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Abstract
We present multilinear and mixed-integer multilinear programs to find a Nash equilibrium in multi-
player noncooperative games. We compare the formulations to common algorithms in Gambit, and
conclude that a multilinear feasibility program finds a Nash equilibrium faster than any of the
methods we compare it to, including the quantal response equilibrium method, which is recommended
for large games. Hence, the multilinear feasibility program is an alternative method to find a Nash
equilibrium in multi-player games, and outperforms many common algorithms. The mixed-integer
formulations are generalisations of known mixed-integer programs for two-player games, however
unlike two-player games, these mixed-integer programs do not give better performance than existing
algorithms.
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1 Introduction

A noncooperative game has n players, where n ≥ 2 is finite, with each player having finitely
many pure strategies which they do not discuss or reveal to each other. A mixed strategy
for a player is a probability distribution over the player’s pure strategies. Each player has a
known payoff function which maps any combination of pure strategies of all the n players to
a real number. Mixed strategies of all the players form a tuple whose payoff is calculated by
taking expectation over the probability distributions. In his seminal work [11], Nash showed
that every such game has a tuple of mixed strategies that is an equilibrium in the sense that
no player increases their payoff if they were to change their mixed strategy while the others
keep theirs fixed. Although existence of Nash equilibrium is guaranteed, uniqueness does not
always hold, and there are also characterisations of when there exists an equilibrium formed
solely by pure strategies.

1 Corresponding author

© Miriam Fischer and Akshay Gupte;
licensed under Creative Commons License CC-BY 4.0

21st International Symposium on Experimental Algorithms (SEA 2023).
Editor: Loukas Georgiadis; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.fischer21@imperial.ac.uk
https://www.doc.ic.ac.uk/~mif21/
mailto:akshay.gupte@ed.ac.uk
https://www.maths.ed.ac.uk/school-of-mathematics/people/a-z?person=820
https://orcid.org/0000-0002-7839-165X
https://doi.org/10.4230/LIPIcs.SEA.2023.12
https://github.com/economicsandcomputing/MultilinearNashEquilibria
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


12:2 Nash Equilibria Through Multilinear Optimization

This paper deals with the question of algorithmic and numerical computation of Nash
equilibria. From a complexity perspective, computing an equilibrium was only somewhat
recently formally settled to being PPAD-complete [1, 2] even for two-player games. There is
a lot of literature for two-player bimatrix games, and the most well-known and established
exact method to compute an equilibrium is the Lemke-Howson algorithm [8]. This gives a
very good computational performance on many instances in practice, although its worst-case
performance can take exponentially many pivoting steps [17].

However, for multi-player games, there do not seem to be commonly established approach
for computing the equilibrium. Although there is a generalisation of the Lemke-Howson
method to n-person games [14, 21], popular algorithmic approaches include a global Newton
method [6], an iterated polymatrix approximation approach [7], a simplicial subdivision
method [20], a simple search algorithm aiming to find an equilibrium with small support
size [13], and a quantal response equilibrium method which gives an approximation to
a Nash equilibrium [19]. Many of these methods are implemented in the game-theoretic
library Gambit [10]. Experiments comparing different methods have been undertaken [16, 13],
however it is rather unclear which of the methods is best for multi-player games. For example,
the global Newton method gives solid performance for small games, however does not to
scale well to larger games [5, 18]. Support enumeration algorithms are fast for games with
pure equilibria but will be much slower for a game that only has equilibria of medium to
large support size. There are also approximation algorithms, which tend to approximate a
Nash equilibrium for large games [19, 5, 3].

We adopt the optimization approach, and propose different optimization formulations
for computing a Nash equilibrium for n-person games for n ≥ 2. Particularly, we present a
multilinear polynomial continuous feasibility program of degree n (= number of players),
which is a generalisation of the bilinear optimization problem for 2 players [9]. Further, we
extend the two-player mixed-integer formulations of [16] to multi-player games, and give
a large variety of mixed-integer formulations to find a Nash equilibrium in multi-player
games. All our formulations find a Nash equilibrium of a n ≥ 2 player game. We compare
our programs to gambit-gnm (global Newton), gambit-simpdiv (simplicial subdivision),
gambit-logit (quantal response equilibrium) algorithms in Gambit, focusing on random
games and covariant games with negative covariance. We find that the mixed-integer
formulations do not give better performance than existing algorithms, and our analysis of
those is aimed to get an understanding of which mixed-integer formulations are most suited
for finding a Nash equilibrium. We find that our multilinear continuous feasibility program
is faster than all the methods in Gambit we compare it to, including the gambit-logit
method, which is so far recommended for large games. Thus, we provide an alternative
approach to computing Nash equilibrium in multi-player games.

The next section presents our continuous and mixed-integer multilinear optimization
formulations. For each of them, their correctness, i.e., the fact that their optimal/feasible
solutions correspond to Nash equilibria of the game, is proved in the Appendix.

