most t: In that case, we may simply assign all
vertices that have the same neighborhood to the same block. In the resulting blockmodel,
each block is either a clique or an independent set in the graph and between two different
blocks, either all edges are present or all edges are missing in the input graph.

Naturally, for small values of t, most networks will not admit a perfect blockmodel in
this sense. Our aim is to find a new network that can be obtained from the original network
by a minimum number of edge additions or deletions and which admits a perfect blockmodel
with t blocks. In other words, we aim for a blockmodel with t blocks such that the number of
disagreements between input network and blockmodel is minimum. This objective function
measures globally how different the neighborhoods inside a block are. Thus, minimizing the
objective leads to a blockmodel in which vertices with similar neighborhoods indeed end up
in the same block.

1.1 Related Work
Batagelj et al. [1] also consider the problem of finding the blockmodel with the minimum
number of disagreements. There are two main differences: First, in contrast to Batagelj
et al. [1], we take a graph-theoretic view. Second, we consider exact algorithms whereas
Batagelj et al. [1] use a local search heuristic called TEA. The most closely related exact
approaches were used by Brusco and Steinley [5] and Dabkowski et al. [8]. One difference is
that these works consider directed networks. A further, algorithmic, difference is that both
works solve the exploratory blockmodeling by considering all possible t × t blockmatrices
and selecting one that gives a solution with a minimum number of disagreements. Brusco
and Steinley [5] note that their approach is limited to t ≤ 3 due to the rapidly growing
number of possible blockmatrices. Dabkowski et al. [8] show that by considering for example
isomorphism classes of blockmatrices, this approach can be extended to t = 4. Both works
use integer linear programming (ILP) formulations to compute optimal solutions for small
networks with up to 20 vertices [5] and 13 vertices [8], respectively.

There are further less closely related formulations. Reichardt and White [21] use a cost
function that additionally introduces corrections for the degree distribution of the network.
They consider the case with and without prespecified blockmatrix and use local search



A. Bille, N. Grüttemeier, C. Komusiewicz, and N. Morawietz 14:3

g

a

b

f

j

i

c

h

d

k

e

(a) Input graph H.

g

a, b, f

j, i

c

h

d

k, e

(b) Neighborhood graph of H. For the
sake of clarity, loops are omitted when
the corresponding neighborhood class
consists of one vertex.

g a b f j i c h d k e

g - 1 1 1 1 1 0 0 1 0 0
a 1 - 1 1 1 1 1 1 0 0 0
b 1 1 - 1 1 1 1 1 0 0 0
f 1 1 1 - 1 1 1 1 0 0 0
j 1 1 1 1 - 0 0 0 1 1 1
i 1 1 1 1 0 - 0 0 1 1 1
c 0 1 1 1 0 0 - 1 1 0 0
h 0 1 1 1 0 0 1 - 1 1 1
b 1 0 0 0 1 1 1 1 - 1 1
k 0 0 0 0 1 1 0 1 1 - 0
e 0 0 0 0 1 1 0 1 1 0 -

(c) Partitioned adjacency matrix of H where red entries are the
vertex pairs contained in an optimal set of edge modifications S.

1 1 0
1 0 1
0 1 1


g, a,

b, f

j, i,

c, h

d, k,

e

(d) The blockmatrix for H with t = 3
obtained by applying S, and the neigh-
borhood graph of G△S.

Figure 1 Example instance (H, t = 3) of Blockmodeling with one optimal solution S.

to compute heuristic solutions. Chan et al. [6] use nonnegative matrix factorization to
compute blockmodels without prespecified blockmatrix, the factorization problem is solved
via a (heuristic) gradient descent method. Jessop [14] and Proll [19] use a model where the
objective function rewards large blocks and every block must have a certain minimum density
in the input network, both models are solved via ILP formulations.

From the more graph-algorithmic perspective, the most closely related work is due to
Damaschke and Mogren [9] who consider graph modification formulations of blockmodeling
problems where the blockmatrix is prespecified and each block must become a clique. This
problem was shown to be NP-hard for a number of different blockmatrix types [9, 15]; the
problem can be solved efficiently when the number of necessary modifications and t are
small [9, 13]. Core/periphery problems can be seen as blockmodeling problems for t = 2 and
a certain fixed blockmatrix [2]. The special case when t equals the number of vertices, each
block is fixed to be a clique, and the blockmatrix is fixed to have no edges between different
blocks is known as Cluster Editing [23].

A further distinction in blockmodeling approaches is whether they are direct or indirect [3].
Direct approaches compute the blockmodel using the adjacency information of the graph
itself. In contrast, indirect approaches follow a two-step procedure where the first step is to
compute a distance function for the network vertices based on their neighborhoods and the
second step is to compute a clustering of the vertex set with respect to this distance function.
In this terminology, our approach and the related ones mentioned above are direct methods.

SEA 2023



14:4 A Graph-Theoretic Formulation of Exploratory Blockmodeling

1.2 Our Results
We first formally define Blockmodeling, a simple edge-modification-based formulation
for exploratory blockmodeling with t (possibly empty) blocks that avoids blockmatrices
in the problem definition (Section 2). We then show that Blockmodeling is NP-hard
for all fixed values of t ≥ 2 and that it can be solved efficiently when t and the necessary
number k of edge modifications are small (Section 3). We develop a branch-and-bound
algorithm, an ILP formulation, and several heuristics for Blockmodeling (Section 4). For
the branch-and-bound algorithm, we present several speedups based on reduction rules and
upper and lower bounds. We evaluate our algorithms experimentally on standard benchmark
data sets (Section 5). A comparison with an adaption of the approach of Dabkowski et al. [8]
to undirected networks shows that the new algorithm is much faster for t ≥ 4. For example,
for t = 5 our new algorithm can find optimal solutions on networks with up to 32 vertices
whereas previous approaches can solve only networks with up to 18 vertices. Summarizing,
our new approach is competitive with state-of-the-art approaches for exact blockmodeling
and paves the way for exact algorithms for larger values of t. In this regard, our approach is
a substantial improvement over previous approaches as trying all t× t blockmatrices becomes
clearly infeasible for t ≥ 6.

Moreover, we find that the heuristics give almost-optimal solutions on the considered
instances. Finally, we show that for t = 4 our approach finds a reasonable solution for the
Karate Club network. Proofs of statements marked with (*) are deferred to the appendix.

2 Preliminaries and Problem Definition

We now introduce some relevant graph-theoretic notation and formally define the exploratory
blockmodeling problem.

Notation. For a set S and an integer x, we define
(

S
x

)
:= {T ⊆ S | x = |T |}. The

symmetrical difference of two sets S and T is denoted by S△T := (S ∪ T ) \ (S ∩ T ). A
collection of sets (T1, . . . , Tx) is a partition of S if and only if

⋃x
i=1 Ti = S and Ti ∩ Tj = ∅

for all i ̸= j.
A simple undirected graph G = (V, E) consists of a set of vertices V and a set of edges

E ⊆
(

V
2
)
. We set n := |V | and m := |E|. Let S be a set of vertices of G, then we denote

the deletion of S in G by G− S := (V \ S, {e ∈ E | S ∩ e = ∅}). The set of edges of G with
one endpoint in S and the other in T is denoted by EG(S, T ) := {{s, t} ∈ E | s ∈ S, t ∈ T}.
Furthermore, let EG(S) := EG(S, S) denote the set of edges with both endpoints in S.

The neighborhood of a vertex v is defined as NG(v) := {u | {u, v} ∈ E}. We call the
vertices of NG(v) the neighbors of v. If {u, v} ∈ E, then we say u and v are adjacent. If
a vertex v is adjacent to every other vertex of V , then we call v universal. A vertex with
no neighbors is called isolated. Two disjoint vertex sets S1 ⊆ V and S2 ⊆ V are adjacent if
each vertex of S1 is adjacent to every vertex of S2. Similarly, S1 and S2 are non-adjacent if
EG(S1, S2) = ∅. We say the vertices u and v have the same adjacency to another vertex w if
{u, w} ∈ E if and only if {v, w} ∈ E. We say that u and v have the same adjacency to a
set W of vertices if for each vertex w ∈W , u and v have the same adjacency to w.

A set of vertices S ⊆ V is a clique in G if
(

S
2
)
⊆ E and an independent set in G if(

S
2
)
∩ E = ∅. If G is clear from the context, we may omit the subscript.

Problem Definition. Perfect structural equivalence is defined using the following equivalence
relation over vertices [17].



A. Bille, N. Grüttemeier, C. Komusiewicz, and N. Morawietz 14:5

▶ Definition 1. Let G = (V, E) be a graph. We let ∼G denote the relation over V such that
u ∼G v if and only if N(u) \ {v} = N(v) \ {u}.

▶ Definition 2. Let G = (V, E) be a graph. The neighborhood partition W of G is the
collection of equivalence classes of ∼G. We say that G has a neighborhood diversity of |W|.

The neighborhood partition is unique for each graph and it can be computed in linear time
via computing a modular decomposition of the graph [18, 12]. Each set of this partition
is called neighborhood class. Every neighborhood class is a clique or an independent set.
A neighborhood class C is called positive if C is a clique and negative if C is an independent set.
Note that a neighborhood class containing only one element is both positive and negative.

▶ Definition 3. The neighborhood graph of a graph with neighborhood partition W is the
graph (W, E′) with {Wi, Wj} ∈ E′ if and only if for all u ∈Wi and all v ∈Wj, {u, v} ∈ E

or if Wi = Wj and Wi is positive.

Neighborhood graphs are undirected but not necessarily simple since they may contain loops.
A transformation of a graph G is done by a set of edits S ⊆

(
V
2
)

and results in the
graph G△S := (V, E△S). We may now formulate blockmodeling as follows.
Blockmodeling
Input: An undirected graph G = (V, E) and integers k and t.
Question: Is there a set of edits S ⊆

(
V
2
)

of size at most k such that G△S has neighborhood
diversity at most t?

A set of edits that fulfills the above requirements is a solution of an instance I, a solution S

for I is optimal if there is no solution S′ for I with |S′| < |S|. Given a solution S to an
instance of Blockmodeling, we can obtain the blockmodel from G△S as follows: the
equivalence classes of G△S are the blocks and the blockmatrix is the adjacency matrix of
the neighborhood graph. See Figure 1 for an example instance of Blockmodeling and an
optimal solution.

3 NP-Hardness and Kernelization

We now study the complexity of the problem. For the hardness proof, it will be interesting
to distinguish vertices whose neighborhoods are changed by the solution from the remaining
vertices. Accordingly, a vertex v is called affected by a set of edits S if at least one element
of S contains v. Otherwise, v is unaffected by S.

▶ Lemma 4 (*). If (G, k, t) is a yes-instance of Blockmodeling, then there is a solution
such that every vertex of each neighborhood class of size larger than 2k in G is unaffected.

3.1 NP-Hardness
In this section, we show NP-hardness for Blockmodeling for each fixed t ≥ 2. We first
show the NP-hardness for t = 2 and afterwards, we extend this result to each fixed t ≥ 2.

▶ Lemma 5. Blockmodeling is NP-hard for t = 2.

Proof. We reduce from Sparse Split Graph Editing1 which is NP-hard [15].

1 Note that Sparse Split Graph Editing is a confirmatory formulation of Blockmodeling for t = 2
with the fixed block matrix

[1 0
0 0

]
. Hence, the problems are closely related but the NP-hardness

of Sparse Split Graph Editing does not directly imply the NP-hardness of Blockmodeling.

SEA 2023



14:6 A Graph-Theoretic Formulation of Exploratory Blockmodeling

Sparse Split Graph Editing
Input: A graph G = (V, E) and an integer k.
Question: Is there an edge set S of size at most k such that G△S is a sparse split-graph,
that is, a graph consisting of a clique C and set of isolated vertices P?

Let I = (G = (V, E), k) be an instance of Sparse Split Graph Editing. Moreover,
let G′ = (V ∪K, E) be the graph obtained by adding an independent set K of size 2k + 1
to G. We set I ′ = (G′, k, t = 2) and show that I is a yes-instance of Sparse Split Graph
Editing if and only if I ′ is a yes-instance of Blockmodeling.

(⇒) Let S be a solution of I, that is, an edge set S ⊆
(

V
2
)

of size at most k such
that G△S is a sparse split-graph. We show that S is a solution for I ′. Let G′

res = G′△S.
Note that all vertices of K are unaffected by S. Hence, all vertices of K are isolated in G′

res.
Since G△S consists of a clique C and an isolated set P , all vertices of P ∪K are isolated
in G′

res, and thus in the same neighborhood class. Moreover, the vertices of C are a clique
in G′

res and no vertex of C has any neighbors in P ∪K. Thus, C is a neighborhood class
in G′

res. Consequently, G′
res has a neighborhood diversity of at most 2.

(⇐) Let S be an optimal solution for I ′. Due to Lemma 4, we can assume that each
vertex of K is unaffected by S, that is, S ⊆

(
V
2
)
. We show that GS := G△S is a sparse

split-graph. Since S is a solution for I ′, S has size at most k. Let C and P be the two
(potentially empty) neighborhood classes of G′

res := (V ∪K, E△S). Assume without loss
of generality that K ⊆ P . Note that this implies that P is an independent set in G′

res.
Moreover, since each vertex of K is unaffected, each vertex of P ⊇ K is isolated in G′

res.
Consequently, C is either an empty set or a clique with no neighbors outside of C in G′

res.
Thus, G′

res is a sparse split-graph. Since GS is equivalent to G′
res −K, GS is also a sparse

split-graph. ◀

With the NP-hardness of Blockmodeling for t = 2 at hand, we can now easily
obtain NP-hardness of Blockmodeling for each fixed t ≥ 2.

▶ Theorem 6 (*). Blockmodeling is NP-hard for every fixed t ≥ 2.

3.2 Kernelization
In this section, we provide a problem kernel for the parameter k + t for Blockmodeling.
Informally, this is a data reduction algorithm that, in polynomial time, transforms every
instance into an equivalent one whose size is bounded by a function of t + k; for a formal
definition, we refer to the standard monographs on parameterized algorithms [7, 10]. First,
note that Lemma 4 implies the correctness of the following.

▶ Reduction Rule 1. Let I = (G = (V, E), k, t) be an instance of Blockmodeling and
let C be a neighborhood class of size at least 2k + 2 in G. Then, remove |C| − (2k + 1)
arbitrary vertices of C from G.

Before we give the kernel, we make another observation regarding the difference of the
neighborhood diversities by an application of one edit.

▶ Lemma 7 (*). Let G = (V, E) be a graph with neighborhood diversity t and let e = {u, v}
be a vertex pair. Then, the neighborhood diversity of G△{e} differs from t by at most 2.

Based on Lemma 4 and Lemma 7, we are now able to obtain a polynomial kernel as
shown in the following theorem.



A. Bille, N. Grüttemeier, C. Komusiewicz, and N. Morawietz 14:7

▶ Theorem 8. Blockmodeling admits a kernel with O(k2 + kt) vertices that can be
computed in O(n + m) time.

Proof. By Lemma 7, a single edit reduces the neighborhood diversity by at most 2. Hence, a
graph with more than 2k+t neighborhood classes cannot be solved with k edits. Consequently,
our algorithm returns false if the neighborhood diversity of the input graph is larger than 2k+t.
Next, we reduce the size of each neighborhood class to at most 2k + 1 by applications of
Reduction Rule 1. After an exhaustive application of Reduction Rule 1, any instance has at
most (2k + t) · (2k + 1) = 4k2 + 2k + 2kt + t ∈ O(k2 + kt) vertices. Since the neighborhood
partition can be computed in linear time [18], and each application of Reduction Rule 1 can
be done simultaneously, this whole algorithm runs in linear time. ◀

Informally, this means that large instances where both k and t are small can be replaced by
relatively small instances (which can then be solved faster by an exact algorithm of choice).

4 Algorithms

4.1 Branch-and-Bound
Basic Search Tree Algorithm. Our branch-and-bound algorithm considers t + 1 many
vertices from distinct neighborhood classes in G. At least two of these vertices have to
be in the same neighborhood class in the resulting graph. Recall that two vertices are in
different neighborhood classes if and only if there is some vertex to which they have a different
adjacency.

▶ Definition 9. Let u and v be vertices. A vertex w is a witness of a vertex pair {u, v} if
and only if w is adjacent to exactly one of u and v.

Let wit({u, v}) denote the set of witnesses of {u, v}. To bring u and v in the same neighbor-
hood class, all witnesses need to be resolved. Consider a witness w of {u, v} with {w, u} ∈ E

and {w, v} /∈ E. To resolve w, we have to either add the missing edge {w, v} or delete the
present edge {w, u}. This decision has to be done for each witness independently. Hence,
when r = |wit({u, v})| is the number of witnesses of {u, v}, there are 2r different possibilities
to achieve that u and v are in the same neighborhood class. We call an edit set S a resolve
set of {u, v} if the edits of S resolve every witness of {u, v} and S is minimal under this
property.

▶ Observation 10. Let G := (V, E) and G′ := (V, E′) be graphs on the same vertex set V

and let u and v be distinct vertices of V . If u and v are in the same neighborhood class
in G′, then there is some resolve set S of {u, v} such that S ⊆ E△E′. More specific, for
each witness w of {u, v}, E△E′ contains either {u, w} or {v, w}.

With this observation at hand, we can write a basic version of a branch-and-bound
algorithm shown in Algorithm 1.

Note that the algorithm is correct, since if I is a yes-instance of Blockmodeling, there
is an optimal solution S for I, such that for some pair {u, v} ∈

(
T
2
)
, u and v are in the same

neighborhood class in G△S. Due to Observation 10, for each witness w of {u, v}, S contains
either {u, w} or {v, w}. In particular, this holds for the vertex w chosen at Line 7. Hence, I

is a yes-instance of Blockmodeling if and only if for some instance I ′ defined in Line 10,
I ′ is a yes-instance of Blockmodeling.

SEA 2023



14:8 A Graph-Theoretic Formulation of Exploratory Blockmodeling

Algorithm 1 solveBaB.

1: Input Instance I = (G, k, t) of Blockmodeling
2: Output True if and only if I is a yes-instance of Blockmodeling
3: if k < 0 then return False
4: if G has neighborhood diversity of at most t then return True
5: T ← a set of t + 1 vertices of distinct neighborhood classes in G

6: for all {u, v} ∈
(

T
2
)

do
7: w ← a witness of {u, v}
8: for all e ∈ {{u, w}, {v, w}} do
9: G′ ← G△{e}

10: I ′ ← (G′, k − 1, t)
11: if solveBaB(I ′) then return True
12: return False

In the following, we bound the running time of Algorithm 1. Since T contains exactly t+1
vertices, Algorithm 1 reaches Line 10 exactly

(
t+1

2
)
· 2 = t2 + t times. Each instance defined

in Line 10 reduces k by exactly one. Hence, the search tree has at most (
(

t+1
2

)
· 2)k =

(t2 + t)k leaves.
The running time of the other computations depend on n. The neighborhood classes

of G can be computed in O(n + m) ⊆ O(n2) time [18]. Moreover, when given the adjacency
matrix, for each pair {u, v} ∈

(
T
2
)
, a witness of {u, v} can be found in O(n) time. Since the

adjacency matrix can be computed in O(n2) time, Algorithm 1 runs in O((t2 + t)k · n2) time.
By initially applying the kernelization algorithm presented in Theorem 8, we obtain the
following.

▶ Theorem 11. Blockmodeling can be solved in O((t2 + t)k · (k2 + kt)2 + n + m) time.

Thus, the problem can be solved efficiently when t and k are small.

Heuristic Speedups. To reduce the running time of the branch-and-bound algorithm we
develop several speedups. In the following we describe those that have the highest impact.

The first speedup is an improved branching: Once we have branched into the case that
two vertices u and v from a set T need to be merged, we consider the witnesses of u and v

one by one. That is, after branching on witness w, we check in the recursive calls whether u

and v still have some witness w′, and if this is the case, we directly branch into the two ways
to resolve w′. As a consequence, often the number of created branches is 2 instead of t2 + t.
Furthermore, we store all witnesses for each vertex pair and update them whenever an edit
is performed. We use the stored witnesses to update the neighborhood partition after an
edit is done.

This branch-and-bound algorithm uses the solution size k∗ of any of our heuristics
(described in Section 4.3) as an initial upper bound for any optimal solution. The algorithm
then searches for a solution S of size at most k∗−1. If such a solution is found, the algorithm
decreases the value of k∗ by 1 and continues to search for a solution of size at most k∗ − 1.
This is done until no solution of size k∗ − 1 can be found, that is, if the size of each optimal
solution is k∗.

When an edge e is added or removed, we label the vertex pair e as permanent in the
corresponding child branches. The algorithm forbids that a permanent vertex pair can be
edited again. Whenever all witnesses of vertex pair {u, v} of the for-loop in Line 6 are
resolved, we label this vertex pair as merged for its recursive calls. Each two vertices of a
merged vertex pair should be in the same neighborhood class in the resulting graph. If each
recursive call with u and v merged returns false, we label {u, v} as apart for the remaining
recursive calls. Based on this labeling, we introduce the following reduction rule.



A. Bille, N. Grüttemeier, C. Komusiewicz, and N. Morawietz 14:9

▶ Reduction Rule 2. Let {u, v} be a merged vertex pair and let w be a witness of {u, v}.
a) If both vertex pairs {u, w} and {v, w} are permanent, then return false. b) If the vertex
pair {u, w} is permanent, then edit {v, w}.

The labeling can also be used as follows: any vertex pair that is labeled apart can be skipped
in the for-loop of Line 6. Another improvement is the use of a lower bound algorithm (LBA)
which computes a number that underestimates the optimal solution size. Our LBA computes
disjoint sets of t + 1 many vertices of distinct neighborhood classes in the current graph. We
call such a set pack and a collection of packs is called a packing. We define the cost of a
pack P as minp∈(P

2)\A |wit(p)| where A are the vertex pairs labeled as apart. The cost is the
minimum number of edits that are incident with vertices of P . For a packing P, the sum
over the cost of each pack in P divided by 2 is a lower bound for an instance; division by 2 is
necessary since one edit may resolve witnesses in two packs. Furthermore, we try to increase
the lower bound by a local search that swaps vertices of a pack with vertices of another pack
or with vertices that are in no pack. The packing is updated after each edit; after a fixed
time the packing is deleted and recomputed.

4.2 ILP Formulation
The idea of our ILP is derived from Observation 10. Let G = (V, E) be the input graph. The
editing of one vertex pair {u, v} is represented by the edit variable e{u,v} ∈ {0, 1}. The vertex
pair {u, v} is in the solution if and only if e{u,v} = 1. Hence, the objective is to minimize∑

{u,v}∈(V
2 ) e{u,v}.

We introduce a merge variable m{u,v} ∈ {0, 1} for each vertex pair {u, v} ∈
(

V
2
)
. If a

merge variable m{u,v} equals 1, all witnesses of {u, v} must be resolved. Let w be a witness
of {u, v}. The constraints m{u,v} ≤ e{u,w} +e{v,w} and m{u,v} ≤ 2−e{u,w}−e{v,w} guarantee
that exactly one edit variable equals 1 and thus, in the solution w is resolved for {u, v}. Next,
we introduce constraints for ensuring that there will be at most t neighborhood classes: For
every vertex set V ′ of size t + 1, at least two vertices have to be in the same neighborhood
class in the resulting graph. Thus, there is at least one vertex pair {x, y} with x ∈ V ′

and y ∈ V ′ such that m{x,y} = 1 for every solution. To model the transitivity of ∼G, we add
further constraints. Consider the vertices u, v, and w. If m{u,w} = m{v,w} = 1, then m{u,v}
has to be 1 as well. This is equivalent to the constraint m{u,w} + m{v,w} −m{u,v} ≤ 1. The
ILP is given by

min
∑

{u,v}∈(V
2 )

e{u,v},

s.t. m{u,v} ≤ e{u,w} + e{v,w} ∀{u, v} ∈
(

V

2

)
,∀w ∈ V, (a)

m{u,v} ≤ 2− e{u,w} − e{v,w} ∀{u, v} ∈
(

V

2

)
,∀w ∈ V, (b)

1 ≤
∑

{u,v}∈(X
2 )

m{u,v} ∀X ∈
(

V

t + 1

)
, (c)

1 ≥ m{u,w} + m{v,w} −m{u,v} ∀{u, v, w} ∈
(

V

3

)
, (d)

e{u,v} ∈ {0, 1}, m{u,v} ∈ {0, 1} ∀{u, v} ∈
(

V

2

)
.

SEA 2023



14:10 A Graph-Theoretic Formulation of Exploratory Blockmodeling

Now, we analyze the number of variables and constraints. For each vertex pair, the ILP
has an edit variable and a merge variable. In total, there are 2 ·

(
n
2
)
∈ O(n2) variables. Two

constraints are constructed for each witness of a vertex pair. A vertex pair can have up to
n−2 witnesses. Thus, the ILP has

(
n
2
)
·(n−2) ∈ O(n3) witness constraints (a) and (b). There

are O(n3) many transitivity constraints (d) as well, one for each vertex triple. The largest
number of constraints is taken by the merge constraints (c). There are

(
n

t+1
)
∈ Θ(nt+1)

such constraints. To improve the running time of this algorithm, we add the transitivity
and merge constraints in a lazy way. That is, initially, the ILP contains only the witness
constraints. Whenever a solution is found for the current constraints, then we construct the
graph G′ = G△S where S is the set of vertex pairs p with ep = 1 in the current solution.
If the neighborhood diversity of G′ is larger than t, we find a vertex set X of size t + 1 of
pairwise distinct neighborhood classes in G′. Then, we add a merge constraint for X to the
ILP together with the transitivity constraints for all vertex triples of

(
X
3
)
. Finally, a current

solution may create a new witness w for some vertex pair {u, v}, for example by editing
the edge {u, w} and not the edge {v, w}. To model that this new witness either needs to
be resolved by an additional edit or that the current solution must be changed, we add the
constraint m{u,v} ≤ (1− e{u,w}) + e{v,w} in this case.

4.3 Heuristics
We now present two greedy heuristic algorithms and a local search approach.

Block-Framework. Let G = (V, E) be the input graph. All heuristics maintain some
partition B = {B0, B1, . . . , Bb} of V during the computation, each set of this partition is
called a block. In each step, a greedy heuristic computes a new partition with a decreased
number of blocks. This is repeated until the partition consists of t blocks. To choose the next
partition, we need to compute the cost of a partition as follows. For each block, we compute
the minimal cost for putting all vertices of this block into the same neighborhood class by
considering two aspects: First, a block has to be a clique or independent set in the resulting
graph G′. Second, two blocks have to be adjacent or non-adjacent in G′. We define the cost
functions ω1 and ω2 that compute the minimal cost for both aspects. The cost functions are
defined as

ω1(Bi) := min(
(
|Bi|

2

)
− |E(Bi)|, |E(Bi)|),

ω2(Bi, Bj) := min(|Bi| · |Bj | − |E(Bi, Bj)|, |E(Bi, Bj)|).

Then, the cost of a partition is the sum of the cost of each block and of each pair of blocks:

ω(B) :=
∑

Bi∈B
ω1(Bi) +

∑
{Bi,Bj}∈(B

2)
ω2(Bi, Bj).

Merge-Heuristic. The initial partition B is the neighborhood partition of G. In each step,
the Merge-Heuristic searches the best partition that can be obtained from the current one
by merging two blocks. Algorithm 2 shows the pseudocode of the Merge-Heuristic, herein
the function mergeB(Bi, Bj) returns the partition where the two blocks Bi and Bj of B are
merged, that is, mergeB(Bi, Bj) := (B \ {Bi, Bj})∪ {Bi ∪Bj}. This process is repeated until
the partition consists of t blocks and the cost ω of the final partition is returned.



A. Bille, N. Grüttemeier, C. Komusiewicz, and N. Morawietz 14:11

Algorithm 2 Method Merge-Heuristic.

1: Input Instance I = (G, t)
2: Output upper bound for the cost of a solution of I

3: B ← neighborhood partition of G

4: while |B| > t do
5: find Bi ∈ B and Bj ∈ B with i ̸= j such that ω(mergeB(Bi, Bj)) is minimal
6: B ← mergeB(Bi, Bj)
7: return ω(B)

Now we discuss the running time. We use a matrix where the number of edges between
two blocks are stored. The matrix for the initial partition can be computed in O(m + |B|2)
time. In each iteration of the while-loop the algorithm computes the cost increase for each
block pair. In total, we compute the cost increase for

∑|B|
i=t

(
i
2
)
∈ O(|B|3) merges. Since

several summands of ω(B) are unaffected by a merge, we only have to update costs for pairs
that contain the merged block. Since the merged block is involved in O(|B|) pairs, we can
compute the cost increase of a merge and update the matrix after performing a merge in
O(|B|) time. Therefore, the total running time of the while loop is O(|B|4). Note that the
cost of the current partition can be stored in a variable and can be updated according to the
cost increase of a merge. Overall, the Merge-Heuristic runs in O(|B|4 + m) time.

Split-Heuristic. This heuristic also starts with the neighborhood partition and decreases
the number of blocks by greedily choosing some block which splits and whose vertices are
then added to other blocks. To estimate the cost increase incurred by splitting a block, we
define a function τB which describes the cost increase when a vertex is added to a block. For
example, let B be the current block partition and we want to compute the cost increase for a
vertex v ∈ Bv by putting v in Bi. For a naive approach, let B′ := B \ {Bv} be the partition
without Bv and let B′′ := (B′ \ {Bi}) ∪ {Bi ∪ {v}} be the partition without Bv where Bi is
augmented by v. The cost difference is computed by ω(B′′) − ω(B′). Due to canceling of
terms where the addition does not affect ω1 or ω2, we can simplify the term to

τB′(Bi, v) := ω1(Bi ∪ {v})− ω1(Bi) +
∑

Bi ̸=Bj∈B′

ω2(Bi ∪ {v}, Bj)− ω2(Bi, Bj).

The minimal cost increase for a vertex v ∈ Bv is computed by min
Bi∈B′

τB′(Bi, v).
To determine the block which should be split, the algorithm searches a block B∗ such

that the sum of the minimum cost increase over all vertices of B∗ is minimal.
During the split process, the chosen block B∗ will first be removed from the partition.

Then, each vertex of B∗ will be put sequentially in another block such that the cost increase
is minimal. After the distribution of the vertices, one step is complete. The Split-Heuristic is
shown in Algorithm 3.

Note that the order of the vertices during the splitting process can affect the distribution.
Furthermore, the precomputed cost for such a block B∗ of the block partition B is not always
the actual cost after the split. This is due to the fact that the cost increase for each vertex v

is computed with the partition B \{B∗}. The other vertices of B∗ \ {v} are not considered in
τB\{B∗}(Bi, v) for some Bi ∈ B \ {B∗}. Note that the actual cost of a split is never smaller
than the estimation.

Now we discuss the running time. As in the Merge-Heuristic, we use the adjacency matrix
and an additional matrix for the number of edges from each vertex to each block. With these
matrices, we can compute τB in O(|B|) time. Therefore, we need O(|B|2) time to find the

SEA 2023



14:12 A Graph-Theoretic Formulation of Exploratory Blockmodeling

Algorithm 3 Method Split-Heuristic.

1: Input Instance I = (G, t)
2: Output upper bound for the cost of a solution of I

3: B ← neighborhood partition of G

4: while |B| > t do
5: Bv ← argmin

B∈B
(

∑
v∈B

min
B′∈B\B

τB\B(B′, v))

6: B ← B \Bv

7: for all v ∈ Bv do
8: B∗ ← argmin

B′∈B
τB\{B′}∪{B′∪{v}}(B′, v)

9: B ← B \ {B∗} ∪ {B∗ ∪ {v}}
10: return ω(B)

block with the minimal cost increase for one vertex. In Line 5 the algorithm iterates over
every block and computes its cost increase. Since every vertex is considered exactly once,
this takes O(n|B|2) time. Afterwards, the split process starts. The determination of the
best block is repeated for each vertex of this block and the vertex will be moved to another
block. The latter part demands an update for both matrices. This update requires O(n) time
since only the entries of adjacent vertices and their blocks need to be updated. Therefore,
Line 7 can be computed in O(n(|B|2 + n)). Hence, for the while-loop the running time
is O(|B|(n|B|2 + n(|B|2 + n))) = O(|B|3n + |B|n2).

Local Search. Our local search algorithm receives the graph and a block partition with
t blocks as input. The algorithm tries to improve the solution by small changes until a locally
optimal solution is found. The following three kinds of changes are considered. The first
kind of change allows to move a vertex from one block and to another block. The second
kind of change exchanges the blocks of two vertices. The third kind of change removes all
vertices of the same neighborhood class from one block and puts these vertices to another
block. Each of these changes is applied only if it reduces the total cost. The first two kinds
of changes are the same changes local search approach TEA by Batagelj et al. [1]. We use
our local search to improve the partitions obtained by the greedy heuristics.

5 Experimental Evaluation

In this section, we compare our algorithms with each other and with an adapted ILP-
formulation of Dabkowski et al. [8] which is also described in Section 5.1. Furthermore,
we discuss the quality of our heuristics. Finally, we analyze the structure of an optimal
Blockmodeling solution with t = 4 for Zachary’s Karate Club graph [26].

5.1 Matrix-Based ILP

In this section, we recall the ILP of Dabkowski et al. [8]. This ILP calculates for a specific
blockmatrix B how well the input graph G = (V, E) fits B. Naively, to find the optimal
blockmatrix we need to solve an integer linear program for every quadratic matrix with at
most t columns. Fortunately, it is possible to exploit isomorphism properties to reduce the
number of matrices to consider.



A. Bille, N. Grüttemeier, C. Komusiewicz, and N. Morawietz 14:13

Now we describe the formulation in detail. For each vertex pair {i, j} ∈
(

V
2
)
, the

constant si,j equals 1 if {i, j} ∈ E and 0, otherwise. Furthermore, the constant bp,ℓ

corresponds to the entry in the pth row and ℓth column of B. The binary variable xi,p

indicates whether vertex i is in block p. Obviously, every vertex should be assigned to exactly
one block and each block should have at least one vertex, otherwise another blockmatrix
fits this graph better. This formulation models the error for the adjacency of two vertices i

and j that are assigned to the blocks p and ℓ, respectively, (that is, xi,p = xj,ℓ = 1) using
the term bp,ℓ + si,j − 2bp,ℓsi,j . Altogether, the ILP is given by:

min
∑

p∈{1,...,t}

∑
ℓ∈{1,...,t}

∑
i∈V

∑
j∈V \{i}

xi,pxj,ℓ(bp,ℓ + si,j − 2bp,ℓsi,j)

s.t.
∑

p∈{1,...,t}

xi,p = 1 ∀i ∈ V,

∑
i∈{1,...,n}

xi,p ≥ 1 ∀p ≤ t,

xi,p ∈ {0, 1} ∀i ∈ V,∀p ≤ t.

Since the objective function is not linear, they introduced new variable yi,j,p,ℓ to replace
xi,pxj,ℓ for every 1 ≤ p, ℓ ≤ t, i ∈ V , and j ∈ V \ {i} and added several constraints
ensuring yi,j,p,ℓ = xi,pxj,ℓ [8].

Since Blockmodeling is defined only on undirected graphs and the ILP of Dabkowski
et al. [8] is designed to work with directed graphs, we adapt their formulation slightly by
omitting some variables that are redundant in the case of undirected graphs. This improves
the running time and thus allows for a more fair comparison to our methods.

Let MB-ILP be the algorithm that searches a best blockmatrix for a given graph G and
an integer t using the above ILP. MB-ILP applies the adapted ILP formulation for symmetric
block matrices of increasing size and stops when all symmetric block matrices with up to t

columns have been considered.
MB-ILP can be improved by adding an upper bound. Then, MB-ILP has to find a

solution where the objective function is smaller than the upper bound. We use the minimum
of the heuristic upper bound (as described in Section 5.2) and the best solution of any
previously solved blockmatrix as the upper bound.

5.2 Running Time
The algorithms2 are implemented in Java with OpenJDK 14.0.1. To solve the ILPs we used
the Gurobi Optimizer in version 10.0.0. Each experiment was run on a single thread of
an Intel(R) Xeon(R) Silver 4116 CPU 2.10GHz machine with 128GB RAM under Debian
GNU/Linux 11 operating system.

For the experiments we used social networks obtained from KONECT [16]. For each
graph of Table 1, we constructed four instances, one for each t ∈ {2, 3, 4, 5} giving a total
of 48 instances. Each algorithm had a time limit of 3 hours for each instance. The three
graphs whose names include “pos” were obtained from directed and weighted graphs. In the
appendix, we describe in detail how this was done.

All algorithms used the best solution of 10 runs of the Merge-Heuristic with local search
improvement and 10 runs of the Split-Heuristic with local search improvement as initial upper
bound. Table 1 shows for each graph G, for which values of t at least one of our algorithms

2 https://git.uni-jena.de/algo-engineering/blockmodeling

SEA 2023

https://git.uni-jena.de/algo-engineering/blockmodeling


14:14 A Graph-Theoretic Formulation of Exploratory Blockmodeling

Figure 2 Each data point represents an instance, the color indicates the value of t. The gray
lines mark a relative running time difference of 2, 10, 100, and 1000, respectively. The thin black
lines mark the time limit. Points on these lines are not solved by the corresponding algorithm.

Table 1 Overview of the graphs used for the running time evaluation. Numbers in the middle
columns denote the discovery of the optimal solution size for t ∈ {2, 3, 4, 5} for each graph. Numbers
in the last columns denote the maximal t the corresponding algorithm solved within the time limit.

Name n m k2 k3 k4 k5 BB ILP MB-ILP
Highland Tribes pos 16 29 18 12 9 8 5 5 5
Kangaroo 17 91 20 16 9 8 5 5 5
Crisis in a Cloister pos 18 26 22 19 16 13 5 5 5
Taro Exchange 22 39 35 31 27 24 5 5 4
Zebra 27 111 32 26 20 17 5 5 4
Dutch College pos 32 87 61 51 45 41 2 5 4
Karate Club 34 78 65 57 44 – – 4 4
Chesapeake Bay 39 170 118 104 – – – 3 3
HIV 40 41 38 33 30 – 4 3 3
Dolphins 62 159 146 – – – – – 2
Train Bomb 64 243 185 152 – – – 2 3
Iceland 75 114 105 – – – – – 2

found an optimal solution, and for each algorithm this table includes the maximal t-value
for which the algorithm solved the instance (G, t). The branch-and-bound algorithm (BB)
solved 24 instances and both ILPs solved 32. Every algorithm solved at least one instance
which could not be solved by any other algorithm. For example, BB solved (HIV, t = 4), our
ILP solved (Dutch College, 5) and MB-ILP solved (Iceland, 2). Altogether, for 36 out of
the 48 instances at least one of these algorithms found an optimal solution.

Figure 2 shows a running time comparison between BB, our ILP, and MB-ILP and
Figure 5 shows how many instances each algorithm solved depending on the time. While
BB solved many instances faster than both ILPs, the ILPs solved more instances in total.
As expected, the running time of MB-ILP depends very strongly on t; compared to our
algorithms, MB-ILP solved more instances with t ∈ {2, 3} and less with t ∈ {4, 5}, even if
the optimal solution size is small. For larger t, our ILP is faster than MB-ILP by a factor up
to more than 1000. In our opinion, the worse running time for t = 2 is not critical, since this
special case can be solved much faster with tailored algorithms.

5.3 Heuristics
Now we evaluate the quality of Merge-Heuristic and Split-Heuristic with subsequent local
search compared to optimal solutions. In particular, we examine the dependence of the
relative error of the best found heuristic solution to the number of repetitions of these



A. Bille, N. Grüttemeier, C. Komusiewicz, and N. Morawietz 14:15

Figure 3 Relative difference between optimal solutions and the heuristics after r repetitions. One
repetition includes a run of Merge-Heuristic and Split-Heuristic, each with subsequent local search.


1 0 0 0
0 0 0 0
0 0 0 1
0 0 1 1



Figure 4 The Karate Club graph and its blockmatrix of an optimal clustering for t = 4; the
vertex colors indicate the block in the optimal computed blockmodel.

heuristics. The maximum number of repetitions was set to 25. The optimal solution size was
found for 32 of 36 instances. In the four cases where the optimal solution was not found,
the relative difference was 1.37 % (Dolphins, t = 2), 7.89 % (HIV, t = 2), 10% (HIV, t = 4),
and 0.95 % (Iceland, t = 2). The relative errors, averaged over all instances, are shown in
Figure 3. After 9 rounds no progress is made. In preliminary experiments we could not
deduce that one heuristic is in general better than the other. Therefore, we used both for
the computation of the upper bound.

5.4 Karate Club

We now discuss one optimal blockmodel of the well-known Karate Club [26] for t = 4. This
graph consists of members of a karate club. An edge represents an interaction between two
actors outside the karate club. The club split into two new clubs, headed by the members 1
and 34, respectively. The clustering and the blockmatrix of an optimal solution for t = 4 is
shown in Figure 4. The four blocks of the computed blockmodel correspond approximately
to the split into two clubs: The red and cyan blocks correspond to the new club headed by
vertex 1, the orange and green blocks correspond to the new club headed by 34. The orange

SEA 2023



14:16 A Graph-Theoretic Formulation of Exploratory Blockmodeling

and red blocks (which contain the new leaders 1 and 34, respectively) are the two clique
blocks and can be interpreted as the two cores of the corresponding new clubs. The orange
and green blocks form together a dense split graph, the red and cyan clusters form together
a sparse split graph. Hence, the blockmodel recovers a core/periphery structure within the
clubs. In these terms, the vertices which are in a block that does not correspond to their
new club (9, 25, 26, and 27) are periphery vertices. In other words, the cores are correctly
separated. Finally, note that there is another optimal solution that adds 27 to the green
cluster. This solution deletes fewer edges; it could be advantageous to favor such optimal
solutions, to avoid producing too many isolated vertices.

6 Conclusion

We presented a new formulation of exact exploratory blockmodeling in undirected networks as
graph-modification problem and developed exact and heuristic algorithms for this approach.
Our algorithms are competitive with previous state-of-the-art exact approaches in terms of
running times. More crucially, our algorithms enable solving the blockmodeling problem
for larger values of t for which previous approaches based on enumerating all candidate
blockmatrices become prohibitively slow.

There are many opportunities for future work. First, further improvements of our
algorithms are desirable and likely possible. The most promising direction here seems to be
the development of better lower bounds. Further extending the range of tractable instances
could then allow for an empirical study of the quality of optimal solutions, beyond the
anecdotical evidence discussed here. Moreover, an adaption to directed networks seems
promising. Finally, one could extend our formulation also to blockmodeling with more
complicated objective functions such as the one of Reichardt and White [21].

References
1 Vladimir Batagelj, Anuška Ferligoj, and Patrick Doreian. Direct and indirect methods for

structural equivalence. Social Networks, 14(1):63–90, 1992. Special Issue on Blockmodels.
2 Stephen P. Borgatti and Martin G. Everett. Models of core/periphery structures. Social

Networks, 21(4):375–395, 2000.
3 Stephen P. Borgatti, Martin G. Everett, and Jeffrey C. Johnson. Analyzing social networks.

SAGE, 2013.
4 Sharon Bruckner, Falk Hüffner, and Christian Komusiewicz. A graph modification approach

for finding core-periphery structures in protein interaction networks. Algorithms for Molecular
Biology, 10:16, 2015.

5 Michael J. Brusco and Douglas Steinley. Integer programs for one- and two-mode blockmodeling
based on prespecified image matrices for structural and regular equivalence. Journal of
Mathematical Psychology, 53(6):577–585, 2009.

6 Jeffrey Chan, Wei Liu, Andrey Kan, Christopher Leckie, James Bailey, and Kotagiri Ra-
mamohanarao. Discovering latent blockmodels in sparse and noisy graphs using non-negative
matrix factorisation. In 22nd ACM International Conference on Information and Knowledge
Management (CIKM ’13), pages 811–816. ACM, 2013.

7 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

8 Matthew Dabkowski, Neng Fan, and Ronald L. Breiger. Exploratory blockmodeling for one-
mode, unsigned, deterministic networks using integer programming and structural equivalence.
Social Networks, 47:93–106, 2016.

9 Peter Damaschke and Olof Mogren. Editing simple graphs. Journal of Graph Algorithms and
Applications, 18(4):557–576, 2014.



A. Bille, N. Grüttemeier, C. Komusiewicz, and N. Morawietz 14:17

10 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

11 Michael R. Fellows, Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes
Uhlmann. Graph-based data clustering with overlaps. Discrete Optimization, 8(1):2–17, 2011.

12 Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decompo-
sition. Computer Science Review, 4(1):41–59, 2010.

13 Falk Hüffner, Christian Komusiewicz, and André Nichterlein. Editing graphs into few cliques:
Complexity, approximation, and kernelization schemes. In Proceedings of the 14th International
Symposium on Algorithms and Data Structures (WADS ’15), volume 9214 of Lecture Notes in
Computer Science, pages 410–421. Springer, 2015.

14 Alan Jessop. Blockmodels with maximum concentration. European Journal of Operational
Research, 148(1):56–64, 2003.

15 Ivan Kovác, Ivana Selecéniová, and Monika Steinová. On the clique editing problem. In
Proceedings of the 39th International Symposium on Mathematical Foundations of Computer
Science (MFCS ’14), volume 8635 of Lecture Notes in Computer Science, pages 469–480.
Springer, 2014.

16 Jérôme Kunegis. KONECT: the koblenz network collection. In Proceedings of the 22nd
International World Wide Web Conference (WWW ’13), pages 1343–1350. International World
Wide Web Conferences Steering Committee / ACM, 2013.

17 Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012.

18 Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation.
Discrete Mathematics, 201(1-3):189–241, 1999.

19 Les G. Proll. ILP approaches to the blockmodel problem. European Journal of Operational
Research, 177(2):840–850, 2007.

20 K. E. Read. Cultures of the central highlands, new guinea. Southwestern Journal of Anthro-
pology, 10(1):1–43, 1954.

21 Jörg Reichardt and Douglas R White. Role models for complex networks. The European
Physical Journal B, 60(2):217–224, 2007.

22 Samuel F Sampson. Crisis in a cloister. PhD thesis, Ph. D. Thesis. Cornell University, Ithaca,
1969.

23 Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1-2):173–182, 2004.

24 Gerhard G Van de Bunt, Marijtje AJ Van Duijn, and Tom AB Snijders. Friendship networks
through time: An actor-oriented dynamic statistical network model. Computational &
Mathematical Organization Theory, 5(2):167–192, 1999.

25 Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and Applications.
Cambridge University Press, 1994.

26 Wayne W. Zachary. An information flow model for conflict and fission in small groups. Journal
of Anthropological Research, 33(4):452–473, 1977.

A Supplementary Material

A.1 Deferred Proofs
A.1.1 Proof of Lemma 4
Proof. Let I := (G = (V, E), t, k) be a yes-instance of Blockmodeling. Assume towards a
contradiction, that for each optimal solution S, there is a at least one neighborhood class C

of G with |C| > 2k where some vertices of C is affected by S.
Let S be an optimal solution for I and let C be a neighborhood class in G with |C| > 2k

such that at least one vertex of C is affected. We can assume without loss of generality,
that C is an independent set in G, as otherwise, we can simply consider the complement

SEA 2023



14:18 A Graph-Theoretic Formulation of Exploratory Blockmodeling

graph G′ = (V,
(

V
2
)
\ E). Since S is a solution for I, |S| ≤ k. Hence, there is at least

one vertex c ∈ C which is unaffected by S, that is, c has the same neighbors in G and in
Gres = (V, E△S).

Let P ⊆ V be the neighborhood class of c in Gres. We show that P is an independent set
in Gres. Note that this is the case if P = {c}. If P contains a second vertex of C, then P

is an independent set in Gres since c is unaffected. Otherwise, c is the only vertex of C

in P and there is at least one vertex p in P \ {c}. Hence, if P is a clique, {c, p} ∈ E which
implies that for each c′ ∈ C \ {c}, {c′, p} ∈ E since c is unaffected and C is a neighborhood
class in G. Since P is a neighborhood class in Gres, C is an independent set in G, and c is
unaffected, for each c′ ∈ C \ {c}, some edge {p, v} is in S. This would imply that |S| > k.
Since by assumption |S| ≤ k, P is an independent set in Gres. Note that this also implies
that there is no edge between any vertex of C and any vertex of P \ C in E since P is an
independent set in Gres and c is unaffected.

Let S′ := {{u, v} ∈ S | u /∈ C, v /∈ C}. We show that S′ is a solution for I. Note
that each vertex of C is unaffected by S′. Since by the above, P is an independent set
in Gres with N(p) = N(c) for each p ∈ P \ C, and there is no edge between any vertex
of P \ C and C in E, P ∪ C is a neighborhood class in Galt := (V, E△S′). It remains to
show that Galt − (P ∪ C) has neighborhood diversity at most t− 1.

Let u and v be two distinct vertices of V \ (C ∪P ) of the same neighborhood class in Gres.
We show that u and v are in the same neighborhood class in Galt. Since u and v are in the
same neighborhood class in Gres and |S| ≤ k, both u and v are either adjacent to each vertex
of C in G or non-adjacent to each vertex of C in G. Hence, both u and v are either adjacent
to each vertex of C ∪ P in Galt or non-adjacent to each vertex of C ∪ P in Galt. By the fact
that S′ contains all vertex pairs of S that do not contain any vertex of C, u and v are in the
same neighborhood class in Galt.

Since S is a solution for I, Gres \ P has neighborhood diversity at most t − 1. By the
above, this implies that Galt \ (C ∪ P ) has neighborhood diversity at most t− 1. Hence S′

is a solution for I. Since S′ is a proper subset of S, S is not an optimal solution for I, a
contradiction. ◀

A.1.2 Proof of Theorem 6

Proof. For t = 2 the NP-hardness is shown by Lemma 5. For t > 2, we reduce from
Blockmodeling. Let I = (G = (V, E), k, 2) be an instance of Blockmodeling. Moreover,
let G′ = (V ′, E′) be the graph obtained from G by adding for each i ∈ {1, . . . , t − 2} a
clique Ci of size 2k + 1 to G such that each vertex of Ci has no neighbors outside of Ci in G′.
Finally, we set I ′ = (G′, k, t) and show that I is a yes-instance of Blockmodeling if and
only if I ′ is a yes-instance of Blockmodeling.

Note that for each i ∈ {1, . . . , t − 2}, the clique Ci is a neighborhood class in G′.
Let S ⊆

(
V ′

2
)

be an optimal solution for I ′. Hence, due to Lemma 4, every vertex of V ′ \ V

is unaffected by S. That is, every optimal solution for I ′ is a subset of
(

V
2
)

and no vertex
of V is in any neighborhood class some vertex of V ′ \ V .

Let S ⊆
(

V
2
)

be a set of size at most k. Hence, for each i ∈ {1, . . . , t−2}, the clique Ci is a
neighborhood class in G′

res := (V ′, E′△S). As a consequence G′
res has neighborhood diversity

at most t if and only if Gres = (V, E△S) has neighborhood diversity at most 2. Hence, I is a
yes-instance of Blockmodeling if and only if I ′ is a yes-instance of Blockmodeling. ◀



A. Bille, N. Grüttemeier, C. Komusiewicz, and N. Morawietz 14:19

Table 2 Overview of the graphs and their links.

Graph Link

Highland Tribes http://www.konect.cc/networks/ucidata-gama/
Kangaroos http://www.konect.cc/networks/moreno_kangaroo/
Cloister http://www.konect.cc/networks/moreno_sampson/
Taro Exchange http://www.konect.cc/networks/moreno_taro/
Zebra http://www.konect.cc/networks/moreno_zebra/
Dutch College http://www.konect.cc/networks/moreno_vdb/
Karate Club http://www.konect.cc/networks/ucidata-zachary/
Chesapeake Bay http://www.konect.cc/networks/dimacs10-chesapeake/
HIV http://www.konect.cc/networks/hiv/
Dolphins http://www.konect.cc/networks/dolphins/
Train Bomb http://www.konect.cc/networks/moreno_train/
Iceland http://www.konect.cc/networks/iceland/

A.1.3 Proof of Lemma 7
Proof. Let Cu and Cv be the neighborhood classes of u and v respectively, let C be the
neighborhood partition of G and let Crest := C \ {Cu, Cv} = {C1, . . . , Ct−2}. For two vertices
x and y of V \ {u, v} the relation ∼G is the same as ∼G′ because x and y have the same
neighbors in G as in G′. Therefore, the vertices {v1, . . . , vt−2} with vi ∈ Ci are in t − 2
distinct neighborhood classes in G′ since vi ≁G vj for 1 ≤ i ̸= j ≤ t− 2. This implies that
G′ has at least t− 2 neighborhood classes.

On the other hand, both u and v might be in single-sized neighborhood classes in G′.
Hence, G′ has neighborhood diversity at most t + 2. ◀

A.2 Data acquisition
We describe how we obtained undirected and unweighted graphs out of the given data sets
for the three “pos”-graphs. The weight of an edge in these data sets represents how much one
actor likes/dislikes the other. The undirected graph Highland Tribes [20] consists of edges of
weights 1 and −1. We removed the edges with a negative weight. The remaining two graphs
are Crisis in a Cloister [22] and Dutch College [24]. Both are directed and have weights
{−1, 0, 1} and {−1, 0, 1, 2, 3} respectively. In the undirected graphs, there is an undirected

Figure 5 These graphs indicates how many instances with selected values for t each algorithm
solved depending on the time.

SEA 2023

http://www.konect.cc/networks/ucidata-gama/
http://www.konect.cc/networks/moreno_kangaroo/
http://www.konect.cc/networks/moreno_sampson/
http://www.konect.cc/networks/moreno_taro/
http://www.konect.cc/networks/moreno_zebra/
http://www.konect.cc/networks/moreno_vdb/
http://www.konect.cc/networks/ucidata-zachary/
http://www.konect.cc/networks/dimacs10-chesapeake/
http://www.konect.cc/networks/hiv/
http://www.konect.cc/networks/dolphins/
http://www.konect.cc/networks/moreno_train/
http://www.konect.cc/networks/iceland/


14:20 A Graph-Theoretic Formulation of Exploratory Blockmodeling

edge {u, v} if and only if there is an edge form u to v and an edge from v to u, the sum of
weights of these edges is at least 2, and none of the weights of these edges is negative. The
Dutch College data consists of 7 graphs among the same actors. For our experiment we used
the graph (timestamp: 924217200) with the most edges obtained by the above-mentioned
method.



FREIGHT: Fast Streaming Hypergraph Partitioning
Kamal Eyubov #

Universität Heidelberg, Germany

Marcelo Fonseca Faraj #

Universität Heidelberg, Germany

Christian Schulz #

Universität Heidelberg, Germany

Abstract
Partitioning the vertices of a (hyper)graph into k roughly balanced blocks such that few (hyper)edges
run between blocks is a key problem for large-scale distributed processing. A current trend for
partitioning huge (hyper)graphs using low computational resources are streaming algorithms. In this
work, we propose FREIGHT: a Fast stREamInG Hypergraph parTitioning algorithm which is an
adaptation of the widely-known graph-based algorithm Fennel. By using an efficient data structure,
we make the overall running of FREIGHT linearly dependent on the pin-count of the hypergraph
and the memory consumption linearly dependent on the numbers of nets and blocks. The results
of our extensive experimentation showcase the promising performance of FREIGHT as a highly
efficient and effective solution for streaming hypergraph partitioning. Our algorithm demonstrates
competitive running time with the Hashing algorithm, with a difference of a maximum factor of
four observed on three fourths of the instances. Significantly, our findings highlight the superiority
of FREIGHT over all existing (buffered) streaming algorithms and even the in-memory algorithm
HYPE, with respect to both cut-net and connectivity measures. This indicates that our proposed
algorithm is a promising hypergraph partitioning tool to tackle the challenge posed by large-scale
and dynamic data processing.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Hypergraph partitioning, graph partitioning, edge partitioning, streaming

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.15

Related Version Full Version: https://arxiv.org/pdf/2302.06259.pdf

Funding We acknowledge support by DFG grant SCHU 2567/5-1.