2 Formulations

The multi-player multilinear formulation is an extension of a bilinear formulation for bimatrix
games [9]. To motivate the multilinear formulation, we shortly recall the bilinear program
that is equivalent to finding a Nash equilibrium in a bimatrix game. To do so, we introduce
some notation. Let A, B ∈ Rm×n be the payoff matrix of player 1 and player 2, with m

pure strategies of player 1 and n pure strategies of player 2. Let x ∈ Rm with x ≥ 0 and
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∑m
i=1 xi = 1 be a (possibly mixed) strategy of player 1, with xs being the probability placed

on pure strategy s. Let y ∈ Rn with y ≥ 0 and
∑n

j=1 yj = 1 be a (possibly mixed) strategy
of player 2. Let 1n and 1m denote vectors of all ones of dimension n and m. Any globally
optimal solution (x, y, p, q) to the bilinear optimization problem in BLP is equivalent to a
Nash equilibrium in a bimatrix game.

(BLP)

max
x,y,p,q

x⊤Ay + x⊤By − p − q (1a)

s.t. Ay ≤ p1m, B⊤x ≤ q1n (1b)
m∑

i=1
xi = 1,

n∑
j=1

yj = 1, x, y ≥ 0. (1c)

It is easy to see that any feasible mixed strategies x, y will have objective function value
less or equal to zero, as given player 2’s (mixed) strategy, any pure strategy of player 1 can
give payoff at most p, and given player 1’s (mixed) strategy, any pure strategy of player 2
can give payoff at most q. This implies that any combination of pure strategies (i.e. any
mixed strategy) of player 1 gives payoff at most p, and any combination of pure strategies of
player 2 gives payoff at most q. Further, any Nash equilibrium x∗, y∗ has objective function
value equal to zero, thus maximises the objective function. This is because players play best
responses, and thus p∗ = x∗⊤Ay∗ and q∗ = x∗⊤By∗. Importantly, only the Nash equilibria
have objective function value of zero. This is because for any optimal solution (x∗, y∗, p∗, q∗)
and any (x, y) with x ≥ 0,

∑m
i=1 xi = 1, y ≥ 0,

∑n
i=1 yi = 1, x⊤Ay∗ ≤ p∗, x∗⊤By ≤ q∗, and

thus x∗⊤Ay∗ ≤ p∗, x∗⊤By∗ ≤ q∗. As a Nash equilibrium has objective function value of
zero and is guaranteed to exist, the optimal value of the bilinear formulation must be zero
(as it is non-positive). Thus x∗⊤Ay∗ = p∗, x∗⊤By∗ = q∗. This implies x⊤Ay∗ ≤ x∗⊤Ay∗,
x∗⊤By ≤ x∗⊤By∗.

In this work, we propose a multilinear feasibility program whose every feasible solution is
a Nash equilibrium to a corresponding multi-player game with n ≥ 2 players. The formulation
is based on an extension of the bilinear formulation to multi-player games. Although such
an extension is straightforward, is has not been given much empirical analysis. We compare
the multilinear feasibility formulation to established algorithms used to find an equilibrium
in multi-player games. We find that our multilinear program is faster than a variety of
algorithms in Gambit [10].

2.1 Multilinear formulation
Let us define some notation. Let n ≥ 2 be the number of players, and [n] = {1, . . . , n} the
set of players. Every player i comes with a finite set of pure strategies Si, with |Si| = ni.
Let S = S1 × S2 × · · · × Sn be the set of all n-tuples of pure strategy combinations of all
players. We will further denote by S−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn the set of all pure
strategy tuples of all players except i. Let s = (s1, . . . , sn) ∈ S be a pure strategy tuple of
all players and ŝ = (s1, . . . , si−1, si+1, . . . , sn) ∈ S−i be a pure strategy tuple of all players
other than i. We define payoff matrix Ai : s ∈ S → R for player i. As an example, if we had
three players, A1[s1, s2, s3] denotes player 1’s payoff when player 1 plays pure strategy s1,
player 2 plays pure strategy s2 and player 3 plays pure strategy s3. Likewise, A2[s1, s2, s3]
and A3[s1, s2, s3] denote player 2 and 3’s payoff for the strategy combination (s1, s2, s3) ∈ S.
For pure strategy s of player i and pure strategies (s1, . . . , si−1, si+1, . . . , sn) = ŝ ∈ S−i

of the other players, we write Ai[s, ŝ] to denote the payoff of player i when player i plays
pure strategy s ∈ Si and the other players play pure strategies ŝ ∈ S−i. For every player
i, we define strategy vector xi ∈ Rni , with xi ≥ 0 and

∑
s∈Si

xi
s = 1. xi is a probability
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12:4 Nash Equilibria Through Multilinear Optimization

distribution over player i’s pure strategies, and thus a mixed strategy. Note that any pure
strategy is also a mixed strategy2. Let x = (x1, . . . , xn) be a mixed strategy profile of all
players, and x−i = (x1, . . . , xi−1, xi+1, xn) be a mixed strategy profile of all players other
than i. The product term

∏
sj∈ŝ xj

sj
for ŝ ∈ S−i denotes the combined probability of all

players except i to play the pure strategy tuple ŝ ∈ S−i. As an example, if we have three
players, player 2 has pure strategies s2,1 and s2,2 and player 3 has pure strategies s3,1 and
s3,2, then S−1 = {(s2,1, s3,1), (s2,1, s3,2), (s2,2, s3,1), (s2,2, s3,2)}. If player 2 plays s2,1 with
probability 1/2 and player 3 plays s3,1 with probability 1/4, then

∏
sj∈(s2,1,s3,1) = 1/2 ∗ 1/4,∏

sj∈(s2,1,s3,2) = 1/2 ∗ 3/4,
∏

sj∈(s2,1,s3,1) = 1/2 ∗ 1/4,
∏

sj∈(s2,2,s3,2) = 1/2 ∗ 3/4. Further, we
define vector p ∈ Rn. pi corresponds to player i’s highest expected payoff.

▶ Definition 1. Let Γ = ⟨{1, . . . , n}, (Si), (Ai)⟩ be a game with n, Si, Ai, xi defined as above.
Let xi ≥ 0 with

∑
s∈Si

xi
s = 1 be a mixed strategy of player i. Then, x∗ = (x∗1, . . . , x∗n)

with x∗i ≥ 0 and
∑

s∈Si
x∗i

s = 1 for all players i is a (mixed) Nash equilibrium if for all
players i and every mixed strategy xi, we have E [Ai[x∗]] ≥ E

[
Ai[xi, x∗−i]

]
.

We now present the multilinear optimization formulation.

(MLP1)

max
x,p

n∑
i=1

 ∑
(s,̂s)

∈Si×S−i

Ai[s, ŝ]xi
s

∏
sj∈ŝ

xj
sj

 −
n∑

i=1
pi (2a)

s.t.
∑

ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

xj
sj

≤ pi ∀i ∈ [n], s ∈ Si (2b)

∑
s∈Si

xi
s = 1 ∀i ∈ [n] (2c)

0 ≤ xi
s ≤ 1 ∀i ∈ [n], s ∈ Si (2d)

▶ Theorem 2. A (mixed) strategy (x1, . . . , xn) is a (mixed) Nash equilibrium of the
n-player game (A1, . . . , An) if and only if there exist numbers p1, . . . , pn such that
(x1, . . . , xn, p1, . . . , pn) is an optimal solution to the problem in MLP1.

It is easy to see that for two players, MLP1 equals the bilinear formulation in BLP,
with x1, x2 instead of x, y, p1, p2 instead of p, q, and A1, A2 instead of A, B. Computational
experiments on small instances reveal that the solver takes significant time to solve MLP1 to
optimality. However, further inspections reveal that it is more the verification of an optimal
solution, rather than finding an optimal solution, that is the reason for this. Particularly,
the solver finds a solution with objective function value 0 (i.e. a Nash equilibrium) relatively
quickly, but spends a lot of time verifying that there is no feasible solution with objective
function value larger than zero. However, as there cannot be a feasible solution with strictly
positive objective value, it is sufficient for the solver to find a feasible solution with objective
function value zero, instead of verifying that the upper bound to the optimisation program
is zero. Thus, we reformulate the program into a feasibility program, for which the aim is to
find a feasible solution for which the objective function (2a) of program MLP1 is non-negative.
As a strictly positive solution is not possible, any feasible solution to MLP2 will have a value
of zero, and thus be a Nash equilibrium.

2 When we refer to (mixed) strategies or a (mixed) Nash equilibrium, this includes pure strategies or a
pure Nash equilibrium.
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▶ Corollary 3. Every feasible solution of MLP2 is a Nash equilibrium.

(MLP2)

max
x,p

0 (3a)

s.t.
∑

ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

xj
sj

≤ pi ∀i ∈ [n], s ∈ Si (3b)

n∑
i=1

 ∑
(s,̂s)

∈Si×S−i

Ai[s, ŝ]xi
s

∏
sj∈ŝ

xj
sj

 −
n∑

i=1
pi ≥ 0 (3c)

∑
s∈Si

xi
s = 1 ∀i ∈ [n] (3d)

0 ≤ xi
s ≤ 1 ∀i ∈ [n], s ∈ Si (3e)

2.2 Mixed-integer formulations
For a two-player game, four mixed-integer formulations whose solutions are equivalent to a
Nash equilibrium in a two-player game were given in [16]. We generalize these formulations
to multi-player games. The notation we use is similar to the notation introduced in the
multilinear formulations. Further, we introduce U i = maxsl,sh∈Si ,̂sl ,̂sh∈S−i

Ai[sh, ŝh] −
Ai[sl, ŝl] be the maximum difference of any two payoffs of player i for any pure strategies of
all players.

We have four mixed-integer multilinear formulations, of which one is a feasibility program
and three are optimisation programs. All programs have five sets of variables. xi

s, ri
s, ui

s, ui

are real variables, and bi
s is binary. The MIMLPs have the same interpretation and range

of values for variables xi
s ≥ 0, ui, ui

s, ri
s ≥ 0, further they also come with constraints (4b),

(4c), (4d), (4e) (which are mostly such that variables xi
s, ui, ui

s, ri
s are defined as desired).

xi
s, for all players i ∈ [n] and all pure strategies s ∈ Si of player i, denotes the probability

with which player i plays pure strategy s. Hence, variables xi
s give us the mixed strategy

played by each player. In order to be valid strategies, all pure strategies of a player must be
played with non-negative probability (Eq. 4h) and sum up to one (Eq. 4b), for all players.
ui denotes the highest utility player i can achieve by playing any strategy, given the other
players mixed strategies. ui

s is the expected utility of player i of playing pure strategy s,
given the other players play their (mixed) strategies (Eq. 4c). Naturally, ui ≥ ui

s (Eq. 4d).
ri

s = ui − ui
s (Eq. 4e) is the regret of player i of playing pure strategy s. It is defined as the

difference of the highest utility of any strategy for the player to the utility of playing strategy
s, given the other players’ mixed strategies. By definition, the regret of any pure strategy
must be non-negative (4h). Further, in any Nash equilibrium, every pure strategy that is
played with strictly positive probability must have zero regret. If there was a pure strategy
which the player plays and that has positive regret, the player can increase their payoff by
putting more probability on a pure strategy with no regret and putting less probability on
the pure strategy with regret. Hence, it would not be a Nash equilibrium.