1 Introduction

Graphs are ubiquitous in nature and can be used to represent a wide variety of phenomena
such as road networks, dependencies in databases, communications in distributed algorithms,
interactions in social networks, and so forth. Nevertheless, phenomena where interactions
between entities are not necessarily pairwise are more adequately modeled by hypergraphs,
which can capture higher-order interactions [23]. With the massive proliferation of data, pro-
cessing large-scale (hyper)graphs on distributed systems and databases becomes a necessity for
a wide range of applications. When processing a (hyper)graph in parallel, k processors operate
on distinct portions of the (hyper)graph while communicating to one another through message-
passing. To make the parallel processing efficient, an important preprocessing step consists of
partitioning the vertices of the (hyper)graph into k roughly balanced blocks such that few (hy-
per)edges run between blocks. (Hyper)graph partitioning is NP-hard [16] and there can be no
approximation algorithm with a constant ratio for general (hyper)graphs [8]. Thus, heuristics
are used in practice. A current trend for partitioning huge (hyper)graphs quickly and using
low computational resources are streaming algorithms [36, 5, 20, 13, 14, 25, 19, 3, 35].

© Kamal Eyubov, Marcelo Fonseca Faraj, and Christian Schulz;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kamal.eyubov@stud.uni-heidelberg.de
https://orcid.org/0009-0005-8573-7523
mailto:marcelofaraj@informatik.uni-heidelberg.de
https://orcid.org/0000-0001-7100-236X
mailto:christian.schulz@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-2823-3506
https://doi.org/10.4230/LIPIcs.SEA.2023.15
https://arxiv.org/pdf/2302.06259.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 FREIGHT: Fast Streaming Hypergraph Partitioning

The most popular streaming approach in literature is the one-pass model [1], where
vertices arrive one at a time including their (hyper)edges and then have to be permanently
assigned to blocks. In the domain of graphs, most algorithms are either very fast but
do not care for solution quality at all (such as Hashing [34]), or are still fast, but much
slower and capable of computing significantly better solutions than just random assignments
(such as such Fennel [36]). Recently, the gap between these groups of algorithms has been
closed by a streaming multi-section algorithm [14] which is up to two orders of magnitude
faster than Fennel while cutting only 5% more edges than it on average. In the domain
of hypergraphs, there is a similar gap that has not yet been closed. In particular, there
is the same trivial Hashing -based algorithm on one side, and more sophisticated and
expensive algorithms [3, 35] on the other side.

In this work, we propose FREIGHT: a Fast stREamInG Hypergraph parTitioning al-
gorithm that can optimize for the cut-net as well as the connectivity metric. By using
an efficient data structure, we make the overall running time of FREIGHT linearly depend-
ent on the pin-count of the hypergraph and the memory consumption linearly dependent
on the numbers of nets and blocks. Our proposed algorithm demonstrates remarkable
efficiency, with a running time comparable to the Hashing algorithm and a maximum dis-
crepancy of only four in three quarters of the instances. Importantly, our study establishes
the superiority of FREIGHT over all current (buffered) streaming algorithms and even the
in-memory algorithm HYPE, in both cut-net and connectivity measures. This shows the
potential of our algorithm as a valuable tool for partitioning hypergraphs in the context of
large and constantly changing data processing environments.

2 Preliminaries

2.1 Basic Concepts
Hypergraphs and Graphs. Let H = (V = {0, . . . , n− 1}, E) be an undirected hypergraph
with no multiple or self hyperedges, with n = |V | vertices and m = |E| hyperedges (or nets).
A net is defined as a subset of V . The vertices that compose a net are called pins. A vertex
v ∈ V is incident to a net e ∈ E if v ∈ e. Let c : V → R≥0 be a vertex-weight function,
and let ω : E → R>0 be a net-weight function. We generalize c and ω functions to sets,
such that c(V ′) =

∑
v∈V ′ c(v) and ω(E′) =

∑
e∈E′ ω(e). Let I(v) be the set of incident nets

of v, let d(v) := |I(v)| be the degree of v, let dw(v) := w(I(v)) be the weighted degree of
v, and let ∆ be the maximum degree of H. We generalize the notations d(.) and dw(.) to
sets, such that d(V ′) =

∑
v∈V ′ d(v) and dw(V ′) =

∑
v∈V ′ dw(v). Two vertices are adjacent if

both are incident to the same net. Let the number of pins |e| in a net e be the size of e, let
ξ = maxe∈E{|e|} be the maximum size of a net in H.

Let G = (V = {0, . . . , n− 1}, E) be an undirected graph with no multiple or self edges,
such that n = |V |, m = |E|. Let c : V → R≥0 be a vertex-weight function, and let
ω : E → R>0 be an edge-weight function. We generalize c and ω functions to sets, such
that c(V ′) =

∑
v∈V ′ c(v) and ω(E′) =

∑
e∈E′ ω(e). Let N(v) = {u : {v, u} ∈ E} denote the

neighbors of v. A graph S = (V ′, E′) is said to be a subgraph of G = (V, E) if V ′ ⊆ V and
E′ ⊆ E ∩ (V ′ × V ′). When E′ = E ∩ (V ′ × V ′), S is an induced subgraph. Let d(v) be the
degree of vertex v and ∆ be the maximum degree of G.

Partitioning. The (hyper)graph partitioning problem consists of assigning each vertex of a
(hyper)graph to exactly one of k distinct blocks respecting a balancing constraint in order
to minimize the weight of the (hyper)edges running between the blocks, i.e., the edge-cut



K. Eyubov, M. Fonseca Faraj, and C. Schulz 15:3

already streamed vertices. . . u future vertices . . .

load vertex

evaluate a function

permanently assign vertex to block

already streamed vertices. . . v future vertices . . .

nets incident with u
block assignments

Figure 1 Typical layout of streaming algorithm for hypergraph partitioning.

(resp. cut-net). More precisely, it partitions V into k blocks V1,. . . ,Vk (i.e., V1 ∪ · · · ∪ Vk = V

and Vi ∩ Vj = ∅ for i ̸= j), which is called a k-partition of the (hyper)graph. The edge-cut
(resp. cut-net) of a k-partition consists of the total weight of the cut edges (resp. cut nets),
i.e., edges (resp. nets) crossing blocks. More formally, let the edge-cut (resp. cut-net) be∑

i<j ω(E′), in which E′ :=
{

e ∈ E,∃ {u, v} ⊆ e : u ∈ Vi, v ∈ Vj , i ̸= j
}

is the cut-set
(i.e., the set of all cut nets). The balancing constraint demands that the sum of vertex weights
in each block does not exceed a threshold associated with some allowed imbalance ϵ. More
specifically, ∀i ∈ {1, . . . , k} : c(Vi) ≤ Lmax :=

⌈
(1 + ϵ) c(V )

k

⌉
. For each net e of a hypergraph,

Λ(e) := {Vi | Vi ∩ e ̸= ∅} denotes the connectivity set of e. The connectivity λ(e) of a net e is
the cardinality of its connectivity set, i.e., λ(e) := |Λ(e)|. The so-called connectivity metric
(λ-1) is computed as

∑
e∈E′(λ(e)− 1) ω(e), where E′ is the cut-set.

Streaming. Streaming algorithms usually follow an iterative load-compute-store logic. Our
focus and the most used streaming model is the one-pass model. In this model, vertices
of a (hyper)graph are loaded one at a time alongside with their (hyper)edges, then some
logic is applied to permanently assign them to blocks, as illustrated in Figure 1. A similar
sequence of operations is used to partition a stream of edges of a graph on the fly. In this
case, edges of a graph are loaded one at a time alongside with their end-points, then some
logic is applied to permanently assign them to blocks. This logic can be as simple as a
Hashing function or as complex as scoring all blocks based on some objective and then
assigning the vertex to the block with highest score. There are other, more sophisticated,
streaming models such as the sliding window [27] and the buffered streaming [20, 13], but
are beyond the scope of this work.

2.2 Related Work
There is a huge body of research on (hyper)graph partitioning. The most prominent tools to
partition (hyper)graphs in memory include PaToH [10], Metis [21], hMetis [22], Scotch [28],
HYPE [24], KaHIP [30], KaMinPar [18], KaHyPar [31], Mt-KaHyPar [17], and mt-KaHIP [2]. The
readers are referred to [11, 9, 33] for extensive material and references. Here, we focus on
the results specifically related to the scope of this paper. In particular, we provide a detailed
review for the following problems based on the one-pass streaming model: hypergraph
partitioning and graph vertex partitioning.

Streaming Hypergraph Partitioning. Alistarh et al. [3] propose Min-Max, a one-pass
streaming algorithm to assign the vertices of a hypergraph to blocks. For each block, this
algorithm keeps track of nets which contain pins in it. This implies a memory consumption

SEA 2023



15:4 FREIGHT: Fast Streaming Hypergraph Partitioning

of O(mk). When a vertex is loaded, Min-Max allocates it to the block containing the largest
intersection with its nets while respecting a hard constraint for load balance. The authors
theoretically prove that their algorithm is able to recover a hidden co-clustering with high
probability, where a co-clustering is defined as a simultaneous clustering of vertices and
hyperedges. In the experimental evaluation, Min-Max outperforms five intuitive streaming
approaches with respect to load imbalance, while producing solutions up to five times more
imbalanced than internal-memory algorithms such as hMetis.

Taşyaran et al. [35] propose improved versions of the algorithm Min-Max [3]. The authors
present Min-Max-N2P, a modified version of Min-Max that stores blocks containing each
net’s pins instead of storing nets per block, as done in Min-Max. In their experiments,
Min-Max-N2P is three orders of magnitude faster than Min-Max while keeping the same
cut-net. The authors also introduce three algorithms with reduced memory usage compared
to Min-Max: Min-Max-Lℓ, a modification of Min-Max-N2P that employs an upper-bound ℓ to
limit memory consumption per net, Min-Max-BF which utilizes Bloom filters for membership
queries, and Min-Max-MH that uses hashing functions to replace the connectivity information
between blocks and nets. In their experiments, their three algorithms reduce the running
time in comparison to Min-Max, especially Min-Max-Lℓ and Min-Max-MH, which are up to
four orders of magnitude faster. On the other hand, the three algorithms generate solutions
with worse cut-net than Min-Max, especially Min-Max-MH, which increases the cut-net by
up to an order of magnitude. Moreover, the authors propose a technique to improve the
partitioning decision in the streaming setting by including a buffer to store some vertices and
their net sets. This approach operates similarly to Min-Max-N2P, but with the added ability
to revisit buffered vertices and adjust their partition assignment based on the connectivity
metric. The authors propose three algorithms using this buffered approach: REF that buffers
every incoming vertex but only reassigns those that may improve connectivity, REF_RLX that
buffers all vertices and reassigns all vertices in the buffer, and REF_RLX_SV that only buffers
vertices with small net sets and reassigns all vertices in the buffer. Their experimental results
show that the use of buffered approaches leads to a 5-20% improvement in partitioning
quality compared to non-buffered approaches, but with a trade-off of increased runtime.

Streaming Graph Vertex Partitioning. Stanton and Kliot [34] introduced graph partitioning
in the streaming model and proposed some heuristics to solve it. Their most prominent
heuristic include the one-pass methods Hashing and linear deterministic greedy (LDG). In
their experiments, LDG had the best overall edge-cut. In this algorithm, vertex assignments
prioritize blocks containing more neighbors and use a penalty multiplier to control imbalance.
Particularly, a vertex v is assigned to the block Vi that maximizes |Vi ∩N(v)| ∗ λ(i) with λ(i)
being a multiplicative penalty defined as (1− |Vi|

Lmax
). The intuition is that the penalty avoids

to overload blocks that are already very heavy. In case of ties on the objective function, LDG
assigns the vertex to the block with fewer vertices. Overall, LDG partitions a graph in O(m+nk)
time. On the other hand, Hashing has running time O(n) but produces a poor edge-cut.

Tsourakakis et al. [36] proposed Fennel, a one-pass partitioning heuristic based on the
widely-known clustering objective modularity [7]. Fennel assigns a vertex v to a block
Vi, respecting a balancing threshold, in order to maximize an expression of type |Vi ∩
N(v)| − f(|Vi|), i.e., with an additive penalty. This expression is an interpolation of two
properties: attraction to blocks with many neighbors and repulsion from blocks with many
non-neighbors. When f(|Vi|) is a constant, the expression coincides with the first property.
If f(|Vi|) = |Vi|, the expression coincides with the second property. In particular, the authors



K. Eyubov, M. Fonseca Faraj, and C. Schulz 15:5

defined the Fennel objective with f(|Vi|) = α ∗ γ ∗ |Vi|γ−1, in which γ is a free parameter
and α = m kγ−1

nγ . After a parameter tuning made by the authors, Fennel uses γ = 3
2 , which

provides α =
√

k m
n3/2 . As LDG, Fennel partitions a graph in O(m + nk) time.

Faraj and Schulz [14] propose a shared-memory streaming algorithm for vertex partitioning
which performs recursive multi-sections on the fly. As a preliminary phase, their algorithm
decomposes a k-way partitioning problem into a hierarchy containing ⌈logb k⌉ layers of b-way
partitioning subproblems. This hierarchy can either reflect the topology of a high performance
system to solve a process mapping [15, 29] or be computed for an arbitrary k to solve a
regular vertex partitioning. Then, an adapted version of Fennel is used to solve each of
the subproblems in such a way that the whole k-partition is computed on the fly during
a single pass over the graph. While producing an edge-cut around 5% lower than Fennel,
their algorithm has theoretical complexity O((m + nb) logb k) and experimentally ran up to
two orders of magnitude faster than Fennel.

Besides the one-pass model, other streaming models have also been used to solve vertex par-
titioning. Restreaming graph partitioning has been introduced by Nishimura and Ugander [26].
In this model, multiple passes through the entire input are allowed, which enables iterative
improvements. The authors proposed easily implementable restreaming versions of LDG
and Fennel: ReLDG and ReFennel, respectively. Awadelkarim and Ugander [5] studied the
effect of vertex ordering for streaming graph partitioning. The authors introduced the
notion of prioritized streaming, in which (re)streamed vertices are statically or dynamically
reordered based on some priority. The authors proposed a prioritized version of ReLDG
Patwary et al. [27] proposed WStream, a greedy stream algorithm that keeps a sliding stream
window. Jafari et al. [20] proposed a shared-memory multilevel algorithm based on a buffered
streaming model. Their algorithm uses the one-pass algorithm LDG as the coarsening, initial
partitioning, and the local search steps of their multilevel scheme. Faraj and Schulz [13]
proposed HeiStream, a multilevel algorithm also based on a buffered streaming model. Their
algorithm loads a chunk of vertices, builds a model, and then partitions this model with a
traditional multilevel algorithm coupled with an extended version of the Fennel objective.

3 FREIGHT: Fast Streaming Hypergraph Partitioning

In this section, we provide a detailed explanation of our algorithmic contribution. First, we
define our algorithm named FREIGHT. Next, we present the advantages and disadvantages of
using two different formats for streaming hypergraphs and partitioning them using FREIGHT.
Additionally, we explain how we have removed the dependency on k from the complexity of
FREIGHT by implementing an efficient data structure for block sorting.

3.1 Mathematical Definition
In this section, we provide a mathematical definition for FREIGHT by expanding the idea
of Fennel to the domain of hypergraphs. Recall that, assuming the vertices of a graph
being streamed one-by-one, the Fennel algorithm assigns an incoming vertex v to a block Vd

where d is computed as follows:

d = argmax
i, |Vi|<Lmax

{
|Vi ∩N(v)| − α ∗ γ ∗ |Vi|γ−1}

(1)

The term −α ∗ γ ∗ |Vi|γ−1, which penalizes block imbalance in Fennel, is directly used
in FREIGHT without modification and with the same meaning. The term |Vi ∩N(v)|, which
minimizes edge-cut in Fennel, needs to be adapted in FREIGHT to minimize the intended

SEA 2023



15:6 FREIGHT: Fast Streaming Hypergraph Partitioning

metric, i.e., either cut-net or connectivity. Before explaining how this is adapted, recall
that, in contrast to graph partitioning, in hypergraph partitioning the incident nets I(v)
of an incoming vertex v might contain nets that are already cut, i.e., with pins assigned
to multiple blocks. The version of FREIGHT designed to optimize for connectivity accounts
for already cut nets by keeping track of the block de to which the most recently streamed
pin of each net e has been assigned. More formally, the connectivity version of FREIGHT
assigns an incoming vertex v of a hypergraph to a block Vd with d given by Equation (2),
where Ii

obj(v) = Ii
con(v) = {e ∈ I(v) : de = i}. On the other hand, the version of FREIGHT

designed to optimize for cut-net ignores already cut nets, since their contribution to the
overall cut-net of the hypergraph k-partition is fixed and cannot be changed anymore. More
formally, the cut-net version of FREIGHT assigns an incoming vertex v of a hypergraph to a
block Vd with d given by Equation (2), where Ii

obj(v) = Ii
cut(v) = Ii

con(v) \ E′ and E′ is the
set of already cut nets.

d = argmax
i, |Vi|<Lmax

{
|Ii

obj(v)| − α ∗ γ ∗ |Vi|γ−1}
(2)

Both configurations of FREIGHT interpolate two objectives: favoring blocks with many
incident (uncut) nets and penalizing blocks with large cardinality. We briefly highlight
that FREIGHT can be adapted for weighted hypergraphs. In particular, when dealing with
weighted nets, the term |Ii

obj(v)| is substituted by ω(Ii
obj(v)). Likewise when dealing with

weighted vertices, the term −α ∗ γ ∗ |Vi|γ−1 is substituted by −c(v) ∗ α ∗ γ ∗ c(Vi)γ−1, where
the weight c(v) of v is used as a multiplicative factor in the penalty term.

3.2 Streaming Hypergraphs
In this section, we present and discuss the streaming model used by FREIGHT. Recall in the
streaming model for graphs vertices are loaded one at a time alongside with their adjacency
lists. Thus, just streaming the graph (without doing additional compuations, implies a time
cost O(m + n). In our model, the vertices of a hypergraph are loaded one at a time alongside
with their incident nets, as illustrated in Figure 1. Our streaming model implies a time cost
O(

∑
e∈E |e| + n) just to stream the hypergraph, where O(

∑
e∈E |e|) is the cost to stream

each net e exactly |e| times. FREIGHT uses O(m + k) memory, with O(m) being used to keep
track, for each net e, of its cut/uncut status as well as the block de to which its most recently
streamed pin was assigned. This net-tracking information, which substitutes the need to
keep track of vertex assignments, is necessary for executing FREIGHT. Although FREIGHT
consumes more memory than required by graph-based streaming algorithms which often
use O(n + k) memory, it is still far better than the O(mk) worst-case memory required
by the state-of-the-art algorithms for streaming hypergraph partitioning [3, 35], all of
which are also based on a computational model that implies a time cost O(

∑
e∈E |e|+ n)

just to stream the hypergraph.

3.3 Efficient Implementation
In this section, we describe an efficient implementation for FREIGHT. Recall that, for every
vertex v that is loaded, FREIGHT uses Equation (2) to find the block with the highest score
among up to k options. A simple method to accomplish this task consists of explicitly
evaluating the score for each block and identifying the one with the highest score. This
results in a total of O(nk) evaluations, leading to an overall complexity of O(

∑
e∈E |e|+ nk).

We propose an implementation that is significantly more efficient than this approach.



K. Eyubov, M. Fonseca Faraj, and C. Schulz 15:7

all blocks
(a)

S1

S2
(b)

S2
(c) (d)

Figure 2 Illustration of the process to solve Equation (2) for an incoming vertex u with
k = 512 blocks. (a) The k blocks are decomposed into S1 and S2, with |S1| = O(|I(u)|).
(b) Equation (3) is explicitly solved at cost O(|I(u)|). (c) Equation (4) is implicitly solved
at cost O(1). (d) Both solutions are then evaluated using their FREIGHT scores to determine
the final solution for Equation (2).

For each loaded vertex v, our implementation separates the blocks Vi for which |Vi| < Lmax
into two disjoint sets, S1 and S2. In particular, the set S1 comprises blocks Vi where
|Ii

obj(v)| > 0, while the set S2 comprises the remaining blocks, i.e., blocks Vi for which
|Ii

obj(v)| = 0. Using the sets provided, we break down Equation (2) into Equation (3) and
Equation (4), which are solved separately. The resulting solutions are compared based on
their FREIGHT scores to ultimately find the solution for Equation (2). The overall process is
illustrated in Figure 2.

d = argmax
i∈S1

{
|Ii

obj(v)| − α ∗ γ ∗ |Vi|γ−1}
(3)

d = argmax
i∈S2

{
|Ii

obj(v)| − α ∗ γ ∗ |Vi|γ−1}
= argmin

i∈S2

|Vi| (4)

Now we explain how we solve Equation (3) and Equation (4). To solve Equation (3), we
use the theoretical complexity outlined in Theorem 1 and solve it explicitly. In contrast,
Equation (4) is implicitly solved by identifying the block with minimal cardinality. We use
an efficient data structure to keep all blocks sorted by cardinality throughout the entire
execution, which enables us to solve Equation (4) in constant time.

▶ Theorem 1. Equation (3) can be solved in time O(|I(v)|).

Proof. The terms |Ii
obj(v)| in Equation (3) can be computed by iterating through the nets

of v at a cost of O(|I(v)|) and determining their status as cut, unassigned, or assigned to a
block. The calculation of the factors −α ∗ γ ∗ |Vi|γ−1 in Equation (3) can be done in time
O(|S1|) = O(|I(v)|), thus completing the proof. ◀

Now we explain our data structure to keep the blocks sorted by cardinality during the
whole algorithm execution. The data structure is implemented with two arrays A and B,
both with k elements, and a list L. The array A stores all k blocks always in ascending order.
The array B maps the index i of a block Vi to its position in A. Each element in the list L

represents a bucket. Each bucket is associated with a unique block cardinality and contains
the leftmost and the rightmost positions ℓ and r of the range of blocks in A which currently

SEA 2023



15:8 FREIGHT: Fast Streaming Hypergraph Partitioning

1

2

3

5

6

1

2

3

4

5

6

1

2

3

5

6

1

2

3

5

6

1

2

3

5

6

7

1

2

3

5

6

8

Figure 3 Illustration of our data structure used to keep the blocks sorted by cardinality throughout
the execution of FREIGHT. The array A is represented as a vertical rectangle. Each region of A

is covered by a unique bucket, which is represented by a unique color filling the corresponding
region in A. The cardinality associated with each bucket is written in the middle of the region
of A covered by it. Here we represent the behavior of the data structure when assigning vertices
to the block surrounded by a dotted rectangle five times consecutively.

have this cardinality. Reciprocally, each block in A has a pointer to the unique bucket in L

corresponding to its cardinality. To begin the algorithm, L is set up with a single bucket
for cardinality 0 which covers the k positions of A, i.e., its paramenters ℓ and r are 1 and k,
respectively. The blocks in A are sorted in any order initially, however, as each block starts
with a cardinality of 0, they will be ordered by their cardinalities.

When a vertex is assigned to a block Vd, we update our data structure as detailed in
Algorithm 1 and exemplified in Figure 3. We describe Algorithm 1 in detail now. In line 1, we
find the position p of Vd in A and find the bucket C associated with it. In line 2, we exchange
the content of two positions in A: the position where Vd is located and the position identified
by the variable r in C, which marks the rightmost block in A covered by C. This variable r

is afterwards decremented in line 3 since Vd is now not covered anymore by the bucket C. In
lines 4 and 5, we check if the new (increased) cardinality of Vd matches the cardinality of the
block located right after it in A. If so, we associate Vd to the same bucket as it and decrement
this bucket’s leftmost position ℓ in line 6; Otherwise, we push a new bucket to L and match
it to Vd adequately in lines 8 and 9. Finally, in line 10, we delete C in case its range [ℓ, r] is
empty. Figure 3 shows our data structure through five consecutive executions of Algorithm 1.
Theorem 2 proves the correctness of our data structure. Theorem 3 shows that, using our
proposed data structure, we need time O(1) to either solve Equation (4) or prove that the
solution for Equation (3) solves Equation (2). Note that our data structure can only handle
unweighted vertices. In case of weighted vertices, a bucket queue can be used instead of our
data structure, resulting in the same overall complexity and requiring O(k + Lmax) memory,
while our data structure only requires O(k) memory. The overall complexity of FREIGHT,
which directly follows from Theorem 1 and Theorem 3, is expressed in Corollary 4.

▶ Theorem 2. Our proposed data structure keeps the blocks within array A consistently
sorted in ascending order of cardinality.

Proof. We inductively prove two claims at the same time: (a) the variables ℓ and r contained
in each bucket from L respectively store the leftmost and the rightmost positions of the
unique range of blocks in A which currently have this cardinality; (b) the array A contains



K. Eyubov, M. Fonseca Faraj, and C. Schulz 15:9

Algorithm 1 Increment cardinality of block Vd in the proposed data structure.

1: p← Bd; C ← Ap.bucket;
2: q ← C.r; c← Aq.id; Swap(Ap, Aq); Swap(Bc, Bd);
3: C.r ← C.r − 1;
4: C ′ ← Aq+1.bucket;
5: if C.cardinality + 1 = C ′.cardinality then
6: Aq.bucket← C ′; C ′.ℓ← C ′.ℓ− 1;
7: else
8: C ′′ ← NewBucket(); Aq.bucket← C ′′; L← L ∪ {C ′′};
9: C ′′.cardinality ← C.cardinality + 1; C ′′.ℓ← q; C ′′.r ← q;

10: if C.r = C.ℓ then L← L \ {C};

the blocks sorted in ascending order of cardinality. Both claims are trivially true at the
beginning, since all blocks have cardinality 0 and L is initialized with a single bucket with
ℓ = 1 and r = k. Now assuming that (a) and (b) are true at some point, we show that they
keep being true after Algorithm 1 is executed. Note that line 2 performs the only position
exchange in A throughout the whole algorithm. As (a) is assumed, it is the case that Vd

swaps positions with the rightmost block in A containing the same cardinality of Vd. Since
the cardinality of Vd will be incremented by one and all blocks have integer cardinalities, this
concludes the proof of (b). To prove that (a) remains true, note that the only buckets in L

that are modified are C (line 3), C ′ (line 6), and C ′′ (line 9). Claim (a) remains true for C

because Vd, whose cardinality will be incremented, is the only block removed from its range.
Claim (a) remains true for C ′ because line 6 is only executed if the new cardinality of Vd

equals the cardinality of C ′, whose current range starts right after the new position of Vd

in A. Bucket C ′′ is only created if the new cardinality of Vd is respectively larger and smaller
than the cardinalities of C and C ′. Since (b) is true, then this condition only happens if there
is no block in A with the same cardinality as the new cardinality of Vd. Hence, claim (a)
remains true for C ′′, which is created covering only the position of Vd in A. ◀

▶ Theorem 3. By utilizing our proposed data structure, solving Equation (4) or demon-
strating that any solution for Equation (3) is also a solution for Equation (2) can be accom-
plished in O(1) time.

Proof. Algorithm 1 contains no loops and each command in it has a complexity of O(1),
thus the total cost of the algorithm is O(1). Our data structure executes Algorithm 1 once
for each assigned vertex, hence it costs O(1) per vertex. Say we are evaluating an incoming
vertex v. According to Theorem 2, the block Vd with minimum cardinality is stored in the
first position of the array A, hence it can be accessed in time O(1). In case Vd ∈ S2, then d

is a solution for Equation (4). On the other hand, if Vd is in S1, the FREIGHT score of Vd will
be larger than the FREIGHT score of the solution for Equation (4) by at least |Id(v)| > 0. In
this case, it follows that any solution for Equation (3) solves Equation (2). ◀

▶ Corollary 4. The overall complexity of FREIGHT is O
( ∑

e∈E |e|+ n
)
.

4 Experimental Evaluation

Setup. We performed our implementations in C++ and compiled them using gcc 11.2 with
full optimization turned on (-O3 flag). Unless mentioned otherwise, all experiments are
performed on a single core of a machine consisting of a sixteen-core Intel Xeon Silver 4216

SEA 2023



15:10 FREIGHT: Fast Streaming Hypergraph Partitioning

processor running at 2.1 GHz, 100 GB of main memory, 16 MB of L2-Cache, and 22 MB of
L3-Cache running Ubuntu 20.04.1. The machine can handle 32 threads with hyperthreading.
Unless otherwise mentioned we stream (hyper)graphs directly from the internal memory to
obtain clear running time comparisons. However, note that FREIGHT as well as most of the
other used algorithms can also be run streaming the hypergraphs from hard disk.

Baselines. We compare FREIGHT against various state-of-the-art algorithms. In this section
we will list these algorithms and explain our criteria for algorithm selection. We have
implemented Hashing in C++, since it is a simple algorithm. It basically consists of hashing
the IDs of incoming vertices into {1, . . . , k}. The remaining algorithms were obtained either
from official repositories or privately from the authors, with the exception of Min-Max, for
which there is no official implementation available. Here, we use the Min-Max implementations
by Taşyaran et al. [35]. All algorithms were compiled with gcc 11.2.

We run Hashing, Min-Max [3] and all its improved versions proposed by Taşyaran et al. [35]:
Min-Max-BF, Min-Max-N2P, Min-Max-Lℓ, Min-Max-MH, REF, REF_RLX, and REF_RLX_SV. (see
Section 2.2 for details on the different Min-Max versions), HYPE [24], and PaToH v3.3 [10].
Hashing is relevant because it is the simplest and fastest streaming algorithm, which gives
us a lower bound for partitioning time. Min-Max is a current state-of-the-art for streaming
hypergraph partitioning in terms of cut-net and connectivity. The improved and buffered
versions of Min-Max proposed in [35] are relevant because some of them are orders of
magnitude faster than Min-Max while others produce improved partitions in comparison to it.
HYPE and PaToH are in-memory algorithms for hypergraph partitioning, hence they are not
suitable for the streaming setting. However, we compare against them because HYPE is among
the fastest in-memory algorithms while PaToH is very fast and also computes partitions with
very good cut-net and connectivity. Note that KaHyPar [31] is the leading tool with respect
to solution quality, however it is also much slower than PaToH.

Instances. We selected hypergraphs from various sources to test our algorithm. The con-
sidered hypergraphs were used for benchmark in previous works on hypergraph partitioning.
Prior to each experiment, we converted all hypergraphs to the appropriate streaming formats
required by each algorithm. We removed parallel and empty hyperedges and self loops, and
assigned unitary weight to all vertices and hyperedges. In all experiments with streaming
algorithms, we stream the hypergraphs with the natural given order of the vertices. We use
a number of blocks k ∈ {512, 1024, 1536, 2048, 2560} unless mentioned otherwise. We allow a
fixed imbalance of 3% for all experiments (and all algorithms) since this is a frequently used
value in the partitioning literature. All algorithms always generated balanced partitions, ex-
cept for HYPE which generated highly unbalanced partitions in around 5% of its experiments.

We use the same benchmark as in [31]. This consists of 310 hypergraphs from three bench-
mark sets: 18 hypergraphs from the ISPD98 Circuit Benchmark Suite [4], 192 hypergraphs
based on the University of Florida Sparse Matrix Collection [12], and 100 instances from the
international SAT Competition 2014 [6]. The SAT instances were converted into hypergraphs
by mapping each boolean variable and its complement to a vertex and each clause to a net.
From the Sparse Matrix Collection, one matrix was selected for each application area that
had between 10 000 and 10 000 000 columns. The matrices were converted into hypergraphs
using the row-net model, in which each row is treated as a net and each column as a vertex.

Methodology. Depending on the focus of the experiment, we measure running time,
cut-net, and-or connectivity. We perform 5 repetitions per algorithm and instance us-
ing random seeds for non-deterministic algorithms, and calculate the arithmetic average



K. Eyubov, M. Fonseca Faraj, and C. Schulz 15:11

of the computed objective function and running time per instance. When further aver-
aging over multiple instances, we use the geometric mean in order to give every instance
the same influence on the final score.

Given a result of an algorithm A, we express its value σA (which can be objective or
running time) as improvement over an algorithm B, computed as

(
σB

σA
− 1

)
∗ 100%; We also

use performance profiles to represent results. They relate the running time (quality) of a
group of algorithms to the fastest (best) one on a per-instance basis (rather than grouped by
k). The x-axis shows a factor τ while the y-axis shows the percentage of instances for which
A has up to τ times the running time (quality) of the fastest (best) algorithm. Bar charts
and boxplots are also employed to represent our findings. We use bar charts to visualize the
average value of an objective function in relation to k, where each algorithm is represented
by vertical bars of a given color with origin on the x-axis. The bars for every value of k

have a common origin and are arranged in terms of their height, allowing all heights to be
visible. We use boxplots to give a clear picture of the dataset distribution by displaying the
minimum, maximum, median, first and third quartiles, while disregarding outliers.

4.1 Results
In this section, we show experiments in which we compare FREIGHT against the current
state-of-the-art of streaming hypergraph partitioning. As already mentioned, we also use
two internal-memory algorithms [24, 10] as more general baselines for comparison. We
focus our experimental evaluation on the comparison of solution quality and running time.
Observe that PaToH and FREIGHT have distinct versions designed to optimize for each quality
metric (i.e., connectivity and cut-net). For a meaningful comparison, we only take into
account the relevant version when dealing with each quality metric, however, both versions
are still considered for running time comparisons. To differentiate between the versions,
suffixes -con and -cut are added to represent the connectivity-optimized and cut-net versions
respectively. For clarity, we refrain from discussing state-of-the-art streaming algorithms
that are dominated by another algorithm. We define a dominated algorithm as one that
has worse running time compared to another without offering a superior solution quality
in return, or vice-versa. In particular, we leave out Min-Max and Min-Max-BF since they
are dominated by Min-Max-N2P, which is referred to as MM-N2P hereafter. Similarly, we
omit Min-Max-MH because it is dominated by Hashing. We use a buffer size of 15% for
testing the buffered algorithms REF, REF_RLX, and REF_RLX_SV, following the best results
outlined in [35]. We omit the first two of them since they are dominated by the latter one,
which is referred to as RRS(0.15) from now on. Since Min-Max-Lℓ is not dominated by any
other algorithm, we exhibit its results with ℓ = 5, as seen in the best results in [35], and
we refer to it as MM-L5 from this point.

Connectivity. We start by looking at the connectivity metric. In Figure 4a, we plot the
average connectivity improvement over Hashing for each value of k. PaToH-con produces
the best connectivity on average, yielding an average improvement of 443% when compared
to Hashing. This is in line with previous works in the area of (hyper)graph partitioning, i.e.
streaming algorithms typically compute worse solutions than internal memory algorithms,
which have access to the whole graph. FREIGHT-con is found to be the second best algorithm
in terms of connectivity, outperforming both the internal memory algorithm HYPE and
the buffered streaming algorithm RRS(0.15). On average, these three algorithms improve
194%, 171%, and 136% over Hashing, respectively. Finally, MM-N2P and MM-L5 compute
solutions which improve 111% and 96% over Hashing on average, respectively. In direct

SEA 2023



15:12 FREIGHT: Fast Streaming Hypergraph Partitioning

 0

 100

 200

 300

 400

 500

 600

 700

512 1024 1536 2048 2560

%
 i

m
p
ro

v
em

en
t 

in
 c

o
n
n
ec

ti
v
it

y

k

PaToH-con
FREIGHT-con

HYPE
RRS(0.15)
MM-N2P

MM-L5

(a) Connectivity improvement plot over Hashing.

 0

 0. 2

 0. 4

 0. 6

 0. 8

 1

 1  2  4  8  1 6% 
in

st
an

ce
s 

≤
 τ

 b
es

t 
co

nn
ec

ti
vi
ty

τ

H as hi n g
F R EI G H T- c o n

M M- L 5
M M- N 2 P

R R S( 0. 1 5)
H Y P E

P a T o H- c o n

(b) Connectivity performance profile.

 0

 20

 40

 60

 80

 100

 120

 140

 160

512 1024 1536 2048 2560

%
 i

m
p
ro

v
em

en
t 

in
 c

u
t

k

PaToH-cut
FREIGHT-cut

HYPE
RRS(0.15)
MM-N2P

MM-L5

(c) Cut-net improvement plot over Hashing.

 0

 0. 2

 0. 4

 0. 6

 0. 8

 1

 1  2  4  8

% 
in

st
an

ce
s 

≤
 τ

 b
es

t 
cu

t

τ

H as hi n g
F R EI G H T- c ut

M M- L 5
M M- N 2 P

R R S( 0. 1 5)
H Y P E

P a T o H- c ut

(d) Cut-net performance profile.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

           

ti
m

e 
p
er

 p
in

 (
n
s)

algorithm

Hashing
FREIGHT-cut
FREIGHT-con

MM-L5
MM-N2P

RRS(0.15)
HYPE

PaToH-cut
PaToH-con

(e) Running time boxplots.

 0

 0. 2

 0. 4

 0. 6

 0. 8

 1

 1  4  1 6  6 4  2 5 6  1 0 2 4  4 0 9 6

% 
in

st
an

ce
s 

≤
 τ

 f
as

te
st

τ

H as hi n g
F R EI G H T- c ut
F R EI G H T- c o n

M M- L 5
M M- N 2 P

R R S( 0. 1 5)
H Y P E

P a T o H- c ut
P a T o H- c o n

(f) Running time performance profile.

Figure 4 Comparison against the state-of-the-art streaming algorithms for hypergraph par-
titioning. We show performance profiles, improvement plots over Hashing, and boxplots.
Note that PaToH-con, PaToH-cut, and Hashing align almost perfectly with the y-axis in Fig-
ures 4b, 4d, and 4f, respectively. Also the curves and bars of MM-N2P and MM-L5 roughly overlap
with one another in Figure 4d and Figure 4c.



K. Eyubov, M. Fonseca Faraj, and C. Schulz 15:13

comparison, FREIGHT-con shows average connectivity improvements of 8%, 24%, 39%, and
50% over HYPE, RRS(0.15), MM-N2P, and MM-L5, respectively. Note that each algorithm
retains its relative ranking in terms of average connectivity over all values of k.

In Figure 4b, we plot connectivity performance profiles across all experiments. PaToH-con
produces the best overall connectivity for 96.4% of the instances, while FREIGHT-con pro-
duces the best connectivity for 3.1% of the instances and no other algorithm computes
the best connectivity for more than 0.35% of the instances. The connectivity produced by
FREIGHT-con, HYPE, RRS(0.15), MM-N2P, MM-L5, and Hashing are within a factor 2 of the
best found connectivity for 67%, 61%, 47%, 41%, 34%, and 9% of the instances, respect-
ively. In summary, FREIGHT-con produces the best connectivity among (buffered) streaming
competitors, outperforming even in-memory algorithm HYPE.

Cut-Net. Next we examine at the cut-net metric. In Figure 4c, we plot the cut-net im-
provement over Hashing. PaToH-cut produces the best overall cut-net, with an average
improvement of 100% compared to Hashing. FREIGHT-cut is found to be the second best
algorithm with respect to cut-net, superior to internal-memory algorithm HYPE and buffered
streaming algorithm RRS(0.15). These three algorithms improve connectivity over Hashing
by 37%, 30%, and 17% respectively. Finally, both MM-N2P and MM-L5 improve connectivity by
13% on average over Hashing. In direct comparison, FREIGHT-cut shows average connectivity
improvements of 6%, 18%, 22%, and 22% over HYPE, RRS(0.15), MM-N2P, and MM-L5, respect-
ively. Each algorithm preserves its relative ranking in average cut-net across all values of k.

In Figure 4d, we plot cut-net performance profiles across all experiments. In the
plot, PaToH-cut produces the best overall connectivity for 98.0% of the instances, while
FREIGHT-cut and HYPE produce the best cut-net for 6.8% and 5.2% of the instances and
all other streaming algorithms (RRS(0.15), MM-N2P, MM-L5, and Hashing) produce the best
cut-net for 4.8% of the instances. The cut-net results produced by FREIGHT-cut, HYPE,
RRS(0.15), MM-N2P, MM-L5, and Hashing are within a factor 2 of the best found cut-net
for 83%, 79%, 69%, 66%, 66%, and 58% of the instances, respectively. This shows that
FREIGHT-cut produces the best cut-net among all (buffered) streaming competitors and
even beats the in-memory algorithm HYPE.

Running Time. Now we compare the algorithms’ runtime. Boxes and whiskers in Figure 4e
display the distribution of the running time per pin, measured in nanoseconds, for all instances.
Hashing, FREIGHT-cut, and FREIGHT-con are the three fastest algorithms, with median
runtimes per pin of 15ns, 38ns, and 41ns, respectively. MM-L5, MM-N2P, HYPE, and RRS(0.15)
follow with median runtimes per pin of 130ns, 437ns, 792ns, and 833ns, respectively. Lastly,
the algorithms with the highest median runtime per pin are PaToH-cut and PaToH-con, with
2 516ns and 3 333ns respectively. The measured runtime per pin for both HYPE and PaToH
align with values reported in prior research [32].

In Figure 4f, we show running time performance profiles. Hashing is the fastest algorithm
for 98.3% of the instances, while FREIGHT-cut is the fastest one for 1.2% of the instances
and no other algorithm is the fastest one for more than 0.4% of the instances. The running
time of FREIGHT-cut and FREIGHT-con is within a factor 4 of that of Hashing for 82% and
72% of instances, respectively. In contrast, for only 16% of instances does this occur for
MM-L5, and for less than 0.4% of instances for all other algorithms. The close running times
of FREIGHT to Hashing are surprising given FREIGHT’s superior solution quality compared to
Hashing and all other streaming algorithms and even HYPE.

SEA 2023



15:14 FREIGHT: Fast Streaming Hypergraph Partitioning

Further Comparisons. For graph vertex partitioning FREIGHT and Fennel are mathematic-
ally equivalent. However, FREIGHT exhibits a lower computational complexity of O(m + n)
compared to the standard implementation of Fennel, which has a complexity of O(m + nk)
due to evaluating all blocks for each node. To optimize its performance for this use case,
we have implemented an optimized version of FREIGHT with a memory consumption of
O(n + k), matching that of Fennel. In our experiments, we utilized the same graphs as
in [14] and tested with k ∈ {512, 1024, 1536, 2048, 2560}. On average, FREIGHT proves to be
109 times faster than the standard implementation of Fennel. Moreover, the performance
gap is found to increase as the value of k grow, with FREIGHT reaching up to 261 times
faster than Fennel in some instances.

5 Conclusion

In this work, we introduce FREIGHT, a highly efficient and effective streaming algorithm
for hypergraph partitioning. Our algorithm leverages an optimized data structure, res-
ulting in linear running time with respect to pin-count and linear memory consumption
in relation to the numbers of nets and blocks. The results of our extensive experiment-
ation demonstrate that the running time of FREIGHT is competitive with the Hashing
algorithm, with a maximum difference of a factor of four observed in three fourths of the
instances. Importantly, our findings indicate that FREIGHT consistently outperforms all
existing (buffered) streaming algorithms and even the in-memory algorithm HYPE, with
regards to both cut-net and connectivity measures. This underscores the significance of our
proposed algorithm as a highly efficient and effective solution for hypergraph partitioning
in the context of large-scale and dynamic data processing.

References
1 Zainab Abbas, Vasiliki Kalavri, Paris Carbone, and Vladimir Vlassov. Streaming graph

partitioning: An experimental study. Proc. VLDB Endow., 11(11):1590–1603, 2018. doi:
10.14778/3236187.3236208.

2 Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. High-quality shared-memory
graph partitioning. In Marco Aldinucci, Luca Padovani, and Massimo Torquati, editors, Euro-
Par 2018: Parallel Processing - 24th International Conference on Parallel and Distributed
Computing, Turin, Italy, August 27-31, 2018, Proceedings, volume 11014 of Lecture Notes in
Computer Science, pages 659–671. Springer, 2018. doi:10.1007/978-3-319-96983-1_47.

3 Dan Alistarh, Jennifer Iglesias, and Milan Vojnovic. Streaming min-max hypergraph par-
titioning. In Advances in Neural Information Processing Systems, pages 1900–1908, 2015.
doi:10.5555/2969442.2969452.

4 Charles J. Alpert. The ISPD98 circuit benchmark suite. In Majid Sarrafzadeh, editor,
Proceedings of the 1998 International Symposium on Physical Design, ISPD 1998, Monterey,
CA, USA, April 6-8, 1998, pages 80–85. ACM, 1998. doi:10.1145/274535.274546.

5 Amel Awadelkarim and Johan Ugander. Prioritized restreaming algorithms for balanced graph
partitioning. In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash, editors, KDD ’20:
The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event,
CA, USA, August 23-27, 2020, pages 1877–1887. ACM, 2020. doi:10.1145/3394486.3403239.

6 Anton Belov, Daiel Diepold, Marijn Heule, and Matti Järvisalo. The sat competition 2014.
http://www.satcompetition.org/2014/, 2014.

7 Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran Nikoloski,
and Dorothea Wagner. On modularity clustering. IEEE transactions on knowledge and data
engineering, 20(2):172–188, 2007. doi:10.1109/TKDE.2007.190689.

https://doi.org/10.14778/3236187.3236208
https://doi.org/10.14778/3236187.3236208
https://doi.org/10.1007/978-3-319-96983-1_47
https://doi.org/10.5555/2969442.2969452
https://doi.org/10.1145/274535.274546
https://doi.org/10.1145/3394486.3403239
http://www.satcompetition.org/2014/
https://doi.org/10.1109/TKDE.2007.190689


K. Eyubov, M. Fonseca Faraj, and C. Schulz 15:15

8 Thang Nguyen Bui and Curt Jones. Finding good approximate vertex and edge partitions is
np-hard. Inf. Process. Lett., 42(3):153–159, 1992. doi:10.1016/0020-0190(92)90140-Q.

9 Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent
Advances in Graph Partitioning, pages 117–158. Springer International Publishing, Cham,
2016. doi:10.1007/978-3-319-49487-6_4.

10 Ümit V. Çatalyürek and Cevdet Aykanat. Patoh (partitioning tool for hypergraphs). In
David A. Padua, editor, Encyclopedia of Parallel Computing, pages 1479–1487. Springer, 2011.
doi:10.1007/978-0-387-09766-4_93.

11 Ümit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca Faraj, Lars Gottesbüren, Tobias Heuer,
Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz, Daniel Seemaier,
and Dorothea Wagner. More recent advances in (hyper)graph partitioning. ACM Computing
Surveys, 2023. doi:doi.org/10.1145/3571808.

12 Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1):1:1–1:25, 2011. doi:10.1145/2049662.2049663.

13 Marcelo Fonseca Faraj and Christian Schulz. Buffered streaming graph partitioning. ACM J.
Exp. Algorithmics, 27, October 2022. doi:10.1145/3546911.

14 Marcelo Fonseca Faraj and Christian Schulz. Recursive multi-section on the fly: Shared-
memory streaming algorithms for hierarchical graph partitioning and process mapping. In
2022 IEEE International Conference on Cluster Computing (CLUSTER), pages 473–483, 2022.
doi:10.1109/CLUSTER51413.2022.00057.

15 Marcelo Fonseca Faraj, Alexander van der Grinten, Henning Meyerhenke, Jesper Larsson
Träff, and Christian Schulz. High-quality hierarchical process mapping. In 18th International
Symposium on Experimental Algorithms, SEA, volume 160 of LIPIcs, pages 4:1–4:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.SEA.2020.4.

16 Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified np-complete
problems. In Proceedings of the 6th Annual ACM Symposium on Theory of Computing, April
30 - May 2, 1974, Seattle, Washington, USA, pages 47–63. ACM, 1974. doi:10.1145/800119.
803884.

17 Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Scalable Shared-Memory
Hypergraph Partitioning. In Proceedings of the Symposium on Algorithm Engineering and
Experiments ALENEX, pages 16–30, 2021. doi:10.1137/1.9781611976472.2.

18 Lars Gottesbüren, Tobias Heuer, Peter Sanders, Christian Schulz, and Daniel Seemaier. Deep
multilevel graph partitioning. In 29th Annual European Symposium on Algorithms, ESA,
volume 204 of LIPIcs, pages 48:1–48:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ESA.2021.48.

19 Loc Hoang, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. Cusp: A customizable
streaming edge partitioner for distributed graph analytics. In 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 439–450. IEEE, 2019. doi:
10.1109/IPDPS.2019.00054.

20 Nazanin Jafari, Oguz Selvitopi, and Cevdet Aykanat. Fast shared-memory streaming multilevel
graph partitioning. Journal of Parallel and Distributed Computing, 147:140–151, 2021. doi:
10.1016/j.jpdc.2020.09.004.

21 George Karypis and Vipin Kumar. Parallel multilevel k-way partitioning scheme for irregular
graphs. In Proceedings of the ACM/IEEE Conference on Supercomputing, page 35. IEEE
Computer Society, 1996. doi:10.1109/SC.1996.32.

22 George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning. In Mary Jane
Irwin, editor, Proceedings of the 36th Conference on Design Automation, pages 343–348. ACM
Press, 1999. doi:10.1145/309847.309954.

23 Renaud Lambiotte, Martin Rosvall, and Ingo Scholtes. From networks to optimal higher-
order models of complex systems. Nature physics, 15(4):313–320, 2019. doi:10.1038/
s41567-019-0459-y.

SEA 2023

https://doi.org/10.1016/0020-0190(92)90140-Q
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-0-387-09766-4_93
https://doi.org/doi.org/10.1145/3571808
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/3546911
https://doi.org/10.1109/CLUSTER51413.2022.00057
https://doi.org/10.4230/LIPIcs.SEA.2020.4
https://doi.org/10.1145/800119.803884
https://doi.org/10.1145/800119.803884
https://doi.org/10.1137/1.9781611976472.2
https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.1109/IPDPS.2019.00054
https://doi.org/10.1109/IPDPS.2019.00054
https://doi.org/10.1016/j.jpdc.2020.09.004
https://doi.org/10.1016/j.jpdc.2020.09.004
https://doi.org/10.1109/SC.1996.32
https://doi.org/10.1145/309847.309954
https://doi.org/10.1038/s41567-019-0459-y
https://doi.org/10.1038/s41567-019-0459-y


15:16 FREIGHT: Fast Streaming Hypergraph Partitioning

24 Christian Mayer, Ruben Mayer, Sukanya Bhowmik, Lukas Epple, and Kurt Rothermel.
HYPE: massive hypergraph partitioning with neighborhood expansion. In IEEE International
Conference on Big Data (IEEE BigData), pages 458–467. IEEE, 2018. doi:10.1109/BigData.
2018.8621968.

25 Christian Mayer, Ruben Mayer, Muhammad Adnan Tariq, Heiko Geppert, Larissa Laich, Lukas
Rieger, and Kurt Rothermel. Adwise: Adaptive window-based streaming edge partitioning
for high-speed graph processing. In 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pages 685–695. IEEE, 2018. doi:10.1109/ICDCS.2018.00072.

26 Joel Nishimura and Johan Ugander. Restreaming graph partitioning: simple versat-
ile algorithms for advanced balancing. In Proceedings of the 19th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 1106–1114, 2013.
doi:10.1145/2487575.2487696.

27 Md Anwarul Kaium Patwary, Saurabh Kumar Garg, and Byeong Kang. Window-based
streaming graph partitioning algorithm. In Proceedings of the Australasian Computer Science
Week Multiconference, ACSW, pages 51:1–51:10. ACM, 2019. doi:10.1145/3290688.3290711.

28 François Pellegrini and Jean Roman. Experimental analysis of the dual recurs-
ive bipartitioning algorithm for static mapping. Technical report, TR 1038-96,
LaBRI, 1996. URL: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&
doi=94b913363b57e019b8a32529b076a8d4181587ac.

29 Maria Predari, Charilaos Tzovas, Christian Schulz, and Henning Meyerhenke. An mpi-based
algorithm for mapping complex networks onto hierarchical architectures. In Euro-Par 2021:
Parallel Processing - 27th International Conference on Parallel and Distributed Computing,
volume 12820 of LNCS, pages 167–182. Springer, 2021. doi:10.1007/978-3-030-85665-6_11.

30 Peter Sanders and Christian Schulz. Think locally, act globally: Highly balanced graph
partitioning. In Experimental Algorithms, 12th International Symposium, SEA, volume 7933
of LNCS, pages 164–175. Springer, 2013. doi:10.1007/978-3-642-38527-8_16.

31 Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders, and
Christian Schulz. k-way hypergraph partitioning via n-level recursive bisection. In Proceedings
of the Eighteenth Workshop on Algorithm Engineering and Experiments, ALENEX, pages
53–67. SIAM, 2016. doi:10.1137/1.9781611974317.5.

32 Sebastian Schlag, Tobias Heuer, Lars Gottesbüren, Yaroslav Akhremtsev, Christian Schulz,
and Peter Sanders. High-quality hypergraph partitioning. ACM Journal of Experimental
Algorithms (JEA), 2022. doi:10.1145/3529090.

33 Christian Schulz and Darren Strash. Graph partitioning: Formulations and applications
to big data. In Encyclopedia of Big Data Technologies. Springer, 2019. doi:10.1007/
978-3-319-63962-8_312-2.

34 Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed graphs.
In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 1222–1230, 2012. doi:10.1145/2339530.2339722.

35 Fatih Taşyaran, Berkay Demireller, Kamer Kaya, and Bora Uçar. Streaming Hypergraph
Partitioning Algorithms on Limited Memory Environments. In HPCS 2020 - International
Conference on High Performance Computing & Simulation, pages 1–8. IEEE, 2021. URL:
https://hal.archives-ouvertes.fr/hal-03182122.