The meaning of binary variables bi
s is different in all formulations, with not all constraints

of MIMLP 1 regarding this variable (Eq. 4f, 4g) present in MIMLP 2,3,4. In formulation
1, if bi

s is 1, strategy s of player i is not played, hence xi
s = 0. If bi

s = 0, the probability on
strategy s is allowed to be positive, however the regret of the strategy must be zero. (4f)
ensures that bi

s can only be set to 1 if zero probability is on s. Further, (4g) ensures that
bi

s can only be set to zero if the strategy’s regret is zero (if bi
s = 1, this constraint does not

restrict any variable, as ri
s ≤ U i by definition).

SEA 2023



12:6 Nash Equilibria Through Multilinear Optimization

▶ Proposition 4. The set of feasible solutions to MIMLP1 is precisely the set of Nash
equilibria for the corresponding multi-player game.

(MIMLP1)

min 0 (4a)

s.t.
∑
s∈Si

xi
s = 1 ∀i ∈ [n] (4b)

ui
s =

∑
ŝ∈S−i

∏
sj∈ŝ

xj
sj

Ai[s, ŝ] ∀i ∈ [n], ∀s ∈ Si (4c)

ui ≥ ui
s ∀i ∈ [n], ∀s ∈ Si (4d)

ri
s = ui − ui

s ∀i ∈ [n], ∀s ∈ Si (4e)
xi

s ≤ 1 − bi
s ∀i ∈ [n], ∀s ∈ Si (4f)

ri
s ≤ U ibi

s ∀i ∈ [n], ∀s ∈ Si (4g)
xi

s, ri
s ≥ 0, ui

s, ūi ∈ R ∀i ∈ [n], ∀s ∈ Si (4h)
bi

s ∈ {0, 1} ∀i ∈ [n], ∀s ∈ Si (4i)

MIMLP1 is a feasibility program, for which only Nash equilibria are feasible solutions.
MIMLP2, MIMLP3, MIMLP4 have larger feasible regions, as pure strategies with positive
probability are allowed to have positive regret, and pure strategies with positive regret are
allowed to be played with positive probability. The formulations minimize a penalty, and it is
only Nash equilibria for which the penalty is minimal. Thus, only Nash equilibria are optimal
solutions. The advantage of these formulations is that, since finding a Nash equilibrium
is assumed to be computationally intractable, these formulations can be used to stop the
program before an equilibrium has been calculated, and thus give solutions which are close
to an equilibrium, also called approximate equilibria. However, it is more difficult with these
formulations to find a specific equilibrium among all equilibria, rather than just an arbitrary
equilibrium.

MIMLP2 penalises the regret of a pure strategy that is played with positive probability
in the objective function, and thus for optimal solutions, the regret of pure strategies with
positive probability is zero. MIMLP3 penalises the probability placed on pure strategies with
positive regret, and thus optimal solutions will have zero probability on pure strategies with
positive regret. MIMLP4 combines the normalised regret and the probability as a penalty,
and the solver can choose whether the regret or the probability should be minimized. As
[16] noted, these formulations can be used to find approximate Nash equilibria.

MIMLP2 aims to minimize the regret of pure strategies that are played with positive
probabilities. Particularly, the regret of a pure strategy played with positive probability
serves as a penalty to the objective function. This is done by introducing variable f i

s for
all i ∈ [n], s ∈ Si, which represents a pure strategy’s regret if the strategy has positive
probability and zero otherwise.

▶ Proposition 5. The set of Nash equilibria minimizes the objective function of MIMLP2.

(MIMLP2)

min
n∑

i=1

∑
s∈Si

f i
s − U ibi

s (5a)

s.t. (4b) − (4f), (4h), (4i)
f i

s ≥ ri
s ∀i ∈ [n], ∀s ∈ Si (5b)

f i
s ≥ U ibi

s ∀i ∈ [n], ∀s ∈ Si (5c)
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MIMLP3 is similar to MIMLP 2, however instead of minimising the regret of pure
strategies played with positive probability, the probabilities of pure strategies with positive
regret is minimized. To do so, variables gi

s are introduced, which are set such that a strategy’s
penalty in the objective function is zero if the strategy’s regret is zero, and xi

s (the probability
with which it is played) otherwise. The set of Nash equilibria minimizes the objective, as
strategies with positive regret are not played.

▶ Proposition 6. The set of Nash equilibria minimizes the objective function of MIMLP3.

(MIMLP3)

min
n∑

i=1

∑
s∈Si

gi
s − (1 − bi

s) (6a)

s.t. (4b) − (4e), (4g) − (4i)
gi

s ≥ xi
s ∀i ∈ [n], ∀s ∈ Si (6b)

gi
s ≥ 1 − bi

s ∀i ∈ [n], ∀s ∈ Si (6c)

MIMLP4 combines MIMLP 2 and MIMLP 3. Instead of penalising all pure strategies’
regret (MIMLP 2) or penalising all pure strategies’ probabilities if they have positive regret
(MIMLP 3), this formulation lets the solver decide for each pure strategy whether to penalise
the regret or the probability. The penalised regret is expressed with variables f i

s, the
penalised probabilities are expressed with variables gi

s. When using both the regret and the
probabilities, the regret must be normalised, as the probability of a pure strategy is between
zero and one, but a pure strategy’s regret can generally be larger than one. Hence, f i

s uses
normalised regret ri

s/U i, which is between zero and one.

▶ Proposition 7. The set of Nash equilibria minimizes the objective function of MIMLP4.

(MIMLP4)

min
n∑

i=1

∑
s∈Si

f i
s + gi

s (7a)

s.t. (4b) − (4e), (4h), (4i)
f i

s ≥ ri
s/U i ∀i ∈ [n], ∀s ∈ Si (7b)

f i
s ≥ bi

s ∀i ∈ [n], ∀s ∈ Si (7c)
gi

s ≥ xi
s ∀i ∈ [n], ∀s ∈ Si (7d)

gi
s ≥ 1 − bi

s ∀i ∈ [n], ∀s ∈ Si (7e)

2.3 Continuous and feasibility formulations
For potential performance improvements of the mixed-integer multilinear programs, we
further give continuous as well as feasibility formulations for the MIMLPs. Particularly, for
all MIMLPs, we introduce continuous formulations3 MIMLP1(C), MIMLP2(C), MIMLP3(C),
MIMLP4(C), for which constraint 4i, i.e. constraints (bi

s ∈ {0, 1}) is replaced by bi
s = (bi

s)2

(which implies 0 ≤ bi
s ≤ 1 and bi

s = 0 or bi
s = 1). Thus, the continuous formulations

are equivalent to the MIMLPs. The continuous formulation MIMLP1(C) for MIMLP1 is
given in MIMLP1(C), likewise MIMLP2(C), MIMLP3(C), MIMLP4(C) are simply MIMLP2,
MIMLP3, MIMLP4 but constraint (4i) replaced by (8a).

3 We note that due to this, the formulations are no longer mixed-integer, however we will still refer to
MIMLP(C), to make clear that they belong to the respective MIMLP
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12:8 Nash Equilibria Through Multilinear Optimization

(MIMLP1(C))

min (4a)
s.t. (4b) − (4e), (4h)

bi
s = (bi

s)2 ∀i ∈ [n], ∀s ∈ Si (8a)

For MIMLP 2,3,4 we also introduce equivalent feasibility formulations MIMLP2(F),
MIMLP3(F), MIMLP4(F), by introducing a constraint which requires the objective function of
the respective MIMLP to be equal to the optimal value of the MIMLP. Particularly, MIMLP2
and MIMLP3 have optimal objective function of zero, and thus we introduce constraints (5a)
= 0, i.e.

∑n
i=1

∑
s∈Si

f i
s −U ibi

s = 0 (MIMLP2) and (6a) = 0, i.e.
∑n

i=1
∑

s∈Si
gi

s−(1−bi
s) = 0

for MIMLP3. MIMLP4 has optimal value
∑n

i=1 |Si|, and thus we introduce constraint (7a)
=

∑n
i=1 |Si|, i.e.

∑n
i=1

∑
s∈Si

f i
s + gi

s =
∑n

i=1 |Si|. For all feasibility formulations, the
objective function is changed to 0. MIMLP3(F) is given in MIMLP3(F).

Further, we introduce MIMLP2(C,F), MIMLP3(C,F), MIMLP4(C,F), which combine the
continuous and feasibility formulations of MIMLP2,3,4, and are thus continuous multilinear
formulations4. MIMLP3(C,F) is given in MIMLP3(C,F).

(MIMLP3(F))
min 0
s.t. (4b) − (4e), (4g) − (4i), (6b), (6c)

(6a) = 0

(MIMLP3(C,F))
min 0
s.t. (4b) − (4e), (4g) − (4h), (6b), (6c), (8a)

(6a) = 0

Table 1 Overview of all mixed-integer multilinear formulations.

MIMLP 1 2 3 4 1(C) 2(C) 3(C) 4(C) 2(F) 3(F) 4(F) 2(C,F) 3(C,F) 4(C,F)

Feasibility program ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Optimality program ✓ ✓ ✓ ✓ ✓ ✓

Continuous ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mixed-integer ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 Computational Experiments

All experiments are run on a MacBook Pro with 8GB RAM and Intel i5 CPU. Multilinear
and mixed-integer formulations are implemented in AMPL [4]. We use BARON 21.1.13 [15]
as the solver, which uses FilterSD and FilterSQP as non-linear subsolvers. As the multilinear
formulation MLP2 in Equation (MLP2) is much faster than any of the MIMLPs (see Table 3),
we decide to only compare MLP2 against common algorithms for multi-player games. The
MIMLPs do not seem to give better performance than existing algorithms, and hence the
analysis of those is focused on comparing the MIMLPs to each other, to get an understanding
which MIMLP formulation is best. Thus, the experiments consist of two parts:

4 MIMLP2(C,F), MIMLP3(C,F), MIMLP4(C,F) are thus no longer mixed-integer.
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1. a comparison of MLP2 with common algorithms in Gambit [10] (results in Table 2),
2. a comparison of the different MIMLPs (results in Table 3).