36 Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vojnovic.
Fennel: Streaming graph partitioning for massive scale graphs. In Proceedings of the 7th
ACM international conference on Web search and data mining, pages 333–342, 2014. doi:
10.1145/2556195.2556213.

https://doi.org/10.1109/BigData.2018.8621968
https://doi.org/10.1109/BigData.2018.8621968
https://doi.org/10.1109/ICDCS.2018.00072
https://doi.org/10.1145/2487575.2487696
https://doi.org/10.1145/3290688.3290711
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=94b913363b57e019b8a32529b076a8d4181587ac
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=94b913363b57e019b8a32529b076a8d4181587ac
https://doi.org/10.1007/978-3-030-85665-6_11
https://doi.org/10.1007/978-3-642-38527-8_16
https://doi.org/10.1137/1.9781611974317.5
https://doi.org/10.1145/3529090
https://doi.org/10.1007/978-3-319-63962-8_312-2
https://doi.org/10.1007/978-3-319-63962-8_312-2
https://doi.org/10.1145/2339530.2339722
https://hal.archives-ouvertes.fr/hal-03182122
https://doi.org/10.1145/2556195.2556213
https://doi.org/10.1145/2556195.2556213


Arc-Flags Meet Trip-Based Public Transit Routing
Ernestine Großmann #

Universität Heidelberg, Germany

Jonas Sauer #

Karlsruhe Institute of Technology, Germany

Christian Schulz #

Universität Heidelberg, Germany

Patrick Steil #

Universität Heidelberg, Germany

Abstract
We present Arc-Flag TB, a journey planning algorithm for public transit networks which combines
Trip-Based Public Transit Routing (TB) with the Arc-Flags speedup technique. Compared
to previous attempts to apply Arc-Flags to public transit networks, which saw limited success,
our approach uses stronger pruning rules to reduce the search space. Our experiments show
that Arc-Flag TB achieves a speedup of up to two orders of magnitude over TB, offering
query times of less than a millisecond even on large countrywide networks. Compared to the
state-of-the-art speedup technique Trip-Based Public Transit Routing Using Condensed
Search Trees (TB-CST), our algorithm achieves similar query times but requires significantly
less additional memory. Other state-of-the-art algorithms which achieve even faster query times,
e.g., Public Transit Labeling, require enormous memory usage. In contrast, Arc-Flag TB
offers a tradeoff between query performance and memory usage due to the fact that the number
of regions in the network partition required by our algorithm is a configurable parameter. We
also identify a previously undiscovered issue in the transfer precomputation of TB, which causes
both TB-CST and Arc-Flag TB to answer some queries incorrectly. We provide discussion
on how to resolve this issue in the future. Currently, Arc-Flag TB answers 1–6% of queries
incorrectly, compared to over 20% for TB-CST on some networks.

2012 ACM Subject Classification Theory of computation → Shortest paths; Mathematics of
computing → Graph algorithms; Applied computing → Transportation

Keywords and phrases Public transit routing, graph algorithms, algorithm engineering

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.16

Supplementary Material Software (Code): https://github.com/TransitRouting/Arc-FlagTB
archived at swh:1:dir:6788b9abdd6ad1056ecdec1365b88effd6057558

Funding We acknowledge support by DFG grants SCHU 2567/3-1 and WA 654/23-2.

Acknowledgements We want to thank Dr. Patrick Brosi for providing us with the Germany dataset
and Sascha Witt for providing us with the source code for TB-CST.

1 Introduction

Interactive journey planning applications which provide routing information in real time
have become a part of our everyday lives. While Dijkstra’s Algorithm [17] solves the
shortest path problem in quasi-linear time, it still takes several seconds on continental-sized
networks, which is too slow for interactive use. Practical applications therefore rely on speedup
techniques, which compute auxiliary data in a preprocessing phase and then use this data to
speed up the query phase. Recent decades have seen the development of many successful
speedup techniques for route planning on road networks [4]. These achieve query times of
less than a millisecond with only moderate preprocessing time and space consumption.

© Ernestine Großmann, Jonas Sauer, Christian Schulz, and Patrick Steil;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:e.grossmann@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-9678-0253
mailto:jonas.sauer2@kit.edu
https://orcid.org/0000-0002-7196-7468
mailto:christian.schulz@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-2823-3506
mailto:patrick.steil@student.kit.edu
https://orcid.org/0000-0003-3282-4533
https://doi.org/10.4230/LIPIcs.SEA.2023.16
https://github.com/TransitRouting/Arc-FlagTB
https://archive.softwareheritage.org/swh:1:dir:6788b9abdd6ad1056ecdec1365b88effd6057558;origin=https://github.com/TransitRouting/Arc-FlagTB;visit=swh:1:snp:c5dfb350df4846e66a7dd7de6c002e37dac52f6f;anchor=swh:1:rev:51165d04037433b3e00cbda0148efe9dab234192
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 Arc-Flags Meet Trip-Based Public Transit Routing

For public transit networks, the state of the art is not as satisfactory. In order to achieve
query times below a millisecond on large country-sized networks, existing techniques must
precompute data in the tens to hundreds of gigabytes. This discrepancy has been explained by
the fact that road networks exhibit beneficial structural properties that are not as pronounced
in public transit networks [2]. An additional challenge is that passengers in public trans-
portation systems typically consider more criteria than just the travel time when evaluating
journeys. Most recent algorithms in the literature Pareto-optimize at least two criteria: arrival
time and the number of used trips. For these reasons, a speedup technique which achieves
very low query times with only a moderate amount of precomputed data remains elusive.

State of the Art. For this work, we consider algorithms for journey planning in public
transit networks which Pareto-optimize arrival time and number of trips. For a more general
overview of journey planning algorithms, we refer to [4]. The classical approach is to model
the public transit timetable as a graph and then apply a multicriteria variant of Dijkstra’s
Algorithm [19, 22, 18]. The time-dependent and time-expanded approaches are the two
most prominent ways of modeling the timetable. In the time-dependent model [11, 23], stops
in the network are represented by nodes in the graph and connections between them as edges
with a time-dependent, piecewise linear travel time function. This yields a compact graph
but requires a time-dependent version of Dijkstra’s Algorithm. By contrast, the time-
expanded model [22, 23] introduces a node for each event in the timetable (e.g., a vehicle
arriving or departing from a stop). Edges connect consecutive events of the same trip and
events between which a transfer is possible. The resulting graph is significantly larger but has
scalar edge weights, allowing Dijkstra’s Algorithm to be applied without modification.

Using a graph-based model has the advantage that speedup techniques for Dijkstra’s
Algorithm can be applied. However, the achieved speedups are much smaller than on
road networks [2, 7]. A notable technique which has been applied to bicriteria optim-
ization in public transit networks is Arc-Flags [21]. Its basic idea is to partition the
graph into regions and to compute a flag for each combination of edge and region, which
indicates whether the edge is required to reach the region. Dijkstra’s Algorithm can
then be sped up by ignoring unflagged edges. Arc-Flags has been applied to both time-
dependent [10] and time-expanded [15] graphs, although only arrival time was optimized
in the latter case. This yielded speedups of 3 and 4, respectively, whereas Arc-Flags
on road networks achieves speedups of over 500 [21].

More recent algorithms do not model the timetable as a graph but employ more cache-
efficient data structures to achieve faster query times. Notable examples are RAPTOR [16]
and Trip-Based Public Transit Routing (TB) [25]. The latter employs a lightweight
preprocessing phase which precomputes relevant transfers between individual trips. This
yields query times in the tens of milliseconds, even on large networks, significantly improving
upon graph-based techniques. HypRAPTOR [14] achieves a speedup of 2 over RAPTOR
by using hypergraph partitioning to group the vehicle routes into cells and precomputing
a set of fill-in routes which are required to cross cell boundaries. Applying the same
approach to TB has only yielded a speedup of 20–40% [1].

Algorithms which reduce query times to the sub-millisecond range do so by precomput-
ing auxiliary data whose size is quadratic in the size of the network. Public Transit
Labeling (PTL) [13] adapts the ideas of Hub Labeling [12] to time-expanded graphs.
While this yields query times of a few microseconds, it requires tens of gigabytes of space on
metropolitan networks. Moreover, this does not include the additional overhead required
for journey unpacking, i.e., retrieving descriptions of the optimal journeys, which would
increase the size of the auxiliary data into the hundreds of gigabytes. Transfer Pat-



E. Großmann, J. Sauer, C. Schulz, and P. Steil 16:3

terns (TP) [3] employs a preprocessing phase which essentially answers every possible
query in advance. Since storing a full description of every optimal journey would require
too much space, TP condenses this information into a generalized search graph for each
possible source stop, which is then explored during the query phase. On the network of
Germany, TP answers queries in less than a millisecond but requires hundreds of hours of
preprocessing time and over 100 GB of space. Scalable Transfer Patterns [5] reduces
the preprocessing effort with a clustering-based approach, but the resulting query times
are only barely competitive with TB. Trip-Based Routing Using Condensed Search
Trees (TB-CST) [26] re-engineers the ideas of TP with a faster, TB-based preprocessing
algorithm and by splitting the computed search graphs in order to save space.

Contribution. We revisit the concept of Arc-Flags for public transit journey planning.
In contrast to previous approaches, we use modern TB-based algorithms in preprocessing
and query phases. The high cache efficiency and stronger pruning rules of these algorithms
drastically reduce the search space and running times. The resulting algorithm, Arc-
Flag TB, matches or exceeds the performance of TB-CST with a similar precomputation
time and significantly lower space consumption. Compared to TB, it achieves a speedup
of one order of magnitude on metropolitan networks and two orders of magnitude on
country networks. Since the number of regions in the underlying network partition is
a configurable parameter, Arc-Flag TB additionally offers a tradeoff between query
performance and the size of the precomputed data.

We identify an issue in the transfer precomputation of TB, which both TB-CST and
Arc-Flag TB rely on. As a result, both algorithms answer some queries incorrectly. We
discuss how this issue can be resolved in the future. In its current configuration, Arc-
Flag TB answers 1–6% of queries incorrectly, depending on the network, compared to
over 20% for TB-CST on some networks. Altogether, we show that Arc-Flags for public
transit networks has more potential than previously thought.

2 Preliminaries

2.1 Basic Concepts
Public Transit Network. A public transit network is a 4-tuple (S, L, T , F) consisting of
a set of stops S, a set of lines L, a set of trips T , and a set of footpaths F ⊆ S × S. A
stop p ∈ S is a location where a vehicle stops and passengers can enter or exit the vehicle.
A trip is a sequence T = ⟨T [0], T [1], . . . ⟩ of stop events, where each stop event T [i] has
an associated arrival time τarr(T [i]), departure time τdep(T [i]) and stop p(T [i]) ∈ S. We
denote the number of stop events in T as |T |. Trips with the same stop sequence that do not
overtake each other are grouped into lines. A trip Ta ∈ T overtakes another trip Tb ∈ T if
there are stops p, q ∈ S such that Tb arrives (or departs) later at p than Ta, but Ta arrives
(or departs) earlier than Tb at q. The set of all trips belonging to a line L is denoted as T (L).
Since trips Ta, Tb ∈ T (L) cannot overtake each other, we can define a total ordering

Ta ⪯ Tb ⇐⇒ ∀i ∈ [0, |Ta|) : τarr(Ta[i]) ≤ τarr(Tb[i])
Ta ≺ Tb ⇐⇒ Ta ⪯ Tb ∧ ∃i ∈ [0, |Ta|) : τarr(Ta[i]) < τarr(Tb[i]).

A footpath (p, q) ∈ F allows passengers to transfer between stops p and q with the transfer
time ∆τfp(p, q). If no footpath between p and q exists, we define ∆τfp(p, q) = ∞. If p = q,
then ∆τfp(p, q) = 0. We require that the set of footpaths is transitively closed and fulfills
the triangle inequality, i.e., if there are stops p, q, r ∈ S with (p, q) ∈ F and (q, r) ∈ F , then
there must be a footpath (p, r) ∈ F with ∆τfp(p, r) ≤ ∆τfp(p, q) + ∆τfp(q, r).

SEA 2023



16:4 Arc-Flags Meet Trip-Based Public Transit Routing

A trip segment T [i, j] (0 ≤ i < j < |T |) is the subsequence of trip T between the two stop
events T [i] and T [j]. A transfer Ta[i] → Tb[j] represents a passenger transferring from Ta to Tb

at the corresponding stop events. Note that this requires τarr(Ta[i])+∆τfp(p(Ta[i]), p(Tb[j])) ≤
τdep(Tb[j]). A journey J from a source stop ps to a target stop pt is an sequence of trip
segments such that every pair of consecutive trip segments is connected by a transfer. In
addition, a journey contains an initial and final footpath, where the initial footpath connects ps

to the first stop event, and the final footpath connects the last stop event to pt.

Problem Statement. A journey J from ps to pt is evaluated according to two criteria: its
arrival time at pt, and the number of trips used by J . We say that J weakly dominates
another journey J ′ if J is not worse than J ′ in either of the two criteria. Moreover, J strongly
dominates J ′ if J weakly dominates J ′ and J is strictly better in at least one criterion. Given
source and target stops ps, pt ∈ S and an earliest departure time τdep at ps, a journey J

from ps to pt is feasible if its departure time at ps is not earlier than τdep. A Pareto set P is a
set of journeys such that P has minimal size and every feasible journey is weakly dominated
by a journey in P. Given source and target stops ps, pt ∈ S and a departure time τdep, the
fixed departure time problem asks for a Pareto set with respect to the two criteria arrival
time and number of trips. For the profile problem, we are given an interval [τ1, τ2] of possible
departure times in addition to ps and pt. Here, the objective is to find the union of the
Pareto sets for each distinct departure time τ ∈ [τ1, τ2]. In the full-range profile problem,
the departure time interval spans the entire service duration of the network.

Graph. A directed, weighted graph G = (V, E, c) is a triple consisting of a set of nodes V , a
set of edges E ⊆ V × V , and an edge weight function c : E → R. We denote by n = |V | the
number of nodes and m = |E| the number of edges. A path P = ⟨v1, v2, . . . , vk⟩ is a sequence
of nodes between v1 and vk such that an edge connects each pair of consecutive nodes. The
weight of a path is the sum of the weights of all edges in the path. A path P = ⟨vs, . . . , vt⟩
between a source node vs and a target node vt is called the shortest path if there is no
other path between vs and vt with a smaller weight.

Given a value k ∈ N and a graph G = (V, E, c), a (k-way) partition of G is a function r :
V → {1, . . . , k} which partitions the node set V into k cells. The set of nodes in cell i is
denoted as Vi := r−1(i). An edge (u, v) is called a cut edge if its endpoints u and v belong
to different cells. A node is called a boundary node if it is incident to a cut edge. The
partition is called balanced for an imbalance parameter ε > 0 if the size of each cell Vi

is bounded by |Vi| ≤ (1 + ε)
⌈

|V |
k

⌉
. The graph partitioning problem asks for a balanced

partition that minimizes the weighted sum of all cut edges.

2.2 Related Work
Trip-Based Public Transit Routing. The Trip-Based Public Transit Routing (TB)
algorithm [25] solves the fixed departure time problem on a public transit network. It employs
a precomputation phase, which first generates all possible transfers between stop events.
Then, using a set of pruning rules, transfers that are not required to answer queries are
discarded. We denote the remaining set of transfers as T. Note that T may still contain
transfers which do not occur in any Pareto-optimal journey.

The TB query algorithm is a modified breadth-first search on the set of trips and the
precomputed transfers. The algorithm tracks which parts of the network have already
been explored by maintaining a reached index R(T ) for each trip T . This is the index of



E. Großmann, J. Sauer, C. Schulz, and P. Steil 16:5

the first reached stop event of T , or |T | if none have been reached yet. The TB query
operates in rounds, where round i finds Pareto-optimal journeys which use i trips. Each
round maintains a FIFO (first-in-first-out) queue of newly reached trip segments; these
are then scanned during the round. A trip segment Ta[i, j] is scanned by iterating over
the stop events Ta[k] with i ≤ k ≤ j and relaxing all outgoing transfers (Ta[k], Tb[ℓ]) ∈ T.
If ℓ < R(Tb), then the trip segment Tb[ℓ, R(Tb) − 1] is added to the queue for the next
round. Additionally, for every succeeding trip T ′

b of the same line with Tb ⪯ T ′
b, the reached

index R(T ′
b) is set to min (R(T ′

b), ℓ). This ensures that the search only enters the earliest
reachable trip of each line, a principle we call line pruning.

Profile-TB is an extension of TB for solving the profile problem. It exploits the observation
that journeys with a later departure time weakly dominate journeys with an earlier arrival
time if they are equivalent or better in the other criteria. Therefore, it collects all possible
departure times at ps within the departure time interval [τ1, τ2] and processes them in
descending order. For each departure time, a run of the TB query algorithm is performed.
All data structures, including reached indices, are not reset between runs. This allows
results from earlier runs to prune suboptimal results in the current run, a principle called
self-pruning. In order to obtain correct results, the definition of reached indices must be
modified slightly. For each trip T and each possible number of trips i, the algorithm now
maintains a reached index Ri(T ), which is the index of the first stop event in T which
was reached with i or fewer trips. Whenever Ri(T ) is updated to min(Ri(T ), k) for some
value k, the same is done for the reached indices Rj(T ) with j ≥ i.

Condensed Search Trees. Trip-Based Routing Using Condensed Search Trees (TB-
CST) [26] employs Profile-TB to precompute search graphs which allow for extremely fast
queries. The preprocessing phase solves the full-range profile problem for every possible
pair of source and target stops by running a modified one-to-all version of Profile-TB from
every stop. Consider the Profile-TB search for a source stop ps. After each TB run, all
newly found Pareto-optimal journeys are unpacked. This yields a breadth-first search tree
with ps as the root, trip segments as inner nodes, the reached target stops as leaves, and
footpaths and transfers as edges. The search trees of all runs are merged into the prefix
tree of ps. Here, each trip segment T [i, j] is replaced with a tuple (L, i) consisting of the
line L with T ∈ T (L) and the stop index i where the line is entered.

To answer one-to-all queries, Profile-TB additionally maintains an earliest arrival
time τarr(p, n) for each stop p and number of trips n. Like the reached indices,
these arrival times are not reset between runs. When scanning a stop event T [k] in
round n, the algorithm iterates over all stops p with ∆τfp(p(T [k]), p) < ∞ and com-
putes τarr = τarr(T [k]) + ∆τfp(p(T [k]), p). If τarr < τarr(p, n), then the best known journey
to p with n trips was improved, so τarr(p, m) is set to min(τarr, τarr(p, m)) for all m ≥ n.

To answer a query between source stop ps and target stop pt, TB-CST constructs a query
graph from the prefix tree of ps by extracting all paths which lead to a leaf representing pt.
Then a variant of Dijkstra’s Algorithm is run on the query graph. Since the prefix tree
only provides information about lines but not specific trips, these must be reconstructed
during the query. When relaxing an edge from ps to the first used line, the earliest reachable
trip is identified based on the departure time at ps. When relaxing an edge between lines L1
and L2, the used trip T1 of L1 is already known, so the algorithm explores the outgoing
transfers of T1 in T to find the earliest reachable trip T2 of L2.

The space required to store all prefix trees can be reduced by extracting postfix trees. Con-
sider the prefix tree for a source stop ps. For each path from the root to a leaf representing a
target stop pt, a cut node is chosen. The subpath from the cut node to the leaf is then removed

SEA 2023



16:6 Arc-Flags Meet Trip-Based Public Transit Routing

from the prefix tree of ps and added to the postfix tree of pt. Since many of these extracted
subpaths occur in multiple prefix trees, moving them into a shared postfix tree considerably
reduces memory consumption. To construct the query graph for a source stop ps and target
stop pt, the prefix tree ps and the postfix tree of pt are spliced back together at the cut nodes.

Arc-Flags. Arc-Flags is a speedup technique for Dijkstra’s Algorithm. Its basic idea
is to precompute flags for each edge, which indicate whether the edge is necessary to reach a
particular region of the graph. This allows Dijkstra’s Algorithm to reduce the search
space during a query by ignoring edges which are not flagged for the target region.

Given a weighted graph G = (V, E, c), the preprocessing phase of Arc-Flags performs
two steps: First, it computes a partition r : V → {1, . . . , k} of the node set into k cells,
where k is a freely chosen parameter. Then, a flags function b : E × {1, . . . , k} → {0, 1} is
computed. Each individual value b(e, i) for an edge e and a cell i is called a flag, hence the
name Arc-Flags. The flags function must have the following property: for each pair of
source node vs and target node vt, there is at least one shortest path P from vs to vt such
that b(e, r(vt)) = 1 for every edge e in P . With this precomputed information, a shortest
path query between vs and vt can be answered by running Dijkstra’s Algorithm but
only relaxing edges e for which b(e, r(vt)) = 1. The parameter k imposes a tradeoff between
query speed and memory consumption. The space required to store the flags is in Θ (km),
which is manageable for k ≪ n. On the other hand, the search space of the query decreases
for larger values of k since fewer flags will be set to 1 if the target cell is smaller.

Flags can be computed naively by solving the all-pairs shortest path problem, i.e., com-
puting the shortest path between every pair of nodes. However, this requires Ω(n2) precom-
putation time. The precomputation can be sped up by exploiting the observation that every
shortest path that leads into a cell must pass through a boundary node. Thus, it is sufficient
to compute backward shortest-path trees from all boundary nodes. For more details, see [20].

Arc-Flags for Public Transit Networks. Berger et al. [10] applied Arc-Flags to a time-
dependent graph model in a problem setting which asks for all Pareto-optimal paths, including
duplicates (i.e., Pareto-optimal paths which are equivalent in both criteria). They observed
that for nearly every combination of edge e and cell i, there is at least one point in time
during which e occurs on a Pareto-optimal path to a node in cell i. To solve this problem,
the authors divided the service period of the network into two-hour intervals and computed
a flag for each combination of edge, cell and time interval. However, this approach merely
achieved a speedup of ≈ 3 over Dijkstra’s Algorithm.

Time resolution is not an issue in time-expanded graphs, where each node is associated
with a specific point in time. However, Delling et al. [15] observed a different problem
when applying Arc-Flags to a time-expanded graph, even when optimizing only arrival
time. Since the arrival time of a path depends only on its target node, all valid paths are
optimal. Delling et al. therefore evaluated various tiebreaking strategies to decide which
optimal paths should be flagged. The most successful strategy only achieved a speedup
of ≈ 4 over Dijkstra’s Algorithm. In the same paper, Delling et al. proposed a pruning
technique called Node-Blocking, which applies the principle of line pruning to Dijkstra’s
Algorithm in time-expanded graphs. The authors observed that Node-Blocking conflicts
with their tiebreaking choices for Arc-Flags, leading to incorrectly answered queries.
Therefore, they only evaluated Arc-Flags without Node-Blocking.



E. Großmann, J. Sauer, C. Schulz, and P. Steil 16:7

1

2

1
1

2 1

1

1 2

Figure 1 Left: An example network with stops as nodes, trips as colored solid edges and transfers
as dashed edges. Right: The corresponding layout graph with edges weighted by the number of
corresponding connections. Node groupings indicate a possible 3-way partition of the graph.

3 Arc-Flag TB

We now present the core ideas of our new algorithm Arc-Flag TB, which applies the main
idea of Arc-Flags to TB. We first explain the general idea and then discuss details and
optimizations. Finally, we compare our approach to similar algorithms.

The Arc-Flag TB precomputation performs two tasks: First it partitions the set S of
stops into k cells, which yields a partition function r : S → {1, . . . , k}. Then it computes
a flag for each transfer t ∈ T and cell i which indicates whether t is required to reach any
target stops in cell i. Formally, this yields a flags function b : T × {1, . . . , k} → {0, 1} with
the following property: for each query with source stop ps, target stop pt and departure
time τdep, there is a Pareto set P such that b(t, r(pt)) = 1 for every transfer t = Ta[i] → Tb[j]
that occurs in a journey J ∈ P. A query between source stop ps and target stop pt is
answered by running the TB query algorithm with one modification: a transfer t ∈ T is
only explored if the flag for the target cell is set to 1, i.e., b(t, r(pt)) = 1.

3.1 Partitioning

To represent the topology of the public transit network without its time dependency, we
define the layout graph GL. The set of connections between a pair p, q of stops is given by

X(p, q) := {T [i, i + 1] | T ∈ T , p(T [i]) = p, p(T [i + 1]) = q} ∪ {(p, q) | (p, q) ∈ F} .

Thus, a connection is either a trip segment between two consecutive stops or a footpath.
Then the layout graph is defined as GL = (S, EL, cL), with the set of edges EL ⊆ S × S
and edge weight function cL : EL → N defined by

EL := {(p, q) | X(p, q) ̸= ∅} ,

cL ((p, q)) := |X(p, q)| .

An illustration of a layout graph is given in Figure 1. The stop partition r is obtained by
generating the layout graph and running a graph partitioning algorithm of choice. Due to
the weight function, the partitioning algorithm will attempt to avoid separating stops
which have many connections between them.

SEA 2023



16:8 Arc-Flags Meet Trip-Based Public Transit Routing

τdep

B0

B1

G0

G1

L✓✓✓✓

◦✓ ◦✓

✓✓✓✓

◦✓
✓✓

a

a

b

b

c

c

d

d

e f

ps pt

Figure 2 An example network illustrating the need for departure time fixing. Grey boxes represent
stops. Nodes within the boxes represent stop events and are labeled with their indices along the
respective trip. Within a stop, events are depicted in increasing order of time from bottom to top.
Colored edges represent trips, with trips of the same line using the same color. Dashed edges with
arrows represent transfers. Assume that pt is the only stop in cell i of the stop partition r. For
each transfer t, checkmarks indicate whether the flag of t for cell i is set to 1. From left to right,
these represent various configurations of the flag computation algorithm: unmodified Profile-TB,
departure time buffering, flag augmentation, buffering + augmentation.

3.2 Flag Computation

To compute the flags, the full-range profile problem is solved for all pairs of source and
target stops. As with TB-CST, this is done by running one-to-all Profile-TB search
for every possible source stop. After each TB run of the Profile-TB search, all newly
found journeys are unpacked. For a journey J to a target stop pt and each transfer t

in J , the flag b(t, r(pt)) is set to 1. Once all flags have been computed, transfers for
which no flags are set to 1 can be removed from T.

Flag Compression. For an edge e, we call the set of flags b(e, i) for 1 ≤ i ≤ k its flag
pattern. Bauer et al. [6] observed for Arc-Flags on road networks that many edges in
the graph share the same flag pattern. They exploit this with the following compression
technique: All flag patterns which occur in the graph are stored in a global array A. For
each edge e, the algorithm does not store the flag pattern of e directly, but rather the index i

for which A[i] holds the flag pattern of e. This significantly reduces memory consumption
at the cost of an additional pointer access whenever an edge is relaxed. We also apply
this compression technique in Arc-Flag TB and sort the flag pattern array in decreasing
order of occurrence. This ensures that the most commonly accessed flag patterns are stored
close together in memory, which increases the likelihood of cache hits.

3.3 Resolving Issues with Correctness

Departure Time Buffering. Due to line pruning, a TB query always enters the earliest
reachable trip of a line; later trips of the same line are not explored. However, because
Profile-TB processes departure times in decreasing order and applies self-pruning, it returns
journeys which depart as late as possible. These two pruning rules conflict, leading to
situations where Arc-Flag TB fails to find a Pareto-optimal journey. An example of this
is shown in Figure 2. An unmodified Profile-TB search from ps will find the journey J0 :=
⟨B0[a, b], G0[c, d], L[e, f ]⟩ and flag it for cell i. However, it will not flag the journey J1 :=
⟨B1[a, b], G1[c, d], L[e, f ]⟩, which has an earlier departure time and is therefore processed in
a later run, but has the same arrival time and number of trips. An Arc-Flag TB query
from ps to pt with departure time τdep(B1[a]) will enter B1 but not relax the unflagged
transfer B1[b] → G1[c]. While B0[b] → G0[c] is flagged, the query will not enter B0 due
to line pruning and therefore not relax this transfer either.



E. Großmann, J. Sauer, C. Schulz, and P. Steil 16:9

To solve this issue, we introduce the notion of the itinerary. An itinerary is a generalized
description of a journey which specifies the lines used and the stop indices where they
are entered and exited, but not the trips used. Corresponding to a stop event T [i] is the
line event L[i] where T ∈ T (L). The stop visited by L[i] is denoted as p(L[i]). A trip
segment T [i, j] corresponds to the line segment L[i, j]. An itinerary is therefore a sequence
of line segments. The itinerary describing a journey J = ⟨T1[b1, e1], . . . , Tk[bk, ek]⟩ is given
by I(J) = ⟨L1[b1, e1], . . . , Lk[bk, ek]⟩, where Ti ∈ T (Li) for 1 ≤ i ≤ k. For a line L, an
index i and a departure time τdep, let Tmin(L, i, τdep) denote the earliest trip of L which
departs at p(L[i]) no earlier than τdep. For an itinerary I = ⟨L1[b1, e1], . . . , Lk[bk, ek]⟩,
the journey Jmin(I, τdep) is the journey with itinerary I which takes the earliest reach-
able trip of every line when starting with departure time τdep. Formally, Jmin(I, τdep) =
⟨T1[b1, e1], . . . , Tk[bk, ek]⟩ with Ti = Tmin(Li, bi, τ

i
dep) and

τi
dep =

{
τdep + ∆τfp(ps, p(L1[b1])) if i = 1,

τarr(Ti−1[ei−1]) + ∆τfp(p(Li−1[ei−1]), p(Li[bi])) otherwise.

In Figure 2, J0 and J1 have the same itinerary I. To ensure that the query
from ps to pt with departure time τdep(B1[a]) is answered correctly by Arc-Flag TB,
Jmin(I, τdep(B1[a])) = J1 must be flagged as well. In general, consider the one-to-all
Profile-TB search from a source stop ps. For a TB run with departure time τdep and a
target stop pt, let P be the found Pareto set. We define the buffered Pareto set

Pbuf(P, τdep) := {Jmin(I(J), τdep) | J ∈ P}.

Since P is a Pareto set, we know that every journey J ∈ P has the same arrival time
as Jmin(J, τdep). Hence, the last trip segment of Jmin(I(J), τdep) and J is always identical.
However, for the other trip segments, Jmin(I(J), τdep) may use earlier trips than J . We modify
the Profile-TB search to flag all transfers in Pbuf(P, τdep). To do this efficiently, we employ
an approach which we call departure time buffering. An itinerary I beginning with the line
segment L1[b1, e1] is unpacked within the interval (τ1, τ2] as follows: For a trip T1 ∈ T (L1),
let τdep(I, T1) := τdep(T1[b1])−∆τfp(ps, p(T1[b1])) be the departure time of a journey with the
itinerary I that uses T1 as the first trip. For each trip T1 ∈ T (L1) with τdep(I, T1) ∈ (τ1, τ2],
the journey Jmin(I, τdep(I, T1)) is constructed and its transfers are flagged.

For each stop p and round n, the algorithm maintains not only the earliest arrival
time τarr(p, n) but a buffered itinerary I(p, n), which represents the journey associated
with τarr(p, n), as well as the departure time τdep(p, n) of the run in which τarr(p, n) was
last changed. If τarr(p, n) is improved during a run with departure time τdep, then the
journey corresponding to this arrival time is not flagged right away. Instead, after the
end of the run, the algorithm unpacks the buffered itinerary I(p, n) within the inter-
val (τdep, τdep(p, n)) (unless I(p, n) has not been set before). Afterwards, the buffered
itinerary I(p, n) is updated by unpacking the journey corresponding to the new value
of τarr(p, n). After the last TB run of the profile search, the remaining buffered itiner-
aries are processed. For every stop p and round n such that τarr(p, n) < ∞, the itiner-
ary I(p, n) is unpacked within the interval (−∞, τdep(p, n)).

Flag Augmentation. Departure time buffering does not fix all issues caused by the
incompatibility between line pruning and self-pruning. Consider the example shown
in Figure 3. Once again, an unmodified Profile-TB search from ps will find the
journey J0 := ⟨B[a, b], G0[c, d], L[e, f ]⟩ and flag it for cell i, whereas the equivalent

SEA 2023



16:10 Arc-Flags Meet Trip-Based Public Transit Routing

τdep

B

R

G0

G1

L

H

✓✓✓✓

✓✓✓✓

✓✓✓✓

◦ ◦✓
✓

✓✓✓✓

a

a′

b

b′

c

c

d

d

e f

e′ f ′

ps pt

p′
t

Figure 3 An example network illustrating the need for flag augmentation. Nodes, edges and
checkmarks have the same meaning as in Figure 2. Assume that the stops pt and p′

t are the only
stops in cell i of the stop partition r.

journey J1 := ⟨R[a′, b′], G1[c, d], L[e, f ]⟩ is discarded. In this case, however, departure
time buffering will not cause J1 to be flagged either because it starts with a different line
than J0. Once again, consider an Arc-Flag TB query from ps to pt with departure
time τdep(R[a′]). If the transfer R[b′] → G1[c] is not flagged, then the algorithm will
enter G0 and find J0. However, in the example network, this transfer is flagged due to
another journey J ′

1 := ⟨R[a′, b′], G1[c, d], H[e′, f ′]⟩, which leads to another target stop p′
t

in cell i. As a consequence, G1 is entered, but the unflagged transfer G1[d] → L[e]
is not relaxed, while G0 is not entered due to line pruning.

To fix this issue, we define the augmented flags function b̂ : T × {1, . . . , k} → {0, 1}.
Consider a line L, a trip Ta ∈ T (L) and a transfer t = Ta[i] → Tb[j] ∈ T. We
define the set of successor transfers T↑(t) as

T↑(Ta[i] → Tb[j]) := {T ′
a[i] → Tb[j] ∈ T | T ′

a ∈ T (L) , Ta ⪯ T ′
a}.

Then b̂ is defined as follows for a transfer t ∈ T and cell i:

b̂(t, i) :=
∨

t′∈T↑(t)

b(t, i)

In the example from Figure 3, using b̂ instead of b resolves the problem, provided
that all transfers which occur in J1 are included in the set T of transfers generated by
the TB preprocessing phase. Note that flag augmentation alone (without departure time
buffering) will not fix the issue shown in Figure 2 because the transfer B1[b] → G1[c]
will not be flagged. Thus, both fixes must be combined.

TB Transfer Precomputation. A final issue is due to the TB preprocessing phase, which
computes the set T of transfers. Unfortunately, its rules for pruning unnecessary trans-
fers are too strong to guarantee that the transfers required by the Arc-Flag TB pre-
processing are always generated. It is possible to construct examples akin to Figure 2
where the transfer G1[d] → L[f ] is not included in T, e.g., because a transfer to a dif-
ferent trip than L is preferred. In this case, both Arc-Flag TB and TB-CST1 will
fail to return correct results. Adapting the pruning rules of the TB preprocessing phase
to resolve these issues remains an open problem.

To show that they can be resolved in principle, we implemented a prototypical variant of
the Arc-Flag TB preprocessing that performs the profile searches with rRAPTOR [16],
the profile variant of RAPTOR. While rRAPTOR does not rely on precomputed transfers,

1 We reported this issue to the author of TB-CST, who concurred with our findings. The original
TB-CST publication [26] mainly focused on evaluating profile queries, where this issue does not occur.



E. Großmann, J. Sauer, C. Schulz, and P. Steil 16:11

it suffers from the same conflict between line pruning and self-pruning as Profile-TB. This
conflict was previously noticed and resolved in the context of ULTRA [8, 9], a preprocessing
technique for multimodal journey planning which is based on rRAPTOR. We applied the
modifications proposed for ULTRA to our rRAPTOR implementation. The resulting variant
of Arc-Flag TB has significantly higher preprocessing times than the Profile-TB-based
one but answered all queries correctly in our preliminary experiments.

3.4 Comparison
We conclude this section by comparing Arc-Flag TB to similar approaches.

TB-CST. TB-CST (without split trees) stores a generalized shortest path tree for every
possible source stop. This offers a near-perfect reduction in the query search space but at
the expense of quadratic memory consumption. The memory consumption of Arc-Flag
TB is in Θ(|T| k), where k is the number of cells. Thus, Arc-Flag TB can be seen as a
way to interpolate between TB and TB-CST regarding query search space and memory
consumption. For k = 1, every non-superfluous transfer will be flagged, and thus the search
space will be identical to that of TB with a minimal set of transfers. For k = n, the flags
provide perfect information about whether a transfer is required to reach the target node.

An advantage of our approach is that the transfer flags provide information about which
specific trips should be entered. In contrast, the TB-CST search graph only provides
information about entire lines. This means that Arc-Flag TB does not have to invest
additional effort during the query phase to find the earliest reachable trip of each line.

Time-Expanded Arc-Flags. Conceptually, our approach is similar to Arc-Flags on a time-
expanded graph, albeit with TB as a query algorithm instead of Dijkstra’s Algorithm.
Delling et al. [15] observed low speedups when applying Arc-Flags to time-expanded
graphs. We analyze some of the issues causing this and how Arc-Flag TB overcomes
them. In a time-expanded graph, each visit of a vehicle at a stop is modeled with three
nodes: an arrival node, a transfer node and a departure node. A journey corresponds to
a path between two transfer nodes. However, boundary nodes in the partition may also
be departure or arrival nodes. Consider, for example, a boundary node v of cell i which is
an arrival node corresponding to the stop event T [i]. Arc-Flags will compute and flag
a backward shortest-path tree rooted in v. A path in this tree corresponds to a “journey”
which ends with the passenger remaining seated in T . However, there is no guarantee that
this path can be extended to a Pareto-optimal journey which ends at a transfer node in
cell i. Entering T may never be required to enter cell i. In this case, Arc-Flags produces
superfluous flags. Arc-Flag TB avoids this problem by performing a one-to-all profile
search from all stops, including those which are not boundary nodes in the layout graph.
While this requires Ω(|S|2) preprocessing time, it considerably reduces the number of set flags.

Another feature of Arc-Flag TB that reduces the search space is that it flags transfers
between stop events. In the time-expanded graph, a transfer corresponds to an entire
path between an arrival and a departure node, which may pass through several transfer
nodes. Consider two flagged transfers T1[i1] → T2[i2] and T3[i3] → T4[i4] whose paths in the
time-expanded graph intersect. This has the effect of creating “virtual” transfers T1[i1] →
T4[i4] and T3[i3] → T2[i2], which may not be flagged. Arc-Flags on the time-expanded
graph will explore these transfers, whereas Arc-Flag TB will not. Note that Arc-
Flag TB only flags transfers, not trip segments. This is because flagging trip segments
would not provide any benefit beyond the first round of an Arc-Flag TB query: If a

SEA 2023



16:12 Arc-Flags Meet Trip-Based Public Transit Routing

Table 1 An overview of the networks on which we performed our experiments. Stops, lines, trips
and footpaths are from the GTFS datasets. Transfers were generated by the TB precomputation.

Network Stops Lines Trips Footpaths Transfers

Germany 441 465 207 801 1 559 118 1 172 464 60 919 877
Paris 41 757 9 558 215 526 445 912 23 284 123
Sweden 48 007 15 627 248 977 2 118 14 771 466
Switzerland 30 861 18 235 559 752 20 864 9 142 826

trip segment is not flagged for a specific cell, then neither are its incoming or outgoing
transfers. Thus, an unflagged trip segment can only be entered during the first round,
and no further trip segments are reachable from there.

Finally, Delling et al. note that all paths in a time-expanded graph have optimal arrival
time and that a speedup is only achieved with suitable tiebreaking choices between equivalent
paths. They observed that their tiebreaking choices conflicted with their implementation of
line pruning, Node-Blocking. In Arc-Flag TB, the tiebreaking choices are dictated by the
self-pruning of Profile-TB. While this also produces conflicts with line pruning, we resolved
them by applying departure time buffering and flag augmentation. This allows Arc-Flag
TB to fully benefit from both pruning rules, unlike previous approaches.

4 Experimental Evaluation

We evaluate the performance of Arc-Flag TB on a selection of real-world public transit
networks. All experiments were run on a machine equipped with an AMD EPYC 7702P
CPU with 64 cores, 128 threads, and 1 TB of RAM. Code for TB and Arc-Flag TB
was written in C++ and compiled using GCC with optimizations enabled (-march=native
-O3). For TB-CST, we used the original code provided to us by the author [25]. The
preprocessing phases of TB-CST and Arc-Flag TB, which run one-to-all Profile-TB
from each stop, were parallelized with 128 threads.

Our datasets are taken from GTFS feeds of the public transit networks of Germany2,
Paris3, Sweden4 and Switzerland5. Details are listed in Table 1. For each network, we
extracted the timetable of two consecutive weekdays to allow for overnight journeys.

Partitioning. We use the KaHIP6 [24] open-source graph partitioning library to partition
our networks. KaHIP is based on a multilevel approach, i.e., the input graph is coarsened,
initially partitioned, and locally improved during uncoarsening. In our experiments, overall
better results are obtained when coarsening is computed using clustering rather than edge
matching as usual. More specifically, we use the memetic algorithm kaffpaE with the strong
social configuration and an imbalance parameter of 5% in all of our experiments. As a
time limit, we set 10 minutes for all networks regardless of the number k of desired cells.
In our experiments, higher time limits did not significantly improve the results regarding
the total number of flags set and average query times.

2 https://gtfs.de/
3 © https://navitia.io/
4 https://trafiklab.se/
5 https://opentransportdata.swiss/
6 https://github.com/KaHIP/KaHIP

https://gtfs.de/
https://navitia.io/
https://trafiklab.se/
https://opentransportdata.swiss/
https://github.com/KaHIP/KaHIP


E. Großmann, J. Sauer, C. Schulz, and P. Steil 16:13

Table 2 Performance of Arc-Flag TB depending on the number of cells k. Departure time
fixing and flag augmentation are enabled for all experiments. Query times and success rates are
averaged over 10 000 random queries. Success rates are the percentage of queries for which Arc-Flag
TB found a correct Pareto set, and the percentage of journeys in the correct Pareto sets for which
Arc-Flag TB found an equivalent journey, respectively. Query times and memory consumption are
measured with and without flag compression. Note that the preprocessing time does not include the
partitioning, which was limited to 10 minutes in all configurations. Query times for k = 1 are for TB.

Network k
Prepro.

[hh:mm:ss]
Query time [µs] Memory [MB] Success rate [%]

Uncomp. Comp. Uncomp. Comp. Queries Journeys

Germany

1 – 105 809 – – – – –
1 024 34:12:44 739 1 068 5 120 725 93.53 95.12
2 048 34:09:26 578 912 8 704 1 126 93.02 94.74
4 096 34:10:59 548 745 16 384 2 474 92.22 94.24

Paris

1 – 4 502 – – – – –
64 00:37:15 865 1 528 450 95 99.17 99.30

128 00:37:19 671 1 486 513 133 99.08 99.25
256 00:37:29 502 1 230 639 187 98.98 99.18
512 00:37:35 393 982 891 282 98.76 99.03

1 024 00:37:45 331 757 1 434 468 98.43 98.78

Sweden

1 – 7 583 – – – – –
64 00:17:24 265 288 376 60 95.77 96.61

128 00:17:26 167 202 428 69 95.36 96.24
256 00:17:27 121 164 534 84 95.14 96.01
512 00:17:30 97 140 744 116 94.86 95.82

1 024 00:17:32 88 127 1 229 184 94.37 95.49

Switzerland

1 – 7 043 – – – – –
64 00:13:07 223 225 222 35 96.74 97.53

128 00:13:08 154 172 253 40 96.29 97.23
256 00:13:09 112 136 315 50 95.75 96.86
512 00:13:13 91 118 440 70 95.29 96.60

1 024 00:13:14 81 108 698 114 94.80 96.29

Arc-Flag TB Performance. Performance measurements for Arc-Flag TB, including the
impact of flag compression and the number of cells k, are shown in Table 2. For each
configuration, we performed 10 000 queries with the source and target stops chosen uniformly
at random and the departure time chosen uniformly at random within the first day of the
timetable. As expected, the preprocessing time is mostly unaffected by k. Without flag
compression and with the highest number of cells, Arc-Flag TB achieves a speedup of
193.1 on Germany, 13.6 on Paris, 86.2 on Sweden and 87.0 on Switzerland. Even without
compression, the memory consumption for the computed flags is moderate at roughly 1 GB
for the smaller networks and 16 GB for Germany. On all networks except Paris, flag
compression is very effective: it reduces the memory consumption by a factor of 6–8 at the
expense of 20–40% of additional query time. On Paris, the compression is less successful
but still reduces the memory consumption by a factor of 3 while roughly doubling the
query time. Figure 4 plots the speedup over TB and the memory consumption, with and
without flag compression, depending on k. While the performance gains from doubling the

SEA 2023



16:14 Arc-Flags Meet Trip-Based Public Transit Routing

64 128 256 512 10240

5

10

15

k

Sp
ee

du
p

Paris – Speedup

64 128 256 512 10240

500

1 000

1 500

k

M
em

or
y

[M
B

]

Paris – Memory

64 128 256 512 10240

20

40

60

80

100

k

Sp
ee

du
p

Switzerland – Speedup

64 128 256 512 10240

200

400

600

800

k

M
em

or
y

[M
B

]

Switzerland – Memory

Arc-Flag TB (no flag compression)
Arc-Flag TB (flag compression)

Figure 4 Average speedup over TB and memory consumption of Arc-Flag TB (with and
without flag compression) on the Paris and Switzerland networks, depending on the number of cells k.

number of cells eventually decline, they still remain strong up to k = 1 024. The rate of
incorrectly answered queries is around 5% on the country networks and 1% on Paris, and
only slightly increases with k. The lower speedup for Paris is explained by the fact that
it is a dense metropolitan network with a less hierarchical structure and, therefore, harder
to partition. Similar discrepancies in the performance between metropolitan networks and
country networks were observed for Transfer Patterns [3] and TB-CST [26].

Result Quality. Table 3 shows the impact of departure time buffering and flag augmentation
on the result quality of Arc-Flag TB. Departure time buffering significantly increases
the preprocessing time, but this pays off in terms of the error rate, which is reduced from
almost 30% to 6%. Flag augmentation on its own also reduces the number of incorrectly
answered queries, but not as much. Combining both only slightly reduces the error rate
compared to departure time buffering alone, which indicates that the scenario depicted
in Figure 3 is rare. The results for our prototypical rRAPTOR-based preprocessing



E. Großmann, J. Sauer, C. Schulz, and P. Steil 16:15

Table 3 Impact of the preprocessing algorithm, departure time buffering (Buf.) and flag
augmentation (Aug.) on the performance and success rate of Arc-Flag TB, measured on the
Switzerland network with k = 1 024. Query times are measured without flag compression.

Algorithm Buf. Aug. Prepro.
[hh:mm:ss]

Query time
[µs]

Success rate [%]

Queries Journeys

Profile-TB ◦ ◦ 00:05:03 46 70.37 75.54
Profile-TB ◦ • 00:05:05 56 81.87 85.39
Profile-TB • ◦ 00:13:13 77 94.05 95.70
Profile-TB • • 00:13:14 81 94.80 96.29
rRAPTOR – – 01:26:51 58 100.00 100.00

algorithm are promising: While the preprocessing times are not practical, all queries are
answered correctly. Furthermore, query times actually decrease compared to Profile-TB
with buffering since flags are no longer set unnecessarily.

TB-CST. Finally, we compare Arc-Flag TB against Witt’s implementation of TB-
CST with split trees [26] on our networks. The results are shown in Table 4. We do not
report the performance of TB-CST with unsplit prefix trees since the precomputed data
requires over 100 GB of memory even on the smaller networks. Therefore, a comparison
would not be fair. Excluding the partitioning step, which always took 10 minutes in our
experiments, the precomputation time of Arc-Flag TB is 2–6 times higher, depending
on the network. Although both techniques perform a one-to-all Profile-TB search from
every stop, our algorithm additionally performs departure time buffering, which increases
the precomputation time. The remaining difference, which amounts to a factor of 2 on
the Switzerland network, is due to the fact that our implementation of Profile-TB is less
optimized than Witt’s. The memory consumption of Arc-Flag TB is much lower than
that of TB-CST, even with 1 024 cells and without flag compression. On the three smaller
networks, our query times are similar or better. A proper comparison for the Germany
network is difficult because we were not able to execute the provided code for TB-CST
on this instance, and the query times reported in the original paper [26] are for a smaller
version of the network. Nevertheless, we observe that Arc-Flag TB with k = 2 048 is at
most four times slower than TB-CST while consuming less than a tenth of the space.

Overall, Arc-Flag TB matches the query performance of TB-CST while requiring
much less space. This is for two reasons: Firstly, the query time of TB-CST is dominated
by the time required to construct the query graph. Arc-Flag TB does not require this
step. Secondly, the TB-CST query algorithm must reconstruct the earliest reachable trip of
each used line at query time, whereas Arc-Flag TB can rely directly on the precomputed
transfers. Furthermore, we observe that TB-CST has a much higher error rate on Sweden
and Switzerland than Arc-Flag TB. We expect that this is because Arc-Flag TB
aggregates the flags by cell. Thus, even if the precomputation fails to find a required
journey to a particular target stop, the transfers in that journey may still be flagged if
they occur in journeys to other target stops in the same cell.

SEA 2023



16:16 Arc-Flags Meet Trip-Based Public Transit Routing

Table 4 Performance of TB-CST with split trees for 10 000 random queries. Note that we were
not able to run TB-CST queries on the Germany network due to issues with the provided code. We
instead list the query time reported in [26].

Network Prepro.
[hh:mm:ss]

Query time
[µs]

Memory
[MB]

Success rate [%]

Queries Journeys

Germany 06:36:27 (156) 114 080 – –
Paris 00:20:30 507 6 992 98.98 99.05
Sweden 00:07:42 91 3 400 75.99 91.67
Switzerland 00:02:22 66 1 586 80.72 89.88

5 Conclusion

We developed Arc-Flag TB, a speedup technique for public transit journey planning which
combines Arc-Flags and Trip-Based Public Transit Routing (TB). We demonstrated
that the stronger pruning rules of TB allow our approach to overcome previous obstacles
in applying Arc-Flags to public transit networks. This allows Arc-Flag TB to achieve
up to two orders of magnitude speedup over TB. Compared to TB-CST, a state-of-the-art
speedup technique for TB, our algorithm achieves roughly the same query times with a similar
precomputation time and only a fraction of the memory consumption. Unlike TB-CST, the
query performance and memory consumption are configurable via the number of cells in the
computed network partition. Currently, both algorithms answer some queries incorrectly
due to an issue with the TB precomputation phase. However, we showed that the error
rate of Arc-Flag TB is low and presented a prototypical variant of the algorithm which
answers all queries correctly. In the future, it would be interesting to examine whether the
performance of Arc-Flag TB can still be achieved with a subquadratic precomputation
phase which only runs searches from the boundary nodes of the partition.

References
1 Prateek Agarwal and Tarun Rambha. Scalable Algorithms for Bicriterion Trip-Based Transit

Routing. Technical report, Department of Civil Engineering, Indian Institute of Science, 2022.
arXiv:2111.06654.

2 Hannah Bast. Car or Public Transport – Two Worlds. In Efficient Algorithms, volume
5760 of Lecture Notes in Computer Science (LNCS), pages 355–367. Springer, 2009. doi:
10.1007/978-3-642-03456-5_24.

3 Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin
Raychev, and Fabien Viger. Fast Routing in Very Large Public Transportation Networks
using Transfer Patterns. In Proceedings of the 18th Annual European Symposium on Al-
gorithms (ESA’10), volume 6346 of Lecture Notes in Computer Science (LNCS), pages 290–301.
Springer, 2010. doi:10.1007/978-3-642-15775-2_25.

4 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in
Transportation Networks. In Algorithm Engineering: Selected Results and Surveys, volume
9220 of Lecture Notes in Computer Science (LNCS), pages 19–80. Springer, 2016. doi:
10.1007/978-3-319-49487-6_2.

5 Hannah Bast, Matthias Hertel, and Sabine Storandt. Scalable Transfer Patterns. In Proc. 18th
Workshop on Algorithm Engineering and Experiments (ALENEX’16), pages 15–29. Society for
Industrial and Applied Mathematics (SIAM), 2016. doi:10.1137/1.9781611974317.2.

https://arxiv.org/abs/2111.06654
https://doi.org/10.1007/978-3-642-03456-5_24
https://doi.org/10.1007/978-3-642-03456-5_24
https://doi.org/10.1007/978-3-642-15775-2_25
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1137/1.9781611974317.2


E. Großmann, J. Sauer, C. Schulz, and P. Steil 16:17

6 Reinhard Bauer and Daniel Delling. SHARC: Fast and Robust Unidirectional Routing. Journal
of Experimental Algorithmics (JEA), 14:4.1–4.29, 2009. doi:10.1145/1498698.1537599.

7 Reinhard Bauer, Daniel Delling, and Dorothea Wagner. Experimental Study of Speed Up
Techniques for Timetable Information Systems. Networks, 57:38–52, 2011. doi:10.1002/net.
20382.

8 Moritz Baum, Valentin Buchhold, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf.
UnLimited TRAnsfers for Multi-Modal Route Planning: An Efficient Solution. In Proceedings
of the 27th Annual European Symposium on Algorithms (ESA’19), volume 144 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 14:1–14:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.14.

9 Moritz Baum, Valentin Buchhold, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf.
UnLimited TRAnsfers for Multi-Modal Route Planning: An Efficient Solution. Technical
report, ITI Wagner, Department of Informatics, Karlsruhe Institute of Technology (KIT),
2023. arXiv:1906.04832.

10 Annabell Berger, Daniel Delling, Andreas Gebhardt, and Matthias Müller-Hannemann. Ac-
celerating Time-Dependent Multi-Criteria Timetable Information is Harder Than Expected.
In Proceedings of the 9th Workshop on Algorithmic Approaches for Transportation Model-
ling, Optimization, and Systems (ATMOS’09), volume 12 of OpenAccess Series in Inform-
atics (OASIcs), pages 2:1–2:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2009.
doi:10.4230/OASIcs.ATMOS.2009.2148.

11 Gerth S. Brodal and Riko Jacob. Time-dependent Networks as Models to Achieve Fast
Exact Time-table Queries. In Proceedings of the 3rd Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS’03), volume 92, pages 3–15.
Elsevier, 2004. doi:10.1016/j.entcs.2003.12.019.

12 Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and Distance
Queries via 2-Hop Labels. SIAM Journal on Computing (SICOMP), 32(5):1338–1355, 2003.
doi:10.1137/S0097539702403098.

13 Daniel Delling, Julian Dibbelt, Thomas Pajor, and Renato F. Werneck. Public Transit Labeling.
In Proceedings of the 14th International Symposium on Experimental Algorithms (SEA’15),
volume 9125 of Lecture Notes in Computer Science (LNCS), pages 273–285. Springer, 2015.
doi:10.1007/978-3-319-20086-6_21.

14 Daniel Delling, Julian Dibbelt, Thomas Pajor, and Tobias Zündorf. Faster Transit Routing
by Hyper Partitioning. In Proceedings of the 17th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems (ATMOS’17), volume 59 of OpenAccess
Series in Informatics (OASIcs), pages 8:1–8:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/OASIcs.ATMOS.2017.8.

15 Daniel Delling, Thomas Pajor, and Dorothea Wagner. Engineering Time-Expanded Graphs
for Faster Timetable Information. In Robust and Online Large-Scale Optimization: Models
and Techniques for Transportation Systems, volume 5868 of Lecture Notes in Computer
Science (LNCS), pages 182–206. Springer, 2009. doi:10.1007/978-3-642-05465-5_7.

16 Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-Based Public Transit Routing.
Transportation Science, 49:591–604, 2015. doi:10.1287/trsc.2014.0534.

17 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959. doi:10.1007/BF01386390.

18 Yann Disser, Matthias Müller-Hannemann, and Mathias Schnee. Multi-criteria Shortest Paths
in Time-Dependent Train Networks. In Proceedings of the 7th International Workshop on
Experimental and Efficient Algorithms (WEA’08), volume 5038 of Lecture Notes in Computer
Science (LNCS), pages 347–361. Springer, 2008. doi:10.1007/978-3-540-68552-4_26.

19 Pierre Hansen. Bicriterion Path Problems. In Multiple Criteria Decision Making Theory and
Application, volume 177 of Lecture Notes in Economics and Mathematical Systems, pages
109–127. Springer, 1980. doi:10.1007/978-3-642-48782-8_9.

SEA 2023

https://doi.org/10.1145/1498698.1537599
https://doi.org/10.1002/net.20382
https://doi.org/10.1002/net.20382
https://doi.org/10.4230/LIPIcs.ESA.2019.14
https://arxiv.org/abs/1906.04832
https://doi.org/10.4230/OASIcs.ATMOS.2009.2148
https://doi.org/10.1016/j.entcs.2003.12.019
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1007/978-3-319-20086-6_21
https://doi.org/10.4230/OASIcs.ATMOS.2017.8
https://doi.org/10.1007/978-3-642-05465-5_7
https://doi.org/10.1287/trsc.2014.0534
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/978-3-540-68552-4_26
https://doi.org/10.1007/978-3-642-48782-8_9


16:18 Arc-Flags Meet Trip-Based Public Transit Routing

20 Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Fast Point-to-
Point Shortest Path Computations with Arc-Flags. In The Shortest Path Problem: Ninth
DIMACS Implementation Challenge, volume 74 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 41–72. American Mathematical Society (AMS), 2009.
doi:10.1090/dimacs/074/03.

21 Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas Willhalm. Parti-
tioning Graphs to Speed Up Dijkstra’s Algorithm. Journal of Experimental Algorithmics (JEA),
11:2.8:1–2.8:29, 2006. doi:10.1007/11427186_18.

22 Matthias Müller-Hannemann and Mathias Schnee. Finding All Attractive Train Connections
by Multi-Criteria Pareto Search. In Algorithmic Methods for Railway Optimization, volume
4359 of Lecture Notes in Computer Science (LNCS), pages 246–263. Springer, 2007. doi:
10.1007/978-3-540-74247-0_13.

23 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos D. Zaroliagis. Efficient
Models for Timetable Information in Public Transportation Systems. Journal of Experimental
Algorithmics (JEA), 12:2.4:1–2.4:39, 2008. doi:10.1145/1227161.1227166.

24 Peter Sanders and Christian Schulz. Think Locally, Act Globally: Highly Balanced Graph
Partitioning. In Proceedings of the 12th International Symposium on Experimental Al-
gorithms (SEA’13), volume 7933 of Lecture Notes in Computer Science (LNCS), pages 164–175.
Springer, 2013. doi:10.1007/978-3-642-38527-8_16.

25 Sascha Witt. Trip-Based Public Transit Routing. In Proceedings of the 23rd Annual
European Symposium on Algorithms (ESA’15), volume 9294 of Lecture Notes in Computer
Science (LNCS), pages 1025–1036. Springer, 2015. doi:10.1007/978-3-662-48350-3_85.

26 Sascha Witt. Trip-Based Public Transit Routing Using Condensed Search Trees. In Proc. 16th
Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Sys-
tems (ATMOS’16), volume 54 of OpenAccess Series in Informatics (OASIcs), pages 10:1–10:12.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/OASIcs.ATMOS.2016.
10.

https://doi.org/10.1090/dimacs/074/03
https://doi.org/10.1007/11427186_18
https://doi.org/10.1007/978-3-540-74247-0_13
https://doi.org/10.1007/978-3-540-74247-0_13
https://doi.org/10.1145/1227161.1227166
https://doi.org/10.1007/978-3-642-38527-8_16
https://doi.org/10.1007/978-3-662-48350-3_85
https://doi.org/10.4230/OASIcs.ATMOS.2016.10
https://doi.org/10.4230/OASIcs.ATMOS.2016.10


Greedy Heuristics for Judicious Hypergraph
Partitioning
Noah Wahl #

Karlsruhe Institute of Technology, Germany

Lars Gottesbüren #

Karlsruhe Institute of Technology, Germany

Abstract
We investigate the efficacy of greedy heuristics for the judicious hypergraph partitioning problem.
In contrast to balanced partitioning problems, the goal of judicious hypergraph partitioning is
to minimize the maximum load over all blocks of the partition. We devise strategies for initial
partitioning and FM-style post-processing. In combination with a multilevel scheme, they beat the
previous state-of-the-art solver – based on greedy set covers – in both running time (two to four
orders of magnitude) and solution quality (18% to 45%). A major challenge that makes local greedy
approaches difficult to use for this problem is the high frequency of zero-gain moves, for which we
present and evaluate counteracting mechanisms.

2012 ACM Subject Classification Mathematics of computing → Hypergraphs; Mathematics of
computing → Graph algorithms

Keywords and phrases hypergraph partitioning, local search algorithms, load balancing, local search

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.17

Supplementary Material
Software (Source Code): https://github.com/kahypar/mt-kahypar/tree/judicious_refinement
Other (Experimental Results and Phylo Instances): https://github.com/noahares/PhyloBenchmark
Set

1 Introduction

In this paper, we propose and study greedy heuristics for a variant of hypergraph partitioning
named judicious partitioning [31], which has applications in load-balanced data distribution,
for example in phylogenetic inference [2, 29]. Given a hypergraph H = (V, E) and a number
of blocks k, the goal is to partition the nodes V into k disjoint non-empty blocks V1, . . . , Vk,
such that the maximum load across blocks is minimized. The load L(Vi) of a block Vi is
defined as the weight-sum of hyperedges intersecting Vi, i.e., L(Vi) =

∑
e∈E,|e∩Vi|>0 ω(e).

Contrary to the well-studied balanced partitioning problems with cut-based metrics [10,
23, 27, 14, 17, 15], the judicious variant does not impose a balance constraint on the blocks.
Instead, balance is integrated as part of the objective, in the gap between the minimum
and maximum load. Yet, just as the balanced variants the judicious partitioning problem is
NP-hard [28], such that we focus on heuristics.

Phylogenetic Background

Phylogenetic inference takes a multiple sequence alignment (MSA) as input and tries to
derive a phylogenetic tree, which is a strictly binary, unrooted tree that estimates the shared
evolutionary history of the input. A potential tree topology is scored via a phylogenetic
likelihood function (PLF) to estimate the likelihood of the tree, given the MSA. An MSA is a
set of n strings from the DNA alphabet (A, T, C, G) and gap-characters such that all strings
have the same length l and some distance function is minimized between pairs of strings.

© Noah Wahl and Lars Gottesbüren;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noah.wahl@student.kit.edu
mailto:lars.gottesbueren@kit.edu
https://doi.org/10.4230/LIPIcs.SEA.2023.17
https://github.com/kahypar/mt-kahypar/tree/judicious_refinement
https://github.com/noahares/PhyloBenchmarkSet
https://github.com/noahares/PhyloBenchmarkSet
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


17:2 Greedy Heuristics for Judicious Hypergraph Partitioning

C C C

G G G

A T T

T C C

1 2 3Site:

Number of calculations

without site repeats: 9

with site repeats: 9− 2− 1− 1 = 5

Figure 1 Number of calculations for the PLF with and without site repeats.

It can be thought of as an n× l matrix where the strings form the rows. A single column
of the MSA is called a site. To allow for different model parameters (e.g. different genes
that evolve at different rates), the sites are split into p disjoint partitions. Because only the
strings at the leaves are fixed, the likelihoods of all possible assignments of individual sites
at inner nodes have to be calculated under the parameter model(s) to find the likelihood of
the whole tree. This is computationally infeasible, so conditional likelihoods for each of the
4 possible characters at each individual site are calculated in a post-order traversal of the
tree and combined at the root. However, this still incurs a lot of computation and accounts
for 85-95% of total running time of phylogenetic inference tools. In Figure 1 the 4 MSA
strings represent the leaves of the proposed tree on the left. For example, at the parent of
CCC and GGG, the conditional likelihood for the first site asks for the likelihood of being
assigned to A, C, T or G respectively, given that the children are fixed to C and G. For site
1 at the root of this example, the conditional likelihood given that the characters of the first
site of the leaves are C, G, A and T, has to be calculated. This results in a total of 3 ∗ 3 = 9
conditional likelihood calculations for this tree. To parallelize the calculation of the PLF,
sites can be split across cores because per-site likelihood calculations are independent of
each other. Hence, we need to compute an assignment of sites to cores that minimizes load
imbalance. So far, splitting a partition between cores incurs redundant calculations for the
model parameters, but sites have equal costs.

The site repeats technique [24] is an optimization to eliminate redundant calculations. It
identifies repeating patterns (repeat classes) in parts of distinct sites such that intermediate
results can be reused among multiple sites, if they share the same partition and are assigned
to the same core (otherwise the results would need to be communicated between cores which
adds a scheduling component to the problem). This leads to varying costs for each site
in a partition and makes it significantly more difficult to establish load balance between
cores. Figure 1 shows an example of site repeats in a single partition that is assigned to a
single core. Reusing the results for the pairs C-G (dark red), T-C (blue) and the quadruple
C-G-T-C (orange) reduces the number of calculations to 5. Therefore, the goal is to assign
sites to cores such that the maximum load is as small as possible, and to keep redundant
calculations low, due to repeats split across different cores. Modeled as a hypergraph, each
site is a hypernode and each repeats class is a hyperedge. As each hyperedge counts once
towards the block-load, this corresponds to judicious partitioning.

Bottleneck Objectives

Objective functions where the value is obtained by taking the maximum across blocks are
called bottleneck objectives; another example is maximum communication volume, where
the maximum cut of edges from a block is minimized. These objectives are particularly
challenging for greedy local search heuristics, because all node moves that do not involve the
maximum load block do not change the objective function at all. Research on this problem



N. Wahl and L. Gottesbüren 17:3

has so far been focused on extremal results [5], particularly for special classes such as bounded
degree [7] or uniform hypergraphs [6, 19, 22]. We are only aware of one algorithm, that by Tan
et al. [31], and one publicly available implementation thereof called HyperPhylo [2], which
improves upon Tan et al.’s work via parallelization and several instance-specific optimizations.
Roughly speaking, the idea is to enumerate increasing objective values and determine via a
reduction to set cover whether a solution with this load exists. The resulting set cover is
then transformed to a node-partition with this load. The set cover problem is solved greedily,
which makes suboptimal solutions possible.

While there is only a small amount of literature on judicious partitioning, there is a vast
amount on cut-based partitioning. We refer to recent surveys [8, 27, 9] for a broad overview.
In this field, the most successful approaches are based on greedy heuristics, which motivates
our study in this paper.

Contributions

Despite the difficulties faced by greedy heuristics, we demonstrate that when combined, our
approaches significantly beat the existing state-of-the-art algorithm [2] both in terms of
objective value (between 18% - 45%) and execution time (between two and four orders of
magnitude). Our technical contributions are an iterative improvement algorithm inspired
by the classical FM local search [13] (described in Section 3), as well as three greedy
construction heuristics (Section 4). We show that randomized repetitions are a simple but
effective technique to improve the solution quality and deal with the issue of many zero-gain
moves to choose from during initial partitioning. Additionally, we considered a simple
tie-breaking scheme which favors more balanced loads, but show that it does not lead to
improved solutions. To address the issue of scalability of direct k-way initial partitioning for
large k, we show that recursive partitioning is a viable option for many types of hypergraphs,
but struggles with the class of regular hypergraphs that are encountered in data distribution
problems for phylogenetic inference. Furthermore, we integrate our approaches in a state-
of-the-art multilevel solver for balanced partitioning [16], leveraging its existing coarsening
algorithms to obtain a multilevel solver for judicious partitioning.

Outline

For each component, we conduct thorough experiments on configuration and design choices,
before comparing the full system with HyperPhylo in Section 5. In Section 2 we introduce
preliminaries, including experimental setup. Each algorithmic component description is
directly followed by evaluation and configuration experiments for said component, due to the
large number of parameters. Only the best performing configuration moves on to the next
section. We refrain from discussing the bio-informatics application in detail, and instead
refer to the HyperPhylo paper [2] which describes the connection in detail. In the same vein,
we do not conduct parallel phylogenetic inference simulations. Rather, we compare with
HyperPhylo in terms of objective values on their benchmark set.

2 Preliminaries

A weighted hypergraph H = (V, E, w) is defined as a set of nodes V and a set of hyperedges
E ⊆ 2|V | with hyperedge weights w : E → R>0. Let n := |V | and m := |E| denote the
number of nodes and hyperedges. Functions on sets of nodes or hyperedges are extended
to the sum over the set, e.g., w(T ) :=

∑
e∈T w(e) for T ⊆ E. The nodes of a hyperedge are

SEA 2023



17:4 Greedy Heuristics for Judicious Hypergraph Partitioning

called its pins. A node v is called incident to a hyperedge e if v ∈ e. I(v) is the set of all
incident hyperedges of v and |I(v)| is the degree of v. By p =

∑
e∈E |e| =

∑
v∈V |I(v)|, we

denote the number of pins. Furthermore, we use [r] to denote [r] := {1, . . . r} for r ∈ N.

Partitions

A k-way partition is a surjective function Π : V → [k]. The blocks Vi := Π−1(i) of Π are the
inverse images. A 2-way partition is also called a bipartition.

The number of pins of a hyperedge e in block Vi is denoted by Φ(e, Vi) := |Vi ∩ e|.
For a block Vi, its load is defined as L(Vi) := w({e ∈ E | Φ(e, Vi) > 0}). In the judicious
partitioning problem, the goal is to minimize max(L(V1), . . . , L(Vk)), the maximum load
across blocks, which we also call the judicious load.

Node Moves: Penalties and Benefits

Our algorithms are based on node moves, i.e., reassigning a given node u from its current
block Π(u) = s to a different block Π(u) ← t. To calculate the difference in the objective
function, we use two terms: the benefit and penalties. The benefit of removing a node from
its current block is b(u) = w({e ∈ I(u) | Φ(e, Π(u)) = 1}), i.e., the weight of hyperedges e

for which u is the last pin in the block. The penalty for adding node u to a given target
block t is pt(u) = w({e ∈ I(u) | Φ(e, t) = 0}), i.e., the weight of hyperedges e which did not
intersect the block before, but will now. These values can be efficiently updated after a move,
see [26, 18] for more details, where they are used for cut-based objectives. The running time
for moving all nodes once with gain updates is O(pk).

Performance Profile Plots

To compare the solution quality of different algorithms, we use performance profiles [12].
Let A be the set of algorithms we want to compare, I the set of instances, and qA(I) the
maximum load of algorithm A ∈ A on instance I ∈ I. For each algorithm A, we plot the
fraction of instances (y-axis) for which qA(I) ≤ τ ·minA′∈A qA′(I), where τ is on the x-axis.
Achieving higher fractions at lower τ -values is considered better. For τ = 1, the y-value
indicates the percentage of instances for which an algorithm performs best.

Machine Setup

All experiments are run on an AMD EPYC Rome 7702P with 2x64 cores clocked at 2.0-3.35
GHz with 1024 GB DDR4 RAM at 3200 MHz. Our proposed algorithms are single-threaded.
The only parallelism used in our solver is during coarsening and for randomized repetitions
during initial partitioning. Coarsening usually has negligible running time, and in the main
experiments we use at most 5 repetitions. For HyperPhylo we used all 128 cores.

Benchmark Sets

We use two separate established benchmark sets for our experimental evaluations, which we
refer to as set A and set P. The input instances are unweighted, however during multilevel
coarsening hyperedges are aggregated and thus receive non-uniform weights.

Set A [21] consists of 488 real-world hypergraphs from different application domains
for cut-based hypergraph partitioning, such as VLSI design [32, 1], SAT solving [4], and
sparse matrices [11]. It is available from https://algo2.iti.kit.edu/schlag/sea2017/
in hMetis format [23]. The hypergraphs in set A contain between 6K - 100M pins, 160 - 13M
hyperedges and 7K - 13M nodes, with more detailed statistics available on the website.

https://algo2.iti.kit.edu/schlag/sea2017/


N. Wahl and L. Gottesbüren 17:5

Set P is derived from the data of Baar et.al. [2] used in their evaluation of HyperPhylo.
It consists of a total of 11 hypergraphs; 7 smaller hypergraphs derived from sequence data
from collaborative studies with biologists (prefixed with 59, 128 and 404 in our experiments)
[30] and 4 larger hypergraphs from the one thousand insect transcriptome evolution project
(the so called supermatrix, prefixed with sm in out experiments) [25]. An important property
of the hypergraphs of set P is that they are regular, i.e. all nodes have the same degree,
because each site has exactly one repeats class per inner node of the phylogenetic tree.
These instances are available from their repository at https://github.com/lukashuebner/
HyperPhylo. We converted these graphs to the hMetis format and made them available at
https://github.com/noahares/PhyloBenchmarkSet.

We predominantly use set A for configuration experiments, due to its size and variety
of hypergraphs. Set P is used to verify our results for these regular graphs, so we can later
use our best configuration for the comparison with HyperPhylo. We include results for set
P in our experimental sections alongside results on set A to show significant differences.
The horse-race comparison with HyperPhylo in Section 5 is conducted only on set P, since
HyperPhylo requires uniform node degrees (this is an implementation restriction to enable
some optimizations).

3 Iterative Improvement

In this section, we introduce our first algorithmic contribution, namely an iterative improve-
ment algorithm. To refine an initial partition we employ a local moving strategy similar to
FM [13]. The full algorithm is shown in Algorithm 1. Contrary to non-bottleneck objectives,
the only way to improve judicious load directly is to move nodes out of the block with
the highest load. Let us denote this block by Vs. The order in which nodes are moved is
prioritized by a gain function g defined in Equation 1, which represents the difference in load
if a node u ∈ Vs is moved to a different block Vt. In each step, we determine the highest gain
node u and associated target block t, see line 4 in Algorithm 1. We then move u from s to t

and update their loads.

g(u, t) =
{

b(u) if L(Vt) + pt(u) ≤ L(Vs)− b(u)
L(Vs)− L(Vt)− pt(u) else

(1)

There are three possible scenarios for the maximum load after a move. If Vs remains
the heaviest block, the load is decreased by b(u). Otherwise, if Vt becomes the new heaviest
block, then b(u) has no influence because we only care about by how much L(Vt) + pt(u)
differs from the prior maximum load L(Vs). Furthermore, let Vi be the block with the
highest load other than Vs. If L(Vs)− b(u) < L(Vi), the actual gain is additionally capped
at L(Vi)− L(Vs) + b(u), because Vi becomes the new highest load block. To encourage some
further optimization on Vs before moving on to Vi, we ignore this cap when calculating the
next move. However, if the target block Vt becomes the new heaviest block through the
move, the gain is negative, and we finish the optimization on Vs, see line 5.

In line 9, we update the gain values b(v), ps(v), pt(v) for neighbors v with {u, v} ⊂ e such
that Φ(e, s) ≤ 1 or Φ(e, t) = 1 (after the move). These are (almost) the same updates as
for the cut-based objectives, see for example [16, 27] for details (we can omit an update
for Φ(e, t) = 2). In the worst case, the total cost of updates across the entire run is O(kp),
but in practice we often observe behavior closer to O(p) since the average number of blocks
intersecting a hyperedge is close to constant. To determine the highest gain move, we use
one priority queue per target block, which we now update to reflect the new gain values of
neighbors after the move.

SEA 2023

https://github.com/lukashuebner/HyperPhylo
https://github.com/lukashuebner/HyperPhylo
https://github.com/noahares/PhyloBenchmarkSet


17:6 Greedy Heuristics for Judicious Hypergraph Partitioning

Algorithm 1 Judicious FM.

1 while maxi∈[k](L(Vi)) > mini∈[k](L(Vi)) · δ do
2 s← arg maxi∈[k](L(Vi))
3 while maxi∈[k]−s(L(Vi)) < L(Vs) · γ do
4 (u, t)← arg maxv∈Vs,i∈[k]−s(g(v, i))
5 if g(u, t) < 0 then break
6 Π(u)← t

7 L(Vs)← L(Vs)− b(u)
8 L(Vt)← L(Vt) + pt(u)
9 run gain updates for neighbors of u

10 if s = arg maxi∈[k](L(Vi)) then break

1.00 1.05 1.10

performance ratio

0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

of
in

st
an

ce
s

1.5 2.0

δ=1.01

δ=1.05

δ=1.1

Figure 2 Performance profiles for varying
δ in judicious FM on set A.

1.00 1.05 1.10

performance ratio

0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

of
in

st
an

ce
s

1.5 2.0

γ=1.01

γ=1.05

γ=1.1

Figure 3 Performance profiles for varying
γ in judicious FM on set A.

We continue the inner loop at line 3 until Vs is no longer the block with the highest load,
subject to some relative margin γ > 1. This encourages further optimization on Vs and
avoids frequently alternating between the two highest loaded blocks. However, once Vs is
no longer the highest load block, we can worsen the solution (due to the ignored additional
cap). This happens for example when all blocks have similar loads. As mentioned, we thus
also break out of the loop once only negative gain moves remain.

We continue the outer loop (line 1) as long as there is a block with smaller load that can
take in new nodes, again subject to a relative margin parameter δ > 1. Notice that judicious
FM cannot achieve loads smaller than the initial minimum load. We experimented with
ideas to break out of local minima, but were unsuccessful. Thus, an important consideration
for initial partitioning heuristics is to produce solutions with a considerable gap between
minimum and maximum load.

Furthermore, notice that δ offers a trade-off between solution quality and running time,
where smaller values give better loads, but need to perform more optimization. We note
however, that, since we quickly steer into a local minimum, the running time of FM is usually
negligible compared to initial partitioning.

3.1 Experiments

In the following, we evaluate the impact of the two parameters γ and δ, as well as how much
judicious FM improves over the initial partition. For δ we expect small values to give the
best solutions, whereas for γ the picture is not as clear. We want the other heaviest block to



N. Wahl and L. Gottesbüren 17:7

1.00 1.02 1.04 1.06 1.08 1.10

performance ratio

0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

of
in

st
an

ce
s

δ=1.01

δ=1.05

δ=1.1

Figure 4 Performance profiles for varying
δ in judicious FM on set P.

1.00 1.02 1.04 1.06 1.08 1.10

performance ratio

0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

of
in

st
an

ce
s

γ=1.01

γ=1.05

γ=1.1

Figure 5 Performance profiles for varying
γ in judicious FM on set P.

Table 1 Mean and percentile of the load achieved by judicious FM divided by the load of the
initial solutions.

mean gmean p10 p25 p50 p75 p90 max

1.43323 1.34457 1.05399 1.10473 1.21581 1.45799 1.89561 11.45786

be significantly heavier than the current one, to enable more improvement before we switch
blocks again. However, if the gap between minimum and maximum load is small, there is
not much room for improvement, and we are quickly left with only negative gains.

For both parameters, we tried the values 1.01, 1.05 and 1.1. We ran a quadratic grid-
search, but for readability the following figures display one parameter varied at a time, with
the other fixed to the best value. Figure 2 (set A) and Figure 4 (set P) demonstrate that
smaller values indeed perform better for δ. As the refinement scheme converges very quickly,
its running time is often negligible compared to initial partitioning, so we use δ = 1.01 in
the following. In Figure 5, we see that γ = 1.05 performs best for set P, whereas Figure 3
shows that there is no significant difference for set A. We observed that the inner loop is
more frequently terminated by negative gains than the stopping condition, which explains
this behavior.

Finally, in Table 1 we show average and percentile improvements over the initial solution,
that is the ratio between the load achieved by judicious FM divided by that of the initial
solution. We see a geometric mean improvement of 34.4% and a median of 21.5% from using
FM. These values are similar to what we can expect in cut-based partitioning [3]. The initial
solutions for these experiments were obtained with the best performing configuration for
initial partitioning from Section 4, which we discuss next.

4 Initial Partitioning

In this section, we present our greedy initial partitioning algorithms and evaluate their
performance. We start with an approach where we construct all k blocks at the same time,
and subsequently leverage the presented strategies as a subroutine for recursive partitioning.

SEA 2023



17:8 Greedy Heuristics for Judicious Hypergraph Partitioning

4.1 Direct k-way Initial Partitioning

In initial partitioning, we start with all nodes unassigned and do not move already assigned
nodes (until the refinement stage later on).

Similar to FM, the order in which nodes are assigned is determined greedily via a loss
function ϱ(v, i). At each step, we determine the node and target block with the lowest loss,
and then update the unassigned nodes’ losses. The difference is that all nodes must be
moved (assigned) at the end. In the following we propose three strategies to define ϱ. Since
nodes are initially unassigned, the loss functions are not based on benefit values b(v) as in
the move gain, just penalty terms pt(v) are incorporated. The time complexity of all three
variants is O(log(n)(n + p)k). This bound stems from the updates to penalty values after an
assignment [26, 18], and the priority queue updates.

Penalty

In the penalty strategy, we use ϱ(v, t) = pt(v), i.e., the next node to be assigned has the
lowest pt(v) value globally. In this strategy, nodes are attracted to blocks that already
contain many of its neighbors. Thus, already highly loaded blocks are preferred. As we
do not impose a constraint on the block size or load, there is no mechanism to achieve a
balanced distribution of nodes, as we would need for the traditional balanced partitioning
problem. Despite this, it is an interesting strategy to consider, as it nudges the solution
into very different local minima than the following strategies, which focus more on balanced
blocks. While not competitive on the initial solutions, on some instances we observed better
solutions after FM refinement, because the gap between the minimum and maximum load is
wider, and thus the refinement has more room for improvement.

Block Load

In the block load strategy, we first select the currently lightest block t, and only then choose
the node v with minimal pt(v). The advantage over the penalty strategy is that it keeps
block loads evenly distributed. This comes at the cost of not considering good moves to
blocks that are not the lightest.

Judicious Increase

In the judicious increase strategy, the loss of assigning a node v to block t is ϱ(v, t) =
max(L(Vt) + pt(v) − maxi∈[k](L(Vi)), 0). It keeps balance in mind by trying to increase
the loads of all blocks evenly. Since this loss definition directly corresponds to the loss in
maximum load, we expected the judicious increase strategy to perform the best, which is
confirmed in the experiments. Yet, we decided to also evaluate the other two strategies as the
judicious increase strategy is particularly prone to long streaks of consecutive equal losses,
which makes it hard to distinguish between the different possible assignments to perform
next.

Furthermore, we investigate a simple tie-breaking scheme for the judicious increase
strategy. Allowing losses to become negative by omitting the outer max introduces tie-
breaking of zero-loss moves by L(Vt) + pt(v). Intuitively speaking, this optimizes for more
balanced loads, if we are not adding to the heaviest block.



N. Wahl and L. Gottesbüren 17:9

4.2 Randomization
We use priority queues for selecting the target block first and then the node to move to
that target block. Because all three strategies result in many equal loss-scores, the order in
which moves are chosen heavily depends on the order of insertions into the priority queues.
To break this dependency we introduce randomization, combined with multiple differently
seeded repetitions, to cover a variety of possible assignment sequences. We implement this
by attaching a randomly generated tag to each move added to a priority queue, which is used
as the secondary comparison criterion. The same approach can be used for choosing different
blocks in case of ties, to prevent assigning all nodes to one single block. Randomization and
repetitions result in significantly increased odds of finding a good initial partition.

4.3 Coarsening
One of the most important components in cut-based partitioning is the multilevel scheme [20].
Initial partitioning and iterative improvement are not run directly on the input hypergraph.
The hypergraph is iteratively coarsened by repeatedly contracting node clusters, which
approximately preserve the structure, until the hypergraph is fairly small. Each iteration
and associated hypergraph constitutes a level in the hierarchy. On the lowest level (the
smallest hypergraph) an initial partition is computed, which is then projected back through
the hierarchy, by assigning clustered nodes to the same block. Furthermore, iterative
improvement is run on each level.

While designed for cut-based objectives, this scheme is directly applicable to the judicious
partitioning problem, with a small modification. Hyperedges of size 1 cannot be removed,
since they still contribute to the volume of their pin’s block. To speed up the algorithmic
components, we still remove such hyperedges and track the removed volume at each node.

We stop coarsening (to transition into initial partitioning) once the current hypergraph
has less than C · k nodes, for a constant parameter C. This ensures, that we can place C

nodes in each block on average, and thus the optimization algorithms have some leeway. In
the following experiments we use C = 50, which was determined in preliminary experiments
that are omitted here. The multilevel scheme has two major advantages over flat partitioning:
iterative improvement can optimize the solution at different levels of granularity, and it is
substantially faster since initial partitioning runs on small inputs.

4.4 Experiments on Direct k-way Initial Partitioning
For the evaluation of our direct k-way initial partitioning strategies we expected the judicious
increase strategy to clearly outperform the other two. Figure 6 indeed shows a wide gap
between the strategies. However, we were also interested in the trade-off between load-
balanced initial partitions versus creating more room for improvement in the refinement
phase. Figure 7 initially shows potential for the penalty strategy combined with FM post-
processing, as it achieves more of the best solutions than the block-load strategy. However,
the curve remains flat, being overtaken by block-load at just the 1.01 mark, indicating that
on the solutions where the penalty strategy performs worse, it is significantly worse. On
set P, see Figures 8, 9, the results are even more clearly in favor of judicious increase. We
conclude that the judicious increase strategy produces the best k-way initial partitioning
results, and thus use it as the default algorithm from now. Note that there are only small
differences in running time between the strategies, which is why we omit plots for these here.

Next, we look at the effect of randomization on solution quality. This is shown in Figure 10.
We clearly see an improvement when using 5 repetitions, but diminishing returns for 10
repetitions. Hence, we use 5 repetitions as the default value from now.

SEA 2023



17:10 Greedy Heuristics for Judicious Hypergraph Partitioning

1.00 1.05 1.10
0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

of
in

st
an

ce
s

1.5 2.0

performance ratio
100 200

Judicious-Increase

Block-Load

Penalty

Figure 6 Performance profiles for initial
partitioning strategies on set A.

1.00 1.05 1.10
0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

of
in

st
an

ce
s

1.5 2.0

performance ratio
10 20

Judicious-Increase

Block-Load

Penalty

Figure 7 Performance profiles for ini-
tial partitioning strategies with FM post-
processing on set A.

1.00 1.05 1.10
0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

of
in

st
an

ce
s

1.5 2.0

performance ratio
100 200

Judicious-Increase

Block-Load

Penalty

Figure 8 Performance profiles for initial
partitioning strategies on set P.

1.00 1.05 1.10

performance ratio

0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

of
in

st
an

ce
s

1.5 2.0

Judicious-Increase

Block-Load

Penalty

Figure 9 Performance profiles for ini-
tial partitioning strategies with FM post-
processing on set P.

Lastly, Figure 11 shows that tie-breaking has no effect, neither positive nor negative.
We assume that this stems from the fact that more balanced solutions early on inhibit the
optimization potential of FM post-processing later on.

Still, we argue that there is a need for tie-breaking schemes. In Table 2 we report in how
many steps of the initial partitioning procedure the best loss value is zero for the supermatrix
instances of set P. There is a clear correlation between the number of zero loss moves and
k. This is expected, as there are more blocks that offer free assignments, before becoming
the new heaviest block. While for k = 48 only 10-20% of assignments have zero loss, for
k = 2048 it is 97%-99%. These results indicate that there is certainly a need to distinguish
zero-loss moves, but further investigation is needed to find better tie-breaking mechanisms.

4.5 Recursive Partitioning
The difficulty of many ties in the scores when constructing k-way partitions directly, was
already observed for cut-based objectives. There, the solution is to restrict the assignment
options by recursively bipartitioning on the coarsest graph, and transition to k-way local
search only in the uncoarsening phase. This yields better solution quality than direct k-
way [27] for initial partitions but we will show this is not the case for judicious partitioning.
One reason to still consider recursive partitioning is the improved time complexity of O(p log k)
compared to direct k-way’s complexity of O(pk).



N. Wahl and L. Gottesbüren 17:11

1.00 1.05 1.10

performance ratio

0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

of
in

st
an

ce
s

1.5 2.0

Judicious-Increase-non-random

Judicious-Increase-5-runs

Judicious-Increase-10-runs

Figure 10 Effect of randomized repetitions
on set A.

1.00 1.02 1.04 1.06 1.08 1.10

performance ratio

0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

of
in

st
an

ce
s

Judicious-Increase-tiebreaking

Judicious-Increase

Figure 11 Effect of tie-breaking on set P.

Table 2 Fraction of zero-loss assignments on supermatrix instances of set P for direct k-way
initial partitioning with the judicious increase strategy.

k graph |ϱ(v,t)=0|
#moves

48 sm_part1_170859 0.113
sm_part3_31854 0.151
sm_part12_20753 0.152
sm_part24_11756 0.212

160 sm_part1_170859 0.574
sm_part3_31854 0.602
sm_part12_20753 0.636
sm_part24_11756 0.725

k graph |ϱ(v,t)=0|
#moves

256 sm_part1_170859 0.762
sm_part3_31854 0.802
sm_part12_20753 0.825
sm_part24_11756 0.866

2048 sm_part1_170859 0.991
sm_part3_31854 0.984
sm_part12_20753 0.979
sm_part24_11756 0.976

In recursive bipartitioning, we first split into two blocks, then extract the sub-hypergraphs
induced by the two blocks, and recursively partition these, leading to a binary recursion
tree of depth ⌈log2(k)⌉ to obtain a k-way partition. There are several issues with recursive
partitioning, such as not optimizing the objective function directly, and the fact that splitting
a node pair is irreversible. On the judicious metric we note one additional problem, namely
if k is not a power of 2. Let k1 = ⌊k/2⌋, k2 = ⌈k/2⌉. We would need to target an imbalance
of (k1/k) to (k2/k) in the loads of the two blocks, in order to (let us say hand-wavingly)
pass load evenly down the recursion. Unfortunately, our algorithms are not designed for
this. Instead, we optimize for balanced load on bipartitions (using judicious FM at each
level), and assign the smaller number of final blocks k1 to the recursive call on the block
with smaller load. As additional base cases to the recursion, we perform direct 3-way or
5-way partitioning, which are the two cases with the highest required imbalance.

4.6 Experiments on Recursive Partitioning
In Figure 13, we show that direct k-way partitioning (DK) gives better solution quality than
recursive bipartitioning (RB) for initial partitioning on set P. On set A the situation is less
clear, see Figure 12, where recursive partitioning achieves more of the best solutions, but
direct k-way converges faster towards 1. It is unclear why we see such a large discrepancy
in initial judicious loads between the benchmark sets. Looking at geometric mean running
times on set A, we have 0.039s for direct k-way versus 0.29s for recursive partitioning with

SEA 2023



17:12 Greedy Heuristics for Judicious Hypergraph Partitioning

1.00 1.05 1.10
0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

of
in

st
an

ce
s

1.5 2.0

performance ratio
4 6 8

RB-Judicious

DK-Judicious-Increase

Figure 12 Performance profiles for initial
partitioning judicious loads on set A.

1.00 1.05 1.10
0.00

0.25

0.50

0.75

1.00

fr
ac

ti
on

of
in

st
an

ce
s

1.5

performance ratio
2.0 2.2 2.4

RB-Judicious

DK-Judicious-Increase

Figure 13 Performance profiles for initial
partitioning judicious loads on set P.

k = 48, 0.354s versus 0.622s with k = 160, and 0.96s versus 0.81s with k = 256. Recursive
partitioning becomes faster at k = 256, and for larger k there will be a point where flat
direct k-way is no longer feasible. On set P, the geometric mean time for all k is 0.1s for
recursive partitioning and 0.05s for direct k-way, and respectively 0.013s versus 0.017s for
k = 2048. We conclude that direct k-way partitioning is the method of choice over recursive
partitioning for initial judicious partitioning, as long as k is moderate.

5 Comparison to HyperPhylo

In this section, we evaluate the performance of our solver against that of HyperPhylo [2], the
existing state of the art for judicious partitioning. Our solver uses the multilevel scheme with
coarsening down to 50 · k nodes, flat k-way partitioning with the judicious increase strategy
on the coarsest hypergraph (randomization enabled, tie-breaking disabled), and refinement
with judicious FM (δ = 1.01, γ = 1.05) on each level.

Since the HyperPhylo implementation1 is restricted to instances with uniform node degree
(for optimization purposes), the comparison is restricted to set P. Table 3 shows loads and
running times for our solver, as well as loads and times relative to ours for HyperPhylo
(ours divided by HyperPhylo). Values below one thus correspond to cases where our solver
performed better. These are highlighted in bold. Cases with n ≤ k are omitted because the
optimal partition is to place each node in its own block, which is trivial.

The table is split into two parts: smaller instances at the top, and larger instances
(supermatrix) at the bottom, which are deemed most important. We see that our solver
outperforms HyperPhylo by a substantial margin in terms of running time and load in all
reported cases on the supermatrix instances. The running time improvements range from
two to four orders of magnitude, whereas the load improvements are between 18% to 45%.

On the seven smaller instances, our running time advantage is less pronounced. Hyper-
Phylo even beats our solver on 6 out of 21 runs, particularly for the largest value of k = 2048.
This is because larger values of k incur smaller maximum loads, which is an advantage of
HyperPhylo, since it enumerates increasing objective values. On the other hand, our initial
partitioning algorithms become slower, the larger k is, since there are more assignments to
evaluate in each step. The largest slowdown is a factor of 59 (50ms vs 3s) for the instance
404-1 with n = 2161 on k = 2048, where both solvers achieve maximum load 402. This value

1 https://github.com/lukashuebner/HyperPhylo

https://github.com/lukashuebner/HyperPhylo


N. Wahl and L. Gottesbüren 17:13

is the degree lower bound (each node must be assigned to one block), such that HyperPhylo
finishes in the first iteration, whereas our solver has to go through all optimization steps. In
terms of solution quality, our solver remains superior: it is beaten on only 4 out of 21 runs.

Table 3 Running times and loads of our solver versus HyperPhylo on benchmark set P. Values
where our solver performs better are highlighted in bold.

graph n m k our load our load
HyperPhylo our time [s] our time

HyperPhylo

59-s 160 671 48 77 1.35088 0.00450 0.15511
128-s 204 1170 48 167 1.06369 0.00648 0.34105

160 126 1.00000 0.01151 1.27943
404-s 588 2525 48 511 0.99031 0.05110 0.68127

160 438 1.08955 0.10469 7.47786
256 402 1.00000 0.12523 8.34880

128-0 857 10853 48 550 0.59524 0.02196 0.01923
160 289 0.54735 0.04136 0.04452
256 243 0.71261 0.05950 0.12501

404-l 2161 40648 48 1718 0.67162 0.14527 0.02432
160 879 0.75451 0.32195 0.07700
256 771 0.84262 0.46104 0.13795
2048 402 1.00000 3.09564 59.53160

59-l 2183 10205 48 359 0.67608 0.02833 0.03818
160 164 0.70386 0.05991 0.14332
256 129 0.73295 0.09367 0.29363
2048 57 0.98276 1.23261 51.35861

128-l 2933 23618 48 1023 0.69782 0.07136 0.01432
160 466 0.71472 0.17621 0.04306
256 370 0.68773 0.25684 0.06748
2048 204 1.22156 2.18591 2.41271

sm_part24_11756 11756 99713 48 5814 0.71355 0.44393 0.00137
160 2436 0.61702 0.90976 0.00307
256 1714 0.61324 1.83163 0.00635
2048 431 0.55256 9.69627 0.04347

sm_part12_20753 20753 163514 48 8018 0.70968 0.76193 0.00120
160 3331 0.63255 1.28946 0.00225
256 2365 0.59707 2.20258 0.00393
2048 567 0.60512 17.96227 0.04103

sm_part3_31854 31854 185662 48 9107 0.71126 1.03926 0.00121
160 3902 0.66474 1.91767 0.00247
256 2691 0.65110 2.64924 0.00352
2048 646 0.62056 27.02443 0.04377

sm_part1_170859 170859 196836 48 11515 0.82174 3.33007 0.00065
160 5104 0.81209 5.27129 0.00107
256 3778 0.76493 7.45439 0.00152
2048 956 0.74339 98.21790 0.02070

SEA 2023



17:14 Greedy Heuristics for Judicious Hypergraph Partitioning

6 Conclusion and Future Work

In this paper, we designed and evaluated a set of greedy heuristics for the judicious hypergraph
partitioning problem, namely an iterative improvement algorithm based on FM, and three
initial partitioning strategies. We argued that greedy heuristics face severe challenges (such
as equal gains/losses and scalability issues), and presented remedies such as randomization,
tie-breaking and recursive partitioning. While these did not work as well as intended, we
demonstrate nonetheless that combined with the multilevel framework, our algorithms are
faster (two to four orders of magnitude) and yield substantially better solution quality (18%
to 45%) than the previous state-of-the-art algorithm.

Future work should focus on ways to escape local minima during refinement (such as
simulated annealing), ideas such as higher level gains as tie-breakers for the issue with many
equal gains, as well as parallelization. Furthermore, we are interested in evaluating the
impact of our approach on applications, such as the phylogenetic inference application that
motivated HyperPhylo [2].

References
1 Charles J. Alpert. The ISPD98 Circuit Benchmark Suite. In International Symposium on

Physical Design (ISPD), pages 80–85, April 1998. doi:10.1145/274535.274546.
2 Ivo Baar, Lukas Hübner, Peter Oettig, Adrian Zapletal, Sebastian Schlag, Alexandros Stamata-

kis, and Benoit Morel. Data Distribution for Phylogenetic Inference with Site Repeats via
Judicious Hypergraph Partitioning. In IEEE International Parallel and Distributed Processing
Symposium Workshops, IPDPSW 2019, Rio de Janeiro, Brazil, May 20-24, 2019, pages
175–184. IEEE, 2019. doi:10.1109/IPDPSW.2019.00038.

3 R Battiti, A Bertossi, and R Rizzi. Randomized Greedy Algorithms for the Hypergraph
Partitioning Problem. Randomization Methods in Algorithm Design, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 43:21–35, 1999. doi:10.1090/
dimacs/043/02.

4 Anton Belov, Daniel Diepold, Marijn Heule, and Matti Järvisalo. The SAT Competition 2014.
http://www.satcompetition.org/2014/, 2014.

5 Béla Bollobás and Alex D. Scott. Judicious Partitions of Hypergraphs. Journal of Combinatorial
Theory, 78(1):15–31, 1997. doi:10.1006/jcta.1996.2744.

6 Béla Bollobás and Alex D. Scott. Judicious Partitions of 3-uniform Hypergraphs. European
Journal of Combinatorics, 21(3):289–300, 2000. doi:10.1006/eujc.1998.0266.

7 Béla Bollobás and Alex D. Scott. Judicious partitions of bounded-degree graphs. Journal of
Graph Theory, 46(2):131–143, 2004. doi:10.1002/jgt.10174.

8 Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent
Advances in Graph Partitioning. In Algorithm Engineering - Selected Results and Surveys,
volume 9220 of Lecture Notes in Computer Science, pages 117–158. Springer, 2016. doi:
10.1007/978-3-319-49487-6_4.

9 Ümit V. Çatalyürek, Karen D. Devine, Marcelo Fonseca Faraj, Lars Gottesbüren, Tobias Heuer,
Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz, Daniel Seemaier, and
Dorothea Wagner. More Recent Advances in (Hyper) Graph Partitioning. ACM Computing
Surveys, 2022. doi:10.1145/3571808.

10 Ümit V. Catalyurek and Cevdet Aykanat. Hypergraph-Partitioning-based Decomposition for
Parallel Sparse-Matrix Vector Multiplication. IEEE Transactions on Parallel and Distributed
Systems, 10(7):673–693, 1999. doi:10.1109/71.780863.

11 Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM
Transactions on Mathematical Software, 38(1):1:1–1:25, November 2011. doi:10.1145/2049662.
2049663.

https://doi.org/10.1145/274535.274546
https://doi.org/10.1109/IPDPSW.2019.00038
https://doi.org/10.1090/dimacs/043/02
https://doi.org/10.1090/dimacs/043/02
http://www.satcompetition.org/2014/
https://doi.org/10.1006/jcta.1996.2744
https://doi.org/10.1006/eujc.1998.0266
https://doi.org/10.1002/jgt.10174
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1145/3571808
https://doi.org/10.1109/71.780863
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663


N. Wahl and L. Gottesbüren 17:15

12 Elizabeth D. Dolan and Jorge J. Moré. Benchmarking Optimization Software with Performance
Profiles. Mathematical Programming, 91(2):201–213, 2002. doi:10.1007/s101070100263.

13 Charles M. Fiduccia and Robert M. Mattheyses. A Linear-Time Heuristic for Improving
Network Partitions. In 19th Conference on Design Automation (DAC), pages 175–181, 1982.
doi:10.1145/800263.809204.

14 Lars Gottesbüren, Michael Hamann, Sebastian Schlag, and Dorothea Wagner. Advanced Flow-
Based Multilevel Hypergraph Partitioning. 18th International Symposium on Experimental
Algorithms (SEA), 2020. doi:10.4230/LIPIcs.SEA.2020.11.

15 Lars Gottesbüren, Tobias Heuer, and Peter Sanders. Parallel Flow-Based Hypergraph Parti-
tioning. Technical report, Karlsruhe Institute of Technology, 2022.

16 Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Scalable Shared-
Memory Hypergraph Partitioning. In 23st Workshop on Algorithm Engineering & Experiments
(ALENEX). SIAM, January 2021. doi:10.1137/1.9781611976472.2.

17 Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Shared-Memory n-level
Hypergraph Partitioning. In 24th Workshop on Algorithm Engineering and Experiments
(ALENEX). SIAM, January 2022. doi:10.1137/1.9781611977042.11.

18 Lars Gottesbüren. Parallel and Flow-Based High-Quality Hypergraph Partitioning. Dissertation,
Karlsruhe Institute of Technology, 2022.

19 John Haslegrave. The Bollobás-Thomason conjecture for 3-uniform hypergraphs. Combinator-
ica, 32(4):451–471, 2012. doi:10.1007/s00493-012-2696-x.

20 Bruce Hendrickson and Robert W. Leland. A Multi-Level Algorithm For Partitioning Graphs.
In Sidney Karin, editor, Proceedings Supercomputing ’95, San Diego, CA, USA, December 4-8,
1995, page 28. ACM, 1995. doi:10.1145/224170.224228.

21 Tobias Heuer and Sebastian Schlag. Improving Coarsening Schemes for Hypergraph Partitioning
by Exploiting Community Structure. In 16th International Symposium on Experimental
Algorithms (SEA), pages 21:1–21:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, June
2017. doi:10.4230/LIPIcs.SEA.2017.21.

22 Jianfeng Hou, Shufei Wu, and Guiying Yan. On judicious partitions of uniform hypergraphs.
Journal of Combinatorial Theory, 141:16–32, 2016. doi:10.1016/j.jcta.2016.02.004.

23 George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel Hypergraph
Partitioning: Applications in VLSI Domain. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 7(1):69–79, 1999. doi:10.1109/92.748202.

24 Kassian Kobert, Alexandros Stamatakis, and Tomáš Flouri. Efficient detection of repeating
sites to accelerate phylogenetic likelihood calculations. Systematic biology, 66(2):205–217,
2017.

25 Bernhard Misof, Shanlin Liu, Karen Meusemann, Ralph S Peters, Alexander Donath, Christoph
Mayer, Paul B Frandsen, Jessica Ware, Tomáš Flouri, Rolf G Beutel, et al. Phylogenomics
resolves the timing and pattern of insect evolution. Science, 346(6210):763–767, 2014.

26 Laura A. Sanchis. Multiple-Way Network Partitioning. IEEE Transactions on Computers,
38(1):62–81, 1989. doi:10.1109/12.8730.

27 Sebastian Schlag. High-Quality Hypergraph Partitioning. Dissertation, Karlsruhe Institute of
Technology, 2020. doi:10.5445/IR/1000105953.

28 Farhad Shahrokhi and László A Székely. The complexity of the bottleneck graph bipartition
problem. Journal of Combinatorial Mathematics and Combinatorial Computing, 15(94):221–
226, 1994.

29 Alexandros Stamatakis. Raxml version 8: a tool for phylogenetic analysis and post-analysis
of large phylogenies. Bioinformatics, 30(9):1312–1313, 2014. doi:10.1093/bioinformatics/
btu033.

30 Alexandros Stamatakis and Nikolaos Alachiotis. Time and memory efficient likelihood-based
tree searches on phylogenomic alignments with missing data. Bioinformatics, 26(12):i132–i139,
2010.

SEA 2023

https://doi.org/10.1007/s101070100263
https://doi.org/10.1145/800263.809204
https://doi.org/10.4230/LIPIcs.SEA.2020.11
https://doi.org/10.1137/1.9781611976472.2
https://doi.org/10.1137/1.9781611977042.11
https://doi.org/10.1007/s00493-012-2696-x
https://doi.org/10.1145/224170.224228
https://doi.org/10.4230/LIPIcs.SEA.2017.21
https://doi.org/10.1016/j.jcta.2016.02.004
https://doi.org/10.1109/92.748202
https://doi.org/10.1109/12.8730
https://doi.org/10.5445/IR/1000105953
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/bioinformatics/btu033


17:16 Greedy Heuristics for Judicious Hypergraph Partitioning

31 Tunzi Tan, Jihong Gui, Sainan Wang, Suixiang Gao, and Wenguo Yang. An Efficient Algorithm
for Judicious Partition of Hypergraphs. In Combinatorial Optimization and Applications - 11th
International Conference, COCOA 2017, Shanghai, China, December 16-18, 2017, Proceedings,
Part II, volume 10628 of Lecture Notes in Computer Science, pages 466–474. Springer, 2017.
doi:10.1007/978-3-319-71147-8_33.

32 Natarajan Viswanathan, Charles J. Alpert, Cliff C. N. Sze, Zhuo Li, and Yaoguang Wei. The
DAC 2012 Routability-Driven Placement Contest and Benchmark Suite. In 49th Conference on
Design Automation (DAC), pages 774–782. ACM, June 2012. doi:10.1145/2228360.2228500.

https://doi.org/10.1007/978-3-319-71147-8_33
https://doi.org/10.1145/2228360.2228500


Hierarchical Relative Lempel-Ziv Compression
Philip Bille #

Department of Computer Science and Applied Mathematics,
Technical University of Denmark, Lyngby, Denmark

Inge Li Gørtz #

DTU Compute, Technical University of Denmark, Lyngby, Denmark

Simon J. Puglisi #

Helsinki Institute for Information Technology (HIIT), Finland
Department of Computer Science, University of Helsinki, Finland

Simon R. Tarnow #

DTU Compute, Technical University of Denmark, Lyngby, Denmark

Abstract
Relative Lempel-Ziv (RLZ) parsing is a dictionary compression method in which a string S is
compressed relative to a second string R (called the reference) by parsing S into a sequence of
substrings that occur in R. RLZ is particularly effective at compressing sets of strings that have a
high degree of similarity to the reference string, such as a set of genomes of individuals from the
same species. With the now cheap cost of DNA sequencing, such datasets have become extremely
abundant and are rapidly growing. In this paper, instead of using a single reference string for the
entire collection, we investigate the use of different reference strings for subsets of the collection,
with the aim of improving compression. In particular, we propose a new compression scheme
hierarchical relative Lempel-Ziv (HRLZ) which form a rooted tree (or hierarchy) on the strings and
then compress each string using RLZ with parent as reference, storing only the root of the tree in
plain text. To decompress, we traverse the tree in BFS order starting at the root, decompressing
children with respect to their parent. We show that this approach leads to a twofold improvement in
compression on bacterial genome datasets, with negligible effect on decompression time compared to
the standard single reference approach. We show that an effective hierarchy for a given set of strings
can be constructed by computing the optimal arborescence of a completed weighted digraph of the
strings, with weights as the number of phrases in the RLZ parsing of the source and destination
vertices. We further show that instead of computing the complete graph, a sparse graph derived
using locality-sensitive hashing can significantly reduce the cost of computing a good hierarchy,
without adversely effecting compression performance.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Relative compression, Lempel-Ziv compression, RLZ, LZ77, string collections,
compressed representation, data structures, efficient algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.18

Related Version Previous Version: https://arxiv.org/abs/2208.11371

Funding This work was supported in part by the Academy of Finland via grants 339070 and 351150
and the Danish Research Council via grant DFF-8021-002498.

1 Introduction

Given a collection of m strings S = {S1, S2, . . . , Sm} of total length n, the relative Lempel-Ziv
(RLZ) compression scheme parses each string Si, i > 1, into a sequence of substrings (called
phrases) of the string S1 (we give a precise definition below). If the strings in S are highly
similar, the number of phrases in the parsing is small relative to the total length of the
collection. In order to achieve compression, the string S1 is stored explicitly and the phrases

© Philip Bille, Inge Li Gørtz, Simon J. Puglisi, and Simon R. Tarnow;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 18; pp. 18:1–18:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:phbi@dtu.dk
https://orcid.org/0000-0002-1120-5154
mailto:inge@dtu.dk
https://orcid.org/0000-0002-8322-4952
mailto:simon.puglisi@helsinki.fi
https://orcid.org/0000-0001-7668-7636
mailto:sruta@dtu.dk
https://orcid.org/0009-0002-4293-6475
https://doi.org/10.4230/LIPIcs.SEA.2023.18
https://arxiv.org/abs/2208.11371
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 Hierarchical Relative Lempel-Ziv Compression

of the other strings are encoded by their starting and ending positions in S1. To decompress,
we simply replace the encoding of each phrase by the corresponding substring in S1. Note that
we can even efficiently support sequence retrieval, that is, decompressing a single specified
string Si from S, by simply decompressing the phrases of the Si independently of the rest of
the collection.

RLZ is ideal for compressing and storing collections of highly similar strings while
supporting efficient sequence retrieval. In particular, RLZ is a natural choice for databases
of full genome sequences of individuals of the same species [18, 6, 5, 36, 24]. Since these
sequences are highly similar, RLZ is able to compress them well, while still supporting
efficient sequence retrieval needed by applications. Enormous reductions over the past two
decades in the cost of DNA sequencing has led to large and growing data bases containing
hundreds of thousands of full genome sequences of strains of many known bacteria and
viruses. These databases are key, for example, to the field of genomic epidemiology, to screen
patient samples (which are sequenced and compared against the genome database) for known
pathogenic strains to arrive at diagnosis and suitable treatments (see, e.g., [21]).

For a given bacterial species, a genome database may contain genome sequences of
thousands of different strains. While all these strains are relatively similar to each other,
some share a higher degree of similarity with genomes in a cluster of related strains than
they do with other sequences in the database. With this is mind, while RLZ may result in
good compression when a single arbitrary sequence is selected as the reference, intuitively
it would seem that even more effective compression of the database could be achieved by
selecting a different reference for each cluster of strains.

Our Contributions. In this paper we explore the use of more than one reference sequence in
the context of RLZ compression. We present a new compression scheme, called hierarchical
relative Lempel-Ziv (HRLZ) compression, that arranges the sequences in S into a rooted
tree H, with root r, such that each node v corresponds to a unique string S(v) from S.
To compress the collection we greedily parse S(v) wrt. S(parent(v)) using RLZ for each
non-root node v. The compressed representation then consists of S(r), the edges of H, and
the encoding of the m − 1 parsings of the non-root strings. Note that RLZ may be viewed as
the special case of HRLZ on a tree consisting of a root with m − 1 children.

A key challenge in HRLZ compression is finding a hierarchy for the collection that achieves
strong compression. We show how to adapt an approach from delta compression of string
collections [25] to our relative compression scenario. This leads to a number of interesting
algorithmic challenges:
1. To derive an effective hierarchical arrangement for a given set of strings, we compute the

optimal arborescence of a complete weighted digraph of the strings, with edge weights
assigned as the number of phrases in the RLZ parsing of the source and destination
vertices. We show that this scheme leads to a factor of 2 improvement to compression on
bacterial genomes, and up to a factor 10 on viral genomes, without adversely affecting
the speed of decompression.