All games are instanced in GAMUT [12] and have integer payoffs. We focus on random
games and covariance games with negative covariance, as previous work [16, 13] indicates
that covariance games with negative covariance are challenging to solve experimentally for a
variety of algorithms as they tend to only have few equilibria with small support size. We
refer to a covariance game with n players and |Si| actions per player and covariance ρ as
CG(n,|Si|,ρ), and to a random game with n players and |Si| actions per player as RG(n,|Si|).
For all games, we take the average of 10 randomly generated instances of that game, and if a
method did not find a Nash equilibrium before the timeout (which, depending on the game,
is 300 or 900 seconds), we add the timeout to the average.

Table 2 compares MLP2 to the simplicial subdivision method (SD), the global newton
method (GN), and the quantal response equilibrium (QRE) in Gambit. The results can
be summarised as follows: The simplicial subdivision algorithm is the slowest, and already
small instances are sufficient for the algorithm to not find a Nash equilibrium in less than
15 minutes. The global Newton method, although fast on the instances for which it finds
an equilibrium, in many instances terminates without giving an equilibrium back. This
issues has been reported in different scenarios, see [18], and in these cases, we put the
timeout towards the average. The logit algorithm and the multilinear formulation have
similar runtime for smaller instances, but for larger games, our formulations seems to be
faster. Thus, to conclude, our algorithm is faster than the algorithms in Gambit we test it
with, and can be an alternative.

Table 3 presents the results for the MIMLPs and the reformulations. It should be pointed
out than any of the MIMLPs takes much longer to find an equilibrium than MLP2, and
thus none of the MIMLPs is suited to find an equilibrium for large multi-player games. This
is different to the mixed-integer formulations for two-player games, for which [16] showed
better performance on some instances than existing algorithms. Therefore, the analysis of the
MIMLPs aims more to get an understanding what type of formulation is best to find a Nash
equilibrium in a multi-player game, than to compare the MIMLPs to common algorithms.

First, the continuous formulations MIMLP2(C), MIMLP3(C), MIMLP4(C) of MIMLP2,
MIMLP3, MIMLP4 don’t give much performance improvement compared to MIMLP2,3,4.
For MIMLP2 and MIMLP3, both the feasibility formulations MIMLP2(F) and MIMLP3(F)
and the combined continuous and feasibility formulations MIMLP2(C,F) and MIMLP3(C,F)
give better performance than MIMLP2 and MIMLP3, but whether MIMLP2(C,F) and
MIMLP3(C,F) are better than MIMLP2(F) and MIMLP3(C,F) depends very much on the
game. For MIMLP4, whether MIMLP4(F) or MIMLP4(C,F) are better than MIMLP4
depends on the game. Further, compared over all games, MIMLP1(C), i.e. the continuous
formulation of the feasibility formulation MIMLP1 seems to give the best performance.

4 Future Work

Further questions include using different nonlinear solvers for the multilinear formulation.
The solver we use finds a Nash equilibrium faster than any of the other algorithms we
compare it to, other solvers should only improve the performance of the multilinear feasibility
formulation. We also propose generating hard-to-solve instances. Even though GAMUT [12]
offers many different types of games, many of these are easy to solve even for large multi-
player games. Covariant games are among the few types of games that are (relatively)
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difficult to solve in the game generator GAMUT, and therefore we particularly use these
instances. However, due to this, there is not much variety in the hard-to-solve instances we
can use. Recent work has focused on hard-to-solve instances for polymatrix games (see [3] and
http://polymatrix-games.github.io), and so more hard-to-solve instances is a direction
to explore.

Table 2 Comparison of multilinear feasibility program to state-of-the-art algorithms.

Instance MLP2 GN SD QRE

CG(5,5,ρ = −0.2) 2.35 810.09 900 1.9 average (in seconds)
100% 10% 0% 100% percentage solved
2.53 0.91 – 1.9 average on solved (in seconds)

CG(3,10,ρ = −0.2) 0.57 271.56 518.96 0.36 average (in seconds)
100% 70% 50% 100% percentage solved
0.57 2.22 137.9 0.36 average on solved (in seconds)

RG(5,5) 2.23 540.57 632.98 2.08 average (in seconds)
100% 40% 40% 100% percentage solved
2.23 1.43 232.45 2.08 average on solved (in seconds)

RG(3,10) 0.329 91.325 382.9 0.362 average (in seconds)
100% 90% 70% 100% percentage solved
0.329 1.47 161.287 0.362 average on solved (in seconds)

CG(5,10,ρ = −0.2) 250.28 825.52 900 361.46 average (in seconds)
100% 10% 0% 100% percentage solved
250.28 155.21 – 361.46 average on solved (in seconds)

RG(5,10) 208.79 900 900 564.32 average (in seconds)
100% 0% 0% 90% percentage solved
208.79 – – 527.02 average on solved (in seconds)

CG(5,10,ρ = −0.1) 220.72 813.47 900 415.64 average (in seconds)
100% 10% 0% 90% percentage solved
220.72 34.77 – 361.82 average on solved (in seconds)

The time is the average over 10 instances of this game in seconds - if no solution is found after the
timeout of 15 minutes, the timeout is evaluated as time for the instance.

http://polymatrix-games.github.io
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Table 3 MIMLP results.