2. While the optimal arborescence leads to pleasing compression improvements, it adds signi-
ficantly to compression time. We show that by sparsifying the graph via locality-sensitive
hashing, compression time can be kept reasonable, while not sacrificing compression gains.

3. Along the way, we describe an efficient implementation of the optimal arborescence
algorithm of Tarjan [32] that uses a two-level heap engineered for efficient meld operations,
which may be of independent interest.



P. Bille, I. L. Gørtz, S. J. Puglisi, and S. R. Tarnow 18:3

Our resulting HRLZ compression scheme achieves improved tradeoffs for genome databases.
While the time to compress the database with HRLZ is slower than RLZ, HRLZ always
improves the compression ratio (measured by the number of phrases) in some cases enormously
– by a factor of up to 19 times in our experiments. HRLZ also matches or even slightly
improves whole database decompression time and achieves very similar single sequence
retrieval times (the time taken to extract a single requested genome from the database) as
RLZ does. Thus, in practical scenarios where space and sequence retrieval time are the main
bottlenecks (such as a genomic database) HRLZ provides an attractive alternative to RLZ.

We also compared HRLZ to the classic Lempel-Ziv 77 (LZ77) compression scheme. LZ77
provides a natural lower on the number of phrases we can hope to achieve with RLZ and
HRLZ and thus provides a baseline for the compression ratio achieved by those schemes.
Our experiments show that while HRLZ is larger than LZ77 (by a factor of 2 to 16) on small
collections, HRLZ is able to scale to collections with sizes well beyond those LZ77 is able to
process, and is also orders of magnitude faster for sequence retrieval compared to LZ77 on
the all datasets we tested.

Related Work. The idea of constructing a hierarchy of compressed sequences from collections
was proposed in the context of delta-compression [25]. To the best of our knowledge, this
idea has not been explored for RLZ compression. A related notion is mentioned cryptically
in Storer and Szymanski [31], but appears never to have been implemented. The closest
work we could find in the literature is due to Deorowicz and Grabowski [6], who describe an
RLZ-based scheme for genome compression in which a sequence is compressed relative to
multiple reference sequences, with each phrase storing which reference sequence it is from
(see also [5]). Another more recent hierarchical compression scenario is the persistent strings
model [3]. Both of these are quite different to the hierarchical arrangement of sequences we
describe here.

Beyond genomics applications, RLZ has also found wider use as a compressor for large text
corpora in contexts where random-access support for individual documents is needed [14, 34,
35, 26, 20, 2] and as a general data compressor [17, 16]. In those contexts, S1 is usually first
constructed using substrings sampled from other strings in the collection in a preprocessing
phase (Hoobin et al. [14] show that random sampling of substrings works well). The structure
of the RLZ parsing reveals a great deal about the repetitive structure of the string collection
and several authors have shown that this can be exploited to design efficient compressed
indexes for pattern matching [13, 8, 23]. More recently, the practical utility of RLZ as a
more general tool for compressed data structuring has also been demonstrated, compressing
suffix arrays [27, 29], document arrays [28] and various components of suffix trees [9].

Outline. In Section 2 we set down notation and basic concepts used throughout. In Section 3
we formally define hierarchical relative Lempel-Ziv compression, and then go onto describe
efficient methods for computing it in Section 4 and Section 5. Section 6 describes our
engineering of the arborescence algorithm of Tarjan [32]. Our experimental results on three
genomic datasets are presented in Section 7, before conclusions and reflections are offered.

2 Basics

Throughout we will consider a string S = S[1..n] = S[1]S[2] . . . S[n] on an integer alphabet
Σ of σ symbols. The substring of S that starts at position i and ends at position j, j ≥ i,
denoted S[i..j], is the string S[i]S[i + 1] . . . S[j]. If i > j, then S[i..j] is the empty string
ε. A suffix of S is a substring with ending position j = n, and a prefix is a substring with
starting position i = 1.

SEA 2023



18:4 Hierarchical Relative Lempel-Ziv Compression

Parsings. A parsing of a string S wrt. a reference string R is a sequence of substrings
of R – called phrases – R[i1, i1 + l1 − 1], R[i2, i2 + l2 − 1], . . . , R[iz, iz + lz − 1] such that
S = R[i1, i1 + l1 − 1] · R[i2, i2 + l2 − 1] · · · R[iz, iz + lz − 1]. The encoding of a parsing consists
of the sequence of starting indices and lengths of the phrases (i1, l1), (i2, l2), . . . , (iz, lz).

The greedy parsing of S wrt. R is the parsing obtained by processing S from left to right
and choosing the longest possible phrase at each step. For example, let R = actccta and
S = ctctcc. The greedy parsing of S wrt. R gives the phrases R[2, 4] = ctc, R[3, 5] = tcc and
the encoding (2, 3), (3, 3). We can construct the parsing in O(|R| + |S|) time using a suffix
tree.

Relative Lempel-Ziv Compression. Throughout the rest of the paper let S =
{S1, S2, . . . , Sm} be a collection of m strings of total length n =

∑m
i=1 |Si|. The relat-

ive Lempel-Ziv (RLZ) compression of S greedily parses each string Si, i > 1, wrt. S1. The
RLZ compressed representation of S then consists of S1 and the encoding of the parsings
of each of the strings S2, . . . , Sm. For each string, we also save the number of phrases. In
total, compression takes O(n) time. Let zi be the number of phrases in the parsing of Si

and let zR =
∑m

i=2 zi denote the total number of phrases. The size of the RLZ compression
is thus O(|S1| + zR). Note that the size depends on the choice of the reference string (i.e.
S1) among the strings in S. To decompress, we decode the phrases of each string using the
explicitly stored reference string. This uses O(

∑m
i=1 |Si|) = O(n) time.

Throughout this paper, we use the number of phrases as the measure of compression. In
a real compressor, the phrase positions and lengths undergo further processing in order to
reduce the total number of bits used by the encoding (see, e.g., [11]). We remark that our
hierarchical RLZ methods can be trivially adapted to use different encoding costs.

Graphs. Let G be a weighted directed strongly connected graph G. A spanning arborescence
A of G with root r is a subgraph of G that is a directed rooted tree where all nodes are
reachable from r. The weight of an arborescence S is the sum of the weight of the edges
in A. A minimum weight spanning arborescence (MWSA) A is a spanning arborescence of
minimum weight. Note that the root is not fixed in our definition and can thus be any node.
For simplicity, we have assumed that G is strongly connected in our definition of MWSA
since this is always the case in our scenario. Finally, for a node v in a tree, the parent of a
node is denoted parent(v).

3 Hierarchical Relative Lempel-Ziv Compression

Let S = {S1, S2, . . . , Sm} be a collection of strings of total size n as above. We construct a
rooted tree H, with root r, such that each node v represents a unique string S(v) from S.
The hierarchical relative Lempel-Ziv (HRLZ) compression of S wrt. H greedily parses
S(v) wrt. S(parent(v)) for each non-root node v. In total, compression takes O(n) time.
The HRLZ compressed representation consists of S(r), the edges of H, and the encoding
of the m − 1 parsings of the non-root strings. Let zH =

∑
v∈H\{r} zv, where zv is the

number of phrases in the parsing of S(v). Thus the size of the HRLZ compression is
O(|H| + |S(r)| + zH) = O(|S(r)| + zH). Note that the size depends on the choice of tree and
assignment of strings from S to the nodes.

To decompress, we traverse the tree in breadth first search (BFS) order from the root.
We decode the string at each node using the string of the parent node by decoding each
phrase. As the string of the parent node is always decoded before or explicitly stored as the
root node, this uses O(

∑m
i=1 |Si|) = O(n) time. Note that the output order of the sequences

can differ from their input order since they are recovered in BFS order of the hierarchy.



P. Bille, I. L. Gørtz, S. J. Puglisi, and S. R. Tarnow 18:5

4 Constructing an Optimal Tree

We first give a simple and inefficient algorithm to construct an optimal tree for the HRLZ
compression. The algorithm forms the basis of our efficient algorithm in the following section.
Recall that the collection S = {S1, S2, . . . , Sm} consists of m strings of total size n. The
algorithm proceeds as follows:

Step 1: Construct Cost Graph. We first construct a complete weighted directed graph G

with m nodes numbered {1, . . . , m} called the cost graph of S. Node i corresponds to the
string Si in S and the weight of edge (i, j) is the number of phrases in the greedy parsing of
Sj wrt. Si.

We have that G contains m nodes and m2 edges. Computing the weight of edge (i, j)
takes O(|Sj |) time. Thus in total we use O((m − 1)

∑
j |Sj |) = O(nm) time. The space is

O(m2).

Step 2: Construct Minimum Weight Spanning Arborescence. We then construct a
MWSA A of the cost graph G using the algorithm by Tarjan [32, 4]. This uses O(e log m) =
O(m2 log m) time. Here e denotes the number of edges in the graph.

Step 3: Construct Compressed Representation. Finally, we construct the HRLZ compres-
sion from the MWSA A. This uses O(n) time.

In total the algorithm uses O(mn) time and O(m2) space. Note that the algorithm
constructs an optimal tree but not necessarily the optimal HRLZ compression since the
HRLZ compression also needs to explicitly encode the string of the root of the tree. It is
straightforward to include the cost of encoding the root string in the algorithm, by adding
an additional virtual root s and adding edges (s, i) to every other node i, 1 ≤ i ≤ m, with
weight |Si|. The MWSA of the new graph G′ will be rooted in s and the unique edge out
of s determines the optimal root string for HRLZ compression. While G′ is not strongly
connected, the MWSA is still well-defined and the MWSA algorithm produces the correct
result in the same complexity. In practice, our datasets consist of very similar length strings
and hence we have chosen not to implement this extension.

5 Sparsifying the Cost Graph via Locality-Sensitive Hashing

The main bottleneck in the simple algorithm from Section 4 is the construction of the
complete cost graph in Step 1. In this section, we show how to efficiently sparsify the graph
using locality-sensitive hashing.

We first construct a sparse subgraph G of the complete cost graph. We do this in rounds
keeping an auxiliary set of strings R as follows. Initially, we set G to be the graph with m

nodes and no edges, and R = S. We repeat the following steps until G is strongly connected.

Step 1: Generate fingerprints. We first generate fingerprints for each string in R using
locality-sensitive hashing. Our locality-sensitive hashing scheme is based on k-mers (a
substring of length k) combined with min-hashing. More precisely, given parameters k and
q we pick q hash functions h1, . . . , hq and hash each k-mer of each string S in R. The
fingerprint of S is the sequence min1, . . . , minq where mini is a minimum value hash obtained
with hi. For fast hashing we use the simple multiply-shift hashing scheme [7].

SEA 2023



18:6 Hierarchical Relative Lempel-Ziv Compression

Step 2: Generate edges. Let C be a group of strings in R with the same fingerprint. If
|C| ≤ T for a threshold T ≥ 2 then for each ordered pair (i, j) of strings in C we add (i, j)
to G.

Step 3: Pruning R. After every c-th round for some tuneable parameter c we prune the
set R as follows.

For every connected component in G pick the string s that has had the most collisions
until now (the total number of collisions of a string s is equal to the sum of the size of the
buckets it has been in). We then continue with R being the set of representatives. If |R| ≤ T

then for each ordered pair (i, j) of strings in R we add (i, j) to G.
Finally, we compute the weight of the edges of the strongly connected graph G, i.e., for

each edge (i, j) we compute the number of phrases in the greedy parsing of Sj wrt. Si.
The computed cost graph is likely to be sparse and thus step 1 and step 2 of the

algorithm from Section 4 will be much faster, leading to a much faster solution. Note that
the constructed tree is no longer guaranteed to be optimal. We show experimentally in
Section 7 that the size of the compression in nearly all cases is within 5% of optimal.

6 Speeding Up the Minimum Weight Spanning Arborescence
Algorithm

We now show how to efficiently implement Step 2 of the algorithm from Section 4 on the
sparse cost graph computed in Section 5.

Let G be the sparse cost graph with m nodes and e edges computed in Section 5. The
MWSA algorithm by Tarjan [32, 4] uses m priority queues Q1, Q2, . . . , Qm, one for each
node, where Qi consists of all edges going into node vi. The queues support the following
operations:

init(L): Constructs a queue Q containing all the elements in the list L.
extract-min(Qi): Returns and removes the minimum element in the queue Qi.
add(Qi, c): Adds a constant c to the value of all elements in the queue Qi.
meld(Qi, Qj): Adds the elements from queue Qj to the queue Qi.

The MWSA algorithm uses a pairing heap [12] to support init in O(|L|) time and the other
operations in O(log m) time. The algorithm uses O(m) meld and init operations, O(e) add
and extract-min operations, and the total length of the lists for the init operations is O(e).
Thus, the total run time of the queue operations in the MWSA algorithm is O(e log m), and
this is also the total runtime of the MWSA algorithm.

We present a simple and practical alternative to the pairing heap that we call a two-level
heap. Our two-level heap leads to a slightly worse theoretical bound of O(e log m + m log2 m)
time for the MWSA algorithm. However, we have found that our implementation significantly
outperforms the pairing heap in practice. We note that Larkin, Sen, and Tarjan include a
similarly modified pairing heap as one of the variants in their empirical study of priority
queues [19]. That study, however, neglects the meld operation, which is essential to our
implementation of the minimum weight spanning aborescense algorithm described above.
We therefore now describe our two-level heap implementation in full.

The two-level heap consists of a top heap t and a list of q bottom heaps B = {b1, b2, . . . bq}.
All heaps are implemented using standard binary heaps [37]. Each heap h has an associated
offset oh, such that any stored element x in h represents that actual value x + oh. The top
heap t consists of the minimum element in each bottom heap b ∈ B. For each element in the
top heap we also store which botton heap it is from. We implement each of the operations
as follows.



P. Bille, I. L. Gørtz, S. J. Puglisi, and S. R. Tarnow 18:7

init(L). We construct a two-level heap consisting of a single bottom heap B = {b} containing
the elements of L and a top heap t containing the minimum element of b. We set the offsets
ob and ot of b and t, respectively, to be 0. This uses O(|L|) time and hence the total time for
init in the MWSA algorithm is O(e).

extract-min(Qi). We extract the minimum element x from the top heap t and return x+ot.
Let b be the bottom heap that stored x. We extract x from b, find the new minimum element
y in b, and copy y into the top heap with offset ob. This uses O(log m) time and hence the
total time for extract-min in the MWSA algorithm is O(e log m).

add(Qi, c). We add c to the offset of the top heap t, i.e., we set ot = ot + c. This takes
constant time and hence the total time for add in the MWSA algorithm is O(e).

meld(Qi, Qj). Let Qi = (ti, Bi) and Qj = (tj , Bj) be the two-level heaps that we want to
meld. Let |Bi| and |Bj | be the number of bottom heaps associated with two-level heap Qi

and Qj , respectively, and assume wlog. that |Bi| ≥ |Bj |. We move each bottom heap b ∈ Bj

into Bi, insert the minimum element of b into ti with offset ob + otj − oti , and update the
offset associated with b to ob = ob + otj

− oti
.

Each time an element in a bottom heap b is moved, we must insert the minimum element
of b into a top heap using O(log m) time. We only move the bottom heaps of the two-level
heap with the fewest bottom heaps and hence the number of times a bottom heap can be
moved is O(log m). It follows that total time for meld in the MWSA algorithm is O(m log2 m).

In total the MSWA algorithm implemented with the two-level heap uses O(e log m +
m log2 m) time.

7 Experimental Results

We implemented the methods for building hierarchical references described in the previous
sections and measured their performance on real biological data.

7.1 Setup
Experiments were run on Nixos 21.11 kernel version 5.10.115. The compiler was g++
version 11.3.0 with -Wall -Wextra -pedantic -O3 -funroll-loops -DNDEBUG -fopenmp
-std=gnu++20 options. OpenMP version 4.5 was used to compute the string fingerprints in
parallel and compute the edge weights on the cost graph. The CPU was an AMD Ryzen
3900X 12 Core CPU clocked at 4.1 GHz with L1, L2 caches of size 64KiB, 512KiB, per core
respectively and a shared L3 cache of size 64MiB. The system had 32GiB of DDR4 3600
MHz memory. We recorded the CPU wall time using GNU time and C++ chrono library.
Source code is available on request.

7.2 Datasets
We evaluated our method using 1,000 copies of human chromosome 19 from the 1000 Genomes
Project [33]; 219 E. coli genomes taken from the GenomeTrakr project [30], and 400,000
SARS-CoV2 genomes from EBI’s COVID-19 data portal [1]. See Table 1 for a brief summary
of the datasets.

We also ran our tests on prefixes of various sizes of these datasets.

SEA 2023



18:8 Hierarchical Relative Lempel-Ziv Compression

Table 1 Datasets used in experimentation. Columns labelled σ, n, and m, give the alphabet size,
total collection size, and number of sequences, respectively. The final column shows the average
sequence length, for convenience.

Name Description σ n m n/m

E.coli E.coli genomes 4 1, 130, 374, 882 219 5, 161, 529
SARS-CoV2 Covid-19 genomes 5 11, 949, 531, 820 400, 000 29, 873
chr19 Human chromosome 19 assemblies 5 59, 125, 151, 874 1, 000 59, 125, 151

7.3 Methods Tested
We included the following methods in our experimental evaluation.

RLZ. This corresponds to standard, single reference RLZ. Because the choice of reference
can affect overall compression, we report results across a number of reference selections. Spe-
cifically, we randomly sampled roughly 0.5% of the sequences of each dataset, corresponding
to 2, 2000, and 5 different reference sequences from E. coli, SARS-CoV2, and the chr19
dataset respectively as our reference in RLZ.

Optimal HRLZ. This is the method described in Section 4, i.e., optimal hierarchical RLZ
making use of full weight information.

Approximate HRLZ. The LSH variant of hierarchical RLZ as described in Section 5.
Specifically, we used k-mers of 256 characters in size and choose the number of hash functions
to q = 4. We pruned the set R every c = 10 rounds. We used T = 2 ·

√
m as our threshold.

LZ. As a compression baseline, we also compute the full LZ77 parsing of our datasets using
the KKP-SE external memory algorithm and software of [15]1. Because it allows phrases to
have their source at any previous position in the collection, computing the LZ77 parsing is
more computationally demanding than RLZ parsing, and so we compute it only for some
prefixes of the collections. For similar reasons, although in principle the above RLZ-based
methods could attain parsings as small as the LZ77 parsing, we expect them not to.

7.4 Compression Performance
In this section, we compare the compression size as measured by the number of phrases
generated by single reference RLZ to Optimal HRLZ and Approximate HRLZ on the datasets
with LZ as a baseline. We also compare the compression time of the algorithms.

The results of our compression experiments are shown in Figure 1. Some of the results
for the compression size of RLZ on the SARS-CoV2 dataset have been left out of the figure
because they were orders of magnitude larger than the other algorithms. Furthermore, we
were unable to get data points for LZ on the 1000 sequences of the chr19 dataset and the
Optimal HRLZ on the SARS-CoV2 for anything more than 125000 sequences on our test
machine. The specific values behind Figure 1 (including the leftout results for RLZ) can be
read in Tables 2–7 in the appendix.

1 Code available at https://www.cs.helsinki.fi/group/pads/em_lz77.html.

https://www.cs.helsinki.fi/group/pads/em_lz77.html


P. Bille, I. L. Gørtz, S. J. Puglisi, and S. R. Tarnow 18:9

We observe that, as expected LZ consistently produces the best compression size, but
was infeasible to run on the full chr19 dataset – which is the largest dataset measured in the
number of symbols – on our test machine due to space consumption.

While RLZ outperforms all other algorithms in regard to compression speed it also
consistently produces the worst compression size. Results on the SARS-CoV2 dataset show
just how bad the compression size can deteriorate if an ill-fitting reference is chosen as the
reference used by RLZ. We observe that both versions of HRLZ obtain a better compression
that RLZ in all cases. Measured in the number of phrases approximate HRLZ improves the
compression ratio by a factor 1.8 on the E. coli dataset and 19.3 on the SARS-CoV2 dataset.

For the Optimal HRLZ we see that the compression time is the worst of all the algorithms
and grows quadratically with the number of sequences and quickly becomes infeasible on
the SARS-CoV2 dataset. It does however consistently produce a smaller compression size
than RLZ, as we would expect given that HRLZ could produce a star graph with a single
sequence as the reference for all other sequences and thus yielding the same result as RLZ.
The compression time for Approximate HRLZ is significantly less than Optimal HRLZ
and is consistently within a factor 2 of LZ – even outperforming LZ on some of the larger
experiments of the chr19 dataset. Furthermore, we note that the compression size of the
Approximate HRLZ is no more than 15% greater than the compression size of Optimal HRLZ
and always better than that of RLZ.

LZ RLZ Optimal HRLZ Approximate HRLZ

50 150 219
0.0

0.5

1.0

·103

C
om

pr
es

si
on

ti
m

e
[s

]

12500 100000 400000
0.0

1.0

2.0

3.0
·103

125 250 500 1000
0.0

1.0

2.0

3.0
·104

50 150 219
0.0

2.0

4.0

6.0
·107

Number of sequences

C
om

pr
es

si
on

si
ze

12500 100000 400000
0.0

1.0

2.0

3.0
·107

Number of sequences
125 250 500 1000

0.0

0.5

1.0

·108

Number of sequences

Figure 1 Compression time (top) and compression size (bottom) measured in the number of
phrases as a function of the number of sequences in the in the E. coli (left), SARS-CoV2 (center)
and chr19 (right) dataset. RLZ compression sizes were left out from the SARS-CoV2 (center) plot
because it is orders of magnitude larger than the rest of the compression sizes. We were unable to get
data points for LZ on the 1000 sequences of the chr19 dataset and Optimal HRLZ on the SARS-CoV2
for anything more than 12500 sequences on our test machine due to memory consumption.

7.5 Decompression Performance
In this section, we compare the decompression time of the algorithms. The experiment
measured the time to decompress the generated compressed dataset from our compression
experiments and write the result to disk. This kind of streaming decompression use case is typ-

SEA 2023



18:10 Hierarchical Relative Lempel-Ziv Compression

ical for, e.g., multi-pass index construction, machine learning, and data mining processes [10].
All methods have to write the same amount of data to storage when decompressing. Our
HRLZ variants decompress sequences in BFS order according to hierarchy imposed on the
sequences. This may require sequences that have previously written to disk being read back
into memory (at most once) when they are needed as a reference in the decompression of
other sequences.

We also compared the time it takes to decompress a single sequence for both variants of
HRLZ and RLZ. We call this sequence retrieval time. For RLZ we took the best compressed
sample for each experiment and used this for the test. We did not implement an equivalent
solution for LZ since LZ is not built to easily decompress a single sequence. For each
experiment we found the average and standard deviation of the sequence retrieval time over
all sequences for that specific experiment.

The results of our decompression and sequence retrieval experiments are shown in Figure 2.
We do not have data points for the experiments that we where unable to perform compression
on. The specific values behind Figure 2 can be read in Tables 8–13 in the appendix. For
Optimal HRLZ and Approximate HRLZ we also recorded the average and maximum node
depth of the nodes in the arborescence. This can be viewed in table 3 in the appendix.

We observe that RLZ and the HRLZ variants have similar decompression performance
characteristics, while LZ performs significantly worse. Interestingly, both versions of HRLZ
outperformed RLZ in decompression time on most of the experiments. We believe this is
because the longer phrases produced by the HRLZ variants result in fewer cache misses; that
is, for every access to the reference made by HRLZ, more symbols are sequentially copied,
improving cache performance and overall runtime. We believe that this also explains why
both variants of HRLZ perform within a factor of 5 with respect to RLZ in sequence retrieval
time, even though the average node depth in the minimum spanning arborescence on the
largest SARS-CoV2 dataset experiment is 100.

On larger datasets, which approach the size of RAM on the test machine, RLZ and HRLZ
have similar decompression times, with RLZ being occasionally faster (on the largest of the
SARS-CoV2 datasets, for example). This can be explained by the above mentioned need for
the HRLZ variants to read previously written sequences back into memory (when they are
needed as reference sequences).

8 Concluding Remarks

We have shown that, from a space point of view, traditional single-reference RLZ compression
can be significantly outperformed by imposing a hierarchy on the sequences to be compressed
using a sequence’s parent in the hierarchy as its reference sequence. Moreover, we have
described efficient methods by which hierarchies can be efficiently obtained. Our experiments
show that the time to subsequently decompress the set of sequences are at worst negligibly
slower, and many times even faster than the single reference baseline.

There are many directions future work could take. Apart from compression, another
feature of RLZ that makes it attractive in a genomic context is its ready support for efficient
random access to individual sequences (and indeed substrings): having a compact, easily
accessible representation of the genome sequences compliments popular indexing methods
that do not readily support random access themselves (e.g., [22]). Supporting random access
at a substring level for HRLZ compressed data (as opposed to sequence-level access we
currently support) is an interesting avenue for future work.



P. Bille, I. L. Gørtz, S. J. Puglisi, and S. R. Tarnow 18:11

LZ RLZ Optimal HRLZ Approximate HRLZ

50 150 219
0.0

0.5

1.0

1.5

2.0 ·101

D
ec

om
pr

es
si

on
ti

m
e

[s
]

12500 100000 400000
0.0

0.5

1.0

1.5

2.0
·102

125 250 500 1000
0.0

2.0

4.0

·102

50 150 219
0.0

0.5

1.0
·105

Number of sequences

Se
qu

en
ce

re
tr

ie
va

l
ti

m
e

[µ
s]

12500 100000 400000
0.0

2.0

4.0

6.0

8.0
·102

Number of sequences
125 250 500 1000

0.0

2.0

4.0

·105

Number of sequences

Figure 2 Decompression time (top) and sequence retrieval time (bottom) as a function of the
number of sequences in the E. coli (left), SARS-CoV2 (center) and chr19 (right) dataset. Note that
the missing samples are due to no compressed result being available.

As noted in the introduction, several recent works have demonstrated the practical utility
of using RLZ as a tool for compressed data structuring [9, 27, 29, 28]. In that context, an
artificial reference sequence is constructed from repeated pieces (e.g., subarrays, or subtrees)
of the data structure to be compressed. It would be interesting to see if our methods could
be adapted to construct better artificial reference sequences for use in those scenarios.

Finally, in this work we have used purely algorithmic methods to derive hierarchies for
datasets: no biological characteristics of the sequences have been used. However, the field of
phylogenetics has developed many techniques for imposing a hierarchy on a set of individuals
based on biologically meaningful features in their genomic content. It may be interesting
to examine any similarities between phylogenetic trees and our RLZ-based hierarchies, and
whether phylogenetic trees may serve as good hierarchies in the context of compression.

References

1 Coronavirus genomes – NCBI datasets. Accessed 18/05/2022, https://www.ncbi.nlm.nih.
gov/datasets/coronavirus/genomes/.

2 Philip Bille, Anders Roy Christiansen, Patrick Hagge Cording, Inge Li Gørtz, Frederik Rye
Skjoldjensen, Hjalte Wedel Vildhøj, and Søren Vind. Dynamic relative compression, dynamic
partial sums, and substring concatenation. Algorithmica, 80(11):3207–3224, 2018.

3 Philip Bille and Inge Li Gørtz. Random access in persistent strings. In Proc. 31st ISAAC,
2020.

4 P. M. Camerini, L. Fratta, and F. Maffioli. A note on finding optimum branchings. Networks,
9(4):309–312, 1979. doi:10.1002/net.3230090403.

5 Sebastian Deorowicz, Agnieszka Danek, and Szymon Grabowski. Genome compression: a
novel approach for large collections. Bioinformatics, 29(20):2572–2578, 2013.

6 Sebastian Deorowicz and Szymon Grabowski. Robust relative compression of genomes with
random access. Bioinformatics, 27(21):2979–2986, 2011.

SEA 2023

https://www.ncbi.nlm.nih.gov/datasets/coronavirus/genomes/
https://www.ncbi.nlm.nih.gov/datasets/coronavirus/genomes/
https://doi.org/10.1002/net.3230090403


18:12 Hierarchical Relative Lempel-Ziv Compression

7 Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen. A reliable
randomized algorithm for the closest-pair problem. J. Algorithms, 25(1):19–51, 1997.

8 Huy Hoang Do, Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Fast relative
lempel-ziv self-index for similar sequences. Theor. Comput. Sci., 532:14–30, 2014.

9 Andrea Farruggia, Travis Gagie, Gonzalo Navarro, Simon J. Puglisi, and Jouni Sirén. Relative
suffix trees. Comput. J., 61(5):773–788, 2018.

10 Paolo Ferragina and Giovanni Manzini. On compressing the textual web. In Proc. 3rd WSDM,
pages 391–400, 2010.

11 Paolo Ferragina, Igor Nitto, and Rossano Venturini. On the bit-complexity of Lempel-Ziv
compression. SIAM J. Comput., 42(4):1521–1541, 2013.

12 Michael L Fredman, Robert Sedgewick, Daniel D Sleator, and Robert E Tarjan. The pairing
heap: A new form of self-adjusting heap. Algorithmica, 1(1):111–129, 1986.

13 Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi.
A faster grammar-based self-index. In Proc. 6th LATA, pages 240–251, 2012.

14 Christopher Hoobin, Simon J. Puglisi, and Justin Zobel. Relative Lempel-Ziv factorization for
efficient storage and retrieval of web collections. Proc. VLDB Endowment, 5(3):265–273, 2011.

15 Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Lempel-Ziv parsing in external
memory. In Proc. 24th DCC, pages 153–162, 2014.

16 Dominik Kempa and Ben Langmead. Fast and space-efficient construction of AVL grammars
from the LZ77 parsing. In Proc. 29th ESA, pages 56:1–56:14, 2021.

17 Dmitry Kosolobov, Daniel Valenzuela, Gonzalo Navarro, and Simon J. Puglisi. Lempel-ziv-like
parsing in small space. Algorithmica, 82(11):3195–3215, 2020.

18 Shanika Kuruppu, Simon J. Puglisi, and Justin Zobel. Relative Lempel-Ziv compression of
genomes for large-scale storage and retrieval. In Proc. 17th SPIRE, pages 201–206, 2010.

19 Daniel H. Larkin, Siddhartha Sen, and Robert Endre Tarjan. A back-to-basics empirical
study of priority queues. In Proc. 16th Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 61–72. SIAM, 2014.

20 Kewen Liao, Matthias Petri, Alistair Moffat, and Anthony Wirth. Effective construction of
relative lempel-ziv dictionaries. In Proc. 25th WWW, pages 807–816, 2016.

21 Tommi Mäklin, Teemu Kallonen, Jarno Alanko, Ørjan Samuelsen, Kristin Hegstad, Veli
Mäkinen, Jukka Corander, Eva Heinz, and Antti Honkela. Bacterial genomic epidemiology
with mixed samples. Microbial Genomics, 7(11), 2021.

22 Taher Mun, Alan Kuhnle, Christina Boucher, Travis Gagie, Ben Langmead, and Giovanni
Manzini. Matching reads to many genomes with the r-index. J. Comput. Biol., 27(4):514–518,
2020.

23 Gonzalo Navarro and Victor Sepulveda. Practical indexing of repetitive collections using
relative Lempel-Ziv. In Proc. 29th DCC, pages 201–210, 2019.

24 Gonzalo Navarro, Victor Sepulveda, Mauricio Marín, and Senén González. Compressed
filesystem for managing large genome collections. Bioinformatics, 35(20):4120–4128, 2019.

25 Zan Ouyang, Nasir Memon, Torsten Suel, and Dimitre Trendafilov. Cluster-based delta
compression of a collection of files. In Proc. 3rd WISE, pages 257–266, 2002.

26 Matthias Petri, Alistair Moffat, P. C. Nagesh, and Anthony Wirth. Access time tradeoffs in
archive compression. In Proc. 11th AIRS, pages 15–28, 2015.

27 Simon J. Puglisi and Bella Zhukova. Relative Lempel-Ziv compression of suffix arrays. In
Proc. SPIRE, LNCS 12303, pages 89–96. Springer, 2020.

28 Simon J. Puglisi and Bella Zhukova. Document retrieval hacks. In Proc. 19th SEA, pages
12:1–12:12, 2021.

29 Simon J. Puglisi and Bella Zhukova. Smaller RLZ-compressed suffix arrays. In Proc. 31st
DCC, 2021.

30 E.L. Stevens et al. The public health impact of a publically available, environmental database
of microbial genomes. Front. Microbiol., 8(808), 2017.



P. Bille, I. L. Gørtz, S. J. Puglisi, and S. R. Tarnow 18:13

31 James A. Storer and Thomas G. Szymanski. Data compression via textual substitution. J.
ACM, 29(4):928–951, 1982.

32 R. E. Tarjan. Finding optimum branchings. Networks, 7(1):25–35, 1977. doi:10.1002/net.
3230070103.

33 The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature, 526:68–74, 2015.

34 Jiancong Tong, Anthony Wirth, and Justin Zobel. Compact auxiliary dictionaries for incre-
mental compression of large repositories. In Proc. 23rd CIKM, pages 1629–1638, 2014.

35 Jiancong Tong, Anthony Wirth, and Justin Zobel. Principled dictionary pruning for low-
memory corpus compression. In Proc. 37th SIGIR, pages 283–292, 2014.

36 Daniel Valenzuela, Tuukka Norri, Niko Välimäki, Esa Pitkänen, and Veli Mäkinen. Towards
pan-genome read alignment to improve variation calling. BMC Genom., 19(S2), 2018.

37 John William Joseph Williams. Algorithm 232: heapsort. Commun. ACM, 7:347–348, 1964.

A Additional Figures

This appendix contains additional plots as well as data used to generate plots in the main
document.

Optimal HRLZ average node depth Optimal HRLZ max node depth
Approximate HRLZ average node depth Approximate HRLZ max node depth

50 150 219
0.0

0.1

0.2

0.3

0.4
·102

Number of sequences
12500 100000 400000

0.0

1.0

2.0
·102

Number of sequences
125 250 500 1000

0.0

0.2

0.4

·102

Number of sequences

Figure 3 The average node depth and maximum node depth for the generated rooted tree for
HRLZ as a function of the number of sequences in the E. coli (left), SARS-CoV2 (center) and
human chromosome 19 (right) dataset.

Table 2 Number of phrases generated for each algorithm as a function of the number of sequences
on the E. coli dataset.

Size lz rlz avg. rlz stdev. opt-hrlz approx-hrlz
50 1379061 11562810.5 19485.7 7119429 8136762
100 1556541 24551113.5 1575921.1 13284440 14736830
150 1681574 35311948.5 820511.9 19369695 21180548
200 1787317 47030288.0 281705.7 25087136 27401597
219 1815168 53757548.5 1759746.2 27307037 29425274

SEA 2023

https://doi.org/10.1002/net.3230070103
https://doi.org/10.1002/net.3230070103


18:14 Hierarchical Relative Lempel-Ziv Compression

Table 3 Compression time in seconds for each algorithm as a function of the number of sequences
on the E. coli dataset.

Size lz rlz avg. rlz stdev. opt-hrlz approx-hrlz
50 27.4 7.2 0.1 73.4 52.5
100 55.7 15.1 0.6 259.9 98.7
150 86.8 23.0 0.6 562.3 156.3
200 123.4 29.5 0.0 976.3 214.4
219 140.0 32.9 0.8 1169.2 246.9

Table 4 Number of phrases generated for each algorithm as a function of the number of sequences
on the SARS-CoV2 dataset.

Size lz rlz avg. rlz stdev. opt-hrlz approx-hrlz
12500 133149 3339721.0 2948529.2 227037 308499
50000 408189 14958546.9 13657427.6 nan 1061000
100000 714174 29867903.0 27657360.9 nan 1919686
200000 1262731 62437789.1 63333546.4 nan 3483747
400000 2235801 120997669.9 112955869.2 nan 6260161

Table 5 Compression time in seconds for each algorithm as a function of the number of sequences
on the SARS-CoV2 dataset.

Size lz rlz avg. rlz stdev. opt-hrlz approx-hrlz
12500 40.1 0.5 0.3 759.6 49.0
50000 209.5 2.3 1.6 nan 226.8
100000 462.5 4.5 3.3 nan 482.5
200000 1050.5 9.5 8.0 nan 1099.8
400000 2281.7 18.5 13.9 nan 2800.4

Table 6 Number of phrases generated for each algorithm as a function of the number of sequences
on the human chromosome 19 dataset.

Size lz rlz avg. rlz stdev. opt-hrlz approx-hrlz
125 5024871 14364972.4 1550636.6 12196621 12470163
250 5526491 28489855.6 2453053.5 24174861 24688193
500 6263992 56926699.6 4927584.0 47547689 48888371
1000 nan 111021292.4 5760037.6 94684015 98637301

Table 7 Compression time in seconds for each algorithm as a function of the number of sequences
on the human chromosome 19 dataset.

Size lz rlz avg. rlz stdev. opt-hrlz approx-hrlz
125 1215.0 24.8 1.8 694.7 941.9
250 2591.2 46.3 3.3 2238.0 2366.1
500 6463.0 89.1 5.9 7765.9 3641.0
1000 nan 187.4 6.8 28886.1 9546.1



P. Bille, I. L. Gørtz, S. J. Puglisi, and S. R. Tarnow 18:15

Table 8 Decompression time in seconds as a function of the number of sequences in the E. coli
dataset.

Size lz rlz opt-hrlz approx-hrlz
50 4.4 0.576 0.466 0.497
100 7.7 1.193 0.902 0.942
150 13.5 1.771 1.479 1.407
200 17.1 2.257 1.719 1.782
219 18.3 2.642 1.913 1.988

Table 9 Decompression time in seconds as a function of the number of sequences in the SARS-
CoV2 dataset.

Size lz rlz opt-hrlz approx-hrlz
12500 6.6 0.680 0.522 0.483
50000 26.0 2.360 nan 1.900
100000 49.7 4.492 nan 4.366
200000 87.9 13.252 nan 7.852
400000 201.6 26.827 nan 32.835

Table 10 Decompression time in seconds as a function of the number of sequences in the human
chromosome 19 dataset.

Size lz rlz opt-hrlz approx-hrlz
125 110.0 11.071 11.186 8.759
250 249.6 25.200 19.592 21.600
500 471.5 51.297 49.011 50.697
1000 nan 120.984 113.942 120.307

Table 11 Sequence retrieval time in microseconds as a function of the number of sequences in
the E. coli dataset.

Size rlz avg. rlz stdev. opt-hrlz avg. opt-hrlz stdev. approx-hrlz avg. approx-hrlz stdev.
50 13236.5 1755.6 37178.5 14394.6 42121.3 16156.5
100 13821.5 1620.0 45319.2 16403.6 47117.6 16014.0
150 13676.9 1570.5 70350.0 28741.0 54822.1 19014.8
200 13793.4 1494.6 59070.6 19208.5 50908.6 18783.8
219 14224.6 1889.1 66639.9 25731.6 52970.7 19047.7

Table 12 Sequence retrieval time in microseconds as a function of the number of sequences in
the SARS-CoV2 dataset.

Size rlz avg. rlz stdev. opt-hrlz avg. opt-hrlz stdev. approx-hrlz avg. approx-hrlz stdev.
12500 95.5 23.7 265.7 45.7 228.5 156.8
50000 95.5 42.7 nan nan 259.0 54.3
100000 96.2 121.4 nan nan 423.4 125.8
200000 95.8 220.0 nan nan 442.3 326.5
400000 97.2 375.0 nan nan 404.3 351.8

SEA 2023



18:16 Hierarchical Relative Lempel-Ziv Compression

Table 13 Sequence retrieval time in microseconds as a function of the number of sequences in
the human chromosome 19 dataset.

Size rlz avg. rlz stdev. opt-hrlz avg. opt-hrlz stdev. approx-hrlz avg. approx-hrlz stdev.
125 115321.9 35591.1 200032.1 40195.9 272391.0 69385.1
250 114071.5 28891.4 225877.9 57460.7 232411.1 63591.6
500 102449.2 24080.0 235679.4 64040.3 306264.9 83814.0
1000 146999.9 96793.4 325701.5 95408.6 287200.1 75598.3

Table 14 The average node depth and maximum node depth for the generated rooted tree for
HRLZ as a function of the number of sequences in the E. coli dataset.

Size opt-hrlz avg. opt-hrlz max approx-hrlz avg. approx-hrlz max
50 7.6 14 5.3 10
100 10.1 19 8.5 17
150 17.2 35 10.7 21
200 14.4 26 10.9 19
219 16.9 34 16.7 37

Table 15 The average node depth and maximum node depth for the generated rooted tree for
HRLZ as a function of the number of sequences in the SARS-CoV2 dataset.

Size opt-hrlz avg. opt-hrlz max approx-hrlz avg. approx-hrlz max
12500 16.4 36 61.0 125
50000 nan nan 46.5 92
100000 nan nan 95.8 181
200000 nan nan 103.8 176
400000 nan nan 100.2 206

Table 16 The average node depth and maximum node depth for the generated rooted tree for
HRLZ as a function of the number of sequences in the human chromosome 19 dataset.

Size opt-hrlz avg. opt-hrlz max approx-hrlz avg. approx-hrlz max
125 9.1 15 17.4 26
250 12.3 20 12.6 26
500 13.8 25 20.2 35
1000 22.1 42 17.9 31



Exact and Approximate Range Mode Query Data
Structures in Practice
Meng He # Ñ

Dalhousie University, Halifax, Canada

Zhen Liu #

Dalhousie University, Halifax, Canada

Abstract
We conduct an experimental study on the range mode problem. In the exact version of the problem,
we preprocess an array A, such that given a query range [a, b], the most frequent element in A[a, b]
can be found efficiently. For this problem, our most important finding is that the strategy of using
succinct data structures to encode more precomputed information not only helped Chan et al.
(Linear-space data structures for range mode query in arrays, Theory of Computing Systems, 2013)
improve previous results in theory but also helps us achieve the best time/space tradeoff in practice;
we even go a step further to replace more components in their solution with succinct data structures
and improve the performance further.

In the approximate version of this problem, a (1 + ε)-approximate range mode query looks for an
element whose occurrences in A[a, b] is at least Fa,b/(1 + ε), where Fa,b is the frequency of the mode
in A[a, b]. We implement all previous solutions to this problems and find that, even when ε = 1

2 ,
the average approximation ratio of these solutions is close to 1 in practice, and they provide much
faster query time than the best exact solution. These solutions achieve different useful time-space
tradeoffs, and among them, El-Zein et al. (On Approximate Range Mode and Range Selection, 30th
International Symposium on Algorithms and Computation, 2019) provide us with one solution whose
space usage is only 35.6% to 93.8% of the cost of storing the input array of 32-bit integers (in most
cases, the space cost is closer to the lower end, and the average space cost is 20.2 bits per symbol
among all datasets). Its non-succinct version also stands out with query support at least several
times faster than other O( n

ε
)-word structures while using only slightly more space in practice.

2012 ACM Subject Classification Information systems → Data structures

Keywords and phrases range mode query, exact range mode query, approximate range mode query

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.19

Supplementary Material Software (Source Code): https://github.com/Kolento777/RangeMode
Queries, archived at swh:1:dir:5d61144576ed7d45a2e424ae08b6b010c1a6e90c

Funding This work is supported by NSERC.

1 Introduction

The mode, or the most frequent element, in a dataset is a widely used descriptive statistic.
In the range mode query problem, we preprocess an array A of length n, such that, given a
query range [a, b], the mode in A[a, b] can be computed efficiently. Many problems in data
analytics and retrieval can be abstracted to range mode. For example, an online shopping
platform may be interested in the most popular item purchased by customers over a certain
period, which can be found by a range mode query over the sales records in its database.

Range mode is also connected to matrix multiplication; the product of two
√

n ×
√

n

Boolean matrices can be computed by answering n range mode queries in an array of
length O(n) [7]. This reduction provides a conditional lower bound showing that, with
current knowledge, the time required to preprocess an array and answer n range mode
queries must be Ω(nω/2), where ω < 2.3726 is the best exponent in matrix multiplication [2].

© Meng He and Zhen Liu;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 19; pp. 19:1–19:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mhe@cs.dal.ca
https://web.cs.dal.ca/~mhe/
https://orcid.org/0000-0003-0358-7102
mailto:zh362517@cs.dal.ca
https://doi.org/10.4230/LIPIcs.SEA.2023.19
https://github.com/Kolento777/RangeModeQueries
https://github.com/Kolento777/RangeModeQueries
https://archive.softwareheritage.org/swh:1:dir:5d61144576ed7d45a2e424ae08b6b010c1a6e90c;origin=https://github.com/Kolento777/RangeModeQueries;visit=swh:1:snp:c540eebf9b4f1b0c74f11571cd150f5be85155d4;anchor=swh:1:rev:cf51c84e369e0b60ea95c0112ed2bca56230e7e8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


19:2 Exact and Approximate Range Mode Query Data Structures in Practice

Furthermore, since the best combinatorial algorithm for Boolean matrix multiplication is
only a polylogarithmic factor better than cubic [4], with current knowledge, we cannot use
pure combinatorial approaches to solve range mode in O(n3/2−δ) preprocessing time and
O(n1/2−δ) query time simultaneously for any constant δ ∈ (0, 1/2). To speed up queries,
researchers further define the (1 + ε)-approximate range mode query problem, where ε ∈ (0, 1).
Given a query range [a, b], let Fa,b denote the frequency of the mode in A[a, b]. A (1 + ε)-
approximate range mode query then asks for an element whose occurrences in A[a, b] is at
least Fa,b/(1 + ε).

Due to the importance in both theory and practice, range mode has been studied
extensively [22, 29, 7, 6, 18, 12, 13, 32, 31, 19]. Despite these efforts, we are not aware of any
experimental studies on them. Hence, to connect theory to practice, we conduct an empirical
study of exact and approximate range mode structures using large practical datasets.

Related Work. Krizanc et al. [22] first considered the exact range mode problem and
introduced an O(n + s2)-word solution with O((n/s) lg n) query time for any s ∈ [1, n], and
setting s =

√
n yields a linear space solution with O(

√
n lg n) query time. They also presented

another solution with constant query time and O(n2 lg lg n/ lg n) words of space cost. Later
Petersen et al. [29] proposed an O(n2 lg lg n/ lg2 n)-word structure with constant query time.
Chan et al. [7] further improved the time-space tradeoff of Krizanc et al. by designing an
O(n + s2/w)-word data structure with O(n/s) query time, where w is the number of bits in
a word. This result implies a linear space solution in words with O(

√
n/w) query time.

Regarding (1 + ε)-approximate range mode, Bose et al. [6] first used persistent search
trees to design an O(n

ε )-word solution with O(lg lg n + lg 1
ε ) query time. Greve et al. [18]

provided another structure with O(lg 1
ε ) query time and O(n

ε ) words of space, and they
used succinct data structures. More recently, El-Zein et al. [12] designed an encoding data
structure occupying only O(n

ε ) bits, and without accessing the original array, it can also
report the position of a (1 + ε)-approximate mode in the query range in O(lg 1

ε ) time.

Our Work. We first study linear-space exact range mode structures [22, 7]. Much of this
study focuses on these two data structures of Chan et al. [7]: a simple linear word structure
with O(

√
n) query time, and a linear word structure with O(

√
n/w) query time. They both

outperform other previous exact solutions, and the latter, which is their final structure,
essentially combines the former with succinct data structures to encode more precomputed
information. However, in practice, constant-time operations over succinct data structures
are usually slower than operations over their non-succinct counterparts when all solutions fit
in memory [15, 9, 27, 3]. To see whether the use of succinct data structures by Chan et al.
improves performance in practice, we compare different tradeoffs of both structures and find
that, when the same amount of space is used, the latter indeed provides much faster query
support than the former. This is because the query algorithm only performs a constant
number of succinct structure operations, and their execution time is dominated by other
steps. Encouraged by this observation, we further use succinct structures to swap out more
components, and our variant achieves even better time/space tradeoffs. These results are
exciting, as they confirm that, when the same space cost is incurred, careful use of succinct
data structures may potentially improve query efficiency in practice.

Regarding (1+ε)-approximate range mode, we focus on solutions by Bose et al. [6], Greve
et al. [18] and El-Zein et al. [13], as well as a non-succinct version of the O( n

ε )-bit encoding
structure of El-Zein et al. which stores the sequences they encode succinctly in plain arrays
instead. When setting ε = 1/2, all these data structures provide much faster query time than



M. He and Z. Liu 19:3

the best exact solution (which already answers a query in microseconds), and the average
approximation ratio is between 1.00001 and 1.02630. They also typically use less than 5n

words and are thus excellent solutions when high average quality of answers is sufficient.
When encoded using compressed bit vectors, the space cost of the succinct encoding structure
of El-Zein et al. [13] is only 35.6% to 93.8% of the input array of 32-bit integers (the average
space cost is 20.2 bits per symbol among all datasets). Its non-succinct version also stands
out with query support at least several times faster than other O( n

ε )-word structures while
using only slightly more space. When decreasing ε to improve worst-case approximation,
query times increase at a logarithmic rate, but space costs tend to be proportional to 1/ε.

2 Data Structure for Range Mode

We review the data structures that we will implement. When describing them, we adopt the
word RAM model with word size w bits and assume that the input is an array A[1..n] of
integers from {1, 2, . . . , ∆}, where ∆ ≤ n. Some solutions use succinct bit vectors as building
blocks. These operations are defined over a bit vector B[1..n]: rankb(i), which returns the
frequency of bit b ∈ {0, 1} in B[1..i], and selectb(i), which returns the index of the i-th
occurrence b ∈ {0, 1} in B. Pǎtraşcu [28] showed how to represent B in lg

(
n
t

)
+ O( n

lgc n ) ≤
n + O( n

lgc n ) bits, where t is the number of 1s in B and c is an arbitrary positive constant,
to support rank and select in O(1) time. A folklore approach encodes a monotonically
increasing sequence of n nonnegative integers upper bounded by u by encoding the difference
between consecutive elements in unary and performs rank and select operations over the
concatenated bit vector to compute any entry. This lemma summarizes its bounds.

▶ Lemma 1 (folklore). A monotonically increasing sequence of n nonnegative integers upper
bounded by u can be represented in lg

((n+u)
n

)
+ O( n+u

lgc(n+u) ) ≤ n + u + O( n+u
lgc(n+u) ) bits for

any positive constant c such that any entry in the sequence can be computed in O(1) time.

2.1 Exact Range Mode in Linear Space and O(
√

n lg n) Time
To design a solution, Krizanc et al. [22] divide A into s blocks each of size ⌈ n

s ⌉ for an integer
parameter s ∈ [1, n] and precompute an s × s table S. For any integers i, j ∈ [1, s], S[i, j]
stores the mode of the subarray consisting of blocks i, i + 1, . . . , j. They also construct, for
each integer α ∈ {1, 2, . . . , ∆}, a sorted array Qα of the positions of the occurrences of α in
array A. All these structures occupy O(n + s2) words and can be built in O(ns) time. With
them, the mode in A[a, b] can be computed by decomposing [a, b] into up to three subranges:
the span consists of all the blocks that are entirely contained in [a, b], while the prefix and
the suffix are the two subranges of [a, b] before and after the span, respectively. The mode,
c, of the span can be retrieved from S in O(1) time. The answer to the query is either c,
or an element in the prefix or the suffix. We call each of these up to 2⌈ n

s ⌉ − 1 elements a
candidate, and the frequency of each candidate A[x] in the query range is computed by a
binary search in QA[x]. Then the total query time is O((n/s) lg n). Hence, setting s = ⌈

√
n⌉

yields a linear-word structure with O(
√

n lg n) query time and O(n3/2) preprocessing time.

2.2 Exact Range Mode in Linear Space and O(
√

n) Time
Chan et al. [7] improved the solution of Krizanc et al. [22] by constructing two additional
data structures: A rank array A′ in which A′[i] is the index of the entry of QA[i] that stores
i, and an additional s × s table S′ in which S′[i, j] stores the frequency of the mode in blocks
i, i + 1, . . . , j. With the addition of A′, we can determine, in constant time, whether A[i]
occurs at least q times in A[i..j] for any given i, j and q, by checking if QA[i][A′[i]+q −1] ≤ j.

SEA 2023



19:4 Exact and Approximate Range Mode Query Data Structures in Practice

The query algorithm again decomposes the query range [a, b] into the span, the prefix
and the suffix. Using S and S′, we can find the mode, c, of the span and its frequency, fc, in
the span in O(1) time. This is one candidate of the mode in A[a, b]. We then look for the
elements in the prefix or the suffix whose frequencies in A[a, b] are greater than fc: We scan
the prefix, and for each element A[x] in it, we find out whether we have seen it before by
checking whether QA[x](A′[x] − 1) is at least a. If not, we determine whether A[x] occurs
more than fc times in A[x, b] in O(1) time by the approach discussed before. If it does, then
A[x] is a candidate, and we compute its frequency in A[a, b] by skipping the next fc − 1
occurrences in QA[x] and then continuing the scan of QA[x] to find its remaining occurrences
in A[a, b]. Since the number of times that A[x] occurs in the span is at most fc, the number
of scanned entries of QA[x] is at most the number of occurrences of A[x] in the prefix and
the suffix. Therefore, the frequencies of all candidates can be computed in time linear in the
lengths of the prefix and the suffix, which is O(n/s). We scan the suffix in a similar manner,
and the candidate with the highest frequency in A[a, b] is the answer. This way the query
time is improved to O(n/s), implying a linear-word tradeoff with O(

√
n) query time.

2.3 Exact Range Mode in Linear Space and O(
√

n/w) Time

The final solution of Chan et al. [7] divides the input array A into two subsequences B1 and
B2 as follows: We scan A. If the current element appears at most s times in A, we append it
to B1. Otherwise, it is appended to B2. Additionally, we define two 2 × n tables Iβ [i] and
Jβ [i], in which, for every β ∈ [1, 2] and each i ∈ [1, n], Iβ [i] (or Jβ [i]) stores the index in Bβ

of the closest element in A to the left (or right) of A[i] that lies in Bβ . Then a range mode
query in A can be answered by querying both B1 and B2.

A compact version of the structure in Section 2.2 is built over B1 which consists of Qα

for each α and a compact encoding of S′ in O(s2) bits, or O(s2/w) words. The latter uses
Lemma 1 to encode each row of S′ in O(s) bits, as it contains at most s positive integers
upper bounded by s. Furthermore, Chan et al. use this structure to infer any entry of S

in O(n/s) time without storing S. This decreases storage to O(n + s2/w) words and can
answer range mode over B1 in O(n/s) time. As for B2, since each element occurs more than
s times, the number of distinct elements, ∆′, is at most n/s. They mark every ∆′ positions
in B2 and use n words to encode the number of occurrences of each distinct element from
the start of B2 to each marked position, so that the frequency of any element between two
marked positions can be computed in O(1) time. Together with a walk from each endpoint
of the query range [a, b] to the nearest marked position inside [a, b], we can compute the
frequencies of all ∆′ distinct elements in [a, b] in O(∆′) time, thus answering range mode over
B2. Combing the structures for B1 and B2, we have an O(n + s2/w)-word structure with
O(n/s) query time and O(ns + n lg(n/s)) preprocessing time. Setting s = ⌈

√
nw⌉ yields a

linear word structure with O(
√

n/w) query time and O(n3/2√
w) preprocessing time.

Remarks. We can further decrease the space overhead by replacing Iβ and Jβ , where
β ∈ {1, 2}, with a bit vector F , in which F [i] = 0 if A[i] is stored in B1 and F [i] = 1
otherwise. Then, the elements in a query range [a, b] are in B1[rank0(a − 1) + 1, rank0(b)]
and B2[rank1(a − 1) + 1, rank1(b)]. This decreases the space cost to n + o(n) + O(s2/w)
words. We will study both the original approach and our variant experimentally.



M. He and Z. Liu 19:5

2.4 (1 + ε)-Approximation in O(n
ε
) Words and O(lg lg n + lg 1

ε
) Time

To design approximate solutions, Bose et al. [6] first presented a simple approach: For each
i ∈ {1, 2, . . . , n}, build a table Ti in which Ti[r] stores the smallest index j ≥ i such that A[j]
occurs ⌈(1 + ε)r⌉ times in A[i, j]. Given a query range [a, b], they perform a binary search in
Ta to find the entry Ta[k] with Ta[k] ≤ b < Ta[k + 1], and A[Ta[k]] is a (1 + ε)-approximate
answer. This algorithm uses O(lg lg n + lg 1

ε ) time, and the space cost is O( n lg n
ε ) words.

In a more advanced solution, Bose et al. define two number series, flow and fhigh by the
recurrence flow1 = fhigh1 = 1, flowr+1 = fhighr

+ 1 and fhighr+1 = ⌊(1 + ε)flowr
⌋ + 1. They

then construct a table Ti for each i = 1, 2, . . . , n as follows. In T1, an entry T1[r] stores the
smallest index j ≥ i such that A[j] occurs fhighr

times in A[1, j]. To compute an entry Ti[r]
for any i ≥ 2, we first determine whether Ti−1[r] occurs at least flowr times in A[i, Ti−1[r]].
If it does, then we set Ti[r] = Ti−1[r]. Otherwise, Ti[r] stores the smallest index j ≥ i such
that A[j] occurs fhighr times in A[i, j]. To answer a query, observe that, the frequency
of the mode of any query range [a, b] with Ta[r] ≤ b < Ta[r + 1] is at most fhighr+1 − 1.
Since A[Ta[r]] occurs at least flowr

times in A[a, Ta[r]] ⊆ A[a, b], the ratio of its frequency in
A[a, b] to Fa,b is at least flowr

/(fhighr+1 − 1) = flowr
/⌊(1 + ε)flowr

⌋ ≤ 1/(1 + ε). 1 Therefore,
A[Ta[r]] is a (1 + ε)-approximate answer.

Each table has at most 2⌈lg1+ε n⌉ entries. To reduce storage costs, Bose et al. view
T1, T2, . . . , Tn as n different versions of the same table T , and, to obtain Ti from Ti−1, an
update is needed for each r with Ti[r] ̸= Ti−1[r]. They proved that the total number of updates
over all versions is O(n/ε), so these tables can be stored in a persistent binary search tree [11] in
O(n/ε) words while supporting the search in any table in O(lg(2⌈lg1+ε n⌉)) = O(lg lg n+lg 1

ε )
time. They also maintain frequency counters [10] to achieve O( n lg n

ε ) preprocessing time.

2.5 (1 + ε)-Approximation in O(n
ε
) Words and O(lg 1

ε
) Time

Let ε′ =
√

(1 + ε) − 1. The structures of Greve et al. [18] consist of the following two parts.

Low Frequency. For each i = 1, 2, . . . , n, we precompute a table Qi of length ⌈ 1
ε′ ⌉, in which

Qi[r] stores the rightmost index j such that Fi,j = r. Given a query range [a, b], we perform
a binary search to look for the index, s, of the successor of b in Qa. If s does not exist, then
Fa,b > ⌈ 1

ε′ ⌉, and we use the structures for high frequencies to compute an answer. Otherwise,
Fi,j = s, and, as observed by El-Zein et al. [12], A[Qa[s − 1] + 1] is the answer. 2

High Frequency. For each i = 1, 2, . . . , n, we precompute a table Ti of length at most
⌈lg1+ε′(ε′n)⌉: For each r ∈ [1, ⌈lg1+ε′(ε′n)⌉, if i > 1 and Fi,Ti−1[r] ≥ ⌈ 1

ε′ (1 + ε′)k⌉ + 1, we set
Ti[r] = Ti−1[r]. Otherwise, Ti[r] stores the rightmost index j with Fi,j ⩽ ⌈ 1

ε′ (1 + ε′)k+1⌉ − 1.
We also build a table Li for each i; Li[r] stores A[i + j − 1] where j is the smallest positive
integer such that Ti+j [r] ̸= Ti[r]. Then, Li[r] occurs at least ⌈ 1

ε′ (1+ε′)k⌉+1 times in A[i, Ti[r]].
With these tables, given a query range [a, b] with Fa,b > ⌈ 1

ε′ ⌉, the query algorithm finds the
successor, Ta[s], of b in Ta. Then Fa,b ≤ Fa,Ta[s] ⩽ ⌈ 1

ε′ (1 + ε′)s+1⌉ − 1 and the frequency of
La[s − 1] in A[a, b] is at least ⌈ 1

ε′ (1 + ε′)s−1⌉ + 1, so La[s − 1] is a (1 + ε)-approximate mode.

1 Bose et al. [6] originally defined fhighr+1 = ⌈(1 + ε)flowr
⌉ + 1. However, with their definition, the ratio

of the frequency of A[Ta[r]] in A[a, b] to Fa,b is at least flowr
/⌈(1 + ε)flowr

⌉ which is not guaranteed to
be at least 1/(1 + ε). Therefore, we fix this issue by defining fhighr+1 = ⌊(1 + ε)flowr

⌋ + 1 instead.
2 To return the mode, Greve et al. augments the low frequency structure by storing the mode in A[i, Qi[k]]

with each Qi[k]. This approach does not break asymptotic bounds, but, when implementing this data
structure, we do not store these mode elements and use the observation in [12] to save space.

SEA 2023



19:6 Exact and Approximate Range Mode Query Data Structures in Practice

Hence, the total query time is O(lg lg n + lg 1
ε ). To speed it up to O(lg 1

ε ), Greve et al.
design a 3-approximate structure to narrow down the initial range of binary search over high
frequency structures. This structure performs constant-time lowest common ancestor (LCA)
queries over a tree of a small O(lg lg n) height. Unfortunately, experiments [5] show that, for
trees with small heights, structures with constant LCA queries in theory are outperformed
by naive approaches. Hence, we implement their solution without this speedup.

Regarding space, the bottleneck is the high frequency structures. Greve et al. view the
Ti tables as n version of the same table T as in [6] and bound the total number of updates
to T by O(n

ε ). A similar argument apples to Li’s. It is possible to store Ti’s and Li’s in a
persistent search tree, but this does not allow the speedup. Instead, Greve et al. design an
O(n/ε)-word scheme which samples some table entries and encodes updates between them
compactly. It supports the retrieval of an arbitrary entry in constant time. Here we sketch
the scheme of storing Ti’s; the entries of Li’s can be paired with those of Ti’s and stored as
additional fields in the same structures. In this scheme, we explicitly store Tl in an array
Sl if l mod t = 1, i.e., we sample and store one out of every t versions of T . Let r be an
arbitrary integer in [1, ⌈lg1+ε′(ε′n)⌉. Between two consecutive sampled versions, Tl[r] and
Tl+t[r], of T [r], there may be updates to T [r]. If r ≥ 1 + ⌈log1+ε′ t⌉, then there can only be
at most one update to T [r] between versions l and l + t. In this case, we store with each
sampled entry Tl[r] the next update to T [r]. If r ≤ ⌈log1+ε′ t⌉, then, for each sampled entry
Tl[r], construct a bit vector of length t with constant-time support for rank which uses one
bit for each of the next t versions to encode whether an update to T [r] is performed. We
also store the (distinct) values used to update T [r] in an array.

Preprocessing. As Greve et al. did not provide information on preprocessing, we also also
design an algorithm to construct their data structure in O((n lg n)/ε) time.

The low frequency structure can be constructed in O(n/ε) time using frequency coun-
ters [10] as was done by Bose et al. [6] to compute similar tables. For the high fre-
quency structure, if we have already computed the content of Ti’s and Li’s, we can en-
code them in time linear in the total number of entries in Ti’s and Li’s, and there are
O(n⌈lg1+ε′(ε′n)⌉) = O((n lg n)/ε) entries.

What remains is to compute the entries of Ti’s and Li’s, and for this we scan A

⌈lg1+ε′(ε′n)⌉ times. In the r-th scan, we compute Ti[r] and Li[r] for all i ∈ [1, n] in
increasing order of i as follows. We maintain an array C[1..∆] of counters; initially all entries
of C are 0s. We use an integer m to keep track of the number of entries of C that are greater
than or equal to ⌈ 1

ε′ (1 + ε′)k⌉ + 1; m can be updated each time an entry of C is updated.
During the scan, we maintain the following invariant: immediately after computing Ti[r],
each counter C[j] stores the number of occurrences of j in A[i, Ti[r]]. To compute T1[r], we
retrieve A[k] for k = 1, 2, ..., and for each k, we increment C[A[k]]. We repeat until C[A[k]] is
the first counter in C that reaches ⌈ 1

ε′ (1+ε′)k+1⌉. This means A[1..k −1] is the longest prefix
of A whose mode has frequency ⌈ 1

ε′ (1 + ε′)k+1⌉ − 1 in it. Therefore, we set T1[r] = k − 1.
Then we put the entry A[k] back to the unscanned portion of A by decrementing C[A[k]]
and then k. To compute Ti[r] for any i > 1, we first decrement C[A[i − 1]] and then check
whether m is still greater than 0. If it is, then there is at least one element whose frequency in
A[i, Ti−1[r]] is ⌈ 1

ε′ (1+ε′)k⌉+1, and we set Ti[r] = Ti−1[r]. Otherwise, we resume the scanning
of A to compute Ti[r] using the approach used to compute T1[r]. We also store A[i − 1]
in Lr[u], Lr[u + 1], . . . , Lr[r − 1], where u is the smallest integer such that Tu[r] = Tr−1[r].
With this implementation, we need to scan the input array A O(⌈lg1+ε′(ε′n)⌉) times, and
hence the total preprocessing time is O(n⌈lg1+ε′(ε′n)⌉) = O((n lg n)/ε).



M. He and Z. Liu 19:7

2.6 (1 + ε)-Approximation in O(n
ε
) Bits and O(lg 1

ε
) Time

The encoding data structure of El-Zein et al. [12] also consists of two parts: The low frequency
structure contains, for each integer k ∈ [1, ⌈ 1

ε ⌉], a table Qk of length n, in which Qk[i] stores
the rightmost index j such that Fi,j = k. Qk can be encoded by Lemma 1 in 2n + o(n)
bits, so all tables use O(n

ε ) bits. Then, for a range [a, b], we perform a binary search in
Q1[a], Q2[a], . . . , Q⌈ 1

ε ⌉[a] to check whether Fa,b ≤ ⌈ 1
ε ⌉ and compute the index of a mode if so.

The high frequency structure contains, for each integer k ∈ [1, ⌊log1+ε(εn)⌋], a data
structure that can find in O(1) time one of these inequalities that holds for query range [a, b]:
1) Fa,b < (1 + ε)k/ε, 2) Fa,b > (1 + ε)k/ε, or 3) (1 + ε)k−1/2/ε < Fa,b < (1 + ε)k+1/2/ε. It
finds in case 2 an element that occurs more than (1 + ε)k/ε times in A[a, b], and, in case 3,
an element that occurs more than (1 + ε)k−1/2/ε times in A[a, b].

Let ε′ =
√

1 + ε − 1 and fj = (ε′/ε) × (1 + ε′)j . This structure is designed based on
four sequences s, s′, r and r′: For each integer i ∈ [0, n/⌈f2k−1⌉], si, the i-the element in
s, is i⌈f2k−1⌉ + 1, and ri is the smallest index such that Fsi,ri

⩾ (1 + ε′)2k/ε. similarly, for
each integer i ∈ [0, n/⌈f2k⌉], define s′

j = i⌈f2k⌉ + 1, and r′
j is the smallest index such that

Fs′
j
,r′

j
⩾ (1 + ε′)2k+1/ε. Then, given a query range [a, b], El-Zein et al. determine which case

applies by comparing b to the entries of r and r′ that correspond to the predecessors of a in
s and s′. The high frequency structure can be encoded in O( n

ε ) bits by Lemma 1.
To use this trichotomy to answer queries in the high frequency case, perform a binary

search in O(lg lg n + lg 1
ε ) time to compute a k such that either case 3 applies for the query

range, or case 2 applies for k and case 1 applies for k + 1. The element found by either case
3 or case 2 is a (1 + ε)-approximate mode. Finally, to speed up the query time to O(lg 1

ε ),
El-Zein et al. designed an O(n)-bit structure that answers 4-approximate range mode queries
in constant time, and used it to narrow down the initial range of binary search.

Remarks. The O(n)-bit 4-approximate structure contains a network of fusion trees [16] and
is not practical. Hence, our implementation does not include this speedup. El-Zein et al. did
not discuss preprocessing, but we can build their structures using frequency counters [10]
in O(n lg n/ε) time. Finally, storing all structures in integer arrays without using Lemma 1
would yield a simple O(n/ε)-word solution, which we also conduct experimental studies on.

3 Experimental Results

3.1 Experimental Setup
Table 1 gives an outline of the data structures we implemented. Among them, the first naive
approach, nv1, sorts the elements in the given range to answer a query, while the second
one, nv2, scans the elements in the range and uses an array of length ∆ to count element
frequencies. Four data structures, subsr1, subsr2, sample and succ, use succinct bit vectors,
for which we use the implementation in the succinct data structures library, sdsl-lite, of
Gog et al. [17]. Two types of bit vectors are used: a plain bit vector, sdsl::bit_vector and
a compressed bit vector [30], sdsl::rrr_vector. To distinguish them, we combine subsr1,
subsr2, sample or succ with superscripts p or c, e.g., succp and succc, to respectively
indicate whether plain or compressed bit vectors are used. Note that, even though subsrc

2
uses compressed bit vectors to encode the table S′, a plain bit vector is still used to represent
F : we found that, due to the small space cost of F (n bits), compressing it would achieve
negligible space savings at the cost of increasing query times by 4.5% to 25%. Finally, for a
fair comparison, we modified the implementation of persistent search trees by Jansens [21]
to remove the space overhead for generic programming and used it to implement pst.

SEA 2023



19:8 Exact and Approximate Range Mode Query Data Structures in Practice

Table 1 The data structures we implemented. The first half of the table present exact solutions,
while the second half are (1 + ε)-approximate structures with O(lg lg n + lg 1

ε
) query time.

abbr. description

nv1,nv2 two naive solutions in Section 3.1
supsr O(n)-word, O(

√
n lg n) query time structure for exact range mode in Section 2.1

sqrt O(n)-word, O(
√

n) query time structure for exact range mode in Section 2.2
subsr1 O(n)-word, O(

√
n/w) query time structure for exact range mode in Section 2.3

subsr2 modifying subsr1 with more succinct data structures; see the remarks in Section 2.3
simple simple O( n lg n

ε
)-word approximate solution in Section 2.4

pst O( n
ε

)-word approximate solution with persistent search trees in Section 2.4
sample O( n

ε
)-word approximate solution with sampling in Section 2.5

tri O( n
ε

)-word approximate solution with the trichotomy in Section 2.6
succ O( n

ε
)-bit approximate solution with the trichotomy in Section 2.6

Table 2 The data sets used in our experiments, each stored as an array of n integers in [1, ∆].

data n ∆ lg ∆ H0

reviews 10,000,000 1,367,909 20.38 18.46 books of the first 108 book reviews by
Amazon customers in 2018 [25]

IPs 8,571,089 135,542 17.04 7.96 source IP addresses of DDoS attacks [14]
words 6,715,122 127,886 16.96 12.74 words in a text string containing the 100

most frequently downloaded Project Guten-
berg [1] e-books in July 2021, with stop
words removed

library 10,000,000 314,358 18.26 15.75 first 108 call numbers in the 2016/17 Seattle
Public Library checkout records [23]

tickets 10,000,000 79,027 16.27 11.10 street names of the first 108 parking tickets
issued in New York in 2017 [26]

Five publicly available datasets are used; see Table 2. This table also shows the zeroth-
order empirical entropy, H0, of each dataset. Due to page limit, sometimes we only show
figures and tables created for typical datasets, and a full set of tables/figures for all datasets
is available in the second author’s thesis [24]. To convert raw data into an integer array, we
encode each element as an integer in [1, ∆]. To generate a query range [a, b], we adopt the
method in [8, 20]: we pick an integer from [1, n] uniformly at random (u.a.r.) and assign it to
a, and b is chosen u.a.r. from [a, a + ⌈ n−a

K ⌉] for a parameter K. We generate three categories
of queries, large, medium and small, by setting K = 1, 10 and 100, respectively. To justify
that this approach of generating queries is appropriate, Appendix C shows additional studies,
including those performed over query ranges even smaller than small queries.

Our platform is a server with an Intel(R) Xeon(R) Gold 6234 CPU and 128GB of RAM,
running Ubuntu 18.04.2. We complied programs using g++ 7.4.0 with -O2 flags.

3.2 An Initial Performance Study on Exact Mode
For exact range mode, we initially set s =

√
n for supsr and sqrt and set s =

√
nw for

subsr1 and subsr2 to achieve linear space as in [22, 7]. Tables 3 and 4 present the query
time, space usage and construction time of exact query structures. We measure space costs



M. He and Z. Liu 19:9

Table 3 Average time to answer an exact range mode query, measured in micro seconds. Queries
are categorized into small, medium and large, and each category has 106 queries.

Query nv1 nv2 supsr sqrt subsrp
1 subsrc

1 subsrp
2 subsrc

2

re
vi

ew
s small 1134 442 338.93 51.70 10.74 11.56 10.74 11.56

medium 13262 870 366.90 51.00 9.94 10.82 9.94 10.82
large 144642 5686 363.42 50.85 9.39 10.20 9.39 10.20

IP
s small 532 51 218.75 15.58 3.93 4.40 3.94 4.48

medium 5938 186 240.03 15.19 3.86 4.37 3.91 4.46
large 66121 1531 239.35 14.48 3.53 4.01 3.60 4.07

wo
rd

s small 678 45 298.83 31.49 8.01 8.75 8.14 9.06
medium 7094 149 334.53 31.27 7.60 8.41 7.82 8.63
large 73401 1235 349.22 28.28 6.53 7.24 6.67 7.38

li
br

ar
y small 1160 125 384.07 49.54 11.90 13.14 12.13 13.37

medium 12960 408 422.32 47.11 10.66 11.87 10.71 11.98
large 132605 3407 444.30 43.68 9.32 10.42 9.40 10.53

ti
ck

et
s small 990 37 362.47 43.16 9.99 10.67 10.19 10.99

medium 9931 187 414.76 42.39 9.92 10.65 10.15 10.97
large 101281 1756 436.93 37.44 8.56 9.35 8.80 9.60

Table 4 Space (bits per symbol) and construction time (minutes) of exact range mode structures.

Dataset supsr sqrt subsrp
1 subsrc

1 subsrp
2 subsrc

2

sp
ac

e

reviews 109.1 173.2 174.3 144.1 174.3 144.1
IPs 97.5 161.5 332.6 255.9 205.8 129.0

words 97.8 161.9 329.1 284.1 202.2 157.2
library 99.0 163.0 315.2 294.5 188.3 167.6
tickets 96.7 160.8 311.0 289.9 184.1 163.0

co
ns

tr
uc

t
tim

e reviews 0.911 0.911 7.205 7.460 7.205 7.460
IPs 0.695 0.695 1.865 1.867 1.890 1.892

words 0.438 0.438 2.755 2.760 2.762 2.765
library 0.806 0.806 5.923 5.933 5.971 5.974
tickets 0.720 0.720 4.251 4.275 4.756 4.809

in bits per symbol (bps), which is the space usage in bits divided by the length of the input
array. Furthermore, the cost of the input array A (32 bps) is included in the space usage of
supsr and sqrt but excluded for subsr1 and subsr2, because supsr and sqrt scan A when
answering a query but subsr1 and subsr2 do not. Nevertheless, the space cost of A is not
significant enough to affect our conclusions. These tables show that most data structures
have much faster query time than both naive approaches, and supsr is the only exception
in some cases. Between two naive approaches, nv2 is faster because the number of distinct
elements is relatively small compared to input array length.

Before comparing the performance of data structure solutions, we discuss how the
distributions of the datasets affect subsr1 and subsr2, for which the array entries are stored
in two subsequences B1 and B2 (see Section 2.3). Since B2 stores elements of higher frequency,
the lower the entropy of a dataset is, the larger the ratio of the length of B2 to n tends to
be. Indeed, for reviews, words and library, the ratios are 0, 0.037 and 0.010, respectively,
while for IPs and tickets, the ratios are 0.58 and 0.14, respectively, which are higher. These

SEA 2023



19:10 Exact and Approximate Range Mode Query Data Structures in Practice

ratios are consistent with the values of H0 in Table 2. This immediately explains why, for
reviews, there is no difference in costs between subsr1 and subsr2: These two solutions
differ in the components used to map the query range to ranges in B1 and B2. Since |B2| = 0
for reviews, no mapping is needed.

With this in mind, we now compare data structure solutions. We first find that the
query time of sqrt is 6.0% to 15.3% of that of supsr, which is consistent with theoretical
bounds. Then we observe that, by using a succinct bit vector to replace multiple arrays,
subsr2 saves much space compared to subsr1 over all datasets except reviews (which does
not require these components as discussed before). At the same time, there is almost no
sacrifice in query performance. This is because we only perform rank over this bit vector
a constant number of times to map query ranges to ranges in B1 and B2, and this cost is
dominated by subsequent steps which use O(

√
n/w) time. The use of compressed bit vectors

in subsrc
1 and subsrc

2 saves more space, albeit at the cost of a small increase in query time.
Theoretical analysis indicates that, when we double s, the query time halves but tables S

and S′ use four times as much space. Hence, we predict that subsrp
2 and subsrc

2 achieve the
best query-space tradeoffs, and more experiments will be run in Section 3.3 to confirm this.

The sizes of query ranges affect query times greatly for the naive approaches since they
either sort or scan the elements in the range. On the other hand, these sizes only affect
the query times of supsr, sqrt, subsr1 and subsr2 slightly. For sqrt, subsr1 and subsr2,
larger queries even tend to take less time to answer. This is because the query algorithm of
sqrt (which is also performed over B2 in subsr1 and subsr2) keeps updating a candidate
by a new candidate with higher frequency in the query range, until the mode of the range is
found. The initial candidate is the mode of the span of the query. When the query range
is larger, the span is also longer, and hence its mode tends to be a better candidate, thus
decreasing the query time.

Regarding construction time, observe that the processing times of supsr and sqrt are
about same. For reviews, words, library and tickets, the preprocessing time of supsr
and sqrt is 12.2% to 16.9% of that of subsr1 and subsr2. This is because, with the choices
of parameters, it takes O(n3/2√

w) time to build subsr1 and subsr2, but the preprocessing
time of supsr and sqrt is O(n3/2). However, the difference is much smaller for IPs. This is
because, when constructing subsr1 and subsr2 for this dataset, 58% of array entries are in
B2, whose query structure can be built in linear time.

3.3 Different Parameter Values
We now choose different values of s to compare these structures thoroughly. First, we compare
subsrp

2 and subsrc
2. The experimental results over reviews and IPs are shown in Figure 1,

while the results over words, library and tickets are shown in Figure 4 in Appendix A. To
draw the subfigure for either dataset, we initially set s to be 0.5

√
nw to construct subsrp

2 or
subsrc

2, and each time we increase s by 0.5
√

nw until the space usage exceeds 640 bps. Each
point in the figure represents a tradeoff achieved between space and the average query time
of a category (small, medium or large) of queries. We then connect the points for the same
data structure and query category into a polyline. Hence, over either dataset, we show how
the query time changes when more space is used for either data structure using three plotted
polylines, one for each query category. In Figure 1 (a), for the same category of queries, the
polyline plotted for subsrp

2 is always above that for subsrc
2. This means, with the same space

cost, subsrc
2 uses less time to answer a query on average. Hence, subsrc

2 outperforms subsrp
2

over reviews. It is however the opposite for IPs, and there is no discernible differences over
the three other datasets.



M. He and Z. Liu 19:11

200 400 600 800

5

10

15

20

Bits per Symbol

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s) subsrp

2 − small
subsrp

2 − medium
subsrp

2 − large
subsrc

2 − small
subsrc

2 − medium
subsrc

2 − large

(a) reviews.

200 400 600 800 1,000
3

4

5

Bits per Symbol

subsrp
2 − small

subsrp
2 − medium

subsrp
2 − large

subsrc
2 − small

subsrc
2 − medium

subsrc
2 − large

(b) IPs.

Figure 1 Time-space tradeoffs of subsrp
2 and subsrc

2 over reviews and IPs.

To discuss why they compare differently for different datasets, observe that whether to
use plain or compressed bit vectors to encode S′ in subsr2 affects the structures built over
B1 only. Furthermore, when s increases, the block size decreases, and more adjacent entries
of S′ tend to store the same values, making S′ more compressible. The dataset reviews
has the largest entropy, which means the table S′ constructed over it is less compressible
than that over any other dataset for small s, so the increase of s makes it more compressible
rapidly. All arrays entries of reviews are also stored in B1 for all the values of s that we
have used, making the compression more sensitive to the choice of the value of s. Hence,
for reviews, the increase of s improves the compression ratio of subsrc

2 at a faster rate
than what it does for any other dataset. This allows S′ to store much more precomputed
information for subsrc

2, speeding up the queries despite the increased operation time over
compressed bit vectors. Other datasets perform differently when s changes, due to their
smaller entropy which also affects the number of array entries distributed into B1. In the
extreme case of IPs, subsrp

2 performs better, while for the rest, compression does not make
a significant or consistent difference. Since it takes less time to construct plain bit vectors,
we decide that subsrp

2 is also a better solution for words, library and tickets.
We further conducted similar experiments to compare subsrp

1 and subsrc
1 and made the

same observations. See Figure 5 in Appendix A for details. Hence, in the rest of this paper,
when the context is clear, subsr1 and subsr2 respectively represent subsrc

1 and subsrc
2 for

reviews, while they represent subsrp
1 and subsrp

2 for all other datasets.
After deciding on bit vector implementations, we compare sqrt, subsr1 and subsr2. We

continue with the same parameters for subsr1 and subsr2, while for sqrt, the initial value
of s is 0.5

√
n, and each time we increase s by 0.5

√
n until the space usage exceeds 640 bps.

Figure 2 shows the results over library and tickets, and the results are similar for the other
three data sets (see Figure 6 in Appendix A), except that for reviews, subsr1 and subsr2

have the same performance because no structures are used to map query ranges as discussed
before. Our results show that subsr1 and subsr2 have much better query performance than
sqrt when the same storage costs are incurred. This matches the discussions and prediction in
Section 3.2. Between subsr1 and subsr2, for IPs, words, library and tickets, our results
show that subsr2 achieves better time-space tradeoffs than subsr1 does. The difference
is significant for smaller values of s, but as s grows much larger, the plotted lines start to
converge. This is because, for large enough s, the space savings by replacing four integer

SEA 2023



19:12 Exact and Approximate Range Mode Query Data Structures in Practice

200 400 600 800
0

20

40

60

80

Bits per Symbol

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s) sqrt − small

sqrt − medium
sqrt − large

subsr1 − small
subsr1 − medium
subsr1 − large
subsr2 − small
subsr2 − medium
subsr2 − large

(a) library.

200 400 600 800 1,000
0

20

40

60

Bits per Symbol

sqrt − small
sqrt − medium
sqrt − large

subsr1 − small
subsr1 − medium
subsr1 − large
subsr2 − small
subsr2 − medium
subsr2 − large

(b) tickets.

Figure 2 Time-space tradeoffs of sqrt, subsr1 and subsr2 over library and tickets.

arrays with a bit vector is dominated by the O(s2)-bit cost of S′. Nevertheless, when we
require a reasonable space cost for data structures in practice, subsr2 still improves subsr1

significantly. Finally, we conducted similar experiments to confirm that sqrt outperforms
supsr significantly; see Appendix A. Therefore, we conclude that subsr2 preforms the best
among all exact solutions.

3.4 Performance of Approximate Range Mode

Tables 5 and 6 present the query time, space usage and construction time of approximate
range mode structures when ε = 1/2. Space costs do not include the cost of array A, since
these structures can compute the indexes of approximate range modes without accessing A.

To measure accuracy, we compute the approximation ratio of each answer as the frequency
of the actual mode in the query range divided by the frequency of the reported approximate
mode in the range. Then, for each solution, we compute the average and the maximum of the
approximation ratios of the answers for each query category over each dataset. We find that
the average ratios range between 1.00001 and 1.02630, and the maximum ratios are closer to
1.5. To see why the average quality of the answers is high, recall that the approximate mode
computed is the actual mode of a range having a significant overlap with the query range,
so the probability of it being the mode of the query range is high. Since these results are
consistent across datasets and query categories, we use Table 7 in Section 3.5 to provide a
summary by reporting, for each data structure, the average and maximum ratios over all
queries, together with results for some subsequent experiments. Since these structures have
slower query support and higher space usage for smaller ε, setting ε = 1/2 is attractive to
applications for which a high average approximation ratio is sufficient.

Another phenomenon is that larger queries tend to be faster with approximate solutions.
This is because all query algorithms are essentially based on binary searches in lists of possible
candidates, and in each list, the farther it is away from the list head, the larger the gaps
between the indexes (in A) of two consecutive candidates are, benefiting larger query ranges.

We also observe that the space cost of pst can vary greatly among datasets, with the
space cost of library being about 3.6% of that of IPs. Recall that in this solution, we view
n different tables as versions of the same table T to store them in a persistent search tree, and
each tree node corresponds to an update to the table (the initial version of the table is not



M. He and Z. Liu 19:13

Table 5 Average time to answer an approximate query for ε = 1/2, measured in microseconds.
Queries are categorized into small, medium and large, and each category has 108 queries.

Query simple pst samplep samplec tri succp succc
re

vi
ew

s small 0.098 0.861 0.869 1.016 0.191 1.122 2.970
medium 0.095 0.714 0.598 0.610 0.135 1.009 3.178
large 0.089 0.556 0.440 0.453 0.116 0.864 3.703

IP
s small 0.110 1.561 0.545 0.796 0.138 1.003 4.003

medium 0.113 1.343 0.358 0.430 0.105 0.696 3.198
large 0.120 1.120 0.285 0.304 0.091 0.581 3.030

wo
rd

s small 0.102 0.986 0.809 1.166 0.168 1.126 3.642
medium 0.098 0.780 0.486 0.585 0.127 0.967 3.754
large 0.105 0.546 0.281 0.309 0.095 0.595 2.547

li
br

ar
y small 0.099 0.760 1.017 1.164 0.200 1.230 3.508

medium 0.099 0.581 0.603 0.629 0.144 1.152 3.809
large 0.106 0.434 0.360 0.370 0.112 0.766 3.023

ti
ck

et
s small 0.112 1.072 0.773 1.108 0.172 1.281 3.861

medium 0.109 0.817 0.460 0.585 0.129 0.997 3.371
large 0.119 0.580 0.300 0.327 0.105 0.634 2.669

Table 6 Space (bits per symbol) and construction time (minutes) of approximate structures
when ε = 1/2.

Dataset simple pst samplep samplec tri succp succc

sp
ac

e

reviews 680.0 100.6 225.4 204.7 291.2 56.9 11.4
IPs 1038.6 1051.5 327.9 311.3 291.5 82.9 30.0

words 787.8 146.3 240.7 220.5 291.4 67.1 21.5
library 769.6 37.6 231.6 210.8 291.3 65.6 13.9
tickets 896.6 115.8 248.2 228.1 291.5 74.2 24.2

co
ns

tr
uc

t
tim

e reviews 0.084 0.142 0.655 0.668 0.050 0.082 0.085
IPs 0.075 0.172 0.564 0.568 0.031 0.063 0.067

words 0.050 0.082 0.412 0.418 0.018 0.038 0.040
library 0.084 0.136 0.663 0.673 0.042 0.065 0.067
tickets 0.081 0.122 0.648 0.649 0.027 0.068 0.070

stored explicitly since T [i] = i for all i ∈ [1, n]). Thus, we recorded the number of updates
to T for each dataset, and it is 1, 380, 391 for reviews, 10, 773, 911 for IPs, 1, 232, 046 for
words, 485, 498 for library and 1, 386, 886 for tickets. The difference in the numbers of
updates is consistent with the difference in space costs. To see why there is such a difference
in updates, recall that an update to T happens when the frequency of a candidate within a
certain range A[i, j] drops below a threshold when we increment i. This happens more often
when the entropy of the dataset is lower or when the locality of reference is higher, since
a lower entropy or higher locality of references means we are more likely to decrease the
frequency of this candidate each time we increment i. Indeed, IPs has the lowest entropy by
Table 2, and since the same subset of IPs occur frequently in a DDoS attack event, it has
high locality of reference. This explains the high space cost of pst over IPs. On the other
hand, library has the second highest entropy, and unlike reviews whose entropy is higher,
due to the limited number of copies that a library has for each book, the borrowing records

SEA 2023



19:14 Exact and Approximate Range Mode Query Data Structures in Practice

tend to be less affected by trends such as “best sellers of the month” than Amazon reviews
are. This explains the low space usage for library. The space cost of sample also fluctuates
among datasets for similar reasons, but due to sampling, the difference is small.

We now compare approximate structures. Among them, simple has the fastest query
time due to its simplicity, but its space cost is high. Among more sophisticated, O(n/ε)-word
solutions which are not succinct, tri stands out as its query time is comparable to that of
simple (it even beats simple in some cases), but its space cost is only 28.1% to 42.8% of
that of simple. Compared to pst and sample, it has the smallest worst-case space cost;
it is not based on persistence and is thus not sensitive to entropy or locality of reference.
On the other hand, for most datasets, pst and sample provide useful tradeoffs with lower
space usage but slower query time, with pst especially attractive for datasets of high entropy
but low locality of reference such as library. Finally, succp and succc provide compact
solutions; succp uses 0.89n to 1.30n words, with query slightly slower than pst and sample
in most cases, while succc is highly compact, with space costs only 35.6% to 93.8% of the
array of 32-bit integers (in most cases, the space cost is closer to the lower end, and the
average is 20.2 bps over all datasets), while the query time is 265% to 522% of that of succp.
Regarding preprocessing, we observed that the construction of tri is the fastest while that
of sample is the slowest.

3.5 Different Values of ε and Comparisons to Exact Queries Structures
We further conduct experiments by setting ε to 1/4, 1/8 and 1/16. Table 7 shows that
average approximation ratios decrease when ε decreases, though they are already close to 1
for ε = 1/2. Maximum approximation ratios are close to 1 + ε.

Table 7 Average and max approximation ratios for different ε.

ε
Average Maximum

simple pst sample tri/succ simple pst sample tri/succ
1/2 1.00644 1.00464 1.00644 1.00192 1.49977 1.5 1.48879 1.47826
1/4 1.00218 1.00164 1.00188 1.00085 1.24952 1.25 1.24701 1.25
1/8 1.00075 1.00068 1.00055 1.00019 1.12474 1.125 1.12148 1.11765
1/16 1.00020 1.00017 1.00016 1.00006 1.06240 1.0625 1.06107 1.05882

We also measure the performance of each solution for different ε. Tables 8 and 9 present
the performance and accuracy of approximate query structures for different values of ε over
the words dataset. We observe that query times increase slowly as ε decreases, fitting the
growth of the function of lg 1

ε + lg lg n. The space costs, however, grows at a much faster rate,
proportional to 1/ε. For different values of ε, how different solutions compare to each other
is similar to the case where ε = 1/2. The main notable difference is that, due to persistence
or compression, the space costs of pst, sample, and succc grow more slowly than other data
structures.

Finally, for ε = 1/2, we plotted figures to compare approximate structures to the best exact
structure, subsr2. Due to its high space costs, simple is not included. To better compare
approximate solutions, we plot a subfigure without subsr2, before plotting another one with
subsr2. As a typical example, Figure 3 shows the tradeoffs achieved for medium queries
over words, while Figure 8 in Appendix B shows the tradeoffs for all three types of queries
over reviews. From them, we can tell approximate structures outperform exact structures
greatly, making them suitable for applications that require good average approximations.
They still achieve better time/space tradeoffs over subsr2 for ε = 1/4, but may lose the
appeals when we keep decreasing ε due to the increase in space costs.



M. He and Z. Liu 19:15

Table 8 Average time to answer an approximate query over the words datasets for ε = 1
2 , 1

4 , 1
8

and 1
16 , measured in microseconds. Queries are categorized into small, medium and large, and each

category has 108 queries.

ε Query simple pst samplep samplec tri succp succc

1/2
small 0.102 0.986 0.809 1.166 0.168 1.126 3.642
medium 0.098 0.780 0.486 0.585 0.127 0.967 3.754
large 0.105 0.546 0.281 0.309 0.095 0.595 2.547

1/4
small 0.122 1.178 1.069 1.486 0.248 1.568 4.537
medium 0.119 0.924 0.738 0.841 0.184 1.371 4.597
large 0.119 0.639 0.357 0.386 0.142 0.906 3.512

1/8
small 0.148 1.637 1.277 1.809 0.349 2.231 5.778
medium 0.138 1.586 1.253 1.280 0.269 2.128 5.940
large 0.133 1.090 0.543 0.563 0.194 1.402 4.598

1/16
small 0.178 1.704 1.439 2.061 0.468 2.993 6.849
medium 0.170 1.479 1.459 1.690 0.383 3.104 7.230
large 0.161 0.935 1.025 1.077 0.261 2.095 5.894

Table 9 Space (bits per symbol) and construction time (minutes) when answering approximate
queries over the words datasets for ε = 1

2 , 1
4 , 1

8 and 1
16 .

ε simple pst samplep samplec tri succp succc

sp
ac

e

1/2 787.8 146.3 240.7 220.5 291.4 67.1 21.5
1/4 1418.9 264.7 393.0 352.4 547.8 117.4 35.9
1/8 2677.9 657.9 704.3 619.5 1063.9 212.2 62.6
1/16 5185.2 753.6 1337.7 1157.9 2074.5 389.5 111.7

co
ns

tr
uc

-t
io

n

1/2 0.050 0.082 0.412 0.418 0.018 0.038 0.040
1/4 0.091 0.166 0.744 0.746 0.032 0.066 0.077
1/8 0.171 0.318 1.610 1.636 0.058 0.148 0.150
1/16 0.335 0.554 3.224 3.247 0.108 0.229 0.238

0 100 200 300
0

1

2

3

4

Bits per Symbol

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s)

pst − medium
samplep − medium
samplec − medium

tri − medium
succp − medium
succc − medium

(a) words − medium without subsr2.

0 100 200 300
0

5

10

Bits per Symbol

subsr2 − medium
pst − medium

samplep − medium
samplec − medium

tri − medium
succp − medium
succc − medium

(b) words − medium with subsr2.

Figure 3 Time-space tradeoffs of different data structures for medium queries over words.

SEA 2023



19:16 Exact and Approximate Range Mode Query Data Structures in Practice

References
1 Project Gutenberg. (n.d.), retrieved in July 2021. Available from https://www.gutenberg.

org/.
2 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix

multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522–539.
SIAM, 2021. doi:10.1137/1.9781611976465.32.

3 Diego Arroyuelo, Rodrigo Cánovas, Gonzalo Navarro, and Kunihiko Sadakane. Succinct trees
in practice. In Guy E. Blelloch and Dan Halperin, editors, Proceedings of the Twelfth Workshop
on Algorithm Engineering and Experiments, ALENEX 2010, Austin, Texas, USA, January 16,
2010, pages 84–97. SIAM, 2010. doi:10.1137/1.9781611972900.9.

4 Nikhil Bansal and Ryan Williams. Regularity lemmas and combinatorial algorithms. Theory
of Computing, 8:69–94, 2012.

5 Michael A Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel
Sumazin. Lowest common ancestors in trees and directed acyclic graphs. Journal of Algorithms,
57(2):75–94, 2005.

6 Prosenjit Bose, Evangelos Kranakis, Pat Morin, and Yihui Tang. Approximate range mode
and range median queries. In Annual Symposium on Theoretical Aspects of Computer Science,
pages 377–388. Springer, 2005.

7 Timothy M. Chan, Stephane Durocher, Kasper Green Larsen, Jason Morrison, and Bryan T.
Wilkinson. Linear-space data structures for range mode query in arrays. Theory of Computing
Systems, 55(4):719–741, March 2013.

8 Francisco Claude, J Ian Munro, and Patrick K Nicholson. Range queries over untangled chains.
In International Symposium on String Processing and Information Retrieval, pages 82–93.
Springer, 2010.

9 O’Neil Delpratt, Naila Rahman, and Rajeev Raman. Engineering the LOUDS succinct tree
representation. In Carme Àlvarez and Maria J. Serna, editors, Experimental Algorithms,
5th International Workshop, WEA 2006, Cala Galdana, Menorca, Spain, May 24-27, 2006,
Proceedings, volume 4007 of Lecture Notes in Computer Science, pages 134–145. Springer,
2006. doi:10.1007/11764298_12.

10 Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. Frequency estimation of internet
packet streams with limited space. In European Symposium on Algorithms, pages 348–360.
Springer, 2002.

11 James R Driscoll, Neil Sarnak, Daniel D Sleator, and Robert E Tarjan. Making data structures
persistent. Journal of computer and system sciences, 38(1):86–124, 1989.

12 Hicham El-Zein, Meng He, J Ian Munro, Yakov Nekrich, and Bryce Sandlund. On approx-
imate range mode and range selection. In 30th International Symposium on Algorithms and
Computation (ISAAC 2019), volume 149, page 57. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2019.

13 Hicham El-Zein, Meng He, J Ian Munro, and Bryce Sandlund. Improved time and space
bounds for dynamic range mode. In 26th Annual European Symposium on Algorithms (ESA
2018), volume 112, page 25. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

14 Derya Erhan. Boğaziçi university DDoS dataset, 2019. Available from https://dx.doi.org/
10.21227/45m9-9p82.

15 Luca Foschini, Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. When indexing equals
compression: Experiments with compressing suffix arrays and applications. ACM Trans.
Algorithms, 2(4):611–639, 2006. doi:10.1145/1198513.1198521.

16 Michael L Fredman and Dan E Willard. Blasting through the information theoretic barrier
with fusion trees. In Proceedings of the twenty-second annual ACM symposium on Theory of
Computing, pages 1–7, 1990.

17 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In 13th International Symposium on Experimental
Algorithms, (SEA 2014), pages 326–337, 2014. doi:10.1007/978-3-319-07959-2_28.

https://www.gutenberg.org/
https://www.gutenberg.org/
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/1.9781611972900.9
https://doi.org/10.1007/11764298_12
https://dx.doi.org/10.21227/45m9-9p82
https://dx.doi.org/10.21227/45m9-9p82
https://doi.org/10.1145/1198513.1198521
https://doi.org/10.1007/978-3-319-07959-2_28


M. He and Z. Liu 19:17

18 Mark Greve, Allan Grønlund Jørgensen, Kasper Dalgaard Larsen, and Jakob Truelsen. Cell
probe lower bounds and approximations for range mode. In International Colloquium on
Automata, Languages, and Programming, pages 605–616. Springer, 2010.

19 Yuzhou Gu, Adam Polak, Virginia Vassilevska Williams, and Yinzhan Xu. Faster monotone
min-plus product, range mode, and single source replacement paths. In Nikhil Bansal, Emanuela
Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages,
and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference),
volume 198 of LIPIcs, pages 75:1–75:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ICALP.2021.75.

20 Meng He and Serikzhan Kazi. Path query data structures in practice. In 18th International
Symposium on Experimental Algorithms, volume 160, pages 27:1–27:16, 2020.

21 D. Jansens. Persistent Binary Search Trees. https://cglab.ca/~dana/pbst/.
22 Danny Krizanc, Pat Morin, and Michiel H. M. Smid. Range mode and range median queries

on lists and trees. Nordic Journal of Computing, 12(1):1–17, 2005.
23 Seattle Public Library. Seattle library checkout records, 2017. Available from https://www.

kaggle.com/seattle-public-library/seattle-library-checkout-records.
24 Zhen Liu. Exact and approximate range mode query data structures in practice. Master’s

thesis, Dalhousie University, 2023. URL: http://hdl.handle.net/10222/81772.
25 Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-

labeled reviews and fine-grained aspects. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 188–197, 2019.

26 City of New York. NYC parking tickets, 2017. Available from https://www.kaggle.com/
datasets/new-york-city/nyc-parking-tickets.

27 Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-compressed rank/select
dictionary. In Proceedings of the Nine Workshop on Algorithm Engineering and Exper-
iments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM, 2007.
doi:10.1137/1.9781611972870.6.

28 Mihai Patrascu. Succincter. In Proceedings of the 2008 49th Annual IEEE Symposium on
Foundations of Computer Science, pages 305–313, 2008.

29 Holger Petersen and Szymon Grabowski. Range mode and range median queries in constant
time and sub-quadratic space. Information Processing Letters, 109(4):225–228, 2009.

30 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms (TALG), 3(4):43–es, 2007.

31 Bryce Sandlund and Yinzhan Xu. Faster dynamic range mode. In 47th International Colloquium
on Automata, Languages, and Programming (ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

32 Virginia Vassilevska Williams and Yinzhan Xu. Truly subcubic min-plus product for less
structured matrices, with applications. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 12–29. SIAM, 2020.

A Details Omitted from Section 3.3

Figures 4, 5 and 6 are omitted figures from Section 3.3.
We also compare the time-space tradeoffs that can be achieved by supsr and sqrt with

different parameters. Figure 7 shows our experimental results over reviews and IPs, in
which a subfigure is used for either dataset. The results for other datasets are similar. To
draw each subfigure, we construct supsr (and similarly sqrt) over each dataset for different
values of s. The initial value of s is 0.5

√
n, and each time we increase s by 0.5

√
n until the

space usage of the data structure exceeds 640 bits per symbol. In Figure 7, our experimental
study shows that sqrt use less query time than supsr when these data structures use the
same space. Therefore, sqrt outperforms supsr.

SEA 2023

https://doi.org/10.4230/LIPIcs.ICALP.2021.75
https://cglab.ca/~dana/pbst/
https://www.kaggle.com/seattle-public-library/seattle-library-checkout-records
https://www.kaggle.com/seattle-public-library/seattle-library-checkout-records
http://hdl.handle.net/10222/81772
https://www.kaggle.com/datasets/new-york-city/nyc-parking-tickets
https://www.kaggle.com/datasets/new-york-city/nyc-parking-tickets
https://doi.org/10.1137/1.9781611972870.6


19:18 Exact and Approximate Range Mode Query Data Structures in Practice

200 400 600 800

5

10

Bits per Symbol

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s) subsrp

2 − small
subsrp

2 − medium
subsrp

2 − large
subsrc

2 − small
subsrc

2 − medium
subsrc

2 − large

(a) words.

200 400 600 800

5

10

15

20

Bits per Symbol

subsrp
2 − small

subsrp
2 − medium

subsrp
2 − large

subsrc
2 − small

subsrc
2 − medium

subsrc
2 − large

(b) library.

200 400 600 800
5

10

15

Bits per Symbol

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s) subsrp

2 − small
subsrp

2 − medium
subsrp

2 − large
subsrc

2 − small
subsrc

2 − medium
subsrc

2 − large

(c) tickets.

Figure 4 Time-space tradeoffs achieved by subsrp
2 and subsrc

2 over words, library and tickets.

200 400 600 800

5

10

15

20

Bits per Symbol

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s) subsrp

1 − small
subsrp

1 − medium
subsrp

1 − large
subsrc

1 − small
subsrc

1 − medium
subsrc

1 − large

(a) reviews.

200 400 600 800 1,000
3

4

5

Bits per Symbol

subsrp
1 − small

subsrp
1 − medium

subsrp
1 − large

subsrc
1 − small

subsrc
1 − medium

subsrc
1 − large

(b) IPs.

Figure 5 Time-space tradeoffs achieved by subsrp
1 and subsrc

1 over reviews and IPs



M. He and Z. Liu 19:19

200 400 600 800
0

50

100

Bits per Symbol

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s) sqrt − small

sqrt − medium
sqrt − large
subsr − small
subsr − medium
subsr − large

(a) reviews.

200 400 600 800 1,000

10

20

Bits per Symbol

sqrt − small
sqrt − medium
sqrt − large

subsr1 − small
subsr1 − medium
subsr1 − large
subsr2 − small
subsr2 − medium
subsr2 − large

(b) IPs.

200 400 600 800
0

20

40

60

Bits per Symbol

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s) sqrt − small

sqrt − medium
sqrt − large

subsr1 − small
subsr1 − medium
subsr1 − large
subsr2 − small
subsr2 − medium
subsr2 − large

(c) words.

Figure 6 Time-space tradeoffs achieved by sqrt, subsr1 and subsr2 over reviews, IPs and
words.

200 400 600
0

200

400

600

Bits per Symbol

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s) sqrt − small

sqrt − medium
sqrt − large
supsr − small
supsr − medium
supsr − large

(a) reviews.

200 400 600
0

200

400

Bits per Symbol

sqrt − small
sqrt − medium
sqrt − large
supsr − small
supsr − medium
supsr − large

(b) IPs.

Figure 7 Time-space tradeoffs achieved by supsr and sqrt over reviews and IPs.

SEA 2023



19:20 Exact and Approximate Range Mode Query Data Structures in Practice

B Comparing exact range mode and approximate range mode data
structures on reviews

Figure 8 compares tradeoffs achieved by exact and approximate range mode structures over
reviews. Due to its high space costs, the figures do not show simple. We also omit some
tradeoffs with low space cost that can be achieved using subsr2, because their query times
are so large that, with them, it would not be possible to tell how other tradeoffs compare to
each other in the same figure.

C Even Smaller Queries Ranges

In the experimental studies reported in Section 3, we adopt the method in [8, 20] to generate
small, medium and large queries. To confirm whether this is appropriate for our experimental
studies, we further perform additional studies using query ranges of sizes 101, 102, 103, 104

and 105, most of which are even smaller than the average size of our small queries, to see
whether exact and approximate solutions still compare similarly for these query ranges. To
run these experiments, for each i ∈ {1, 2, 3, 4, 5}, we generate 106 query ranges of size 10i by
choosing the starting positions of the ranges uniformly at random.

Exact query structures can achieve different time-space tradeoffs when setting the para-
meter s to different values. For a fair comparison, we binary search on s to make space costs
as close to 300bps as possible. For example, for words, we set s to 4613, 16792 and 29748
for sqrt, subsr1 and subsr2 to achieve space costs of 300.7bps, 300.3bps and 300.3bps,
respectively. For library, we set s to 5614, 22853 and 38859 for sqrt, subsr1 and subsr2

to achieve space costs of 300.7bps, 297.3bps and 300.0bps, respectively. We also include nv1

to find out when data structure solutions outperform this naive solution. The other naive
solution, nv2, is not included; since it uses an array of size ∆, smaller query sizes will make
it compare more poorly to others. Figure 9 presents our experimental results on words and
library, and the results on other datasets are similar. These figures show that, for small
query sizes under 100, the query times of all solutions including nv1 are close, but after query
sizes exceed 100 or so, data structure solutions start to outperform nv1 significantly, and
they compare to each other similarly as they did during the studies in Section 3.3. We also
observe that, when query sizes increase, all data structure query times first increase due
to the scan of more entries of A. Later, when query ranges are big enough (starting from
somewhere between 103 and 104) to include multiple blocks of A, the table S is used, so the
query algorithms need not scan more array entries. Instead, the query times decrease slowly
when query sizes increase due to the reasons discussed in Section 3.2.

Figure 10 shows the results for approximate range mode structures over words and
library, and the results on other datasets are similar. It again shows that the conclusions in
Section 3.4 apply to these query sizes. A new observation is that the query times of sample
and succ decrease rapidly when query sizes drops below 103 and 102, respectively. This is
because each of these solutions consists of a low frequency structure and a high frequency
structure, and when query sizes are smaller, it is more likely that only the former is used
which has much faster query time than the latter.

These experiments show that, when query sizes are big enough to justify the use of data
structures (instead of merely using a naive solution), the same conclusions in Section 3 apply
here. Hence, we conclude that it is appropriate to generate small, medium and large queries
and use them throughout our studies.



M. He and Z. Liu 19:21

0 100 200 300
0

1

2

3

Bits per Symbol

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s) pst − medium

samplep − medium
samplec − medium

tri − medium
succp − medium
succc − medium

(a) reviews − small without subsr2.

0 100 200 300
0

10

20

Bits per Symbol

subsr2 − small
pst − small

samplep − small
samplec − small

tri − small
succp − small
succc − small

(b) reviews − small with subsr2.

0 100 200 300
0

1

2

3

Bits per Symbol

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s) pst − medium

samplep − medium
samplec − medium

tri − medium
succp − medium
succc − medium

(c) reviews − medium without subsr2.

0 100 200 300
0

10

20

Bits per Symbol

subsr2 − medium
pst − medium

samplep − medium
samplec − medium

tri − medium
succp − medium
succc − medium

(d) reviews − medium with subsr2.

0 100 200 300
0

1

2

3

4

Bits per Symbol

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s) pst − large

samplep − large
samplec − large

tri − large
succp − large
succc − large

(e) reviews − large without subsr2.

0 100 200 300
0

5

10

15

20

Bits per Symbol

subsr2 − large
pst − large

samplep − large
samplec − large

tri − large
succp − large
succc − large

(f) reviews − large with subsr2.

Figure 8 Time-space tradeoffs achieved by subsr2, pst, samplep, samplec, tri, succp, and succc

on reviews.

SEA 2023



19:22 Exact and Approximate Range Mode Query Data Structures in Practice

101 102 103 104 105

0

10

20

30

Query Range Size

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s)

nv1
sqrt

subsrp
1

subsrp
2

(a) words.

101 102 103 104 105

0

10

20

30

Query Range Size

nv1
sqrt

subsrp
1

subsrp
2

(b) library.

Figure 9 Query time of exact range mode query, for query ranges of sizes from 101 to 105.

101 102 103 104 105

0

2

4

Query Range Size

Av
er

ag
e

Q
ue

ry
T

im
e

(µ
s)

simple
pst

samplep

samplec

tri
succp

succc

(a) words.

101 102 103 104 105

0

2

4

Query Range Size

simple
pst

samplep

samplec

tri
succp

succc

(b) library.

Figure 10 Query time of approximate range mode, for query ranges of sizes from 101 to 105.