Method RG(3,5) RG(3,10) CG(3,5,-0.2) CG(5,3,-0.2) RG(5,3)

Time Time Time Time Time

MIMLP1 8.41 229.86 107.4 122.73 112.5
MIMLP1(C) 2.876 231.57 41.4 47.96 66.3
MIMLP2 19.11 202.38 16.16 538.17 660.5
MIMLP2(C) 55.93 272.15 165.5 469.5 453.14
MIMLP2(F) 14.4 150.33 29.72 410.94 345.45
MIMLP2(C,F) 14.3 279.03 68.516 198.7 218.16
MIMLP3 46.79 265.53 161.4 392.45 535.9
MIMLP3(C) 75.93 300 200.59 575.32 430.03
MIMLP3(F) 17.67 225.66 18.8 188.94 115.95
MIMLP3(C,F) 9.16 260.98 76.71 54.56 90.91
MIMLP4 5.84 220.969 79.4 359.54 49.75
MIMLP4(C) 110.3 300 69.6 479.0 462.62
MIMLP4(F) 56.5 221.26 129.78 129.59 56.88
MIMLP4(C,F) 59.19 270.69 65.12 248.85 84.52
MLP 2 0.03 0.36 0.035 0.12 0.09

The time is the average over 10 instances of this game in seconds - if no solution is found after the
timeout, the timeout is evaluated as time for the instance
RG(3,5), RG(3,10), CG(3,5,-0.2): Timeout after 300 seconds [5 minutes]
CG(5,3,-0.2), RG(5,3): Timeout after 900 seconds [15 minutes]
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A Correctness of the Proposed Formulations

Here we present proofs for the claims made with regards to the formulations presented in
this paper.

Proof of Theorem 2. We first show that if (x̄1, . . . , x̄n) is a Nash equilibrium to
(A1, . . . , Am), then there exist numbers p̄1, . . . , p̄n such that (x̄1, . . . , x̄n, p̄1, . . . , p̄n) is an
optimal solution to the program in MLP1. Assume that (x̄1, . . . , x̄n) is a Nash equilibrium.
For any feasible solution (x1, . . . , xn, p1, . . . , pn) of MLP1, constraints (2b), (2c) imply

∑
s∈Si

xi
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

xj
sj

 ≤ pi

for all i ∈ [n]. This implies (2a) ≤ 0 for any feasible solution. Set

p̄i =
∑
s∈Si

x̄i
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj


for every i ∈ [n]. We show that (x̄1, . . . , x̄n, p̄1, . . . , p̄n) is feasible and optimal to MLP1.
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As (x̄1, . . . , x̄n) is a Nash equilibrium, we have

∑
s∈Si

x̄i
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj

 ≥
∑
s∈Si

xi
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj


for all (mixed) strategies xi ≥ 0 with

∑
s∈Si

xi
s = 1. Choosing xi = ek, with k ∈ {1, . . . , |Si|},

hence the unit vector with all zeros except one in the k-th component, we have

p̄i =
∑
s∈Si

x̄i
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj

 ≥
∑

ŝ∈S−i

Ai[k, ŝ]
∏
sj∈ŝ

x̄j
sj

∀k ∈ {1, . . . , |Si|},

satisfying constraint 2b. As we can apply this for all players i ∈ [n] (and constraints 2c, 2d
hold as (x̄1, . . . , x̄n) is a Nash equilibrium), it follows that (x̄1, . . . , x̄m, p̄1, . . . , p̄n) is feasible.
Further, the objective function value is zero at the point (x̄1, . . . , x̄n, p̄1, . . . , p̄n). As the
objective function value is at most zero and (x̄1, . . . , x̄n, p̄1, . . . , p̄n) is feasible, it follows that
it is optimal.

To show that if (x̄1, . . . , x̄n, p̄1, . . . , p̄n) is an optimal solution to MLP1, (x̄1, . . . , x̄n) is a
Nash equilibrium, we assume that (x̄1, . . . , x̄n, p̄1, . . . , p̄n) indeed is optimal to MLP1. Since a
Nash equilibrium exists in this game and has objective value of zero, and all feasible solutions
have non-positive value, it follows that the objective value of (x̄1, . . . , x̄n, p̄1, . . . , p̄n) must
be zero. For any xi ≥ 0 with

∑
s∈Si

xi
s = 1, for all players i ∈ [n], constraints 2b, 2c imply

∑
s∈Si

xi
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj

 ≤ p̄i ∀i ∈ [n].

Particularly,

∑
s∈Si

x̄i
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj

 ≤ p̄i ∀i ∈ [n].