Efficient Yao Graph Construction
Daniel Funke #

Karlsruhe Institute of Technology, Germany

Peter Sanders #

Karlsruhe Institute of Technology, Germany

Abstract
Yao graphs are geometric spanners that connect each point of a given point set to its nearest neighbor
in each of k cones drawn around it. Yao graphs were introduced to construct minimum spanning
trees in d dimensional spaces. Moreover, they are used for instance in topology control in wireless
networks. An optimal O(n log n)-time algorithm to construct Yao graphs for a given point set has
been proposed in the literature but – to the best of our knowledge – never been implemented. Instead,
algorithms with a quadratic complexity are used in popular packages to construct these graphs. In
this paper we present the first implementation of the optimal Yao graph algorithm. We engineer the
data structures required to achieve the O(n log n) time bound and detail algorithmic adaptations
necessary to take the original algorithm from theory to practice. We propose a priority queue data
structure that separates static and dynamic events and might be of independent interest for other
sweepline algorithms. Additionally, we propose a new Yao graph algorithm based on a uniform grid
data structure that performs well for medium-sized inputs. We evaluate our implementations on a
wide variety of synthetic and real-world datasets and show that our implementation outperforms
current publicly available implementations by at least an order of magnitude.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners

Keywords and phrases computational geometry, geometric spanners, Yao graphs, sweepline algo-
rithms, optimal algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.20

Related Version Technical report: arXiv:2303.07858 [11]

Supplementary Material Software: https://github.com/dfunke/YaoGraph
archived at swh:1:dir:c9682e5265d00eef03757c009b3aaeefdeaa5288

1 Introduction

Yao graphs are geometric spanners that connect each point of a given point set to its nearest
neighbor in each of k cones, refer to Figure 1 for an example. A t-spanner is a weighted
graph, where for any pair of vertices there exists a t-path between them, which is a path
with weight at most t times their spatial distance. The parameter t is known as the stretch
factor of the spanner. Upper bounds on the stretch factor of Yao graphs have been the
subject of extensive research. While the stretch factor of Yao graphs with k ≤ 3 cones is
proofed to be unbounded, bounds have been established for all graphs with k ≥ 4 cones [3].
Whereas for k ≥ 7 cones the stretch factor is proofed to be bounded by the general formula(

1+
√

2−2 cos(2π/k)
)
/(2 cos(2π/k)−1), bounds on Yao graphs with 4 to 6 cones require complex

individual arguments [3, 8].
Yao introduced this kind of graphs to construct minimum spanning trees in d-dimensional

space [17]. Moreover, they are used for instance in topology control in wireless networks
[14, 18]. Chang et al. [6] present an optimal algorithm to construct these graphs in O(n log n)
time. Due to the intricate nature of their algorithm and the reliance on expensive geometric
constructions, to the best of our knowledge, there is no implementation of their algorithm
available. Instead, an algorithm with an inferior O

(
n2) time bound is used in the cone-based

spanners package of the popular CGAL library [15].
© Daniel Funke and Peter Sanders;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 20; pp. 20:1–20:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:funke@kit.edu
mailto:sanders@kit.edu
https://doi.org/10.4230/LIPIcs.SEA.2023.20
https://arxiv.org/abs/2303.07858
https://github.com/dfunke/YaoGraph
https://archive.softwareheritage.org/swh:1:dir:c9682e5265d00eef03757c009b3aaeefdeaa5288;origin=https://github.com/dfunke/YaoGraph;visit=swh:1:snp:b2c49eac3293fe6f8f634b9fc953811307cd861d;anchor=swh:1:rev:e7be80600d9005950e6123f5e8df9862313e1e21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


20:2 Efficient Yao Graph Construction

Figure 1 Yao graph for ten points and k = 5 cones. The five cones are illustrated as red dashed
lines around four example points.

Contribution. In this paper we present the first publicly available implementation of Chang
et al.’s optimal algorithm for Yao graph construction. We take their algorithm from theory
to practice by engineering the data structures required to achieve the O(n log n) time bound
and provide detailed descriptions of all operations of the algorithm that are missing in the
original paper, such as input point ordering, handling of composite boundaries and enclosing
region search. In our event queue, we separate static (input point) events and dynamic
(intersection point) events. This greatly improves the efficiency of priority queue operations
and might be a useful technique for other sweepline algorithms. We test our algorithm
on a wide range of synthetic and real-world datasets. We show that, despite the intricate
nature of the algorithm and the use of expensive geometric constructions, our implementation
achieves a speedup of an order of magnitude over other currently available implementations.
Additionally, we develop a new Yao graph algorithm based on a uniform grid data structure
that is simple to implement, easy to parallelize, and performs well for medium-sized inputs.

Outline. In Section 2 we review related work on the construction of Yao graphs. Section 3
presents the optimal algorithm of Chang et al. and algorithmic adaptions necessary for its
implementation. Further implementation details such as data structures and geometric
operations are described in Section 4. We evaluate our implementation and compare against
its competitors in Section 5. Section 6 summarizes our paper and presents an outlook on
future work.

Definitions. Given a set P of points in two-dimensional Euclidean space and an integer
parameter k > 1, the Yao graph Gk = (P, E) is a directed graph, connecting every point
p ∈ P with its nearest neighbor in each of k cones [17]. Every cone Ci = (θL, θR), 0 ≤ i < k,
is defined by its two limiting rays with angles θL = 2iπ

k and θR = 2(i+1)π
k . We denote the cone

Ci with apex at point p as Cp
i . We furthermore define, that the left – or counterclockwise –

boundary ray with angle θL belongs to a cone C, whereas the right one does not, i. e. for a given
point p ∈ P and cone Cp

i we define the set of points P∩Cp
i := {q ∈ P : ∢(p, q) ∈ [θL, θR)}, with

∢(p, q) denoting the angle between p and q. Then the edge set E of the Yao graph Gk = (P, E)
can be formally defined as E := {(p, q) : ∀i ∈ [0, k),∀p ∈ P, q = arg minv∈P∩Cp

i
(d(p, v))},

with d(·, ·) denoting the Euclidean distance function.



D. Funke and P. Sanders 20:3

2 Related Work

Yao presents an O
(
n5/3 log n

)
-time algorithm to compute a solution to the Eight-Neighbors

Problem – a Yao graph with k = 8. It is based on a tessellation of the Euclidean space into
cells. For a given point and cone, each cell of the tessellation is characterized whether it can
contain nearest neighbor candidates to reduce the number of necessary distance computations.
The problem is solved optimally by Chang et al., who present a O(n log n)-time algorithm
for constructing the Yao graph of a given point set and parameter k [6]. Their algorithm
follows the same structure as Fortune’s algorithm for constructing the Voronoi diagram
of a point set [10], using the sweepline technique originally introduced by Bentley and
Ottmann for computing line-segement intersections [4]. However, even though there are
many implementations of Fortune’s algorithm available, there is no implementation of Chang
et al.’s Yao graph algorithm that we are aware of. Instead, for instance the CGAL library’s
cone-based spanners package implements a less efficient O

(
n2)-time algorithm [15]. Their

algorithm is an adaption of a sweepline algorithm for constructing Θ-graphs [13]. Θ-graphs
are defined similarly to Yao graphs, except that the nearest neighbor in each cone is not
defined by Euclidean distance but by the projection distance onto the cone’s internal angle
bisector. This allows for a O(n log n)-time sweepline algorithm, that uses a balanced search
tree as sweepline data structure to answer one-dimensional range queries [13]. For Yao
graphs, such a reduction in dimensionality is not possible, thus, CGAL’s algorithm employs
linear search within the sweepline data structure to find the nearest neighbor, leading to
the O

(
n2) time bound. However, CGAL’s algorithm is much simpler to implement than

the optimal algorithm proposed by [6] and does not require geometric constructions, just
predicates. Table 1 in Section 4 provides an overview of the required geometric operations
by both algorithms.

3 Algorithm

In their 1990 paper, Chang et al. present an O(n log n)-time sweepline algorithm to compute
the oriented Voronoi diagram (OVD) of a point set. Through a small modification, their
algorithm can compute the geographic neighborhood graph – or Yao graph – of a point set
within the same, optimal, bound [6, Theorem 3.2, Theorem 4.1].1 To construct the Yao graph
Gk = (P, E) with k cones for point set P, k sweepline passes are required, each considering
a specific cone C = (θL, θR). The sweepline for a cone C proceeds in direction τ = θL+θR

2 + π,
i. e. opposite to the cone’s internal angle bisector. Input points are swept in the order of
their projection onto τ – represented as blue dashed line in Figure 2 – given by sorting

ρτ (p) :=
(

x

y

)
·
(

cos τ

sin τ

)
∀p =

(
x y

)T ∈ P. (1)

All input points are inserted into an event priority queue Q with priority ρτ (p) and event
type input point. Each input point p is the origin of a cone Cp with boundary rays BL

and BR. Cone Cp defines the region Rp of the plane, where point p is the nearest neighbor
with respect to cone Cp for any point being swept after p. The invariant of the algorithm
is that once a point has been swept, its nearest neighbor in cone C has been determined.
For instance, in Figure 2 p2 is in the region of p1, therefore p1 is the nearest neighbor for
p2 with respect to cone C. A boundary ray B□ always separates the regions of two input

1 Our implementation computes the Yao graph but can easily be modified to compute the OVD.

SEA 2023



20:4 Efficient Yao Graph Construction

Algorithm 1 Sweepline algorithm for cone defined by (θL, θR). L(p, θ, Ra, Rb) and L(←→pv , Ra, Rb)
denote the ray originating at p with angle θ and the line segment from p to v, respectively, both
separating regions Ra and Rb.

Input: points P = {p1, . . . , pn} with pi ∈ R2, cone (θL, θR)
Output: GNG G = (V, E)

1: τ ← θL+θR

2 + π ▷ opposite of cone’s internal angle bisector
2: Q← {(ρτ (p) , p, I) : p ∈ P} ▷ initialize PQ with input points
3: SL← ∅
4: G = (V, E)← (P, ∅)

5: while p← popMin(Q) do
6: if p is input point then
7: BL, BR ← findRegion(p, SL) ▷ BL and BR enclose p

8: E ∪= (p, Br
L) ▷ assert

(
Br

L == Bl
R

)
9: if BL ∩BR = v then delete v from Q

10: B∗
L ← L (p, θL + π, Br

L, Rp)
11: B∗

R ← L
(
p, θR + π, Rp, Bl

R

)
12: insert [B∗

L, B∗
R] into SL between BL and BR

13: if BL ∩B∗
L = v then Q ∪= (ρτ (v) , v)

14: if BR ∩B∗
R = v then Q ∪= (ρτ (v) , v)

15: if p is intersection then
16: BL, BR ← intersecting rays at p

17: a← Bl
L b← Br

R

18: if BL ∩ prev(BL) = v then delete v from Q ▷ left neighbor boundary on SL

19: if BR ∩ succ(BR) = v then delete v from Q ▷ right neighbor boundary on SL

20: LBS ← L( a⃗+b⃗
2 ,∢(a, b) + π

2 , Ra, Rb) ▷ bisector of line segment
←→
ab

21: LL ← L(p, θL + π, Ra, Rb)
22: LR ← L(p, θR + π, Ra, Rb)
23: if LL ∩ LBS = ∅ = LBS ∩ LR then ▷ bisector intersects no line from p

24: B∗ = L

(
p, π +

{
θL if ρτ (a) < ρτ (b)
θR else

, Ra, Rb

)
25: if LL ∩ LBS = p = LBS ∩ LR then ▷ bisector intersects both lines in p

26: B∗ = L(p,∢(a, b) + π
2 , Ra, Rb)

27: if LL ∩ LBS = v or LBS ∩ LR = v then ▷ bisector intersects one line in v

28: B∗ = L(←→pv , Ra, Rb) + L(v,∢(a, b) + π
2 , Ra, Rb)

29: Q ∪= (ρτ (v) , v) ▷ deletion event
30: replace [BL, BR] in SL with B∗

31: if B∗ ∩ prev(B∗) = v then Q ∪= (ρτ (v) , v)
32: if B∗ ∩ succ(B∗) = v then Q ∪= (ρτ (v) , v)
33: if p is deletion point then
34: B ← ray belonging to p ▷ B = L(←→pv , Ra, Rb) + L(v,∢(a, b) + π

2 , Ra, Rb)
35: replace B in SL with L(v,∢(a, b) + π

2 , Ra, Rb)
36: return G



D. Funke and P. Sanders 20:5

p1
p3

p2

∞
1 1∞

∞
3 3 ∞

3
1

3
2

1
2
2
1

p4

θL

θR

τ

sweepline

Figure 2 Example state of the sweepline algorithm for cone C = (θL, θR) (marked in red). Input
points (circles, bold labels) are numbered in the order they are swept by the sweepline, with their
projections on the cone’s internal angle bisector shown in blue. Rays are labeled with the regions
they are separating. Intersection events are marked with a square. Already determined edges of the
Yao graph are indicated by arrows.

points, thus it is defined by its point of origin Bp
□ and angle Bθ

□ as well as its left and
right region, Bl

□ and Br
□ respectively. The region outside any point‘s cone is labeled with

infinity. Due to intersecting boundary rays, boundaries between regions can also be the
union of a line segment and ray as described in detail in Section 3.2. However, for simplicity
of presentation we still refer to these composite boundaries as boundary rays, unless this
distinction is of relevance. The algorithm maintains an ordered data structure SL of rays
currently intersecting the sweepline. The rays are ordered left-to-right and the data structure
needs to support insert, remove and find operations in O(log n) time, as well as access to the
left and right neighbors of a given ray. In Section 4.2 we describe a balanced binary search
tree that supports these operations and is tuned for our application. Algorithm 1 presents
our algorithm, which is described in detail in the following. An example execution of the
algorithm is depicted in Figure 11 in the appendix.

3.1 Event Types

There are three event types: 1) input points, 2) intersection points, and 3) deletion points.In
the following, we describe how each event is handled by the algorithm. Through the execution
of the algorithm, priority queue Q contains all unprocessed input points, the intersection
points of the boundaries of adjacent regions as well as deletion points for composite boundaries,
ordered according to ρτ (p). If several events coincide, their processing order can be arbitrary.

1) Input points. All points of the given set P are inserted into the event priority queue
at the beginning of the algorithm. For an input point event with associated point p, the
sweepline data structure SL is searched for the region Rq containing p. This region is defined

SEA 2023



20:6 Efficient Yao Graph Construction

by its two bounding rays BL and BR and their associated regions Br
L = Bl

R = Rq.2 We can
then add edge (p, q) to the edge set E of Gk, as proven in [6, Lemma 3.1]. The point p is the
apex of region Rp, bounded to the left by B∗

L = (p, θL + π), separating regions Rq and Rp,
and bounded to the right by B∗

R = (p, θR +π), separating regions Rp and Rq. These new rays
are inserted into SL between BL and BR, forming the sequence [BL, B∗

L, B∗
R, BR]. Lastly,

intersection points of the considered rays need to be addressed. If BL and BR intersect
in point v, its associated intersection point event needs to be removed from the priority
queue Q, as BL and BR are no longer neighboring rays. Instead, possible intersection points
between BL and B∗

L as well as B∗
R and BR are added to Q for future processing.

2) Intersection points. An intersection point v is associated with its two intersecting rays
BL and BR. They separate regions Rp := Bl

L, Br
L = Rm = Bl

R and Br
R =: Rq, refer to

Figure 3. Region Rm terminates at intersection point v and a new boundary B∗ between Rp

and Rq originates at v. The shape of B∗ depends on the configuration of points p and q and
can either be a simple ray or a union of a line segment and a ray. Section 3.2 describes in
more detail how B∗ is determined. B∗ then replaces the sequence [BL, BR] in the sweepline
data structure. Again, intersection points of the considered rays need to be addressed. If
BL has an intersection point with its left neighbor or if BR has an intersection point with
its right neighbor, the associated intersection point events need to be removed from the
event queue Q. Correspondingly, if B∗ intersects its left or right neighbor, the appropriate
intersection point events are added to Q.

3) Deletion event. Deletion events are not part of the original algorithm described by
Chang et al. [6], as the authors do not specify how to handle composite boundaries in their
paper. We use them to implement boundaries consisting of a line segment and a ray. The
deletion event marks the end of the line segment and the beginning of the ray. It does not
change the actual state of the sweepline data structure.

3.2 Boundary Determination
As described in the previous section, at an intersection point event v, the two intersecting
rays BL and BR are merged into a new boundary B∗, separating regions Rp := Br

L and
Rq := Bl

R. The shape of the boundary is determined by the configuration of points p and q.
The determination is based on the number of intersection points between lines

LL = (v, θL + π) (green),
LR = (v, θR + π) (red), and
the bisector LBS of line p⃗q, LBS = ( p⃗+q⃗

2 ,∢(p, q) + π/2) (blue, dashed).
The colors refer to the lines in Figure 3 which illustrates the different cases. If LBS intersects
neither LL nor LR then B∗ = LL = (v, π + θR) if p was swept before q, otherwise B∗ =
LR = (v, π + θR) (Figure 3a). Intuitively, the region of the lower point with respect to the
sweepline direction continues, whereas the upper region stops at intersection point v. If
LBS intersects both lines LL and LR, then the two intersection points must coincide with v

(Figure 3c). In this case, B∗ = (p,∢(p, q) + π/2), i. e. the boundary continues with the angle
of the bisector from point v. Otherwise, i. e. LBS intersects either LL or LR in a point w,
the resulting boundary B∗ will be the union of the line segment v⃗w and ray (w,∢(p, q) + π/2)
(Figure 3b). In this case, a deletion point event is added to the priority queue at point w.

2 Note that Chang et al. [6] explicitly store rays and regions in their sweepline data structure. However,
since a region is identifiable by its two bounding rays, we choose this simpler representation of the
sweepline state.



D. Funke and P. Sanders 20:7

q

p

v

LR

LL = B∗

LBS

Rp

Rq

Rm

(a) LBS intersects neither LL nor LR.

q
p

v

LR LL

LBS

Rp
Rq

w B∗

Rm

(b) LBS intersects LR in w.

q p

v

LR LL

LBS

RpRq

B∗

Rm

(c) LBS intersects both LL and LR in v.

q

p

Rp

Rq

∞

∞

p

q

∞ p

qp

w

Rw

∞ w w p

v

Rv

qvvw

(d) Input points lying on cone boundaries.

Figure 3 Illustration of the three possible configurations for boundary B∗ following an intersection
point event. In all examples input point p is swept before q. Lines LL, LR and LBS are dotted, the
resulting boundary B∗ is denoted in bold. In Figure d), Yao graph edges are shown as bold arrows.

Input Points Colinear on Cone Boundaries. Chang et al. make the assumption that no line
between two input points is with angle θL or θR. In the following we shall lift this requirement.
Input points sharing a common line with angle θ□ become visible from each other. This
impacts the regions the passing boundary rays are separating. Refer to Figure 3d for a
graphical representation of the following discussion. Recall, that the left – or counterclockwise
– boundary ray with angle θL belongs to a cone C, whereas the right one does not. If a
boundary ray B□ = (p, θ□, Bl

□, Br
□) intersects an input point q then B□ terminates at q and

a new boundary ray B′
□ is formed. If B□ is a left boundary, i. e. θ□ = θL, then edge (p, q) is

added to GK and B′
□ separates regions Bl

□ and Rq. If it is a right boundary then no edge is
added to Gk and B′

□ separates Rq and Br
□. Refer to example points q and w in Figure 3d.

3.3 Analysis

The total number of events processed by the sweepline algorithm is the sum of input point
events Ninput, intersection point events NIE and deletion events NDE. In order to bound the
number of events processed by the sweepline algorithm, we consider the number of rays that
can be present in the sweepline data structure during the execution of the algorithm.

Every input point event adds two rays to the sweepline data structure SL, resulting in
a total of 2n rays. It possibly removes one intersection event from the event queue Q and
may add up to two new such events. Every intersection point event removes two rays from
SL and adds one new ray, thus reducing the sweepline size by one. Therefore, at most 2n

SEA 2023



20:8 Efficient Yao Graph Construction

Table 1 Comparison of geometric predicates used in algorithms for Yao graph construction.

Chang et al. CGAL Naive Grid

Complexity O(n log n) O
(
n2) O

(
n2) O

(
n2)

Predicates
Eucl. distance comp. X X X X
dist. to line comp. X X
oriented side of line X X X
Constructions
cone boundaries X X X X
box construction X
line projection X
ray intersection X

intersection events can be processed before all rays are removed from the sweepline. An
intersection event possibly removes two additional intersection events aside from itself from
Q and may add one new intersection event.3 Additionally, one deletion event may be added
to Q. Therefore, at most 2n deletion events may be processed, each of which leaves the
number of rays and intersections unchanged. In total,

Nevents ≤ Ninput + NIE + NDE

≤ n + 2n + 2n = 5n (2)

With a balanced binary search tree as sweepline data structures each event can be processed
in O(log n) time, yielding the bound of O(n log n).

4 Implementation Details

In this section we highlight some of the design decisions of our implementation of Chang
et al.’s Yao graph algorithm.

4.1 Geometric Kernels
The algorithm by Chang et al. [6] requires many different geometric predicates and construc-
tions. We implement our own version of the required predicates and constructions in an
inexact manner. Additionally, the user can employ kernels provided by the CGAL library.
The EPIC kernel provides exact predicates and inexact constructions, whereas the EPEC
kernel features exact predicates and exact constructions [5].

Table 1 lists the geometric predicates used by the different algorithms for Yao graph
construction presented in this paper, refer to Section 5 for details on the naive and grid
algorithm. Only the sweepline algorithm requires the computation of particularly costly
intersections. The naive as well as grid-based Yao graph algorithm require an oriented side of
line predicate only if cone boundaries are constructed exactly, in order to determine the cone
Cp

I a point q lies in with respect to point p. Additionally, the grid algorithm could construct

3 Technically, B∗ can intersect both its neighbors, leading to two intersection events. However, when the
first – as defined by ρτ (·) – intersection event is processed, it will delete the second event from Q, as
B∗ is removed from SL and a new boundary ray is inserted by the first event.



D. Funke and P. Sanders 20:9

the grid data structure using exact computations. However, in our implementation we only
use inexact computations to place the input points into grid cells, as we did not encounter
the need for exact computation in any of our experiments. Note that the determination
whether a grid cell could hold a closer neighbor than the currently found one is done using
the (exact) Euclidean distance comparison predicate.

In order to reduce the number of expensive ray-ray intersection calculations, we store all
found intersection points in a linear probing hash table, with the two intersecting rays as
key, see e. g. Algorithm 1::13. If we need to check whether two rays are intersecting – e. g.
Algorithm 1::9 – we merely require a hash table lookup.

4.2 Sweepline Data Structure
Chang et al. prove an O(n log n)-time complexity for the algorithm [6, Theorem 3.2]. In
order to achieve this bound, the data structure maintaining the rays currently intersected by
the sweepline must provide the following operations: insert, remove and predecessor search
in O(log n) time. Our data structure furthermore provides neighbor access in O(1) time.

In order to support the these operations, we use a doubly linked list of rays, with an AVL
search tree on top [1]. Figure 4 shows a graphical representation of our data structure. As the
order of the rays along the sweepline is known at the time of insertion – see Algorithm 1::12
– the O(log n)-time search phase of a traditional AVL data structure can be omitted and
new rays can be inserted in a bottom-up manner. However, this optimization requires the
need for parent pointers in the tree. As always two neighboring rays are inserted into the
sweepline data structure at the same time, we implement a special insert operation for this
case that only requires one rebalancing operation for both rays. For removal operations, the
position of the ray within the sweepline is known as well – refer to Algorithm 1::30. Thus,
similar to insert operations, no search phase is required for removals and the operation can
be performed in a bottom-up manner. The algorithm always removes the two neighboring
rays BL and BR and and replaces them with B∗. B∗ has the same left neighbor as BL and
the same right neighbor as BR. Therefore, we can simply replace BL with B∗ in the data
structure and just need to remove BR, leading to merely one rebalancing operation.

The search for the enclosing region of a point p – Algorithm 1::7 – is performed by finding
the first ray BR, currently intersecting the sweepline, that has p to its right. This requires the
evaluation of a oriented side of line predicate at each level of the tree. The left neighbor BL

of BR, must have p to its left or on it. Therefore BL and BR enclose p and Br
L = Bl

R = Rq

gives the the region p is contained in. To facilitate searching, each internal node of the
tree needs to refer to the rightmost ray in its subtree. As rays are complex objects, we use
pointers to the corresponding leaf to save memory. Given the expensive search operations,
AVL trees – as strictly height-balancing trees – are preferable to data structures with weaker
balancing guarantees, such as red-black trees [16].

4.3 Priority Queue
The priority queue (PQ) Q is initialized with all input points at the beginning of the algorithm.
During event processing, intersection and deletion events may be added and removed from
Q, therefore requiring an addressable priority queue. The objects are ordered according to
Equation (1), thus keys are (exact) numerical values. Our experiments show that, typically,
for n input points, only about O(

√
n) intersection and deletion events are in Q at any given

step. Using the same PQ for all events would result in expensive dynamic PQ operations.
As input point events are static in Q, we can use a two part data structure as shown in

SEA 2023



20:10 Efficient Yao Graph Construction

Figure 4 The sweepline data structure
is a doubly linked list of rays with an AVL
search tree on top. Additionally, each node
has a pointer to the rightmost ray in its
subtree (dashed).

<

pop & top

insert & remove

Figure 5 The priority queue consists of
a static, sorted array of input points and
a dynamic, addressable PQ for intersection
and deletion events.

Figure 6 Grid-based Yao graph construction algorithm. The cone boundaries are represented by
dashed lines. The algorithm visits grid cells in order of the thick curve. Found edges of the Yao
graph are labeled in red.

Figure 5. Input point events are stored in an array – sorted by priority in Q – with a pointer
to the smallest unprocessed element. Intersection and deletion events are stored in an actual
addressable priority queue. We use an addressable binary heap for this part of the data
structure. The top operation needs to compare the minimum element of the PQ with the
element pointed to in the array and return the minimum of both. Pop either performs a
regular pop on the PQ or moves the pointer of the array to the next larger element. Insert
and remove operations can access the PQ directly, as only this part of the data structure is
dynamic. Thus, the actual dynamic PQ is much smaller resulting in more efficient siftDown
and siftUp operations in the binary heap. The smaller heap size not only reduces the tree
height but also makes the heap more cache friendly.

This optimization might be of interest for other algorithms that initialize their priority
queue with all input points and only have a small number of dynamically added events in
their priority queue at any given time. Note that the total number of processed intersection
and deletion events surpasses the number of input points by far, however only a small number
of these events are in the PQ at the same time.

5 Evaluation

In this section we evaluate our implementation on a variety of datasets against other
algorithms for Yao graph generation.

Competing Algorithms. As mentioned before, we are not aware of any previous implemen-
tations of Chang et al.’s Yao graph algorithm. Therefore, we evaluate our implementation
against other algorithms to construct the Yao graph of a given point set. Our main competitor



D. Funke and P. Sanders 20:11

is the Yao graph algorithm from the CGAL library’s cone-based spanners package [15]. As
we are not aware of any other tuned implementations to construct Yao graphs, we implement
two other algorithms ourselves as competition.

First, we implement a naive O
(
n2)-time algorithm that serves as a trivial baseline. The

algorithm compares the distance of all point pairs and determines the closest neighbor in each
of the k cones for a point. It requires only two geometric predicates: distance comparison
and oriented side of line test. For a point pair p and q, the cone Cp

i that q lies in with respect
to p can first be approximated by i = ∢(p,q)/k. Then, two oriented side of line tests suffice to
exactly determine the cone q lies in, independent of the number of cones k.

Second, we implement a grid-based algorithm. The algorithm places all points in a
uniform grid data structure [2] that splits the bounding box of all input points in O(n)
equal-sized cells. For each input point p, the algorithm first visits p’s own grid cell and
computes for each point q in the cell its distance to p and the cone q lies in with respect to p.
The algorithm then visits the grid cells surrounding p’s cell in a spiraling manner, refer to
Figure 6. For each visited cell, the algorithm computes the distances and cones for the points
contained in it with respect to p until all cones of point p are settled. A cone is settled, if
a neighbor v has been found within that cone and no point in adjacent grid cells can be
closer to p than v. Note that some cones may remain unsettled until all grid cells have been
visited if no other input points lie within that cone for point p. While the algorithm still has
a O

(
n2) worst case time complexity, it performs much better in practice.

Experimental Setup. We test all algorithms on a variety of synthetic and real-world datasets.
We use input point sets distributed uniformly and normally in the unit square, as well as
points lying on the circumference of a circle and at the intersections of a grid [12] – the former
being a worst case input for the grid algorithm, the latter being a bad case for numerical
stability. We furthermore use two real-world datasets: intersections in road networks and star
catalogs. As road networks we use graphs from the 9th DIMACS implementation challenge [9].
To generate a road network of a desired size n from the Full USA graph, we use a random
location and grow a rectangular area around it until at least n nodes are within the area. US
cities feature many points on a grid and therefore present a challenge for numerical stability.
We furthermore use the Gaia DR2 star catalog [7], which contains celestial positions for
approximately 1.3 billion stars. We use a similar technique as for road networks to generate
subgraphs of a desired size. Here, we grow a cube around a random starting location until
the desired number of stars fall within it. We then project all stars onto the xy-plane as 2D
input for our experiments. Figure 10 in the appendix shows examples of our input datasets
and resulting Yao graphs.

We implemented all algorithms in our C++ framework YaoGraph, available on Github.4
Our code was compiled using GCC 12.1.0 with CGAL version 5.0.2. All experiments were
run on a server with an Intel Xeon Gold 6314U CPU with 32 cores and 512 GiB of RAM.
For experiments we used three different random seeds and k = 6 unless otherwise specified.

5.1 Algorithmic Metrics
Firstly, we discuss relevant properties of the sweepline algorithm. Figure 7a shows the
number of events processed per input point by the algorithm. Each input point has one input
point event and generates 2.3 intersection and/or deletion events on average, with very little

4 https://github.com/dfunke/YaoGraph

SEA 2023

https://github.com/dfunke/YaoGraph


20:12 Efficient Yao Graph Construction

103 104 105 106

n

2.2

2.4

2.6

2.8

3.0

3.2

3.4
ev

en
ts /
n

(a) Total number of events processed.

103 104 105 106

n

2

4

6

8

10

ev
en

ts
in

PQ
/√

n

(b) Maximum number of intersection and deletion
events concurrently in PQ.

103 104 105 106

n

10−3

10−2

10−1

ra
ys

in
SL
/n

Circle
Gaussian
Grid
Road
Stars
Uniform

(c) Maximum number of rays in sweepline data structure.

Figure 7 Statistics for varying input point distribution and point set sizes for k = 6 cones. Error
bands give the variation over the different cones being calculated.

variance with regard to input size and distribution – except for the grid distribution and road
graphs. Both exhibit larger variance, depending on whether the cone’s boundaries coincide
with grid lines or not. Figure 7b shows the maximum number of intersection and deletion
events that are in the priority queue at any given time during the algorithm execution.
This number scales with O(

√
n) for most studied inputs, which motivates our choice of the

two-part priority queue as discussed in Section 4.3. The behavior of the circle distribution
requires further investigation. The maximum number of rays in the sweepline data structure
at any point during algorithm execution shows no clear scaling behavior, refer to Figure 7c.
It scales with O(

√
n) for most synthetic input sets, but approaches a constant fraction of the

input size for the circle (≈10 %), road (≈1 %) and star (≈0.1 %) datasets.

5.2 Runtime Evaluation
Figure 8 shows the results of our runtime experiments. Plots Figure 8a to Figure 8c show
the (scaled) running time of the algorithms, displaying variations due to input distributions
as error bands. Figure 12 in the appendix gives a more detailed picture of the runtime for
the different distributions. Note that only the grid and the sweepline algorithm are sensitive



D. Funke and P. Sanders 20:13

103 104 105 106

n

10−1

100

t /
n

[m
s]

(a) Inexact kernel.

103 104 105 106

n

10−2

10−1

100

101

t /
n

[m
s]

(b) CGAL EPIC kernel.

103 104 105 106

n

100

101

t /
n

[m
s]

Naive Yao
CGAL Yao
Sweepline
Grid Yao

(c) CGAL EPEC kernel.

Figure 8 Algorithm runtime experiments. Experiments over varying input sizes are performed
with k = 6 cones. Error bands give the runtime variation over the different input point distributions.
For the grid algorithm, the circle distribution is plotted separately with triangular markers. The
gray line represents the time limit of 30 min per algorithm. Experiments over varying number of
cones are with n = 1× 105 uniformly distributed input points.

to the input point distribution. As previously seen in Figure 7a, the number of processed
events by the sweepline algorithm is relatively stable for all distributions. Therefore only
little variation is seen in the runtime of the algorithm. This also shows, that the size of the
sweepline data structure has only negligible influence on the algorithm runtime, as no higher
runtime is observed for the road or circle datasets. Our inexact kernel shows more runtime
variation than CGAL’s highly optimized kernels, mainly due to the grid distribution with
its many points directly on cone boundaries. The sweepline algorithm clearly outperforms
CGAL’s Yao graph implementation. Furthermore, even though the sweepline algorithm
requires much more involved computations, it is superior to the simple grid algorithm for
non-exact constructions. Only for exact constructions, large inputs are required to negate
the more expensive operations of the sweepline algorithm. The exact construction kernel
leads to runtime overhead of 100 compared to the EPIC kernel. However, if points lie directly
on cone boundaries, exact constructions are necessary to obtain correct results, as seen in
Figure 10c in the appendix. The data dependency is more pronounced for the grid algorithm,
which performs well for most datasets but degenerates to the naive algorithm for the circle
distribution, due to the many empty grid cells in the circle’s interior.

SEA 2023



20:14 Efficient Yao Graph Construction

2 4 6 8 10
k

101

102

103

t /
k

[m
s]

Kernel
CGAL EPEC
Inexact Kernel
CGAL EPIC
Algorithm
Sweepline
Grid Yao

Figure 9 Algorithm runtime experiments. Experiments over varying number of cones are with
n = 1× 105 uniformly distributed input points.

To compute a Yao graph with k cones, the sweepline algorithm requires k passes. This
linear relationship can be seen in Figure 9. The grid algorithm has no dependency on k –
except for the size of the neighborhood of a point. However, our experiments show that the
runtime of the algorithm increases with increasing k. We attribute this to the fact that more
grid cells need to be visited in order to settle all cones of a point p, since with narrower cones,
chances are higher that no points lying in a specific cone of p are within a visited grid cell.
We did not perform these experiments with the naive algorithm or the CGAL algorithm,
due to their long runtimes. CGAL’s algorithm also requires one pass per cone, whereas the
naive algorithm’s runtime dependency on k is negligible.

6 Conclusion

We present the – to the best of our knowledge – first implementation of Chang et al.’s optimal
O(n log n)-time Yao graph algorithm. Our implementation uses carefully engineered data
structures and algorithmic operations and outperforms current publicly available Yao graph
implementations – particularly CGAL’s cone-based spanners package – by at least an order
of magnitude. We furthermore present a very simple grid-based Yao graph algorithm that
also outperforms CGAL’s implementation, but is inferior to Chang et al.’s algorithm for
larger input. However, the algorithm could be further improved by using a precomputed
mapping of the grid neighborhood to cones, in order to only visit grid cells that can contain
points in hitherto unsettled cones. Moreover, the algorithm is trivially parallelizable over
the input points, whereas Chang et al.’s algorithm can only be easily parallelized over the k

cones. The parallelization within one sweepline pass remains for future work.

References
1 Georgy Maksimovich Adelson-Velsky and Evgeny Mikhailovich Landis. An algorithm for

organization of information. In Doklady Akademii Nauk, volume 146, pages 263–266. Russian
Academy of Sciences, 1962.

2 V. Akman, W.R. Franklin, M. Kankanhalli, and C. Narayanaswami. Geometric computing
and uniform grid technique. Computer-Aided Design, 21(7):410–420, 1989. doi:10.1016/
0010-4485(89)90125-5.

https://doi.org/10.1016/0010-4485(89)90125-5
https://doi.org/10.1016/0010-4485(89)90125-5


D. Funke and P. Sanders 20:15

3 Luis Barba, Prosenjit Bose, Mirela Damian, Rolf Fagerberg, Wah Loon Keng, Joseph O’Rourke,
André Van Renssen, Perouz Taslakian, Sander Verdonschot, and Ge Xia. New and improved
spanning ratios for Yao graphs. Journal of Computational Geometry, 6(2):19–53, 2015.
doi:10.20382/JOCG.V6I2A3.

4 J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersections.
IEEE Transactions on Computers, pages 643–647, 1979.

5 Hervé Brönnimann, Andreas Fabri, Geert-Jan Giezeman, Susan Hert, Michael Hoffmann,
Lutz Kettner, Sylvain Pion, and Stefan Schirra. 2D and 3D Linear Geometry Kernel. In
CGAL User and Reference Manual. CGAL Editorial Board, 5.5.1 edition, 2022. URL: https:
//doc.cgal.org/5.5.1/Manual/packages.html#PkgKernel23.

6 Maw Shang Chang, Nen-Fu Huang, and Chuan-Yi Tang. An optimal algorithm for constructing
oriented Voronoi diagrams and geographic neighborhood graphs. Information Processing
Letters, 35(5):255–260, 1990. doi:10.1016/0020-0190(90)90054-2.

7 Gaia Collaboration. Gaia Data Release 2 - Summary of the contents and survey properties.
Astronomy & Astrophysics, 616:A1, 2018. doi:10.1051/0004-6361/201833051.

8 Mirela Damian and Naresh Nelavalli. Improved bounds on the stretch factor of Y4. Computa-
tional Geometry, 62:14–24, April 2017. doi:10.1016/j.comgeo.2016.12.001.

9 Camil Demetrescu, Andrew V Goldberg, and David S Johnson. The shortest path problem:
Ninth DIMACS implementation challenge, volume 74. American Mathematical Soc., 2009.

10 Steven Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2(1):153–174,
1987.

11 Daniel Funke and Peter Sanders. Efficient Yao Graph Construction, 2023. arXiv:2303.07858.
12 Daniel Funke, Peter Sanders, and Vincent Winkler. Load-Balancing for Parallel Delaunay

Triangulations. In Ramin Yahyapour, editor, Euro-Par 2019: Parallel Processing, pages
156–169, Cham, 2019. Springer International Publishing.

13 Giri Narasimhan and Michiel Smid. Geometric spanner networks. Cambridge University Press,
2007.

14 Christian Schindelhauer, Klaus Volbert, and Martin Ziegler. Geometric spanners with applica-
tions in wireless networks. Computational Geometry, 36(3):197–214, 2007.

15 Weisheng Si, Quincy Tse, and Frédérik Paradis. Cone-Based Spanners. In CGAL User and
Reference Manual. CGAL Editorial Board, 5.4 edition, 2022. URL: https://doc.cgal.org/5.
4/Manual/packages.html#PkgConeSpanners2.

16 Svetlana Štrbac-Savić and Milo Tomašević. Comparative performance evaluation of the AVL
and red-black trees. In Proceedings of the Fifth Balkan Conference in Informatics. ACM, 2012.
doi:10.1145/2371316.2371320.

17 Andrew Chi-Chih Yao. On Constructing Minimum Spanning Trees in k-Dimensional Spaces and
Related Problems. SIAM Journal on Computing, 11(4):721–736, 1982. doi:10.1137/0211059.

18 Xiujuan Zhang, Jiguo Yu, Wei Li, Xiuzhen Cheng, Dongxiao Yu, and Feng Zhao. Localized
Algorithms for Yao Graph-Based Spanner Construction in Wireless Networks Under SINR.
IEEE/ACM Transactions on Networking, 25(4):2459–2472, 2017. doi:10.1109/TNET.2017.
2688484.

SEA 2023

https://doi.org/10.20382/JOCG.V6I2A3
https://doc.cgal.org/5.5.1/Manual/packages.html#PkgKernel23
https://doc.cgal.org/5.5.1/Manual/packages.html#PkgKernel23
https://doi.org/10.1016/0020-0190(90)90054-2
https://doi.org/10.1051/0004-6361/201833051
https://doi.org/10.1016/j.comgeo.2016.12.001
https://arxiv.org/abs/2303.07858
https://doc.cgal.org/5.4/Manual/packages.html#PkgConeSpanners2
https://doc.cgal.org/5.4/Manual/packages.html#PkgConeSpanners2
https://doi.org/10.1145/2371316.2371320
https://doi.org/10.1137/0211059
https://doi.org/10.1109/TNET.2017.2688484
https://doi.org/10.1109/TNET.2017.2688484


20:16 Efficient Yao Graph Construction

A Evaluation

A.1 Input Point Distributions

(a) Uniform distribution.

(b) Gaussian distribution.

EPEC kernel EPIC kernel
(c) Grid distribution.



D. Funke and P. Sanders 20:17

(d) Circle distribution.

(e) Road dataset.

(f) Star dataset.

Figure 10 Input distributions for n = 1000 points and resulting Yao graph for k = 6. For the
grid distribution, the resulting graphs from exact constructions and inexact constructions are shown.

SEA 2023



20:18 Efficient Yao Graph Construction

A.2 Example Execution

Figure 11 Sample execution for n = 6 points and cone C = (4π/3, 5π/3), resulting in τ = π/2

(upward). The currently processed point is marked in red, the sweepline is a dashed, blue line.
All rays currently intersecting the sweepline are blue, except for the left boundary ray BL (cyan)
and right boundary ray BR (green). Intersection points are marked as squares, deletion points as
triangles. For intersection events, the intersecting rays are cyan and the the bisector line is yellow.
Edges of the Yao graph are solid black lines and settled cone boundaries are dashed.



D. Funke and P. Sanders 20:19

A.3 Results

10−2

10−1

100

t /
n

[m
s]

Uniform Gaussian Grid

103 104 105 106

n

10−2

10−1

100

t /
n

[m
s]

Road

103 104 105 106

n

Stars

103 104 105 106

n

Circle
Naive Yao
Sweepline
Grid Yao

(a) Inexact kernel.

10−2

10−1

100

101

t /
n

[m
s]

Uniform Gaussian Grid

103 104 105 106

n

10−2

10−1

100

101

t /
n

[m
s]

Road

103 104 105 106

n

Stars

103 104 105 106

n

Circle

Naive Yao
CGAL Yao
Sweepline
Grid Yao

(b) CGAL EPIC kernel.

SEA 2023



20:20 Efficient Yao Graph Construction

10−1

100

101

t /
n

[m
s]

Uniform Gaussian Grid

103 104 105 106

n

10−1

100

101

t /
n

[m
s]

Road

103 104 105 106

n

Stars

103 104 105 106

n

Circle

Naive Yao
CGAL Yao
Sweepline
Grid Yao

(c) CGAL EPEC kernel.

Figure 12 Algorithm runtime experiments. Experiments over varying input sizes are performed
with k = 6 cones. The gray line represents the time limit of 30 min per algorithm.



Maximum Coverage in Sublinear Space, Faster
Stephen Jaud #

School of Computing and Information Systems, The University of Melbourne, Australia

Anthony Wirth #

School of Computing and Information Systems, The University of Melbourne, Australia

Farhana Choudhury #

School of Computing and Information Systems, The University of Melbourne, Australia

Abstract
Given a collection of m sets from a universe U , the Maximum Set Coverage problem consists of
finding k sets whose union has largest cardinality. This problem is NP-Hard, but the solution can
be approximated by a polynomial time algorithm up to a factor 1− 1/e. However, this algorithm
does not scale well with the input size.

In a streaming context, practical high-quality solutions are found, but with space complexity
that scales linearly with respect to the size of the universe n = |U|. However, one randomized
streaming algorithm has been shown to produce a 1− 1/e− ε approximation of the optimal solution
with a space complexity that scales only poly-logarithmically with respect to m and n. In order to
achieve such a low space complexity, the authors used two techniques in their multi-pass approach:

F0-sketching, allows to determine with great accuracy the number of distinct elements in a set
using less space than the set itself.
Subsampling, consists of only solving the problem on a subspace of the universe. It is implemented
using γ-independent hash functions.

This article focuses on the sublinear-space algorithm and highlights the time cost of these
two techniques, especially subsampling. We present optimizations that significantly reduce the
time complexity of the algorithm. Firstly, we give some optimizations that do not alter the space
complexity, number of passes and approximation quality of the original algorithm. In particular,
we reanalyze the error bounds to show that the original independence factor of Ω(ε−2k log m) can
be fine-tuned to Ω(k log m); we also show how F0-sketching can be removed. Secondly, we derive a
new lower bound for the probability of producing a 1− 1/e− ε approximation using only pairwise
independence: 1− 4

ck log m
compared to 1− 2e

mck/6 with Ω(k log m)-independence.
Although the theoretical guarantees are weaker, suggesting the approximation quality would

suffer, for large streams, our algorithms perform well in practice. Finally, our experimental results
show that even a pairwise-independent hash-function sampler does not produce worse solution than
the original algorithm, while running significantly faster by several orders of magnitude.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases streaming algorithms, subsampling, maximum set cover, k-wise independent
hash functions

Digital Object Identifier 10.4230/LIPIcs.SEA.2023.21

Related Version Full Version: https://arxiv.org/abs/2302.06137

Supplementary Material
Software (Source Code): https://github.com/caesiumCode/streaming-maximum-cover

archived at swh:1:dir:1012da79a9177f4dc0ae4e5851608b597e79fa8d

Funding This research was supported by the Australian Government through the Australian Research
Council’s Discovery Projects funding scheme (project DP190102078).
Farhana Choudhury: Farhana Choudhury is a recipient of the ECR22 grant from The University of
Melbourne.

Acknowledgements Rowan Warneke, for reading and advising on an earlier version.

© Stephen Jaud, Anthony Wirth, and Farhana Choudhury;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 21; pp. 21:1–21:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.jaud@unimelb.edu.au
https://orcid.org/0000-0002-8628-4512
mailto:awirth@unimelb.edu.au
https://orcid.org/0000-0003-3746-6704
mailto:farhana.choudhury@unimelb.edu.au
https://orcid.org/0000-0001-6529-4220
https://doi.org/10.4230/LIPIcs.SEA.2023.21
https://arxiv.org/abs/2302.06137
https://github.com/caesiumCode/streaming-maximum-cover
https://archive.softwareheritage.org/swh:1:dir:1012da79a9177f4dc0ae4e5851608b597e79fa8d;origin=https://github.com/caesiumCode/streaming-maximum-cover;visit=swh:1:snp:dde5ced281c063324cec2781b475f89eb36637d8;anchor=swh:1:rev:e8231506469369fe3e7aaa4f463b92b4be71c15e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


21:2 Maximum Coverage in Sublinear Space, Faster

1 Introduction

Maximum Coverage, also known as Maximum-k-Coverage is a classic problem in computer
science. Unless P = NP, the decision version is unsolvable in polynomial time. The input is
a family of m sets, F , each a subset of universe U , comprising n elements, and a positive
integer, k. The task is to find a subfamily of k sets in F whose union has largest cardinality.
The best-known polynomial-time approximation algorithm for Max Coverage and the “dual”
Set Cover problem1, is a greedy approach. For Max Coverage, the greedy algorithm has
been shown to return a solution whose coverage is at least a 1− 1/e approximation of the
optimal solution. This is known to be asymptotically optimal [11].

In practice, the greedy algorithm is much more effective than its theoretical guarantee
would suggest, and typically produces a near-optimal solution on realistic inputs [14]. However,
the greedy algorithm does not scale well with the size of the input. In the last 15 years, there
has been increasing interest in efficient implementation of greedy and greedy-like approaches
for Set Cover and Maximum Coverage [7, 10,20]. In the streaming setting, there have been
several innovative algorithms, as detailed below in Table 1. We focus in this paper on
engineering the only sublinear-space Set Streaming algorithm [17] so that it runs much faster,
and sacrifices no space.

In the Set Streaming model [20], the input stream, S, comprises a sequence of the sets
in F , i.e., S = S1, S2, . . . , Sm. Each set Si in S appears in full before the next set, Si+1,
appears. The design of a streaming algorithm trades off memory, throughput, query/solution
time, and solution quality. Let I denote the indexes of the sets in the solution (so far).
The coverage of (the sets in) I is C = ∪i∈ISi. Given I, and hence C, the contribution
of each set Sj , for every j /∈ I is Sj \ C. In the greedy algorithm, we add a set to the
solution whenever it has largest contribution, breaking ties arbitrarily. Additionally, another
well-studied variant of this streaming model is random set arrivals, a reasonable assumption
for many applications, and it makes the problem easier. Many results regarding trade-off
between space complexity and approximation factor improve upon the classic set arrival
setting [1,18]. Another common model for Maximum Coverage, although not discussed in this
paper, is the Edge-arrival Streaming model. Here the stream consists of pairs (i, x) ∈ [m]×U
to indicates that x ∈ Si. In this more general context, Indyk and Vakilian [15] showed a
space lower bound Ω(ma2) and upper bound Õ(ma2) for an arbitrary factor a-approximation
factor in single pass.

1.1 Sublinear Space
Several of the greedy-like approaches for Set Cover in the Set Streaming model assume Ω(n)
memory is available [7, 10, 16]: at least one bit per item, to record the coverage, and thus
determine a set’s contribution. Unlike Maximum Coverage, in Set Cover, we expect that
the subfamily of sets returned, indexed by I, covers all of U , so n = |U| bits seem necessary.
In contrast, for Max Coverage, the minimum space requirement seems depend on m. For
example, it is known that every one-pass (1/2 + ε)-approximation algorithm must work
in Ω(εm/k3) space [12]. Also, Ω(m) space is necessary to achieve better approximation
factors than 1− 1/e [17]. Regarding (1− ε)-approximation algorithms, Assadi [2] showed
that Ω̃(m/ε2) space is required. It should be noted that all these lower bounds are tight and
several one-pass Õ(εdm)-space algorithms do exist [4, 17].

1 In Set Cover, the aim is to return a subfamily of minimum cardinality whose union is U .



S. Jaud, A. Wirth, and F. Choudhury 21:3

In this context, one algorithm for Maximum Coverage stands out. McGregor and Vu [17]
introduced a family of streaming algorithms for Max Coverage. They describe, in §2.2
of their paper, an approximation algorithm that in O(ε−1) passes and in Õ(ε−2k) space
returns a (1− 1/e− ε)-approximate solution2. This is the only reasonable approximation
algorithm for Max Coverage that runs in o(min{m, n}) space. For convenience3, we name
this algorithm MACH∗. Like some of the first streaming/external-memory algorithms for
Set Cover, MACH∗ takes multiple passes, achieving a near-greedy approach via a sequence
of decreasing thresholds for the contribution of a set: further details of thresholding are in
§1.4. And to save space, MACH∗ has a randomized subsampling component achieved with
multi-way independent hash functions. These hash functions are slow to evaluate, and it is
this component that we accelerate.

1.2 Motivation

In terms of approximation quality and space complexity, MACH∗ is the favored approach for
Maximum Coverage. The space complexity of Õ(ε−2k) is only a little more than the space
required to store4 solution I: Ω̃(k). However, in MACH∗, McGregor and Vu [17] invoke a
γ-independent hash function, where γ = ⌈2cε−2k log m⌉, with c a constant to be discussed in
§4.1. At first glance, this seems to slow the algorithm down, as Ω(γ) operations are required
for each component of the input. Our experiments (refer to Figure 1 below) confirm that the
running time of MACH∗ is particularly high compared to other alternatives. Our research
motivation is:

Can we accelerate this space-efficient Max Coverage algorithm, MACH∗, without
significantly deteriorating space complexity or solution quality?

One promising direction is to simplify the subsampling process. McGregor and Vu show
that, with γ = ⌈2cε−2k log m⌉, an approximation factor of 1 − 1/e − ε is guaranteed with
probability at least 1 − 1/m10k. In the original version of MACH∗, this γ parameter can
easily exceed 103. So we would anticipate a thousand-fold reduction in throughput compared
to a simpler, if theoretically less guaranteed, sampling scheme, such as pairwise independent
hashing. Since we are designing a space-efficient algorithm, a pre-computed hash function
table is infeasible.

1.3 Our contributions

Firstly, we show that the same space complexity and approximation quality can be achieved
with Θ(k log m) independence (Corollary 5) instead of the original Θ(ε−2k log m) and in
fact without invoking F0-sketching (Lemma 6). Removing F0-sketching slightly reduces the
probability of producing a 1− 1/e− ε approximation from 1− e/mck/6 to 1− 2e/mck/6.

2 In this paper, the Õ(·) notation hides polylogarithmic factors in m and n.
3 MACH represents “Maximum Andrew Coverage Hoa”: the ∗ represents their parameter choices, which

we generalize in this paper.
4 An approach that avoids storing at least one bit per index in I, as working space, is in principle possible.

For example, I could be a size-k subset of {1, . . . , m} chosen uniformly at random; this is not an effective
solution, but a valid one, generated in Õ(1) working space.

SEA 2023



21:4 Maximum Coverage in Sublinear Space, Faster

Secondly, if a weaker probabilistic guarantee on the approximation quality is allowed, we
show that the algorithm still works with only pairwise independence (Proposition 8). This
leads to a significant speed-up, from 10× to more than 1000× for k ≥ 100 (Figure 1), while
maintaining the same space complexity5 as the original algorithm of McGregor and Vu [17].

Finally, our experimental results demonstrate the efficiency and quality of our general-
ized algorithm, MACH′

γ . In particular, reducing the independence factor does not lead to
significantly worse solutions. We show that for reasonable values (< 0.27) of ε, our algorithm
returns consistently better solutions than comparator streaming algorithms (Figure 3).

1.4 Related Work

Thresholding. Before surveying the algorithms for Max Coverage, we set out one of the
important algorithmic frameworks. Several algorithms invoke a thresholding technique, first
applied to Set Cover by Cormode et al. [10]. It relaxes the notion of greedy algorithm,
and calculates a near-greedy solution. Instead of searching for the set whose contribution
is R∗ = maxj |Sj \ C|, a thresholding algorithm might add a set Si to the solution if its
contribution is at least αR∗, where α ∈ [0, 1] describes the greediness of the thresholding
algorithm. Applying this principle repeatedly results in a solution whose coverage is α(1−1/e)
fraction of the optimum coverage.

Now the guarantee of αR∗ contribution arises from a multi-pass approach to the stream.
In pass j, all sets with contribution at least r are added, then in pass j + 1, all sets with
contribution at least αr are added. Since a set’s contribution can only decrease as (other)
sets are added to I, with this approach, we only add a set if its contribution is αR∗.

Prior art. There are several existing streaming algorithms for the Max Coverage problem,
which we summarize in Table 1. Badanidiyuru et al. [3] presented a generic algorithm for
maximizing submodular functions on a stream, which can be adapted to Max Coverage. This
is a one-pass thresholding algorithm, somewhat similar to MACH∗, that guesses the optimal
coverage size. Yu and Yuan [22] developed an algorithm that creates a specific ordering
(S̃1, . . . , S̃m) of the entire collection of sets {S1, . . . , Sm} such that for all k, (S̃1, . . . , S̃k) is a
solution of the Maximum-k-Coverage. Saha and Getoor [20], who pioneered set streaming,
took a swapping approach. A putative solution of k sets is stored, and sets in the putative
solution can be replaced by new sets in the stream depending on the number of items
uniquely covered by sets in the putative solution. More recently, Bateni et al. [4] used a
sketching technique and they almost match the optimal approximation factor of 1 − 1/e.
This is an algorithm designed for the edge-arrival streaming model, but can be adapted to
the set streaming model with a space complexity independent to the size of the universe.
Norouzi-Fard et al. [18], in the continuation of Badanidiyuru et al. [3], presented a 2-pass
and a multi-pass approach to maximize a submodular function on a stream. Developed at a
similar time, McGregor and Vu [17] presented two polynomial-time algorithms that achieve
the same approximation factor of 1− 1/e− ε: one taking a single pass, the other, MACH∗,
taking multiple passes. The algorithms developed by McGregor and Vu [17] are thresholding
algorithms.

5 Actually, removing F0-sketching and reducing the independence factor strictly reduces the space
complexity, although not asymptotically.



S. Jaud, A. Wirth, and F. Choudhury 21:5

Table 1 Streaming algorithms for Maximum Coverage. We focus on the o(min{m, n})-space al-
gorithm, MACH∗.

Author Name Passes Space Approx.

Badanidiyuru et al. [3] BMKK 1 Õ(ε−1n) 1/2− ε

Yu and Yuan [22] 1 Õ(n) ∼ 0.3

Saha and Getoor [20] SG 1 Õ(kn) 1/4

Bateni et al. [4] 1 Õ(ε−3m) 1− 1/e− ε

Norouzi-Fard et al. [18] 2P 2 Õ(ε−1n) 5/9− ε

Norouzi-Fard et al. [18] O(ε−1) Õ(ε−1n) 1− 1/e− ε

McGregor and Vu [17] OP 1 Õ(ε−2m) 1− 1/e− ε

McGregor and Vu [17] MACH∗ O(ε−1) Õ(ε−2k) 1− 1/e− ε

Sampling. Sampling via hashing is a key component of many streaming algorithms. Relaxing
the independence requirement for hash functions was explored in the context of ℓ0-samplers:
Cormode and Firmani [9] invoked γ-independent hash functions. They showed theoretical
bounds on γ to guarantee the probability of sampling a non-zero coordinate. In addition, their
experimental results suggest that constant-independence hashing schemes produce similar
successful sampling rate to linear-independent hash functions, while being significantly more
efficient to compute.

Furthermore, some theoretical results [19] show that many strong guarantees generally
associated with high-independence families of hash functions can be achieved with simpler
hashing schemes. Tabulation hashing [19], for example, is not even 4-independent, but
manages to implement γ-independent hash function based algorithms, such as Cuckoo
Hashing. Pǎtraşcu and Thorup [19] also prove Chernoff-type inequalities with relaxed
assumptions on the independence of the random variables.

2 Tools

The Introduction includes most of our notation; in addition, we let IOPT be an optimal
solution and OPT the size of the optimal coverage

∣∣⋃
i∈IOPT

Si

∣∣.
2.1 Subsampling
▶ Definition 1 (subsampling). Given F , U , and hash function h : U → {0, 1}, the subsampled
universe is U ′ = {x ∈ U | h(x) = 1}, with subsampled sets S′ = S ∩ U ′ for every S ∈ F .

Instead of computing with respect to universe U , algorithm MACH∗ focuses on U ′ ⊂ U , and
tracks only the subsampled coverage C ′ = ∪i∈IS′

i. The size of the optimal coverage of U ′, by
a subfamily of k sets from F , is henceforth called OPT′.
▶ Remark. The value OPT′ = max|J|=k

∣∣⋃
i∈J S′

i

∣∣ is not necessarily the same as the size of
the union of the subsampled sets in the optimal coverage of U , i.e.,

∣∣⋃
i∈IOPT

S′
i

∣∣.
▶ Definition 2. Let γ, v, p ∈ N such that p > |U|:

Hγ,v =
{

x 7−→
γ−1∑
i=0

aix
i mod p mod v | 0 ≤ ai < p

}

is a family of hash functions Hγ,v ⊂ {f : U → [v − 1]}

SEA 2023



21:6 Maximum Coverage in Sublinear Space, Faster

Such a family has the property of being γ-independent6. Evaluating a hash function
f ∈ Hγ,v takes Θ(γ) operations, including expensive modulo operations, but these can be
accelerated using the overflow mechanism on unsigned integer types. Hγ,v are the families of
hash functions used in MACH∗.

2.2 Sketching
To estimate the size of a set, McGregor and Vu invoke F0 sketching.

▶ Theorem 3 (F0-sketching [8]). Given a stream s, there exists a data structure, M(s),
that requires O(ε−2 log δ−1) space and, with probability 1 − δ, returns the number of dis-
tinct elements in s within multiplicative factor 1 ± ε. Processing each new element takes
O(ε−2 log δ−1) time, the same time as finding the number of distinct elements.

2.3 Thresholding on the sampled universe
The core of MACH∗ is thresholding and subsampling. The solution, I, and the associated
subsampled coverage C ′ = ∪i∈IS′

i are built incrementally, as new sets arrive in the stream
and are selected. Given a threshold, r, the selection rule for set Si is:

If |S′
i \ C ′| ≥ r, then I ← I ∪ {i} and C ′ ← C ′ ∪ S′

i , (1)

where |S′
i \ C ′| is called the contribution of S′

i – from the context, it is clear this is in the
sampled universe. In choosing the sequence of thresholds there is a trade-off [7]: the larger
the threshold, the higher the solution quality, but the more passes.

3 Low-space Streaming Algorithm

In this section, we describe in detail MACH∗ developed by McGregor and Vu [17], which
solves Max Cover in sublinear space with a respectable approximation factor. Algorithm
MACH∗ depends on two variables:

v, an estimate of the optimal coverage, OPT; and
λ, an estimate of the optimal coverage on the subsampled universe, OPT′.

These variables determine the probability of subsampling an element, and the initial value of
the threshold, r, as applied above (1). The subsampling hash function is implemented as
h(x) = 1f(x)<λ where f ∈ H⌈2λ⌉,v, hence the probability an item is subsampled is λ/v. The
threshold, r, is initially set to 2(1 + ε)λ/k and after each pass, r decreases by a factor 1 + ε.
McGregor and Vu [17] showed that if

λ = cε−2k log m , with c ≥ 60 , and OPT/2 ≤ v ≤ OPT , (2)

then this thresholding procedure, which we call TP, gives a 1− 1/e− ε approximation using
Õ(ε−2k) space with probability at least 1− 1/m10k.

3.1 Guessing
Algorithm MACH∗ relies on a reasonable estimate of OPT: a v such that OPT/2 ≤ v ≤ OPT.
Of course, we do not know OPT in advance! The algorithm naively finds the right value for
v by executing TPv for different values of v, called guesses, in parallel. Denote by vg the

6 Different definitions exist; our definition of γ-independent is stated in the Appendix.



S. Jaud, A. Wirth, and F. Choudhury 21:7

Algorithm 1 Algorithm MACHγ(S, k, ε, ||S||∞).

begin
1 /* Initialise the guesses */
2 V ← {2g−1||S||∞ ≤ min(n, k||S||∞), g ∈ N}
3 Duplicates each variable |V | times: h, I, C′, M and active
4 r ← 2(1 + ε)λ/k

5 /* Multiple passes */
6 for p← 1 to 1 + ⌈log1+ε(4e)⌉ do
7 /* One pass */
8 for Si ∈ S (stream) do
9 /* Iterate over the guesses */

10 for g ← 0, . . . , |V | − 1 do
11 S′

i ← Subsample Si with hg

12 Ri ← S′
i \ C′

g /* Contribution */
13 /* Check the bad guess condition */
14 if |C′

g|+ |R′
i| > 2(1 + ε)λ then

15 activeg ← false

16 /* Thresholding procedure */
17 if activeg and |Ig| < k and |Ri| ≥ r then
18 update Mg with Si

19 C′
g ← C′

g ∪Ri

20 Ig ← Ig ∪ {i}

21 /* Update the threshold */
22 r ← r/(1 + ε)
23 /* Find the best coverage among the potentially correct guesses */
24 s← argmax

activeg

{|Mg|}

25 return Is

gth guess. To reduce the number of guesses, we assume the maximum set size, which we
call ||F||∞, is known. This assumption requires only one additional pass through the set
stream, S: the asymptotic number of passes is unchanged. Hence the guesses for v can be
restricted to all the values vg = 2g−2||S||∞, with g ≥ 1, smaller than k||S||∞. These parallel
instantiations increase the running time and space by factor log2 k: there are separate copies
of variables I, C ′ and h (the subsampling hash function) for each guess: these variables for
guess vg are Ig, C ′

g and hg. Now I, C and C ′ refer to the variable associated with the output
of the algorithm.

Which is the right guess?

This guessing method begs the question: how do we detect the right guess? Also, MACH∗
is only guaranteed to work under the condition OPT/2 ≤ v ≤ OPT. Some instances, with
a wrong guess, might necessitate more space than the bound Õ(ε−2k). McGregor and Vu
introduce two mechanisms to deal with these questions.

First, the right guess is found by estimating the (non-subsampled) coverage of Uassociated
with each guess: the biggest coverage is considered the right guess. However, only the
subsampled coverages, of U ′, are calculated. To resolve this, McGregor and Vu adopt F0-
sketching, see Theorem 3, which approximates the number of distinct elements in a collection
of sets using less space than the collection itself. More particularly, in addition to the
subsampled coverage, C ′

g, for each vg, MACH∗ maintains a sketch Mg of the coverage in

SEA 2023



21:8 Maximum Coverage in Sublinear Space, Faster

Õ(ε−2) space. Each time a set is selected,Mg is updated accordingly. Once all the instances
TPg are completed, the sketches {Mg} determine which guess produced the biggest coverage.
We still need the subsampled coverages, {C ′

g}, for calculating the set’s contributions: {Si\C ′
g}.

The F0-sketches are too inefficient to be queried that often.
Second, the space complexity never exceeds Õ(ε−2k) due to a consequence of Corollary 9

of McGregor and Vu [17]: if v is the right guess then OPT′ ≤ 2(1+ε)λ. Thus, if the subsample
coverage C ′

g of an instance TPg exceeds 2(1 + ε)λ, the associated guess is necessarily wrong
and this instance can be terminated (Line 14 in Algorithm 1). Hence every instance runs in
space O(λ) = Õ(ε−2k). Thus, λ can be referred as the space budget of the algorithm.

3.2 Properties
Algorithm 1 is our generalisation of MACH∗, which we call MACHγ . The independence
factor, γ, is not fixed, but is instead a parameter that influences the implementation of the
subsampling hash functions {hg}. The original algorithm, MACH∗, has an independence
factor of ⌈2λ⌉: so MACH∗ = MACH⌈2λ⌉ in our generalization.

McGregor and Vu [17] showed that MACH∗ has space complexity Õ(ε−2k) and with
probability at least 1− 1

m10k produces a 1−1/e− ε approximation. As our focus is improving
run time, with only a small trade-off in the other properties, we first dissect the run time. The
coverages C ′

g are implemented with hash tables in order to efficiently compute Ri = S′
i \ C ′

g.
If the gth guess is reading the ith set then:
Line 11: Subsampling Si: O(γ)|Si| time (evaluate degree-O(γ) polynomial for each element

in Si)
Line 12: Computing Ri: O(|S′

i|) ⊂ O(|Si|) time
Line 19: Updating C ′

g: O(|Ri|) ⊂ O(|Si|) time
Line 20: Updating Mg: O(ε−2 log n)|Si| time (Theorem 3)
Therefore, the expected time complexity, Tγ , of MACHγ is

Tγ = O(log k)︸ ︷︷ ︸
guesses

O(ε−1)︸ ︷︷ ︸
passes

· O

(
m∑

i=1
γ|Si|

)
︸ ︷︷ ︸

subsampling

+O
(∑

i∈I

ε−2|Si| log n

)
︸ ︷︷ ︸

F0-sketching


= O

(
ε−1γm|S| log k + ε−2k|C| log n log k

)
(3)

▶ Note. |S| = 1
m

∑
i |Si| is the average set size over the entire stream, S, while |C| =

1
k

∑
i∈I |Si| is the average set size over the selected sets (in I).

Therefore, MACH∗ = MACH⌈2λ⌉ has expected time complexity of

T⌈2λ⌉ = O
(
ε−3km|S| log m log k + ε−2k|C| log n log k

)
. (4)

Regarding the space complexity for γ < ⌈2λ⌉, it remains (asymptotically) the same.
Indeed the cost for storing a γ-independent hash function is O(γ) ⊂ Õ(ε−2k).

Interestingly, MACHγ does not guarantee the solution returned actually has k sets. Given
that |I| ≤ k, we can simply append k− |I| random indices to the returned solution. However,
the goal of this paper is to assess the probabilistic nature of the algorithm that arises from
the γ-independent hash functions. Therefore, in our experiments in §5, we do not alter the
returned solution given by MACHγ .



S. Jaud, A. Wirth, and F. Choudhury 21:9

4 Accelerating the Algorithm

Algorithm MACHγ is a breakthrough: it runs in sublinear space. As we surmise from
the expression (3) for Tγ , however, the high independence factor, γ, induces a significant
bottleneck. Our experiments in §5 validate this conjecture. In this section we demonstrate
how to improve the running time without too much sacrifice in the other properties. Indeed,
when lowering the independence factor, γ, we maintain the space complexity and the number
of passes.

McGregor and Vu [17] showed that if OPT/2 ≤ v and
∣∣ |C ′|−p|C|

∣∣ < εvp then the solution
produced by MACHγ is a 1−1/e−ε approximation. Assuming condition OPT/2 ≤ v ≤ OPT
is met, i.e., we have the right guess for v, P(EI) is a lower bound on the probability of
producing a 1 − 1/e − ε approximation, where EI is the event

{ ∣∣ |C ′| − p|C|
∣∣ < εvp

}
.

Therefore, the goal is to estimate P(EI) for independence factor γ smaller than ⌈2λ⌉.
We provide proofs of several of the following results in the Appendix.

4.1 Maintaining the Approximation Property
Recalculating c. The first optimisation is actually an observation about the constant c in
the definition of λ = cε−2k log m. Indeed, the independence factor γ = ⌈2λ⌉ depends on c:
the authors state “Let c be some sufficiently large constant.” At first glance, it seems that to
get P(EI), an upper bound on the failure probability, below e/m10k, the constant c must be
greater than 60 because the inequality in their Lemma 8 is P(EI) ≤ e/mck/6. Indeed, with a
bound on P(EI), we apply a union bound to upper bound P

(
∪|I|=kEI

)
. Unpacking this, we

find the inequalities

P

 ⋃
|I|=k

EI

 ≤ ∑
|I|=k

P(EI) ≤
(

m

k

)
e

mck/6 ≤
e

k! m(c/6−1)k
,

whence we conclude that c = 6 is the smallest reasonable value to be sure the upper bound
is o(1). This reduction in c does not reduce the asymptotic time complexity of MACHγ , but
in practice it reduces the independence factor by a factor 10 so this is still a 10× speed up
compared to the original c ≥ 60.

Reducing γ. In order to reduce further the independence factor γ, we express P(EI) with
respect to γ. To that end, we use the following concentration bound, from the same paper
cited by McGregor and Vu.

▶ Theorem 4 (Schmidt et al. [21]). Let X1, . . . , Xn be γ-wise independent r.v.s, X =
∑n

i=1 Xi

and µ = E(X). If Xi ∈ [0, 1] and γ ≤ ⌊min(δ, δ2)µe−1/3⌋ then P(|X − µ| ≥ δµ) ≤ e−⌊γ/2⌋.

Notice that |C ′| =
∑n

i=1 Xi where Xi = 1i∈C1h(i)=1 ∈ [0, 1]; since p = λ/v is the probability
of subsampling an element, P(h(i) = 1), we have the following corollary:

▶ Corollary 5. If γ ≤ ⌊ c
3 k log m⌋, with I, C, and C ′ defined accordingly, then:

P
( ∣∣ |C ′| − p|C|

∣∣ ≥ εvp
)
≤ e−⌊γ/2⌋ .

Consequently, by setting γ = ⌊ c
3 k log m⌋ = O(ε2λ), compared to the original O(λ), we

keep the same approximation guarantees as McGregor and Vu [17]:

P(EI) ≤ e−⌊⌊ c
3 k log m⌋/2⌋ = e−⌊ c

6 k log m⌋ ≤ e− c
6 k log m+1 = e

mck/6 .

SEA 2023



21:10 Maximum Coverage in Sublinear Space, Faster

Algorithm 2 Procedure FindGuess.

s← |V | − 1
while |C′

s| < (1− ε)(1− 1/e− ε)λ or ¬actives do
s← s− 1

Removing F0-sketching. First, it should be noted that McGregor and Vu showed that
MACH∗ produces a 1 − 1/e − δ(ε) approximation of the optimal coverage where δ(ε) =
ε(3− 1/e− ε) ≤ 2.6ε. Asymptotically, the statement of McGregor and Vu is right because
the algorithm can simply start by dividing ε by 3 and it would indeed produce a 1− 1/e− ε

approximation. Nevertheless, such a modification would result in a significant slowdown
(×3 to ×27 depending on the independence factor). In the §5 experiments, we assess the
approximation quality relatively to the actual theoretical bound 1 − 1/e − δ(ε). Finally,
thanks to the following result, we adapt MACHγ so that F0-sketching is not needed.

Let MACH′
γ be the algorithm that replaces line 24 in Algorithm 1 with Algorithm 2. The

selected guess is the biggest active guess, s, such that |C ′
s| ≥ (1− ε)(1− 1/e− ε)λ. We thus

conclude MACH′
γ is correct for γ ≥ ⌊ c

3 k log m⌋.

▶ Lemma 6. Let v be some guess in MACH′
γ and let C ′ be the final subsampled coverage

associated with guess v. If∣∣ |C ′| − p|C|
∣∣ < εvp; and v > OPT; and (1− ε)(1− 1/e− ε)λ ≤ |C ′| ,

then |C| > (1− 1/e− δ(ε))OPT.

▶ Proposition 7. For γ ≥ ⌊ c
3 k log m⌋, MACH′

γ finds a 1− 1/e− δ(ε) approximation of the
Maximum-k-Coverage problem with probability at least 1− 2e/mck/6.

Since the F0-sketch is omitted, the time complexity is T ′
γ = O(ε−1γm|S| log k), while

the space complexity is unchanged. With γ = ⌊ c
3 k log m⌋, MACH′

γ has a time complexity of
T ′

⌊ε2λ/3⌋ = O(ε−1km|S| log k log m), which is at least ε−2 faster than expression (4).

4.2 Pairwise Independence
We now consider the smallest independence factor possible, γ = 2.

▶ Proposition 8. Let h be a 2-independent hash function, and I, C, C ′, be defined accordingly.
We have P

( ∣∣ |C ′| − p|C|
∣∣ ≥ εvp

)
≤ 2/(ck log m).

Substituting the bound of Proposition 8 into Proposition 7, we conclude:

▶ Corollary 9. With probability at least 1− 4/(ck log m), MACH′
2 returns a 1− 1/e− δ(ε)

approximation to the Maximum-k-Coverage problem.

The decrease in probabilistic guarantee is compensated by a significant speed-up. The
time complexity of MACH′

2 is T ′
2 = O(ε−1m|S| log k), which grows only logarithmically in k.

5 Experimentation

In this section, we assess the performance of the MACH′
γ algorithm family on real-world

datasets. We focus on four datasets, summarized in Table 2:



S. Jaud, A. Wirth, and F. Choudhury 21:11

SocialNet7 represents a collection of individuals linked by a friendship relation.
UKUnion [5] combines snapshots of webpages in the .uk domain taken over a 12-month
period between June 2006 and May 2007.
Webbase [6] and Webdocs [13] each represent a collection of interlinked websites.

Table 2 Real-world datasets. Hapax Legomena (HL) refers to the number of sets that contains
an element which appears only in this set. The minimum set size and element frequency is 1.

Dataset n m Set size Element frequency HL
×106 ×106 Max Med Avg Max Med Avg

SocialNet 65.0 37.6 3,615 12 48.10 4,223 6 27.80 24.0%
UKUnion 126.5 74.1 22,429 25 45.56 4,714,511 2 26.71 16.7%
Webbase 112.2 57.0 3,841 6 11.81 618,957 2 6.00 23.5%
Webdocs 5.3 1.7 71,472 98 177.20 1,429,525 1 56.93 21.2%

MACH′
γ is implemented8 in C++20 and executed on Spartan the high performance

computing system of The University of Melbourne. The CPU model is the Intel(R) Xeon(R)
Gold 6254 CPU @ 3.10GHz with a maximum frequency of 4GHz. MACH′

γ naturally implies
a parallel algorithm that consists of performing the computation related to each guess in
parallel. Nonetheless, we do not implement an actual parallel algorithm as it would require
substantial effort in order to fine tune. Also, compared to the original algorithm, this
approach does not change the number of guesses. Therefore, the potential speed-up of
a parallel implementation would be the same for our algorithm MACH′

γ and the original
algorithm MACH∗.

Assessing coverage. With original independence factor γ = ⌈2λ⌉, MACH′
γ can still take

tens of hours on the biggest datasets. We thus introduce a new variant of the algorithm,
the full sampling variant, MACH′

fs. Full sampling means there is no subsampling so MACH′
fs

is a deterministic algorithm where P(EI) = 1. It means that MACH′
fs is fast and produces

particularly good solutions (Figure 3). However, it has a space complexity of Õ(n) so MACH′
fs

is just seen as a tool to assess the approximation quality of MACH′
2.

Setting c. To bound the failure probability of MACH′
⌈2λ⌉ and MACH′

⌊ε2λ/3⌋, we set c← 6.
With c < 6, MACH′

⌊ε2λ/3⌋ would be even more space efficient, while maintaining a high
probability of success: P(EI) ≥ 1− e/mck/3, for c ≥ 1, where m is expected to exceed several
million. We therefore run MACH′

fs and MACH′
γ with c = 1.

Suite of experiments. Algorithms MACH′
fs, MACH′

⌈2λ⌉, MACH′
⌊ε2λ/3⌋ and MACH′

2 are
executed on the four datasets, for ε ∈ {1

2 , 1
4 , 1

8} and k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256}.
Although ε = 1/2 is out of the theoretical consideration, because 1− 1/e− δ(1/2) < 0, it
presents an opportunity to observe how the algorithm behaves outside its theoretical scope:
ε < 0.267. For each Figure, in the main text, we only show the datasets representative of the
variety of behaviors. The remaining components of each figure are in the Appendix.

7 https://snap.stanford.edu/data/com-Friendster.html
8 https://github.com/caesiumCode/streaming-maximum-cover

SEA 2023

https://snap.stanford.edu/data/com-Friendster.html
https://github.com/caesiumCode/streaming-maximum-cover


21:12 Maximum Coverage in Sublinear Space, Faster

Figure 1 Running times of the algorithms, demonstrated on Webbase. Observe that for ε = 1/8,
sticking with γ = ⌈2λ⌉ leads to a particularly slow algorithm. On the other hand, up to k = 8,
both γ = ⌈ε2λ/3⌉ and γ = 2 are only 2–3 times slower than full sampling. For larger values of k,
γ = ⌈ε2λ/3⌉ becomes 8–10 times slower. The missing values (dashed line) for γ = ⌈2λ⌉ and SG are
extrapolated, they refer to a running time that exceeds the time limit of 48 hours.

Comparator algorithms (refer to Table 1). The goal is to assess the trade-off between
time, space and approximation quality, therefore we aim to compare MACH′

γ with algorithms
that perform relatively well in all three categories. For that reason, we implemented the
comparator algorithms SG, BMKK, and 2P. The algorithm of Yu and Yuan [22] takes too
much time and space, as it solves for all possible values of k at once. Also, as illustrated and
explained in the Appendix (Figure 7), the Õ(ε−dm)-space algorithms consume too much
space in comparison to the Õ(ε−dn) space algorithms. We run Algorithm 2P instead of its
(1− 1/e− ε)-approximation cousin [18]: the latter is less effective than 2P, empirically, while
consuming the same space and taking more passes.

5.1 Runtime Evaluation
Figure 1 demonstrates the time saved by reducing the independence factor. MACH′

⌊ε2λ/3⌋ is
consistently faster than MACH′

⌈2λ⌉ by an order of magnitude, while, as k increases, MACH′
2

widens its gap over MACH′
⌊ε2λ/3⌋. In contrast to MACH′

fs, the time spent calculating hash
function outputs for subsampling is clear. About half the running time of MACH′

2 is about
subsampling, while this proportion easily exceeds 99% of the running time for MACH′

⌈2λ⌉.
Considering comparators, BMKK and 2P are equally the fastest algorithms by a wide margin.
Despite only one pass, SG is one of the slowest algorithms, along with MACH′

⌈2λ⌉. The precise
running times can be consulted in Table 3.

5.2 Space Efficiency
To measure the space complexity of the different algorithms, we simply count the number
of element instances stored by each algorithm. Figure 2 demonstrates how space efficient
MACH′

γ is compared with alternatives, as predicted by the sublinear asymptotic bound:
Õ(ε−2k), seemingly independent of the coverage size, in practice as well as theory.



S. Jaud, A. Wirth, and F. Choudhury 21:13

Table 3 Summary of the running times in minutes of the algorithms (Figure 1). An empty cell
means the time exceeds 48 hours (2880 minutes).

Dataset Webbase UKUnion
k 4 16 64 256 4 16 64 256

ε = 0.5
MACH′

fs 4.5 4.4 4.7 9.2 17.1 22.3 38.1 59.7
MACH′

2 8.5 8.8 9.3 10.8 35.7 48.3 77.2 134.5
MACH′

⌊ε2λ/3⌋ 8.0 14.5 38.3 135.9 40.8 90.3 338.3 1145.3
MACH′

⌈2λ⌉ 143.4 588.6 2609.1 – 849.0 – – –
SG 92.1 399.3 1632.4 – 936.7 – – –
BMKK 0.5 0.5 0.6 0.8 2.9 3.8 5.5 11.6
2P 0.8 0.8 0.8 0.8 3.6 4.4 6.6 8.8

ε = 0.125
MACH′

fs 6.7 6.8 7.6 8.5 24.9 37.1 63.3 201.3
MACH′

2 13.6 13.9 15.6 21.3 52.0 79.0 130.6 212.4
MACH′

⌊ε2λ/3⌋ 14.9 23.2 68.0 212.7 58.3 144.3 461.3 2002.5
MACH′

⌈2λ⌉ 987.4 – – – – – – –
SG 92.1 399.3 1632.4 – 936.7 – – –
BMKK 0.5 0.6 0.7 1.2 3.1 5.5 9.9 17.5
2P 0.8 0.8 0.8 1.1 3.7 4.7 8.3 15.7

As stated earlier, the space complexity of MACH′
fs, SG and BMKK scales linearly with the

coverage size of the solution. So when MACH′
γ does not look so advantageous for SocialNet

when ε = 0.125, it is simply because the coverage is almost as small as the space budget of
MACH′

γ . The coverage of UKUnion is about 10 times bigger than SocialNet, but the space
consumption is about the same as SocialNet.

5.3 Estimating Approximation Quality

The maximum set coverage problem is NP-Hard. Comparing the coverage size produced
by MACH′

γ with the optimal solution is infeasible at the scale of our datasets. Since the
greedy algorithm guarantees a 1− 1/e approximation, and can be implemented, its coverage
is our reference. Moreover, even if the optimal solution, OPT, is unknown, the 1− 1/e− δ(ε)
approximation of MACH′

γ can be verified using the greedy algorithm thanks to the following
implication: |C|/|G| ≥ β =⇒ |C|/OPT ≥ β(1−1/e), where G returned by greedy and C an
arbitrary coverage. In particular, if |C|/|G| ≥ 1−δ(ε)/(1−1/e) then |C|/OPT ≥ 1−1/e−δ(ε).

Figure 3 demonstrates that for theoretically admissible values of ε, MACH′
γ produces a

coverage close to greedy coverage, and always within the 1− δ(ε)/(1− 1/e) limit. Regardless
of γ value, it remains very close to the coverage produced by MACH′

fs. Even for pairwise
independence, which is expected to produce worse solutions, there is no clear performance
effectiveness difference compared higher independence. Additionally, even though MACH′

γ is
a randomized algorithm, no coverage has been observed to beat greedy.

We observe some rare events (< 1%) where the coverage is particularly small compared to
MACH′

fs. Investigating these cases reveals that such solutions typically contain fewer than k

sets. If MACH′
γ does not select the right guess, it tends to select a guess slightly bigger than

the right one, which increases the threshold, therefore it does not have enough opportunity
to select k sets in O(ε−1) passes.

SEA 2023



21:14 Maximum Coverage in Sublinear Space, Faster

Figure 2 Coverage versus space, for k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256}. Every panel shows the
advantage of the MACH′ family for max coverage in streams. For ε = 1/2, the space advantage is
at least ten-fold. Interestingly, as ε decreases, the space advantage drops for some datasets, but
the coverage does not improve significantly, suggesting that a lightweight MACH′ approach, i.e.,
smaller ε−1, might be the most effective time-space-performance trade-off.

Figure 3 Coverage of the algorithms relative to greedy coverage. Since they are randomized,
there are box plots of coverage produced by MACH′

γ . The box plots show the 1%, 25%, 75% and
99% quantiles, hence the points below and above the box plots are in the first and last 1%. For
γ = 2 and γ = ⌊ε2λ/3⌋, each boxplot gathers 200 data points on average whereas for γ = ⌈2λ⌉,
each boxplot gathers 90 data points on average. Observe that the MACH′ methods return excellent
coverage except for values of k around 64 on the dataset Webdocs when ε = 1/2.



S. Jaud, A. Wirth, and F. Choudhury 21:15

6 Conclusions

In this paper, we accelerate the sublinear-space approach to solving Maximum Coverage.
The algorithm MACH∗ of McGregor and Vu is hampered by a high-independence hash
function. We generalize their approach to produce MACHγ , so that MACH∗ = MACH⌈2λ⌉
and then avoid F0-sketches to obtain MACH′

γ . The space consumption is in Õ(ε−2k) and
the approximation factor is 1− 1/e− δ(ε).

For reasonable values of ε (≤ 0.25), our algorithm, MACH′
γ , maintains the space efficiency

and approximation quality of MACH∗ = MACH⌈2λ⌉. In experiments, it is several orders of
magnitude faster. In practice, we find MACH′

2 presents the best trade-off between space
complexity, time complexity and approximation quality. Since MACH′

2 is so efficient, we
can run it several times with fresh randomness. This approach is more effective than
executing MACH′

γ with a high independence factor. Although we avoided F0-sketching in
MACH′

γ , they could help compare independent instances of the fast MACH′
2.

We obtained several key results by carefully analyzing upper bounds on algorithm failure
probability. We expect this idea accelerates other lower-space streaming algorithms.

References
1 Shipra Agrawal, Mohammad Shadravan, and Cliff Stein. Submodular secretary problem with

shortlists. In 10th ITCS, pages 1:1–1:19, 2018. doi:10.4230/LIPIcs.ITCS.2019.1.
2 Sepehr Assadi. Tight space-approximation tradeoff for the multi-pass streaming set cover

problem. In 36th ACM PODS, pages 321–335, 2017. doi:10.1145/3034786.3056116.
3 Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause.

Streaming submodular maximization: massive data summarization on the fly. In 20th ACM
SIGKDD, pages 671–680, August 2014. doi:10.1145/2623330.2623637.

4 MohammadHossein Bateni, Hossein Esfandiari, and Vahab Mirrokni. Almost optimal streaming
algorithms for coverage problems. In 29th ACM SPAA, pages 13–23, 2017. doi:10.1145/
3087556.3087585.

5 Paolo Boldi, Massimo Santini, and Sebastiano Vigna. A large time-aware web graph. SIGIR
Forum, 42(2):33–38, 2008. doi:10.1145/1480506.1480511.

6 Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression techniques. In
13th WWW, pages 595–601, 2004. doi:10.1145/988672.988752.

7 Amit Chakrabarti and Anthony Wirth. Incidence geometries and the pass complexity of
semi-streaming set cover. In 27th ACM-SIAM SODA, pages 1365–1373, 2016. doi:10.1137/1.
9781611974331.ch94.

8 G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data streams using
hamming norms (how to zero in). IEEE Transactions on Knowledge and Data Engineering,
15(3):529–540, 2003. doi:10.1109/tkde.2003.1198388.

9 Graham Cormode and Donatella Firmani. A unifying framework for ℓ0-sampling algorithms.
Distributed and Parallel Databases, 32(3):315–335, 2013. doi:10.1007/s10619-013-7131-9.

10 Graham Cormode, Howard Karloff, and Anthony Wirth. Set cover algorithms for very large
datasets. In 19th ACM CIKM, pages 479–488, 2010. doi:10.1145/1871437.1871501.

11 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
doi:10.1145/285055.285059.

12 Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. The one-way
communication complexity of submodular maximization with applications to streaming and
robustness. In 52nd ACM STOC, pages 1363–1374, 2020. doi:10.1145/3357713.3384286.

13 Bart Goethals and Mohammed J Zaki. Fimi’03: Workshop on frequent itemset mining imple-
mentations. In 3rd IEEE Data Mining Workshop on Frequent Itemset Mining Implementations,
pages 1–13, 2003.

SEA 2023

https://doi.org/10.4230/LIPIcs.ITCS.2019.1
https://doi.org/10.1145/3034786.3056116
https://doi.org/10.1145/2623330.2623637
https://doi.org/10.1145/3087556.3087585
https://doi.org/10.1145/3087556.3087585
https://doi.org/10.1145/1480506.1480511
https://doi.org/10.1145/988672.988752
https://doi.org/10.1137/1.9781611974331.ch94
https://doi.org/10.1137/1.9781611974331.ch94
https://doi.org/10.1109/tkde.2003.1198388
https://doi.org/10.1007/s10619-013-7131-9
https://doi.org/10.1145/1871437.1871501
https://doi.org/10.1145/285055.285059
https://doi.org/10.1145/3357713.3384286


21:16 Maximum Coverage in Sublinear Space, Faster

14 Tal Grossman and Avishai Wool. Computational experience with approximation algorithms
for the set covering problem. European Journal of Operational Research, 101(1):81–92, 1997.
doi:10.1016/s0377-2217(96)00161-0.

15 Piotr Indyk and Ali Vakilian. Tight trade-offs for the maximum k-coverage problem in the
general streaming model. In 38th ACM PODS, pages 200–217, 2019. doi:10.1145/3294052.
3319691.

16 Ching Lih Lim, Alistair Moffat, and Anthony Wirth. Lazy and eager approaches for the set
cover problem. In 37th ACSC, pages 19–27, 2014. doi:10.5555/2667473.2667476.

17 Andrew McGregor and Hoa T. Vu. Better streaming algorithms for the maximum coverage prob-
lem. Theory of Computing Systems, 63(7):1595–1619, 2018. doi:10.1007/s00224-018-9878-x.

18 Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrovic, Amir Zandieh, Aidasadat
Mousavifar, and Ola Svensson. Beyond 1/2-approximation for submodular maximiza-
tion on massive data streams. In 35th ICML, pages 3829–3838, 2018. URL: https:
//proceedings.mlr.press/v80/norouzi-fard18a.html.

19 Mihai Pǎtraşcu and Mikkel Thorup. The power of simple tabulation hashing. J. ACM,
59(3):1–50, 2012. doi:10.1145/2220357.2220361.

20 Barna Saha and Lise Getoor. On maximum coverage in the streaming model & application to
multi-topic blog-watch. In 9th SDM, pages 697–708, 2009. doi:10.1137/1.9781611972795.60.

21 Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–Hoeffding bounds for
applications with limited independence. SIAM Journal on Discrete Mathematics, 8(2):223–250,
1995. doi:10.1137/s089548019223872x.

22 Huiwen Yu and Dayu Yuan. Set coverage problems in a one-pass data stream. In 13th SDM,
pages 758–766, 2013. doi:10.1137/1.9781611972832.84.

A Definition of γ-independent hash functions family

▶ Definition 10. The family of hash functions H ⊂ {f : U → Y } is γ-independent iff
for every γ distinct keys x1, . . . , xγ ∈ U and γ values y1, . . . , yγ ∈ Y , if we draw f uni-
formly at random from H, then the f(xi) are independent uniform random variables, and
P [∩γ

i=1(f(xi) = yi) ] = 1/|Y |γ .

B Corollary 5 (proof)

▶ Corollary 5. If γ ≤ ⌊ c
3 k log m⌋, with I, C, and C ′ defined accordingly, then:

P
( ∣∣ |C ′| − p|C|

∣∣ ≥ εvp
)
≤ e−⌊γ/2⌋ .

Proof. Consider I to be fixed, so the 1i∈C factor is just a constant, with no randomness.

E(|C ′|) =
n∑

i=1
1i∈CE(1h(i)=1) =

∑
i∈C

P(h(i) = 1) = p|C|

Let δ = εv/|C| and µ = E(|C ′|), then P
( ∣∣ |C ′| − p|C|

∣∣ ≥ εvp
)

= P
( ∣∣ |C ′| − p|C|

∣∣ ≥ δµ
)

.
Now, recalling the definition (2) of λ, we verify the condition on the independence factor, γ:

c

3k log m = ε2

3 λ = ε

3δµ ≤ e−1/3 ε

2δµ e−1/3 > 2/3

≤ e−1/3 min(1, δ)δµ δ ≥ ε/2 and ε/2 ≤ 1 ,

where |C| ≤ OPT ≤ 2v gives us the condition δ ≥ ε/2. The condition ε/2 ≤ 1 is arbitrary
but recall that we want a 1 − 1/e − ε approximation so ε < 1 − 1/e ≤ 0.7. Therefore,
γ ≤ ⌊ c

3 k log m⌋ ≤ ⌊e−1/3 min(δ, δ2)µ⌋ and Theorem 4 gives the desired inequality. ◀

https://doi.org/10.1016/s0377-2217(96)00161-0
https://doi.org/10.1145/3294052.3319691
https://doi.org/10.1145/3294052.3319691
https://doi.org/10.5555/2667473.2667476
https://doi.org/10.1007/s00224-018-9878-x
https://proceedings.mlr.press/v80/norouzi-fard18a.html
https://proceedings.mlr.press/v80/norouzi-fard18a.html
https://doi.org/10.1145/2220357.2220361
https://doi.org/10.1137/1.9781611972795.60
https://doi.org/10.1137/s089548019223872x
https://doi.org/10.1137/1.9781611972832.84


S. Jaud, A. Wirth, and F. Choudhury 21:17

C Lemma 6 (proof)

▶ Lemma 6. Let v be a guess in MACHγ and let C ′ be the final subsampled coverage associated
with guess v. If
1.
∣∣ |C ′| − p|C|

∣∣ < εvp; and
2. v ≥ OPT; and
3. (1− ε)(1− 1/e− ε)λ ≤ |C ′|;
then |C| > (1− 1/e− δ(ε))OPT.

Proof. Assuming condition 3, we have,

|C ′| − εvp ≥ (1− ε)(1− 1/e− ε)vp− εvp

|C|p ≥ (1− ε)(1− 1/e− ε)vp− εvp Condition 1
|C| ≥ (1− ε)(1− 1/e− ε)v − εv p > 0
|C| ≥ (1− 1/e− δ(ε))v where δ(x) = x(3− 1/e− x)
|C| ≥ (1− 1/e− δ(ε)) OPT Condition 2. ◀

D Proposition 7 (proof)

▶ Proposition 7. For γ ≥ ⌊ c
3 k log m⌋, MACH′

γ finds a 1− 1/e− δ(ε) approximation of the
Maximum-k-Coverage problem with probability at least 1− 2e/mck/6.

Proof. Let vs be the selected guess accordingly to procedure 2 and v∗ the right guess, i.e.
OPT/2 ≤ v∗ ≤ OPT. Also, we denote by Is the solution associated with guess vs.

If vs = v∗, we already saw that the 1 − 1/e − δ(ε) approximation is guaranteed if the
event EIs

=
∣∣|C ′

s| − p|Cs|
∣∣ < εvsp is met.

If vs > v∗, then vs ≥ OPT because each guess is of the form 2g||S||∞, so vs must be at least
twice as big as v∗. Therefore, Lemma 6 ensures the 1−1/e−δ(ε) approximation if the event
EIs

is met, because procedure 2 always takes a guess for which |C ′
s| ≥ (1−ε)(1−1/e−ε)λ.

To conclude, MACH′
γ finds a 1−1/e− δ(ε) approximation of Maximum-k-Coverage if vs ≥ v∗

and EIs
. Furthermore, a consequence of Corollary 9 in §2.3 [17] is that, for the right guess

v∗, if
∣∣|C ′

∗| − p|C∗|
∣∣ < εv∗p then |C ′

∗| ≥ (1− ε)(1− 1/e− ε)λ, which makes the right guess a
possible choice for procedure 2. Therefore, EI∗ ⇒ vs ≥ v∗. Consequently:

P ({vs ≥ v∗} ∩ EIs
) = 1− P

(
{vs < v∗} ∪ EIs

)
≥ 1− P

(
EI∗ ∪ EIs

)
≥ 1− P

(
EI∗

)
− P

(
EIs

)
≥ 1− 2 e

mck/6 ◀

E Proposition 8 (proof)

▶ Proposition 8. Let h be a 2-independent hash function, and I, C, C ′, be defined accordingly.
We have P

( ∣∣ |C ′| − p|C|
∣∣ ≥ εvp

)
≤ 2/(ck log m).

SEA 2023



21:18 Maximum Coverage in Sublinear Space, Faster

Proof. As before, |C ′| can be represented as |C ′| =
∑n

i=1 Xi, where Xi = 1i∈C1h(i)=1.
Letting V stand for variance, we have:

V
(
|C ′|

)
= E

(
|C ′|2

)
− E

(
|C ′|

)2 = E

( n∑
i=1

Xi

)2
− p2|C|2

= E

 n∑
i=1

Xi +
∑
i̸=j

XiXj

− p2|C|2 X2
i = Xi

= E
(
|C ′|

)
+
∑
i ̸=j

E (XiXj)− p2|C|2

= p|C|+
∑
i ̸=j

E (Xi)E (Xj)− p2|C|2 pairwise independence

= p|C|+
∑
i ̸=j

1i,j∈CE
(
1h(i)=1

)
E
(
1h(j)=1

)
− p2|C|2

= p|C|+ p2 (|C|2 − |C|)− p2|C|2 = p(1− p)|C|

Including this value for the variance in Chebyshev’s inequality, we have:

P
( ∣∣ |C ′| − p|C|

∣∣ ≥ εvp
)
≤

V
(
|C ′|

)
(εvp)2 = p(1− p)|C|

ε2v2p2

≤ p OPT
ε2v2p2 = OPT

ε2v2p

≤ 2v

ε2v2p
OPT/2 ≤ v

= 2
ε2λ

p = λ/v

= 2
ε2cε−2k log m

= 2
ck log m

. ◀



S. Jaud, A. Wirth, and F. Choudhury 21:19

F Experimentation

Figure 4 Running times of algorithms MACH′
γ , MACH′

fs, SG, and BMKK on datasets SocialNet,
UKUnion and Webdocs.

Figure 5 Coverage versus space, for k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256} on datasets Webbase and
Webdocs. The anomalies of MACH′

fs and MACH′
γ in Webdocs when ε = 0.5 coincide with the coverage

quality drop in Figure 3.

SEA 2023



21:20 Maximum Coverage in Sublinear Space, Faster

Figure 6 Box plot of coverage produced by MACH′
γ , SG and BMKK relative to the coverage

produced by the greedy algorithm for the datasets SocialNet and Webbase.

Figure 7 Coverage versus space, the Õ(ε−2m) space algorithm OP [17] consumes systematically
more space than all the other Õ(ε−dn) space alternatives. This is because the Õ(ε−dn) space
algorithms actually scale linearly with respect to the returned coverage size with a hidden constant
close to one. On the other hand, the Õ(ε−dm) space algorithms, such as OP, have precisely a
Θ̃(ε−dm) space complexity with a much bigger hidden constant, storing a fraction of each set.


	p000-Frontmatter
	Preface
	Steering Committee
	Organization

	p001-Anders
	1 Introduction
	2 Philosophy of the Preprocessor
	3 Preliminaries
	3.1 Color Refinement
	3.2 Quotient Graph

	4 A Toolbox for Reducing Graphs
	5 Removing low degree vertices
	5.1 Degree 0 Vertices
	5.2 Degree 1 Vertices
	5.3 Degree 2 Vertices

	6 Probing for Sparse Automorphisms
	7 Exploiting the Quotient Graph
	7.1 Edge Flip and Removal of Trivial Components
	7.2 Connected Components

	8 Scheduling of Techniques
	9 Benchmarks
	9.1 Preprocessed versus Unprocessed
	9.2 Comparison to state-of-the-art

	10 Conclusion and Future Development
	A Probing for Sparse Automorphisms
	A.1 The Individualization Refinement Framework
	A.2 The Probing Algorithm

	B Non-permuted Benchmarks
	C The Outlier in Combinatorial Graphs
	D Ablation study

	p002-Kritikakis
	1 Introduction
	2 Width of a DAG and Decomposition into Paths/Chains
	3 DAG Reduction for Faster Transitivity
	4 Reachability Indexing Scheme
	4.1 The Indexing Scheme
	4.2 Sorting Adjacency lists
	4.3 Creating the Indexing Scheme
	4.4 Experimental Results

	5 Conclusions and Extensions
	A Appendix
	A.1 Proofs
	A.2 Sorting Adjacency lists Algorithm
	A.3 Figures


	p003-Blasius
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Clique-partitioned treewidth
	3 The weighted clique partition problem
	3.1 Hardness
	3.2 Heuristic approaches
	3.3 Exact branch-and-bound solver
	3.3.1 Branching
	3.3.2 Size lower bound
	3.3.3 Valuable sequence lower bound
	3.3.4 Sufficient weight reduction


	4 Evaluation
	4.1 Performance comparison
	4.2 Run time scaling
	4.3 Branch-and-bound: lower bounds and reduction rule
	4.4 Impact of network properties
	4.5 Clique-partitioned treewidth compared to traditional treewidth

	A Limits of the set cover heuristics
	B Omitted proofs

	p004-Alanko
	1 Introduction
	2 Preliminaries
	3 Simple Subset Rank and Select
	4 Subset Wavelet Tree
	5 Rank for Base-3 and Base-4 Sequences
	5.1 Wavelet Trees
	5.2 Scanning Rank
	5.3 Sequence Splitting
	5.4 Extending RRR to Base-3 and Base-4 Sequences
	5.4.1 Practical considerations

	5.5 Microbenchmark

	6 Subset rank query performance on k-mer search of the Spectral BWT
	7 Concluding Remarks

	p005-Penschuck
	1 Introduction
	1.1 Our contributions

	2 Preliminaries and notation
	2.1 Parallel model of computation
	2.2 Random shuffling
	2.3 Sampling from discrete distributions

	3 Sequential in-place shuffling
	3.1 State of the art
	3.2 IpScShuf – an in-place implementation of ScatterShuffle
	3.3 RoughScatter – the opportunistic work horse
	3.4 FineScatter – fixing the small remainder
	3.4.1 Finalizing the bucket sizes
	3.4.2 Assigning the remaining staged elements

	3.5 Putting it all together

	4 Parallel algorithms
	4.1 Parallelizing RoughScatter
	4.2 Parallelizing FineScatter

	5 Implementation
	6 Empirical evaluation
	6.1 Memory usage and allocation costs
	6.2 Performance overview
	6.3 Parallel execution of sequential algorithms
	6.4 Parallel scaling
	6.5 Relative performance of subproblems
	6.6 Performance on different machines

	A Additional measurements
	B Quantifying the hidden constants
	C Omitted proofs

	p006-Becker
	1 Introduction
	1.1 Contribution
	1.2 Further Related Work

	2 Preliminaries
	3 Global Proxies for Shortest Temporal Betweenness
	3.1 Experimental Setting
	3.2 Experimental Results

	4 Pass-Through Degree
	5 Local Proxies for Shortest Temporal Betweenness
	6 Conclusion
	A Top-k intersection value tables
	B Comparison among Degree Notions
	C Public transport networks

	p007-Diaz-Dominguez
	1 Introduction
	2 Background and Related Work
	3 Simple Runs-Bounded FM-index Designs
	4 Performance
	4.1 Experimental Setup
	4.2 Results

	5 Concluding Remarks
	A Additional match counting results on AMD EPYC 7452
	B Intel Xeon E7-8890 v4 experiment results

	p008-Afshar
	1 Introduction
	2 Window-Sort
	3 Window-Merge-Sort
	4 Window-Oblivious-Merge-Sort
	5 Randomized Shellsort
	6 Annealing Sort
	7 Experiments
	8 Conclusions and Future Work
	A Some Existing Sorting Algorithms
	A.1 Randomized Shellsort
	A.2 Annealing Sort
	A.3 Riffle Sort
	A.4 Well-known Sorting Algorithms


	p009-Tamby
	1 Introduction
	2 Problem statement
	2.1 Basic definitions and notations
	2.2 Problem statement

	3 Related works and contribution of this paper
	4 Preliminary results
	4.1 Search region, search zones
	4.2 Finding a non-dominated point

	5 Algorithm statement
	5.1 Exploration of the search region
	5.2 Updating the search region
	5.3 Selecting a search zone

	6 Computational experiments
	6.1 Instances
	6.1.1 MOKP
	6.1.2 MOAP

	6.2 Analysis

	7 Conclusion

	p010-Angrick
	1 Introduction
	2 Preliminaries
	3 Mount Doom Solver
	3.1 Reduction to Vertex Cover
	3.2 Reduction Rules
	3.3 Implementation Details

	4 Experiments
	4.1 Data
	4.2 Competing Algorithms
	4.3 Machine Specifications
	4.4 Experiment Description
	4.5 Results and Discussion

	5 Conclusion

	p011-Nakamura
	1 Introduction
	1.1 Related Works
	1.2 Organization of Paper

	2 Problem Statement
	3 Overview of Proposed Algorithm
	3.1 Intuition and Idea behind the Proposed Algorithm

	4 ZDD and Frontier-based Search
	4.1 Zero-suppressed Binary Decision Diagrams (ZDDs)
	4.2 Frontier-based Search

	5 Details of Proposed Method
	5.1 Computation with Intermediate Level of Diagram
	5.2 Dynamic Programming
	5.3 Intersection with Base Set

	6 Complexity Analysis
	7 Experiments
	8 Conclusion
	A Appendix
	A.1 Treatment of Degree 1 Vertices
	A.2 Pseudocode for FBS with Subsetting
	A.3 Proof of Propositions in Complexity Analysis
	A.4 Detailed Experimental Results for Romegraph Dataset


	p012-Fischer
	1 Introduction
	2 Formulations
	2.1 Multilinear formulation
	2.2 Mixed-integer formulations
	2.3 Continuous and feasibility formulations

	3 Computational Experiments
	4 Future Work
	A Correctness of the Proposed Formulations

	p013-Onar
	1 Introduction
	2 Formulations for MSelTP
	2.1 Flow Based Formulation
	2.2 Cycle Elimination Formulation

	3 Cutting Plane Methods
	4 Experimental Results
	A Computational Results for graphs with small/medium/large cluster sizes

	p014-Bille
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Preliminaries and Problem Definition
	3 NP-Hardness and Kernelization
	3.1 NP-Hardness
	3.2 Kernelization

	4 Algorithms
	4.1 Branch-and-Bound
	4.2 ILP Formulation
	4.3 Heuristics

	5 Experimental Evaluation
	5.1 Matrix-Based ILP
	5.2 Running Time
	5.3 Heuristics
	5.4 Karate Club

	6 Conclusion
	A Supplementary Material
	A.1 Deferred Proofs
	A.1.1 Proof of Lemma 4
	A.1.2 Proof of Theorem 6
	A.1.3 Proof of Lemma 7

	A.2 Data acquisition


	p015-Eyubov
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Related Work

	3 FREIGHT: Fast Streaming Hypergraph Partitioning
	3.1 Mathematical Definition
	3.2 Streaming Hypergraphs
	3.3 Efficient Implementation

	4 Experimental Evaluation
	4.1 Results

	5 Conclusion

	p016-Grossmann
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Related Work

	3 Arc-Flag TB
	3.1 Partitioning
	3.2 Flag Computation
	3.3 Resolving Issues with Correctness
	3.4 Comparison

	4 Experimental Evaluation
	5 Conclusion

	p017-Wahl
	1 Introduction
	2 Preliminaries
	3 Iterative Improvement
	3.1 Experiments

	4 Initial Partitioning
	4.1 Direct k-way Initial Partitioning
	4.2 Randomization
	4.3 Coarsening
	4.4 Experiments on Direct k-way Initial Partitioning
	4.5 Recursive Partitioning
	4.6 Experiments on Recursive Partitioning

	5 Comparison to HyperPhylo
	6 Conclusion and Future Work

	p018-Bille
	1 Introduction
	2 Basics
	3 Hierarchical Relative Lempel-Ziv Compression
	4 Constructing an Optimal Tree
	5 Sparsifying the Cost Graph via Locality-Sensitive Hashing
	6 Speeding Up the Minimum Weight Spanning Arborescence Algorithm
	7 Experimental Results
	7.1 Setup
	7.2 Datasets
	7.3 Methods Tested
	7.4 Compression Performance
	7.5 Decompression Performance

	8 Concluding Remarks
	A Additional Figures

	p019-He
	1 Introduction
	2 Data Structure for Range Mode
	2.1 Exact Range Mode in Linear Space and O(sqrt{n} lg n) Time
	2.2 Exact Range Mode in Linear Space and O(sqrt{n}) Time
	2.3 Exact Range Mode in Linear Space and O(sqrt{n/w}) Time
	2.4 (1+epsilon)-Approximation in O(frac{n}{epsilon}) Words and O(lg lg n + lg frac{1}{epsilon}) Time
	2.5 (1+epsilon)-Approximation in O(frac{n}{epsilon}) Words and O(lg frac{1}{epsilon}) Time
	2.6 (1+epsilon)-Approximation in O(frac{n}{epsilon}) Bits and O(lg frac{1}{epsilon}) Time

	3 Experimental Results
	3.1 Experimental Setup
	3.2 An Initial Performance Study on Exact Mode
	3.3 Different Parameter Values
	3.4 Performance of Approximate Range Mode
	3.5 Different Values of epsilon and Comparisons to Exact Queries Structures

	A Details Omitted from Section 3.3
	B Comparing exact range mode and approximate range mode data structures on reviews
	C Even Smaller Queries Ranges

	p020-Funke
	1 Introduction
	2 Related Work
	3 Algorithm
	3.1 Event Types
	3.2 Boundary Determination
	3.3 Analysis

	4 Implementation Details
	4.1 Geometric Kernels
	4.2 Sweepline Data Structure
	4.3 Priority Queue

	5 Evaluation
	5.1 Algorithmic Metrics
	5.2 Runtime Evaluation

	6 Conclusion
	A Evaluation
	A.1 Input Point Distributions
	A.2 Example Execution
	A.3 Results


	p021-Jaud
	1 Introduction
	1.1 Sublinear Space
	1.2 Motivation
	1.3 Our contributions
	1.4 Related Work

	2 Tools
	2.1 Subsampling
	2.2 Sketching
	2.3 Thresholding on the sampled universe

	3 Low-space Streaming Algorithm
	3.1 Guessing
	3.2 Properties

	4 Accelerating the Algorithm
	4.1 Maintaining the Approximation Property
	4.2 Pairwise Independence

	5 Experimentation
	5.1 Runtime Evaluation
	5.2 Space Efficiency
	5.3 Estimating Approximation Quality

	6 Conclusions
	A Definition of gamma-independent hash functions family
	B Corollary 5 (proof)
	C Lemma 6 (proof)
	D Proposition 7 (proof)
	E Proposition 8 (proof)
	F Experimentation