As further objective value of (x̄1, . . . , x̄n, p̄1, . . . , p̄n) is zero, we have

∑
s∈Si

x̄i
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj

 = p̄i ∀i ∈ [n].

Hence,

∑
s∈Si

xi
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj

 ≤
∑
s∈Si

x̄i
s

∑
ŝ∈S−i

Ai[s, ŝ]
∏
sj∈ŝ

x̄j
sj

 = p̄i

∀i ∈ [n], ∀xi ≥ 0 :
∑

s∈Si
xi

s = 1. Therefore, (x̄1, . . . , x̄n) is a Nash equilibrium, as the
constraint states that given the other players mixed strategies x̄j , no strategy of player i can
give higher payoff than strategy x̄i, for all players. ◀

Proof of Proposition 4. For any player i ∈ [n] and any pure strategy s ∈ Si of player i, xi
s

denotes the probability with which player i plays pure strategy s. Constraint 4b,4h guarantee
xi to be a valid mixed strategy for each player i, as all pure strategies are played with
non-negative probability and sum up to one. Constraint 4c defines the expected payoff ui

s of
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player i of playing pure strategy s (given the other players’ mixed strategies), and 4d defines
the highest possible expected payoff ui of any (mixed) strategy of player i given the other
players’ (mixed) strategies. Constraint 4e,4h define the regret ri

s of player i of playing pure
strategy s ∈ Si. The regret of a pure strategy is the difference of player i’s highest possible
expected payoff ui and i’s payoff of playing pure strategy s and is non-negative. Constraint
4i introduces binary variable bi

s for any pure strategy s of any player i. Constraint 4f requires
that bi

s can only be set to one if player i puts zero probability on pure strategy s. Further,
constraint 4g ensures that bi

s can only be set to zero if the strategy’s regret is zero (if bi
s = 1,

this constraint does not restrict any variable, as ri
s ≤ U i by definition). Thus, if bi

s is 1,
strategy s of player i is not played, hence xi

s = 0. If bi
s = 0, the probability on strategy s is

allowed to be positive, however the regret of the strategy must be zero. Hence, only pure
strategies with zero regret can be played with positive probability, which is precisely the
definition of a Nash equilibrium. ◀

Proof of Proposition 5. Constraints 4b,4c,4d,4e,4h,4i guarantee that xi, ri, ui, ui are cor-
rectly defined for all players. Due to constraint (4f), bi

s can only be set to one if the probability
on the pure strategy is zero. Then, due to minimising f i

s in (5a) and Equation (5c), f i
s must

be set to U i. In that case, f i
s and U ibi

s cancel out in the objective, and hence strategies with
zero probability have no penalty. If bi

s = 0, f i
s equals ri

s, due to minimising f i
s and Equation

(5b), and as U ibi
s = 0, the penalty of the pure strategy equals the regret of the strategy,

and pure strategies that have no regret do not have a penalty. Thus, due to the objective
function, it is encouraged to play pure strategies which have no regret, and to not play
strategies with regret. Thus, any pure strategy will only contribute to the objective function
if it has positive regret and probability. The Nash equilibria minimize the objective function,
with optimal objective of zero. As any pure strategy in a Nash equilibrium will either have
zero probability (hence no penalty) or zero regret (hence no penalty), the objective function
will equal zero. Solutions which do not equal a Nash equilibrium have higher objective value,
as for some strategies, f i

s > 0 (as ri
s and U i are non-negative). ◀

Proof of Proposition 6. We recall that because of constraint (4g), bi
s can only be set to zero

if the strategy’s regret ri
s is zero. By constraint (6c) and minimising gi

s, if bi
s = 0, then gi

s = 1.
Thus, gi

s and 1 − bi
s cancel out in the objective function and the penalty of strategy s is zero.

If bi
s = 1, due to constraint (6b) and minimising gi

s, gi
s = xi

s, and 1 − bi
s = 0. Hence, the

penalty of strategy s equals xi
s. Therefore, the probability a pure strategy is played with

only contributes to the objective function if the strategy has positive regret. Nash equilibria
minimize the objective function, and come with optimal value of zero. Constraint (4f) of
MIMLP 1 (namely, xi

s ≤ 1 − bi
s) is no longer in this formulation, and it is possible to set

bi
s = 1 even if some probability is placed on s. However, in a Nash equilibrium, bi

s will only
be set to 1 if the probability on s is indeed zero, as pure strategies with positive regret are
not played. ◀

Proof of Proposition 7. Constraint (7b) demands that if bi
s = 0, then f i

s = ri
s/U i, which is

at most 1. Further, due to (7e), gi
s = 1. If bi

s = 1, then f i
s = 1 (constraint (7c)) and gi

s = xi
s

(constraint (7d)), which is at most 1. Hence, f i
s + gi

s is at least 1 for every pure strategy
s, and additional penalties (either the normalised regret or the probability of the strategy)
contribute to the objective function if a strategy has positive probability and positive regret.
Any feasible solution that is not a Nash equilibrium has f i

s + gi
s > 1 for some strategies, as

not all strategies have either no regret or zero probability. Nash equilibria minimize the
objective function, with value of

∑n
i=1 |Si|, as the normalised regret is zero, or the probability

of strategy is zero. ◀
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